
odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 1 of 154

OData Extension for Data Aggregation
Version 4.0

Committee Specification 02

Draft 04 November 2015

Specification URIs

05 July 2023

This versionstage:

https://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/csd04/odata-data-aggregation-ext-v4.0-csd04.md (Authoritative)
https://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/csd04/odata-data-aggregation-ext-v4.0-csd04.html
https://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/csd04/odata-data-aggregation-ext-v4.0-csd04.pdf

Previous stage:

https://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/cs02/odata-data-aggregation-ext-v4.0-cs02.docx (Authoritative)
https://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/cs02/odata-data-aggregation-ext-v4.0-cs02.html
https://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/cs02/odata-data-aggregation-ext-v4.0-cs02.pdf

https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/odata-data-aggregation-ext-v4.0-csd04.md
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/odata-data-aggregation-ext-v4.0-csd04.md
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/odata-data-aggregation-ext-v4.0-csd04.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/odata-data-aggregation-ext-v4.0-csd04.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/odata-data-aggregation-ext-v4.0-csd04.pdf
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/odata-data-aggregation-ext-v4.0-csd04.pdf
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs02/odata-data-aggregation-ext-v4.0-cs02.docx
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs02/odata-data-aggregation-ext-v4.0-cs02.docx
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs02/odata-data-aggregation-ext-v4.0-cs02.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs02/odata-data-aggregation-ext-v4.0-cs02.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs02/odata-data-aggregation-ext-v4.0-cs02.pdf
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs02/odata-data-aggregation-ext-v4.0-cs02.pdf
https://www.oasis-open.org/

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 2 of 154

Previous version:

Latest stage:

https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-
aggregation-ext-v4.0.md (Authoritative)
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-
aggregation-ext-v4.0.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-
aggregation-ext-v4.0.pdf

Latest version:
 (Authoritative)

Technical Committee:

OASIS Open Data Protocol (OData) TC

Chairs:

Ralf Handl (ralf.handl@sap.com), SAP SE

Ram Jeyaraman
Michael Pizzo (mikep@microsoft.com), Microsoft

Editors:

Ralf Handl (ralf.handl@sap.com), SAP SE
Hubert Heijkers (hubert.heijkers@nl.ibm.com), IBM
Gerald Krause (gerald.krause@sap.com), SAP SE
Michael Pizzo (mikep@microsoft.com), Microsoft
Heiko Theißen (heiko.theissen@sap.com), SAP SE
Martin Zurmühl (martin.zurmuehl@sap.com), SAP SE

Gerald Krause (),
Michael Pizzo (),

Martin Zurmuehl (), Additional artifacts:

This prose specificationdocument is one component of a Work Product that
also includes:

• ABNF components: OData Aggregation ABNF Construction Rules
Version 4.0: and OData Aggregation ABNF Test Cases:
https://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/csd04/abnf/

• OData Aggregation Vocabulary:

https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.md
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.md
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.pdf
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.pdf
https://www.oasis-open.org/committees/odata/
mailto:ralf.handl@sap.com
https://www.sap.com/
mailto:mikep@microsoft.com
https://www.microsoft.com/
mailto:ralf.handl@sap.com
https://www.sap.com/
mailto:hubert.heijkers@nl.ibm.com
https://www.ibm.com/
mailto:gerald.krause@sap.com
https://www.sap.com/
mailto:mikep@microsoft.com
https://www.microsoft.com/
mailto:heiko.theissen@sap.com
https://www.sap.com/
mailto:martin.zurmuehl@sap.com
https://www.sap.com/
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/abnf/
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/abnf/

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 3 of 154

o https://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/csd04/vocabularies/Org.OData.Aggregation.V1.json

o https://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/csd04/vocabularies/Org.OData.Aggregation.V1.xml

Related work:

This specification is related to:

• OData Version 4.001. Edited by Michael Pizzo, Ralf Handl, and
Martin Zurmuehl. A multi-part Work Product thatwhich includes:

o OData Version 4.001 Part 1: Protocol. Latest version.stage:
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-
part1-protocol.html

o OData Version 4.001 Part 2: URL Conventions. Latest
version.stage: https://docs.oasis-
open.org/odata/odata/v4.01/odata-v4.01-part2-url-
conventions.html

o OData Version 4.0 Part 3: Common Schema Definition Language

(CSDL). Latest version. ABNF components: OData ABNF
Construction Rules Version 4.0. 30 October 2014. 01 and
OData ABNF Test Cases. 30 October 2014. https://docs.oasis-
open.org/odata/odata/v4.0/errata0201/os/complete/abnf/

• OData Vocabularies Version 4.0. Edited by Michael Pizzo, Ralf
Handl, and Ram Jeyaraman. Latest stage: https://docs.oasis-
open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-
v4.0.html

o OData Common Schema Definition Language (CSDL) JSON
Representation Version 4.01. Edited by Michael Pizzo, Ralf Handl, and
Martin Zurmuehl. Latest stage: https://docs.oasis-
open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.htmlOData

Core Vocabulary. 30 October 2014.

• OData Measures Vocabulary. 30 October 2014.

• OData Common Schema Definition Language (CSDL) XML
Representation Version 4.01. Edited by Michael Pizzo, Ralf Handl,
and Martin Zurmuehl. Latest stage: https://docs.oasis-
open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html

• OData JSON Format Version 4.001. Edited by Ralf Handl, Mike
Pizzo, and Mark Biamonte. Latest version.stage: https://docs.oasis-
open.org/odata/odata-json-format/v4.01/odata-json-format-
v4.01.html

https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/vocabularies/Org.OData.Aggregation.V1.json
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/vocabularies/Org.OData.Aggregation.V1.json
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/vocabularies/Org.OData.Aggregation.V1.xml
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/vocabularies/Org.OData.Aggregation.V1.xml
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/os/abnf/
https://docs.oasis-open.org/odata/odata/v4.01/os/abnf/
https://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html
https://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html
https://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 4 of 154

Abstract:

This specification adds basic grouping and aggregation functionality (e.g.
sum, min, and max) to the Open Data Protocol (OData) without changing
any of the base principles of OData.

Status:

This document was last revised or approved by the OASIS Open Data
Protocol (OData) TC on the above date. The level of approval is also listed
above. Check the “"Latest version”stage" location noted above for possible
later revisions of this document. Any other numbered Versions and other
technical work produced by the Technical Committee (TC) are listed at
https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=odata#technical.

TC members should send comments on this specification to the TC’'s
email list. Others should send comments to the TC’'s public comment list,
after subscribing to it by following the instructions at the "Send A
Comment“”" button on the TC’'s web page at https://www.oasis-
open.org/committees/odata/.

This specification is provided under the RF on RAND Terms Mode of the
OASIS IPR Policy, the mode chosen when the Technical Committee was
established. For information on whether any patents have been disclosed
that may be essential to implementing this specification, and any offers of
patent licensing terms, please refer to the Intellectual Property Rights
section of the TC’'s web page (https://www.oasis-
open.org/committees/odata/ipr.php).

Note that any machine-readable content (Computer Language Definitions)
declared Normative for this Work Product is provided in separate plain text
files. In the event of a discrepancy between any such plain text file and
display content in the Work Product's prose narrative document(s), the
content in the separate plain text file prevails.

Key words:

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in BCP 14 [RFC2119] and [RFC8174] when, and
only when, they appear in all capitals, as shown here.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/policies-guidelines/ipr/#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsCompLang

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 5 of 154

Citation format:

When referencing this specification the following citation format should be
used:

[OData-Data-Agg-v4.0]

OData Extension for Data Aggregation Version 4.0. Edited by Ralf Handl,
Hubert Heijkers, Gerald Krause, Michael Pizzo, Heiko Theißen, and Martin
Zurmuehl. 04 November 2015.05 July 2023. OASIS Committee Specification
02Draft 04. https://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/csd04/odata-data-aggregation-ext-v4.0-csd04.html. Latest
versionstage: https://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/odata-data-aggregation-ext-v4.0.html.

Notices

Copyright © OASIS Open 2015. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to
them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR
Policy"). The full may be found at2023. All Rights Reserved.

Distributed under the terms of the OASIS IPR Policywebsite..

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published, and
distributed, in whole or in part, without restriction of any kind, provided that
the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified
in any way, including by removing the copyright notice or references to
OASIS, except as needed for the purpose of developing any document or
deliverable produced by an OASIS Technical Committee (in which case
the rules applicable to copyrights, as set forth in the OASIS IPR Policy,
must be followed) or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS
IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/odata-data-aggregation-ext-v4.0-csd04.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd04/odata-data-aggregation-ext-v4.0-csd04.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
https://www.oasis-open.org/policies-guidelines/ipr/

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 6 of 154

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it

represent that it has made any effort to identify any such rights. Information on OASIS' procedures
with respect to rights in any document or deliverable produced by an OASIS Technical
Committee can be found on the OASIS website. Copies of claims of rights made
available for publication and any assurances of licenses to be made available, or the
result of an attempt made to obtain a general license or permission for the use of such
proprietary rights by implementers or users of this OASIS Committee Specification or OASIS

Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any
information or list of intellectual property rights will at any time be complete, or that any claims in such list
are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of
this specification, and should be used only to refer to the organization and
its official outputs. OASIS welcomes reference to, and implementation and
use of, specifications, while reserving the right to enforce its marks against
misleading uses. The name "OASIS" is a trademark of OASIS, the owner
and developer of this specification, and should be used only to refer to the
organization and its official outputs.

For complete copyright information please see the full Notices section in an Appendix
belowPlease see for above guidance.

.

Table of Contents

• 1 Introduction

o 1.1 Glossary

▪ 1.1.1 Definitions of Terms

▪ 1.1.2 Acronyms and Abbreviations

▪ 1.1.3 Document Conventions

• 2 Overview

o 2.1 Example Data Model

o 2.2 Example Data

https://www.oasis-open.org/
https://www.oasis-open.org/

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 7 of 154

o 2.3 Example Use Cases

• 3 System Query Option $apply

o 3.1 Fundamentals of Input and Output Sets

▪ 3.1.1 Type, Structure and Context URL

▪ 3.1.2 Sameness and Order

▪ 3.1.3 Evaluation of Data Aggregation Paths

o 3.2 Basic Aggregation

▪ 3.2.1 Transformation aggregate

▪ 3.2.1.1 Aggregation Algorithm

▪ 3.2.1.2 Keyword as

▪ 3.2.1.3 Aggregation Methods

▪ 3.2.1.3.1 Standard Aggregation Method
sum

▪ 3.2.1.3.2 Standard Aggregation Method
min

▪ 3.2.1.3.3 Standard Aggregation Method
max

▪ 3.2.1.3.4 Standard Aggregation Method
average

▪ 3.2.1.3.5 Standard Aggregation Method
countdistinct

▪ 3.2.1.3.6 Custom Aggregation Methods

▪ 3.2.1.4 Aggregate Expression $count

▪ 3.2.1.5 Keyword from

▪ 3.2.2 Transformation concat

▪ 3.2.3 Transformation groupby

▪ 3.2.3.1 Simple Grouping

▪ 3.2.3.2 Grouping with rollup

o 3.3 Transformations Producing a Subset

▪ 3.3.1 Top/bottom transformations

▪ 3.3.1.1 Transformations bottomcount and
topcount

▪ 3.3.1.2 Transformations bottompercent and
toppercent

▪ 3.3.1.3 Transformations bottomsum and
topsum

▪ 3.3.2 Transformation filter

▪ 3.3.3 Transformation orderby

▪ 3.3.4 Transformation search

▪ 3.3.5 Transformation skip

▪ 3.3.6 Transformation top

▪ 3.3.7 Stable Total Order Before $skip and $top

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 8 of 154

o 3.4 One-to-One Transformations

▪ 3.4.1 Transformation identity

▪ 3.4.2 Transformation compute

▪ 3.4.3 Transformation addnested

o 3.5 Transformations Changing the Input Set Structure

▪ 3.5.1 Transformations join and outerjoin

▪ 3.5.2 Transformation nest

o 3.6 Expressions Evaluable on a Collection

▪ 3.6.1 Function aggregate

▪ 3.6.2 Expression $count

o 3.7 Function isdefined

o 3.8 Evaluating $apply as an Expand and Select Option

o 3.9 ABNF for Extended URL Conventions

• 4 Cross-Joins and Aggregation

• 5 Vocabulary for Data Aggregation

o 5.1 Aggregation Capabilities

o 5.2 Custom Aggregates

o 5.3 Context-Defining Properties

o 5.4 Annotation Example

o 5.5 Hierarchies

▪ 5.5.1 Leveled Hierarchy

▪ 5.5.2 Recursive Hierarchy

▪ 5.5.2.1 Hierarchy Functions

▪ 5.5.3 Hierarchy Examples

o 5.6 Functions on Aggregated Entities

• 6 Hierarchical Transformations

o 6.1 Common Parameters for Hierarchical Transformations

o 6.2 Hierarchical Transformations Producing a Subset

▪ 6.2.1 Transformations ancestors and descendants

▪ 6.2.2 Transformation traverse

▪ 6.2.2.1 Standard Case of traverse

▪ 6.2.2.2 General Case of traverse

o 6.3 Grouping with rolluprecursive

• 7 Examples

o 7.1 Requesting Distinct Values

o 7.2 Standard Aggregation Methods

o 7.3 Requesting Expanded Results

o 7.4 Requesting Custom Aggregates

o 7.5 Aliasing

o 7.6 Combining Transformations per Group

o 7.7 Model Functions as Set Transformations

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 9 of 154

o 7.8 Controlling Aggregation per Rollup Level

o 7.9 Aggregation in Recursive Hierarchies

o 7.10 Maintaining Recursive Hierarchies

o 7.11 Transformation Sequences

• 8 Conformance

• A References

o A.1 Normative References

• B Acknowledgments

o B.1 Special Thanks

o B.2 Participants

• C Revision History

D Notices

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 10 of 154

1 Introduction
•

1 Introduction

This specification adds the notion of aggregation functionality to the Open
Data Protocol (OData) without changing any of the base principles of
OData. It defines semantics and a representation for aggregation of data,
especially:

• Semantics and operations for querying aggregated data,

• Results format for queries containing aggregated data,

• Vocabulary terms to annotate what can be aggregated, and how.

1.1 Glossary

1.1.1 Definitions of Terms

1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in [].

1.2 Normative References

[OData-ABNF] OData ABNF Construction Rules Version 4.0.
See the link in "Related work" section on cover page.

[OData-Agg-ABNF] OData Aggregation ABNF Construction Rules Version 4.0.
See link in "Additional artifacts" section on cover page.

[OData-CSDL] OData Version 4.0 Part 3: CSDL.
See link in "Related work" section on cover page.

[OData-JSON] OData JSON Format Version 4.0.
See link in "Related work" section on cover page.

[OData-Protocol] OData Version 4.0 Part 1: Protocol.
See link in "Related work" section on cover page.

[OData-URL] OData Version 4.0 Part 2: URL Conventions.
See link in "Related work" section on cover page.

[OData-VocAggr] OData Aggregation Vocabulary.
See link in "Additional artifacts" section on cover page.

[OData-VocMeas] OData Measures Vocabulary.
See link in "Related work" section on cover page.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP

14, RFC 2119, March 1997. .

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 11 of 154

1.3 Non-Normative References

[TSQL ROLLUP]

1.4 Typographical Conventions

This specification defines the following terms:

• Aggregatable Expression – an expression not involving term casts
and resulting in a value of a complex or entity or an aggregatable
primitive type

• Aggregate Expression – argument of the aggregate transformation
or function defined in section 3.2.1.1

• Aggregatable Primitive Type – a primitive type other than
Edm.Stream or subtypes of Edm.Geography or Edm.Geometry

• Data Aggregation Path – a path that consists of one or more
segments joined together by forward slashes (/). Segments are
names of declared or dynamic structural or navigation properties, or
type-cast segments consisting of the (optionally qualified) name of
a structured type that is derived from the type identified by the
preceding path segment to reach properties declared by the
derived type.

• Expression – derived from the commonExpr rule (see OData-ABNF)

• Single-Valued Property Path – property path ending in a single-
valued primitive, complex, or navigation property

1.1.2 Acronyms and Abbreviations

The following non-exhaustive list contains variable names that are used
throughout this document:

• \(A,B,C\) – collections of instances

• \(H\) – hierarchical collection

• \(H'\) – subset of nodes from a hierarchical collection

• \(u,v,w\) – instances in a collection

• \(x\) – an instance in a hierarchical collection, called a node

• \(p,q,r\) – paths

• \(S,T\) – transformation sequences

• \(α\) – aggregate expression, defined in section 3.2.1.1

• \(\Gamma(A,p)\) – the collection that results from evaluating a data
aggregation path \(p\) relative to a collection \(A\), defined in section
3.1.3

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 12 of 154

• \(γ(u,p)\) – the collection that results from evaluating a data
aggregation path \(p\) relative to an instance \(u\), defined in section
3.1.3

• \(\Pi_G(s)\) – a transformation of a collection that injects grouping
properties into every instance of the collection, defined in section
3.2.3.1

• \(σ(x)\) – instance containing a grouping property that represents a
node \(x\), defined in section 6.2.2

1.1.3 Document Conventions

Keywords defined by this specification use this monospaced font.

Normative source code uses this paragraph style.

Some sections of this specification are illustrated with non-normative
examples.

Example :1: text describing an example uses this paragraph style

Non-normative examples use this paragraph style.

All examples in this document are non-normative and informative only.

Examples labeled with ⚠ contain advanced concepts or make use of

keywords that are defined only later in the text, they can be skipped at first
reading.

All other text is normative unless otherwise labeled.

Here is a customized command line which will generate HTML from this markdown file
(named odata-data-aggregation-ext.md). Line breaks are added for readability only:

pandoc -f gfm+tex_math_dollars+fenced_divs

 -t html

 -o odata-data-aggregation-ext.html

 -c styles/markdown-styles-v1.7.3b.css

 -c styles/odata.css

 -s

 --mathjax

 --eol=lf

 --wrap=none

 --metadata pagetitle="OData Extension for Data

Aggregation Version 4.0"

 odata-data-aggregation-ext.md

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 13 of 154

2 This uses pandoc 3.1.2 from
https://github.com/jgm/pandoc/releases/tag/3.1.2Ov
erview

.

2 Overview

Open Data Protocol (OData) services expose a data model that describes
the schema of the service in terms of the Entity Data Model (EDM, see
OData-CSDL[])) and then allows for querying data in terms of this model.
The responses returned by an OData service are based on that data
model and retain the relationships between the entities in the model.

Extending the OData query features with simple aggregation capabilities
avoids cluttering OData services with an exponential number of explicitly
modeled “"aggregation level entities”" or else restricting the consumer to a
small subset of predefined aggregations.

Adding the notion of aggregation to OData without changing any of the
base principles in OData has two aspects:

1. Means for the consumer to query aggregated data on top of any
given data model (for sufficiently capable data providers)

2. Means for the provider to annotate what data can be aggregated,
and in which way, allowing consumers to avoid asking questions
that the provider cannot answer.

Implementing any of these two aspects is valuable in itself independent of
the other, and implementing both provides additional value for consumers.
The descriptions provided by the provideraggregation annotations help a
consumer understand more of the data structure looking at the service's
exposed data model. The query extensions allow the consumers to express

explicitly express the desired aggregation behavior for a particular query.
They also allow consumers to formulate queries that refer toutilize the
aggregation annotations as shorthand.

2.1 Definitions

This specification defines the following terms:

https://github.com/jgm/pandoc/releases/tag/3.1.2

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 14 of 154

2.1 Example Data Model

• – a property for which the values can be aggregated using an aggregation method.

• – a method that can be used to aggregate an aggregatable property or expression

• Standard Aggregation Method – one of the standard aggregation methods: , , , , and

• – a custom aggregation method that can be applied to expressions of a specified type

• – a dynamic property that can appear in an aggregate clause

• – a property whose values can be used to group entities or complex type instances for
aggregation.

• – an arrangement of groupable properties whose values are represented as being “above”,
“below”, or “at the same level as” one another.

2.2 Example Data Model

Example :2: The following diagram shows the terms defined in the section above applied
todepicts a simple model that is used throughout this document.

ID: Edm.String {id} Amount: Edm.Decimal Sale Date: Edm.Date {id} Month: Edm.String
Quarter: Edm.String Year: Edm.Int16 Time ID: Edm.String {id} Name: Edm.String
Country: Edm.String Customer ID: Edm.String {id} Name: Edm.String Category ID:
Edm.String {id} Name: Edm.String Color: Edm.String TaxRate: Edm.Decimal Product ID:
Edm.String {id} Name: Edm.String SalesOrganization 1 * 1 * * 1 0..1 * 1 * 1 * Sales Sales

Key : Type

Property : Type

Navigation Property

Legend:

ID : String

Name : String

Country : String

Customer

Date : Date

Month : String

Quarter : String

Time

Year : Number

ID : String

Name : String

Category

ID : String

Name : String

Category

Product

Color : String

ID: String

Customer

Time

Sales

Product

Amount : Decimal

SalesOrganization

Code : String

Name : String

Currency

ID : String

Name : String

Superordinate

SalesOrganization
Currency

TaxRate : String

SalesSales

Products

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 15 of 154

Customer Product Products Category Time SalesOrganization Superordinate Rating:
Edm.Byte FoodProduct RatingClass: Edm.String NonFoodProduct

The Amount property in the Sales entity type is an aggregatable propertyaggregatable
property,, and the properties of the related entity types are groupable. These can be
arranged in four hierarchies, for example:

• Product hierarchy based on groupablegroupable properties of the Category and

Product entity types

• Customer hierarchyhierarchy based on Country and Customer

• Time hierarchyhierarchy based on Year, Month, and Date

• SalesOrganization hierarchy based on the recursive association to itself

In the context of Online Analytical Processing (OLAP), this model might be described in
terms of a Sales “"cube”" with an Amount “"measure”" and three “"dimensions”.". This
document will avoid such terms, as they are heavily overloaded.

Query extensions and descriptive annotations can both be applied to
normalized schemas as well as partly or fully denormalized schemas.

Note that OData’s Entity Data Model (EDM) does not mandate a single storage model; it may be realized
as a completely conceptual model whose data structure is calculated on-the-fly for each request. The
actual "entity-relationship structure" of the model should be chosen to simplify understanding and
querying data for the target audience of a service. Different target audiences may well require differently
structured services on top of the same storage model.

2.3 Example Data

Example :3: The following diagram depicts a denormalized schema for the simple model.

Sale

Sales ID: Edm.String {id}

Amount: Edm.Decimal

Category CategoryID: Edm.String

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 16 of 154

CategoryName: Edm.String

Product ProductID: Edm.String

ProductName: Edm.String

ProductColor: Edm.String

ProductTaxRate: Edm.Decimal

Food FoodProductRating: Edm.Byte

Non-Food NonFoodProductRatingClass: Edm.String

Sales Organization SalesOrganizationID: Edm.String

SalesOrganizationName: Edm.String

SalesOrganizationSuperordinateID: Edm.String

Time TimeDate: Edm.Date

TimeMonth: Edm.String

TimeQuarter: Edm.String

TimeYear: Edm.Int16

Customer CustomerID: Edm.String

CustomerName: Edm.String

CustomerCountry: Edm.String

2.2 Example Data

Example 4: The following entity sets and sample data will be used to further illustrate the
capabilities introduced by this extension.

Products

ID Category Name Color TaxRate

P1 PG1 Sugar White 0.06

P2 PG1 Coffee Brown 0.06

P3 PG2 Paper White 0.14

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 17 of 154

ID Category Name Color TaxRate

P4 PG2 Pencil Black 0.14

Food

Rating

5

n/a

n/a

Non-Food

RatingClass

n/a

n/a

average

Time

Date Month Quarter Year

2022-01-01 2022-01 2022-1 2022

2022-04-01 2022-04 2022-2 2022

2022-04-10 2022-04 2022-2 2022

...

Categories

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 18 of 154

ID Name

PG1 Food

PG2 Non-Food

Sales Organizations

ID Superordinate Name

Sales

Corporate Sales

US Sales US

US West US US West

US East US US East

EMEA Sales EMEA

EMEA Central EMEA EMEA Central

Customers

ID Name Country

C1 Joe USA

C2 Sue USA

C3 Sue Netherlands

C4 Luc France

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 19 of 154

Sales

2.4 Example Use Cases

ID Customer Time Product Sales Organization Amount

1 C1 2022-01-03 P3 US West 1

2 C1 2022-04-10 P1 US West 2

3 C1 2022-08-07 P2 US West 4

4 C2 2022-01-03 P2 US East 8

5 C2 2022-11-09 P3 US East 4

6 C3 2022-04-01 P1 EMEA Central 2

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 20 of 154

ID Customer Time Product Sales Organization Amount

7 C3 2022-08-06 P3 EMEA Central 1

8 C3 2022-11-22 P1 EMEA Central 2

Legend

Property

Key

Navigation Property

2.3 Example Use Cases

Example :5: In the example model, one prominent use case is the relation of customers
to products. The first question that is likely to be asked is: “"Which customers bought
which products?” ?"

This leads to the second more quantitative question: “"Who bought how much of what?”
?"

The answer to the second question typically is visualized as a cross-table:

Food

Non-Food

Sugar Coffee

Paper

USA

USD

14 2 12 5 5

Joe
USD

6 2 4 1 1

Sue
USD

8

8 4 4

Netherlands

EUR

2 2

3 3

Sue
EUR

2 2

3 3

The data in this cross-table can be written down in a shape that more closely resembles
the structure of the data model, leaving cells empty that have been aggregated away:

Customer/Country Customer/Name Product/Category/Name Product/Name Amount
Currency
/Code

USA Joe Non-Food Paper 1
USD

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 21 of 154

Customer/Country Customer/Name Product/Category/Name Product/Name Amount
Currency
/Code

USA Joe Food Sugar 2
USD

USA Joe Food Coffee 4
USD

USA Sue Food Coffee 8
USD

USA Sue Non-Food Paper 4
USD

Netherlands Sue Food Sugar 2
EUR

Netherlands Sue Non-Food Paper 3
EUR

USA

Food Sugar 2
USD

USA

Food Coffee 12
USD

USA

Non-Food Paper 5
USD

Netherlands

Food Sugar 2
EUR

Netherlands

Non-Food Paper 1
EUR

USA Joe Food

6
USD

USA Joe Non-Food

1
USD

USA Sue Food

8
USD

USA Sue Non-Food

4
USD

Netherlands Sue Food

2
EUR

Netherlands Sue Non-Food

3
EUR

USA

Food

14
USD

USA

Non-Food

5
USD

Netherlands

Food

2
EUR

Netherlands

Non-Food

3
EUR

Note that this result contains seven fully qualified aggregate values, plusfollowed by
fifteen rollup rows with subtotal values, shown in bold.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 22 of 154

3 3 System Query Option $applySystem Query Option
$apply

Aggregation behavior

A set transformation (transformation for short) is triggered using the query

option $apply. It takesan operation on an input set that produces an output

set. A transformation sequence is a sequence of set transformations,
separated by forward slashes to express that they are consecutively
applied, i.e. the result of each . A transformation sequence may be invoked
using the system query option $apply. The input set of the first set
transformation is the input to the next transformation.collection addressed by
the resource path. The output set of each set transformation is the input
set for the next set transformation. The output set of the last set
transformation in the transformation sequence invoked by the system
query option $apply is the result of $apply. This is consistent with the use
of service-defined bindablebound and composable functions in path
segments. Set transformations may also appear as a parameter of certain
other set transformations defined below.

Unless otherwise noted, each set transformation:

preserves the structure of the input type, so the structure ofThe system query option
$apply MUST NOT be used if the resource path addresses a single
instance.

The system query option $apply is evaluated first, then the other system
query options are evaluated, if applicable, on the result of $apply, see
OData-Protocol, section 11.2.1. Stability across requests for system query
options $top and $skip OData-Protocol, sections 11.2.6.3 and 11.2.6.4 is
defined in section 3.3.7.

Each set transformation:

• carries over the input type to the output set such that it fits into the
data model of the service.

• does not necessarily preserve thecan mark certain navigation properties
and stream properties for expansion by default, that is, they are
expanded in the result of $apply in the absence of an $expand
query option.

• may produce an output set with a different number of instances in

the result, as this will typically differ from the number of instances inthan the
input set.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 23 of 154

• does not necessarily guarantee that all properties of the result

instances in the output set have a well-defined value.

Instances of an output set can contain structural and navigation
properties, which can be declared or dynamic, as well as instance
annotations.

The allowed set transformations are defined in this section as well as in the section on
Hierarchical TransformationsSo the actual (or relevant) structure of each intermediary result will

resemble a projection of the original data model that could also have been formed using the standard
system query options $expand and $select defined in [], with dynamic properties representing the

aggregate values. The parameters of set transformations allow specifying how the result instances are
constructed from the input instances.
The set transformations defined by this extension are

.

Service-defined bound functions that take an entity set a collection of
instances of a structured type as their binding parameter and return a
collection of instances of a structured type MAY be used as set
transformations within $apply if the type of the binding parameter matches the type

of the result set of the preceding transformation. If it returns an entity set, further.
Further transformations can follow the bound function. The parameter
syntax for bound function segments is identical to the parameter syntax for
bound functions in resource path segments or $filter expressions. See
section 7.7section for an example.

If a data service that supports $apply does not support it on the collection
identified by the request resource path, it MUST fail with 501 Not
Implemented and a meaningful human-readable error message.

On resource paths ending in /$count the system query option $apply is
evaluated on the set identified by the resource path without the /$count
segment, the result is the plain-text number of items in the result of $apply.
This is similar to the combination of /$count and $filter.

During serialization of the result of $apply declared properties and
dynamic properties are represented as defined by the response format.
Other properties have been aggregated away and are not represented in
the response. The entities returned in the request examples in the
following sections that involve aggregation are therefore transient.

3.1 Fundamentals of Input and Output Sets

The definitions of italicized terms made in this section are used throughout
this text, always with a hyperlink to this section.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 24 of 154

3.1.1 Type, Structure and Context URL

All input sets and output sets in one transformation sequence are
collections of the input type, that is the entity type or complex type of the
first input set, or in other words, of the resource to which the
transformation sequence is applied. The input type is determined by the
entity model element identified within the metadata document by the
context URL of that resource OData-Protocol, section 10. Individual
instances in an input or output set can have a subtype of the input type.
(See example 74.) The transformation sequence given as the $apply
system query option is applied to the resource addressed by the resource
path. The transformations defined below can have nested transformation
sequences as parameters, these are then applied to resources that can
differ from the current input set.

The structure of an instance that occurs in an input or output set is defined
by the names of the structural and navigation properties that the instance
contains. Instances of an input type can have different structures, subject
to the following rules:

• Declared properties of the input type or a nested or related type
thereof or of a subtype of one of these MUST have their declared
type and meaning when they occur in an input or output set.

• Single- or collection-valued primitive properties addressed by a
property path starting at a non-transient entity MUST keep their
values from the addressed resource path collection throughout the
transformation sequence. Likewise, single- or collection-valued
navigation property paths starting at a non-transient entity MUST
keep addressing the same non-transient entities as in the
addressed resource path collection.

• Instances in an output set need not have all declared or dynamic
properties that occurred in the input set.

• Instances in an output set can have dynamic properties that did not
occur in the input set. The name for such a dynamic property is
called an alias, it is a simple identifier (see OData-CSDL, section
17.2). Aliases MUST differ from names of declared properties in the
input type, from names of properties in the first input set, and from
names of properties in the current input set. Aliases in one
collection MUST also differ from each other.

Here is an overview of the structural changes made by different
transformations:

• During aggregation or nest, many instances are replaced by one
instance, properties that represent the aggregation level are
retained, and others are replaced by dynamic properties holding the

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 25 of 154

aggregate value of the many instances or a transformed copy of
them.

• During compute, dynamic properties are added to each instance.

• During addnested, dynamic properties are added to each
occurrence of a related collection.

• During join, one instance with a collection of related instances is
replaced by many copies, each of which is related via a dynamic
property to one of the related instances.

• During concatenation, the same instances are transformed multiple
times and the output sets with their potentially different structures
are concatenated.

An output set thus consists of instances with different structures. This is
the same situation as with a collection of an open type OData-CSDL,
sections 6.3 and 9.3 and it is handled in the same way.

If the first input set is a collection of entities from a given entity set, then so
are all input sets and output sets in the transformation sequence. The
{select-list} in the context URL OData-Protocol, section 10 MUST describe
only properties that are present or annotated as absent (for example, if
Core.Permissions is None OData-Protocol, section 11.2.2) in all instances

of the collection, after applying any $select and $expand system query
options. The {select-list} SHOULD describe as many such properties as
possible, even if the request involves a concatenation that leads to a non-
homogeneous structure. If the server cannot determine any such
properties, the {select-list} MUST consist of just the instance annotation
AnyStructure defined in the Core vocabulary OData-VocCore. (See
example 75.)

3.1.2 Sameness and Order

Input sets and output sets are not sets of instances in the mathematical
sense but collections, because the same instance can occur multiple
times in them. In other words: A collection contains values (which can be
instances of structured types or primitive values), possibly with repetitions.
The occurrences of the values in the collection form a set in the
mathematical sense. The cardinality of a collection is the total number of
occurrences in it. When this text describes a transformation algorithmically
and stipulates that certain steps are carried out for each occurrence in a
collection, this means that the steps are carried out multiple times for the
same value if it occurs multiple times in the collection.

A collection addressed by the resource path is returned by the service
either as an ordered collection OData-Protocol, section 11.4.10 or as an
unordered collection. The same applies to collections that are nested in or
related to the addressed resource as well as to collections that are the

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 26 of 154

result of evaluating an expression starting with $root, which occur, for
example, as the first parameter of a hierarchical transformation.

But when such a collection is transformed by the $apply system query
option, additional cases can arise that are neither ordered nor totally
unordered. For example, the groupby transformation retains any order
within a group but not between groups.

⚠ Example 6: Request the top 10 sales per customer. The processing of the request can

be parallelized per customer and the responses per customer can be interleaved in the
overall response. This means that for any given customer, their top 10 sales appear in
the desired order, though not consecutively.

GET /service/Sales?$apply=groupby((Customer),orderby(Amount

desc)/top(10))

For every transformation defined in the following sections, it will be
specified how it orders its output set, based on the order of its input set.
The order of the last output set can be further influenced by a $orderby
system query option before it is observed in the response payload.

An order of a collection is more precisely defined as follows: Given two
different occurrences \(u_1\) and \(u_2\) in a collection, which may be of
the same value or of different values, \(u_1\) precedes \(u_2\) or \(u_2\)
precedes \(u_1\), but not both. It can be neither, in which case the relative
order of \(u_1\) and \(u_2\) does not matter. If \(u_1\) precedes \(u_2\) and
\(u_2\) precedes \(u_3\), then \(u_1\) also precedes \(u_3\), and \(u_1\)
never precedes \(u_1\). (This is a partial order in the mathematical sense
defined on the set of occurrences.)

When transformations are defined in the following sections, the algorithmic
description sometimes contains an order-preserving loop over a collection.
Such a loop processes the occurrences in an order chosen by the service
in such a way that \(u_1\) is processed before \(u_2\) whenever \(u_1\)
precedes \(u_2\). Likewise, in an order-preserving sequence
\(u_1,…,u_n\) we have \(i<j\) whenever \(u_i\) precedes \(u_j\).

A collection can be stable-sorted by a list of expressions. In the stable-
sorted collection an occurrence \(u_1\) precedes \(u_2\) if and only if either

• \(u_1\) precedes \(u_2\) according to the rules of OData-Protocol,
section 11.2.6.2 or

• these rules do not determine a precedence in either direction
between \(u_1\) and \(u_2\) but \(u_1\) preceded \(u_2\) in the
collection before the sort.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 27 of 154

Stable-sorting of an ordered collection produces another ordered
collection. A stable-sort does not necessarily produce a total order, the
sorted collection may still contain two occurrences whose relative order
does not matter. The transformation orderby performs a stable-sort.

The output set of a basic aggregation transformation can contain
instances of an entity type without entity id. After a concat transformation,
different occurrences of the same entity can differ in individual non-
declared properties. To account for such cases, the definition of sameness
given in OData-URL, section 5.1.1.1.1 is refined here. Instances of
structured types are the same if

• both are instances of complex types and both are null or both have
the same structure and same values with null considered different
from absent or

• both are instances of entity types without entity id (transient entities,
see OData-Protocol, section 4.3) and both are null or both have the
same structure and same values with null considered different from
absent (informally speaking, they are compared like complex
instances) or

• (1) both are instances of the same entity type with the same entity
id (non-transient entities, see OData-Protocol, section 4.1) and (2)
the structural and navigation properties contained in both have the
same values (for non-primitive properties the sameness of values is
decided by a recursive invocation of this definition).

o If this is fulfilled, the instances are called complementary
representations of the same non-transient entity. If this case
is encountered at some recursion level while the sameness
of non-transient entities \(u_1\) and \(u_2\) is established, a
merged representation of the entity \(u_1=u_2\) exists that
contains all properties of \(u_1\) and \(u_2\). But if the
instances both occur in the last output set, services MUST
represent each with its own structure in the response
payload.

o If the first condition is fulfilled but not the second, the
instances are not the same and are called contradictory
representations of the same non-transient entity. (Example
103 describes a use case for this.)

Collections are the same if there is a one-to-one correspondence \(f\)
between them such that

• corresponding occurrences are of the same value and

• an occurrence \(u_1\) precedes another occurrence \(u_2\) if and
only if the occurrence \(f(u_1)\) precedes the occurrence \(f(u_2)\),
where the occurrences \(u_1\) and \(u_2\) may be of the same

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 28 of 154

value or of different values. (A one-to-one correspondence with this
second property is called order-preserving.)

3.1.3 Evaluation of Data Aggregation Paths

This document specifies how a data aggregation path that occurs in a
request is evaluated by the service. If such an evaluation fails, the service
MUST reject the request.

For a data aggregation path to be a common expression according to
OData-URL, section 5.1.1, its segments must be single-valued with the
possible exception of the last segment, and it can then be evaluated
relative to an instance of a structured type. For the transformations
defined in this document, a data aggregation path can also be evaluated
relative to a collection \(A\), even if it has arbitrary collection-valued
segments itself.

To this end, the following notation is used in the subsequent sections: If
\(A\) is a collection and \(p\) a data aggregation path, optionally followed
by a type-cast segment, the result of such a path evaluation is denoted by
\(\Gamma(A,p)\) and defined as the unordered concatenation, possibly
containing repetitions, of the collections \(γ(u,p)\) for each \(u\) in \(A\) that
is not null. The function \(γ(u,p)\) takes a non-null value and a path as
arguments and returns a collection of instances of structured types or
primitive values, depending on the type of the final segment of \(p\). It is
recursively defined as follows:

1. If \(p\) is an empty path, let \(B\) be a collection with \(u\) as its
single member and continue with step 9.

2. Let \(p_1\) be the first segment of \(p\) and \(p_2\) the remainder, if
any, such that \(p\) equals the concatenated path \(p_1/p_2\).

3. If \(p_1\) is a type-cast segment and \(u\) is of its type or a subtype
thereof, let \(v=u\) and continue with step 8.

3.1 If \(p_1\) is a type-cast segment and \(u\) is not of its type or a subtype
thereof, let \(B\) be an empty collection and continue with step 9. (This rule
follows OData-URL, section 4.11 rather than OData-CSDL, section

14.4.1.1Transformation aggregate

4. .)

5. Otherwise, \(p_1\) is a non-type-cast segment. If \(u\) does not
contain a structural or navigation property \(p_1\), let \(B\) be an
empty collection and continue with step 9.

6. If \(p_1\) is single-valued, let \(v\) be the value of the structural or
navigation property \(p_1\) in \(u\). If \(v\) is null, let \(B\) be an

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 29 of 154

empty collection and continue with step 9; otherwise continue with
step 8.

7. Otherwise, \(p_1\) is collection-valued. Let \(C\) be the collection
addressed by the structural or navigation property \(p_1\) in \(u\),
and let \(B=\Gamma(C,p_2)\). Then continue with step 9.

8. Let \(B=γ(v,p_2)\).

9. Return \(B\).

This notation is extended to the case of an empty path \(e\) by setting
\(\Gamma(A,e)=A\) with null values removed. Note the collections returned
by \(\Gamma\) and \(γ\) never contain the null value. Also, every instance
\(u\) in \(\Gamma(A,p)\) occurs also in \(A\) or nested into \(A\), therefore
an algorithmic step like "Add a dynamic property to each \(u\) in
\(\Gamma(A,p)\)" effectively changes \(A\).

3.2 Basic Aggregation

3.2.1 Transformation aggregate

3.2.1.1 Aggregation Algorithm

The aggregate transformation takes a comma-separated list of one or more
aggregate expressionsaggregate expressions as parameters and returns a

resultan output set with a single instance of the input type without entity id
containing one property per aggregate expression, representing the
aggregated value for all instances inof the input set.

An aggregate expression MUST have one of the types listed below or be constructed
with the from keyword. To compute the value of the property for a given aggregate

expression, the aggregate transformation first determines a collection \(A\) of instances
of structured types or primitive values, based on the input set of the aggregate
transformation, and a path \(p\) that occurs in the aggregate expression. Let \(p_1\)
denote a data aggregation pathAn aggregate expression may be:

• an expression valid in a $filter system query option on the input set that results in a simple

value, e.g. the path to an aggregatable property, with a specified ,

• a e,

• any of the above, followed by a expression,

• any of the above, enclosed in parentheses and prefixed with a navigation path to related entities,

• the virtual property .

Any aggregate expression that specifies with single- or collection-valued
segments and \(p_2\) a type-cast segment. Depending on its type, the
aggregate expression contains a path \(p=p_1\) or \(p=p_2\) or
\(p=p_1/p_2\). Each type of aggregate expression defines a function

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 30 of 154

\(f(A)\) which the aggregate transformation evaluates to obtain the
property value.

The property is a dynamic property, except for a special case in type 4. In
types 1 and 2, the aggregate expression MUST end with the keyword with
and an aggregation method \(g\). The aggregation method also
determines the type of the dynamic property. In types 1, 2, and 3 the
aggregate expression MUST, and in type 4 it MAY, be followed by the
keyword as and an alias, which is then the name of the dynamic property.

Types of aggregate expressions:

1. A path \(p=p_1\) or \(p=p_1/p_2\) where the last segment of \(p_1\)
has a complex or entity or aggregatable primitive typeMUST define an

for the resulting whose values can be aggregated using the specified
aggregation methodvalue. The resulting instance contains one dynamic

property per parameter representing the aggregated value across all instances

within \(g\), or \(p=p_2\) if the input set can be aggregated using the
custom aggregation method \(g\).
Let \(f(A)=g(A)\).

2. An aggregatable expression whose values can be aggregated
using the specified aggregation method \(g\).
Let \(f(A)=g(B)\) where \(B\) is the collection consisting of the values
of the aggregatable expression evaluated relative to each
occurrence in \(A\) with null values removed from \(B\). In this type,
\(p\) is absent.

3. A path \(p/{\tt\$count}\) (see section 3.2.1.4) with optional prefix
\(p/{}\) where \(p=p_1\) or \(p=p_2\) or \(p=p_1/p_2\).
Let \(f(A)\) be the cardinality of \(A\).

4. A path \(p/c\) consisting of an optional prefix \(p/{}\) with \(p=p_1\) or
\(p=p_1/p_2\) where the last segment of \(p_1\) has a structured
type or \(p=p_2\), and a custom aggregate. The JSON representation of

these dynamic properties will include odata.type annotations where required

by . If paths are present, the corresponding \(c\) defined on the collection
addressed by \(p\).
Let \(f(A)=c(A)\). If computation of the custom aggregate fails, the
service MUST reject the request. In the absence of an alias:

o The name of the property is the name of the custom
aggregate.

o The property is a dynamic property whose type is
determined by the custom aggregate, unless there is a
declared property with that name. The latter case is allowed
by the CustomAggregate annotation.

Determination of \(A\):

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 31 of 154

Let \(I\) be the input set. If \(p\) is absent, let \(A=I\) with null values
removed.

Otherwise, let \(q\) be the portion of \(p\) up to and including the last
navigation property, if any, and any type-cast segment that immediately
follows, and let \(r\) be the remainder, if any, of \(p\) that contains no
navigation properties, such that \(p\) equals the concatenated path \(q⁄r\).
The aggregate transformation considers each entity reached via the path
\(q\) exactly once. To this end, using the \(\Gamma\) notation:

• If \(q\) is non-empty, let \(E=\Gamma(I,q)\) and remove duplicates
from that entity collection: If multiple representations of the same
non-transient entity are reached, the service MUST merge them
into one occurrence in \(E\) if they are complementary and MUST
reject the request if they are contradictory. (See example 128.) If
multiple occurrences of the same transient entityimplicitly expanded to

make the properties part of the result representation. are reached, the
service MUST keep only one occurrence in \(E\).

• If \(q\) is empty, let \(E=I\).

Then, if \(r\) is empty, let \(A=E\), otherwise let \(A=\Gamma(E,r)\), this
consists of instances of structured types or primitive values, possibly with
repetitions.

3.2.1.2 Keyword as

Aggregate expressions can be followed by the as keyword followed by an
aliasThe .

Example 7:

GET /service/Sales?$apply=aggregate(Amount with sum as

Total,

 Amount with max as MxA)

results in

{

 "@context": "$metadata#Sales(Total, MxA)",

 "value": [

 { "Total@type": "Decimal", "Total": 24,

 "MxA@type": "Decimal", "MxA": 8 }

]

}

Example 8:

GET /service/Sales?$apply=aggregate(Amount mul

Product/TaxRate

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 32 of 154

 with sum as Tax)

results in

 transformation{
 "@context": "$metadata#Sales(Tax)",

 "value": [

 { "Tax@type": "Decimal", "Tax": 2.08 }

]

}

An alias affects the structure of the result set: An expression resulting in a simple

value and a custom aggregate output set: each alias corresponds to a dynamic
property in a $select option. If they are preceded by a navigation path, the

corresponding $select option would be nested in one $expand option for each

navigation property in the navigation path.

3.1.1 Keyword as

Aggregate expressions can define an alias using the as keyword, followed by a SimpleIdentifier (see [,

section 17.2]).
The alias will introduce a dynamic property in the aggregated result set. The introduced dynamic property
is added to the type containing the original expression or custom aggregate. The alias MUST NOT collide
with names of declared properties, custom aggregates, or other aliases in that type.
When an is specified, an alias MUST be applied to the expression.

Example :

GET ~/Sales?$apply=aggregate(Amount with sum as Total,Amount with max as MxA)

results in

{

 "@odata.context": "$metadata#Sales(Total,MxA)",

 "value": [

 { "@odata.id": null, "Total": 24, "MxA": 8 }

]

}

Example :

GET ~/Sales?$apply=aggregate(Amount mul Product/TaxRate with sum as Tax)

results in

{

 "@odata.context": "$metadata#Sales(Tax)",

 "value": [

 { "@odata.id": null, "Tax": 2.08 }

]

}

If the expression is to be evaluated on related entities, the expression and its alias MUST be enclosed in
parentheses and prefixed with the navigation path to the related entities. The expression within the
parentheses MUST be an expression that could also be used in a $filter system query option on the

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 33 of 154

related entities identified by the navigation path. This syntax is intentionally similar to the syntax of
$expand with nested query options.

Example :

GET ~/Products?$apply=aggregate(Sales(Amount mul Product/TaxRate with sum as

Tax))

results in

3.2.1.3 Aggregation Methods

{

 "@odata.context": "$metadata#Products(Sales(Tax))",

 "value": [

 { "@odata.id": null, "Sales": [{ "Tax": 2.08 }] }

]

}

An alias affects the structure of the result set: each alias corresponds to a dynamic property in a
$select option that is nested in an $expand option for each navigation property in the path of the

aliased expression.

3.1.2 Keyword with

The keyword with is used to apply an to an or expression. The property or expression being

aggregated is followed by the keyword with, followed by the name of the aggregation method to apply,

followed by the keyword and an alias.

3.1.3 Aggregation Methods

Values can be aggregated using the standard aggregation methods sum,
min, max, average, and countdistinct, or with custom aggregation methods
defined by the service. Only types 1 and 2 of the aggregation
algorithmAggregate expressions containing an aggregation method MUST define an

for the resulting aggregate value involve aggregation methods, and the
algorithm ensures that no null values occur among the values to be
aggregated.

3.2.1.3.1 Standard Aggregation Method sum

3.1.3.1 Standard Aggregation Method sum

The standard aggregation method sum can be applied to numeric values
to return the sum of the non-null values, or null if there are no non-null values
or the input set is emptyto be aggregated. The provider MUST choose a single
type for the property across all instances of that type in the result that is
capable of representing the aggregated values. This may require a larger
integer type, Edm.Decimal with sufficient Precision and Scale, or
Edm.Double.

Example :9:

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 34 of 154

GET ~//service/Sales?$apply=aggregate(Amount with sum as
Total)

results in

{

 "@odata.context": "$metadata#Sales(Total)",
 "value": [

 { "@odata.id": null,
 { "Total@type": "Decimal", "Total": 24 }

]

}

3.1.3.2 Standard Aggregation Method min

]

}

3.2.1.3.2 Standard Aggregation Method min

The standard aggregation method min can be applied to values with a
totally ordered domain to return the smallest of the non-null values, or null if
there are no non-null values or the input set is emptyto be aggregated.

The result property will have the same type as the input property.

Example :10:

GET ~//service/Sales?$apply=aggregate(Amount with min as
MinAmount)

results in

{

 "@odata.context": "$metadata#Sales(MinAmount)",
 "value": [

 { "@odata.id": null,
 { "MinAmount@type": "Decimal", "MinAmount": 1 }

]

}

3.1.3.3 Standard Aggregation Method max

]

}

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 35 of 154

3.2.1.3.3 Standard Aggregation Method max

The standard aggregation method max can be applied to values with a
totally ordered domain to return the largest of the non-null values, or null if
there are no non-null values or the input set is emptyto be aggregated.

The result property will have the same type as the input property.

Example :11:

GET ~//service/Sales?$apply=aggregate(Amount with max as
MaxAmount)

results in

{

 "@odata.context": "$metadata#Sales(MaxAmount)",
 "value": [

 { "@odata.id": null,
 { "MaxAmount@type": "Decimal", "MaxAmount": 8 }

]

}

3.1.3.4 Standard Aggregation Method average

]

}

3.2.1.3.4 Standard Aggregation Method average

The standard aggregation method average can be applied to numeric
values to return the sum of the non-null values divided by the count of the
non-null values, or null if there are no non-null values or the input set is emptyto
be aggregated.

The provider MUST choose a single type for the property across all
instances of that type in the result that is capable of representing the
aggregated values; either Edm.Double or Edm.Decimal with sufficient
Precision and Scale.

Example :12:

GET ~//service/Sales?$apply=aggregate(Amount with average as
AverageAmount)

results in

{

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 36 of 154

 "@odata.context": "$metadata#Sales(AverageAmount)",
 "value": [

 { "@odata.id": null,
 { "AverageAmount@type": "Decimal", "AverageAmount": 3.0

}

]

}

3.1.3.5 Standard Aggregation Method countdistinct

]

}

3.2.1.3.5 Standard Aggregation Method countdistinct

The aggregation method countdistinct countscan be applied to arbitrary
collections to count the distinct values, omitting any null values. For navigation

properties, it counts. Instance comparison uses the distinct entitiesdefinition of
equality in OData-URL, section 5.1.1.1.1the union of all entities related to entities

in the input set. For collection-valued primitive properties, it counts the distinct items in

the union of all collection values in the input set. .

The result property MUST have type Edm.Decimal with Scale ="0" and

sufficient Precision.

Example :13:

GET ~//service/Sales?$apply=aggregate(Product with
countdistinct

 as DistinctProducts)

results in

{

 "@odata.context": "$metadata#Sales(DistinctProducts)",
 "value": [

 { "@odata.id": null,
 { "DistinctProducts@type": "Decimal",

"DistinctProducts": 3 }

]

}

The number of instances in the input set can be counted with the
aggregate expression $countvirtual property .

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 37 of 154

3.2.1.3.6 Custom Aggregation Methods

3.1.3.6 Custom Aggregation Methods

Services can define custom aggregation methods if the functionality
offered by the standard aggregation methods is not sufficient for the
intended consumers.

Custom aggregation methods MUST use a namespace-qualified name
(see OData-ABNF),), i.e. contain at least one dot. Dot-less names are
reserved for future versions of this specification.

⚠ Example :14: custom aggregation methods that concatenates distinct string values

separated by commas

GET ~//service/Sales?$apply=groupby((Customer/Country),
 aggregate(Amount with sum as Total,

 Product/Name with Custom.concat

as ProductNames))

results in

{

 "@odata.context":

"$metadata#Sales(Customer(Country),AmountTotal,ProductNames)"
,

 "value": [

 { "@odata.id":null,
 { "Customer":{": { "Country":"": "Netherlands" },

 "Amount":Total@type": "Decimal", "Total": 5,

 "ProductNames:"": "Paper,Sugar" },

 { "@odata.id":null,
 { "Customer":{": { "Country":"": "USA" },

 "Amount":Total@type": "Decimal", "Total": 19,

 "ProductNames:"": "Coffee,Paper,Sugar" }

]
}
]

}

3.2.1.4 Aggregate Expression $count

The aggregate expression $count is defined as type 3 in the aggregation
algorithm. It MUST always specify an alias and MUST NOT specify an
aggregation method.

The result property MUST have type Edm.Decimal with Scale 0 and
sufficient Precision.

Example 15:

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 38 of 154

GET /service/Sales?$apply=aggregate($count as SalesCount)

results in

{

3.1.4 Keyword from

 "@context": "$metadata#Sales(SalesCount)",

 "value": [

 { "SalesCount@type": "Decimal", "SalesCount": 8 }

]

}

3.2.1.5 Keyword from

The from keyword gives control over the orderoffers a shortcut for a sequence
of groupby and aggregateaggregation across properties transformations with
the pattern \({\tt groupby}(…,{\tt aggregate}(…{\tt\ as\ }D_1))/{\tt
aggregate}(D_1{\tt\ with\ }…)\).

In the following \(p_1,…,p_n\) are data aggregation paths that are allowed
in groupby for simple groupingnot part of the result structure and over the

aggregation methods applied in every step. .

1. If \(α\) is an aggregate expression and \(g\) is an aggregation
method, then \[α{\tt\ from\ }p_1,…,p_n{\tt\ with\ }g\] is an aggregate
expression which evaluates to the value of property \(D\) in the
single instance in the output set of the following transformation
sequence: \[{\tt groupby}((p_1,…,p_n),{\tt aggregate}(α{\tt\ as\
}D_1))/{\tt aggregate}(D_1{\tt\ with\ }g{\tt\ as\ }D).\]

2. If \(α=p/c{\tt\ from\ }…\) is an aggregate expression that starts with
a custom aggregate \(c\), optionally prefixed with a path \(p\) as in
type 4 in the aggregation algorithm, and that optionally continues
with from and with clauses that were introduced through
application of these rules, then \[α{\tt\ from\ }p_1,…,p_n\] is an
aggregate expression which evaluates to the value of property \(c\)
in the single instance in the output set of the following
transformation sequence: \[{\tt groupby}((p_1,…,p_n),{\tt
aggregate}(α{\tt\ as\ }D_1))/{\tt aggregate}(p/c).\]

Aggregate expressions constructed by these rules MUST be followed in
the aggregate transformation by the keyword as and an alias. These rules
can be applied repeatedly and lead to multiple from and with clauses in
an aggregate expression.

⚠ Example 16Instead of applying a single aggregation method for calculating the aggregated value of an

expression across all properties not included in the result structure, other aggregation methods to be

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 39 of 154

applied when certain properties MAY be specified using the from keyword, followed by a property path

of a groupable property. Each groupable property MUST be followed by a with clause unless the

aggregate expression is a custom aggregate, in which case the provider-defined behavior of the custom
aggregate is used:
 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 as 𝑎𝑙𝑖𝑎𝑠

 from 𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦1 [with 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑1]

 …

from 𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑛 [with 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑𝑛]

If the from keyword is used, an alias MUST be introduced.

If the from keyword is present, first the aggregation method determined by the aggregate expression is

used to aggregate away properties that are not mentioned in a from clause and are not .

Then consecutively properties not part of the result are aggregated away in the order of the from clauses

and using the method specified by the from clause.

More formally, the calculation of aggregate with the from keyword is equivalent with a list of set

transformations:
groupby((𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦1, …, 𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑛),

 aggregate(𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 as 𝑡𝑚𝑝𝑎𝑙𝑖𝑎𝑠1))

/groupby((𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦2, …, 𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑛),

 aggregate(𝑡𝑚𝑝𝑎𝑙𝑖𝑎𝑠1 with 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑1 as 𝑡𝑚𝑝𝑎𝑙𝑖𝑎𝑠2))

…
/groupby((𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑛),

 aggregate(𝑡𝑚𝑝𝑎𝑙𝑖𝑎𝑠𝑛−1 with 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑𝑛−1 as 𝑡𝑚𝑝𝑎𝑙𝑖𝑎𝑠𝑛))

/aggregate(𝑡𝑚𝑝𝑎𝑙𝑖𝑎𝑠𝑛 with 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑𝑛 as 𝑎𝑙𝑖𝑎𝑠))

The order of from clauses has to be compatible with hierarchies referenced from a or specified as an

unnamed hierarchy in : lower nodes in a hierarchy need to be mentioned before higher nodes in the same
hierarchy. Properties not belonging to any hierarchy can appear at any point in the from clause.

Example :

: illustrates rule 1 where \(α={\tt Amount\ with\ sum}\), \(p_1={\tt Time}\), \(g={\tt average}\)

GET ~//service/Sales?$apply=aggregate(Amount with sum as DailyAverage

 from Time with average)

is equivalent to

 as DailyAverage)

is equivalent to (but avoids the intermediate dynamic property Total)

GET ~//service/Sales?$apply=groupby((Time),aggregate(Amount
with sum as Total))

 /aggregate(Total with average as

DailyAverage)

and results in the average sales volume per day

{

 "@odata.context": "$metadata#Sales(DailyAverage)",
 "value": [

 { "@odata.id": null,

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 40 of 154

 { "DailyAverage@type": "Decimal", "DailyAverage":

3.428571428571429 }

]

}

3.1.5 Virtual Property $count

The value of the virtual property $count is the number of instances in the input set. It MUST always

specify an and MUST NOT specify an .
The result property will have type Edm.Decimal with Scale="0" and sufficient Precision.

Example :

]

}

⚠ Example 17: illustrates rule 1 where \(α={\tt Forecast}\), \(p_1={\tt Time}\), \(g={\tt

average}\)

GET ~//service/Sales?$apply=aggregate($count as

SalesCount)(Forecast from Time with average
 as DailyAverage)

is equivalent to

results in

{

 "@odata.context": "$metadata#Sales(SalesCount)",

 "value": [

 { "@odata.id": null, "SalesCount": 8 }

]

}

3.2 Transformation topcount

The topcount transformation takes two parameters.

The first parameter specifies the number of instances to return in the transformed set. It MUST be an
expression that can be evaluated on the set level and MUST result in a positive integer.
The second parameter specifies the value by which the instances are compared for determining the result
set. It MUST be an expression that can be evaluated on instances of the input set and MUST result in a
primitive numeric value.
The transformation retains the number of instances specified by the first parameter that have the highest
values specified by the second expression.
In case the value of the second expression is ambiguous, the service MUST impose a stable ordering
before determining the returned instances.

Example :

GET

~//service/Sales?$apply=topcount(2,groupby((Time),aggregate(Fore
cast))

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 41 of 154

 /aggregate(Forecast with average as

DailyAverage)

⚠ Example 18: the maximal daily average for sales of a product

GET /service/Sales?$apply=aggregate(Amount with average from

Time,Product/Name

 with max as

MaxDailyAverage)

results in

{

 "@odata.context": "$metadata#Sales",(MaxDailyAverage)",
 "value": [

 { "ID": 3, "Amount": 4, ... },
 { "ID": 4, "Amount
 { "MaxDailyAverage@type": "Decimal", "MaxDailyAverage":

8, ... }

] }

}

The result set of topcount has the same structure as the input set.

3.3 Transformation topsum

The topsum transformation takes two parameters.

The first parameter indirectly specifies the number of instances to return in the transformed set. It MUST
be an expression that can be evaluated on the set level and MUST result in a number.
The second parameter specifies the value by which the instances are compared for determining the result
set. It MUST be an expression that can be evaluated on instances of the input set and MUST result in a
primitive numeric value.
The transformation returns the minimum set of instances that have the highest values specified by the
second parameter and whose sum of these values is equal to or greater than the value specified by the
first parameter. It does not change the order of the instances in the input set.
In case the value of the second expression is ambiguous, the service MUST impose a stable ordering
before determining the returned instances.

Example :

GET ~/Sales?$apply=topsum(15,Amount)

results in

{

 "@odata.context": "$metadata#Sales",

 "value": [

 { "ID": 3, "Amount": 4, ... },

 { "ID": 4, "Amount": 8, ... },

 { "ID": 5, "Amount": 4, ... }

]

}

The result set of topsum has the same structure as the input set.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 42 of 154

3.4 Transformation toppercent

The toppercent transformation takes two parameters.

The first parameter specifies the number of instances to return in the transformed set. It MUST be an
expression that can be evaluated on the set level and MUST result in a positive number less than or
equal to 100.
The second parameter specifies the value by which the instances are compared for determining the result
set. It MUST be an expression that can be evaluated on instances of the input set and MUST result in a
primitive numeric value.
The transformation returns the minimum set of instances that have the highest values specified by the
second parameter and whose cumulative total is equal to or greater than the percentage of the
cumulative total of all instances in the input set specified by the first parameter. It does not change the
order of the instances in the input set.
In case the value of the second expression is ambiguous, the service MUST impose a stable ordering
before determining the returned instances.

Example :

GET ~/Sales?$apply=toppercent(50,Amount)

results in

{

 "@odata.context": "$metadata#Sales",

 "value": [

 { "ID": 3, "Amount": 4, ... },

 { "ID": 4, "Amount": 8, ... }

]

}

The result set of toppercent has the same structure as the input set.

3.5 Transformation bottomcount

The bottomcount transformation takes two parameters.

The first parameter specifies the number of instances to return in the transformed set. It MUST be an
expression that can be evaluated on the set level and MUST result in a positive integer.
The second parameter specifies the value by which the instances are compared for determining the result
set. It MUST be an expression that can be evaluated on instances of the input set and MUST result in a
primitive numeric value.
The transformation retains the number of instances specified by the first parameter that have the lowest
values specified by the second parameter. It does not change the order of the instances in the input set.
In case the value of the second expression is ambiguous, the service MUST impose a stable ordering
before determining the returned instances.

Example :

GET ~/Sales?$apply=bottomcount(2,Amount)

results in

{

 "@odata.context": "$metadata#Sales"

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 43 of 154

 "value": [

 { "ID": 1, "Amount": 1, ... },

 { "ID": 7, "Amount": 1, ... }

]

}

The result set of bottomcount has the same structure as the input set.

3.6 Transformation bottomsum

The bottomsum transformation takes two parameters.

The first parameter indirectly specifies the number of instances to return in the transformed set. It MUST
be an expression that can be evaluated on the set level and MUST result in a number.
The second parameter specifies the value by which the instances are compared for determining the result
set. It MUST be an expression that can be evaluated on instances of the input set and MUST result in a
primitive numeric value.
The transformation returns the minimum set of instances that have the lowest values specified by the
second parameter and whose sum of these values is equal to or greater than the value specified by the
first parameter. It does not change the order of the instances in the input set.
In case the value of the second expression is ambiguous, the service MUST impose a stable ordering
before determining the returned instances.

Example :

GET ~/Sales?$apply=bottomsum(7,Amount)

results in

{

 "@odata.context": "$metadata#Sales",

 "value": [

 { "ID": 2, "Amount": 2, ... },

 { "ID": 6, "Amount": 2, ... },

 { "ID": 7, "Amount": 1, ... },

 { "ID": 8, "Amount": 2, ... }

]

}

The result set of bottomsum has the same structure as the input set.

3.7 Transformation bottompercent

The bottompercent transformation takes two parameters.

The first parameter indirectly specifies the number of instances to return in the transformed set. It MUST
be an expression that can be evaluated on the set level and MUST result in a positive number less than
or equal to 100.
The second parameter specifies the value by which the instances are compared for determining the result
set. It MUST be an expression that can be evaluated on instances of the input set and MUST result in a
primitive numeric value.
The transformation returns the minimum set of instances that have the lowest values specified by the
second parameter and whose cumulative total is equal to or greater than the percentage of the
cumulative total of all instances in the input set specified by the first parameter. It does not change the
order of the instances in the input set.
In case the value of the second expression is ambiguous, the service MUST impose a stable ordering
before determining the returned instances.

Example :

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 44 of 154

GET ~/Sales?$apply=bottompercent(50,Amount)

results in

{

 "@odata.context": "$metadata#Sales",

]

}

3.2.2 Transformation concat

 "value": [

 { "ID": 1, "Amount": 1, ... },

 { "ID": 2, "Amount": 2, ... },

 { "ID": 5, "Amount": 4, ... },

 { "ID": 6, "Amount": 2, ... },

 { "ID": 7, "Amount": 1, ... },

 { "ID": 8, "Amount": 2, ... }

]

}

The result set of bottompercent has the same structure as the input set.

3.8 Transformation identity

The identity transformation returns its input set.

Example :

GET ~/Sales?$apply=identity

3.9 Transformation concat

The concat transformation takes two or more parameters, each of which is
a sequence of set transformations.

It applies each transformation sequence to the input set and concatenates
the intermediate resultoutput sets in the order of the parameters into the
resultoutput set, preserving the ordering of the individual resultoutput sets
as well as the structure of each result instance in these sets, potentially
leading to an inhomogeneouslya non-homogeneously structured resultoutput
set. If different intermediate output sets contain dynamic properties with
the same alias, clients SHOULD ensure they have the same type and
meaning in each intermediate output set.

⚠ Example :19:

GET ~//service/Sales?$apply=concat(topcount(2,Amount),
 aggregate(Amount))

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 45 of 154

results in

{

results in

{

 "@odata.context": "$metadata#Sales",(Amount)",
 "value": [

 { "ID": 4, "Amount": 8, ... },
 },

 { "ID": 3, "Amount": 4, ... },

 { "@odata.context": "$metadata#Sales(Amount)/$entity", },
 { "Amount": 24 }

]

}

Note that two Sales entities with the second highest amount 4 exist in the input set; the
entity with ID 3 is included in the result, because the service chose to use the ID property
for imposing a stable ordering.

3.2.3 Transformation groupby

The result set of concat has a mixed form consisting of the structures imposed by the two transformation

sequences.

3.10 Transformation groupby

The groupby transformation takes one or two parameters and

1. Splits the initial set into subsets where all instances in a subset have the same values for the

grouping properties specified in the first parameter,

2. Applies the second is a list of set transformations, separated by forward slashes to
each subset according to the second parameter, resulting in a new set of potentially different
structure and cardinality,

Ensuresexpress that they are consecutively applied. If the second
parameter is not specified, it defaults to a single transformation whose
output set consists of a single instance of the input typethe instances in the

result set contain all grouping properties with the correct values for the group, without
properties and without entity id.

3.2.3.1 Simple Grouping

3. Concatenates the intermediate result sets into one result set.

3.10.1 Simple Grouping

In its simplest form the first parameter of groupby specifies the grouping
properties, a comma-separated parenthesized list \(G\) of one or more

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 46 of 154

data aggregation paths with single-valued property paths (paths ending in a

single-valued primitive, complex, or navigation property) that is enclosed in parentheses.

The same propertysegments. The same path SHOULD NOT appear more
than once; redundant property paths MAY be considered valid, but MUST
NOT alter the meaning of the request. Navigation properties and stream
properties specified in grouping properties are expanded by default (see
example 72If the property path leads to a single-valued navigation property, this means

grouping by the entity-id of the related entities.).

The algorithmic description of this transformation makes use of the
following definitions: Let \(u[q]\) denote the value of a structural or
navigation property \(q\) in an instance \(u\). A path \(p_1\) is called a
prefix of a path \(p\) if there is a non-empty path \(p_2\) such that \(p\)
equals the concatenated path \(p_1/p_2\). Let \(e\) denote the empty path.

The output set of the groupby transformation is constructed in five steps.

1. For each occurrence \(u\) in the input set, a projection is computed
that contains only the grouping properties. This projection is
\(s_G(u,e)\) and the function \(s_G(u,p)\) takes an instance and a
path relative to the input set as arguments and is computed
recursively as follows:

o Let \(v\) be an instance of the type of \(u\) without properties
and without entity id.

o For each structural or navigation property \(q\) of \(u\):

▪ If \(u\) has a subtype of the type addressed by \(p\)
and \(q\) is only declared on that subtype, let
\(p'=p/p''/q\) where \(p''\) is a type-cast to the subtype,
otherwise let \(p'=p/q\).

▪ If \(p'\) occurs in \(G\), let \(v[q]=u[q]\).

▪ Otherwise, if \(p'\) is a prefix of a path in \(G\), let
\(v[q]=s_G(u[q],p')\).

o Return \(v\).

2. The input set is split into subsets where two instances are in the
same subset if their projections are the same. If representations of
the same non-transient entity are encountered during the
comparison of two projections, the service MUST assign them to
one subset with the merged representation if they are
complementary and MUST reject the request if they are
contradictory.

3. The set transformations from the second parameter are applied to
each subset, resulting in a new set of potentially different structure
and cardinality. Associated with each resulting set is the common
projection of the instances in the subset from which the resulting
set was computed.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 47 of 154

4. Each set resulting from the previous step is transformed to contain
the associated common projection \(s\). This transformation is
denoted by \(\Pi_G(s)\) and is defined below.

5. The output set is the concatenation of the transformed sets from
the previous step. The order of occurrences from the same
transformed set remains the same, and no order is defined
between occurrences from different transformed sets.

Definition of \(\Pi_G(s)\):

Prerequisites: \(G\) is a list of data aggregation paths and \(s\) is an
instance of the input type.

The output set of the transformation \(\Pi_G(s)\) is in one-to-one correspondence with its
input set via the order-preservingThe optional second parameter is a list of set transformations,

separated by forward slashes to express that they are consecutively applied. Transformations may take
into account the grouping properties for producing their result, e.g. aggregate removes properties that

are used neither for grouping nor for aggregation.
If the service is unable to group by same values for any of the specified properties, it MUST reject the
request with an error response. It MUST NOT apply any implicit rules to group instances indirectly by
another property related to it in some way.

 mapping \(u↦a_G(u,s,e)\). The function \(a_G(u,s,p)\) takes two
instances and a path relative to the input set as arguments and is
computed recursively as follows:

1. If necessary, cast \(u\) to a subtype so that its type contains all
structural and navigation properties of \(s\).

2. For each structural or navigation property \(q\) of \(s\):

o If \(s\) has a subtype of the type addressed by \(p\) and \(q\)
is only declared on that subtype, let \(p'=p/p''/q\) where \(p''\)
is a type-cast to the subtype, otherwise let \(p'=p/q\).

o If \(q\) is a single-valued primitive structural property or \(p'\)
occurs in \(G\), let \(u[q]=s[q]\). (In the case where \(p'\)
occurs in \(G\) we also call \(q\) a final segment from \(G\).)

o Otherwise, if \(q\) is single-valued, let
\(u[q]=a_G(u[q],s[q],p')\).

o Otherwise, the behavior is undefined. (Such cases never
occur when \(\Pi_G(s)\) is used in this document.)

3. Return \(u\).

Example :20:

GET

~//service/Sales?$apply=groupby((Customer/Country,Product/Nam
e),

 aggregate(Amount with sum as Total))

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 48 of 154

results in

{

 aggregate(Amount with sum

as Total))

results in

{

 "@ "@odata.context":
"$metadata#Sales(Customer(Country),Product(Name),Total)",

 "value": [

 { "@odata.id": null,
 { "Customer": { "Country" :": "Netherlands" },
 "Product": { "Name": "Paper" },

 "Total":@type": "Decimal", "Total": 3 },

 { "@odata.id": null,
 { "Customer": { "Country": "Netherlands" },

 "Product": { "Name": "Sugar" },

 "Total":@type": "Decimal", "Total": 2},

 { "@odata.id": null, },

 { "Customer": { "Country:": "USA" },
 "Product": { "Name": "Coffee" },

 "Total@type": "Decimal", "Total": 12},

 { "@odata.id": null, },

 { "Customer": { "Country:": "USA" },

 "Product": { "Name": "Paper" },"},

 "Total":@type": "Decimal", "Total": 5},

 { "@odata.id": null, },

 { "Customer": { "Country:": "USA" },

 "Product": { "Name": "Sugar" }, "Total": 2}

]

}

The "Total@type": "Decimal", "Total": 2 }
]

}

If the second parameter can beis omitted to request distinct value combinations of

, steps 2 and 3 above produce one instance containing only the grouping
properties. per distinct value combination.

⚠ Example :21:

GET ~//service/Sales?$apply=groupby((Product/Name,Amount))

results in

{

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 49 of 154

and result in

{

 "@odata. "@context":
"$metadata#Sales(Product(Name),Amount)",

 "value": [

 { "@odata.id": null,
 { "Product": { "Name": "Coffee" }, "Amount": 4 },

 { "@odata.id": null,
 { "Product": { "Name": "Coffee" }, "Amount": 8 },

 { "@odata.id": null,
 { "Product": { "Name": "Paper" }, "Amount": 1 },

 { "@odata.id": null,
 { "Product": { "Name": "Paper" }, "Amount": 2 },

 { "@odata.id": null,
 { "Product": { "Name": "Paper" }, "Amount": 4 },

 { "@odata.id": null,
 { "Product": { "Name": "Sugar" }, "Amount": 2 }

]
]

}

Note that the result has the same structure, but not the same content as

GET

~//service/Sales?$expand=Product($select=Name)&$select=Amount

A groupby transformation affects the structure of the resultoutput set similar
to $select where each grouping property corresponds to an item in a
$select clause. Grouping properties that specify navigation properties are automatically

expanded, and the specified properties of that navigation property correspond to
properties specified in a $select expand option on the expanded navigation property.

The set transformations specified in the second parameter of groupby further affect the

structure as described for each transformation; for example, the transformation adds
properties for each aggregate expression.

3.2.3.2 Grouping with rollup

3.10.2 Grouping with rollup and $all

The rollup grouping operator allows applying set transformations to instances of an
input set organized in a leveled hierarchyrequesting additional levels of aggregation in addition to

the most granular level defined by the grouping properties.. It can be used instead of a grouping
property path in the first parameter of groupby.

The rollup grouping operator It has two overloads, depending on the number

of parameters.

If used with one parameter, the parameter MUST be the value of the Qualifier attribute of an

annotation with term prefixed with the navigation path leading to the annotated entity type. This named
hierarchy is used for grouping instances.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 50 of 154

If used with two or more parameters, it defines an unnamed leveled
hierarchy of grouping properties as a list of data aggregation paths. with
single-valued segments. The first parameterpath in the list is the root level
of the hierarchy defining the coarsest granularity and MUST either be a single-

valued property path or the virtual property $all. The , and the other parameters

MUST be singe-valued property paths andpaths define consecutively finer-
grained levels of the hierarchy. This unnamed hierarchy is used for
grouping instances.

After resolving named hierarchies, the same property path MUST NOT appear more than once.

GroupingA groupby with rollup applied to a leveled hierarchy allows
requesting aggregation for all levels of that hierarchy. It splits the input set
into groups using all grouping properties (see (1) below), then removes
the last property from the hierarchy (see (2)) and repeats this process
using the remaining grouping properties until all of the levels have been
used up (see terminating rule (3)).

Such a grouping with rollup for a leveled hierarchy is processed for leveled

hierarchies using the following equivalence relationships, in which 𝑝𝑖 is a

\(p_1,…,p_k\) are groupable property path, 𝑇paths representing a level,
\(T\) is a transformation sequence, the ellipsis (\(…\)) stands in for zero or
more property paths, and 𝑅\(P_1\) stands in for zero or more property
paths and \(P_2\) for zero or more rollup or rolluprecursive operators or
property paths:

• \({\tt groupby((}((P_1,{\tt rollup(𝑝1,…, 𝑝𝑛−1, 𝑝𝑛), 𝑅), 𝑇)}(p_1,…,p_{k-

1},p_k),P_2),T)\) is equivalent to \[\matrix{ {\tt concat(}(\hfill\\ \quad

{\tt groupby((𝑝1,…, 𝑝𝑛−1, 𝑝𝑛, 𝑅), 𝑇),}((P_1,p_1,…,p_{k-

1},p_k,P_2),T),\hfill&\tt (1)\\ \quad {\tt groupby((}((P_1,{\tt

rollup(𝑝1,…, 𝑝𝑛−1), 𝑅), 𝑇))}(p_1,…,p_{k-1}),P_2),T)\hfill&\tt(2)\\

).\hskip25pc\\ }\]

• \({\tt groupby((}((P_1,{\tt rollup(𝑝1, 𝑝2), 𝑅), 𝑇)}(p_1,p_2),P_2),T)\)

is equivalent to \[\matrix{ {\tt
concat(groupby((𝑝1, 𝑝2, 𝑅), 𝑇),}(\hfill&\tt (3)\\ \quad {\tt

groupby((𝑝1, 𝑅), 𝑇))}((P_1,p_1,p_2,P_2),T),\hfill\\ \quad {\tt

groupby}((P_1,p_1,P_2),T)\hfill\\).\hskip25pc\\ }\]

• groupby((rollup($all, 𝑝1), 𝑅), 𝑇) is equivalent to

concat(groupby((𝑝1, 𝑅), 𝑇),groupby((𝑅),𝑇))

• groupby((rollup($all, 𝑝1)), 𝑇) is equivalent to

concat(groupby((𝑝1), 𝑇), 𝑇)

Loosely speaking groupby with rollup splits the input set into groups using all grouping properties,

then removes the last property from one of the hierarchies and splits it again using the remaining
grouping properties. This is repeated until all of the hierarchies have been used up.

Example :22: rolling up two hierarchies, the first with two levels, the second with three levels:

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 51 of 154

(\[({\tt rollup(𝑝1,1, 𝑝1,2),}(p_{1,1},p_{1,2}),{\tt rollup(𝑝2,1, 𝑝2,2, 𝑝2,3))

}(p_{2,1},p_{2,2},p_{2,3}))\] will result in the six groupings \[\matrix{
(p_{1,1},p_{1,2},\hfill&p_{2,1},p_{2,2},p_{2,3})\hfill\\
(p_{1,1},p_{1,2},\hfill&p_{2,1},p_{2,2})\hfill\\ (p_{1,1},p_{1,2},\hfill&p_{2,1})\hfill\\
(p_{1,1},\hfill&p_{2,1},p_{2,2},p_{2,3})\hfill\\ (p_{1,1},\hfill&p_{2,1},p_{2,2})\hfill\\
(p_{1,1},\hfill&p_{2,1})\hfill }\] The leveled hierarchy of the first rollup has 2 levels, the one
of the second has 3 levels, and the groupings represent all possible \(6=2⋅3\)
combinations of levels from both hierarchies.

 (𝑝1,1, 𝑝1,2, 𝑝2,1, 𝑝2,2, 𝑝2,3)

 (𝑝1,1, 𝑝1,2, 𝑝2,1, 𝑝2,2)

 (𝑝1,1, 𝑝1,2, 𝑝2,1)

 (𝑝1,1, 𝑝2,1, 𝑝2,2, 𝑝2,3)

 (𝑝1,1, 𝑝2,1, 𝑝2,2)

 (𝑝1,1, 𝑝2,1)

Note that rollup stops one level earlier than GROUP BY ROLLUP in TSQL, see , unless the virtual

property $all is used as the hierarchy root level. Loosely speaking the root level is never rolled up.

Ordering of rollup instances within detail instances is up to the service if no $orderby is given, otherwise

at the position determined by $orderby.

Example :23: answering the second question in section 2.3section

GET

~//service/Sales?$apply=groupby((rollup(Customer/Country,Cust
omer/Name),

rollup(Product/Category/Name,Product/Name),

 Currency/Code),
 aggregate(Amount with sum as Total)))),
 aggregate(Amount with sum

as Total))

results in seven entities for the finest grouping level

{

"@odata. "@context":"$":

"$metadata#Sales(Customer(Country,Name),),

Product(Category(Name),Name),)),Total,Currency(Code))",)",
 "value": [

 { "@odata.id": null,
 { "Customer": { "Country": "USA", "Name": "Joe" },

 "Product": { "Category": { "Name": "Non-Food" },

"Name": "Paper" },

 "Total@type": "Decimal", "Total": 1, "Currency": { "Code":

"USD" }
 },
 ... },
 ...

plus additional fifteen rollup entities for subtotals: five without customer name

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 52 of 154

 { "@odata.id": null, "Customer": { "Country": "USA" },
 "Product": { "Category": { "Name": "Food" }, "Name":

"Sugar" },

 "Total":@type": "Decimal", "Total": 2, "Currency": { "Code":

"USD" }
 },
 ... },
 ...

six without product name

 { "@odata.id": null, "Customer": { "Country": "USA", "Name":
"Joe" },

 "Product": { "Category": { "Name": "Food" } },

 "Total":@type": "Decimal", "Total": 6, "Currency": { "Code":

"USD" }
 },
 ...

and four with neither customer nor product name

 { "@odata.id": null, "Customer": { "Country": "USA" },
 "Product": { "Category": { "Name": "Food" } },

 "Total@type": "Decimal", "Total": 14, "Currency": { "Code":

"USD" }
 },
 ...
] },
 ...

]

}

Note that the absence of one or more properties of the resultoutput
structure imposeddeclared by the surrounding OData context allows
distinguishing rollup entities from other entities.

If rollup is used with one parameter, the parameter references a named
leveled hierarchy to be used for grouping instances, and therefore MUST
be the value of the Qualifier attribute of an annotation with term
LeveledHierarchy. If the annotation has qualifier \(Q\) and as value a
collection consisting of \(p_1,…,p_n\) with \(n≥2\), then \({\tt rollup}(Q)\) is
equivalent to \({\tt rollup}(p_1,…,p_n)\).

Another grouping operator rolluprecursive which similarly works with a
recursive hierarchy is defined later.

3.3 Transformations Producing a Subset

These transformations produce an output set that is a subset of their input
set, possibly in a different order. Some of the algorithmic descriptions

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 53 of 154

below make use of the following definition: A total order of a collection is
called stable across requests if it is the same for all requests that construct
the collection by executing the same resource path and transformations,
possibly nested, on the same underlying data.

⚠ Example 24: A stable total order is required for the input set of a skip transformation.

The following request constructs that input set by executing the groupby transformation

on the Sales entity collection, computing the total sales per customer. Because of the

subsequent skip transformation, the service must endow this with a stable total order.
Then the request divides the total sales per customer into pages of \(N\) customers and
returns page number \(i\) in a reproducible manner (as long as the underlying data do not
change).

GET /service/Sales?$apply=

 groupby((Customer),aggregate(Amount with sum as Total))

 /skip(M)/top(N)

where the number in skip is \(M=(i-1)⋅N\). Other values of \(M\) can be used to skip, for
example, half a page.

3.3.1 Top/bottom transformations

These transformations take two parameters. The first parameter MUST be
an expression that is evaluable on the input set as a collection, without
reference to an individual instance (and which therefore cannot be a
property path). The second parameter MUST be an expression that is
evaluated on each instance of the input set in turn.

The output set is constructed as follows:

1. Let \(A\) be a copy of the input set with a total order that is chosen
by the service (it need not preserve any existing order). The total
order MUST be stable across requests. (This is the order of the
eventual output set of this transformation.)

2. Let \(B\) be a copy of \(A\) that is stable-sorted in ascending (for
transformations starting with bottom) or descending (for
transformations starting with top) order of the value specified in the
second parameter. (This is the order in which contributions to the
output set are considered.)

3. Start with an empty output set.

4. Loop over \(B\) in its total order.

5. Exit the loop if a condition is met. This condition depends on the
transformation being executed and is given in the subsections
below.

6. Insert the current item of the loop into the output set in the order of
\(A\).

7. Continue the loop.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 54 of 154

For example, if the input set consists of non-transient entities and the
datastore contains an index ordered by the second parameter and then
the entity id, a service may implement this algorithm with \(A=B\) ordered
like this index.

The order of the output set can be influenced with a subsequent orderby
transformation.

3.3.1.1 Transformations bottomcount and topcount

The first parameter MUST evaluate to a positive integer \(c\). The second
parameter MUST evaluate to a primitive type whose values are totally
ordered. In step 5, exit the loop if the cardinality of the output set equals
\(c\).

Example 25:

GET /service/Sales?$apply=bottomcount(2,Amount)

results in

{

 "@context": "$metadata#Sales",

 "value": [

 { "ID": 1, "Amount": 1 },

 { "ID": 7, "Amount": 1 }

]

}

Example 26:

GET /service/Sales?$apply=topcount(2,Amount)

results in

{

 "@context": "$metadata#Sales",

 "value": [

 { "ID": 3, "Amount": 4 },

 { "ID": 4, "Amount": 8 }

]

}

Note that two Sales entities with the second highest amount 4 exist in the input set; the

entity with ID 3 is included in the result, because the service chose to use the ID property
for imposing a stable ordering in step 1. Such a logic needs to be in place even with a
preceding orderby since it cannot be ensured that it creates a stable order of the
instances on the expressions of the second parameter.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 55 of 154

3.3.1.2 Transformations bottompercent and toppercent

The first parameter MUST evaluate to a positive number \(p\) less than or
equal to 100. The second parameter MUST evaluate to a number. In step
5, exit the loop if the ratio of the sum of the numbers addressed by the
second parameter in the output set to their sum in the input set equals or
exceeds \(p\) percent.

Example 27:

GET /service/Sales?$apply=bottompercent(50,Amount)

results in

{

 "@context": "$metadata#Sales",

 "value": [

 { "ID": 1, "Amount": 1 },

 { "ID": 2, "Amount": 2 },

 { "ID": 5, "Amount": 4 },

 { "ID": 6, "Amount": 2 },

 { "ID": 7, "Amount": 1 },

 { "ID": 8, "Amount": 2 }

]

}

Example 28:

GET /service/Sales?$apply=toppercent(50,Amount)

results in

{

 "@context": "$metadata#Sales",

 "value": [

 { "ID": 3, "Amount": 4 },

 { "ID": 4, "Amount": 8 }

]

}

3.3.1.3 Transformations bottomsum and topsum

The first parameter MUST evaluate to a number \(s\). The second
parameter MUST be an aggregatable expression that evaluates to a
number. In step 5, exit the loop if the sum of the numbers addressed by
the second parameter in the output set is greater than or equal to \(s\).

Example 29:

GET /service/Sales?$apply=bottomsum(7,Amount)

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 56 of 154

results in

{

 "@context": "$metadata#Sales",

 "value": [

 { "ID": 1, "Amount": 1 },

 { "ID": 2, "Amount": 2 },

 { "ID": 6, "Amount": 2 },

 { "ID": 7, "Amount": 1 },

 { "ID": 8, "Amount": 2 }

]

}

Example 30:

GET /service/Sales?$apply=topsum(15,Amount)

results in

{

 "@context": "$metadata#Sales",

3.11 "value": [Transformation filter

 { "ID": 3, "Amount": 4 },

 { "ID": 4, "Amount": 8 },

 { "ID": 5, "Amount": 4 }

]

}

3.3.2 Transformation filter

The filter transformation takes a Boolean expression that could also be
passed as a $filter system query option to its. Its output set is the subset of
the input set and returnscontaining all instances (possibly with repetitions)
for which this expression evaluates to, evaluated relative to the instance,
yields true. No order is defined on the output set.

Example :31:

GET ~//service/Sales?$apply=filter(Amount gt 3)

results in

{

 "@odata.context": "$metadata#Sales",

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 57 of 154

 "value": [

 { "ID": 3, "Amount": 4, ... },

 { "ID": 4, "Amount": 8, ... },

 { "ID": 5, "Amount": 4, ... }

]

}

The result set of filter has the same structure as the input set.

3.12 Transformation expand

The expand transformation takes a navigation property path that could also be passed as a $expand

system query option as its first parameter. The optional second parameter can be either a transformation
that will be applied to the related entities or an expand transformation. An arbitrary number of expand

transformations can be passed as additional parameters to achieve multi-level expansion.
The result set is the input set with the specified navigation property expanded according to the specified
expand options.

Example :

GET ~/Customers?$apply=expand(Sales,filter(Amount gt 3))

results in

{

 "@odata.context": "$metadata#Customers",

 "value": [

 { "ID": "C1", "Name": "Joe", "Country": "USA",

 "Sales": [{ "ID": 3, "Amount": 4, ... }]},

 { "ID": "C2", "Name": "Sue", "Country": "USA",

 "Sales": [{ "ID": 4, "Amount": 8, ... },

 { "ID": 5, "Amount": 4, ... }]},

 { "ID": "C3", "Name": "Sue", "Country": "Netherlands", "Sales": []},

 { "ID": "C4", "Name": "Luc", "Country": "France", "Sales": []}

]

}

The result has the same structure and content as

GET ~/Customers?$expand=Sales($filter=Amount gt 3)

An expand transformation affects the structure of the result set in the same way as an $expand option

for the first parameter, with nested $expand options for the optional nested expand transformations.

Example : nested expand transformations

GET ~/Categories?$apply=expand(Products,expand(Sales,filter(Amount gt 3)))

results in

{

 "@odata.context": "$metadata#CustomersSales",

 "value": [

 "value": [

 { "ID": "PG1", "Name": "Food",

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 58 of 154

 "Products": [

 { "ID": "P1", "Name": "Sugar", "Color": "White", "Sales": [] },

 { "ID": "P2", "Name": "Coffee", "Color": "Brown",

 "Sales": [{ "ID": 3, "Amount": 4, ... },
 },

 { "ID": 4, "Amount": 8, ... }] } },

]

 },

 { "ID": "PG2", "Name": "Non-Food",

 "Products": [

 { "ID": "P3", "Name": "Paper", "Color": "White",

 "Sales": [{ "ID": 5, "Amount": 4, ... }, }
]

}

3.3.3 Transformation orderby

The orderby transformation takes a list of expressions that could also be

passed as a $orderby system query option. Its output set consists of the
instances of the input set in the same order $orderby would produce for
the given expressions, but keeping the relative order from the input set if
the given expressions do not distinguish between two instances. The
orderby transformation thereby performs a stable-sort. A service
supporting this transformation MUST at least offer sorting by values
addressed by property paths, including dynamic properties, with both
suffixes asc and desc.

Example 32:

GET /service/Sales?$apply=groupby((Product/Name),

 aggregate(Amount with sum as

Total))

 /orderby(Total desc)

results in { "ID": 8, "Amount": 2, ... }] },

 { "ID": "P4", "Name": "Pencil", "Color": "Black", "Sales": [] }

]

 }

]

}

3.13 Transformation search

{

 "@context": "$metadata#Sales(Product(Name),Total)",

 "value": [

 { "Product": { "Name": "Coffee" },

 "Total@type": "Decimal", "Total": 12 },

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 59 of 154

 { "Product": { "Name": "Paper" },

 "Total@type": "Decimal", "Total": 8 },

 { "Product": { "Name": "Sugar" },

 "Total@type": "Decimal", "Total": 4 }

]

}

3.3.4 Transformation search

The search transformation takes a search expression that could also be
passed as a $search system query option to its. Its output set is the subset
of the input set and returnscontaining all entitiesinstances (possibly with
repetitions) that match this search expression. Closing parentheses in
search expressions must be within single or double quotes in order to
avoid syntax errors like search()). No order is defined on the output set.

Example :33: assuming that free-text search on Sales takes the related product name into
account,

GET ~//service/Sales?$apply=search(coffee)

results in

{

 "@odata.context": "$metadata#Sales",
 "value": [

 { "ID": 3, "Amount": 4, ... },
 },

 { "ID": 4, "Amount": 8, ... }

] }
]

}

3.3.5 Transformation skip

The skip transformation takes a non-negative integer \(c\) as argument.
Let \(A\) be a copy of the input set with a total order that extends any
existing order of the input set but is otherwise chosen by the service. The
total order MUST be stable across requests.

The transformation excludes from the output set the first \(c\) occurrences
in \(A\). It keeps all remaining instances in the same order as they occur in
\(A\).

Example 34:

GET /service/Sales?$apply=orderby(Customer/Name

desc)/skip(2)/top(2)

results in

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 60 of 154

{

 "@context": "$metadata#Sales",

 "value": [

 { "ID": 6, "Amount": 2 },

 { "ID": 7, "Amount": 1 }

]

}

3.3.6 Transformation top

The top transformation takes a non-negative integer \(c\) as argument. Let
\(A\) be a copy of the input set with a total order that extends any existing
order of the input set but is otherwise chosen by the service. The total
order MUST be stable across requests.

If \(A\) contains more than \(c\) instances, the output set consists of the
first \(c\) occurrences in \(A\). Otherwise, the output set equals \(A\). The
instances in the output set are in the same order as they occur in \(A\).

Note the transformation top(0) produces an empty output set.

Example 35:

GET /service/Sales?$apply=orderby(Customer/Name desc)/top(2)

results in

{

 "@context": "$metadata#Sales",

 "value": [

 { "ID": 4, "Amount": 8 },

 { "ID": 5, "Amount": 4 }

]

}

3.3.7 Stable Total Order Before $skip and $top

When the system query options $top and $skip OData-Protocol, sections
11.2.6.3 and 11.2.6.4 are executed after the system query option $apply
and after $filter and $orderby, if applicable, they operate on a collection
with a total order that extends any existing order but is otherwise chosen
by the service. The total order MUST be stable across requests.

3.4 One-to-One Transformations

These transformations produce an output set in one-to-one
correspondence with their input set. The output set is initially a clone of
the input set, then dynamic properties are added to the output set. The

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 61 of 154

values of properties copied from the input set are not changed, nor is the
order of instances changed.

3.4.1 Transformation identity

}

The resultoutput set of search has the same structure as the identity

transformation is its input set in unchanged order.

Example 36: Add a grand total row to the Sales result set

GET /service/Sales?$apply=concat(identity,aggregate(Amount

with sum as Total))

3.4.2 Transformation compute

3.14 The compute transformation takes a comma-separated list of one or more

compute expressions as parameters.Transformation compute

The compute transformation takes a comma-separated list of one or more
compute expressions as parameters.

A compute expression is ana common expression valid in a $filter system

query option on the input set that results in a simple value, followed by the as
keyword, followed by an aliasa SimpleIdentifier (see [, section 17.2]), called an

alias. This alias MUST NOT collide with names of properties in the input set or with other

aliases introduced in the same compute transformation..

The resultoutput set is constructed by copying the instances of the input set
and adding one dynamic property per compute expression to each
occurrenceeach instance of in the inoutput set. The name of theeach added
dynamic property is the alias following the as keyword. The value of the property is

the value of theof the corresponding compute expression evaluated on . The
value of each added dynamic property is computed relative to the
corresponding instance. Services MAY support expressions that
instance.address dynamic properties added by other expressions within the
same compute transformation, provided that the service can determine an
evaluation sequence. The type of the property is determined by the rules
for evaluating $filtercommon expressions and numeric promotion

defined in OData-URL, section 5.1.1[OData-URL]. The JSON representation of

these dynamic properties will include odata.type annotations where required by . .

The values of properties copied from the input set are not changed, nor is
the order of instances changed.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 62 of 154

Example :37:

GET ~//service/Sales?$apply=compute(Amount mul
Product/TaxRate as Tax)

results in

{

results in

{

 "@odata. "@context": "$metadata#Sales",(*,Tax)",
 "value": [

 { "ID": 1, ..., "Amount": 1, "Tax@type": "Decimal", "Tax":
0.14 },

 { "ID": 2, ..., "Amount": 2, "Tax@type": "Decimal", "Tax":
0.12 },

 { "ID": 3, ..., "Amount": 4, "Tax@type": "Decimal", "Tax":
0.24 },

 { "ID": 4, ..., "Amount": 8, "Tax@type": "Decimal", "Tax":
0.48 },

 { "ID": 5, ..., "Amount": 4, "Tax@type": "Decimal", "Tax":
0.56 },

 { "ID": 6, ..., "Amount": 2, "Tax@type": "Decimal", "Tax":
0.12 },

 { "ID": 7, ..., "Amount": 1, "Tax@type": "Decimal", "Tax":
0.14 },

 { "ID": 8, ..., "Amount": 2, "Tax@type": "Decimal", "Tax":
0.28 }

]

}

3.4.3 Transformation addnested

The addnested transformation expands a path relative to the input set,
applies one or more transformation sequences to the addressed
resources, and adds the transformed resources as dynamic (navigation)
properties to the output set. The output set \(A\) is initially a clone of the
input set.

The first parameter of the addnested transformation is a path \(p\) or a
concatenated path \(p/q\). Here, \(p=p_1/…/p_k\) with \(k≥1\) is a data
aggregation path with single- or collection-valued segments. The path \(p\)
MUST NOT contain any navigation properties prior to the last segment
\(p_k\), which MUST either be a navigation or a complex structural
property. If the optional \(q\) is present, it MUST be a type-cast segment.
This is an extension of the definition in OData-URL, section 5.1.3 in that
the first parameter need not contain a navigation property.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 63 of 154

Further parameters are one or more transformation sequences followed
by the as keyword followed by an alias whose name need not differ from
names in the input set but MUST differ from names already in
\(\Gamma(A,p_1/…/p_{k-1})\) (using the \(\Gamma\) notation) as well as
from aliases for other transformation sequences.

If \(p_k\) is single-valued, the transformation sequences MUST consist of
only identity or compute or addnested transformations, because these
transform one-element collections into one-element collections. This
makes it meaningful to speak (in this section only) of a transformation
sequence applied to a single instance; this means applying it to a
collection containing the single instance and taking as result the single
instance from the output set.

For each occurrence \(u\) in \(\Gamma(A,p_1/…/p_{k-1})\), let
\(B=γ(u,p_k/q)\) and let the resource \(v\) be

• the collection \(B\) if \(p_k\) is collection-valued

• the single instance in \(B\) if \(p_k\) is single-valued and \(B\) is non-
empty

• undefined if \(p_k\) is single-valued and \(B\) is empty.

If \(v\) is defined, then for each transformation sequence, a dynamic
property is added to \(u\) as follows: If \(p_k\) is a navigation property, the
added property is a dynamic navigation property, which is expanded by
default, otherwise it is a dynamic structural property. Its name is the alias
of the transformation sequence. The value of the added property is the
result of the transformation sequence applied to \(v\). The dynamic
property carries as control information the context URL of \(v\).

Example 38:

GET /service/Customers?$apply=addnested(Sales,

 filter(Amount gt 3)

as FilteredSales)

results in

{

 "@context": "$metadata#Customers(FilteredSales())",

 "value": [

 { "ID": "C1", "Name": "Joe", "Country": "USA",

 "FilteredSales@context": "#Sales",

 "FilteredSales": [{ "ID": "3", "Amount": 4 }]},

 { "ID": "C2", "Name": "Sue", "Country": "USA",

 "FilteredSales@context": "#Sales",

 "FilteredSales": [{ "ID": "4", "Amount": 8 },

 { "ID": "5", "Amount": 4 }]},

 { "ID": "C3", "Name": "Sue", "Country": "Netherlands",

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 64 of 154

 "FilteredSales@context": "#Sales",

 "FilteredSales": []},

 { "ID": "C4", "Name": "Luc", "Country": "France",

 "FilteredSales@context": "#Sales",

 "FilteredSales": []}

]

}

If Sales was a collection-valued complex property of type SalesModel.SalesComplexType, the

context would be "FilteredSales@context": "#Collection(SalesModel.SalesComplexType)".

3.5 Transformations Changing the Input Set Structure

The output set of the join transformations differs from their input set in the
number of instances as well as in their structure, but reflects the order of
the input set. Transformation nest produces a one-instance output set.

3.5.1 Transformations join and outerjoin

The join and outerjoin transformations take as their first parameter \(p\) a
collection-valued complex or navigation property, optionally followed by a
type-cast segment to address only instances of that derived type or one of
its sub-types, followed by the as keyword, followed by an alias. The
optional second parameter specifies a transformation sequence \(T\).

For each occurrence \(u\) in an order-preserving loop over the input set

1. the instance collection \(A\) addressed by \(p\) is identified.

2. If \(T\) is provided, \(A\) is replaced with the result of applying \(T\)
to \(A\).

3. In case of an outerjoin, if \(A\) is empty, a null instance is added to
it.

4. For each occurrence \(v\) in an order-preserving loop over \(A\) an
instance \(w\) is appended to the output set of the transformation:

o The instance \(w\) is a clone of \(u\) with an additional
dynamic property whose name is the given alias and whose
value is \(v\).

o The dynamic property is a navigation property if \(p\) is a
collection-valued navigation property, otherwise it is a
complex property.

o The dynamic property carries as control information the
context URL of \(v\).

Example 39: all links between products and sales instances

GET /service/Products?$apply=join(Sales as

Sale)&$select=ID&$expand=Sale

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 65 of 154

results in

{

 "@context": "$metadata#Products(ID,Sale())",

 "value": [

 { "ID": "P1",

 "Sale": {

 "@context": "#Sales/$entity",

 "ID": 2, "Amount": 2 } },

 { "ID": "P1",

 "Sale": {

 "@context": "#Sales/$entity",

 "ID": 6, "Amount": 2 } },

 { "ID": "P2",

 "Sale": {

 "@context": "#Sales/$entity",

 "ID": 3, "Amount": 4 } },

 { "ID": "P2",

 "Sale": {

 "@context": "#Sales/$entity",

 "ID": 4, "Amount": 8 } },

 { "ID": "P3",

 "Sale": {

 "@context": "#Sales/$entity",

 "ID": 1, "Amount": 1 } },

 { "ID": "P3",

 "Sale": {

 "@context": "#Sales/$entity",

 "ID": 5, "Amount": 4 } },

 { "ID": "P3",

 "Sale": {

 "@context": "#Sales/$entity",

 "ID": 7, "Amount": 1 } },

 { "ID": "P3",

 "Sale": {

 "@context": "#Sales/$entity",

 "ID": 8, "Amount": 2 } }

]

}

In this example, $expand=Sale is used to include the target entities in the result. There are

no subsequent transformations like groupby that would cause it to be expanded by

default. If the first parameter Sales was a collection-valued complex property of type

SalesModel.SalesComplexType, the complex property Sale would be in the result regardless,

and its context would be "@context": "#SalesModel.SalesComplexType".

Applying outerjoin instead would return an additional instance for product with "ID": "P4"
and Sale having a null value.

3.5.2 Transformation nest

The nest transformation takes as parameters one or more transformation
sequences followed by the as keyword followed by an alias.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 66 of 154

The output set consists of a single instance of the input type without entity
id having one dynamic property per transformation sequence. The name
of the dynamic property is the alias for this transformation sequence. The
value of the dynamic property is the collection resulting from the
transformation sequence applied to the input set. The dynamic property
carries as control information the context URL of the transformed input
set.

Example 40:

GET /service/Sales?$apply=nest(groupby((Customer/ID)) as

Customers))

results in

{

 "@context":"$metadata#Sales(Customers())",

 "value": [

 { "Customers@context": "#Sales(Customer(ID))",

 "Customers": [{ "Customer": { "ID": "C1" } },

 { "Customer": { "ID": "C2" } },

 { "Customer": { "ID": "C3" } }] }

]

}

3.6 Expressions Evaluable on a Collection

The following two subsections introduce two new types of expression that
are evaluated relative to a collection, called the input collection.

These expressions are

• either prepended with a collection-valued path \(p\) followed by a
forward slash, like a lambda operator OData-URL, section 5.1.1.13.
The collection identified by that path is then the input collection for
the expression.

• or prepended with the keyword $these followed by a forward slash,
the input collection is then the current collection defined as follows:

o In a system query option other than $apply, possibly nested
within $expand or $select, the current collection is the

collection that is the subject of the system query option.

o In a path segment that addresses a subset of a collection
OData-URL, section 4.12, the current collection is the
collection that is the subject of the path segment.

o In an $apply transformation, the current collection is the input
set of the transformation.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 67 of 154

3.6.1 Function aggregate

The aggregate function allows the use of aggregated values in
expressions. It takes a single parameter accepting an aggregate
expression and returns the aggregated value of type Edm.PrimitiveType
as the result from applying the aggregate expression on its input
collection.

More precisely, if \(α\) is an aggregate expression, the function \(p/{\tt
aggregate}(α)\) or \({\tt\$these}/{\tt aggregate}(α)\) evaluates to the value
of the property \(D\) in the single instance of the output set that is
produced when the transformation \({\tt aggregate}(α{\tt\ as\ }D)\) is
applied with the input collection as input set.

Example 41: Sales making up at least a third of the total sales amount.

GET /service/Sales?$filter=Amount mul 3 ge

$these/aggregate(Amount with sum)

results in

{

 "@context": "$metadata#Sales",

 "value": [

 { "ID": "4", "Amount": 8 }

]

}

Example 42: Products with more than 1.00 sales tax. The aggregate expression of type 2

combines paths with and without $it prefix (compare this with example 8).

GET /service/Products?$filter=Sales/aggregate(Amount mul

$it/TaxRate with sum)

 gt 1

⚠ Example 43: products with a single sale of at least twice the average sales amount

GET /service/Products?$filter=Sales/any(s:s/Amount ge

 Sales/aggregate(Amount with

average) mul 2)

Both examples result in

{

 "@context": "$metadata#Products",

 "value": [

 { "ID": "P3", "Name": "Paper", "Color": "White",

"TaxRate": 0.14 }

]

}

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 68 of 154

3.6.2 Expression $count

The expression $count evaluates to the cardinality of the input collection.

Example 44: The input collection for $count consists of all sales entities, the top third of
sales entities by amount form the result.

GET /service/Sales?$apply=topcount($these/$count div

3,Amount)

results in 2 (a third of 8, rounded down) entities. (This differs from
toppercent(33.3,Amount), which returns only the sales entity with ID 4, because that
already makes up a third of the total amount.)

{

 "@context": "$metadata#Sales",

 "value": [

 { "ID": 3, "Amount": 4 },

 { "ID": 4, "Amount": 8 }

]

}

3.15 A definition that is equivalent to a $count expression after a collection-

valued path was made in OData-URL, section 4.8Filter Function
isdefined

.

3.7 Function isdefined

Properties that are not explicitly mentioned in aggregate or groupby are
considered to have been aggregated away and. Since they are treated as
having the null value in $filter expressions OData-URL, section 5.1.1.15. ,
the $filter expression Product eq null cannot distinguish between an
instance containing the value for the null product and the instance
containing the aggregated value across all products (where the Product
has been aggregated away).

The filter function isdefined can be used to determine whether a property
has been aggregated away.is present or absent in an instance. It takes a
single-valued property pathsingle-valued property path as its only parameter
and returns true if the property has a defined value for the aggregated entity. A

property with a defined valueis present in the instance for which the expression
containing the isdefined function call is evaluated. A present property can
still have the null value; it can represent a grouping of null values, or an
aggregation that results in a null value.

Example :45: Product has been aggregated away, causing an empty result

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 69 of 154

GET ~//service/Sales?$apply=aggregate(Amount with sum as
Total)

 &$filter=isdefined(Product)

results in

{

 "@odata.context": "$metadata#Sales(Total)",
 "value": []

}

3.8 Evaluating $apply as an Expand and Select Option

3.16 Evaluating $apply

The new system query option is evaluated first, then the other system query options are evaluated,

if applicable, on the result of $apply in their normal order (see [, section 11.2.1]). If the result is a

collection, $filter, $orderby, $expand and $select work as usual on properties that are defined on

the output set after evaluating .
Properties that have been aggregated away in a result entity are not represented, even if the properties
are listed in $select or $expand. In $filter they are treated as having the null value, and in

$orderby as having a value that is even lower than null, i.e. instances for which a property has been

rolled up appear before instances that have a null value for that property when ordering ascending.
On resource paths ending in /$count the system query option is evaluated on the set identified by the

resource path without the /$count segment, the result is the plain-text number of items in the result of .

This is similar to the combination of /$count and $filter.

The $count system query option is evaluated after , the annotation @odata.count contains the number

of items in the result of .
Providers MAY support $count, $top and $skip together with , in which case rollup instances are

counted identically to detail instances, i.e. $skip=5 skips the first five instances, independently of

whether some of them are rollup entities.
If a provider cannot satisfy a request using , it MUST respond with 501 Not Implemented and a

human-readable error message.

3.17 Evaluating $apply as an Expand Option

The new system query option $apply can be used as an expand or select
option to inline the result of aggregating related entities. or nested
instances. The rules for evaluating $apply are applied in the context of the
expanded navigation, i.e.related collection of entities or the selected collection
of instances, meaning this context defines the input set of the first
transformation. Furthermore, $apply is evaluated first, and other expand or
select options on the same (navigation) property are evaluated on the
result of $apply.

Example :46: products with aggregated sales:

GET /service/Products

 ?$expand=Sales($apply=aggregate(Amount with sum as Total))

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 70 of 154

results in

{

results in

{

"@odata.context":"$metadata#Poducts(Salees(Amount)",Products(Sales
(Total))",

 "value": [

 {
 { "ID": "P2", "Name": "Coffee", "Color": "Brown",

"TaxRate": 0.06,

 "Sales": [{ "@odata.id": null,"Total@type": "Decimal",
"Total": 12 }] },

 {
 { "ID": "P3", "Name": "Paper", "Color": "White",

"TaxRate": 0.14,

 "Sales": [{ "@odata.id": null,"Total@type": "Decimal",
"Total": 8 }] },

 {
 { "ID": "P4", "Name": "Pencil", "Color": "Black",

"TaxRate": 0.14,

 "Sales": [{ "@odata.id": null, "Total": null }] },

 {
 { "ID": "P1", "Name": "Sugar", "Color": "White",

"TaxRate": 0.06,

 "Sales": [{ "@odata.id": null,"Total@type": "Decimal",
"Total": 4 }] }

]

}

3.18 ABNF for Extended URL Conventions

]

}

3.9 ABNF for Extended URL Conventions

The normative ABNF construction rules for this specification are defined in
OData-Agg-ABNF.. They incrementally extend the rules defined in OData-
ABNF..

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 71 of 154

4 Representation of Aggregated Instances
Aggregated instances are based on the structure of the individual instances from which they have been
calculated, so the structure of the results fits into the data model of the service.
Properties that have been aggregated away are not represented at all in the aggregated instances.
Dynamic properties introduced through an or with custom aggregates are represented as defined by the
response format.
Aggregated instances are logically instances of the declared type of the collection identified by the
resource path of the request. If the resource path identifies a collection of entities, the aggregated
instances are also entities. These aggregated entities can be transient or persistent. Transient entities
don’t possess an edit link or read link, and in the JSON representation are marked with "@odata.id":

null, see . Edit links or read links of persistent entities MUST encode the necessary information to re-

retrieve that particular aggregate value. How the necessary information is exactly encoded is not part of
this specification. Only the boundary conditions defined in [], sections 4.1 and 4.2 MUST be met.

Example : looking again to the sample request for getting sales amounts per product and country presented in
section ():

GET ~/Sales?$apply=groupby((Customer/Country,Product/Name),

 aggregate(Amount with sum as Total))

will return corresponding metadata as shown here for a single transient aggregated entity:

{

 "@odata.context":"$metadata#Sales(Customer(Country),Product(Name),Total)",

 "value": [

 { "@odata.id": null,

 "Customer": { "Country": "Netherlands" },

 "Product": { "Name": "Paper" },

 "Total": 3

 },

 ...

]

}

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 72 of 154

5 Cross-Joins and Aggregation

4 Cross-Joins and Aggregation

OData supports querying related entities through defining navigation
properties in the data model. These navigation paths help guide simple
consumers in understanding and navigating relationships.

In some cases, however, requests need to span entity sets with no
predefined associations. Such requests can be sent to the special
resource $crossjoin instead of an individual entity set. The cross join of a
list of entity sets is the Cartesian product of the listed entity sets,
represented as a collection of complex type instances that have a
navigation property with cardinality to-one for each participating entity set,
and queries across entity sets can be formulated using these navigation
properties. See OData-URL for details.

Where useful navigations exist it is beneficial to expose those as explicit
navigation properties in the model, but the ability to pose queries that span
entity sets not related by an association provides a mechanism for
advanced consumers to use more flexible join conditions.

Example :47: if Sales had a string property ProductID instead of the navigation property

Product, a “"join”" between Sales and Products could be accessed via the $crossjoin
resource

GET ~/$/service/$crossjoin(Products,Sales)

?$expand=Products($select=Name),Sales($select=Amount)

 &$filter=Products/ID eq

Sales/ProductID

results in

{

results in

{

 "@odata.context": "$metadata#Collection(Edm.ComplexType)",
 "value": [

 { "Products": { "Name": "Paper" }, "Sales": { "Amount":

1 } },

 { "Products": { "Name": "Sugar" }, "Sales": { "Amount":

2 } },

 ...

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 73 of 154

] ...
]

}

Example :48: using the $crossjoin resource for aggregate queries

GET ~/$/service/$crossjoin(Products,Sales)
 ?$apply=filter(Products/ID eq Sales/ProductID)

 /groupby((Products/Name),

 addnested(Sales,aggregate(Sales(Amount with sum as

Total))))
 as AggregatedSales))

results in

{

results in

{

 "@odata.context": "$metadata#Collection(Edm.ComplexType)",
 "value": [

 { "Products": { "Name": "Coffee" }, "Sales": {
 "AggregatedSales@context": "#Sales(Total)",

 "AggregatedSales": { "Total@type": "Decimal", "Total":

12 } },

 { "Products": { "Name": "Paper" }, "

 "AggregatedSales@context": "#Sales": {(Total)",
 "AggregatedSales": { "Total@type": "Decimal", "Total":

8 } },

 { "Products": { "Name": "Sugar" }, "Sales": {
 "AggregatedSales@context": "#Sales(Total)",

 "AggregatedSales": { "Total@type": "Decimal", "Total":

4 } }

]

}

The entity container may be annotated in the same way as entity sets to
express which aggregate queries are supported, see section 5section .

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 74 of 154

6 Vocabulary for Data Aggregation

5 Vocabulary for Data Aggregation

The following terms are defined in the vocabulary for data aggregation
OData-VocAggr.

5.1 Aggregation Capabilities

6.1 Aggregation Capabilities

The term ApplySupported can be applied to an entity set, an entity type, or
a collection if the target path of the annotation starts with an entity
container (see example 50or to structured types and). It describes the
aggregation capabilities of the entity container or of collections of instances of the

annotated structured types.annotated target. If present, it implies that
instances of the annotated structured type, or of structured types used in the

annotated entity container,target can contain dynamic properties as an effect
of $apply even if they do not specify the OpenType attribute, see OData-
CSDL[].. The term has a complex type with the following properties:

• The Transformations collection lists all supported set
transformations. Allowed values are the names of the standard
transformations , , , , , , , , , , ,introduced in sections 3 and , or a6, and
namespace-qualified names identifying a service-defined bindable
function. If Transformations is omitted the server supports all
transformations defined by this specification.

• The CustomAggregationMethods collection lists supported custom
aggregation methods. Allowed values are namespace-qualified
names identifying service-specific aggregation methods. If omitted,
no custom aggregation methods are supported.

• Rollup specifies whether the service supports no rollup, only a
single rollup hierarchy, or multiple rollup hierarchies in a
groupbygroupby transformation. If omitted, multiple rollup

hierarchies are supported.

• A non-empty GroupableProperties indicates that only the listed
properties of the annotated target can be used in groupby.

• A non-empty AggregatableProperties indicates that only the listed properties of
the annotated target can be used in aggregatePropertyRestrictions specifies

whether all properties can be used in and . If not specified, or specified with a value of false, all

properties can be grouped and aggregated. If specified with a value of true clients have to

check which properties are tagged as or .

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 75 of 154

• , optionally restricted to the specified aggregation methods.

All properties of ApplySupported are optional, so it can be used as a
tagging annotation to signal unlimited support of aggregation.

Example : an entity container supporting everything defined in this specification.

The term ApplySupportedDefaults can be applied to an entity container. It
allows to specify default support for aggregation capabilities
Transformations, CustomAggregationMethods and Rollup that propagate to
all collection-valued resources in the container. Annotating a specific
collection-valued resource with the term ApplySupported overrides the
default support with the specified properties using PATCH semantics:

• Primitive or collection-valued properties specified in
ApplySupported replace the corresponding properties specified in
ApplySupportedDefaults.

• Complex-valued properties specified in ApplySupported override
the corresponding properties specified in ApplySupportedDefaults
using PATCH semantics recursively.

• Properties specified neither in ApplySupported nor in

ApplySupportedDefault have their default value.

Example 49: an entity container with default support for everything defined in this
specification

<EntityContainer Name="SalesData">

 <Annotation Term="Aggregation.ApplySupportedDefaults" />

 ...

</EntityContainer>

Example 50Property : Define aggregation support only for the products of a given
category

<Annotations

Target="SalesModel.SalesData/Categories/Products">

6.1.1 Groupable Properties

If a structured type is annotated with or used within an entity container that is annotated with , and the
annotation has a value of true for PropertyRestrictions, only those properties that are annotated

with the tagging term Groupable can be used in .

6.1.2 Aggregatable Properties

If a structured type is annotated with or used within an entity container that is annotated with , and the
annotation has a value of true for PropertyRestrictions, only those properties that are annotated

with the tagging term Aggregatable can be used in .

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 76 of 154

6.1.3 Custom Aggregates

 <Annotation Term="Aggregation.ApplySupported">

 ...

 </Annotation>

</Annotations>

5.2 Custom Aggregates

The term CustomAggregate allows defining dynamic properties that can be
used in aggregate. No assumptions can be made on how the values of
these custom aggregates are calculated, whether they are null, and which
input values are used.

When applied to a structuredan entity set, an entity type, or a collection if the
target path of the annotation starts with an entity container, the annotation
specifies custom aggregates that are available for collections of its instances
of that structured typeand for aggregated instances resulting from these
instances. When applied to an entity container, the annotation specifies
custom aggregates whose input set may span multiple entity sets within
the container.

A custom aggregate is identified by the value of the Qualifier attribute

when applying the term. The value of the Qualifier attribute is the name of
the dynamic property. The name MUST NOT collide with the names of
other custom aggregates of the same model element.

The value of the annotation is a string with the qualified name of a
primitive type or type definition in scope that specifies the type returned by
the custom aggregate.

If the custom aggregate is associated with a structured typean entity set,
entity type, or collection, the value of the Qualifier attribute MAY be
identical to the name of a declared property of the structured type. In

instances in this caseset or collection. In these cases, the value of the
annotation MUST have the same value as the Type attribute of the
declared property. This is typically done when the custom aggregate is
used as a default aggregate for that property. In this case, the name refers
to the custom aggregate within an aggregate expression without a with
clause, and to the property in all other cases.

If the custom aggregate is associated with an entity container, the value of
the Qualifier attribute MUST NOT collide with the names of any entity sets

defined in the entity container children.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 77 of 154

Example :51: Sales forecasts are modeled as a custom aggregate of the Sales entity
type because it belongs there. For the budget, there is no appropriate structured type, so
it is modeled as a custom aggregate of the SalesData entity container.

<Annotations Target="SalesModel.SalesData/Sales">

 <Annotation Term="Aggregation.CustomAggregate"

Qualifier="Forecast"

 String="Edm.Decimal" />

</Annotations>

<Annotations Target="SalesModel.SalesData">

 <Annotation Term="Aggregation.CustomAggregate"

Qualifier="Budget"

 String="Edm.Decimal" />

</Annotations>

These custom aggregates can be used in the aggregate transformation:

GET

~//service/Sales?$apply=groupby((Time/Month),aggregate(Foreca
st))

and:

GET

~/$/service/$crossjoin(Time)?$apply=groupby((Time/Year),aggre
gate(Budget))

5.3 Context-Defining Properties

6.1.4 Context-Defining Properties

Sometimes the value of a property or custom aggregate is only well-
defined within the context given by values of other properties, e.g. a postal
code together with its country, or a monetary amount together with its
currency unit. These context-defining properties can be listed with the
term ContextDefiningProperties whose type is a collection of property
paths.

If present, the context-defining properties SHOULD be used as grouping
properties when aggregating the annotated property or custom aggregate,
or alternatively be restricted to a single value by a pre-filter operation.
Services MAY respond with 400 Bad Request if the context-defining
properties are not sufficiently specified for calculating a meaningful
aggregate value.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 78 of 154

5.4 Annotation Example

6.1.5 Example

Example :52: This simplified Sales entity typeset has a single aggregatable property

Amount whose context is defined by the Code property of the related Currency, and a

custom aggregate Forecast with the same context. The Code property of Currencyies is

groupable. All other properties are neither groupable nor aggregatable.

<EntityType Name="Currency">

 <Key>

 <PropertyRef Name="Code" />

 </Key>

 <Property Name="Code" Type="Edm.String">" />

 <Annotation Term="Aggregation.Groupable" />

 </Property>

 <Property Name="Name" Type="Edm.String">

 <Annotation Term="Core.IsLanguageDependent" />

 </Property>

</EntityType>

<EntityType Name="Sales">
 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Edm.String" Nullable="false" />

 <Property Name="Amount" Type="Edm.Decimal"

Scale="variable">

 <Annotation Term="Aggregation.Aggregateable" />

 <Annotation

Term="Aggregation.ContextDefiningProperties">

 <Collection>

 <PropertyPath>Currency/Code</PropertyPath>

 </Collection>

 </Annotation>

 </Property>

 <NavigationProperty Name="Currency"

Type="SalesModel.Currency"

 Nullable="false">" />

 <Annotation Term="Aggregation.Groupable" />

 </NavigationProperty>

 <Annotation Term="Aggregation.CustomAggregate" Qualifier="Forecast"

 String="Edm.Decimal">

 <Annotation Term="Aggregation.ContextDefiningProperties">

 <Collection>

 <PropertyPath>Currency/Code</PropertyPath>

 </Collection>

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 79 of 154

 </Annotation>

 </Annotation>

</EntityType>

<EntityContainer Name="SalesData">

 <EntitySet Name="Sales" EntityType="SalesModel.Sale">

 <Annotation Term="Aggregation.ApplySupported">

 <Record>

 <PropertyValue Property="PropertyRestrictions" Bool="true"

/>AggregatableProperties">

 </ <Collection>
 <Record>

 <PropertyValue Property="Property"

PropertyPath="Amount" />

 </Record>

 </Collection>

 </PropertyValue>

 <PropertyValue Property="GroupableProperties">

 <Collection>

 <PropertyPath>Currency</PropertyPath>

 </Collection>

 </PropertyValue>

 </Record>

 </Annotation>

 </
 <Annotation> Term="Aggregation.CustomAggregate"

Qualifier="Forecast"

 < String="Edm.Decimal">
 <Annotation

Term="Aggregation.ContextDefiningProperties">

 <Collection>

 <PropertyPath>Currency/Code</PropertyPath>

 </Collection>

 </Annotation>

 </Annotation>

 </EntitySet Name="Sales" EntityType="SalesModel.Sales" />>

 <EntitySet Name="Currencies"

EntityType="SalesModel.Currency" /> ">
 <Annotation Term="Aggregation.ApplySupported">

 <Record>

 <PropertyValue Property="GroupableProperties">

 <Collection>

 <PropertyPath>Code</PropertyPath>

 </Collection>

 </PropertyValue>

 </Record>

 </Annotation>

 </EntitySet>

</EntityContainer>

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 80 of 154

5.5 Hierarchies

6.2 Hierarchies

A hierarchy is an arrangement of groupable propertiesentities whose values
are represented as being “"above”, “", "below”,", or “"at the same level as”"
one another. A hierarchy can be leveled or recursive.

5.5.1 Leveled Hierarchy

6.2.1 Leveled Hierarchy

A leveled hierarchy has a fixed number of levels each of which is
represented by a grouping propertygroupable property.. The values of a
lower-level property depend on the property value of the level above.

A leveled hierarchy can be defined for a collection of instances of an entity
or complex type and is described with the term LeveledHierarchy that lists
the properties used to form the hierarchy.

The order of the collection is significant: it lists thepaths from the entity or
complex type where the term is applied to groupable properties
representing the levels, starting with the root level (coarsest granularity)
down to the lowest (finest-grained) level of the hierarchy.

The term LeveledHierarchy can onlyMUST be applied to entity types, and the

applying Annotation element MUST specify the Qualifier attribute. The value of the

Qualifier attribute with a qualifier that can be used to reference the

hierarchy in grouping with rollup.

5.5.2 Recursive Hierarchy

6.2.2 Recursive Hierarchy

A recursive hierarchy organizes the values of is defined on a collection of
entities by

• determining which entities are part of the hierarchy and giving every
such entity a single groupable property as nodes of a tree structure. This

structure does not need to be as uniform as a leveled hierarchy. It primitive
non-null value that uniquely identifies it within the hierarchy. These
entities are called nodes, and the primitive value is called the node
identifier, and

• associating with every node zero or more nodes from the same
collection, called its parent nodes.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 81 of 154

The recursive hierarchy is described by a in the model by an annotation of
the entity type with the complex term RecursiveHierarchy with these
properties:

• The NodeProperty contains theMUST be a path to the with single-
valued segments ending in a primitive property. This property holds
the node identifier of the nodean entity that is a node in the
hierarchy.

• The ParentNavigationProperty allowsMUST be a collection-valued or nullable
single-valued navigation to the entity representing the parent node.

• The optional DistanceFromRootProperty contains the path to a property that contains the

number of edges between the node and the root node.

• The optional IsLeafProperty contains the path to a Boolean property that

indicates whether the path that addresses the entity type annotated
with this term. It navigates from an entity that is a node is a leaf ofin
the hierarchy to its parent nodes.

The term RecursiveHierarchy can only be applied to entity types, and the

applying Annotation element MUST specify the Qualifier attribute. The value of the

Qualifier attribute can beMUST be applied with a qualifier, which is used to

reference the hierarchy in transformations operating on recursive
hierarchies, in grouping with rolluprecursive, and in hierarchy functions..
The same entity can serve as nodes in different recursive hierarchies,
given different qualifiers.

A root node is a node without parent nodes. A recursive hierarchy can
have one or more root nodes. A node is a child node of its parent nodes, a
node without child nodes is a leaf node. Two nodes with a common parent
node are sibling nodes and so are two root nodes.

The descendants with maximum distance \(d≥1\) of a node are its child
nodes and, if \(d>1\), the descendants of these child nodes with maximum
distance \(d-1\). The descendants are the descendants with maximum
distance \(d=∞\). A node together with its descendants forms a sub-
hierarchy of the hierarchy.

The ancestors with maximum distance \(d≥1\) of a node are its parent
nodes and, if \(d>1\), the ancestors of these parent nodes with maximum
distance \(d-1\). The ancestors are the ancestors with maximum distance
\(d=∞\). The ParentNavigationProperty MUST be such that no node is an
ancestor of itself, in other words: cycles are forbidden.

6.2.2.1 The term UpPath can be used in hierarchical result sets to associate with
each instance one of its ancestors, one ancestor of that ancestor and so

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 82 of 154

on. This instance annotation is introduced in section 6.2.2Hierarchy Filter
Functions

.

5.5.2.1 Hierarchy Functions

For testing the position of a given entity instance in a recursive hierarchy

annotated to the entity’s type, the Aggregation vocabulary OData-VocAggr
defines unbound functions that can be applied to any entity in $filter

expressions:. These have

• a parameter pair HierarchyNodes, HierarchyQualifier where

HierarchyNodes is a collection and HierarchyQualifier is the qualifier
of a RecursiveHierarchy annotation on its common entity type. The
node identifiers in this collection define the recursive hierarchy.

• a parameter Node that contains the node identifier of the entity to
be tested. Note that the test result depends only on this node
identifier, not on any other property of the given entity

• additional parameters, depending on the type of test (see below)

• a Boolean return value for the outcome of the test.

The following functions are defined:

• isnode tests if the given entity is a node of the hierarchy.

• isroot tests if the given entity is a root node of the hierarchy.

• isdescendant tests if the given entity is a descendant with maximum
distance MaxDistance of an ancestor node (whose node identifier is
given in a parameter Ancestor), or equals the ancestor if IncludeSelf
is true.

• isancestor tests if the given entity is an ancestor with maximum

distance MaxDistance of a descendant node (whose node identifier
is given in a parameter Descendant), or equals the descendant if
IncludeSelf is true.

• issibling tests if the given entity and another entity (whose node
identifier is given in a parameter Other) are sibling nodes.

• isleaf tests if the given entity is a leaf node.

Another function rollupnode is defined that can only be used in connection
with rolluprecursive.

5.5.3 Hierarchy Examples

• The hierarchy terms can be applied to the Example Data Modelisroot returns true

if and only if the value of the node property of the specified hierarchy is the root of the hierarchy,

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 83 of 154

• isdescendant returns true if and only if the value of the node property of the specified hierarchy

is a descendant of the given parent node with a distance of less than or equal to the optionally
specified maximum distance,

• isancestor returns true if and only if the value of the node property of the specified hierarchy is

an ancestor of the given child node with a distance of less than or equal to the optionally specified
maximum distance,

• issibling returns true if and only if the value of the node property of the specified hierarchy

has the same parent node as the specified node,

• isleaf returns true if and only if the value of the node property of the specified hierarchy has no

descendants.

6.2.3 Examples

Example :.

⚠ Example 53: leveled hierarchies for products and time, and a recursive hierarchy for

the sales organizations:

<edmx:Edmx xmlns:edmx=""
="http://docs.oasis-open.org/odata/ns/edmx"

 Version="4.0">

 <edmx:Reference Uri="https://docs.oasis-

open.org/odata/odata-data-

 aggregation-

ext/v4.0/csd014/vocabularies/Org.OData.Aggregation.V1.xml">
 <edmx:Include Alias="Aggregation"

 Namespace="Org.OData.Aggregation.V1" />

 </edmx:Reference>
 </edmx:Reference>

 <edmx:DataServices>

 <Schema xmlns=""
="http://docs.oasis-open.org/odata/ns/edm"

 Alias="SalesModel"

Namespace="org.example.odata.salesservice">

 <Annotations Target="SalesModel.Product">

 <Annotation Term="Aggregation.LeveledHierarchy"

 Qualifier="ProductHierarchy">

 <Collection>

 <PropertyPath>Category/Name</PropertyPath>

 <PropertyPath>Name</PropertyPath>

 </Collection>

 </Annotation>

 </Annotations>

 <Annotations Target="SalesModel.Time">

 <Annotation Term="Aggregation.LeveledHierarchy"

 Qualifier="TimeHierarchy">

 <Collection>

 <PropertyPath>Year</PropertyPath>

 <PropertyPath>Quarter</PropertyPath>

 <PropertyPath>Month</PropertyPath>

 </Collection>

 </Annotation>

 </Annotations>

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 84 of 154

 <Annotations Target="SalesModel.SalesOrganization">

 <Annotation Term="Aggregation.RecursiveHierarchy"

 Qualifier="SalesOrgHierarchy">

 <Record>

 <PropertyValue Property="NodeProperty"

 PropertyPath="ID" />

 <PropertyValue

Property="ParentNavigationProperty"

 PropertyPath="Superordinate" />

 </Record>

 </Annotation>

 </Annotations>

 </Schema>

 </edmx:DataServices>

</edmx:Edmx>

The recursive hierarchy SalesOrgHierarchy can be used in functions with
the $filter system query option.

Example :54: requesting all organizations below EMEA

GET ~//service/SalesOrganizations?

 $?$filter=

 $it/Aggregation.isdescendant(Hierarchy
 HierarchyNodes=$root/SalesOrganizations,

 HierarchyQualifier='SalesOrgHierarchy',

 Node=ID,

 Ancestor='EMEA')

results in

{

 "@results in

{

 "@odata.context": "$metadata#SalesOrganizations",
 "value": [

 { "ID": "EMEA Central", "Name": "EMEA Central" },

 { "ID": "Sales Netherlands", "Name": "Sales Netherlands"

},

 { "ID": "Sales Germany", "Name": "Sales Germany" },

 { "ID": "EMEA South", "Name": "EMEA South" },

 ...

 ...

 { "ID": "EMEA North", "Name": "EMEA North" },

 ...
]
 ...

]

}

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 85 of 154

Example :55: requesting just those organizations directly below EMEA

GET /service/SalesOrganizations?$filter=

 $it/Aggregation.isdescendant(Hierarchy
 HierarchyNodes=$root/SalesOrganizations,

 HierarchyQualifier='SalesOrgHierarchy',

 Node=ID,

 Ancestor='EMEA',

 MaxDistance=1)

results in

{

 "@results in

{

 "@odata.context": "$metadata#SalesOrganizations",
 "value": [

 { "ID": "EMEA Central", "Name": "EMEA Central" },

 { "ID": "EMEA South", "Name": "EMEA South" },

 { "ID": "EMEA North", "Name": "EMEA North" },

 ...
]
 ...

]

}

Example :56: just the lowest-level organizations

GET /service/SalesOrganizations?$filter=

 $it/Aggregation.isleaf(Hierarchy
 HierarchyNodes=$root/SalesOrganizations,

 HierarchyQualifier='SalesOrgHierarchy'),
 Node=ID)

results in

{

 "@odata.context": "$metadata#SalesOrganizations",
 "value": [

 { "ID": "Sales Office London", "Name": "Sales Office

London" },

 { "ID": "Sales Office New York", "Name": "Sales Office

New York" },

 ...
]
 ...

]

}

Example :57: the lowest-level organizations including their superordinate's ID

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 86 of 154

GET /service/SalesOrganizations?$filter=

 $it/Aggregation.isleaf(Hierarchy
 HierarchyNodes=$root/SalesOrganizations,

 HierarchyQualifier='SalesOrgHierarchy')
 ,
 Node=ID)

&$expand=Superordinate($select=ID)

results in

{

results in

{

 "@odata.context":
"$metadata#SalesOrganizations(*,Superordinate(ID))",

 "value": [

 { "ID": "Sales Office London", "Name": "Sales Office

London",

 "Superordinate:": { "ID": "EMEA United Kingdom" } },
 { "ID": "Sales Office New York", "Name": "Sales Office

New York",

 "Superordinate:": { "ID": "US East" } },

 ...
]
 ...

]

}

Example : retrieving58: the sales IDs involving sales organizations from EMEA can be

requested by

GET /service/Sales?$select=ID&$filter=

 SalesOrganization/Aggregation.isdescendant(Hierarchy
 HierarchyNodes=$root/SalesOrganizations,

 HierarchyQualifier='SalesOrgHierarchy',

 Node=SalesOrganization/ID,

 Ancestor='EMEA')

results in

{

results in

{

 "@odata.context": "$metadata#Sales(ID)",
 "value": [

 { "ID": 6 },

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 87 of 154

 { "ID": 7 },

 { "ID": 8 }

]
]

}

Further examples for recursive hierarchies using transformations
operating on the hierarchy structure are provided in section 7.9.

5.6 Functions on Aggregated Entities}

6.3 Actions and Functions on Aggregated Entities

Bound actions and

Service-defined bound functions may or may not be applicable to aggregated

entities. By default such bindings are not applicable to aggregated entities. Actions or

functionsthat serve as set transformations MAY be annotated with the term
AvailableOnAggregates to indicate that they are applicable to (a subset of the)

aggregated entities under specific conditions:

• The RequiredProperties collection lists all properties that must be
available in the aggregated entities; otherwise, the annotated
function or action will be inapplicable.

Example :59: assume the product is an implicit input for a function bindablebound to a

collection of Sales, then aggregating away the product makes this function inapplicable.

6 Hierarchical Transformations

The transformations and the rolluprecursive operator defined in this
section are called hierarchical, because they make use of a recursive
hierarchy and are defined in terms of hierarchy functions introduced in the
previous section.

The transformations ancestors and descendants do not define an order on

the output set. An order can be imposed by a subsequent orderby or

traverse transformation or a $orderby. The output set of traverse is in
preorder or postorder, and grouping with rolluprecursive orders its output
set in analogy with simple grouping.

The algorithmic descriptions of the transformations make use of a union of
collections, this is defined as an unordered collection containing the items
from all these collections and from which duplicates have been removed.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 88 of 154

The notation \(u[t]\) is used to denote the value of a property \(t\), possibly
preceded by a type-cast segment, in an instance \(u\). It is also used to
denote the value of a single-valued data aggregation path \(t\), evaluated
relative to \(u\). The value of a collection-valued data aggregation path is
denoted in the \(\Gamma\) notation by \(γ(u,t)\).

The notations introduced here are used throughout the following
subsections.

6.1 Common Parameters for Hierarchical Transformations

The parameter lists defined in the following subsections have three
mandatory parameters in common.

The recursive hierarchy is defined by a parameter pair \((H,Q)\), where
\(H\) and \(Q\) MUST be specified as the first and second parameter.
Here, \(H\) MUST be an expression of type Collection(Edm.EntityType)
starting with $root that has no multiple occurrences of the same entity.
\(H\) identifies the collection of node entities forming a recursive hierarchy
based on an annotation of their common entity type with term
RecursiveHierarchy with a Qualifier attribute whose value MUST be
provided in \(Q\). The property paths referenced by NodeProperty and

ParentNavigationProperty in the RecursiveHierarchy annotation must be
evaluable for the nodes in the recursive hierarchy, otherwise the service
MUST reject the request. The NodeProperty is denoted by \(q\) in this
section.

The third parameter MUST be a data aggregation path \(p\) with single- or
collection-valued segments whose last segment MUST be a primitive
property. The node identifier(s) of an instance \(u\) in the input set are the
primitive values in \(γ(u,p)\), they are reached via \(p\) starting from \(u\).
Let \(p=p_1/…/p_k/r\) with \(k≥0\) be the concatenation where each sub-
path \(p_1,…,p_k\) consists of a collection-valued segment that is
preceded by zero or more single-valued segments, and either \(r\) consists
of one or more single-valued segments or \(k≥1\) and \({}/r\) is absent.
Each segment can be prefixed with a type cast.

Some parameter lists allow as optional fourth or fifth parameter a non-
empty sequence \(S\) of transformations. The transformation sequence
\(S\) will be applied to the node collection \(H\). It MUST consist of
transformations listed in section 3.3 or section 6.2 or service-defined
bound functions whose output set is a subset of their input set.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 89 of 154

6.2 Hierarchical Transformations Producing a Subset

These transformations produce an output set that consists of certain
instances from their input set, possibly with repetitions or in a different
order.

6.2.1 Transformations ancestors and descendants

In the simple case, the ancestors transformation takes an input set
consisting of instances that belong to a recursive hierarchy \((H,Q)\). It
determines a subset \(A\) of the input set and then determines the set of
ancestors of \(A\) that were already contained in the input set. Its output
set is the ancestors set, optionally including \(A\).

In the more complex case, the instances in the input set are instead
related to nodes in a recursive hierarchy. Then the ancestors
transformation determines a subset \(A\) of the input set consisting of
instances that are related to certain nodes in the hierarchy, called start
nodes. The ancestors of these start nodes are then determined, and the
output set consists of instances of the input set that are related to the
ancestors, or optionally to the start nodes.

The descendants transformation works analogously, but with descendants.

\(H\), \(Q\) and \(p\) are the first three parameters defined above.

The fourth parameter is a transformation sequence \(T\) composed of
transformations listed section 3.3 or section 6.2.1 and of service-defined
bound functions whose output set is a subset of their input set. \(A\) is the
output set of this sequence applied to the input set.

The fifth parameter \(d\) is optional and takes an integer greater than or
equal to 1 that specifies the maximum distance between start nodes and
ancestors or descendants to be considered. An optional final keep start
parameter drives the optional inclusion of the subset or start nodes.

The output set of the transformation \({\tt ancestors}(H,Q,p,T,d,{\tt keep\
start})\) or \({\tt descendants}(H,Q,p,T,d,{\tt keep\ start})\) is defined as the
union of the output sets of transformations \(F(u)\) applied to the input set
for all \(u\) in \(A\). For a given instance \(u\), the transformation \(F(u)\)
determines all instances of the input set whose node identifier is an
ancestor or descendant of the node identifier of \(u\):

If \(p\) contains only single-valued segments, then, for ancestors, \[\matrix{
F(u)={\tt filter}(\hbox{\tt Aggregation.isancestor}(\hfill\\ \quad {\tt
HierarchyNodes}=H,\;{\tt HierarchyQualifier}=\hbox{\tt{'Q'}},\hfill\\ \quad

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 90 of 154

{\tt Node}=p,\;{\tt Descendant}=u[p],\;{\tt MaxDistance}=d,\;{\tt
IncludeSelf}={\tt true}))\hfill }\] or, for descendants, \[\matrix{ F(u)={\tt
filter}(\hbox{\tt Aggregation.isdescendant}(\hfill\\ \quad {\tt
HierarchyNodes}=H,\;{\tt HierarchyQualifier}=\hbox{\tt{'Q'}},\hfill\\ \quad
{\tt Node}=p,\;{\tt Ancestor}=u[p],\;{\tt MaxDistance}=d,\;{\tt IncludeSelf}={\tt
true})).\hfill }\]

Otherwise \(p=p_1/…/p_k/r\) with \(k≥1\), in this case the output set of the
transformation \(F(u)\) is defined as the union of the output sets of
transformations \(G(n)\) applied to the input set for all \(n\) in \(γ(u,p)\). The
output set of \(G(n)\) consists of the instances of the input set whose node
identifier is an ancestor or descendant of the node identifier \(n\):

For ancestors, \[\matrix{ G(n)={\tt filter}(\hfill\\ \hskip1pc p_1/{\tt

any}(y_1:\hfill\\ \hskip2pc y_1/p_2/{\tt any}(y_2:\hfill\\ \hskip3pc ⋱\hfill\\
\hskip4pc y_{k-1}/p_k/{\tt any}(y_k:\hfill\\ \hskip5pc \hbox{\tt
Aggregation.isancestor}(\hfill\\ \hskip6pc {\tt HierarchyNodes}=H,\;{\tt
HierarchyQualifier}=\hbox{\tt{'Q'}},\hfill\\ \hskip6pc {\tt Node}=y_k/r,\;{\tt
Descendant}=n,\;{\tt MaxDistance}=d,\;{\tt IncludeSelf}={\tt true}\hfill\\
\hskip5pc)\hfill\\ \hskip4pc)\hfill\\ \hskip3pc ⋰\hfill\\ \hskip2pc)\hfill\\
\hskip1pc)\hfill\\)\hfill }\] or, for descendants, \[\matrix{ G(n)={\tt filter}(\hfill\\
\hskip1pc p_1/{\tt any}(y_1:\hfill\\ \hskip2pc y_1/p_2/{\tt any}(y_2:\hfill\\
\hskip3pc ⋱\hfill\\ \hskip4pc y_{k-1}/p_k/{\tt any}(y_k:\hfill\\ \hskip5pc
\hbox{\tt Aggregation.isdescendant}(\hfill\\ \hskip6pc {\tt
HierarchyNodes}=H,\;{\tt HierarchyQualifier}=\hbox{\tt{'Q'}},\hfill\\
\hskip6pc {\tt Node}=y_k/r,\;{\tt Ancestor}=n,\;{\tt MaxDistance}=d,\;{\tt
IncludeSelf}={\tt true}\hfill\\ \hskip5pc)\hfill\\ \hskip4pc)\hfill\\ \hskip3pc
⋰\hfill\\ \hskip2pc)\hfill\\ \hskip1pc)\hfill\\)\hfill }\] where \(y_1,…,y_k\)
denote lambdaVariableExprs as defined in OData-ABNF and \({}/r\) may
be absent.

If parameter \(d\) is absent, the parameter \({\tt MaxDistance}=d\) is
omitted. If keep start is absent, the parameter \({\tt IncludeSelf}={\tt true}\)
is omitted.

Since the output set of ancestors is constructed as a union, no instance
from the input set will occur more than once in it, even if, for example, a
sale is related to both a sales organization and one of its ancestor
organizations. For descendants, analogously.

Example 60: Request based on the SalesOrgHierarchy defined in Hierarchy Examples,

with Superordinate/$ref expanded to illustrate the hierarchy relation

GET /service/SalesOrganizations?$apply=

 ancestors($root/SalesOrganizations,SalesOrgHierarchy,ID,

 filter(contains(Name,'East') or

contains(Name,'Central')))

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 91 of 154

 &$expand=Superordinate/$ref

results in

{

 "@context": "$metadata#SalesOrganizations",

 "value": [

 { "ID": "EMEA", "Name": "EMEA",

 "Superordinate": { "@id":

"SalesOrganizations('Sales')" } },

 { "ID": "US", "Name": "US",

 "Superordinate": { "@id":

"SalesOrganizations('Sales')" } },

 { "ID": "Sales", "Name": "Sales",

 "Superordinate": null }

]

}

Example 61: Request based on the SalesOrgHierarchy defined in Hierarchy Examples,

with Superordinate/$ref expanded to illustrate the hierarchy relation

GET /service/SalesOrganizations?$apply=

descendants($root/SalesOrganizations,SalesOrgHierarchy,ID,

 filter(Name eq 'US'),keep start)

 &$expand=Superordinate/$ref

results in

{

Calculating a set of aggregated entities and invoking an action on them cannot be accomplished with a
single request, because the action URL cannot be constructed by the client. It is also impossible to
construct a URL that calculates a single aggregated entity and applies a function or action on it.
Consequently, applicable bound actions or functions on a single aggregated entity, or bound actions on a
collection of aggregated entities MUST be advertised in the response to make them available to clients. A
client is then able to request the aggregated entities in a first request and invoke the action or function in
a follow-up request using the advertised target URL.

Example : full representation of an action applicable to a collection of aggregated entities, and an action that is
applicable to one of the entities in the collection. The string <properties in $apply> is a stand-in for the list of

properties describing the shape of the result set

{

"@odata. "@context": "$metadata#Sales(<properties in

$apply>)",SalesOrganizations",

 "@odata.readLink": "http://.../aggregated-stuff2143248437259843",

"#Model.ColAction": {

 "title": "Do something on this collection",

 "target": "http://.../aggregated-stuff2143248437259843/Model.ColAction"

 },

"value": [

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 92 of 154

 { "ID": "US West", "Name": "US West",

 "Superordinate": { "@id": "SalesOrganizations('US')" }

},

 { "ID": "US", "Name": "US",

 "Superordinate": { "@id":

"SalesOrganizations('Sales')" } },

 { "ID": "US East", "Name": "US East",

 "Superordinate": { "@id": "SalesOrganizations('US')" }

}

]

}

⚠ Example 62: Input set and recursive hierarchy from two different entity sets

GET /service/Sales?$apply=

 ancestors($root/SalesOrganizations,

 SalesOrgHierarchy,

 SalesOrganization/ID,

 filter(contains(SalesOrganization/Name,'East')

 or

contains(SalesOrganization/Name,'Central')),

 keep start)

results in

{

 "@context": "$metadata#Sales",

 "value": [

 { "ID": "4", "Amount": 8,

 "SalesOrganization": { "ID": "US East", "Name":

"US East" } },

 { "ID": "5", "Amount": 4,

 "SalesOrganization": { "ID": "US East", "Name":

"US East" } },

 { "ID": "6", "Amount": 2,

 "SalesOrganization": { "ID": "EMEA Central", "Name":

"EMEA Central" } },

 { "ID": "7", "Amount": 1,

 "SalesOrganization": { "ID": "EMEA Central", "Name":

"EMEA Central" } },

 { "ID": "8", "Amount": 2,

 "SalesOrganization": { "ID": "EMEA Central", "Name":

"EMEA Central" } }

]

}

6.2.2 Transformation traverse

The traverse transformation returns instances of the input set that are or
are related to nodes of a given recursive hierarchy in a specified tree
order.

\(H\), \(Q\) and \(p\) are the first three parameters defined above.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 93 of 154

The fourth parameter \(h\) of the traverse transformation is either preorder
or postorder. \(S\) is an optional fifth parameter as defined above. Let
\(H'\) be the output set of the transformation sequence \(S\) applied to
\(H\), or let \(H'\) be the collection of root nodes in the recursive hierarchy
\((H,Q)\) if \(S\) is not specified. Nodes in \(H'\) are called start nodes in
this subsection (see example 117).

All following parameters are optional and form a list \(o\) of expressions
that could also be passed as a $orderby system query option. If \(o\) is
present, the transformation stable-sorts \(H'\) by \(o\).

The instances in the input set are related to one node (if \(p\) is single-
valued) or multiple nodes (if \(p\) is collection-valued) in the recursive
hierarchy. Given a node \(x\), denote by \(\hat F(x)\) the collection of all
instances in the input set that are related to \(x\); these collections can
overlap. For each \(u\) in \(\hat F(x)\), the output set contains one instance
that comprises the properties of \(u\) and additional properties that identify
the node \(x\). These additional properties are independent of \(u\) and are
bundled into an instance called \(σ(x)\). For example, if a sale \(u\) is
related to two sales organizations and hence contained in both \(\hat
F(x_1)\) and \(\hat F(x_2)\), the output set will contain two instances
\((u,σ(x_1))\) and \((u,σ(x_2))\) and \(σ(x_i)\) contributes a navigation
property SalesOrganization.

A transformation \(F(x)\) is defined below such that \(\hat F(x)\) is the
output set of \(F(x)\) applied to the input set of the traverse transformation.

Given a node \(x\), the formulas below contain the transformation
\(\Pi_G(σ(x))\) in order to inject the properties of \(σ(x)\) into the instances
in \(\hat F(x)\); this uses the function \(\Pi_G\) that is defined in the simple
grouping section. Further, \(G\) is a list of data aggregation paths that shall
be present in the output set, and \(σ\) is a function that maps each
hierarchy node \(x\) to an instance of the input type containing the paths
from \(G\). As a consequence of the following definitions, only single-
valued properties and "final segments from \(G\)" are nested into \(σ(x)\),
therefore the behavior of \(\Pi_G(σ(x))\) is well-defined.

The definition of \(σ(x)\) makes use of a function \(a(ε,t,x)\), which returns
a sparsely populated instance \(u\) in which only the path \(t\) has a value,
namely \(u[t]=x\).

Three cases are distinguished:

1. Case where the recursive hierarchy is defined on the input set
This case applies if the paths \(p\) and \(q\) are equal. Let \(σ(x)=x\)
and let \(G\) be a list containing all structural and navigation

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 94 of 154

properties of the entity type of \(H\).
In this case \(\Pi_G(σ(x))\) injects all properties of \(x\) into the
instances of the output set. (See example 65.)

2. Case where the recursive hierarchy is defined on the related entity
type addressed by a navigation property path
This case applies if \(p'\) is a non-empty navigation property path
and \(p''\) an optional type-cast segment such that \(p\) equals the
concatenated path \(p'/p''/q\). Let \(σ(x)=a(ε,p'/p'',x)\) and let
\(G=(p')\).
In this case \(\Pi_G(σ(x))\) injects the whole related entity \(x\) into
the instances of the output set. The navigation property path \(p'\) is
expanded by default. (See example 66.)

3. Case where the recursive hierarchy is related to the input set only
through equality of node identifiers, not through navigation
If neither case 1 nor case 2 applies, let \(σ(x)=a(ε,p,x[q])\) and let
\(G=(p)\).
In this case \(\Pi_G(σ(x))\) injects only the node identifier of \(x\) into
the instances of the output set.

Here paths are considered equal if their non-type-cast segments refer to
the same model elements when evaluated relative to the input set (see
example 68).

The function \(a(u,t,x)\) takes an instance, a path and another instance as
arguments and is defined recursively as follows:

1. If \(u\) equals the special symbol \(ε\), set \(u\) to a new instance of
the input type without properties and without entity id.

2. If \(t\) contains only one segment other than a type cast, let
\(t_1=t\), and let \(x'=x\), then go to step 6.

3. Otherwise, let \(t_1\) be the first property segment in \(t\), possibly
together with a preceding type-cast segment, let \(t_2\) be any type-
cast segment that immediately follows, and let \(t_3\) be the
remainder such that \(t\) equals the concatenated path
\(t_1/t_2/t_3\) where \({}/t_2\) may be absent.

4. Let \(u'\) be an instance of the type of \(t_1/t_2\) without properties
and without entity id.

5. Let \(x'=a(u',t_3,x)\).

6. If \(t_1\) is single-valued, let \(u[t_1]=x'\).

7. If \(t_1\) is collection-valued, let \(u[t_1]\) be a collection consisting
of one item \(x'\).

8. Return \(u\).

(See example 112.)

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 95 of 154

6.2.2.1 Standard Case of traverse

The algorithm is first given for the standard case where
RecursiveHierarchy/ParentNavigationProperty is single-valued and the
optional parameter \(S\) is not specified. In this standard case, start nodes
are root nodes and \(σ(x)\) is computed exactly once for every node \(x\),
as part of the recursive formula for \(R(x)\) given below. The general case
follows later.

Let \(r_1,…,r_n\) be a sequence of the start nodes in \(H'\) preserving the
order of \(H'\) stable-sorted by \(o\). Then the transformation \({\tt
traverse}(H,Q,p,h,o)\) is defined as equivalent to \[{\tt
concat}(R(r_1),…,R(r_n)).\]

\(R(x)\) is a transformation producing the specified tree order for a sub-
hierarchy of \(H\) with root node \(x\). Let \(c_1,…,c_m\) with \(m≥0\) be an
order-preserving sequence of the children of \(x\) in \((H,Q)\). The
recursive formula for \(R(x)\) is as follows:

If \(h={\tt preorder}\), then \[R(x)={\tt
concat}(F(x)/\Pi_G(σ(x)),R(c_1),…,R(c_m)).\]

If \(h={\tt postorder}\), then \[R(x)={\tt
concat}(R(c_1),…,R(c_m),F(x)/\Pi_G(σ(x))).\]

The absence of cycles guarantees that the recursion terminates.

\(F(x)\) is a transformation that determines for the specified node \(x\) the
instances of the input set having the same node identifier as \(x\).

If \(p\) contains only single-valued segments, then \[F(x)={\tt filter}(p{\tt\ eq\
}x[q]).\]

Otherwise \(p=p_1/…/p_k/r\) with \(k≥1\) and \[\matrix{ F(x)={\tt filter}(\hfill\\
\hskip1pc p_1/{\tt any}(y_1:\hfill\\ \hskip2pc y_1/p_2/{\tt any}(y_2:\hfill\\
\hskip3pc ⋱\hfill\\ \hskip4pc y_{k-1}/p_k/{\tt any}(y_k:\hfill\\ \hskip5pc
y_k/r{\tt\ eq\ }x[q]\hfill\\ \hskip4pc)\hfill\\ \hskip3pc ⋰\hfill\\ \hskip2pc)\hfill\\

\hskip1pc)\hfill\\)\hfill }\] where \(y_1,…,y_k\) denote lambdaVariableExprs
and \({}/r\) may be absent.

Example 63: Based on the SalesOrgHierarchy defined in Hierarchy Examples

GET /service/SalesOrganizations?$apply=

descendants($root/SalesOrganizations,SalesOrgHierarchy,ID,

 Name eq 'US',keep start)

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 96 of 154

/ancestors($root/SalesOrganizations,SalesOrgHierarchy,ID,

 contains(Name,'East'),keep start)

/traverse($root/SalesOrganizations,SalesOrgHierarchy,ID,preo

rder)

 &$expand=Superordinate/$ref

results in

{

 "@context": "$metadata#SalesOrganizations",

 "value": [

 { "ID": "US", "Name": "US",

 "Superordinate": { "@id":

"SalesOrganizations('Sales')" } },

 { "ID": "US East", "Name": "US East",

 "Superordinate": { "@id": "SalesOrganizations('US')" }

}

]

}

6.2.2.2 General Case of traverse

In the general case, the recursive algorithm can reach a node \(x\) multiple
times, via different parents or ancestors, or because \(x\) is a start node
and a descendant of another start node. Then the algorithm computes
\(R(x)\) and hence \(σ(x)\) multiple times. In order to distinguish these
computation results, information about the ancestors up to the start node
is injected into each \(σ(x)\) by annotating \(x\) differently before each
\(σ(x)\) is computed. On the other hand, certain nodes can be unreachable
from any start node, these are called orphans of the traversal (see
example 117).

More precisely, in the general case every node \(y\) is annotated with the
term UpPath from the Aggregation vocabulary OData-VocAggr. The
annotation has \(Q\) as qualifier and the annotation value is a collection of
string values of node identifiers. The first member of that collection is the
node identifier of the parent node \(x\) such that \(R(y)\) appears on the
right-hand side of the recursive formula for \(R(x)\). The following
members are the members of the Aggregation.UpPath collection of \(x\).
Every instance in the output set of traverse is related to one node with
Aggregation.UpPath annotation. Start nodes appear annotated with an
empty collection.

⚠ Example 64: A sales organization Atlantis with two parents US and EMEA would occur

twice in the result of a traverse transformation:

GET /service/SalesOrganizations?$apply=

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 97 of 154

traverse($root/SalesOrganizations,MultiParentHierarchy,ID,pr

eorder)

results in

{

 "@context": "$metadata#SalesOrganizations",

 "value": [

 ...

 { "ID": "Atlantis", "Name": "Atlantis",

 "@Aggregation.UpPath#MultiParentHierarchy":

 ["US", "Sales"] },

 { "ID": "AtlantisChild", "Name": "Child of Atlantis",

 "@Aggregation.UpPath#MultiParentHierarchy":

 ["Atlantis", "US", "Sales"] },

 ...

 { "ID": "Atlantis", "Name": "Atlantis",

 "@Aggregation.UpPath#MultiParentHierarchy":

 ["EMEA", "Sales"] },

 { "ID": "AtlantisChild", "Name": "Child of Atlantis",

 "@Aggregation.UpPath#MultiParentHierarchy":

 ["Atlantis", "EMEA", "Sales"] },

 ...

]

}

Given a start node \(x\), let \(ρ_0(x)\) be the node \(x\) with the annotation
\(ρ_0(x)/@\hbox{\tt Aggregation.UpPath}\#Q=[]\) set to an empty
collection.

Given a node \(x\) annotated with \(x/@\hbox{\tt
Aggregation.UpPath}\#Q=[x_1,…,x_d]\), where \(d≥0\), and given a child
\(y\) of \(x\), let \(ρ(y,x)\) be the node \(y\) with the annotation
\[ρ(y,x)/@\hbox{\tt Aggregation.UpPath}\#Q=[{\tt cast}(x[q],\hbox{\tt
Edm.String}),x_1,…,x_d].\]

Like structural and navigation properties, these instance annotations are
considered part of the node \(x\) and are copied over to \(σ(x)\). For them
to be included in the transformation \(\Pi_G(σ(x))\), an additional step is
inserted between steps 2 and 3 of the function \(a_G(u,s,p)\) as defined in
the simple grouping section:

• If \(s\) is annotated with Aggregation.UpPath and qualifier \(Q\), copy
this annotation from \(s\) to \(u\).

Recall that instance annotations never appear in data aggregation paths
or aggregatable expressions. They are not considered when determining
whether instances of structured types are the same, they do not cause
conflicting representations and are absent from merged representations.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 98 of 154

Let \(r_1,…,r_n\) be the start nodes in \(H'\) as above, then the
transformation \({\tt traverse}(H,Q,p,h,S,o)\) is defined as equivalent to
\[{\tt concat}(R(ρ_0(r_1)),…,R(ρ_0(r_n))\] where the function \(R(x)\) takes
as argument a node with Aggregation.UpPath annotation. With \(F(x)\) and
\(c_1,…,c_m\) as above, if \(h={\tt preorder}\), then \[R(x)={\tt
concat}(F(x)/\Pi_G(σ(x)),R(ρ(c_1,x)),…,R(ρ(c_m,x))),\] and if \(h={\tt
postorder}\), then \[R(x)={\tt
concat}(R(ρ(c_1,x)),…,R(ρ(c_m,x)),F(x)/\Pi_G(σ(x))).\]

The absence of cycles guarantees that the recursion terminates.

In the general case, servers MUST include the Aggregation.UpPath

annotations in the result of $apply but MAY omit them if

RecursiveHierarchy/ParentNavigationProperty is single-valued and all start
nodes are root nodes.

If RecursiveHierarchy/ParentNavigationProperty is collection-valued but
the parent collection never contains more than one parent and the optional
parameter \(S\) is not specified, then the result is effectively like in the
standard case, except for the presence of the Aggregation.UpPath
annotations.

6.3 Grouping with rolluprecursive

Recall that simple grouping partitions the input set and applies a
transformation sequence to each partition. By contrast, grouping with
rolluprecursive, informally speaking, transforms the input set into
overlapping portions (like "US" and "US East"), one for each node \(x\) of a
recursive hierarchy. The transformation \(F(x)\), defined below, outputs the
portion whose node identifiers are among the descendants of \(x\)
(including \(x\) itself). A transformation sequence is then applied to each
portion, and they are made distinguishable in the output set through
injection of information about the node \(x\), which is achieved through the
transformation \(\Pi_G(σ(x))\) defined in the traverse section.

As defined above, \(H\), \(Q\) and \(p\) are the first three parameters of
rolluprecursive, \(S\) is an optional fourth parameter. Let \(H'\) be the
output set of the transformation sequence \(S\) applied to \(H\), or \(H'=H\)
if \(S\) is not specified.

Navigation properties specified in \(p\) are expanded by default.

Let \(T\) be a transformation sequence, \(P_1\) stand in for zero or more
property paths and \(P_2\) for zero or more rollup or rolluprecursive
operators or property paths. The transformation \({\tt groupby}((P_1,{\tt
rolluprecursive}(H,Q,p,S),P_2),T)\) is computed by the following algorithm,

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 99 of 154

which invokes itself recursively if the number of rolluprecursive operators
in the first argument of the groupby transformation, which is called \(M\), is
greater than one. Let \(N\) be the recursion depth of the algorithm, starting
with 1.

The rolluprecursive algorithm:

A property \(χ_N\) appears in the algorithm, but is not present in the output
set. It is explained later (see example 66). \(Z_N\) is a transformation
whose output set is its input set with property \(χ_N\) removed.

Let \(x_1,…,x_n\) be the nodes in \(H'\), possibly with repetitions. If the
optional transformation sequence \(S\) ends with a traverse
transformation, as in example 118, the sequence \(x_1,…,x_n\) MUST
have the preorder or postorder established by that traversal, and the
transformation \({\tt groupby}((P_1,{\tt rolluprecursive}(H,Q,p,S),P_2),T)\)
is defined as equivalent to \[{\tt concat}(R(x_1),…,R(x_n)).\]

Otherwise, if \(S\) is not specified or does not end with a traverse
transformation, the output set of the transformation \({\tt groupby}((P_1,{\tt
rolluprecursive}(H,Q,p,S),P_2),T)\) is the concatenation of
\(R(x_1),…,R(x_n)\). The order of occurrences from the same \(R(x_i)\)
remains the same, and no order is defined between occurrences from
different \(R(x_i)\) and \(R(x_j)\).

\(R(x)\) is a transformation that processes the entire sub-hierarchy rooted
at \(x\), which is the output set of \(F(x)\). The output set of \(R(x)\) is a
collection of aggregated instances for all rollup results.

If at least one of \(P_1\) or \(P_2\) is non-empty, then \[R(x)=F(x)/{\tt
compute}(x{\tt\ as\ }χ_N)/{\tt groupby}((P_1,P_2),T/Z_N/\Pi_G(σ(x))).\]

The property \(χ_N=x\) is present during the evaluation of \(T\), but not
afterwards. If \(P_2\) contains a rolluprecursive operator, the evaluation of
the formula involves a recursive invocation (with \(N\) increased by 1) of
the rolluprecursive algorithm.

Otherwise if \(P_1\) and \(P_2\) are empty, then \[R(x)=F(x)/{\tt
compute}(x{\tt\ as\ }χ_N)/T/Z_N/\Pi_G(σ(x)).\]

\(F(x)\) is defined as follows: If \(p\) contains only single-valued segments,
then \[\matrix{ F(x)={\tt filter}(\hbox{\tt Aggregation.isdescendant}(\hfill\\
\quad {\tt HierarchyNodes}=H,\;{\tt
HierarchyQualifier}=\hbox{\tt{'Q'}},\hfill\\ \quad {\tt Node}=p,\;{\tt
Ancestor}=x[q],\;{\tt IncludeSelf}={\tt true})).\hfill }\]

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 100 of 154

Otherwise \(p=p_1/…/p_k/r\) with \(k≥1\) and \[\matrix{ F(x)={\tt filter}(\hfill\\
\hskip1pc p_1/{\tt any}(y_1:\hfill\\ \hskip2pc y_1/p_2/{\tt any}(y_2:\hfill\\
\hskip3pc ⋱\hfill\\ \hskip4pc y_{k-1}/p_k/{\tt any}(y_k:\hfill\\ \hskip5pc
\hbox{\tt Aggregation.isdescendant}(\hfill\\ \hskip6pc {\tt
HierarchyNodes}=H,\;{\tt HierarchyQualifier}=\hbox{\tt{'Q'}},\hfill\\
\hskip6pc {\tt Node}=y_k/r,\;{\tt Ancestor}=x[q],\;{\tt IncludeSelf}={\tt
true}\hfill\\ \hskip5pc)\hfill\\ \hskip4pc)\hfill\\ \hskip3pc ⋰\hfill\\ \hskip2pc
)\hfill\\ \hskip1pc)\hfill\\)\hfill }\] where \(y_1,…,y_k\) denote
lambdaVariableExprs and \({}/r\) may be absent. (See example 113 for a
case with \(k=1\).)

Informatively speaking, the effect of the algorithm can be summarized as
follows: If \(M≥1\) and \(\hat F_N(x)\) denotes the collection of all instances
that are related to a node \(x\) as determined by \(F(x)\) in the recursive
hierarchy of the \(N\)-th rolluprecursive operator, then \(T\) is applied to
each of the intersections of \(\hat F_1(χ_1),…,\hat F_M(χ_M)\), as \(χ_N\)
runs over all nodes of the \(N\)-th recursive hierarchy for \(1≤N≤M\). Into
the instances of the resulting output sets the \(\Pi_G\) transformations
inject information about the nodes \(χ_1,…,χ_M\).

Example 65: Total number of sub-organizations for all organizations in the hierarchy
defined in Hierarchy Examples with \(p=q={\tt ID}\) (case 1 of the definition of \(σ(x)\)). In
this case \(\Pi_G(σ(x))\) writes back the entire node into the output set of \(T\),
aggregates must have an alias to avoid overwriting by a property of the node with the
same name.

GET /service/SalesOrganizations?$apply=

 groupby((rolluprecursive(

$root/SalesOrganizations,SalesOrgHierarchy,ID)),

 aggregate($count as OrgCnt)/compute(OrgCnt sub

1 as SubOrgCnt))

 &$select=ID,Name,SubOrgCnt

 &$expand=Superordinate($select=ID)

results in

{

 "@context":

"$metadata#SalesOrganizations(ID,Name,SubOrgCnt,Superordinat

e(ID))",

 "value": [

 { "ID": "US West", "Name": "US West",

 "SubOrgCount": 0, "Superordinate": { "ID": "US" } },

 { "ID": "US East", "Name": "US East",

 "SubOrgCount": 0, "Superordinate": { "ID": "US" } },

 { "ID": "US", "Name": "US",

 "SubOrgCount": 2, "Superordinate": { "ID": "Sales" }

},

 { "ID": "EMEA Central", "Name": "EMEA Central",

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 101 of 154

 "SubOrgCount": 0, "Superordinate": { "ID": "EMEA" } },

 { "ID": "EMEA", "Name": "EMEA",

 "SubOrgCount": 1, "Superordinate": { "ID": "Sales" }

},

 { "ID": "Sales", "Name": "Sales",

 "SubOrgCount": 5, "Superordinate": null }

]

}

The value of the property \(χ_N\) in the rolluprecursive algorithm is the
node \(x\) at recursion level \(N\). In a common expression, \(χ_N\) cannot
be accessed by its name, but can only be read as the return value of the
unbound function \({\tt rollupnode}({\tt Position}=N)\) defined in the
Aggregation vocabulary OData-VocAggr, with \(1≤N≤M\), and only during
the application of the transformation sequence \(T\) in the formula for
\(R(x)\) above (the function is undefined otherwise). If \(N=1\), the Position
parameter can be omitted.

⚠ Example 66: Total sales amounts per organization, both including and excluding sub-

organizations, in the US sub-hierarchy defined in Hierarchy Examples with \(p=p'/q={\tt
SalesOrganization}/{\tt ID}\) and \(p'={\tt SalesOrganization}\) (case 2 of the definition of
\(σ(x)\)). The Boolean expression \(p'\hbox{\tt\ eq Aggregation.rollupnode}()\) is true for
sales in the organization for which the aggregate is computed, but not for sales in sub-
organizations.

GET /service/Sales?$apply=groupby(

 (rolluprecursive(

 $root/SalesOrganizations,

 SalesOrgHierarchy,

 SalesOrganization/ID,

 descendants($root/SalesOrganizations,

 SalesOrgHierarchy,

 ID, filter(ID eq 'US'), keep start))),

 compute(case(SalesOrganization eq

Aggregation.rollupnode():Amount)

 as AmountExcl)

 /aggregate(Amount with sum as TotalAmountIncl,

 AmountExcl with sum as TotalAmountExcl))

results in

{

 "@context": "$metadata#Sales(SalesOrganization(),

TotalAmountIncl,TotalAmountExcl)",

 "value": [

 { "SalesOrganization": { "ID": "US West", "Name": "US

West" },

 "TotalAmountIncl@type": "Decimal", "TotalAmountIncl":

7,

 "TotalAmountExcl@type": "Decimal" ,"TotalAmountExcl":

7 },

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 102 of 154

 { "SalesOrganization": { "ID": "US", "Name": "US"

},

 "TotalAmountIncl@type": "Decimal", "TotalAmountIncl":

19,

 "TotalAmountExcl": null },

 { "SalesOrganization": { "ID": "US East", "Name": "US

East" },

 "TotalAmountIncl@type": "Decimal", "TotalAmountIncl":

12,

 "TotalAmountExcl@type": "Decimal", "TotalAmountExcl":

12 }

]

}

⚠ Example 67: When requesting a sub-hierarchy consisting of the US East sales

organization and its ancestors, the total sales amounts can either include the
descendants outside this sub-hierarchy ("actual totals") or can exclude them ("visual
totals").

Actual totals are computed when rolluprecursive is restricted to the sub-hierarchy by

setting the optional parameter \(S\) to an ancestors transformation:

GET /service/Sales?$apply=groupby((rolluprecursive(

$root/SalesOrganizations,SalesOrgHierarchy,SalesOrganization

/ID,

 ancestors($root/SalesOrganizations,SalesOrgHierarchy,ID,

 filter(ID eq 'US East'),keep start))),

 aggregate(Amount with sum as Total))

results in

{

 "@context": "$metadata#Sales(SalesOrganization(),Total)",

 "value": [

 { "SalesOrganization": { "ID": "US East", "Name": "US

East" },

 "Total@type": "Decimal", "Total": 12 },

 { "SalesOrganization": { "ID": "US", "Name": "US"

},

 "Total@type": "Decimal", "Total": 19 },

 { "SalesOrganization": { "ID": "Sales", "Name":

"Sales" },

 "Total@type": "Decimal", "Total": 24 }

]

}

Visual totals are computed when the ancestors transformation is additionally carried out

before the rolluprecursive:

GET /service/Sales?$apply=

ancestors($root/SalesOrganizations,SalesOrgHierarchy,SalesOr

ganization/ID,

 filter(SalesOrganization/ID eq 'US East'),keep start))),

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 103 of 154

 /groupby((rolluprecursive(

$root/SalesOrganizations,SalesOrgHierarchy,SalesOrganization

/ID,

 ancestors($root/SalesOrganizations,SalesOrgHierarchy,ID,

 filter(ID eq 'US East'),keep start))),

 aggregate(Amount with sum as Total))

results in

{

 "@context": "$metadata#Sales(SalesOrganization(),Total)",

 "value": [

 { "SalesOrganization": { "ID": "US East", "Name": "US

East" },

 "Total@type": "Decimal", "Total": 12 },

 { "SalesOrganization": { "ID": "US", "Name": "US"

},

 "Total@type": "Decimal", "Total": 12 },

 { "SalesOrganization": { "ID": "Sales", "Name":

"Sales" },

 "Total@type": "Decimal", "Total": 12 }

]

}

⚠ Example 68: Although \(p={\tt ID}\) and \(q={\tt ID}\), they are not equal
in the sense of case 1, because they are evaluated relative to different

entity sets. Hence, this is an example of case 3 of the definition {

 "@odata.id": "aggregated-stuff2143248437259843-1",

 "#Model.SingleAction": {

 "title": "Do something on this entity",

 "target":

 "http://.../aggregated-stuff2143248437259843-1/Model.SingleAction"

 },

 ...

 },

 ...

]

}

Services advertising the availability of functions or actions via the term AvailableOnAggregates

MUST provide read links or edit links for aggregated entities, see section .

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 104 of 154

7 Examples

 of \(σ(x)\), where no Sales/ID matches a SalesOrganizations/ID, that is, all \(F(x)\) have
empty output sets.

GET /service/Sales?$apply=

 groupby((rolluprecursive(

$root/SalesOrganizations,SalesOrgHierarchy,ID))),

 aggregate(Amount with sum as TotalAmount))

results in

{

 "@context":

"$metadata#Sales(SalesOrganization(),TotalAmount)",

 "value": [

 { "SalesOrganization": { "ID": "Sales", "Name":

"Corporate Sales" },

 "TotalAmount": null },

 { "SalesOrganization": { "ID": "EMEA", "Name": "EMEA"

},

 "TotalAmount": null },

 { "SalesOrganization": { "ID": "US", "Name": "US" },

 "TotalAmount": null },

 ...

]

}

7 Examples

The following examples show some common aggregation-related
questions that can be answered by combining the transformations defined
in sections 3chapter and 6.

7.1 Requesting Distinct Values

7.1 Distinct Values

Grouping without specifying a set transformation returns the distinct
combination of the grouping properties.

Example :69:

GET ~//service/Customers?$apply=groupby((Name))

results in

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 105 of 154

{

results in

{

 "@odata.context": "$metadata#Customers(Name)",
 "value": [

 { "@odata.id": null,
 { "Name": "Luc" },

 { "@odata.id": null,
 { "Name": "Joe" },

 { "@odata.id": null,
 { "Name": "Sue" }

]

}

]

}

Note that "Sue" appears only once although the customer base contains two different
Sues.

Aggregation is also possible across related entities.

Example :70: customers that bought something

GET ~//service/Sales?$apply=groupby((Customer/Name))

results in

{

results in

{

 "@odata.context": "$metadata#Sales(Customer(Name))",
 "value": [

 { "@odata.id": null,
 { "Customer": { "Name": "Joe" } },

 { "@odata.id": null,
 { "Customer": { "Name": "Sue" } }

]

}

The result has the same structure as a standard OData request that Since groupby expands the navigation properties
and selects the datain grouping properties specified in groupby and aggregate.

GET ~/Sales?$by default, this is the same result as if the request would include a

$expand=Customer($select=Name)). The groupby removes all other properties.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 106 of 154

Note that "Luc" does not appear in the aggregated result as he hasn’'t bought anything
and therefore there are no sales entities that refer/navigate to Luc.

However, even though both Sues bought products, only one "Sue" appears in the
aggregate result. Including properties that guarantee the right level of uniqueness in the
grouping can repair that.

Example :71:

GET

~//service/Sales?$apply=groupby((Customer/Name,Customer/ID))

results in

{

 "@odata.results in

{

 "@context": "$metadata#Sales(Customer(Name,ID))",

 "value": [

 { "@odata.id": null,
 { "Customer": { "Name": "Joe", "ID": "C1" } },

 { "@odata.id": null,
 { "Customer": { "Name": "Sue", "ID": "C2" } },

 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C3" }
}

]

}

This could also have been formulated as

GET ~//service/Sales?$apply=groupby((Customer))
 &$expand=Customer($select=Name,ID)

Example 72: Grouping by a navigation property adds the deferred representation of the navigation
property to the result structure, which then can be expanded and projected partially away using the
standard query options $expand and $select.

Note: the typical representation of a deferred navigation property is a URL “relative” to
the source entity, e.g. ~/Sales(1)/Customer. This has the benefit that this URL doesn’t

change if the sales entity would be associated to a different customer. For aggregated
entities this would actually be a drawback, so the representation MUST be the canonical
URL of the target entity, i.e. ~/Customers('C1') for the first entity in the above result.

GET /service/Sales?$apply=groupby((Customer))

results in

{

 "@context": "$metadata#Sales(Customer())",

 "value": [

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 107 of 154

 { "Customer": { "ID": "C1", "Name": "Joe", "Country":

"USA" } },

 { "Customer": { "ID": "C2", "Name": "Sue", "Country":

"USA" } },

 { "Customer": { "ID": "C3", "Name": "Sue", "Country":

"Netherlands" } }

]

}

Example :73: the first question in the motivating example in section 2.3section , which
customers bought which products, can now be expressed as

GET

~/service/Sales?$apply=groupby((Customer/Name,Customer/ID,Pro
duct/Name))

and results in

{

 "@odata.context":
"$metadata#Sales(Customer(Name,ID),Product(Name))",

 "value": [

 { "value": [

 { "@odata.id": null, "Customer": { "Name": "Joe", "ID": "C1" },

 "Product": { "Name": "Coffee"} },

 { "@odata.id": null, "Customer": { "Name": "Joe", "ID": "C1" },

 "Product": { "Name": "Paper" } },
 { "@odata.id": null, "Product": { "Name": "Coffee"} },
 { "Customer": { "Name": "Joe", "ID": "C1" },

 "Product: { "Name: "Sugar" } },

 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C2" },

 "Product: { "Name": "Coffee"} },

 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C2" },

 "Product": { "Name": "Paper" } },

 { "@odata.id": null,"Customer": { "Name": "Joe", "ID": "C1" },
 "Product": { "Name": "Sugar" } },

 { "Customer": { "Name": "Sue", "ID": "C32" },
 "Product": { "Name": "Coffee"} },

 { "Customer": { "Name": "Sue", "ID": "C2" },

 "Product": { "Name": "Paper" } },

 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C3"
},

 "Product": { "Name": "Paper" } },

 { "Customer": { "Name": "Sue", "ID": "C3" },

 "Product": { "Name": "Sugar" } }

]

}

⚠ Example 74: grouping by properties of subtypes

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 108 of 154

GET

/service/Products?$apply=groupby((SalesModel.FoodProduct/Rat

ing,

SalesModel.NonFoodProduct/RatingClass))

results in

{

7.2 Aggregation Methods

 "@context":

"$metadata#Products(SalesModel.FoodProduct/Rating,

SalesModel.NonFoodProduct/RatingClass)",

 "value": [

 { "@type": "#SalesModel.FoodProduct", "Rating": 5 },

 { "@type": "#SalesModel.FoodProduct", "Rating": null },

 { "@type": "#SalesModel.NonFoodProduct", "RatingClass":

"average" },

 { "@type": "#SalesModel.NonFoodProduct", "RatingClass":

null }

]

}

⚠ Example 75: grouping by a property of a subtype

GET

/service/Products?$apply=groupby((SalesModel.FoodProduct/Rat

ing))

results in a third group representing entities with no SalesModel.FoodProduct/Rating,

including the SalesModel.NonFoodProducts:

{

 "@context": "$metadata#Products(@Core.AnyStructure)",

 "value": [

 { "@type": "#SalesModel.FoodProduct", "Rating": 5 },

 { "@type": "#SalesModel.FoodProduct", "Rating": null },

 { }

]

}

7.2 Standard Aggregation Methods

The client may specify one of the predefined aggregation methods min,
max, sum, average, and countdistinct, or a custom aggregation method, to
aggregate an aggregatable expression. Expressions defining an
aggregate method MUST specify an alias. The aggregated values are
returned in a dynamic property whose name is determined by the alias.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 109 of 154

Example 76: :

GET ~//service/Products?$apply=groupby((Name),
 aggregate(Sales/Amount with

sum as Total))

results in

{

 "@odata.results in

{

 "@context": "$metadata#Products(Name,Sales(Total))",)",
 "value": [

 { "@odata.id": null, "value": [

 { "Name": "Coffee", "Sales": [{Total@type": "Decimal",

"Total": 12 }] },

 { "@odata.id": null,},

 { "Name": "Paper", "Sales": [{Total@type": "Decimal",

"Total": 8 }] },

 { "@odata.id": null,},

 { "Name": "Pencil", "Sales": [{

"Total": null }] },

 { "@odata.id": null,},

 { "Name": "Sugar", "Sales": [{Total@type": "Decimal",
"Total": 4 }

] }
]

}

Note that the base set of the request is Products, so there is a result item for product

Pencil even though there are no sales item. As aggregate returns exactly one result

item even if there are no items to be aggregated, the Sales navigation property’s value

is an array with one element representing the sum over no input values, whichitems. The
input set for the aggregation in the third row is \(I\) consisting of the pencil, \(p=q/r={\tt
Sales}/{\tt Amount}\), \(E=\Gamma(I,q)\) is empty and \(A=\Gamma(E,r)\) is also empty.
The sum over the empty collection is null.

Example 77Example : careful observers will notice that the above amounts have been aggregated across currencies,
which is semantically wrong. Yet it is the correct response to the question asked, so be careful what you ask for. The
semantically meaningful question

: Alternatively, the request could ask for the aggregated amount to be nested inside a
clone of Sales

GET ~//service/Products?$apply=groupby((Name,Sales/Currency/Code),
 addnested(Sales,

 aggregate(Sales/Amount with sum as Total))) as
AggregatedSales)

results in

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 110 of 154

{

 "@odata.results in

{

 "@context":

"$metadata#Products(Name,Sales(Total,Currency(Code)))",AggregatedSal
es())",

 "value": [

 { "@odata.id": null,
 { "ID": "P2", "Name": "Coffee", "Color": "Brown",

"TaxRate": 0.06,

 "AggregatedSales@context": "#Sales(Total)",

 "AggregatedSales": [{ "Total@type": "Decimal",

"Total": 12, "Currency": { "Code": "USD" } }] },

 { "@odata.id": null, "Name: }] },
 { "ID": "P3", "Name": "Paper", "Color": "White",

"TaxRate": 0.14,

 "AggregatedSales@context": "#Sales": [{ "(Total": 3,

"Currency": { "Code": "EUR" } },
)",

 "AggregatedSales": [{ "Total": 5, "Currency": { "Code": "USD" }

}] },
 { "@odata.id": null, "Name:@type": "Decimal", "Total": 8 }] },
 { "ID": "P4", "Name": "Pencil", "Color": "Black",

"TaxRate": 0.14,

 "AggregatedSales@context": "#Sales": [] },

 { "@odata.id": (Total)",
 "AggregatedSales": [{

"Total": null, }] },

 { "ID": "P1", "Name:": "Sugar",

 ""Color": "White", "TaxRate": 0.06,

 "AggregatedSales@context": "#Sales": [{ "Total": 2, "Currency":

{ "Code": "EUR" } },
 { "Total": 2, "Currency": { "Code": "USD" } }] }
](Total)",

}

Note that navigation properties are "expanded" in a left-outer-join fashion, starting from the target of the
aggregation request, before grouping the entities for aggregation. Afterwards the results are “folded back”
to match the cardinality of the navigation properties.

Example :

GET ~/Customers?$apply=groupby((Country,Sales/Product/Name))

returns the different "AggregatedSales": [{ "Total@type":
"Decimal", "Total": 4 }] }

]

}

Example 78: To compute the aggregate as a property without nesting, use the aggregate

function in $compute rather than the aggregate transformation in $apply:

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 111 of 154

GET /service/Products?$compute=Sales/aggregate(Amount with

sum) as Total

results in

{

 "@products sold per country:

{

 "@odata.context":

"$metadata#Customers(Country,Sales(Product(Name)))",Products(*,Total
)",

 "value": ["value": [

 { "@odata.id": null, "Country": "Netherlands",

 "Sales": [{ "Product": { "Name": "Paper" },

 { "Product": { "Name": "Sugar" }] },

 { "@odata.id": null, "Country": "USA",

 "Sales": [{ "Product": {
 { "ID": "P2", "Name": "Coffee", "Color": "Brown",

"TaxRate": 0.06,

 "Total@type": "Decimal", "Total": 12 },

 { "ID": "P3", "Name": "Paper", "Color": "White",

"TaxRate": 0.14,

 "Total@type": "Decimal", "Total": 8 },

 { "ID": "P4", "Name": "Pencil", "Color": "Black",

"TaxRate": 0.14,

 "Total": null },

 { "ID": "P1", "Name": "Sugar", "Color": "White",

"TaxRate": 0.06,

 "Total@type": "Decimal", "Total": 4 }

]

}

The expression $it/Sales refers to the sales of the current product. Without $it, all sales of

all products would be aggregated, because the input collection for the aggregate function
consists of all products.

Example 79: Alternatively, join could be applied to yield a flat structure:

GET /service/Products?$apply=

 join(Sales as TotalSales,aggregate(Amount with sum as

Total))

 /groupby((Name,TotalSales/Total))

results in

{

 "@context": "$metadata#Products(Name,TotalSales())",

 "value": [" },

 { "Product":

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 112 of 154

 { "Name": "Coffee",

 "TotalSales@context": "#Sales(Total)/$entity",

 "TotalSales": { "Total@type": "Decimal", "Total": 12 }

},

 { "Name": "Paper" },

 { "Product":",
 "TotalSales@context": "#Sales(Total)/$entity",

 "TotalSales": { "Total@type": "Decimal", "Total": 8 }

},

 { "Name": "Sugar" }] }",

]

}

 "TotalSales@context": "#Sales(Total)/$entity",

 "TotalSales": { "Total@type": "Decimal", "Total": 4 }

}

]

}

Applying outerjoin instead would return an additional entity for product with ID "Pencil"

and TotalSales having a null value.

Example :80:

GET ~//service/Sales?$apply=groupby((Customer/Country),
 aggregate(Amount with average as

AverageAmount))

results in

{

 "@odata.results in

{

 "@context":

"$metadata#Sales(Customer(Country),AverageAmount)",

 "value": [

 { "value": [

 { "@odata.id": null, "Customer": { "Country": "Netherlands" },

 "AverageAmount": 1.6666667 },

 { "@odata.id": null,6666666666666667 },
 { "Customer": { "Country": "USA" },

 "AverageAmount": 3.8 }

]

}

If the example model would contain a list of hobbies per customer, with Hobbies a collection of strings,
the number of different hobbies across the customer base could be requested. A navigation property
followed by a /$count segment is a valid expression in the context that declares the navigation property,

so the result property is placed in the same context as the navigation property.

Example :

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 113 of 154

]

}

Here the AverageAmount is of type Edm.Double.

Example 81: $count after navigation property

GET ~//service/Products?$apply=groupby((Name),
 aggregate(Sales/$count as

SalesCount))

results in

{

 "@odata.results in

{

 "@context": "$metadata#Products(Name,SalesCount)",

 "value": [

 { "@odata.id": null, "Name": "Coffee", "SalesCount": 2 },

 { "@odata.id": null, "Name": "Paper", "SalesCount": 4 },

 { "@odata.id": null, "Name": "Pencil", "SalesCount": 0 },

 { "@odata.id": null, "Name": "Sugar", "SalesCount": 2 }

]

}

Note that this differs from the placement of an aggregated property in a related entity: the aggregated
property has the same navigation path as the original value.

Example : the result properties for Sales/$count and Sales(Amount…) are placed differently

GET ~/Products?$apply=groupby((Name),aggregate(Sales/$count as SalesCount,

 Sales(Amount with sum as TotalAmount)))

results in

{

 "@odata.context": "$metadata#Products(Name,SalesCount,Sales(TotalAmount))",

 "value": [

 { "@odata.id": null,
 { "Name": "Coffee", "SalesCount": 2,@type": "Decimal",
"SalesCount": 2 },

 "Sales": [{ "TotalAmount": 12 }] },
 { "@odata.id": null,{ "Name": "Paper", "SalesCount": @type":

"Decimal", "SalesCount": 4,

 "Sales": [{ "TotalAmount": 8 }] },
 { "@odata.id": null, },
 { "Name": "Pencil", "SalesCount@type": "Decimal",

"SalesCount": 0,

 "Sales": [{ "TotalAmount": null }] },
 { "@odata.id": null, },

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 114 of 154

 { "Name": "Sugar", "SalesCount@type": "Decimal",

"SalesCount": 2, }

 "Sales": [{ "TotalAmount": 4 }] }

]

}

]

}

To place the number of instances in a group next to other aggregated
values, the virtual property aggregate expression $count can be used:

⚠ Example :82: The effect of the groupby is to create transient entities and avoid in the

result structural properties for Sales/$count and Sales/Amount are placed differentlyother
than Name.

GET

~//service/Products?$apply=groupby((Name),aggregateaddnested(Sa

les($count as SalesCount),,

 Sales(aggregate($count as SalesCount,

 Amount with sum as TotalAmount)))) as
AggregatedSales))

results in

{

 "@odata.context":

"$metadata#Products(Name,Sales(SalesCount,TotalAmount))",Aggregated
Sales())",

 "value": [

 { "@odata.id": null,
 { "Name": "Coffee",

 "AggregatedSales@context":

"#Sales(SalesCount,TotalAmount)",

 "AggregatedSales": [{ "SalesCount": 2,

 "TotalAmount@type": "Decimal", "TotalAmount": 12 }

] },

 { "Name": "Paper",

 "AggregatedSales@context":

"#Sales(SalesCount,TotalAmount)",

 "AggregatedSales": [{ "SalesCount": 2,4,

 "TotalAmount": 12 }] },

 { "@odata.id": null, "Name": "Paper",
 "Sales": [{ "SalesCount": 4,@type": "Decimal", "TotalAmount": 8
}] },

 { "@odata.id": null,
 { "Name": "Pencil",

 "Sales
 "AggregatedSales@context":

"#Sales(SalesCount,TotalAmount)",

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 115 of 154

 "AggregatedSales": [{ "SalesCount": 0, "TotalAmount":

null }] },

 { "@odata.id": null, "Name": "Sugar",
 "{ "Name": "Sugar",

 "AggregatedSales@context": "#Sales": [{

"(SalesCount,TotalAmount)",
 "AggregatedSales": [{ "SalesCount": 2,

 "TotalAmount@type": "Decimal", "TotalAmount": 4

}] }

]

}

7.3 Custom Aggregates

Custom aggregates are defined through the annotation. They can be associated with either an entity type
or an entity container.
A can be used by specifying the name of the custom aggregate in the aggregate clause.

Example :

]

}

The aggregate function can not only be used in $compute but also in $filter
and $orderby:

Example 83: Products with an aggregated sales volume of ten or more

GET

~//service/Products?$filter=Sales?$apply=groupby((Customer/Country),

 /aggregate(Amount with sum as Actual,Forecast))) ge 10

results in

{

 "@odata.results in

{

 "@context":

"$metadata#Sales(Customer(Country),Actual,Forecast))",Products",
 "value": [

 { "@odata.id": null, "Customer": {
 { "ID": "P2", "Name": "Coffee", "Color": "Brown",

"TaxRate": 0.06 },

 { "ID": "P3", "Name": "Paper", "Color": "White",

"TaxRate": 0.14 }

]

}

Example 84: Customers in descending order of their aggregated sales volume

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 116 of 154

GET /service/Customers?$orderby=Sales/aggregate(Amount with

sum) desc

results in

{

 "@context": "$metadata#Customers",

 "value": [

 { "ID": "C2", "Name": "Sue", "Country": "NetherlandsUSA" },

 "Actual": 5, "Forecast": 4 },
 { "@odata.id": null, "Customer": { { "ID": "C1", "Name": "Joe",
"Country": "USA" },

 "Actual": 19, "Forecast": 21 }

]

}

The introduced dynamic properties MUST always be in the same set as the original property.

Example :

 { "ID": "C3", "Name": "Sue", "Country": "Netherlands" },

 { "ID": "C4", "Name": "Luc", "Country": "France" }

]

}

Example 85: Contribution of each sales to grand total sales amount

GET ~//service/Sales?$compute=Amount divby
$these/aggregate(Amount with sum)

 as Contribution

results in

{

 "@context": "$metadata#Sales(*,Contribution)",

 "value": [

 { "ID": 1, "Amount": 1, "Contribution@type": "Decimal",

 "Contribution":

0.0416666666666667 },

 { "ID": 2, "Amount": 2, "Contribution@type": "Decimal",

 "Contribution":

0.0833333333333333 },

 { "ID": 3, "Amount": 4, "Contribution@type": "Decimal",

 "Contribution":

0.1666666666666667 },

 { "ID": 4, "Amount": 8, "Contribution@type": "Decimal",

 "Contribution":

0.3333333333333333 },

 { "ID": 5, "Amount": 4, "Contribution@type": "Decimal",

 "Contribution":

0.1666666666666667 },

 { "ID": 6, "Amount": 2, "Contribution@type": "Decimal",

 "Contribution":

0.0833333333333333 },

 { "ID": 7, "Amount": 1, "Contribution@type": "Decimal",

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 117 of 154

 "Contribution":

0.0416666666666667 },

 { "ID": 8, "Amount": 2, "Contribution@type": "Decimal",

 "Contribution":

0.0833333333333333 }

]

}

Example 86: Product categories with at least one product having an aggregated sales
amount greater than 10

GET /service/Categories?$filter=Products/any(

 p:p/Sales/aggregate(Amount

with sum) gt 10)

results in

{

 "@context": "$metadata#Categories",

 "value": [

 { "ID": "PG1", "Name": "Food" }

]

}

The aggregate function can also be applied inside $apply:

Example 87: Sales volume per customer in relation to total volume

GET /service/Sales?$apply=

 groupby((Customer),aggregate(Amount with sum as

CustomerAmount))

 /compute(CustomerAmount divby

$these/aggregate(CustomerAmount with sum)

 as Contribution)

 &$expand=Customer/$ref

results in

{

 "@context":

"$metadata#Sales(Customer(),CustomerAmount,Contribution)",

 "value": [

 { "Customer": { "@id": "Customers('C1')" },

 "Contribution@type": "Decimal", "Contribution":

0.2916667 },

 { "Customer": { "@id": "Customers('C2')" },

 "Contribution@type": "Decimal", "Contribution": 0.5 },

 { "Customer": { "@id": "Customers('C3')" },

 "Contribution@type": "Decimal", "Contribution":

0.2083333 }

]

}

Example 88: rule 1 for keyword from applied repeatedly

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 118 of 154

GET /service/Sales?$apply=aggregate(Amount with sum

 from Time with average

 from Customer/Country

with max

 as

MaxDailyAveragePerCountry)

is equivalent to (with nested groupby transformations)

GET /service/Sales?$apply=

 groupby((Name),
 Customer/Country),
 groupby((Time),aggregate(Amount with sum as D1))

 /aggregate(D1 with average as D2))

 /aggregate(D2 with max as MaxDailyAveragePerCountry)

and is equivalent to (with consecutive groupby transformations)

GET /service/Sales?$apply=

 groupby((Customer/Country,Time),aggregate(Amount with sum

as D1))

 /groupby((Customer/Country),aggregate(D1 with average as

D2))

 /aggregate(D2 with max as MaxDailyAveragePerCountry)

7.3 Requesting Expanded Results

Example 89: Assuming an extension of the data model where Customer contains an

additional collection-valued complex property Addresses and these contain a single-valued

navigation property ResponsibleSalesOrganization, addnested can be used to compute a
nested dynamic property:

GET /service/Customers?$apply=

 addnested(Addresses/ResponsibleSalesOrganization,

 compute(Superordinate/Name as SalesRegion)

 as AugmentedSalesOrganization)

results in

{

 "@context":

"$metadata#Customers(Addresses(AugmentedSalesOrganization())

",

 "value": [

 { "ID": "C1", "Name": "Joe", "Country": "US",

 "Addresses": [

 { "Locality": "Seattle",

 "AugmentedSalesOrganization":

 { "@context": "#SalesOrganizations/$entity",

 "ID": "US West", "SalesRegion": "US" } },

 { "Locality": "DC",

 "AugmentedSalesOrganization":

 { "@context": "#SalesOrganizations/$entity",

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 119 of 154

 "ID": "US", "SalesRegion": "Corporate

Sales" } },

]

 }, ...

]

}

addnested transformations can be nested.

Example 90: nested addnested transformations

GET /service/Categories?$apply=

 addnested(Products,

 addnested(Sales,filter(Amount gt 3) as FilteredSales)

 as FilteredProducts)

results in

{

 "@context": "$metadata#Categories(FilteredProducts()",

 "value": [

 { "ID": "PG1", "Name": "Food",

 "FilteredProducts@context":

"#Products(FilteredSales())",

 "FilteredProducts": [

 { "ID": "P1", "Name": "Sugar", "Color": "White",

 "FilteredSales@context": "#Sales",

 "FilteredSales": [] },

 { "ID": "P2", "Name": "Coffee", "Color": "Brown",

 "FilteredSales@context": "#Sales(Amount with sum as

Actual),
 ",
 "FilteredSales": [{ "ID": 3, "Amount": 4 },

 { "ID": 4, "Amount": 8 }] }

]

 },

 { "ID": "PG2", "Name": "Non-Food",

 "FilteredProducts@context":

"#Products(FilteredSales())",

 "FilteredProducts": [

 { "ID": "P3", "Name": "Paper", "Color": "White",

 "FilteredSales@context": "#Sales/Forecast))",
 "FilteredSales": [{ "ID": 5, "Amount": 4 }] },

 { "ID": "P4", "Name": "Pencil", "Color": "Black",

 "FilteredSales@context": "#Sales",

 "FilteredSales": [] }

]

 }

]

}

Instead of keeping all related entities from navigation properties that addnested expanded

by default, an explicit $expand controls which of them to include in the response:

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 120 of 154

GET /service/Categories?$apply=

 addnested(Products,

 addnested(Sales,filter(Amount gt 3) as FilteredSales)

 as FilteredProducts)

 &$expand=FilteredProducts

results in the response before without the FilteredSales dynamic navigation properties
expanded in the result.

Example 91: Here only the GroupedSales are expanded, because they are named in

$expand, the related Product entity is not:

GET /service/Customers?$apply=addnested(Sales,

 groupby((Product/Name)) as GroupedSales)

 &$expand=GroupedSales

results in

{

 "@context": "$metadata#Customers(GroupedSales())",

 "value": [

 { "ID": "C1", "Name": "Joe", "Country": "USA",

 "GroupedSales@context": "#Sales(@Core.AnyStructure)",

 "GroupedSales": [

 { },

 { },

 { }

] },

 { "ID": "C2", "Name": "Sue", "Country": "USA",

 "GroupedSales@context": "#Sales(@Core.AnyStructure)",

 "GroupedSales": [

 { },

 { }

] },

 { "ID": "C3", "Name": "Joe", "Country": "Netherlands",

 "GroupedSales@context": "#Sales(@Core.AnyStructure)",

 "GroupedSales": [

 { },

 { }

] },

 { "ID": "C4", "Name": "Luc", "Country": "France",

 "GroupedSales@context": "#Sales(@Core.AnyStructure)",

 "GroupedSales": [] }

]

}

Example 92: use outerjoin to split up collection-valued navigation properties for grouping

GET /service/Customers?$apply=outerjoin(Sales as

ProductSales)

/groupby((Country,ProductSales/Product/Name))

returns the different combinations of products sold per country:

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 121 of 154

{

 "@context":"$metadata#Customers(Country,ProductSales())",

 "value": [

 { "Country": "Netherlands",

 "ProductSales@context":

"#Sales(Product(Name))/$entity",

 "ProductSales": { "Product": { "Name": "Paper" } } },

 { "Country": "Netherlands",

 "ProductSales@context":

"#Sales(Product(Name))/$entity",

 "ProductSales": { "Product": { "Name": "Sugar" } } },

 { "Country": "USA",

 "ProductSales@context":

"#Sales(Product(Name))/$entity",

 "ProductSales": { "Product": { "Name": "Coffee" } } },

 { "Country": "USA",

 "ProductSales@context":

"#Sales(Product(Name))/$entity",

 "ProductSales": { "Product": { "Name": "Paper" } } },

 { "Country": "USA",

 "ProductSales@context":

"#Sales(Product(Name))/$entity",

 "ProductSales": { "Product": { "Name": "Sugar" } } },

 { "Country": "France", "ProductSales": null }

]

}

7.4 Requesting Custom Aggregates

Custom aggregates are defined through the CustomAggregate annotation.
They can be associated with an entity set, a collection or an entity
container.

A custom aggregate can be used by specifying the name of the custom
aggregate in the aggregate clause.

Example 93:

GET /service/Sales?$apply=groupby((Customer/Country),

 aggregate(Amount with sum as

Actual,Forecast))

results in

{

 "@odata.context":

"$metadata#Products(Name,Sales(Customer(Country),Actual,Foreca

st))",)",
 "value": [

 { "@odata.id":null,"Name":"Coffee","Sales":[{"
 { "Customer": { "Country": "Netherlands" },

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 122 of 154

 "Actual":12,"Forecast":6}] },

 { "@odata.id":null,"Name":"Paper", "Sales":[{"@type": "Decimal",

"Actual": 8," 5,

 "Forecast@type": "Decimal", "Forecast":2}] },

 { "@odata.id":null,"Name":"Pencil","Sales":[] },
 { "@odata.id":null,"Name":"Sugar", "Sales":[{" 4 },
 { "Customer": { "Country": "USA" },

 "Actual": 4,"@type": "Decimal", "Actual": 19,

 "Forecast":7}] }

]@type": "Decimal", "Forecast": 21 }
]

}

When associated with an entity typeset a custom aggregate MAY have the
same name as a property of the underlying entity type with the same type
as the type returned by the custom aggregate. This is typically done when
the aggregate is used as a default aggregate for that property.

Example 94: A custom aggregate can be defined with the same name as a property of
the same type in order to define a default aggregate for that property.

GET

~//service/Sales?$apply=groupby((Customer/Country),aggregate(
Amount))

results in

{

 "@odata.results in

{

 "@context": "$metadata#Sales(Customer(Country),Amount)",

 "value": [

 { "@odata.id":null,
 { "Customer":{": { "Country":"": "Netherlands" }, "Amount":
5 },

 { "@odata.id":null,
 { "Customer":{": { "Country":"": "USA" }, "Amount":
19 }

]
}
]

}

Example 95: illustrates rule 1 for keyword from: maximal sales forecast for a product

GET /service/Sales?$apply=aggregate(Forecast from Product

with max

 as MaxProductForecast)

is equivalent to

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 123 of 154

GET /service/Sales?$apply=

 groupby((Product),aggregate(Forecast))

 /aggregate(Forecast with max as MaxProductForecast)

Example 96: illustrates rule 2 for keyword from: the forecast is computed in two steps

GET /service/Sales?$apply=aggregate(Forecast from Product as

ProductForecast)

is equivalent to the following (except that the property name is Forecast instead of

ProductForecast)

GET /service/Sales?$apply=

 groupby((Product),aggregate(Forecast))

 /aggregate(Forecast)

7.4 Example 97: illustrates rule 1 followed by rule 2 for keyword
fromAliasing

: a forecast based on the average daily forecasts per country

GET /service/Sales?$apply=aggregate(Forecast from Time with

average

 from Customer/Country

 as CountryForecast)

is equivalent to the following (except that the property name is Forecast instead of

CountryForecast). Note that Forecast appears as a property and as a custom aggregate.

GET /service/Sales?$apply=

 groupby((Customer/Country),

 groupby((Time),aggregate(Forecast))

 /aggregate(Forecast with average as D1))

 /aggregate(Forecast)

7.5 Aliasing

A property can be aggregated in multiple ways, each with a different alias.

Example :98:

GET ~//service/Sales?$apply=groupby((Customer/Country),
 aggregate(Amount with sum as

Total,

 Amount with average as

AvgAmt))

results in

{

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 124 of 154

 "@odata.context":

"$metadata#Sales(Customer(Country),Total,AvgAmt))",)",
 "value": [

 { "@odata.id": null,
 { "Customer": { "Country": "Netherlands" },

 "Total@type": "Decimal", "Total": 5,

 "AvgAmt@type": "Decimal", "AvgAmt": 1.6666667 },

 { "@odata.id": null,
 { "Customer": { "Country": "USA" },

 "Total@type": "Decimal", "Total": 19,

 "AvgAmt@type": "Decimal", "AvgAmt": 3.8 }

]
]

}

The introduced dynamic properties MUST always be in the same set as the original

property. is added to the context where the aggregate expression is
applied to:

Example :99:

GET ~//service/Products?$apply=groupby((Name),

 aggregate(Sales(/Amount with

sum as Total),
))
 /groupby((Name),

 addnested(Sales,aggregate(Amount with average as

AvgAmt))))

results in

{

 "@odata. as AggregatedSales))

results in

{

 "@context":

"$metadata#Products(Name,Sales(Total,AvgAmt))",AggregatedSales()
)",

 "value": [

 {"@odata.id":null,"
 { "Name":"": "Coffee","Sales":[{"", "Total": 12,",

 "AggregatedSales@context": "#Sales(AvgAmt":)",
 "AggregatedSales": [{ "AvgAmt@type": "Decimal",

 "AvgAmt": 6}]},

 {"@odata.id":null," }] },

 { "Name":"": "Paper", "Sales":[{" "Total": 8,",

 "AggregatedSales@context": "#Sales(AvgAmt":)",
 "AggregatedSales": [{ "AvgAmt@type": "Decimal",

 "AvgAmt": 2}]},

 {"@odata.id":null," }] },

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 125 of 154

 { "Name":"": "Pencil","", "Total": null,
 "AggregatedSales@context":

"#Sales":[{"Total":null,"AvgAmt":null}]},

 {"@odata.id":null,"(AvgAmt)",
 "AggregatedSales": [{ "AvgAmt": null }] },

 { "Name":"": "Sugar", "Sales":[{" "Total": 4,",

 "AggregatedSales@context": "#Sales(AvgAmt":)",
 "AggregatedSales": [{ "AvgAmt@type": "Decimal",

 "AvgAmt": 2}]}
 }] }

]

}

There is no hard distinction between groupable and aggregatable
properties: the same property can be aggregated and used to group the
aggregated results.

Example :100:

GET ~//service/Sales?$apply=groupby((Amount),aggregate(Amount
with sum as Total))

will return all distinct amounts appearing in sales orders and how much money was made
with deals of this amount

{

 "@odata.context": "$metadata#Sales(Amount,Total)",
 "value": [

 { "@odata.id": null,
 { "Amount": 1, "Total@type": "Decimal", "Total": 2 },

 { "@odata.id": null,
 { "Amount": 2, "Total@type": "Decimal", "Total": 6 },

 { "@odata.id": null,
 { "Amount": 4, "Total@type": "Decimal", "Total": 8 },

 { "@odata.id": null,
 { "Amount": 8, "Total@type": "Decimal", "Total": 8 }

]
]

}

7.6 Combining Transformations per Group}

7.5 Combining Transformations per Group

Dynamic property names may be reused in different transformation
sequences passed to concat.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 126 of 154

Example 101: to get the best-selling product per country with sub-totals for every country,

the partial results of a transformation sequence and a groupby transformation are
concatenated:

GET ~//service/Sales?$apply=concat(

groupby((Customer/Country,Product/Name,Currency/Code),
),

 aggregate(Amount with sum as

Total))

 /groupby((Customer/Country,Currency/Code),

),topcount(1,Total)),

 groupby((Customer/Country,Currency/Code),
 aggregate(Amount with sum as

Total)))

results in

{

 "@odata.context":

"$metadata#Sales(Customer(Country),Product(Name),Total,Currency(C

ode))",)",
 "value": [

 { "@odata.id": null,
 { "Customer": {":{ "Country": "USA" }, "Product":

{":{ "Name": "Coffee" },

 "Total@type": "Decimal", "Total": 12, "Currency": { "Code":

"USD" }
 },
 { "@odata.id": null,
 },

 { "Customer": {":{ "Country": "Netherlands" }, "Product":

{":{ "Name": "Paper" },

 "Total@type": "Decimal", "Total": 3, "Currency": { "Code":

"EUR" }
 },
 { "@odata.id": null,
 },

 { "Customer": {":{ "Country": "USA" },

 "Total@type": "Decimal", "Total": 19, "Currency": { "Code":

"USD" }
 },
 { "@odata.id": null,
 },

 { "Customer": {":{ "Country": "Netherlands" },

 "Total@type": "Decimal", "Total": 5, "Currency": { "Code":

"EUR" }
 }
]
 }

]

}

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 127 of 154

Example :102: transformation sequences are also useful inside groupby: To

getAggregate the aggregated amount by only considering the top two sales amounts per
product and country:

GET

~//service/Sales?$apply=groupby((Customer/Country,Product/Nam

e,Currency/Code),
 topcount(2,Amount)/aggregate(Amount

with sum as Total))

results in

{

 "@odata.results in

{

 "@context":

"$metadata#Sales(Customer(Country),Product(Name),Total,Currenc

y(Code))",)",
 "value": [

 { "@odata.id": null,
 { "Customer": {":{ "Country": "Netherlands" }, "Product":

{":{ "Name": "Paper" },

 "Total@type": "Decimal", "Total": 3, "Currency": { "Code":

"EUR" }
 },

 { "@odata.id": null,
 { "Customer": {":{ "Country": "Netherlands" }, "Product":{
"Name": "Sugar" },

 "Total@type": "Decimal", "Total": 2

 },

 { "Customer":{ "Country": "USA" }, "Product": {":{
"Name": "Sugar" },

 "Total@type": "Decimal", "Total": 2, "Currency": { "Code":

"EUR" }
 },

 { "@odata.id": null,
 { "Customer": {":{ "Country": "USA" }, "Product":

{":{ "Name": "Coffee" },

 "Total@type": "Decimal", "Total": 12, "Currency": { "Code":

"USD" }
 },

 { "@odata.id": null,
 { "Customer": {":{ "Country": "USA" }, "Product":

{":{ "Name": "Paper" },

 "Total@type": "Decimal", "Total": 5, "Currency": { "Code":

"USD" }
 }

]
]

}

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 128 of 154

Example 103}

7.6 Model Functions as Set Transformations

: concatenation of two different groupings "biggest sale per customer" and "biggest sale
per product", made distinguishable by a dynamic property:

GET /service/Sales?$apply=concat(

groupby((Customer),topcount(1,Amount))/compute('Customer' as

per),

 groupby((Product),topcount(1,Amount))/compute('Product'

as per))

 &$expand=Customer($select=ID),Product($select=ID)

In the result, Sales entities 4 and 6 occur twice each with contradictory values of the

dynamic property per. If a UI consuming the response presents the two groupings in

separate columns based on the per property, no contradiction effectively arises.

{

 "@context":

"$metadata#Sales(*,per,Customer(ID),Product(ID))",

 "value": [

 { "Customer": { "ID": "C1" }, "Product": { "ID": "P2" },

 "ID": "3", "Amount": 4, "per": "Customer" },

 { "Customer": { "ID": "C2" }, "Product": { "ID": "P2" },

 "ID": "4", "Amount": 8, "per": "Customer" },

 { "Customer": { "ID": "C3" }, "Product": { "ID": "P1" },

 "ID": "6", "Amount": 2, "per": "Customer" },

 { "Customer": { "ID": "C3" }, "Product": { "ID": "P1" },

 "ID": "6", "Amount": 2, "per": "Product" },

 { "Customer": { "ID": "C2" }, "Product": { "ID": "P2" },

 "ID": "4", "Amount": 8, "per": "Product" },

 { "Customer": { "ID": "C2" }, "Product": { "ID": "P3" },

 "ID": "5", "Amount": 4, "per": "Product" }

]

}

7.7 Model Functions as Set Transformations

Example : as104: As a variation of example 101the example shown in the previous
section,, a query for returning the best-selling product per country and the total amount of
the remaining products can be formulated with the help of a model function.

For this purpose, the model includes a definition of a TopCountAndBRemalaincder

function that accepts thea count and a numeric property for the top entities in the given
input set not to be considered for the balance:

<edm:Function Name="TopCountAndBRemalaincder"

 ReturnType="Collection(Edm.EntityType)"

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 129 of 154

 IsBound="true">

 <edm:Parameter Name="EntityCollection"

 Type="Collection(Edm.EntityType)"/>)" />

 <edm:Parameter Name="Count" Type="Edm.Int16"/>" />

 <edm:Parameter Name="Property" Type="Edm.String"/>" />
 <edm:ReturnType Type="Collection(Edm.EntityType)" />

</edm:Function>

The function takes the name of a numeric property as a parameter, retains those entities
that topcount also would retain, and replaces the remaining entities by a single
aggregated entity, where only the numeric property has a defined value being, which is
the aggregated valuesum over those remaining entities:

GET ~//service/Sales?$apply=
 groupby((Customer/Country,Product/Name),

 aggregate(Amount with sum as Total))

 /groupby((Customer/Country),

Self.TopCountAndBRemalaincder(Count=1,Property='Total'))

results in

{

 "@odata.context":

"$metadata#Sales(Customer(Country),Product(Name),Total)",
 "value": [

 { "@odata.id": null,
 { "Customer": { "Country": "Netherlands" },

 "Product": { "Name": "Paper" },

 "Total@type": "Decimal", "Total": 3 },

 { "@odata.id": null,
 { "Customer": { "Country": "Netherlands" },

 "Product": { "Name": "**Other**" },Total@type": "Decimal",
"Total": 2 },

 { "@odata.id": null,
 { "Customer": { "Country": "USA" },

 "Product": { "Name": "Coffee" },

 "Total@type": "Decimal", "Total": 12 },

 { "@odata.id": null,
 { "Customer": { "Country": "USA" },

 "Product": { "Name": "**Other**" }, "Total": 5 }
@type": "Decimal", "Total": 7 }

]

}

Note that these two entities get their values for the Country property from the groupby
transformation, which ensures that they contain all grouping properties with the correct
values.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 130 of 154

7.7 7.8 Controlling Aggregation per Rollup LevelControlling
Aggregation per Rollup Level

Consumers

For a leveled hierarchy, consumers may specify a different aggregation
method per level for every property passed to rollup as a hierarchy level
below the root level.

Example :105: get the average of the overall amount by month per product.

Using a transformation sequence:

GET

~//service/Sales?$apply=groupby((Product/ID,Product/Name,Time
/Month),

 aggregate(Amount with sum) as

Total))

 /groupby((Product/ID,Product/Name),

 aggregate(Total with average as

AverageAmountMonthlyAverage))

Using :from:

GET

~//service/Sales?$apply=groupby((Product/ID,Product/Name),

 aggregate(Amount with sum as

MonthlyAverage
 from Time/Month with

average))
 as MonthlyAverage))

Example : for an aggregate entity set listing106: get the total sales amounts amount per
customer and country, the rollup shall produce additional instances for the average of the
total sales amount of customerscustomer amounts per country, and the overall average
of that average (which is a bit boring because the example data doesn’t have two
countries with the same currency☺)these averages

GET ~//service/Sales?$apply=concat(

groupby((rollup($all,(Customer/Country,Customer/ID),

 Currency/Code),
)),

 aggregate(Amount with sum

 as CustomerCountryAverage
 from Customer/ID with

average

 as

CustomerCountryAverage)),

 aggregate(Amount with sum

 from Customer/ID with

average

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 131 of 154

 from Customer/Country with

average))

results in

{

 "@odata. as
CustomerCountryAverage)))

results in

{

 "@context":

"$metadata#Sales(Customer(Country,ID),CustomerCountryAverage,Curre

ncy(Code))",)",
 "value": [

 { "@odata.id": null,
 { "Customer": { "Country": "USA", "ID": "C1" },

 "CustomerCountryAverage@type":"Decimal",

 "CustomerCountryAverage": 7, "Currency": { "Code": "USD" }

 },
 { "@odata.id": null, },
 { "Customer": { "Country": "USA", "ID": "C2" },

 "CustomerCountryAverage@type":"Decimal",

 "CustomerCountryAverage": 12, "Currency": { "Code": "USD" }

 },
 { "@odata.id": null, },
 { "Customer": { "Country": "USA" },

 "CustomerCountryAverage@type":"Decimal",

 "CustomerCountryAverage": 9.5, "Currency": { "Code": "USD" }

 },
 { "@odata.id": null, },
 { "Customer": { "Country": "Netherlands", "ID": "C3" },

 "CustomerCountryAverage": @type":"Decimal",

 "CustomerCountryAverage": 5, "Currency": { "Code": "EUR" }

 },
 { "@odata.id": null, },
 { "Customer": { "Country": "Netherlands" },

 "CustomerCountryAverage": @type":"Decimal",
 "CustomerCountryAverage": 5 },

 { "CustomerCountryAverage@type":"Decimal",

 "CustomerCountryAverage": 7.25 }

]

}

Note that this example extends the result of rollup with concat and aggregate to append
the overall average.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 132 of 154

7.9 Aggregation in Recursive Hierarchies

If aggregation along a recursive hierarchy does not apply to the entire
hierarchy, transformations ancestors and descendants may be used to
restrict it as needed.

Example 107: Total sales amounts for sales orgs in 'US' in the SalesOrgHierarchy defined
in Hierarchy Examples

GET /service/Sales?$apply=

 descendants(

$root/SalesOrganizations,SalesOrgHierarchy,SalesOrganization

/ID,

 filter(SalesOrganization/Name eq 'US'),keep start)

 /groupby((rolluprecursive(

$root/SalesOrganizations,SalesOrgHierarchy,SalesOrganization

/ID)),

 aggregate(Amount with sum as TotalAmount))

 &$expand=SalesOrganization($expand=Superordinate/$ref)

results in

{

 "@context":

"$metadata#Sales(TotalAmount,SalesOrganization())",

 "value": [

 { "TotalAmount@type": "Decimal", "TotalAmount": 19,

 "SalesOrganization": { "ID": "US", "Name": "US",

 "Superordinate": { "@id":

"SalesOrganizations('Sales')" } } },

 { "TotalAmount@type": "Decimal", "TotalAmount": 12,

 "SalesOrganization": { "ID": "US East", "Name": "US

East",

 "Superordinate": { "@id": "SalesOrganizations('US')"

} } },

 { "TotalAmount@type": "Decimal", "TotalAmount": 7,

 "SalesOrganization": { "ID": "US West", "Name": "US

West",

 "Superordinate": { "@id": "SalesOrganizations('US')"

} } }

]

}

Note that this example returns the actual total sums regardless of whether the
descendants transformation comes before or after the groupby with rolluprecursive.

The order of transformations becomes relevant if groupby with
rolluprecursive shall aggregate over a thinned-out hierarchy, like here:

Example 108: Number of Paper sales per sales org aggregated along the the
SalesOrgHierarchy defined in Hierarchy Examples, "Currency": { "Code": "EUR" }

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 133 of 154

 },
 { "@odata.

GET /service/Sales?$apply=

 filter(Product/Name eq 'Paper')

 /groupby((rolluprecursive((

$root/SalesOrganizations,SalesOrgHierarchy,SalesOrganization

/ID)),

 aggregate($count as PaperSalesCount))

 &$expand=SalesOrganization($expand=Superordinate/$ref)

results in

{

 "@context":

"$metadata#Sales(PaperSalesCount,SalesOrganization())",

 "value": [

 { "PaperSalesCount@type": "Decimal", "PaperSalesCount":

2,

 "SalesOrganization": { "ID": "US", "Name":

"US",

 "Superordinate": { "@id":

"SalesOrganizations('Sales')" } } },

 { "PaperSalesCount@type": "Decimal", "PaperSalesCount":

1,

 "SalesOrganization": { "ID": "US East", "Name":

"US East",

 "Superordinate": { "@id": "SalesOrganizations('US')"

} } },

 { "PaperSalesCount@type": "Decimal", "PaperSalesCount":

1,

 "SalesOrganization": { "ID": "US West", "Name":

"US West",

 "Superordinate": { "@id": null,
"SalesOrganizations('US')" } } },

 { "PaperSalesCount@type": "Decimal", "PaperSalesCount":

2,

 "SalesOrganization": { "ID": "EMEA", "Name":

"EMEA",

 "Superordinate": { "@id":

"SalesOrganizations('Sales')" } } },

 { "PaperSalesCount@type": "Decimal", "PaperSalesCount":

2,

 "SalesOrganization": { "ID": "EMEA Central", "Name":

"EMEA Central",

 "Superordinate": { "@id":

"SalesOrganizations('EMEA')" } } },

 { "PaperSalesCount@type": "Decimal", "PaperSalesCount":

4,

 "SalesOrganization": { "ID": "Sales", "Name":

"Sales",

 "Superordinate": null } }

]

}

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 134 of 154

⚠ Example 109: The input set Sales is filtered along a hierarchy on a related entity

(navigation property SalesOrganization) before an aggregation

GET /service/Sales?$apply=

 descendants($root/SalesOrganizations,

 SalesOrgHierarchy,

 SalesOrganization/ID,

 filter(SalesOrganization/Name eq 'US'),

 keep start)

 /aggregate(Amount with sum as TotalAmount)

The same aggregate value is computed if the input set is the hierarchical entity
SalesOrganizations and an assumed partner navigation property Sales of SalesOrganization

appears in the aggregate transformation

GET /service/SalesOrganizations?$apply=

 descendants($root/SalesOrganizations,

 SalesOrgHierarchy,

 ID,

 filter(Name eq 'US'),

 keep start)

 /aggregate(Sales/Amount with sum as TotalAmount)

⚠ Example 110: total sales amount aggregated along the sales organization sub-

hierarchy with root EMEA restricted to 3 levels

GET /service/Sales?$apply=

 groupby((rolluprecursive($root/SalesOrganizations,

 SalesOrgHierarchy,

 SalesOrganization/ID)),

 aggregate(Amount with sum as Total))

 /filter(Aggregation.isdescendant(

 HierarchyNodes=$root/SalesOrganizations,

 HierarchyQualifier='SalesOrgHierarchy',

 Node=SalesOrganization/ID,

 Ancestor='EMEA',

 MaxDistance=2,

 IncludeSelf=true))

 /orderby(SalesOrganization/Name)

 /traverse($root/SalesOrganizations,

 SalesOrgHierarchy,SalesOrganization/ID,preorder)

or, equivalently

GET /service/Sales?$apply=

 groupby((rolluprecursive(

 $root/SalesOrganizations,

 SalesOrgHierarchy,

 SalesOrganization/ID,

 descendants(

 $root/SalesOrganizations,

 SalesOrgHierarchy,

 ID,

 filter(ID eq 'EMEA'),

 2, keep start))),

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 135 of 154

 aggregate(Amount with sum as Total))

 /orderby(SalesOrganization/Name)

 /traverse($root/SalesOrganizations,

 SalesOrgHierarchy,SalesOrganization/ID,preorder)

Example 111: Return the result of example 66 in preorder

GET /service/Sales?$apply=groupby(

 (rolluprecursive(

 $root/SalesOrganizations,

 SalesOrgHierarchy,

 SalesOrganization/ID,

 descendants(

 $root/SalesOrganizations,

 SalesOrgHierarchy,

 ID, filter(ID eq 'US'), keep start))),

 compute(case(SalesOrganization eq

Aggregation.rollupnode():Amount)

 as AmountExcl)

 /aggregate(Amount with sum as TotalAmountIncl,

 AmountExcl with sum as TotalAmountExcl))

 /traverse($root/SalesOrganizations,

 SalesOrgHierarchy,

 SalesOrganization/ID,

 preorder,

 Name asc)

results in

{

 "@context": "$metadata#Sales(SalesOrganization(ID),

TotalAmountIncl,TotalAmountExcl)",

 "value": [

 { "SalesOrganization": { "ID": "US", "Name": "US"

},

 "TotalAmountIncl@type": "Decimal", "TotalAmountIncl":

19,

 "TotalAmountExcl": null },

 { "SalesOrganization": { "ID": "US East", "Name": "US

East" },

 "TotalAmountIncl@type": "Decimal", "TotalAmountIncl":

12,

 "TotalAmountExcl@type": "Decimal", "TotalAmountExcl":

12 },

 { "SalesOrganization": { "ID": "US West", "Name": "US

West" },

 "TotalAmountIncl@type": "Decimal", "TotalAmountIncl":

7,

 "TotalAmountExcl@type": "Decimal" ,"TotalAmountExcl":

7 }

]

}

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 136 of 154

Example 112: Preorder traversal of a hierarchy with 1:N relationship with collection-

valued segment \(p_1={\tt Sales}\) and \(r={\tt SalesOrganization}/{\tt ID}\).

GET /service/Products?$apply=traverse(

 $root/SalesOrganizations,

 SalesOrgHierarchy,

 Sales/SalesOrganization/ID,

 preorder,

 Name asc)

 &$select=ID

The result contains multiple instances of the same Product that differ in their Sales
navigation property even though they agree in their ID key property. The node \(x\) with

\(x/{\tt ID}={}\)"US" has \(σ(x)={}\){"Sales": [{"SalesOrganization": {"ID": "US"}}]}.

{

 "@context":

 "$metadata#Products(ID,Sales(SalesOrganization(ID)))",

 "value": [

 { "ID": "P1", "Sales": [{ "SalesOrganization": { "ID":

"Sales" } }] },

 { "ID": "P2", "Sales": [{ "SalesOrganization": { "ID":

"Sales" } }] },

 { "ID": "P3", "Sales": [{ "SalesOrganization": { "ID":

"Sales" } }] },

 { "ID": "P1", "Sales": [{ "SalesOrganization": { "ID":

"EMEA" } }] },

 { "ID": "P3", "Sales": [{ "SalesOrganization": { "ID":

"EMEA" } }] },

 { "ID": "P1",

 "Sales": [{ "SalesOrganization": { "ID": "EMEA

Central" } }] },

 { "ID": "P3",

 "Sales": [{ "SalesOrganization": { "ID": "EMEA

Central" } }] },

 { "ID": "P1", "Sales": [{ "SalesOrganization": { "ID":

"US" } }] },

 { "ID": "P2", "Sales": [{ "SalesOrganization": { "ID":

"US" } }] },

 { "ID": "P3", "Sales": [{ "SalesOrganization": { "ID":

"US" } }] },

 { "ID": "P2", "Sales": [{ "SalesOrganization": { "ID":

"US East" } }] },

 { "ID": "P3", "Sales": [{ "SalesOrganization": { "ID":

"US East" } }] },

 { "ID": "P1", "Sales": [{ "SalesOrganization": { "ID":

"US West" } }] },

 { "ID": "P2", "Sales": [{ "SalesOrganization": { "ID":

"US West" } }] },

 { "ID": "P3", "Sales": [{ "SalesOrganization": { "ID":

"US West" } }] }

]

}

Example 113: Aggregation along a hierarchy with 1:N relationship: Sold products per
sales organization

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 137 of 154

GET /service/Products?$apply=

 groupby((rolluprecursive(

 $root/SalesOrganizations,

 SalesOrgHierarchy,

 Sales/SalesOrganization/ID)),

 aggregate(ID with Custom.concat as

SoldProducts)

results in

{

 "@context":

"$metadata#Products(Sales(SalesOrganization(ID)),SoldProduct

s)",

 "value": [

 { "Sales": [{ "SalesOrganization": { "ID": "Sales" } }

],

 "SoldProducts": "P1,P2,P3" },

 { "Sales": [{ "SalesOrganization": { "ID": "EMEA" } }

],

 "SoldProducts": "P1,P3" },

 { "Sales": [{ "SalesOrganization": { "ID": "EMEA

Central" } }],

 "SoldProducts": "P1,P3" },

 { "Sales": [{ "SalesOrganization": { "ID": "US" } }],

 "SoldProducts": "P1,P2,P3" },

 { "Sales": [{ "SalesOrganization": { "ID": "US East" }

}],

 "SoldProducts": "P2,P3" },

 { "Sales": [{ "SalesOrganization": { "ID": "US West" }

}],

 "SoldProducts": "P1,P2,P3" }

]

}

⚠ Example 114: Assume an extension of the data model where a SalesOrganization is

associated with one or more instances of ProductCategory, and ProductCategory also
organizes categories in a recursive hierarchy:

ProductCategory parent ProductCategory associated SalesOrganizations

Food

US, EMEA

Cereals Food US

Organic cereals Cereals US West

Aggregation of sales amounts along the sales organization hierarchy could be restricted
to those organizations linked with product category "Cereals" or a descendant of it, and
the ancestors of those organizations:

GET /service/Sales?$apply=groupby((rolluprecursive(

 $root/SalesOrganizations,SalesOrgHierarchy,

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 138 of 154

 SalesOrganization/ID,

 ancestors(

 $root/SalesOrganizations,SalesOrgHierarchy,

 ID,

 traverse(

 $root/ProductCategories,ProductCategoryHierarchy,

 ProductCategories/ID,

 preorder,

 filter(Name eq 'Cereals')),

 keep start)

)),

 aggregate(Amount with sum as TotalAmount))

&$expand=SalesOrganization($select=ID,$expand=ProductCategor

ies/$ref)

results in

{

 "@context":

"$metadata#Sales(SalesOrganization(ID),TotalAmount)",

 "value": [

 { "SalesOrganization": { "ID": "Sales",

"ProductCategories": [] },

 "TotalAmount@type": "Decimal", "TotalAmount": 24 },

 { "SalesOrganization": { "ID": "US",

"ProductCategories": [

 { "@id": "ProductCategories('Food')" },

 { "@id": "ProductCategories('Cereals')" }] },

 "TotalAmount@type": "Decimal", "TotalAmount": 19 },

 { "SalesOrganization": { "ID": "US West",

"ProductCategories": [

 { "@id": "ProductCategories('Organic cereals')" }] },

 "TotalAmount@type": "Decimal", "TotalAmount": 7 }

]

}

traverse acts here as a filter, hence preorder could be changed to postorder without

changing the result. filter is the parameter \(S\) of traverse and operates on the product
category hierarchy being traversed.

Replacing the traverse transformation with a descendants transformation, as in

ancestors(

 $root/SalesOrganizations,SalesOrgHierarchy,

 ID,

 descendants(

 $root/ProductCategories,ProductCategoryHierarchy,

 ProductCategories/ID,

 filter(ProductCategories/any(c:c/Name eq 'Cereals')),

 keep start),

 keep start)

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 139 of 154

works differently: descendants is the parameter \(T\) of ancestors and operates on its input

set of sales organizations. This would determine descendants of sales organizations for
"Cereals" and their ancestor sales organizations, so US East would appear in the result.

7.10 Maintaining Recursive Hierarchies

Besides changes to the structural properties of the entities in a
hierarchical collection, hierarchy maintenance involves changes to the
parent-child relationships.

Example 115: Move a sales organization Switzerland under the parent EMEA Central by
binding the parent navigation property to EMEA Central OData-JSON, section 8.5:

PATCH /service/SalesOrganizations('Switzerland')

Content-Type: application/json

{ "Superordinate": { "@id": "SalesOrganizations('EMEA

Central')" } }

results in 204 No Content.

Deleting the parent from the sales organization Switzerland (making it a root) can be
achieved either with:

PATCH /service/SalesOrganizations('Switzerland')

Content-Type: application/json

{ "Superordinate": { "@id": null } }

or with:

DELETE

/service/SalesOrganizations('Switzerland')/Superordinate/$re

f

Example 116: If the parent navigation property contained a referential constraint for the
key of the target OData-CSDL, section 8.5,

<EntityType Name="SalesOrganization">

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Edm.String" Nullable="false" />

 <Property Name="Name" Type="Edm.String" />

 <Property Name="SuperordinateID" Type="Edm.String" />

 <NavigationProperty Name="Superordinate"

 Type="SalesModel.SalesOrganization">

 <ReferentialConstraint Property="SuperordinateID"

 ReferencedProperty="ID" />

 </NavigationProperty>

</EntityType>

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 140 of 154

then alternatively the property taking part in the referential constraint OData-Protocol,

section 11.4.9.1 could be changed to EMEA Central:

PATCH /service/SalesOrganizations('Switzerland')

Content-Type: application/json

{ "SuperordinateID": "EMEA Central" }

If the parent-child relationship between sales organizations is maintained
in a separate entity set, a node can have multiple parents, with additional
information on each parent-child relationship.

⚠ Example 117: Assume the relation from a node to its parent nodes contains a weight:

<EntityType Name="SalesOrganizationRelation">

 <Key>

 <PropertyRef Name="Superordinate/ID"

Alias="SuperordinateID" />

 </Key>

 <Property Name="Weight" Type="Edm.Decimal"

 Nullable="false" DefaultValue="1"

/>

 <NavigationProperty Name="Superordinate"

 Type="SalesModel.SalesOrganization"

Nullable="false" />

</EntityType>

<EntityType Name="SalesOrganization">

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Edm.String" Nullable="false" />

 <Property Name="Name" Type="Edm.String" />

 <NavigationProperty Name="Relations"

Type="Collection(SalesModel.SalesOrganizationRelation)"

 Nullable="false" ContainsTarget="true"

/>

 <Annotation Term="Aggregation.RecursiveHierarchy"

 Qualifier="MultiParentHierarchy">

 <Record>

 <PropertyValue Property="NodeProperty"

 PropertyPath="ID" />

 <PropertyValue Property="ParentNavigationProperty"

NavigationPropertyPath="Relations/Superordinate" />

 </Record>

 </Annotation>

</EntityType>

Further assume the following relationships between sales organizations:

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 141 of 154

ID Relations/SuperordinateID Relations/Weight

US Sales 1

EMEA Sales 1

EMEA Central EMEA 1

Atlantis US 0.6

Atlantis EMEA 0.4

Phobos Mars 1

Then Atlantis is a node with two parents. The standard hierarchical transformations
disregard the weight property and consider both parents equally valid (but see example
118).

In a traversal with start node Sales only:

GET /service/SalesOrganizations?$apply=

traverse($root/SalesOrganizations,MultiParentHierarchy,ID,pr

eorder,

 filter(ID eq 'Sales'))

Mars and Phobos cannot be reached and hence are orphans. But they can be made
descendants of the start node Sales by adding a relationship. Note the collection-valued

segment of the ParentNavigationProperty appears at the end of the resource path and the
subsequent single-valued segment appears in the payload:

POST /service/SalesOrganizations('Mars')/Relations

Content-Type: application/json

{ "Superordinate": { "@id": "SalesOrganizations('Sales')" }

}

Since this example contains no referential constraint, there is no analogy to example 116.

The alias SuperordinateID cannot be used in the payload, the following request is invalid:

POST /service/SalesOrganizations('Mars')/Relations

Content-Type: application/json

{ "SuperordinateID": "Sales" }

The alias SuperordinateID is used in the request to delete the added relationship again:

DELETE

/service/SalesOrganizations('Mars')/Relations('Sales')

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 142 of 154

⚠ Example 118: Continuing example 117, assume a custom aggregate

MultiParentWeightedTotal that computes the total sales amount weighted by the
SalesOrganizationRelation/Weight properties along the

@Aggregation.UpPath#MultiParentHierarchy of a sales organization:

<Annotations Target="SalesData.Sales">

 <Annotation Term="Aggregation.CustomAggregate"

 Qualifier="MultiParentWeightedTotal"

String="Edm.Decimal" />

</Annotations>

Then rolluprecursive can be used to aggregate the weighted sales amounts with the

request below. The traverse transformation produces an output set \(H'\) in which sales
organizations with multiple parents occur multiple times. For each occurrence \(x\) in
\(H'\), the rolluprecursive algorithm determines a sales collection \(F(x)\) and the custom

aggregate MultiParentWeightedTotal evaluates the path

SalesOrganization/@Aggregation.UpPath#MultiParentHierarchy relative to that collection:

GET /service/Sales?$apply=groupby(

 (rolluprecursive(

 $root/SalesOrganizations,

 MultiParentHierarchy,

 SalesOrganization/ID,

 traverse(

 $root/SalesOrganizations,

 MultiParentHierarchy,

 SalesOrganization/ID,

 preorder))),

 aggregate(MultiParentWeightedTotal))

Assume that in addition to the sales in the example data

"CustomerCountryAverage": 9.5, "Currency": { "Code": "USD" }

 },

 { "@odata.id": null,

 "CustomerCountryAverage": 5, "Currency": { "Code": "EUR" }

 }

]

}

7.8 Transformation Sequences

 there are sales of 10 in Atlantis. Then 60% of them would contribute to the US sales
organization and 40% to the EMEA sales organization. Without the weights, all duplicate
nodes would contribute the same aggregate result, therefore this example only makes
sense in connection with a custom aggregate that considers the weights.

Note that rolluprecursive must preserve the preorder established by traverse:

{

 "@context":

"$metadata#Sales(SalesOrganization(),MultiParentWeightedTota

l)",

 "value": [

 { "SalesOrganization": { "ID": "Sales", "Name":

"Corporate Sales",

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 143 of 154

 "@Aggregation.UpPath#MultiParentHierarchy": [] },

 "MultiParentWeightedTotal": 34 },

 { "SalesOrganization": { "ID": "US", "Name": "US",

 "@Aggregation.UpPath#MultiParentHierarchy": [

"Sales"] },

 "MultiParentWeightedTotal": 25 },

 { "SalesOrganization": { "ID": "Atlantis", "Name":

"Atlantis",

 "@Aggregation.UpPath#MultiParentHierarchy": ["US",

"Sales"] },

 "MultiParentWeightedTotal": 6 },

 ...

 { "SalesOrganization": { "ID": "EMEA", "Name": "EMEA",

 "@Aggregation.UpPath#MultiParentHierarchy": [

"Sales"] },

 "MultiParentWeightedTotal": 9 },

 { "SalesOrganization": { "ID": "Atlantis", "Name":

"Atlantis",

 "@Aggregation.UpPath#MultiParentHierarchy": [

"EMEA", "Sales"] },

 "MultiParentWeightedTotal": 4 },

 ...

]

}

7.11 Transformation Sequences

Applying aggregation first covers the most prominent use cases. The
slightly more sophisticated question "how much money is earned with
small sales" requires filtering the base set before applying the
aggregation. To enable this type of question several transformations can
be specified in $apply in the order they are to be applied, separated by a
forward slash.

Example :119:

GET ~//service/Sales?$apply=filter(Amount le 1)/)
 /aggregate(Amount with sum as Total)

means "filter first, then aggregate", and results in

{

 "@odata.context": "$metadata#Sales(Total)",
 "value": [

 { "@odata.id": null,
 { "Total@type": "Decimal", "Total": 2 }

]

}

Using filter within $apply does not preclude using it as a normal system
query option.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 144 of 154

Example :120:

GET ~//service/Sales?$apply=filter(Amount le
2)/groupby((Product/Name),

 aggregate(Amount

with sum as Total))

 &$filter=Total ge 4

results in

{

 "@odata.results in

{

 "@context": "$metadata#Sales(Product(Name),Total)",

 "value": [

 { "@odata.id": null, "Total": 4,
 { "Product": { "Name": "Paper" } },

 { "@odata.id": null,},

 "Total@type": "Decimal", "Total": 4, },

 { "Product": { "Name": "Sugar" } }

]},
 "Total@type": "Decimal", "Total": 4 }

]

}

Example :121: Revisiting example 16the in section for using the from keyword with the

aggregate function, the request

GET ~//service/Sales?$apply=aggregate(Amount as DailyAverage
from Time with average

 as DailyAverage)

could be rewritten in a more procedural way using a transformation sequence returning
the same result

GET ~//service/Sales?$apply=groupby((Time),aggregate(Amount
with sum as Total))

 /aggregate(Total with average as

DailyAverage)

For further examples, consider another data model containing entity sets
for cities, countries and continents and the obvious associations between
them.

Example :122: getting the population per country with

GET

~//service/Cities?$apply=groupby((Continent/Name,Country/Name
),

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 145 of 154

 aggregate(Population with sum as

TotalPopulation))

results in

{

 "@odata.context":
"$metadata#Cities(Continent(Name),Country(Name),

 TotalPopulation)",

 "value": [

 { "@odata.id": null,
 { "Continent": { "Name": "Asia" }, "Country": { "Name":

"China" },

 "TotalPopulation": 692.580.000 },

 { "@odata.id": null,@type": "Int32", "TotalPopulation":
1412000000 },

 { "Continent": { "Name": "Asia" }, "Country": { "Name":

"India" }, "TotalPopulation": 390.600.000 },

 ...
]
 "TotalPopulation@type": "Int32", "TotalPopulation":

1408000000 },

 ...

]

}

Example :123: all countries with megacities and their continents

GET ~//service/Cities?$apply=filter(Population ge 10000000)
 /groupby((Continent/Name,Country/Name),

 aggregate(Population with sum as

TotalPopulation))

Example :124: all countries with tens of millions of city dwellers and the continents only
for these countries

GET

~//service/Cities?$apply=groupby((Continent/Name,Country/Name
),

 aggregate(Population with sum as

CountryPopulation))

 /filter(CountryPopulation ge 10000000)

 /concat(identity,

 groupby((Continent/Name),

 aggregate(CountryPopulation with

sum

 as TotalPopulation)))

– OR –

or

GET

~//service/Cities?$apply=groupby((Continent/Name,Country/Name
),

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 146 of 154

 aggregate(Population with sum as

CountryPopulation))

 /filter(CountryPopulation ge 10000000)

/groupby((rollup(Continent/Name,Country/Name)),

 aggregate(CountryPopulation

with sum

 as TotalPopulation))

Example :125: all countries with tens of millions of city dwellers and all continents with
cities independent of their size

GET

~//service/Cities?$apply=groupby((Continent/Name,Country/Name
),

 aggregate(Population with sum as

CountryPopulation))

 /concat(filter(CountryPopulation ge

10000000),

 groupby((Continent/Name),

 aggregate(CountryPopulation

with sum

 as TotalPopulation)))

Example :126: assuming the data model includes a sales order entity set with related
sets for order items and customers, the base set as well as the related items can be
filtered before aggregation

GET ~//service/SalesOrders?$apply=filter(Status eq
'incomplete')

 /expand
 /addnested(Items,filter(not Shipped))
) as FilteredItems)
 /groupby((Customer/Country),

 aggregate(ItemsFilteredItems/Amount with sum as
ItemAmount))

Example 127: assuming that Amount is a custom aggregate in addition to the property,

determine the total for countries with an Amount greater than 1000

GET /service/SalesOrders?$apply=

 groupby((Customer/Country),aggregate(Amount))

 /filter(Amount gt 1000)

 /aggregate(Amount)

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 147 of 154

8 Example 128Conformance

: The output set of the concat transformation contains Sales entities multiple times with

conflicting related AugmentedProduct entities that cannot be aggregated by the second
transformation.

GET /service/Sales?$apply=

 concat(addnested(Product,compute(0.1 as Discount) as

AugmentedProduct),

 addnested(Product,compute(0.2 as Discount) as

AugmentedProduct))

 /aggregate(AugmentedProduct/Discount with max as

MaxDiscount)

results in an error.

Example 129: The nest transformation can be used inside groupby to produce one or
more collection-valued properties per group.

GET /service/Sales?$apply=groupby((Product/Category/ID),

 nest(groupby((Customer/ID)) as

Customers))

results in

{

"@context":"$metadata#Sales(Product(Category(ID)),Customers(

))",

 "value": [

 { "Product": { "Category": { "ID": "PG1" } },

 "Customers@context": "#Sales(Customer(ID))",

 "Customers": [{ "Customer": { "ID": "C1" } },

 { "Customer": { "ID": "C2" } },

 { "Customer": { "ID": "C3" } }] },

 { "Product": { "Category": { "ID": "PG2" } },

 "Customers@context": "#Sales(Customer(ID))",

 "Customers": [{ "Customer": { "ID": "C1" } },

 { "Customer": { "ID": "C2" } },

 { "Customer": { "ID": "C3" } }] }

]

}

8 Conformance

Conforming services MUST follow all rules of this specification for the set
transformations and aggregation methods they support. They MUST
implement all set transformations and aggregation methods they advertise
via the annotation ApplySupported. .

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 148 of 154

Conforming clients MUST be prepared to consume a model that uses any
or all of the constructs defined in this specification, including custom
aggregation methods defined by the service, and MUST ignore any
constructs not defined in this version of the specification.

Appendix A. References

This appendix contains the normative references that are used in this
document.

While any hyperlinks included in this appendix were valid at the time of
publication, OASIS cannot guarantee their long-term validity.

A.1 Normative References

The following documents are referenced in such a way that some or all of
their content constitutes requirements of this document.

[OData-ABNF]

ABNF components: OData ABNF Construction Rules Version 4.01 and
OData ABNF Test Cases.
See link in "Related work" section on cover page.

[OData-Agg-ABNF]

OData Aggregation ABNF Construction Rules Version 4.0.
See link in "Additional artifacts" section on cover page.

[OData-CSDL]

OData Common Schema Definition Language (CSDL) JSON
Representation Version 4.01.
See link in "Related work" section on cover page.

OData Common Schema Definition Language (CSDL) XML
Representation Version 4.01.
See link in "Related work" section on cover page.

[OData-JSON]

OData JSON Format Version 4.01.
See link in "Related work" section on cover page.

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 149 of 154

[OData-Protocol]

OData Version 4.01. Part 1: Protocol.
See link in "Related work" section on cover page.

[OData-URL]

OData Version 4.01. Part 2: URL Conventions.
See link in "Related work" section on cover page.

[OData-VocAggr]

OData Aggregation Vocabulary.
See link in "Additional artifacts" section on cover page.

[OData-VocCore]

OData Core Vocabulary.
See link in "Related work" section on cover page.

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels",
BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997
https://www.rfc-editor.org/info/rfc2119.

[RFC8174]

https://www.rfc-editor.org/info/rfc2119

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 150 of 154

Appendix A. Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119
Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017

https://www.rfc-editor.org/info/rfc8174Acknowledgments

.

Appendix B. Acknowledgments

B.1 Special Thanks

The contributions of the OASIS OData Technical Committee members,
enumerated in OData-Protocol,, are gratefully acknowledged.

https://www.rfc-editor.org/info/rfc8174

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 151 of 154

Appendix B. B.2 ParticipantsRevision History

OData TC Members:

First Name Last Name Company

George Ericson Dell

Hubert Heijkers IBM

Ling Jin IBM

Stefan Hagen Individual

Michael Pizzo Microsoft

Christof Sprenger Microsoft

Ralf Handl SAP SE

Gerald Krause SAP SE

Heiko Theißen SAP SE

Martin Zurmühl SAP SE

Appendix C. Revision History

Revision Date Editor Changes Made

Working Draft
01

2012-
11-12

Ralf Handl Translated contribution into OASIS
format

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 152 of 154

Revision Date Editor Changes Made

Committee
Specification
Draft 01

2013-
07-25

Ralf Handl
Hubert
Heijkers
Gerald
Krause
Michael
Pizzo
Martin
Zurmuehl

Switched to pipe-and-filter-style query
language based on composable set
transformations
Fleshed out examples and addressed
numerous editorial and technical issues
processed through the TC
Added Conformance section

Committee
Specification
Draft 02

2014-
01-09

Ralf Handl
Hubert
Heijkers
Gerald
Krause
Michael
Pizzo
Martin
Zurmuehl

Dynamic properties used all aggregated
values. either via aliases or via custom
aggregates
Refactored annotations

Committee
Specification
Draft 03

2015-
07-16

Ralf Handl
Hubert
Heijkers
Gerald
Krause
Michael
Pizzo
Martin
Zurmuehl

Added compute transformation
Minor clean-up

Committee
Specification
Draft 04

2023-
07-05

Ralf Handl
Hubert
Heijkers
Gerald
Krause
Michael
Pizzo
Heiko
Theißen

Added section about fundamentals of
input and output sets
Algorithmic descriptions of
transformations
Added join and outerjoin transformations,
replaced expand by addnested
Added transformations orderby, skip, top,
nest
Added transformations for recursive
hierarchies, updated related filter

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 153 of 154

Revision Date Editor Changes Made

functions
Added functions evaluable on a
collection, introduced keyword $these
Merged section 4 "Representation of
Aggregated Instances" into section 3
Remove actions and functions (except
set transformations) on aggregated
entities, adapted section "Actions and
Functions on Aggregated Entities"

Appendix D. Notices

Copyright © OASIS Open 2023. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to
them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR
Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published, and
distributed, in whole or in part, without restriction of any kind, provided that
the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified
in any way, including by removing the copyright notice or references to
OASIS, except as needed for the purpose of developing any document or
deliverable produced by an OASIS Technical Committee (in which case
the rules applicable to copyrights, as set forth in the OASIS IPR Policy,
must be followed) or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS
IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

https://www.oasis-open.org/policies-guidelines/ipr/

odata-data-aggregation-ext-v4.0-cs02 04 November 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 154 of 154

As stated in the OASIS IPR Policy, the following three paragraphs in
brackets apply to OASIS Standards Final Deliverable documents
(Committee Specification, Candidate OASIS Standard, OASIS Standard,
or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it
has patent claims that would necessarily be infringed by implementations
of this OASIS Standards Final Deliverable, to notify OASIS TC
Administrator and provide an indication of its willingness to grant patent
licenses to such patent claims in a manner consistent with the IPR Mode
of the OASIS Technical Committee that produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is
aware of a claim of ownership of any patent claims that would necessarily
be infringed by implementations of this OASIS Standards Final Deliverable
by a patent holder that is not willing to provide a license to such patent
claims in a manner consistent with the IPR Mode of the OASIS Technical
Committee that produced this OASIS Standards Final Deliverable. OASIS
may include such claims on its website, but disclaims any obligation to do
so.]

[OASIS takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the
implementation or use of the technology described in this OASIS
Standards Final Deliverable or the extent to which any license under such
rights might or might not be available; neither does it represent that it has
made any effort to identify any such rights. Information on OASIS'
procedures with respect to rights in any document or deliverable produced
by an OASIS Technical Committee can be found on the OASIS website.
Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt
made to obtain a general license or permission for the use of such
proprietary rights by implementers or users of this OASIS Standards Final
Deliverable, can be obtained from the OASIS TC Administrator. OASIS
makes no representation that any information or list of intellectual property
rights will at any time be complete, or that any claims in such list are, in
fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of
this specification, and should be used only to refer to the organization and
its official outputs. OASIS welcomes reference to, and implementation and
use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-
guidelines/trademark/ for above guidance.

https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark/
https://www.oasis-open.org/policies-guidelines/trademark/

