
odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 1 of 89

OData Common Schema Definition
Language (CSDL) JSON Representation
Version 4.01

Committee Specification 01Draft 04 /
Public Review Draft 04

30 January 2018

Specification URIs

21 June 2019

This version:
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/csprd04/odata-csdl-json-v4.01-csprd04.docx
(Authoritative)
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/csprd04/odata-csdl-json-v4.01-csprd04.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/csprd04/odata-csdl-json-v4.01-csprd04.pdf

Previous version:
http://docs.oasis-open.org/odata/odata-csdl-json/v4.01/cs01/odata-csdl-json-v4.01-cs01.docx
(Authoritative)
http://docs.oasis-open.org/odata/odata-csdl-json/v4.01/cs01/odata-csdl-json-v4.01-cs01.html
http://docs.oasis-open.org/odata/odata-csdl-json/v4.01/cs01/odata-csdl-json-v4.01-cs01.pdf

Previous version:
 (Authoritative)

Latest version:
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.docx (Authoritative)
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.pdf

Technical Committee:
OASIS Open Data Protocol (OData) TC

Chairs:
Ralf Handl (ralf.handl@sap.com), SAP SE
Michael Pizzo (mikep@microsoft.com), Microsoft

Editors:
Michael Pizzo (mikep@microsoft.com), Microsoft
Ralf Handl (ralf.handl@sap.com), SAP SE

Martin Zurmuehl (martin.zurmuehl@sap.com), SAP SE

Field Code Changed

https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/csprd04/odata-csdl-json-v4.01-csprd04.docx
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/csprd04/odata-csdl-json-v4.01-csprd04.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/csprd04/odata-csdl-json-v4.01-csprd04.pdf
http://docs.oasis-open.org/odata/odata-csdl-json/v4.01/cs01/odata-csdl-json-v4.01-cs01.docx
http://docs.oasis-open.org/odata/odata-csdl-json/v4.01/cs01/odata-csdl-json-v4.01-cs01.html
http://docs.oasis-open.org/odata/odata-csdl-json/v4.01/cs01/odata-csdl-json-v4.01-cs01.pdf
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.docx
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.pdf
https://www.oasis-open.org/committees/odata/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:martin.zurmuehl@sap.com
http://www.sap.com/
https://www.oasis-open.org/

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 2 of 89

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

• JSON schemas; OData CSDL JSON schema. httphttps://docs.oasis-open.org/odata/odata-csdl-
json/v4.01/cs01csprd04/schemas/.

Related work:
This specification is related to:

• OData Version 4.01. Edited by Michael Pizzo, Ralf Handl, and Martin Zurmuehl. A multi-part Work
Product which includes:
o OData Version 4.01. Part 1: Protocol. Latest version: https://docs.oasis-

open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html.
o OData Version 4.01. Part 2: URL Conventions. Latest version: https://docs.oasis-

open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html.
o ABNF components: OData ABNF Construction Rules Version 4.01 and OData ABNF Test Cases.

https://docs.oasis-open.org/odata/odata/v4.01/csprd05/abnf/.

• OData Common Schema Definition Language (CSDL) XML Representation Version 4.01. Edited by
Michael Pizzo, Ralf Handl, and Martin Zurmuehl. Latest version: https://docs.oasis-
open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html.

• OData Vocabularies Version 4.0. Edited by Michael Pizzo, Ralf Handl, and Ram Jeyaraman. Latest
version: http://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html.

• OData JSON Format Version 4.01. Edited by Ralf Handl, Michael Pizzo, Ralf Handl, and Mark
Biamonte. Latest version: httphttps://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-
format-v4.01.html.

Abstract:
OData services are described by an Entity Model (EDM). The Common Schema Definition Language
(CSDL) defines specific representations of the entity data model exposed by an OData service, using
XML, JSON, and other formats. This document (OData CSDL JSON Representation) specifically defines
the JSON representation of CSDL.

Status:
This document was last revised or approved by the OASIS Open Data Protocol (OData) TC on the above
date. The level of approval is also listed above. Check the “Latest version” location noted above for
possible later revisions of this document. Any other numbered Versions and other technical work
produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=odata#technical.

TC members should send comments on this specification to the TC’s email list. Others should send
comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send
A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/odata/.

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-
open.org/committees/odata/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such
plain text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[OData-CSDL-JSON-v4.01]

OData Common Schema Definition Language (CSDL) JSON Representation Version 4.01. Edited by
Michael Pizzo, Ralf Handl, and Martin Zurmuehl. 30 January 2018.21 June 2019. OASIS Committee
Specification 01.Draft 04 / Public Review Draft 04. https://docs.oasis-open.org/odata/odata-csdl-
json/v4.01/csprd04/odata-csdl-json-v4.01-csprd04.html. Latest version: httphttps://docs.oasis-
open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html.

Field Code Changed

Field Code Changed

Field Code Changed

https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/csprd04/schemas/
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/csprd04/schemas/
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/csprd05/abnf/
https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html
http://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/policies-guidelines/ipr#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/csprd04/odata-csdl-json-v4.01-csprd04.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/csprd04/odata-csdl-json-v4.01-csprd04.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 3 of 89

Notices

Copyright © OASIS Open 20182019. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 4 of 89

Table of Contents

1 Introduction ... 8

1.1 IPR Policy.. 8

1.2 Terminology .. 8

1.3 Normative References ... 8

1.4 Non-Normative References.. 9

1.5 Typographical Conventions.. 9

2 JSON Representation ... 10

2.1 Requesting the JSON Representation ... 10

2.1.1 Controlling the Representation of Numbers ... 10

2.1.2 Controlling the Amount of Control Information ... 10
2.1.2.1 metadata=minimal ... 10

2.1.2.2 metadata=full.. 11

2.1.2.3 metadata=none.. 11

2.2 Design Considerations ... 11

2.3 JSON Schema Definition ... 11

3 Entity Model .. 12

3.1 Nominal Types .. 12

3.2 Structured Types ... 12

3.3 Primitive Types .. 12

3.4 Built-In Abstract Types ... 14

3.5 Built-In Types for defining Vocabulary Terms ... 15

3.6 Annotations ... 15

4 CSDL JSON Document ... 16

4.1 Reference.. 16

4.2 Included Schema ... 17

4.3 Included Annotations ... 18

5 Schema .. 20

5.1 Alias .. 20

5.2 Annotations with External Targeting ... 21

6 Entity Type .. 22

6.1 Derived Entity Type ... 22

6.2 Abstract Entity Type... 23

6.3 Open Entity Type ... 23

6.4 Media Entity Type .. 23

6.5 Key .. 24

7 Structural Property .. 27

7.1 Type .. 27

7.2 Type Facets .. 28

7.2.1 Nullable .. 28

7.2.2 MaxLength ... 28

7.2.3 Precision .. 28

7.2.4 Scale .. 29

7.2.5 Unicode .. 30

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 5 of 89

7.2.6 SRID .. 30

7.2.7 Default Value .. 30

8 Navigation Property ... 32

8.1 Navigation Property Type .. 33

8.2 Nullable Navigation Property .. 33

8.3 Partner Navigation Property ... 33

8.4 Containment Navigation Property .. 34

8.5 Referential Constraint .. 34

8.6 On-Delete Action ... 35

9 Complex Type ... 37

9.1 Derived Complex Type .. 38

9.2 Abstract Complex Type.. 38

9.3 Open Complex Type .. 38

10 Enumeration Type ... 39

10.1 Underlying Integer Type ... 39

10.2 Flags Enumeration Type .. 39

10.3 Enumeration Type Member .. 40

11 Type Definition .. 41

11.1 Underlying Primitive Type .. 41

12 Action and Function... 43

12.1 Action .. 43

12.2 Action Overloads ... 43

12.3 Function .. 43

12.4 Function Overloads.. 43

12.5 Bound or Unbound Action or Function Overloads ... 44

12.6 Entity Set Path ... 44

12.7 Composable Function .. 44

12.8 Return Type... 45

12.9 Parameter ... 45

13 Entity Container... 47

13.1 Extending an Entity Container .. 48

13.2 Entity Set ... 49

13.3 Singleton ... 49

13.4 Navigation Property Binding ... 50

13.4.1 Navigation Property Path Binding ... 50

13.4.2 Binding Target .. 50

13.5 Action Import ... 51

13.6 Function Import.. 52

14 Vocabulary and Annotation.. 53

14.1 Term.. 54

14.1.1 Specialized Term .. 54

14.1.2 Applicability .. 55

14.2 Annotation ... 56

14.2.1 Qualifier .. 57

14.2.2 Target... 57

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 6 of 89

14.3 Constant Expression .. 59

14.3.1 Binary ... 59

14.3.2 Boolean .. 59

14.3.3 Date ... 60

14.3.4 DateTimeOffset .. 60

14.3.5 Decimal .. 60

14.3.6 Duration ... 60

14.3.7 Enumeration Member ... 61

14.3.8 Floating-Point Number .. 61

14.3.9 Guid ... 61

14.3.10 Integer .. 62

14.3.11 String .. 62

14.3.12 Time of Day .. 62

14.4 Dynamic Expression .. 62

14.4.1 Path Expressions.. 62
14.4.1.1 Path Syntax ... 63
14.4.1.2 Path Evaluation ... 64
14.4.1.3 Annotation Path ... 65
14.4.1.4 Model Element Path ... 65
14.4.1.5 Navigation Property Path ... 66
14.4.1.6 Property Path... 66
14.4.1.7 Value Path ... 67

14.4.2 Comparison and Logical Operators ... 67

14.4.3 Arithmetic Operators ... 70

14.4.4 Apply Client-Side Functions .. 72
14.4.4.1 Canonical Functions .. 72
14.4.4.2 Function odata.fillUriTemplate .. 72

14.4.4.3 Function odata.matchesPattern .. 73

14.4.4.4 Function odata.uriEncode ... 73

14.4.5 Cast ... 74

14.4.6 Collection ... 74

14.4.7 If-Then-Else .. 75

14.4.8 Is-Of ... 75

14.4.9 Labeled Element... 76

14.4.10 Labeled Element Reference .. 76

14.4.11 Null ... 76

14.4.12 Record ... 77

14.4.13 URL Reference ... 78

15 Identifier and Path Values ... 79

15.1 Namespace ... 79

15.2 Simple Identifier ... 79

15.3 Qualified Name .. 79

15.4 Target Path.. 79

16 CSDL Examples .. 80

16.1 Products and Categories Example ... 80

16.2 Annotations for Products and Categories Example ... 83

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 7 of 89

17 Conformance .. 85

Appendix A. Acknowledgments .. 86

Appendix B. Table of JSON Objects and Members .. 87

Appendix C. Revision History ... 89

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 8 of 89

1 Introduction
OData services are described in terms of an Entity Model. The Common Schema Definition Language
(CSDL) defines a representation of the entity model exposed by an OData service using the JavaScript
Object Notation (JSON), see [RFC8259].

This format is based on the OpenUI5 OData V4 Metadata JSON Format, see [OpenUI5], with some
extensions and modifications made necessary to fully cover OData CSDL Version 4.01.

1.1 IPR Policy

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-
open.org/committees/odata/ipr.php).

1.2 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.3 Normative References

[ECMAScript] ECMAScript 2016 Language Specification, 7th Edition, June 2016. Standard
ECMA-262. http://www.ecma-international.org/publications/standards/Ecma-
262.htm.

[EPSG] European Petroleum Survey Group (EPSG). http://www.epsg.org/.

[OData-ABNF] OData ABNF Construction Rules Version 4.01.
See link in “Additional artifacts” section on cover page.

[OData-CSDL-Schema] OData CSDL JSON Schema.
See link in “Additional artifacts” section on cover page.

[OData-CSDLXML] OData Common Schema Definition Language (CSDL) XML Representation
Version 4.01.
See link in “Related work” section on cover page.

[OData-JSON] OData JSON Format Version 4.01.
See link in “Related work” section on cover page.

[OData-Protocol] OData Version 4.01 Part 1: Protocol.
See link in “Related work” section on cover page.

[OData-URL] OData Version 4.01 Part 2: URL Conventions.
See link in “Related work” section on cover page.

[OData-VocCore] OData Vocabularies Version 4.0: Core Vocabulary.
See link in “Related work” section on cover page.

[OData-VocMeasures] OData Vocabularies Version 4.0: Measures Vocabulary.
See link in “Related work” section on cover page.

[OData-VocValidation] OData Vocabularies Version 4.0: Validation Vocabulary.
See link in “Related work” section on cover page.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
14, RFC 2119, March 1997. https://tools.ietf.org/html/rfc2119.

[RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M., and D. Orchard, “URI
Template”, RFC 6570, March 2012. http://tools.ietf.org/html/rfc6570.

[RFC7159] Bray, T., Ed., “The JavaScript Object Notation (JSON) Data Interchange Format”,
RFC 7159, March 2014. .

https://www.oasis-open.org/policies-guidelines/ipr#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.epsg.org/
https://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc6570

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 9 of 89

[RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC7493, March 2015.
https://tools.ietf.org/html/rfc7493.

[RFC8259] Bray, T., Ed., “The JavaScript Object Notation (JSON) Data Interchange Format”,
RFC 8259, December 2017. http://tools.ietf.org/html/rfc8259.

[XML-Schema-2] W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, D.
Peterson, S. Gao, C. M. Sperberg-McQueen, H. S. Thompson, P. V. Biron, A.
Malhotra, Editors, W3C Recommendation, 5 April 2012,
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/.
Latest version available at http://www.w3.org/TR/xmlschema11-2/.

1.4 Non-Normative References

[OpenUI5] OpenUI5 Version 1.40.10 – OData V4 Metadata JSON Format,
https://openui5.hana.ondemand.com/1.40.10/#docs/guide/87aac894a40640f899
20d7b2a414499b.html

1.5 Typographical Conventions

Keywords defined by this specification use this monospaced font.

Normative source code uses this paragraph style.

Some sections of this specification are illustrated with non-normative examples.

Example 1: text describing an example uses this paragraph style

Non-normative examples use this paragraph style.

All examples in this document are non-normative and informative only.

Representation-specific text is indented and marked with vertical lines.

Representation-Specific Headline

Normative representation-specific text

All other text is normative unless otherwise labeled.

https://tools.ietf.org/html/rfc7493
http://tools.ietf.org/html/rfc8259
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
http://www.w3.org/TR/xmlschema11-2/
https://openui5.hana.ondemand.com/1.40.10/#docs/guide/87aac894a40640f89920d7b2a414499b.html
https://openui5.hana.ondemand.com/1.40.10/#docs/guide/87aac894a40640f89920d7b2a414499b.html

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 10 of 89

2 JSON Representation
OData CSDL JSON is a full representation of the OData Common Schema Definition Language in the
JavaScript Object Notation (JSON) defined in [RFC8259]. It additionally follows the rules for “Internet
JSON” (I-JSON) defined in [RFC7493] for e.g. objects, numbers, date values, and duration values.

It is an alternative to the CSDL XML representation defined in [OData-CSDLXML] and neither adds nor
removes features.

2.1 Requesting the JSON Representation

The OData CSDL JSON representation can be requested using the $format query option in the request

URL with the media type application/json, optionally followed by media type parameters, or the

case-insensitive abbreviation json which MUST NOT be followed by media type parameters.

Alternatively, this representation can be requested using the Accept header with the media type

application/json, optionally followed by media type parameters.

If specified, $format overrides any value specified in the Accept header.

The response MUST contain the Content-Type header with a value of application/json, optionally

followed by media type parameters.

Possible media type parameters are:

• IEEE754Compatible

• metadata

The names and values of these parameters are case-insensitive.

2.1.1 Controlling the Representation of Numbers

The IEEE754Compatible=true parameter indicates that the service MUST serialize Edm.Int64 and

Edm.Decimal numbers as strings. This is in conformance with [RFC7493]. If not specified, or specified

as IEEE754Compatible=false, all numbers MUST be serialized as JSON numbers.

This enables support for JavaScript numbers that are defined to be 64-bit binary format IEEE 754 values
[ECMAScript] (see section 4.3.1.9) resulting in integers losing precision past 15 digits, and decimals
losing precision due to the conversion from base 10 to base 2.

Responses that format Edm.Int64 and Edm.Decimal values as strings MUST specify this parameter in

the media type returned in the Content-Type header.

2.1.2 Controlling the Amount of Control Information

The representation of constant annotation values in CSDL JSON documents closely follows the
representation of data defined in [OData-JSON].

A client application can use the metadata format parameter in the Accept header when requesting a

CSDL JSON document to influence how much control information will be included in the response.

Other Accept header parameters are orthogonal to the metadata parameter and are therefore not

mentioned in this section.

2.1.2.1 metadata=minimal

The metadata=minimal format parameter indicates that the service SHOULD remove computable

control information from the payload wherever possible.

This means that the @type control information is only included if the type of the containing object or

targeted property cannot be heuristically determined, e.g. for

• Terms or term properties with an abstract declared type,

http://www.ecma-international.org/ecma-262/5.1/#sec-4.3.19

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 11 of 89

• Terms or term properties with a declared type that has derived types, or

• Dynamic properties of open types.

See [OData-JSON] for the exact rules.

2.1.2.2 metadata=full

The metadata=full format parameter indicates that the service MUST include all control information

explicitly in the payload.

This means that the @type control information is included in annotation values except for primitive values

whose type can be heuristically determined from the representation of the value, see [OData-JSON] for
the exact rules.

2.1.2.3 metadata=none

The metadata=none format parameter indicates that the service SHOULD omit all control information.

2.2 Design Considerations

CSDL JSON documents are designed for easy and efficient lookup of model constructs by their name
without having to know or guess what kind of model element it is. Thus, all primary model elements (entity
types, complex types, type definitions, enumeration types, terms, actions, functions, and the entity
container) are direct members of their schema, using the schema-unique name as the member name.
Similarly, child elements of primary model elements (properties, navigation properties, enumeration type
members, entity sets, singletons, action imports, and function imports) are direct members of the objects
describing their parent model element, using their locally unique name as the member name.

To avoid name collisions, all fixed member names are prefixed with a dollar ($) sign and otherwise have

the same name and capitalization as their counterparts in the CSDL XML representation [OData-
CSDLXML] (with one exception: the counterpart of the EntitySet element’s EntityType attribute is

$Type, to harmonize it with all other type references).

Additional fixed members introduced by this specification and without counterpart in [OData-CSDLXML]
are also prefixed with a dollar ($) sign and use upper-camel-case names. One of these is $Kind which

represents the kind of model element. Its value is the upper-camel-case local name of the XML element
representing this kind of model element in [OData-CSDLXML], e.g. EntityType or

NavigationProperty.

While the XML representation of CSDL allows referencing model elements with alias-qualified names as
well as with namespace-qualified names, this JSON representation requires the use of alias-qualified
names if an alias is specified for an included or document-defined schema. Aliases are usually shorter
than namespaces, so this reduces text size of the JSON document. Text size matters even if the actual
HTTP messages are sent in compressed form because the decompressed form needs to be
reconstructed, and clients not using a streaming JSON parser have to materialize the full JSON
document before parsing.

To further reduce size the member $Kind is optional for structural properties as these are more common

than navigation properties, and the member $Type is optional for string properties, parameters, and

return types, as this type is more common than other primitive types.

In general, all members that have a default value SHOULD be omitted if they have the default value.

2.3 JSON Schema Definition

The structure of CSDL JSON documents can be verified with the JSON Schema [OData-CSDL-Schema]
provided as an additional artifact of this prose specification. This schema only defines the shape of a well-
formed CSDL JSON document but is not descriptive enough to define what a correct CSDL JSON
document MUST be in every imaginable use case. This specification document defines additional rules
that correct CSDL JSON documents MUST fulfill. In case of doubt on what makes a CSDL JSON
document correct the rules defined in this specification document take precedence.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 12 of 89

3 Entity Model
An OData service exposes a single entity model. This model may be distributed over several schemas,
and these schemas may be distributed over several documents.

A service is defined by a single CSDL document which can be accessed by sending a GET request to

<serviceRoot>/$metadata. This document is called the metadata document. It MAY reference other

CSDL documents.

The metadata document contains a single entity container that defines the resources exposed by this
service. This entity container MAY extend an entity container defined in a referenced document.

The model of the service consists of all CSDL constructs used in its entity containers.

The scope of a CSDL document is the document itself and all schemas included from directly referenced
documents. All entity types, complex types and other named model elements in scope (that is, defined in
the document itself or a schema of a directly referenced document) can be accessed from a referencing
document by their qualified names. This includes the built-in primitive and abstract types.

Referencing another document may alter the model defined by the referencing document. For instance, if
a referenced document defines an entity type derived from an entity type in the referencing document,
then an entity set of the service defined by the referencing document may return entities of the derived
type. This is identical to the behavior if the derived type had been defined directly in the referencing
document.

Note: referencing documents is not recursive. Only named model elements defined in directly referenced
documents can be used within the schema. However, those elements may in turn include or reference
model elements defined in schemas referenced by their defining schema.

3.1 Nominal Types

A nominal type has a name that MUST be a simple identifier. Nominal types are referenced using their
qualified name. The qualified type name MUST be unique within a model as it facilitates references to the
element from other parts of the model.

Names are case-sensitive, but service authors SHOULD NOT choose names that differ only in case.

3.2 Structured Types

Structured types are composed of other model elements. Structured types are common in entity models
as the means of representing entities and structured properties in an OData service. Entity types and
complex types are both structured types.

Structured Types are composed of zero or more structural properties and navigation properties.

Open entity types and open complex types allow properties to be added dynamically to instances of the
open type.

3.3 Primitive Types

Structured types are composed of other structured types and primitive types. OData defines the following
primitive types:

Type Meaning

Edm.Binary Binary data

Edm.Boolean Binary-valued logic

Edm.Byte Unsigned 8-bit integer

Edm.Date Date without a time-zone offset

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 13 of 89

Type Meaning

Edm.DateTimeOffset Date and time with a time-zone offset, no leap seconds

Edm.Decimal Numeric values with decimal representation

Edm.Double IEEE 754 binary64 floating-point number (15-17 decimal digits)

Edm.Duration Signed duration in days, hours, minutes, and (sub)seconds

Edm.Guid 16-byte (128-bit) unique identifier

Edm.Int16 Signed 16-bit integer

Edm.Int32 Signed 32-bit integer

Edm.Int64 Signed 64-bit integer

Edm.SByte Signed 8-bit integer

Edm.Single IEEE 754 binary32 floating-point number (6-9 decimal digits)

Edm.Stream Binary data stream

Edm.String Sequence of UTF-8 characters

Edm.TimeOfDay Clock time 00:00-23:59:59.999999999999

Edm.Geography Abstract base type for all Geography types

Edm.GeographyPoint A point in a round-earth coordinate system

Edm.GeographyLineString Line string in a round-earth coordinate system

Edm.GeographyPolygon Polygon in a round-earth coordinate system

Edm.GeographyMultiPoint Collection of points in a round-earth coordinate system

Edm.GeographyMultiLineString Collection of line strings in a round-earth coordinate system

Edm.GeographyMultiPolygon Collection of polygons in a round-earth coordinate system

Edm.GeographyCollection Collection of arbitrary Geography values

Edm.Geometry Abstract base type for all Geometry types

Edm.GeometryPoint Point in a flat-earth coordinate system

Edm.GeometryLineString Line string in a flat-earth coordinate system

Edm.GeometryPolygon Polygon in a flat-earth coordinate system

Edm.GeometryMultiPoint Collection of points in a flat-earth coordinate system

Edm.GeometryMultiLineString Collection of line strings in a flat-earth coordinate system

Edm.GeometryMultiPolygon Collection of polygons in a flat-earth coordinate system

Edm.GeometryCollection Collection of arbitrary Geometry values

Edm.Date and Edm.DateTimeOffset follow [XML-Schema-2] and use the proleptic Gregorian

calendar, allowing the year 0000 and negative years(equivalent to 1 BCE) and negative years (year -

0001 being equivalent to 2 BCE etc.). The supported date range is service-specific and typically depends

on the underlying persistency layer, e.g. SQL only supports years 0001 to 9999.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 14 of 89

Edm.Decimal with a Scale value of floating, Edm.Double, and Edm.Single allow the special

numeric values -INF, INF, and NaN.

Edm.Stream is a primitive type that can be used as a property of an entity type or complex type, the

underlying type for a type definition, or the binding parameter or return type of an action or function.
Edm.Stream, or a type definition whose underlying type is Edm.Stream, cannot be used in collections

or for non-binding parameters to functions or actions.

Some of these types allow facets, defined in section “Type Facets”.

See rule primitiveLiteral in [OData-ABNF] for the representation of primitive type values in URLs

and [OData-JSON] for the representation in requests and responses.

3.4 Built-In Abstract Types

The following built-in abstract types can be used within a model:

• Edm.PrimitiveType

• Edm.ComplexType

• Edm.EntityType

• Edm.Untyped

Conceptually, these are the abstract base types for primitive types (including type definitions and
enumeration types), complex types, entity types, or any type or collection of types, respectively, and can
be used anywhere a corresponding concrete type can be used, except:

• Edm.EntityType

o cannot be used as the type of a singleton in an entity container because it doesn’t define
a structure, which defeats the purpose of a singleton.

o cannot be used as the type of an entity set because all entities in an entity set must have
the same key fields to uniquely identify them within the set.

o cannot be the base type of an entity type or complex type.

• Edm.ComplexType

o cannot be the base type of an entity type or complex type.

• Edm.PrimitiveType

o cannot be used as the type of a key property of an entity type. or as the underlying type
of an enumeration type.

o cannot be used as the underlying type of a type definition or enumeration typein a CSDL
document with a version of 4.0.

o can be used as the underlying type of a type definition in a CSDL document with a
version of 4.01 or greater.

• Edm.Untyped

o cannot be returned in a payload with an OData-Version header of 4.0. Services

should treat untyped properties as dynamic properties in 4.0 payloads.

o cannot be used as the type of a key property of an entity type.

o cannot be the base type of an entity type or complex type.

o cannot be used as the underlying type of a type definition or enumeration type.

• Collection(Edm.PrimitiveType)

o cannot be used as the type of a property or term.

o cannot be used as the type of a parameter or the return type of aan action or function.

• Collection(Edm.Untyped)

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 15 of 89

o cannot be returned in a payload with an OData-Version header of 4.0. Services

should treat untyped properties as dynamic properties in 4.0 payloads.

3.5 Built-In Types for defining Vocabulary Terms

Vocabulary terms can, in addition, use

• Edm.AnnotationPath

• Edm.PropertyPath

• Edm.NavigationPropertyPath

• Edm.AnyPropertyPath (Edm.PropertyPath or Edm.NavigationPropertyPath)

• Edm.ModelElementPath (any model element, including Edm.AnnotationPath,

Edm.NavigationPropertyPath, and Edm.PropertyPath)

as the type of a primitive term, or the type of a property of a complex type (recursively) that is exclusively
used as the type of a term. See section “Path Expressions” for details.

3.6 Annotations

Many parts of the model can be decorated with additional information using annotations. Annotations are
identified by their term name and an optional qualifier that allows applying the same term multiple times to
the same model element.

A model element MUST NOT specify more than one annotation for a given combination of term and
qualifier.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 16 of 89

4 CSDL JSON Document

Document Object

A CSDL JSON document consists of a single JSON object. This document object MUST
contain the member $Version.

The document object MAY contain the member $Reference to reference other CSDL

documents.

It also MAY contain members for schemas.

If the CSDL JSON document is the metadata document of an OData service, the document
object MUST contain the member $EntityContainer.

$Version

The value of $Version is a string containing either 4.0 or 4.01.

$EntityContainer

The value of $EntityContainer is value is the namespace-qualified name of the entity

container of that service. This is the only place where a model element MUST be referenced
with its namespace-qualified name and use of the alias-qualified name is not allowed.

Example 2:

{

 "$Version": "4.01",

 "$EntityContainer": "ODataDemoorg.example.DemoService",

 …

}

4.1 Reference

A reference to an external CSDL document allows to bring part of the referenced document’s content into
the scope of the referencing document.

A reference MUST specify a URI that uniquely identifies the referenced document, so two references
MUST NOT specify the same URI. The URI SHOULD be a URL that locates the referenced document. If
the URI is not dereferencable it SHOULD identify a well-known schema. The URI MAY be absolute or
relative URI; relative URLs are relative to the URL of the document containing the reference, or relative to
a base URL specified in a format-specific way.

A reference MAY be annotated.

The Core.SchemaVersionCore.SchemaVersion annotation, defined in [OData-VocCore], MAY be

used to indicate a particular version of the referenced document. If the
Core.SchemaVersionCore.SchemaVersion annotation is present, the $schemaversion system

query option, defined [OData-Protocol], SHOULD be used when retrieving the referenced schema
document.

$Reference

The value of $Reference is an object that contains one member per referenced CSDL

document. The name of the pair is a URI for the referenced document. The URI MAY be relative
to the document containing the $Reference. The value of each member is a reference object.

Reference Object

The reference object MAY contain the members $Include and $IncludeAnnotations as

well as annotations.

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#SchemaVersion
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#SchemaVersion

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 17 of 89

Example 3: references to other CSDL documents

{

 "$Version": "4.0",

 …

 "$Reference": {

 "http://vocabs.odata.org/capabilities/v1": {

 …

 },

 "http://vocabs.odata.org/core/v1": {

 …

 },

 "http://example.org/display/v1": {

 …

 }

 },

 …

}

4.2 Included Schema

A reference MAY include zero or more schemas from the referenced document.

The included schemas are identified via their namespace. The same namespace MUST NOT be included
more than once, even if it is declared in more than one referenced document.

When including a schema, a simple identifier value MAY be specified as an alias for the schema that is
used in qualified names instead of the namespace. For example, an alias of display might be assigned

to the namespace org.example.vocabularies.display. An alias-qualified name is resolved to a

fully qualified name by examining aliases for included schemas and schemas defined within the
document.

If an included schema specifies an alias, the alias MUST be used in qualified names throughout
the document to identify model elements of the included schema. A mixed use of namespace-
qualified names and alias-qualified names is not allowed.

Aliases are document-global, so all schemas defined within or included into a document MUST have
different aliases, and aliases MUST differ from the namespaces of all schemas defined within or included
into a document.

The alias MUST NOT be one of the reserved values Edm, odata, System, or Transient.

An alias is only valid within the document in which it is declared; a referencing document may define its
own aliases for included schemas.

$Include

The value of $Include is an array. Array items are objects that MUST contain the member

$Namespace and MAY contain the member $Alias.

The item objects MAY contain annotations.

$Namespace

The value of $Namespace is a string containing the namespace of the included schema.

$Alias

The value of $Alias is a string containing the alias for the included schema.

Example 4: references to entity models containing definitions of vocabulary terms

{

 "$Version": "4.0",

 …

 "$Reference": {

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 18 of 89

 "http://vocabs.odata.org/capabilities/v1": {

 "$Include": [

 {

 "$Namespace": "Org.OData.Capabilities.V1",

 "$Alias": "Capabilities"

 }

]

 },

 "http://vocabs.odata.org/core/v1": {

 "$Include": [

 {

 "$Namespace": "Org.OData.Core.V1",

 "$Alias": "Core",

 "@Core.DefaultNamespace": true

 }

]

 },

 "http://example.org/display/v1": {

 "$Include": [

 {

 "$Namespace": "org.example.display",

 "$Alias": "UI"

 }

]

 }

 },

 …

}

4.3 Included Annotations

In addition to including whole schemas with all model constructs defined within that schema, annotations
can be included with more flexibility.

Annotations are selectively included by specifying the namespace of the annotations’ term. Consumers
can opt not to inspect the referenced document if none of the term namespaces is of interest for the
consumer.

In addition, the qualifier of annotations to be included MAY be specified. For instance, a service author
might want to supply a different set of annotations for various device form factors. If a qualifier is
specified, only those annotations from the specified term namespace with the specified qualifier (applied
to a model element of the target namespace, if present) SHOULD be included. If no qualifier is specified,
all annotations within the referenced document from the specified term namespace (taking into account
the target namespace, if present) SHOULD be included.

The qualifier also provides consumers insight about what qualifiers are present in the referenced
document. If the consumer is not interested in that particular qualifier, the consumer can opt not to inspect
the referenced document.

In addition, the namespace of the annotations’ target MAY be specified. If a target namespace is
specified, only those annotations which apply a term form the specified term namespace to a model
element of the target namespace (with the specified qualifier, if present) SHOULD be included. If no
target namespace is specified, all annotations within the referenced document from the specified term
namespace (taking into account the qualifier, if present) SHOULD be included.

The target namespace also provides consumers insight about what namespaces are present in the
referenced document. If the consumer is not interested in that particular target namespace, the consumer
can opt not to inspect the referenced document.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 19 of 89

$IncludeAnnotations

The value of $IncludeAnnotations is an array. Array items are objects that MUST contain

the member $TermNamespace and MAY contain the members $Qualifier and

$TargetNamespace.

$TermNamespace

The value of $TermNamespace is a namespace.

$Qualifier

The value of $Qualifier is a simple identifier.

$TargetNamespace

The value of $TargetNamespace is a namespace.

Example 5: reference documents that contain annotations

{

 "$Version": "4.01",

 …

 "$Reference": {

 "http://odata.org/ann/b": {

 "$IncludeAnnotations": [

 {

 "$TermNamespace": "org.example.validation"

 },

 {

 "$TermNamespace": "org.example.display",

 "$Qualifier": "Tablet"

 },

 {

 "$TermNamespace": "org.example.hcm",

 "$TargetNamespace": "com.example.Sales"

 },

 {

 "$TermNamespace": "org.example.hcm",

 "$Qualifier": "Tablet",

 "$TargetNamespace": "com.example.Person"

 }

]

 }

 },

 …

}

The following annotations from http://odata.org/ann/b are included:

• Annotations that use a term from the org.example.validation namespace, and

• Annotations that use a term from the org.example.display namespace and specify a Tablet

qualifier and

• Annotations that apply a term from the org.example.hcm namespace to an element of the

com.example.Sales namespace and

• Annotations that apply a term from the org.example.hcm namespace to an element of the

com.example.Person namespace and specify a Tablet qualifier.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 20 of 89

5 Schema
One or more schemas describe the entity model exposed by an OData service. The schema acts as a
namespace for elements of the entity model such as entity types, complex types, enumerations and
terms.

A schema is identified by a namespace. Schema namespaces MUST be unique within the scope of a
document, and SHOULD be globally unique. A schema cannot span more than one document.

The schema’s namespace is combined with the name of elements in the schema to create unique
qualified names, so identifiers that are used to name types MUST be unique within a namespace to
prevent ambiguity.

Names are case-sensitive, but service authors SHOULD NOT choose names that differ only in case.

The namespace MUST NOT be one of the reserved values Edm, odata, System, or Transient.

Schema Object

A schema is represented as a member of the document object whose name is the schema
namespace. Its value is an object that MAY contain the members $Alias and $Annotations.

The schema object MAY contain members representing entity types, complex types,
enumeration types, type definitions, actions, functions, terms, and an entity container.

The schema object MAY also contain annotations that apply to the schema itself.

5.1 Alias

A schema MAY specify an alias which MUST be a simple identifier.

If a schema specifies an alias, the alias MUST be used instead of the namespace within
qualified names throughout the document to identify model elements of that schema. A mixed
use of namespace-qualified names and alias-qualified names is not allowed.

Aliases are document-global, so all schemas defined within or included into a document MUST have
different aliases., and aliases MUST differ from the namespaces of all schemas defined within or included
into a document. Aliases defined by a schema can be used throughout the containing document and are
not restricted to the schema that defines them.

The alias MUST NOT be one of the reserved values Edm, odata, System, or Transient.

$Alias

The value of $Alias is a string containing the alias for the schema.

Example 6: document defining a schema org.example with an alias and a description for the schema

{

 "$Version": "4.01",

 …

 "org.example": {

 "$Alias": "self",

 "@Core.Description": "Example schema",

 …

 },

 …

}

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 21 of 89

5.2 Annotations with External Targeting

$Annotations

The value of $Annotations is an object with one member per annotation target. The member

name is a path identifying the annotation target, the member value is an object containing
annotations for that target.

Example 7: annotations targeting the Person type with qualifier Tablet

"org.example": {

 "$Alias": "self",

 "$Annotations": {

 "org.exampleself.Person": {

 "@Core.Description#Tablet": {"Dummy",

 …

 }

 }

},

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 22 of 89

6 Entity Type
Entity types are nominal structured types with a key that consists of one or more references to structural
properties. An entity type is the template for an entity: any uniquely identifiable record such as a customer
or order.

The entity type’s name is a simple identifier that MUST be unique within its schema.

An entity type can define two types of properties. A structural property is a named reference to a primitive,
complex, or enumeration type, or a collection of primitive, complex, or enumeration types. A navigation
property is a named reference to another entity type or collection of entity types.

All properties MUST have a unique name within an entity type. Properties MUST NOT have the same
name as the declaring entity type. They MAY have the same name as one of the direct or indirect base
types or derived types.

Entity Type Object

An entity type is represented as a member of the schema object whose name is the unqualified
name of the entity type and whose value is an object.

The entity type object MUST contain the member $Kind with a string value of EntityType.

It MAY contain the members $BaseType, $Abstract, $OpenType, $HasStream, and $Key.

It also MAY contain members representing structural properties and navigation properties as
well as annotations.

Example 8: a simple entity type

"Employee": {

 "$Kind": "EntityType",

 "$Key": [

 "ID"

],

 "ID": {},

 "FirstName": {},

 "LastName": {},

 "Manager": {

 "$Kind": "NavigationProperty",

 "$Nullable": true,

 "$Type": "self.Manager"

 }

}

6.1 Derived Entity Type

An entity type can inherit from another entity type by specifying it as its base type.

An entity type inherits the key as well as structural and navigation properties of its base type.

An entity type MUST NOT introduce an inheritance cycle by specifying a base type.

$BaseType

The value of $BaseType is the qualified name of the base type.

Example 9: a derived entity type based on the previous example

"Manager": {

 "$Kind": "EntityType",

 "$BaseType": "self.Employee",

 "AnnualBudget": {

 "$Nullable": true,

 "$Type": "Edm.Decimal",

 "$Scale": 0

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 23 of 89

 },

 "Employees": {

 "$Kind": "NavigationProperty",

 "$Collection": true,

 "$Type": "self.Employee"

 }

}

Note: the derived type has the same name as one of the properties of its base type.

6.2 Abstract Entity Type

An entity type MAY indicate that it is abstract and cannot have instances.

For OData 4.0 responses a non-abstract entity type MUST define a key or derive from a base type with a
defined key.

An abstract entity type MUST NOT inherit from a non-abstract entity type.

$Abstract

The value of $Abstract is one of the Boolean literals true or false. Absence of the member

means false.

6.3 Open Entity Type

An entity type MAY indicate that it is open and allows clients to add properties dynamically to instances of
the type by specifying uniquely named property values in the payload used to insert or update an instance
of the type.

An entity type derived from an open entity type MUST indicate that it is also open.

Note: structural and navigation properties MAY be returned by the service on instances of any structured
type, whether or not the type is marked as open. Clients MUST always be prepared to deal with additional
properties on instances of any structured type, see [OData-Protocol].

$OpenType

The value of $OpenType is one of the Boolean literals true or false. Absence of the member

means false.

6.4 Media Entity Type

An entity type that does not specify a base type MAY indicate that it is a media entity type. Media entities
are entities that represent a media stream, such as a photo. Use a media entity if the out-of-band stream
is the main topic of interest and the media entity is just additional structured information attached to the
stream. Use a normal entity with one or more properties of type Edm.Stream if the structured data of the

entity is the main topic of interest and the stream data is just additional information attached to the
structured data. For more information on media entities see [OData-Protocol].

An entity type derived from a media entity type MUST indicate that it is also a media entity type.

Media entity types MAY specify a list of acceptable media types using an annotation with term
Core.AcceptableMediaTypesCore.AcceptableMediaTypes,, see [OData-VocCore].

$HasStream

The value of $HasStream is one of the Boolean literals true or false. Absence of the

member means false.

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#AcceptableMediaTypes

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 24 of 89

6.5 Key

An entity is uniquely identified within an entity set by its key. A key MAY be specified if the entity type
does not specify a base type that already has a key declared.

In order to be specified as the type of an entity set or a collection-valued containment navigation property,
the entity type MUST either specify a key or inherit its key from its base type.

In OData 4.01 responses entity types used for singletons or single-valued navigation properties do not
require a key. In OData 4.0 responses entity types used for singletons or single-valued navigation
properties MUST have a key defined.

An entity type (whether or not it is marked as abstract) MAY define a key only if it doesn’t inherit one.

An entity type’s key refers to the set of properties whose values uniquely identify an instance of the entity
type within an entity set. The key MUST consist of at least one property.

Key properties MUST NOT be nullable and MUST be typed with an enumeration type, one of the
following primitive types, or a type definition based on one of these primitive types:

• Edm.Boolean

• Edm.Byte

• Edm.Date

• Edm.DateTimeOffset

• Edm.Decimal

• Edm.Duration

• Edm.Guid

• Edm.Int16

• Edm.Int32

• Edm.Int64

• Edm.SByte

• Edm.String

• Edm.TimeOfDay

Key property values MAY be language-dependent, but their values MUST be unique across all languages
and the entity ids (defined in [OData-Protocol]) MUST be language independent.

A key property MUST be a non-nullable primitive property of the entity type itself or a, including non-
nullable primitive propertyproperties of a single-valued, non-nullable single-valued complex or navigation
property (properties, recursively) of the entity type. Navigation properties MAY only be used in OData
4.01 responses.

If the key property is a property of a complex or navigation property (recursively),In OData 4.01 the key
properties of a directly related entity type MAY also be part of the key if the navigation property is single-
valued and not nullable. This includes navigation properties of non-nullable single-valued complex
properties (recursively) of the entity type. If a key property of a related entity type is part of the key, all key
properties of the related entity type MUST also be part of the key.

If the key property is a property of a complex property (recursively) or of a directly related entity type, the
key MUST specify an alias for that property that MUST be a simple identifier and MUST be unique within
the set of aliases, structural and navigation properties of the declaring entity type and any of its base
types.

An alias MUST NOT be defined if the key property is a primitive property of the entity type itself.

For key properties that are a property of a complex or navigation property, the alias MUST be used in the
key predicate of URLs instead of the path to the property because the required percent-encoding of the
forward slash separating segments of the path to the property would make URL construction and parsing

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 25 of 89

rather complicated. The alias MUST NOT be used in the query part of URLs, where paths to properties
don’t require special encoding and are a standard constituent of expressions anyway.

$Key

The value of $Key is an array with one item per key property.

Key properties without a key alias are represented as strings containing the property name.

Key properties with a key alias are represented as objects with one member whose name is the
key alias and whose value is a string containing the path to the property.

Example 10: entity type with a simple key

"Category": {

 "$Kind": "EntityType",

 "$Key": [

 "ID"

],

 "ID": {

 "$Type": "Edm.Int32"

 },

 "Name": {

 "$Nullable": true,

 "@Core.IsLanguageDependent": true

 }

}

Example 11: entity type with a simple key referencing a property of a complex type

"Category": {

 "$Kind": "EntityType",

 "$Key": [

 {

 "EntityInfoID": "Info/ID"

 }

],

 "Info": {

 "$Type": "self.EntityInfo"

 },

 "Name": {

 "$Nullable": true

 }

},

"EntityInfo": {

 "$Kind": "ComplexType",

 "ID": {

 "$Type": "Edm.Int32"

 },

 "Created": {

 "$Type": "Edm.DateTimeOffset",

 "$Precision": 0

 }

}

Example 12: entity type with a composite key

"OrderLine": {

 "$Kind": "EntityType",

 "$Key": [

 "OrderID",

 "LineNumber"

],

 "OrderID": {

 "$Type": "Edm.Int32"

 },

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 26 of 89

 "LineNumber": {

 "$Type": "Edm.Int32"

 }

}

Example 13 (based on example 11): requests to an entity set Categories of type Category must use the alias

GET http://host/service/Categories(EntityInfoID=1)

Example 14 (based on example 11): in a query part the value assigned to the name attribute must be used

GET http://example.org/OData.svc/Categories?$filter=Info/ID le 100

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 27 of 89

7 Structural Property
A structural property is a property of a structured type that has one of the following types:

• Primitive type

• Complex type

• Enumeration type

• A collection of one of the above

A structural property MUST specify a unique name as well as a type.

The property’s name MUST be a simple identifier. It is used when referencing, serializing or deserializing
the property. It MUST be unique within the set of structural and navigation properties of the declaring
structured type, and MUST NOT match the name of any navigation property in any of its base types. If a
structural property with the same name is defined in any of this type’s base types, then the property’s type
MUST be a type derived from the type specified for the property of the base type, and constrains this
property to be of the specified subtype for instances of this structured type. The name MUST NOT match
the name of any structural or navigation property of any of this type’s base types for OData 4.0
responses.

Names are case-sensitive, but service authors SHOULD NOT choose names that differ only in case.

Property Object

Structural properties are represented as members of the object representing a structured type.
The member name is the property name, the member value is an object.

The property object MAY contain the member $Kind with a string value of Property. This

member SHOULD be omitted to reduce document size.

It MAY contain the member $Type, $Collection, $Nullable, $MaxLength, $Unicode,

$Precision, $Scale, $SRID, and $DefaultValue.

It also MAY contain annotations.

Example 15: complex type with two properties Dimension and Length

"Measurement": {

 "$Kind": "ComplexType",

 "Dimension": {

 "$MaxLength": 50,

 "$DefaultValue": "Unspecified"

 },

 "Length": {

 "$Type": "Edm.Decimal",

 "$Precision": 18,

 "$Scale": 2

 }

}

7.1 Type

The property’s type MUST be a primitive type, complex type, or enumeration type in scope, or a collection
of one of these types.

A collection-valued property MAY be annotated with the Core.OrderedCore.Ordered term, defined in

[OData-VocCore]), to specify that it supports a stable ordering.

A collection-valued property MAY be annotated with the
Core.PositionalInsertCore.PositionalInsert term, defined in [OData-VocCore]), to specify

that it supports inserting items into a specific ordinal position.

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#Ordered
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#PositionalInsert

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 28 of 89

$Type and $Collection

For single-valued properties the value of $Type is the qualified name of the property’s type.

For collection-valued properties the value of $Type is the qualified name of the property’s item

type, and the member $Collection MUST be present with the literal value true.

Absence of the $Type member means the type is Edm.String. This member SHOULD be

omitted for string properties to reduce document size.

Example 16: property Units that can have zero or more strings as its value

"Units": {

 "$Collection": true

}

7.2 Type Facets

Facets modify or constrain the acceptable values of a property.

For single-valued properties the facets apply to the value of the property. For collection-valued properties
the facets apply to the items in the collection.

7.2.1 Nullable

A Boolean value specifying whether a value is required for the property can have the value null.

$Nullable

The value of $Nullable is one of the Boolean literals true or false. Absence of the member

means false.

For single-valued properties the value true means that the property allows the null value.

For collection-valued properties the property value will always be a collection that MAY be
empty. In this case $Nullable applies to items of the collection and specifies whether the

collection MAY contain null values.

7.2.2 MaxLength

A positive integer value specifying the maximum length of a binary, stream or string value. For binary or
stream values this is the octet length of the binary data, for string values it is the character length.

If no maximum length is specified, clients SHOULD expect arbitrary length.

$MaxLength

The value of $MaxLength is a positive integer.

Note: [OData-CSDLXML] defines a symbolic value max that is only allowed in OData 4.0

responses. This symbolic value is not allowed in CDSL JSON documents at all. Services MAY
instead specify the concrete maximum length supported for the type by the service, or omit the
member entirely.

7.2.3 Precision

For a decimal value: the maximum number of significant decimal digits of the property’s value; it MUST be
a positive integer.

For a temporal value (datetime-with-timezone-offset, duration, or time-of-day): the number of decimal
places allowed in the seconds portion of the value; it MUST be a non-negative integer between zero and
twelve.

Note: service authors SHOULD be aware that some clients are unable to support a precision greater than
28 for decimal properties and 7 for temporal properties. Client developers MUST be aware of the potential

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 29 of 89

for data loss when round-tripping values of greater precision. Updating via PATCH and exclusively

specifying modified properties will reduce the risk for unintended data loss.

Note: duration properties supporting a granularity less than seconds (e.g. minutes, hours, days) can be
annotated with term Measures.DurationGranularity, see [OData-VocMeasures].

$Precision

The value of $Precision is a number.

Absence of $Precision means arbitrary precision.

Example 17: Precision facet applied to the DateTimeOffset type

"SuggestedTimes": {

 "$Type": Edm.DateTimeOffset",

 "$Collection": true,

 "$Precision": 6

}

7.2.4 Scale

A non-negative integer value specifying the maximum number of digits allowed to the right of the decimal
point, or one of the symbolic values floating or variable.

The value floating means that the decimal property represents a decimal floating-point number whose

number of significant digits is the value of the Precision facet. OData 4.0 responses MUST NOT

specify the value floating.

The value variable means that the number of digits to the right of the decimal point can vary from zero

to the value of the Precision facet.

An integer value means that the number of digits to the right of the decimal point may vary from zero to
the value of the Scale facet, and the number of digits to the left of the decimal point may vary from one

to the value of the Precision facet minus the value of the Scale facet. If Precision is equal to

Scale, a single zero MUST precede the decimal point.

The value of Scale MUST be less than or equal to the value of Precision.

Note: if the underlying data store allows negative scale, services may use a Precision with the absolute

value of the negative scale added to the actual number of significant decimal digits, and client-provided
values may have to be rounded before being stored.

$Scale

The value of $Scale is a number or a string with one of the symbolic values floating or

variable.

Services SHOULD use lower-case values; clients SHOULD accept values in a case-insensitive
manner.

Absence of $Scale means variable.

Example 18: Precision=3 and Scale=2.

Allowed values: 1.23, 0.23, 3.14 and 0.7, not allowed values: 123, 12.3

"Amount32": {

 "$Nullable": true,

 "$Type": "Edm.Decimal",

 "$Precision": 3,

 "$Scale": 2

}

Example 19: Precision=2 equals Scale.

Allowed values: 0.23, 0.7, not allowed values: 1.23, 1.2

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Measures.V1.md#DurationGranularity

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 30 of 89

"Amount22": {

 "$Nullable": true,

 "$Type": "Edm.Decimal",

 "$Precision": 2,

 "$Scale": 2

}

Example 20: Precision=3 and a variable Scale.

Allowed values: 0.123, 1.23, 0.23, 0.7, 123 and 12.3, not allowed would bevalues: 12.34, 1234 and 123.4 due to the
limited precision.

"Amount3v": {

 "$Nullable": true,

 "$Type": "Edm.Decimal",

 "$Precision": 3

}

Example 21: Precision=7 and a floating Scale.

Allowed values: -1.234567e3, 1e-101, 9.999999e96, not allowed would bevalues: 1e-102 and 1e97 due to the limited
precision.

"Amount7f": {

 "$Nullable": true,

 "$Type": "Edm.Decimal",

 "$Precision": 3,

 "$Scale": "floating"

}

7.2.5 Unicode

For a string property the Unicode facet indicates whether the property might contain and accept string

values with Unicode characters beyond the ASCII character set. The value false indicates that the

property will only contain and accept string values with characters limited to the ASCII character set.

If no value is specified, the Unicode facet defaults to true.

$Unicode

The value of $Unicode is one of the Boolean literals true or false. Absence of the member

means true.

7.2.6 SRID

For a geometry or geography property the SRID facet identifies which spatial reference system is applied

to values of the property on type instances.

The value of the SRID facet MUST be a non-negative integer or the special value variable. If no value

is specified, the facet defaults to 0 for Geometry types or 4326 for Geography types.

The valid values of the SRID facet and their meanings are as defined by the European Petroleum Survey

Group [EPSG].

$SRID

The value of $SRID is a string containing a number or the symbolic value variable.

7.2.7 Default Value

A primitive or enumeration property MAY define a default value that is used if the property is not explicitly
represented in an annotation or the body of a request or response.

If no value is specified, the client SHOULD NOT assume a default value.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 31 of 89

$DefaultValue

The value of $DefaultValue is the type-specific JSON representation of the default value of

the property, see [OData-JSON]. For properties of type Edm.Decimal and Edm.Int64 the

representation depends on the media type parameter IEEE754Compatible.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 32 of 89

8 Navigation Property
A navigation property allows navigation to related entities. It MUST specify a unique name as well as a
type.

The navigation property’s name MUST be a simple identifier. It is used when referencing, serializing or
deserializing the navigation property. It MUST be unique within the set of structural and navigation
properties of the declaring structured type, and MUST NOT match the name of any structural property in
any of its base types. If a navigation property with the same name is defined in any of this type’s base
types, then the navigation property’s type MUST be a type derived from the type specified for the
navigation property of the base type, and constrains this navigation property to be of the specified
subtype for instances of this structured type. The name MUST NOT match the name of any structural or
navigation property of any of this type’s base types for OData 4.0 responses.

Names are case-sensitive, but service authors SHOULD NOT choose names that differ only in case.

Navigation Property Object

Navigation properties are represented as members of the object representing a structured type.
The member name is the property name, the member value is an object.

The navigation property object MUST contain the member $Kind with a string value of

NavigationProperty.

It MUST contain the member $Type, and it MAY contain the members $Collection,

$Nullable, $Partner, $ContainsTarget, $ReferentialConstraint, and $OnDelete.

It also MAY contain annotations.

Example 22: the Product entity type has a navigation property to a Category, which has a navigation link back to

one or more products

"Product": {

 "$Kind": "EntityType",

 …

 "Category": {

 "$Kind": "NavigationProperty",

 "$Type": "self.Category",

 "$Partner": "Products",

 "$ReferentialConstraint": {

 "CategoryID": "ID"

 }

 },

 "Supplier": {

 "$Kind": "NavigationProperty",

 "$Type": "self.Supplier"

 }

},

"Category": {

 "$Kind": "EntityType",

 …

 "Products": {

 "$Kind": "NavigationProperty",

 "$Collection": true,

 "$Type": "self.Product",

 "$Partner": "Category",

 "$OnDelete": "Cascade",

 "$OnDelete@Core.Description": "Delete all related entities"

 }

}

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 33 of 89

8.1 Navigation Property Type

The navigation property’s type MUST be an entity type in scope, the abstract type Edm.EntityType, or

a collection of one of these types.

If the type is a collection, an arbitrary number of entities can be related. Otherwise there is at most one
related entity.

The related entities MUST be of the specified entity type or one of its subtypes.

For a collection-valued containment navigation property the specified entity type MUST have a key
defined.

A collection-valued navigation property MAY be annotated with the Core.OrderedCore.Ordered term,

defined in [OData-VocCore]), to specify that it supports a stable ordering.

A collection-valued navigation property MAY be annotated with the
Core.PositionalInsertCore.PositionalInsert term, defined in [OData-VocCore]), to specify

that it supports inserting items into a specific ordinal position.

$Type and $Collection

For single-valued navigation properties the value of $Type is the qualified name of the

navigation property’s type.

For collection-valued navigation properties the value of $Type is the qualified name of the

navigation property’s item type, and the member $Collection MUST be present with the

literal value true.

8.2 Nullable Navigation Property

A Boolean value specifying whether the declaring type MAY have no related entity. If false, instances of
the declaring structured type MUST always have a related entity.

Nullable MUST NOT be specified for a collection-valued navigation property, a collection is allowed to
have zero items.

$Nullable

The value of $Nullable is one of the Boolean literals true or false. Absence of the member

means false.

8.3 Partner Navigation Property

A navigation property of an entity type MAY specify a partner navigation property. Navigation properties
of complex types MUST NOT specify a partner.

If specified, the partner navigation property is identified by a path relative to the entity type specified as
the type of the navigation property. This path MUST lead to a navigation property defined on that type or
a derived type. The path MAY traverse complex types, including derived complex types, but MUST NOT
traverse any navigation properties. The type of the partner navigation property MUST be the declaring
entity type of the current navigation property or one of its parent entity types.

If the partner navigation property is single-valued, it MUST lead back to the source entity from all related
entities. If the partner navigation property is collection-valued, the source entity MUST be part of that
collection.

If no partner navigation property is specified, no assumptions can be made as to whether one of the
navigation properties on the target type will lead back to the source entity.

If a partner navigation property is specified, this partner navigation property MUST either specify the
current navigation property as its partner to define a bi-directional relationship or it MUST NOT specify a
partner navigation property. The latter can occur if the partner navigation property is defined on a
complex type, or if the current navigation property is defined on a type derived from the type of the
partner navigation property.

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#Ordered
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#PositionalInsert

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 34 of 89

$Partner

The value of $Partner is a string containing the path to the partner navigation property.

8.4 Containment Navigation Property

A navigation property MAY indicate that instances of its declaring structured type contain the targets of
the navigation property, in which case the navigation property is called a containment navigation property.

Containment navigation properties define an implicit entity set for each instance of its declaring structured
type. This implicit entity set is identified by the read URL of the navigation property for that structured type
instance.

Instances of the structured type that declares the navigation property, either directly or indirectly via a
property of complex type, contain the entities referenced by the containment navigation property. The
canonical URL for contained entities is the canonical URL of the containing instance, followed by the path
segment of the navigation property and the key of the contained entity, see [OData-URL].

Entity types used in collection-valued containment navigation properties MUST have a key defined.

For items of an ordered collection of complex types (those annotated with the
Core.OrderedCore.Ordered term defined in [OData-VocCore]), the canonical URL of the item is the

canonical URL of the collection appended with a segment containing the zero-based ordinal of the item.
Items within in an unordered collection of complex types do not have a canonical URL. Services that
support unordered collections of complex types declaring a containment navigation property, either
directly or indirectly via a property of complex type, MUST specify the URL for the navigation link within a
payload representing that item, according to format-specific rules.

OData 4.0 responses MUST NOT specify a complex type declaring a containment navigation property as
the type of a collection-valued property.

An entity cannot be referenced by more than one containment relationship, and cannot both belong to an
entity set declared within the entity container and be referenced by a containment relationship.

Containment navigation properties MUST NOT be specified as the last path segment in the path of a
navigation property binding.

When a containment navigation property navigates between entity types in the same inheritance
hierarchy, the containment is called recursive.

Containment navigation properties MAY specify a partner navigation property. If the containment is
recursive, the relationship defines a tree, thus the partner navigation property MUST be nullable (for the
root of the tree) and single-valued (for the parent of a non-root entity). If the containment is not recursive,
the partner navigation property MUST NOT be nullable.

An entity type inheritance chain MUST NOT contain more than one navigation property with a partner
navigation property that is a containment navigation property.

Note: without a partner navigation property, there is no reliable way for a client to determine which entity
contains a given contained entity. This may lead to problems for clients if the contained entity can also be
reached via a non-containment navigation path.

$ContainsTarget

The value of $ContainsTarget is one of the Boolean literals true or false. Absence of the

member means false.

8.5 Referential Constraint

A single-valued navigation property MAY define one or more referential constraints. A referential
constraint asserts that the dependent property (the property defined on the structured type declaring the
navigation property) MUST have the same value as the principal property (the referenced property
declared on the entity type that is the target of the navigation).

The type of the dependent property MUST match the type of the principal property, or both types MUST
be complex types.

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#Ordered

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 35 of 89

If the principle property references an entity, then the dependent property must reference the same entity.

If the principle property’s value is a complex type instance, then the dependent property’s value must be a
complex type instance with the same properties, each with the same values.

If the navigation property on which the referential constraint is defined is nullable, or the principal property
is nullable, then the dependent property MUST also be nullable. If both the navigation property and the
principal property are not nullable, then the dependent property MUST NOT be nullable.

$ReferentialConstraint

The value of $ReferentialConstraint is an object with one member per referential

constraint. The member name is the path to the dependent property, this path is relative to the
structured type declaring the navigation property. The member value is a string containing the
path to the principal property, this path is relative to the entity type that is the target of the
navigation property.

It also MAY contain annotations. These are prefixed with the path of the dependent property of
the annotated referential constraint.

Example 23: the category must exist for a product in that category to exist. The CategoryID of the product is

identical to the ID of the category, and the CategoryKind property of the product is identical to the Kind property of

the category.

"Product": {

 "$Kind": "EntityType",

 …

 "CategoryID": {},

 "CategoryKind": {},

 "Category": {

 "$Kind": "NavigationProperty",

 "$Type": "self.Category",

 "$Partner": "Products",

 "$ReferentialConstraint": {

 "CategoryID": "ID",

 "CategoryKind": "Kind"

 "CategoryKind@Core.Description": "Referential Constraint to non-key

property"

 }

 }

},

"Category": {

 "$Kind": "EntityType",

 "$Key": [

 "ID"

],

 "ID": {},

 "Kind": {

 "$Nullable": true

 },

 …

}

8.6 On-Delete Action

A navigation property MAY define an on-delete action that describes the action the service will take on
related entities when the entity on which the navigation property is defined is deleted.

The action can have one of the following values:

• Cascade, meaning the related entities will be deleted if the source entity is deleted,

• None, meaning a DELETE request on a source entity with related entities will fail,

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 36 of 89

• SetNull, meaning all properties of related entities that are tied to properties of the source entity

via a referential constraint and that do not participate in other referential constraints will be set to
null,

• SetDefault, meaning all properties of related entities that are tied to properties of the source

entity via a referential constraint and that do not participate in other referential constraints will be
set to their default value.

If no on-delete action is specified, the action taken by the service is not predictable by the client and could
vary per entity.

$OnDelete

The value of $OnDelete is a string with one of the values Cascade, None, SetNull, or

SetDefault.

Annotations for $OnDelete are prefixed with $OnDelete.

Example 24: deletion of a category implies deletion of the related products in that category

"Category": {

 "$Kind": "EntityType",

 …

 "Products": {

 "$Kind": "NavigationProperty",

 "$Collection": true,

 "$Type": "self.Product",

 "$Partner": "Category",

 "$OnDelete": "Cascade",

 "$OnDelete@Core.Description": "Delete all products in this category"

 }

}

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 37 of 89

9 Complex Type
Complex types are keyless nominal structured types. The lack of a key means that instances of complex
types cannot be referenced, created, updated or deleted independently of an entity type. Complex types
allow entity models to group properties into common structures.

The complex type’s name is a simple identifier that MUST be unique within its schema.

A complex type can define two types of properties. A structural property is a named reference to a
primitive, complex, or enumeration type, or a collection of primitive, complex, or enumeration types. A
navigation property is a named reference to an entity type or a collection of entity types.

All properties MUST have a unique name within a complex type. Properties MUST NOT have the same
name as the declaring complex type. They MAY have the same name as one of the direct or indirect base
types or derived types.

Complex Type Object

A complex type is represented as a member of the schema object whose name is the
unqualified name of the complex type and whose value is an object.

The complex type object MUST contain the member $Kind with a string value of

ComplexType. It MAY contain the members $BaseType, $Abstract, and $OpenType. It

also MAY contain members representing structural properties and navigation properties as well
as annotations.

Example 25: a complex type used by two entity types

"Dimensions": {

 "$Kind": "ComplexType",

 "Height": {

 "$Type": "Edm.Decimal",

 "$Scale": 0

 },

 "Weight": {

 "$Type": "Edm.Decimal",

 "$Scale": 0

 },

 "Length": {

 "$Type": "Edm.Decimal",

 "$Scale": 0

 }

},

"Product": {

 …

 "ProductDimensions": {

 "$Nullable": true,

 "$Type": "self.Dimensions"

 },

 "ShippingDimensions": {

 "$Nullable": true,

 "$Type": "self.Dimensions"

 }

},

"ShipmentBox": {

 …

 "Dimensions": {

 "$Nullable": true,

 "$Type": "self.Dimensions"

 }

}

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 38 of 89

9.1 Derived Complex Type

A complex type can inherit from another complex type by specifying it as its base type.

A complex type inherits the structural and navigation properties of its base type.

A complex type MUST NOT introduce an inheritance cycle by specifying a base type.

The rules for annotations of derived complex types are described in section 14.2.

$BaseType

The value of $BaseType is the qualified name of the base type.

9.2 Abstract Complex Type

A complex type MAY indicate that it is abstract and cannot have instances.

$Abstract

The value of $Abstract is one of the Boolean literals true or false. Absence of the member

means false.

9.3 Open Complex Type

A complex type MAY indicate that it is open and allows clients to add properties dynamically to instances
of the type by specifying uniquely named property values in the payload used to insert or update an
instance of the type.

A complex type derived from an open complex type MUST indicate that it is also open.

Note: structural and navigation properties MAY be returned by the service on instances of any structured
type, whether or not the type is marked as open. Clients MUST always be prepared to deal with additional
properties on instances of any structured type, see [OData-Protocol].

$OpenType

The value of $OpenType is one of the Boolean literals true or false. Absence of the member

means false.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 39 of 89

10 Enumeration Type
Enumeration types are nominal types that represent a non-empty series of related values. Enumeration
types expose these related values as members of the enumeration.

The enumeration type’s name is a simple identifier that MUST be unique within its schema.

Although enumeration types have an underlying numeric value, the preferred representation for an
enumeration value is the member name. Discrete sets of numeric values should be represented as
numeric values annotated with the AllowedValues annotation defined in [OData-VocCore].

Enumeration types marked as flags allow values that consist of more than one enumeration member at a
time.

Enumeration Type Object

An enumeration type is represented as a member of the schema object whose name is the
unqualified name of the enumeration type and whose value is an object.

The enumeration type object MUST contain the member $Kind with a string value of

EnumType.

It MAY contain the members $UnderlyingType and $IsFlags.

The enumeration type object MUST contain members representing the enumeration type
members.

The enumeration type object MAY contain annotations.

Example 26: a simple flags-enabled enumeration

"FileAccess": {

 "$Kind": "EnumType",

 "$UnderlyingType": "Edm.Int32",

 "$IsFlags": true,

 "Read": 1,

 "Write": 2,

 "Create": 4,

 "Delete": 8

}

10.1 Underlying Integer Type

An enumeration type MAY specify one of Edm.Byte, Edm.SByte, Edm.Int16, Edm.Int32, or

Edm.Int64 as its underlying type.

If not explicitly specified, Edm.Int32 is used as the underlying type.

$UnderlyingType

The value of $UnderlyingType is the qualified name of the underlying type.

10.2 Flags Enumeration Type

An enumeration type MAY indicate that the enumeration type allows multiple members to be selected
simultaneously.

If not explicitly specified, only one enumeration type member MAY be selected simultaneously.

$IsFlags

The value of $IsFlags is one of the Boolean literals true or false. Absence of the member

means false.

Example 27: pattern values can be combined, and some combined values have explicit names

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 40 of 89

"Pattern": {

 "$Kind": "EnumType",

 "$UnderlyingType": "Edm.Int32",

 "$IsFlags": true,

 "Plain": 0,

 "Red": 1,

 "Blue": 2,

 "Yellow": 4,

 "Solid": 8,

 "Striped": 16,

 "SolidRed": 9,

 "SolidBlue": 10,

 "SolidYellow": 12,

 "RedBlueStriped": 19,

 "RedYellowStriped": 21,

 "BlueYellowStriped": 22

}

10.3 Enumeration Type Member

Enumeration type values consist of discrete members.

Each member is identified by its name, a simple identifier that MUST be unique within the enumeration
type. Names are case-sensitive, but service authors SHOULD NOT choose names that differ only in
case.

Each member MUST specify an associated numeric value that MUST be a valid value for the underlying
type of the enumeration type.

Enumeration types can have multiple members with the same value. Members with the same numeric
value compare as equal, and members with the same numeric value can be used interchangeably.

Enumeration members are sorted by their numeric value.

For flag enumeration types the combined numeric value of simultaneously selected members is the
bitwise OR of the discrete numeric member values.

Enumeration Member Object

Enumeration type members are represented as JSON object members, where the object
member name is the enumeration member name and the object member value is the
enumeration member value.

For members of flags enumeration types a combined enumeration member value is equivalent
to the bitwise OR of the discrete values.

Annotations for enumeration members are prefixed with the enumeration member name.

Example 28: FirstClass has a value of 0, TwoDay a value of 1, and Overnight a value of 2.

"ShippingMethod": {

 "$Kind": "EnumType",

 "FirstClass": 0,

 "FirstClass@Core.Description": "Shipped with highest priority",

 "TwoDay": 1,

 "TwoDay@Core.Description": "Shipped within two days",

 "Overnight": 2,

 "Overnight@Core.Description": "Shipped overnight",

 "@Core.Description": "Method of shipping"

}

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 41 of 89

11 Type Definition
A type definition defines a specialization of one of the primitive types or of the built-in abstract type
Edm.PrimitiveType.

The type definition’s name is a simple identifier that MUST be unique within its schema.

Type definitions can be used wherever a primitive type is used (other than as the underlying type in a new
type definition),) and are type-comparable with their underlying types and any type definitions defined
using the same underlying type.

It is up to the definition of a term to specify whether and how annotations with this term propagate to
places where the annotated type definition is used, and whether they can be overridden.

Type Definition Object

A type definition is represented as a member of the schema object whose name is the
unqualified name of the type definition and whose value is an object.

The type definition object MUST contain the member $Kind with a string value of

TypeDefinition and the member $UnderlyingType. It MAY contain the members

$MaxLength, $Unicode, $Precision, $Scale, and $SRID, and it MAY contain annotations.

Example 29:

"Length": {

 "$Kind": "TypeDefinition",

 "$UnderlyingType": "Edm.Int32",

 "@Measures.Unit": "Centimeters"

},

"Weight": {

 "$Kind": "TypeDefinition",

 "$UnderlyingType": "Edm.Int32",

 "@Measures.Unit": "Kilograms"

},

"Size": {

 "$Kind": "ComplexType",

 "Height": {

 "$Nullable": true,

 "$Type": "self.Length"

 },

 "Weight": {

 "$Nullable": true,

 "$Type": "self.Weight"

 }

}

11.1 Underlying Primitive Type

The underlying type of a type definition MUST be a primitive type that MUST NOT be another type
definition.

$UnderlyingType

The value of $UnderlyingType is the qualified name of the underlying type.

The type definition MAY specify facets applicable to the underlying type. Possible facets are:
$MaxLength, $Unicode, $Precision, $Scale, or $SRID.

Additional facets appropriate for the underlying type MAY be specified when the type definition is used
but the facets specified in the type definition MUST NOT be re-specified.

For a type definition with underlying type Edm.PrimitiveType no facets are applicable, neither in the

definition itself nor when the type definition is used, and these should be ignored by the client.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 42 of 89

Where type definitions are used, the type definition is returned in place of the primitive type wherever the
type is specified in a response.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 43 of 89

12 Action and Function

12.1 Action

Actions are service-defined operations that MAY have observable side effects and MAY return a single
instance or a collection of instances of any type.

The action’s name is a simple identifier that MUST be unique within its schema.

Actions cannot be composed with additional path segments.

An action MAY specify a return type that MUST be a primitive, entity or complex type, or a collection of
primitive, entity or complex types in scope.

An action MAY define parameters used during the execution of the action.

12.2 Action Overloads

Bound actions support overloading (multiple actions having the same name within the same schema) by
binding parameter type. The combination of action name and the binding parameter type MUST be
unique within a schema.

Unbound actions do not support overloads. The names of all unbound actions MUST be unique within a
schema.

An unbound action MAY have the same name as a bound action.

Action Overload Object

An action is represented as a member of the schema object whose name is the unqualified
name of the action and whose value is an array. The array contains one object per action
overload.

The action overload object MUST contain the member $Kind with a string value of Action.

It MAY contain the members $IsBound, $EntitySetPath, $Parameter, and

$ReturnType, and it MAY contain annotations.

12.3 Function

Functions are service-defined operations that MUST NOT have observable side effects and MUST return
a single instance or a collection of instances of any type.

The function’s name is a simple identifier that MUST be unique within its schema.

Functions MAY be composable.

The function MUST specify a return type which MUST be a primitive, entity or complex type, or a
collection of primitive, entity or complex types in scope.

A function MAY define parameters used during the execution of the function.

12.4 Function Overloads

Bound functions support overloading (multiple functions having the same name within the same schema)
subject to the following rules:

• The combination of function name, binding parameter type, and unordered set of non-binding
parameter names MUST be unique within a schema.

• The combination of function name, binding parameter type, and ordered set of parameter types
MUST be unique within a schema.

• All bound functions with the same function name and binding parameter type within a schema
MUST specify the same return type.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 44 of 89

Unbound functions support overloading subject to the following rules:

• The combination of function name and unordered set of parameter names MUST be unique
within a schema.

• The combination of function name and ordered set of parameter types MUST be unique within a
schema.

• All unbound functions with the same function name within a schema MUST specify the same
return type.

An unbound function MAY have the same name as a bound function.

Note that type definitions can be used to disambiguate overloads for both bound and unbound functions,
even if they specify the same underlying type.

Function Overload Object

A function is represented as a member of the schema object whose name is the unqualified
name of the function and whose value is an array. The array contains one object per function
overload.

The function overload object MUST contain the member $Kind with a string value of

Function.

It MUST contain the member $ReturnType, and it MAY contain the members $IsBound,

$EntitySetPath, and $Parameter, and it MAY contain annotations.

12.5 Bound or Unbound Action or Function Overloads

An action or function overload MAY indicate that it is bound. If not explicitly indicated, it is unbound.

Bound actions or functions are invoked on resources matching the type of the binding parameter. The
binding parameter can be of any type, and it MAY be nullable.

Unbound actions are invoked from the entity container through an action import.

Unbound functions are invoked as static functions within a filter or orderby expression, or from the entity
container through a function import.

$IsBound

The value of $IsBound is one of the Boolean literals true or false. Absence of the member

means false.

12.6 Entity Set Path

Bound actions and functions that return an entity or a collection of entities MAY specify an entity set path
if the entity set of the returned entities depends on the entity set of the binding parameter value.

The entity set path consists of a series of segments joined together with forward slashes.

The first segment of the entity set path MUST be the name of the binding parameter. The remaining
segments of the entity set path MUST represent navigation segments or type casts.

A navigation segment names the simple identifier of the navigation property to be traversed. A type-cast
segment names the qualified name of the entity type that should be returned from the type cast.

$EntitySetPath

The value of $EntitySetPath is a string containing the entity set path.

12.7 Composable Function

A function MAY indicate that it is composable. If not explicitly indicated, it is not composable.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 45 of 89

A composable function can be invoked with additional path segments or key predicates appended to the
resource path that identifies the composable function, and with system query options as appropriate for
the type returned by the composable function.

$IsComposable

The value of $IsComposable is one of the Boolean literals true or false. Absence of the

member means false.

12.8 Return Type

The return type of an action or function overload MAY be any type in scope, or a collection of any type in
scope.

The facets Nullable, MaxLength, Precision, Scale, and SRID can be used as appropriate to

specify value restrictions of the return type, as well as the Unicode facet for 4.01 and greater payloads.

For a single-valued return type the facets apply to the returned value. For a collection-valued return type
the facets apply to the items in the returned collection.

$ReturnType

The value of $ReturnType is an object. It MAY contain the members $Type, $Collection,

$Nullable, $MaxLength, $Unicode, $Precision, $Scale, and $SRID.

It also MAY contain annotations.

$Type and $Collection

For single-valued return types the value of $Type is the qualified name of the returned type.

For collection-valued return types the value of $Type is the qualified name of the returned item

type, and the member $Collection MUST be present with the literal value true.

Absence of the $Type member means the type is Edm.String.

$Nullable

The value of $Nullable is one of the Boolean literals true or false. Absence of the member

means false.

If the return type is a collection of entity types, the $Nullable member has no meaning and

MUST NOT be specified.

For otherFor single-valued return types the value true means that the action or function MAY

return a single null value. The value false means that the action or function will never return

a null value and instead will fail with an error response if it cannot compute a result.

For collection-valued return types the result will always be a collection that MAY be empty. In
this case $Nullable applies to items of the collection and specifies whether the collection

MAY contain null values.

For single-valued return types the value true means that the action or function MAY return a

single null value. The value false means that the action or function will never return a null

value and instead will fail with an error response if it cannot compute a result.

12.9 Parameter

An action or function overload MAY specify parameters.

A bound action or function overload MUST specify at least one parameter; the first parameter is its
binding parameter. The order of parameters MUST NOT change unless the schema version changes.

Each parameter MUST have a name that is a simple identifier. The parameter name MUST be unique
within the action or function overload.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 46 of 89

The parameter MUST specify a type. It MAY be any type in scope, or a collection of any type in scope.

The facets MaxLength, Precision, Scale, or SRID can be used as appropriate to specify value

restrictions of the parameter, as well as the Unicode facet for 4.01 and greater payloads.

For single-valued parameters the facets apply to the parameter value. If the parameter value is a
collection, the facets apply to the items in the collection.

$Parameter

The value of $Parameter is an array. The array contains one object per parameter.

Parameter Object

A parameter object MUST contain the member $Name, and it MAY contain the members

$Type, $Collection, $Nullable, $MaxLength, $Unicode, $Precision, $Scale, and

$SRID.

Parameter objects MAY also contain annotations.

$Name

The value of $Name is a string containing the parameter name.

$Type and $Collection

For single-valued parameters the value of $Type is the qualified name of the accepted type.

For collection-valued parameters the value of $Type is the qualified name of the accepted item

type, and the member $Collection MUST be present with the literal value true.

Absence of the $Type member means the type is Edm.String.

$Nullable

The value of $Nullable is one of the Boolean literals true or false. Absence of the member

means false.

For single-valued parameters the value true means that the parameter accepts a null value.

For collection-valued parameters the parameter value will always be a collection that MAY be
empty. In this case $Nullable applies to items of the collection and specifies whether the

collection MAY contain null values.

Example 30: a function returning the top-selling products for a given year. In this case the year must be specified as a
parameter of the function with the edm:Parameter element.

"TopSellingProducts": [

 {

 "$Kind": "Function",

 "$Parameter": [

 {

 "$Name": "Year",

 "$Nullable": true,

 "$Type": "Edm.Decimal",

 "$Precision": 4,

 "$Scale": 0

 }

],

 "$ReturnType": {

 "$Collection": true,

 "$Type": "self.Product"

 }

 }

]

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 47 of 89

13 Entity Container
Each metadata document used to describe an OData service MUST define exactly one entity container.

The entity container’s name is a simple identifier that MUST be unique within its schema.

Entity containers define the entity sets, singletons, function and action imports exposed by the service.

Entity set, singleton, action import, and function import names MUST be unique within an entity container.

An entity set allows access to entity type instances. Simple entity models frequently have one entity set
per entity type.

Example 31: one entity set per entity type

"Products": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Product"

},

"Categories": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Category"

}

Other entity models may expose multiple entity sets per type.

Example 32: three entity sets referring to the two entity types

"StandardCustomers": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Customer",

 "$NavigationPropertyBinding": {

 "Orders": "Orders"

 }

},

"PreferredCustomers": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Customer",

 "$NavigationPropertyBinding": {

 "Orders": "Orders"

 }

},

"Orders": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Order"

}

There are separate entity sets for standard customers and preferred customers, but only one entity set for orders.
The entity sets for standard customers and preferred customers both have navigation property bindings to the orders
entity set, but the orders entity set does not have a navigation property binding for the Customer navigation property,
since it could lead to either set of customers.

An entity set can expose instances of the specified entity type as well as any entity type inherited from the
specified entity type.

A singleton allows addressing a single entity directly from the entity container without having to know its
key, and without requiring an entity set.

A function import or an action import is used to expose a function or action defined in an entity model as a
top level resource.

Entity Container Object

An entity container is represented as a member of the schema object whose name is the
unqualified name of the entity container and whose value is an object.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 48 of 89

The entity container object MUST contain the member $Kind with a string value of

EntityContainer.

The entity container object MAY contain the member $Extends, members representing entity

sets, singletons, action imports, and function imports, as well as annotations.

Example 33: An entity container aggregates entity sets, singletons, action imports, and function imports.

"DemoService": {

 "$Kind": "EntityContainer",

 "Products": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Product",

 "$NavigationPropertyBinding": {

 "Category": "Categories",

 "Supplier": "Suppliers"

 },

 "@UI.DisplayName": "Product Catalog"

 },

 "Categories": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Category",

 "$NavigationPropertyBinding": {

 "Products": "Products"

 }

 },

 "Suppliers": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Supplier",

 "$NavigationPropertyBinding": {

 "Products": "self.DemoServiceProducts"

 },

 "@UI.DisplayName": "Supplier Directory"

 },

 "MainSupplier": {

 "$Kind": "Singleton",

 "$Type": "self.Supplier"

 },

 "LeaveRequestApproval": {

 "$Kind": "ActionImport",

 "$Action": "self.Approval"

 },

 "ProductsByRating": {

 "$Kind": "FunctionImport",

 "$EntitySet": "Products",

 "$Function": "self.ProductsByRating"

 }

}

13.1 Extending an Entity Container

An entity container MAY specify that it extends another entity container in scope. All children of the “base”
entity container are added to the “extending” entity container.

Note: services should not introduce cycles by extending entity containers. Clients should be prepared to
process cycles introduced by extending entity containers.

$Extends

The value of $Extends is the qualified name of the entity container to be extended.

Example 34: the entity container Extending will contain all child elements that it defines itself, plus all child elements

of the Base entity container located in SomeOtherSchema

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 49 of 89

"Extending": {

 "$Kind": "EntityContainer",

 "$Extends": "SomeOtherSchemaSome.Other.Schema.Base",

 …

}

13.2 Entity Set

Entity sets are top-level collection-valued resources.

An entity set is identified by its name, a simple identifier that MUST be unique within its entity container.

An entity set MUST specify a type that MUST be an entity type in scope.

An entity set MUST contain only instances of its specified entity type or its subtypes. The entity type MAY
be abstract but MUST have a key defined.

An entity set MAY indicate whether it is included in the service document. If not explicitly indicated, it is
included.

Entity sets that cannot be queried without specifying additional query options SHOULD NOT be included
in the service document.

Entity Set Object

An entity set is represented as a member of the entity container object whose name is the name
of the entity set and whose value is an object.

The entity set object MUST contain the member $Kind with a string value of

EntitySet,members $Collection and the member $Type whose string value is the

qualified name of an entity type.

It MAY contain the members $IncludeInServiceDocument and

$NavigationPropertyBinding as well as annotations.

$Collection

The value of $Collection is the Booelan value true.

$Type

The value of $Type is the qualified name of an entity type.

$IncludeInServiceDocument

The value of $IncludeInServiceDocument is one of the Boolean literals true or false.

Absence of the member means true.

13.3 Singleton

Singletons are top-level single-valued resources.

A singleton is identified by its name, a simple identifier that MUST be unique within its entity container.

A singleton MUST specify a type that MUST be an entity type in scope.

A singleton MUST reference an instance its entity type.

Singleton Object

A singleton is represented as a member of the entity container object whose name is the name
of the singleton and whose value is an object.

The singleton object MUST contain the member $Kind with a string value of Singleton, and

the member $Type whose string value is the qualified name of an entity typeType and it MAY

contain the member $Nullable.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 50 of 89

It MAY contain the member $NavigationPropertyBinding as well as annotations.

$Type

The value of $Type is the qualified name of an entity type.

$Nullable

The value of $Nullable is one of the Boolean literals true or false. Absence of the member

means false.In OData 4.0 responses this member MUST NOT be specified.

13.4 Navigation Property Binding

If the entity type of an entity set or singleton declares navigation properties, a navigation property binding
allows describing which entity set or singleton will contain the related entities.

An entity set or a singleton SHOULD specify a navigation property binding for each navigation property of
its entity type, including navigation properties defined on complex typed properties or derived types.

If omitted, clients MUST assume that the target entity set or singleton can vary per related entity.

13.4.1 Navigation Property Path Binding

A navigation property binding MUST specify a path to a navigation property of the entity set’s or
singleton's declared entity type, or a navigation property reached through a chain of type casts, complex
properties, or containment navigation properties. If the navigation property is defined on a subtype, the
path MUST contain the qualified name of the subtype, followed by a forward slash, followed by the
navigation property name. If the navigation property is defined on a complex type used in the definition of
the entity set’s entity type, the path MUST contain a forward-slash separated list of complex property
names and qualified type names that describe the path leading to the navigation property.

The path can traverse one or more containment navigation properties, but the last navigation property
segment MUST be a non-containment navigation property and there MUST NOT be any non-containment
navigation properties prior to the final navigation property segment.

If the path traverses collection-valued complex properties or collection-valued containment navigation
properties, the binding applies to all items of these collections.

If the path contains a recursive sub-path (i.e. a path leading back to the same structured type, the binding
applies recursively to any positive number of cycles through that sub-path.

OData 4.01 services MAY have a type-cast segment as the last path segment, allowing to bind instances
of different sub-types to different targets.

The same navigation property path MUST NOT be specified in more than one navigation property
binding; navigation property bindings are only used when all related entities are known to come from a
single entity set. Note that it is possible to have navigation property bindings for paths that differ only in a
type-cast segment, allowing to bind instances of different sub-types to different targets. If paths differ only
in type-cast segments, the most specific path applies.

13.4.2 Binding Target

A navigation property binding MUST specify a target via a simple identifier or target path. It specifies the
entity set, singleton, or containment navigation property that contains the related entities.

If the target is a simple identifier, it MUST resolve to an entity set or singleton defined in the same entity
container.

If the target is a target path, it MUST resolve to an entity set, singleton, or direct or indirect containment
navigation property of a singleton in scope. The path can traverse single-valued containment navigation
properties or single-valued complex properties before ending in a containment navigation property, and
there MUST NOT be any non-containment navigation properties prior to the final segment.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 51 of 89

$NavigationPropertyBinding

The value of $NavigationPropertyBinding is an object. It consists of members whose

name is the navigation property binding path and whose value is a string containing the
navigation property binding target. If the target is in the same entity container, the target MUST
NOT be prefixed with the qualified entity container name.

Example 35: for an entity set in the same container as the enclosing entity set Categories

"Categories": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Category",

 "$NavigationPropertyBinding": {

 "Products": "SomeSet"

 }

}

Example 36: for an entity set in any container in scope

"Categories": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Category",

 "$NavigationPropertyBinding": {

 "Products": "SomeModel.SomeContainer/SomeSet"

 }

}

Example 37: binding SuppliersSupplier on Products contained within Categories – binding applies to all

suppliers of all products of all categories

"Categories": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Category",

 "$NavigationPropertyBinding": {

 "Products/Supplier": "Suppliers"

 }

}

13.5 Action Import

Action imports sets are top-level resources that are never included in the service document.

An action import is identified by its name, a simple identifier that MUST be unique within its entity
container.

An action import MUST specify the name of an unbound action in scope.

If the imported action returns an entity or a collection of entities, a simple identifier or target path value
MAY be specified to identify the entity set that contains the returned entities. If a simple identifier is
specified, it MUST resolve to an entity set defined in the same entity container. If a target path is
specified, it MUST resolve to an entity set in scope.

Action Import Object

An action import is represented as a member of the entity container object whose name is the
name of the action import and whose value is an object.

The action import object MUST contain the member $Kind with a string value of

ActionImport, and the member $Action.Action.

It MAY contain the member $EntitySet.

It MAY also contain annotations.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 52 of 89

$Action

The value of $Action is a string containing the qualified name of an unbound action.

$EntitySet

The value of $EntitySet is a string containing either the unqualified name of an entity set in

the same entity container or a path to an entity set in a different entity container.

13.6 Function Import

Function imports sets are top-level resources.

A function import is identified by its name, a simple identifier that MUST be unique within its entity
container.

A function import MUST specify the name of an unbound function in scope. All unbound overloads of the
imported function can be invoked from the entity container.

If the imported function returns an entity or a collection of entities, a simple identifier or target path value
MAY be specified to identify the entity set that contains the returned entities. If a simple identifier is
specified, it MUST resolve to an entity set defined in the same entity container. If a target path is
specified, it MUST resolve to an entity set in scope.

A function import for a parameterless function MAY indicate whether it is included in the service
document. If not explicitly indicated, it is not included.

Function Import Object

A function import is represented as a member of the entity container object whose name is the
name of the function import and whose value is an object.

The function import object MUST contain the member $Kind with a string value of

FunctionImport, and the member $Function.

It MAY contain the members $EntitySet and $IncludeInServiceDocument.

It MAY also contain annotations.

$Function

The value of $Function is a string containing the qualified name of an unbound function.

$EntitySet

The value of $EntitySet is a string containing either the unqualified name of an entity set in

the same entity container or a path to an entity set in a different entity container.

$IncludeInServiceDocument

The value of $IncludeInServiceDocument is one of the Boolean literals true or false.

Absence of the member means false.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 53 of 89

14 Vocabulary and Annotation
Vocabularies and annotations provide the ability to annotate metadata as well as instance data, and
define a powerful extensibility point for OData. An annotation applies a term to a model element and
defines how to calculate a value for the applied term.

Metadata annotations can be used to define additional characteristics or capabilities of a metadataare
terms applied to model elements. Behaviors or constraints described by a metadata annotation must be
consistent with the annotated model element. Such annotations define additional behaviors or constraints
on the model element, such as a service, entity type, property, function, action, or parameter. For
example, a metadata annotation may define ranges of valid values for a particular property. Metadata
annotations are applied in CSDL documents describing or referencing an entity model.

Instance annotations are terms applied to a particular instance within an OData payload, such as
described in [OData-JSON]. An instance annotation can be used to define additional information
associated with a particular result, entity, property, or error; for. For example, whether a property is read-
only for a particular instance. Where the same annotation is defined at both the metadata and instance
level, the instance-level annotation overrides the annotation specified at the metadata level. Instance
annotations appear in the actual payload as described in . Annotations that apply across instances should
be specified as metadata annotations.

A vocabulary is a schema containing a set of terms where each term is a named metadata extension.
Anyone can define a vocabulary (a set of terms) that is scenario-specific or company-specific; more
commonly used terms can be published as shared vocabularies such as the OData Core vocabulary
[OData-VocCore].

A term can be used to:

• Extend model elements and type instances with additional information.

• Map instances of annotated structured types to an interface defined by the term type; i.e.
annotations allow viewing instances of a structured type as instances of a differently structured
type specified by the applied term.

A service SHOULD NOT require a client to interpret annotations. Clients SHOULD ignore invalid or
unknown terms and silently treat unexpected or invalid values (including invalid type, invalid literal
expression, invalid targets, etc.) as an unknown value for the term. Unknown or invalid annotations
should never result in an error, as long as the payload remains well-formed.

Example 38: the Product entity type is extended with a DisplayName by a metadata annotation that binds the term

DisplayName to the value of the property Name. The Product entity type also includes an annotation that allows its

instances to be viewed as instances of the type specified by the term SearchResult

"Product": {

 "$Kind": "EntityType",

 "$Key": [

 "ID"

],

 "ID": {

 "$Type": "Edm.Int32"

 },

 "Name": {

 "$Nullable": true

 },

 "Description": {

 "$Nullable": true

 },

 "@UI.DisplayName": {

 "$Path": "Name"

 },

 "@SearchVocabulary.SearchResult": {

 "Title": {

 "$Path": "Name"

 },

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 54 of 89

 "Abstract": {

 "$Path": "Description"

 },

 "Url": {

 "$Apply": [

 "Products(",

 {

 "$Path": "ID"

 },

 ")"

],

 "$Function": "odata.concat"

 }

 }

}

14.1 Term

A term allows annotating a model element or OData resource representation with additional data.

The term’s name is a simple identifier that MUST be unique within its schema.

The term’s type MUST be a type in scope, or a collection of a type in scope.

Term Object

A term is represented as a member of the schema object whose name is the unqualified name
of the term and whose value is an object.

The term object MUST contain the member $Kind with a string value of Term.

It MAY contain the members $Type, $Collection, $AppliesTo, $Nullable, $MaxLength,

$Precision, $Scale, $SRID, and $DefaultValue, as well as $Unicode for 4.01 and

greater payloads.

It MAY contain annotations.

$Type and $Collection

For single-valued terms the value of $Type is the qualified name of the term’s type.

For collection-valued terms the value of $Type is the qualified name of the term’s item type,

and the member $Collection MUST be present with the literal value true.

Absence of the $Type member means the type is Edm.String.

$DefaultValue

The value of $DefaultValue is the type-specific JSON representation of the default value of

the term, see [OData-JSON].

Note: the $DefaultValue member is purely for documentation and isomorphy to [OData-

CSDLXML.]. Annotations in CSDL JSON documents MUST always specify an explicit value.

14.1.1 Specialized Term

A term MAY specialize another term in scope by specifying it as its base term.

When applying a specialized term, the base term MUST also be applied with the same qualifier, and so
on until a term without a base term is reached.

$BaseTerm

The value of $BaseTerm is the qualified name of the base term.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 55 of 89

14.1.2 Applicability

The applicability of a term MAY be restricted to a list of model elements. If no list is supplied, the term is
not intended to be restricted in its application. The list of model elements MAY be extended in future
versions of the vocabulary. As the intended usage may evolve over time, clients SHOULD be prepared
for any term to be applied to any model element and SHOULD be prepared to handle unknown values
within the list of model constructs. Applicability is expressed using the following symbolic values:

Symbolic Value Model Element

Action Action

ActionImport Action Import

Annotation Annotation

Apply Application of a client-side function in an annotation

Cast Type Cast annotation expression

Collection Entity Set or collection-valued Property or Navigation Property

ComplexType Complex Type

EntityContainer Entity Container

EntitySet Entity Set

EntityType Entity Type

EnumType Enumeration Type

Function Function

FunctionImport Function Import

If Conditional annotation expression

Include Reference to an Included Schema

IsOf Type Check annotation expression

LabeledElement Labeled Element expression

Member Enumeration Member

NavigationProperty Navigation Property

Null Null annotation expression

OnDelete On-Delete Action of a navigation property

Parameter Action of Function Parameter

Property Property of a structured type

PropertyValue Property value of a Record annotation expression

Record Record annotation expression

Reference Reference to another CSDL document

ReferentialConstraint Referential Constraint of a navigation property

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 56 of 89

Symbolic Value Model Element

ReturnType Return Type of an Action or Function

Schema Schema

Singleton Singleton

Term Term

TypeDefinition Type Definition

UrlRef UrlRef annotation expression

$AppliesTo

The value of $AppliesTo is an array whose items are strings containing symbolic values from

the table above that identify model elements the term is intended to be applied to.

Example 39: the IsURL term can be applied to properties and terms that are of type Edm.String (the Core.Tag

type and the two Core terms are defined in [OData-VocCore])

"IsURL": {

 "$Kind": "Term",

 "$Type": "Core.Tag",

 "$DefaultValue": true,

 "$AppliesTo": [

 "Property"

],

 "@Core.Description": "Properties and terms annotated with this term MUST

contain a valid URL",

 "@Core.RequiresType": "Edm.String"

}

14.2 Annotation

An annotation applies a term to a model element and defines how to calculate a value for the term
application. Both term and model element MUST be in scope. Section 14.1.2 specifies which model
elements MAY be annotated with a term.

The value of an annotation is specified as an annotation expression, which is either a constant expression
representing a constant value, or a dynamic expression. The most common construct for assigning an
annotation value is a path expression that refers to a property of the same or a related structured type.

Annotation Member

An annotation is represented as a member whose name consists of an at (@) character,

followed by the qualified name of a term, optionally followed by a hash (#) and a qualifier.

The value of the annotation MUST be a constant expression or dynamic expression.

The annotation can be a member of the object representing the model element it annotates, or
a second-level member of the $Annotations member of a schema object.

An annotation can itself be annotated. Annotations on annotations are represented as a
member whose name consists of the annotation name (including the optional qualifier), followed
by an at (@) character, followed by the qualified name of a term, optionally followed by a hash

(#) and a qualifier.

Example 40: term Measures.ISOCurrency, once applied with a constant value, once with a path value

"AmountInReportingCurrency": {

 "$Nullable": true,

 "$Type": "Edm.Decimal",

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 57 of 89

 "$Scale": 0,

 "@Measures.ISOCurrency": "USD",

 "@Measures.ISOCurrency@Core.Description": "The parent company’s currency"

},

"AmountInTransactionCurrency": {

 "$Nullable": true,

 "$Type": "Edm.Decimal",

 "$Scale": 0,

 "@Measures.ISOCurrency": {

 "$Path": "Currency"

 }

},

"Currency": {

 "$Nullable": true,

 "$MaxLength": 3

}

If an entity type or complex type is annotated with a term that itself has a structured type, an instance of
the annotated type may be viewed as an “instance” of the term, and the qualified term name may be used
as a term-cast segment in path expressions.

Structured types “inherit” annotations from their direct or indirect base types. If both the type and one of
its base types is annotated with the same term and qualifier, the annotation on the type completely
replaces the annotation on the base type; structured or collection-valued annotation values are not
merged. Similarly, properties of a structured type inherit annotations from identically named properties of
a base type.

It is up to the definition of a term to specify whether and how annotations with this term propagate to
places where the annotated model element is used, and whether they can be overridden. E.g. a "Label"
annotation for a UI can propagate from a type definition to all properties using that type definition and may
be overridden at each property with a more specific label, whereas an annotation marking a type
definition as containing a phone number will propagate to all using properties but may not be overridden.

14.2.1 Qualifier

A term can be applied multiple times to the same model element by providing a qualifier to distinguish the
annotations. The qualifier is a simple identifier.

The combination of target model element, term, and qualifier uniquely identifies an annotation.

Example 41: annotation should only be applied to tablet devices

"@UI.DisplayName#Tablet": {

 "$Path": "FirstName"

}

14.2.2 Target

The target of an annotation is the model element the term is applied to.

The target of an annotation MAY be specified indirectly by “nesting” the annotation within the model
element. Whether and how this is possible is described per model element in this specification.

The target of an annotation MAY also be specified directly; this allows defining an annotation in a different
schema than the targeted model element.

This external targeting is only possible for model elements that are uniquely identified within their parent,
and all their ancestor elements are uniquely identified within their parent:

• Action (applies tosingle or all overloads)

• Action Import

• Complex Type

• Entity Container

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 58 of 89

• Entity Set

• Entity Type

• Enumeration Type

• Enumeration Type Member

• Function (applies tosingle or all overloads)

• Function Import

• Navigation Property (via type, entity set, or singleton)

• Parameter of an action or function (applies tosingle overloads or all overloads defining the
parameter)

• Property (via type, entity set, or singleton)

• Return Type of an action or function (applies tosingle or all overloads)

• Singleton

• Type Definition

These are the direct children of a schema with a unique name (i.e. except actions and functions whose
overloads to not possess a natural identifier), and all direct children of an entity container.

External targeting is possible for actions, functions, their parameters, and their return type, in which case
the annotationeither in a way that applies to all overloads of the action or function or all parameters of that
name across all overloads. External targeting of individual action or function overloads is not possible, or
in a way that identifies a single overload.

External targeting is also possible for properties and navigation properties of singletons or entities in a
particular entity set. These annotations override annotations on the properties or navigation properties
targeted via the declaring structured type.

The allowed path expressions are:

• qualified name of schema child

• qualified name of schema child followed by a forward slash and name of child element

• qualified name of structured type followed by zero or more property, navigation property, or type-
cast segments, each segment starting with a forward slash

• qualified name of an entity container followed by a segment containing a singleton or entity set
name and zero or more property, navigation property, or type-cast segments

• qualified name of an action followed by parentheses containing the qualified name of the binding
parameter type of a bound action overload to identify that bound overload, or by empty
parentheses to identify the unbound overload

• qualified name of a function followed by parentheses containing the comma-separated list of
qualified names of the parameter types of a bound or unbound function overload in the order of
their definition in the function overload

• qualified name of an action or function, optionally followed by parentheses as described in the
two previous bullet points to identify a single overload, followed by a forward slash and either a
parameter name or $ReturnType

• qualified name of an entity container followed by a segment containing an action or function
import name, optionally followed by a forward slash and either a parameter name or
$ReturnType

• One of the preceding, followed by a forward slash, an at (@), the qualified name of a term, and

optionally a hash (#) and the qualifier of an annotation

All qualified names used in a target path MUST be in scope.

Example 42: Target expressions

MySchema.MyEntityType

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 59 of 89

MySchema.MyEntityType/MyProperty

MySchema.MyEntityType/MyNavigationProperty

MySchema.MyComplexType

MySchema.MyComplexType/MyProperty

MySchema.MyComplexType/MyNavigationProperty

MySchema.MyEnumType

MySchema.MyEnumType/MyMember

MySchema.MyTypeDefinition

MySchema.MyTerm

MySchema.MyEntityContainer

MySchema.MyEntityContainer/MyEntitySet

MySchema.MyEntityContainer/MySingleton

MySchema.MyEntityContainer/MyActionImport

MySchema.MyEntityContainer/MyFunctionImport

MySchema.MyAction

MySchema.MyAction(MySchema.MyBindingType)

MySchema.MyAction()

MySchema.MyFunction

MySchema.MyFunction(MySchema.MyBindingParamType,First.NonBinding.ParamType)

MySchema.MyFunction(First.NonBinding.ParamType,Second.NonBinding.ParamType)

MySchema.MyFunction/MyParameter

MySchema.MyEntityContainer/MyEntitySet/MyProperty

MySchema.MyEntityContainer/MyEntitySet/MyNavigationProperty

MySchema.MyEntityContainer/MyEntitySet/MySchema.MyEntityType/MyProperty

MySchema.MyEntityContainer/MyEntitySet/MySchema.MyEntityType/MyNavProperty

MySchema.MyEntityContainer/MyEntitySet/MyComplexProperty/MyProperty

MySchema.MyEntityContainer/MyEntitySet/MyComplexProperty/MyNavigationProperty

MySchema.MyEntityContainer/MySingleton/MyComplexProperty/MyNavigationProperty

14.3 Constant Expression

Constant expressions allow assigning a constant value to an applied term.

14.3.1 Binary

$Binary

Binary expressions are represented as an object with a single member $Binary whose value

is a string containing the base64url-encoded binary value.

Example 43: base64url-encoded binary value (OData)

"@UI.Thumbnail": {"T0RhdGE"

 "$Binary": "T0RhdGE"

}

14.3.2 Boolean

Boolean expressions are represented as the literals true or false.

Example 44:

"@UI.ReadOnly": true

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 60 of 89

14.3.3 Date

$Date

Date expressions are represented as an object with a single member $Date whose value is a

string containing the date value. The value MUST conform to type xs:date, see

[XML-Schema-2], section 3.3.9. The value MUST also conform to rule dateValue in

[OData-ABNF], i.e. it MUST NOT contain a time-zone offset.

Example 45:

"@vCard.birthDay": {"2000-01-01"

 "$Date": "2000-01-01"

}

14.3.4 DateTimeOffset

$DateTimeOffset

Datetimestamp expressions are represented as an object with a single member
$DateTimeOffset whose value is a string containing the timestamp value. The value MUST

conform to type xs:dateTimeStamp, see [XML-Schema-2], section 3.4.28. The value MUST

also conform to rule dateTimeOffsetValue in [OData-ABNF], i.e. it MUST NOT contain an

end-of-day fragment (24:00:00).

Example 46:

"@UI.LastUpdated": {"2000-01-01T16:00:00.000Z"

 "$DateTimeOffset": "2000-01-01T16:00:00.000Z"

}

14.3.5 Decimal

$Decimal

Decimal expressions are represented as an object with a single member $Decimal whose

value is either a number or a string. The special values INF, -INF, or NaN are represented as

strings. Numeric values are represented as numbers or strings depending on the media type
parameter IEEE754Compatible.

Example 47: default representation as a number

"@UI.Width": {3.14

 "$Decimal": 3.14

}

Example 48: “safe” representation as a string

"@UI.Width": {

 "$Decimal": "3.14"

}

14.3.6 Duration

$Duration

Duration expressions are represented as an object with a single member $Duration whose

value is a string containing the duration value. The value MUST conform to type
xs:dayTimeDuration, see [XML-Schema-2], section 3.4.27.

Example 49:

http://www.w3.org/TR/xmlschema11-2/#date
http://www.w3.org/TR/xmlschema11-2/#dateTimeStamp
http://www.w3.org/TR/xmlschema11-2/#dayTimeDuration

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 61 of 89

"@task.duration": {"P7D"

 "$Duration": "P7D"

}

14.3.7 Enumeration Member

$EnumMember

Enumeration member expressions are represented as an object with a single member
$EnumMember whose value is a string containing the numeric or symbolic enumeration value.

Example 50: single value Red with numeric value and symbolic value

"@self.HasPattern": {"1"

 "$EnumMember": "1"

}

"@self.HasPattern": {

 "$EnumMember": "Red"

}

Example 51: combined value Red,Striped with numeric value 1 + 16 and symbolic value

"@self.HasPattern": {"17"

 "$EnumMember": "17"

}

"@self.HasPattern": {

 "$EnumMember": "Red,Striped"

}

14.3.8 Floating-Point Number

$Float

Floating-point expressions are represented as a number or as an object with a single member
$Float whose value is a string containing one of the special values INF, -INF, or NaN.

Example 52:

"@UI.FloatWidth": 3.14,

"@UI.FloatWidth": {

 "$Float": "INF"

}

14.3.9 Guid

$Guid

Guid expressions are represented as an object with a single member $Guid whose value is a

string containing the guiduuid value. The value MUST conform to the rule
int64ValueguidValue in [OData-ABNF].

Example 53:

"@UI.Id": {

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 62 of 89

 "$Guid": "21EC2020-3AEA-1069-A2DD-08002B30309D"

}

14.3.10 Integer

$Int

Integer expressions are represented as an object with a single member $Int whose value is a

either a number or a string. Values are represented as numbers or strings, depending on the
media type parameter IEEE754Compatible.

Example 54: default representation as a number

"@An.Int": {42

 "$Int": 42

}

Example 55: “safe” representation as a string

"@A.Very.Long.Int": {

 "$Int": "9007199254740992"

}

14.3.11 String

String expressions are represented as a JSON string.

Example 56:

"@UI.DisplayName": "Product Catalog"

14.3.12 Time of Day

$TimeOfDay

Time-of-day expressions are represented as an object with a single member $TimeOfDay

whose value is a string containing the time-of-day value. The value MUST conform to the rule
timeOfDayValue in [OData-ABNF].

Example 57:

"@UI.EndTime": {"21:45:00"

 "$TimeOfDay": "21:45:00"

}

14.4 Dynamic Expression

Dynamic expressions allow assigning a calculated value to an applied term.

14.4.1 Path Expressions

Path expressions allow assigning a value to an applied term or term component. There are two kinds of
path expressions:

• A model path is used within Annotation Path, Model Element Path, Navigation Property Path, and

Property Path expressions to traverse the model of a service and resolves to the model element

identified by the path. It allows assigning values to terms or term properties of the built-in types

Edm.AnnotationPath, Edm.NavigationPropertyPath, Edm.PropertyPath, and their

base types Edm.AnyPropertyPath and Edm.ModelElementPath.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 63 of 89

• An instance path is used within a Value Path expression to traverse a graph of type instances

and resolves to the value identified by the path. It allows assigning values to terms or term

properties of built-in types other than the Edm.*Path types, or of any model-defined type.

14.4.1.1 Path Syntax

Model paths and instance paths share a common syntax which is derived from the path expression
syntax of URLs, see [OData-URL].

A path MUST be composed of zero or more path segments joined together by forward slashes (/).

Paths starting with a forward slash (/) are absolute paths, and the first path segment MUST be the

qualified name of a model element, e.g. an entity container. The remaining path after the second forward
slash is interpreted relative to that model element.

Example 58: absolute path to an entity set

/My.Schema.MyEntityContainer/MyEntitySet

Paths not starting with a forward slash are interpreted relative to the annotation target, following the rules
specified in section “Path Evaluation”.

Example 59: relative path to a property

Address/City

If a path segment is a qualified name, it represents a type cast, and the segment MUST be the name of a
type in scope. If the type or instance identified by the preceding path part cannot be cast to the specified
type, the path expression evaluates to the null value.

Example 60: type-cast segment

…/self.Manager/…

If a path segment starts with an at (@) character, it represents a term cast. The at (@) character MUST be

followed by a qualified name that MAY be followed by a hash (#) character and a simple identifier. The

qualified name preceding the hash character MUST resolve to a term that is in scope, the simple identifier
following the hash sign is interpreted as a qualifier for the term. If the model element or instance identified
by the preceding path part has not been annotated with that term (and if present, with that qualifier), the
term cast evaluates to the null value. Four special terms are implicitly “annotated” for media entities and
stream properties:

• odata.mediaEditLink

• odata.mediaReadLink

• odata.mediaContentType

• odata.mediaEtag

Example 61: term-cast segments

…/@Capabilities.SortRestrictions/…

If a path segment is a simple identifier, it MUST be the name of a child model element of the model
element identified by the preceding path part, or a structural or navigation property of the instance
identified by the preceding path part. A sequence of navigation segments can traverse multiple CSDL
documents. The document containing the path expression only needs to reference the next traversed
document to bring the navigation target type into scope, and each traversed document in turn needs to
reference only its next document.

A model path MAY contain any number of segments representing collection-valued structural or
navigation properties. The result of the expression is the model element reached via this path.

Example 62: property segments in model path

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 64 of 89

…/Orders/Items/Product/…

An instance path MUST NOT contain more than one segment representing a collection-valued construct,
e.g. an entity set or a collection-valued structural or navigation property that is not followed by a key
predicate, or a collection-valued structural property that is not followed by an index segment. The result of
the expression is the collection of instances resulting from applying any remaining path segments that
operate on a single-valued expression to each instance in the collection-valued segment.

An instance path MAY terminate in a $count segment if the previous segment is collection-valued, in

which case the path evaluates to the number of items in the collection identified by the preceding
segment.

Example 63: property segments in instance path

…/Addresses/Street

…/Addresses/$count

A model path MAY contain path segments starting with a navigation property, then followed by an at (@)

character, then followed by the qualified name of a term in scope, and optionally followed by a hash (#)

character and a simple identifier which is interpreted as a qualifier for the term. If the navigation property
has not been annotated with that term (and if present, with that qualifier), the path segment evaluates to
the null value. This allows addressing annotations on the navigation property itself; annotations on the
entity type specified by the navigation property are addressed via a term-cast segment.

Example 64: model path addressing an annotation on a navigation property

…/Items@Capabilities.InsertRestrictions/Insertable

An instance path MAY contain path segments starting with an entity set or a collection-valued navigation
property, then followed by a key predicate using parentheses-style convention, see [OData-URL]. The
key values are either primitive literals or instance paths. If the key value is a relative instance path, it is
interpreted according to the same rule below as the instance path it is part of, not relative to the instance
identified by the preceding path part.

Example 65: instance path with entity set and key segmentpredicate

/self.container/SettingsCollection('FeatureXxx')/IsAvailable

/self.container/Products(ID=ProductID)/Name

An instance path MAY contain an index segment immediately following a path segment representing an
ordered collection-valued structural property. The index is zero-based and MUST be an integer literal.
Negative integers count from the end of the collection, with -1 representing the last item in the collection.
Remaining path segments are evaluated relative to the identified item of the collection.

Example 66: instance path with collection-valued structural property and index segment

Addresses/1

Addresses/-1/Street

14.4.1.2 Path Evaluation

Annotations MAY be embedded within their target, or specified separately, e.g. as part of a different
schema, and specify a path to their target model element. The latter situation is referred to as targeting in
the remainder of this section.

For annotations embedded within or targeting an entity container, the path is evaluated starting at the
entity container, i.e. an empty path resolves to the entity container, and non-empty paths MUST start with
a segment identifying a container child (entity set, function import, action import, or singleton). The
subsequent segments follow the rules for paths targeting the corresponding child element.

For annotations embedded within or targeting an entity set or a singleton, the path is evaluated starting at
the entity set or singleton, i.e. an empty path resolves to the entity set or singleton, and non-empty paths
MUST follow the rules for annotations targeting the declared entity type of the entity set or singleton.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 65 of 89

For annotations embedded within or targeting an entity type or complex type, the path is evaluated
starting at the type, i.e. an empty path resolves to the type, and the first segment of a non-empty path
MUST be a structural or navigation property of the type, a type cast, or a term cast.

For annotations embedded within a structural or navigation property of an entity type or complex type, the
path is evaluated starting at the directly enclosing type. This allows e.g. specifying the value of an
annotation on one property to be calculated from values of other properties of the same type. An empty
path resolves to the enclosing type, and non-empty paths MUST follow the rules for annotations targeting
the directly enclosing type.

For annotations targeting a structural or navigation property of an entity type or complex type, the path is
evaluated starting at the outermost entity type or complex type named in the target of the annotation, i.e.
an empty path resolves to the outermost type, and the first segment of a non-empty path MUST be a
structural or navigation property of the outermost type, a type cast, or a term cast.

For annotations embedded within or targeting an action, action import, function, or function import,
parameter, or return type, the first segment of the path MUST be a parameter name or $ReturnType.

14.4.1.3 Annotation Path

The annotation path expression provides a value for terms or term properties that specify the built-in
types Edm.AnnotationPath or Edm.ModelElementPath. Its argument is a model path with the

following restriction:

• The lastA non-null path segment MUST resolve to an annotation.

A term or term property of type Edm.AnnotationPath can be annotated with term

Validation.AllowedTerms (see [OData-VocValidation]) if its intended value is an annotation path

that ends in a term cast with optional qualifier. one of the listed terms.

The value of the annotation path expression is the path itself, not the value of the annotation identified by
the path. This is useful for terms that reuse or refer to other terms.

$AnnotationPath

Annotation path expressions are represented as an object with a single member
$AnnotationPath whose value is a string containing a path.

Example 67:

Example :

"@UI.ReferenceFacet": {

 "$AnnotationPath": "Product/Supplier/@UI.LineItem"",

},

"@UI.CollectionFacet#Contacts": [

 {

 "$AnnotationPath": "Supplier/@Communication.Contact"",

 },

 {

 "$AnnotationPath": "Customer/@Communication.Contact"

 }

]

14.4.1.4 Model Element Path

The model element path expression provides a value for terms or term properties that specify the built-in
type Edm.ModelElementPath. Its argument is a model path.

The value of the model element path expression is the path itself, not the instance(s) identified by the
path.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 66 of 89

$ModelElementPath

Model element path expressions are represented as an object with a single member
$ModelElementPath whose value is a string containing a path.

Example 68:

Example 67:

"@org.example.MyFavoriteModelElement": {

 "$ModelElementPath": "/org.example"/self.someAction"

}

14.4.1.5 Navigation Property Path

The navigation property path expression provides a value for terms or term properties that specify the
built-in types Edm.NavigationPropertyPath, Edm.AnyPropertyPath, or

Edm.ModelElementPath. Its argument is a model path with the following restriction:

• The lastA non-null path segment MUST resolve to either a , or to a where the term MUST be
ofmodel element whose type Edm.EntityType, a concreteis an entity type, or a collection of

Edm.EntityType or concrete entity typetypes, e.g. a navigation property.

The value of the navigation property path expression is the path itself, not the entitiy or collection of
entities identified by the path.

$NavigationPropertyPath

Navigation property path expressions are represented as an object with a single member
$NavigationPropertyPath whose value is a string containing a path.

Example 69:

Example 68:

"@UI.HyperLink": {

 "$NavigationPropertyPath": "Supplier"",

},

"@Capabilities.UpdateRestrictions": {

 "NonUpdatableNavigationProperties": [

 {

 "$NavigationPropertyPath": "Supplier"",

 },

 {

 "$NavigationPropertyPath": "Category"

 }

]

}

14.4.1.6 Property Path

The property path expression provides a value for terms or term properties that specify one of the built-in
types Edm.PropertyPath, Edm.AnyPropertyPath, or Edm.ModelElementPath. Its argument is a

model path with the following restriction:

• The lastA non-null path segment MUST resolve either to a structural property, or to a where the
term MUST be of model element whose type Edm.ComplexType, Edm.PrimitiveType, ais a

primitive or complex type, an enumeration type, a concrete primitive type, a type definition, or a
collection of one of these types.

The value of the property path expression is the path itself, not the value of the structural property or the
value of the term cast identified by the path.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 67 of 89

$PropertyPath

Property path expressions are represented as an object with a single member $PropertyPath

whose value is a string containing a path.

Example 69:

Example 70:

"@UI.RefreshOnChangeOf": {

 "$PropertyPath": "ChangedAt"",

},

"@Capabilities.UpdateRestrictions": {

 "NonUpdatableProperties": [

 {

 "$PropertyPath": "CreatedAt"",

 },

 {

 "$PropertyPath": "ChangedAt"

 }

]

}

14.4.1.7 Value Path

The value path expression allows assigning a value by traversing an object graph. It can be used in
annotations that target entity containers, entity sets, entity types, complex types, navigation properties of
structured types, and structural properties of structured types. Its argument is an instance path.

The value of the path expression is the instance or collection of instances identified by the path.

$Path

Path expressions are represented as an object with a single member $Path whose value is a

string containing a path.

Example 71:

"@UI.DisplayName": {

 "$Path": "FirstName"

},

"@UI.DisplayName#second": {

 "$Path": "@vCard.Address#work/FullName"

}

14.4.2 Comparison and Logical Operators

Annotations MAY use the following logical and comparison expressions which evaluate to a Boolean
value. These expressions MAY be combined and they MAY be used anywhere instead of a Boolean
expression.

Operator Description

Logical Operators

And Logical and

Or Logical or

Not Logical negation

Comparison Operators

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 68 of 89

Operator Description

Eq Equal

Ne Not equal

Gt Greater than

Ge Greater than or equal

Lt Less than

Le Less than or equal

Has Has enumeration flag(s) set

In Is in collection

The And and Or operators require two operand expressions that evaluate to Boolean values. The Not

operator requires a single operand expression that evaluates to a Boolean value. For details on null
handling for comparison operators see [OData-URL].

The other comparison operators require two operand expressions that evaluate to comparable values.

$And and $Or

The And and Or logical expressions are represented as an object with a single member whose

value is an array with two annotation expressions. The member name is one of $And, or $Or.

It MAY contain annotations.

$Not

Negation expressions are represented as an object with a single member $Not whose value is

an annotation expression.

It MAY contain annotations.

$Eq, $Ne, $Gt, $Ge, $Lt, $Le, $Has, and $In

All comparison expressions are represented as an object with a single member whose value is
an array with two annotation expressions. The member name is one of $Eq, $Ne, $Gt, $Ge,

$Lt, $Le, $Has, or $In.

They MAY contain annotations.

Example 72:

{

 "$And": [

 {

 "$Path": "IsMale"

 },

 {

 "$Path": "IsMarried"

 }

]

},

{

 "$Or": [

 {

 "$Path": "IsMale"

 },

 {

 "$Path": "IsMarried"

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 69 of 89

 }

]

},

{

 "$Not": {

 "$Path": "IsMale"

 }

},

{

 "$Eq": [

 null,

 {

 "$Path": "IsMale"

 }

]

},

{

 "$Ne": [

 null,

 {

 "$Path": "IsMale"

 }

]

},

{

 "$Gt": [

 {

 "$Path": "Price"

 },

 {20

 "$Int": 20

 }

]

},

{

 "$Ge": [

 {

 "$Path": "Price"

 },

 {

 "$Int": 10

 }

]

},

{

 "$Lt": [

 {

 "$Path": "Price"

 },

 {

 "$Int": 20

 }

]

},

{

 "$Le": [

 {

 "$Path": "Price"

 },

 {

 "$Int": 100

 }

]

},

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 70 of 89

{

 "$Has": [

 {

 "$Path": "Fabric"

 },

 {

 "$EnumMember": "Red"

 }

]

},

{

 "$In": [

 {

 "$Path": "Size"

 },

 [

 "XS",

 "S"

]

]

}

14.4.3 Arithmetic Operators

Annotations MAY use the following arithmetic expressions which evaluate to a numeric value. These
expressions MAY be combined, and they MAY be used anywhere instead of a numeric expression of the
appropriate type. The semantics and evaluation rules for each arithmetic expression is identical to the
corresponding arithmetic operator defined in [OData-URL].

Operator Description

Add Addition

Sub Subtraction

Neg Negation

Mul Multiplication

Div Division (with integer result for integer operands)

DivBy Division (with fractional result also for integer operands)

Mod Modulo

The Neg operator requires a single operand expression that evaluates to a numeric value. The other

arithmetic operators require two operand expressions that evaluate to numeric values.

$Neg

Negation expressions are represented as an object with a single member $Neg whose value is

an annotation expression.

It MAY contain annotations.

$Add, $Sub, $Mul, $Div, $DivBy, and $Mod

These arithmetic expressions are represented as an object with as single member whose value
is an array with two annotation expressions. The member name is one of $Add, $Sub, $Neg,

$Mul, $Div, $DivBy, or $Mod.

They MAY contain annotations.

Example 73:

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 71 of 89

{

 "$Add": [

 {

 "$Path": "StartDate"

 },

 {

 "$Path": "Duration"

 }

]

},

{

 "$Sub": [

 {

 "$Path": "Revenue"

 },

 {

 "$Path": "Cost"

 }

]

},

{

 "$Neg": {

 "$Path": "Height"

 }

},

{

 "$Mul": [

 {

 "$Path": "NetPrice"

 },

 {

 "$Path": "TaxRate"

 }

]

},

{

 "$Div": [

 {

 "$Path": "Quantity"

 },

 {

 "$Path": "QuantityPerParcel"

 }

]

},

{

 "$DivBy": [

 {

 "$Path": "Quantity"

 },

 {

 "$Path": "QuantityPerParcel"

 }

]

},

{

 "$Mod": [

 {

 "$Path": "Quantity"

 },

 {

 "$Path": "QuantityPerParcel"

 }

]

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 72 of 89

}

14.4.4 Apply Client-Side Functions

The apply expression enables a value to be obtained by applying a client-side function. The apply
expression MAY have operand expressions. The operand expressions are used as parameters to the
client-side function.

$Apply

Apply expressions are represented as an object with a member $Apply whose value is an

array of annotation expressions, and a member $Function whose value is a string containing

the qualified name of the client-side function to be applied.

It MAY contain annotations.

OData defines the following functions. Services MAY support additional functions that MUST be qualified
with a namespace other than odata. Function names qualified with odata are reserved for this

specification and its future versions.

14.4.4.1 Canonical Functions

All canonical functions defined in [OData-URL] can be used as client-side functions, qualified with the
namespace odata. The semantics of these client-side functions is identical to their counterpart function

defined in [OData-URL].

For example, the odata.concat client-side function takes two or more expressions as arguments. Each

argument MUST evaluate to a primitive or enumeration type. It returns a value of type Edm.String that

is the concatenation of the literal representations of the results of the argument expressions. Values of
primitive types other than Edm.String are represented according to the appropriate alternative in the

primitiveValue rule of [OData-ABNF], i.e. Edm.Binary as binaryValue, Edm.Boolean as

booleanValue etc.

Example 74:

"@UI.DisplayName": {

 "$Apply": [

 "Product: ",

 {

 "$Path": "ProductName"

 },

 " (",

 {

 "$Path": "Available/Quantity"

 },

 " ",

 {

 "$Path": "Available/Unit"

 },

 " available)"

],

 "$Function": "odata.concat"

}

ProductName is of type String, Quantity in complex type Available is of type Decimal, and Unit in

Available is of type enumeration, so the result of the Path expression is represented as the member name of the

enumeration value.

14.4.4.2 Function odata.fillUriTemplate

The odata.fillUriTemplate client-side function takes two or more expressions as arguments and

returns a value of type Edm.String.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 73 of 89

The first argument MUST be of type Edm.String and specifies a URI template according to [RFC6570],

the other arguments MUST be labeled element expressions. Each labeled element expression specifies
the template parameter name as its name and evaluates to the template parameter value.

[RFC6570] defines three kinds of template parameters: simple values, lists of values, and key-value
maps.

Simple values are represented as labeled element expressions that evaluate to a single primitive value.
The literal representation of this value according to [OData-ABNF] is used to fill the corresponding
template parameter.

Lists of values are represented as labeled element expressions that evaluate to a collection of primitive
values.

Key-value maps are represented as labeled element expressions that evaluate to a collection of complex
types with two properties that are used in lexicographic order. The first property is used as key, the
second property as value.

Example 75: assuming there are no special characters in values of the Name property of the Actor entity

{

 "$Apply": [

 "http://host/someAPI/Actors/{actorName}/CV",

 {

 "$LabeledElement": {

 "$Path": "Actor/Name"

 },

 "$Name": "self.actorName"

 }

],

 "$Function": "odata.fillUriTemplate"

}

14.4.4.3 Function odata.matchesPattern

The odata.matchesPattern client-side function takes two string expressions as arguments and

returns a Boolean value.

The function returns true if the second expression evaluates to an [ECMAScript] (JavaScript) regular
expression and the result of the first argument expression matches that regular expression, using syntax
and semantics of [ECMAScript] regular expressions.

Example 76: all non-empty FirstName values not containing the letters b, c, or d evaluate to true

{

 "$Apply": [

 {

 "$Path": "FirstName"

 },

 "^[^b-d]+$"

],

 "$Function": "odata.matchesPattern"

}

14.4.4.4 Function odata.uriEncode

The odata.uriEncode client-side function takes one argument of primitive type and returns the URL-

encoded OData literal that can be used as a key value in OData URLs or in the query part of OData
URLs.

Note: string literals are surrounded by single quotes as required by the paren-style key syntax.

Example 77:

{

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 74 of 89

 "$Apply": [

 "http://host/service/Genres({genreName})",

 {

 "$LabeledElement": {

 "$Apply": [

 {

 "$Path": "NameOfMovieGenre"

 }

],

 "$Function": "odata.uriEncode"

 },

 "$Name": "self.genreName"

 }

],

 "$Function": "odata.fillUriTemplate"

}

14.4.5 Cast

The cast expression casts the value obtained from its single child expression to the specified type. The
cast expression follows the same rules as the cast canonical function defined in [OData-URL].

$Cast

Cast expressions are represented as an object with a member $Cast whose value is an

annotation expression, a member $Type whose value is a string containing the qualified type

name, and optionally a member $Collection with a value of true.

It MAY contain annotations.

If the specified type is a primitive type or a collection of primitive types, the facet members
$MaxLength, $Unicode, $Precision, $Scale, and $SRID MAY be specified if applicable to

the specified primitive type. If the facet members are not specified, their values are considered
unspecified.

Example 78:

"@UI.Threshold": {

 "$Cast": {

 "$Path": "Average"

 },

 "$Type": "Edm.Decimal"

}

14.4.6 Collection

The collection expression enables a value to be obtained from zero or more item expressions. The value
calculated by the collection expression is the collection of the values calculated by each of the item
expressions. The values of the child expressions MUST all be type compatible.

Collection expressions are represented as arrays with one array item per item expression within
the collection expression.

Example 79:

"@seo.SeoTerms": [

 "Product",

 "Supplier",

 "Customer"

]

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 75 of 89

14.4.7 If-Then-Else

The if-then-else expression enables a value to be obtained by evaluating a condition expression. It MUST
contain exactly three child expressions. There is one exception to this rule: if and only if the if-then-else
expression is an item of a collection expression, the third child expression MAY be omitted, reducing it to
an if-then expression. This can be used to conditionally add an element to a collection.

The first child expression is the condition and MUST evaluate to a Boolean result, e.g. the comparison
and logical operators can be used.

The second and third child expressions are evaluated conditionally. The result MUST be type compatible
with the type expected by the surrounding expression.

If the first expression evaluates to true, the second expression MUST be evaluated and its value MUST

be returned as the result of the if-then-else expression. If the first expression evaluates to false and a

third child element is present, it MUST be evaluated and its value MUST be returned as the result of the
if-then-else expression. If no third expression is present, nothing is added to the surrounding collection.

$If

Conditional expressions are represented as an object with a member $If whose value is an

array of two or three annotation expressions.

It MAY contain annotations.

Example 80: the condition is a value path expressionExample :

 referencing the Boolean property IsFemale ,whose value then determines the value of the $If expression

"@person.Gender": {

 "$If": [

 {

 "$Path": "IsFemale"

 },

 "Female",

 "Male"

]

}

14.4.8 Is-Of

The is-of expression checks whether the value obtained from its single child expression is compatible with
the specified type. It returns true if the child expression returns a type that is compatible with the

specified type, and false otherwise.

$IsOf

Is-of expressions are represented as an object with a member $IsOf whose value is an

annotation expression, a member $Type whose value is a string containing an qualified type

name, and optionally a member $Collection with a value of true.

It MAY contain annotations.

If the specified type is a primitive type or a collection of primitive types, the facet members
$MaxLength, $Unicode, $Precision, $Scale, and $SRID MAY be specified if applicable to

the specified primitive type. If the facet members are not specified, their values are considered
unspecified.

Example 81:

"@Self.IsPreferredCustomer": {

 "$IsOf": {

 "$Path": "Customer"

 },

 "$Type": "self.PreferredCustomer"

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 76 of 89

}

14.4.9 Labeled Element

The labeled element expression assigns a name to its single child expression. The value of the child
expression can then be reused elsewhere with a labeled element reference expression.

A labeled element expression MUST contain exactly one child expression. The value of the child
expression is also the value of the labeled element expression.

A labeled element expression MUST provide a simple identifier value as its name that MUST be unique
within the schema containing the expression.

$LabeledElement

Labeled element expressions are represented as an object with a member $LabeledElement

whose value is an annotation expression, and a member $Name whose value is a string

containing the labeled element’s name.

It MAY contain annotations.

Example 82:

"@UI.DisplayName": {

 "$LabeledElement": {

 "$Path": "FirstName"

 },

 "$Name": "CustomerFirstName"

}

14.4.10 Labeled Element Reference

The labeled element reference expression MUST specify the qualified name of a labeled element
expression in scope and returns the value of the identified labeled element expression as its value.

$LabeledElementReference

Labeled element reference expressions are represented as an object with a member
$LabeledElementReference whose value is a string containing an qualified name.

Example 83:

"@UI.DisplayName": {

 "$LabeledElementReference": "self.CustomerFirstName"

}

14.4.11 Null

The null expression returns an untyped nullindicates the absence of a value. The null expression MAY be
annotated.

Null expressions that do not contain annotations are represented as the literal null.

Example 84:

"@UI.DisplayName": null,

$Null

Null expression containing annotations are represented as an object with a member $Null

whose value is the literal null.

Example 85:

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 77 of 89

"@UI.Address": {

 "$Null": null,

 "@self.Reason": "Private"

}

14.4.12 Record

The record expression enables a new entity type or complex type instance to be constructed.

A record expression MAY specify the structured type of its result, which MUST be an entity type or
complex type in scope. If not explicitly specified, the type is derived from the expression’s context.

A record expression contains zero or more property value expressions. For each single-valued structural
or navigation property of the record expression’s type that is neither nullable nor specifies a default value
a property value expression MUST be provided. The only exception is if the record expression is the
value of an annotation for a term that has a base term whose type is structured and directly or indirectly
inherits from the type of its base term. In this case, property values that already have been specified in
the annotation for the base term or its base term etc. need not be specified again.

For collection-valued properties the absence of a property value expression is equivalent to specifying an
empty collection as its value.

Record expressions are represented as objects with one member per property value
expression. The member name is the property name, and the member value is the property
value expression.

The type of a record expression is represented as the @type control information, see

[OData-JSON].

It MAY contain annotations for itself and its members. Annotations for record members are
prefixed with the member name.

Example 86: record with two structural and two navigation properties

"@person.Employee": {

 "@type": "https://example.org/vocabs/person#org.example.person.Manager",

 "@Core.Description": "Annotation on record",

 "GivenName": {

 "$Path": "FirstName"

 },

 "GivenName@Core.Description": "Annotation on record member",

 "Surname": {

 "$Path": "LastName"

 },

 "Manager": {

 "$Path": "DirectSupervisor"

 },

 "CostCenter": {

 "$UrlRef": {

 "$Apply": [

 "http://host/anotherservice/CostCenters('{ccid}')",

 {

 "$LabeledElement": {

 "$Path": "CostCenterID"

 },

 "$Name": "self.ccid"

 }

],

 "$Function": "odata.fillUriTemplate"

 }

 }

}

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 78 of 89

14.4.13 URL Reference

The URL reference expression enables a value to be obtained by sending a GET request.

The URL reference expression MUST contain exactly one expression of type Edm.String. Its value is

treated as a URL that MAY be relative or absolute; relative URLs are relative to the URL of the document
containing the URL reference expression, or relative to a base URL specified in a format-specific way.

The response body of the GET request MUST be returned as the result of the URL reference expression.

The result of the URL reference expression MUST be type compatible with the type expected by the
surrounding expression.

$UrlRef

URL reference expressions are represented as an object with a single member $UrlRef

whose value is an annotation expression.

It MAY contain annotations.

Example 87:

"@org.example.person.Supplier": {

 "$UrlRef": {

 "$Apply": [

 "http://host/service/Suppliers({suppID})",

 {

 "$LabeledElement": {

 "$Apply": [

 {

 "$Path": "SupplierId"

 }

],

 "$Function": "odata.uriEncode"

 },

 "$Name": "self.suppID"

 }

],

 "$Function": "odata.fillUriTemplate"

 }

},

"@Core.LongDescription#element": {

 "$UrlRef": "http://host/wiki/HowToUse"

}

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 79 of 89

15 Identifier and Path Values

15.1 Namespace

A namespace is a dot-separated sequence of simple identifiers with a maximum length of 511 Unicode
characters.

15.2 Simple Identifier

A simple identifier is a Unicode character sequence with the following restrictions:

• It consists of at least one and at most 128 Unicode characters.

• The first character MUST be the underscore character (U+005F) or any character in the Unicode
category “Letter (L)” or “Letter number (Nl)”.

• The remaining characters MUST be the underscore character (U+005F) or any character in the
Unicode category “Letter (L)”, “Letter number (Nl)”, “Decimal number (Nd)”, “Non-spacing mark
(Mn)”, “Combining spacing mark (Mc)”, “Connector punctuation (Pc)”, and “Other, format (Cf)”.

Non-normatively speaking it starts with a letter or underscore, followed by at most 127 letters,
underscores or digits.

15.3 Qualified Name

For model elements that are direct children of a schema: the namespace or alias of the schema that
defines the model element, followed by a dot and the name of the model element, see rule
qualifiedTypeName in [OData-ABNF].

For built-in primitive types: the name of the type, prefixed with Edm followed by a dot.

15.4 Target Path

Target paths are used to refer to other model elements.

The allowed path expressions are:

• The qualified name of an entity container, followed by a forward slash and the name of a
container child element

• The target path of a container child followed by a forward slash and one or more forward-slash
separated property, navigation property, or type-cast segments

Example 88: Target expressions

MySchema.MyEntityContainer/MyEntitySet

MySchema.MyEntityContainer/MySingleton

MySchema.MyEntityContainer/MySingleton/MyContainmentNavigationProperty

MySchema.MyEntityContainer/MySingleton/My.EntityType/MyContainmentNavProperty

MySchema.MyEntityContainer/MySingleton/MyComplexProperty/MyContainmentNavProp

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 80 of 89

16 CSDL Examples
Following are two basic examples of valid EDM models as represented in CSDL JSON. These examples
demonstrate many of the topics covered above.

16.1 Products and Categories Example

Example 89:

{

 "$Version": "4.010",

 "$EntityContainer": "ODataDemo.DemoService",

 "$Reference": {

 "http://docs.https://oasis-open.org/odatatcs.github.io/odata-

vocabularies/v4.0/vocabularies/Org.OData.Core.V1.json": {

 "$Include": [

 {

 "$Namespace": "Org.OData.Core.V1",

 "$Alias": "Core",

 "@Core.DefaultNamespace": true

 }

]

 },

 "http://docs.https://oasis-open.org/odatatcs.github.io/odata-

vocabularies/v4.0/vocabularies/Org.OData.Measures.V1.json": {

 "$Include": [

 {

 "$Namespace": "Org.OData.Measures.V1",

 "$Alias": "Measures"

 }

]

 }

 },

 "ODataDemo": {

 "$Alias": "self",

 "@Core.DefaultNamespace": true,

 "Product": {

 "$Kind": "EntityType",

 "$HasStream": true,

 "$Key": [

 "ID"

],

 "ID": {},

 "Description": {

 "$Nullable": true,

 "@Core.IsLanguageDependent": true

 },

 "ReleaseDate": {

 "$Nullable": true,

 "$Type": "Edm.Date"

 },

 "DiscontinuedDate": {

 "$Nullable": true,

 "$Type": "Edm.Date"

 },

 "Rating": {

 "$Nullable": true,

 "$Type": "Edm.Int32"

 },

 "Price": {

 "$Nullable": true,

 "$Type": "Edm.Decimal",

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 81 of 89

 "@Measures.ISOCurrency": {

 "$Path": "Currency"

 }

 },

 "Currency": {

 "$Nullable": true,

 "$MaxLength": 3

 },

 "Category": {

 "$Kind": "NavigationProperty",

 "$Type": "self.Category",

 "$Partner": "Products"

 },

 "Supplier": {

 "$Kind": "NavigationProperty",

 "$Nullable": true,

 "$Type": "self.Supplier",

 "$Partner": "Products"

 }

 },

 "Category": {

 "$Kind": "EntityType",

 "$Key": [

 "ID"

],

 "ID": {

 "$Type": "Edm.Int32"

 },

 "Name": {

 "@Core.IsLanguageDependent": true

 },

 "Products": {

 "$Kind": "NavigationProperty",

 "$Partner": "Category",

 "$Collection": true,

 "$Type": "self.Product",

 "$OnDelete": "Cascade"

 }

 },

 "Supplier": {

 "$Kind": "EntityType",

 "$Key": [

 "ID"

],

 "ID": {},

 "Name": {

 "$Nullable": true

 },

 "Address": {

 "$Type": "self.Address","

 "$Nullable": false

 },

 "Concurrency": {

 "$Type": "Edm.Int32"

 },

 "Products": {

 "$Kind": "NavigationProperty",

 "$Partner": "Supplier",

 "$Collection": true,

 "$Type": "self.Product"

 }

 },

 "Country": {

 "$Kind": "EntityType",

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 82 of 89

 "$Key": [

 "Code"

],

 "Code": {

 "$MaxLength": 2

 },

 "Name": {

 "$Nullable": true

 }

 },

 "Address": {

 "$Kind": "ComplexType",

 "Street": {

 "$Nullable": true

 },

 "City": {

 "$Nullable": true

 },

 "State": {

 "$Nullable": true

 },

 "ZipCode": {

 "$Nullable": true

 },

 "CountryName": {

 "$Nullable": true

 },

 "Country": {

 "$Kind": "NavigationProperty",

 "$Nullable": true

 "$Type": "self.Country",

 "$ReferentialConstraint": {

 "CountryName": "Name"

 }

 }

 },

 "ProductsByRating": [

 {

 "$Kind": "Function",

 "$Parameter": [

 {

 "$Name": "Rating",

 "$Nullable": true,

 "$Type": "Edm.Int32"

 }

],

 "$ReturnType": {

 "$Collection": true,

 "$Type": "self.Product"

 }

 }

],

 "DemoService": {

 "$Kind": "EntityContainer",

 "Products": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Product",

 "$NavigationPropertyBinding": {

 "Category": "Categories"

 }

 },

 "Categories": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Category",

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 83 of 89

 "$NavigationPropertyBinding": {

 "Products": "Products"

 },

 "@Core.Description": "Product Categories"

 },

 "Suppliers": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Supplier",

 "$NavigationPropertyBinding": {

 "Products": "Products",

 "Address/Country": "Countries"

 },

 "@Core.OptimisticConcurrency": [

 {

 "$PropertyPath": "Concurrency"

 }

]

 },

 "Countries": {

 "$Kind": "EntitySet",Collection": true,

 "$Type": "self.Country"

 },

 "MainSupplier": {

 "$Kind": "Singleton",

 "$Type": "self.Supplier",

 "$NavigationPropertyBinding": {

 "Products": "Products"

 },

 "@Core.Description": "Primary Supplier"

 },

 "ProductsByRating": {

 "$Kind": "FunctionImport",

 "$EntitySet": "Products",

 "$Function": "self.ProductsByRating"

 }

 }

 }

}

16.2 Annotations for Products and Categories Example

Example 90:

{

 "$Version": "4.01",

 "$Reference": {

 "http://host/service/$metadata": {

 "$Include": [

 {

 "$Namespace": "ODataDemo",

 "$Alias": "target"

 }

]

 },

 "http://somewhere/Vocabulary/V1": {

 "$Include": [

 {

 "$Namespace": "Some.Vocabulary.V1",

 "$Alias": "Vocabulary1"

 }

]

 }

 },

 "External.Annotations": {

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 84 of 89

 "$Alias": "self", "$Annotations": {

 "target.Supplier": {

 "@Vocabulary1.EMail": null,

 "@Vocabulary1.AccountID": {

 "$Path": "ID"

 },

 "@Vocabulary1.Title": "Supplier Info",

 "@Vocabulary1.DisplayName": {

 "$Apply": [

 {

 "$Path": "Name"

 },

 " in ",

 {

 "$Path": "Address/CountryName"

 }

],

 "$Function": "odata.concat"

 }

 },

 "ODataDemotarget.Product": {

 "@Vocabulary1.Tags": [

 "MasterData"

]

 }

 }

 }

}

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 85 of 89

17 Conformance
Conforming services MUST follow all rules of this specification document for the types, sets, functions,
actions, containers and annotations they expose.

In addition, conforming services MUST NOT return 4.01 CSDL constructs for requests made with OData-

MaxVersion:4.0.

Specifically, they

1. MUST NOT include properties in derived types that overwrite a property defined in the base type
2. MUST NOT include Edm.Untyped

3. MUST NOT use path syntax added with 4.01
4. MUST NOT use Edm.ModelElementPath and Edm.AnyPropertyPath

5. MUST NOT specify referential constraints to complex types and navigation properties
6. MUST NOT include a non-abstract entity type with no inherited or defined entity key
7. MUST NOT include the Core.DefaultNamespaceCore.DefaultNamespace annotation on

included schemas
8. MUST NOT return the Unicode facet for terms, parameters, and return types
9. MUST NOT include collections of Edm.ComplexType or Edm.Untyped

10. MUST NOT specify a key as a property of a related entity
11. SHOULD NOT include new/unknown values for $AppliesTo

12. SHOULD specify the facet for collections
13.12. MAY include new CSDL annotations

In addition, to comply with OData 4.01, services:

14. MUST specify the facet for collections
13. SHOULD NOT have identifiers within a uniqueness scope (e.g. a schema, a structural type, or an

entity container) that differ only by case

Conforming clients MUST be prepared to consume a model that uses any or all constructs defined in this
specification, including custom annotations, and MUST ignore constructs not defined in this version of the
specification.

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#DefaultNamespace

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 86 of 89

Appendix A. Acknowledgments

The work of the OpenUI5 team on the OData V4 Metadata JSON Format, see [OpenUI5], is gratefully
acknowledged, especially the contributions of

• Thomas Chadzelek (SAP SE)

• Jens Ittel (SAP SE)

• Patric Ksinsik (SAP SE)

The contributions of the OASIS OData Technical Committee members, enumerated in [ODataProtocol],
are gratefully acknowledged.

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 87 of 89

Appendix B. Table of JSON Objects and Members

Document Object ..16

$Version ..16

$EntityContainer16

$Reference..16

Reference Object..16

$Include ..17

$Namespace..17

$Alias ..17

$IncludeAnnotations19

$TermNamespace19

$Qualifier..19

$TargetNamespace19

Schema Object ...20

$Alias ..20

$Annotations ...21

Entity Type Object ..22

$BaseType ..22

$Abstract ..23

$OpenType ..23

$HasStream..23

$Key ..25

Property Object ..27

$Type and $Collection28

$Nullable ..28

$MaxLength..28

$Precision..29

$Scale ..29

$Unicode ..30

$SRID ..30

$DefaultValue31

Navigation Property Object32

$Type and $Collection33

$Nullable ..33

$Partner ..34

$ContainsTarget34

$ReferentialConstraint.....................35

$OnDelete ..36

Complex Type Object37

$BaseType ..38

$Abstract ..38

$OpenType ... 38

Enumeration Type Object 39

$UnderlyingType 39

$IsFlags ... 39

Enumeration Member Object 40

Type Definition Object 41

$UnderlyingType 41

Action Overload Object 43

Function Overload Object 44

$IsBound ... 44

$EntitySetPath 44

$IsComposable 45

$ReturnType ... 45

$Type and $Collection 45

$Nullable ... 45

$Parameter ... 46

Parameter Object ... 46

$Name ... 46

$Type and $Collection 46

$Nullable ... 46

Entity Container Object 47

$Extends ... 48

Entity Set Object .. 49

$Collection ... 49

$Type ... 49

$IncludeInServiceDocument 49

Singleton Object... 49

$Type ... 50

$Nullable ... 50

$NavigationPropertyBinding 51

Action Import Object 51

$Action ... 52

$EntitySet ... 52

Function Import Object 52

$Function ... 52

$EntitySet ... 52

$IncludeInServiceDocument 52

Term Object ... 54

$Type and $Collection 54

$DefaultValue 54

$BaseTerm ... 54

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 88 of 89

$AppliesTo..56

Annotation Member ..56

$Path ..67

$And and $Or ..68

$Not ..68

$Eq, $Ne, $Gt, $Ge, $Lt, $Le, $Has, and

$In ..68

$Neg ..70

$Add, $Sub, $Mul, $Div, $DivBy, and $Mod

 ..70

$Apply ... 72

$Cast ... 74

$If .. 75

$IsOf ... 75

$LabeledElement 76

$LabeledElementReference 76

$Null ... 76

$UrlRef ... 78

odata-csdl-json-v4.01-csprd04 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 89 of 89

Appendix C. Revision History

Revision Date Editor Changes Made

Working Draft 01 2016-11-16 Ralf Handl Initial version

Committee
Specification
Draft 01

2017-06-08 Michael Pizzo

Ralf Handl

Integrated 4.01 features

Committee
Specification
Draft 02

2017-09-22 Michael Pizzo

Ralf Handl

Incorporated review feedback

Changed defaults of $Nullable, $Scale,

and $Precision

Committee
Specification
Draft 03

2017-11-10 Michael Pizzo

Ralf Handl

Incorporated review feedback

Stable order of action and function
parameters

Committee
Specification 01

2017-12-19 Michael Pizzo

Ralf Handl

Non-Material Changes

Committee
Specification
Draft 04

2019-06-21 Michael Pizzo

Ralf Handl

External targeting for annotations on
action/function overloads, parameters, and
return types

Key and index segments for path expressions
in annotations

Nullable singletons

Simplified syntax of entity container children
and constant annotation expressions

