
obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 1 of 77

OBIX Version 1.1

Committee Specification Draft 03 /
Public Review Draft 03

06 November 2014

Specification URIs
This version:

http://docs.oasis-open.org/obix/obix/v1.1/csprd03/obix-v1.1-csprd03.pdf (Authoritative)
http://docs.oasis-open.org/obix/obix/v1.1/csprd03/obix-v1.1-csprd03.html
http://docs.oasis-open.org/obix/obix/v1.1/csprd03/obix-v1.1-csprd03.doc

Previous version:
http://docs.oasis-open.org/obix/obix/v1.1/csprd02/obix-v1.1-csprd02.pdf (Authoritative)
http://docs.oasis-open.org/obix/obix/v1.1/csprd02/obix-v1.1-csprd02.html
http://docs.oasis-open.org/obix/obix/v1.1/csprd02/obix-v1.1-csprd02.doc

Latest version:
http://docs.oasis-open.org/obix/obix/v1.1/obix-v1.1.pdf (Authoritative)
http://docs.oasis-open.org/obix/obix/v1.1/obix-v1.1.html
http://docs.oasis-open.org/obix/obix/v1.1/obix-v1.1.doc

Technical Committee:
OASIS Open Building Information Exchange (oBIX) TC

Chair:
Toby Considine (toby.considine@unc.edu), University of North Carolina at Chapel Hill

Editor:
Craig Gemmill (craig.gemmill@tridium.com), Tridium

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

 XML schemas: http://docs.oasis-open.org/obix/obix/v1.1/csprd03/schemas/

Related work:

This specification replaces or supersedes:

 oBIX 1.0. Edited by Brian Frank. 05 December 2006. Committee Specification 01.
https://www.oasis-open.org/committees/download.php/21812/obix-1.0-cs-01.pdf.

This specification is related to:

 Bindings for OBIX: REST Bindings Version 1.0. Edited by Craig Gemmill and Markus Jung.
Latest version. http://docs.oasis-open.org/obix/obix-rest/v1.0/obix-rest-v1.0.html.

 Bindings for OBIX: SOAP Bindings Version 1.0. Edited by Markus Jung. Latest version.
http://docs.oasis-open.org/obix/obix-soap/v1.0/obix-soap-v1.0.html.

 Encodings for OBIX: Common Encodings Version 1.0. Edited by Markus Jung. Latest
version. http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-encodings-v1.0.html.

 Bindings for OBIX: Web Socket Bindings Version 1.0. Edited by Matthias Hub. Latest version.

http://docs.oasis-open.org/obix/obix-websocket/v1.0/obix-websocket-v1.0.html.

Declared XML namespace:

 http://docs.oasis-open.org/obix/ns/201410/schema

http://docs.oasis-open.org/obix/obix/v1.1/csprd03/obix-v1.1-csprd03.pdf
http://docs.oasis-open.org/obix/obix/v1.1/csprd03/obix-v1.1-csprd03.html
http://docs.oasis-open.org/obix/obix/v1.1/csprd03/obix-v1.1-csprd03.doc
http://docs.oasis-open.org/obix/obix/v1.1/csprd02/obix-v1.1-csprd02.pdf
http://docs.oasis-open.org/obix/obix/v1.1/csprd02/obix-v1.1-csprd02.html
http://docs.oasis-open.org/obix/obix/v1.1/csprd02/obix-v1.1-csprd02.doc
http://docs.oasis-open.org/obix/obix/v1.1/obix-v1.1.pdf
http://docs.oasis-open.org/obix/obix/v1.1/obix-v1.1.html
http://docs.oasis-open.org/obix/obix/v1.1/obix-v1.1.doc
https://www.oasis-open.org/committees/obix/
mailto:toby.considine@unc.edu
http://www.unc.edu/
mailto:craig.gemmill@tridium.com
http://www.tridium.com/
http://docs.oasis-open.org/obix/obix/v1.1/csprd03/schemas/
https://www.oasis-open.org/committees/download.php/21812/obix-1.0-cs-01.pdf
http://docs.oasis-open.org/obix/obix-rest/v1.0/obix-rest-v1.0.html
http://docs.oasis-open.org/obix/obix-soap/v1.0/obix-soap-v1.0.html
http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-encodings-v1.0.html
http://docs.oasis-open.org/obix/obix-websocket/v1.0/obix-websocket-v1.0.html
http://docs.oasis-open.org/obix/ns/201410/schema

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 2 of 77

Abstract:
This document specifies an object model used for machine-to-machine (M2M) communication.
Companion documents will specify the protocol bindings and encodings for specific cases.

Status:
This document was last revised or approved by the OASIS Open Building Information Exchange
(oBIX) TC on the above date. The level of approval is also listed above. Check the “Latest
version” location noted above for possible later revisions of this document. Any other numbered
Versions and other technical work produced by the Technical Committee (TC) are listed at
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=obix#technical.

TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/obix/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/obix/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[OBIX-v1.1]

OBIX Version 1.1. Edited by Craig Gemmill. 06 November 2014. OASIS Committee Specification
Draft 03 / Public Review Draft 03. http://docs.oasis-open.org/obix/obix/v1.1/csprd03/obix-v1.1-
csprd03.html. Latest version: http://docs.oasis-open.org/obix/obix/v1.1/obix-v1.1.html.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=obix#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=obix
https://www.oasis-open.org/committees/obix/
https://www.oasis-open.org/committees/obix/
https://www.oasis-open.org/committees/obix/ipr.php
https://www.oasis-open.org/committees/obix/ipr.php
http://docs.oasis-open.org/obix/obix/v1.1/csprd03/obix-v1.1-csprd03.html
http://docs.oasis-open.org/obix/obix/v1.1/csprd03/obix-v1.1-csprd03.html
http://docs.oasis-open.org/obix/obix/v1.1/obix-v1.1.html

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 3 of 77

Notices

Copyright © OASIS Open 2014. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 4 of 77

Table of Contents

1 Introduction ... 9

1.1 Terminology .. 9

1.2 Normative References .. 9

1.3 Non-Normative References .. 10

1.4 Namespace ... 10

1.5 Naming Conventions .. 10

1.6 Editing Conventions .. 10

1.7 Language Conventions ... 11

1.7.1 Definition of Terms .. 11

1.8 Architectural Considerations ... 12

1.8.1 Information Model .. 12

1.8.2 Interactions .. 12

1.8.3 Normalization... 12

1.8.4 Foundation... 13

1.9 Changes from Version 1.0 [non-normative] .. 13

2 Quick Start [non-normative] .. 14

3 Architecture .. 16

3.1 Design Philosophies ... 16

3.2 Object Model ... 16

3.3 Encodings ... 16

3.4 URIs .. 17

3.5 REST .. 17

3.6 Contracts... 17

3.7 Extensibility ... 18

4 Object Model .. 19

4.1 Object Model Description .. 19

4.2 obj ... 19

4.2.1 name .. 20

4.2.2 href .. 20

4.2.3 is .. 20

4.2.4 null ... 20

4.2.5 val .. 20

4.2.6 ts .. 21

4.2.7 Facets .. 21

4.3 Core Types ... 24

4.3.1 val .. 24

4.3.2 list .. 28

4.3.3 ref .. 28

4.3.4 err .. 28

4.3.5 op ... 28

4.3.6 feed .. 28

5 Lobby .. 30

5.1 Lobby Object ... 30

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 5 of 77

5.2 About ... 30

5.3 Batch ... 31

5.4 WatchService .. 32

5.5 Server Metadata ... 32

5.5.1 Tag Spaces ... 32

5.5.2 Versioning [non-normative] ... 33

5.5.3 Encodings .. 33

5.5.4 Bindings ... 34

6 Naming ... 35

6.1 Name .. 35

6.2 Href ... 35

6.3 URI Normalization ... 35

6.4 Fragment URIs ... 36

7 Contracts .. 37

7.1 Contract Terminology ... 37

7.2 Contract List .. 37

7.3 Is Attribute ... 38

7.4 Contract Inheritance ... 38

7.4.1 Structure vs Semantics ... 38

7.4.2 Overriding Defaults .. 39

7.4.3 Attributes and Facets .. 39

7.5 Override Rules .. 39

7.6 Multiple Inheritance ... 40

7.6.1 Flattening ... 40

7.6.2 Mixins .. 41

7.7 Contract Compatibility ... 42

7.8 Lists and Feeds .. 42

8 Operations .. 44

9 Object Composition .. 45

9.1 Containment ... 45

9.2 References.. 45

9.3 Extents .. 45

9.4 Metadata ... 46

10 Networking .. 48

10.1 Service Requests .. 48

10.1.1 Read .. 48

10.1.2 Write .. 48

10.1.3 Invoke .. 49

10.1.4 Delete .. 49

10.2 Errors .. 49

10.3 Localization ... 50

11 Core Contract Library ... 51

11.1 Nil .. 51

11.2 Range ... 51

11.3 Weekday ... 51

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 6 of 77

11.4 Month .. 51

11.5 Units .. 52

12 Watches .. 54

12.1 Client Polled Watches ... 54

12.2 Server Pushed Watches ... 54

12.3 WatchService .. 55

12.4 Watch .. 55

12.4.1 Watch.add ... 56

12.4.2 Watch.remove ... 56

12.4.3 Watch.pollChanges ... 57

12.4.4 Watch.pollRefresh ... 57

12.4.5 Watch.lease ... 57

12.4.6 Watch.delete.. 57

12.5 Watch Depth ... 57

12.6 Feeds .. 58

13 Points .. 59

13.1 Writable Points .. 59

14 History .. 60

14.1 History Object ... 60

14.2 History Queries ... 61

14.2.1 HistoryFilter ... 61

14.2.2 HistoryQueryOut .. 62

14.2.3 HistoryRecord .. 62

14.2.4 History Query Examples .. 62

14.3 History Rollups .. 63

14.3.1 HistoryRollupIn .. 64

14.3.2 HistoryRollupOut ... 64

14.3.3 HistoryRollupRecord ... 64

14.3.4 Rollup Calculation ... 64

14.4 History Feeds .. 66

14.5 History Append ... 66

14.5.1 HistoryAppendIn .. 66

14.5.2 HistoryAppendOut ... 66

15 Alarming ... 67

15.1 Alarm States ... 67

15.1.1 Alarm Source ... 67

15.1.2 StatefulAlarm and AckAlarm ... 68

15.2 Alarm Contracts .. 68

15.2.1 Alarm ... 68

15.2.2 StatefulAlarm ... 68

15.2.3 AckAlarm ... 68

15.2.4 PointAlarms ... 69

15.3 AlarmSubject .. 69

15.4 Alarm Feed Example .. 69

16 Security ... 71

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 7 of 77

16.1 Error Handling ... 71

16.2 Permission-based Degradation .. 71

17 Conformance .. 72

17.1 Conditions for a Conforming OBIX Server .. 72

17.1.1 Lobby ... 72

17.1.2 Tag Spaces ... 72

17.1.3 Bindings ... 72

17.1.4 Encodings .. 72

17.1.5 Contracts ... 72

17.2 Conditions for a Conforming OBIX Client ... 73

17.2.1 Bindings ... 73

17.2.2 Encodings .. 73

17.2.3 Naming .. 73

17.2.4 Contracts ... 73

17.3 Interaction with other Implementations ... 73

17.3.1 Unknown Elements and Attributes .. 73

Appendix A. Acknowledgments ... 74

Appendix B. Revision History .. 75

Table of Figures

Figure 4-1. The oBIX primitive object hierarchy..19

Table of Tables

Table 1-1. Definition of Terms. .. 12

Table 1-2. Problem spaces for OBIX. ... 12

Table 1-3. Normalization concepts in OBIX. ... 13

Table 1-4. Changes from Version 1.0. .. 13

Table 3-1. Design philosophies and principles for OBIX. ... 16

Table 7-1. Problems addressed by Contracts... 37

Table 7-2. Contract terminology. ... 37

Table 7-3. Explicit and Implicit Contracts. ... 39

Table 7-4. Contract inheritance. .. 40

Table 10-1. Network model for OBIX. ... 48

Table 10-2. OBIX Service Requests. .. 48

Table 10-3. OBIX Error Contracts. .. 49

Table 11-1. OBIX Unit composition. .. 53

Table 13-1. Base Point types. ... 59

Table 14-1. Features of OBIX Histories. ... 60

Table 14-2. Properties of obix:History. .. 61

Table 14-3. Properties of obix:HistoryFilter. .. 62

Table 14-4. Properties of obix:HistoryRollupRecord. .. 64

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 8 of 77

Table 14-5. Calculation of OBIX History rollup values. ... 66

Table 15-1. Alarm states in OBIX. .. 67

Table 15-2. Alarm lifecycle states in OBIX. ... 68

Table 16-1. Security concepts for OBIX. ... 71

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 9 of 77

1 Introduction 1

OBIX is designed to provide access to the embedded software systems which sense and control the 2
world around us. Historically, integrating to these systems required custom low level protocols, often 3
custom physical network interfaces. The rapid increase in ubiquitous networking and the availability of 4
powerful microprocessors for low cost embedded devices is now weaving these systems into the very 5
fabric of the Internet. Generically the term M2M for Machine-to-Machine describes the transformation 6
occurring in this space because it opens a new chapter in the development of the Web - machines 7
autonomously communicating with each other. The OBIX specification lays the groundwork for building 8
this M2M Web using standard, enterprise-friendly technologies like XML, HTTP, and URIs. 9

1.1 Terminology 10

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 11

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 12
in [RFC2119]. When used in the non-capitalized form, these words are to be interpreted with their normal 13

English meaning. 14

1.2 Normative References 15

PNG Portable Network Graphics (PNG) Specification (Second Edition) , D. Duce, 16
Editor, W3C Recommendation, 10 November 2003, 17
http://www.w3.org/TR/2003/REC-PNG-20031110 . Latest version available 18
at http://www.w3.org/TR/PNG 19

RFC2119 Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 20
14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt. 21

RFC3986 Berners-Lee, T., Fielding, R., and Masinter, L., “Uniform Resource Identifier 22
(URI): Generic Syntax”, STD 66, RFC 3986, January 2005. 23
http://www.ietf.org/rfc/rfc3986.txt. 24

SI Units A. Thompson and B. N. Taylor, The NIST Guide for the use of the International 25
System of Units (SI), NIST Special Publication 811, 2008 Edition. 26
http://www.nist.gov/pml/pubs/sp811/index.cfm. 27

SOA-RM Reference Model for Service Oriented Architecture 1.0, October 2006. OASIS 28
Standard. http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf. 29

WS-Calendar WS-Calendar Version 1.0, 30 July 2011. OASIS Committee Specification, 30
http://docs.oasis-open.org/ws-calendar/ws-calendar/v1.0/ws-calendar-1.0-31
spec.html. 32

WSDL Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., “Web Services 33
Description Language (WSDL), Version 1.1”, W3C Note, 15 March 2001. 34
http://www.w3.org/TR/wsdl. 35

XLINK XML Linking Language (XLink) Version 1.1 , S. J. DeRose, E. Maler, D. Orchard, 36
N. Walsh, Editors, W3C Recommendation, 6 May 2010, 37
http://www.w3.org/TR/2010/REC-xlink11-20100506/ . Latest version available at 38
http://www.w3.org/TR/xlink11/. 39

XML Schema XML Schema Part 2: Datatypes Second Edition , P. V. Biron, A. Malhotra, 40
Editors, W3C Recommendation, 28 October 2004, 41
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ . Latest version 42
available at http://www.w3.org/TR/xmlschema-2/. 43

ZoneInfo DB IANA Time Zone Database, 24 September 2013 (latest version), 44
http://www.iana.org/time-zones. 45

http://www.w3.org/TR/2003/REC-PNG-20031110
http://www.w3.org/TR/PNG
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.nist.gov/pml/pubs/sp811/index.cfm
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/ws-calendar/ws-calendar/v1.0/ws-calendar-1.0-spec.html
http://docs.oasis-open.org/ws-calendar/ws-calendar/v1.0/ws-calendar-1.0-spec.html
http://www.w3.org/TR/wsdl
http://www.iana.org/time-zones

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 10 of 77

1.3 Non-Normative References 46

CamelCase Use of Camel Case for Naming XML and XML-Related Components, OASIS 47
Technology Report, December 29, 2005. 48
http://xml.coverpages.org/camelCase.html. 49

OBIX REST Bindings for OBIX: REST Bindings Version 1.0. Edited by Craig Gemmill and 50
Markus Jung. Latest version. http://docs.oasis-open.org/obix/obix-rest/v1.0/obix-51
rest-v1.0.html. 52

OBIX SOAP Bindings for OBIX: SOAP Bindings Version 1.0. Edited by Markus Jung. Latest 53
version. http://docs.oasis-open.org/obix/obix-soap/v1.0/obix-soap-v1.0.html. 54

OBIX Encodings Encodings for OBIX: Common Encodings Version 1.0. Edited by Marcus Jung. 55
Latest version. http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-56
encodings-v1.0.html. 57

OBIX WebSocket Bindings for OBIX: Web Socket Bindings Version 1.0. Edited by Matthias Hub. 58
Latest version. http://docs.oasis-open.org/obix/obix-websocket/v1.0/obix-59
websocket-v1.0.html. 60

RDDL 2.0 Jonathan Borden, Tim Bray, eds. “Resource Directory Description Language 61
(RDDL) 2.0,” January 2004. 62
http://www.openhealth.org/RDDL/20040118/rddl-20040118.html. 63

REST Fielding, R.T., “Architectural Styles and the Design of Network-based Software 64
Architectures”, Dissertation, University of California at Irvine, 2000. 65
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm 66

RFC2818 Rescorla, E., “HTTP over TLS”, RFC 2818, May 2000. 67
http://www.ietf.org/rfc/rfc2818.txt. 68

RFC5785 Nottingham, M., Hammer-Lahav, E., “Defining Well-Known Uniform Resource 69
Identifiers (URIs)”, RFC 5785, April 2010. http://www.ietf.org/rfc/rfc5785.txt. 70

UML Unified Modeling Language (UML), Version 2.4.1, Object Management Group, 71
May 07, 2012. http://uml.org/. 72

XML-ns Namespaces in XML , T. Bray, D. Hollander, A. Layman, Editors, W3C 73
Recommendation, 14 January 1999, http://www.w3.org/TR/1999/REC-xml-74
names-19990114/ . Latest version available at http://www.w3.org/TR/REC-xml-75
names. 76

1.4 Namespace 77

If an implementation is using the XML Encoding according to the [OBIX Encodings] specification 78
document, the XML namespace [XML-ns] URI that MUST be used is: 79

http://docs.oasis-open.org/ns/obix/201410 80

Dereferencing the above URI will produce the Resource Directory Description Language [RDDL 2.0] 81
document that describes this namespace. 82

1.5 Naming Conventions 83

Where XML is used, the names of elements and attributes in XSD files follow Lower Camel Case 84
capitalization rules (see CamelCase for a description of Camel Case). 85

1.6 Editing Conventions 86

For readability, Element names in tables appear as separate words. In the Schema, they follow the rules 87
as described in Section 1.5. 88

Terms defined in this specification or used from specific cited references are capitalized; the same term 89
not capitalized has its normal English meaning. 90

Examples and Contract definitions are informational and SHALL NOT be considered normative. They will 91
be marked distinctly from the specification text by using the following style: 92

file:///C:/obix/oasis/v1.1/wd25/OASIS
http://xml.coverpages.org/camelCase.html
http://docs.oasis-open.org/obix/obix-rest/v1.0/obix-rest-v1.0.html
http://docs.oasis-open.org/obix/obix-rest/v1.0/obix-rest-v1.0.html
http://docs.oasis-open.org/obix/obix-soap/v1.0/obix-soap-v1.0.html
http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-encodings-v1.0.html
http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-encodings-v1.0.html
http://docs.oasis-open.org/obix/obix-websocket/v1.0/obix-websocket-v1.0.html
http://docs.oasis-open.org/obix/obix-websocket/v1.0/obix-websocket-v1.0.html
http://www.openhealth.org/RDDL/20040118/rddl-20040118.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc5785.txt

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 11 of 77

<str name="example" val="This is an example, which is non-normative."/> 93

Schema fragments included in this specification as XML Contract definitions SHALL BE considered non-94
normative; in the event of disagreement between the two, the formal Schema supersedes the examples 95
and Contract definitions defined here. 96

All UML and figures are illustrative and SHALL NOT be considered normative. 97

1.7 Language Conventions 98

Although several different encodings may be used for representing OBIX data, the most common is XML. 99
Therefore many of the concepts in OBIX are strongly tied to XML concepts. Data objects are represented 100
in XML by XML documents. It is important to distinguish the usage of the term document in this context 101
from references to this specification document. When “this document” is used, it references this 102
specification document. When “OBIX document” or “XML document” is used, it references an OBIX 103
object, encoded in XML, as per the convention for this (specification) document. When used in the latter 104
context, this could equally be understood to mean an OBIX object encoded in any of the other possible 105
encoding mechanisms. 106

When expressed in XML, there is a one-to-one-mapping between Objects and elements. Objects are the 107
fundamental abstraction used by the OBIX data model. Elements are how those Objects are expressed in 108
XML syntax. This specification uses the term Object and sub-Object, although one can equivalently 109
substitute the term element and sub-element when referencing the XML representation. The term child is 110
used to describe an Object that is contained by another Object, and is semantically equivalent to the term 111
sub-Object. The two terms are used interchangeably throughout this specification. 112

1.7.1 Definition of Terms 113

Several named terms are used within this document. The following table describes the terms and 114
provides an explanation of their meaning in the context of this specification. 115

Term Meaning Introduced
In

Client An entity which makes requests to Servers over a network to access
OBIX-enabled data and services.

10

Contract A standard OBIX object used as a template for describing a set of
values and semantics. Objects implement Contracts to advertise
data and services with which other devices may interact.

3.6, 7

Extent The tree of child Objects contained within an Object. 9.3

Facet An attribute of an Object that provides additional metadata about the
Object.

4.2.7

Feed An Object that tracks every event rather than retaining only the
current state. This is typically used in alarm monitoring and history
record retrieval.

4.3.6

Object The base abstraction for expressing a piece of information in OBIX.
The Schema uses the name Obj for brevity, but the two terms Obj
and Object are equivalent.

4.1

Rollup An operation available on History objects to summarize the history
data by a specific interval of time.

14.3

Server An entity containing OBIX enabled data and services. Servers
respond to requests from Client over a network.

10

Tag A name-value pair that provides additional information about an
Object, presented as a child Object of the original Object.

9.4

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 12 of 77

Val A special type of Object, that stores a piece of information (a ‘value’)
in a specific attribute named “val”.

4.3.1

Table 1-1. Definition of Terms. 116

 117

1.8 Architectural Considerations 118

Table 1-1 illustrates the problem space OBIX attempts to address. Each of these concepts is covered in 119
the subsequent sections of the specification as shown. 120

Concept Solution Covered in
Sections

Information
Model

Representing M2M information in a standard syntax –
originally XML but expanded to other technologies

4, 5, 6, 8, 9

Interactions transferring M2M information over a network 10

Normalization developing standard representations for common M2M
features: points, histories, and alarms

11, 12, 13, 14, 15

Foundation providing a common kernel for new standards 7, 11

Table 1-2. Problem spaces for OBIX. 121

1.8.1 Information Model 122

OBIX defines a common information model to represent diverse M2M systems and an interaction model 123
for their communications. The design philosophy of OBIX is based on a small but extensible data model 124
which maps to a simple fixed syntax. This core model and its syntax are simple enough to capture entirely 125
in one illustration, which is done in Figure 4-1. The object model’s extensibility allows for the definition of 126
new abstractions through a concept called Contracts. Contracts are flexible and powerful enough that 127

they are even used to define the majority of the conformance rules in this specification. 128

1.8.2 Interactions 129

Once a way exists to represent M2M information in a common format, the next step is to provide standard 130
mechanisms to transfer it over networks for publication and consumption. OBIX breaks networking into 131
two pieces: an abstract request/response model and a series of protocol bindings which implement that 132
model. In Version 1.1 of OBIX, the two goals are accomplished in separate documents: this core 133
specification defines the core model, while several protocol bindings designed to leverage existing Web 134
Service infrastructure are described in companion documents to this specification. 135

1.8.3 Normalization 136

There are a few concepts which have broad applicability in systems which sense and control the physical 137
world. Version 1.1 of OBIX provides a normalized representation for three of these, described in Table 138
1-2. 139

Concept Description

Points Representing a single scalar value and its status – typically these map to
sensors, actuators, or configuration variables like a setpoint

Histories Modeling and querying of time sampled point data. Typically edge devices
collect a time stamped history of point values which can be fed into higher level
applications for analysis

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 13 of 77

Alarms Modeling, routing, and acknowledgment of alarms. Alarms indicate a condition
which requires notification of either a user or another application

Table 1-3. Normalization concepts in OBIX. 140

1.8.4 Foundation 141

The requirements and vertical problem domains for M2M systems are immensely broad – too broad to 142
cover in one single specification. OBIX is deliberately designed as a fairly low level specification, but with 143
a powerful extension mechanism based on Contracts. The goal of OBIX is to lay the groundwork for a 144
common object model and XML syntax which serves as the foundation for new specifications. It is hoped 145
that a stack of specifications for vertical domains can be built upon OBIX as a common foundation. 146

1.9 Changes from Version 1.0 [non-normative] 147

Several areas of the specification have changed from Version 1.0 to Version 1.1. Table 1-3 below lists 148
key differences between Versions 1.0 and 1.1. Implementers of earlier versions of OBIX should examine 149
this list and consider where modifications may be necessary for compliance with Version 1.1. 150

Added date, time primitive types and tz Facet to the core object model.

Specific discussion on encodings has been moved to the [OBIX Encodings] document, which includes
XML, EXI, binary, and JSON.

Add support for History Append operation.

Specific discussion on HTTP/REST binding has been moved to the [OBIX REST] document, which
includes HTTP and CoAP.

Add the of attribute to the ref element type and specify usage of this and the is attribute for ref.

Add support for inclusion of metadata for alternate hierarchies (tagging).

Add support for alternate history formats.

Add support for concise encoding of long Contract Lists.

Add Delete request semantics.

Add Bindings, Encodings, and Tagspaces sections to the Lobby to better describe how to communicate
with and interpret data from an OBIX Server.

Table 1-4. Changes from Version 1.0. 151

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 14 of 77

2 Quick Start [non-normative] 152

This chapter is for those eager to jump right into OBIX in all its angle bracket glory. The best way to begin 153
is to take a simple example that anybody is familiar with – the staid thermostat. Let’s assume a very 154
simple thermostat. It has a temperature sensor which reports the current space temperature and it has a 155
setpoint that stores the desired temperature. Let’s assume the thermostat only supports a heating mode, 156
so it has a variable that reports if the furnace should currently be on. Let’s take a look at what the 157
thermostat might look like in OBIX XML: 158

<obj href="http://myhome/thermostat"> 159
 <real name="spaceTemp" unit="obix:units/fahrenheit" val="67.2"/> 160
 <real name="setpoint" unit="obix:units/fahrenheit" val="72.0"/> 161
 <bool name="furnaceOn" val="true"/> 162
</obj> 163

The first thing to notice is the Information Model: there are three element types – obj, real, and bool. 164

The root obj element models the entire thermostat. Its href attribute identifies the URI for this OBIX 165

document. The thermostat Object has three child Objects, one for each of the thermostat’s variables. The 166

real Objects store our two floating point values: space temperature and setpoint. The bool Object 167

stores a boolean variable for furnace state. Each sub-element contains a name attribute which defines the 168

role within the parent. Each sub-element also contains a val attribute for the current value. Lastly we see 169

that we have annotated the temperatures with an attribute called unit so we know they are in 170

Fahrenheit, not Celsius (which would be one hot room). The OBIX specification defines several of these 171
annotations which are called Facets. 172

How was this Object obtained? The OBIX specification leverages commonly available networking 173
technologies and concepts for defining Interactions between devices. The thermostat implements an 174
OBIX Server, and an OBIX Client can be used to issue a request for the thermostat’s data, by specifying 175
its uri. This concept is well understood in the world of M2M so OBIX requires no new knowledge to 176

implement. 177

OBIX addresses the need to Normalize information from devices and present it in a standard way. In 178
most cases sensor and actuator variables (called Points) imply more semantics than a simple scalar 179
value. In the example of our thermostat, in addition to the current space temperature, it also reports the 180
setpoint for desired temperature and whether it is trying to command the furnace on. In other cases such 181
as alarms, it is desirable to standardize a complex data structure. OBIX captures these concepts into 182
Contracts. Contracts allow us to tag Objects with normalized semantics and structure. 183

Let’s suppose our thermostat’s sensor is reading a value of -412 F? Clearly our thermostat is busted, so 184
it should report a fault condition. Let’s rewrite the XML to include the status Facet and to provide 185
additional semantics using Contracts: 186

<obj href="http://myhome/thermostat/"> 187
 188
 <!-- spaceTemp point --> 189
 <real name="spaceTemp" is="obix:Point" 190
 val="-412.0" status="fault" 191
 unit="obix:units/fahrenheit"/> 192
 193
 <!-- setpoint point --> 194
 <real name="setpoint" is="obix:Point" 195
 val="72.0" 196
 unit="obix:units/fahrenheit"/> 197
 198
 <!-- furnaceOn point --> 199
 <bool name="furnaceOn" is="obix:Point" val="true"/> 200
 201
</obj> 202

Notice that each of our three scalar values are tagged as obix:Points via the is attribute. This is a 203

standard Contract defined by OBIX for representing normalized point information. By implementing these 204
Contracts, Clients immediately know to semantically treat these objects as points. 205

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 15 of 77

Contracts play a pivotal role in OBIX because they provide a Foundation for building new abstractions 206
upon the core object model. Contracts are just normal objects defined using standard OBIX. In fact, the 207
following sections defining the core OBIX object model are expressed using Contracts. One can see how 208
easily this approach allows for definition of the key parts of this model, or any model that builds upon this 209
model. 210

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 16 of 77

3 Architecture 211

3.1 Design Philosophies 212

The OBIX architecture is based on the design philosophies and principles in Table 3-1. 213

Philosophy Usage/Description

Object Model A concise object model used to define all OBIX information

Encodings Sets of rules for representing the object model in certain common formats

URIs Uniform Resource Identifiers are used to identify information within the object model

REST A small set of verbs is used to access objects via their URIs and transfer their state

Contracts A template model for expressing new OBIX “types”

Extensibility Providing for consistent extensibility using only these concepts

Table 3-1. Design philosophies and principles for OBIX. 214

3.2 Object Model 215

All information in OBIX is represented using a small, fixed set of primitives. The base abstraction for these 216
primitives is called Object. An Object can be assigned a URI and all Objects can contain other Objects. 217

3.3 Encodings 218

OBIX provides simple syntax rules able to represent the underlying object model. XML is a widely used 219
language with well-defined and well-understood syntax that maps nicely to the OBIX object model. The 220
rest of this specification will use XML as the example encoding, because it is easily human-readable, and 221
serves to clearly demonstrate the concepts presented. The syntax used is normative. Implementations 222
using an XML encoding MUST conform to this syntax and representation of elements. 223

When encoding OBIX objects in XML, each of the object types map to one type of element. The Value 224

Objects represent their data value using the val attribute (see Section 4.3.1 for a full description of Value 225

Objects). All other aggregation is simply nesting of elements. A simple example to illustrate this concept is 226
the Brady family from the TV show The Brady Bunch: 227

<obj href="http://bradybunch/people/Mike-Brady/"> 228
 <obj name="fullName"> 229
 <str name="first" val="Mike"/> 230
 <str name="last" val="Brady"/> 231
 </obj> 232
 <int name ="age" val="45"/> 233
 <ref name="spouse" href="/people/Carol-Brady"/> 234
 <list name="children"> 235
 <ref href="/people/Greg-Brady"/> 236
 <ref href="/people/Peter-Brady"/> 237
 <ref href="/people/Bobby-Brady"/> 238
 <ref href="/people/Marsha-Brady"/> 239
 <ref href="/people/Jan-Brady"/> 240
 <ref href="/people/Cindy-Brady"/> 241
 </list> 242
</obj> 243

Note in this simple example how the href attribute specifies URI references which may be used to fetch 244

more information about the object. Names and hrefs are discussed in detail in Section 6. 245

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 17 of 77

3.4 URIs 246

OBIX identifies objects (resources) with Uniform Resource Indicators (URIs) as defined in [RFC3986]. 247
This is a logical choice, as a primary focus of OBIX is making information available over the web. Naming 248
authorities manage the uniqueness of the first component of a URI, the domain name. 249
 250
Conforming implementations MUST use [RFC3986] URIs to identify resources. Conforming 251
implementations MAY restrict URI schemes and MUST indicate any restrictions in their conformance 252
statement. 253
 254
Typically, http-scheme URIs are used, but other bindings may require other schemes. Note that while 255
https is technically a different scheme from http [RFC2818, RFC5785] they are typically used 256
interchangeably with differing security transport. The commonly used term URL is shorthand for what is 257
now an http-scheme URI. 258

3.5 REST 259

Objects identified with URIs and passed around as XML documents may sound a lot like REST – and this 260
is intentional. REST stands for REpresentational State Transfer and is an architectural style for web 261
services that mimics how the World Wide Web works. The World Wide Web is in essence a distributed 262
collection of documents hyperlinked together using URIs. Similarly, OBIX presents controls and sensors 263
as a collection of documents hyperlinked together using URIs. Because REST is such a key concept in 264
OBIX, it is not surprising that a REST binding is a core part of the specification. The specification of this 265
binding is defined in the [OBIX REST] specification. 266

REST is really more of a design style, than a specification. REST is resource centric as opposed to 267
method centric - resources being OBIX objects. The methods actually used tend to be a very small fixed 268
set of verbs used to work generically with all resources. In OBIX all network requests boil down to four 269
request types: 270

 Read: an object 271

 Write: an object 272

 Invoke: an operation 273

 Delete: an object 274

3.6 Contracts 275

In every software domain, patterns start to emerge where many different object instances share common 276
characteristics. For example in most systems that model people, each person has a name, address, and 277
phone number. In vertical domains domain specific information may be attached to each person. For 278
example an access control system might associate a badge number with each person. 279

In object oriented systems these patterns are captured into classes. In relational databases they are 280
mapped into tables with typed columns. In OBIX these patterns are modeled using a concept called 281
Contracts, which are standard OBIX objects used as a template. Contracts provide greater flexibility than 282
a strongly typed schema language, without the overhead of introducing new syntax. A Contract document 283
is parsed just like any other OBIX document. In formal terms, Contracts are a combination of prototype 284
based inheritance and mixins. 285

OBIX Contracts describe abstract patterns for interaction with remote systems. Contracts use the 286
grammar of OBIX to create semantics for these interactions. Standard Contracts normalize these 287
semantics for common use by many systems. Contracts are used in OBIX as class definitions are for 288
objects or as tables and relations are for databases. 289
 290
OBIX specifies a minimal set of Contracts, which are described in later sections. Various vendors and 291
groups have defined additional standard Contracts which are out of scope for this specification. Sets of 292
these Contracts may be available as standard libraries. Implementers of systems using OBIX are advised 293
to research whether these libraries are available, and if so, using them to reduce work and expand 294
interoperation. 295

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 18 of 77

3.7 Extensibility 296

OBIX provides a foundation for developing new abstractions (Contracts) in vertical domains. OBIX is also 297
extensible to support both legacy systems and new products. It is common for even standard building 298
control systems to ship as a blank slate, to be completely programmed in the field. Control systems 299
include, and will continue to include, a mix of standards based, vendor-based, and even project-based 300
extensions. 301

The principle behind OBIX extensibility is that anything new is defined strictly in terms of Objects, URIs, 302
and Contracts. To put it another way - new abstractions do not introduce any new XML syntax or 303
functionality that client code is forced to care about. New abstractions are always modeled as standard 304
trees of OBIX objects, just with different semantics. That does not mean that higher level application code 305
never changes to deal with new abstractions. But the core stack that deals with networking and parsing 306
should not have to change to accommodate a new type. 307

This extensibility model is similar to most mainstream programming languages such as Java or C#. The 308
syntax of the core language is fixed with a built in mechanism to define new abstractions. Extensibility is 309
achieved by defining new class libraries using the language’s fixed syntax. This means the compiler need 310
not be updated every time someone adds a new class. 311

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 19 of 77

4 Object Model 312

4.1 Object Model Description 313

OBIX specifies a small, fixed set of object types. The OBIX object model is summarized in Figure 4-1. It 314

consists of a common base Object (obix:obj) type, and includes 16 derived types. It lists the default 315

values and attributes for each type, including their optionality. These optional attributes are included as 316
well in the Schema definition for each type. Section 4.2 describes the associated properties called Facets 317
that certain OBIX types may have. Section 4.3 describes each of the core OBIX types, including the rules 318
for their usage and interpretation. Additional rules defining complex behaviors such as naming and 319
Contract inheritance are described in Sections 6 and 7. These sections are essential to a full 320
understanding of the object model. 321

 322

Figure 4-1. The OBIX primitive object hierarchy. 323

4.2 obj 324

The root abstraction in OBIX is Obj. The name Obj is shortened from Object for brevity in encoding, but 325
for more convenient reference, this specification uses the term Object synonymously with Obj. Every 326
Object type in OBIX is a derivative of Object. Any Object or its derivatives can contain other Objects. 327

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 20 of 77

As stated in Section 3.3, the expression of Objects in an XML encoding is through XML elements. 328
Although the examples in this section are expressed in XML, the same concepts can be encoded in any 329

of the specified OBIX encodings. The OBIX Object type is expressed through the obj element. The 330

properties of an Object are expressed through XML attributes of the element. The full set of rules for 331

encoding OBIX in XML is contained in the [OBIX Encodings] document. The term obj as used in this 332

specification represents an OBIX Object in general, regardless of how it is encoded. 333

The Contract Definition of Object, as expressed by an obj element is 334

<obj href="obix:obj" null="false" writable="false" status="ok" /> 335

The interpretation of this definition is described as follows. The Contract Definition provides the 336
attributes, including Contract implementations and Schema references, that exist in the Object by default, 337
and which are inherited by any Object (and thus derived type) that extends this type. Optional attributes 338

that do not exist by default, such as displayName, are not included in the Contract Definition. The href 339

is the URI by which this Contract can be referenced (see Section 4.2.2), so another Object can reference 340

this Contract in its is attribute (see Section 4.2.3). The null attribute is specified as false, meaning that 341

by default this Object "has a value" (see Section 4.2.4). The writable attribute indicates this Object is 342

readonly, so any Object type extending from obj (which is all Objects) will be readonly unless it explicitly 343

overrides the writable attribute. The status of the Object defaults to 'ok' unless overridden. The 344

properties supported on Object, and therefore on any derivative type, are described in the following 345
sections. 346

4.2.1 name 347

All Objects MAY have the name attribute. This defines the Object’s purpose in its parent Object. Names 348
of Objects SHOULD be in Camel case per [CamelCase]. Additional considerations with respect to Object 349

naming are discussed in Section 6. 350

4.2.2 href 351

All Objects MAY have the href attribute. This provides a URI reference for identifying the Object. Href is 352

closely related to name, and is also discussed in Section 6. 353

4.2.3 is 354

All Objects MAY have the is attribute. This attribute defines the Contracts this Object implements. 355
Contracts are discussed in Section 7. The value of this attribute MUST be a Contract List, which is 356
described in detail in Section 7.2. 357

4.2.4 null 358

All Objects support the null attribute. Null is the absence of a value, meaning that this Object has no 359

value, has not been configured or initialized, or is otherwise not defined. Null is indicated using the null 360

attribute with a boolean value. The default value of the null attribute is true for enum, abstime, date, 361

and time, and false for all other Objects. An example of the null attribute used in an abstime Object 362

is: 363

<abstime name="startTime" displayName="Start Time"/> 364

 Null is inherited from Contracts a little differently than other attributes. See Section 7.4.3 for details. 365

4.2.5 val 366

Certain Objects represent a value and are called Value-type Objects. These Objects MAY have the val 367
attribute. The Objects NEED NOT explicitly state the val attribute, as all Value-type objects define a 368
default value for the attribute. The Object types that are Value-type Objects, and are allowed to contain a 369

val attribute, are bool, int, real, str, enum, abstime, reltime, date, time, and uri. The literal 370

representation of the values maps to [XML Schema], indicated in the following sections with the ‘xs:’ 371

prefix. 372

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 21 of 77

4.2.6 ts 373

Certain Objects may be used as a Tag to provide metadata about their parent Object. Tags and their 374
usage are discussed in Section 9.4. Tags are often grouped together into a Tag Space and published for 375
use by others. Use of Tag Spaces is discussed in Section 5.5.1. If an Object is a Tag, then it MUST use 376

the Tag name in its name attribute, and include the Tag Space which defines the Tag in the ts attribute. 377

For example, if a Tag Space named “foo” declares a Tag named “bar”, then an Object that has this Tag 378
would be encoded as follows: 379

<obj name="taggedObject"> 380
 <obj name="bar" ts="foo"/> 381
</obj> 382

4.2.7 Facets 383

All Objects can be annotated with a predefined set of attributes called Facets. Facets provide additional 384

meta-data about the Object. The set of available Facets is: displayName, display, icon, min, max, 385

precision, range, status, tz, unit, writable, of, in, and out. Although OBIX predefines a 386

number of Facets, vendors MAY add additional Facets. Vendors that wish to annotate Objects with 387
additional Facets SHOULD use XML namespace qualified attributes. 388

4.2.7.1 displayName 389

The displayName Facet provides a localized human readable name of the Object stored as an 390

xs:string: 391

<obj name="spaceTemp" displayName="Space Temperature"/> 392

Typically the displayName Facet SHOULD be a localized form of the name attribute. There are no 393

restrictions on displayName overrides from the Contract (although it SHOULD be uncommon since 394

displayName is just a human friendly version of name). 395

4.2.7.2 display 396

The display Facet provides a localized human readable description of the Object stored as an 397

xs:string: 398

<bool name="occupied" val="false" display="Unoccupied"/> 399

There are no restrictions on display overrides from the Contract. 400

The display attribute serves the same purpose as Object.toString() in Java or C#. It provides a general 401

way to specify a string representation for all Objects. In the case of value Objects (like bool or int) it 402

SHOULD provide a localized, formatted representation of the val attribute. 403

4.2.7.3 icon 404

The icon Facet provides a URI reference to a graphical icon which may be used to represent the Object 405

in an user agent: 406

<obj icon="/icons/equipment.png"/> 407

The contents of the icon attribute MUST be a URI to an image file. The image file SHOULD be a 16x16 408

PNG file, defined in the [PNG] specification. There are no restrictions on icon overrides from the 409

Contract. 410

4.2.7.4 min 411

The min Facet is used to define an inclusive minimum value: 412

<int min="5" val="6"/> 413

The contents of the min attribute MUST match its associated val type. The min Facet is used with int, 414

real , abstime, date, time, and reltime to define an inclusive lower limit of the value space. It is 415

used with str to indicate the minimum number of Unicode characters of the string. It is used with list to 416

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 22 of 77

indicate the minimum number of child Objects (named or unnamed). Overrides of the min Facet may only 417

narrow the value space using a larger value. The min Facet MUST never be greater than the max Facet 418

(although they MAY be equal). 419

4.2.7.5 max 420

The max Facet is used to define an inclusive maximum value: 421

<real max="70" val="65"/> 422

The contents of the max attribute MUST match its associated val type. The max Facet is used with int, 423

real, abstime, date, time, and reltime to define an inclusive upper limit of the value space. It is 424

used with str to indicate the maximum number of Unicode characters of the string. It is used with list 425

to indicate the maximum number of child Objects (named or unnamed). Overrides of the max Facet may 426

only narrow the value space using a smaller value. The max Facet MUST never be less than the min 427

Facet (although they MAY be equal). 428

4.2.7.6 precision 429

The precision Facet is used to describe the number of decimal places to use for a real value: 430

<real precision="2" val="75.04"/> 431

The contents of the precision attribute MUST be xs:int. The value of the precision attribute 432

equates to the number of meaningful decimal places. In the example above, the value of 2 indicates two 433
meaningful decimal places: “75.04”. Typically precision is used by client applications which do their own 434

formatting of real values. There are no restrictions on precision overrides. 435

4.2.7.7 range 436

The range Facet is used to define the value space of an enumeration. A range attribute is a URI 437

reference to an obix:Range Object (see Section 11.2). It is used with the bool and enum types: 438

<enum range="/enums/offSlowFast" val="slow"/> 439

The override rule for range is that the specified range MUST inherit from the Contract’s range. 440

Enumerations are unusual in that specialization of an enum usually involves adding new items to the 441
range. Technically this is widening the enum’s value space, rather than narrowing it. But in practice, 442
adding items into the range is the desired behavior. 443

4.2.7.8 status 444

The status Facet is used to annotate an Object about the quality and state of the information: 445

<real val="67.2" status="alarm"/> 446

Status is an enumerated string value with one of the following values from Table 4-2 (in ascending 447
priority): 448

Status Description

ok The ok state indicates normal status. This is the assumed default state for all Objects.

overridden The overridden state means the data is ok, but that a local override is currently in

effect. An example of an override might be the temporary override of a setpoint from
its normal scheduled setpoint.

unacked The unacked state is used to indicate a past alarm condition which remains

unacknowledged.

alarm This state indicates the Object is currently in the alarm state. The alarm state typically
means that an Object is operating outside of its normal boundaries. In the case of an
analog point this might mean that the current value is either above or below its
configured limits. Or it might mean that a digital sensor has transitioned to an

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 23 of 77

undesired state. See Alarming (Section 15) for additional information.

unackedAlarm The unackedAlarm state indicates there is an existing alarm condition which has

not been acknowledged by a user – it is the combination of the alarm and unacked

states. The difference between alarm and unackedAlarm is that alarm implies that

a user has already acknowledged the alarm or that no human acknowledgement is

necessary for the alarm condition. The difference between unackedAlarm and

unacked is that the Object has returned to a normal state.

down The down state indicates a communication failure.

fault The fault state indicates that the data is invalid or unavailable due to a failure

condition - data which is out of date, configuration problems, software failures, or

hardware failures. Failures involving communications SHOULD use the down state.

disabled This state indicates that the Object has been disabled from normal operation (out of
service). In the case of operations and Feeds, this state is used to disable support for
the operation or Feed.

Table 4-1. Status enumerations in OBIX. 449

Status MUST be one of the enumerated strings above. It might be possible in the native system to exhibit 450
multiple status states simultaneously, however when mapping to OBIX the highest priority status 451
SHOULD be chosen – priorities are ranked from top (disabled) to bottom (ok). 452

4.2.7.9 tz 453

The tz Facet is used to annotate an abstime, date, or time Object with a timezone. The value of a tz 454

attribute is a zoneinfo string identifier, as specified in the IANA Time Zone ([ZoneInfo DB]) database. The 455
zoneinfo database defines the current and historical rules for each zone including its offset from UTC and 456
the rules for calculating daylight saving time. OBIX does not define a Contract for modeling timezones, 457
instead it just references the zoneinfo database using standard identifiers. It is up to OBIX enabled 458
software to map zoneinfo identifiers to the UTC offset and daylight saving time rules. 459

The following rules are used to compute the timezone of an abstime, date, or time Object: 460

1. If the tz attribute is specified, set the timezone to tz; 461

2. Otherwise, if the Contract defines an inherited tz attribute, set the timezone to the inherited tz 462

attribute; 463

3. Otherwise, set the timezone to the Server’s timezone as defined by the lobby’s About.tz. 464

When using timezones, an implementation MUST specify the timezone offset within the value 465

representation of an abstime or time Object. It is an error condition for the tz Facet to conflict with the 466

timezone offset. For example, New York has a -5 hour offset from UTC during standard time and a -4 467
hour offset during daylight saving time: 468

<abstime val="2007-12-25T12:00:00-05:00" tz="America/New_York"/> 469
<abstime val="2007-07-04T12:00:00-04:00" tz="America/New_York"/> 470

4.2.7.10 unit 471

The unit Facet defines a unit of measurement in the [SI Units] system. A unit attribute is a URI 472

reference to an obix:Unit Object (see section 11.5 for the Contract definition). It is used with the int 473

and real types: 474

<real unit="obix:units/fahrenheit" val="67.2"/> 475

It is recommended that the unit Facet not be overridden if declared in a Contract. If it is overridden, then 476

the override SHOULD use a Unit Object with the same dimensions as the Contract (it must measure the 477

same physical quantity). 478

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 24 of 77

4.2.7.11 writable 479

The writable Facet specifies if this Object can be written by the Client. If false (the default), then the 480

Object is read-only. It is used with all types except op and feed: 481

<str name="userName" val="jsmith" writable="false"/> 482
<str name="fullName" val="John Smith" writable="true"/> 483

The writable Facet describes only the ability of Clients to modify this Object’s value, not the ability of 484

Clients to add or remove children of this Object. Servers MAY allow addition or removal of child Objects 485
independently of the writability of existing objects. If a Server does not support addition or removal of 486
Object children through writes, it MUST return an appropriate error response (see Section 10.2 for 487
details). 488

4.2.7.12 of 489

The of Facet specifies the type of child Objects contained by this Object. The value of this attribute 490

MUST be a Contract List, which is described in detail in Section 7.2. This Facet is used with list and 491

ref types, as explained in Sections 4.3.2 and 4.3.3, respectively. 492

4.2.7.13 in 493

The in Facet specifies the input argument type used by this Object. The value of this attribute MUST be 494

a Contract List, which is described in detail in Section 7.2. This Facet is used with op and feed types. 495

Its use is described with the definition of those types in Section 4.3.5 for op and 4.3.6 for feed. 496

4.2.7.14 out 497

The out Facet specifies the output argument type used by this Object. The value of this attribute MUST 498

be a Contract List, which is described in detail in Section 7.2. This Facet is used with the op type. Its use 499

is described with the definition of that type in Section 4.3.5. 500

4.3 Core Types 501

OBIX defines a handful of core types which derive from Object. 502

4.3.1 val 503

Certain types are allowed to have a val attribute and are called “value” types. The val type is not 504

directly used (it is “abstract”). It simply reflects that instances of the type may contain a val attribute, as 505

it is used to represent an object that has a specific value. In object-oriented terms, the base OBIX val 506

type is an abstract class, and its subtypes are concrete classes that inherit from that abstract class. The 507
different Value Object types defined for OBIX are listed in Table 4-3. 508

Type Name Usage

bool stores a boolean value – true or false

int stores an integer value

real stores a floating point value

str stores a UNICODE string

enum stores an enumerated value within a fixed range

abstime stores an absolute time value (timestamp)

reltime stores a relative time value (duration or time span)

date stores a specific date as day, month, and year

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 25 of 77

time stores a time of day as hour, minutes, and seconds

uri stores a Universal Resource Identifier

Table 4-2. Value Object types. 509

Note that any Value typed Object can also contain sub-Objects. 510

4.3.1.1 bool 511

The bool type represents a boolean condition of either true or false. Its val attribute maps to 512

xs:boolean defaulting to false. The literal value of a bool MUST be “true” or “false” (the literals “1” and 513

“0” are not allowed). The Contract definition is: 514

<bool href="obix:bool" is="obix:obj" val="false" null="false"/> 515

This defines an Object that can be referenced via the URI obix:bool, which extends the obix:obj type. 516

Its default value is false, and its null attribute is false by default. The optional attribute range is not 517

present in the Contract definition, which means that there is no standard range of values attached to an 518

obix:bool by default. 519

Here is an example of an obix:bool which defines its range: 520

<bool val="true" range="#myRange"> 521
 <list href="#myRange" is="obix:Range"> 522
 <obj name="false" displayName="Inactive"/> 523
 <obj name="true" displayName="Active"/> 524
 </list> 525
</bool> 526

The range attribute specifies a local fragment reference to its myRange child, where the intended display 527
names for the false and true states are listed. 528

4.3.1.2 int 529

The int type represents an integer number. Its val attribute maps to xs:long as a 64-bit integer with a 530

default of 0. The Contract definition is: 531

<int href="obix:int" is="obix:obj" val="0" null="false"/> 532

This defines an Object that can be referenced via the URI obix:int, which extends the obix:obj type. Its 533

default value is 0, and its null attribute is false by default. The optional attributes min, max, and unit 534

are not present in the Contract definition, which means that no minimum, maximum, or units are attached 535

to an obix:int by default. 536

An example: 537

<int val="52" min="0 max="100"/> 538

This example shows an obix:int with a value of 52. The int may take on values between a minimum of 0 539
and a maximum of 100. No units are attached to this value. 540

4.3.1.3 real 541

The real type represents a floating point number. Its val attribute maps to xs:double as an IEEE 542

64-bit floating point number with a default of 0. The Contract definition is: 543

<real href="obix:real" is="obix:obj" val="0" null="false"/> 544

This defines an Object that can be referenced via the URI obix:real, which extends the obix:obj type. 545

Its default value is 0, and its null attribute is false by default. The optional attributes min, max, and 546

unit are not present in the Contract definition, which means that no minimum, maximum, or units are 547

attached to an obix:real by default. 548

An example: 549

<real val="31.06" name="spcTemp" displayName="Space Temp" unit="obix:units/celsius"/> 550

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 26 of 77

This example has provided a value for the name and displayName attributes, and has specified units to 551

be attached to the value through the unit attribute. 552

4.3.1.4 str 553

The str type represents a string of Unicode characters. Its val attribute maps to xs:string with a 554

default of the empty string. The Contract definition is: 555

<str href="obix:str" is="obix:obj" val="" null="false"/> 556

This defines an Object that can be referenced via the URI obix:str, which extends the obix:obj type. Its 557

default value is an empty string, and its null attribute is false by default. The optional attributes min and 558

max are not present in the Contract definition, which means that no minimum or maximum are attached to 559

an obix:str by default. The min and max attributes are constraints on the character length of the 560

string, not the 'value' of the string. 561

An example: 562

<str val="hello world"/> 563

4.3.1.5 enum 564

The enum type is used to represent a value which must match a finite set of values. The finite value set is 565

called the range. The val attribute of an enum is represented as a string key using xs:string. Enums 566

default to null. The range of an enum is declared via Facets using the range attribute. The Contract 567

definition is: 568

<enum href="obix:enum" is="obix:obj" val="" null="true"/> 569

This definition overrides the value of the null attribute so that by default, an obix:enum has a null 570

value. The val attribute by default is assigned an empty string, although this value is not used directly. 571

The inheritance of the null attribute is described in detail in Section 7.4.3. 572

An example: 573

<enum range="/enums/offSlowFast" val="slow"/> 574

In this example, the val attribute is specified, so the null attribute is implied to be false. See Section 575

7.4.3 for details on the inheritance of the null attribute. The range is also specified with a URI. A 576

consumer of this Object would be able to get the resource at that location to determine the list of tags that 577

are associated with this enum. 578

4.3.1.6 abstime 579

The abstime type is used to represent an absolute point in time. Its val attribute maps to 580

xs:dateTime, with the exception that it MUST contain the timezone. According to [XML Schema] Part 2 581

section 3.2.7.1, the lexical space for abstime is: 582

'-'? yyyy '-' mm '-' dd 'T' hh ':' mm ':' ss ('.' s+)? (zzzzzz) 583

Abstimes default to null. The Contract definition is: 584

<abstime href="obix:abstime" is="obix:obj" val="1970-01-01T00:00:00Z" null="true"/> 585

The Contract Definition for obix:abstime also overrides the null attribute to be true. The default value 586

of the val attribute is thus not important. 587

An example for 9 March 2005 at 1:30PM GMT: 588

<abstime val="2005-03-09T13:30:00Z"/> 589

In this example, the val attribute is specified, so the null attribute is implied to be false. See Section 590

7.4.3 for details on the inheritance of the null attribute. 591

The timezone offset is REQUIRED, so the abstime can be used to uniquely relate the abstime to UTC. 592

The optional tz Facet is used to specify the timezone as a zoneinfo identifier. This provides additional 593

context about the timezone, if available. The timezone offset of the val attribute MUST match the offset 594

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 27 of 77

for the timezone specified by the tz Facet, if it is also used. See the tz Facet section for more 595

information. 596

4.3.1.7 reltime 597

The reltime type is used to represent a relative duration of time. Its val attribute maps to 598

xs:duration with a default of 0 seconds. The Contract definition is: 599

<reltime href="obix:reltime" is="obix:obj" val="PT0S" null="false"/> 600

The Contract Definition for obix:reltime sets the default values of the val and null attributes. In 601

contrast to obix:abstime, here the null attribute is specified to be false. The default value is 0 602

seconds, expressed according to [XML Schema] as "PT0S". 603

An example of a reltime which is constrained to be between 0 and 60 seconds, with a current value of 15 604
seconds: 605

<reltime val="PT15S" min="PT0S" max="PT60S"/> 606

4.3.1.8 date 607

The date type is used to represent a day in time as a day, month, and year. Its val attribute maps to 608

xs:date. According to XML Schema Part 2 section 3.2.9.1, the lexical space for date is: 609

'-'? yyyy '-' mm '-' dd 610

Date values in OBIX MUST omit the timezone offset and MUST NOT use the trailing “Z”. Only the tz 611
attribute SHOULD be used to associate the date with a timezone. Date Objects default to null. The 612

Contract definition is described here and is interpreted in similar fashion to obix:abstime. 613

<date href="obix:date" is="obix:obj" val="1970-01-01" null="true"/> 614

An example for 26 November 2007: 615

<date val="2007-11-26"/> 616

In this example, the val attribute is specified, so the null attribute is implied to be false. See Section 617

7.4.3 for details on the inheritance of the null attribute. 618

The tz Facet is used to specify the timezone as a zoneinfo identifier. See the tz Facet section for more 619

information. 620

4.3.1.9 time 621

The time type is used to represent a time of day in hours, minutes, and seconds. Its val attribute maps 622

to xs:time. According to [XML Schema] Part 2 section 3.2.8, the lexical space for time is the left 623

truncated representation of xs:dateTime: 624

hh ':' mm ':' ss ('.' s+)? 625

Time values in OBIX MUST omit the timezone offset and MUST NOT use the trailing “Z”. Only the tz 626
attribute SHOULD be used to associate the time with a timezone. Time Objects default to null. The 627
Contract definition is: 628

<time href="obix:time" is="obix:obj" val="00:00:00" null="true"/> 629

An example representing a wake time, which (in this example at least) must be between 7 and 10AM: 630

<time val="08:15:00" min="07:00:00" max="10:00:00"/> 631

In this example, the val attribute is specified, so the null attribute is implied to be false. See Section 632

7.4.3 for details on the inheritance of the null attribute. 633

The tz Facet is used to specify the timezone as a zoneinfo identifier. See the tz Facet section for more 634

information. 635

4.3.1.10 uri 636

The uri type is used to store a URI reference. Unlike a plain old str, a uri has a restricted lexical 637

space as defined by [RFC3986] and the XML Schema xs:anyURI type. OBIX Servers MUST use the 638

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 28 of 77

URI syntax described by [RFC3986] for identifying resources. OBIX Clients MUST be able to navigate 639
this URI syntax. Most URIs will also be a URL, meaning that they identify a resource and how to retrieve 640
it (typically via HTTP). The Contract definition is: 641

<uri href="obix:uri" is="obix:obj" val="" null="false"/> 642

An example for the OBIX home page: 643

<uri val="http://obix.org/" /> 644

4.3.2 list 645

The list type is a specialized Object type for storing a list of other Objects. The primary advantage of 646

using a list versus a generic obj is that lists can specify a common Contract for their contents using 647

the of attribute. If specified, the of attribute MUST be a list of URIs formatted as a Contract List. The 648

definition of list is: 649

<list href="obix:list" is="obix:obj" of="obix:obj"/> 650

This definition states that the obix:list type contains elements that are themselves OBIX Objects, 651

because the of attribute value is obix:obj. Instances of the obix:list type can provide a different 652

value for of to indicate the type of Objects they contain. 653

An example list of strings: 654

<list of="obix:str"> 655
 <str val="one"/> 656
 <str val="two"/> 657
</list> 658

Because lists typically have constraints on the URIs used for their child elements, they use special 659

semantics for adding children. Lists are discussed in greater detail along with Contracts in section 7.8. 660

4.3.3 ref 661

The ref type is used to create an external reference to another OBIX Object. It is the OBIX equivalent of 662

the HTML anchor tag. The Contract definition is: 663

<ref href="obix:ref " is="obix:obj"/> 664

A ref element MUST always specify an href attribute. A ref element SHOULD specify the type of the 665

referenced object using the is attribute. A ref element referencing a list (is=”obix:list”) 666

SHOULD specify the type of the Objects contained in the list using the of attribute. References are 667

discussed in detail in section 9.2. 668

4.3.4 err 669

The err type is a special Object used to indicate an error. Its actual semantics are context dependent. 670

Typically err Objects SHOULD include a human readable description of the problem via the display 671

attribute. The Contract definition is: 672

<err href="obix:err" is="obix:obj"/> 673

4.3.5 op 674

The op type is used to define an operation. All operations take one input Object as a parameter, and 675

return one Object as an output. The input and output Contracts are defined via the in and out attributes. 676

The Contract definition is: 677

<op href="obix:op" is="obix:obj" in="obix:Nil" out="obix:Nil"/> 678

Operations are discussed in detail in Section 8. 679

4.3.6 feed 680

The feed type is used to define a topic for a Feed of events. Feeds are used with Watches to subscribe 681

to a stream of events such as alarms. A Feed SHOULD specify the event type it fires via the of attribute. 682

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 29 of 77

The in attribute can be used to pass an input argument when subscribing to the Feed (a filter for 683

example). 684

<feed href="obix:feed" is="obix:obj" in="obix:Nil" of="obix:obj"/> 685

Feeds are subscribed via Watches. This is discussed in Section 12. 686

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 30 of 77

5 Lobby 687

5.1 Lobby Object 688

All OBIX Servers MUST contain an Object which implements obix:Lobby. The Lobby Object serves as 689

the central entry point into an OBIX Server, and lists the URIs for other well-known Objects defined by the 690
OBIX Specification. Theoretically all a Client needs to know to bootstrap discovery is one URI for the 691

Lobby instance. By convention this URI is “http://<server-ip-address>/obix”, although vendors are 692

certainly free to pick another URI. The Lobby Contract is: 693

<obj href="obix:Lobby"> 694
 <ref name="about" is="obix:About"/> 695
 <op name="batch" in="obix:BatchIn" out="obix:BatchOut"/> 696
 <ref name="watchService" is="obix:WatchService"/> 697
 <list name="tagspaces" of="obix:uri" null="true"/> 698
 <list name="encodings" of="obix:str" null="true"/> 699
 <list name="bindings" of="obix:str" null="true"/> 700
</obj> 701

The following rules apply to the Lobby object: 702

1. The Lobby MUST provide a ref to an Object which implements the obix:About Contract as 703

described in Section 5.1. 704

2. The Lobby MUST provide an op to invoke batch operations using the obix:BatchIn and 705

obix:BatchOut Contracts as described in Section 5.2. 706

3. The Lobby MUST provide a ref to an Object which implements the obix:WatchService 707

Contract as described in Section 5.3. 708

4. The Lobby MUST provide a list of the tag spaces referenced as described in Section in 5.5.1. 709

5. The Lobby MUST provide a list of the encodings supported as described in Section 5.5.3. 710

6. The Lobby MUST provide a list of the bindings supported as described in Section 5.5.4. 711

The Lobby instance is where implementers SHOULD place vendor-specific Objects used for data and 712

service discovery. The standard Objects defined in the Lobby Contract are described in the following 713
Sections. 714

Because the Lobby Object is the primary entry point into an OBIX Server, it also serves as the primary 715
attack point for malicious entities. With that in mind, it is important that implementers of OBIX Servers 716
consider carefully how to address security concerns. Servers SHOULD ensure that Clients are properly 717
authenticated and authorized before providing any information or performing any requested actions. 718
Even providing Lobby information can significantly increase the attack surface of an OBIX Server. For 719
instance, malicious Clients could make use of the Batch Service to issue further requests, or could 720
reference items from the About section to search the web for any reported vulnerabilities associated with 721
the Server’s vendor. 722

5.2 About 723

The obix:About Object is a standardized list of summary information about an OBIX Server. Clients can 724

discover the About URI directly from the Lobby. The About Contract is: 725

<obj href="obix:About"> 726
 727
 <str name="obixVersion"/> 728
 729
 <str name="serverName"/> 730
 <abstime name="serverTime"/> 731
 <abstime name="serverBootTime"/> 732
 733
 <str name="vendorName"/> 734
 <uri name="vendorUrl"/> 735

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 31 of 77

 736
 <str name="productName"/> 737
 <str name="productVersion"/> 738
 <uri name="productUrl"/> 739
 740
 <str name="tz"/> 741
</obj> 742

 743

The following children provide information about the OBIX implementation: 744

 obixVersion: specifies which version of the OBIX specification the Server implements. This 745

string MUST be a list of decimal numbers separated by the dot character (Unicode 0x2E). The 746
current version string is “1.1”. 747

The following children provide information about the Server itself: 748

 serverName: provides a short localized name for the Server. 749

 serverTime: provides the Server’s current local time. 750

 serverBootTime: provides the Server’s start time - this SHOULD be the start time of the OBIX 751

Server software, not the machine’s boot time. 752

The following children provide information about the Server’s software vendor: 753

 vendorName: the company name of the vendor who implemented the OBIX Server software. 754

 vendorUrl: a URL to the vendor’s website. 755

The following children provide information about the software product running the Server: 756

 productName: with the product name of OBIX Server software. 757

 productUrl: a URL to the product’s website. 758

 productVersion: a string with the product’s version number. Convention is to use decimal 759

digits separated by dots. 760

The following children provide additional miscellaneous information: 761

 tz: specifies a zoneinfo identifier for the Server’s default timezone. 762

5.3 Batch 763

The Lobby defines a batch operation which allows Clients to group multiple OBIX requests together into 764

a single operation. Grouping multiple requests together can often provide significant performance 765
improvements over individual round-robin network requests. As a general rule, one big request will 766
always out-perform many small requests over a network. 767

A batch request is an aggregation of read, write, and invoke requests implemented as a standard OBIX 768
operation. At the protocol binding layer, it is represented as a single invoke request using the 769

Lobby.batch URI. Batching a set of requests to a Server MUST be processed semantically equivalent 770

to invoking each of the requests individually in a linear sequence. 771

The batch operation inputs a BatchIn Object and outputs a BatchOut Object: 772

<list href="obix:BatchIn" of="obix:uri"/> 773
 774
<list href="obix:BatchOut" of="obix:obj"/> 775

The BatchIn Contract specifies a list of requests to process identified using the Read, Write, or 776

Invoke Contract: 777

<uri href="obix:Read"/> 778
 779
<uri href="obix:Write"> 780
 <obj name="in"/> 781
</uri> 782
 783
<uri href="obix:Invoke"> 784
 <obj name="in"/> 785

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 32 of 77

</uri> 786

The BatchOut Contract specifies an ordered list of the response Objects to each respective request. For 787

example the first Object in BatchOut must be the result of the first request in BatchIn. Failures are 788

represented using the err Object. Every uri passed via BatchIn for a read or write request MUST 789

have a corresponding result obj in BatchOut with an href attribute using an identical string 790

representation from BatchIn (no normalization or case conversion is allowed). 791

It is up to OBIX Servers to decide how to deal with partial failures. In general idempotent requests 792

SHOULD indicate a partial failure using err, and continue processing additional requests in the batch. If 793

a Server decides not to process additional requests when an error is encountered, then it is still 794

REQUIRED to return an err for each respective request not processed. 795

Let’s look at a simple example: 796

<list is="obix:BatchIn"> 797
 <uri is="obix:Read" val="/someStr"/> 798
 <uri is="obix:Read" val="/invalidUri"/> 799
 <uri is="obix:Write" val="/someStr"> 800
 <str name="in" val="new string value"/> 801
 </uri> 802
</list> 803
 804
<list is="obix:BatchOut"> 805
 <str href="/someStr" val="old string value"/> 806
 <err href="/invalidUri" is="obix:BadUriErr" display="href not found"/> 807
 <str href="/someStr" val="new string value"> 808
</list> 809

In this example, the batch request is specifying a read request for “/someStr” and “/invalidUri”, followed by 810
a write request to “/someStr”. Note that the write request includes the value to write as a child named “in”. 811
The Server responds to the batch request by specifying exactly one Object for each request URI. The first 812

read request returns a str Object indicating the current value identified by “/someStr”. The second read 813

request contains an invalid URI, so the Server returns an err Object indicating a partial failure and 814

continues to process subsequent requests. The third request is a write to “someStr”. The Server updates 815
the value at “someStr”, and returns the new value. Note that because the requests are processed in 816
order, the first request provides the original value of “someStr” and the third request contains the new 817
value. This is exactly what would be expected had each of the requests been individually processed. 818

5.4 WatchService 819

The WatchService is an important mechanism for providing data from a Server. As such, this 820
specification devotes an entire Section to the description of Watches, and of the WatchService. Section 821
12 covers Watches in detail. 822

5.5 Server Metadata 823

Several components of the Lobby provide additional information about the Server’s implementation of the 824
OBIX specification. This is to be used by Clients to allow them to tailor their interaction with the Server 825
based on mutually interoperable capabilities. The following subsections describe these components. 826

5.5.1 Tag Spaces 827

Any semantic models, such as tag dictionaries, used by the Server for presenting metadata about its 828
Objects, are declared in a Tag Space. This is a collection of names of Tags that relate to a particular 829

usage or industry. Tag Spaces used by a Server MUST be identified in the Lobby in the tagspaces 830

element, which is a list of uris. The name of each uri MUST be the name that is referenced by the 831

Server when presenting Tags. A more descriptive name MAY be provided in the displayName Facet. 832

The val of the uri MUST contain the reference location for this model or dictionary. In order to prevent 833

conflicts when the source of the referenced Tag Space is updated, the Server MUST provide version 834

information, if it is available, for the Tag Space in the uri element. Version information MUST be 835

expressed as a child str element with the name “version”. If the Tag Space publication source does not 836

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 33 of 77

provide version information, then the Server MUST provide the time of retrieval from the publication 837

source of the Tag Space. Retrieval time MUST be expressed as a child abstime element with the name 838

“retrieved”. With this information, a Client can use the appropriate version of the model or dictionary for 839

interpreting the Server metadata. Clients MUST use the version element, if it exists, and retrieved 840

as a fallback, for identifying which revision of the Tag Space to use in interpreting Tags presented by the 841

Server. A Server MAY include the retrieved element in addition to the version element, so a Client 842

MUST NOT use retrieved unless version is not present. For example, a Server that makes use of 843

both an HVAC tag dictionary and a Building Terms tag dictionary might express these models in the 844
following way: 845

<obj is="obix:Lobby"> 846
 <!-- ... other lobby items ...--> 847
 <list name="tagspaces" of="obix:uri"> 848
 <uri name="hvac" displayName="HVAC Tag Dictionary" 849
val="http://example.com/tags/hvac"> 850
 <str name="version" val="1.0.42"/> 851
 </uri> 852
 <uri name="bldg" displayName="Building Terms Dictionary" 853
val="http://example.com/tags/building"> 854
 <abstime name="retrieved" val="2014-07-01T10:39:00Z"/> 855
 </uri> 856
 </list> 857
</obj> 858

One caveat to this behavior is that the presentation of the usage of a particular semantic model may 859
divulge unwanted information about the Server. For instance, a Server that makes use of a medical tag 860
dictionary and presents this in the Lobby may be undesirably advertising itself as an interesting target for 861
individuals attempting to access confidential medical records. Therefore, Servers SHOULD protect this 862
section of the Lobby by only including it in communication to authenticated, authorized Clients. 863

5.5.2 Versioning [non-normative] 864

Each of the subsequent subsections describes a set of uris that describe specifications to which a 865

Server is implemented. These specifications are expected to change over time, and the Server 866
implementation may not be updated at the same pace. Therefore, a Server implementation MAY wish to 867

provide versioning information with the uris that describes the date on which the specification was 868

retrieved. This information SHOULD be included as a child element of the uri. It SHOULD be included 869

as a str with the name ‘version’, containing the version information, if the source provides it. If version 870

information is not available, it SHOULD be included as an abstime with the name ‘retrieved’ and the 871

time at which the version used by the Server was retrieved from the source. 872

<obj is="obix:Lobby"> 873
{... other lobby items ...} 874
 <list name="bindings" of="obix:uri"> 875
 <uri name="http" displayName="HTTP Binding" val="http://docs.oasis-876
open.org/obix/obix-rest/v1.0/obix-rest-v1.0.pdf"> 877
 <abstime name="retrieved" val="2013-11-26T3:14:15.926Z"/> 878
 </uri> 879
 <uri name="myBinding" displayName="My New Binding" val="http://example.com/my-new-880
binding.doc"> 881
 <str name="version" val="1.2.34"/> 882
 </uri> 883
 </list> 884
</obj> 885

5.5.3 Encodings 886

Servers MUST include the encodings supported in the encodings Lobby Object. This is a list of 887

strs. The val of each uri MUST be the MIME type of the encoding. A more friendly name MAY be 888

provided in the displayName attribute. 889

The discovery of which encoding to use for communication between a Client and a Server is a function of 890
the specific binding used. Both Clients and Servers SHOULD support the XML encoding, as this 891
encoding is used by the majority of OBIX implementations. Clients and Servers MUST be able to support 892
negotiation of the encoding to be used according to the binding’s error message rules. Clients SHOULD 893

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 34 of 77

first attempt to request communication using the desired encoding, and then fall back to other encodings 894
as necessary based on the encodings supported by the Server. 895

For example, a Server that supports both XML and JSON encoding as defined in the [OBIX Encodings] 896

specification would have a Lobby that appeared as follows (note the displayNames used are optional): 897

<obj is="obix:Lobby"> 898
{... other lobby items ...} 899
 <list name="encodings" of="obix:str"> 900
 <str val="text/xml" displayName="XML"/> 901
 <str val="application/json" displayName="JSON"/> 902
 </list> 903
</obj> 904

A Server that receives a request for an encoding that is not supported MUST send an UnsupportedErr 905
response (see Section 10.2). 906

5.5.4 Bindings 907

Servers MUST include the available bindings supported in the bindings Lobby Object. This is a list 908

of uris. The name of each uri SHOULD be the name of the binding as described by its corresponding 909

specification document. The val of the uri SHOULD be a reference to the binding specification. 910

Servers that support multiple bindings and encodings MAY support only certain combinations of the 911
available bindings and encodings. For example, a Server may support XML encoding over the HTTP and 912
SOAP bindings, but support JSON encoding only over the HTTP binding. 913

A Server that receives a request for a binding/encoding pair that is not supported MUST send an 914

UnsupportedErr response (see Section 10.2). 915

For example, a Server that supports the SOAP and HTTP bindings as defined in the OBIX REST and 916

OBIX SOAP specifications would have a Lobby that appeared as follows (note the displayNames used 917

are optional): 918

<obj is="obix:Lobby"> 919
{... other lobby items ...} 920
 <list name="bindings" of="obix:uri"> 921
 <uri name="http" displayName="HTTP Binding" val="http://docs.oasis-922
open.org/obix/obix-rest/v1.0/obix-rest-v1.0.pdf"/> 923
 <uri name="soap" displayName="SOAP Binding" val="http://docs.oasis-924
open.org/obix/obix-soap/v1.0/obix-soap-v1.0.pdf"/> 925
 </list> 926
</obj> 927

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 35 of 77

6 Naming 928

All OBIX objects have two potential identifiers: name and href. Name is used to define the role of an 929

Object within its parent. Names are programmatic identifiers only; the displayName Facet SHOULD be 930

used for human interaction. Naming convention is to use camel case with the first character in lowercase. 931
The primary purpose of names is to attach semantics to sub-objects. Names are also used to indicate 932
overrides from a Contract. A good analogy to names is the field/method names of a class in Java or C#. 933

Hrefs are used to attach URIs to objects. An href is always a URI reference, which means it might be a 934
relative URI that requires normalization against a base URI. The exception to this rule is the href of the 935
root Object in an OBIX document – this href MUST be an absolute URI, not a URI reference. This allows 936
the root Object’s href to be used as the effective base URI (xml:base) for normalization. A good analogy 937
is hrefs in HTML or XLink. 938

Some Objects may have both a name and an href, just a name, just an href, or neither. It is common for 939
objects within a list to not use names, since most lists are unnamed sequences of objects. The OBIX 940
specification makes a clear distinction between names and hrefs - Clients MUST NOT assume any 941
relationship between names and hrefs. From a practical perspective many vendors will likely build an href 942
structure that mimics the name structure, but Client software MUST never assume such a relationship. 943

6.1 Name 944

The name of an Object is represented using the name attribute. Names are programmatic identifiers with 945

restrictions on their valid character set. A name SHOULD contain only ASCII letters, digits, underbar, or 946
dollar signs. A digit MUST NOT be used as the first character. Names SHOULD use lower Camel case 947
per [CamelCase] with the first character in lower case, as in the examples “foo”, “fooBar”, 948
“thisIsOneLongName”. Within a given Object, all of its direct children MUST have unique names. Objects 949

which don’t have a name attribute are called unnamed Objects. The root Object of an OBIX document 950

SHOULD NOT specify a name attribute (but almost always has an absolute href URI). 951

6.2 Href 952

The href of an Object is represented using the href attribute. If specified, the root Object MUST have an 953

absolute URI. All other hrefs within an OBIX document are treated as potentially relative URI references. 954
Because the root Object’s href is always an absolute URI, it may be used as the base for normalizing 955
relative URIs within the OBIX document. OBIX implementations MUST follow the formal rules for URI 956
syntax and normalization defined in [RFC3986]. Several common cases that serve as design patterns 957

within OBIX are considered in Section 6.3. 958

As a general rule every Object accessible for a read MUST specify a URI. An OBIX document returned 959
from a read request MUST specify a root URI. However, there are certain cases where the Object is 960
transient, such as a computed Object from an operation invocation. In these cases there MAY not be a 961
root URI, meaning there is no way to retrieve this particular Object again. If no root URI is provided, then 962
the Server’s authority URI is implied to be the base URI for resolving relative URI references. 963

6.3 URI Normalization 964

Implementers are free to use any URI schema, although the recommendation is to use URIs since they 965
have well defined normalization semantics. Implementations that use URIs MUST comply with the rules 966
and requirements described in [RFC3986]. Implementations SHOULD be able to interpret and navigate 967

HTTP URIs, as this is used by the majority of OBIX implementations. 968

Perhaps one of the trickiest issues is whether the base URI ends with a slash. If the base URI doesn’t 969
end with a slash, then a relative URI is assumed to be relative to the base’s parent (to match HTML). If 970
the base URI does end in a slash, then relative URIs can just be appended to the base. In practice, 971
systems organized into hierarchical URIs SHOULD always specify the base URI with a trailing slash. 972

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 36 of 77

Retrieval with and without the trailing slash SHOULD be supported with the resulting OBIX document 973

always adding the implicit trailing slash in the root Object’s href. 974

6.4 Fragment URIs 975

It is not uncommon to reference an Object internal to an OBIX document. This is achieved using fragment 976
URI references starting with the “#”. Consider the example: 977

<obj href="http://server/whatever/"> 978
 <enum name="switch1" range="#onOff" val="on"/> 979
 <enum name="switch2" range="#onOff" val="off"/> 980
 <list is="obix:Range" href="onOff"> 981
 <obj name="on"/> 982
 <obj name="off"/> 983
 </list> 984
</obj> 985

In this example there are two Objects with a range Facet referencing a fragment URI. Any URI reference 986

starting with “#” MUST be assumed to reference an Object within the same OBIX document. Clients 987
SHOULD NOT perform another URI retrieval to dereference the Object. In this case the Object being 988

referenced is identified via the href attribute. 989

In the example above the Object with an href of “onOff” is both the target of the fragment URI, but also 990
has the absolute URI “http://server/whatever/onOff”. But consider an Object that was the target of a 991
fragment URI within the document, but could not be directly addressed using an absolute URI. In that 992
case the href attribute SHOULD be a fragment identifier itself. When an href attribute starts with “#” that 993
means the only place it can be used is within the document itself: 994

… 995
 <list is="obix:Range" href="#onOff"> 996
… 997

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 37 of 77

7 Contracts 998

OBIX Contracts are used to define inheritance in OBIX Objects. A Contract is a template, defined as an 999

OBIX Object, that is referenced by other Objects. These templates are referenced using the is attribute. 1000

Contracts solve several important problems in OBIX: 1001

Semantics Contracts are used to define “types” within OBIX. This lets us collectively agree on
common Object definitions to provide consistent semantics across vendor

implementations. For example the Alarm Contract ensures that Client software can

extract normalized alarm information from any vendor’s system using the exact
same Object structure.

Defaults Contracts also provide a convenient mechanism to specify default values. Note that
when serializing Object trees to XML (especially over a network), defaults
aretypically not allowed, in order to keep Client processing simple.

Type Export OBIX will be used to interact with existing and future control systems based on
statically-typed languages such as Java or C#. Contracts provide a standard
mechanism to export type information in a format that all OBIX Clients can
consume.

Table 7-1. Problems addressed by Contracts. 1002

The benefit of the Contract design is its flexibility and simplicity. Conceptually Contracts provide an 1003
elegant model for solving many different problems with one abstraction. One can define new abstractions 1004
using the OBIX syntax itself. Contracts also give us a machine readable format that Clients already know 1005
how to retrieve and parse –the exact same syntax is used to represent both a class and an instance. 1006

7.1 Contract Terminology 1007

Common terms that are useful for discussing Contracts are defined in the following Table. 1008

Term Definition

Contract Contracts are the templates or prototypes used as the foundation of the OBIX
type system. They may contain both syntactical and semantic behaviors.

Contract Definition A reusable Object definition expressed as a standard OBIX Object.

Contract List A list of one or more URIs to Contract Objects. The list of URIs is separated by

the space character. It is used as the value of the is, of, in and out

attributes.

Implements When an Object specifies a Contract in its Contract List, the Object is said to
implement the Contract. This means that the Object is inheriting both the

structure and semantics of the specified Contract.

Implementation An Object which implements a Contract is said to be an implementation of that
Contract.

Table 7-2. Contract terminology. 1009

7.2 Contract List 1010

The syntax of a Contract List attribute is a list of URI references to other OBIX Objects. The URIs within 1011

the list MUST be separated by the space character (Unicode 0x20). Just like the href attribute, a 1012

Contract URI can be an absolute URI, Server relative, or even a fragment reference. The URIs within a 1013

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 38 of 77

Contract List may be scoped with an XML namespace prefix (see “Namespace Prefixes in Contract Lists” 1014
in the [OBIX Encodings] document). 1015

A Contract List is not an obix:list type described in Section 4.3.2. It is a string with special structure 1016

regarding the space-separated group of URIs. 1017

The Contract List is used as the value of the is, of, in and out attributes. An example of a point that 1018

implements multiple Contracts and advertises this through its ContractList is: 1019

<real val="70.0" name="setpoint" is="obix:Point obix:WritablePoint acme:Setpoint"/> 1020

From this example, we can see that this 'setpoint' Object implements the Point and WritablePoint 1021
Contracts that are described in this specification (Section 13). It also implements a separate Contract 1022

defined with the acme namespace called Setpoint. A consumer of this Object can rely on the fact that it 1023

has all of the syntactical and semantic behaviors of each of these Contracts, and I can interact with any of 1024
these behaviors. 1025

An example of an obix:list that uses ContractList in its of attribute to describe the type of items 1026

contained in the obix:list is: 1027

<list name="Logged Data" of="obix:Point obix:History"> 1028
 <real name="spaceTemp"/> 1029
 <str val="Whiskers on Kittens"/> 1030
 <str val="Bright Copper Kettles"/> 1031
 <str val="Warm Woolen Mittens"/> 1032
</list> 1033

The 1034

7.3 Is Attribute 1035

An Object defines the Contracts it implements via the is attribute. The value of the is attribute is a 1036

Contract List. If the is attribute is unspecified, then the following rules are used to determine the implied 1037

Contract List: 1038

 If the Object is an item inside a list or feed, then the Contract List specified by the of attribute 1039

is used. 1040

 If the Object overrides (by name) an Object specified in one of its Contracts, then the Contract 1041
List of the overridden Object is used. 1042

 If all the above rules fail, then the respective primitive Contract is used. For example, an obj 1043

element has an implied Contract of obix:obj and real an implied Contract of obix:real. 1044

Element names such as bool, int, or str are abbreviations for implied Contracts. However if an Object 1045

implements one of the primitive types, then it MUST use the correct OBIX type name. If an Object 1046

implements obix:int, then it MUST be expressed as <int/>, and MUST NOT use the form <obj 1047

is="obix:int"/>. An Object MUST NOT implement multiple value types, such as implementing both 1048

obix:bool and obix:int. 1049

7.4 Contract Inheritance 1050

7.4.1 Structure vs Semantics 1051

Contracts are a mechanism of inheritance – they establish the classic “is a” relationship. In the abstract 1052
sense a Contract allows inheritance of a type. One can further distinguish between the explicit and implicit 1053

Contract: 1054

Explicit Contract Defines an object structure which all implementations must conform
with. This can be evaluated quantitatively by examining the Object
data structure.

Implicit Contract Defines semantics associated with the Contract. The implicit Contract
is typically documented using natural language prose. It is

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 39 of 77

qualitatively interpreted, rather than quantitatively interpreted.

Table 7-3. Explicit and Implicit Contracts. 1055

For example when an Object implements the Alarm Contract, one can immediately infer that it will have a 1056

child called timestamp. This structure is in the explicit contract of Alarm and is formally defined in its 1057

encoded definition. But semantics are also attached to what it means to be an Alarm Object: that the 1058

Object is providing information about an alarm event. These subjective concepts cannot be captured in 1059
machine language; rather they can only be captured in prose. 1060

When an Object declares itself to implement a Contract it MUST meet both the explicit Contract and the 1061

implicit Contract. An Object MUST NOT put obix:Alarm in its Contract List unless it really represents an 1062

alarm event. Interpretation of Implicit Contracts generally requires that a human brain be involved, i.e., 1063
they cannot in general be consumed with pure machine-to-machine interaction. 1064

7.4.2 Overriding Defaults 1065

A Contract’s named children Objects are automatically applied to implementations. An implementation 1066
may choose to override or default each of its Contract’s children. If the implementation omits the child, 1067
then it is assumed to default to the Contract’s value. If the implementation declares the child (by name), 1068
then it is overridden and the implementation’s value SHOULD be used. Let’s look at an example: 1069

<obj href="/def/television"> 1070
 <bool name="power" val="false"/> 1071
 <int name="channel" val="2" min="2" max="200"/> 1072
</obj> 1073
 1074
<obj href="/livingRoom/tv" is="/def/television"> 1075
 <int name="channel" val="8"/> 1076
 <int name="volume" val="22"/> 1077
</obj> 1078

In this example a Contract Object is identified with the URI “/def/television”. It has two children to store 1079

power and channel. The living room TV instance includes “/def/television” in its Contract List via the is 1080

attribute. In this Object, channel is overridden to 8 from its default value of 2. However since power was 1081
omitted, it is implied to default to false. 1082

An override is always matched to its Contract via the name attribute. In the example above it was clear 1083

that ‘channel’ was being overridden, because an Object was declared with a name of ‘channel’. A second 1084
Object was also declared with a name of ‘volume’. Since volume wasn’t declared in the Contract, it is 1085
assumed to be a new definition specific to this Object. 1086

7.4.3 Attributes and Facets 1087

Also note that the Contract’s channel Object declares a min and max Facet. These two Facets are also 1088

inherited by the implementation. Almost all attributes are inherited from their Contract including Facets, 1089

val, of, in, and out. The href attribute is never inherited. The null attribute inherits as follows: 1090

1. If the null attribute is specified, then its explicit value is used; 1091

2. If a val attribute is specified and null is unspecified, then null is implied to be false; 1092

3. If neither a val attribute or a null attribute is specified, then the null attribute is inherited from 1093

the Contract; 1094

4. If the null attribute is specified and is true, then the val attribute is ignored. 1095

This allows us to implicitly override a null Object to non-null without specifying the null attribute. 1096

7.5 Override Rules 1097

Contract overrides are REQUIRED to obey the implicit and explicit Contract. Implicit means that the 1098
implementation Object provides the same semantics as the Contract it implements. In the example above 1099
it would be incorrect to override channel to store picture brightness. That would break the semantic 1100
Contract. 1101

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 40 of 77

Overriding the explicit Contract means to override the value, Facets, or Contract List. However one can 1102
never override the Object to be an incompatible value type. For example if the Contract specifies a child 1103

as real, then all implementations must use real for that child. As a special case, obj may be narrowed 1104

to any other element type. 1105

One must also be careful when overriding attributes to never break restrictions the Contract has defined. 1106
Technically this means the value space of a Contract can be specialized or narrowed, but never 1107
generalized or widened. This concept is called covariance. Returning to the example from above: 1108

<int name="channel" val="2" min="2" max="200"/> 1109

In this example the Contract has declared a value space of 2 to 200. Any implementation of this Contract 1110

must meet this restriction. For example it would an error to override min to –100 since that would widen 1111

the value space. However the value space can be narrowed by overriding min to a number greater than 2 1112

or by overriding max to a number less than 200. The specific override rules applicable to each Facet are 1113

documented in section 4.2.7. 1114

7.6 Multiple Inheritance 1115

An Object’s Contract List may specify multiple Contract URIs to implement. This is actually quite common 1116
- even required in many cases. There are two topics associated with the implementation of multiple 1117
Contracts: 1118

Flattening Contract Lists SHOULD always be flattened when specified. This comes into play
when a Contract has its own Contract List (Section 7.6.1).

Mixins The mixin design specifies the exact rules for how multiple Contracts are merged
together. This section also specifies how conflicts are handled when multiple
Contracts contain children with the same name (Section 7.6.2).

Table 7-4. Contract inheritance. 1119

7.6.1 Flattening 1120

It is common for Contract Objects themselves to implement Contracts, just like it is common in OO 1121
languages to chain the inheritance hierarchy. However due to the nature of accessing OBIX documents 1122
over a network, it is often desired to minimize round trip network requests which might be needed to 1123
“learn” about a complex Contract hierarchy. Consider this example: 1124

<obj href="/A" /> 1125
<obj href="/B" is="/A" /> 1126
<obj href="/C" is="/B" /> 1127
<obj href="/D" is="/C" /> 1128

In this example if an OBIX Client were reading Object D for the first time, it would take three more 1129
requests to fully learn what Contracts are implemented (one for C, B, and A). Furthermore, if the Client 1130
was just looking for Objects that implemented B, it would difficult to determine this just by looking at D. 1131

Because of these issues, Servers are REQUIRED to flatten their Contract inheritance hierarchy into a list 1132

when specifying the is, of, in, or out attributes. In the example above, the correct representation would 1133

be: 1134

<obj href="/A" /> 1135
<obj href="/B" is="/A" /> 1136
<obj href="/C" is="/B /A" /> 1137
<obj href="/D" is="/C /B /A" /> 1138

This allows Clients to quickly scan D’s Contract List to see that D implements C, B, and A without further 1139
requests. 1140

Because complex Servers often have a complex Contract hierarchy of Object types, the requirement to 1141
flatten the Contract hierarchy can lead to a verbose Contract List. Often many of these Contracts are 1142
from the same namespace. For example: 1143

<obj name="VSD1" href="acme:VSD-1" is="acmeObixLibrary:VerySpecificDevice1 1144
acmeObixLibrary:VerySpecificDeviceBase acmeObixLibrary:SpecificDeviceType 1145
acmeObixLibrary:BaseDevice acmeObixLibrary:BaseObject"/> 1146

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 41 of 77

To save space, Servers MAY choose to combine the Contracts from the same namespace and present 1147
the Contract List with the namespace followed by a colon, then a brace-enclosed list of Contract names: 1148

<real name="writableReal" is="obix:{Point WritablePoint}"/> 1149
 1150
<obj name="vsd1" href="acme:VSD-1" is="acmeObixLibrary:{VerySpecificDevice1 1151
VerySpecificDeviceBase SpecificDeviceType BaseDevice BaseObject}"/> 1152

Clients MUST be able to consume this form of the Contract List and expand it to the standard form. 1153

7.6.2 Mixins 1154

Flattening is not the only reason a Contract List might contain multiple Contract URIs. OBIX also supports 1155
the more traditional notion of multiple inheritance using a mixin approach as in the following example: 1156

<obj href="acme:Device"> 1157
 <str name="serialNo"/> 1158
</obj> 1159
 1160
<obj href="acme:Clock" is="acme:Device"> 1161
 <op name="snooze"/> 1162
 <int name="volume" val="0"/> 1163
</obj> 1164
 1165
<obj href="acme:Radio" is="acme:Device "> 1166
 <real name="station" min="87.0" max="107.5"/> 1167
 <int name="volume" val="5"/> 1168
</obj> 1169
 1170
<obj href="acme:ClockRadio" is="acme:Radio acme:Clock acme:Device"/> 1171

In this example ClockRadio implements both Clock and Radio. Via flattening of Clock and Radio, 1172

ClockRadio also implements Device. In OBIX this is called a mixin – Clock, Radio, and Device are 1173

mixed into (merged into) ClockRadio. Therefore ClockRadio inherits four children: serialNo, 1174

snooze, volume, and station. Mixins are a form of multiple inheritance akin to Java/C# interfaces 1175

(remember OBIX is about the type inheritance, not implementation inheritance). 1176

Note that Clock and Radio both implement Device. This inheritance pattern where two types both 1177

inherit from a base, and are themselves both inherited by a single type, is called a “diamond” pattern from 1178

the shape it takes when the class hierarchy is diagrammed. From Device, ClockRadio inherits a child 1179

named serialNo. Furthermore notice that both Clock and Radio declare a child named volume. This 1180

naming collision could potentially create confusion for what serialNo and volume mean in 1181

ClockRadio. 1182

OBIX solves this problem by flattening the Contract’s children using the following rules: 1183

1. Process the Contract definitions in the order they are listed 1184

2. If a new child is discovered, it is mixed into the Object’s definition 1185

3. If a child is discovered that has already been processed via a previous Contract definition, then 1186
the previous definition takes precedence. However it is an error if the duplicate child is not 1187
Contract compatible with the previous definition (see Section 7.7). 1188

In the example above this means that Radio.volume is the definition used for ClockRadio.volume, 1189

because Radio has a higher precedence than Clock (it is first in the Contract List). Thus 1190

ClockRadio.volume has a default value of “5”. However it would be invalid if Clock.volume were 1191

declared as str, since it would not be Contract compatible with Radio’s definition as an int – in that 1192

case ClockRadio could not implement both Clock and Radio. It is the Server vendor’s responsibility 1193

not to create incompatible name collisions in Contracts. 1194

The first Contract in a list is given specific significance since its definition trumps all others. In OBIX this 1195
Contract is called the Primary Contract. For this reason, the Primary Contract SHOULD implement all the 1196
other Contracts specified in the Contract List (this actually happens quite naturally by itself in many 1197
programming languages). This makes it easier for Clients to bind the Object into a strongly typed class if 1198
desired. Contracts MUST NOT implement themselves nor have circular inheritance dependencies. 1199

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 42 of 77

7.7 Contract Compatibility 1200

A Contract List which is covariantly substitutable with another Contract List is said to be Contract 1201
compatible. Contract compatibility is a useful term when talking about mixin rules and overrides for lists 1202
and operations. It is a concept similar to previously defined override rules – however, instead of the rules 1203
applied to individual Facet attributes, it is applied to an entire Contract List. 1204

A Contract List X is compatible with Contract List Y, if and only if X narrows the value space defined by Y. 1205
This means that X can narrow the set of Objects which implement Y, but never expand the set. Contract 1206
compatibility is not commutative (X is compatible with Y does not imply Y is compatible with X). 1207
Practically, this can be expressed as: X can add new URIs to Y’s list, but never take any away. 1208

7.8 Lists and Feeds 1209

Implementations derived from list or feed Contracts inherit the of attribute. Like other attributes an 1210

implementing Object can override the of attribute, but only if Contract compatible - a Server SHOULD 1211

include all of the URIs in the Contract’s of attribute, but it MAY add additional ones (see Section 7.7). 1212

Lists and Feeds also have the special ability to implicitly define the Contract List of their contents. In the 1213

following example it is implied that each child element has a Contract List of /def/MissingPerson 1214

without actually specifying the is attribute in each list item: 1215

<list of="/def/MissingPerson"> 1216
 <obj> <str name="fullName" val="Jack Shephard"/> </obj> 1217
 <obj> <str name="fullName" val="John Locke"/> </obj> 1218
 <obj> <str name="fullName" val="Kate Austen"/> </obj> 1219
</list> 1220

If an element in the list or Feed does specify its own is attribute, then it MUST be Contract compatible 1221

with the of attribute. 1222

If an implementation wishes to specify that a list should contain references to a given type, then the 1223

implementation SHOULD include obix:ref in the of attribute. This MUST be the first URI in the of 1224

attribute. For example, to specify that a list should contain references to obix:History Objects (as 1225
opposed to inline History Objects): 1226

<list name="histories" of="obix:ref obix:History"/> 1227

In many cases a Server will implement its own management of the URI scheme of the child elements of a 1228

list. For example, the href attribute of child elements may be a database key, or some other string 1229

defined by the Server when the child is added. Servers will not, in general, allow Clients to specify this 1230
URI during addition of child elements through a direct write to a list’s subordinate URI. 1231

Therefore, in order to add child elements to a list which supports Client addition of list elements, Servers 1232

MUST support adding list elements by writing to the list URI with an Object of a type that matches the 1233

list’s Contract. Servers MUST return the written resource (including any Server-assigned href) upon 1234

successful completion of the write. 1235

For example, given a list of <real> elements, and presupposing a Server-imposed URI scheme: 1236

<list href="/a/b" of="obix:real" writable="true"/> 1237

Writing to the list URI itself will replace the entire list if the Server supports this behavior: 1238

WRITE /a/b 1239

<list of="obix:real"> 1240
 <real name="foo" val="10.0"/> 1241
 <real name="bar" val="20.0"/> 1242
</list> 1243

returns: 1244

<list href="/a/b" of="obix:real"> 1245
 <real name="foo" href="1" val="10.0"/> 1246
 <real name="bar" href="2" val="20.0"/> 1247
</list> 1248

Writing a single element of type <real> will add this element to the list. 1249

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 43 of 77

WRITE /a/b 1250

<real name="baz" val="30.0"/> 1251

returns: 1252

<real name="baz" href="/a/b/3" val="30.0"/> 1253

while the list itself is now: 1254

<list href="/a/b" of="obix:real"> 1255
 <real name="foo" href="1" val="10.0"/> 1256
 <real name="bar" href="2" val="20.0"/> 1257
 <real name="baz" href="3" val="30.0"/> 1258
</list> 1259

Note that if a Client has the correct URI to reference a list child element, this can still be used to modify 1260
the value of the element directly: 1261

WRITE /a/b/3 1262

<real name="baz2" val="33.0"/> 1263

returns: 1264

<real name="baz2" href="/a/b/3" val="33.0"/> 1265

and the list has been modified to: 1266

<list href="/a/b" of="obix:real"> 1267
 <real name="foo" href="1" val="10.0"/> 1268
 <real name="bar" href="2" val="20.0"/> 1269
 <real name="baz" href="3" val="33.0"/> 1270
</list> 1271

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 44 of 77

8 Operations 1272

OBIX Operations are the exposed actions that an OBIX Object can be commanded to take, i.e., they are 1273
things you can invoke to “do” something to the Object. Typically object-oriented languages express this 1274
concept as the publicly accessible methods on the object. They generally map to commands rather than a 1275
variable that has continuous state. Unlike Value Objects which represent an Object and its current state, 1276

the op element merely represents the definition of an operation you can invoke. 1277

All operations take exactly one Object as a parameter and return exactly one Object as a result. The in 1278

and out attributes define the Contract List for the input and output Objects. If you need multiple input or 1279

output parameters, then wrap them in a single Object using a Contract as the signature. For example: 1280

<op href="/addTwoReals" in="/def/AddIn" out="obix:real"/> 1281
 1282
<obj href="/def/AddIn"> 1283
 <real name="a"/> 1284
 <real name="b"/> 1285
</obj> 1286

Objects can override the operation definition from one of their Contracts. However the new in or out 1287

Contract List MUST be Contract compatible (see Section 7.7) with the Contract’s definition. 1288

If an operation doesn’t require a parameter, then specify in as obix:Nil. If an operation doesn’t return 1289

anything, then specify out as obix:Nil. Occasionally an operation is inherited from a Contract which is 1290

unsupported in the implementation. In this case set the status attribute to disabled. 1291

Operations are always invoked via their own href attribute (not their parent’s href). Therefore 1292

operations SHOULD always specify an href attribute if you wish Clients to invoke them. A common 1293

exception to this rule is Contract definitions themselves. 1294

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 45 of 77

9 Object Composition 1295

Object Composition describes how multiple OBIX Objects representing individual pieces are combined to 1296
form a larger unit. The individual pieces can be as small as the various data fields in a simple thermostat, 1297
as described in Section 2, or as large as entire buildings, each themselves composed of multiple 1298
networks of devices. All of the OBIX Objects are linked together via URIs, similar to the way that the 1299
World Wide Web is a group of HTML documents hyperlinked together through URIs These OBIX Objects 1300
may be static documents like Contracts or device descriptions. Or they may be real-time data or services. 1301

Individual Objects are composed together in two ways to define this web. Objects may be composed 1302
together via containment or via reference. 1303

9.1 Containment 1304

Any OBIX Object may contain zero or more child Objects. This even includes Objects which might be 1305

considered primitives such as bool or int. All Objects are open ended and free to specify new Objects 1306

which may not be in the Object’s Contract. Containment is represented in the XML syntax by nesting the 1307
XML elements: 1308

<obj href="/a/"> 1309
 <list name="b" href="b"> 1310
 <obj href="b/c"/> 1311
 </list> 1312
</obj> 1313

In this example the Object identified by “/a” contains “/a/b”, which in turn contains “/a/b/c”. Child Objects 1314

may be named or unnamed depending on if the name attribute is specified (Section 6.1). In the example, 1315

“/a/b” is named and “/a/b/c” is unnamed. Typically named children are used to represent fields in a record, 1316
structure, or class type. Unnamed children are often used in lists. 1317

9.2 References 1318

 1319

To understand references, it is useful to return to the World Wide Web metaphor. Individual HTML 1320
elements like <p> and <div> are grouped into HTML documents, which are the atomic entities passed 1321
over the network. The documents are linked together using the <a> anchor element. These anchors 1322
serve as placeholders, referencing outside documents via a URI. 1323

An OBIX reference is similar to an HTML anchor. It serves as a placeholder to “link” to another OBIX 1324
Object via a URI. While containment is best used to model small trees of data, references may be used to 1325
model very large trees or graphs of Objects. 1326

As a clue to Clients consuming OBIX references, the Server SHOULD specify the type of the referenced 1327

Object using the is attribute. In addition, for the list element type, the Server SHOULD use the of 1328

attribute to specify the type of Objects contained by the list. This allows the Client to prepare the 1329

proper visualizations, data structures, etc. for consuming the Object when it accesses the actual Object. 1330
For example, a Server might provide a reference to a list of available points: 1331

<ref name="points" is="obix:list" of="obix:Point"/> 1332

9.3 Extents 1333

Within any problem domain, the intra-model relationships can be expressed by using either containment 1334
or references. The choice changes the semantics of both the model expression as well as the method for 1335
accessing the elements within the model. The containment relationship is imbued with special semantics 1336
regarding encoding and event management. If the model is expressed through containment, then OBIX 1337
uses the term Extent to refer to the tree of children contained within that Object, down to references. Only 1338
Objects which have an href have an Extent. Objects without an href are always included within the Extent 1339

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 46 of 77

of one or more referenceable Objects which are called its ancestors. This is demonstrated in the 1340
following example. 1341

<obj href="/a/"> 1342
 <obj name="b" href="b"> 1343
 <obj name="c"/> 1344
 <ref name="d" href="/d"/> 1345
 </obj> 1346
 <ref name="e" href="/e"/> 1347
</obj> 1348

In the example above, there are five Objects named ‘a’ to ‘e’. Because ‘a’ includes an href, it has an 1349
associated extent, which encompasses ‘b’ and ‘c’ by containment and ‘d’ and ‘e’ by reference. Likewise, 1350
‘b’ has an href which results in an extent encompassing ‘c’ by containment and ‘d’ by reference. Object ‘c’ 1351
does not provide a direct href, but exists in both the ‘a’ and ‘b’ Objects’ extents. Note an Object with an 1352
href has exactly one extent, but can be nested inside multiple extents. 1353

When marshaling Objects into an OBIX document, it is REQUIRED that an extent always be fully inlined 1354

into the document. The only valid Objects which may be references outside the document are ref 1355

Objects. In order to allow conservation of bandwidth usage, processing time, and storage requirements, 1356

Servers SHOULD use non-ref Objects only for representing primitive children which have no further 1357

extent. Refs SHOULD be used for all complex children that have further structure under them. Clients 1358

MUST be able to consume the refs and then request the referenced object if it is needed for the 1359

application. As an example, consider a Server which has the following object tree, represented here with 1360
full extent: 1361

<obj name="myBuilding" href="/building/"> 1362
 <str name="address" val="123 Main Street"/> 1363
 <obj name="floor1"> 1364
 <obj name="zone1"> 1365
 <obj name="room1"/> 1366
 </obj> 1367
 </obj> 1368
</obj> 1369

When marshaled into an OBIX document to respond to a Client Read request of the /building/ URI, the 1370

Server SHOULD inline only the address, and use a ref for Floor1: 1371

<obj name="myBuilding" href="/building/"> 1372
 <str name="address" val="123 Main Street"/> 1373
 <ref name="floor1" href="floor1"/> 1374
</obj> 1375

If the Object implements a Contract, then it is REQUIRED that the extent defined by the Contract be fully 1376

inlined into the document (unless the Contract itself defined a child as a ref element). An example of a 1377

Contract which specifies a child as a ref is Lobby.about (Section 5.2). 1378

9.4 Metadata 1379

An OBIX Server MAY present additional metadata about Objects in its model through the use of Tags. A 1380
Tag is simply a name-value pair represented as a child element of the Object about which the Tag is 1381
providing information. Tags MUST be represented with an OBIX primitive matching the value type. For 1382
the case of “marker” Tags which have no value, the OBIX <obj> element MUST be used. If these Tags 1383
are defined in an external Tag space, e.g. Haystack, a building information model (BIM), etc., then the 1384
Tags MUST reference the Tag space by an identifier which MUST be declared in the Lobby, along with 1385
the URI for the semantic model it represents. The format for the Lobby definition is discussed in Section 1386
5.5.1. 1387

Multiple tag spaces MAY be included simultaneously in an Object. For example, a Server representing a 1388
building management system might present one of its Variable Air Volume (VAV) controllers using 1389
metadata from both HVAC and Building tag spaces as shown below. The Lobby would express the 1390
models used, as in Section5.5.1: 1391

<obj is="obix:Lobby"> 1392
 <!-- ... other lobby items ...--> 1393
 <list name="tagspaces" of="obix:uri"> 1394

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 47 of 77

 <uri name="hvac" displayName="HVAC Tag Dictionary" 1395
val="http://example.com/tags/hvac"> 1396
 <str name="version" val="1.0.42"/> 1397
 </uri> 1398
 <uri name="bldg" displayName="Building Terms Dictionary" 1399
val="http://example.com/tags/building"> 1400
 <abstime name="retrieved" val="2014-07-01T10:39:00Z"/> 1401
 </uri> 1402
 </list> 1403
</obj> 1404

Then, the Object representing the VAV controller would reference these dictionaries using their names in 1405

the tagspace attribute, and the tags as defined in the dictionary as the name: 1406

<real name="VAV-101" href="/MainCampus/BurnsHall/Floor1/Room101/VAV/" val="70.0"> 1407
 <real name="spaceTemp" href="spaceTemp/" val="70.0"/> 1408
 <real name="setpoint" href="setpoint/" val="72.0"/> 1409
 <bool name="heatCmd" href="heatCmd/" val="true"/> 1410
 <enum name="sensorType" val="ThermistorType3"/> 1411
 <obj name="temperature" ts="hvac"/> 1412
 <obj name="vav" ts="hvac"/> 1413
 <int name="roomNumber" ts="bldg" val="101"/> 1414
 <int name="floor" ts="bldg" val="1"/> 1415
 <str name="buildingName" ts="bldg" val="Montgomery Burns Science Labs"/> 1416
 <uri name="ahuReference" ts="hvac" val="/MainCampus/BurnsHall/AHU/AHU1"/> 1417
</real> 1418

Servers SHOULD only provide this information to Clients that are properly authenticated and authorized, 1419
to avoid providing a vector for attack if usage of a particular model identifies the Server as an interesting 1420
target. 1421

The metadata SHOULD be presented using the ref element, so this additional information can be 1422

skipped during normal encoding. If a Client is able to consume the metadata, it SHOULD ask for the 1423
metadata by requesting the metadata hierarchy. 1424

OBIX Clients SHALL ignore information that they do not understand. In particular, a conformant Client 1425
that is presented with Tags that it does not understand MUST ignore those Tags. No OBIX Server may 1426
require understanding of these Tags for interoperation. 1427

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 48 of 77

10 Networking 1428

The heart of OBIX is its object model and associated encoding. However, the primary use case for OBIX 1429
is to access information and services over a network. The OBIX architecture is based on a Client/Server 1430
network model, described below: 1431

Server An entity containing OBIX enabled data and services. Servers respond
to requests from Client over a network.

Client An entity which makes requests to Servers over a network to access
OBIX enabled data and services.

Table 10-1. Network model for OBIX. 1432

There is nothing to prevent a device or system from being both an OBIX Client and Server. However, a 1433
key tenet of OBIX is that a Client is NOT REQUIRED to implement Server functionality which might 1434
require a Server socket to accept incoming requests. 1435

10.1 Service Requests 1436

All service requests made against an OBIX Server can be distilled to 4 atomic operations, expressed in 1437
the following Table: 1438

Request Description

Read Return the current state of an object at a given URI as an OBIX Object.

Write Update the state of an existing object at a URI. The state to write is passed over the
network as an OBIX Object. The new updated state is returned in an OBIX Object.

Invoke Invoke an operation identified by a given URI. The input parameter and output result
are passed over the network as an OBIX Object.

Delete Delete the object at a given URI.

Table 10-2. OBIX Service Requests. 1439

Exactly how these requests and responses are implemented between a Client and Server is called a 1440
protocol binding. The OBIX specification defines standard protocol bindings in separate companion 1441
documents. All protocol bindings MUST follow the same read, write, invoke, and delete semantics 1442
discussed next. 1443

10.1.1 Read 1444

The read request specifies an object’s URI and the read response returns the current state of the object 1445
as an OBIX document. The response MUST include the Object’s complete extent (see Section 9.3). 1446

Servers may return an err Object to indicate the read was unsuccessful – the most common error is 1447

obix:BadUriErr (see Section 10.2 for standard error Contracts). 1448

10.1.2 Write 1449

The write request is designed to overwrite the current state of an existing Object. The write request 1450
specifies the URI of an existing Object and its new desired state. The response returns the updated state 1451
of the Object. If the write is successful, the response MUST include the Object’s complete extent (see 1452

Section 9.3). If the write is unsuccessful, then the Server MUST return an err Object indicating the 1453

failure. 1454

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 49 of 77

The Server is free to completely or partially ignore the write, so Clients SHOULD be prepared to examine 1455

the response to check if the write was successful. Servers may also return an err Object to indicate the 1456

write was unsuccessful. 1457

Clients are NOT REQUIRED to include the Object’s full extent in the request. Objects explicitly specified 1458
in the request object tree SHOULD be overwritten or “overlaid” over the Server’s actual object tree. Only 1459

the val attribute SHOULD be specified for a write request (outside of identification attributes such as 1460

name). The null attribute MAY also be used to set an Object to null. If the null attribute is not specified 1461

and the val attribute is specified, then it is implied that null is false.The behavior of a Server upon 1462

receiving a write request which provides Facets is unspecified with regards to the Facets. When writing 1463

int or reals with units, the write value MUST be in the same units as the Server specifies in read 1464

requests – Clients MUST NOT provide a different unit Facet and expect the Server to auto-convert (in 1465

fact the unit Facet SHOULD NOT be included in the request). 1466

10.1.3 Invoke 1467

The invoke request is designed to trigger an operation. The invoke request specified the URI of an op 1468

Object and the input argument Object. The response includes the output Object. The response MUST 1469

include the output Object’s complete extent (see Section 9.3). Servers MAY instead return an err Object 1470

to indicate the invocation was unsuccessful. 1471

10.1.4 Delete 1472

The delete request is designed to remove an existing Object from the Server. The delete request 1473
specifies the URI of an existing Object. If the delete is successful, the Server MUST return an empty 1474

response. If the delete is unsuccessful, the Server MUST return an err Object indicating the failure. 1475

10.2 Errors 1476

Request errors are conveyed to Clients with the err element. Any time an OBIX Server successfully 1477

receives a request and the request cannot be processed, then the Server MUST return an err Object to 1478

the Client. This includes improperly encoded requests, such as non-well-formed XML, if that encoding is 1479

used. Returning a valid OBIX document with err SHOULD be used when feasible rather than protocol 1480

specific error handling (such as an HTTP response code). Such a design allows for consistency with 1481
batch request partial failures and makes protocol binding more pluggable by separating data transport 1482
from application level error handling. 1483

The following Table describes the base Contracts predefined for representing common errors: 1484

Err Contract Usage

BadUriErr Used to indicate either a malformed URI or a unknown URI

UnsupportedErr Used to indicate an a request which isn’t supported by the Server implementation
(such as an operation defined in a Contract, which the Server doesn’t support)

PermissionErr Used to indicate that the Client lacks the necessary security permission to access
the object or operation

Table 10-3. OBIX Error Contracts. 1485

The Contracts for these errors are: 1486

<err href="obix:BadUriErr"/> 1487
<err href="obix:UnsupportedErr"/> 1488
<err href="obix:PermissionErr"/> 1489

If one of the above Contracts makes sense for an error, then it SHOULD be included in the err element’s 1490

is attribute. It is strongly encouraged to also include a useful description of the problem in the display 1491

attribute. 1492

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 50 of 77

10.3 Localization 1493

Servers SHOULD localize appropriate data based on the desired locale of the Client agent. Localization 1494

SHOULD include the display and displayName attributes. The desired locale of the Client SHOULD 1495

be determined through authentication or through a mechanism appropriate to the binding used. A 1496
suggested algorithm is to check if the authenticated user has a preferred locale configured in the Server’s 1497
user database, and if not then fallback to the locale derived from the binding. 1498

Localization MAY include auto-conversion of units. For example if the authenticated user has configured 1499
a preferred unit system such as English versus Metric, then the Server might attempt to convert values 1500

with an associated unit facet to the desired unit system. 1501

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 51 of 77

11 Core Contract Library 1502

This chapter defines some fundamental Object Contracts that serve as building blocks for the OBIX 1503
specification. This Core Contract Library is also called the Standard Library, and is expressed in the 1504

stdlib.obix file that is associated with this specification. 1505

11.1 Nil 1506

The obix:Nil Contract defines a standardized null Object. Nil is commonly used for an operation’s in 1507

or out attribute to denote the absence of an input or output. The definition: 1508

<obj href="obix:Nil" null="true"/> 1509

11.2 Range 1510

The obix:Range Contract is used to define a bool or enum’s range. Range is a list Object that contains 1511

zero or more Objects called the range items. Each item’s name attribute specifies the identifier used as 1512

the literal value of an enum. Item ids are never localized, and MUST be used only once in a given range. 1513

You may use the optional displayName attribute to specify a localized string to use in a user interface. 1514

The definition of Range: 1515

<list href="obix:Range" of="obix:obj"/> 1516

An example: 1517

<list href="/enums/offSlowFast" is="obix:Range"> 1518
 <obj name="off" displayName="Off"/> 1519
 <obj name="slow" displayName="Slow Speed"/> 1520
 <obj name="fast" displayName="Fast Speed"/> 1521
</list> 1522

The range Facet may be used to define the localized text of a bool value using the ids of “true” and 1523

“false”: 1524

<list href="/enums/onOff" is="obix:Range"> 1525
 <obj name="true" displayName="On"/> 1526
 <obj name="false" displayName="Off"/> 1527
</list > 1528

11.3 Weekday 1529

The obix:Weekday Contract is a standardized enum for the days of the week: 1530

<enum href="obix:Weekday" range="#Range"> 1531
 <list href="#Range" is="obix:Range"> 1532
 <obj name="sunday" /> 1533
 <obj name="monday" /> 1534
 <obj name="tuesday" /> 1535
 <obj name="wednesday" /> 1536
 <obj name="thursday" /> 1537
 <obj name="friday" /> 1538
 <obj name="saturday" /> 1539
 </list> 1540
</enum> 1541

11.4 Month 1542

The obix:Month Contract is a standardized enum for the months of the year: 1543

<enum href="obix:Month" range="#Range"> 1544
 <list href="#Range" is="obix:Range"> 1545
 <obj name="january" /> 1546
 <obj name="febuary" /> 1547
 <obj name="march" /> 1548
 <obj name="april" /> 1549

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 52 of 77

 <obj name="may" /> 1550
 <obj name="june" /> 1551
 <obj name="july" /> 1552
 <obj name="august" /> 1553
 <obj name="september" /> 1554
 <obj name="october" /> 1555
 <obj name="november" /> 1556
 <obj name="december" /> 1557
 </list> 1558
</enum> 1559

11.5 Units 1560

Representing units of measurement in software is a thorny issue. OBIX provides a unit framework for 1561
mathematically defining units within the object model. An extensive database of predefined units is also 1562
provided. 1563

All units measure a specific quantity or dimension in the physical world. Most known dimensions can be 1564
expressed as a ratio of the seven fundamental dimensions: length, mass, time, temperature, electrical 1565
current, amount of substance, and luminous intensity. These seven dimensions are represented in the [SI 1566
Units] system respectively as kilogram (kg), meter (m), second (sec), Kelvin (K), ampere (A), mole (mol), 1567
and candela (cd). 1568

The obix:Dimension Contract defines the ratio of the seven SI units using a positive or negative 1569

exponent: 1570

<obj href="obix:Dimension"> 1571
 <int name="kg" val="0"/> 1572
 <int name="m" val="0"/> 1573
 <int name="sec" val="0"/> 1574
 <int name="K" val="0"/> 1575
 <int name="A" val="0"/> 1576
 <int name="mol" val="0"/> 1577
 <int name="cd" val="0"/> 1578
</obj> 1579

A Dimension Object contains zero or more ratios of kg, m, sec, K, A, mol, or cd. Each of these ratio 1580

maps to the exponent of that base SI unit. If a ratio is missing then the default value of zero is implied. For 1581
example acceleration is m/s

2
, which would be encoded in OBIX as: 1582

<obj is="obix:Dimension"> 1583
 <int name="m" val="1"/> 1584
 <int name="sec" val="-2"/> 1585
</obj> 1586

 1587

Units with equal dimensions are considered to measure the same physical quantity. This is not always 1588
precisely true, but is good enough for practice. This means that units with the same dimension are 1589
convertible. Conversion can be expressed by specifying the formula used to convert the unit to the 1590
dimension’s normalized unit. The normalized unit for every dimension is the ratio of SI units itself. For 1591

example the normalized unit of energy is the joule m
2

kg s
-2

. The kilojoule is 1000 joules and the watt-1592
hour is 3600 joules. Most units can be mathematically converted to their normalized unit and to other 1593
units using the linear equations: 1594

unit = dimension scale + offset 1595
toNormal = scalar scale + offset 1596
fromNormal = (scalar - offset) / scale 1597
toUnit = fromUnit.fromNormal(toUnit.toNormal(scalar)) 1598

There are some units which don’t fit this model including logarithm units and units dealing with angles. 1599
But this model provides a practical solution for most problem spaces. Units which don’t fit this model 1600
SHOULD use a dimension where every exponent is set to zero. Applications SHOULD NOT attempt 1601
conversions on these types of units. 1602

The obix:Unit Contract defines a unit including its dimension and its toNormal equation: 1603

<obj href="obix:Unit"> 1604
 <str name="symbol"/> 1605
 <obj name="dimension" is="obix:Dimension"/> 1606

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 53 of 77

 <real name="scale" val="1"/> 1607
 <real name="offset" val="0"/> 1608
</obj> 1609

The unit element contains symbol, dimension, scale, and offset sub-Objects, as described in the 1610

following Table: 1611

symbol The symbol element defines a short abbreviation to use for the unit. For example

“ F” would be the symbol for degrees Fahrenheit. The symbol element SHOULD

always be specified.

dimension The dimension Object defines the dimension of measurement as a ratio of the

seven base SI units. If omitted, the dimension Object defaults to the

obix:Dimension Contract, in which case the ratio is the zero exponent for all

seven base units.

scale The scale element defines the scale variable of the toNormal equation. The

scale Object defaults to 1.

offset The offset element defines the offset variable of the toNormal equation. If

omitted then offset defaults to 0.

Table 11-1. OBIX Unit composition. 1612

The display attribute SHOULD be used to provide a localized full name for the unit based on the 1613

Client’s locale. If the display attribute is omitted, Clients SHOULD use symbol for display purposes. 1614

 1615

An example for the predefined unit for kilowatt: 1616

<obj href="obix:units/kilowatt" display="kilowatt"> 1617
 <str name="symbol" val="kW"/> 1618
 <obj name="dimension"> 1619
 <int name="m" val="2"/> 1620
 <int name="kg" val="1"/> 1621
 <int name="sec" val="-3"/> 1622
 </obj> 1623
 <real name="scale" val="1000"/> 1624
</obj> 1625

Automatic conversion of units is considered a localization issue. 1626

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 54 of 77

12 Watches 1627

A key requirement of OBIX is access to real-time information. OBIX is designed to enable Clients to 1628
efficiently receive access to rapidly changing data. However, Clients should not be required to implement 1629
web Servers or expose a well-known IP address. In order to address this problem, OBIX provides a 1630
model for event propagation called Watches. 1631

The Implicit Contract for Watch is described in the following lifecycle: 1632

 The Client creates a new Watch Object with the make operation on the Server’s WatchService 1633

URI. The Server defines a new Watch Object and provides a URI to access the new Watch. 1634

 The Client registers (and unregisters) Objects to watch using operations on the Watch Object. 1635

 The Server tracks events that occur on the Objects in the Watch. 1636

 The Client receives events from the Server about changes to Objects in the Watch. The events 1637
can be polled by the Client (see 12.1) or pushed by the Server (see 12.2). 1638

 The Client may invoke the pollRefresh operation at any time to obtain a full list of the current 1639

value of each Object in the Watch. 1640

 The Watch is freed, either by the explicit request of the Client using the delete operation, or 1641

when the Server determines the Watch is no longer being used. See Sections 12.1 and 12.2 for 1642
details on the criteria for Server removal of Watches. When the Watch is freed, the Objects in it 1643
are no longer tracked by the Server and the Server may return any resources used for it to the 1644
system. 1645

Watches allow a Client to maintain a real-time cache of the current state of one or more Objects. They are 1646

also used to access an event stream from a feed Object. Watches also serve as the standardized 1647

mechanism for managing per-Client state on the Server via leases. 1648

12.1 Client Polled Watches 1649

When the underlying binding does not allow the Server to send unsolicited messages, the Watch must be 1650
periodically polled by the Client. The Implicit Contract for Watch in this scenario is extended as follows: 1651

 The Client SHOULD periodically poll the Watch URI using the pollChanges operation to obtain 1652

the events which have occurred since the last poll. 1653

 In addition to freeing the Watch by explicit request of the Client, the Server MAY free the Watch if 1654

the Client fails to poll for a time greater than the lease time of the Watch. See the lease 1655

property in Section 12.4.5. 1656

12.2 Server Pushed Watches 1657

Some bindings, for example the [OBIX WebSocket] binding, may allow unsolicited transmission by either 1658
the Client or the Server. If this is possible the standard Implicit Contract for Watch behavior is extended 1659
as follows: 1660

 Change events are sent by the Server directly to the Client as unsolicited updates. 1661

 The lease time property of the Watch MUST NOT be used for Server automatic removal of the 1662
Watch. The Watch SHOULD remain active without the need for the Client to invoke the 1663

pollChanges or pollRefresh operations. 1664

 The Watch MUST be removed by the Server upon termination of the underlying session between 1665
the Client and Server, in addition to the normal removal upon explicit Client request. 1666

 The Server MUST return an empty list upon invocation of the pollChanges operation. 1667

Watches used in Servers that can push events MUST provide three additional properties for configuring 1668
the Watch behavior: 1669

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 55 of 77

 bufferDelay: The implicit contract for bufferDelay is the period of time for which any events 1670

on watched objects will be buffered before being sent by the Server in an update. Clients must be 1671
able to regulate the flow of messages from the Server. A common scenario is an OBIX Client 1672
application on a mobile device where the bandwidth usage is important; for example, a Server 1673
sending updates every 50 milliseconds as a sensor value jitters around will cause problems. On 1674
the other hand, Server devices may be constrained in terms of the available space for buffering 1675

changes. Servers are free to set a maximum value on bufferDelay through the max Facet to 1676

constrain the maximum delay before the Server will report events. 1677

 maxBufferedEvents: Servers may also use the maxBufferedEvents property to indicate the 1678

maximum number of events that can be retained before the buffer must be sent to the Client to 1679
avoid missing events. 1680

 bufferPolicy: This enum property defines the handling of the buffer on the Server side when 1681

further events occur while the buffer is full. A value of violate means that the bufferDelay 1682

property is violated and the events are sent, allowing the buffer to be emptied. A value of lifo 1683

(last-in-first-out) means that the most recently added buffer event is replaced with the new event. 1684

A value of fifo (first-in-first-out) means that the oldest buffer event is dropped to make room for 1685

the new event. 1686

 NOTE: A Server using a bufferPolicy of either lifo or fifo will not send events when a 1687

buffer overrun occurs, and this means that some events will not be received by the Client. It is up 1688
to the Client and Server to negotiate appropriate values for these three properties to ensure that 1689
events are not lost. 1690

Note that bufferDelay MUST be writable by the Client, as the Client capabilities typically constrain the 1691

bandwidth usage. Server capabilities typically constrain maxBufferedEvents, and thus this is generally 1692

not writable by Clients. 1693

12.3 WatchService 1694

The WatchService Object provides a well-known URI as the factory for creating new Watches. The 1695

WatchService URI is available directly from the Lobby Object. The Contract for WatchService: 1696

<obj href="obix:WatchService"> 1697
 <op name="make" in="obix:Nil" out="obix:Watch"/> 1698
</obj> 1699

The make operation returns a new empty Watch Object as an output. The href of the newly created 1700
Watch Object can then be used for invoking operations to populate and poll the data set. 1701

12.4 Watch 1702

The Watch Object is used to manage a set of Objects which are subscribed by Clients to receive the 1703

latest events. The Explicit Contract definitions are: 1704

<obj href="obix:Watch"> 1705
 <reltime name="lease" min="PT0S" writable="true"/> 1706
 <reltime name="bufferDelay" min="PT0S" writable="true" null="true"/> 1707
 <int name="maxBufferedEvents" null="true"/> 1708
 <enum name="bufferPolicy" is="obix:WatchBufferPolicy" null="true"/> 1709
 <op name="add" in="obix:WatchIn" out="obix:WatchOut"/> 1710
 <op name="remove" in="obix:WatchIn"/> 1711
 <op name="pollChanges" out="obix:WatchOut"/> 1712
 <op name="pollRefresh" out="obix:WatchOut"/> 1713
 <op name="delete"/> 1714
</obj> 1715
 1716
<enum href="obix:WatchBufferPolicy" range="#Range"> 1717
 <list href="#Range" is="obix:Range"> 1718
 <obj name="violate" /> 1719
 <obj name="lifo" /> 1720
 <obj name="fifo" /> 1721
 </list> 1722
</enum> 1723

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 56 of 77

 1724
<obj href="obix:WatchIn"> 1725
 <list name="hrefs" of="obix:WatchInItem"/> 1726
</obj> 1727
 1728
<uri href="obix:WatchInItem"> 1729
 <obj name="in"/> 1730
</uri> 1731
 1732
<obj href="obix:WatchOut"> 1733
 <list name="values" of="obix:obj"/> 1734
</obj> 1735

Many of the Watch operations use two Contracts: obix:WatchIn and obix:WatchOut. The Client 1736

identifies Objects to add and remove from the poll list via WatchIn. This Object contains a list of URIs. 1737

Typically these URIs SHOULD be Server relative. 1738

The Server responds to add, pollChanges, and pollRefresh operations via the WatchOut Contract. 1739

This Object contains the list of subscribed Objects - each Object MUST specify an href URI using the 1740
exact same string as the URI identified by the Client in the corresponding WatchIn. Servers MUST NOT 1741
perform any case conversions or normalization on the URI passed by the Client. This allows Client 1742
software to use the URI string as a hash key to match up Server responses. 1743

12.4.1 Watch.add 1744

Once a Watch has been created, the Client can add new Objects to the Watch using the add operation. 1745

The Objects returned are REQUIRED to specify an href using the exact string representation input by the 1746
Client. If any Object cannot be processed, then a partial failure SHOULD be expressed by returning an 1747

err Object with the respective href. Subsequent URIs MUST NOT be affected by the failure of one 1748

invalid URI. The add operation MUST never return Objects not explicitly included in the input URIs (even 1749

if there are already existing Objects in the watch list). No guarantee is made that the order of Objects in 1750

WatchOut matches the order in of URIs in WatchIn – Clients must use the URI as a key for matching. 1751

Note that the URIs supplied via WatchIn may include an optional in parameter. This parameter is only 1752

used when subscribing a Watch to a feed Object. Feeds also differ from other Objects in that they return 1753

a list of historic events in WatchOut. Feeds are discussed in detail in Section12.6. 1754

It is invalid to add an op’s href to a Watch; the Server MUST report an err. 1755

If an attempt is made to add a URI to a Watch which was previously already added, then the Server 1756

SHOULD return the current Object’s value in the WatchOut result, but treat poll operations as if the URI 1757

was only added once – polls SHOULD only return the Object once. If an attempt is made to add the same 1758

URI multiple times in the same WatchIn request, then the Server SHOULD only return the Object once. 1759

12.4.1.1 Watch Object URIs 1760

The lack of a trailing slash in watched Object URIs can cause problems with Watches. Consider a Client 1761
which adds a URI to a Watch without a trailing slash. The Client will use this URI as a key in its local 1762
hashtable for the Watch. Therefore the Server MUST use the URI exactly as the Client specified. 1763
However, if the Object’s extent includes child Objects they will not be able to use relative URIs. It is 1764
RECOMMENDED that Servers fail fast in these cases and return a BadUriErr when Clients attempt to 1765
add a URI without a trailing slash to a Watch (even though they may allow it for a normal read request). 1766

12.4.2 Watch.remove 1767

The Client can remove Objects from the watch list using the remove operation. A list of URIs is input to 1768

remove, and the Nil Object is returned. Subsequent pollChanges and pollRefresh operations MUST 1769

cease to include the specified URIs. It is possible to remove every URI in the watch list; but this scenario 1770
MUST NOT automatically free the Watch, rather normal poll and lease rules still apply. It is invalid to use 1771

the WatchInItem.in parameter for a remove operation. 1772

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 57 of 77

12.4.3 Watch.pollChanges 1773

Clients SHOULD periodically poll the Server using the pollChanges operation. This operation returns a 1774

list of the subscribed Objects which have changed. Servers SHOULD only return the Objects which have 1775

been modified since the last poll request for the specific Watch. As with add, every Object MUST specify 1776

an href using the exact same string representation the Client passed in the original add operation. The 1777

entire extent of the Object SHOULD be returned to the Client if any one thing inside the extent has 1778
changed on the Server side. 1779

Invalid URIs MUST never be included in the response (only in add and pollRefresh). An exception to 1780

this rule is when an Object which is valid is removed from the URI space. Servers SHOULD indicate an 1781

Object has been removed via an err with the BadUriErr Contract. 1782

12.4.4 Watch.pollRefresh 1783

The pollRefresh operation forces an update of every Object in the watch list. The Server MUST return 1784

every Object and its full extent in the response using the href with the exact same string representation 1785

passed by the Client in the original add. Invalid URIs in the poll list SHOULD be included in the response 1786

as an err element. A pollRefresh resets the poll state of every Object, so that the next pollChanges 1787

only returns Objects which have changed state since the pollRefresh invocation. 1788

12.4.5 Watch.lease 1789

All Watches have a lease time, specified by the lease child. If the lease time elapses without the Client 1790

initiating a request on the Watch, and the Watch is a Client-polled Watch, then the Server MAY expire the 1791
Watch. Every new poll request resets the lease timer. So as long as the Client polls at least as often as 1792
the lease time, the Server SHOULD maintain the Watch. The following requests SHOULD reset the lease 1793

timer: read of the Watch URI itself or invocation of the add, remove, pollChanges, or pollRefresh 1794

operations. 1795

Clients may request a different lease time by writing to the lease Object (requires Servers to assign an 1796

href to the lease child). The Server is free to honor the request, cap the lease within a specific range, or 1797

ignore the request. In all cases the write request will return a response containing the new lease time in 1798
effect. 1799

Servers SHOULD report expired Watches by returning an err Object with the BadUriErr Contract. As a 1800

general principle Servers SHOULD honor Watches until the lease runs out (for Client-polled Watches) or 1801

the Client explicitly invokes delete. However, Servers are free to cancel Watches as needed (such as 1802

power failure) and the burden is on Clients to re-establish a new Watch. 1803

12.4.6 Watch.delete 1804

The delete operation can be used to cancel an existing Watch. Clients SHOULD always delete their 1805

Watch when possible to be good OBIX citizens. However Servers MUST always cleanup correctly without 1806
an explicit delete when the lease expires or the session is terminated. 1807

12.5 Watch Depth 1808

When a Watch is put on an Object which itself has child Objects, how does a Client know how “deep” the 1809
subscription goes? OBIX requires Watch depth to match an Object‘s extent (see Section 9.3). When a 1810
Watch is put on a target Object, a Server MUST notify the Client of any changes to any of the Objects 1811

within that target Object’s extent. If the extent includes feed Objects, they are not included in the Watch 1812

– Feeds have special Watch semantics discussed in Section 12.6. This means a Watch is inclusive of all 1813

descendents within the extent except refs and feeds. 1814

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 58 of 77

12.6 Feeds 1815

Servers may expose event streams using the feed Object. The event instances are typed via the Feed’s 1816

of attribute. Clients subscribe to events by adding the Feed’s href to a Watch, optionally passing an input 1817

parameter which is typed via the Feed’s in attribute. The Object returned from Watch.add is a list of 1818

historic events (or the empty list if no event history is available). Subsequent calls to pollChanges return 1819

the list of events which have occurred since the last poll. 1820

Let’s consider a simple example for an Object which fires an event when its geographic location changes: 1821

<obj href="/car/"> 1822
 <feed href="moved" of="/def/Coordinate"/> 1823
<obj> 1824
 1825
<obj href="/def/Coordinate"> 1826
 <real name="lat"/> 1827
 <real name="long"/> 1828
</obj> 1829

The Client subscribes to the moved event Feed by adding “/car/moved” to a Watch. The WatchOut will 1830
include the list of any historic events which have occurred up to this point in time. If the Server does not 1831
maintain an event history this list will be empty: 1832

<obj is="obix:WatchIn"> 1833
 <list name="hrefs"> 1834
 <uri val="/car/moved" /> 1835
 </list> 1836
</obj> 1837
 1838
<obj is="obix:WatchOut"> 1839
 <list name="values"> 1840
 <feed href="/car/moved" of="/def/Coordinate/" /> <!-- empty history --> 1841
 </list> 1842
</obj> 1843

Now every time the Client pollChanges for the Watch, the Server will return the list of event instances 1844

which have accumulated since the last poll: 1845

<obj is="obix:WatchOut"> 1846
 <list name="values"> 1847
 <feed href="/car/moved" of="/def/Coordinate"> 1848
 <obj> 1849
 <real name="lat" val="37.645022"/> 1850
 <real name="long" val="-77.575851"/> 1851
 </obj> 1852
 <obj> 1853
 <real name="lat" val="37.639046"/> 1854
 <real name="long" val="-77.61872"/> 1855
 </obj> 1856
 </feed> 1857
 </list> 1858
</obj> 1859

Note the Feed’s of attribute works just like the list’s of attribute. The children event instances are 1860

assumed to inherit the Contract defined by of unless explicitly overridden. If an event instance does 1861

override the of Contract, then it MUST be Contract compatible. Refer to the rules defined in Section 7.8. 1862

Invoking a pollRefresh operation on a Watch with a Feed that has an event history, SHOULD return all 1863

the historical events as if the pollRefresh was an add operation. If an event history is not available, 1864

then pollRefresh SHOULD act like a normal pollChanges and just return the events which have 1865

occurred since the last poll. 1866

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 59 of 77

13 Points 1867

Anyone familiar with automation systems immediately identifies with the term Point (sometimes called 1868
tags in the industrial space). Although there are many different definitions, generally points map directly to 1869
a sensor or actuator (called Hard Points). Sometimes a Point is mapped to a configuration variable such 1870
as a software setpoint (called Soft Points). In some systems Point is an atomic value, and in others it 1871

encapsulates a great deal of status and configuration information. 1872

OBIX allows an integrator to normalize the representation of Points without forcing an impedance 1873
mismatch on implementers trying to make their native system OBIX accessible. To meet this requirement, 1874
OBIX defines a low level abstraction for Point - simply one of the primitive value types with associated 1875
status information. Point is basically just a marker Contract used to tag an Object as exhibiting “Point” 1876
semantics: 1877

<obj href="obix:Point"/> 1878

This Contract MUST only be used with the value primitive types: bool, real, enum, str, abstime, and 1879

reltime. Points SHOULD use the status attribute to convey quality information. This Table specifies 1880

how to map common control system semantics to a value type: 1881

Point type OBIX Object Example

digital Point bool <bool is="obix:Point" val="true"/>

analog Point real <real is="obix:Point" val="22"

unit="obix:units/celsius"/>

multi-state Point enum <enum is="obix:Point" val="slow"/>

Table 13-1. Base Point types. 1882

13.1 Writable Points 1883

Different control systems handle Point writes using a wide variety of semantics. Sometimes a Client 1884
desires to write a Point at a specific priority level. Sometimes the Client needs to override a Point for a 1885
limited period of time, after which the Point falls back to a default value. The OBIX specification does not 1886

attempt to impose a specific model on implementers. Rather OBIX provides a standard WritablePoint 1887

Contract which may be extended with additional mixins to handle special cases. WritablePoint 1888

defines write as an operation which takes a WritePointIn structure containing the value to write. The 1889

Contracts are: 1890

<obj href="obix:WritablePoint" is="obix:Point"> 1891
 <op name="writePoint" in="obix:WritePointIn" out="obix:Point"/> 1892
</obj> 1893
 1894
<obj href="obix:WritePointIn"> 1895
 <obj name="value"/> 1896
</obj> 1897

 1898

It is implied that the value passed to writePoint MUST match the type of the Point. For example if 1899

WritablePoint is used with an enum, then writePoint MUST pass an enum for the value. 1900

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 60 of 77

14 History 1901

Most automation systems have the ability to persist periodic samples of point data to create a historical 1902
archive of a point’s value over time. This feature goes by many names including logs, trends, or histories. 1903
In OBIX, a history is defined as a list of time stamped point values. The following features are provided by 1904

OBIX histories: 1905

History Object A normalized representation for a history itself

History Record A record of a point sampling at a specific timestamp

History Query A standard way to query history data as Points

History Rollup A standard mechanism to do basic rollups of history data

History Append The ability to push new history records into a history

Table 14-1. Features of OBIX Histories. 1906

14.1 History Object 1907

Any Object which wishes to expose itself as a standard OBIX history implements the obix:History 1908

Contract: 1909

<obj href="obix:History"> 1910
 <int name="count" min="0" val="0"/> 1911
 <abstime name="start" null="true"/> 1912
 <abstime name="end" null="true"/> 1913
 <str name="tz" null="true"/> 1914
 <obj name="prototype" null="true"/> 1915
 <enum name="collection" null=true" range="obix:HistoryCollection"/> 1916
 <list name="formats" of="obix:str" null="true"/> 1917
 <op name="query" in="obix:HistoryFilter" out="obix:HistoryQueryOut"/> 1918
 <feed name="feed" in="obix:HistoryFilter" of="obix:HistoryRecord"/> 1919
 <op name="rollup" in="obix:HistoryRollupIn" out="obix:HistoryRollupOut"/> 1920
 <op name="append" in="obix:HistoryAppendIn" out="obix:HistoryAppendOut"/> 1921
</obj> 1922
 1923
<list href="obix:HistoryCollection" is="obix:Range"> 1924
 <obj name="interval" displayName="Interval"/> 1925
 <obj name="cov" displayName="Change of Value"/> 1926
 <obj name="triggered" displayName="Triggered"/> 1927
</list> 1928

The child properties of obix:History are: 1929

 1930

Property Description

count The number of history records contained by the history

start Provides the timestamp of the oldest record. The timezone of this abstime MUST

match History.tz

end Provides the timestamp of the newest record. The timezone of this abstime MUST

match History.tz

tz A standardized timezone identifier for the history data (see Section 4.2.7.9)

prototype An object of the form of each history record, identifying the type and any Facets
applicable to the records (such as units).

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 61 of 77

collection Indicates the mechanism for how the history records are collected. Servers
SHOULD provide this field, if it is known, so Client applications can make
appropriate decisions about how to use records in calculations, such as
interpolation.

formats Provides a list of strings describing the formats in which the Server can provide
the history data

query The operation used to query the history to read history records

feed The object used to subscribe to a real-time Feed of history records

rollup The operation used to perform history rollups (it is only supported for numeric
history data)

append The operation used to push new history records into the history

Table 14-2. Properties of obix:History. 1931

An example of a history which contains an hour of 15 minute temperature data: 1932

<obj href="http://x/outsideAirTemp/history/" is="obix:History"> 1933
 <int name="count" val="5"/> 1934
 <abstime name="start" val="2005-03-16T14:00:00-05:00" tz="America/New_York"/> 1935
 <abstime name="end" val="2005-03-16T15:00:00-05:00" tz="America/New_York"/> 1936
 <str name="tz" val="America/New_York"/> 1937
 <list name="formats" of="obix:str"> 1938
 <str val="text/csv"/> 1939
 </list> 1940
 <op name="query" href="query"/> 1941
 <op name="rollup" href="rollup"/> 1942
</obj> 1943

14.2 History Queries 1944

Every History Object contains a query operation to query the historical data. A Client MAY invoke the 1945

query operation to request the data from the Server as an obix:HistoryQueryOut. Alternatively, if 1946

the Server is able to provide the data in a different format, such as CSV, it SHOULD list these additionally 1947

supported formats in the formats field. A Client MAY then supply one of these defined formats in the 1948

HistoryFilter input query. 1949

14.2.1 HistoryFilter 1950

The History.query input Contract: 1951

<obj href="obix:HistoryFilter"> 1952
 <int name="limit" null="true"/> 1953
 <abstime name="start" null="true"/> 1954
 <abstime name="end" null="true"/> 1955
 <str name="format" null="true"/> 1956
</obj> 1957

These fields are described in detail in this Table: 1958

Field Description

limit An integer indicating the maximum number of records to return. Clients can use this field to
throttle the amount of data returned by making it non-null. Servers MUST never return more
records than the specified limit. However Servers are free to return fewer records than the
limit.

start If non-null this field indicates an inclusive lower bound for the query’s time range. This value
SHOULD match the history’s timezone, otherwise the Server MUST normalize based on
absolute time.

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 62 of 77

end If non-null this field indicates an inclusive upper bound for the query’s time range. This value
SHOULD match the history’s timezone, otherwise the Server MUST normalize based on
absolute time.

format If non-null this field indicates the format that the Client is requesting for the returned data. If
the Client uses this field the Server MUST return a HistoryQueryOut with a non-null

dataRef URI, or return an error if it is unable to supply the requested format. A Client

SHOULD use one of the formats defined in the History’s formats field when using this field

in the filter.

Table 14-3. Properties of obix:HistoryFilter. 1959

14.2.2 HistoryQueryOut 1960

The History.query output Contract: 1961

<obj href="obix:HistoryQueryOut"> 1962
 <int name="count" min="0" val="0"/> 1963
 <abstime name="start" null="true"/> 1964
 <abstime name="end" null="true"/> 1965
 <list name="data" of="obix:HistoryRecord" null="true"/> 1966
 <uri name="dataRef" null="true"/> 1967
</obj> 1968

Just like History, every HistoryQueryOut returns count, start, and end. But unlike History, 1969

these values are for the query result, not the entire history. The actual history data is stored as a list of 1970

HistoryRecords in the data field. Remember that child order is not guaranteed in OBIX, therefore it 1971

might be common to have count after data. The start, end, and data HistoryRecord timestamps MUST 1972

have a timezone which matches History.tz. 1973

When using a Client-requested format, the Server MUST provide a URI that can be followed by the Client 1974
to obtain the history data in the alternate format. The exact definition of this format is out of scope of this 1975
specification, but SHOULD be agreed upon by both the Client and Server. 1976

14.2.3 HistoryRecord 1977

The HistoryRecord Contract specifies a record in a history query result: 1978

<obj href="obix:HistoryRecord"> 1979
 <abstime name="timestamp" null="true"/> 1980
 <obj name="value" null="true"/> 1981
</obj> 1982

Typically the value SHOULD be one of the value types used with obix:Point. 1983

14.2.4 History Query Examples 1984

Consider an example query from the “/outsideAirTemp/history” example above. 1985

14.2.4.1 History Query as OBIX Objects 1986

First examine how a Client and Server interact using the standard history query mechanism: 1987

Client invoke request: 1988

INVOKE http://x/outsideAirTemp/history/query 1989
<obj name="in" is="obix:HistoryFilter"> 1990
 <int name="limit" val="5"/> 1991
 <abstime name="start" val="2005-03-16T14:00:00-05:00" tz="America/New_York"/> 1992
</obj> 1993

Server response: 1994

<obj href="http://x/outsideAirTemp/history/query" is="obix:HistoryQueryOut"> 1995
 <int name="count" val="5"/> 1996
 <abstime name="start" val="2005-03-16T14:00:00-05:00" tz="America/New_York"/> 1997
 <abstime name="end" val="2005-03-16T15:00:00-05:00" tz="America/New_York"/> 1998

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 63 of 77

 <reltime name="interval" val="PT15M"/> 1999
 <list name="data" of="#RecordDef obix:HistoryRecord"> 2000
 <obj> <abstime name="timestamp" val="2005-03-16T14:00:00-05:00"/> 2001
 <real name="value" val="40"/> </obj> 2002
 <obj> <abstime name="timestamp" val="2005-03-16T14:15:00-05:00"/> 2003
 <real name="value" val="42"/> </obj> 2004
 <obj> <abstime name="timestamp" val="2005-03-16T14:30:00-05:00"/> 2005
 <real name="value" val="43"/> </obj> 2006
 <obj> <abstime name="timestamp" val="2005-03-16T14:45:00-05:00"/> 2007
 <real name="value" val="47"/> </obj> 2008
 <obj> <abstime name="timestamp" val="2005-03-16T15:00:00-05:00"/> 2009
 <real name="value" val="44"/> </obj> 2010
 </list> 2011
 <obj href="#RecordDef" is="obix:HistoryRecord"> 2012
 <abstime name="timestamp" tz="America/New_York"/> 2013
 <real name="value" unit="obix:units/fahrenheit"/> 2014
 </obj> 2015
</obj> 2016

Note in the example above how the data list uses a document local Contract to define Facets common to 2017

all the records (although the Contract List must still be flattened). 2018

14.2.4.2 History Query as Preformatted List 2019

Now consider how this might be done in a more compact format. The Server in this case is able to return 2020
the history data as a CSV list. 2021

Client invoke request: 2022

INVOKE http://myServer/obix/outsideAirTemp/history/query 2023
<obj name="in" is="obix:HistoryFilter"> 2024
 <int name="limit" val="5"/> 2025
 <abstime name="start" val="2005-03-16T14:00:00-05:00" tz="America/New_York"/> 2026
 <str name="format" val="text/csv"/> 2027
</obj> 2028

Server response: 2029

<obj href="http://myServer/obix/outsideAirTemp/history/query" is="obix:HistoryQueryOut"> 2030
 <int name="count" val="5"/> 2031
 <abstime name="start" val="2005-03-16T14:00:00-05:00" tz="America/New_York"/> 2032
 <abstime name="end" val="2005-03-16T15:00:00-05:00" tz="America/New_York"/> 2033
 <uri name="dataRef" val="http://x/outsideAirTemp/history/query?text/csv"/> 2034
</obj> 2035
 2036

Client then reads the dataRef URI: 2037

GET http://x/outsideAirTemp/history/query?text/csv 2038

Server response: 2039

2005-03-16T14:00:00-05:00,40 2040
2005-03-16T14:15:00-05:00,42 2041
2005-03-16T14:30:00-05:00,43 2042
2005-03-16T14:45:00-05:00,47 2043
2005-03-16T15:00:00-05:00,44 2044

Note that the Client’s second request is NOT an OBIX request, and the subsequent Server response is 2045
NOT an OBIX document, but just arbitrarily formatted data as requested by the Client – in this case 2046
text/csv. Also it is important to note that this is simply an example. While the usage of the format and 2047
dataRef properties is normative, the usage of the text/csv MIME type and how the data is actually 2048
presented is purely non-normative. It is not intended to suggest CSV as a mechanism for how the data 2049
should be formatted, as that is an agreement to be made between the Client and Server. The Server and 2050
Client are free to use any agreed-upon format, for example, one where the timestamps are inferred rather 2051
than repeated, for maximum brevity. 2052

14.3 History Rollups 2053

Control systems collect historical data as raw time sampled values. However, most applications wish to 2054
consume historical data in a summarized form which are called rollups. The rollup operation is used to 2055

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 64 of 77

summarize an interval of time. History rollups only apply to histories which store numeric information. 2056
Attempting to query a rollup on a non-numeric history SHOULD result in an error. 2057

14.3.1 HistoryRollupIn 2058

The History.rollup input Contract extends HistoryFilter to add an interval parameter: 2059

<obj href="obix:HistoryRollupIn" is="obix:HistoryFilter"> 2060
 <reltime name="interval"/> 2061
</obj> 2062

14.3.2 HistoryRollupOut 2063

The History.rollup output Contract: 2064

<obj href="obix:HistoryRollupOut"> 2065
 <int name="count" min="0" val="0"/> 2066
 <abstime name="start" null="true"/> 2067
 <abstime name="end" null="true"/> 2068
 <list name="data" of="obix:HistoryRollupRecord"/> 2069
</obj> 2070

The HistoryRollupOut Object looks very much like HistoryQueryOut except it returns a list of 2071

HistoryRollupRecords, rather than HistoryRecords. Note: unlike HistoryQueryOut, the start 2072

for HistoryRollupOut is exclusive, not inclusive. This issue is discussed in greater detail next. The 2073

start, end, and data HistoryRollupRecord timestamps MUST have a timezone which matches 2074

History.tz. 2075

14.3.3 HistoryRollupRecord 2076

A history rollup returns a list of HistoryRollupRecords: 2077

<obj href="obix:HistoryRollupRecord"> 2078
 <abstime name="start"/> 2079
 <abstime name="end" /> 2080
 <int name="count"/> 2081
 <real name="min" /> 2082
 <real name="max" /> 2083
 <real name="avg" /> 2084
 <real name="sum" /> 2085
</obj> 2086

The children are defined in the Table below: 2087

Property Description

start The exclusive start time of the record’s rollup interval

end The inclusive end time of the record’s rollup interval

count The number of records used to compute this rollup interval

min The minimum value of all the records within the interval

max The maximum value of all the records within the interval

avg The arithmetic mean of all the values within the interval

sum The summation of all the values within the interval

Table 14-4. Properties of obix:HistoryRollupRecord. 2088

14.3.4 Rollup Calculation 2089

The best way to understand how rollup calculations work is through an example. Let’s consider a history 2090
of meter data which contains two hours of 15 minute readings of kilowatt values: 2091

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 65 of 77

<obj is="obix:HistoryQueryOut"> 2092
 <int name="count" val="9"> 2093
 <abstime name="start" val="2005-03-16T12:00:00+04:00" tz="Asia/Dubai"/> 2094
 <abstime name="end" val="2005-03-16T14:00:00+04:00" tz="Asia/Dubai"/> 2095
 <list name="data" of="#HistoryDef obix:HistoryRecord"> 2096
 <obj> <abstime name="timestamp" val="2005-03-16T12:00:00+04:00"/> 2097
 <real name="value" val="80"> </obj> 2098
 <obj> <abstime name="timestamp" val="2005-03-16T12:15:00+04:00"/> 2099
 <real name="value" val="82"></obj> 2100
 <obj> <abstime name="timestamp" val="2005-03-16T12:30:00+04:00"/> 2101
 <real name="value" val="90"> </obj> 2102
 <obj> <abstime name="timestamp" val="2005-03-16T12:45:00+04:00"/> 2103
 <real name="value" val="85"> </obj> 2104
 <obj> <abstime name="timestamp" val="2005-03-16T13:00:00+04:00"/> 2105
 <real name="value" val="81"> </obj> 2106
 <obj> <abstime name="timestamp" val="2005-03-16T13:15:00+04:00"/> 2107
 <real name="value" val="84"> </obj> 2108
 <obj> <abstime name="timestamp" val="2005-03-16T13:30:00+04:00"/> 2109
 <real name="value" val="91"> </obj> 2110
 <obj> <abstime name="timestamp" val="2005-03-16T13:45:00+04:00"/> 2111
 <real name="value" val="83"> </obj> 2112
 <obj> <abstime name="timestamp" val="2005-03-16T14:00:00+04:00"/> 2113
 <real name="value" val="78"> </obj> 2114
 </list> 2115
 <obj href="#HistoryRecord" is="obix:HistoryRecord"> 2116
 <abstime name="timestamp" tz="Asia/Dubai"/> 2117
 <real name="value" unit="obix:units/kilowatt"/> 2118
 <obj> 2119
</obj> 2120

For a query of the rollup using an interval of 1 hour with a start time of 12:00 and end time of 14:00, the 2121
result would be: 2122

<obj is="obix:HistoryRollupOut obix:HistoryQueryOut"> 2123
 <int name="count" val="2"> 2124
 <abstime name="start" val="2005-03-16T12:00:00+04:00 tz="Asia/Dubai"/> 2125
 <abstime name="end" val="2005-03-16T14:00:00+04:00" tz="Asia/Dubai"/> 2126
 <list name="data" of="obix:HistoryRollupRecord"> 2127
 <obj> 2128
 <abstime name="start" val="2005-03-16T12:00:00+04:00" 2129
 tz="Asia/Dubai"/> 2130
 <abstime name="end" val="2005-03-16T13:00:00+04:00" 2131
 tz="Asia/Dubai"/> 2132
 <int name="count" val="4" /> 2133
 <real name="min" val="81" /> 2134
 <real name="max" val="90" /> 2135
 <real name="avg" val="84.5" /> 2136
 <real name="sum" val="338" /> 2137
 </obj> 2138
 <obj> 2139
 <abstime name="start" val="2005-03-16T13:00:00+04:00" 2140
 tz="Asia/Dubai"/> 2141
 <abstime name="end" val="2005-03-16T14:00:00+04:00" 2142
 tz="Asia/Dubai"/> 2143
 <int name="count" val="4" /> 2144
 <real name="min" val="78" /> 2145
 <real name="max" val="91" /> 2146
 <real name="avg" val="84" /> 2147
 <real name="sum" val="336" /> 2148
 </obj> 2149
 </list> 2150
</obj> 2151

The first item to notice is that the first raw record of 80kW was never used in the rollup. This is because 2152
start time is always exclusive. The reason start time has to be exclusive is because discrete samples are 2153
being summarized into a contiguous time range. It would be incorrect to include a record in two different 2154
rollup intervals! To avoid this problem, start time MUST always be exclusive and end time MUST always 2155
be inclusive. The following Table illustrates how the raw records were applied to rollup intervals: 2156

Interval Start (exclusive) Interval End (inclusive) Records Included

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 66 of 77

2005-03-16T12:00 2005-03-16T13:00 82 + 90 + 85 + 81 = 338

2005-03-16T13:00 2005-03-16T14:00 84 + 91 + 83 + 78 = 336

Table 14-5. Calculation of OBIX History rollup values. 2157

14.4 History Feeds 2158

The History Contract specifies a Feed for subscribing to a real-time Feed of the history records. 2159

History.feed reuses the same HistoryFilter input Contract used by History.query – the same 2160

semantics apply. When adding a History Feed to a Watch, the initial result SHOULD contain the list of 2161

HistoryRecords filtered by the input parameter (i.e., the initial result SHOULD match what 2162

History.query would return). Subsequent calls to Watch.pollChanges SHOULD return any new 2163

HistoryRecords which have been collected since the last poll that also satisfy the HistoryFilter. 2164

14.5 History Append 2165

The History.append operation allows a Client to push new HistoryRecords into a History log 2166

(assuming proper security credentials). This operation comes in handy when bi-direction HTTP 2167
connectivity is not available. For example if a device in the field is behind a firewall, it can still push history 2168
data on an interval basis to a Server using the append operation. 2169

14.5.1 HistoryAppendIn 2170

The History.append input Contract: 2171

<obj href="obix:HistoryAppendIn"> 2172
 <list name="data" of="obix:HistoryRecord"/> 2173
</obj> 2174

The HistoryAppendIn is a wrapper for the list of HistoryRecords to be inserted into the History. The 2175

HistoryRecords SHOULD use a timestamp which matches History.tz. If the timezone doesn’t 2176

match, then the Server MUST normalize to its configured timezone based on absolute time. The 2177

HistoryRecords in the data list MUST be sorted by timestamp from oldest to newest, and MUST not 2178

include a timestamp equal to or older than History.end. 2179

14.5.2 HistoryAppendOut 2180

The History.append output Contract: 2181

<obj href="obix:HistoryAppendOut"> 2182
 <int name="numAdded"/> 2183
 <int name="newCount"/> 2184
 <abstime name="newStart" null="true"/> 2185
 <abstime name="newEnd" null="true"/> 2186
</obj> 2187

The output of the append operation returns the number of new records appended to the History and the 2188
new total count, start time, and end time of the entire History. The newStart and newEnd timestamps 2189

MUST have a timezone which matches History.tz. 2190

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 67 of 77

15 Alarming 2191

OBIX specifies a normalized model to query, Watch, and acknowledge alarms. In OBIX, an alarm 2192
indicates a condition which requires notification of either a user or another application. In many cases an 2193
alarm requires acknowledgement, indicating that someone (or something) has taken action to resolve the 2194
alarm condition. The typical lifecycle of an alarm is: 2195

1. Source Monitoring: Algorithms in a Server monitor an alarm source. An alarm source is an 2196
Object with an href which has the potential to generate an alarm. Example of alarm sources might 2197
include sensor points (this room is too hot), hardware problems (disk is full), or applications 2198
(building is consuming too much energy at current energy rates) 2199

2. Alarm Generation: If the algorithms in the Server detect that an alarm source has entered an 2200
alarm condition, then an alarm record is generated. Every alarm is uniquely identified using an 2201

href and represented using the obix:Alarm Contract. The transition to an alarm state is called 2202

off-normal. 2203

3. To Normal: Many alarm sources are said to be stateful - eventually the alarm source exits the 2204
alarm state, and is said to return to-normal. Stateful alarms implement the 2205

obix:StatefulAlarm Contract. When the alarm source transitions to normal, the alarm’s 2206

normalTimestamp is updated. 2207

4. Acknowledgement: A common requirement for alarming is that a user or application 2208
acknowledges that they have processed an alarm. These alarms implement the 2209

obix:AckAlarm Contract. When the alarm is acknowledged, the alarm’s ackTimestamp and 2210

ackUser are updated. 2211

15.1 Alarm States 2212

Alarm state is summarized with two variables: 2213

In Alarm Is the alarm source currently in the alarm condition or in the normal

condition? This variable maps to the alarm status state.

Acknowledged Is the alarm acknowledged or unacknowledged? This variable maps to the

unacked status state.

Table 15-1. Alarm states in OBIX. 2214

Either of these states may transition independent of the other. For example an alarm source can return to 2215
normal before or after an alarm has been acknowledged. Furthermore it is not uncommon to transition 2216
between normal and off-normal multiple times generating several alarm records before any 2217
acknowledgements occur. 2218

Note not all alarms have state. An alarm which implements neither StatefulAlarm nor the AckAlarm 2219

Contracts is completely stateless – these alarms merely represent event. An alarm which implements 2220

StatefulAlarm but not AckAlarm will have an in-alarm state, but not acknowledgement state. 2221

Conversely an alarm which implements AckAlarm but not StatefulAlarm will have an 2222

acknowledgement state, but not in-alarm state. 2223

15.1.1 Alarm Source 2224

The current alarm state of an alarm source is represented using the status attribute. This attribute is 2225

discussed in Section 4.2.7.8. It is recommended that alarm sources always report their status via the 2226

status attribute. 2227

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 68 of 77

15.1.2 StatefulAlarm and AckAlarm 2228

An Alarm record is used to summarize the entire lifecycle of an alarm event. If the alarm implements 2229

StatefulAlarm it tracks transition from off-normal back to normal. If the alarm implements AckAlarm, 2230

then it also summarizes the acknowledgement. This allows for four discrete alarm states, which are 2231
described in terms of the alarm Contract properties: 2232

Alarm State alarm acked normalTimestamp ackTimestamp

new unacked alarm true false null null

acknowledged alarm true true null non-null

unacked returned alarm false false non-null null

acked returned alarm false true non-null non-null

Table 15-2. Alarm lifecycle states in OBIX. 2233

15.2 Alarm Contracts 2234

15.2.1 Alarm 2235

The core Alarm Contract is: 2236

<obj href="obix:Alarm"> 2237
 <ref name="source"/> 2238
 <abstime name="timestamp"/> 2239
</obj> 2240

 2241

The child Objects are: 2242

 source: the URI which identifies the alarm source. The source SHOULD reference an OBIX 2243

Object which models the entity that generated the alarm. 2244

 timestamp: this is the time at which the alarm source transitioned from normal to off-normal and 2245
the Alarm record was created. 2246

15.2.2 StatefulAlarm 2247

Alarms which represent an alarm state which may transition back to normal SHOULD implement the 2248

StatefulAlarm Contract: 2249

<obj href="obix:StatefulAlarm" is="obix:Alarm"> 2250
 <abstime name="normalTimestamp" null="true"/> 2251
</obj> 2252

The child Object is: 2253

 normalTimestamp: if the alarm source is still in the alarm condition, then this field is null. 2254
Otherwise this indicates the time of the transition back to the normal condition. 2255

15.2.3 AckAlarm 2256

Alarms which support acknowledgment SHOULD implement the AckAlarm Contract: 2257

<obj href="obix:AckAlarm" is="obix:Alarm"> 2258
 <abstime name="ackTimestamp" null="true"/> 2259
 <str name="ackUser" null="true"/> 2260
 <op name="ack" in="obix:AckAlarmIn" out="obix:AckAlarmOut"/> 2261
</obj> 2262
 2263
<obj href="obix:AckAlarmIn"> 2264
 <str name="ackUser" null="true"/> 2265
</obj> 2266
 2267
<obj href="obix:AckAlarmOut"> 2268

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 69 of 77

 <obj name="alarm" is="obix:AckAlarm obix:Alarm"/> 2269
</obj> 2270

The child Objects are: 2271

 ackTimestamp: if the alarm is unacknowledged, then this field is null. Otherwise this indicates 2272
the time of the acknowledgement. 2273

 ackUser: if the alarm is unacknowledged, then this field is null. Otherwise this field SHOULD 2274
provide a string indicating who was responsible for the acknowledgement. 2275

The ack operation is used to programmatically acknowledge the alarm. The Client may optionally specify 2276

an ackUser string via AckAlarmIn. However, the Server is free to ignore this field depending on 2277

security conditions. For example a highly trusted Client may be allowed to specify its own ackUser, but a 2278

less trustworthy Client may have its ackUser predefined based on the authentication credentials of the 2279

protocol binding. The ack operation returns an AckAlarmOut which contains the updated alarm record. 2280

Use the Lobby.batch operation to efficiently acknowledge a set of alarms. 2281

15.2.4 PointAlarms 2282

It is very common for an alarm source to be an obix:Point. The PointAlarm Contract provides a 2283

normalized way to report the Point whose value caused the alarm condition: 2284

<obj href="obix:PointAlarm" is="obix:Alarm"> 2285
 <obj name="alarmValue"/> 2286
</obj> 2287

The alarmValue Object SHOULD be one of the value types defined for obix:Point in Section 13. 2288

15.3 AlarmSubject 2289

Servers which implement OBIX alarming MUST provide one or more Objects which implement the 2290

AlarmSubject Contract. The AlarmSubject Contract provides the ability to categorize and group the 2291

sets of alarms a Client may discover, query, and watch. For instance a Server could provide one 2292

AlarmSubject for all alarms and other AlarmSubjects based on priority or time of day. The Contract 2293

for AlarmSubject is: 2294

<obj href="obix:AlarmSubject"> 2295
 <int name="count" min="0" val="0"/> 2296
 <op name="query" in="obix:AlarmFilter" out="obix:AlarmQueryOut"/> 2297
 <feed name="feed" in="obix:AlarmFilter" of="obix:Alarm"/> 2298
</obj> 2299
 2300
<obj href="obix:AlarmFilter"> 2301
 <int name="limit" null="true"/> 2302
 <abstime name="start" null="true"/> 2303
 <abstime name="end" null="true"/> 2304
</obj> 2305
 2306
<obj href="obix:AlarmQueryOut"> 2307
 <int name="count" min="0" val="0"/> 2308
 <abstime name="start" null="true"/> 2309
 <abstime name="end" null="true"/> 2310
 <list name="data" of="obix:Alarm"/> 2311
</obj> 2312

The AlarmSubject follows the same design pattern as History. The AlarmSubject specifies the 2313

active count of alarms; however, unlike History it does not provide the start and end bounding 2314

timestamps. It contains a query operation to read the current list of alarms with an AlarmFilter to filter 2315

by time bounds. AlarmSubject also contains a Feed Object which may be used to subscribe to the 2316

alarm events. 2317

15.4 Alarm Feed Example 2318

The following example illustrates how a Feed works with this AlarmSubject: 2319

<obj is="obix:AlarmSubject" href="/alarms/"> 2320
 <int name="count" val="2"/> 2321

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 70 of 77

 <op name="query" href="query"/> 2322
 <feed name="feed" href="feed" /> 2323
</obj> 2324

The Server indicates it has two open alarms under the specified AlarmSubject. If a Client were to add the 2325
AlarmSubject’s Feed to a watch: 2326

<obj is="obix:WatchIn"> 2327
 <list name="hrefs"/> 2328
 <uri val="/alarms/feed"> 2329
 <obj name="in" is="obix:AlarmFilter"> 2330
 <int name="limit" val="25"/> 2331
 </obj> 2332
 </uri> 2333
 </list> 2334
</obj> 2335
 2336
<obj is="obix:WatchOut"> 2337
 <list name="values"> 2338
 <feed href="/alarms/feed" of="obix:Alarm"> 2339
 <obj href="/alarmdb/528" is="obix:StatefulAlarm obix:PointAlarm obix:Alarm"> 2340
 <ref name="source" href="/airHandlers/2/returnTemp"/> 2341
 <abstime name="timestamp" val="2006-05-18T14:20:00Z"/> 2342
 <abstime name="normalTimestamp" null="true"/> 2343
 <real name="alarmValue" val="80.2"/> 2344
 </obj> 2345
 <obj href="/alarmdb/527" is="obix:StatefulAlarm obix:PointAlarm obix:Alarm"> 2346
 <ref name="source" href="/doors/frontDoor"/> 2347
 <abstime name="timestamp" val="2006-05-18T14:18:00Z"/> 2348
 <abstime name=" normalTimestamp" null="true"/> 2349
 <real name="alarmValue" val="true"/> 2350
 </obj> 2351
 </feed> 2352
 </list> 2353
</obj> 2354

The Watch returns the historic list of alarm events which is two open alarms. The first alarm indicates an 2355
out of bounds condition in AirHandler-2’s return temperature. The second alarm indicates that the system 2356
has detected that the front door has been propped open. 2357

The system next detects that the front door is closed, and the alarm point transitions to the normal state. 2358
When the Client next polls the Watch the alarm would be included in the Feed list (along with any 2359
additional changes or new alarms not shown here): 2360

<obj is="obix:WatchOut"> 2361
 <list name="values"> 2362
 <feed href="/alarms/feed" of="obix:Alarm">> 2363
 <obj href="/alarmdb/527" is="obix:StatefulAlarm obix:PointAlarm obix:Alarm"> 2364
 <ref name="source" href="/doors/frontDoor"/> 2365
 <abstime name="timestamp" val="2006-05-18T14:18:00Z"/> 2366
 <abstime name=" normalTimestamp" val="2006-05-18T14:45:00Z"/> 2367
 <real name="alarmValue" val="true"/> 2368
 </obj> 2369
 </feed> 2370
 </list> 2371
</obj> 2372

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 71 of 77

16 Security 2373

Security is a broad topic that covers many issues. Some of the main concepts are listed below: 2374

Authentication Verifying a user (Client) is who they claim to be

Encryption Protecting OBIX documents from viewing by unauthorized entities

Permissions Checking a user’s permissions before granting access to read/write Objects or
invoke operations

User Management Managing user accounts and permissions levels

Table 16-1. Security concepts for OBIX. 2375

OBIX does not define security protocols or security methods. Security is dependent upon the business 2376
process, the value of the data, the encoding used, and other issues that are out of scope for this 2377
specification. OBIX supports composition with any number of security approaches and technologies. User 2378
authentication and authorization are left to the implementer. The type and depth of encryption are 2379
dependent upon the bindings and transport protocols used. Although it is possible to define contracts for 2380
user management through OBIX, this committee does not define any standard Contracts for user 2381
management. 2382
OBIX does define the messages used to report errors in security or in authentication. OBIX further 2383
defines how security is inherited within the hierarchy of a system. OBIX further makes a number of 2384
statements throughout this specification of areas or conditions wherein practitioners should consider 2385
carefully the security effects of their decisions. 2386

16.1 Error Handling 2387

It is expected that an OBIX Server will perform authentication and utilize those user credentials for 2388
checking permissions before processing read, write, and invoke requests. As a general rule, Servers 2389

SHOULD return err with the obix:PermissionErr Contract to indicate a Client lacks the permission 2390

to perform a request. In particularly sensitive applications, a Server may instead choose to return 2391

BadUriErr so that an untrustworthy Client is unaware that a specific object even exists. 2392

16.2 Permission-based Degradation 2393

Servers SHOULD strive to present their object model to a Client based on the privileges available to the 2394
Client. This behavior is called permission based degradation. The following rules summarize effective 2395

permission based degradation: 2396

1. If an Object cannot be read, then it SHOULD NOT be discoverable through Objects which are 2397
available. 2398

2. Servers SHOULD attempt to group standard Contracts within the same privilege level – for 2399

example don’t split obix:History’s start and end into two different security levels such that a 2400

Client might be able to read start, and not end. 2401

3. Servers SHOULD NOT include a Contract in an Object’s is attribute if the Contract’s children are 2402

not readable to the Client. 2403

4. If an Object isn’t writable, then the writable attribute SHOULD be set to false (either explicitly 2404

or through a Contract default). 2405

5. If an op inherited from a visible Contract cannot be invoked, then the Server SHOULD set the 2406

null attribute to true to disable it. 2407

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 72 of 77

17 Conformance 2408

17.1 Conditions for a Conforming OBIX Server 2409

An implementation conforms to this specification as an OBIX Server if it meets the conditions described in 2410
the following subsections. OBIX Servers MUST implement the OBIX Lobby Object. 2411

17.1.1 Lobby 2412

A conforming OBIX Server MUST meet all of the MUST and REQUIRED level requirements defined in 2413
Section 5 for the Lobby Object. 2414

17.1.2 Tag Spaces 2415

A conformant OBIX Server implementation MUST present any Tagspaces used according to the following 2416
rules, which are discussed in detail in Section 5.5.1: 2417

1. The Server MUST use the tagspaces element to declare any semantic model or tag dictionary it 2418

uses. 2419

2. The Server MUST use the name defined in the name attribute of the uri in the tagspaces Lobby 2420

element when referencing the Tagspace. 2421

3. The uri MUST contain a val that provides the reference location of the semantic model or tag 2422

dictionary. 2423

4. If available the version of the reference MUST be included as a child str element with name 2424

‘version’, in the uri for that Tagspace. 2425

5. If the version is not available, the uri MUST contain a child abstime element with the name 2426

‘retrievedAt’ and value containing the date when the dictionary used by the Server was retrieved 2427
from the publication source. 2428

17.1.3 Bindings 2429

A conformant OBIX Server implementation SHOULD support at least one of the standard bindings, which 2430
are defined in the companion specifications to this specification that describe OBIX Bindings. Any 2431
bindings used by the implementation MUST be listed in the Bindings section of the Server’s Lobby 2432
Object. 2433

17.1.4 Encodings 2434

A conformant OBIX Server implementation SHOULD support at least one of the encodings defined in the 2435
companion specification to this specification, [OBIX Encodings]. Any encodings used by the 2436

implementation MUST be listed in the Encodings section of the Server’s Lobby Object. 2437

An implementation MUST support negotiation of the encoding to be used with a Client according to the 2438
mechanism defined for the specific binding used. A conforming binding specification MUST specify how 2439
negotiation of the encoding to be used is performed. A conforming implementation MUST conform to the 2440
negotiation rules defined in the specification for each binding that it uses. 2441

An implementation MUST return values according to the type representations defined in Section 4.2. 2442

17.1.5 Contracts 2443

A conformant OBIX Server implementation MUST define and publish its OBIX Contracts according to the 2444
Contract design and semantics specified in Section 7. A Server MUST use space-separated Contract 2445
Lists to report the Contracts supported by Objects it reports, according to the rules defined in Section 7. 2446

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 73 of 77

17.2 Conditions for a Conforming OBIX Client 2447

A conformant OBIX Client implementation conforms to this specification as an OBIX Client if it meets the 2448
conditions described in the following subsections. 2449

17.2.1 Bindings 2450

A conformant OBIX Client implementation SHOULD support at least one of the standard bindings, which 2451
are defined in the companion specifications to this specification that describe OBIX Bindings. 2452

17.2.2 Encodings 2453

A conformant OBIX Client implementation SHOULD support one of the encodings defined in this 2454
specification. An implementation MUST support negotiation of which encoding to use in communicating 2455
with an OBIX Server using the mechanism defined for the binding being used. 2456

17.2.3 Naming 2457

A conformant OBIX Client implementation MUST be able to interpret and navigate URI schemes 2458
according to the general rules described in section 6.3. 2459

17.2.4 Contracts 2460

A conformant OBIX Client implementation MUST be able to consume and use OBIX Contracts defined by 2461
OBIX Server implementations with which it interacts, according to the Contract design and semantics 2462
defined in Section 7. A Client MUST be able to consume space-separated Contract Lists defining the 2463
implemented OBIX Contracts reported by Servers, according to the rules defined in Section 7. 2464

17.3 Interaction with other Implementations 2465

In order to be conformant, an implementation MUST be able to interoperate with any implementation that 2466
satisfies all MUST and REQUIRED level requirements. Where the implementation has implemented 2467
optional behaviors, the implementation MUST be able to fall back to mandated behaviors if the 2468
implementation it is interacting with has not implemented those same behaviors. Where the other 2469
implementation has implemented optional behaviors not implemented by this implementation, the 2470
conformant implementation MUST be able to provide the mandated level behaviors that allow the other 2471
implementation to fall back to using only mandated behaviors. 2472

17.3.1 Unknown Elements and Attributes 2473

OBIX Clients SHALL ignore information that they do not understand. A Client that receives a response 2474
containing information it does not understand MUST ignore the portion of the response containing the 2475
non-understood information. A Server that receives a request containing information it does not 2476
understand must ignore that portion of the request. If the Server can still understand the request it MAY 2477
choose to attempt to execute the request without using the ignored portion of the request. 2478

 2479

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 74 of 77

Appendix A. Acknowledgments 2480

The following individuals have participated in the creation of this specification and are gratefully 2481
acknowledged: 2482

Participants: 2483
Ron Ambrosio, IBM 2484
Brad Benson, Trane 2485
Ron Bernstein, LonMark International* 2486
Ludo Bertsch, Continental Automated Buildings Association (CABA) 2487
Chris Bogen, US Department of Defense 2488
Rich Blomseth, Echelon Corporation 2489
Anto Budiardjo, Clasma Events, Inc. 2490
Jochen Burkhardt, IBM 2491
JungIn Choi, Kyungwon University 2492
David Clute, Cisco Systems, Inc.* 2493
Toby Considine, University of North Carolina at Chapel Hill 2494
William Cox, Individual 2495
Robert Dolin, Echelon Corporation 2496
Marek Dziedzic, Treasury Board of Canada, Secretariat 2497
Brian Frank, SkyFoundry 2498
Craig Gemmill, Tridium, Inc. 2499
Matthew Giannini, SkyFoundry 2500
Markus Jung, Vienna University of Technology 2501
Christopher Kelly, Cisco Systems 2502
Wonsuk Ko, Kyungwon University 2503
Perry Krol, TIBCO Software Inc. 2504
Corey Leong, Individual 2505
Ulf Magnusson, Schneider Electric 2506
Brian Meyers, Trane 2507
Jeremy Roberts, LonMark International 2508
Thorsten Roggendorf, Echelon Corporation 2509
Anno Scholten, Individual 2510
John Sublett, Tridium, Inc. 2511
Dave Uden, Trane 2512
Ron Zimmer, Continental Automated Buildings Association (CABA)* 2513
Rob Zivney, Hirsch Electronics Corporation 2514

 2515

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 75 of 77

Appendix B. Revision History 2516

Revision Date Editor Changes Made

wd-0.1 14 Jan 03 Brian Frank Initial version

wd-0.2 22 Jan 03 Brian Frank

wd-0.3 30 Aug 04 Brian Frank Move to Oasis, SysService

wd-0.4 2 Sep 04 Brian Frank Status

wd-0.5 12 Oct 04 Brian Frank Namespaces, Writes, Poll

wd-0.6 2 Dec 04 Brian Frank Incorporate schema comments

wd-0.7 17 Mar 05 Brian Frank URI, REST, Prototypes, History

wd-0.8 19 Dec 05 Brian Frank Contracts, Ops

wd-0.9 8 Feb 06 Brian Frank Watches, Alarming, Bindings

wd-0.10 13 Mar 06 Brian Frank Overview, XML, clarifications

wd-0.11 20 Apr 06 Brian Frank 10.1 sections, ack, min/max

wd-0.11.1 28 Apr 06 Aaron Hansen WSDL Corrections

wd-0.12 22 May 06 Brian Frank Status, feeds, no deltas

wd-0.12.1 29 Jun 06 Brian Frank Schema, stdlib corrections

obix-1.0-cd-02 30 Jun 06 Aaron Hansen OASIS document format compliance.

obix-1.0-cs-01 18 Oct 06 Brian Frank Public review comments

wd-obix.1.1.1 26 Nov 07 Brian Frank Fixes, date, time, tz

wd-obix.1.1.2 11 Nov 08 Craig Gemmill

(from Aaron Hansen)

Add iCalendar scheduling

wd-obix-1.1.3 10 Oct 09 Brian Frank Remove Scheduling chapter

Rev namespace to 1.1

Add Binary Encoding chapter

wd-obix-1.1.4 12 Nov 09 Brian Frank MUST, SHOULD, MAY

History.tz, History.append

HTTP Content Negotiation

oBIX-1-1-spec-
wd05

01 Jun 10 Toby Considine Updated to current OASIS Templates, requirements

oBIX-1-1-spec-
wd06

08 Jun 10 Brad Benson Custom facets within binary encoding

oBIX-1-1-spec-
wd07

03 Mar 2013 Craig Gemmill Update to current OASIS templates, fixes

oBIX-1-1-spec-
wd08

27 Mar 2013 Craig Gemmill Changes from feedback

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 76 of 77

Revision Date Editor Changes Made

obix-v1.1-wd09 23 Apr 2013 Craig Gemmill Update to new OASIS template

Add of attribute to obix:ref

Define additional list semantics

Clarify writable w.r.t. add/remove of children

Add deletion semantics

Add encoding negotiation

obix-v1.1-wd10 08 May
2013

Craig Gemmill Add CompactHistoryRecord

Add preformatted History query

Add metadata for alternate hierarchies (tagging)

obix-v1.1-wd11 13 Jun 2013 Craig Gemmill Modify compact histories per TC feedback

obix-v1.1-wd12 27 Jun 2013 Craig Gemmill Add delimiter, interval to compact histories

obix-v1.1-wd13 8 July 2013 Toby Considine Replaced object diagram w/ UML
Updated references to other OBIX artifacts

obix-v1.1-
CSPRD01

11 July 2013 Paul Knight Public Review Draft 1

obix-v1.1-wd14 16 Sep 2013 Craig Gemmill Addressed some comments from PR01; Section 4
rework

obix-v1.1-wd15 30 Sep 2013 Craig Gemmill Addressed most of PR01 comments

obix-v1.1-wd16 16 Oct 2013 Craig Gemmill Finished first round of PR01 comments

obix-v1.1-wd17 30 Oct 2013 Craig Gemmill Reworked Lobby definition, more comments fixed

obix-v1.1-wd18 13 Nov 2013 Craig Gemmill Added bindings to lobby, oBIX->OBIX

obix-v1.1-wd19 26 Nov 2013 Craig Gemmill Updated server metadata and Watch sections

obix-v1.1-wd20 4 Dec 2013 Craig Gemmill WebSocket support for Watches

obix-v1.1-wd21 13 Dec 2013 Craig Gemmill intermediate revision

obix-v1.1-wd22 17 Dec 2013 Craig Gemmill More cleanup from JIRA, general Localization added

obix-v1.1-wd23 18 Dec 2013 Craig Gemmill Replaced UML diagram

obix-v1.1-wd24 19 Dec 2013 Toby Considine Minor error in Conformance, added bindings to
conformance, swapped UML diagram

obix-v1.1-wd25 13 Mar 2014 Craig Gemmill Initial set of corrections from PR02

obix-v1.1-wd26 27 May
2014

Craig Gemmill More PR02 corrections

obix-v1.1-wd27 11 Jun 2014 Craig Gemmill PR02 corrections

obix-v1.1-wd28 26 Jun 2014 Craig Gemmill PR02 corrections

obix-v1.1-wd29 14 Jul 2014 Craig Gemmill PR02 corrections – Removed Compact Histories,
updated Lobby

obix-v1.1-wd30 17 Sep 2014 Craig Gemmill Rework Sec 5.5.1 Models to Tagspaces, make
tagspaces less like namespaces to avoid confusion

obix-v1.1-wd31 23 Sep 2014 Craig Gemmill Tagspaces attribute changed to ts, revised rules for
usage

obix-v1.1-csprd03 06 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 77 of 77

Revision Date Editor Changes Made

obix-v1.1-wd32 25 Sep 2014 Craig Gemmill Conformance and Tagspace fixes

obix-v1.1-wd33 1 Oct 2014 Craig Gemmill Fix incorrect 'names' attribute to 'name'

obix-v1.1-wd34 6 Oct 2014 Craig Gemmill Formatting fixes

obix-v1.1-wd35 13 Oct 2014 Craig Gemmill Minor tweaks, 1.9 -> non-normative

obix-v1.1-wd36 14 Oct 2014 Craig Gemmill Examples and Contract Definitions language in 1.6

obix-v1.1-wd37 28 Oct 2014 Craig Gemmill Better explanation of core type contracts in Section 4

Conformance section on unknown elements and
attributes

obix-v1.1-wd38 31 Oct 2014 Craig Gemmill Clarify rules on Contract List

 2517

