
OASIS Project Note

NIEM 6.0 Architectural Changes Version 1.0
Project Note Draft 01
27 June 2023

This stage:

https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/pnd01/niem-6.0-arch-changes-v1.0-pnd01.md
(Authoritative)
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/pnd01/niem-6.0-arch-changes-v1.0-pnd01.html
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/pnd01/niem-6.0-arch-changes-v1.0-pnd01.pdf

Previous stage:

N/A

Latest stage:

https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/niem-6.0-arch-changes-v1.0.md (Authoritative)
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/niem-6.0-arch-changes-v1.0.html
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/niem-6.0-arch-changes-v1.0.pdf

Open Project:

NIEM Technical Architecture Committee (NTAC) of the OASIS NIEMOpen OP

Project Chair:

Katherine Escobar (katherine.b.escobar.civ@mail.mil), Joint Staff J6

NTAC Committee Chairs:

Jim Cabral (jim.cabral@infotrack.com), InfoTrack
Scott Renner (sar@mitre.org), MITRE

Editors:

Thomas Carlson (thomas.carlson@gtri.gatech.edu), GTRI
Christina Medlin (christina.medlin@gtri.gatech.edu), GTRI
Scott Renner (sar@mitre.org), MITRE

Abstract:

This document describes the major architectural changes planned for the NIEM Naming and Design Rules specification
for Version 6.0.

Status:

This is a Non-Standards Track Work Product. The patent provisions of the OASIS IPR Policy do not apply.

This document was last revised or approved by the Project Governing Board of the OASIS NIEMOpen OP on the above

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 1 of 46

https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/pnd01/niem-6.0-arch-changes-v1.0-pnd01.md
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/pnd01/niem-6.0-arch-changes-v1.0-pnd01.html
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/pnd01/niem-6.0-arch-changes-v1.0-pnd01.pdf
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/niem-6.0-arch-changes-v1.0.md
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/niem-6.0-arch-changes-v1.0.html
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/niem-6.0-arch-changes-v1.0.pdf
http://www.niemopen.org/
mailto:katherine.b.escobar.civ@mail.mil
https://www.jcs.mil/Directorates/J6-C4-Cyber/
mailto:jim.cabral@infotrack.com
https://www.infotrack.com/
mailto:sar@mitre.org
https://www.mitre.org/
mailto:thomas.carlson@gtri.gatech.edu
https://gtri.gatech.edu/
mailto:christina.medlin@gtri.gatech.edu
https://gtri.gatech.edu/
mailto:sar@mitre.org
https://www.mitre.org/

date. The level of approval is also listed above. Check the "Latest stage" location noted above for possible later
revisions of this document. Any other numbered Versions and other technical work produced by the Open Project (OP)
are listed at http://www.niemopen.org/.

Comments on this work can be provided by opening issues in the project repository or by sending email to the project's
public comment list: niemopen-comment@lists.oasis-open-projects.org. List information is available at https://lists.oasis-
open-projects.org/g/niemopen-comment.

Citation format:

When referencing this document the following citation format should be used:

[NIEM-6-Arch-Changes-v1.0]

NIEM 6.0 Architectural Changes Version 1.0. Edited by Thomas Carlson, Christina Medlin, and Scott Renner. 27 June
2023. OASIS Project Note Draft 01. https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/pnd01/niem-6.0-
arch-changes-v1.0-pnd01.html. Latest stage: https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/niem-
6.0-arch-changes-v1.0.html.

Notices

Copyright © OASIS Open 2023. All Rights Reserved.

Distributed under the terms of the OASIS IPR Policy.

For complete copyright information please see the full Notices section in Appendix D below.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 2 of 46

http://www.niemopen.org/
mailto:niemopen-comment@lists.oasis-open-projects.org
https://lists.oasis-open-projects.org/g/niemopen-comment
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/pnd01/niem-6.0-arch-changes-v1.0-pnd01.html
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/niem-6.0-arch-changes-v1.0.html
https://www.oasis-open.org/policies-guidelines/ipr/

Table of Contents
1 Introduction

1.2 Glossary
1.2.1 Definitions of terms
1.2.2 Acronyms and abbreviations

2. Overview of major changes
2.1 Relaxed conformance rules for message schemas
2.2 Common Model Format (CMF) and the NIEM metamodel
2.3 Object properties and data properties
2.4 No identifiers for data properties
2.5 Optional identifiers for object properties
2.6 Augmentation enhancements
2.7 No wildcards for ISM and NTK
2.8 New base types in NIEM Core
2.9 No sequenceID attribute in structures namespace
2.10 No RoleOf properties in models
2.11 Additional RDF entailments
2.12 Relationship properties and RDF-star

3 General changes
3.1 Common Model Format (CMF)
3.2 Assign NIEM subset schemas a new conformance target

3.2.1 Background
3.2.2 Proposal

4 Property changes
4.1 Do not allow elements and attributes with the same uncased name

4.1.1 Background
4.1.2 Impact

4.2 Disallow direct use of structures typing for property types
4.2.1 Background
4.2.2 Proposal
4.2.3 Impact

5 Type changes
5.1 Allow facets on EXT complex value types

5.1.1 Background
5.1.1.1 Example: XML Schema simple and complex code types
5.1.1.2 Benefits of the current approach
5.1.1.3 Drawbacks of the current approach

5.1.2 Proposal
5.1.2.1 Example: XML Schema single complex code type

5.1.3 Impact
5.2 Require unique enumerations

5.2.1 NIEM 5.2 Example
5.2.2 NIEM 6.0 Proposal
5.2.3 Impact
5.2.4 Special considerations

5.3 Require definitions for patterns
5.3.1 Background
5.3.2 Impact

5.4 nc:ObjectType
6 Adapter changes

6.1 Add representation term "Adapter"
6.1.1 Background
6.1.2 Impact

6.2 Create new type structures:AdapterType
6.2.1 Background
6.2.2 Proposal

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 3 of 46

6.2.2.1 Example declaration of an adapter type
6.2.3 Impact

7 Augmentation Changes
7.1 Do not allow multiple augmentations from the same namespace on the same object

7.1.1 Background
7.1.2 Proposal

7.1.2.1 Valid example
7.1.2.2 Invalid example

7.1.3 Impact
8 Metadata Changes

8.1 Simplify metadata
8.1.1 Background

8.1.1.1 Current metadata example
8.1.2 Proposal

8.1.2.1 Inline metadata
8.1.2.2 Reference metadata
8.1.2.3 Data property metadata
8.1.2.4 Benefits
8.1.2.5 Drawbacks

8.1.3 Impact
8.2 Represent relationshipMetadata via RDF-star and JSON-LD-star

8.2.1 Background
8.2.2 Proposal
8.2.3 Impact

9 Role changes
9.1 Simplified Roles

9.1.1 Background
9.1.1.1 Requirements

9.1.2 Proposal
9.1.2.1 Updated role schema example
9.1.2.2 Updated role message example 1, without repeating data
9.1.2.3 Updated role message example 2, with duplicated data
9.1.2.4 Benefits
9.1.2.5 Drawbacks

10 Utility schema changes
10.1 Attribute wildcards

10.1.1 Background
10.1.1.1 Message example using metadata
10.1.1.2 Current NIEM attribute wildcards for security markup

10.1.1.3 Schema example: Attribute wildcards via xs:anyAttribute
10.1.2 Proposal

10.1.2.1 Updated message example with attribute wildcards
10.1.2.2 Preventing unexpected or unwanted attributes in messages

10.2 Drop attributes from structures:SimpleObjectAttributeGroup
10.3 Drop attributes from structures:AugmentationType

10.3.1 Background
10.3.2 Proposal
10.3.3 Impact

10.4 Remove structures:sequenceID
TODO

XSD Conformance Targets
Utility Namespace Changes
Other

Appendix A. Informative References
JSON-LD-star
RDF-star

Appendix B. Acknowledgments
B.1 Participants

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 4 of 46

Appendix C. Revision History
Appendix D. Notices

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 5 of 46

1. Introduction
This document describes the major architectural changes planned for the NIEM Naming and Design Rules specification
for version 6.0. It is a working document, and may change several times before the NIEM 6 publication is complete. The
document contains phrases such as "NIEM 6 will… " and "NIEM 6 does not…", but in this draft these describe current
intentions, not final decisions. Comments, criticism, and questions are welcome.

1.2 Glossary
1.2.1 Definitions of terms

Term Description

Class A type that contains properties

Object property A property that has a class type (contains properties)

Datatype A type that contains attribute properties and carries a value (e.g., a string, number, boolean, etc.)

Data property A property that has a datatype (contains a value, plus optional attribute properties).

1.2.2 Acronyms and abbreviations

Term Description

CMF Common Model Format

EXT NDR conformance target for Extension Schema Document

IC-ISM Intelligence Community Information Security Markings

IC-
NTK

Intelligence Community Need-to-Know

NBAC NIEM Business Architecture Committee Technical Steering Committee

NTAC NIEM Technical Architecture Committee Technical Steering Committee

NDR Naming and Design Rules

REF NDR conformance target for Reference Schema Document (stricter rule set for reusable reference
schemas)

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 6 of 46

2. Overview of major changes
The following architecture changes are briefly described here; details appear in later sections of this project note as
needed.

1. Relaxed conformance rules for message schemas
2. Common Model Format (CMF) and the NIEM metamodel
3. Object properties and data properties
4. No identifiers for data properties
5. Optional identifiers for object properties
6. Augmentation enhancements
7. No wildcards for IC ISM and NTK
8. New base types in NIEM Core
9. No metadata types or attributes in structures namespace

10. No sequenceID attribute in structures namespace
11. No roleOf properties in models
12. Additional RDF entailments
13. Relationship properties and RDF-star

2.1 Relaxed conformance rules for message schemas

There are two kinds of data model in NIEM: reference models and message models. These models are represented in
XSD as reference schemas and message schemas.

The NIEM core and domain models are reference models. These models express semantics, providing names and
definitions for concepts, and relationships among concepts. They are characterized by "optionality and over-
inclusiveness". That is, they define more concepts than needed for any particular data exchange specification, without
cardinality constraints, so it is easy to select the concepts that are needed and omit the rest.

The data model in a message specification (or IEPD) is a message model. These models include cardinality constraints
and datatype restrictions to define the mandatory and optional content of a particular message format in a data
exchange. They are formed by assembling subsets of the reference schema documents that define the NIEM model, plus
one or more extension schema documents that contain any exchange-specific definitions.

NIEM 6 introduces a new conformance target for message schema documents that omits many of the conformance
rules for reference schema documents and extension schema documents. For example, a message schema may use
xs:choice instead of element substitution. In NIEM 6, a message schema is focused on validation and code binding,
and need not follow all the rules that promote reuse and impose semantics on XSD constructs. As a result, software
which produces and consumes NIEM data will be easier to implement. (Semantics and reuse are still available and
supported through the reference model.)

The subset schema rule continues to apply in NIEM 6. Any XML that is valid when assessed against a message schema
must also be valid against the reference schema.

2.2 Common Model Format (CMF) and the NIEM metamodel

NIEM 6 introduces the Common Model Format, a technology-neutral data modeling formalism equivalent to NIEM XSD,
CMF and NIEM XSD are both fully supported in NIEM 6.

CMF is a NIEM-conforming message specification (or IEPD) for the information in a NIEM data model. A CMF document
is a message (or IEP) representing one particular data model, and is equivalent to the XSD schema document set for
that model.

CMF was designed in the same way as any other NIEM message specification. The first step was to describe the
information requirements. What are the facts that make up a NIEM data model? The result is the NIEM metamodel, an
abstract model for NIEM data models, depicted below as a UML diagram.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 7 of 46

The CMF specification instantiates that abstract model for models as a message schema in NIEM XSD. It may be
examined at its NIEMOpen github repo. A more detailed description of CMF and the metamodel is available at the
niem.gov site.

A CMF model may be transformed into developer artifacts for many technologies. For example, NIEMOpen provides free
and open-source software to transform CMF into JSON Schema, suitable for validating NIEM JSON data. (Transforming
CMF is much easier than transforming the equivalent NIEM XSD.) Many other transformations are possible; some are
imagined in the diagram below.

The NIEMOpen project includes CMFTool, which is free and open-source software capable of translating a CMF model
to the equivalent NIEM XSD schema, and vice versa. Developers can therefore work with either formalism and still take
advantage of the tooling for both.

2.3 Object properties and data properties
NIEM XML elements with simple content and attributes are not easily represented in NIEM JSON. NIEM 6 resolves this
difficulty by creating new data properties in CMF models. The change is invisible in NIEM XSD and XML, but apparent in
CMF and in any serialization that does not have XML's distinction between elements and attributes – which is probably
all of them.

In NIEM 6, an XML element of complex content is an object property and has a class. Here is an example of the
PersonName object property in NIEM XML and NIEM JSON:

<nc:PersonName> | "nc:PersonName": {
 <nc:PersonGivenName>Tommy</nc:PersonGivenName> | "nc:PersonGivenName":
"Tommy",
 <nc:PersonSurName>Atkins</nc:PersonSurName> | "nc:PersonSurName":
"Atkins"
</nc:PersonName> | }

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 8 of 46

https://github.com/niemopen/common-model-format
https://www.niem.gov/strategic-initiatives/niem-metamodel-and-common-model-format
https://github.com/niemopen/cmftool

A simple content element with no attributes is a data property and has a datatype.

<nc:PersonGivenName>Tommy</nc:PersonGivenName> | "nc:PersonGivenName":
"Tommy"

But what to do for a simple content element with attributes? There is no good JSON key for the simple content value.

<nc:PersonMiddleName @nc:partialIndicator="true"> | "nc:PersonMiddleName": {
 Bartholomew | "nc:partialIndicator":
true,
</nc:PersonMiddleName> | ????? : "Bartholmew"
 | }

In NIEM 6, a simple content element with attributes is an object property. When translating from XSD to CMF, a new data
property is created for the CMF model – nc:PersonMiddleNameLiteral – which appears in the JSON
serialization, like this:

<nc:PersonMiddleName @nc:partialIndicator="true"> | "nc:PersonMiddleName": {
 Bartholomew | "nc:partialIndicator":
true,
</nc:PersonMiddleName> |
"nc:PersonMiddleNameLiteral" : "Bartholmew"
 | }

Most simple content elements do not have attributes from the NIEM model or extension schemas. Other sections of this
project note explain why none of the attributes in the structures namespace routinely appear on simple content elements.
Almost all simple content elements will therefore be data properties. If a simple content element does have attributes, that
will be a choice made by a data modeler, and it will be an object property.

2.4 No identifiers for data properties
NIEM has always defined semantics in terms of RDF equivalents. This means an element that can have a referencing
attribute (id, ref, or uri in the structures namespace) must be an object property, because literal values do not have
identifiers in RDF.

Referencing simple content is rare in NIEM XML It is unusual to see something like

<nc:PersonName s:id="link">Tommy</nc:PersonName>
<nc:PersonName s:ref="link"/>

NIEM 6 therefore assumes that an element declaration of simple content without attributes is a data property and cannot
have any of the referencing attributes. This keeps the common case simple. NIEM 6 provides new appinfo for the unusual
case. For an XML message to include something like

<my:SimpleContent s:id="link">FOO</my:SimpleContent>

the corresponding model in XSD must include that appinfo, like this:

<xs:element name="SimpleContent" type="xs:token" appinfo:isObjectProperty="true"
...

An element of simple content with attributes is always an object property and does not require this appinfo in the schema.

2.5 Optional identifiers for object properties
Sometimes a message designer wants to avoid the complexity of references to an element that will always appear inline.
At present, NIEM 5 allows the designer to remove the referencing attributes from every element declaration. NIEM 6
introduces a way to remove the reference properties from particular element declarations, while leaving them on others.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 9 of 46

2.6 Augmentation enhancements
Augmentation allows a data modeler to add elements to a type with complex content in a namespace that belongs to
another. For example, the NIEM Justice domain uses augmentation to add j:PersonHasChildrenIndicator (and
97 other elements) to nc:PersonType.

In NIEM 6, augmentation is enhanced in two ways: The component that is added can be an attribute as well as an
element, and the component being augmented can be a type with simple content as well as complex content.

2.7 No wildcards for ISM and NTK

NIEM 3 added support for the US Intelligence Community's Information Security Marking and Need To Know standards,
by adding xs:anyAttribute elements to several types in the structures namespace. That was a hack, but it satisfied
a large user community and, since a message specification could always remove the attribute wildcards, didn't offend
anyone very much. We can achieve the same result in NIEM 6 with attribute augmentations, so we have removed the
hack.

2.8 New base type in NIEM Core
In order to apply an augmentation to every element in a model (for instance, to support ISM and NTK), the model must
have a base type from which all types are derived. In NIEM 5 those base types are defined in the structures namespace.
In NIEM 6, the structures namespace applies only to NIEM XML – it has nothing to do with models in CMF, or messages
in JSON – and so it is not properly part of any NIEM model. The base types for a NIEM model belong in the NIEM Core,
and so NIEM 6 adds nc:ObjectType to the core, and derives all other types from those base types. NIEMOpen has
FOSS tools to assist migration by modifying existing NIEM XSD to use these new base types.

2.9 No sequenceID attribute in structures namespace

By default there is no meaning ascribed to the order of a repeated element in NIEM XSD. In NIEM 5 a message could
use structures:sequenceID to indicate a meaningful order. For example, a Track comprised of a sequence of
Positions might look like this:

<my:Track>
 <my:Position structures:sequenceID="01"> ...
 <my:Position structures:sequenceID="02"> ...
</my:Track>

In NIEM 6, meaningful order is asserted in the model, not the message. NIEM 6 removes sequenceID from the
structures namespace, and adds a new appinfo:orderedPropertyIndicator for use in NIEM XSD. The
message model for the example above would look like

<xs:complexType name="TrackType">
 <xs:complexContent>
 <xs:extension base="nc:ObjectType">
 <xs:sequence>
 <xs:element ref="my:Position" maxOccurs="unbounded"
appinfo:orderedPropertyIndicator="true"/>
2.10 No RoleOf properties in models

Existing versions of NIEM include a number of role properties and role types.

Role types were introduced into NIEM after XML Schema extension proved to be insufficient in certain
situations. An object may have multiple functions in the same instance document, each with associated
data. For example, a person might be both a j:CrashDriver and a j:ArrestSubject. Without roles, information
about the person would be duplicated in extensions, or would be left ambiguously blank in some places.
NDR 10.2.2

For example, a NIEM 5 message might look like this:

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 10 of 46

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#section_10.2.2

 1 <my:Message>
 2 <j:Crash>
 3 <j:CrashVehicle>
 4 <j:CrashDriver>
 5 <nc:RoleOfPerson structures:id="P01">
 6 <nc:PersonFullName>Peter Wimsey</nc:PersonFullName>
 7 </nc:RoleOfPerson>
 8 <j:DriverLicense>
 9 <j:DriverLicenseCardIdentification>
10 <nc:IdentificationID>A1234567</nc:IdentificationID>
11 </j:DriverLicenseCardIdentification>
12 </j:DriverLicense>
13 </j:CrashDriver>
14 </j:CrashVehicle>
15 <j:CrashPerson>
16 <nc:RoleOfPerson structures:ref="P01" xsi:nil="true"/>
17 <j:CrashPersonInjury>
18 <nc:InjuryDescriptionText>Broken Arm</nc:InjuryDescriptionText>
19 </j:CrashPersonInjury>
20 </j:CrashPerson>
21 </j:Crash>
22 </my:Message>

In this example the CrashDriver element on line 4 and the CrashPerson element on line 15 are describing the
same real-world entity: one person, named Peter Wimsey, with license A1234567 and a broken arm. Role properties
allow different elements to describe the same entity without duplicating data in the message. We can simplify NIEM 6 by
removing role properties and using the structures:uri attribute instead, like this:

 1 <my:Message>
 2 <j:Crash>
 3 <j:CrashVehicle>
 4 <j:CrashDriver structures:uri="P01">
 5 <nc:PersonFullName>Peter Wimsey</nc:PersonFullName>
 6 <j:DriverLicense>
 7 <j:DriverLicenseCardIdentification>
 8 <nc:IdentificationID>A1234567</nc:IdentificationID>
 9 </j:DriverLicenseCardIdentification>
10 </j:DriverLicense>
11 </j:CrashDriver>
12 </j:CrashVehicle>
13 <j:CrashPerson structures:uri="P01">
14 <j:CrashPersonInjury>
15 <nc:InjuryDescriptionText>Broken Arm</nc:InjuryDescriptionText>
16 </j:CrashPersonInjury>
17 </j:CrashPerson>
18 </j:Crash>
19 </my:Message>
2.11 Additional RDF entailments
NIEM has always defined the semantics of NIEM in terms of the RDF conceptual model. In NIEM 4 and NIEM 5 that
definition was enhanced by defining the RDF triples that are entailed by NIEM XSD and XML. NIEM 6 improves its
formal semantics with additional RDF entailments, making use of OWL, SHACL, and other ontology vocabularies. It may
then be possible to represent all aspects of a NIEM model in RDF. It will be possible to convert NIEM data to RDF, for
use as a a knowledge graph.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 11 of 46

2.12 Relationship properties and RDF-star
Sometimes a NIEM XML element needs to modify the relationship expressed by its parent instead of the parent object
itself. For example:

<nc:Person>
 <nc:PersonName>
 <nc:PersonFullName>Clark Kent</nc:PersonFullName>
 </nc:PersonName>
 <nc:PersonName>
 <nc:PersonFullName>Superman</nc:PersonFullName>
 <my:PersonNameAugmentation>
 <my:Classification>Secret</my:Classification>
 </my:PersonNameAugmentation>
 </nc:PersonName>
</nc:Person>

The author of this message does not mean to say that the name Superman is itself a secret. Everybody knows that
name. The author is saying that the relationship between the nc:Person object and that name is a secret. The
my:Classification element modifies that relationship; it is a relationship property.

NIEM 6 uses RDF-star, an extension of RDF, to represent relationship properties. For example, the NIEM XML above is
equivalent to this RDF:

_:n0 a nc:PersonType .
_:n0 nc:PersonName _:n1 .
_:n0 nc:PersonName _:n2 {| my:Classification "Secret" |} .
_:n1 a nc:PersonNameType .
_:n1 nc:PersonFullName "Clark Kent" .
_:n2 a nc:PersonNameType .
_:n2 nc:PersonFullName "Superman" .

NIEM 6 has new appinfo to mark relationship properties in NIEM XSD. The message schema for the above message
would include

<xs:element name="Classification" appinfo:relationshipPropertyIndicator="true" ...

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 12 of 46

3 General changes
3.1 Common Model Format (CMF)
NIEM is in the process of introducing a platform- and technology-independent representation for NIEM data models via
the new Common Model Format (CMF). This is a format that will represent NIEM concepts and data generically so that
they can then be transformed into specific languages, such as XML Schema and JSON Schema. Transformations will
typically be done via automated tooling.

The NDR will be reorganized so concepts and rules that apply to all languages are expressed in terms of CMF.
Language-specific features will be moved to supplemental representations of the NDR, such as the "NIEM Naming and
Design Rules: XML Representation" (NDR-XML). These changes will make it easier for developers to focus on only the
parts of the NDR that apply to their needs. They also enable NIEM to better support multiple representations without
having to first go through the NIEM XML representation for tool support.

In addition to being used by the NDR for NIEM 6.0 to describe concepts and rules, CMF will also be used alongside XML
Schema as the official canonical representations of the NIEM data model.

More information about CMF is available at https://github.com/niemopen/common-model-format.

3.2 Assign NIEM subset schemas a new conformance target
niemopen/niem-naming-design-rules#10

The NTAC proposess to use a new NDR conformance target for subset schemas instead of the original
ReferenceSchemaDocument (REF) target.

3.2.1 Background

Subset schemas from the NIEM data model can contain conformance errors because subsets are not required to follow
all of the rules required for reference schema documents.

The following issues are known to be incorrectly raised from NDR conformance tests on subset schemas:

Missing augmentation points on types
Missing definitions

3.2.2 Proposal

The NTAC proposes to generate NIEM subset schemas from NIEM-supported tooling with a new conformance target
(TBD). The NDR rules for this new conformance target will resemble the rules for the REF conformance target with
exceptions for the above rules known to be incorrectly raised during conformance testing.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 13 of 46

https://github.com/niemopen/common-model-format
https://github.com/niemopen/niem-naming-design-rules/issues/10

4 Property changes
4.1 Do not allow elements and attributes with the same uncased name
niemopen/niem-naming-design-rules#21

Do not allow elements and attributes in the same namespace to share the same name with the only difference being the
capitalization.

4.1.1 Background

NDR rules require element names to be upper camel case (e.g., UpperCamelCase) and attribute names to be lower
camel case (e.g., lowerCamelCase). In some prior versions of NIEM, elements and attributes shared the same name in
the same namespace with the only difference being the capitalization of the first letter. For example, NIEM Core 4.0
contained both element nc:ConfidencePercent and attribute nc:confidencePercent. This can present
issues in case-insensitive environments.

4.1.2 Impact

The impact of this change should be low. The model does not currently have any properties with overlapping names.
Properties in IEPDs / message specifications may be affected. This would however require that semantically-equivalent
elements and attributes be given unique names.

4.2 Disallow direct use of structures typing for property types
niemopen/niem-naming-design-rules#29

Prohibit properties in content namespaces (e.g., Core, domains, code sets, etc.) from having types from the
structures namespace.

4.2.1 Background

Types in the structures namespace provide NIEM infrastructure support but do not define actual content. These
types:

typically define attributes supporting ids and referencing, linked data, metadata, and security markup.
typically define generic augmentation points

4.2.2 Proposal

The NTAC proposes a new rule to prohibit NIEM-conformant properties from having a type from the structures
namespace. This is meant to ensure that NIEM properties are capable of carrying data content.

4.2.3 Impact

niemopen/niem-model#24

The impact of this change should be low. Within the data model, properties cbrn:CaseMetadata and
cbrn:DataFileMetadata are currently of type structures:MetadataType. These two properties would need
to be removed or updated, perhaps to be of type nc:MetadataType.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 14 of 46

https://github.com/niemopen/niem-naming-design-rules/issues/11
https://github.com/niemopen/niem-naming-design-rules/issues/29
https://github.com/niemopen/niem-model/issues/24

5 Type changes
5.1 Allow facets on EXT complex value types
niemopen/niem-naming-design-rules#9

Support the declaration of facets on EXT complex value types to prevent the need for message designers to define two
corresponding types (one complex, one simple) for each code set.

An example schema demonstrating the proposal is available under the examples/complex-code-types subdirectory.

5.1.1 Background

NIEM requires that enumerations must be defined on simple types in REF schemas. As all NIEM property elements are
required to have complex types, this means that code sets and types with other kinds of facets are typically defined in
pairs - a simple code type with enumerations, and a corresponding complex code type that extends the simple code type
and adds the NIEM-required structures:SimpleObjectAttributeGroup.

5.1.1.1 Example: XML Schema simple and complex code types

The example below shows how code sets are typically defined in NIEM.

Notes:

The simple code type declares the enumerations.
The complex code type extends the simple code type and adds attributes to supports ids, referencing, linked data,
metadata, and security markup via structures:SimpleObjectAttributeGroup.

<xs:simpleType name="AddressCategoryCodeSimpleType">
 <xs:annotation>
 <xs:documentation>A data type for a kind of address.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:enumeration value="business">
 <xs:annotation>
 <xs:documentation>business</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="registered office">
 <xs:annotation>
 <xs:documentation>registered office</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="residential">
 <xs:annotation>
 <xs:documentation>residential</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="residential or business">
 <xs:annotation>
 <xs:documentation>residential or business</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="unspecified">
 <xs:annotation>
 <xs:documentation>unspecified</xs:documentation>
 </xs:annotation>

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 15 of 46

https://github.com/niemopen/niem-naming-design-rules/issues/9
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/pnd01/examples/complex-code-types/example.xsd
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/pnd01/examples/complex-code-types/

 </xs:enumeration>
 </xs:restriction>
</xs:simpleType>

<xs:complexType name="AddressCategoryCodeType">
 <xs:annotation>
 <xs:documentation>A data type for a kind of address.</xs:documentation>
 </xs:annotation>
 <xs:simpleContent>
 <xs:extension base="nc:AddressCategoryCodeSimpleType">
 <xs:attributeGroup ref="structures:SimpleObjectAttributeGroup"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>
5.1.1.2 Benefits of the current approach

These requirements provide three benefits:

1. All conformant object, association, and data property elements in NIEM provide the ability to support ids and
referencing, linked data, metadata, and security markup.

2. Facets on simple types allow those types to be used as attribute types (XML Schema does not permit attributes
with complex types).

3. XML Schema supports unions of simple types, which allow a new simple type to be created as a composite of its
member simple types. This allows NIEM domains and message designers to create unions from existing code
sets, or to "extend" a NIEM code set by creating a union from a NIEM simple type and an extension simple type that
only contains additions to the code set. This eliminates the need to duplicate existing codes in order to add
additional values.

5.1.1.3 Drawbacks of the current approach

1. The major drawback to this approach is the additional complexity it requires. It can be cumbersome to create and
maintain two types for each code set instead of a single type.

5.1.2 Proposal

For message designers who do not need to create attributes or unions off of their code sets, the NTAC proposes to
explicitly support the declaration of facets directly on complex value types in message schemas with an EXT
conformance target.

This still supports reusability in reference schemas (REF), while making message extension schemas (EXT) easier to
build and maintain.

5.1.2.1 Example: XML Schema single complex code type

Notes:

In the example below, the complex type restricts niem-xs:token, which already contains
structure:SimpleObjectAttributeGroup. Other types from the niem-xs namespace could be used if
needed to support numeric or other types.

 <xs:complexType name='AddressCategoryCodeType'>
 <xs:annotation>
 <xs:documentation>A data type for a kind of address.</xs:documentation>
 </xs:annotation>
 <xs:simpleContent>
 <xs:restriction base='niem-xs:token'>
 <xs:enumeration value="business">
 <xs:annotation>

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 16 of 46

 <xs:documentation>business</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="registered office">
 <xs:annotation>
 <xs:documentation>registered office</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="residential">
 <xs:annotation>
 <xs:documentation>residential</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="residential or business">
 <xs:annotation>
 <xs:documentation>residential or business</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="unspecified">
 <xs:annotation>
 <xs:documentation>unspecified</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleContent>
 </xs:complexType>
5.1.3 Impact

This is currently supported by the NDR and requires no changes, but has never been explicitly covered as an available
option in NIEM IEPD developer resources or training. This scenario should be covered in NDR tests to ensure it remains
valid for EXT schemas.

5.2 Require unique enumerations
niemopen/niem-naming-design-rules#30

There are some code types in NIEM that repeat the same enumeration with different definitions. A new rule is being
proposed to require that enumerations are unique within a type. For code sources outside of NIEM where duplication
cannot be resolved, definitions of overlapping codes will be concatenated.

5.2.1 NIEM 5.2 Example

Type FacetValue Definition

usps:StreetSuffixCodeSimpleType OVAL OVAL

usps:StreetSuffixCodeSimpleType PARK PARK

usps:StreetSuffixCodeSimpleType PARK PARKS

usps:StreetSuffixCodeSimpleType PASS PASS

5.2.2 NIEM 6.0 Proposal

Type FacetValue Definition

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 17 of 46

https://github.com/niemopen/niem-naming-design-rules/issues/30

usps:StreetSuffixCodeSimpleType OVAL OVAL

usps:StreetSuffixCodeSimpleType PARK PARK; PARKS

usps:StreetSuffixCodeSimpleType PASS PASS

Type FacetValue Definition

5.2.3 Impact

There are 16 types in NIEM 5.2 that do not have unique enumerations:

can:StreetDirectionCodeSimpleType
cbrncl:FacilityUsageCodeSimpleType
cyber:BreachClassificationCategoryCodeSimpleType
dea:DrugCodeSimpleType
em:BarcodeCodeSimpleType
em:NotificationFunctionCategoryCodeSimpleType
fips:USCounty3DigitCodeSimpleType
hazmat:HazmatCodeSimpleType
mmucc:DriverLicenseClassCodeSimpleType
mo:FrequencyUnitTemporalCodeSimpleType
mo:RegisteredServiceNameCodeSimpleType
usmtf:AngleUnitCodeSimpleType
usmtf:NauticalMileUnitCodeSimpleType
usmtf:RadioactiveHalfLifeCodeSimpleType
usmtf:RFPowerUnitDecibelsCodeSimpleType
usps:StreetSuffixCodeSimpleType

Canada Post and United States Postal Service street codes, DEA drug codes, FIPS county codes, and hazmat codes
cannot be modified at the source and will either need to have concatenated definitions or other workarounds. The other
codes may be able to be adjusted to remove the overlapping code definitions directly.

See comments on the GitHub issue (link above) for more details on the affected types and codes.

5.2.4 Special considerations

Canada Post street direction codes provide two definitions per enumerations: one definition in English and one definition
in French.

5.3 Require definitions for patterns
niemopen/niem-naming-design-rules#12

The NTAC proposes to make definitions required for all pattern facets.

5.3.1 Background

NIEM currently requires definitions for enumeration facets only. Definitions for pattern facets should provide extra human-
readable documentation to make the regular expressions easier to interpret.

5.3.2 Impact

The impact to the data model would be low. There are 438 patterns in NIEM 5.2:

433 patterns have definitions
5 patterns do not have definitions

Type Pattern

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 18 of 46

https://github.com/niemopen/niem-naming-design-rules/issues/12

ag_codes:TaxIdentificationIDSimpleType [0-9]{9}

ag_codes:CropYearSimpleType ^([1][9]\d\d|[2]\d\d\d)$

biom:LipPatternSimpleType <>

mo:MILSTD2525-C-SIDC-SimpleType [A-Z0-9\-]{15}

mo:MILSTD2525-B-SIDC-SimpleType [A-Z0-9\-]{15}

Type Pattern

5.4 nc:ObjectType
https://github.com/niemopen/ntac-admin/discussions/58

CMF either needs to be aware of some parts of the structures namespace, or we need a nc:ObjectType in the
model because domains and messages should be allowed to augment the root-level ObjectType.

Notes:

NIEM 1.0 had a similar u:SuperType.
nc:CodeType contains three attributes from the code-lists-instance utility namespace
A new rule is being proposed to prevent properties with types from the structures namespace

https://github.com/niemopen/niem-naming-design-rules/issues/29
If CMF was aware of structures, then we could say that nc:PersonType or j:PersonEyeColorCode
contains structures:metadata.
If CMF is updated to support customized profiles of objects and was structures-aware, we could say:

nc:Person contains structures:id and hs:Caregiver contains structures:ref.
nc:PersonType contains structures:uri as required and not have structures:uri appear
elsewhere.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 19 of 46

https://github.com/niemopen/ntac-admin/discussions/58
https://github.com/niemopen/niem-naming-design-rules/issues/29

6 Adapter changes
6.1 Add representation term "Adapter"
niemopen/niem-naming-design-rules#5

The NTAC proposes to require that the representation term "Adapter" appear at the end of all adapter property and type
names.

6.1.1 Background

NIEM already has representation terms for associations, augmentations, and metadata. Adding representation term
"Adapter" for properties and types would make it clear which components contain non-conformant content from external
standards. A few properties and types currently in NIEM already follow this convention.

6.1.2 Impact

The following is a list of adapter properties and types from NIEM 5.2. These names, unless otherwise noted, would be
updated. Property names would end in "Adapter"; type names would end in "AdapterType".

Property Type Notes

ag:LocationLineStringCoordinates geo:LineStringType

ag:LocationMultiSurfaceCoordinates geo:MultiSurfaceType

ag:LocationPointCoordinates geo:PointType

ag:LocationPolygonCoordinates geo:PolygonType

cbrn:SpecialEventSecurityArea geo:PolygonType

edxl-cap:AlertAdapter edxl-cap:AlertAdapterType No change

edxl-de:DistributionElementAdapter edxl-de:DistributionElementAdapterType No change

edxl-have:HaveAdapter edxl-have:HaveAdapterType No change

geo:AreaCurve geo:CurveType

geo:AreaEnvelope geo:EnvelopeType

geo:AreaPoint geo:PointType

geo:AreaPolygon geo:PolygonType

geo:AreaRegionGeometry geo:GeometryType

geo:Ellipse geo:EllipseType

geo:Feature geo:FeatureType

geo:Geometry geo:GeometryType

geo:LocationFeature geo:FeatureType

geo:LocationGeometry geo:GeometryType

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 20 of 46

https://github.com/niemopen/niem-naming-design-rules/issues/5

geo:LocationGeospatialPoint geo:PointType

mo:WaypointPoint geo:PointType

mo:WGS84LocationEllipse mo:WGS84EllipseType

mo:WGS84LocationExternalPolygon mo:WGS84ExternalPolygonType

mo:WGS84LocationLineString mo:WGS84LineStringType

mo:WGS84LocationPoint mo:WGS84LocationPointType

Property Type Notes

6.2 Create new type structures:AdapterType
niemopen/niem-naming-design-rules#4

The NTAC proposes to create new type AdapterType in the structures namespace to serve as the parent type for
all adapter types in NIEM.

6.2.1 Background

Types in the structures namespace can typically bew used to identify what basic kind of type something is (an object
type, an association type, a metadata type, etc.). Adapter types do not follow the same pattern. They require the use of a
special attribute to identify themselves as adapters.

The basic category of NIEM classes can currently be identified as described in the table below:

Type Rule

association types Extend structures:AssociationType or a derivative

augmentation types Extend structures:AugmentationType

metadata types Extend structures:MetadataType

object types Extend structures:ObjectType or a derivative

adapter types Extend structures:ObjectType and use appinfo:externalAdapterTypeIndicator="true"

6.2.2 Proposal

Add a new structures:AdapterType to serve as the parent type for all adapter types defined in NIEM.
Remove attribute appinfo:externalAdapterTypeIndicator from the appinfo utility namespace.

6.2.2.1 Example declaration of an adapter type
- <xs:complexType name="GeometryType" appinfo:externalAdapterTypeIndicator="true">
+ <xs:complexType name="GeometryType">
 <xs:complexContent>
- <xs:extension base="structures:ObjectType">
+ <xs:extension base="structures:AdapterType">
 <xs:sequence>
 <xs:element ref="gml:AbstractGeometry" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 21 of 46

https://github.com/niemopen/niem-naming-design-rules/issues/4

6.2.3 Impact

Low. The declaration of 20 types currently in NIEM would need to be adjusted, which would be handled by model
maintainers.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 22 of 46

7 Augmentation Changes
7.1 Do not allow multiple augmentations from the same namespace on the same object
niemopen/niem-naming-design-rules#35

The NTAC is proposing to prohibit multiple augmentations from the same namespace on the same object in message
instances.

7.1.1 Background

An augmentation is a container that lets us plug additional properties into existing types from other namespaces - types
that we cannot modify ourselves. These containers on their own have no meaning, and they do not appear in the NIEM
RDF or NIEM JSON-LD representations.

7.1.2 Proposal

Because augmentation containers have no meaning on their own and because it would not be possible to reconstruct
multiple containers correctly when transforming from NIEM RDF or NIEM JSON to NIEM XML, the NTAC proposes to
prohibit multiple augmentations from the same namespace on the same object.

7.1.2.1 Valid example

Notes:

In the example below, nc:Person contains augmentations from Justice and Human Services.
The Justice person augmentation contains two instances of j:DriverLicense (valid)
The Human Services person augmentation contains two instance of hs:HealthInsurance (valid)

<ext:Message>
 <nc:Person>
 <nc:PersonFullName>Alice Smith</nc:PersonFullName>
 </nc:PersonName>
 <j:PersonAugmentation>
 <j:DriverLicense>
 <!-- ... -->
 </j:DriverLicense>
 <j:DriverLicense>
 <!-- ... -->
 </j:DriverLicense>
 </j:PersonAugmentation>
 <hs:PersonAugmentation>
 <hc:HealthInsurance>
 <!-- ... -->
 </hc:HealthInsurance>
 <hc:HealthInsurance>
 <!-- ... -->
 </hc:HealthInsurance>
 </hs:PersonAugmentation>
</ext:Message>
7.1.2.2 Invalid example

Notes:

In the example below, nc:Person contains two augmentations from Justice (invalid) and an augmentation from
Human Services (valid).

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 23 of 46

https://github.com/niemopen/niem-naming-design-rules/issues/35

<ext:Message>
 <nc:Person>
 <nc:PersonFullName>Alice Smith</nc:PersonFullName>
 </nc:PersonName>
 <j:PersonAugmentation>
 <j:DriverLicense>
 <!-- ... -->
 </j:DriverLicense>
 </j:PersonAugmentation>
 <j:PersonAugmentation> <!-- Invalid: j:PersonAugmentation should not appear
twice -->
 <j:DriverLicense>
 <!-- ... -->
 </j:DriverLicense>
 </j:PersonAugmentation>
 <hs:PersonAugmentation>
 <hc:HealthInsurance>
 <!-- ... -->
 </hc:HealthInsurance>
 </hs:PersonAugmentation>
</ext:Message>

To correct this example, the second j:DriverLicense object should be moved under the first
j:PersonAugmentation container and the second j:PersonAugmentation container should be removed.

7.1.3 Impact

This change is expected to have low impact. It does not affect the data model, and it is not expected to be a meaningful
or frequently-used feature in instance messages. Augmentations can contain multiple instances of properties, so they
can be consolidated if needed.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 24 of 46

8 Metadata Changes
8.1 Simplify metadata
niem-open/niem-naming-design-rules#8

NIEM currently requires the use of ids and special metadata reference attributes to link metadata and the objects to
which they apply. While this will continue to be necessary to link metadata consisting of elements to NIEM data properties
(elements that carry attributes and a value), it is not necessary for object properties, which can contain the metadata
directly or via augmentation.

The NTAC proposes to allow metadata contained in an object to be applicable to that object without the need for
references. The NTAC also proposes to support metadata specialization and augmentation, treating metadata types
more like regular object types.

8.1.1 Background

NIEM currently requires that object properties and data properties use the structures:metadata or
structures:relationshipMetadata attributes in order to create a relationship between those properties and
their applicable metadata.

According to the NDR, adding metadata directly to a type creates no special meaning or relationship to the metadata.
For example, adding nc:Metadata to nc:PersonType does not mean that the metadata actually applies to the
person that contains it; only the use of one of the structures metadata attributes would make that metadata
applicable to that person.

Metadata types are also required to extend structures:MetadataType. This prevent specialization and does not
allow one metadata type to build off of another via derivation. Metadata types are also prohibited from creating
augmentation points. Brand new metadata types must be created even if there are no special semantics required.

8.1.1.1 Current metadata example

Notes:

1. The Justice domain has additional data requirements for generic metadata. NIEM requires that it be captured via
its own separate metadata type vs an extension or augmentation of nc:MetadataType.

2. To apply the Core and Justice metadata objects to the nc:Person property in the message, nc:Person is
required to use the structures:metadata attribute (or the structures:relationshipMetadata
attribute) and reference the ids of any applicable metadata objects in the message.

<ext:Message>
 <nc:Person structures:metadata="m1 m2">
 <nc:PersonBirthDate>
 <nc:Date>1945-12-01</nc:Date>
 </nc:PersonBirthDate>
 <nc:PersonName>
 <nc:PersonFullName>John Doe</nc:PersonFullName>
 </nc:PersonName>
 </nc:Person>

 <nc:Metadata structures:id="m1">
 <nc:SourceText>Adam Barber</nc:SourceText>
 <nc:ReportedDate>
 <nc:Date>2005-04-26</nc:Date>
 </nc:ReportedDate>
 </nc:Metadata>

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 25 of 46

https://github.com/niemopen/niem-naming-design-rules/issues/8

 <j:Metadata structures:id="m2">
 <j:CriminalInformationIndicator>true</j:CriminalInformationIndicator>
 </j:Metadata>
</ext:Message>
8.1.2 Proposal

The NTAC proposes the following changes to simplify the use of metadata in messages:

1. Allow metadata contained by an object or augmentation of that object to apply to that object, without the need for
references via the structures:metadata attribute.

2. Allow metadata types to extend other metadata types
3. Allow metadata augmentations
4. Remove the appinfo:appliesToProperties and appinfo:appliesToTypes attributes on metadata,

as these are rarely use and applicability can be provided by adding metadata to the types.
5. Continue supporting the structures:relationshipMetadata attribute on object properties.
6. Continue supporting the structures:metadata and structures:relationshipMetadata attributes

on data properties.
7. Create an applicability exception for objects that contain a metadata property that carries attribute

structures:id. The root of a message may need to carry metadata objects that are linked to via ids /
references but are not applicable to the message itself.

Under the new proposal, metadata can be added directly to types just like other kinds of properties. To add metadata to
a type in another namespace, extension or augmentation may be used.

8.1.2.1 Inline metadata

The following example shows metadata attached to a person via augmentation.

Notes:

1. The Justice domain augments nc:MetadataType rather than creating its own independent j:MetadataType.
2. The message designer created an augmentation for nc:PersonType to add nc:Metadata. This metadata

now applies to the person object in which it is contained without the need for ids or references.

<ext:Message>
 <nc:Person>
 <nc:PersonBirthDate>
 <nc:Date>1945-12-01</nc:Date>
 </nc:PersonBirthDate>
 <nc:PersonName>
 <nc:PersonFullName>John Doe</nc:PersonFullName>
 </nc:PersonName>
 <ext:PersonAugmentation>
 <nc:Metadata>
 <nc:SourceText>Adam Barber</nc:SourceText>
 <nc:ReportedDate>
 <nc:Date>2005-04-26</nc:Date>
 </nc:ReportedDate>
 <j:MetadataAugmentation>
 <j:CriminalInformationIndicator>true</j:CriminalInformationIndicator>
 </j:MetadataAugmentation>
 </nc:Metadata>
 </ext:PersonAugmentation>
 </nc:Person>
</ext:Message>
8.1.2.2 Reference metadata

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 26 of 46

The proposal updates metadata in NIEM so that they are treated much more similarly to regular objects. Referencing via
structures:id and structures:ref is supported for objects and would now also be supported for metadata.

The following example adds a second person to the message. In order to have the same metadata apply to both people
without duplicating information, a reference to the metadata object can be added to each person:

Notes:

nc:Metadata is placed under the message root and contains attribute structures:id
The two person objects in the message still use augmentation to attach the metadata object, but they now use the
structures:ref attribute instead of the structures:metadata attribute to link to the applicable metadata.
Because nc:Metadata contains structures:id (indicates that it is being used via references), it is not
applicable to the root of the message.

<ext:Message>
 <nc:Person>
 <nc:PersonBirthDate>
 <nc:Date>1945-12-01</nc:Date>
 </nc:PersonBirthDate>
 <nc:PersonName>
 <nc:PersonFullName>John Doe</nc:PersonFullName>
 </nc:PersonName>
 <ext:PersonAugmentation>
 <j:Metadata structures:ref="m3">
 </ext:PersonAugmentation>
 </nc:Person>
 <nc:Person>
 <nc:PersonName>
 <nc:PersonFullName>Alice Smith</nc:PersonFullName>
 </nc:PersonName>
 <ext:PersonAugmentation>
 <j:Metadata structures:ref="m3">
 </ext:PersonAugmentation>
 </nc:Person>
 <nc:Metadata structures:id="m3">
 <nc:SourceText>Adam Barber</nc:SourceText>
 <nc:ReportedDate>
 <nc:Date>2005-04-26</nc:Date>
 </nc:ReportedDate>
 <j:MetadataAugmentation>
 <j:CriminalInformationIndicator>true</j:CriminalInformationIndicator>
 </j:MetadataAugmentation>
 </nc:Metadata>
</ext:Message>
8.1.2.3 Data property metadata

While metadata objects can be added to class types (types that contain properties), the same is not true for datatypes
(types that contain a value and attributes). While the Attribute Wildcards proposal in this document enables adding new
attributes to existing object and data properties, attaching metadata consisting of object properties (elements) still
requires special handling. NIEM datatypes will continue to carry the structures:metadata and
structures:relationshipMetadata attributes so that data properties can link to applicable metadata.

The example below shows how to use references to apply metadata to a mix of object and data properties.

Notes:

Object properties link to the metadata via typical NIEM mechanisms (augmentation and structures:ref)

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 27 of 46

Data property nc:PersonFullName continues to use attribute structures:metadata to link to the
metadata.
Metadata object nc:Metadata does not apply to the root of the message since it contains attribute
structures:id (indicates it is being included there for the purposes of referencing)

<ext:Message>
 <nc:Person>
 <nc:PersonBirthDate>
 <nc:Date>1945-12-01</nc:Date>
 </nc:PersonBirthDate>
 <nc:PersonName>
 <nc:PersonFullName structures:metadata="m3">John Doe</nc:PersonFullName>
 </nc:PersonName>
 <ext:PersonAugmentation>
 <j:Metadata structures:ref="m3">
 </ext:PersonAugmentation>
 </nc:Person>
 <nc:Person>
 <nc:PersonName>
 <nc:PersonFullName>Alice Smith</nc:PersonFullName>
 </nc:PersonName>
 <ext:PersonAugmentation>
 <j:Metadata structures:ref="m3">
 </ext:PersonAugmentation>
 </nc:Person>
 <nc:Metadata structures:id="m3">
 <nc:SourceText>Adam Barber</nc:SourceText>
 <nc:ReportedDate>
 <nc:Date>2005-04-26</nc:Date>
 </nc:ReportedDate>
 <j:MetadataAugmentation>
 <j:CriminalInformationIndicator>true</j:CriminalInformationIndicator>
 </j:MetadataAugmentation>
 </nc:Metadata>
</ext:Message>
8.1.2.4 Benefits

Drops the learning curve for new users. Message designers can treat metadata like regular objects.
Simple use cases require no special syntax or constructs. Metadata can be treated like regular data.
Advanced use cases are still possible. References can be used to avoid duplication of data and to link metadata
objects to data properties.

8.1.2.5 Drawbacks

Introduces changes to the way metadata is defined and processed.
Requires special handling to specify that the metadata does not apply to its container in the case where references
are being used.

8.1.3 Impact

NIEM currently contains 11 metadata types which would need to reviewed and potentially refactored.

The NBAC may want to add nc:Metadata to certain common objects like nc:PersonType and
nc:ActivityType.

Message designers would need to treat metadata differently in messages starting with 6.0 These changes would make
metadata handling much more similar to other kinds of data, but that would be a change from previous requirements.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 28 of 46

8.2 Represent relationshipMetadata via RDF-star and JSON-LD-star
niem-open/niem-naming-design-rules#21

The NTAC proposes to leverage the RDF-star and JSON-LD-star specifications in order to simplify the representation of
relationship metadata in NIEM RDF and NIEM JSON.

8.2.1 Background

RDF triples consist of statements with a subject, predicate, and object.

Subjects and objects in NIEM RDF messages are specific instances of a type.
Predicates in NIEM RDF messages are NIEM properties, which provide the semantics that relate the subject to the
object.
Subjects are nodes.
Objects may be nodes or literals.

Example:

@prefix nc: <http://release.niem.gov/niem/niem-core/5.0> .
@prefix xs: <http://www.w3.org/2001/XMLSchema> .

Person node 0 has a birth date, with value Date node 0.
_:P0 nc:PersonBirthDate _:D0 .

Person node 0 also has a name, with value Name node 0.
_:P0 nc:PersonName _:N0 .

Date node 0 has a date with literal value "1950-01-01".
_:D0 nc:Date "1950-01-01"^^xs:date .

Name node 0 has a given name, with literal value "Alice".
_:N0 nc:PersonGivenName "Alice" .

Name node 0 also has a surname, with literal value "Smith".
_:N0 nc:PersonSurName "Smith" .

The example above may be shortened as follows, with semicolons used to concatenate statements with the same
subject:

@prefix nc: <http://release.niem.gov/niem/niem-core/5.0> ;
 xs: <http://www.w3.org/2001/XMLSchema> .

Person node 0 has a birth date (with value Date node 0) and a name (with value
Name node 0).
_:P0 nc:PersonBirthDate _:D0 ;
 nc:PersonName _:N0 .

Date node 0 has a date with literal value "1950-01-01".
_:D0 nc:Date "1950-01-01"^^xs:date .

Name node 0 has a given name (with literal value "Alice") and a surname (with
literal value "Smith").
_:N0 nc:PersonGivenName "Alice" ;
 nc:PersonSurName "Smith" .

Triples work to represent most NIEM data but cannot by themselves represent relationship metadata. The NDR currently
uses the N-Quads notation (N-Triples plus graphs) to represent relationship metadata. N-Quads allow one or more triples

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 29 of 46

https://github.com/niemopen/niem-naming-design-rules/issues/21

to be named together as a graph. The graph (consisting of multiple tripes) may then serve as a subject of another triple.

@prefix nc: <http://release.niem.gov/niem/niem-core/5.0> .
@prefix xs: <http://www.w3.org/2001/XMLSchema> .

These two statements about Person Node 0 have collectively been given the graph
name "G0".
_:P0 nc:PersonBirthDate _:D0 ;
 nc:PersonName _:N0 G0.

_:D0 nc:Date "1950-01-01"^^xs:date .

_:N0 nc:PersonGivenName "Alice" ;
 nc:PersonSurName "Smith" .

Reported date (with value "2023-06-01") is metadata that applies to the triples
defined by graph G0.
_:G0 nc:ReportedDate "2023-06-01"^^xs:date .
8.2.2 Proposal

The NTAC proposes to leverage RDF-star (and its JSON-LD-star counterpart) to support applying metadata to
statements directly, without the need to create named graphs to identify one or more sets of statements. This can be
used on statements with node objects and with literal objects, so it works in NIEM for both object properties and data
properties.

RDF-star introduces the following concepts:

quoted triple: A triple used as the subject or object of another triple.
asserted triple: Any element in the set of triples that make up an RDF graph (the triple may be a standard subject-
predicate-object triple or may contain one more quoted triples).

A quoted triple wraps a triple in double angle brackets:

<<_:P0 nc:PersonBirthDate _:D0 >> nc:ReportedDate "2023-06-01"^^xs:date .

This statement contains the following triples:

quoted triple: _:P0 nc:PersonBirthDate _:D0
asserted triple: <<_:P0 nc:PersonBirthDate _:D0 >> nc:ReportedDate "2023-06-
01"^^xs:date .

Note that the RDF does not assert that the birth date of the person represented by node P0 is the value represented by
node D0. The RDF only asserts that the information was reported on 2023-06-01. In order to assert that this (1) is the
birth date of the person and (2) that the information ws reported on 2023-06-01, it is necessary to explicitly represent #1
as its own triple:

_:P0 nc:PersonBirthDate _:D0 .
<<_:P0 nc:PersonBirthDate _:D0 >> nc:ReportedDate "2023-06-01"^^xs:date .

This updated statement contains the following triples:

asserted triple: _:P0 nc:PersonBirthDate _:D0 (from line 1)
quoted triple: _:P0 nc:PersonBirthDate _:D0 (from line 2)
asserted triple: <<_:P0 nc:PersonBirthDate _:D0 >> nc:ReportedDate "2023-06-
01"^^xs:date . (from line 2)

RDF-star provides annotation syntax as a shorthand to eliminate the need to duplicate statement information so that
the original statement and the metadata about the statement may be asserted.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 30 of 46

The following asserts both the birth date of the person and the reported date of the birth date of the person:

_:P0 nc:PersonBirthDate _:D0 {| nc:ReportedDate "2023-06-01"^^xs:date |} .

In NIEM JSON-LD, annotation metadata would be represented via a new @annotation property:

{
 "nc:PersonBirthDate": {
 "nc:Date": "1950-01-01"
 },
 "nc:PersonName": {
 "nc:PersonGivenName": "Alice",
 "nc:PersonSurName": "Smith"
 },
 "@annotation": {
 "nc:ReportedDate": "2023-06-01"
 }
}
8.2.3 Impact

The impact is expected to be low. This does not affect content within the data model, only how relationship metadata is to
be represented in NIEM RDF and NIEM JSON. Tool support for RDF-star includes Apache Jena and Eclipse RDF4J.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 31 of 46

9 Role changes
9.1 Simplified Roles
niemopen/niem-naming-design-rules#6

The NTAC is considering a proposal to simplify roles within NIEM. The proposal will remove the special syntax and rules
related to roles. Rather than requiring special RoleOf properties to be contained within role types, roles would be
implemented via specialization and the use of the existing structures:uri attribute to link related objects to the
same entity.

9.1.1 Background

Roles are used in NIEM to represent a non-exclusive function or part played by an object. An object may have one or
more roles. For example, victim, witness, and officer can all be roles of a person. One person may end up playing each of
these roles within the same message.

Roles differ from specialization in NIEM, which is reserved for typically-exclusive special functions of an object. For
example, a vehicle (e.g., a car) and an aircraft are specializations of a conveyance, which is a specialization of an item.

Exclusivity is the key difference between roles and specialization. One person might end up participating in multiple roles
within the same message (e.g., victim, witness, and officer), while a vehicle is a specialization because it is typically not
also a plane, train, firearm, or cellphone at the same time.

There is some special syntax in NIEM used for roles that allow us to link related occurrences together in messages so
that it is clear they each represent the same entity.

The following are the main techniques in NIEM for creating new classes based on existing classes.

Technique Use case Schema mechanism

Roles Non-exclusive function of an object.

Example: Victim, witness, officer, teacher, parent, child are all roles
of a person object.

Extend
structures:ObjectType
and add one or more RoleOf
properties

Augmentation Mechanism used to "drop in" additional content into an existing type
from another namespace without actually making changes to the
original.

Example: Justice, Emergency Management, Biometrics, and other
NIEM domains each define their own augmentation for
nc:PersonType with common person-related properties within their
subject area.

Substitution groups

Specialization Exclusive special function of an object.

Example: A vehicle (car) is a specialization of conveyance, which is
a specialization of item.

Type extension

9.1.1.1 Requirements

The rules and syntax for the current role mechanism fulfills two requirements:

1. Support explicitly identifying occurrences in a message where multiple properties refer back to the same entity.
2. Support referencing to avoid the need to duplicate data in messages. For example, a person name and birthday

could be defined once in a message and referenced multiple times.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 32 of 46

https://github.com/niemopen/niem-naming-design-rules/issues/6

9.1.2 Proposal

Eliminate roles as a special technique.
Use specialization for both exclusive and non-exclusive special functions of an object.
Use the existing structures:uri attribute to link related roles back to the same object.

The syntax for roles was developed as part of NIEM 1.0. The structures:uri attribute was not added until NIEM 4.0.
This attribute can be leveraged to meet the same requirements without the special role rules or syntax.

9.1.2.1 Updated role schema example

This example is based on the Crash Driver IEPD using in NIEM training. Role types are modified to extend
nc:PersonType and to remove the nc:RoleOfPerson property.

Notes:

The parent type of CrashDriverType changes from structures:ObjectType to nc:PersonType.
The nc:RoleOfProperty is no longer needed.
The structures:uri attribute is inherited by CrashDriverType and by any other type that extends from
structures:ObjectType (which is the parent of nc:PersonType).

 <xs:complexType name="CrashDriverType">
 <xs:annotation>
 <xs:documentation>A data type for a motor vehicle driver involved ...
</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
- <xs:extension base="structures:ObjectType">
+ <xs:extension base="nc:PersonType">
 <xs:sequence>
- <xs:element ref="nc:RoleOfPerson" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="j:DriverLicense" minOccurs="0" maxOccurs="unbounded"/>
 <!-- ... -->
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
9.1.2.2 Updated role message example 1, without repeating data

Notes:

The use of structures:id and structures:ref is replaced by the use of structures:uri.
The nc:RoleOfPerson properties are removed.

<exch:CrashDriverInfo>
- <nc:Person structures:id="P01">
+ <nc:Person structures:uri="P01">
 <nc:PersonBirthDate>
 <nc:Date>1890-05-04</nc:Date>
 </nc:PersonBirthDate>
 <nc:PersonName nc:personNameCommentText="copied">
 <nc:PersonGivenName>Peter</nc:PersonGivenName>
 <nc:PersonMiddleName>Death</nc:PersonMiddleName>
 <nc:PersonMiddleName>Bredon</nc:PersonMiddleName>
 <nc:PersonSurName>Wimsey</nc:PersonSurName>
 </nc:PersonName>
 </nc:Person>

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 33 of 46

 <j:Crash>
 <j:CrashVehicle>
- <j:CrashDriver>
- <nc:RoleOfPerson structures:ref="P01" xsi:nil="true"/>
+ <j:CrashDriver structures:uri="P01">
 <j:DriverLicense>
 <j:DriverLicenseCardIdentification>
 <nc:IdentificationID>A1234567</nc:IdentificationID>
 </j:DriverLicenseCardIdentification>
 </j:DriverLicense>
 </j:CrashDriver>
 </j:CrashVehicle>
- <j:CrashPerson>
- <nc:RoleOfPerson structures:ref="P01" xsi:nil="true"/>
+ <j:CrashPerson structures:uri="P01">
 <j:CrashPersonInjury>
 <nc:InjuryDescriptionText>Broken Arm</nc:InjuryDescriptionText>
 </j:CrashPersonInjury>
 </j:CrashPerson>
 </j:Crash>
 <j:Charge structures:id="CH01">
 <j:ChargeDescriptionText>Furious Driving</j:ChargeDescriptionText>
 <j:ChargeFelonyIndicator>false</j:ChargeFelonyIndicator>
 </j:Charge>
 <j:PersonChargeAssociation>
- <nc:Person structures:ref="P01" xsi:nil="true"/>
+ <nc:Person structures:uri="P01" xsi:nil="true"/>
 <j:Charge structures:ref="CH01" xsi:nil="true"/>
 </j:PersonChargeAssociation>
</exch:CrashDriverInfo>
9.1.2.3 Updated role message example 2, with duplicated data

Notes:

structures:uri has been available since NIEM 4.0 and can already be used to link multiple properties to the
same entity.
Data is repeated in the message below, which makes the message longer but can make it easier to process. This
option is already available with the current role technique. This proposal would simply eliminate the extra
nc:RoleOfPerson properties from the message.

<exch:CrashDriverInfo>
 <j:Crash>
 <j:CrashVehicle>
 <j:CrashDriver structures:uri="P01">
- <nc:RoleOfPerson>
 <nc:PersonBirthDate>
 <nc:Date>1890-05-04</nc:Date>
 </nc:PersonBirthDate>
 <nc:PersonName nc:personNameCommentText="copied">
 <nc:PersonGivenName>Peter</nc:PersonGivenName>
 <nc:PersonMiddleName>Death</nc:PersonMiddleName>
 <nc:PersonMiddleName>Bredon</nc:PersonMiddleName>
 <nc:PersonSurName>Wimsey</nc:PersonSurName>
 </nc:PersonName>
- </nc:RoleOfPerson>

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 34 of 46

 <j:DriverLicense>
 <j:DriverLicenseCardIdentification>
 <nc:IdentificationID>A1234567</nc:IdentificationID>
 </j:DriverLicenseCardIdentification>
 </j:DriverLicense>
 </j:CrashDriver>
 </j:CrashVehicle>
 <j:CrashPerson structures:uri="P01">
- <nc:RoleOfPerson>
 <nc:PersonBirthDate>
 <nc:Date>1890-05-04</nc:Date>
 </nc:PersonBirthDate>
 <nc:PersonName nc:personNameCommentText="copied">
 <nc:PersonGivenName>Peter</nc:PersonGivenName>
 <nc:PersonMiddleName>Death</nc:PersonMiddleName>
 <nc:PersonMiddleName>Bredon</nc:PersonMiddleName>
 <nc:PersonSurName>Wimsey</nc:PersonSurName>
 </nc:PersonName>
- </nc:RoleOfPerson>
 <j:CrashPersonInjury>
 <nc:InjuryDescriptionText>Broken Arm</nc:InjuryDescriptionText>
 </j:CrashPersonInjury>
 </j:CrashPerson>
 </j:Crash>
 <j:Charge structures:id="CH01">
 <j:ChargeDescriptionText>Furious Driving</j:ChargeDescriptionText>
 <j:ChargeFelonyIndicator>false</j:ChargeFelonyIndicator>
 </j:Charge>
 <j:PersonChargeAssociation>
 <nc:Person structures:uri="P01">
 <nc:PersonBirthDate>
 <nc:Date>1890-05-04</nc:Date>
 </nc:PersonBirthDate>
 <nc:PersonName nc:personNameCommentText="copied">
 <nc:PersonGivenName>Peter</nc:PersonGivenName>
 <nc:PersonMiddleName>Death</nc:PersonMiddleName>
 <nc:PersonMiddleName>Bredon</nc:PersonMiddleName>
 <nc:PersonSurName>Wimsey</nc:PersonSurName>
 </nc:PersonName>
 </nc:Person>
 <j:Charge structures:ref="CH01" xsi:nil="true"/>
 </j:PersonChargeAssociation>
</exch:CrashDriverInfo>
9.1.2.4 Benefits

1. Roles are part of the learning curve for new users. They require special instruction not only when new users are
building their own schemas, but also when they are just browsing the content of NIEM. Users can look at roles like
witness or student and not know that person properties are already available.

2. Roles are also easy to forget to model correctly for more experienced users. QA checks catch a lot of cases where
specialization is used in place of roles.

3. The more-complicated special role syntax is always required, no matter whether or not messages will leverage the
referencing capabilities to link related properties together. There is no way to opt out of the syntax if it is not
needed.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 35 of 46

4. The current NIEM role technique results in inconsistencies.. RoleOf properties are only available when custom
role types must be created.

For example, the Human Services domain had special student-related properties, so they created
hs:StudentType as a role of nc:PersonType. Student properties will contain nc:RoleOfPerson.
However, there were no special properties required for caregiver, so property hs:Caregiver is directly of type
nc:PersonType.

This makes the representation of people within the model inconsistent. You have to look at the declaration of the
type to determine if an entity is-a person, or has-a role-of-person. This can make it more difficult to process and
query data:

hs:Student -> nc:RoleOfPerson -> nc:PersonName
hs:Caregiver -> nc:PersonName

Without looking at the schema or memorizing the model, it's almost impossible to know if j:Counselor is
defined as a person or as a role of a person.

5. The custom role rules and syntax may no longer provide enough benefit to justify the complexities now that the
structures:uri attribute is available. This attribute can be leveraged already to link related properties
together, whether or not the role syntax remains in place.

9.1.2.5 Drawbacks

1. Almost 100 types in NIEM 5.2 contain a RoleOf property and would need to be adjusted. This would likely affect
many migrated message schemas and their instances.

2. RoleOf properties allow the validation of additional cardinality constraints through XML Schema. Because
structure:id and structures:ref can be used with RoleOf properties, properties on the object of a role
type can be marked as required, but do not have to appear when structures:ref is used.

From the first instance example, nc:PersonName and nc:PersonBirthDate could be set as required
(minOccurs="1") under nc:PersonType, but wouldn't have to appear under j:CrashDriver or
j:CrashPerson because these two properties use structures:ref to point to where their data is
contained.

Removing these special RoleOf properties would mean that nc:PersonName and nc:PersonBirthDate
would need to be set as optional (minOccurs="0") if they are supposed to appear under nc:Person but not
appear under j:CrashDriver or j:CrashPerson. This would be similar to other business rules that cannot
be implemented via XML Schema and rely on validation through Schematron or other application validation.

It may also be possible in the future to generated customized message schemas that hardcode exactly which
properties can appear by replacing the object-oriented nature of the reusable NIEM reference data model with
flattened types for improved validation.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 36 of 46

10 Utility schema changes
10.1 Attribute wildcards
niemopen/niem-naming-design-rules#20

The NTAC proposes to expand the use of attribute wildcards, currently used in NIEM to support security markup (IC-ISM
and IC-NTK), to all NIEM-conformant and external attributes. This would allow any schema-resolvable attribute to be
attached to almost any NIEM element property in messages. Message designers would have the ability to subset the
wildcards down to only attributes within specific namespaces, or to remove the wildcard entirely if they wish to prevent the
use of attributes in messages that are not declared in the message schemas.

While attributes can be added to existing types via augmentation or extension, attribute wildcards provide an easy
means to extend existing data properties and datatypes with new attributes, which is otherwise not easy to do.

See the examples/attribute-wildcards subfolder for the wildcard example extension schema, the modified structures
schema (structures-modified.xsd), the NIEM subset schemas updated to refer to the modified structures
schema, and a valid and an invalid sample message.

10.1.1 Background

NIEM supports extensibility for objects via type extension, augmentation, and adapters. None of these solutions,
however, work very well to support attaching additional NIEM-conformant or external attributes to existing NIEM data
properties (properties that carry a value, like a string or a number or a boolean).

The NIEM metadata mechanism can be used to link NIEM data properties to metadata objects that contain new
attributes, but this can be a very cumbersome approach in message instances as it could require a metadata property
counterpart for each NIEM data property that needs to carry custom attribute information.

10.1.1.1 Message example using metadata
<ext:Message
 xmlns:ext="http://www.example.com/wildcard-attributes/extension"
 xmlns:nc='http://release.niem.gov/niem/niem-core/5.0/'
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/wildcard-attributes/extension
./example.xsd">
 <nc:Person>
 <nc:PersonName>
 <nc:PersonGivenName structures:metadata="M1">...</nc:PersonGivenName>
 <nc:PersonSurName structures:metadata="M2">...</nc:PersonSurName>
 </nc:PersonName>
 </nc:Person>
 <nc:Address>
 <nc:AddressFullText structures:metadata="M3">...</nc:AddressFullText>
 <nc:AddressCityName structures:metadata="M4">...</nc:AddressCityName>
 </nc:Address>

 <nc:Metadata structures:id="M1" ext:transliterationText="..."/>
 <nc:Metadata structures:id="M2" ext:transliterationText="..."/>
 <nc:Metadata structures:id="M3" ext:transliterationText="..."/>
 <nc:Metadata structures:id="M4" ext:transliterationText="..."/>
</ext:Message>
10.1.1.2 Current NIEM attribute wildcards for security markup

NIEM currently leverages attribute wildcards from XML Schema to support the use of Intelligence Community Information
Security Marking (ISM) and Need-to-Know (NTK) metadata attributes on any NIEM-conformant element. These wildcards

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 37 of 46

https://github.com/niemopen/niem-naming-design-rules/issues/20
https://docs.oasis-open.org/niemopen/niem-6.0-arch-changes/v1.0/pnd01/examples/attribute-wildcards/
https://niem.github.io/reference/concepts/augmentation/
https://niem.github.io/reference/concepts/adapter/
https://niem.github.io/reference/concepts/metadata/

take the form of the xs:anyAttribute element on the following types and attribute group in structures.xsd:

structures:ObjectType
structures:AssociationType
structures:MetadataType
structures:AugmentationType
structures:SimpleObjectAttributeGroup

10.1.1.3 Schema example: Attribute wildcards via xs:anyAttribute

The following is an extract from structures.xsd, showing the declaration of attribute wildcards on
structures:SimpleObjectAttributeGroup and structures:ObjectType:

<xs:attributeGroup name="SimpleObjectAttributeGroup">
 <xs:annotation>
 <xs:documentation>A group of attributes that are applicable to objects, to be
used when defining a complex type that is an extension of a simple type.
</xs:documentation>
 </xs:annotation>
 <xs:attribute ref="structures:id"/>
 <xs:attribute ref="structures:ref"/>
 <xs:attribute ref="structures:uri"/>
 <xs:attribute ref="structures:metadata"/>
 <xs:attribute ref="structures:relationshipMetadata"/>
 <xs:attribute ref="structures:sequenceID"/>
 <xs:anyAttribute namespace="urn:us:gov:ic:ism urn:us:gov:ic:ntk"
processContents="lax"/>
</xs:attributeGroup>

<xs:complexType name="ObjectType" abstract="true">
 <xs:annotation>
 <xs:documentation>A data type for a thing with its own lifespan that has some
existence.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="structures:ObjectAugmentationPoint" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute ref="structures:id"/>
 <xs:attribute ref="structures:ref"/>
 <xs:attribute ref="structures:uri"/>
 <xs:attribute ref="structures:metadata"/>
 <xs:attribute ref="structures:relationshipMetadata"/>
 <xs:attribute ref="structures:sequenceID"/>
 <xs:anyAttribute namespace="urn:us:gov:ic:ism urn:us:gov:ic:ntk"
processContents="lax"/>
</xs:complexType>
10.1.2 Proposal

The NTAC proposes to expand the use of attribute wildcards to any defined schema source. The value of the
processContents attribute will be required to be "strict", meaning that a schema definition for the attributes must be
resolvable and the attributes in messages must validate against the schema.

 <xs:complexType name="ObjectType" abstract="true">
 <xs:sequence>
 <xs:element ref="structures:ObjectAugmentationPoint" minOccurs="0"

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 38 of 46

maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute ref="structures:id"/>
 <xs:attribute ref="structures:ref"/>
 <xs:attribute ref="structures:uri"/>
 <xs:attribute ref="structures:metadata"/>
 <xs:attribute ref="structures:relationshipMetadata"/>
 <xs:attribute ref="structures:sequenceID"/>
 <xs:anyAttribute namespace="##other" processContents="strict"/>
 </xs:complexType>

Notes:

The value of the namespace="##other" attribute on xs:anyAttribute means that any attribute is allowed
from any other namespace than the current one, in this case structures.xsd.
The value of the processContents="strict" attribute on xs:anyAttribute means that the XML
processor must be able to resolve the schema identified by the namespace URI and the attributes must be valid
against that schema.

10.1.2.1 Updated message example with attribute wildcards
<ext:Message
 xmlns:ext="http://www.example.com/wildcard-attributes/extension"
 xmlns:attr='http://www.example.com/wildcard-attributes/attributes'
 xmlns:nc='http://release.niem.gov/niem/niem-core/5.0/'
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.example.com/wildcard-attributes/extension ./example.xsd
 http://www.example.com/wildcard-attributes/attributes ./attributes.xsd">
 <nc:Person>
 <nc:PersonName>
 </nc:PersonName>
 </nc:Person>
 <nc:Address>
 <nc:AddressFullText attr:transliterationText="...">...</nc:AddressFullText>
 <nc:AddressCityName attr:transliterationText="...">...</nc:AddressCityName>
 </nc:Address>
</ext:Message>

Notes:

Attribute attr:transliterationText is allowed to appear in the message because:

1. It's namespace prefix is declared in the schema header (xmlns:attr)
2. The location of the attribute schema is provided via xsi:schemaLocation, which accepts one or more pairs of

schema target namespace URIs and relative or absolute schema paths, each value and pair separated by
whitespace.

3. The transliterationText attribute actual exists at the provided schema location.

This updated example is shown again below, with the differences highlighted from the current approach of using NIEM
metadata:

<ext:Message
 xmlns:ext="http://www.example.com/wildcard-attributes/extension"
 xmlns:nc='http://release.niem.gov/niem/niem-core/5.0/'
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/wildcard-attributes/extension

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 39 of 46

./example.xsd">
 <nc:Person>
 <nc:PersonName>
- <nc:PersonGivenName structures:metadata="M1">...</nc:PersonGivenName>
- <nc:PersonSurName structures:metadata="M2">...</nc:PersonSurName>
+ <nc:PersonGivenName attr:transliterationText="...">...</nc:PersonGivenName>
+ <nc:PersonSurName attr:transliterationText="...">...</nc:PersonSurName>
 </nc:PersonName>
 </nc:Person>
 <nc:Address>
- <nc:AddressFullText structures:metadata="M3">...</nc:AddressFullText>
- <nc:AddressCityName structures:metadata="M4">...</nc:AddressCityName>
+ <nc:AddressFullText attr:transliterationText="...">...</nc:AddressFullText>
+ <nc:AddressCityName attr:transliterationText="...">...</nc:AddressCityName>
 </nc:Address>

- <nc:Metadata structures:id="M1" ext:transliterationText="..."/>
- <nc:Metadata structures:id="M2" ext:transliterationText="..."/>
- <nc:Metadata structures:id="M3" ext:transliterationText="..."/>
- <nc:Metadata structures:id="M4" ext:transliterationText="..."/>
</ext:Message>
10.1.2.2 Preventing unexpected or unwanted attributes in messages

The proposal with the attribute wildcard permits any attribute from any namespace other than structures to appear on any
NIEM-conformant element. Message designers may want to restrict the set of attributes that appear, or prevent them
entirely. This can be done by modifying the value of the namespace attribute on the xs:anyAttribute element in
structures.xsd from "##other" to one or more space-delimited namespace URIs, or removing the
xs:anyAttribute element entirely.

10.2 Drop attributes from structures:SimpleObjectAttributeGroup
niemopen/niem-naming-design-rules#33

The NTAC has proposed to drop the structures:relationshipMetadata from
structure:SimpleObjectAttributeGroup.

10.3 Drop attributes from structures:AugmentationType
niemopen/niem-naming-design-rules#34

The NTAC has proposed to drop the following attributes from structures:AugmentationType, as these attributes
are meant to apply to objects, not to containers of additional properties to apply to an object:

structures:id
structures:ref
structures:uri
IC-ISM and NTK security markup

10.3.1 Background

Augmentations in NIEM are used to attach additional properties to types defined in another namespace that cannot be
modified. Augmentations are used when the semantics of the object are sufficient, but the additional data requirements
are needed. For example, augmentations are used by multiple NIEM domains and by IEPD developers to attach
additional domain-specific properties to the generic nc:PersonType.

10.3.2 Proposal

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 40 of 46

https://github.com/niemopen/niem-naming-design-rules/issues/33
https://github.com/niemopen/niem-naming-design-rules/issues/34

As augmentations are fairly meaningless containers on their own and must be used to attach extra properties to existing
types defined in other namespaces, NIEM does not consider them to be independent objects. IDs and references, linked
data, and security markup do not apply to these containers; they should be used directly on the base objects themselves.

10.3.3 Impact

The impact of this change should be low. It affects the declaration of AugmentationType in the structures
namespace. It is not expected to affect many, if any, IEPDs in practice.

10.4 Remove structures:sequenceID
niemopen/niem-naming-design-rules#19

Replace with indicator that order matters
new appinfo:orderedPropertyIndicator (or perhaps appinfo:isOrdered?)
Appears in schemas? In messages?

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 41 of 46

https://github.com/niemopen/niem-naming-design-rules/issues/19

TODO
Integrate the following notes into the document:

XSD Conformance Targets
ReferenceSchema - has open content (attribute wildcards in structures, for augmentations)
SubsetSchema - like ReferenceSchema but augmentation points and definitions can be missing.
ExtensionSchema - like ReferenceSchema but xs:any is OK
MessageSchema - for validation & binding, not for model semantics

Closed content (no attribute wildcards)
xs:choice OK
local type definitions OK
local element and attribute declarations OK

Utility Namespace Changes
appinfo.xsd

Additions:
new appinfo:orderedPropertyIndicator (or perhaps appinfo:isOrdered?)
new appinfo:relationshipPropertyIndicator (or perhaps
appinfo:isRelationshipProperty?)
new appinfo:referenceableIndicator (or perhaps isReferenceable?)
new appinfo:referenceAttributeIndicator (or perhaps isReference?)

structures.xsd

Additions:
new attribute @structures:onlyRef (True for an XML element that does not apply to its parent.)
new attribute @structures:qname (like URI)

Other
Relative URIs are blank nodes in messages with no base URI.

@xml:lang only applies to elements with a string-valued CSC that includes @xml:lang

Doesn't apply to attribute values at all.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 42 of 46

Appendix A. Informative References
This appendix contains the informative references that are used in this document.

While any hyperlinks included in this appendix were valid at the time of publication, OASIS cannot guarantee their long-
term validity.

[JSON-LD-star]

JSON-LD-star, 12 April 2023. Edited by Gregg Kellogg and Pierre-Antoine Champin. Latest editor's draft: https://json-
ld.github.io/json-ld-star/. Latest published version: https://json-ld.github.io/json-ld-star/publications/2021-02-18.html

[RDF-star]

RDF-star and SPARQL-star. Dörthe Arndt, Jeen Broekstra, Bob DuCharme, Ora Lassila, Peter F. Patel-Schneider, Eric
Prud'hommeaux, Ted Thibodeau, Jr., and Bryan Thompson (Amazon), Authors. Olaf Hartig, Pierre-Antoine Champin,
Gregg Kellogg, and Andy Seaborne, Editors. Draft Community GroupReport, 08 December 2022, Latest editor's draft
available at https://w3c.github.io/rdf-star/cg-spec/editors_draft.html.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 43 of 46

https://json-ld.github.io/json-ld-star/
https://json-ld.github.io/json-ld-star/publications/2021-02-18.html
https://w3c.github.io/rdf-star/cg-spec/editors_draft.html

Appendix B. Acknowledgments
B.1 Participants
The following individuals have participated in the creation of this document and are gratefully acknowledged:

First Name Last Name Company

Aubrey Beach Joint Staff J6

Jim Cabral InfoTrack US

Tom Carlson GTRI

Mike Douklias Joint Staff J6

Katherine Escobar Joint Staff J6

Mike Hulme Unisys

Eric Jahn Alexandria Consulting

Dave Kemp NSA

Vamsikrishna Kondannagari DHS

Peter Madruga GTRI

Christina Medlin GTRI

Joe Mierwa Mission Critical Partners

Scott Renner MITRE

Duncan Sparrell sFractal Consulting

Jennifer Stathakis FBI

Stephen Sullivan BAH

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 44 of 46

Appendix C. Revision History
Revision Date Editor Changes Made

niem-6.0-arch-changes-v1.0-pn01.md 2023-06-12 Carlson, Medlin, Dr. Renner Initial working draft

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 45 of 46

Appendix D. Notices
Copyright © OASIS Open 2023. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights
Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document is published under Attribution 4.0 International (CC BY 4.0).

All contributions made to this project have been made under the OASIS Contributor License Agreement (CLA).

This document and translations of it may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this section are included on all such
copies and derivative works. However, this document itself may not be modified in any way, including by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable
produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS
IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to
refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of,
specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-
open.org/policies-guidelines/trademark/ for above guidance.

Non-Standards Track Work Product

niem-6.0-arch-changes-v1.0-pnd01 Copyright © OASIS Open 2023. All Rights Reserved. 27 June 2023 - Page 46 of 46

https://www.oasis-open.org/policies-guidelines/ipr/
https://creativecommons.org/licenses/by/4.0/legalcode
https://www.oasis-open.org/policies-guidelines/open-projects-process/#individual-cla-exhibit
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark/

