
NIEM Naming and Design Rules (NDR) Version 6.0
Project Specification Draft 01
27 January 2025

This stage:

https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.html

https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.pdf (Authoritative)

Previous stage:

https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.html

https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.pdf (Authoritative)

Latest stage:

https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.html

https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.pdf (Authoritative)

Open Project:

OASIS NIEMOpen OP

Project Chair:

Katherine Escobar (katherine.b.escobar.civ@mail.mil), Joint Staff J6

NTAC Technical Steering Committee Chairs:

Brad Bolliger (brad.bolliger@ey.com), EY

James Cabral (jim@cabral.org), Individual

Scott Renner (sar@mitre.org), MITRE

Editors:

James Cabral (jim@cabral.org), Individual

Tom Carlson (Thomas.Carlson@gtri.gatech.edu), Georgia Tech Research Institute

Scott Renner (sar@mitre.org), MITRE

Related work:

This specification replaces or supersedes:

National Information Exchange Model Naming and Design Rules. Version 5.0 December 18, 2020. NIEM Technical
Architecture Committee (NTAC). https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 1 of 119

https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.pdf
https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.pdf
https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.pdf
https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.pdf
https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.pdf
https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.pdf
http://www.niemopen.org/
mailto:katherine.b.escobar.civ@mail.mil
https://www.jcs.mil/Directorates/J6-C4-Cyber/
mailto:brad.bolliger@ey.com
file:///home/runner/work/niem-sandbox/niem-sandbox/ndr/v6.0/psd01/ey.com
mailto:jim@cabral.org
mailto:sar@mitre.org
https://mitre.org/
mailto:jim@cabral.org
mailto:Thomas.Carlson@gtri.gatech.edu
https://gtri.gatech.edu/
mailto:sar@mitre.org
https://mitre.org/
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html

5.0.html.

This specification is related to:

NIEM Model Version 6.0. Edited by Christina Medlin. Latest stage: https://docs.oasis-open.org/niemopen/niem-
model/v6.0/niem-model-v6.0.html.
Conformance Targets Attribute Specification (CTAS) Version 3.0. Edited by Tom Carlson. 22 February 2023. OASIS
Project Specification 01. https://docs.oasis-open.org/niemopen/ctas/v3.0/ps01/ctas-v3.0-ps01.html. Latest stage:
https://docs.oasis-open.org/niemopen/ctas/v3.0/ctas-v3.0.html.

Abstract:

Work in progress.

Status:

This document was last revised or approved by the Project Governing Board of the OASIS NIEMOpen OP on the above date.
The level of approval is also listed above. Check the “Latest stage” location noted above for possible later revisions of this
document. Any other numbered Versions and other technical work produced by the Open Project (OP) are listed at
http://www.niemopen.org/.

Comments on this work can be provided by opening issues in the project repository or by sending email to the project’s public
comment list: niemopen@lists.oasis-open-projects.org. List information is available at https://lists.oasis-open-
projects.org/g/niemopen.

Note that any machine-readable content (Computer Language Definitions) declared Normative for this Work Product is
provided in separate plain text files. In the event of a discrepancy between any such plain text file and display content in the
Work Product’s prose narrative document(s), the content in the separate plain text file prevails.

Key words:

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in BCP 14 [RFC 2119] and [RFC 8174] when, and only when, they appear in all capitals, as shown here.

Citation format:

When referencing this specification the following citation format should be used:

[NIEM-NDR-v6.0]

NIEM Naming and Design Rules (NDR) Version 6.0. Edited by Scott Renner. 1 January 2025. OASIS Project Specification
Draft 01. https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.html. Latest stage: https://docs.oasis-
open.org/niemopen/ndr/v6.0/ndr-v6.0.html.

Notices

Copyright © OASIS Open 2025. All Rights Reserved.

Distributed under the terms of the OASIS IPR Policy.

For complete copyright information please see the Notices section in the Appendix.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 2 of 119

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html
https://docs.oasis-open.org/niemopen/niem-model/v6.0/niem-model-v6.0.html
https://docs.oasis-open.org/niemopen/niem-model/v6.0/niem-model-v6.0.html
https://docs.oasis-open.org/niemopen/ctas/v3.0/ps01/ctas-v3.0-ps01.html
https://docs.oasis-open.org/niemopen/ctas/v3.0/ps01/ctas-v3.0-ps01.html
https://docs.oasis-open.org/niemopen/ctas/v3.0/ctas-v3.0.html
https://docs.oasis-open.org/niemopen/ctas/v3.0/ctas-v3.0.html
http://www.niemopen.org/
http://www.niemopen.org/
mailto:niemopen@lists.oasis-open-projects.org
https://lists.oasis-open-projects.org/g/niemopen
https://lists.oasis-open-projects.org/g/niemopen
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsCompLang
https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.html
https://www.oasis-open.org/policies-guidelines/ipr/

Table of Contents
1. Introduction

1.1 Glossary
1.1.1 Definitions of terms
1.1.2 Acronyms and abbreviations

2. How To Read This Document
2.1 Document references
2.2 Clark notation and qualified names
2.3 Use of namespaces and namespace prefixes

3. Overview of the NIEM Technical Architecture
3.1 Machine-to-machine data specifications

3.1.1 Messages
3.1.2 Message format
3.1.3 Message type
3.1.4 Message specification

3.2 Reuse of community-agreed data models
3.3 Reuse of open standards
3.4 The NIEM metamodel
3.5 NIEM model representations: XSD and CMF
3.6 Namespaces
3.7 Model extensions

4. Data models in NIEM
4.1 Model
4.2 Namespace
4.3 Component
4.4 Class
4.5 ChildPropertyAssociation
4.6 Property
4.7 ObjectProperty
4.8 DataProperty
4.9 Datatype
4.10 List
4.11 Union
4.12 Restriction
4.13 Facet
4.14 CodeListBinding
4.15 Augmentation class

4.15.1 Augmentations in NIEM XSD
4.15.2 Augmenting a class with an element property in XSD
4.15.3 Augmenting a literal class or datatype with an element property in XSD
4.15.4 Augmenting a class with an attribute property in XSD
4.15.5 Global augmentations in XSD
4.15.6 Attribute augmentations in message models

4.16 LocalTerm
4.17 TextType

5. Data modeling patterns
5.1 Datatypes and literal classes
5.2 Meaning of NIEM data
5.3 Identifiers and references in NIEM messages

5.3.1 Object references in NIEM XML using structures:id and structures:ref
5.3.2 Object references in NIEM XML using structures:uri
5.3.3 Comparison of object references in NIEM XML
5.3.4 Object references in NIEM JSON using @id
5.3.5 Meaning of inline objects and object references
5.3.6 Reference attribute properties

5.4 Metadata and augmentation

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 3 of 119

5.5 Relationship properties
5.6 Roles
5.6 Representation pattern
5.7 Container objects

6. Conformance
6.1 Conformance targets
6.2 Conformance target assertions
6.3 Conformance testing

7. Rules for model components
7.1 Rules for component names

7.1.1 Rules based on kind of component
7.1.1.1 Rules for names of Class components
7.1.1.2 Rules for names of Datatype components
7.1.1.3 Rules for names of Property components

7.1.2 Rules for composition of component names
7.1.3 General component naming rules from ISO 11179-5
7.1.4 Property naming rules from ISO 11179-5

7.1.4.1 Object-class term
7.1.4.2 Property term
7.1.4.3 Qualifier terms
7.1.4.4 Representation term

7.1.5 Acronyms, abbreviations, and jargon
7.2 Rules for component documentation

7.2.1 Rules for documented components
7.2.2 Rules for data definitions
7.2.3 Data definition rules from ISO 11179-4
7.2.4 Data definition opening phrases

7.2.4.1 Opening phrases for properties
7.2.4.2 Opening phrases for classes

7.3 Rules for specifications of components
8. Rules for namespaces

8.1 Rules for properties of namespaces
8.2 Rules for reference namespaces
8.3 Rules for extension namespaces
8.4 Rules for subset namespaces

9. Rules for schema documents
9.1 Rules for the NIEM profile of XSD
9.2 Rules for XSD types
9.3 Rules for attribute and element declarations
9.4 Rules for adapters and external components
9.5 Rules for proxy types
9.6 Rules for augmentations
9.7 Rules for machine-readable annotations
9.8 Rules for reference schema documents
9.9 Rules for extension schema documents
9.10 Rules for subset schema documents

10. Rules for models
10.1 Rules for model files
10.2 Rules for schema document sets

11. Rules for message types and message formats
12. Rules for XML messages
13. Rules for JSON messages
14. RDF interpretation of NIEM models and messages
Appendix A. References

A.1 Normative References + [ClarkNS] + [CMF] + [Code Lists] + [CTAS-v3.0] + [ISO 11179-4] + [ISO 11179-5] +
[JSON-LD] + [OED] + [RFC 2119] + [RFC 3986] + [RFC 8174] + [RFC 8259] + [SemVer] + [XML] + [XML Infoset] +
[XML Namespaces] + [XML Schema Structures] + [webarch]
A.2 Informative References

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 4 of 119

Appendix B. Structures namespace
Appendix C. Index of rules
Appendix D. Mapping NIEM 5 rules to NIEM 6
Appendix E. Table of examples
Appendix F. Table of figures
Appendix G. Table of tables
Appendix H. Acknowledgments

H.1 Participants
Appendix I. Notices

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 5 of 119

1. Introduction
NIEM, formerly known as the “National Information Exchange Model,” is a framework for exchanging information among
public and private sector organizations. The framework includes a reference data model for objects, properties, and
relationships; and a set of technical specifications for using and extending the data model in information exchanges. The
NIEM framework supports developer-level specifications of data that form a contract between developers. The data being
specified is called a message in NIEM. While a message is usually something passed between applications, NIEM works
equally well to specify an information resource published on the web, an input or output for a web service or remote
procedure, and so forth, basically, any package of data that crosses a system or organization boundary.

NIEM promotes scalability and reusability of messages between information systems, allowing organizations to share data
and information more efficiently. It was launched in 2005 in response to the U.S. Homeland Security Presidential Directives to
improve information sharing between agencies following 9/11. Until 2023, NIEM was updated and maintained in a
collaboration between the U.S. federal government, state and local government agencies, private sector, and non-profit and
international organizations, with new versions released around once per year. NIEM defines a set of common objects, the
NIEM Core, and 17 sets of objects that are specific to certain government or industry verticals, the NIEM Domains.

In 2023, NIEM became the NIEMOpen OASIS Open Project. NIEMOpen welcomes participation by anyone irrespective of
affiliation with OASIS. Substantive contributions to NIEMOpen and feedback are invited from all parties, following the OASIS
rules and the usual conventions for participation in GitHub public repository projects.

NIEMOpen is the term generally used when referring to the organization such as Project Governing Board (PGB), NIEMOpen
Technical Architecture Committee (NTAC), NIEMOpen Business Architecture Committee (NBAC), organization activities or
processes. NIEM is the term used when directly referring to the model i.e. NIEM Domain, NIEM Model version.

This document specifies principles and enforceable rules for NIEM data components and schemas. Schemas and
components that obey the rules set forth here are conformant to specific conformance targets. Conformance targets may
include more than the level of conformance defined by this NDR, and may include specific patterns of use, additional quality
criteria, and requirements to reuse NIEM release schemas.

1.1 Glossary
1.1.1 Definitions of terms

Term Definition

Absolute URI A Uniform Resource Identifier (URI) with scheme, hierarchical part, and optional query, but without a
fragment; a URI matching the grammar syntax <absoluteURI> as defined by [RFC 3986].

Adapter class A class that contains only properties from a single external namespace. [see §4.4]

Adapter type An XSD type definition that encapsulates external components for use within NIEM. (see §9.4)

Appinfo
namespace

A namespace defined by a schema document that provides additional semantics for components in the
XSD representation of a model. (see §9.7)

Association
class

A class that represents a specific relationship between objects. (see §4.4)

Attribute
property

A data property represented in XSD as an attribute declaration. (see §4.8)

Augmentation The means by which a designer of one namespace adds properties to a class defined in a different
namespace. (see §3.7, §4.15)

Augmentation
element

An element in an XML message that is a container for one or more augmentation properties. (see §4.15.2)

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 6 of 119

https://docs.oasis-open.org/niemopen/niem-model/v6.0/niem-model-v6.0.html

Augmentation
point element

An abstract element declaration that provides a place for augmentation properties within the XSD
representation of an augmented class. (see §4.15.2)

Augmentation
property

A property added by one namespace to an augmented class in another namespace. (see §4.15)

Augmentation
type

An XSD type definition for an augmentation element. (see §4.15.2)

Cardinality The number of times a property may/must appear in an object.

Class A definition of an entity in a model; that is, a real-world object, concept, or thing. (see §3.4, §4.4)

Code list
datatype

A datatype in which each valid value is also a string in a code list. (see §4.12)

Code list A set of string values, each having a known meaning beyond its value, each representing a distinct
conceptual entity. (see §4.12)

Conforming
namespace

A namespace that satisfies all of the applicable rules in this document; a reference namespace, extension
namespace, or subset namespace. (see §6.1)

Conforming
schema
document

A schema document that satisfies all of the applicable rules in this document. (see §6.1)

Conforming
schema
document set

A schema document set that satisfies all of the applicable rules in this document. (see §6.1)

Data
definition

A text definition of a component, describing what the component means.

Data property Defines a relationship between an object and a literal value.

Datatype Defines the allowed values of a corresponding literal value in a message.

Documented
component

A CMF object or XSD schema component that has an associated data definition.

Element
property

An object property, or a data property that is not an attribute property; represented in XSD by an element
declaration. (see §4.8)

Extension
namespace

A namespace defining components that are intended for reuse, but within a more narrow scope than those
defined in a reference namespace. (see §3.6)

Extension
schema
document

A schema document that is the XSD representation of an extension namespace.

External
attribute

An attribute declaration in external schema document.

External
component

A component defined by an external schema document. (see §9.4)

Term Definition

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 7 of 119

External
namespace

Any namespace defined by a schema document that is not a conforming namespace, the structures
namespace, or the XML namespace http://www.w3.org/XML/1998/namespace . (see §3.6)

External
schema
document

A schema document that defines an external namespace. (see §3.6)

Literal class A class that contains no object properties, one or more attribute properties, and exactly one element
property. (see §4.4)

Literal
property

The element property in a literal class.

Local term A word, phrase, acronym, or other string of characters that is used in the name of a namespace
component, but that is not defined in OED, or that has a non-OED definition in this namespace, or has a
word sense that is in some way unclear. (see §4.16)

Message A package of data shared at runtime; a sequence of bits that convey information to be exchanged or
shared; an instance of a message type. (see §3.1.1)

Message
designer

A person who creates a message type and message format from an information requirement, so that an
instance message at runtime will contain all the facts that need to be conveyed.

Message
developer

A person who writes software to implement a message specification, producing or processing messages
that conform to the message format.

Message
format

A specification of the valid syntax of messages that conform to a message type. (see §3.1.2)

Message
model

A data model intended to precisely define the mandatory and optional content of messages and the
meaning of that content. (see §3.1.3)

Message
object

The initial object in a message.

Message
specification

A collection of related message formats and message types. (see §3.1.4)

Message
type

A specification of the information content of messages. (see §3.1.3)

Model file The CMF representation of a NIEM model; a message that conforms to the CMF message type. (see §3.5,
§6.1)

Namespace A collection of uniquely-named components, managed by an authoritative source. (see §3.6)

NCName A non-colonized name, matching the grammar syntax <NCName> as defined by [XML Namespaces].

Object class Represents a class of objects defined by a NIEM model. (see §4.4)

Proxy type An XSD complex type definition with simple content that extends one of the simple types in the XML
Schema namespace with structures:SimpleObjectAttributeGroup . (see §9.5)

Relationship
property

A property that provides information about the relationship between its parent and grandparent objects.
(see §4.6, §5.5)

Term Definition

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 8 of 119

http://www.w3.org/XML/1998/namespace

Reference
attribute
property

An attribute property that contains a reference to an object in a message. (see §4.8)

Reference
namespace

A namespace containing components that are intended for the widest possible reuse. (see §3.6)

Reference
schema
document

The XSD representation of a reference namespace. (see §9.8)

Reuse model A data model entirely comprised of reference namespaces and extension namespaces; a model intended
to make the agreed definitions of a community available for reuse.

Schema An artifact that can be used to assess the validity of a message; in XML Schema for XML messages,
JSON Schema for JSON messages. (see §3.1.2)

Schema
document set

A collection of schema documents that together are capable of validating an XML document. (see §10.2)

Serialization (Verb) A process of converting a data structure into a sequence of bits that can be stored or transferred.
(Noun) A standard for the output of serialization; for example, XML and JSON.

Structures
namespace

A namespace that provides base types and attributes for the XSD representation of NIEM models. (see
§3.6)

Subset
namespace

A subset of the components in a reference or extension namespace. (see §3.6)

Subset rule Any data that is valid for a subset namespace must also be valid for its reference namespace or extension
namespace, and must have the same meaning. (see §8.4)

Subset
schema
document

A schema document for a subset namespace. (see §9.10)

Term Definition

Terms imported from Extensible Markup Language (XML) 1.0 (Fourth Edition) [XML]:

Term Definition

Document
element

An element, no part of which appears in the content of another element; preferred synonym for root element.

XML
document

A data object is an XML document if it is well-formed, as defined in this specification. (Section 2, Documents)

Terms imported from XML Information Set (Second Edition) [XML Infoset]:

Term Definition

Attribute An attribute information item, as defined by Section 2.3: Attribute Information Items.

Element An element information item, as defined by Section 2.2, Element Information Items.

Terms imported from [XML Schema Structures]:

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 9 of 119

https://www.w3.org/TR/2008/REC-xml-20081126/#dt-xml-doc
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/#infoitem.element
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/#infoitem.element

Term Definition

Attribute
declaration

As defined by Section 2.2.2.3, Attribute Declaration.

Base type
definition

A type definition used as the basis for an extension or restriction. (see Section 2.2.1.1, Type Definition
Hierarchy)

Complex
type
definition

As defined by Section 2.2.1.3, Complex Type Definition*.

Element
declaration

As defined by Section 2.2.2.1, Element Declaration.

Schema
component

The generic term for the building blocks that comprise the abstract data model of the schema. (see Section
2.2, XML Schema Abstract Data Model)

Schema
document

As defined by Section 3.1.2, XML Representations of Components, which states, “A document in this form
(i.e. a element information item) is a schema document.”

Simple
type
definition

As defined by Section 2.2.1.2, Simple Type Definition.

Valid As defined by Section 2.1, Overview of XML Schema, which states, “The word valid and its derivatives are
used to refer to clause 1 above, the determination of local schema-validity.”

XML
Schema

A set of schema components. (see Section 2.2, XML Schema Abstract Data Model)

XML
Schema
definition
language
(XSD)

As defined by Abstract, which states, “XML Schema: Structures specifies the XML Schema definition
language, which offers facilities for describing the structure and constraining the contents of XML 1.0
documents, including those which exploit the XML Namespace facility.”

Terms imported from NIEM Conformance Targets Attribute Specification [CTAS-v3.0]:

Term Definition

Conformance
target

A class of artifact, such as an interface, protocol, document, platform, process or service, that is the
subject of conformance clauses and normative statements. (see §6.1)

Conformance
target identifier

An internationalized resource identifier (IRI) that uniquely identifies a conformance target.

Effective
conformance
targets attribute

The first occurrence of the attribute {https://docs.oasis-
open.org/niemopen/ns/specification/conformanceTargets/6.0/}conformanceTargets , in document
order.

Effective
conformance
target identifier

An internationalized resource identifier reference that occurs in the document’s effective conformance
targets attribute.

1.1.2 Acronyms and abbreviations

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 10 of 119

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#Attribute_Declaration
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-baseTypeDefinition
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#Complex_Type_Definition
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#Element_Declaration
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-component
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-schemaDoc
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#Simple_Type_Definition
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-vn
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-component
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#abstract
https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/%7DconformanceTargets

Term Literal

APPINFO Application Information

CCC Complex type with Complex Content

CMF Common Model Format

CSC Complex type with Simple Content

CSV Comma Separated Values

CTAS Conformance Targets Attribute Specification

ID Identifier

IEP Information Exchange Package

IEPD Information Exchange Package Documentation

ISO International Organization for Standardization

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation Linked Data

NBAC NIEMOpen Business Architecture Committee

NS Namespace

NTAC NIEMOpen Technical Architecture Committee

OED Oxford English Dictionary

OP Open Project

OWL Web Ontology Language

PGB Project Governing Board

QName Qualified Name

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RFC Request For Comments

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

XML Extensible Markup Language

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 11 of 119

XSD XML Schema Definition

Term Literal

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 12 of 119

2. How To Read This Document
This document provides normative specifications for NIEM-conforming data models. It also describes the goals and principles
behind those specifications. It includes examples and explanations to help users of NIEM understand the goals, principles,
and specifications.

This document is not intended as a user guide. Training materials for message designers and developers will be available at
www.niemopen.org.

The relevant sections of this document will depend on the role of the user. Figure 2-1 illustrates the relationships between
these roles and NIEM activities.

Figure 2-1: User roles and activities

The user roles in the above figure are:

Business analysts and subject matter experts, who provide the requirements for information transfer. These
requirements might describe an information resource available to all comers. They could describe an information
exchange as part of a business process. They need not be tied to known producers and consumers.

Message designers, who express those requirements as a message type, which specifies the syntax and semantics of
the data that will convey the required information at runtime.

Message developers, who write software to construct messages that contain the required information and follows the
defined syntax, and who write software to parse and process such messages.

The remaining sections of this document most relevant to each of these roles are shown in the following table:

Section Manager Business
Analyst

Message
Designer

Message
Developer

3. Overview of NIEM technical architecture x x x x

4. Data models in NIEM x

5. Data modeling patterns x

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 13 of 119

6. Conformance x x x

7. Rules for model components x x

8. Rules for namespaces x x

9. Rules for schema documents x

10. Rules for models x

11. Rules for message types and message formats x x

12. Rules for XML messages x x

13. Rules for JSON messages x x

14. RDF interpretation of NIEM models and messages x

Section Manager Business
Analyst

Message
Designer

Message
Developer

Table 2-2: Relevant document sections by user role

2.1 Document references

This document relies on references to many outside documents. Such references are noted by bold, bracketed inline terms.
For example, a reference to RFC 3986 is shown as [RFC 3986]. All reference documents are recorded in Appendix A,
References, below.

2.2 Clark notation and qualified names

This document uses both Clark notation and QName notation to represent qualified names.

QName notation is defined by XML Namespaces Section 4, Qualified Names. A QName for the XML Schema string datatype
is xs:string. Namespace prefixes used within this specification are listed in Section 2.3, Use of namespaces and namespace
prefixes, below.

This document sometimes uses Clark notation to represent qualified names in normative text. Clark notation is described by
ClarkNS, and provides the information in a QName without the need to first define a namespace prefix, and then to reference
that namespace prefix. A Clark notation representation for the qualified name for the XML Schema string datatype is
{http://www.w3.org/2001/XMLSchema}string .

Each Clark notation value usually consists of a namespace URI surrounded by curly braces, concatenated with a local name.
The exception to this is when Clark notation is used to represent the qualified name for an attribute with no namespace, which
is ambiguous when represented using QName notation. For example, the element targetNamespace, which has no
[namespace name] property, is represented in Clark notation as {}targetNamespace .

2.3 Use of namespaces and namespace prefixes

The following namespace prefixes are used consistently within this specification. These prefixes are not normative; this
document issues no requirement that these prefixes be used in any conformant artifact. Although there is no requirement for a
schema or XML document to use a particular namespace prefix, the meaning of the following namespace prefixes have fixed
meaning in this document.

xs : The namespace for the XML Schema definition language as defined by XML Schema Structures and XML Schema
Datatypes, http://www.w3.org/2001/XMLSchema.
xsi : The XML Schema instance namespace, defined by XML Schema Structures Section 2.6, Schema-Related Markup

in Documents Being Validated, for use in XML documents, http://www.w3.org/2001/XMLSchema-instance.
ct : The namespace defined by CTAS for the conformanceTargets attribute, https://docs.oasis-

open.org/niemopen/ns/specification/conformanceTargets/6.0/.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 14 of 119

http://www.w3.org/2001/XMLSchema%7Dstring
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/
https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/

appinfo : The namespace for the appinfo namespace, https://docs.oasis-open.org/niemopen/ns/model/appinfo/6.0/.
structures : The namespace for the structures namespace, https://docs.oasis-

open.org/niemopen/ns/model/structures/6.0/.
cmf : The namespace for the CMF model representation, https://docs.oasis-

open.org/niemopen/ns/specification/cmf/1.0/.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 15 of 119

https://docs.oasis-open.org/niemopen/ns/model/appinfo/6.0/
https://docs.oasis-open.org/niemopen/ns/model/appinfo/6.0/
https://docs.oasis-open.org/niemopen/ns/model/structures/6.0/
https://docs.oasis-open.org/niemopen/ns/model/structures/6.0/
https://docs.oasis-open.org/niemopen/ns/specification/cmf/1.0/
https://docs.oasis-open.org/niemopen/ns/specification/cmf/1.0/

3. Overview of the NIEM Technical Architecture
This overview describes NIEM’s design goals and principles, and introduces key features of the architecture. The major
design goals are:

Shared understanding of data. NIEM helps developers working on different systems to understand the data their
systems share with each other.

Reuse of community-agreed data definitions. NIEM reduces the cost of data interoperability by promoting shared data
definitions — without requiring a single data model of everything for everyone.

Open standards with free-and-open-source developer tools. NIEM does not depend on proprietary standards or the use
of expensive developer tools.

The key architecture features mentioned in this section:

The NIEM metamodel — an abstract, technology-neutral data model for NIEM data models

Two equivalent model representations — One is a profile of XML Schema (XSD) that has been used in every version of
NIEM. The other is itself a NIEM-based data specification, suitable for XML and many other data technologies.

Model namespaces — for model configuration management by multiple authors working independently.

3.1 Machine-to-machine data specifications

NIEM is a framework for developer-level specifications of data. A NIEM-based data specification — which is built using NIEM
and in conformance to NIEM, but is not itself a part of NIEM — describes data to the developers of producing and consuming
systems. This data may be shared via:

a message passed between applications
an information resource published on the web
an API for a system or service

NIEM is potentially useful for any data sharing mechanism that transfers data across a system or organization boundary.
(Within a system, NIEM may be useful when data passes between system components belonging to different developer
teams.)

The primary purpose of a NIEM-based data specification is to establish a common understanding among developers, so that
they can write software that correctly handles the shared data, hence “machine-to-machine”. (NIEM-conforming data may
also be directly presented to human consumers, and NIEM can help these consumers understand what they see, but that is
not the primary purpose of NIEM.)

Data sharing in NIEM is implemented in terms of messages, message formats, and message types. These are illustrated in
figure 3-1.

message — a package of data shared at runtime; an instance of a message format and of a message type
message format — a definition of a syntax for the messages of a message type
message type — a definition of the information content in equivalent message formats

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 16 of 119

Figure 3-1: Message types, message formats, and messages

A message designer turns information requirements into a message type, then turns a message type into one or more
message formats. Message developers then use the message type and message format to understand how to implement
software that produces or consumes conforming messages.

3.1.1 Messages

In NIEM terms, the package of data shared at runtime is a message. This data is arranged according to a supported
serialization. The result is a sequence of bits that represents the information content of the message. Example 3-2 shows two
messages representing the same information, one serialized in XML, the other in JSON. Each message in this example is a
request for a quantity of some item. (In all examples, closing tags and brackets may be omitted, long lines may be truncated,
and some portions omitted and/or replaced with ellipses (…).)

<msg:Request | {
 xmlns:nc="https://docs.oasis-open.org/niemopen/ns/model/niem | "@context": {
 xmlns:msg="http://example.com/ReqRes/1.0/"> | "nc": "https://docs.oasis-open.org/niemopen/ns/model/niem-
 <msg:RequestID>RQ001</msg:RequestID> | "msg": "http://example.com/ReqRes/1.0/"
 <msg:RequestedItem> | },
 <nc:ItemName>Wrench</nc:ItemName> | "msg:Request": {
 <nc:ItemQuantity>10</nc:ItemQuantity> | "msg:RequestID" : "RQ001",
 </msg:RequestedItem> | "msg:RequestedItem": {
</msg:Request> | "nc:ItemName": Wrench",
 | "nc:ItemQuantity": 10
 | }
 | }
 | }

Example 3-2: Example of messages in XML and JSON syntax

The data structure of a NIEM message appears to be a tree with a root node. It is actually a directed graph with an initial node
called the message object. For example, the message object in example 3-2 is the msg:Request element in the XML
message. In the JSON message it is the value for the msg:Request key.

Every NIEM serialization has a mechanism for references; that is, a way for one object in the serialized graph to point to an
object elsewhere in the graph. This mechanism supports cycles and avoids duplication in the graph data structure. (See

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 17 of 119

https://docs.oasis-open.org/niemopen/ns/model/niem
http://example.com/ReqRes/1.0/%22%3E
https://docs.oasis-open.org/niemopen/ns/model/niem-
http://example.com/ReqRes/1.0/%22

section 5.2.)

Every message is an instance of a message format. A conforming message must satisfy the rules in section 12 and section
13. In particular, it must be valid according to the schema of its message format.

A NIEM message was originally known as an information exchange package (IEP), a term that found its way into
the U.S. Federal Enterprise Architecture (2005). A message specification was originally known as an information
exchange package documentation (IEPD). These terms are in widespread use within the NIEM community
today, and will not go away soon (if ever).

3.1.2 Message format

A message format specifies the syntax of valid messages. This provides message developers with an exact description of the
messages to be generated or processed by their software.

A message format includes a schema that can be used to assess the validity of a message. This schema is expressed in XML
Schema (XSD) for XML message formats, and JSON Schema for JSON message formats. Example 3-3 shows a portion of
the schemas for the two example messages in example 3-2.

<xs:complexType name="RequestType"> | {
 <xs:sequence> | "msg:RequestType": {
 <xs:element ref="msg:RequestID"/> | "type": "object",
 <xs:element ref="msg:RequestedItem"/> | "properties": {
 </xs:sequence> | "msg:RequestID": {"$ref": "#/properties/msg:RequestID"},
</xs:complexType> | "msg:RequestedItem": {"$ref": "#/properties/msg:RequestedItem"}
<xs:element name="Request" type="msg:RequestType"/> | },
 | "required": [
 | "msg:RequestID",
 | "msg:RequestedItem"
 |]
 | },
 | "msg:Request": {
 | "$ref": "#/definitions/msg:RequestType"
 | }
 | }

Example 3-3: Example message format schemas

Producing and consuming systems may use the message format schema to validate the syntax of messages at runtime, but
are not obligated to do so. Message developers may also use the schema during development for software testing. The
schemas may also be used by developers for data binding; for example, Java Architecture for XML Binding (JAXB).

A message format belongs to exactly one message type. A conforming message format must satisfy the rules in section 11; in
particular, it must be constructed so that every message that is valid according to the format also satisfies the information
content constraints of its message type.

3.1.3 Message type

One important feature of NIEM is that every message has an equivalent message in every other supported serialization.
These equivalent messages have a different message format, but have the same message type. For example, the XML
message and the JSON message in example 3-2 above are equivalent. They represent the same information content, and
can be converted one to the other without loss of information.

A message type specifies the information content of its messages without prescribing their syntax. A message type includes a
message model, which is the means through which the message designer precisely defines the mandatory and optional
content of conforming messages and the meaning of that content. This model is expressed in either of NIEM’s two model
representations, which are described in section 3.4 and section 3.5, and fully defined in section 4. Example 3-4 shows a
portion of the message model for the two message formats in example 3-3.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 18 of 119

<xs:complexType name="ItemType" appinfo:referenceCode="NONE"> | <Class structures:id="nc.ItemType">
 <xs:annotation> | <Name>ItemType</Name>
 <xs:documentation>A data type for an article or thing. | <Namespace structures:ref="nc" xsi:nil="true"/>
 </xs:annotation> | <DocumentationText>A data type for an article or th
 <xs:complexContent> | <ReferenceCode>NONE</ReferenceCode>
 <xs:extension base="structures:ObjectType"> | <ChildPropertyAssociation>
 <xs:sequence> | <DataProperty structures:ref="nc.ItemName" xsi:nil="true"/>
 <xs:element ref="nc:ItemName"/> | <MinOccursQuantity>1</MinOccursQuantity>
 <xs:element ref="nc:ItemQuantity"/> | <MaxOccursQuantity>1</MaxOccursQuantity>
 </xs:sequence> | </ChildPropertyAssociation>
 </xs:extension> | <ChildPropertyAssociation>
 </xs:complexContent> | <DataProperty structures:ref="nc.ItemQuantity"
</xs:complexType> | <MinOccursQuantity>1</MinOccursQuantity>
<xs:element name="ItemName" type="nc:TextType"> | <MaxOccursQuantity>1</MaxOccursQuantity>
 <xs:annotation> | </ChildPropertyAssociation>
 <xs:documentation>A name of an item.</xs:documentation> | </Class>
 </xs:annotation> | <DataProperty structures:id="nc.ItemName">
</xs:element> | <Name>ItemName</Name>
<xs:element name="RequestedItem" type="nc:ItemType"> | <Namespace structures:ref="nc" xsi:nil="true"/>
 <xs:annotation> | <DocumentationText>A name of an item.
 <xs:documentation>A specification of an item request.</xs | <Datatype structures:ref="nc.TextType" xsi:nil="true"/>
 </xs:annotation> | </DataProperty>
</xs:element> | <ObjectProperty structures:id="msg.RequestedItem">
 | <Name>RequestedItem</Name>
 | <Namespace structures:ref="msg" xsi:nil="true"/>
 | <DocumentationText>A specification of an item
 | <Class structures:ref="nc.ItemType" xsi:nil="true"/>
 | <ReferenceCode>NONE</ReferenceCode>
 | </ObjectProperty>

Example 3-4: Example message model in XSD and CMF

In addition to the message model, a message type also declares the initial property of conforming messages. In a conforming
message, the message object is always the value of the initial property. For example, the message type for the message in
example 3-2 declares that the initial property is msg:Request .

A message type provides all of the information needed to generate the schema for each message format it specifies.
NIEMOpen provides free and open-source software tools to generate these schemas from the message model. (Message
designers may also compose these schemas by hand, if desired.)

A conforming message type must satisfy all of the rules in section 11.

3.1.4 Message specification

A message specification is a collection of related message types. For instance, a Request message type might be paired with
a Response message type as part of a request/response protocol. Those two message types could be collected into a
message specification for the protocol, as illustrated below in example 3-5.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 19 of 119

https://github.com/niemopen/ntac-admin/blob/main/tools/README.md

Example 3-5: Message specifications, types, and formats

Summary:

A message specification defines one or more message types; a message type belongs to one message specification
A message type defines one or more message formats; a message format belongs to one message type
A message format defines the syntax of valid messages
A message type defines the semantics of valid messages, plus their mandatory and optional content
A message is an instance of a message format and of that format’s message type

3.2 Reuse of community-agreed data models

NIEM is also a framework allowing communities to create reuse models for concepts that are useful in multiple data
specifications. These community models are typically not complete for any particular specification. Instead, they reflect the
community’s judgement on which definitions are worth the trouble of agreement. The NIEM core model contains definitions
found useful by the NIEM community as a whole. NIEM domain models reuse the core, extending it with definitions found
useful by the domain community. The core model plus the domain models comprise the “NIEM model”. Figure 3-6 below
illustrates the relationships between domain communities and community models.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 20 of 119

Figure 3-6: NIEM communities and data models

Message designers reuse definitions from the NIEM model, selecting a (usually small) subset of definitions that express a part
of their information requirement. Message designers then create model extensions, adding components that do not yet exist
in the NIEM model. These local extensions could be useful to others in the community beyond the scope of the original
message, and may be submitted for potential adoption into the NIEM model (see https://github.com/niemopen/niem-
model/issues).

NIEM’s policy of easy model extension supports easy reuse of community data models. Because a community model does
not need to be complete for the union of all needs, each community may focus its effort on its common needs, where the
effort of agreement has the highest value. Data definitions that are not common, that are needed only for a particular
message appear only as extensions in that message type, and need be learned only by the message developers who
implement it. Model extensions are further described in section 3.7.

Data model reuse is especially useful in a large enterprise. Its value grows with the number of developer teams, and with the
degree of commonality in the shared data. NIEM was originally designed for data sharing among federal, state, and local
governments — where commonality and number of developer teams is large indeed.

3.3 Reuse of open standards

NIEM is built on a foundation of open standards, primarily:

XML and XSD — message serialization and validation; also a modeling formalism
JSON and JSON-LD — message serialization and linked data
JSON Schema — message validation
RDF, RDFS, and OWL — formal semantics
ISO 11179 — conventions for data element names and documentation

One of NIEM’s principles is to reuse well-known information technology standards when these are supported by free and
open-source software. NIEM avoids reuse of standards that effectively depend on proprietary software. When the NIEMOpen
project defines a standard of its own, it also provides free and open-source software to support it.

3.4 The NIEM metamodel

A data model in NIEM is either a message model, defining the information content of a message type, or a reuse model,
making the agreed definitions of a community available for reuse. The information required for those purposes can itself be
modeled. The model of that information is the NIEM metamodel – an abstract model for NIEM data models. The metamodel is
expressed in UML, and is described in detail in section 4. At a high level, the major components of the metamodel are
properties, classes, datatypes, namespaces, and models. Figure 3-7 provides an illustration.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 21 of 119

https://github.com/niemopen/niem-model/issues
https://github.com/niemopen/niem-model/issues

Figure 3-7: High-level view of the NIEM metamodel

A property is a concept, idea, or thing. It defines a field that may appear in a message and can contain subfields (for
objects / object properties) or a value (for literals / data properties). For example, in example 3-4, req:RequestedItem and
nc:ItemName are names of properties. req:RequestedItem is an object property for the requested item; nc:ItemName is a

data property for the name of the item. The meaning of these properties is captured in the documentation text.

A class defines the properties that may appear in the content of a corresponding object in a message. A class has one
or more properties. An object property in a class defines a subject-property-value relationship between two objects. A
data property defines a relationship between an object and a literal value. In example 3-4, nc:ItemType is the name of a
class.

A datatype defines the allowed values of a corresponding literal value in a message. In example 3-4, nc:TextType is the
name of a datatype.

Classes and datatypes are the two kinds of type in the metamodel. For historical reasons, the name of every class and
datatype in the NIEM model ends in “Type”. This is why the high-level view of the metamodel includes the abstract Type
UML class.

Classes, datatypes, and properties are the three kinds of metamodel component. (All of the common properties of
classes and datatypes are defined in the Component class, which is why the abstract Type class is not needed in the
detailed metamodel diagram in section 4.)

A namespace is a collection of uniquely-named components defined by an authority. (See section 3.6)

A model is a collection of components (organized into namespaces) and their relationships.

Figure 3-8 below illustrates the relationships among metamodel components, NIEM model components, and the
corresponding message objects and values.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 22 of 119

Figure 3-8: Message, message model, and metamodel relationships

A NIEM message contains properties which are based on objects or literal values. These are specified by the class, property,
and datatype objects in a NIEM message model, which defines the content of a conforming message and also defines the
meaning of that content. For example, in figure 3-8, the item object is defined by the nc:ItemType Class object; the literal
value (Wrench) is defined by the xs:string Datatype object, and the property relationship between the two is defined by the
nc:ItemName DataProperty object.

3.5 NIEM model representations: XSD and CMF

The abstract metamodel has two concrete representations: NIEM XSD and NIEM CMF. These are equivalent representations
and may be converted from one to the other without loss. (NIEMOpen provides free and open-source software tools that
perform the conversion; see software tools.)

Every version of NIEM uses a profile of XML Schema (XSD) as a NIEM model representation. In XSD, a NIEM model is
represented as a schema assembled from a collection of schema documents. Every aspect of the metamodel is represented
in some way by a schema component.

XSD as a model representation directly supports conformance testing of NIEM XML messages through schema validation.
However, JSON developers (and developers working with other formats) cannot use XSD to validate their messages. Nor do
they want to read XSD specifications of message content. For this reason, NIEM 6 introduces the Common Model Format
(CMF), which is a NIEM model representation intended to support all developers.

CMF is the result of applying the NIEM framework to the information requirements in the metamodel. That result is a NIEM-
based message type, which is part of a message specification, which is published in CMF. In CMF, a model is represented as
an instance of that message type; that is, a CMF message, also known as a model file.

CMF is a technology-neutral model representation, because:

A CMF model can be transformed into XSD for validation of XML messages, and into JSON Schema for validation of
JSON messages.

A CMF model can itself be represented in XML or JSON, according to developer preference. That is, like any other
NIEM message, the CMF representation of a model can be serialized in either XML or JSON. For example, example 3-9
shows a portion of the message model from example 3-4 in both XML and JSON syntax.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 23 of 119

https://github.com/niemopen/ntac-admin/blob/main/tools/README.md

<Class structures:id="nc.ItemType"> | {
 <Name>ItemType</Name> | "cmf:Class": {
 <Namespace structures:ref="nc" xsi:nil="true"/> | "cmf:Name": "ItemType",
 <DocumentationText>A data type for an article or thing.</Docum | "cmf:Namespace": { "@id": "#nc" },
 <ReferenceCode>NONE</ReferenceCode> | "cmf:DocumentationText": "A data type for an article
 <ChildPropertyAssociation> | "cmf:ReferenceCode": "NONE",
 <DataProperty structures:ref="nc.ItemName" xsi:nil="true"/> | "cmf:PropertyAssociation": {
 <MinOccursQuantity>1</MinOccursQuantity> | "cmf:DataProperty": { "@id": "#nc.ItemName" },
 <MaxOccursQuantity>1</MaxOccursQuantity> | "cmf:MinOccursQuantity": 1,
 </ChildPropertyAssociation> | "cmf:MaxOccursQuantity": 1
 <ChildPropertyAssociation> | },
 <DataProperty structures:ref="nc.ItemQuantity" xsi:nil="true | "cmf:PropertyAssociation": {
 <MinOccursQuantity>1</MinOccursQuantity> | "cmf:DataProperty": { "@id": "#nc.ItemQuantity" },
 <MaxOccursQuantity>1</MaxOccursQuantity> | "cmf:MinOccursQuantity": 1,
 </ChildPropertyAssociation> | "cmf:MaxOccursQuantity": 1
</Class> | }
 | }
 | }

Example 3-9: CMF model in XML and JSON syntax

Section 4 defines the mappings between the metamodel, NIEM XSD, and CMF.

While NIEM uses JSON Schema to validate JSON messages, there is no JSON Schema representation of the
metamodel, because JSON Schema does not have all of the necessary features to represent NIEM models.

3.6 Namespaces

The components of a NIEM model are partitioned into namespaces. This prevents name clashes among communities or
domains that have different business perspectives, even when they choose identical data names to represent different data
concepts.

Each namespace has an author, a person or organization that is the authoritative source for the namespace definitions. A
namespace is the collection of model components for concepts of interest to the namespace author. Namespace cohesion is
important: a namespace should be designed so that its components are consistent, may be used together, and may be
updated at the same time.

Each namespace must be uniquely identified by a URI. The namespace author must also be the URI’s owner, as defined by
[webarch]. Both URNs and URLs are allowed. It is helpful, but not required, for the namespace URI to be accessible,
returning the definition of the namespace content in a supported model format.

NIEM defines two categories of authoritative namespace: reference namespace and extension namespace.

Reference namespace: The NIEM model is a reuse model comprised entirely of reference namespaces. The
components in these namespaces are intended for the widest possible reuse. They provide names and definitions for
concepts, and relations among them. These namespaces are characterized by “optionality and over-inclusiveness”. That
is, they define more concepts than needed for any particular data exchange specification, without cardinality constraints,
so it is easy to select the concepts that are needed and omit the rest. They also omit unnecessary range or length
constraints on property datatypes.

A reference namespace is intended to capture the meaning of its components. It is not intended for a complete
definition of any particular message type. Message designers are expected to subset, profile, and extend the
components in reference namespaces as needed to match their information exchange requirements.

Extension namespace: The components in an extension namespace are intended for reuse within a more narrow scope
than those defined in a reference namespace. These components express the additional vocabulary required for an
information exchange, above and beyond the vocabulary available from the NIEM model. The intended scope is often a
particular message specification. Sometimes a community or organization will define an extension namespace for
components to be reused in several related message specifications. In this case, the namespace components may also
omit cardinality and datatype constraints, and may be incomplete for any particular message type.

Message designers are encouraged to subset, profile, and extend the components in extension namespaces created by

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 24 of 119

another author when these satisfy their modeling needs, rather than create new components.

Namespaces are the units of model configuration management. Once published, the components in a reference namespace
or extension namespace may not be removed or changed in meaning. A change of that nature may only be made in a new
namespace with a different URI.

As a result of this rule, once a specific version of a namespace is published, it can no longer be modified. Updates must go
into a new version of the namespace. All published versions of a namespace continue to be valid in support of older
exchanges.

In addition, note that a message specification contains its own copy of the schemas that they depend upon. Therefore new
versions of a model or a namespace do not affect existing exchanges. Exchange partners may decide to upgrade to a new
version of NIEM if they decide it suits their needs, but only if they choose to do so, and only on their own timeline. The NIEM
release schedule does not force adopters to keep in sync.

Message designers almost never require all the components in the NIEM model, and so NIEM defines a third namespace
category:

Subset namespace: Technically, this is a “namespace subset”, which contains only some of the components of a
reference namespace or extension namespace. It provides components for reuse, while enabling message designers
and developers to:

Omit optional components in a reference namespace or extension namespace that they do not need.

Provide cardinality and datatype constraints that precisely define the content of one or more message types.

All message content that is valid for a subset namespace must also be valid for the reference namespace or extension
namespace with the same URI. Widening the value space of a component is not allowed. Adding components is not
allowed. Changing the documentation of a component is not allowed.

NIEM has a fourth namespace category, for namespaces containing components from standards or specifications that are
based on XML but not based on NIEM.

External namespace: Any namespace defined by a schema document that is not:

a reference namespace
an extension namespace
a subset namespace
the structures namespace, https://docs.oasis-open.org/niemopen/ns/model/structures/6.0/
the XML namespace, http://www.w3.org/XML/1998/namespace .

XML attributes defined in an external namespace may be part of a NIEM model. XML elements defined in an external
namespace are not part of a NIEM model, but may be used as properties of an adapter type (see §9.4).

Three special namespaces do not fit into any of the four categories:

The structures namespace is not part of any NIEM model. It provides base types and attributes that are used in the XSD
representation of NIEM models.

The XML namespace is not considered to be an external namespace. It defines the xml:lang attribute, which may be a
component in a NIEM model.

The XSD namespace (http://www.w3.org/2001/XMLSchema) defines the primitive datatypes (xs:string , etc.) This
namespace appears explicitly in CMF model representations, and is implicitly part of every XSD representation.

3.7 Model extensions

Reuse of a community data model typically supplies some but not all of the necessary data definitions. Model extension
allows a model designer to supply the missing definitions. NIEM has two forms of model extension: subclassing and
augmentation.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 25 of 119

https://docs.oasis-open.org/niemopen/ns/model/structures/6.0/
http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/XMLSchema

In a subclass, a namespace designer creates a new class in his own namespace to represent a special kind of thing. The new
class shares all of the properties of its parent class, and adds properties belonging only to the new class. For example, in the
NIEM model, nc:Vehicle is a subclass of nc:Conveyance . Like any Conveyance, a Vehicle may have the
nc:ConveyanceEngineQuantity property, but only Vehicles have the nc:VehicleSeatingQuantity property; other Conveyances

do not.

In an augmentation, a namespace designer creates additional properties for a class that is defined in a different namespace.
Here the designer is not creating a new class for a new kind of thing. Instead, he is providing properties which could have
been defined by the original class designer, but in fact were not. For example, the designers of the NIEM Justice domain have
augmented nc:PersonType with the j:PersonSightedIndicator property, because for the members of the Justice domain it is
useful to record whether a person is able to see, even though to the NIEM community as a whole, adding this property to
NIEM Core is not worth the trouble.

In general, augmentations are preferred over subclassing. At present the NIEM metamodel does not support multiple
inheritance. If several domains were to create a subclass of nc:PersonType , there would be no way for a message designer to
combine in his message model the properties of a person from NIEM Justice, NIEM Immigration, etc. That combination is
easily done with augmentations.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 26 of 119

4. Data models in NIEM
The NIEM metamodel is an abstract model that specifies the content of a NIEM data model. It is described by the UML
diagram in figure 4-1 below.

Figure 4-1:The NIEM metamodel

This section specifies:

the meaning of the classes, attributes, and relationships in the metamodel
the meaning of the classes, datatypes, and properties in CMF, which implements the metamodel
the XSD constructs that correspond to CMF classes, datatypes, and properties, and which also implement the
metamodel

In addition to the UML diagram, this section contains several tables that document the classes, attributes, and relationships in
the metamodel. These tables have the following columns:

Column Definition

Name the name of the class, attribute, or relationship

Definition the definition of the object or property

Card the number of times this property may/must appear in an object

Ord true when the order of the instances of a repeatable property in an object is significant

Range the class or datatype of a property

Table 4-2: Definition of columns in metamodel property tables

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 27 of 119

Classes, attributes, and relationships have the same names in the metamodel and in CMF. (Attributes and relationship names
have lower camel case in the diagram and tables, following the UML convention. The tables and the CMF specification use
the same names in upper camel case, following the NIEM convention.)

The definitions in these tables follow NIEM rules for documentation (which are described in section 7.2). As a result, the
definition of each metamodel class begins with “A data type for…” instead of “A class for…”. (For historical reasons, the name
of every class and datatype in the NIEM model ends in “Type”, and this is reflected in the conventions for documentation; see
section 3.4.)

Names from CMF and the metamodel do not appear in the XSD representation of a model. Instead, NIEM defines special
interpretations of XML Schema components, making the elements and attributes in an XSD schema document equivalent to
CMF model components. The mapping between CMF components and XSD schema components is provided by a table in
each section below, with these columns:

Column Definition

CMF CMF component name

XSD XSD equivalent

Table 4-3: Definition of columns in CMF-XSD mapping tables

4.1 Model

A Model object represents a NIEM model.

Figure 4-4: Model class diagram

Name Definition Card Ord Range

Model A data type for a NIEM data model.

Component A data concept for a component of a NIEM data model. 0..* - ComponentType

Namespace A namespace of a data model component 0..* - NamespaceType

Table 4-5: Properties of the Model object class

In XSD, an instance of the Model class is represented by a schema document set.

4.2 Namespace

A Namespace object represents a namespace in a model. For example, the namespace with the URI https://docs.oasis-
open.org/niemopen/ns/model/niem-core/6.0/ is a namespace in the NIEM 6.0 model.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 28 of 119

https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/

Figure 4-6: Namespace class diagram

Name Definition Card Ord Range

Namespace A data type for a namespace.

NamespaceURI A URI for a namespace. 1 - xs:anyURI

NamespacePrefixText A namespace prefix name for a namespace. 1 - xs:NCName

DocumentationText A human-readable text documentation of a
namespace.

1..* Y TextType

NamespaceLanguageName A name of a default language of the terms
and documentation text in a namespace.

1 - xs:language

NamespaceVersionText A version of a namespace; for example,
used to distinguish a namespace subset,
bug fix, documentation change, etc.

1 - xs:token

NamespaceCategoryCode A kind of namespace in a NIEM model
(external, core, domain, etc.).

1 - NamespaceCategoryCodeType

ConformanceTargetURI A conformance target identifier. 0..* - xs:anyURI

NIEMVersionText A NIEM version number of the builtin
schema components used in a namespace;
e.g. “5” or “6”.

0..1 - xs:token

DocumentFilePathText A relative file path from the top schema
directory to a schema document for this
namespace.

0..1 - xs:string

ImportDocumentationText Human-readable documentation from the
first xs:import element importing this
namespace.

0..1 - xs:string

AugmentationRecord An augmentation of a class with a property
by a namespace.

0..* - AugmentationType

LocalTerm A data type for the meaning of a term that
may appear within the name of a model
component.

0..* - LocalTermType

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 29 of 119

Table 4-7: Properties of the Namespace object class

In XSD, an instance of the Namespace class is represented by the <xs:schema> element in a schema document. Example 4-8
shows the representation of a Namespace object in CMF and in the corresponding XSD.

<Namespace>
 <NamespaceURI>https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/</NamespaceURI>
 <NamespacePrefixText>nc</NamespacePrefixText>
 <DocumentationText>NIEM Core.</DocumentationText>
 <ConformanceTargetURI>
 https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument
 </ConformanceTargetURI>
 <NamespaceVersionText>ps02</NamespaceVersionText>
 <NamespaceLanguageName>en-US</NamespaceLanguageName>
</Namespace>

<xs:schema
 targetNamespace="https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/"
 xmlns:ct="https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/"
 xmlns:nc="https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 ct:conformanceTargets="https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument"
 version="ps02"
 xml:lang="en-US">
 <xs:annotation>
 <xs:documentation>NIEM Core.</xs:documentation>
 </xs:annotation>
</xs:schema>

Example 4-8: Namespace object in CMF and XSD

The following table shows the mapping between Namespace object representations in CMF and XSD.

CMF XSD

NamespaceURI xs:schema/@targetNamespace

NamespacePrefixText The prefix in the first namespace declaration of the target namespace

DocumentationText xs:schema/xs:annotation/xs:documentation

ConformanceTargetURI Each of the URIs in the list attribute xs:schema/@ct:conformanceTargets

NamespaceVersionText xs:schema/@version

NamespaceLanguageName xs:schema/@xml:lang

Table 4-9: Namespace object properties in CMF and XSD

4.3 Component

A Component is either a Class object, a Property object, or a Datatype object in a NIEM model. This abstract class defines
the common properties of those three concrete subclasses.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 30 of 119

https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/%3C/NamespaceURI%3E
https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/%22
https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/%22
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/%22
http://www.w3.org/2001/XMLSchema%22
https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument%22

Figure 4-10: Component class diagram

Name Definition Card Ord Range

Component A data type for common properties of a data model component in
NIEM.

Name The name of a data model component. 1 - xs:NCName

DocumentationText A human-readable text definition of a data model component. 0..* Y TextType

DeprecatedIndicator True for a deprecated schema component; that is, a component
that is provided, but the use of which is not recommended.

0..1 - xs:boolean

Namespace The namespace of a data model component. 1 - NamespaceType

Table 4-11: Properties of the Component abstract class

In XSD, the common properties of a Component object are represented by a complex type definition or an element or
attribute declaration. Example 4-12 shows the representation of those common properties in CMF and XSD.

<DataProperty>
 <Name>ActivityCompletedIndicator</Name>
 <Namespace structures:ref="nc"/>
 <DocumentationText>True if an activity has ended; false otherwise.</DocumentationText>
 <DeprecatedIndicator>false</DeprecatedIndicator>

<xs:element name="ActivityCompletedIndicator" type="niem-xs:boolean" appinfo:deprecated="false">
 <xs:annotation>
 <xs:documentation>True if an activity has ended; false otherwise.</xs:documentation>
 </xs:annotation>
</xs:element>

Example 4-12: Component object (abstract) in CMF and XSD

The following table shows the mapping between Component object properties in CMF and XSD.

CMF XSD

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 31 of 119

Name @name of element or attribute declaration

NamespaceURI @targetNamespace of schema document

DocumentationText xs:annotation/xs:documentation of element or attribute declaration

DeprecatedIndicator ’@appinfo:deprecated` of element or attribute declaration

CMF XSD

Table 4-13: Component object properties in CMF and XSD

4.4 Class

A Class object represents a class of message objects defined by a NIEM model. For example, nc:ItemType is a Class object
in the NIEM Core model.

Figure 4-14: Class and ChildPropertyAssociation class diagram

Name Definition Card Ord Range

Class A data type for a class.

AbstractIndicator True if a class is a base for extension, and must
be specialized to be used directly; false if a class
may be used directly.

0..1 - xs:boolean

AnyAttributeIndicator True when instances of a class may have
arbitrary attribute properties in addition to those
specified by ChildPropertyAssociation.

0..1 - xs:boolean

AnyElementIndicator True when instances of a class may have
arbitrary element properties in addition to those
specified by ChildPropertyAssociation.

0..1 - xs:boolean

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 32 of 119

ReferenceCode A code describing how a property may be
referenced (or must appear inline).

0..1 - ReferenceCodeType

SubClassOf A base class of a subclass. 0..1 - ClassType

ChildPropertyAssociation An association between a class and a child
property of that class.

0..* Y ChildPropertyAssociationType

Name Definition Card Ord Range

Table 4-15: Properties of the Class object class

The range of the ReferenceCode property is a code list with the following codes and meanings:

Code Definition

REF A code for a property that may be referenced by an IDREF (in XML) or NCName (in JSON).

URI A code for a property that may be referenced by a URI.

ANY A code for a property that may be reference by IDREF/NCName or URI.

NONE A code for a property that my not be referenced and must appear inline.

Table 4-16: ReferenceCode code list

Class objects may be categorized into four groups, as follows:

An object class contains one or more properties from a conforming namespace. An object class has a name ending in
“Type”. Most class objects fall into this category.

An adapter class contains only properties from a single external namespace. It acts as a conformance wrapper around
data components defined in standards that are not NIEM conforming. An adapter class has a name ending in
“AdapterType”. (See section 9.4.)

An association class represents a specific relationship between objects. Associations are used when a simple NIEM
property is insufficient to model the relationship clearly, or to model properties of the relationship itself. An association
class has a name ending in “AssociationType”.

A literal class contains no object properties, at least one attribute property, and exactly one element property. A literal
class has a name ending in “Type”.

The instances of most classes (including adapter and association classes) are represented in XML as an element with
complex content; that is, with child elements, and sometimes with attributes. For example, example 4-17 shows an XML
element with complex content, and also the equivalent in a JSON message.

<ex:ItemWeightMeasure> | {
 <ex:MassUnitCode>KGM</unece:MassUnitCode> | "ex:ItemWeightMeasure": {
 <ex:MeasureDecimalValue>22.5</ex:MeasureDecimalValue> | "ex:MassUnitCode": "KGM",
</ex:ItemWeightMeasure> | "ex:MeasureDecimalValue": 22.5
 | }
 | }

Example 4-17: Instance of a class in XML and JSON

These classes are represented in XSD as a complex type with complex content (“CCC type”); that is, a type with child
elements. Example 4-18 below shows a ordinary Class object defining the class of the ItemWeightMeasure property in the
example above, represented first in CMF, and then in XSD as a complex type with child elements.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 33 of 119

<Class structures:id="ex.WeightMeasureType">
 <Name>WeightMeasureType</Name>
 <Namespace structures:ref="ex" xsi:nil="true"/>
 <ChildPropertyAssociation>
 <DataProperty structures:ref="ex.MassUnitCode" xsi:nil="true"/>
 <MinOccursQuantity>1</MinOccursQuantity>
 <MaxOccursQuantity>1</MaxOccursQuantity>
 </PropertyAssociation}>
 <ChildPropertyAssociation>
 <DataProperty structures:ref="ex.MeasureDecimalValue" xsi:nil="true"/>
 <MinOccursQuantity>1</MinOccursQuantity>
 <MaxOccursQuantity>1</MaxOccursQuantity>
 </PropertyAssociation>
</Class>

<xs:complexType name="WeightMeasureType">
 <xs:complexContent>
 <xs:extension base="structures:ObjectType">
 <xs:sequence>
 <xs:element ref="ex:MassUnitCode"/>
 <xs:element ref="ex:MeasureDecimalValue"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Example 4-18: A Class object in CMF and XSD (CCC type)

The following table shows the mapping between Class object representations in CMF and XSD.

CMF XSD

AbstractIndicator xs:complexType/@abstract

AnyAttributeIndicator xs:anyAttribute

AnyElementIndicator xs:any

ReferenceCode xs:complexType/@appinfo:referenceCode

SubClassOf xs:complexType/xs:complexContent/xs:extension/@base

ChildPropertyAssociation xs:complexType/xs:complexContent/xs:extension/xs:sequence/xs:element or
xs:complexType/xs:complexContent/xs:extension/xs:attribute

Table 4-19: Class object object properties in CMF and XSD

Instances of a literal class are represented as an element with simple content and attributes in XML. Example 4-20 below
shows an XML and JSON instance of a literal class.

<ex:ItemWeightMeasure ex:massUnitCode="KGM"> | {
 22.5 | "ex:ItemWeightMeasure": {
</ex:ItemWeightMeasure> | "ex:massUnitCode": "KGM",
 | "ex:WeightMeasureLiteral": 22.5
 | }
 | }

Example 4-20: Instance of a literal class in XML and JSON

A literal class is represented in XSD as a complex type with simple content (“CSC type”) and attributes. This is illustrated in
example 4-21 below, which shows a literal class defining the class of the ItemWeightMeasure property in example 4-20 above.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 34 of 119

 <Class structures:id="ex.WeightMeasureType">
 <Name>WeightMeasureType</Name>
 <Namespace structures:ref="ex" xsi:nil="true"/>
 <ChildPropertyAssociation>
 <DataProperty structures:ref="ex.massUnitCode" xsi:nil="true"/>
 <MinOccursQuantity>1</MinOccursQuantity>
 <MaxOccursQuantity>1</MaxOccursQuantity>
 </ChildPropertyAssociation>
 <ChildPropertyAssociation>
 <DataProperty structures:ref="ex.WeightMeasureLiteral" xsi:nil="true"/>
 <MinOccursQuantity>1</MinOccursQuantity>
 <MaxOccursQuantity>1</MaxOccursQuantity>
 </ChildPropertyAssociation>
 </Class>

<xs:complexType name="WeightMeasureType">
 <xs:simpleContent>
 <xs:extension base="xs:decimal">
 <xs:attribute ref="ex:massUnitCode" use="required"/>
 <xs:attributeGroup ref="structures:SimpleObjectAttributeGroup"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

Example 4-21: A literal class object in CMF and XSD (CSC type)

A literal class always has one DataProperty that is not an attribute property. This property is named after the class, with
“Type” replaced by “Literal” It does not appear in the XSD representation of the literal class, or as a separate element in the
XML message.

A literal class always has at least one attribute property. In XSD, a complex type with simple content and no attributes
represents a Datatype, not a Class.

4.5 ChildPropertyAssociation

An instance of the ChildPropertyAssociation class represents an association between a class and a child property of that
class. For example, nc:PersonMiddleName property and nc:personNameCommentText are two child properties of the
’nc:PersonType` class.

Name Definition Card Ord Range

ChildPropertyAssociation A data type for an occurrence of a property as content of a
class.

MinOccursQuantity The minimum number of times a property may occur within an
object of a class.

1 - xs:integer

MaxOccursQuantity The maximum number of times a property may occur within
an object of a class.

1 - MaxOccursType

DocumentationText A human-readable documentation of the association between
a class and a child property content of that class.

0..* Y TextType

OrderedPropertyIndicator True if the order of a repeated property within an object is
significant.

0..1 - xs:boolean

Property The property that occurs in the class. 1 - PropertyType

Table 4-22: Properties of the ChildPropertyAssociation object class

A ChildPropertyAssociation object is represented in XSD as an element or attribute reference within a complex type definition.
Example 4-23 shows the representation of two PropertyAssociation objects, first in CMF, and then in XSD.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 35 of 119

<ChildPropertyAssociation>
 <ObjectProperty structures:ref="nc.PersonMiddleName" xsi:nil="true"/>
 <MinOccursQuantity>0</MinOccursQuantity>
 <MaxOccursQuantity>unbounded</MaxOccursQuantity>
 <DocumentationText>
 Documentation here is unusual; it refers to the association between the object and this property.
 </DocumentationText>
 <OrderedPropertyIndicator>true</OrderedPropertyIndicator>
</ChildPropertyAssociation>
<ChildPropertyAssociation>
 <DataProperty structures:ref="nc:personNameCommentText" xsi:nil="true"/>
 <MinOccursQuantity>0</MinOccursQuantity>
 <MaxOccursQuantity>1</MaxOccursQuantity>
</ChildPropertyAssociation>

<xs:sequence>
 <xs:element ref="nc:PersonMiddleName"
 minOccurs="0" maxOccurs="unbounded" appinfo:orderedPropertyIndicator="true">
 <xs:annotation>
 <xs:documentation>
 Documentation here is unusual; it refers to the relationship between the object and this property.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:sequence>
<xs:attribute ref="nc:personNameCommentText" use="optional"/>

Example 4-23: PropertyAssociation object in CMF and XSD

The following table shows the mapping between PropertyAssociation representations in CMF and XSD.

CMF XSD

Property The property object for xs:element/@ref or xs:attribute/@ref .

MinOccursQuantity xs:element/@minOccurs or xs:attribute/@use

MaxOccursQuantity xs:element/@maxOccurs

DocumentationText xs:element/xs:annotation/xs:documentation or xs:attribute/xs:annotation/xs:documentation

OrderedPropertyIndicator xs:element/@appinfo:orderedPropertyIndicator

AugmentingNamespace xs:element/@appinfo:augmentingNamespace or xs:attribute/@appinfo:augmentingNamespace

Table 4-24: ChildPropertyAssociation object properties in CMF and XSD

4.6 Property

A Property object is either an ObjectProperty or a DataProperty in a NIEM model. This abstract class defines the common
properties of those two concrete subclasses.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 36 of 119

Figure 4-25: Property class diagram

Name Definition Card Ord Range

Property A data type for a property.

AbstractIndicator True if a property must be specialized; false if a property may be used
directly.

0..1 - xs:boolean

RelationshipIndicator True for a relationship property, a property that applies to the
relationship between its parent and grandparent objects.

0..1 - xs:boolean

SubPropertyOf A property of which a property is a subproperty. 0..1 - PropertyType

Table 4-26: Properties of the Property abstract class

Apart from the message object, every object in a message is a child property of another object, and typically provides
information about that object. A relationship property instead provides information about the relationship between its parent
and grandparent objects. Section 5.5 provides an example.

The examples of a Property object in CMF and XSD, and the table showing the mapping between the CMF and XSD
representations, are shown below in the definitions of the concrete subclasses, ObjectProperty and DataProperty.

4.7 ObjectProperty

An instance of the ObjectProperty class represents a property in a NIEM model with a range that is a class. For example, the

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 37 of 119

nc:PersonMiddleName object in the NIEM core model is an object property with a range of the nc:PersonNameTextType class.

Name Definition Card Ord Range

ObjectProperty A data type for an object property.

ReferenceCode A code describing how a property may be referenced (or must
appear inline).

0..1 - ReferenceCodeType

Class The class of this object property. 1 - ClassType

Table 4-27: Properties of the ObjectProperty object class

An ObjectProperty object is represented in XSD as an element declaration with a type that is a Class object. Example 4-28
shows an ObjectProperty object, represented first in CMF, and then in XSD.

<ObjectProperty structures:id="ex.ExampleObjectProperty">
 <Name>ExampleObjectProperty</Name>
 <Namespace structures:ref="ex" xsi:nil="true"/>
 <DocumentationText>Documentation text for ExampleObjectProperty.</DocumentationText>
 <DeprecatedIndicator>false</DeprecatedIndicator>
 <AbstractIndicator>true</AbstractIndicator>
 <ReferenceCode>URI</ReferenceCode>
 <Class structures:ref="ex.ExType" xsi:nil="true"/>
</ObjectProperty>

<xs:element name="ExampleObjectProperty" type="ex:ExType" abstract="true" appinfo:referenceCode="URI">
 <xs:annotation>
 <xs:documentation>Documentation text for ExampleObjectProperty.</xs:documentation>
 </xs:annotation>
</xs:element>

Example 4-28: ObjectProperty object in CMF and XSD

The following table shows the mapping between ObjectProperty object representations in CMF and XSD.

CMF XSD

Namespace The namespace object for the containing schema document.

Name xs:complexType/@name

DocumentationText xs:complexType/xs:annotation/xs:documentation

DeprecatedIndicator xs:complexType/@appinfo:deprecated

AbstractIndicator xs:complexType/@abstract

SubPropertyOf The property object for xs:element/@substitutionGroup

RelationshipPropertyIndicator xs:element/@appinfo:relationshipPropertyIndicator

Class The class object for xs:element/@type

ReferenceCode xs:complexType/@appinfo:referenceCode

Table 4-29: ObjectProperty object properties in CMF and XSD

4.8 DataProperty

An instance of the DataProperty class represents a property in a NIEM model with a range that is a datatype. For example,
the nc:personNameCommentText property in the NIEM core model is a data property with a range of the xs:string datatype.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 38 of 119

Name Definition Card Ord Range

DataProperty A data type for a data property.

AttributeIndicator True for a property that is represented as attributes in XML. 0..1 - xs:boolean

RefAttributeIndicator True for a property that is an reference attribute property. 0..1 - xs:boolean

Datatype The datatype of this data property. 1 - DatatypeType

Table 4-30: Properties of the DataProperty object class

An attribute property is a data property in which AttributeIndicator is true. These are represented in XSD as an attribute
declaration.

A reference attribute property is an attribute property that contains one or more identifiers for message objects of a known
class. It is interpreted as an [object reference] to each object thus identified. Object references and identifIers are described in
section 5.3, and reference attribute properties in section 5.3.6.

A DataProperty object is represented in XSD as an attribute declaration, or as an element declaration with a type that is a
Datatype object. Example 4-31 shows the representations of two DataProperty objects, first in CMF, and then in the
corresponding XSD.

<DataProperty structures:id="ex.ExampleDataProperty">
 <Name>ExampleDataProperty</Name>
 <Namespace structures:ref="ex" xsi:nil="true"/>
 <DocumentationText>Documentation text for ExampleDataProperty.</DocumentationText>
 <DeprecatedIndicator>true</DeprecatedIndicator>
 <AbstractIndicator>true</AbstractIndicator>
 <SubPropertyOf structures:ref="ex.PropertyAbstract" xsi:nil="true"/>
 <Datatype structures:ref="ex.ExType" xsi:nil="true"/>
</DataProperty>
<DataProperty structures:id="ex.exampleAttributeProperty">
 <Name>exampleAttributeProperty</Name>
 <Namespace structures:ref="ex" xsi:nil="true"/>
 <DocumentationText>Documentation text for AttributeProperty.</DocumentationText>
 <DeprecatedIndicator>true</DeprecatedIndicator>
 <Datatype structures:ref="xs.string" xsi:nil="true"/>
 <AttributeIndicator>true</AttributeIndicator>
 <RefAttributeIndicator>true</RefAttributeIndicator>
</DataProperty>

<xs:element name="ExampleDataProperty" type="ex:ExType" substitutionGroup="ex:PropertyAbstract" appinfo:deprecated="true">
 <xs:annotation>
 <xs:documentation>Documentation text for ExampleDataProperty.</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:attribute name="exampleAttributeProperty" type="xs:string" appinfo:referenceAttributeIndicator="true">
 <xs:annotation>
 <xs:documentation>Documentation text for ExampleDataProperty.</xs:documentation>
 </xs:annotation>
</xs:attribute>

Example 4-31: DataProperty object in CMF and XSD

The following table shows the mapping between DataProperty representations in CMF and XSD.

CMF XSD

Namespace The namespace object for the containing schema document.

Name xs:complexType/@name

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 39 of 119

DocumentationText xs:complexType/xs:annotation/xs:documentation

DeprecatedIndicator xs:complexType/@appinfo:deprecated

AbstractIndicator xs:complexType/@abstract

SubPropertyOf The property object for xs:element/@substitutionGroup

RelationshipPropertyIndicator xs:element/@appinfo:relationshipPropertyIndicator

Datatype The datatype object for xs:element/@type

AttributeIndicator True for an attribute declaration.

RefAttributeIndicator xs:attribute/@appinfo:referenceAttributeIndicator

CMF XSD

Table 4-32: DataProperty object properties in CMF and XSD

4.9 Datatype

Figure 4-33: Datatype classes

An instance of the Datatype class defines the allowed values of a data property in a message. Objects for primitive data
types, corresponding to the XSD data types, have only the name, namespace, and documentation properties inherited from
the Component class. For example, example 4-34 shows the CMF representation of the xs:string primitive data type. All
other datatypes are represented by either a Restriction, List, or Union object.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 40 of 119

<Datatype>
 <Name>string</Name>
 <Namespace structures:ref="xs" xsi:nil="true"/>
</Datatype>

Example 4-34: Plain CMF datatype object for xs:string

4.10 List

An instance of the List class represents a NIEM model datatype with values that are a whitespace-separated list of literal
values.

Name Definition Card Ord Range

List A data type for a NIEM model datatype that is a whitespace-
separated list of literal values.

OrderedPropertyIndicator True if the order of a repeated property within an object is
significant.

0..1 - xs:boolean

ListItemDatatype The datatype of the literal values in a list. 1 - DatatypeType

Table 4-35: Properties of the List object class

A List object is represented in XSD as a complex type definition that extends a simple type definition that has an xs:list
element. Example 4-36 shows the CMF and XSD representation of a List object.

<List structures:id="ex.ExListType">
 <Name>ExListType</Name>
 <Namespace structures:ref="ex" xsi:nil="true"/>
 <DocumentationText>A data type for a list of integers.</DocumentationText>
 <ListItemDatatype structures:ref="xs.integer" xsi:nil="true"/>
 <OrderedPropertyIndicator>true</OrderedPropertyIndicator>
</List>

<xs:simpleType name="ExListSimpleType">
 <xs:list itemType="xs:integer"/>
</xs:simpleType>
<xs:complexType name="ExListType" appinfo:orderedPropertyIndicator="true">
 <xs:annotation>
 <xs:documentation>A data type for a list of integers.</xs:documentation>
 </xs:annotation>
 <xs:simpleContent>
 <xs:extension base="ex:ExListSimpleType">
 <xs:attributeGroup ref="structures:SimpleObjectAttributeGroup"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

Example 4-36: List object in CMF and XSD

The following table shows the mapping between List object representations in CMF and XSD.

CMF XSD

Namespace The namespace object for the containing schema document.

Name xs:complexType/@name

DocumentationText xs:complexType/xs:annotation/xs:documentation

DeprecatedIndicator xs:complexType/@appinfo:deprecated

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 41 of 119

ListItemDatatype xs:simpleType/xs:list/@itemType

OrderedPropertyIndicator xs:complexType/@appinfo:orderedPropertyIndicator

CMF XSD

Table 4-37: List object properties in CMF and XSD

4.11 Union

An instance of the Union class represents a NIEM model datatype that is the union of one or more datatypes.

Name Definition Card Ord Range

Union A data type for a NIEM model datatype that is a union of
datatypes.

UnionMemberDatatype A NIEM model datatype that is a member of a union datatype. 1..* - DatatypeType

Table 4-38: Properties of the Union object class

A Union object is represented in XSD as a complex type definition that extends a simple type definition that has an xs:union
element. Example 4-39 shows the XSD and CMF representations of a Union object.

<Union structures:id="ex.UnionType">
 <Name>UnionType</Name>
 <Namespace structures:ref="test" xsi:nil="true"/>
 <DocumentationText>A data type for a union of integer and float datatypes.</DocumentationText>
 <UnionMemberDatatype structures:ref="xs.integer" xsi:nil="true"/>
 <UnionMemberDatatype structures:ref="xs.float" xsi:nil="true"/>
</Union>

<xs:simpleType name="UnionSimpleType">
 <xs:union memberTypes="xs:integer xs:float"/>
</xs:simpleType>
<xs:complexType name="UnionType">
 <xs:annotation>
 <xs:documentation>A data type for a union of integer and float datatypes.</xs:documentation>
 </xs:annotation> <xs:simpleContent>
 <xs:extension base="ex:UnionSimpleType">
 <xs:attributeGroup ref="structures:SimpleObjectAttributeGroup"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

Example 4-39: Union object in CMF and XSD

The following table shows the mapping between UnionDatatype object representations in CMF and XSD.

CMF XSD

Namespace The namespace object for the containing schema document.

Name xs:complexType/@name

DocumentationText xs:complexType/xs:annotation/xs:documentation

DeprecatedIndicator xs:complexType/@appinfo:deprecated

UnionMemberDatatype xs:simpleType/xs:union/@memberTypes

Table 4-40: Union object properties in CMF and XSD

4.12 Restriction

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 42 of 119

An instance of the Restriction class represents a NIEM model datatype as a base datatype plus zero or more constraining
facets.

Name Definition Card Ord Range

Restriction A data type for a restriction of a data type.

RestrictionBase The NIEM model datatype that is restricted by this datatype. 1 - DatatypeType

Facet A constraint on an aspect of a data type. 0..* - FacetType

CodeListBinding A property for connecting literal values defined by a data type to a
a column of a code list.

0..1 - CodeListBindingType

Table 4-41: Properties of the Restriction object class

A Restriction object is represented in XSD as a complex type with simple content that contains an xs:restriction element.
Example 4-42 shows the CMF and XSD representations of a Restriction object.

<Restriction structures:id="test.RestrictionType">
 <Name>RestrictionType</Name>
 <Namespace structures:ref="test" xsi:nil="true"/>
 <DocumentationText>Exercise code list binding</DocumentationText>
 <RestrictionBase structures:ref="xs.token" xsi:nil="true"/>
 <Facet>
 <FacetCategoryCode>enumeration</FacetCategoryCode>
 <FacetValue>GB</StringValue>
 </Facet>
 <Facet>
 <FacetCategoryCode>enumeration</FacetCategoryCode>
 <FacetValue>US</StringValue>
 </Facet>
 <CodeListBinding>
 <CodeListURI>http://api.nsgreg.nga.mil/geo-political/GENC/2/3-11</CodeListURI>
 <CodeListColumnName>foo</CodeListColumnName>
 <CodeListConstrainingIndicator>true</CodeListConstrainingIndicator>
 </CodeListBinding>
</Restriction>

<xs:complexType name="RestrictionType">
 <xs:annotation>
 <xs:appinfo>
 <clsa:SimpleCodeListBinding codeListURI="http://api.nsgreg.nga.mil/geo-political/GENC/2/3-11"
 columnName="foo" constrainingIndicator="true"/>
 </xs:appinfo>
 </xs:annotation>
 <xs:simpleContent>
 <xs:restriction base="niem-xs:token">
 <xs:enumeration value="GB"/>
 <xs:enumeration value="US"/>
 </xs:restriction>
 </xs:simpleContent>
</xs:complexType>

Example 4-42: Restriction object in CMF and XSD

The following table shows the mapping between Restriction object representations in CMF and XSD.

CMF XSD

Namespace The namespace object for the containing schema document.

Name xs:complexType/@name

DocumentationText xs:complexType/xs:annotation/xs:documentation

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 43 of 119

http://api.nsgreg.nga.mil/geo-political/GENC/2/3-11%3C/CodeListURI%3E
http://api.nsgreg.nga.mil/geo-political/GENC/2/3-11%22

DeprecatedIndicator xs:complexType/@appinfo:deprecated

RestrictionBase The datatype object for xs:complexType/xs:simpleContent/xs:restriction/@base

Facet xs:complexType/xs:simpleContent/xs:restriction/ facet-element

CodeListBinding xs:complexType/xs:annotation/xs:appinfo/clsa:SimpleCodeListBinding

CMF XSD

Table 4-43: Restriction object properties in CMF and XSD

A code list is a set of string values, each having a known meaning beyond its value, each representing a distinct conceptual
entity. These code values may be meaningful text or may be a string of alphanumeric identifiers that represent abbreviations
for literals.

A code list datatype is a Restriction in which each value that is valid for the datatype corresponds to a code value in a code
list.

Many code list datatypes have an XSD representation composed of xs:enumeration values. Code list datatypes may also be
constructed using the NIEM Code Lists Specification [Code Lists], which supports code lists defined using a variety of
methods, including CSV spreadsheets; these are represented by a CodeListBinding object, described below.

4.13 Facet

An instance of the Facet class specifies a constraint on the base datatype of a Restriction object.

Name Definition Card Ord Range

Facet A data type for a constraint on an aspect of a data type.

FacetCategoryCode A kind of constraint on a restriction datatype. 1 - FacetCategoryCodeType

FacetValue A value of a constraint on a restriction datatype. 1 - xs:string

DocumentationText A human-readable documentation of a constraint on a
restriction datatype.

0..* Y TextType

Table 4-44: Properties of the Facet object class

The range of the FacetCategoryCode property is a code list. The twelve codes correspond to the twelve constraining facets in
XML Schema Structures; that is, the code length corresponds to the xs:length constraining facet in XSD, and constrains
the valid values of the base datatype in the same way as the XSD facet.

A Facet object is represented in XSD as a constraining facet on a simple type. Example 4-45 shows the representation of two
Facet objects, first in CMF, then in XSD:

<Facet>
 <FacetCategoryCode>minInclusive</FacetCategoryCode>
 <FacetValue>0</FacetValue>
</Facet>
<Facet>
 <FacetCategoryCode>maxExclusive</FacetCategoryCode>
 <FacetValue>360</FacetValue>
</Facet>

<xs:restriction base="niem-xs:decimal">
 <xs:minInclusive value="0"/>
 <xs:maxExclusive value="360"/>
</xs:restriction>

Example 4-45: Facet object in CMF and XSD

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 44 of 119

The following table shows the mapping between Facet representations in CMF and XSD:

CMF XSD

FacetCategoryCode the local name of the facet element; e.g.minInclusive

FacetValue @value

DocumentationText xs:annotation/xs:documentation

Table 4-46: Facet object properties in CMF and XSD

4.14 CodeListBinding

An instance of the CodeListBinding class establishes a relationship between a Restriction object and a code list specification.
The detailed meaning of the object properties is provided in [Code Lists].

Name Definition Card Ord Range

CodeListBinding A data type for connecting simple content defined by an XML
Schema component to a a column of a code list.

CodeListURI A universal identifier for a code list. 1 - xs:anyURI

CodeListColumnName A local name for a code list column within a code list. 0..1 - xs:string

CodeListConstrainingIndicator True when a code list binding constrains the validity of a code
list value, false otherwise.

0..1 - xs:boolean

Table 4-47: Properties of the CodeListBinding object class

A CodeListBinding object is represented in XSD as a clsa:SimpleCodeListBinding element in an xs:appinfo element.
Example 4-48 shows the representation of a CodeListBinding object, first in CMF, then in XSD.

<CodeListBinding>
 <CodeListURI>http://api.nsgreg.nga.mil/geo-political/GENC/2/3-11</CodeListURI>
 <CodeListConstrainingIndicator>false</CodeListConstrainingIndicator>
</CodeListBinding>

<xs:simpleType name="CountryAlpha2CodeSimpleType">
 <xs:annotation>
 <xs:documentation>A data type for country codes.</xs:documentation>
 <xs:appinfo>
 <clsa:SimpleCodeListBinding codeListURI="http://api.nsgreg.nga.mil/geo-political/GENC/2/3-11"constrainingIndicator="false"/>
 </xs:appinfo>

Example 4-48: CodeListBinding object in CMF and XSD

The following table shows the mapping between CodeListBinding representations in CMF and XSD.

CMF XSD

CodeListURI clsa:SimpleCodeListBinding/@codeListURI

CodeListColumnName clsa:SimpleCodeListBinding/@columnName

CodeListConstrainingIndicator clsa:SimpleCodeListBinding/@constrainingIndicator

Table 4-49: CodeListBinding object properties in CMF and XSD

4.15 Augmentation class

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 45 of 119

http://api.nsgreg.nga.mil/geo-political/GENC/2/3-11%3C/CodeListURI%3E
http://api.nsgreg.nga.mil/geo-political/GENC/2/3-11%22constrainingIndicator=%22false%22/%3E

Figure 4-50: Augmentation class diagram

Augmentation is the NIEM mechanism allowing the author of one namespace (the augmenting namespace) to add a property
to a class in another namespace (the augmented namespace) — without making any change to the augmented namespace.
For example, the model designers for the NIEM Justice domain have augmented the nc:PersonType class with the
j:PersonSightedIndicator property. Then:

https://docs.oasis-open.org/niemopen/ns/model/domains/justice/6.0/ is the augmenting namespace
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/ is the augmented namespace
j:PersonSightedIndicator is an augmentation property
nc:PersonType is an augmented class

The XSD representation of an augmentation is complex and is explained below. In CMF, an augmentation is represented as
an AugmentationRecord object belonging to the augmenting namespace. In this way, each namespace object contains a
complete list of all the augmentations it makes.

Name Definition Card Ord Range

AugmentationRecord A data type for a class that is augmented with a property by
a namespace.

MinOccursQuantity The minimum number of times a property may occur within
an object of a class.

1 - xs:integer

MaxOccursQuantity The maximum number of times a property may occur within
an object of a class.

1 - MaxOccursType

AugmentationIndex The ordinal position of an augmentation property that is part
of an augmentation type.

0..1 - xs:integer

GlobalClassCode A code for a kind of class (object, association, or literal),
such that every class in a model of that kind is augmented
with a property

0..1 - GlobalClassCodeType

Class An augmented class. 0..1 - ClassType

Property An augmentation property . 1 - PropertyType

Table 4-51: Properties of the Augmentation object class

For example, augmentation of nc:PersonType with j:PersonAdultIndicator and j:PersonSightedIndicator by the justice
namespace results in the following CMF for the augmenting namespace.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 46 of 119

https://docs.oasis-open.org/niemopen/ns/model/domains/justice/6.0/
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/

<Namespace>
 <NamespaceURI>https://docs.oasis-open.org/niemopen/ns/model/domains/justice/6.0/</NamespaceURI>
 <NamespacePrefix>j</NamespacePrefix>
 <AugmentationRecord>
 <Class structures:ref="nc.PersonType" xsi:nil="true"/>
 <Property structures:ref="j.PersonAdultIndicator" xsi:nil="true"/>
 <MinOccursQuantity>0</MinOccursQuantity>
 <MaxOccursQuantity>unbounded</MaxOccursQuantity>
 <AugmentationIndex>0</AugmentationIndex>
 </AugmentationRecord>
 <AugmentationRecord>
 <Class structures:ref="nc.PersonType" xsi:nil="true"/>
 <Property structures:ref="j.PersonSightedIndicator" xsi:nil="true"/>
 <MinOccursQuantity>0</MinOccursQuantity>
 <MaxOccursQuantity>unbounded</MaxOccursQuantity>
 <AugmentationIndex>1</AugmentationIndex>
 </AugmentationRecord>
</Namespace>

Example 4-52: Augmentation object in CMF

A global augmentation adds a property to every class of a specified kind in the model. In CMF, a global augmentation is
represented by an AugmentationRecord object with a GlobalClassCode property and no Class property. For example, a
global augmentation adding my:PrivacyCode to every every object class results in the following CMF for the augmenting
namespace.

<Namespace>
 <NamespaceURI>http://example.com/MyNamespace/</NamespaceURI>
 <NamespacePrefix>my</NamespacePrefix>
 <AugmentationRecord>
 <Property structures:ref="my.PrivacyCode"/>
 <MinOccursQuantity>1</MinOccursQuantity>
 <MaxOccursQuantity>1</MaxOccursQuantity>
 <AugmentationIndex>0</AugmentationIndex>
 <GlobalClassCode>OBJECT</GlobalClassCode>
 </AugmentationRecord>
</Namespace>

Example 4-53: Global augmentation in CMF

A global AugmentationRecord object has no Class property (because it applies to every class). The range of the
GlobalClassCode property is a code list with the following codes and meanings:

Code Definition

OBJECT A code for an augmentation property that applies to all object classes.

ASSOCIATION A code for an augmentation property that applies to all association classes in the model.

LITERAL A code for an augmentation property that applies to all datatypes and literal classes in the model. (see
§4.15.5)

Table 4-54: GlobalClassCode code list

4.15.1 Augmentations in NIEM XSD

The XSD representation of an augmentation is complex, and varies based on two factors:

1. Whether the augmentation property is an attribute property or an element property

2. Whether the model is a message model In a message model, attribute augmentations appear in the schema documents
for both the augmenting namespace and the augmented namespace. (See section 4.15.4: Attribute augmentations in
message models)

4.15.2 Augmenting a class with an element property in XSD

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 47 of 119

https://docs.oasis-open.org/niemopen/ns/model/domains/justice/6.0/%3C/NamespaceURI%3E
http://example.com/MyNamespace/%3C/NamespaceURI%3E

In XSD, a class with element properties is represented by a complex type definition with complex content (a “CCC type”). For
example, nc:PersonType is represented as the following CCC type definition (some properties are omitted for simplicity):

<xs:complexType name="PersonType">
 <xs:annotation>
 <xs:documentation>A data type for a human being.</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="structures:ObjectType">
 <xs:sequence>
 <xs:element ref="nc:PersonBirthDate" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="nc:PersonName" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="nc:PersonAugmentationPoint" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Example 4-55: Example complex type definition with complex content (CCC type)

Every CCC type contains an augmentation point element. This is an abstract element declaration in the same namespace,
having the same name as the type which contains it, with the final “Type” replaced with “AugmentationPoint”. Because it is
abstract, an augmentation point element cannot appear in a message; it is only a placeholder for element substitution. For
example, nc:PersonAugmentationPoint is the augmentation point element for nc:PersonType .

<xs:element name="PersonAugmentationPoint" abstract="true">
 <xs:annotation>
 <xs:documentation>An augmentation point for PersonType</xs:documentation>
 </xs:annotation>
</xs:element>

Example 4-56: Example augmentation point element declaration

In the XSD representation of a model, a namespace augments a CCC type with an element property by defining an
augmentation type and an augmentation element. Together these define a container element for the desired augmentation
properties that is substitutable for the augmentation point element. For example, example 4-56 shows the XSD for the NIEM
Justice namespace augmenting nc:PersonType with two properties, and example 4-57 shows an XML message with that
augmentation. (The CMF corresponding to the XSD is shown in example 4-52.)

<xs:complexType name="PersonAugmentationType">
 <xs:complexContent>
 <xs:extension base="structures:AugmentationType">
 <xs:sequence>
 <xs:element ref="j:PersonAdultIndicator" minOccurs="0"/>
 <xs:element ref="j:PersonSightedIndicator" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:element name="PersonAugmentation" type="j:ExampleAugmentationType" substitutionGroup="nc:PersonAugmentationPoint"/>

Example 4-57: Augmenting a class with an augmentation type and element in XSD

<nc:Person>
 <nc:PersonBirthDate>
 <nc:Date>2021-09-11</nc:Date>
 </nc:PersonBirthDate>
 <nc:PersonName>
 <nc:PersonFullName>John Doe</nc:PersonFullName>
 </nc:PersonName>
 <j:PersonAugmentation>
 <j:PersonAdultIndicator>true</j:PersonAdultIndicator>
 <j:PersonSightedIndicator>true</j:PersonSightedIndicator>
 </j:PersonAugmentation>
</nc:Person>

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 48 of 119

Example 4-58: Example message with an augmentation element

All of the augmentations in the XSD representation of the NIEM model use the above approach. There is an alternative
approach, in which a namespace augments a CCC type without defining an augmentation type. This is done by making an
element property substitutable for the augmentation point element. For example, the namespace
http://example.com/Characters could augment nc:PersonType with a PersonFictionalCharacterIndicator property via the
XSD in example 4-59.

<xs:element name="PersonFictionalCharacterIndicator" type="niem-xs:boolean"
 substitutionGroup="nc:PersonAugmentationPoint">
 <xs:annotation>
 <xs:documentation>True if a person is a character in a work of fiction.</xs:documentation>
 </xs:annotation>
</xs:element>

Example 4-59: Augmenting a class with an element property in XSD

<nc:Person>
 <nc:PersonBirthDate>
 <nc:Date>2021-09-11</nc:Date>
 </nc:PersonBirthDate>
 <nc:PersonName>
 <nc:PersonFullName>John Doe</nc:PersonFullName>
 </nc:PersonName>
 <chars:PersonFictionalCharacterIndicator>true</nc:PersonFictionalCharacterIndicator>
</nc:Person>

Example 4-60: Example message showing augmentation with an element property

The CMF corresponding to the XSD in example 4-59 is shown below. Since there is no augmentation type in the XSD, the
AugmentationRecord object does not have an AugmentationIndex property to show the position of the augmentation property
within that type.

<Namespace>
 <NamespaceURI>http://example.com/Characters/1.0</NamespaceURI>
 <NamespacePrefix>chars/NamespacePrefix>
 <DocumentationText>Example namespace for NDR6.</DocumentationText>
 <AugmentationRecord>
 <Class structures:ref="nc.PersonType" xsi:nil="true"/>
 <DataProperty structures:ref="chars.PersonFictionalCharacterIndicator" xsi:nil="true"/>
 <MinOccursQuantity>0</MinOccursQuantity>
 <MaxOccursQuantity>1</MaxOccursQuantity>
 </AugmentationRecord>
</Namespace>

Example 4-61: CMF for an element property augmentation

4.15.3 Augmenting a literal class or datatype with an element property in XSD

In the XSD representation of a model, a complex type definition with simple content (“CSC type”) can represent either a literal
class or a datatype. It is not possible to directly augment either kind of CSC type with an element property, because element
properties are only possible within a CCC type. The desired effect is instead accomplished by augmenting the literal class or
datatype with a reference attribute property. These are described in section 5.3.6. Note that augmenting a datatype with an
attribute necessarily converts it into a literal class; see section 5.1.)

4.15.4 Augmenting a class with an attribute property in XSD

In the XSD representation of a model, a namespace augments a class with an attribute property by writing application
information into the namespace schema document. For example, example 4-62 shows the XSD for the Characters
namespace augmenting nc:PersonType with the attribute property chars:genre , and example 4-63 shows an XML message
with that augmentation.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 49 of 119

http://example.com/Characters
http://example.com/Characters/1.0%3C/NamespaceURI%3E

<xs:schema
 targetNamespace="http://example.com/Characters/1.0/"
 xmlns:myChars="http://example.com/Characters/1.0/"
 xmlns:nc="https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 ct:conformanceTargets="https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ExtensionSchemaDocument"
 version="1.0"
 xml:lang="en-US">
 <xs:annotation>
 <xs:documentation>Example Characters namespace for NDR6.</xs:documentation>
 <xs:appinfo>
 <appinfo:Augmentation class="nc:PersonType" property="myChars:genre"/>
 </xs:appinfo>
 </xs:annotation>
 <xs:attribute name="genre" type="xs:token">
 <xs:annotation>
 <xs:documentation>A name of a genre of fiction applicable to a fictional character.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
</xs:schema>

Example 4-62: Augmenting a class with an attribute property in XSD

<nc:Person myChars:genre="mystery">
 <nc:PersonBirthDate>
 <nc:Date>1890-10-15</nc:Date>
 </nc:PersonBirthDate>
 <nc:PersonName>
 <nc:PersonFullName>Peter Death Bredon Wimsey</nc:PersonFullName>
 </nc:PersonName>
 <chars:PersonFictionalCharacterIndicator>true</nc:PersonFictionalCharacterIndicator>
</nc:Person>

Example 4-63: Example message showing an attribute property augmentation

4.15.5 Global augmentations in XSD

Global augmentation with an element property is represented in XSD by creating an augmentation element substitutable for
structures:ObjectAugmentationPoint or structures:AssociationAugmentationPoint . For example, example 4-64 shows the XSD

for the Privacy namespace augmenting all object classes with the priv:Restriction element property; example 4-65 shows
part of an XML message with that augmentation.

<xs:complexType name="ObjectAugmentationType">
 <xs:annotation>
 <xs:documentation>A data type for additional information about an object.</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="structures:AugmentationType">
 <xs:sequence>
 <xs:element ref="priv:Restriction"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:element name="ObjectAugmentation" type="priv:ObjectAugmentationType substitutionGroup="structures:ObjectAugmentationPoint">
 <xs:annotation>
 <xs:documentation>Additional information about an object.</xs:documentation>
 </xs:annotation>
</xs:element>

Example 4-64: Global augmentation with an element property in XSD

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 50 of 119

http://example.com/Characters/1.0/%22
http://example.com/Characters/1.0/%22
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/%22
http://www.w3.org/2001/XMLSchema%22
https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ExtensionSchemaDocument%22

<nc:Person>
 <priv:ObjectAugmentation>
 <priv:Restriction>PII</priv:Restriction>
 </priv:ObjectAugmentation>
 <nc:PersonName>
 <nc:PersonFullName>John Doe</nc:PersonFullName>
 </nc:PersonName>
</nc:Person>

Example 4-65: Global augmentation with an element property in XSD

Global augmentation with an attribute property is represented in XSD by writing application information into the augmenting
namespace schema document. Instead of specifying the augmented class, this appinfo provides a code from
GlobalAugmentationCodeType . For example, example 4-66 shows the XSD for the Privacy namespace augmenting all object

classes with the priv:classification attribute property.

<xs:schema
 targetNamespace="http://example.com/Privacy/1.0/"
 xmlns:priv="http://example.com/Privacy/1.0/"
 xmlns:nc="https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 ct:conformanceTargets="https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ExtensionSchemaDocument"
 version="1.0"
 xml:lang="en-US">
 <xs:annotation>
 <xs:documentation>Example Privacy namespace for NDR6.</xs:documentation>
 <xs:appinfo>
 <appinfo:Augmentation property="priv:classification" globalClassCode="OBJECT"/>
 </xs:appinfo>
 </xs:annotation>
</xs:schema>

Example 4-66: Global augmentation with an attribute property in XSD

4.15.6 Attribute augmentations in message models

The XSD representation of a message model must successfully validate all conforming messages. This means the
augmented type definition has to include the augmenting attribute property. For example, the highlighted line in example 4-67
shows how the type definition of nc:PersonType would include the augmentation property chars:genre .

<xs:complexType name="PersonType"></code>
 <xs:annotation>
 <xs:documentation>A data type for a human being.</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="structures:ObjectType">
 <xs:sequence>
 <xs:element ref="nc:PersonBirthDate" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="nc:PersonName" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="nc:PersonAugmentationPoint" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute ref="myChars:genre" appinfo:augmentingNamespace="chars"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Example 4-67: Example complex type definition with complex content (CCC type)

The appinfo:augmentingNamespace attribute is required; it declares that this attribute reference is an augmentation. The value
of the attribute may be either the namespace prefix or URI.

4.16 LocalTerm

A local term is a word, phrase, acronym, or other string of characters that is used in the name of a namespace component,
but that is not defined in OED, or that has a non-OED definition in this namespace, or has a word sense that is in some way

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 51 of 119

http://example.com/Privacy/1.0/%22
http://example.com/Privacy/1.0/%22
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/%22
http://www.w3.org/2001/XMLSchema%22
https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ExtensionSchemaDocument%22

unclear. An instance of the LocalTerm class captures the namespace author’s definition of such a local term. For example,
the Justice domain namespace in the NIEM model has a LocalTerm object defining the name “CLP” with documentation
“Commercial Learners Permit”.

Name Definition Card Ord Range

LocalTerm A data type for the meaning of a term that may appear within the name of
a model component.

TermName The name of the local term. 1 - xs:token

DocumentationText A human-readable text definition of a data model component or term, or
the documentation of a namespace.

0..1 - TextType

TermLiteralText A meaning of a local term provided as a full, plain-text form. 0..1 - xs:string

SourceURI A URI that is an identifier or locator for an originating or authoritative
document defining a local term.

0..* - xs:anyURI

SourceCitationText A plain text citation of, reference to, or bibliographic entry for an originating
or authoritative document defining a local term.

0..* - xs:string

Table 4-68: Properties of the LocalTerm object class

A LocalTerm object is represented in XSD by a appinfo:LocalTerm element within xs:appinfo element in the xs:schema
element. Example 4-69 shows the representation of a LocalTerm object in CMF and XSD.

<LocalTerm>
 <TermName>2D</TermName>
 <TermLiteralText>Two-dimensional</TermLiteralText>
</LocalTerm>
<LocalTerm>
 <TermName>3D</TermName>
 <DocumentationText>Three-dimensional</DocumentationText>
</LocalTerm>
<LocalTerm>
 <TermName>Test</TermName>
 <DocumentationText>only for test purposes</DocumentationText>
 <SourceURI>http://example.com/1 http://example.com/2</SourceURI>
 <SourceCitationText>citation #1</SourceCitationText>
 <SourceCitationText>citation #2</SourceCitationText>
</LocalTerm>

<xs:appinfo>
 <appinfo:LocalTerm term="2D" literal="Two-dimensional"/>
 <appinfo:LocalTerm term="3D" definition="Three-dimensional"/>
 <appinfo:LocalTerm term="Test" definition="only for test purposes" sourceURIs="http://example.com/1 http://example.com/2">
 <appinfo:SourceText>citation #1</appinfo:SourceText>
 <appinfo:SourceText>citation #2</appinfo:SourceText>
 </appinfo:LocalTerm>
</xs:appinfo>

Example 4-69: Example LocalTerm objects in CMF and XSD

The following table shows the mapping between LocalTerm object representations in CMF and XSD.

CMF XSD

TermName appinfo:LocalTerm/@term

DocumentationText appinfo:LocalTerm/@definition

TermLiteralText appinfo:LocalTerm/@literal

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 52 of 119

http://example.com/1
http://example.com/2%3C/SourceURI%3E
http://example.com/1
http://example.com/2%22%3E

SourceURI Each URI in the appinfo:LocalTerm/@sourceURIs list

SourceCitationText appinfo:LocalTerm/appinfo:SourceText

CMF XSD

Table 4-70: LocalTerm object properties in CMF and XSD

4.17 TextType

An instance of the TextType class combines a string property with a language property.

Name Definition Card Ord Range

TextType A data type for a character string with a language code.

TextLiteral A literal value that is a character string. 1 - xs:string

lang A name of the language of a character string. 0..1 - xs:language

Table 4-71: Properties of the TextType object class

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 53 of 119

5. Data modeling patterns
This section is informative. It explains common patterns in NIEM models and messages.

5.1 Datatypes and literal classes

A model component can be a datatype in one message model and a class in another. This occurs when a message designer
creates a subset of a reused literal class, or augments a reused datatype.

Removing attribute properties from a reused literal class can turn it into a datatype. For example, nc:NumericType is a literal
class in the NIEM model, but in a subset can become a datatype in a message model. In the NIEM model, nc:NumericType
has one element property and one attribute property. Example 5-1 shows the class representation in CMF and XSD; example
5-2 shows an object of the class in an XML and JSON message.

<Class structures:id="nc.NumericType"> | <xs:complexType name="NumericType">
 <Name>NumericType</Name> | <xs:simpleContent>
 <Namespace structures:ref="nc" | <xs:extension base="niem-xs:decimal">
 <ChildPropertyAssociation> | <xs:attribute ref="nc:toleranceNumeric" use="optional"/>
 <DataProperty structures:ref="nc.NumericLiteral"/> | </xs:extension>
 <MinOccursQuantity>1</MinOccursQuantity> | </xs:simpleContent>
 <MaxOccursQuantity>1</MaxOccursQuantity> | </xs:complexType>
 </ChildPropertyAssociation> |
 <ChildPropertyAssociation> |
 <DataProperty structures:ref="nc.toleranceNumeric"/> |
 <MinOccursQuantity>0</MinOccursQuantity> |
 <MaxOccursQuantity>1</MaxOccursQuantity> |
 </ChildPropertyAssociation> |
</Class> |

Example 5-1: A literal class in CMF and XSD

<my:Message> | "my:Message": {
 <my:MaximumNumber nc:toleranceNumeric="2">7<my:MaximumNumber> | "my:MaximumNumber": {
</my:Message> | "nc:NumericLiteral": "7",
 | "nc:toleranceNumeric": "2"
 | }
 | }

Example 5-2: Objects of a literal class in an XML and JSON message

If a message designer decides to reuse nc:NumericType , and to remove nc:toleranceNumeric from the class in his model
subset, then nc:NumericType becomes a datatype in the subset. Example 5-3 shows the CMF and XSD representations of
that subset; example 5-4 shows the resulting data property in an XML and JSON message.

<Restriction structures:id="nc.NumericType"> | <xs:complexType name="NumericType">
 <Name>NumericType</Name> | <xs:simpleContent>
 <Namespace structures:ref="nc" | <xs:extension base="niem-xs:decimal"/>
 <RestrictionBase structures:ref="xs:decimal"/> | </xs:simpleContent>
</Restriction> | </xs:complexType>

Example 5-3: A restriction datatype in a CMF and XSD model subset

<my:Message> | "my:Message": {
 <my:MaximumNumber>7<my:MaximumNumber> | "my:MaximumNumber": "7"
</my:Message> | }

Example 5-4: A data property in an XML and JSON message

Going the other way, augmenting a reused datatype turns it into a literal class. For example, nc:PersonUnionCategoryCodeType
is a datatype in the NIEM model, and nc:PersonUnionCategoryCode is a data property with that datatype. Example 5-5 shows
the datatype representation in CMF and XSD; example 5-6 shows the data property in an XML and JSON message.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 54 of 119

<Restriction structures:id="nc.PersonUnionCategoryCodeType"> | <xs:complexType name="PersonUnionCategoryCodeType">
 <Name>PersonUnionCategoryCodeType</Name> | <xs:simpleContent>
 <Namespace structures:ref="nc" xsi:nil="true"/> | <xs:restriction base="niem-xs:token">
 <RestrictionBase structures:ref="xs.token" xsi:nil="true"/> | <xs:enumeration value="civil union"/>
 <Enumeration> | <xs:enumeration value="common law"/>
 <StringValue>civil union</StringValue> | <xs:enumeration value="domestic partnership"/>
 </Enumeration> | <xs:enumeration value="married"/>
 <Enumeration> | <xs:enumeration value="unknown"/>
 <StringValue>common law</StringValue> | </xs:restriction>
 </Enumeration> | </xs:simpleContent>
 <Enumeration> | </xs:complexType>
 <StringValue>domestic partnership</StringValue> |
 </Enumeration> |
 <Enumeration> |
 <StringValue>married</StringValue> |
 </Enumeration> |
 <Enumeration> |
 <StringValue>unknown</StringValue> |
 </Enumeration> |
</Restriction> |

Example 5-5: A datatype in CMF and XSD

<nc:Person> | "nc:Person": {
 <nc:PersonUnionCategoryCode>married</nc:PersonUnionCategoryCode> | "nc:PersonUnionCategoryCode": "married"
</nc:Person> | }

Example 5-6: A data property in an XML and JSON message

A message designer might decide to augment nc:PersonUnionCategoryCodeType with metadata to indicate this information is
sometimes privileged. Doing so turns it into a literal class in his model subset. Example 5-7 shows the CMF and XSD
representations of that subset; example 5-8 shows the resulting object in an XML and JSON message.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 55 of 119

<Restriction structures:id="nc.PersonUnionCategoryCodeSimple | <xs:simpleType name="PersonUnionCategoryCodeSimpleType">
 <Name>PersonUnionCategoryCodeSimpleType</Name> | <xs:restriction base="xs:token">
 <Namespace structures:ref="nc"/> | <xs:enumeration value="civil union"/>
 <RestrictionBase structures:ref="xs.token" xsi:nil="true"/ | <xs:enumeration value="common law"/>
 <Enumeration> | <xs:enumeration value="domestic partnership"/>
 <StringValue>civil union</StringValue> | <xs:enumeration value="married"/>
 </Enumeration> | <xs:enumeration value="unknown"/>
 <Enumeration> | </xs:restriction>
 <StringValue>common law</StringValue> | </xs:simpleType>
 </Enumeration> | <xs:complexType name="PersonUnionCategoryCodeType">
 <Enumeration> | <xs:simpleContent>
 <StringValue>domestic partnership</StringValue> | <xs:extension base="nc:PersonUnionCategoryCodeSimpleType">
 </Enumeration> | <xs:attribute ref="my:privileged"
 <Enumeration> | appinfo:augmentingNamespace="my"/>
 <StringValue>married</StringValue> | <xs:attributeGroup ref="structures:SimpleObjectAttributeG
 </Enumeration> | </xs:extension>
 <Enumeration> | </xs:simpleContent>
 <StringValue>unknown</StringValue> | </xs:complexType>
 </Enumeration> |
</Restriction> |
<DataProperty structures:id="nc.PersonCategoryCodeLiteral"> |
 <Name>PersonUnionCategoryCodeLiteral</Name> |
 <Namespace structures:ref="nc"/> |
 <Datatype structures:ref="nc.PersonUnionCategoryCodeSimple |
</DataProperty> |
<Class> |
 <Name>PersonUnionCategoryCodeType</Name> |
 <Namespace structures:ref="nc"/> |
 <ChildPropertyAssociation> |
 <DataProperty structures:ref="nc.PersonCategoryCodeLiter |
 <MinOccursQuantity>1</MinOccursQuantity> |
 <MaxOccursQuantity>1</MaxOccursQuantity> |
 </ChildPropertyAssociation> |
 <ChildPropertyAssociation> |
 <DataProperty structures:ref="my.privileged"/> |
 <MinOccursQuantity>0</MinOccursQuantity> |
 <MaxOccursQuantity>1</MaxOccursQuantity> |
 <AugmentingNamespace>my</AugmentingNamespace> |
 </ChildPropertyAssociation> |
</Class> |

Example 5-7: A literal class in a CMF and XSD model subset

<nc:Person> | "nc:Person": {
 <nc:PersonUnionCategoryCode | "nc:PersonUnionCategoryCode": {
 my:privileged="true">married</nc:PersonUnionCategoryCode> | "nc:PersonUnionCategoryCodeLiteral": "married",
</nc:Person> | "my:privileged": "true"
 | }
 | }
 |

Example 5-8: An object property with a code list class in an XML and JSON message

The representation of a literal class is complex when compared to the datatype. The JSON message is likewise complicated.
Best practice is therefore to avoid augmenting a datatype whenever possible.

5.2 Meaning of NIEM data

The meaning of NIEM data is partly expressed through the hierarchy of nested objects in a message, and partly through the
message model’s definition of those objects. For example, the meaning of the two equivalent messages in example 3-2
(reproduced below) is described in table 5-9.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 56 of 119

<msg:Request | {
 xmlns:nc="https://docs.oasis-open.org/niemopen/ns/model/niem | "@context": {
 xmlns:msg="http://example.com/ReqRes/1.0/"> | "nc": "https://docs.oasis-open.org/niemopen/ns/model/niem-
 <msg:RequestID>RQ001</msg:RequestID> | "msg": "http://example.com/ReqRes/1.0/"
 <msg:RequestedItem> | },
 <nc:ItemName>Wrench</nc:ItemName> | "msg:Request": {
 <nc:ItemQuantity>10</nc:ItemQuantity> | "msg:RequestID" : "RQ001",
 </msg:RequestedItem> | "msg:RequestedItem": {
</msg:Request> | "nc:ItemName": Wrench",
 | "nc:ItemQuantity": 10
 | }
 | }
 | }

Message data Description Meaning

<msg:Request>
or "msg:Request":{...}

The initial property is msg:Request . The message
model defines the range of this property as the
msg:RequestType class.

There is an object that is a request
for a specified quantity of a named
item.

<msg:RequestID>
*or "msg:RequestID":...

The next property is msg:RequestID . The message
model defines the range of this data property as the
xs:token datatype.

There is a relationship between the
object of msg:RequestType and the
literal value RQ001 .

<msg:RequestedItem>
or "msg:RequestedItem":{...}

The next property is msg:RequestedItem . The
message model defines the range of this object
property as the nc:ItemType class.

There is a relationship between the
object of msg:RequestType and the
object of nc:ItemType .

<nc:ItemName>
or "nc:ItemName":...

The next property is nc:ItemName . The message
model defines the range of this data property as the
nc:TextType datatype.

There is a relationship between the
object of nc:ItemType and the literal
value Wrench .

<nc:ItemQuantity>
or nc:ItemQuantity":...

The next property is nc:ItemQuantity . The message
model defines the range of this data property as the
nc:QuantityType datatype.

There is a relationship between the
object of nc:ItemType and the literal
value 10 .

Table 5-9: Meaning of NIEM data

NIEM is designed so that NIEM data is a form of RDF data. For example, the message data above corresponds to the RDF
shown in example 5-10

@prefix nc: <https://docs.oasis-open.org/niemopen/ns/model/adapters/niem-xs/6.0/> .
@prefix msg: <http://example.com/ReqRes/1.0/> .
_:n1 a msg:RequestType .
_:n1 msg:RequestID "RQ001".
_:n1 msg:RequestedItem _:n2 .
_:n2 a nc:ItemType .
_:n2 nc:ItemName "Wrench" .
_:n2 nc:ItemQuantity "10" .

Example 5-10: RDF interpretation of NIEM data (Turtle syntax)

That RDF data expresses a graph, illustrated by the diagram in figure 5-11.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 57 of 119

https://docs.oasis-open.org/niemopen/ns/model/niem
http://example.com/ReqRes/1.0/%22%3E
https://docs.oasis-open.org/niemopen/ns/model/niem-
http://example.com/ReqRes/1.0/%22
https://docs.oasis-open.org/niemopen/ns/model/adapters/niem-xs/6.0/%3E
http://example.com/ReqRes/1.0/%3E

Figure 5-11: Diagram showing meaning of NIEM data

In a NIEM message, that which is not stated is not implied. If data says a person’s name is John, it is not implicitly saying that
he does not have other names, or that John is his legal name, or that he is different from a person known as Bob. The only
assertion being made is that one of the names by which this person is known is John.

Likewise, nothing may be inferred from data that is not present in a NIEM message. It may be absent due to lack of
availability, lack of knowledge, or deliberate withholding of information. These cases should be modeled explicitly, if they are
required.

5.3 Identifiers and references in NIEM messages

A hierarchy of nested objects (illustrated above) is sufficient to represent simple data that takes the form of a tree. However,
this simple representation has limitations, and is not capable of expressing all relationships among objects. Situations that
cause problems include:

Cycles: some object has a relationship that, when followed, eventually circles back to itself. For example, suppose that
Bob has a sister relationship to Sue, who has a brother relationship back to Bob. These relationships do not form a tree,
and require a data structure that is a graph, rather than a simple hierarchy of objects.

Reuse: multiple objects have a relationship to a common object. For example, suppose Bob and Sue both have a
mother relationship to Sally. Expressed via nested objects, this would result in a duplicate representation of Sally.

NIEM solves these problems through object identifiers and object references. Any object may have an identifier. An object
reference can take the place of any object in a message, and is interpreted as if the object with the same identifier actually
appeared in that place. The resulting data structure is a graph, not a tree.

For example, in example 5-12 below, there is only one Person object in the message; it has the identifier JD , and is a child
property of nc:PersonLocationAssociation . The nc:Person property of the nc:PersonOrganizationAssociation object is an
object reference. The interpretation is that the person located at the Pentagon is also the person associated with the US
Army.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 58 of 119

<nc:PersonLocationAssociation> | "nc:PersonLocationAssociation": {
 <nc:Person structures:id="JD"> | "nc:Person": {
 <nc:PersonName> | "@id": "#JD",
 <nc:PersonFullName>4R</nc:PersonFullName> | "nc:PersonName": {
 </nc:PersonName> | "nc:PersonFullName": "John Doe"
 </nc:Person> | }
 <nc:Location> | },
 <nc:LocationName>Pentagon</nc:LocationName> | "nc:Location": {
 </nc:Location> | "nc:LocationName": "Pentagon"
</nc:PersonLocationAssociation> | }
<nc:PersonOrganizationAssociation> | },
 <nc:Person structures:ref="JD" xsi:nil="true"/> | "nc:PersonOrganizationAssociation": {
 <nc:Organization> | "nc:Person": {
 <nc:OrganizationName>US Army</nc:OrganizationName> | "@id": "#JD"
 </nc:Organization> | },
</nc:PersonOrganizationAssociation> | "nc:Organization": {
 | "nc:OrganizationName": "US Army"
 | }
 | }

Example 5-12: Example of object references in NIEM XML and JSON

5.3.1 Object references in NIEM XML using structures:id and structures:ref

[XML] defines ID and IDREF attributes; these act as references in XML data. NIEM XML uses ID and IDREF as one way to
reference data across data objects.

structures:id is an ID attribute. Its value is an identifier for the object in which it appears. For example, in example 5-12
the value JD is an identifier for the nc:Person object. According to the rules of XML, an ID value must be unique within
the XML document.

An ID attribute is a fragment identifier within the XML document. For example, if the message as a whole has the URI
http://example.com/MSG/ , then the object identifier JD is equivalent to http://example.com/MSG/#JD .

structures:ref is an IDREF attribute. An object with this attribute is a reference to the object with that identifier. For
example, in example 5-12, the element <nc:Person structures:ref="JD" xsi:nil="true"/> is a reference to the
<nc:Person> object that has the identifier JD .

The structures:ref attribute has type xs:IDREF , so according to the rules of XML the message must contain an ID
attribute with the same value. This means a structures:ref reference can only link to an object within the same
message.

Object references using structures:ref must not have content. If the object type has mandatory content, then
xsi:nil="true" is required.

5.3.2 Object references in NIEM XML using structures:uri

NIEM introduced support for linked data through the use of uniform resource identifiers (URIs), expressed in NIEM XML
through the attribute structures:uri . In linked data, anything modeled or addressed by an information system may be called
a resource: people, vehicles, reports, documents, relationships, ideas: anything that is talked about and modeled in an
information system is a resource. In NIEM, the objects in a message are the resources; an object identifier is a resource
identifier.

The structures:uri attribute assigns an object identifier to the element in which it appears. All of the elements having the
same identifier refer to a single object, and all of those elements provide property values for that one object. For example, in
example 5-13 below, there is only one Person object in the message. The person located at the Pentagon is also the person
associated with the US Army; that person is named “John Doe” and also has red hair.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 59 of 119

http://example.com/MSG/
http://example.com/MSG/#JD

<nc:PersonLocationAssociation> | "nc:PersonLocationAssociation": {
 <nc:Person structures:uri="#JD"> | "nc:Person": {
 <nc:PersonName> | "@id": "#JD",
 <nc:PersonFullName>John Doe</nc:PersonFullName> | "nc:PersonName": {
 </nc:PersonName> | "nc:PersonFullName": "John Doe"
 </nc:Person> | }
 <nc:Location> | },
 <nc:LocationName>Pentagon</nc:LocationName> | "nc:Location": {
 </nc:Location> | "nc:LocationName": "Pentagon"
</nc:PersonLocationAssociation> | }
<nc:PersonOrganizationAssociation> | },
 <nc:Person structures:uri="#JD"> | "nc:PersonOrganizationAssociation": {
 <nc:PersonHairColorText>Red</nc:PersonHairColorText> | "nc:Person": {
 </nc:Person> | "@id": "#JD",
 <nc:Organization> | "nc:PersonHairColorText": "Red"
 <nc:OrganizationName>US Army</nc:OrganizationName> | },
 </nc:Organization> | "nc:Organization": {
</nc:PersonOrganizationAssociation> | "nc:OrganizationName": "US Army"
 | }
 | }

Example 5-13: Example of URI object references in NIEM XML and JSON

The structures:uri attribute has the type xs:anyURI . Values can be either a URI-reference or a relative-ref, as defined by
[RFC 3986]. A URI-reference can be a URN or URL; for example:

 <nc:Person structures:uri="urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"/>
 <nc:Person structures:uri="http://example.com/PersonID/B263-1655-2187"/>

If the message as a whole has a URI, then a relative reference is interpreted according to the rules for reference resolution in
[RFC 3986]. For example, if the message URI is http://example.com/MSG/ , then the relative reference JD resolves to
http://example.com/MSG/#JD .

A relative resource in structures:uri is the same thing as a fragment identifier in structures:id , but with a leading #
character. For example, structures:uri="#JD" and structures:id="JD" denote the same resource identifier.

5.3.3 Comparison of object references in NIEM XML

structures:ref and structures:id must appear within the same message.

structures:ref requires and provides type safety, in that the type of an object pointed to by structures:ref must be
consistent with the referencing element’s type declaration.

The value of structures:id must be unique for IDs within the XML document.

The value of structures:ref must appear within the document as the value of an attribute structures:id .

A structures:uri can reference any structures:id in the same message, or in another message.

Any structures:uri may reference any other structures:uri , in the same message, or in another message.

5.3.4 Object references in NIEM JSON using @id

Object references in NIEM JSON use JSON-LD’s @id keyword. This is equivalent to structures:uri in NIEM XML. For
example, the following NIEM XML and JSON references mean the same thing and are interpreted in the same way. (There is
no JSON equivalent to XML’s ID/IDREF attributes.)

<nc:Person structures:uri="#JD">
"nc:Person": { "@id": "#JD" }

The two JSON objects in example 5-13 that are values of a nc:Person key have the same #JD value for @id . That means
the two JSON objects contain properties of a single NIEM message object, representing a person named “John Doe” who has

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 60 of 119

http://example.com/PersonID/B263-1655-2187%22/%3E
http://example.com/MSG/
http://example.com/MSG/#JD

red hair.

5.3.5 Meaning of inline objects and object references

An important aspect of all of the object reference mechanisms (structures:ref , structures:uri , and @id) is that they all
have the same meaning. There is also no difference in meaning between an object that appears inline and an object that
appears through a reference.

Any claim that inline objects represent composition, while object references represent aggregation is incorrect. No life cycle
dependency is implied by either method. Similarly, any claim that inline objects are intrinsic (i.e., a property inherent to an
object), while object references are extrinsic (i.e., a property derived from a relationship to other things), is false. A property
represented as an inline object has the exact same meaning as that property represented by a reference.

5.3.6 Reference attribute properties

A reference attribute property contains a list of object identifiers, and is interpreted as an object reference to each of the
objects thus identified, each a child property of the object containing the reference attribute property. For example, the two
XML messages in example 5-14 have the same meaning.

<my:Thing nc:metadataRef="m6 m7"> | <my:Thing>
 <my:ThingName>The Snark</my:ThingName> | <my:ThingName>The Snark</my:ThingName>
 <my:ThingLocation>Dismal Valley</my:ThingLocation> | <my:ThingLocation>Dismal Valley</my:ThingLocation>
</my:Thing> | <nc:Metadata>
<nc:Metadata structures:id="m6"> | <nc:ConfidencePercent>75</nc:ConfidencePercent>
 <nc:ConfidencePercent>75</nc:ConfidencePercent> | </nc:Metadata>
</nc:Metadata> | <nc:Metadata>
<nc:Metadata structures:id="m7"> | <nc:SourceIDText>Bingo-7</nc:SourceIDText>
 <nc:SourceIDText>Bingo-7</nc:SourceIDText> | </nc:Metadata>
</nc:Metadata> | </my:Thing>

Example 5-14: Reference attribute property and equivalent message in XML

Example 5-15 shows the equivalent JSON message.

"my:Thing": {
 "my:ThingName": "The Snark",
 "my:ThingLocation": "Dismal Valley",
 "nc:metadataRef": [
 { "@id": "#m6"},
 { "@id": "#m7"}
]
},
"nc:Metadata": [
 {
 "nc:ConfidencePercent": "75",
 "@id": "#m6"
 },
 {
 "nc:SourceIDText": "Bingo-7",
 "@id": "#m7"
 }
]

Example 5-15: Reference attribute property in JSON message

The class of these objects is determined by the name of the reference attribute property. For example, an object reference
belonging to nc:metadataRef must have the class nc:MetadataType , or a derived class. (see rule 12-11.)

5.4 Metadata and augmentation

Metadata is data about data. The distinction is created by intended use. To the person editing an image, the creation
timestamp is metadata, something he does not need. To the person writing software to sort photos into creation order, the
timestamp is the data for his code. One man’s metadata is another man’s data.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 61 of 119

The NIEM model contains a number of classes and properties that are suitable for metadata representations, and any model
designer is free to invent new components for this purpose, as needed. A message designer may use these components in
his message model, in the same way as any other component. For example, a message designer might, within the
components he creates, use nc:Metadata to represent a source of information and the level of confidence in that information.
Figure 5-16 shows an example of a message in which the designer chose to use nc:Metadata as a property within his own
my:ThingType class.

<my:Thing>
 <my:ThingName>The Snark</my:ThingName>
 <my:ThingLocation>Dismal Valley</my:ThingLocation>
 <nc:Metadata>
 <nc:ConfidencePercent>75</nc:ConfidencePercent>
 <nc:SourceIDText>Bingo-7</nc:SourceIDText>

Example 5-16: Metadata properties used in a designer’s own class

A message designer might also want to record source and confidence in a class reused from another namespace. This is
done through augmentation, following one of two patterns. The first is to augment the class with an object property. Example
5-17 shows a message example in which nc:PersonType is augmented with nc:Metadata .

<nc:Person> | "nc:Person": {
 <nc:PersonBirthDate> | "nc:PersonBirthDate": {
 <nc:Date>2021-09-11</nc:Date> | "nc:Date": "2021-09-11"
 </nc:PersonBirthDate> | },
 <nc:PersonName> | "nc:PersonName": {
 <nc:PersonFullName>John Doe</nc:PersonFullName> | "nc:PersonFullName": "John Doe"
 </nc:PersonName> | },
 <my:PersonAugmentation> | "nc:Metadata": {
 <nc:Metadata"> | "nc:SourceIDText": "Tango-7"
 <nc:SourceIDText>Tango-7</nc:SourceIDText> | }
 </nc:Metadata> | }
 </my:PersonAugmentation> |
</nc:Person> |

Example 5-17: Metadata object property augmenting a reused class

The above augmentation pattern only works for a class with element properties. To add metadata properties to a literal class,
the message designer must augment the class with a reference attribute property. Example 5-18 shows a message example
in which nc:PersonNameTextType is augmented with nc:metadataRef .

<nc:Person> | "nc:Person": {
 <nc:PersonBirthDate> | "nc:PersonBirthDate": {
 <nc:Date>2021-09-11</nc:Date> | "nc:Date": "2021-09-11"
 </nc:PersonBirthDate> | },
 <nc:PersonName> | "nc:PersonName": {
 <nc:PersonFullName nc:metadataRef="m2">John Doe</nc:PersonFullName> | "nc:PersonFullName": "John Doe",
 </nc:PersonName> | "nc:metadataRef": "#m2"
</nc:Person> | },
<nc:Metadata structures:id="m2"> | "nc:Metadata": {
 <nc:ConfidencePercent>75</nc:ConfidencePercent> | "@id": "#m2",
</nc:Metadata> | "nc:ConfidencePercent": "75",
 | }
 | }

Example 5-18: Metadata reference attribute augmenting a reused class

5.5 Relationship properties

The value of a property usually provides information about its parent object. For example, the value of
nc:personNameCommentText in example 5-19 tells us something about the parent object; namely, that this name is a silly name.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 62 of 119

file:///home/runner/work/niem-sandbox/niem-sandbox/ndr/v6.0/psd01/fig5-16

<nc:Person> | "nc:Person": {
 <nc:PersonName nc:personNameCommentText="This is a silly name"> | "nc:PersonName": {
 <nc:PersonFullName>Bozo the Clown</nc:PersonFullName> | "nc:personNameCommentText": "This is a silly name",
 </nc:PersonName> | "nc:PersonFullName": "Bozo the Clown"
</nc:Person> | }
 | }

Example 5-19: Example of an ordinary property

Sometimes that is not what is needed. For example, in example 5-20, the relationship property my:isSecret is not telling us
the name “Superman” is a secret. Everybody knows that name! Instead, my:isSecret is telling us something about the
relationship between the name “Superman” and the person object with the other name “Clark Kent”. That relationship is the
thing to be kept secret.

<nc:Person> | "nc:Person": {
 <nc:PersonName my:isSecret="true"> | "nc:PersonName": [
 <nc:PersonFullName>Superman</nc:PersonFullName> | {
 </nc:PersonName> | "nc:PersonFullName": "Superman",
 <nc:PersonName> | "@annotation": { "my:isSecret": "true" }
 <nc:PersonFullName>Clark Kent</nc:PersonFullName> | },
 </nc:PersonName> | {
</nc:Person> | "nc:PersonFullName": "Clark Kent"
 | }
 | }
 | }

Example 5-20: Example of a relationship property

NIEM uses RDF-star to represent relationship properties. Example 5-21 shows the RDF equivalent for the message in
example 5-20. Figure 5-22 provides a diagram of that RDF graph.

_:n1 nc:PersonName _:n2 .
_:n1 nc:PersonName _:n2 {| "my:isSecret": "true" |} .
_:n2 nc:PersonFullName "Superman" .
_:n3 nc:PersonFullName "Clark Kent" .

Example 5-21: RDF-star equivalent for a relationship property

Figure 5-22: RDF-star graph diagram for a relationship property

5.6 Roles

These use structures:uri in NIEM 6. Need explanation and example TODO

5.6 Representation pattern

Stuff from NDR 5 section 10.7 TODO

5.7 Container objects

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 63 of 119

NDR 5 section 10.6 TODO

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 64 of 119

6. Conformance
This document defines conformance for namespaces, schema documents, models, and messages. These are the
conformance targets for NIEM; that is, these are the kinds of artifact for which conformance may be asserted. For each
conformance target, this document specifies a set of conformance claims, called rules, which must be fulfilled by a conforming
artifact. Rules are normative, and are written with the capitalized [RFC 2119] keywords MUST, MUST NOT, etc.

NIEM does not define conformance for applications, systems, databases, or tools. It is therefore impossible for any of these
to properly claim “NIEM conformance”. However, they may properly claim to generate conforming messages or to employ
conforming models.

NIEM defines conformance with the rules in this document, but it does not define compliance. The distinction is based on
assessment authority: Anyone may assess conformance with rules. Compliance is assessed by an authority who can compel
change or withhold approval. The authoritative assessment in a compliance evaluation is out of scope for NIEMOpen.

The rules in this document are designed to be used with or without the component definitions in the NIEM model. These rules
define conformance to the NIEM architecture. Conformance to the NIEM model is a separate thing, and is not specified by
this document.

6.1 Conformance targets

The conformance targets specified in this document are listed below. The rules for each conformance target appear in the
given sections.

Namespace: A conforming namespace is a namespace that satisfies all of the applicable rules in this document. The
rules for this conformance target apply to both the CMF and XSD representations of a namespace. (In CMF, this is a
Namespace object in a model file. In XSD, this is a schema document.) The rules for all conforming namespaces are in:

Section 7.1: Rules for component names

Section 7.2: Rules for component documentation

Section 8: Rules for namespaces

Reference namespace: Additional rules for the reference namespace conformance target are in section 9.8.

Extension namespace: Additional rules for the extension namespace conformance target are in section 9.9.

Subset namespace: Additional rules for the subset namespace conformance target are in section 9.10.

Schema document: A conforming schema document is a schema document that satisfies all of the applicable rules in
this document. The rules for this conformance target apply only to the XSD representation of a namespace. The rules
for all conforming schema documents are found in:

Section 9.1: Rules for the NIEM profile of XSD

Section 9.2: Rules for type definitions

Section 9.3: Rules for attribute and element declarations

Section 9.4: Rules for adapters and external components

Section 9.5: Rules for proxy types

Section 9.6: Rules for augmentations

Section 9.7: Rules for machine-readable annotations

Reference schema document: Additional rules for the reference schema document conformance target are in

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 65 of 119

section 9.8.

Extension schema document: Additional rules for the extension schema document conformance target are in
section 9.9.

Subset schema document: Additional rules for the subset schema document conformance target are in section
9.9.

Model: A conforming model fulfils all of the rules in section 10. There are two representations for NIEM models, CMF
and XSD.

Model file: A model file is a message that conforms to the CMF message type. Additional rules for this
conformance target are in section 10.1.

Schema document set: A conforming schema document set is a schema document set that fulfils all applicable
rules in section 10. Additional rules for this conformance target are in section 10.2.

Message type and message format: Rules for these conformance targets are in section 11

XML message: Rules applying to a message in XML format are in section 12

JSON message: Rules applying to a message in JSON format are in section 13

6.2 Conformance target assertions

It is often helpful for an artifact to contain an assertion of the kind of thing it is supposed to be. These assertions can inform
both people and tools. The Conformance Targets Attribute Specification [CTAS-v3.0] defines an attribute that, when it
appears in an XML document, asserts the document conforms to one or more conformance targets. Specifically, this is the
effective conformance targets attribute, which is the first occurrence of the attribute {https://docs.oasis-
open.org/niemopen/ns/specification/conformanceTargets/6.0/}conformanceTargets , in document order.

For XSD, NIEMOpen makes use of [CTAS-v3.0] to indicate whether a schema document is intended to represent a reference,
extension, or subset namespace. For example, a reference schema document contains the conformance target assertion
shown in example 6-1 below:

<xs:schema
 targetNamespace="https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/"
 xmlns:ct="https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/"
 xmlns:nc="https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/"
 ct:conformanceTargets="https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument"
 version="1"
 xml:lang="en-US">

Example 6-1: Conformance target assertion in XSD

In CMF, the ConformanceTargetURI property indicates whether a Namespace object represents a reference, extension, or
subset namespace. For example, the Namespace object equivalent to the namespace in example 6-1 is shown below:

<Namespace structures:id="nc">
 <NamespaceURI>https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/</NamespaceURI>
 <NamespacePrefixText>nc</NamespacePrefixText>
 <DocumentationText>NIEM Core.</DocumentationText>
 <ConformanceTargetURI>
 https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument
 </ConformanceTargetURI>
 <NIEMVersionText>6</NIEMVersionText>
 <NamespaceVersionText>1</NamespaceVersionText>
 <NamespaceLanguageName>en-US</NamespaceLanguageName>
</Namespace>

Example 6-2: Conformance target assertion in CMF

6.3 Conformance testing

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 66 of 119

https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/%7DconformanceTargets
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/%22
https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/%22
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/%22
https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument%22
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/%3C/NamespaceURI%3E
https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument

Automated testing of most rules is possible. Some rules require human evaluation.

Many rules for schema documents may be tested by the Schematron rules provided in TODO.

Messages must be valid when assessed against the schema of their message format. Many of the rules applicable to all
messages are encoded into these schemas when the schemas are generated from the message type by NIEMOpen
developer tools; see software tools.

The rules in this document that require human evaluation are marked with TODO.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 67 of 119

https://github.com/niemopen/ntac-admin/blob/main/tools/README.md

7. Rules for model components
These rules apply to model components in both the CMF and XSD representations of conforming namespaces. In CMF, the
representation is a Namespace object in a CMF model file. In XSD, it is a schema document.

Rules for names of components appear in section 7.1
Rules for documentation of components appear in section 7.2
Rules for namespaces appear in section 8

7.1 Rules for component names

Data component names must be understood easily both by humans and by machine processes. These rules improve name
consistency by restricting characters, terms, and syntax that could otherwise allow too much variety and potential ambiguity.
These rules also improve readability of names for humans, facilitate parsing of individual terms that compose names, and
support various automated tasks associated with dictionary and controlled vocabulary maintenance.

These rules apply to all namespaces. In a CMF representation, they apply to the Name property of a Component object. In an
XSD representation, they apply to the {}name attribute of a complex type definition, element declaration, or attribute
declaration.

Rule 7-1: Attribute and element do not have same uncased name || A namespace MUST NOT include two components with
the same uncased name. (NEW)

For example, a namespace may not include both the attribute commentText and the element CommentText . This would cause
problems in case-insensitive environments.

7.1.1 Rules based on kind of component

Rule 7-2: Name of Class, Datatype, and Property components || Class and Datatype components MUST have a name ending
in “Type”; Property components MUST NOT. (N5R 11-1,11-2)

This rule immediately distinguishes Property components from Class and Datatype components. In an XSD representation, it
also avoids naming collisions between type definitions and element/attribute declarations.

Rule 7-3: Augmentation names are reserved || A component MUST NOT have a name ending in “Augmentation”,
“AugmentationPoint”, or “AugmentationType”. (NEW)

XSD components with these names appear only in the XSD representation of a model. These XSD components are not
themselves model components.

7.1.1.1 Rules for names of Class components

Rule 7-4: Name of adapter classes || An adapter class MUST have a name ending in “AdapterType”; all other components
MUST NOT. (NEW)

Rule 7-5: Name of association classes || An association class MUST have a name ending in “AssociationType”; all other
components MUST NOT. (N5R 10-21)

Rule 7-6: Name of code list literal classes || A literal class with a literal property that has a code list datatype MUST have a
name ending in “CodeType”; all other literal classes MUST NOT. (N5R 10-17,10-18)

These rules immediately distinguish special Class components from ordinary. Rule 7-5 handles an unusual case in XSD. A
code list in XSD is represented as a complex type with simple content. This usually corresponds to a Datatype component;
however, when that complex type definition includes attribute properties, then it corresponds to a Class component.

7.1.1.2 Rules for names of Datatype components

Rule 7-7: Names ending in “SimpleType” || A component with a name ending in “SimpleType” MUST be a Datatype. (NEW)

A Datatype with a name ending in “SimpleType” is sometimes needed for a literal property, or for a member type in a List or

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 68 of 119

Union component.

Rule 7-8: Names ending in “CodeSimpleType” || A Datatype object with a name that ends in “CodeSimpleType” MUST be a
code list datatype. (N5R 11-8,11-9)

Rule 7-9: Name of code list datatypes || A code list datatype MUST have a name ending in “CodeType” or
“CodeSimpleType”; all other Datatype components MUST NOT. (N5R 10-17,10-18)

The component representing a code list is usually a Datatype object. However, when the XSD representation of a code list
includes attributes, it is a Class object.

7.1.1.3 Rules for names of Property components

Rule 7-10: Name of abstract properties || A Property object having an AbstractIndicator property with the value true
SHOULD have a name ending in “Abstract” or “Representation”; all other components SHOULD NOT. (N5R 10-42,11-14)

A property name ending in “Abstract” reminds message designers that it cannot be used directly but must be specialized. A
property name ending in “Representation” is an instance of the representation pattern described in section 5.

Rule 7-11: Name of association properties || A Property with an association class MUST have a name ending in
“Association”; all other components MUST NOT. (N5R 10-22)

Rule 7-12: Name of code properties || A Property with a Class or Datatype that represents a code list MUST have a name
ending in “Code”; all other components MUST NOT. (N5R 10-19,11-10)

Rule 7-13: Name of literal properties in CMF || The literal property of a literal class MUST have a name ending in “Literal”; all
other components MUST NOT. (NEW)

Component names ending in “Literal” only occur in the CMF representation of a literal class.

Rule 7-14: Name of representation attributes || A Property that is a reference attribute property property MUST have a name
ending in “Ref”; all other components MUST NOT. (NEW)

7.1.2 Rules for composition of component names

Rule 7-15: Component name composed of English words || Except as otherwise provided in this document, the name of a
model component MUST be composed of words from the English language, using the prevalent U.S. spelling, as provided by
the Oxford English Dictionary [OED]. (N5R 10-44)

The English language has many spelling variations for the same word. For example, American English program has a
corresponding British spelling programme. This variation has the potential to cause interoperability problems when XML
components are exchanged because of the different names used by the same elements. Providing users with a dictionary
standard for spelling will mitigate this potential interoperability issue.

NIEM supports internationalization in several ways. NIEM allows (but does not encourage) component names that are not
from the English language in extension schema documents.

Rule 7-16: Component names have only specific characters || The name of a model component MUST be entirely composed
of specified characters. (N5R 10-46)

Upper-case letters (A-Z)
Lower-case letters (a-z)
Digits (0-9)
Underscore (_)
Hyphen (-)
Period (.)

Other characters, such as unicode characters outside the ASCII character set, are explicitly prohibited from the name of an
XML Schema component defined by the schema.

Rule 7-17: Component names use camel case || The name of a model component MUST use the camel case formatting

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 69 of 119

convention. (N5R 10-48)

Camel case is the convention of writing compound words or phrases with no spaces and an initial lowercase or uppercase
letter, with each remaining word element beginning with an uppercase letter. UpperCamelCase is written with an initial
uppercase letter, and lowerCamelCase is written with an initial lowercase letter.

Rule 7-18: Name of attribute properties begin with lower case letter || The name of an attribute property MUST begin with a
lowercase character. (N5R 10-49)

Rule 7-19: Name of components other than attribute properties begin with upper case letter || The name of a model
component that is not an attribute property MUST begin with an uppercase character. (N5R 10-50)

Rule 7-20: Punctuation in component name is a separator || The characters hyphen (-), underscore (_) MUST NOT appear in
a component name unless used as a separator between parts of a word, phrase, or value, which would otherwise be
incomprehensible without the use of a separator. The character period (.) MUST NOT appear in a component name unless as
a decimal within a numeric value, or unless used as a separator between parts of a word, phrase, or value, which would
otherwise be incomprehensible without the use of a separator. (N5R 10-47)

Names of standards and specifications, in particular, tend to consist of series of discrete numbers. Such names require some
explicit separator to keep the values from running together.

7.1.3 General component naming rules from ISO 11179-5

Names are a simple but incomplete means of providing semantics to data components. Data definitions, structure, and
context help to fill the gap left by the limitations of naming. The goals for data component names should be syntactic
consistency, semantic precision, and simplicity. In many cases, these goals conflict and it is sometimes necessary to
compromise or to allow exceptions to ensure clarity and understanding. To the extent possible, NIEM applies [ISO 11179-5]
to construct NIEM data component names.

Rule 7-21: Singular form is preferred in name || A noun used as a term in the name of an XML Schema component MUST be
in singular form unless the concept itself is plural. (N5R 10-54)

Rule 7-22: Present tense is preferred in name || A verb used as a term in the name of an XML Schema component MUST be
used in the present tense unless the concept itself is past tense. (N5R 10-55)

Rule 7-23: Name does not have nonessential words || Articles, conjunctions, and prepositions MUST NOT be used in NIEM
component names except where they are required for clarity or by standard convention. (N5R 10-56)

Articles (e.g., a, an, the), conjunctions (e.g., and, or, but), and prepositions (e.g., at, by, for, from, in, of, to) are all disallowed
in NIEM component names, unless they are required. For example, PowerOfAttorneyCode requires the preposition. These
rules constrain slight variations in word forms and types to improve consistency and reduce potentially ambiguous or
confusing component names.

7.1.4 Property naming rules from ISO 11179-5

The set of NIEM data components is a collection of data representations for real-world objects and concepts, along with their
associated properties and relationships. Thus, names for these components would consist of the terms (words) for object
classes or that describe object classes, their characteristic properties, subparts, and relationships.

Rule 7-24: Property name follows ISO 11179-5 pattern || Except as specified elsewhere in this document, the name of a
property object MUST be formed by the composition of object class qualifier terms, object class term, property qualifier terms,
property term, representation qualifier terms, and representation term, as detailed in Annex A of [ISO 11179-5]. (N5R 7-5,10-
57)

For example, the NIEM component name AircraftFuselageColorCode is composed of the following:

Object class term = Aircraft
Qualifier term = Fuselage
Property term = Color
Representation term = Code

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 70 of 119

7.1.4.1 Object-class term

Rule 7-25: Object-class term identifies concrete category || The object-class term of a NIEM component MUST consist of a
term identifying a category of concepts or entities. (N5R 10-58)

NIEM adopts an object-oriented approach to representation of data. Object classes represent what ISO 11179-5 refers to as
things of interest in a universe of discourse that may be found in a model of that universe. An object class or object term is a
word that represents a class of real-world entities or concepts. An object-class term describes the applicable context for a
NIEM component.

The object-class term indicates the object category that this data component describes or represents. This term provides
valuable context and narrows the scope of the component to an actual class of things or concepts. An example of a concept
term is Activity. An example of an entity term is Vehicle.

7.1.4.2 Property term

Rule 7-26: Property term describes characteristic or subpart || A property term MUST describe or represent a characteristic
or subpart of an entity or concept. (N5R 10-59)

Objects or concepts are usually described in terms of their characteristic properties, data attributes, or constituent subparts.
Most objects can be described by several characteristics. Therefore, a property term in the name of a data component
represents a characteristic or subpart of an object class and generally describes the essence of that data component. It
describes the central meaning of the component.

7.1.4.3 Qualifier terms

Rule 7-27: Name may have multiple qualifier terms || Multiple qualifier terms MAY be used within a component name as
necessary to ensure clarity and uniqueness within its namespace and usage context. (N5R 10-60)

Rule 7-28: Name avoids unnecessary qualifier terms || The number of qualifier terms SHOULD be limited to the absolute
minimum required to make the component name unique and understandable. (N5R 10-61)

Rule 7-29: Order of qualifiers is not significant || The order of qualifiers MUST NOT be used to differentiate components.
(N5R 10-62)

Very large vocabularies may have many similar and closely related properties and concepts. The use of object, property, and
representation terms alone is often not sufficient to construct meaningful names that can uniquely distinguish such
components. Qualifier terms provide additional context to resolve these subtleties. However, swapping the order of qualifiers
rarely (if ever) changes meaning; qualifier ordering is no substitute for meaningful terms.

7.1.4.4 Representation term

The representation terms for a property name serve several purposes in NIEM:

1. It can indicate the style of component. For example, types are clearly labeled with the representation term Type.

2. It helps prevent name conflicts and confusion. For example, elements and types may not be given the same name.

3. It indicates the nature of the value carried by element. Labeling elements and attributes with a notional indicator of the
content eases discovery and comprehension.

The valid value set of a data element or value domain is described by the representation term. NIEM uses a standard set of
representation terms in the representation portion of a NIEM-conformant component name. Table 6-1, Property
representation terms, below, lists the primary representation terms and a definition for the concept associated with the use of
that term. The table also lists secondary representation terms that may represent more specific uses of the concept
associated with the primary representation term.

PrimaryRepresentationTerm SecondaryRepresentationTerm Definition

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 71 of 119

Amount - A number of monetary units specified in a currency
where the unit of currency is explicit or implied.

BinaryObject - A set of finite-length sequences of binary octets.

Graphic A diagram, graph, mathematical curves, or similar
representation

Picture A visual representation of a person, object, or scene

Sound A representation for audio

Video A motion picture representation; may include audio
encoded within

Code A character string (i.e., letters, figures, and symbols)
that for brevity, language independence, or precision
represents a definitive value of an attribute.

DateTime A particular point in the progression of time together
with relevant supplementary information.

Date A continuous or recurring period of time, of a duration
greater than or equal to a day.

Time A particular point in the progression of time within an
unspecified 24-hour day.

Duration An amount of time; the length of a time span.

ID A character string to identify and distinguish uniquely
one instance of an object in an identification scheme
from all other objects in the same scheme together
with relevant supplementary information.

URI A string of characters used to identify (or name) a
resource. The main purpose of this identifier is to
enable interaction with representations of the
resource over a network, typically the World Wide
Web, using specific protocols. A URI is either a
Uniform Resource Locator (URL) or a Uniform
Resource Name (URN). The specific syntax for each
is defined by [RFC 3986].

Indicator A list of two mutually exclusive Boolean values that
express the only possible states of a property.

Measure A numeric value determined by measuring an object
along with the specified unit of measure.

Numeric Numeric information that is assigned or is determined
by calculation, counting, or sequencing. It does not
require a unit of quantity or unit of measure.

Value A result of a calculation.

PrimaryRepresentationTerm SecondaryRepresentationTerm Definition

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 72 of 119

Rate A relative speed of change or progress.

Percent A representation of a unitless ratio, expressed as
parts of a hundred, with 100 percent representing a
ratio of 1 to 1.

Quantity A counted number of non-monetary units possibly
including fractions.

Text - A character string (i.e., a finite sequence of
characters) generally in the form of words of a
language.

Name A word or phrase that constitutes the distinctive
designation of a person, place, thing, or concept.

List A sequence of values. This representation term is
used in tandem with another of the listed
representation terms.

Abstract An element that may represent a concept, rather than
a concrete property. This representation term may be
used in tandem with another of the listed
representation terms.

Representation An element that acts as a placeholder for alternative
representations of the value of a type

PrimaryRepresentationTerm SecondaryRepresentationTerm Definition

Table 7-1: Property representation terms

Rule 7-30: Redundant term in name is omitted || If any word in the representation term is redundant with any word in the
property term, one occurrence SHOULD be deleted. (N5R 10-63)

This rule, carried over from 11179, is designed to prevent repeating terms unnecessarily within component names. For
example, this rule allows designers to avoid naming an element PersonFirstNameName.

Rule 7-31: Data property uses representation term || The name of a data property SHOULD use an appropriate
representation term as found in table 6-1, Property representation terms. (N5R 10-64, 11-15, 11-16, 11-19)

Rule 7-32: Object property uses representation term when appropriate || The name of an object property that corresponds to
a concept listed in table 6-1, Property representation terms, SHOULD use a representation term from that table. (N5R 10-65)

Rule 7-33: Object property uses representation term only when appropriate || The name of an object property that does not
correspond to a concept listed in table 6-1, Property representation terms SHOULD NOT use a representation term. (N5R 10-
66)

7.1.5 Acronyms, abbreviations, and jargon

Rule 7-34: Names use common abbreviations || A component name SHOULD use the abbreviations shown in the table
below. (N5R 10-51)

Abbreviation Full Meaning

ID Identifier

URI Uniform Resource Identifier

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 73 of 119

Rule 7-35: Local terms usable within their namespace || A local term MAY be used in the name of a component within its
namespace. (N5R 10-52)

A local term is a word, phrase, acronym, or other string of characters that is defined within a namespace by a LocalTerm
object.

Rule 7-36: Local term has literal or definition || In CMF, a LocalTerm object MUST have a DocumentationText property, or a
TermLiteralText property, or both. In XSD, a LocalTerm element MUST have a @definition attribute, or a @literal attribute,
or both. (N5R 10-77)

7.2 Rules for component documentation

NIEM models are composed of data components for the purpose of information exchange. A major part of defining data
models is the proper definition of the contents of the model. What does a component mean, and what might it contain? How
should it be used?

Reference namespaces and extension namespaces provide the authoritative definition of the components they contain.
These definitions include:

1. The structural definition of each component, expressed as CMF objects or XSD schema components. Where possible,
meaning is expressed in this way.

2. A text definition of each component, describing what the component means. The term used in this specification for such
a text definition is data definition.

A data definition is the DocumentText property of a CMF object, or the content of the first occurrence of the element
xs:documentation that is an immediate child of an occurrence of an element xs:annotation that is an immediate child of an

XSD schema component.

A documented component is a CMF object or XSD schema component that has an associated data definition.

7.2.1 Rules for documented components

Rule 7-37: Namespace has data definition || In CMF, a Namespace object MUST be a documented component. In XSD, the
xs:schema element MUST be a documented component. (N5R 9-82)

Rule 7-38: Model component has data definition || In CMF, a Component object MUST be a documented component. In
XSD, a type definition, element declaration, or attribute declaration MUST be a documented component (N5R 9-12,9-26,9-
37,9-49)

Rule 7-39: Enumeration facet has data definition || In CMF, a Facet object with a FacetCategoryCode of enumeration MUST
be a documented component. In XSD, an xs:enumeration facet MUST be a documented component. (N5R 9-14)

Rule 7-40: Pattern facet has data definition || In CMF, a Facet object with a FacetCategoryCode of pattern MUST be a
documented component. In XSD, an xs:pattern facet MUST be a documented component. (NEW)

Rule 7-41: Documentation is provided in US English || In CMF, the language name for the first instance of the
DocumentationText property in any Namespace or Component object MUST be en-US . In XSD, the first occurrence of
xs:documentation within xs:annotation MUST be within the scope of an occurrence of xml:lang with a value of en-US . In

each case, subsequent instances, if provided, MUST have a different language name. (NEW)

A model file or schema document always contains data definitions in US English. It may contain equivalent data definitions in
other languages.

7.2.2 Rules for data definitions

Rule 7-42: Data definition does not introduce ambiguity || Words or synonyms for the words within a data definition MUST
NOT be reused as terms in the corresponding component name if those words dilute the semantics and understanding of, or
impart ambiguity to, the entity or concept that the component represents. (N5R 11-24)

Rule 7-43: Object class has only one meaning || An object class MUST have one and only one associated semantic meaning

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 74 of 119

(i.e., a single word sense) as described in the definition of the component that represents that object class. (N5R 11-25)

Rule 7-44: Data definition of a part does not redefine the whole || An object class MUST NOT be redefined within the
definitions of the components that represent properties or subparts of that entity or class. (N5R 11-26)

Data definitions should be concise, precise, and unambiguous without embedding additional definitions of data elements that
have already been defined once elsewhere (such as object classes). [ISO 11179-4] says that definitions should not be nested
inside other definitions. Furthermore, a data dictionary is not a language dictionary. It is acceptable to reuse terms (object
class, property term, and qualifier terms) from a component name within its corresponding definition to enhance clarity, as
long as the requirements and recommendations of [ISO 11179-4] are not violated. This further enhances brevity and
precision.

Rule 7-45: Do not leak representation into data definition || A data definition SHOULD NOT contain explicit representational
or data typing information such as number of characters, classes of characters, range of mathematical values, etc., unless
the very nature of the component can be described only by such information. (N5R 11-27)

A component definition is intended to describe semantic meaning only, not representation or structure. How a component
with simple content is represented is indicated through the representation term, but the primary source of representational
information should come from the XML Schema definition of the types themselves. A developer should try to keep a
component’s data definition decoupled from its representation.

7.2.3 Data definition rules from ISO 11179-4

These rules are adopted from [ISO 11179-4], Information technology — Metadata
registries: Formulation of data definitions

Rule 7-46: Data definition follows 11179-4 requirements || Each data definition MUST conform to the requirements for data
definitions provided by [ISO 11179-4] Section 5.2, Requirements; namely, a data definition MUST: (N5R 11-28)

be stated in the singular
state what the concept is, not only what it is not
be stated as a descriptive phrase or sentence(s)
contain only commonly understood abbreviations
be expressed without embedding definitions of other data or underlying concepts

Rule 7-47: Data definition follows 11179-4 recommendations || Each data definition SHOULD conform to the
recommendations for data definitions provided by [ISO 11179-4] Section 5.2, Recommendations; namely, a data definition
SHOULD: (N5R 11-29)

state the essential meaning of the concept
be precise and unambiguous
be concise
be able to stand alone
be expressed without embedding rationale, functional usage, or procedural information
avoid circular reasoning
use the same terminology and consistent logical structure for related definitions
be appropriate for the type of metadata item being defined

7.2.4 Data definition opening phrases

In order to provide a more consistent voice across NIEM, a model built from requirements from many different sources,
component data definitions should begin with a standard opening phrase, as defined below.

7.2.4.1 Opening phrases for properties

These rules apply to Property objects in CMF, and to element and attribute declarations in XSD.

Rule 7-48: Standard opening phrase for abstract property data definition || The data definition for an abstract property
SHOULD begin with the standard opening phrase “A data concept…”. (N5R 11-35)

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 75 of 119

Rule 7-49: Standard opening phrase for association property data definition || The data definition for a property that has an
association type and is not abstract SHOULD begin with the standard opening phrase “An (optional adjectives)
(relationship|association)…”. (N5R 11-34)

Rule 7-50: Standard opening phrase for date property data definition || The data definition for a property with a date
representation term SHOULD begin with the standard opening phrase “(A|An) (optional adjectives) (date|month|year)…”.
(N5R 11-36)

Rule 7-51: Standard opening phrase for quantity property data definition || The data definition for a property with a quantity
representation term SHOULD begin with the standard opening phrase “An (optional adjectives) (count|number)…”. (N5R 11-
37)

Rule 7-52: Standard opening phrase for picture property data definition || The data definition for a property with a picture
representation term SHOULD begin with the standard opening phrase “An (optional adjectives) (image|picture|photograph)”.
(N5R 11-38)

Rule 7-53: Standard opening phrase for indicator property data definition || The data definition for a property with an indicator
representation term SHOULD begin with the standard opening phrase “True if …; false (otherwise|if)…”. (N5R 11-39)

Rule 7-54: Standard opening phrase for identification property data definition || The data definition for a property with an
identification representation term SHOULD begin with the standard opening phrase “(A|An) (optional adjectives)
identification…”. (N5R 11-40)

Rule 7-55: Standard opening phrase for name property data definition || The data definition for a property with a name
representation term SHOULD begin with the standard opening phrase “(A|An) (optional adjectives) name…”. (N5R 11-41)

Rule 7-56: Standard opening phrase for property data definition || The data definition for a property SHOULD begin with the
standard opening phrase “(A|An)”. (N5R 11-42)

7.2.4.2 Opening phrases for classes

These rules apply to Class objects in CMF, and to complex type definitions in XSD.

Rule 7-57: Standard opening phrase for association class data definition || The data definition for an association class
SHOULD begin with the standard opening phrase “A data type for (a relationship|an association)…”. (N5R 11-43)

Rule 7-58: Standard opening phrase for class data definition || The data definition for a class SHOULD begin with the
standard opening phrase “A data type…” (N5R 11-46, 11-47)

7.3 Rules for specifications of components

Rule 7-59: Enumerations are unique || A Restriction object MUST NOT contain two Facet objects with a FacetCategoryCode
of enumeration and the same FacetValue. (NEW)

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 76 of 119

8. Rules for namespaces
8.1 Rules for properties of namespaces

Rule 8-1: Namespace identifier is absolute URI || The namespace MUST have an identifier, which MUST match the grammar
syntax <absolute-URI> as defined by [RFC 3986]. In CMF, the namespace identifier is the value of the NamespaceURI
property in a Namespace object. In XSD, the namespace identifier is the value of @targetNamespace in the <xs:schema>
element. (N5R 9-83, 9-84)

Rule 8-2: Namespace URI is owned by namespace authority || The namespace identifier must be a URI that is owned by the
namespace author, as defined in [webarch] §2.2.2.1 URI ownership. (NEW)

For example, namespace authors must not choose a namespace URI beginning with https://docs.oasis-
open.org/niemopen/ns/model/ , because ownership of that URI has been delegated to the authors of the NIEM model.

Rule 8-3: Namespaces use slash URIs || The namespace SHOULD have an identifier ending in the slash (‘/’) character.
(NEW)

Rule 8-4: Namespace URI includes version || The namespace SHOULD have an identifier ending in the pattern /version/ ,
where version is a version identifier. (NEW)

Examples:

https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/
http://example.com/myNS/1.0.1/
http://example.com/yourNS/1.1.1-alpha.7/

Rule 8-5: Namespace URI uses semantic versioning || The version identifier in a namespace identifier SHOULD conform to
the [SemVer] specification. (NEW)

In semantic versioning, version numbers and the way they change convey meaning about the underlying code and what has
been modified from one version to the next.

Rule 8-6: Namespace has a prefix || The namespace MUST have a defined prefix, which MUST match the grammar syntax
<NCName> as defined by [XML Namespaces]. (NEW)

In CMF, the prefix is the value of the NamespacePrefix property in a Namespace object. In XSD, the prefix is defined by a
namespace binding for the target namespace URI.

Rule 8-7: Namespace has version || The namespace MUST have a version, which MUST NOT be empty. In CMF, the
version is the value of the NamespaceVersionText property in a Namespace object. In XSD, the version is the value of
@version in the <xs:schema> element. (N5R 9-85)

Rule 8-8: Namespace has language || The namespace MUST have a default language, which MUST be a well-formed
language tag as defined by [RFC 4646]. In CMF, the default language is the value of the NamespaceLanguageName
property in a Namespace object. In XSD, the default language is the value of @xml:lang in the <xs:schema> element. (N5R
10-45, 11-30)

8.2 Rules for reference namespaces

Rule 8-9: Reference namespace asserts conformance || A reference namespace MUST assert the conformance target
identifier https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument ; all other
namespaces MUST NOT. In CMF, this is a value of the ConformanceTargetURI property in the Namespace object. In XSD,
this is an effective conformance target identifier of the schema document (see §6.2). (N5R 4-1,4-5)

The conformance target identifier ends in “ReferenceSchemaDocument” instead of “ReferenceNamespace” for historical
reasons.

Rule 8-10: Reference namespace does not have wildcard || In CMF, a Class object with a Namespace that is a reference
namespace MUST NOT have the AnyAttributeIndicator property or the AnyElementIndicator property with a value of “true”. In

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 77 of 119

https://www.w3.org/TR/webarch/#uri-ownership
https://docs.oasis-open.org/niemopen/ns/model/
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/
http://example.com/myNS/1.0.1/
http://example.com/yourNS/1.1.1-alpha.7/
https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument

XSD, the schema document for the reference namespace MUST NOT contain the element xs:any or xs:anyAttribute . (N5R
9-70, 9-71)

Wildcards are permitted in extension namespaces, but not in reference namespaces or in subsets of reference namespaces.

Rule 8-11: Object properties in reference namespace are referenceable || In CMF, a Class object or an ObjectProperty object
in a reference namespace MUST NOT contain a ReferenceCode property of ID , URI , or NONE . In XSD, a type definition or
an element declaration in a reference namespace MUST NOT have an @appinfo:referenceCode property of ID , URI , or
NONE . (NEW)

To promote reuse, object properties defined in reference namespaces and extension namespaces are always referenceable.
In a subset of these namespaces, message designers may specify that some properties must be referenced via IDREF, or by
URI, or must appear inline.

Rule 8-12: Reference namespace uses reference namespace components || A component that is used in a reference
namespace MUST be defined in a reference namespace. (N5R 11-50)

8.3 Rules for extension namespaces

Rule 8-13: Extension namespace asserts conformance || An extension namespace MUST assert the conformance target
identifier https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ExtensionSchemaDocument ; all other
namespaces MUST NOT. In CMF, this is a value of the ConformanceTargetURI property in the Namespace object. In XSD,
this is an effective conformance target identifier of the schema document (see §6.2). (N5R 4-2,4-6)

Rule 8-14: Object properties in extension namespace are referenceable || In CMF, a Class object or an ObjectProperty object
in an extension namespace MUST NOT have a ReferenceCode property of ID , URI , or NONE . In XSD, a type definition or an
element declaration in an extension namespace MUST NOT have an @appinfo:referenceCode property of ID , URI , or NONE .
(NEW)

8.4 Rules for subset namespaces

Rule 8-15: Subset namespace asserts conformance || A subset namespace must assert the conformance target identifier
https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#SubsetSchemaDocument . In CMF, this is a value of the
ConformanceTargetURI property in the Namespace object. In XSD, this is an effective conformance target identifier of the
schema document (see §6.2). (N5R 4-5)

Rule 8-16: Subset has corresponding reference or extension namespace || A representation of a reference namespace or
extension namespace with the same identifier as the subset namespace MUST exist. (NEW)

It is helpful when a message specification includes the representation of the reference namespace or extension namespace,
as this facilitates automated validation of certain rules; however, this is not required, so long as the canonical representation
exists somewhere.

Rule 8-17: Subset does not extend component range || A subset namespace MUST NOT extend the valid range of a
component in the corresponding reference namespace or extension namespace. (NEW)

Rule 8-18: Subset does not add components || With the exception of an augmentation property, a subset namespace MUST
NOT contain a component not found in the corresponding reference namespace or extension namespace. (NEW)

Rule 8-19: Subset does not alter data definition || The data definition of a component in a subset namespace MUST NOT be
different than the data definition of the component in its reference namespace or extension namespace. (NEW)

The previous three rules together make up the subset rule: Any data that is valid for a subset namespace must also be valid
for its reference namespace or extension namespace, and must have the same meaning.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 78 of 119

https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ExtensionSchemaDocument
https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#SubsetSchemaDocument

9. Rules for schema documents
This section contains rules that apply only to the XSD representation of NIEM models; that is, to reference schema
documents, extension schema documents, and subset schema documents.

Rule 9-1: Schema is CTAS-conformant || The schema document MUST be a conformant document as defined by [CTAS-
v3.0]. (N5R 4-3)

Rule 9-2: Document element has attribute ct:conformanceTargets || The document element of the XML document, and only
the document element, MUST own an attribute {https://docs.oasis-
open.org/niemopen/ns/specification/conformanceTargets/6.0/}conformanceTargets . (N5R 4-4)

9.1 Rules for the NIEM profile of XSD

The W3C XML Schema Language provides many features that allow a developer to represent a data model many different
ways. A number of XML Schema constructs are not used within NIEM-conformant schemas. Many of these constructs
provide capability that is not currently needed within NIEM. Some of these constructs create problems for interoperability, with
tool support, or with clarity or precision of data model definition. The rules in this section establish a profile of XML Schema
for NIEM-conformant schemas by forbidding use of the problematic constructs.

Note that external schema documents do not need to obey the rules set forth in this section. So long as schema components
from external schema documents are adapted for use with NIEM according to the modeling rules in section 9.4: Rules for
adapters and external components, they may be used as they appear in the external standard, even if the schema
components themselves violate the rules for NIEM-conformant schemas.

Rule 9-3: Document is a valid schema document || The XSD representation of a namespace MUST be a schema document,
as defined by [XML Schema Structures]. (N5R 7-1,7-2,7-3)

Rule 9-4: Document element is xs:schema || The document element of the XSD representation of a namespace MUST be
xs:schema . (N5R 7-4)

Rule 9-5: Prohibited schema components || A schema document MUST NOT contain any of the following elements: (N5R 9-
59,9-61,9-72,9-73,9-74,9-75,9-76,9-88,9-89)

xs:notation
xs:all
xs:unique
xs:key
xs:keyref
xs:group
xs:attributeGroup
xs:redefine
xs:include

Rule 9-6: Prohibited base types || A schema component MUST NOT have an attribute {}base with a value of any of these
types: (N5R 9-1,9-2,9-3,9-4,9-5,9-6,9-7,9-8,9-9)

xs:ID
xs:IDREF
xs:IDREFS
xs:anyType
xs:anySimpleType
xs:NOTATION
xs:ENTITY
xs:ENTITIES

any type in the XML namespace http://www.w3.org/XML/1998/namespace

Rule 9-7: Prohibited list item types || A schema component MUST NOT have an attribute {}itemType with any of the
following values: (N5R 9-15,9-16,9-17,9-18)

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 79 of 119

https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/%7DconformanceTargets
http://www.w3.org/XML/1998/namespace

xs:ID
xs:IDREF
xs:anySimpleType
xs:ENTITY

Rule 9-8: Prohibited union item types || A schema component MUST NOT have an attribute {}memberTypes with any of the
following values: (N5R 9-19,9-20,9-21,9-22,9-23,9-24)

xs:ID
xs:IDREF
xs:IDREFS
xs:anySimpleType
xs:ENTITY
xs:ENTITIES

Rule 9-9: Prohibited attribute and element types || A schema component MUST NOT have an attribute {}type with any of the
following types: (N5R 9-51,9-52,9-53,9-54,9-55,9-56)

xs:ID
xs:IDREF
xs:anySimpleType
xs:ENTITY
xs:ENTITIES

Rule 9-88 also forbids the type xs:IDREFS for all schema components other than reference attribute properties.

Rule 9-10: No mixed content on complex type or complex content || A complex type definition MUST NOT have mixed
content. (N5R 9-27,9-28)

Mixed content allows the mixing of data tags with text. Languages such as XHTML use this syntax for markup of text. NIEM-
conformant schemas define XML that is for data exchange, not text markup. Mixed content creates complexity in processing,
defining, and constraining content. Well-defined markup languages exist outside NIEM and may be used with NIEM data, and
so external schema documents may include mixed content and may be used with NIEM.

Rule 9-11: Complex type content is explicitly simple or complex || A complex type definition MUST have a xs:complexContent
or a xs:simpleContent child element (N5R 9-29)

XML Schema provides shorthand to defining complex content of a complex type, which is to define the complex type with
immediate children that specify elements, or other groups, and attributes. In the desire to normalize schema representation of
types and to be explicit, NIEM forbids the use of that shorthand.

Rule 9-12: Base type of complex type with complex content must have complex content || The base type of a complex type
with complex content MUST have complex content. (N5R 9-31,9-32)

This rule addresses a peculiarity of the XML Schema definition language, which allows a complex type to be constructed
using xs:complexContent, and yet is derived from a complex type that uses xs:simpleContent. These rules ensure that each
type has the content style indicated by the schema.

Rule 9-13: Untyped element is abstract || An untyped element or an element of type xs:anySimpleType MUST be abstract.
(N5R 9-38,9-39)

Untyped element declarations act as wildcards that may carry arbitrary data. By declaring such types abstract, NIEM allows
the creation of type independent semantics without allowing arbitrary content to appear in XML instances.

Rule 9-14: Element type not in the XML or XML Schema namespace || An element type MUST NOT be in the XML Schema
namespace or the XML namespace. (N5R 9-40,9-41)

Rule 9-15: Element type is not simple type || An element type that is not xs:anySimpleType MUST NOT be a simple type.
(N5R 9-42)

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 80 of 119

Rule 9-16: Attribute declaration has type || An attribute declaration MUST have a type. (N5R 9-50)

Rule 9-17: No default or fixed value || An element declaration MUST NOT have an attribute {}default or {}fixed . (N5R 9-
45,9-46,9-57,9-58)

Rule 9-18: Sequence has minimum and maximum cardinality 1 || An element xs:sequence MUST have a minOccurs and
maxOccurs of 1. (N5R 9-66,9-67)

Rule 9-19: xs:choice must be child of xs:sequence || An element xs:choice MUST be a child of xs:sequence . (N5R 9-65)

Rule 9-20: Choice has minimum and maximum cardinality 1 || An element xs:choice MUST have a minOccurs and
maxOccurs of 1. (N5R 9-68,9-69)

Rule 9-21: Comment is not recommended || An XML comment SHOULD NOT appear in the schema. (N5R 9-77)

Since XML comments are not associated with any specific XML Schema construct, there is no standard way to interpret
comments. XML Schema annotations should be preferred for meaningful information about components. NIEM specifically
defines how information should be encapsulated in NIEM-conformant schemas via xs:annotation elements. Comments do not
correspond to any metamodel object.

Rule 9-22: Documentation element has no element children || A child of element xs:documentation MUST be text or an XML
comment. (N5R 9-78)

Rule 9-23: Import has namespace || An element xs:import MUST have an attribute {}namespace . (N5R 9-90)

An import that does not specify a namespace is enabling references to components without namespaces. NIEM requires that
all components have a defined namespace. It is important that the namespace declared by a schema be universally defined
and unambiguous.

Rule 9-24: Import specifies local resource || An element xs:import MUST specify a schema document, which MUST be a
local resource. (NEW)

The schema document may be specified by a {}schemaLocation attribute in the xs:import element, or by XML Catalog
resolution of the {}namespace attribute, or both. Requiring a local resource ensures that the component definitions are known
and fixed.

9.2 Rules for XSD types

This section provides rules for type definitions in the XSD representation of a model. A type definition in XML Schema can
create a complex data type - a type for elements with child elements - with xs:complexType). It can also create a simple data
type, a type for elements with a literal value, with xs:simpleType .

Rule 9-25: Name of type definitions || A type definition that does not define a proxy type MUST have a name ending in
“Type”; all other XSD components MUST NOT. (N5R 11-2)

Use of the representation term Type immediately identifies XML types in a NIEM-conformant schema and prevents naming
collisions with corresponding XML elements and attributes. The exception for proxy types ensures that simple NIEM-
compatible uses of base XML Schema types are familiar to people with XML Schema experience (cf§9.5).

Rule 9-26: Name of simple type definitions || A simple type definition MUST have a name ending in “SimpleType”; all other
XSD components MUST NOT. (N5R 11-4)

Specific uses of type definitions have similar syntax but very different effects on data definitions. Schemas that clearly identify
complex and simple type definitions are easier to understand without tool support. This rule ensures that names of simple
types end in “SimpleType”.

Rule 9-27: Name of complex type definition || A complex type definition MUST be a Class component, a Datatype
component, or a proxy type. (NEW)

Rule 9-28: xs:sequence must be child of xs:extension || An element xs:sequence MUST be a child of xs:extension . (N5R 9-
62)

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 81 of 119

Rule 9-29: xs:sequence must be child of xs:extension or xs:restriction || An element xs:sequence MUST be a child of
xs:extension or xs:restriction . (N5R 9-63)

Restriction is allowed in an extension schema document, but not in reference schema document.

Rule 9-30: Type definition is top-level || A type definition MUST be top-level. (N5R 9-10,9-25)

All XML Schema top-level types (children of the document element) are required by XML Schema to be named. By requiring
these components to be top level, they are forced to be named and are globally reusable.

Rule 9-31: Complex type has a category || A complex type definition MUST be an object type, an association type, an adapter
type, or an augmentation type. (N5R 10-1)

The rules in this document use the name of a type as the key indicator of the type’s category. This makes the rules much
simpler than doing a deep examination of each type (and its base types) to identify its category. For complex types, the
names follow a pattern:

Name ends with AdapterType → type represents an adapter class. (see Rule 7-3)
Name ends with AssociationType → type represents an association class. (see Rule 7-4)
Name ends with AugmentationType → type is an augmentation type.
Otherwise → type is the XSD representation of an object class.

Rule 9-32: Object type with complex content is derived from structures:ObjectType || A type with complex content that does
not represent an adapter class, an association class, or an augmentation type MUST be derived from structures:ObjectType
or from another object type. (N5R 10-2)

Rule 9-33: Adapter type derived from structures:AdapterType || A type definition that represents an adapter class MUST be
derived from structures:AdapterType . (NEW)

Rule 9-34: Association type derived from structures:AssociationType || A type definition that represents an association class
MUST be derived from structures:AssociationType or from another association class. (N5R 10-21)

Rule 9-35: Augmentation type derived from structures:AugmentationType || A type definition that is an augmentation type
MUST be derived from structures:AugmentationType . (N5R 10-35)

Rule 9-36: Complex type with simple content has structures:SimpleObjectAttributeGroup || A complex type definition with
simple content MUST include structures:SimpleObjectAttributeGroup . (N5R 11-11)

Rule 9-37: Base type definition defined by conformant schema || The base type definition of a type definition MUST have the
target namespace or the XML Schema namespace or a namespace that is imported as conformant. (N5R 11-3)

Rule 9-38: Component reference defined by conformant schema || An attribute or element reference MUST have the target
namespace or a namespace that is imported as conformant. (N5R 11-21,11-22)

Rule 9-39: Schema uses only known attribute groups || An attribute group reference MUST be
structures:SimpleObjectAttributeGroup . (N5R 11-23)

The use of attribute groups is restricted in a conforming schema document. The only attribute group defined by NIEM for use
in conformant schemas is structures:SimpleObjectAttributeGroup . This attribute group provides the attributes necessary for
identifiers and references.

Rule 9-40: Augmentation elements are not used directly || A complex type definition MUST NOT have an element use of an
augmentation element declaration, or an element declaration that is in the substitution group of an augmentation point
element declaration. (N5R 10-37)

Augmentation elements do not correspond to a model component, and must not be used as a property in any class.

Rule 9-41: List item type defined by conformant schemas || The item type of a list simple type definition MUST have a target
namespace equal to the target namespace of the XML Schema document within which it is defined, or a namespace that is
imported as conformant by the schema document within which it is defined. (N5R 11-6)

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 82 of 119

Rule 9-42: Union member types defined by conformant schemas || Every member type of a union simple type definition
MUST have a target namespace that is equal to either the target namespace of the XML Schema document within which it is
defined or a namespace that is imported as conformant by the schema document within which it is defined. (N5R 11-7)

Rule 9-43: No complex wildcards || A complex type definition MUST not contain the element xs:any or xs:anyAttribute that
has a namespace or processContents attribute. (NEW)

Restrictions on attribute and element wildcards, if desired, must be enforced through some mechanism other than XML
Schema validation.

9.3 Rules for attribute and element declarations

Rule 9-44: No literal properties in XSD || The name of an element declaration or attribute declaration MUST NOT end in
“Literal”. (NEW)

Literal properties appear only in the CMF representation of a literal class.

Rule 9-45: Declarations are top-level || An attribute declaration or element declaration MUST be top-level. (N5R 9-36,9-48)

Rule 9-46: Element type is not simple type || An element declaration MUST NOT have a simple type. (N5R 9-42,11-12)

Rule 9-47: Attribute and element type is from conformant namespace || The type definition of an attribute or element
declaration MUST have a target namespace that is the target namespace, or a namespace that is imported as conformant.
(N5R 11-13,11-18)

Rule 9-48: Element substitution group defined by conformant schema || An element substitution group MUST have either the
target namespace or a namespace that is imported as conformant. (N5R 11-17)

Rule 9-49: Attribute and element type not from structures namespace || An attribute declaration or element declaration MUST
NOT have a type from the structures namespace. (NEW)

Rule 9-50: Only reference attributes have type xs:IDREFS || The attribute declaration of a reference attribute property MUST
have type xs:IDREFS ; all other attribute and element declarations MUST NOT. (NEW)

Reference attribute properties are a special form of object reference; see §5.3.6.

9.4 Rules for adapters and external components

Rule 9-51: Import of external schema document is labeled || An xs:import element importing an external schema document
MUST own the attribute appinfo:externalImportIndicator with a value of true . (NEW)

An external schema document is any schema document that is not

a reference schema document, or
an extension schema document, or
a subset schema document, or
a schema document that has the structures namespace as its target namespace, or
a schema document that has the XML namespace as its target namespace.

There are a variety of commonly used standards that are represented in XML Schema. Such schemas are generally not
NIEM-conformant. NIEM-conformant schemas may reference components defined by these external schema documents.

A schema component defined by an external schema document may be called an external component. A NIEM-conformant
type may use external components in its definition. There are two ways to integrate external components into a NIEM-
conformant schema:

An adapter class may be constructed from externally-defined elements and attributes. A goal of this method is to
represent, as a single unit, a set of data that embodies a single concept from an external standard.

A type that is not an adapter type, and which is defined by an extension schema document or subset schema document,
may incorporate an externally-defined attribute.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 83 of 119

Rule 9-52: Import of external namespace has data definition || An xs:import element importing an external schema
document MUST be a documented component. (N5R 10-7)

A NIEM-conformant schema has well-known documentation points. Therefore, a schema that imports a NIEM-conformant
namespace need not provide additional documentation for the imported namespace. However, when an external schema
document is imported, appropriate documentation must be provided on the xs:import element. This ensures that
documentation for all external schema documents will be both available and accessible in a consistent manner.

Rule 9-53: Name of adapter type || An adapter type MUST have a name ending in “AdapterType”; all other type definitions
MUST NOT. (N5R 10-8)

An adapter type is a NIEM-conformant type that adapts external components for use within NIEM. An adapter type creates a
new class of object that embodies a single concept composed of external components. A NIEM-conformant schema defines
an adapter type.

An adapter type should contain the information from an external standard to express a complete concept. This expression
should be composed of content entirely from an external schema document. Most likely, the external schema document will
be based on an external standard with its own legacy support.

In the case of an external expression that is in the form of model groups, attribute groups, or types, additional elements and
type components may be created in an external schema document, and the adapter type may use those components.

In normal (conformant) type definitions, a reference to an attribute or element is a reference to a documented component.
Within an adapter type, the references to the attributes and elements being adapted are references to undocumented
components. These components must be documented to provide comprehensibility and interoperability. Since documentation
made available by nonconformant schemas is undefined and variable, documentation of these components is required at
their point of use, within the conformant schema.

Rule 9-54: Structure of external adapter type definition follows pattern || An adapter type definition MUST be a complex type
definition with complex content that extends structures:ObjectType, and that uses xs:sequence as its top-level compositor.
(N5R 10-9)

Rule 9-55: Element use from external adapter type defined by external schema documents || An element reference that
appears within an adapter type MUST have a target namespace that is imported as external. (N5R 10-10)

Rule 9-56: External adapter type not a base type || An adapter type definition MUST NOT be a base type definition. (N5R 10-
11, 10-12)

Rule 9-57: External attribute use has data definition || An external attribute use MUST be a documented component with a
non-empty data definition. (N5R 10-14)

Rule 9-58: External attribute use not an ID || An attribute use schema component MUST NOT have an attribute declaration
with an ID type. (N5R 10-15)

NIEM schemas use structures:id to enable references between components. Each NIEM-defined complex type in a
reference or extension schema document must incorporate a definition for structures:id . XML Section 3.3.1, Attribute Types
entails that a complex type may have no more than one ID attribute. This means that an external attribute use must not be an
ID attribute.

The term “attribute use schema component” is defined by [XML Schema Structures] Section 3.5.1, The Attribute Use Schema
Component. Attribute type ID is defined by[XML] Section 3.3.1, Attribute Types.

Rule 9-59: External element use has data definition || An external attribute use MUST be a documented component with a
non-empty data definition. (N5R 10-16)

9.5 Rules for proxy types

Rule 9-60: Proxy types || The XSD declaration of a proxy type MUST have the same name as the simple type it extends.
(N5R 10-20)

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 84 of 119

A proxy type is an XSD complex type definition with simple content that extends one of the simple types in the XML Schema
namespace with structures:SimpleObjectAttributeGroup ; for example:

<xs:complexType name="string">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attributeGroup ref="structures:SimpleObjectAttributeGroup"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

A proxy type is not a model component. It is a convenience complex type definition wrapper for a simple type in the XML
Schema namespace; for example, niem-xs:token is a proxy type wrapper for xs:token . Unlike other complex type
definitions, proxy types have the same local name as the builtin simple type. This is done to make conformant schemas more
understandable to people that are familiar with the names of the XML Schema namespace simple types.

Rule 9-61: Proxy type has designated structure || A proxy type MUST have the designated structure. It MUST use
xs:extension . It MUST NOT use xs:attribute . It MUST include exactly one xs:attributeGroup reference, which must be to
structures:SimpleObjectAttributeGroup . (N5R 10-20)

9.6 Rules for augmentations

Rule 9-62: Name of augmentation types || The XSD definition of an augmentation type MUST have a name ending in
“AugmentationType”; all other XSD components MUST NOT. (N5R 10-33,10-34)

Rule 9-63: Name of augmentation elements || The XSD declaration of an augmentation element MUST have a name ending
in “Augmentation”; all other XSD components MUST NOT. (N5R 10-36)

Rule 9-64: Name of augmentation point elements || The XSD declaration of an augmentation point element MUST have a
name ending in “AugmentationPoint”; all other XSD components MUST NOT. (NEW)

Rule 9-65: Standard opening phrase for augmentation point element data definition || The data definition for an augmentation
point element SHOULD begin with standard opening phrase “An augmentation point…”. (N5R 11-31)

Rule 9-66: Standard opening phrase for augmentation element data definition || The data definition for an augmentation
element SHOULD begin with the standard opening phrase “Supplements…” or “Additional information about…”. (N5R 11-32)

Rule 9-67: Standard opening phrase for augmentation type data definition || The data definition for an augmentation type
SHOULD begin with the standard opening phrase “A data type (that supplements|for additional information about)…”. (N5R
11-44)

Rule 9-68: Augmentation point element corresponds to its base type || A schema document containing an element
declaration for an augmentation point element MUST also contain a type definition for its augmented base type. (N5R 10-25)

For example, a schema document with an element declaration for FooAugmentationPoint must also contain a type definition for
FooType .

Rule 9-69: An augmentation point element has no type || An augmentation point element MUST have no type. (N5R 10-26)

Rule 9-70: An augmentation point element has no substitution group || An augmentation point element MUST have no
substitution group. (N5R 10-27)

Rule 9-71: Augmentation point element is only referenced by its base type || An augmentation point element MUST only be
referenced by its base type. (N5R 10-28)

For example, the FooAugmentationPoint element must not be included in any type other than FooType .

Rule 9-72: Augmentation point element use is optional and unbounded || An augmentation point element particle MUST have
attribute minOccurs equal to 0 and attribute maxOccurs set to unbounded. (N5R 10-29,10-30)

Rule 9-73: Augmentation point element use must be last element in its base type || An augmentation point element particle

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 85 of 119

MUST be the last element occurrence in the content model of its augmentable type. (N5R 10-31)

9.7 Rules for machine-readable annotations

NIEM defines a single namespace that holds components for use in NIEM-conformant schema application information,
represented by the URI https://docs.oasis-open.org/niemopen/ns/model/appinfo/6.0/ . This namespace is referred to as the
appinfo namespace.

Rule 9-74: Appinfo attribute annotates schema component || An attribute in the appinfo namespace MUST be owned by an
element with a namespace name http://www.w3.org/2001/XMLSchema . (N5R 10-69)

Rule 9-75: xs:appinfo children are comments, elements, or whitespace || A child of element xs:appinfo MUST be an
element, a comment, or whitespace text. (N5R 9-79)

Rule 9-76: Appinfo child elements have namespaces || An element that is a child of xs:appinfo MUST have a namespace
name. (N5R 9-80)

Rule 9-77: Appinfo descendants are not XML Schema elements || An element that is a descendent of xs:appinfo MUST
NOT have the XML Schema namespace. (N5R 9-81)

Rule 9-78: Component marked as deprecated is deprecated component || A schema component that has an attribute
appinfo:deprecated with a value of true MUST be a deprecated component. (N5R 10-68)

Rule 9-79: LocalTerm appinfo applies to schema || When the element appinfo:LocalTerm appears in a schema document, it
MUST be application information on an element xs:schema . (N5R 10-76)

9.8 Rules for reference schema documents

Rule 9-80: No simple type disallowed derivation || A reference schema document MUST NOT have an attribute {}final .
(N5R 9-11)

Rule 9-81: No use of “fixed” on simple type facets || A simple type constraining facet in a reference schema document MUST
NOT have an attribute {}fixed . (N5R 9-13)

Rule 9-82: No disallowed substitutions || A reference schema document MUST NOT contain the attribute {}block or
{}blockDefault . (N5R 9-34,9-43,9-86)

Rule 9-83: No disallowed derivation || A reference schema document MUST NOT contain the attribute {}final or
{}finalDefault . (N5R 9-35,9-44,9-87)

Rule 9-84: Element declaration is nillable || An element declaration in a reference schema document MUST have the
{nillable} property with a value of true. (N5R 9-47)

Properties in a reference or extension namespace are always referenceable, in order to maximize reuse. Message designers
may make some properties un-referenceable in a namespace subset.

Rule 9-85: No xs:choice || A reference schema document MUST NOT contain the element xs:choice . (N5R 9-64)

Rule 9-86: External attribute use only in adapter type || An external attribute use within a reference schema document MUST
be in an adapter type. (N5R 10-13)

9.9 Rules for extension schema documents

Rule 9-87: Element declaration is nillable || An element declaration in an extension schema document MUST have the
{nillable} property with a value of true. (N5R 9-47)

9.10 Rules for subset schema documents

Rule 9-88: Attribute augmentations are documented || Within a message model, an attribute reference that does not appear
in the corresponding reference schema document or extension schema document MUST have the attribute

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 86 of 119

https://docs.oasis-open.org/niemopen/ns/model/appinfo/6.0/
http://www.w3.org/2001/XMLSchema

appinfo:augmentingNamespace containing the namespace prefix or URI of the augmenting namespace. (NEW)

Augmented XSD type definitions in a message model must include attribute augmentations so that the schema will validate all
conforming messages. (See section 4.15.6, Attribute augmentations in message models).

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 87 of 119

10. Rules for models
These rules apply to both the CMF and XSD representations of a model.

Rule 10-1: Namespaces are conforming or external || Every namespace in a model MUST be one of the following: (NEW)

a conforming namespace; that is, a reference namespace, extension namespace, or subset namespace
an external namespace
the structures namespace
the XML namespace, http://www.w3.org/XML/1998/namespace
the XSD namespace, http://www.w3.org/2001/XMLSchema .

The appinfo namespace is not part of a NIEM model. It provides schema components for use in the XSD representation of a
NIEM model.

Rule 10-2: Unique namespace prefixes || A model MUST NOT contain two namespaces with the same prefix. (NEW)

In a NIEM model there is always a one-to-one match between namespace prefix and namespace URI.

10.1 Rules for model files

Rule 10-3: Unique namespace identifiers || A model MUST NOT contain two namespaces with the same identifier. (NEW)

This is impossible in an XSD representation of a model.

10.2 Rules for schema document sets

A schema document set is a collection of schema documents that together are capable of validating an XML document.

Rule 10-4: Composition of schema document set || The schema documents in a schema document set MUST be exactly
those determined by the following procedure: (NEW)

Beginning with the empty set
Add one or more specified initial schema documents
As each schema document is added, find each <xs:import> element contained therein, and add the schema document
specified by that element to the set.

Schema assembly is underspecified in XML Schema. But a specification that defines message conformance in terms of
schema validation must have some way to establish the schema used to assess validity. Otherwise no one can be certain
what conforms. This rule establishes the needed certainty.

Most schema document sets are established by a single extension schema document, with all other needed schema
documents brought in by xs:import elements. But it is also allowable to include every document as an initial schema
document. Or to have a single initial document with no namespace, containing nothing but xs:import elements for each
document in the set.

Rule 10-5: Consistent import schema document || The members of a schema document set MUST NOT contain two
xs:import elements that have the same {}namespace attribute but specify different schema documents. (N5R 11-54)

XML Schema permits conflicting imports, but the result is underspecified, and often causes errors that are very hard to detect
and diagnose.

Rule 10-6: Consistent import labels || The members of a schema document set MUST NOT contain two xs:import elements
with the same namespace but different values for appinfo:externalImportIndicator . (N5R 11-55)

Rule 10-7: Consistent import documentation || The members of a schema document set MUST NOT contain two xs:import
elements with non-empty data definitions that are different. (NEW)

An external schema document is usually imported once in a schema document set, and imports of other schema documents
are usually not documented, so this rule is rarely applicable.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 88 of 119

http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/XMLSchema

Rule 10-8: Namespace prefix is unique || There MUST be a one-to-one match between namespace prefix and namespace
URI among all the members of a schema document set. (NEW)

XML Schema permits a schema document set to contain

schema document A containing xmlns:foo="http://example.com/MyFoo/"
schema document B containing xmlns:bar="http://example.com/MyFoo/"
schema document C containing xmlns:foo="http://example.com/MyBar/"

This is not allowed in NIEM XSD. There is always a one-to-one match between namespace prefix and URI in CMF.

Rule 10-9: Schema document set must be complete || A schema document set MUST be complete; that is, it MUST contain
the definition of every schema component referenced by any component defined by the schema set. (N5R 9-91)

A schema document set defines an XML Schema that may be used to validate an XML document. This rule ensures that a
schema document set under consideration contains definitions for everything that it references; it has everything necessary to
do a complete validation of XML documents, without any unresolved references. Note that some tools may allow validation of
documents using partial schemas, when components that are not present are not exercised by the XML document under
validation. Such a schema does not satisfy this rule.

Rule 10-10: Use structures namespace consistent with specification || A schema document set MUST include the structures
namespace as it is defined in Appendix B of this document. (N5R 10-78)

This rule further enforces uniform and consistent use of the NIEM structures namespace, without addition. Users are not
allowed to insert types, attributes, etc. that are not specified by this document.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 89 of 119

http://example.com/MyFoo/%22
http://example.com/MyFoo/%22
http://example.com/MyBar/%22

11. Rules for message types and message formats
Rule 11-1: Message type declares initial property || A message type MUST declare the initial property of conforming
messages. (NEW)

This document does not specify any particular syntax for the declaration.

Rule 11-2: Message format schema matches message type || The schema for a message format MUST validate exactly
those messages that conform to the format’s message type. (NEW)

This is the only conformance rule for the XML Schema in an XML message format, or the JSON Schema in a JSON message
format. NIEMOpen provides free and open-source software to generate conforming schemas from the message type.
Developers are also free to construct those schemas by hand.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 90 of 119

12. Rules for XML messages
Rule 12-1: Message begins with initial property || An XML message MUST be an XML document that contains one instance
of the element for the initial property specified by its message type, and all of the message content MUST be a descendent of
that element. (NEW)

The element for the initial property is often the document element, but this is not necessarily so. An XML message may be
embedded within an XML document; for example, as a payload within a SOAP response.

Rule 12-2: Message is schema-valid || An XML message MUST be schema-valid as assessed against the schema document
set that represents the message model of a message type. (N5R 12-1)

This rule should not be construed to mean that XML validation must be performed on all XML instances as they are served or
consumed; only that the XML instances validate if XML validation is performed. The XML Schema component definitions
specify XML documents and element information items, and the instances should follow the rules given by the schemas, even
when validation is not performed.

Rule 12-3: No attributes from wildcards in structures || Every attribute in an XML message MUST be valid by virtue of an
xs:attribute element in a conforming schema document. An XML message MUST NOT contain an attribute that is schema-

valid only by virtue of an xs:anyAttribute element in the structures namespace. (NEW)

The schema document for the structures namespace contains xs:anyAttribute elements for the purpose of attribute
augmentation. This permits a message designer to augment his subset of a reference schema document or extension
schema document with one or more attribute properties, while still following the subset rule. This does not permit any element
in a conforming message to contain any attribute defined in the message model.

Rule 12-4: No forbidden references || An element in an XML message MUST NOT have the attribute structures:id if its
element declaration or type definition has the attribute appinfo:referenceCode with a value of NONE . (NEW)

Rule 12-5: No forbidden references || An element in an XML message MUST NOT have the attribute structures:ref if its
element declaration or type definition has the attribute appinfo:referenceCode with a value of NONE or URI . (NEW)

Rule 12-6: No forbidden references || An element in an XML message MUST NOT have the attribute structures:uri if its
element declaration or type definition has the attribute appinfo:referenceCode with a value of NONE or REF . (NEW)

Rule 12-7: Element has only one resource identifying attribute || An element in an XML message MUST NOT have more than
one attribute that is structures:id , structures:ref , or structures:uri . (N5R 12-3)

Model designers may use appinfo:referenceCode in the XSD representation of a model to constrain the permissible kinds of
reference to objects of a specified class or property. For example:

<xs:complexType name="nc:PersonType" appinfo:referenceCode="NONE">

declares that objects of that class may not be the target of an object reference, and must instead appear inline. Conforming
messages must follow those constraints.

Rule 12-8: Attribute structures:ref must reference structures:id || The value of an attribute structures:ref MUST match
the value of an attribute structures:id of some element in the XML message. (N5R 12-4)

Although many attributes with ID and IDREF semantics are defined by many vocabularies, for consistency, within a NIEM
XML document any attribute structures:ref must refer to an attribute structures:id , and not any other attribute.

Rule 12-9: Linked elements have same validation root || Every element that has an attribute structures:ref MUST have a
referencing element validation root that is equal to the referenced element validation root. (N5R 12-5)

The term “validation root” is defined by [XML Schema Structures] Section 5.2, Assessing Schema-Validity. It is established as
a part of validity assessment of an XML document.

NIEM supports type-safe references; that is, references using structures:ref and structures:id must preserve the type

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 91 of 119

constraints that would apply if nested elements were used instead of a reference. For example, an element of type
nc:PersonType must always refer to another element of type nc:PersonType , or a type derived from nc:PersonType , when

using structures:ref to establish the relationship.

Rule 12-10: Attribute structures:ref references element of correct type || An element that is the target of a structures:ref
object reference MUST have a type that is validly derived from the type of the referencing element. (N5R 12-6)

The term validly derived is as established by [XML Schema Structures], subsection Schema Component Constraint: Type
Derivation OK (Complex) within Section 3.4.6, Constraints on Complex Type Definition Schema Components.

This rule requires that the type of the element pointed to by a structures:ref attribute must be of (or derived from) the type of
the reference element.

Rule 12-11: Reference attribute property refers to correct class || An element that is the target of a reference attribute
property MUST have a type with a name that is the QName of the property, with the local part capitalized, and the trailing
“Ref” replaced with “Type”, or a derived type. (NEW)

For example, an element that is the target of nc:metadataRef must have the type nc:MetadataType , or a derived type.

Rule 12-12: xs:anyURI value must be valid URI || The value of an attribute with or derived from xs:anyURI MUST satisfy the
grammar syntax <URI-reference> as defined by [RFC 3986]. (NEW)

XML Schema validation does not always check the validity of URI values. Examples of valid and invalid URI attributes:

structures:uri="http://example.com/Person/223/"
<-- valid
structures:uri="#boogala" <-- valid
structures:uri="boogala" <-- invalid

Rule 12-13: No duplicate augmentation elements || An element MUST NOT contain two instances of the same augmentation
element. (NEW)

For example, a message must not contain

<nc:Person>
 <j:PersonAugmentation>...
 <j:PersonAugmentation>...
</nc:Person>

even though this is schema-valid. Instead, all augmentation properties should be consolidated into a single
j:PersonAugmentation element.

Rule 12-14: Nilled element must be an object reference || An element with xsi:nil="true" MUST have the attribute
structures:ref or structures:uri . (NEW)

The attribute xsi:nil can only be used to create an object reference. It cannot be used to omit mandatory content.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 92 of 119

http://example.com/Person/223/%22

13. Rules for JSON messages
Rule 13-1: Message is a JSON object || A JSON message MUST be valid according to the grammar syntax <object> as
defined by [RFC 8259]. (NEW)

According to the JSON specification, a valid JSON text can be an object, array, number, string, or literal name. Only the first
of these is allowed as a NIEM JSON message.

Rule 13-2: Message is a JSON-LD document || A JSON message MUST conform to the JSON-LD specification in [JSON-LD].
(NEW)

Rule 13-3: Message conforms to message format || A JSON message MUST be valid when assessed against the schema of
its message format. (NEW)

The schema for a JSON message format is expressed in JSON Schema, and validates exactly those messages that conform
to the message type. (see rule 11-2.)

Rule 13-4: Message has context map for model namespaces || A JSON message MUST have an embedded context, remote
context, or context via HTTP header. The context MUST map each namespace prefix in the message model to its
corresponding namespace URI. The URL for a remote context MUST be an absolute URI. (NEW)

Embedded context, remote context, and context via HTTP header are defined in [JSON-LD] §3.1: The Context.

For example, the JSON message in example 3-2 has a context that maps the prefixes nc and msg to their corresponding
URIs.

Rule 13-5: Object keys are defined || The name in a name-value mapping within a JSON object MUST be a JSON-LD
keyword, or a term that expands to the URI of a property in the message model. (NEW)

For example:

"@context": {
 "nc": "https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/",
 "pname": "nc:PersonName"},
"nc:Person": {
valid, expands to https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/Person
 "@id": "#JD", valid, JSON-LD keyword
 "pname": { valid, expands to https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/PersonName
 "foo:FullName": "John Doe" invalid, no mapping for "foo" prefix
 }
}

Rule 13-6: @id keyword is object reference || Two JSON objects with the same value for the @id key MUST represent the
value of the same message object. (NEW)

Rule 13-7: No forbidden references || A JSON object representing the value of a model Property object with an effective
ReferenceCode of NONE MUST NOT contain the @id key. (NEW)

Rule 13-8: Linked objects have compatible class || Two JSON objects with the same value for the @id key MUST represent
message objects having the same class or common class ancestor. (NEW)

For example, the following NIEM JSON is valid, because nc:Item and nc:Equipment have the same class nc:ItemType .

"nc:Item": {
 "@id": "#ITEM7",
 "nc:ItemQuantity": 7
},
"nc:Equipment": {
 "@id": "#ITEM7",
 "nc:EquipmentName": "Pump"
}

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 93 of 119

https://www.w3.org/TR/json-ld11/#the-context
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/%22,
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/Person
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/PersonName

14. RDF interpretation of NIEM models and messages
TODO

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 94 of 119

Appendix A. References
This appendix contains the normative and informative references that are used in this document. Any normative work cited in
the body of the text as needed to implement the work product must be listed in the Normative References section below.
Each reference to a separate document or artifact in this work must be listed here and must be identified as either a
Normative or an Informative Reference. Normative references are specific (identified by date of publication and/or edition
number or version number) and Informative references are either specific or non-specific.

While any hyperlinks included in this appendix were valid at the time of publication, OASIS cannot guarantee their long-term
validity.

A.1 Normative References

The following documents are referenced in such a way that some or all of their content constitutes requirements of this
document.

[ClarkNS]

Clark, J. “XML Namespaces”, 4 February 1999. Available from http://www.jclark.com/xml/xmlns.htm.

[CMF]

Common Model Format Specification, NIEM Technical Architecture Committee. Available from
https://github.com/niemopen/common-model-format.

[Code Lists]

Roberts, W. “NIEM Code Lists Specification”. NIEM Technical Architecture Committee (NTAC), November 7, 2017. Available
from https://reference.niem.gov/niem/specification/code-lists/4.0/niem-code-lists-4.0.html.

[CTAS-v3.0]

Conformance Targets Attribute Specification (CTAS) Version 3.0. Edited by Tom Carlson. 22 February 2023. OASIS Project
Specification 01. https://docs.oasis-open.org/niemopen/ctas/v3.0/ps01/ctas-v3.0-ps01.html. Latest stage: https://docs.oasis-
open.org/niemopen/ctas/v3.0/ctas-v3.0.html.

[ISO 11179-4]

“ISO/IEC 11179-4 Information Technology — Metadata Registries (MDR) — Part 4: Formulation of Data Definitions Second
Edition”, 15 July 2004.

[ISO 11179-5]

“ISO/IEC 11179-5:2005, Information technology — Metadata registries (MDR) — Part 5: Naming and identification principles”.

[JSON-LD]

Sporny, M., et al. “JSON-LD 1.1: A JSON-based Serialization for Linked Data”. W3C Recommendation, 16 July 2020.
https://www.w3.org/TR/json-ld11/.

[OED]

Oxford English Dictionary, Third Edition, Oxford University Press, November 2010. http://dictionary.oed.com/.

[RFC 2119]

Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119, DOI 10.17487/RFC2119,
March 1997, http://www.rfc-editor.org/info/rfc2119.

[RFC 3986]

Berners-Lee, T., et al., “Uniform Resource Identifier (URI): Generic Syntax”, Request for Comments 3986, January 2005.
http://tools.ietf.org/html/rfc3986.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 95 of 119

http://www.jclark.com/xml/xmlns.htm
http://www.jclark.com/xml/xmlns.htm
https://github.com/niemopen/common-model-format
https://github.com/niemopen/common-model-format
https://reference.niem.gov/niem/specification/code-lists/4.0/niem-code-lists-4.0.html
https://reference.niem.gov/niem/specification/code-lists/4.0/niem-code-lists-4.0.html
https://docs.oasis-open.org/niemopen/ctas/v3.0/ps01/ctas-v3.0-ps01.html
https://docs.oasis-open.org/niemopen/ctas/v3.0/ps01/ctas-v3.0-ps01.html
https://docs.oasis-open.org/niemopen/ctas/v3.0/ctas-v3.0.html
https://docs.oasis-open.org/niemopen/ctas/v3.0/ctas-v3.0.html
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/json-ld11/
http://dictionary.oed.com/
http://dictionary.oed.com/
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc2119
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986

[RFC 8174]

Leiba, B., “Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words”, BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, http://www.rfc-editor.org/info/rfc8174.

[RFC 8259]

Bray, T. “The JavaScript Object Notation (JSON) Data Interchange Format”, Request for Comments 8259, December 2017.
https://www.rfc-editor.org/rfc/rfc8259.

[SemVer]

“Semantic Versioning 2.0.0”. https://semver.org/.

[XML]

“Extensible Markup Language (XML) 1.0 (Fourth Edition)”, W3C Recommendation, 16 August 2006. Available from
http://www.w3.org/TR/2008/REC-xml-20081126/.

[XML Infoset]

Cowan, John, and Richard Tobin. “XML Information Set (Second Edition)”, 4 February 2004.
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/.

[XML Namespaces]

“Namespaces in XML 1.0 (Third Edition)”, W3C Recommendation, 8 December 2009. Available from
http://www.w3.org/TR/2009/REC-xml-names-20091208/.

[XML Schema Structures]

“XML Schema Part 1: Structures Second Edition”, W3C Recommendation, 28 October 2004. Available from
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[webarch]

Jacobs, I. “Architecture of the World Wide Web, Volume One”. W3C Recommendation 15 December 2004.
https://www.w3.org/TR/webarch/.

A.2 Informative References

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 96 of 119

http://www.rfc-editor.org/info/rfc8174
http://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259
https://semver.org/
https://semver.org/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
https://www.w3.org/TR/webarch/
https://www.w3.org/TR/webarch/

Appendix B. Structures namespace
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 targetNamespace="https://docs.oasis-open.org/niemopen/ns/model/structures/6.0/"
 xmlns:structures="https://docs.oasis-open.org/niemopen/ns/model/structures/6.0/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 version="ps02"
 xml:lang="en-US">
 <xs:annotation>
 <xs:documentation>The structures namespace provides base types and other components for definition of NIEM-conformant XML schemas.</xs:documentation>
 </xs:annotation>
 <xs:attributeGroup name="SimpleObjectAttributeGroup">
 <xs:attribute ref="structures:id"/>
 <xs:attribute ref="structures:ref"/>
 <xs:attribute ref="structures:uri"/>
 <xs:anyAttribute processContents="strict" namespace="##other"/>
 </xs:attributeGroup>
 <xs:complexType name="AdapterType" abstract="true">
 <xs:annotation>
 <xs:documentation>A data type for a type that contains a single non-conformant property from an external standard for use in NIEM.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="structures:ObjectAugmentationPoint" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute ref="structures:appliesToParent"/>
 <xs:attribute ref="structures:id"/>
 <xs:attribute ref="structures:ref"/>
 <xs:attribute ref="structures:uri"/>
 <xs:anyAttribute processContents="strict" namespace="##other"/>
 </xs:complexType>
 <xs:complexType name="AssociationType" abstract="true">
 <xs:annotation>
 <xs:documentation>A data type for a relationship between two or more objects, including any properties of that relationship.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="structures:AssociationAugmentationPoint" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute ref="structures:appliesToParent"/>
 <xs:attribute ref="structures:id"/>
 <xs:attribute ref="structures:ref"/>
 <xs:attribute ref="structures:uri"/>
 <xs:anyAttribute processContents="strict" namespace="##other"/>
 </xs:complexType>
 <xs:complexType name="AugmentationType" abstract="true">
 <xs:annotation>
 <xs:documentation>A data type for a set of properties to be applied to a base type.</xs:documentation>
 </xs:annotation>
 </xs:complexType>
 <xs:complexType name="ObjectType" abstract="true">
 <xs:annotation>
 <xs:documentation>A data type for a thing with its own lifespan that has some existence.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="structures:ObjectAugmentationPoint" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute ref="structures:appliesToParent"/>
 <xs:attribute ref="structures:id"/>
 <xs:attribute ref="structures:ref"/>
 <xs:attribute ref="structures:uri"/>
 <xs:anyAttribute processContents="strict" namespace="##other"/>
 </xs:complexType>
 <xs:element name="AssociationAugmentationPoint" abstract="true">
 <xs:annotation>
 <xs:documentation>An augmentation point for type structures:AssociationType.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="ObjectAugmentationPoint" abstract="true">
 <xs:annotation>
 <xs:documentation>An augmentation point for type structures:ObjectType.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:attribute name="appliesToParent" type="xs:boolean" default="true">

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 97 of 119

https://docs.oasis-open.org/niemopen/ns/model/structures/6.0/%22
https://docs.oasis-open.org/niemopen/ns/model/structures/6.0/%22
http://www.w3.org/2001/XMLSchema%22

 <xs:attribute name="appliesToParent" type="xs:boolean" default="true">
 <xs:annotation>
 <xs:documentation>True if this element is a property of its parent; false if it appears only to support referencing.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="id" type="xs:ID">
 <xs:annotation>
 <xs:documentation>A document-relative identifier for an XML element.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="ref" type="xs:IDREF">
 <xs:annotation>
 <xs:documentation>A document-relative reference to an XML element.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="uri" type="xs:anyURI">
 <xs:annotation>
 <xs:documentation>An internationalized resource identifier or uniform resource identifier for a node or object.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
</xs:schema>

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 98 of 119

Appendix C. Index of rules
Rule 7-1: Attribute and element do not have same uncased name.
Rule 7-2: Name of Class, Datatype, and Property components.
Rule 7-3: Augmentation names are reserved.
Rule 7-4: Name of adapter classes.
Rule 7-5: Name of association classes.
Rule 7-6: Name of code list literal classes.
Rule 7-7: Names ending in “SimpleType”.
Rule 7-8: Names ending in “CodeSimpleType”.
Rule 7-9: Name of code list datatypes.
Rule 7-10: Name of abstract properties.
Rule 7-11: Name of association properties.
Rule 7-12: Name of code properties.
Rule 7-13: Name of literal properties in CMF.
Rule 7-14: Name of representation attributes.
Rule 7-15: Component name composed of English words.
Rule 7-16: Component names have only specific characters.
Rule 7-17: Component names use camel case.
Rule 7-18: Name of attribute properties begin with lower case letter.
Rule 7-19: Name of components other than attribute properties begin with upper case letter.
Rule 7-20: Punctuation in component name is a separator.
Rule 7-21: Singular form is preferred in name.
Rule 7-22: Present tense is preferred in name.
Rule 7-23: Name does not have nonessential words.
Rule 7-24: Property name follows ISO 11179-5 pattern.
Rule 7-25: Object-class term identifies concrete category.
Rule 7-26: Property term describes characteristic or subpart.
Rule 7-27: Name may have multiple qualifier terms.
Rule 7-28: Name avoids unnecessary qualifier terms.
Rule 7-29: Order of qualifiers is not significant.
Rule 7-30: Redundant term in name is omitted.
Rule 7-31: Data property uses representation term.
Rule 7-32: Object property uses representation term when appropriate.
Rule 7-33: Object property uses representation term only when appropriate.
Rule 7-34: Names use common abbreviations.
Rule 7-35: Local terms usable within their namespace.
Rule 7-36: Local term has literal or definition.
Rule 7-37: Namespace has data definition.
Rule 7-38: Model component has data definition.
Rule 7-39: Enumeration facet has data definition.
Rule 7-40: Pattern facet has data definition.
Rule 7-41: Documentation is provided in US English.
Rule 7-42: Data definition does not introduce ambiguity.
Rule 7-43: Object class has only one meaning.
Rule 7-44: Data definition of a part does not redefine the whole.
Rule 7-45: Do not leak representation into data definition.
Rule 7-46: Data definition follows 11179-4 requirements.
Rule 7-47: Data definition follows 11179-4 recommendations.
Rule 7-48: Standard opening phrase for abstract property data definition.
Rule 7-49: Standard opening phrase for association property data definition.
Rule 7-50: Standard opening phrase for date property data definition.
Rule 7-51: Standard opening phrase for quantity property data definition.
Rule 7-52: Standard opening phrase for picture property data definition.
Rule 7-53: Standard opening phrase for indicator property data definition.
Rule 7-54: Standard opening phrase for identification property data definition.
Rule 7-55: Standard opening phrase for name property data definition.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 99 of 119

Rule 7-56: Standard opening phrase for property data definition.
Rule 7-57: Standard opening phrase for association class data definition.
Rule 7-58: Standard opening phrase for class data definition.
Rule 7-59: Enumerations are unique.
Rule 8-1: Namespace identifier is absolute URI.
Rule 8-2: Namespace URI is owned by namespace authority.
Rule 8-3: Namespaces use slash URIs.
Rule 8-4: Namespace URI includes version.
Rule 8-5: Namespace URI uses semantic versioning.
Rule 8-6: Namespace has a prefix.
Rule 8-7: Namespace has version.
Rule 8-8: Namespace has language.
Rule 8-9: Reference namespace asserts conformance.
Rule 8-10: Reference namespace does not have wildcard.
Rule 8-11: Object properties in reference namespace are referenceable.
Rule 8-12: Reference namespace uses reference namespace components.
Rule 8-13: Extension namespace asserts conformance.
Rule 8-14: Object properties in extension namespace are referenceable.
Rule 8-15: Subset namespace asserts conformance.
Rule 8-16: Subset has corresponding reference or extension namespace.
Rule 8-17: Subset does not extend component range.
Rule 8-18: Subset does not add components.
Rule 8-19: Subset does not alter data definition.
Rule 9-1: Schema is CTAS-conformant.
Rule 9-2: Document element has attribute ct:conformanceTargets .
Rule 9-3: Document is a valid schema document.
Rule 9-4: Document element is xs:schema .
Rule 9-5: Prohibited schema components.
Rule 9-6: Prohibited base types.
Rule 9-7: Prohibited list item types.
Rule 9-8: Prohibited union item types.
Rule 9-9: Prohibited attribute and element types.
Rule 9-10: No mixed content on complex type or complex content.
Rule 9-11: Complex type content is explicitly simple or complex.
Rule 9-12: Base type of complex type with complex content must have complex content.
Rule 9-13: Untyped element is abstract.
Rule 9-14: Element type not in the XML or XML Schema namespace.
Rule 9-15: Element type is not simple type.
Rule 9-16: Attribute declaration has type.
Rule 9-17: No default or fixed value.
Rule 9-18: Sequence has minimum and maximum cardinality 1.
Rule 9-19: xs:choice must be child of xs:sequence .
Rule 9-20: Choice has minimum and maximum cardinality 1.
Rule 9-21: Comment is not recommended.
Rule 9-22: Documentation element has no element children.
Rule 9-23: Import has namespace.
Rule 9-24: Import specifies local resource.
Rule 9-25: Name of type definitions.
Rule 9-26: Name of simple type definitions.
Rule 9-27: Name of complex type definition.
Rule 9-28: xs:sequence must be child of xs:extension .
Rule 9-29: xs:sequence must be child of xs:extension or xs:restriction .
Rule 9-30: Type definition is top-level.
Rule 9-31: Complex type has a category.
Rule 9-32: Object type with complex content is derived from structures:ObjectType .
Rule 9-33: Adapter type derived from structures:AdapterType .
Rule 9-34: Association type derived from structures:AssociationType .
Rule 9-35: Augmentation type derived from structures:AugmentationType .

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 100 of 119

Rule 9-36: Complex type with simple content has structures:SimpleObjectAttributeGroup .
Rule 9-37: Base type definition defined by conformant schema.
Rule 9-38: Component reference defined by conformant schema.
Rule 9-39: Schema uses only known attribute groups.
Rule 9-40: Augmentation elements are not used directly.
Rule 9-41: List item type defined by conformant schemas.
Rule 9-42: Union member types defined by conformant schemas.
Rule 9-43: No complex wildcards.
Rule 9-44: No literal properties in XSD.
Rule 9-45: Declarations are top-level.
Rule 9-46: Element type is not simple type.
Rule 9-47: Attribute and element type is from conformant namespace.
Rule 9-48: Element substitution group defined by conformant schema.
Rule 9-49: Attribute and element type not from structures namespace.
Rule 9-50: Only reference attributes have type xs:IDREFS .
Rule 9-51: Import of external schema document is labeled.
Rule 9-52: Import of external namespace has data definition.
Rule 9-53: Name of adapter type.
Rule 9-54: Structure of external adapter type definition follows pattern.
Rule 9-55: Element use from external adapter type defined by external schema documents.
Rule 9-56: External adapter type not a base type.
Rule 9-57: External attribute use has data definition.
Rule 9-58: External attribute use not an ID.
Rule 9-59: External element use has data definition.
Rule 9-60: Proxy types.
Rule 9-61: Proxy type has designated structure.
Rule 9-62: Name of augmentation types.
Rule 9-63: Name of augmentation elements.
Rule 9-64: Name of augmentation point elements.
Rule 9-65: Standard opening phrase for augmentation point element data definition.
Rule 9-66: Standard opening phrase for augmentation element data definition.
Rule 9-67: Standard opening phrase for augmentation type data definition.
Rule 9-68: Augmentation point element corresponds to its base type.
Rule 9-69: An augmentation point element has no type.
Rule 9-70: An augmentation point element has no substitution group.
Rule 9-71: Augmentation point element is only referenced by its base type.
Rule 9-72: Augmentation point element use is optional and unbounded.
Rule 9-73: Augmentation point element use must be last element in its base type.
Rule 9-74: Appinfo attribute annotates schema component.
Rule 9-75: xs:appinfo children are comments, elements, or whitespace.
Rule 9-76: Appinfo child elements have namespaces.
Rule 9-77: Appinfo descendants are not XML Schema elements.
Rule 9-78: Component marked as deprecated is deprecated component.
Rule 9-79: LocalTerm appinfo applies to schema.
Rule 9-80: No simple type disallowed derivation.
Rule 9-81: No use of “fixed” on simple type facets.
Rule 9-82: No disallowed substitutions.
Rule 9-83: No disallowed derivation.
Rule 9-84: Element declaration is nillable.
Rule 9-85: No xs:choice .
Rule 9-86: External attribute use only in adapter type.
Rule 9-87: Element declaration is nillable.
Rule 9-88: Attribute augmentations are documented.
Rule 10-1: Namespaces are conforming or external.
Rule 10-2: Unique namespace prefixes.
Rule 10-3: Unique namespace identifiers.
Rule 10-4: Composition of schema document set.
Rule 10-5: Consistent import schema document.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 101 of 119

Rule 10-6: Consistent import labels.
Rule 10-7: Consistent import documentation.
Rule 10-8: Namespace prefix is unique.
Rule 10-9: Schema document set must be complete.
Rule 10-10: Use structures namespace consistent with specification.
Rule 11-1: Message type declares initial property.
Rule 11-2: Message format schema matches message type.
Rule 12-1: Message begins with initial property.
Rule 12-2: Message is schema-valid.
Rule 12-3: No attributes from wildcards in structures.
Rule 12-4: No forbidden references.
Rule 12-5: No forbidden references.
Rule 12-6: No forbidden references.
Rule 12-7: Element has only one resource identifying attribute.
Rule 12-8: Attribute structures:ref must reference structures:id .
Rule 12-9: Linked elements have same validation root.
Rule 12-10: Attribute structures:ref references element of correct type.
Rule 12-11: Reference attribute property refers to correct class.
Rule 12-12: xs:anyURI value must be valid URI.
Rule 12-13: No duplicate augmentation elements.
Rule 12-14: Nilled element must be an object reference.
Rule 13-1: Message is a JSON object.
Rule 13-2: Message is a JSON-LD document.
Rule 13-3: Message conforms to message format.
Rule 13-4: Message has context map for model namespaces.
Rule 13-5: Object keys are defined.
Rule 13-6: @id keyword is object reference.
Rule 13-7: No forbidden references.
Rule 13-8: Linked objects have compatible class.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 102 of 119

Appendix D. Mapping NIEM 5 rules to NIEM 6
NIEM 5 Rule NIEM 6 Rules

Rule 4-1, Schema marked as reference schema document must conform rule8-9

Rule 4-2, Schema marked as extension schema document must conform rule8-13

Rule 4-3, Schema is CTAS-conformant rule9-1

Rule 4-4, Document element has attribute ct:conformanceTargets rule9-2

Rule 4-5, Schema claims reference schema conformance target rule8-9, rule8-15

Rule 4-6, Schema claims extension conformance target rule8-13

Rule 5-1, structures:uri denotes resource identifier no matching
NIEM6 rule

Rule 7-1, Document is an XML document rule9-3

Rule 7-2, Document uses XML namespaces properly rule9-3

Rule 7-3, Document is a schema document rule9-3

Rule 7-4, Document element is xs:schema rule9-4

Rule 7-5, Component name follows ISO 11179 Part 5 Annex A rule7-24

Rule 9-1, No base type in the XML namespace rule9-6

Rule 9-2, No base type of xs:ID rule9-6

Rule 9-3, No base type of xs:IDREF rule9-6

Rule 9-4, No base type of xs:IDREFS rule9-6

Rule 9-5, No base type of xs:anyType rule9-6

Rule 9-6, No base type of xs:anySimpleType rule9-6

Rule 9-7, No base type of xs:NOTATION rule9-6

Rule 9-8, No base type of xs:ENTITY rule9-6

Rule 9-9, No base type of xs:ENTITIES rule9-6

Rule 9-10, Simple type definition is top-level rule9-30

Rule 9-11, No simple type disallowed derivation rule9-80

Rule 9-12, Simple type has data definition rule7-38

Rule 9-13, No use of fixed on simple type facets rule9-81

Rule 9-14, Enumeration has data definition rule7-39

Rule 9-15, No list item type of xs:ID rule9-7

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 103 of 119

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_4-1
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_4-2
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_4-3
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_4-4
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_4-5
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_4-6
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_5-1
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_7-1
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_7-2
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_7-3
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_7-4
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_7-5
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-1
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-2
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-3
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-4
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-5
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-6
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-7
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-8
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-9
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-10
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-11
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-12
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-13
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-14
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-15

Rule 9-16, No list item type of xs:IDREF rule9-7

Rule 9-17, No list item type of xs:anySimpleType rule9-7

Rule 9-18, No list item type of xs:ENTITY rule9-7

Rule 9-19, No union member types of xs:ID rule9-8

Rule 9-20, No union member types of xs:IDREF rule9-8

Rule 9-21, No union member types of xs:IDREFS rule9-8

Rule 9-22, No union member types of xs:anySimpleType rule9-8

Rule 9-23, No union member types of xs:ENTITY rule9-8

Rule 9-24, No union member types of xs:ENTITIES rule9-8

Rule 9-25, Complex type definition is top-level rule9-30

Rule 9-26, Complex type has data definition rule7-38

Rule 9-27, No mixed content on complex type rule9-10

Rule 9-28, No mixed content on complex content rule9-10

Rule 9-29, Complex type content is explicitly simple or complex rule9-11

Rule 9-30, Complex content uses extension no matching
NIEM6 rule

Rule 9-31, Base type of complex type with complex content must have complex content rule9-12

Rule 9-32, Base type of complex type with complex content must have complex content rule9-12

Rule 9-33, Simple content uses extension no matching
NIEM6 rule

Rule 9-34, No complex type disallowed substitutions rule9-82

Rule 9-35, No complex type disallowed derivation rule9-83

Rule 9-36, Element declaration is top-level rule9-45

Rule 9-37, Element declaration has data definition rule7-38

Rule 9-38, Untyped element is abstract rule9-13

Rule 9-39, Element of type xs:anySimpleType is abstract rule9-13

Rule 9-40, Element type not in the XML Schema namespace rule9-14

Rule 9-41, Element type not in the XML namespace rule9-14

Rule 9-42, Element type is not simple type rule9-15, rule9-46

Rule 9-43, No element disallowed substitutions rule9-82

NIEM 5 Rule NIEM 6 Rules

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 104 of 119

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-16
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-17
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-18
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-19
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-20
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-21
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-22
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-23
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-24
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-25
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-26
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-27
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-28
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-29
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-30
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-31
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-32
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-33
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-34
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-35
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-36
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-37
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-38
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-39
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-40
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-41
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-42
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-43

Rule 9-44, No element disallowed derivation rule9-83

Rule 9-45, No element default value rule9-17

Rule 9-46, No element fixed value rule9-17

Rule 9-47, Element declaration is nillable rule9-84, rule9-87

Rule 9-48, Attribute declaration is top-level rule9-45

Rule 9-49, Attribute declaration has data definition rule7-38

Rule 9-50, Attribute declaration has type rule9-16

Rule 9-51, No attribute type of xs:ID rule9-9

Rule 9-52, No attribute type of xs:IDREF rule9-9

Rule 9-53, No attribute type of xs:IDREFS rule9-9

Rule 9-54, No attribute type of xs:ENTITY rule9-9

Rule 9-55, No attribute type of xs:ENTITIES rule9-9

Rule 9-56, No attribute type of xs:anySimpleType rule9-9

Rule 9-57, No attribute default values rule9-17

Rule 9-58, No fixed values for optional attributes rule9-17

Rule 9-59, No use of element xs:notation rule9-5

Rule 9-60, Model group does not affect meaning no matching
NIEM6 rule

Rule 9-61, No xs:all rule9-5

Rule 9-62, xs:sequence must be child of xs:extension rule9-28

Rule 9-63, xs:sequence must be child of xs:extension or xs:restriction rule9-29

Rule 9-64, No xs:choice rule9-85

Rule 9-65, xs:choice must be child of xs:sequence rule9-19

Rule 9-66, Sequence has minimum cardinality 1 rule9-18

Rule 9-67, Sequence has maximum cardinality 1 rule9-18

Rule 9-68, Choice has minimum cardinality 1 rule9-20

Rule 9-69, Choice has maximum cardinality 1 rule9-20

Rule 9-70, No use of xs:any rule8-10

Rule 9-71, No use of xs:anyAttribute rule8-10

Rule 9-72, No use of xs:unique rule9-5

NIEM 5 Rule NIEM 6 Rules

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 105 of 119

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-44
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-45
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-46
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-47
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-48
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-49
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-50
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-51
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-52
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-53
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-54
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-55
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-56
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-57
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-58
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-59
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-60
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-61
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-62
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-63
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-64
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-65
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-66
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-67
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-68
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-69
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-70
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-71
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-72

Rule 9-73, No use of xs:key rule9-5

Rule 9-74, No use of xs:keyref rule9-5

Rule 9-75, No use of xs:group rule9-5

Rule 9-76, No definition of attribute groups rule9-5

Rule 9-77, Comment is not recommended rule9-21

Rule 9-78, Documentation element has no element children rule9-22

Rule 9-79, xs:appinfo children are comments, elements, or whitespace rule9-75

Rule 9-80, Appinfo child elements have namespaces rule9-76

Rule 9-81, Appinfo descendants are not XML Schema elements rule9-77

Rule 9-82, Schema has data definition rule7-37

Rule 9-83, Schema document defines target namespace rule8-1

Rule 9-84, Target namespace is absolute URI rule8-1

Rule 9-85, Schema has version rule8-7

Rule 9-86, No disallowed substitutions rule9-82

Rule 9-87, No disallowed derivations rule9-83

Rule 9-88, No use of xs:redefine rule9-5

Rule 9-89, No use of xs:include rule9-5

Rule 9-90, xs:import must have namespace rule9-23

Rule 9-91, XML Schema document set must be complete rule10-9

Rule 9-92, Namespace referenced by attribute type is imported no matching
NIEM6 rule

Rule 9-93, Namespace referenced by attribute base is imported no matching
NIEM6 rule

Rule 9-94, Namespace referenced by attribute itemType is imported no matching
NIEM6 rule

Rule 9-95, Namespaces referenced by attribute memberTypes is imported no matching
NIEM6 rule

Rule 9-96, Namespace referenced by attribute ref is imported no matching
NIEM6 rule

Rule 9-97, Namespace referenced by attribute substitutionGroup is imported no matching
NIEM6 rule

Rule 10-1, Complex type has a category rule9-31

NIEM 5 Rule NIEM 6 Rules

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 106 of 119

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-73
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-74
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-75
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-76
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-77
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-78
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-79
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-80
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-81
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-82
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-83
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-84
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-85
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-86
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-87
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-88
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-89
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-90
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-91
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-92
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-93
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-94
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-95
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-96
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-97
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-1

Rule 10-2, Object type with complex content is derived from structures:ObjectType rule9-32

Rule 10-3, RoleOf element type is an object type no matching
NIEM6 rule

Rule 10-4, Only object type has RoleOf element no matching
NIEM6 rule

Rule 10-5, RoleOf elements indicate the base types of a role type no matching
NIEM6 rule

Rule 10-6, Instance of RoleOf element indicates a role object no matching
NIEM6 rule

Rule 10-7, Import of external namespace has data definition rule9-52

Rule 10-8, External adapter type has indicator rule9-53

Rule 10-9, Structure of external adapter type definition follows pattern rule9-54

Rule 10-10, Element use from external adapter type defined by external schema documents rule9-55

Rule 10-11, External adapter type not a base type rule9-56

Rule 10-12, External adapter type not a base type rule9-56

Rule 10-13, External attribute use only in external adapter type rule9-86

Rule 10-14, External attribute use has data definition rule9-57

Rule 10-15, External attribute use not an ID rule9-58

Rule 10-16, External element use has data definition rule9-59

Rule 10-17, Name of code type ends in CodeType rule7-6, rule7-9

Rule 10-18, Code type corresponds to a code list rule7-6, rule7-9

Rule 10-19, Element of code type has code representation term rule7-12

Rule 10-20, Proxy type has designated structure rule9-60, rule9-61

Rule 10-21, Association type derived from structures:AssociationType rule7-5, rule9-34

Rule 10-22, Association element type is an association type rule7-11

Rule 10-23, Augmentable type has augmentation point element no matching
NIEM6 rule

Rule 10-24, Augmentable type has at most one augmentation point element no matching
NIEM6 rule

Rule 10-25, Augmentation point element corresponds to its base type rule9-68

Rule 10-26, An augmentation point element has no type rule9-69

Rule 10-27, An augmentation point element has no substitution group rule9-70

NIEM 5 Rule NIEM 6 Rules

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 107 of 119

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-2
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-3
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-4
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-5
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-6
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-7
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-8
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-9
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-10
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-11
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-12
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-13
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-14
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-15
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-16
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-17
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-18
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-19
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-20
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-21
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-22
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-23
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-24
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-25
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-26
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-27

Rule 10-28, Augmentation point element is only referenced by its base type rule9-71

Rule 10-29, Augmentation point element use is optional rule9-72

Rule 10-30, Augmentation point element use is unbounded rule9-72

Rule 10-31, Augmentation point element use must be last element in its base type rule9-73

Rule 10-32, Element within instance of augmentation type modifies base no matching
NIEM6 rule

Rule 10-33, Only an augmentation type name ends in AugmentationType rule9-62

Rule 10-34, Schema component with name ending in AugmentationType is an augmentation type rule9-62

Rule 10-35, Type derived from structures:AugmentationType is an augmentation type rule9-35

Rule 10-36, Augmentation element type is an augmentation type rule9-63

Rule 10-37, Augmentation elements are not used directly rule9-40

Rule 10-38, Metadata type has data about data no matching
NIEM6 rule

Rule 10-39, Metadata types are derived from structures:MetadataType no matching
NIEM6 rule

Rule 10-40, Metadata element declaration type is a metadata type no matching
NIEM6 rule

Rule 10-41, Metadata element has applicable elements no matching
NIEM6 rule

Rule 10-42, Name of element that ends in Representation is abstract rule7-10

Rule 10-43, A substitution for a representation element declaration is a value for a type no matching
NIEM6 rule

Rule 10-44, Schema component name composed of English words rule7-15

Rule 10-45, Schema component name has xml:lang rule8-8

Rule 10-46, Schema component names have only specific characters rule7-16

Rule 10-47, Punctuation in component name is a separator rule7-20

Rule 10-48, Names use camel case rule7-17

Rule 10-49, Attribute name begins with lower case letter rule7-18

Rule 10-50, Name of schema component other than attribute and proxy type begins with upper case
letter

rule7-19

Rule 10-51, Names use common abbreviations rule7-34

Rule 10-52, Local term declaration is local to its schema document rule7-35

NIEM 5 Rule NIEM 6 Rules

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 108 of 119

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-28
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-29
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-30
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-31
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-32
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-33
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-34
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-35
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-36
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-37
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-38
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-39
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-40
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-41
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-42
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-43
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-44
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-45
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-46
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-47
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-48
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-49
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-50
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-51
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-52

Rule 10-53, Local terminology interpretation no matching
NIEM6 rule

Rule 10-54, Singular form is preferred in name rule7-21

Rule 10-55, Present tense is preferred in name rule7-22

Rule 10-56, Name does not have nonessential words rule7-23

Rule 10-57, Element or attribute name follows pattern rule7-24

Rule 10-58, Object-class term identifies concrete category rule7-25

Rule 10-59, Property term describes characteristic or subpart rule7-26

Rule 10-60, Name may have multiple qualifier terms rule7-27

Rule 10-61, Name has minimum necessary number of qualifier terms rule7-28

Rule 10-62, Order of qualifiers is not significant rule7-29

Rule 10-63, Redundant term in name is omitted rule7-30

Rule 10-64, Element with simple content has representation term rule7-31

Rule 10-65, Element with complex content has representation term when appropriate rule7-32

Rule 10-66, Element with complex content has representation term only when appropriate rule7-33

Rule 10-67, Machine-readable annotations are valid no matching
NIEM6 rule

Rule 10-68, Component marked as deprecated is deprecated component rule9-78

Rule 10-69, Deprecated annotates schema component rule9-74

Rule 10-70, External import indicator annotates import no matching
NIEM6 rule

Rule 10-71, External adapter type indicator annotates complex type no matching
NIEM6 rule

Rule 10-72, appinfo:appliesToTypes annotates metadata element no matching
NIEM6 rule

Rule 10-73, appinfo:appliesToTypes references types no matching
NIEM6 rule

Rule 10-74, appinfo:appliesToElements annotates metadata element no matching
NIEM6 rule

Rule 10-75, appinfo:appliesToElements references elements no matching
NIEM6 rule

Rule 10-76, appinfo:LocalTerm annotates schema rule9-79

Rule 10-77, appinfo:LocalTerm has literal or definition rule7-36

NIEM 5 Rule NIEM 6 Rules

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 109 of 119

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-53
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-54
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-55
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-56
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-57
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-58
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-59
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-60
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-61
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-62
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-63
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-64
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-65
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-66
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-67
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-68
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-69
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-70
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-71
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-72
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-73
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-74
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-75
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-76
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-77

Rule 10-78, Use structures consistent with specification rule10-10

Rule 11-1, Name of type ends in Type rule7-2

Rule 11-2, Only types have name ending in Type or SimpleType rule7-2, rule9-25

Rule 11-3, Base type definition defined by conformant schema rule9-37

Rule 11-4, Name of simple type ends in SimpleType rule9-26

Rule 11-5, Use lists only when data is uniform no matching
NIEM6 rule

Rule 11-6, List item type defined by conformant schemas rule9-41

Rule 11-7, Union member types defined by conformant schemas rule9-42

Rule 11-8, Name of a code simple type ends in CodeSimpleType rule7-8

Rule 11-9, Code simple type corresponds to a code list rule7-8

Rule 11-10, Attribute of code simple type has code representation term rule7-12

Rule 11-11, Complex type with simple content has structures:SimpleObjectAttributeGroup rule9-36

Rule 11-12, Element type does not have a simple type name rule9-46

Rule 11-13, Element type is from conformant namespace rule9-47

Rule 11-14, Name of element that ends in Abstract is abstract rule7-10

Rule 11-15, Name of element declaration with simple content has representation term rule7-31

Rule 11-16, Name of element declaration with simple content has representation term rule7-31

Rule 11-17, Element substitution group defined by conformant schema rule9-48

Rule 11-18, Attribute type defined by conformant schema rule9-47

Rule 11-19, Attribute name uses representation term rule7-31

Rule 11-20, Element or attribute declaration introduced only once into a type no matching
NIEM6 rule

Rule 11-21, Element reference defined by conformant schema rule9-38

Rule 11-22, Referenced attribute defined by conformant schemas rule9-38

Rule 11-23, Schema uses only known attribute groups rule9-39

Rule 11-24, Data definition does not introduce ambiguity rule7-42

Rule 11-25, Object class has only one meaning rule7-43

Rule 11-26, Data definition of a part does not redefine the whole rule7-44

Rule 11-27, Do not leak representation into data definition rule7-45

NIEM 5 Rule NIEM 6 Rules

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 110 of 119

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-78
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-1
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-2
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-3
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-4
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-5
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-6
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-7
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-8
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-9
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-10
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-11
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-12
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-13
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-14
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-15
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-16
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-17
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-18
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-19
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-20
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-21
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-22
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-23
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-24
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-25
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-26
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-27

Rule 11-28, Data definition follows 11179-4 requirements rule7-46

Rule 11-29, Data definition follows 11179-4 recommendations rule7-47

Rule 11-30, xs:documentation has xml:lang rule8-8

Rule 11-31, Standard opening phrase for augmentation point element data definition rule9-65

Rule 11-32, Standard opening phrase for augmentation element data definition rule9-66

Rule 11-33, Standard opening phrase for metadata element data definition no matching
NIEM6 rule

Rule 11-34, Standard opening phrase for association element data definition rule7-49

Rule 11-35, Standard opening phrase for abstract element data definition rule7-48

Rule 11-36, Standard opening phrase for date element or attribute data definition rule7-50

Rule 11-37, Standard opening phrase for quantity element or attribute data definition rule7-51

Rule 11-38, Standard opening phrase for picture element or attribute data definition rule7-52

Rule 11-39, Standard opening phrase for indicator element or attribute data definition rule7-53

Rule 11-40, Standard opening phrase for identification element or attribute data definition rule7-54

Rule 11-41, Standard opening phrase for name element or attribute data definition rule7-55

Rule 11-42, Standard opening phrase for element or attribute data definition rule7-56

Rule 11-43, Standard opening phrase for association type data definition rule7-57

Rule 11-44, Standard opening phrase for augmentation type data definition rule9-67

Rule 11-45, Standard opening phrase for metadata type data definition no matching
NIEM6 rule

Rule 11-46, Standard opening phrase for complex type data definition rule7-58

Rule 11-47, Standard opening phrase for simple type data definition rule7-58

Rule 11-48, Same namespace means same components no matching
NIEM6 rule

Rule 11-49, Different version means different view no matching
NIEM6 rule

Rule 11-50, Reference schema document imports reference schema document rule8-12

Rule 11-51, Extension schema document imports reference or extension schema document no matching
NIEM6 rule

Rule 11-52, Structures imported as conformant no matching
NIEM6 rule

Rule 11-53, XML namespace imported as conformant no matching
NIEM6 rule

NIEM 5 Rule NIEM 6 Rules

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 111 of 119

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-28
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-29
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-30
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-31
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-32
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-33
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-34
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-35
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-36
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-37
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-38
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-39
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-40
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-41
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-42
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-43
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-44
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-45
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-46
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-47
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-48
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-49
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-50
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-51
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-52
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-53

Rule 11-54, Each namespace may have only a single root schema in a schema set rule10-5

Rule 11-55, Consistently marked namespace imports rule10-6

Rule 12-1, Instance must be schema-valid rule12-2

Rule 12-2, Empty content has no meaning no matching
NIEM6 rule

Rule 12-3, Element has only one resource identifying attribute rule12-7

Rule 12-4, Attribute structures:ref must reference structures:id rule12-8

Rule 12-5, Linked elements have same validation root rule12-9

Rule 12-6, Attribute structures:ref references element of correct type rule12-10

Rule 12-7, structures:uri denotes resource identifier no matching
NIEM6 rule

Rule 12-8, structures:id and structures:ref denote resource identifier no matching
NIEM6 rule

Rule 12-9, Nested elements and references have the same meaning. no matching
NIEM6 rule

Rule 12-10, Order of properties is expressed via structures:sequenceID no matching
NIEM6 rule

Rule 12-11, Metadata applies to referring entity no matching
NIEM6 rule

Rule 12-12, Referent of structures:relationshipMetadata annotates relationship no matching
NIEM6 rule

Rule 12-13, Values of structures:metadata refer to values of structures:id no matching
NIEM6 rule

Rule 12-14, Values of structures:relationshipMetadata refer to values of structures:id no matching
NIEM6 rule

Rule 12-15, structures:metadata and structures:relationshipMetadata refer to metadata elements no matching
NIEM6 rule

Rule 12-16, Attribute structures:metadata references metadata element no matching
NIEM6 rule

Rule 12-17, Attribute structures:relationshipMetadata references metadata element no matching
NIEM6 rule

Rule 12-18, Metadata is applicable to element no matching
NIEM6 rule

NIEM 5 Rule NIEM 6 Rules

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 112 of 119

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-54
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-55
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-1
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-2
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-3
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-4
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-5
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-6
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-7
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-8
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-9
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-10
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-11
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-12
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-13
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-14
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-15
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-16
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-17
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-18

Appendix E. Table of examples
Example 3-2: Example of messages in XML and JSON syntax
Example 3-3: Example message format schemas
Example 3-4: Example message model in XSD and CMF
Example 3-5: Message specifications, types, and formats
Example 3-9: CMF model in XML and JSON syntax
Example 4-8: Namespace object in CMF and XSD
Example 4-12: Component object (abstract) in CMF and XSD
Example 4-17: Instance of a class in XML and JSON
Example 4-18: A Class object in CMF and XSD (CCC type)
Example 4-20: Instance of a literal class in XML and JSON
Example 4-21: A literal class object in CMF and XSD (CSC type)
Example 4-23: PropertyAssociation object in CMF and XSD
Example 4-28: ObjectProperty object in CMF and XSD
Example 4-31: DataProperty object in CMF and XSD
Example 4-34: Plain CMF datatype object for xs:string
Example 4-36: List object in CMF and XSD
Example 4-39: Union object in CMF and XSD
Example 4-42: Restriction object in CMF and XSD
Example 4-45: Facet object in CMF and XSD
Example 4-48: CodeListBinding object in CMF and XSD
Example 4-52: Augmentation object in CMF
Example 4-53: Global augmentation in CMF
Example 4-55: Example complex type definition with complex content (CCC type)
Example 4-56: Example augmentation point element declaration
Example 4-57: Augmenting a class with an augmentation type and element in XSD
Example 4-58: Example message with an augmentation element
Example 4-59: Augmenting a class with an element property in XSD
Example 4-60: Example message showing augmentation with an element property
Example 4-61: CMF for an element property augmentation
Example 4-62: Augmenting a class with an attribute property in XSD
Example 4-63: Example message showing an attribute property augmentation
Example 4-64: Global augmentation with an element property in XSD
Example 4-65: Global augmentation with an element property in XSD
Example 4-66: Global augmentation with an attribute property in XSD
Example 4-67: Example complex type definition with complex content (CCC type)
Example 4-69: Example LocalTerm objects in CMF and XSD
Example 5-1: A literal class in CMF and XSD
Example 5-2: Objects of a literal class in an XML and JSON message
Example 5-3: A restriction datatype in a CMF and XSD model subset
Example 5-4: A data property in an XML and JSON message
Example 5-5: A datatype in CMF and XSD
Example 5-6: A data property in an XML and JSON message
Example 5-7: A literal class in a CMF and XSD model subset
Example 5-8: An object property with a code list class in an XML and JSON message
Example 5-10: RDF interpretation of NIEM data (Turtle syntax)
Example 5-12: Example of object references in NIEM XML and JSON
Example 5-13: Example of URI object references in NIEM XML and JSON
Example 5-14: Reference attribute property and equivalent message in XML
Example 5-15: Reference attribute property in JSON message
Example 5-16: Metadata properties used in a designer’s own class
Example 5-17: Metadata object property augmenting a reused class
Example 5-18: Metadata reference attribute augmenting a reused class
Example 5-19: Example of an ordinary property
Example 5-20: Example of a relationship property
Example 5-21: RDF-star equivalent for a relationship property

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 113 of 119

Example 6-1: Conformance target assertion in XSD
Example 6-2: Conformance target assertion in CMF

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 114 of 119

Appendix F. Table of figures
Figure 2-1: User roles and activities
Figure 3-1: Message types, message formats, and messages
Figure 3-6: NIEM communities and data models
Figure 3-7: High-level view of the NIEM metamodel
Figure 3-8: Message, message model, and metamodel relationships
Figure 4-1: The NIEM metamodel
Figure 4-4: Model class diagram
Figure 4-6: Namespace class diagram
Figure 4-10: Component class diagram
Figure 4-14: Class and ChildPropertyAssociation class diagram
Figure 4-25: Property class diagram
Figure 4-33: Datatype classes
Figure 4-50: Augmentation class diagram
Figure 5-11: Diagram showing meaning of NIEM data
Figure 5-22: RDF-star graph diagram for a relationship property

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 115 of 119

Appendix G. Table of tables
Table 2-2: Relevant document sections by user role
Table 4-2: Definition of columns in metamodel property tables
Table 4-3: Definition of columns in CMF-XSD mapping tables
Table 4-5: Properties of the Model object class
Table 4-7: Properties of the Namespace object class
Table 4-9: Namespace object properties in CMF and XSD
Table 4-11: Properties of the Component abstract class
Table 4-13: Component object properties in CMF and XSD
Table 4-15: Properties of the Class object class
Table 4-16: ReferenceCode code list
Table 4-19: Class object object properties in CMF and XSD
Table 4-22: Properties of the ChildPropertyAssociation object class
Table 4-24: ChildPropertyAssociation object properties in CMF and XSD
Table 4-26: Properties of the Property abstract class
Table 4-27: Properties of the ObjectProperty object class
Table 4-29: ObjectProperty object properties in CMF and XSD
Table 4-30: Properties of the DataProperty object class
Table 4-32: DataProperty object properties in CMF and XSD
Table 4-35: Properties of the List object class
Table 4-37: List object properties in CMF and XSD
Table 4-38: Properties of the Union object class
Table 4-40: Union object properties in CMF and XSD
Table 4-41: Properties of the Restriction object class
Table 4-43: Restriction object properties in CMF and XSD
Table 4-44: Properties of the Facet object class
Table 4-46: Facet object properties in CMF and XSD
Table 4-47: Properties of the CodeListBinding object class
Table 4-49: CodeListBinding object properties in CMF and XSD
Table 4-51: Properties of the Augmentation object class
Table 4-54: GlobalClassCode code list
Table 4-68: Properties of the LocalTerm object class
Table 4-70: LocalTerm object properties in CMF and XSD
Table 4-71: Properties of the TextType object class
Table 5-9: Meaning of NIEM data
Table 7-1: Property representation terms

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 116 of 119

Appendix H. Acknowledgments
H.1 Participants

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Project-name OP Members:

First Name Last Name Company

Aubrey Beach JS J6

Brad Bollinger Ernst & Young

James Cabral Individual

Tom Carlson GTRI

Chuck Chipman GTRI

Mike Douklias JS J6

Katherine Escobar JS J6

Lavdjola Farrington JS J6

Dave Hardy JS J6

Mike Hulme Unisys

Eric Jahn Alexandria Consulting

Dave Kemp NSA

Vamsi Kondannagari Integral Fed

Shunda Louis JS J6

Peter Madruga GTRI

Christina Medlin GTRI

Joe Mierwa Mission Critical Partners

April Mitchell FBI

Carl Nelson RISS

Scott Renner MITRE

Beth Smalley JS J6

Duncan Sparrell sFractal

Jennifer Stathakis NIST

Stephen Sullivan JS J6

Josh Wilson FBI

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 117 of 119

Appendix I. Notices
(This required section should not be altered, except to modify the license information in the second paragraph if needed.)

Copyright © OASIS Open 2025. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy
(the “OASIS IPR Policy”). The full Policy may be found at the OASIS website.

This specification is published under Attribution 4.0 International (CC BY 4.0).
Code associated with this specification is provided under Apache License 2.0.

All contributions made to this project have been made under the OASIS Contributor License Agreement (CLA).

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any
offers of patent licensing terms, please refer to the NIEMOpen IPR Statement page.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part,
without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and
derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or
references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS
Open Project (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OASIS AND ITS MEMBERS WILL NOT BE LIABLE
FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THIS
DOCUMENT OR ANY PART THEREOF.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards Final Deliverable
documents (Project Specifications, OASIS Standards, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed
by implementations of this OASIS Standards Final Deliverable, to notify OASIS TC Administrator and provide an indication of
its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Open
Project that produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that
would necessarily be infringed by implementations of this OASIS Standards Final Deliverable by a patent holder that is not
willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Open Project that
produced this OASIS Standards Final Deliverable. OASIS may include such claims on its website, but disclaims any
obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in this OASIS Standards Final Deliverable or the extent to
which any license under such rights might or might not be available; neither does it represent that it has made any effort to
identify any such rights. Information on OASIS’ procedures with respect to rights in any document or deliverable produced by
an OASIS Open Project can be found on the OASIS website. Copies of claims of rights made available for publication and
any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission
for the use of such proprietary rights by implementers or users of this OASIS Standards Final Deliverable, can be obtained
from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights
will at any time be complete, or that any claims in such list are, in fact, Essential Claims.]

The name “OASIS” is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer
to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications,

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 118 of 119

https://www.oasis-open.org/policies-guidelines/ipr/
https://creativecommons.org/licenses/by/4.0/legalcode
https://www.apache.org/licenses/LICENSE-2.0
https://www.oasis-open.org/policies-guidelines/open-projects-process/#individual-cla-exhibit
https://github.com/niemopen/oasis-open-project/blob/main/IPR-STATEMENT.md
https://www.oasis-open.org/

while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-
guidelines/trademark/ for above guidance.

Copyright © OASIS Open 2025. All Rights Reserved. 27 January 2025 - Page 119 of 119

https://www.oasis-open.org/policies-guidelines/trademark/
https://www.oasis-open.org/policies-guidelines/trademark/

