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Notices 

Copyright © OASIS Open 2021. All Rights Reserved. 

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual 
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website. 

This document and translations of it may be copied and furnished to others, and derivative works that 
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, 
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice 
and this section are included on all such copies and derivative works. However, this document itself may 
not be modified in any way, including by removing the copyright notice or references to OASIS, except as 
needed for the purpose of developing any document or deliverable produced by an OASIS Technical 
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must 
be followed) or as required to translate it into languages other than English. 

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors 
or assigns. 

This document and the information contained herein is provided on an "AS IS" basis and OASIS 
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY 
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. 

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would 
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, 
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to 
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that 
produced this specification. 

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of 
any patent claims that would necessarily be infringed by implementations of this specification by a patent 
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR 
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such 
claims on its website, but disclaims any obligation to do so. 

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that 
might be claimed to pertain to the implementation or use of the technology described in this document or 
the extent to which any license under such rights might or might not be available; neither does it 
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with 
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be 
found on the OASIS website. Copies of claims of rights made available for publication and any 
assurances of licenses to be made available, or the result of an attempt made to obtain a general license 
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee 
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no 
representation that any information or list of intellectual property rights will at any time be complete, or 
that any claims in such list are, in fact, Essential Claims. 

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be 
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and 
implementation and use of, specifications, while reserving the right to enforce its marks against 
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above 
guidance. 

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark
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1 Introduction 

1.0 IPR Policy 

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode 
chosen when the Technical Committee was established. 

For information on whether any patents have been disclosed that may be essential to implementing this 
specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights 
section of the TC’s web page (https://www.oasis-open.org/committees/legalruleml/ipr.php). 

1.1 Terminology 

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 
in [RFC2119]. 

1.2 Normative References 

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 

[RDF] RDF 1.1 Primer, G. Schreiber, Y. Raimond, Editors, W3C Working Group Note, 
17 March 2015, http://www.w3.org/TR/2015/NOTE-rdfa-primer-20150317/. Latest 
version available at http://www.w3.org/TR/rdfa-primer/ 

[RDFS] RDF Vocabulary Description Language 1.0: RDF Schema , D. Brickley, R. V. 
Guha, Editors, W3C Recommendation, 10 February 2004, 
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/ . Latest version 
available at http://www.w3.org/TR/rdf-schema/ 

[RNG] [RNG] ISO/IEC 19757-2 Document Schema Definition Language (DSDL) -- Part 
2: Regular-grammar-based validation -- RELAX NG, International Organization 
for Standardization and International Electrotechnical Commission, 2003 

[XSD] XML Schema Part 0: Primer Second Edition, W3C Recommendation 28 October 
2004 http://www.w3.org/TR/xmlschema-0/ 

[XML] Extensible Markup Language (XML) 1.0 (Fifth Edition) , T. Bray, J. Paoli, M. , E. 
Maler, F. Yergeau, Editors, W3C Recommendation, 26 November 2008, 
http://www.w3.org/TR/2008/REC-xml-20081126/ . Latest version available at 
http://www.w3.org/TR/xml 

[XML namespace] http://www.w3.org/XML/1998/namespace 

[RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource Identifiers (IRIs)", RFC 
3987, DOI 10.17487/RFC3987, January 2005, http://www.rfc-
editor.org/info/rfc3987 

[CURI] RDFa in XHTML: Syntax and Processing , B. Adida, M. Birbeck, S. McCarron, S. 
Pemberton, Editors, W3C Recommendation, 14 October 2008, 
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014 . Latest version available 
at http://www.w3.org/TR/rdfa-syntax . (6. CURIE Syntax Definition) 

[FRBR] IFLA Study Group on the Functional Requirements for Bibliographic Records 
(Ed.) and Standing Committee of the IFLA Section on Cataloguing. 2013. 
Functional Requirements for Bibliographic Records. Final Report. Berlin, Boston: 
K. G. Saur. Retrieved 11 Mar. 2017, from 
http://www.degruyter.com/view/product/53101 

[ConsumerRuleML] Consumer RuleML Specification 1.02. 
http://wiki.ruleml.org/index.php/Specification_of_Consumer_RuleML_1.02 

[RuleML]  RuleML Specification 1.02 

https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/legalruleml/ipr.php
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/rdfa-primer/
http://www.w3.org/TR/rdfa-primer/
http://www.w3.org/TR/rdfa-primer/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xml
http://www.w3.org/XML/1998/namespace
http://www.rfc-editor.org/info/rfc3987
http://www.rfc-editor.org/info/rfc3987
http://www.degruyter.com/view/product/53101
http://wiki.ruleml.org/index.php/Specification_of_Consumer_RuleML_1.02
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http://wiki.ruleml.org/index.php/Specification_of_RuleML_1.02 

 

1.3 Non-Normative References 

[Reaction RuleML]  Reaction RuleML Specification 1.02 
http://wiki.ruleml.org/index.php/Specification_of_Reaction_RuleML_1.02 

 

1.4 Typographical Conventions 

Preformatted type, e.g. Agent, is used for the names of XML components (elements and attributes) and 
IRIs.  

Namespaces are used in this document for qualified names in XML as following: 

• xmlns for http://www.w3.org/XML/1998/namespace. 

• xmlns:lrml for http://docs.oasis-open.org/legalruleml/ns/v1.0/ 

• xmlns:lmrlmm for http://docs.oasis-open.org/legalruleml/ns/mm/v1.0/ 

• xmlns:ruleml for http://ruleml.org/spec 

• xmlns:xsi for http://www.w3.org/2001/XMLSchema-instance 

• xmlns:xs for http://www.w3.org/2001/XMLSchema 

 

The corresponding prefix (e.g., lrml, lmrlmm, ruleml, xsi, xs) for abbreviating IRIs. 

The following formatting conventions are used to distinguish the occurrence of LegalRuleML terms within 
the document: 

1. When an occurrence of a term refers to an element or attribute, the term appears in preformatted type, 
with no spaces and XML markup (e.g. <lrml:LegalSource> and @hasMemberType). 

2. When it refers to a concept, it appears with spaces (if appropriate) and no preformatted type (e.g. 
Constitutive Statement, Deontic Specification). 

3. When both readings are possible, it appears with no spaces, no preformatted type, and no XML 
markup (e.g. ConstitutiveStatement). 

 

Capitalization is used to distinguish certain terms and names. UpperCamelCase is used for: 

a) Node elements e.g. <lrml:ConstitutiveStatement>, <lrml:LegalSource>; 

b) their associated concepts, e.g. Constitutive Statement, and; 

c) their type, as a metamodel IRI, e.g. lrmlmm:ConstitutiveStatement. 

Similarly, lowerCamelCase is used for: 

d) edge elements and attributes e.g., <lrml:hasStatement>, @memberType; 

e) and their associated role, as a metamodel IRI, e.g. lrmlmm:hasStatement, 

lrmlmm:memberType.  

 

Italic is used in the angle brecket for distinguishing the annotation to the XML syntax when it is necessary 
to underline the presence of a generic XML element. 

In examples in the presentation syntax, we use a particular annotation: 

• variables are prefixed with $ (e.g., $income); 

• constants are prefixed with % (e.g., %employer). 

 

In the documents we use the following acronyms associated with the given references. 

http://wiki.ruleml.org/index.php/Specification_of_RuleML_1.02
http://wiki.ruleml.org/index.php/Specification_of_Reaction_RuleML_1.02
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RDF: Resource Description Framework as defined in [RDF]. 

RDFS: RDF Schema as defined in [RDFS]. 

XML: eXtensible Markup Language as defined in [XML]. 

FRBR: Functional Requirements for Bibliographic Records as defined in [FRBR]. 

 

All text is normative unless labeled as non-normative. 
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2 Background, Motivation, Principles (non-normative) 

2.1 Motivation 

Legal texts, e.g. legislation, regulations, contracts, and case law, are the source of norms, guidelines, and 
rules. As text, it is difficult to exchange specific information content contained in the texts between parties, 
to search for and extract structured the content from the texts, or to automatically process it further. 
Legislators, legal practitioners, and business managers are, therefore, impeded from comparing, 
contrasting, integrating, and reusing the contents of the texts, since any such activities are manual. In the 
current web-enabled context, where innovative eGovernment and eCommerce applications are 
increasingly deployed, it has become essential to provide machine-readable forms (generally in XML) of 
the contents of the text. In providing such forms, the general norms and specific procedural rules in 
legislative documents, the conditions of services and business rules in contracts, and the information 
about arguments and interpretation of norms in the judgments for case-law would be amenable to such 
applications. 

The ability to have proper and expressive conceptual, machine-readable models of the various and 
multifaceted aspects of norms, guidelines, and general legal knowledge is a key factor for the 
development and deployment of successful applications. The LegalRuleML TC, set up inside of OASIS 
(www.oasis-open.org), aims to produce a rule interchange language for the legal domain. Using the 
representation tools, the contents of the legal texts can be structured in a machine-readable format, which 
then feeds further processes of interchange, comparison, evaluation, and reasoning. The Artificial 
Intelligence (AI) and Law communities have converged in the last twenty years on modeling legal norms 
and guidelines using logic and other formal techniques [6]. Existing methods begin with the analysis of a 
legal text by a Legal Knowledge Engineer, who scopes the analysis, extracts the norms and guidelines, 
applies models and a theory within a logical framework, and finally represents the norms using a 
particular formalism. In the last decade, several Legal XML standards have been proposed to represent 
legal texts [30] with XML-based rules (RuleML, SWRL, RIF, LKIF, etc.) [16, 18]. At the same time, the 
Semantic Web, in particular Legal Ontology research combined with semantic norm extraction based on 
Natural Language Processing (NLP) [15], has given a strong impetus to the modeling of legal concepts 
[8, 10, 11]. Based on this, the work of the LegalRuleML Technical Committee will focus on three specific 
needs: 

1 To close the gap between legal texts, which are expressed in natural language, and semantic norm 
modeling. This is necessary in order to provide integrated and self-contained representations of legal 
resources that can be made available on the Web as XML representations [32] and so foster 
Semantic Web technologies such as: NLP, Information Retrieval and Extraction (IR/IE), graphical 
representation, as well as Web ontologies and rules. 

2 To provide an expressive XML standard for modeling normative rules that satisfies legal domain 
requirements. This will enable use of a legal reasoning layer on top of the ontological layer, aligning 
with the W3C envisioned Semantic Web stack. 

3 To apply the Linked Open Data [9] approach to model raw data in the law (acts, contracts, court files, 
judgments, etc.) and to extend it to legal concepts and rules along with their functionality and usage. 
Without rules that apply to legal concepts, legal concepts constitute just a taxonomy [36]. 

2.2 Objective 

The objective of the LegalRuleML TC is to extend RuleML with formal features specific to legal norms, 
guidelines, policies and reasoning; that is, the TC defines a standard (expressed with XML-schema and 
Relax NG) that is able to represent the particularities of the legal normative rules with a rich, articulated, 
and meaningful markup language. 

LegalRuleML models: 

- defeasibility of rules and defeasible logic; 

- deontic operators (e.g., obligations, permissions, prohibitions, rights);  

- semantic management of negation; 
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- temporal management of rules and temporality in rules; 

- classification of norms (i.e., constitutive, prescriptive);  

- jurisdiction of norms; 

- isomorphism between rules and natural language normative provisions; 

- identification of parts of the norms (e.g. bearer, conditions); 

- authorial tracking of rules. 

Some matters are out of the scope of the TC and LegalRuleML such as specifications of core or domain 
legal ontologies. 

2.3 Main Principles 

The main principles of LegalRuleML are as follows. 

Multiple Semantic Annotations: A legal rule may have multiple semantic annotations, where these 
annotations represent different legal interpretations. Each such annotation appears in a separate 
annotation block as internal or external metadata. Interpretations are provided with parameters that 
indicate provenance, applicable jurisdiction, logical interpretation of the rule, and others. 

Tracking the LegalRuleML Creators: As part of the provenance information, a LegalRuleML document 
or any of its fragments can be associated with its creators. This is important to establish the authority and 
trust of the knowledge base and annotations. The creators of the document can be the authors of the text, 
knowledge base, and annotations, as well as the publisher of the document. 

Linking Rules and Provisions: LegalRuleML includes a mechanism, based on IRI, that allows many to 
many (N:M) relationships among the rules and the textual provisions: multiple rules are embedded in the 
same provision, several provisions contribute to the same rule. This mechanism may be managed in the 
metadata block, permitting extensible management, avoiding redundancy in the IRI definition, and 
avoiding errors in the associations. 

Temporal Management: LegalRuleML's universe of discourse contains a variety of entities: provisions, 
rules, applications of rules, references to text, and references to physical entities. All of these entities 
exist and change in time; their histories interact in complicated ways. LegalRuleML represents these 
temporal issues in an unambiguous fashion. In particular, a rule has parameters that can vary over time, 
such as its status (e.g. strict, defeasible, defeater), its validity (e.g. repealed, annulled, suspended), and 
its jurisdiction (e.g. only in the EU, only in the US). In addition, a rule has temporal aspects such as 
internal constituency of the action, the time of assertion of the rule, the efficacy, enforcement, and so on. 

Formal Ontology Reference: LegalRuleML is independent from any legal ontology and logic framework. 
However, it includes a mechanism, based on IRIs, for pointing to reusable classes of a specified external 
ontology or framework. 

LegalRuleML is based on RuleML: LegalRuleML reuses and extends the concepts and syntax of 
RuleML wherever possible, and it also adds novel annotations. RuleML includes Reaction RuleML. 

Mapping: LegalRuleML is mappable to RDF triples for Linked Data reuse. 

2.4 Criteria of Good Language Design 

The syntax design should follow from semantic intuitions from the subject matter domain  - labeling 
entities, properties, and relations as well as some of the type constraints amongst them that guide 
how the labels are combined and used.  

Criteria of Good Language Design are: 

• Minimality, which requires that the language provides only a small set of needed language constructs, 
i.e., the same meaning cannot be expressed by different language constructs.  

• Referential transparency, which means that the same language construct always expresses the same 
semantics regardless of the context in which it is used. 

• Orthogonality, which means that language constructs are independent of each other, thus permitting 
their systematic combination. 
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LegalRuleML follows pattern-based design, where design patterns are a distillation of common wisdom in 
organizing the structural parts, the grammar and the constraints of a language. Some of them are listed in 
[11] and as XML Patterns1. Inside of LegalRuleML we introduce five design patterns. 

 

LegalRuleML was designed based on the above principles. In particular, its vocabulary is inspired by 
terms from the legal domain, which then facilitates their use by users familiar with that domain. Also, the 
LegalRuleML meta-model captures the common meaning of such terms as understood in the legal field. 
In what follows we illustrate the connections among the various concepts and their representation in the 
language. 

 

 

1 http://www.xmlpatterns.com/ 

http://www.xmlpatterns.com/
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3 Vocabulary 

3.1 Scope of the vocabulary (non-normative) 

This chapter defines the terminology for the internal documentation of LegalRuleML XML-schema and 
connected modules as well as general concepts used in the narrative about LegalRuleML. Those terms 
that are embedded in the XML-schema appear under Node Elements, while those used as well in the 
narrative are indicated with +.  Terminology that is being defined appears on the left, while terminology 
that has been defined elsewhere appears with an initial capital letter. 

These definitions are duplicated in the Relax NG and XSD schemas and the RDFS metamodel. In the 
case of discrepancy, the definition in the Vocabulary section takes precedence. 

The vocabulary is non-normative per-se, but it is determined by the normative part of the schemas. 

3.2 General Concepts (non-normative) 

Actor: an Agent or a Figure. 

Deontic Specification: An indication of what states are legal or illegal. Deontic Specifications include 
Obligation, Permission, Prohibition, SuborderList, etc., or a Boolean combination of Deontic 
Specifications other than SuborderLists (at any depth). 

Internal Identifier: a local unique identifier of a node in a LegalRuleML document. 

Isomorphism: a relationship between a set of Legal Rules with a set of Legal Sources such that the origin 
of the Legal Rules is tied to the Legal Sources. 

Legal Norm: a binding directive from a Legal Authority to addressees (i.e. Bearers or Auxiliary Parties). 

Legal Rule: a formal representation of a Legal Norm. 

LegalRuleML Specification: an XML schema, Relax NG schema, metamodel, glossary, license, or any 
other technical normative specification that is an approved outcome of this OASIS TC. 

LegalRuleML Schema: one of the following  

• Basic Dialect XSD schema: xsd-schema/basic/lrml-basic.xsd). 

• Compact LegalRuleML XSD schema: xsd-schema/compact/lrml-compact.xsd) OR 

• Compact LegalRuleML RelaxNG schema relaxng/lrml-compact.rnc 

• Normalized LegalRuleML XSD xsd-schema/normal/lrml-normal.xsd 

• Normalized LegalRuleML RelaxNG schema relaxng/lrml-normal.rnc 

 

Legal Statement: a LegalRuleML expression of a Legal Rule or a part of a Legal Rule. 

Legal Status: a standing that can apply to a Legal Norm at a Time, e.g.,  "is applicable", "is in force", "has 
efficacy", "is valid".Status Development: a kind of event (e.g., start, end) that changes the Legal Status of 
a Legal Norm, e.g. making a Legal Norm come into force. 

LegalRuleML Profile of Consumer RuleML 1.02: it means the derivative work of Consumer RuleML 1.02 
for the purpose of LegalRuleML Specification. 

3.3 Namespaces 

The LegalRuleML namespace is http://docs.oasis-open.org/legalruleml/ns/v1.0/. 

The LegalRuleML metamodel namespace is http://docs.oasis-
open.org/legalruleml/ns/mm/v1.0/ 

Other namespaces used in LegalRuleML documents are: 

• The RuleML namespace http://ruleml.org/spec 

xsd-schema/basic/lrml-basic.xsd
xsd-schema/compact/lrml-compact.xsd
relaxng/lrml-compact.rnc
xsd-schema/normal/lrml-normal.xsd
relaxng/lrml-normal.rnc
http://docs.oasis-open.org/legalruleml/ns/v1.0/
http://docs.oasis-open.org/legalruleml/ns/mm/v1.0/
http://docs.oasis-open.org/legalruleml/ns/mm/v1.0/
http://ruleml.org/spec
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• The XML namespace http://www.w3.org/XML/1998/namespace 

• The XML Schema namespaces http://www.w3.org/2001/XMLSchema-instance and 
http://www.w3.org/2001/XMLSchema 

3.4 Node Elements 

Agent(s)+: an entity that acts or has the capability to act. 

Alternatives +: a mutually exclusive collection where every member is a LegalRuleML rendering of one or 
more Legal Norms. 

Association(s): a partial description of the extension of some relations where each non-target entity is 
paired with every target entity. 

Authority(ies) +: a person or organization with the power to create, endorse, or enforce Legal Norms. 

AuxiliaryParty +: a role in a Deontic Specification to which the Deontic Specification is related. 

Bearer +: a role in a Deontic Specification to which the Deontic Specification is primarily directed. 

Comment: a comment, which has no semantic effect. 

Compliance +:  an indication that an Obligation has been fulfilled or a Prohibition has not been violated. 

ConstitutiveStatement +: a Legal Statement that defines concepts and does not prescribe behaviors. 

Context +: an application of Associations to their target entities within a Scope. 

DefeasibleStrength +:  an indication that, in the absence of information to the contrary and where the 
antecedent of a Legal Rule holds, the conclusion of the Legal Rule holds. 

Defeater +: an indication that, in the absence of information to the contrary and where the antecedent of a 
Legal Rule holds, the opposite of the conclusion of the Legal Rule does not hold.  

FactualStatement +: an expression of fact. 

Figure(s) +: an instantiation of a function by an Actor. 

Jurisdiction(s) +: a geographic area or subject-matter over which an Authority applies its legal power. 

LegalRuleML: a formal representation of one or more LegalSources using the LegalRuleML 
Specifications. 

LegalSource(s) +:  a source of one or more Legal Norms formulated in any format and endorsed by an 
Authority. 

Obligation +: a Deontic Specification for a state, an act, or a course of action to which a Bearer is legally 
bound, and which, if it is not achieved or performed, results in a Violation. 

Override +: an indication that a Legal Rule takes precedence over another Legal Rule. The ordered pair 
of Legal Rules is an instance in a defeasible priority relation. 

OverrideStatement +: a Legal Statement of an Override. 

Paraphrase +: a natural language rendering of a Legal Rule or fragment of it that is an alternative to its 
Legal Source(s). 

PenaltyStatement +: a Legal Statement of a sanction (e.g. a punishment or a correction). 

Permission (see also Right) +: a Deontic Specification for a state, an act, or a course of action where the 
Bearer has no Obligation or Prohibition to the contrary. A weak Permission is the absence of the 
Obligation or Prohibition to the contrary; a strong Permission is an exception or derogation of the 
Obligation or Prohibition to the contrary. 

Prefix +: a prefix declaration in a LegalRuleML document. 

PrescriptiveStatement +: a Legal Statement which prescribes behaviors, e.g. with Permissions, 
Obligations, or Prohibitions on states, actions, or courses of actions. 

Prohibition +: a Deontic Specification for a state, an act, or a course of action to which a Bearer is legally 
bound, and which, if it is achieved or performed, results in a Violation. 

http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
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Reference(s) +: a pair consisting of an internal ID and an enriched non-IRI identifier, where the non-IRI is 
paired with some additional information that is sufficient to disambiguate the non-IRI to a unique 
LegalSource. 

Reparation +: an indication that a PenaltyStatement is linked with a PrescriptiveStatement. It indicates 
that a sanction may apply where the PrescriptiveStatement entails a Deontic Specification and when 
there is a Violation of the Deontic Specification. 

ReparationStatement: a Legal Statement of a Reparation. 

Right (see also Permission) +: a Deontic Specification that gives a Permission to a party (the Bearer) and 
implies there are Obligations or Prohibitions on other parties (the AuxiliaryParty) such that the Bearer can 
(eventually) exercise the Right. 

Role(s) +: a function of or part played by an Actor relative to a LegalRuleML expression. 

Source(s)+:  a source of information formulated in any format. 

Statements +:  a collection where every member is a Legal Statement or a FactualStatement. 

Strength: the quality of a Legal Rule to resist or not to resist a rebuttal. 

StrictStrength +:  an indication that where the antecedent of a Legal Rule is indisputable, the conclusion 
of the Legal Rule is indisputable. 

SuborderList: A Deontic Specification consisting of a sequence of Deontic Specifications other than 
SuborderLists (at any depth).  When a SuborderList holds, a Deontic Specification in the SuborderList 
holds if all Deontic Specifications that precede it in the SuborderList have been violated. 

TemporalCharacteristic(s) +:  a pair of Time with a qualification, which consists of a Legal Status and a 
Status Development, such that the qualification holds at the Time. 

Time(s) +: a collection where each member is a Time. 

Violation +: an indication that an Obligation or Prohibition has been violated. 

3.5 RuleML Node Elements 

ruleml:Rule: 

 a) a RuleML Rule encoding a Constitutive Statement. 

 b) a RuleML Rule encoding a Prescriptive Statement. 

ruleml:Time +: a neutral temporal entity. 

For nodes with the plural, i.e., <Node>(s) the node <Nodes> is defined as a collection where every 

member is a <Node>. The plural form is not a General Concept. 

3.6 Edge elements 

applies<Node> : a <Node> applied by the Context or Association (e.g. appliesAuthority – an 

Authority applied by the Context or Association). 

 appliesAlternatives: a collection of Alternatives applied by the Context. 

 appliesAssociations: a collection of Associations applied by the Context. 

 appliesAssociation: an Association applied by the Context.  

 appliesAuthority: an Authority applied by the Context or Association.  

 appliesJurisdiction: a Jurisdiction applied by the Context or Association.  

 appliesStrength: a Strength applied by the Context or Association. 

 appliesTemporalCharacteristics: a collection of TemporalCharacteristics applied 

by the Context or Association. 

 appliesTemporalCharacteristic:  a TemporalCharacteristic applied by the 

Context or Association. 
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 appliesModality: the deontic mode that applies to a Deontic Specification in a Context or 

 Association. 

 appliesPenalty: the PenaltyStatement that is linked to a LegalRule in a Reparation. 

 appliesSource: a LegalSource or Reference applied by the Context or Association. 

atTime: the Time of the qualification of a TemporalCharacteristic. 

filledBy: an Actor that fills the Role. 

forExpression: a LegalRuleML expression for which the Role is responsible (e.g., the expression was 

created or endorsed by the role). 

forStatus: the Legal Status of the qualification in a TemporalCharacteristic. 

fromLegalSources: the LegalSources from which the Alternatives are derived. 

has<Node>: a <Node> in the collection (e.g. hasAgent – an Agent in the collection). 

 hasAlternative: an Alternative in the collection. 

 hasAgent: an Agent in the collection. 

 hasAssociation: an Association in the collection. 

 hasAuthority: an Authority in the collection. 

 hasFigure: a Figure in the collection. 

 hasJurisdiction: a Jurisdiction in the collection. 

 hasLegalSource: a LegalSource in the collection. 

 hasReference: a Reference in the collection. 

 hasRole: a Role in the collection. 

 hasStatement: a Legal Statement in the collection. 

 hasTemporalCharacteristic: a TemporalCharacteristic in the collection. 

 hasTime: a Time in the collection. 

has<Node>s: a collection of <node>s (e.g. hasAgents – a collection of Agents). 

 hasAgents: a collection of Agents. 

 hasAlternatives: a collection of Alternatives. 

 hasAssociations: a collection of Associations. 

 hasAuthorities: a collection of Authorities. 

 hasFigures: a collection of Figures. 

 hasJurisdictions: a collection of Jurisdictions. 

 hasLegalSources: a collection of LegalSources. 

 hasReferences: a collection of References. 

 hasRoles: a collection of Roles. 

 hasStatements: a collection of Legal Statements. 

 hasTemporalCharacteristics: a collection of TemporalCharacteristics. 

 hasTimes: a collection of Times. 

hasActor: an Actor that has the responsibility to fulfill the function of a Figure. 

hasContext: a Context described in the LegalRuleML document. 

hasComment: a Comment on the parent Node Element. 

hasFunction:  the function of a Figure. 

hasParaphrase: a Paraphrase of the parent Node Element (e.g. a Legal Rule). 
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hasPrefix: a Prefix declared in the LegalRuleML document. 

hasQualification: a qualification (e.g. an Override) of the Statements. 

hasStatusDevelopment: the Status Development of the qualification in a 

TemporalCharacteristic. 

hasStrength: the Strength of the Legal Rule. 

hasTemplate: the template of a Legal Statement. 

inScope: the Statement or (collection of) Statements that the Context is applied to. 

hasMemberType: the type or class of members of the collection. 

toPrescriptiveStatement: the PrescriptiveStatement that is linked to a PenaltyStatement 

in a Reparation. 

toTarget: the target to which properties are applied by the Association. 

hasType: the type or class of the parent Node Element. 

3.7 Attributes on LegalRuleML elements, unqualified 

@hasCreationDate: the creation date of the Context or LegalRuleML document. 

@iri: an IRI providing details regarding the parent Node Element. 

@key: a Node Element label. 

@keyref: a Node Element reference. 

@memberType: the type or class of members of the collection. 

@over: the Legal Rule with higher priority. 

@pre: the prefix in a Prefix declaration, following CURIE conventions. 

@refersTo: the internal ID of the Reference. 

@refID: the external ID of the Reference. 

@refIDSystemName: the name of the ID system of the Reference (or of References contained by the 

References collection). 

@refIDSystemSource: the IRI source of the ID system of the Reference (or of References contained 

by the References collection). 

@refType: the conceptual type of the Reference (or of references contained by the References 

collection). 

@sameAs: an IRI that denotes the same thing as the parent Node Element. 

@strength: the (defeasible) Strength of the Legal Rule. 

@type: the type or class of the parent Node Element. 

@under: the Legal Rule with lower priority. 

3.8 Non-skippable Edges 

In the LegalRuleML normalized serialization, the children of Node elements can only be edge elements. 
An edge element MAY be empty (called a leaf element) or it MAY contain one Node element. Together, 
these requirements give rise to a "striped" syntax.  
 
In the LegalRuleML compact serialization, the only edge elements in the LegalRuleML namespace that 
are allowed are leaf edge elements. To obtain the compact serialization from a normalized serialization of 
a LegalRuleML document, first delete the tags for any LegalRuleML edge elements that have children.  
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Further, in the LegalRuleML compact serialization, the elements in the RuleML namespace MUST also 
be "compactified". To accomplish this, delete the tags of the following skippable edge elements in the 
RuleML namespace:  
ruleml:arg  
ruleml:op  
ruleml:torso  
ruleml:left  
ruleml:right  
ruleml:formula  
ruleml:declare  
ruleml:weak  
ruleml:strong 

3.9 LegalRuleML Metamodel 

The LegalRuleML metamodel captures the common meaning of domain terms as understood in the legal 
field, formalizes the connections among the various concepts and their representation in the language, and 
provides an RDF-based abstract syntax. RDFS (see Annex C) is used to define the LegalRuleML 
metamodel, and graphs of the RDFS schemas accompany the following discussions about the domain 
concepts. http://wiki.ruleml.org/index.php/Metamodel 

The LegalRuleML metamodel uses placeholder IRIs to stand in for components of the RuleML 
metamodel [RuleMLMetamodel], which is under development at the time of publication of this document. 

http://wiki.ruleml.org/index.php/Metamodel
http://wiki.ruleml.org/index.php?title=Metamodel&oldid=16718
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4 LegalRuleML Functional Requirements (non-
normative) 

4.1 Functionalities 

Specifically, LegalRuleML facilitates the following functionalities.  

• R1) Supports modeling different types of rules. There are constitutive rules, which define concepts or 
institutional actions that are recognized as such by virtue of the defining rules (e.g. the legal definition 
of “transfer property ownership”) and there are prescriptive rules, which regulated actions or the 
outcome of actions by making them obligatory, permitted, or prohibited. 

• R2) Represents normative effects. There are many normative effects that follow from applying rules, 
such as obligations, permissions, prohibitions, and more articulated effects. Rules are also required to 
regulate methods for detecting violations of the law and to determine the normative effects triggered 
by norm violations, such as reparative obligations, which are meant to repair or compensate 
violations. These constructions can give rise to very complex rule dependencies, because the 
violation of a single rule can activate other (reparative) rules, which in turn, in case of their violation, 
refer to other rules, and so forth. 

• R3) Implements defeasibility [17, 33, 37]. In the law, where the antecedent of a rule is satisfied by the 
facts of a case (or via other rules), the conclusion of the rule presumably, but not necessarily, holds. 
The defeasibility of legal rules consists of the means to identify exceptions and conflicts along with 
mechanisms to resolve conflicts. 

• R4) Implements isomorphism [7]. To ease validation and maintenance, there should be a one-to-one 
correspondence between collections of rules in the formal model and the units of (controlled) natural 
language text that express the rules in the original legal sources, such as sections of legislation.  

• R5) Represents alternatives. Often legal documents are left ambiguous on purpose to capture open 
ended aspects of the domain they are intended to regulate. At the same time legal documents are 
meant to be interpreted by end users. This means that there are cases where multiple (and 
incompatible) interpretations of the same textual source are possible. LegalRuleML offers 
mechanisms to specify such interpretations and to select one of them based on the relevant context. 

• R6) Manages rule reification [17]. Rules are objects with properties, such as Jurisdiction, Authority, 
Temporal attributes [26, 32]. These elements are necessary to enable effective legal reasoning.  

4.2 Modeling Legal Norms 

According to scholars of legal theory [36], norms can be represented by rules with the form 

if A_1, ... , A_n then C 

where A_1,...,A_n are the pre-conditions of the norm, C is the effect of the norm, and if ... then 

... is a normative conditional, which are generally defeasible and do not correspond to the if-then 

material implication of propositional logic. Norms are meant to provide general principles, but at the same 
time they can express exceptions to the principle. It is well understood in Legal Theory [18, 37] that, 
typically, there are different types of “normative conditionals”, but in general normative conditionals are 
defeasible. Defeasibility is the property that a conclusion is open in principle to revision in case more 
evidence to the contrary is provided. Defeasible reasoning is in contrast to monotonic reasoning of 
propositional logic, where no revision is possible. In addition, defeasible reasoning allows reasoning in the 
face of contradictions, which gives rise to ex false quodlibet in propositional logic. One application of 
defeasible reasoning is the ability to model exceptions in a simple and natural way.  
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4.2.1 Defeasibility 

The first use of defeasible rules is to capture conflicting rules/norms without making the resulting set of 
rules inconsistent. Given that -expression means the negation of expression, the following two rules 

conclude with the negation of each other 

body_1 => head 

body_2 => -head 

Without defeasibile rules, rules with conclusions that are negations of each other could give rise, should 
body 1 and body 2 both hold, to a contradiction, i.e., head and -head, and consequently ex falso 

quodlibet. Instead, defeasible reasoning is sceptical; that is, in case of a conflict such as the above, it 
refrains from taking any of the two conclusions, unless there are mechanisms to solve the conflict (see 
the discussion below on the superiority relation). We can apply this to model exceptions. Exceptions limit 
the applicability of basic norms/rules, for example:  

body => head 

body, exception_condition => -head 

In this case, the second rule is more specific than the first, and thus it forms an exception to the first, i.e., 
a case where the rule has extra conditions that encode the exception, blocking the conclusion of the first 
rule. Often, exceptions in defeasible reasoning can be simply encoded as 

body => head 

exception_condition => -head 

In the definition of rules as normative conditionals made up of preconditions and effect, we can see a rule 
as a binary relationship between the set of pre-conditions (or body or antecedent) of the rule, and the 
(legal) effect (head or conclusion) of the rule. Formally, a rule can be defined by the following signature: 

body x head 

We can then investigate the nature of such a relationship. Given two sets, we have the following seven 
possible relationships describing the “strength” of the connections between the body and the head of a 
rule:  

body always head 

body sometimes head 

body not complement head 

body no relationship head 

body always complement head 

body sometimes complement head 

body not head 

In defeasible logic we can represent the relationships using the following formalisation of rules (rule 
types): 

body -> head 

body => head 

body ~> head 

body -> -head 

body => -head 

body ~> -head 

The seventh case is when there are no rules between the body and the head. The following table 
summarizes the relationships, the notation used for them, and the strength of the relationship.2 

body always head body -> head  Strict rule 

body sometimes head body => head Defeasible rule 

body not complement head  body ~> head Defeater 

 

 
2  The syntax presented here is based on Defeasible Logic, see [3, 30]. 
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body no relationship head    

body always complement head body -> -head Strict rule 

body sometimes complement head body => -head Defeasible rule 

body not head body ~> -head  Defeater 

The meaning of the different types of rules is as follows:  

For a strict rule body -> head the interpretation is that every time the body holds then the head holds.  

For a defeasible rule body => head the reading is when the body holds, then, typically, the head holds. 

Alternatively, we can say that the head holds when the body does unless there are reasons to assert 
that the head does not hold. This captures that it is possible to have exceptions to the rule/norm, and it 
is possible to have prescriptions for the opposite conclusion. 

For a defeaters body ~> head the intuition is as follows: defeaters are rules that cannot establish that the 

head holds. Instead they can be used to specify that the opposite conclusion does not hold. In 
argumentation two types of defeaters are recognized: defeaters used when an argument attacks the 
preconditions of another argument (or rule); other defeaters used when there is no relationship between 
the premises of an argument (preconditions of a rule or body) and the conclusion of the argument 
(effect of the rule or head). 

It is possible to have conflicting rules, i.e., rules with opposite or contradictory heads, for example 

body1 => head 

body2 => -head 

 

Systems for defeasible reasoning include mechanisms to solve such conflicts. Different methods to solve 
conflicts have been proposed: specificity, salience, and preference relation. According to specificity, in case 
of a conflict between two rules, the most specific rule prevails over the less specific one, where a rule is 
more specific if its body subsumes the body of the other rule. For salience, each rule has an attached 
salience or weight, where in case of a conflict between two rules, the one with the greatest salience or 
weight prevails over the other. Finally, a preference relation (also known as superiority relation) defines a 
binary relation over rules, where an element of the relation states the relative strength between two rules. 
Thus, in case of a conflict between two rules, if the preference relation is defined order such rules, the 
strongest of the two rules wins over the other. 

Various researchers have taken different views on such methods. Specificity corresponds to the well know 
legal principle of lex specialis. Prakken and Sartor [34] argue that specificity is not always appropriate for 
legal reasoning and that there are other well understood legal principles such as lex superior and lex 
posterior apply instead. Prakken and Sartor [34] cite cases in which the lex specialis principle might not be 
the one used to solve the conflict, for example, a more specific article from a local council regulation might 
not override a less specific constitutional norm. Prakken and Sartor [34] propose a dynamic preference 
relation to handle conflicting rules. The preference relation is dynamic in the sense that it is possible to 
argue about which instances of the relation hold and under which circumstances. Antoniou [2] proposes 
that instances of the superiority relation appear in the head of rules, namely: 

body => superiority 

where superiority is a statement with the form 

r1 > r2 

where r1 and r2 are rule identifiers. 

Gordon et al. [19] propose Carneades as a rule-based argumentation system suitable for legal reasoning, 
where they use weights attached to the arguments (rules) to solve conflicts and to define proof standards. 
Governatori [21] shows how to use the weights to generate an equivalent preference relation, and, 
consequently, how to capture the proposed proof standards. In addition, Governatori [21] shows that there 
are situations where a preference relation cannot be captured by using weights on the rules. 

To handle defeasibility, LegalRuleML has to capture the superiority relation and the strength of rules. For 
the superiority relation, LegalRuleML offers the element <lrml:Override>, which defines a relationship 

of superiority where cs2 overrides cs1, where cs2 and cs1 are Legal Statement (see the glossary 

definition) identifiers. These elements are included in <lrml:hasTemplate> element in the Normal form 
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(all the Normal form examples are collected in the Annex F) and in the <lrml:OverrideStatement> 

element in the Compact form.  Example 1 (compact form)3: 

<lrml:OverrideStatement> 

<lrml:Override over="#cs2" under="#cs1"/> 

</lrml:OverrideStatement> 

For the representation of the strength of rules, LegalRuleML offers two options. The first is to include it in 
a <lrml:Context> block, where a <lrml:Context> specifies a context in which the rule is applied. 

Example 2 (compact form)4: 

 

<lrml:Prefix pre="defvo" refID="http://example.org/defeasible/vocab#"/>  

 

<lrml:Context key="ruleInfo2"> 

<lrml:appliesStrength iri="defvo:defeasibleType2"/> 

<lrml:inScopekey ref="#cs1"/> 

</lrml:Context> 

The second (and optional) way to express the qualification of the rule is directly inside of the rule with an 
<lrml:hasStrength> block. The difference is that <lrml:Context> localizes the strength of a rule, 

while the <lrml:hasStrength> block in effect relates the strength to the rule in all contexts. 

Example 3 (compact form)5: 

 

<ruleml:Rule key=":ruletemplate3" keyref=":ruletemplate2"> 

 <lrml:hasStrength> 

 <lrml:Defeater key="str4"/> 

 </lrml:hasStrength> 

</ruleml:Rule> 

 

 

 

Fig. 1. Partial Metamodel for Defeasible Concepts. LegalRuleML classes are shown with blue fill, 

 

 
3 examples/compactified/ex8-defeasible-compact.lrml 

4 examples/compactified/ex8-defeasible-compact.lrml 

5 examples/compactified/ex8-defeasible-compact.lrml 

examples/compactified/ex8-defeasible-compact.lrml
examples/compactified/ex8-defeasible-compact.lrml
examples/compactified/ex8-defeasible-compact.lrml
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LegalRuleML properties with pink fill, RuleML classes with orange fill. 

 

4.2.2 Constitutive and Prescriptive Norms 

As we have discussed, a Legal Rule can be seen as a binary relationship between its antecedent (a set 
of formulas, encoding the pre-conditions of a norm, represented in LegalRuleML by a formula, where 
multiple pre-conditions are joined by some logical connective) and its conclusion (the effect of the norm, 
represented by a formula). It is possible to have different types of relations. In the previous section, we 
examined one such aspect: the strength of the link between the antecedent and the conclusion. Similarly, 
we can explore a second aspect, namely what type of effect follows from the pre-condition of a norm. In 
Legal Theory norms are classified mostly in two main categories: constitutive norms and prescriptive 
norms, which will be then represented as constitutive rules (also known as counts-as rules) and 
prescriptive rules.6  

The function of constitutive norms is to define and create so called institutional facts [39], where an 
institutional fact is how a particular concept is understood in a specific institution. Thus, constitutive rules 
provide definitions of the terms and concepts used in a jurisdiction. On the other hand, prescriptive rules 
dictate the obligations, prohibitions, permissions, etc. of a legal system, along with the conditions under 
which the obligations, prohibitions, permissions, etc. hold. LegalRuleML uses deontic operators to capture 
such notions (see Section 4.2.3). Deontic operators are meant to qualify formulas. A Deontic operator 
takes as its argument a formula and returns a formula. For example, given the (atomic) formula 
PayInvoice(guido), meaning ‘Guido pays the invoice’, and the deontic operator [OBL] (for 

obligation), the application of the deontic operator to the formula generates the new formula 
[OBL]PayInvoice(guido), meaning that “it is obligatory that Guido pays the invoice”.  

The following is the LegalRuleML format for prescriptive rules. Notice, that in LegalRuleML Legal rules 
are captured by the broader class of Statements. 

Example 4 (compact form)7: 

 

<lrml:Statements> 

 <lrml:PrescriptiveStatement key="ps1"> 

  <ruleml:Rule key="ex:key1"> 

   <lrml:hasStrength> 

                <lrml:StrictStrength key="str3" 

iri="http://www.w3.org/2001/XMLSchema#strict1"/> 

   </lrml:hasStrength> 

   <ruleml:if> 

    <ruleml:Atom key=":atom1"> 

    </ruleml:Atom> 

  set of deontic formulas and formulas 

   </ruleml:if> 

   <ruleml:then> 

    <lrml:SuborderList> 

    list of deontic formulas 

    </lrml:SuborderList> 

  </ruleml:then> 

 </ruleml:Rule> 

 </lrml:PrescriptiveStatement> 

</lrml:Statements> 

 

 

 
6  Gordon et al. [18] identify more types of norms/rules. However, most of them can be reduced to the two 
types described here insofar as the distinction is not on the structure of the rules but depends on the meaning of the 
content (specific effect) of the rules, while keeping the same logical format. 
7 examples/compactified/ex8-defeasible-compact.lrml 

examples/compactified/ex8-defeasible-compact.lrml
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The difference between constitutive rules and prescriptive rules is in the content of the head, where the 
head of a prescriptive rule is list of deontic operators, i.e., [D1]formula1,...,[Dn]formulan which is 

called a suborder list (see Section 4.2.3.2 below), and represented in LegalRuleML by the 
<lrml:SuborderList> block. Prescriptive and constitutive rules can have deontic formulas as their 

preconditions (body). The conclusion (head) of a constitutive rule cannot be a deontic formula.  

Example 5 (compact form)8: 

 

<lrml:Statements> 

 <lrml:ConstitutiveStatement key="ps1"> 

   <ruleml:Rule key="ruleml:key1"> 

    <lrml:hasStrength> 

     <lrml:DefeasibleStrength key="str1" 

iri="http://www.w3.org/2001/XMLSchema#defeasible1"/> 

    </lrml:hasStrength> 

    <ruleml:if> 

     <ruleml:Atom key=":atom1"> 

    </ruleml:Atom> 

  set of deontic formulas and formulas 

    </ruleml:if> 

    <ruleml:then> 

     <ruleml:Atom key=":atom1"> 

     </ruleml:Atom> 

  set of deontic formulas and formulas 

    </ruleml:then> 

   </ruleml:Rule> 

 </lrml:ConstitutiveStatement> 

</lrml:Statements> 

 

Fig. 2. Partial Metamodel for Statement Subclasses. 

The partial meta-model for Statement Subclasses is depicted in Figure 2. 

4.2.3 Deontic 

One of the functions of norms is to regulate the behavior of their subjects by imposing constraints on what 
the subjects can or cannot do, what situations are deemed legal, and which ones are considered to be 
illegal. There is an important difference between the constraints imposed by norms and other types of 
constraints. Typically, a constraint means that the situation described by the constraint cannot occur. For 

 

 

8 examples/compactified/ex8-defeasible-compact.lrml 

examples/compactified/ex8-defeasible-compact.lrml
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example, the constraint A means that if -A (the negation of A, that is, the opposite of A) occurs, then we 

have a contradiction, or in other terms, we have an impossible situation. Norms, on the other hand, can be 
violated. Namely, given a norm that imposes the constraint A, yet we have a situation where -A, we do not 

have a contradiction, but rather a Violation (see also the glossary), or in other terms we have a situation 
that is classified as "illegal". From a logical point of view, we cannot represent the constraint imposed by a 
norm simply by A, since the conjunction of A and -A is a contradiction. Thus we need a mechanism to 

identify the constraints imposed by norms. This mechanism is provided by modal (deontic) operators. 

4.2.3.1 Modal and Deontic Operators 

Modal logic is an extension of classical logic with modal operators. A modal operator applies to a proposition 
to create a new proposition. The meaning of a modal operator is to "qualify" the truth of the proposition that 
the operator applies to. The basic modal operators are those of necessity and possibility. Accordingly, given 

a proposition p expressing, for example that "the snow is white" and the necessity modal operator [NEC], 

[NEC]p is the proposition expressing that "necessarily the snow is white". Typically, the necessity and 

possibility operators are the dual of each other, namely: 

[NEC]p equiv -[POS]-p 
[POS]p equiv -[NEC]-p 

The modal operators have received different interpretations: for example, necessity can be understood as 
logical necessity, physical necessity, epistemic necessity (knowledge), doxastic necessity (belief), temporal 
necessity (e.g., always in the future), deontic necessity (obligatory), and many more. 

In the context of normative reasoning and representation of norms the focus is on the concepts of deontic 
necessity and deontic possibility. These two correspond to the notions of Obligation (see also the glossary) 
and Permission (see also the glossary). In addition, we consider the notion of Prohibition (see also the 
glossary), which corresponds to the operator of deontic impossibility. For something to be "deontically 
necessary" means that it holds in all situations deemed legal; similarly, something is "deontically possible" 
if there is at least one legal state where it holds. Finally, "deontically impossible" indicates that something 
does not hold in any legal state. 

We will use [OBL] for the modal/deontic operator of Obligation, [PER] for Permission, and [FOR] for 

Prohibition (or Forbidden). 

Standard deontic logic assumes the following relationships between the operators: 

[OBL]p equiv -[PER]-p 

If p is obligatory, then its opposite, -p, is not permitted. 

[FOR]p equiv [OBL]-p 

If p is forbidden, then its opposite is Obligatory. Alternatively, a Prohibition can be understood as 

Obligation of the negation. 

Accordingly, the following is an example of mathematical statement of a Prescriptive Rule (see also the 
glossary): 

p_1_, ..., p_n_, [DEON_1_]p_n+1_, ..., [DEON_m_]p_n+m_ =>[DEON] q  

The antecedent, p_1_, ..., p_n_, [DEON_1_]p_n+1_, ..., [DEON_m_]p_n+m_, conditions the 

applicability of the norm in the consequent [DEON] q; that is, when the antecedent conditions are met, 

then the consequent is the deontic effect of them. Thus, given the antecedent, the rule implies [DEON] 
q. 

The operators of Obligation, Prohibition and Permission are typically considered the basic ones, but 
further refinements are possible, for example, two types of permissions have been discussed in the 
literature on deontic logic: weak permission (or negative permission) and strong permission (or positive 
permission). Weak permission corresponds to the idea that some A is permitted if -A is not provable as 

mandatory. In other words, something is allowed by a code only when it is not prohibited by that code 
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[41]. The concept of strong permission is more complicated, as it amounts to the idea that some A is 

permitted by a code if and only if such a code explicitly states that A is permitted, typically as an exception 

to the prohibition of A or the obligation of its contrary, i.e., -A. It follows that a strong permission is not 

derived from the absence of a prohibition, but is explicitly formulated in a permissive (prescriptive) norm 
[1]. For example, an explicit permissive norm is a sign "U-turn permitted" at a traffic light, which derogates 
the (general) prohibition on U-turns at traffic lights. 

Refinements of the concept of obligation have been proposed as well. For example it possible to 
distinguish between achievement and maintenance obligations, where an achievement obligation is an 
obligation that is fulfilled if what the obligation prescribes holds at least once in the period when the 
obligation holds, while a maintenance obligation must be obeyed for all the instants when it holds (see 
[19] for a classification of obligations). 

LegalRuleML is neutral about the different subclasses of the deontic operators; to this end, LegalRuleML 
is equipped with two mechanisms to point to the semantics of various Deontic Specifications (see also the 
glossary) in a document. The first mechanism is provided by the iri attribute of a Deontic Specification, 

for example. 

Example 6 (compact form): 

 

<lrml:Obligation  
    key="oblig1" 
    iri="ex:achievementObligation"> 
    ... 
</lrml:Obligation> 

The second mechanism is to use an Association to link a Deontic Specification to its meaning using the 
<lrml:applyModality> element, namely: 

Example 7 (compact form)9: 

 

<lrml:Association> 
    <lrml:appliesModality  
       iri="ex:maintenanaceObligation"/> 
    <lrml:toTarget keyref="#obl101"/> 
</lrml:Association> 

Furthermore, Obligations, Prohibitions and Permissions in LegalRuleML are directed operators[28], thus 
they have parties (e.g. Bearer - see also the glossary), specifying, for example, who is the subject of an 
Obligation or who is the beneficiary of a Permission. 

Example 8 (compact form)10: 

 

<lrml:Obligation iri="ex:obl1”> 
  <ruleml:slot> 
    <lrml:Bearer iri="ex:oblBearer"/> 
    <ruleml:Ind>Y</ruleml:Ind> 
  </ruleml:slot> 
  <ruleml:Atom key="ex:atom2"> 
    <ruleml:Rel iri="ex:rel2"/> 

 

 

9 examples/compactified/ex3-deontic-compact.lrml 

10 examples/compactified/ex3-deontic-compact.lrml 

examples/compactified/ex3-deontic-compact.lrml
examples/compactified/ex3-deontic-compact.lrml
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    <ruleml:Ind>X</ruleml:Ind> 
  </ruleml:Atom> 
</lrml:Obligation> 

4.2.3.2 Violation, Suborder, Penalty and Reparation 

Obligations can be violated; according to some legal scholars, the possibility of being violated can be used 
to define an obligation. A violation means that the content of the obligation has not been met. It is important 
to notice that a violation does not result in an inconsistency. A violation is, basically, a situation where we 
have 

([OBL]p) and -p: 

One of the characteristics of norms is that having violated them, a penalty can be introduced to compensate 
for the violation, where a penalty is understood to also be a deontic formula. To model this feature of norms 
and legal reasoning, Governatori and Rotolo [25] introduced what is called here a suborder list, and 
Governatori [22] showed how to combine them with defeasible reasoning for the modeling of (business) 
contracts. As we have seen above, a suborder list (SuborderList in the glossary) is a list of deontic formulas, 
i.e., formulas of the form [D]A, where [D] is one of [OBL] (Obligation), [FOR] (Prohibition, or forbidden), 

[PER] (Permission) and [RIGHT] (Right). To illustrate the meaning of suborder lists, consider the following 

example: 

[OBL]A, [OBL]B, [FOR]C, [PER]D 

The expression means that A is obligatory, but if it is violated, i.e., where we have its opposite -A, then the 

obligation comes into force to compensate for the violation of [OBL]A with [OBL]B. If the Obligation with 

respect to B is violated, then we have [FOR]C, the Prohibition of C. At this stage, if we have a Violation of 

such a Prohibition, i.e., we have C, then the Permission of D kicks in. Obligations and Prohibitions should 

not be preceded by Permissions and Rights in a suborder list, for the semantics of Suborder lists is such 
that an element holds in the list only if all the elements that precede it in the list have been violated. It is not 
possible to have a Violation of a Permission, so it cannot serve a purpose in the Suborder list. Accordingly, 
an element following a Permission in a suborder list would never hold. For a full discussion on the issue of 
permissions and suborder lists, see [24]. 

Governatori and Rotolo [25], Governatori [22] also discuss mechanisms to combine the suborder lists 
from different rules. For example, given the rules 

body => [OBL]A 
-A => [OBL]B 

Here the body of the second rule is the negation of the content of the obligation in the head of the first 
rule. It is possible to merge the two rules above in the following rule 

body => [OBL]A, [OBL]B 

stating that one compensates for the violation of the obligation of A with the obligation of B. This suggests 

that suborder lists provide a simple and convenient mechanism to model penalties.  

It is not uncommon for a legal text (e.g., a contract) to include sections about penalties, where one 
Penalty (see also the glossary) is provided as compensation for many norms. To model this and to 
maintain the isomorphism between a source and its formalization, LegalRuleML includes a 
<lrml:Penalty> element, the scope of which is to represent a penalty as a suborder list (including the 

trivial non-empty list of a single element). 

Example 9 (compact form)11: 

 

 

11 examples/compactified/ex3-deontic-compact.lrml 
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 <lrml:Statements> 

  <lrml:PenaltyStatement key="pen1"> 

   <lrml:SuborderList> list of deontic formulas 
   </lrml:SuborderList> 

  </lrml:PenaltyStatement> 

 </lrml:Statements> 

Notice that the <lrml:SuborderList> node might be skipped in case of a trivial non empty list of a 

single element. 

LegalRuleML not only models penalties, but aims to connect the penalty with the correspondent 
Reparation (see also the glossary). 

Example 10 (compact form)12: 

 

 <lrml:Statements> 

  <lrml:ReparationStatement> 

   <lrml:Reparation key="rep1"> 

    <lrml:appliesPenalty keyref="#pen1"/> 

    <lrml:toPrescriptiveStatement keyref="#ps1"/> 

   </lrml:Reparation> 

  </lrml:ReparationStatement> 

 </lrml:Statements> 

With the temporal model of LegalRuleML (see Section 4.3.5), we can model a unique deontic rule (e.g., a 
prohibition) and several penalties that are updated over time according to the modifications of the law. 
Dynamically, the legal reasoner can point out the correct penalty according to the time of the crime (e.g., 
statutory damage 500$ in 2000, 750$ in 2006, 1000$ in 2010). 

 

 

12 examples/compactified/ex3-deontic-compact.lrml 
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Fig. 3. Partial Metamodel for Deontic Concepts. 

The partial meta-model for Deontic Concepts is depicted in Figure 3. 

4.2.4 Alternatives 

Judges interpret norms in order to apply them to concrete cases [40]. However, there may be a variety of 
interpretations of the law, some of which conflict and diverge from each other [14, 27, 35].  In addition, 
interpretations may vary for different reasons such as geographical jurisdiction (e.g., national and regional 
levels) or legal jurisdiction (e.g., civil or criminal court). The practice of law over time has developed its own 
catalogue of hermeneutical principles, a range of techniques to interpret the law, such as catalogued and 
discussed in [38]. In addition, in Linguistics, issues about interpretation have long been of central concern 
(see among others [13, 29]), where the need for interpretation arises given that the meanings (broadly 
construed) of “linguistic signs”, (e.g., words, sentences, and discourses), can vary depending on 
participants, context, purpose, and other parameters. Interpretation is, then, giving the meaning of the 
linguistic signs for a given set of parameters.  

LegalRuleML endeavours not to account for how different interpretations arise, but to provide a 
mechanism to record and represent them as Alternatives (indicated with A’s) containing rules (indicated 
with Rs). We have four different templates: 
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With the element <lrml:Alternatives>, we can express all these interpretation templates. The 

following LegalRuleML fragments illustrate how to represent the four cases above (the first case shows 
the normalized serialization, while the rest show the compact serialization). 

Example 11 (compact form)13: 
 

  <lrml:Alternatives key="alt1"> 

    <lrml:fromLegalSources keyref="#t1"/> 

    <lrml:hasAlternative keyref="#rule1"/> 

    <lrml:hasAlternative keyref="#rule2"/> 

  </lrml:Alternatives> 

* CURIE annotation http://www.w3.org/TR/2009/CR-curie-20090116/ 

 

Example 12 (compact form)14: 

 

 <lrml:Associations key="s1"> 

  <lrml:Association> 

   <lrml:appliesSource keyref="#ref1"/> 

   <lrml:appliesSource keyref="#ref2"/> 

   <lrml:toTarget keyref="#rule1"/> 

  </lrml:Association> 

 </lrml:Associations> 

 <lrml:Associations key="s2"> 

 

 

13 examples/compactified/ex9-alternatives-compact.lrml 

14 examples/compactified/ex11-maternity_alternatives-compact.lrml 
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  <lrml:Association> 

   <lrml:appliesSource keyref="#ref3"/> 

   <lrml:appliesSource keyref="#ref2"/> 

   <lrml:toTarget keyref="#rule2"/> 

  </lrml:Association> 

 </lrml:Associations> 

 

<lrml:Alternatives key="alt1"> 

  <lrml:hasAlternative keyref="#s1"/> 

  <lrml:hasAlternative keyref="#s2"/> 

 </lrml:Alternatives> 

 

Example 13 (compact form)15: 

 

 <lrml:Alternatives key="alt3"> 

  <lrml:fromLegalSources keyref="#ref1"/> 

  <lrml:hasAlternative keyref="#ss1"/> 

  <lrml:hasAlternative keyref="#ss2"/> 

 </lrml:Alternatives> 

 

<lrml:Statements key="ss1"> 

 <lrml:ConstitutiveStatement keyref="#ps1"/> 

 <lrml:ConstitutiveStatement keyref="#ps2"/> 

</lrml:Statements> 

 

<lrml:Statements key="ss2"> 

 <lrml:ConstitutiveStatement keyref="#ps3"/> 

</lrml:Statements> 

 

 

Example 14 (compact form)16: 

 

 <lrml:Associations key="s1"> 

  <lrml:Association> 

   <lrml:appliesSource keyref="#ref1"/> 

   <lrml:appliesSource keyref="#ref2"/> 

   <lrml:toTarget keyref="#rule1"/> 

   <lrml:toTarget keyref="#rule2"/> 

  </lrml:Association> 

 </lrml:Associations> 

 <lrml:Associations key="s2"> 

  <lrml:Association> 

   <lrml:appliesSource keyref="#ref1"/> 

   <lrml:appliesSource keyref="#ref2"/> 

   <lrml:toTarget keyref="#rule2"/> 

   <lrml:toTarget keyref="#rule3"/> 

  </lrml:Association> 

 </lrml:Associations> 

 

 <lrml:Alternatives key="alt4"> 

  <lrml:hasAlternative keyref="#s1"/> 

  <lrml:hasAlternative keyref="#s2"/> 

 </lrml:Alternatives> 

 

 

15 examples/compactified/ex9-alternatives-compact.lrml 

16 examples/compactified/ex11-maternity_alternatives-compact.lrml 

examples/compactified/ex9-alternatives-compact.lrml
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The LegalRuleML mechanism for alternatives can be used to model the (different, disputed) 
interpretations of a piece of legislation by the parties involved in the dispute; a comprehensive illustration 
of this is provided in [5]. 

 

Fig. 4. Partial Metamodel for Alternatives Concepts. 

The partial meta-model for Alternatives Concepts is depicted in Figure 4. 

4.3 Metadata of the LegalRuleML Specifications 

4.3.1 Sources and Isomorphism 

For legal rule modeling, it is important for several reasons to maintain the connection between the formal 
norms and the legally binding textual statements that express the norms.  Legal knowledge engineers and 
end users should know and be able to track the textual source of the formal representation. Furthermore, 
because the legal text is the only legally binding element, the connection between text and the rule(s) (or 
fragment of rule) guarantees the provenance, authoritativeness, and authenticity of the rules modelled by 
the legal knowledge engineer. In addition, legal experts (judges, lawyers, legal operators) request a 
mechanism to connect text and rules for legibility and validation of the rules.  Finally, because the legal 
sources of rules change over time, the formal rules need to be updated according to the textual changes; 
as there is usually no automatic mechanism to correlate and track modifications to rules, the connection 
between text and rules helps to do so.  For these reasons LegalRuleML includes a mechanism for managing 
this connection, which is called "isomorphism" in the AI & Law community. 

The mechanism must support a fine granularity (rules, fragments of rules, atoms, fragments of atoms 
connected with provisions, fragments of provisions, letters, numbers, paragraphs, sentences, and word) as 
well as represent temporal modifications. 

LegalRuleML dedicates two elements (<lrml:References>, <lrml:LegalSources>) to annotate the 

original legal sources and to connect them to rules, so permitting an N:M relationship (e.g. many rules in 
relation to one textual provision; many textual provisions for one rule). There are blocks for sources and 
blocks that associate sources with rules, assuming references to rules such as rule1. 

<lrml:References> is the element dedicated to record non-IRI based identifier sources, and the 

attribute refIDSystemName is able to annotate the naming convention used. In the following example, the 
identifier /au/2012-05/30/C628:2012/eng@/main#sec2.2 represents the section 2.2 of the 

Australian code C628 using the naming convention “AkomaNtoso2.0-2011-10” and an example.  

Example 15 (compact form)17: 

 

 

 

17 examples/compactified/ex2-references-compact.lrml 

examples/compactified/ex2-references-compact.lrml
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    <lrml:LegalReferences xmlns:appex="http://docs.oasis-

open.org/legalruleml/examples/compactified/" 

refType="http://example.legalruleml.org/lrml#LegalSource"> 

        <lrml:LegalReference refersTo="ref1" refID="/au/2012-05-

30/C628:2012/eng@/main#sec2.2" refIDSystemName="AkomaNtoso3.0-2016-03"/> 

        <lrml:LegalReference refersTo="ref6" refID="ECLI:EU:C:2015:650" 

refIDSystemName="European Case Law Identifier" 

refIDSystemSource="OJ:C:2011:127:0001:0007:EN:PDF"/> 

    </lrml:LegalReferences> 

<lrml:LegalSources> is the element dedicated to record the IRI-based identifier sources. The following 

example defines the source of the U.S. Code, section 504, paragraph 1, title 17 published in the Cornell 
University portal https://www.law.cornell.edu/ 

Example 16 (compact form)18: 

 

<lrml:LegalSources> 

<lrml:LegalSource key="ref2"       

sameAs="http://www.law.cornell.edu/uscode/text/17/504#psection-1"/> 

</lrml:LegalSources> 

 

In addition to these two blocks, there is another element <lrml:Sources> that can be used to connect 

a source of legal information to other external, non-legal sources, which are important for modeling laws 
in LegalRuleML. Usually this element is used to document the IRI to the external LegalRuleML rules 
modelled in another knowledge base (e.g., another XML file).   

<lrml:Sources> is the element dedicated to record the IRI based identifier sources that are not legal 

text but that are important for the LegalRuleML modeling. The following example illustrates the definition 
of an external source. 

Example 17 (compact form)19: 

 

  <lrml:Sources> 

    <lrml:Source key="ex-rule_1b" sameAs="http://example.com/ex2.1.1-

references-b#rule_1b"/> 

    <lrml:Source key="oasis-rule_1b" sameAs="http://docs.oasis-

open.org/legalruleml/examples/approved/ex2.1.1-references-b#rule_1b"/> 

  </lrml:Sources> 

 

The list of the resources connected with the legal rules that are modeled in a LegalRuleML document are 
defined once in the first part of the XML file. This minimizes redundant definitions of the resources and 
avoids errors. 

As we see later, using the attribute value specified in @key, rules (or fragments of a rule) can be 

connected to References or Legal Sources. 

The element <lrml:Association> links Legal Sources and References with rules (or a fragment of a 

rule), thus implementing the N:M relationship. For one source (ref1) to many rules (rule1 and 

rule2), we have. 

Example 18 (compact form): 

 

<lrml:Association> 

 

 

18 examples/compactified/ex2-references-compact.lrml 

19 examples/compactified/ex2-references-compact.lrml 

https://www.law.cornell.edu/
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   <lrml:appliesSource keyref="#ref1"/> 

 <lrml:toTarget keyref="#rule1"/> 

 <lrml:toTarget keyref="#rule2"/> 

</lrml:Association> 

 

For one rule with multiple sources, we have the following, where rule1 is connected to ref1 (above) 

and to ref2 (below). 

Example 19 (compact form): 

 

  <lrml:Association> 

   <lrml:appliesSource keyref="#ref1"/> 

   <lrml:appliesSource keyref="#ref2"/> 

   <lrml:toTarget keyref="#rule1"/> 

  </lrml:Association>  

Combining <lrml:References>/<lrml:LegalSources>/<lrml:Sources> and 

<lrml:Association>, we can implement the principle of isomorphism. 

 

Fig. 5. Metamodel for LegalSource Concepts. 

The partial meta-model for LegalSource Concepts is depicted in Figure 5. 
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4.3.2 Agent, Figure, Role 

An Agent is an entity that acts or has the capability to act. An Agent could be a physical person, a 
database, or a bot; for this reason we have the sub-element <lrml:hasType> that expresses the 

category of agent. 

Example 20 (compact form)20: 

 

<lrml:Agents> 

 <lrml:Agent key="mp" sameAs="http:example.org/agents#MonicaPalmirani"> 

  <lrml:hasType iri="http://example.org/types#Person"/> 

 </lrml:Agent> 

 <lrml:Agent key="ta" sameAs="http://example.org/agents#TaraAthan"/> 

</lrml:Agents> 

The Agent usually is the author of the rule model and he/she/it can act in a particular function (e.g., as 
senator). A Figure in LegalRuleML is an instantiation of a function by an Actor, where an Actor could be 
an Agent or a Figure. 

Example 21 (compact form)21: 

 

<lrml:Figures> 

 <lrml:hasMemberType iri="http://example.org/figure-

types#LegislativeFigure"/> 

 <lrml:Figure key="fs"> 

  <lrml:hasFunction iri="http://example.org/functions#Senator"/> 

  <lrml:hasActor keyref="#ta"/> 

 </lrml:Figure> 

</lrml:Figures> 

 

In the end we associate the Actor that fills a Role (using <lrml:filledBy>) for a particular rule. 

Example 22 (compact form)22: 

 

<lrml:Roles> 

<lrml:Role key="role1" iri="http://example.org/roles#author"> 

 <lrml:filledBy keyref="#mp"/> 

  <lrml:filledBy keyref="#ta"/> 

  <lrml:forExpression keyref="#rule1a"/> 

 </lrml:Role> 

 

 <lrml:Role key="role2" iri="http://example.org/roles#author"> 

  <lrml:filledBy keyref="#mp"/> 

  <lrml:forExpression keyref="#atom2a"/> 

  <lrml:forExpression keyref="#atom2b"/> 

 </lrml:Role> 

</lrml:Roles> 

 

Using this mechanism, we can filter all the rules modelled by a particular Actor when he/she/it acts as a 
particular figure; for instance, we can filter for all the rules modelled by President Obama when he is 
acting as chief executive and not as the commander-in-chief of the United States Armed Forces. 

 

 

20 examples/compactified/ex4-meta-compact.lrml 

21 examples/compactified/ex4-meta-compact.lrml 

22 examples/compactified/ex4-meta-compact.lrml 
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Fig. 6. Partial Metamodel for Agent, Figure and Role Metadata Concepts. 

The partial meta-model for Agent, Figure and Role Metadata Concepts is depicted in Figure 6. 

4.3.3 Jurisdiction 

The Jurisdiction element is a geographic area or subject-matter over which an Authority applies its legal 
power. It annotates the legal rules that are applicable to a given area or subject-matter (e.g. the rules 
applicable only in Scotland respect the all UK legal rules).  

Example 23 (compact form)23: 

 

  <lrml:Jurisdictions> 

    <lrml:Jurisdiction key="us" 

sameAs="http://example.org/jurisdiction#unitedStatesOfAmerica"/> 

  </lrml:Jurisdictions> 

 

We can use <lrml:Jurisdiction> also to specify a limited subject-matter, for instance, legal rules 

which are applicable only to the executive departments (e.g., an Executive Order in the USA is addressed 
only to the executive departments or agencies).  

Example 24 (compact form): 

 

  <lrml:Jurisdictions> 

    <lrml:Jurisdiction key="exd" 

sameAs="http://example.org/jurisdiction#executiveDepartments"/> 

  </lrml:Jurisdictions> 

 

 

23 examples/compactified/ex4-meta-compact.lrml 

examples/compactified/ex4-meta-compact.lrml


legalruleml-core-spec-v1.0-os  30 August 2021 
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 37 of 92 

4.3.4 Authority 

Similarly to the jurisdiction, authority qualifies the rules with respect to the authenticity of the provenance 
of the formal model. Authority is a person or organization with the power to create, endorse, or enforce 
Legal Norms. 

Example 25 (compact form)24: 

 

 <lrml:Authorities> 

  <lrml:Authority key="house" 

sameAs="http://example.org/authority#house-of-representatives"/> 

 </lrml:Authorities> 

 

Fig. 7. Metamodel for Authority and Jurisdiction Metadata Concepts. 

 

The partial meta-model for Authority and Jurisdiction Metadata Concepts is depicted in Figure 7. 

4.3.5 Time and Events 

Legal texts are often amended as a society or judicial system evolves. Norms and rules are valid in a 
particular interval of time and with respect to three main legal axes: when they come into force (entry), 
when they effect the intended or desired result (efficacy), and when they apply (applicability). In this 
section, we model the external temporal dimensions of the norms (e.g., when the norm is valid) and not 
the temporal dimensions of the complex events that are the content of the textual provision (e.g., when a 
person is to present a tax application). Therefore, we only model the intervals and temporal parameters 
that define the period of validity of the rules. Moreover, in keeping with the sources, it is important to link 
the temporal parameters to any part of a rule (e.g. atom, rel, ind, if, then, etc.) with a very fine 

granularity.  

The following fragment shows the definition of the instant time using the <ruleml:time> element 

wrapped by the <lrml:Time> element: 

Example 26 (compact form)25: 

 

  <lrml:Times> 

 <ruleml:Time key=":t1"> 

 

 

24 examples/compactified/ex4-meta-compact.lrml 

25 examples/compactified/ex6-temporal-compact.lrml 
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  <ruleml:Data xsi:type="xs:dateTime">1978-01-01T00:00:00</ruleml:Data> 

 </ruleml:Time> 

</lrml:Times> 

Legally-relevant times delimit intervals according to the legal temporal situation that is modelled, e.g. 
enforceability, efficacy, applicability (see Temporal Characteristic in vocabulary). 

Example 27 (compact form)26: 

 

<lrml:TemporalCharacteristics key="tblock1"> 

    <lrml:TemporalCharacteristic key="nev1"> 

      <lrml:forStatus iri="http://docs.oasis-

open.org/legalruleml/ns/v1.0/vocab#Efficacious"/> 

      <lrml:hasStatusDevelopment iri="http://docs.oasis-

open.org/legalruleml/ns/v1.0/vocab#Starts"/> 

      <lrml:atTime keyref="#t1"/> 

    </lrml:TemporalCharacteristic> 

    <lrml:TemporalCharacteristic key="nev2"> 

      <lrml:forStatus iri="http://docs.oasis-

open.org/legalruleml/ns/v1.0/vocab#InForce"/> 

      <lrml:hasStatusDevelopment iri="http://docs.oasis-

open.org/legalruleml/ns/v1.0/vocab#Starts"/> 

      <lrml:atTime keyref="#t2"/> 

    </lrml:TemporalCharacteristic> 

  </lrml:TemporalCharacteristics> 

 

In the following fragment, we associate ref1, which is a legal source, with the appropriate temporal 

parameters defined using the TemporalCharacteristic nev1 and nev2. 

Example 28 (compact form)27: 

 

  <lrml:Associations> 

    <lrml:Association> 

      <lrml:appliesSource keyref="#ref1"/> 

      <lrml:toTarget keyref="#nev1"/> 

      <lrml:toTarget keyref="#nev2"/> 

    </lrml:Association> 

  </lrml:Associations> 

In the <lrml:Context> block (see the next section), the block tblock1 uses the 

<lrml:Associations> mechanism to associate Temporal Characteristics with any part of the rule 

formalization, avoiding redundancy in the definition of a legal situation. 

Example 29 (compact form)28: 

 

  <lrml:Associations key="ascs1"> 

    <lrml:Association> 

      <lrml:appliesTemporalCharacteristics keyref="#tblock1"/> 

      <lrml:toTarget keyref="#rule1"/> 

      <lrml:toTarget keyref="#atom1"/> 

      <lrml:toTarget keyref="#body1"/> 

    </lrml:Association> 

 

 

26 examples/compactified/ex6-temporal-compact.lrml 

27 examples/compactified/ex6-temporal-compact.lrml 

28 examples/compactified/ex7-temporal-data-compact.lrml 
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 </lrml:Associations> 

 

  <lrml:Context key="ruleContext1"> 

    <lrml:appliesAssociations keyref="#ascs1"/> 

    <lrml:inScope keyref="#stmt1"/> 

  </lrml:Context> 

 

 

The (partial) meta-model of the Temporal Metadata Concepts presented in this section is depicted in 
Figure 8. 

 

Fig. 8. Partial Metamodel for Temporal Metadata Concepts. 

 

4.4 Associations and Context 

4.4.1 Associations 

To avoid redundancy, we have the element <lrml:Association>, which can be used to group meta 

information referred to several rules or portions of them. In the following example, we have two associations 
inside of the element <lrml:Associations>. The first <lrml:Association> applies the temporal 

parameters of tblock1 to the prescriptive statements ps1 and ps2. In the second one authority and 

jurisdiction properties are applied to prescriptive statements ps1 and ps3: 
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Example 30 (compact form)29: 

 

<lrml:Associations key="sourceBlock1"> 

<lrml:Association> 

 <lrml:appliesTemporalCharacteristics keyref="#tblock1"/> 

  <lrml:toTarget keyref="#ps1"/> 

  <lrml:toTarget keyref="#ps2"/> 

 </lrml:Association> 

 <lrml:Association> 

  <lrml:appliesAuthority keyref="#congress"/> 

  <lrml:appliesJurisdiction keyref="#us"/> 

  <lrml:toTarget keyref="#ps1"/> 

  <lrml:toTarget keyref="#ps3"/> 

 </lrml:Association> 

</lrml:Associations> 

 
This LegalRuleML language construct introduces information flexibly and without redundancy, 
maintaining an XML representation that is neat, clean, compact, and with fewer opportunities for errors. 
The parameters that we can associate are. 

Example 31 (compact form)30: 

 

<lrml:appliesModality iri="/ontology/deontic/"/> 

 

For expressing modality. 

Example 32 (compact form)31: 

 

<lrml:appliesSource keyref="#sec504-clsc-pnt1"/> 

 

For connecting LegalSources or References. 

Example 33 (compact form)32: 

 

<lrml:appliesTemporalCharacteristics keyref="#tblock1"/> 

 

For connecting temporal parameters. 

Example 34 (compact form)33: 

 

<lrml:appliesStrength iri="/ontology/defeasible"/> 

 

For qualifying the strength of a rule according to the defeasibility categorization. 

Example 35 (compact form)34: 

 

 

29 examples/compactified/ex12-USC_17_504_context-compact.lrml 

30 examples/compactified/ex12-USC_17_504_context-compact.lrml 

31 examples/compactified/ex12-USC_17_504_context-compact.lrml 

32 examples/compactified/ex12-USC_17_504_context-compact.lrml 

33 examples/compactified/ex12-USC_17_504_context-compact.lrml 

34 examples/compactified/ex12-USC_17_504_context-compact.lrml 

examples/compactified/ex12-USC_17_504_context-compact.lrml
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<lrml:appliesAuthority keyref="#congress"/> 

 

For assigning the authority of the editor of the rule. 

Example 36 (compact form)35: 

 

<lrml:appliesJurisdiction keyref="#us"/> 

For assigning the jurisdiction to a rule. 

4.4.2 Context 

A rule may be differently interpreted according to a variety of parameters associated with a particular 
situation. For instance, sometimes an alternative interpretation of a textual source of a rule (and its 
associated formalisation) is associated with a jurisdiction, e.g., regional, national, or international levels, 
meaning that in one jurisdiction, the rule is interpreted one way, while in another jurisdiction, it is 
interpreted in another way. Similarly, temporal parameters (e.g., efficacy, enforceability) can change over 
time due to the normative modifications, and these changes can also affect the strength of the norms. 

To represent such parameters, we introduce the <lrml:Context> element, which permits the 

description of all the characteristics that are linked to a particular rule (e.g., rule1) using the operator 

<lrml:applies*>, substituting the * with different relationships. In addition to the previous relationships, 

we also have the following. 

Example 37 (compact form)36: 

 

 <lrml:Context key="Context1"> 

  … 

  <lrml:appliesAssociations keyref="#assoc1"/> 

  <lrml:appliesAlternatives keyref="#alt2"/> 

  <lrml:inScope keyref="#ps1"/> 

 </lrml:Context> 

 

The mechanism combines the relationships and the target rules, and it acts as a bridge between 
metadata and rules or fragments of them. The following example shows rules rule1 and rule3 

connected with a LegalSource section 504, point 2, under the authority of Congress, valid in the 
jurisdiction of the USA, associated with the block #assoc1 and connected to the alternatives represented 

in #alt2. 

Example 38 (compact form)37: 

 

<lrml:Context key="ruleInfo4" hasCreationDate="#t1"> 

<lrml:appliesSource keyref="#sec504-clsc-pnt2"/> 

<lrml:appliesTemporalCharacteristics keyref="#tblock1"/> 

<lrml:appliesStrength iri="/ontology/defeater"/> 

<lrml:appliesAuthority keyref="#congress"/> 

<lrml:appliesJurisdiction keyref="#us"/> 

<lrml:appliesAssociations keyref="#assoc1"/> 

<lrml:appliesAlternatives keyref="#alt2"/> 

<lrml:inScope keyref="#rule1"/> 

 

 

35 examples/compactified/ex12-USC_17_504_context-compact.lrml 

36 examples/compactified/ex12-USC_17_504_context-compact.lrml 

37 examples/compactified/ex12-USC_17_504_context-compact.lrml 
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<lrml:inScope keyref="#rule4"/> 

</lrml:Context> 

 

Fig. 9. Partial Metamodel for Context Concepts. 

The partial meta-model for Metamodel for Context Concepts is depicted in Figure 9. 
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5 LegalRuleML XML Design Principles (non-
normative) 

5.1 Design Principles 

The concrete XML-based syntax for LegalRuleML was designed based on the principles in Section 2.3, as 
well as certain design principles that are specific to XML-based syntaxes (see Section 5.2) and additional 
design principles (see Sections 5.3-5.9) that are domain-specific. In particular, many of the XML 
conventions developed in RuleML are adopted in LegalRuleML, providing common principles for the 
merged language hierarchy. All statements herein about the RuleML syntax are in reference to the elements 
in the RuleML namespace that are allowed to be embedded within LegalRuleML documents; as such, these 
are restrictions from the more general RuleML syntax as well as extensions of the content models of RuleML 
element in that certain child elements in the LegalRuleML namespace may be allowed within some RuleML 
elements.  

5.2 XML Elements vs. Attributes 

A common design decision for XML-based languages is whether to use an XML element or an attribute to 
represent a particular abstract syntactic feature. General guidelines are:  

– If the information in question could be itself marked up with elements, put it in an element, 
because attributes cannot contain such complex content;  

– If the information is suitable for attribute form (i.e., not complex), but could end up as multiple 
attributes of the same name on the same element, use child elements instead, avoiding list 
datatypes for attributes;  

– If the information is required to be in a standard XML schema attribute type such as xsd:ID, 

xsd:IDREF, xsd:ENTITY, xsd:KEYREF, use an attribute;  

– If the information should not be normalized for white space, use elements (XML processors 
normalize attributes in ways that can change the raw text of the attribute  
value).  

5.3 LegalRuleML Syntactic Requirements 

The following syntactic characteristics were deemed mandatory for the LegalRuleML syntax:  
1. An abstract syntax for LegalRuleML must be described by an RDFS metamodel.  
2. Two equivalent XML-based concrete serializations of the abstract syntax must be specified: the 

normalized serialization and the compact serialization. Each constraint of the specification must 
be in one of the following formats: Relax NG grammar, XSD 1.0 schema, or natural language 
statement.  

3. Parsing from either LegalRuleML concrete serialization to the LegalRuleML abstract syntax in 
RDF/XML format must be specified by a composition of XSLT transformations.  

4. A pair of abstract-syntax preserving XSLT transformations, called the compactifier and the 
normalizer, must convert LegalRuleML documents between compact and normalized 
serializations.  

5. The conformance level of a document must be preserved by the compactification and 
normalization transformations. I.e., an XSD-conformant document must still be XSD-conformant 
after transformation, and similarly for Relax NG-conformance.  

5.4 Syntactic Objectives 

The following syntactic characteristics were deemed desirable for the LegalRuleML syntax, though they 
could not all be simultaneously satisfied. The LegalRuleML syntax was designed to optimize over these 
characteristics to the extent possible:  

1. maximize correspondence to the RDF-based abstract syntax representation in the normalized 
serialization.  

2. minimize verbosity, especially in the compact serialization.  
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3. minimize redundancy of expression, avoiding multiple ways to express the same thing.  
4. minimize the difference between the syntax defined by the Relax NG and XSD schemas.  
5. minimize the additional constraints not expressible in either Relax NG or XSD schemas.  
6. minimize the additional constraints (from #5) not expressible through abstract-syntax preserving 

validating XSLT transformation.  
7. (related to 5 and 6) minimize discrepancies after round-trip transformation between the compact 

and normalized serializations of instances that validate against Relax NG and XSD schemas.  
8. minimize the modifications to imported RuleML schemas. 
9. minimize the set of schema-conformant instances that do not satisfy a round trip law between 

serializations after projection by the abstract-syntax preserving validating transformations.  
10. minimize the modifications that are necessary in the projections (as described in #9) to instances 

that satisfy the round-trip laws. 

5.5 Node and Edge Element Dichotomy 

In order to satisfy objective 5.3.1, LegalRuleML adopted, for its normalized serialization (see Section 
5.7.1 Normalized Serialization), where Node elements alternate with edge elements, a form of striped 
syntax, where Node elements alternate with edge elements, forming a bipartite pattern, similar to the 
striped syntax of RDF/XML. The striped syntax of normalized LegalRuleML is also compatible with the 
normalized striped syntax of RuleML, although it differs in a few particulars.  

The LegalRuleML schemas specify two groups of elements: Node (also called type in RuleML) elements 
and edge (also called role in RuleML) elements, the element name of the former starting with an upper 
case letter, and the latter with a lower case letter. The one exception to this pattern in RuleML is the 
<ruleml:slot> element, which is neither a Node or edge element.  

Node elements correspond to classes of the metamodel while edge elements represent relationships 
between members of these classes. Edge elements correspond, in most cases, to properties in the 
metamodel. In a few cases, edge elements correspond to compositions of such properties.  

In some cases, the metamodel is sufficiently restrictive so that the edge element provides no additional 
information, allowing for a lossless conversion from the normalized serialization to an XML representation 
that is less verbose by simply deleting the start and end edge tags. The LegalRuleML compact 
serialization is defined in this way (see Section 5.7.2 Compact Serialization). 

In the XML document tree of a LegalRuleML document, elements that have no children are called branch 
elements, otherwise they are called leaf elements. Element types may be classified according to whether 
their instances are all leaf elements (Leaf type), all branch elements (Branch type) or either (Leaf/Branch 
type).  

5.5.1 Node Elements 

The naming convention for Node elements is UpperCamelCase local names. 

The qualified name of a Node element corresponds to the type of the syntactic construct defined by the 
Node element, i.e., an rdf:type relationship in the RDF-based abstract-syntax representation 

(http://wiki.ruleml.org/index.php/Metamodel). The IRI of the metamodel class is constructed by 
concatenating the local name of the Node element with the appropriate IRI prefix:  

* http://docs.oasis-open.org/legalruleml/ns/v1.0/metamodel# for Node elements in the 

LegalRuleML namespace  

* http://docs.oasis-open.org/legalruleml/ns/v1.0/rule-metamodel# for Node elements 

in the RuleML namespace  

We use the prefixes lrmlmm and rulemm, resp., to abbreviate the metamodel IRIs. At the time this 

document was published, the RuleML specification did not provide a metamodel, but a RuleML 
metamodel is under development [http://wiki.ruleml.org/index.php/Metamodel].  

http://wiki.ruleml.org/index.php/Metamodel
http://wiki.ruleml.org/index.php/Metamodel
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5.5.1.1 Classification of Node Elements 

Collection Node element: In general, a Collection Node element is a Node element that defines a 
syntactic construct that is a collection. In LegalRuleML’s RDF-based metamodel, these constructs are of 
type rdf:List and have a metamodel type arising from the type of the members of the collection. The 

naming convention of Collection Nodes in LegalRuleML uses the plural of the type of the members of the 
collection. For example, a collection for constructs of type lrmlmm:Authority is specified with an 

<lrml:Authorities> element. The specialized metamodel types of collection Node elements use the 

suffix Collection; e.g. lrmlmm:AuthorityCollection. RuleML has no Collection Nodes.  

Document Node element: In general, a Document Node element is a Node element that can serve as 
the root node of an instance document. In LegalRuleML, the element <lrml:LegalRuleML> is the only 

Document Node element, and it has type lrmlmm:LegalRuleMLDocument.  

Annotation Node element: In general, an Annotation Node element contains mixed content and is 
intended to hold marked-up text. In LegalRuleML, the Annotation Nodes are the Node elements 
<lrml:Comment> and <lrml:Paraphrase>. RuleML has no Annotation Nodes. 

In general, Node elements may have Leaf (see section 5.10.2), Branch (see section 5.10.3), or 
Leaf/Branch (see section 5.10.4) types. In the LegalRuleML namespace, all Nodes types are Leaf/Branch 
type, while in the RuleML namespace, Nodes types are mostly Leaf or Branch types, with a few 
exceptional Leaf/Branch types.  

Commentable Node element: The Node elements (in the LegalRuleML and RuleML namespaces) that 
may contain a comment belong to the class of Commentable Node elements, which is the union of 
LegalRuleML Node elements and RuleML Branch or Leaf/Branch Node elements. 

Expression Node element: LegalRuleML Expression Node elements are Node elements in the 
LegalRuleML and RuleML namespaces that render one or more Legal Norms or a fragment of a Legal 
Norm. This Node class is the union of RuleML Branch or Leaf/Branch Node elements, together with the 
LegalRuleML Override and Reparation Nodes.   Node elements in the LegalRuleML Expression class 
may contain a paraphrase. The types of RuleML Branch or Leaf/Branch Node element have been 
extended in the LegalRuleML syntax so that RuleML elements within a LegalRuleML document may 
optionally have a child element that attaches a paraphrase to it, specified in an <lrml:Paraphrase> 

element (see Section 5.14 Annotations - Comment and Paraphraser).  

Additional Node classes are Associator, Associable, Alternative, Actor, and Collector: 

• Associator Nodes are Node elements that can define associations - these are <lrml:Context> 

and <lrml:Association>. 

• Associable Nodes are Node elements that can participate in associations - these are 
<lrml:Association>, <lrml:Strength>, <lrml:Temporal Characteristic(s)>, 

<lrml:Authority>, <lrml:Jurisdiction>, <lrml:Source>,<lrml:LegalSource>. 

• Alternative Nodes are Node elements that can belong to an Alternatives collection - these are 
<lrml:Statement> or <lrml:Statements>. 

• Actor Nodes are Node elements that can fill a Role - these are <lrml:Agent> and 

<lrml:Figure>. 

• Collector Nodes are Node elements that can contain a collection - these are 
<lrml:LegalRuleML>, the root element, <lrml:(Legal)Sources>, and 

<lrml:Statements>. 

Attributes of Node Elements for most LegalRuleML Node elements (called in the schemas 
commonLRMLNodeInit.attlist) are the following:  

* @key 

* @keyref  

* @type  
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with the exception of <lrml:Reference> and <lrml:LegalReference>, which are not allowed to 

have these attributes. See Sections 5.11 and 5.12 for details of the usage of @key and @keyref 

attributes, and see Section 5.13 for details of the usage of @type. 

Common optional attributes for most RuleML Node elements within LegalRuleML documents are  

* @key  

* @keyref  

* @xml:id  

The @key and @keyref attributes in RuleML elements have a different content model than the 

corresponding attribute in LegalRuleML elements (see Section 5.11). The usage of the @xml:id attribute 

is described in Section 5.15. 

The root element of every LegalRuleML document is a Document Node element (in particular, 
<lrml:LegalRuleML>). This root element may optionally have the following attributes:  

* @xml:base  

* @hasCreationDate  

* @xsi:schemaLocation  

in addition to the common optional Node attributes. The semantics of @xml:base and 

@xsi:schemaLocation are defined by the https://www.w3.org/TR/xmlschema-1/ , respectively. The 

@hasCreationDate attribute has semantics related to Dublin Core’s 

http://dublincore.org/documents/dcmi-terms/#terms-created, except that the Dublin Core property takes a 
literal value, while @hasCreationDate takes a local identifier reference to a <ruleml:Time> entity.  

Specialized attributes may be optional or required for a subset of Node elements, as follows:  

* @pre, on <lrml:Prefix>  

* @refID, on <lrml:Prefix>, <lrml:Reference> or <lrml:LegalReference>  

* @sameAs on <lrml:Source>, <lrml:LegalSource>, <lrml:Agent>, <lrml:Authority>, 
<lrml:Jurisdiction>  

* @iri on Annotation Nodes, Role Nodes, LegalRuleML Deontic Nodes and Deontic Key Nodes (see 

Section 5.15)  

* @refersTo (on <lrml:Reference> and <lrml:LegalReference>)  

* @refType, @refIDSystemName, @refIDSystemSource (on <lrml:Reference>, 

<lrml:References>, <lrml:LegalReference>, <lrml:LegalReferences>)  

* @memberType (on Collection Node elements)  

* @hasCreationDate (on <lrml:LegalRuleML> and <lrml:Context>)  

* @strength (on <ruleml:Rule>) 

* @over, @under (on <lrml:Override>) 

Additionally, @xml:base is allowed on <ruleml:Data> elements with an explicit datatype of 

xsd:anyURI.  

5.5.2 Edge Elements 

The naming convention for Edge elements is lowerCamelCase local names.  

5.5.2.1 Classifications of Edge Elements 

Collection Membership Edge: In the LegalRuleML namespace, collection membership edges are the 
children of Collection Nodes (i.e. elements of type lrmlmm:Collection) that define the membership of 

the collection. The local names of these edges begin with ‘has’, followed by the name of the collection 
member type. For example, the collection membership edge for a <lrml:Authorities> collection is 

https://www.w3.org/TR/xmlschema-1/
http://dublincore.org/documents/dcmi-terms/#terms-created
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<lrml:hasAuthority> - the parent of an <lrml:hasAuthority> element is always 

<lrml:Authorities>, and its child is always <lrml:Authority>. English grammar conventions are 

followed when relating the plural form used in the name of the collection with the singular form used in the 
collection edge. Note that not all edges whose local name begins with ‘has’ are collection edges. In the 
RuleML namespace, an edge is a collection edge if and only if it has an @index attribute. The local 

names of RuleML collection edges are <ruleml:arg>, <ruleml:content> and <ruleml:formula>. 

The first two are always collection edges, while <ruleml:formula> is only a collection edge when its 

parent is <ruleml:And>, <ruleml:Or>, <ruleml:Operation>, or <lrml:SuborderList>.  

Document Edge: In LegalRuleML, document edges are the edges whose parent Node element is the 
Document Node element, the root of the XML document. The local names of these edges begin with 
‘has’, followed by the name of the (unique) child element; e.g. <lrml:hasReferences>  

Annotation Edge: In LegalRuleML, annotation edges contain an Annotation Node element. The local 
names of these edges begin with ‘has’, followed by the name of the (unique) child element; e.g. 

<lrml:hasComment>.  

The types of edge elements may be classified by syntactic type as Leaf (see Section 5.10.2), Branch (see 
Section 5.10.3), or Leaf/Branch (see Section 5.10.4) types. RuleML edge elements have only Branch 
types, while LegalRuleML edge elements have mostly Leaf or Branch type with a few exceptional 
Leaf/Branch types.  

The qualified name of an edge element corresponds, in most cases, to a property of the syntactic 
construct defined by its parent Node element, i.e., the property of a triple in the RDF-based abstract-
syntax representation see Section 3.9). The IRI of the metamodel property is constructed by 
concatenating the local name of the edge element with the appropriate IRI prefix:  

* http://docs.oasis-open.org/legalruleml/ns/v1.0/metamodel# for Node elements in the 

LegalRuleML namespace  

* http://docs.oasis-open.org/legalruleml/ns/v1.0/rule-metamodel# for Node 

elements in the RuleML namespace  

with the exception of collection edges. The order in the collection is specified by the order of the sibling 
collection edges in the LegalRuleML document.(new sentence from Tara also about index attribute 
collection edges for putting the order – new version) 

Edge elements may be classified as skippable or non-skippable, relative to the syntax. In the 
LegalRuleML namespace, it is exactly the Branch-type edge elements that are skippable, while Leaf-type 
and Leaf/Branch-type elements are non-skippable. Branch-type edges are the following:  

* collection edges  

* document edges  

* annotation edges  

* the edges <lrml:hasTemplate>, except within <lrml:FactualStatement>  

The RuleML edge elements that are considered skippable within LegalRuleML documents are the 
following:  

* <ruleml:arg>  

* <ruleml:op>  

* <ruleml:formula>  

* <ruleml:declare>  

* <ruleml:strong>  

* <ruleml:weak>  

* <ruleml:left>  

* <ruleml:right>  

* <ruleml:torso>  
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Attributes of Edge Elements for non-skippable LegalRuleML edge elements (called in the schemas 
commonLRMLEdgeInit.attlist) are defined and contain only the following:  

* @xml:id  

The value of this attribute provides an identifier for the corresponding triple in the RDF-based abstract 
syntax representation. 

Leaf-type edge elements have a required attribute, which points to the object of the relationship they 
define. If the object is required to have a local identifier, then @keyref is the required attribute, otherwise 

it is @iri. Note that the Source, LegalSource, Reference, and LegalReference constructs are provided 

so that external resources can be aliased with a local identifier that may then be used as the value of an 
@keyref attribute.  

5.6 Generic Node elements 

A generic element is a main element whose syntax and/or semantics is underspecified unless an 
attached attribute or header element provides a predefined value or an IRI pointer to a user-defined 
specification  

For example, <ruleml:Operation> represents the application of a generic operator, which may be 

used for modal operators or logical connectives such as exclusive disjunction. Generic elements provide 
extension points for user-defined syntactic and semantic variation. The following table provides a listing of 
Generic Node elements and the attributes or header elements that may be used to specialize them.  

<ruleml:Operation>   @type @style 

<ruleml:Negation>    @type @style 

<ruleml:Rule>        @strength @style @hasStrength 

5.7 Serializations 

Two equivalent normative serializations are defined in the Relax NG and XSD schemas – a normalized 
serialization and a compact serialization.  

5.7.1 Normalized Serialization 

In many cases, edge elements are redundant because they could be reconstructed based on the type or 
position of the parent and child node elements. In the RuleML syntax, such edges are skippable. 
LegalRuleML syntax allows the two extreme cases - either no edge tags are skipped in the document (the 
normalized serialization) or the tags of all skippable edges in the document are omitted (the compact 
serialization). The normalized serialization may be reconstructed from a document in compact serialization 
by applying the normalizer XSLT transformation (xslt/lrml-xml/normalizer/lrml_normalizer.xslt), which 
reconstructs the skipped edge tags.  

5.7.2 Compact Serialization 

The compact serialization of LegalRuleML reduces verbosity without loss of information. 

The compact serialization may be derived from the normalized serialization by removing the start and end 
tags of skippable edge elements.  

The compact serialization may be obtained from a document in normalized serialization by applying the 
compactifier XSLT transformation (xslt/lrml-xml/compactifier/lrml_compactifier.xslt).  

Note that RuleML has a relaxed serialization that allows edges to be optionally skipped and also allows a 
(mostly) arbitrary ordering of child elements. RuleML in the relaxed serialization is not allowed to be 
embedded within LegalRuleML – the embedded RuleML must be in either normalized or compact 
serialization, consistent with the serialization of the parent LegalRuleML.  

xslt/lrml-xml/normalizer/lrml_normalizer.xslt
xslt/lrml-xml/compactifier/lrml_compactifier.xslt
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5.8 Basic Dialect 

In order to provide a simple path for checking the conformance, a basic dialect of the compact 
serialization was introduced. The basic dialect is a proper sublanguage of the compact serialization that 
does not allow 

* the use of the CURIE abbreviation for IRIs 

* the <ruleml:content> edge. 

With these restrictions, it is possible to confirm conformance as a Basic Dialect XML file through only XSD 
validation. 

5.9 General Design Patterns 

5.8.1 LegalRuleML Design Pattern Overview 

Inside of LegalRuleML, we employ four well-known design patterns:  

1. container, which is a structure of elements having independent existence (e.g., 
<lrml:Context> can include several <lrml:Association> sub-elements);  

2. collection, a subpattern of container that is in the form of a list of elements of the same type (e.g., 
<lrml:Roles> that is a sequence of <lrml:Role> elements);  

3. recursive element (e.g., <lrml:Obligation> can have descendants that are other 

<lrml:Obligation> elements);  

4. marker, an element that uses attribute @sameAs for identifying a source, e.g., 
<lrml:LegalSource key="sec504-clsa-pnt1" sameAs="&UScode;#title17-chp5-

sec504-clsa-lst1-pnt1"/>. 

5.9.1 Collection Design Pattern 

LegalRuleML uses a collection design pattern for efficiently organizing, representing and referring to 
metadata, e.g. metamodel class lrmlmm:AuthorityCollection and corresponding Node 

<lrml:Authorities>. The lrmlmm:Collection class in the LegalRuleML metamodel is the 

superclass for the collection syntactic constructs, which is in turn a subclass of rdf:List. The 

lrmlmm:hasMember property is the superproperty for the properties of collections indicated by edges 

such as <hasAuthority>. The name of the collection element indicates the type of its members. 

Properties may be assigned to all members using an attribute on or header child element within the 
Collection element. For example, the member type for a particular collection may be specialized using the 
attribute @memberType or a child element <lrml:hasMemberType>. Metadata collections must occur 

in a prescribed order in a LegalRuleML document (see 5.16). 

Like other Node elements, collections may be labeled with an @key attribute, which is referenced with 

@keyref for distributed definition of collections. The semantics of LegalRuleML collections is that of sets, 

i.e. unordered and without duplication. 

5.9.2 Recursive Element Pattern 

The RuleML syntax uses recursive elements, i.e. elements that may have descendants of the same 
name, to represent the inherently recursive nature of logical connectives and functional expressions. 
LegalRuleML introduces some specialized logical connectives which are similarly recursive, as follows:  

* <lrml:Obligation>  

* <lrml:Permission>  

* <lrml:Prohibition>  

* <lrml:Right>  

In order to reduce redundancy through modularization, some of the collections elements are recursive, as 
follows:  
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* <lrml:Sources>  

* <lrml:LegalSources>  

Similarly, the element that is used to efficiently construct contextual relationships is recursive to facilitate 
modularization:  

* <lrml:Association> 

5.9.3 Marker Interface Pattern 

The marker interface pattern is used in programming to annotate entities. In LegalRuleML, external 
entities are in many cases required to be aliased with a local identifier, which may then be referenced as 
the subject or object of annotations. The syntax that implements the marker interface pattern in 
LegalRuleML consists of the following attributes:  

* @key  

* @keyref  

* @sameAs  

* @refersTo  

* @refID  

5.10 Specialized Design Patterns 

5.10.1 Ordered-Children Design Pattern 

There are three different cases for addressing order, or lack thereof, in child XML elements within RuleML 
and LegalRuleML documents: 

1. The order of children has semantic significance. 
In the normalized serialization, when the order of some children is significant to the semantics of 
the parent Node element, an index attribute is required on the edges so that the order is made 
explicit. In the compact serialization, the edge elements that would have an index attribute are 
skipped, so that the order of occurrence of children in the XML document is significant as it is the 
only indication of the order. Examples of this design pattern include <lrml:SuborderList> and 

the positional (<ruleml:arg>) children of <ruleml:Atom> and <ruleml:Expr>. 

2. The order of children has no semantic significance, but a canonical order of element types is 
prescribed by the schema. 
This case applies for most LegalRuleML elements, e.g. the document root 
<lrml:LegalRuleML> as well as in the normalized and compact serializations of RuleML. 

3. The order of children has no semantic significance, and a canonical order is not prescribed by the 
schema. 
This case applies in the relaxed or mixed serializations of RuleML, and within certain 
LegalRuleML elements, e.g. <lrml:Sources>, which allows nested <lrml:Sources> 

collections as well as collection member <lrml:Source>, and <lrml:Association>. 

5.10.2 Leaf Edges 

LegalRuleML introduces a syntactic pattern that is not present in RuleML – the leaf edge element. The 
purpose of this pattern is decreased verbosity of the XML documents. A Leaf edge element is an edge 
element that is necessarily empty. I.e., its type, as defined in the Relax NG or XSD schemas, does not 
allow content, only attributes. These elements are required to have at least one attribute, typically 
@keyref. 
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5.10.3 Branch Edges 

In the previous section, we defined a Leaf edge element. A Branch edge element is defined similarly; it is 
an edge element that is necessarily non-empty. I.e., its type, as defined in the Relax NG or XSD 
schemas, does not allow the absence of content. 

5.10.4 Leaf/Branch Edges 

A Leaf/Branch edge element is an edge element that is not necessarily empty or non-empty.  I.e., its type, 
as defined in the Relax NG or XSD schemas, has optional content. Like the Leaf edge, this pattern is not 
used in RuleML. 

5.10.5 Slot Design Pattern 

In RuleML, the slot design pattern is used in atomic formulas and functional expressions for labeled 
arguments. The label is called the “slot key” while the argument is the “slot filler”. Multiple occurrences of 
the same slot key within an atom or functional expression allowed. LegalRuleML adopts the slot design 
pattern as implemented in RuleML for expressing properties of deontic formulas. This design pattern 
comes from frame language and serves to store information about a frame as a "property-value" pair (e.g. 
<lrml:Bearer>).  

5.11 CURIES, Relative IRIs and the xsd:ID Datatype 

LegalRuleML employs a variety of syntactic forms for labeling components with identifiers and for 
referring to these or other identifiers. In this section, we discuss the syntactic forms that are based on the 
IRI system, and compare to the corresponding forms employed in RuleML. In RuleML 1.02 elements, 
attribute values that are intended to be IRIs may be expressed without abbreviation or may be 
abbreviated using the CURIE syntax (https://www.w3.org/TR/rdfa-syntax/). LegalRuleML has adopted the 
RuleML 1.02 approach to expressing IRIs, and modifies it on elements in the LegalRuleML namespace 
as follows: 

* CURIE prefixes are defined (only) by <lrml:Prefix> elements 

*@key values on elements in the LegalRuleML namespace are expressed with datatype xsd:ID, the 

same type of values as @xml:id 

* @keyref values are expressed (only) with "same-document" relative IRIs, starting with '#'  

5.12 Distributed Syntax 

The @key and @keyref attributes are used to enable the distributed definition of syntactic constructs in 

both RuleML and LegalRuleML namespaces. The @key attribute supplies a local identifier for the 

syntactic construct. In particular, the value of the @key attribute, of datatype xs:ID, is concatenated with 

the base IRI of the LegalRuleML document (as specified by the xml:base attribute on the root, if 

present, and otherwise determined according to https://www.ietf.org/rfc/rfc3986.txt) to construct the IRI of 
the syntactic construct defined by the parent Node element of the @key attribute.  

The @keyref attribute is used to reference the local identifiers defined by @key attributes. It is a syntactic 

error for a @keyref attribute to have a value that does not correspond to a local identifier in the same 

document.  

When @keyref occurs on an element with no attributes or content, then it is a reference to the syntactic 

construct having that local identifier. When @keyref occurs on a parent element that has attributes 

and/or content, it refers to a new syntactic construct that is based on the referenced construct, modified 
by the attributes and/or content of the parent. Such elements are translated into the abstract syntax using 
the lrmlmm:mergerOf property.  

Taking into account the simultaneous occurrence of @key and @keyref attributes on the same element, 

these references form a directed graph which must be acyclic; it is a syntactic error if this graph is not 
acyclic.  

https://www.w3.org/TR/rdfa-syntax/
https://www.ietf.org/rfc/rfc3986.txt
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5.13 Metamodel Refinement 

The @type attribute is used to refine the semantics of LegalRuleML elements by reference to external 

resources. An @type attribute on any element is translated into the abstract syntax as an RDF triple with 

property rdf:type. From this, it may be inferred that the resource is an rdf:Class, and the syntactic 

construct defined by the element on which it occurred is an instance of that class as well as an instance 
of the class of the LegalRuleML metamodel corresponding to the element’s name. Note that the @type 

attribute has quite different semantics on RuleML elements (see 
http://wiki.ruleml.org/index.php/Glossary_of_Consumer_RuleML_1.02#.40type).  

5.14 Annotations - Comment and Paraphrase 

The Annotation Node elements <lrml:Comment> and <lrml:Paraphrase> may contain arbitrary 

well-formed XML. Both are semantically neutral - their absence, presence or content have no semantic 
effect on their parent element. All Branch Node elements, in the LegalRuleML and RuleML namespaces, 
may optionally have one <lrml:Comment> child (compact serialization) or <lrml:hasComment> child 

(normalized serialization). The <lrml:Paraphrase> element is restricted to the content of LegalRuleML 

Expressions 

5.15 Identifiers - @xml:id and @iri 

The @xml:id attribute is optionally allowed on most non-skippable edge elements in the LegalRuleML 

namespace and all elements in the RuleML namespace. The value of this attribute provides a syntactic 
label that has no semantic effect. Therefore, it is ignored when translating to the abstract syntax. 

A number of elements in the LegalRuleML and RuleML namespaces may contain an @iri attribute, 

whose value may be an IRI (not a relative IRI reference) or a CURIE that expands to an IRI upon 
application of the Prefix mapping. An @iri attribute on a Node element corresponds to an owl:sameAs 

relationship in the abstract syntax.  

5.16 Order of Elements within a LegalRuleML Document 

Most of the top-level elements of LegalRuleML XML serialization fall into four categories follow a precise 
prescriptive order, but the order of elements within a particular category is arbitrary. The following list 
shows this order. The list uses the regular-expression-like syntax convention adopted by Relax NG, 
where an asterisk (*) means  ‘zero or more’ elements; ? means ‘zero or one’ element, ‘,’ means an 
ordered sequence, and ‘&’ means interleaved sequences: 

Comment* 

     & (Prefix*, 

        (LegalReferences 

         | LegalSources 

         | References 

         | Sources 

         | Times 

         | TemporalCharacteristics 

         | Agents 

         | Figures 

         | Roles 

         | Authorities 

         | Jurisdictions)*, 

        Associations*, 

        (Alternatives | Context | Statements)*) 

http://wiki.ruleml.org/index.php/Glossary_of_Consumer_RuleML_1.02#.40type
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The first category of elements is Prefix. 

The second category of elements is metadata elements, (LegalReferences, LegalSources, References, 
Sources, Times, TemporalCharacteristics, Agents, Figures, Roles, Authorities, and Jurisdictions). 

The third category of elements is associations (Associations). 

The fourth category of elements is statement-related (Alternatives, Context, Statements). 

Multiple Comment elements can appear at any location within this sequence. 

5.17 Relax NG Schema Design 

5.17.1 Modules 

The normative definition of the LegalRuleML syntax is provided by modular Relax NG schemas in the 
Relax NG Compact (RNC) syntax.  

The Relax NG schema modules are written in the “chameleon” style (see 
http://books.xmlschemata.org/relaxng/relax-CHP-11-SECT-5.html), without specifying a target 
namespace, to maximize the potential for re-use.  

The LegalRuleML modules follow the monotonic design pattern [4] developed for the RuleML 1.0 Relax 
NG schemas and again employed in RuleML Version 1.01 and 1.02, for best compatibility with the 
included RuleML modules.  

This design pattern is based on restricting the Relax NG syntax in a manner that guarantees monotonicity 
when schema modules are mixed together. That is, a language defined by a subset of the modules of 
another language will be a sublanguage of it.  

5.17.2 Suites and Drivers 

The fine-grained Relax NG modules are assembled into driver schemas through re-usable module 
"suites", as follows. 

5.17.2.1 Core Suites 

LegalRuleML core suites define the essential features of a LegalRuleML schema, aside from RuleML 
modules. There are two module suites considered to be at the "core" level, as follows: 

* "relaxng/suites/core.rnc", the main core suite, 

* "relaxng/suites/core-basic.rnc", the basic core suite.  

The basic core suite is a subset of the module in the main core suite, excluding only the prefix module. 

5.17.2.2 Basic, Compact, and Normal Suites 

There are three module suites that expand on the core suites to include serialization aspects:  

* "relaxng/suites/basic.rnc", the basic suite, expands the basic core suite to include the stripe-skipping 
module. 

* "relaxng/suites/compact.rnc", the compact serialization suite, expands the main core suite to include the 
"stripe_skipping" module. 

* "relaxng/suites/normal.rnc", the normalized serialization suite, expands the main core suite to include 
the "stripe_optional" modules. 

5.17.2.3 LegalRuleML Drivers 

The Relax NG schemas that are used directly for validation or generation of other artifacts are called 
"drivers". There are three groups of drivers, according to their purposes, as follows: 

* Validation drivers are intended to be used directly for validation of LegalRuleML instances. 

http://books.xmlschemata.org/relaxng/relax-CHP-11-SECT-5.html
relaxng/suites/core.rnc
relaxng/suites/core-basic.rnc
relaxng/suites/basic.rnc
relaxng/suites/compact.rnc
relaxng/suites/normal.rnc
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** "relaxng/lrml-basic.rnc" may be used to validate LegalRuleML instances in the basic dialect. This driver 
expands the basic suite with serialization modules and the Relax NG schema module for a basic version 
of the RuleML grammar. 

** "relaxng/lrml-compact.rnc" may be used to validate LegalRuleML instances in the compact serialization 

** "relaxng/lrml-normal.rnc” may be used to validate LegalRuleML instances in the normalized 
serialization 

* XSD-conversion drivers are intended to be used only for generation of the corresponding XSD 
schemas, as described in Section 5.18 XSD Schema Derivation. 

** "generation/lrml4xsd-basic.rnc" is the source used to generate the XSD basic dialect schema, "xsd-
schema/basic/lrml-basic.xsd" as well as its companion schema "xsd-schema/basic/ruleml.xsd" for the 
RuleML namespace 

** "generation/lrml4xsd-compact.rnc" is the source used to generate the XSD compact serialization 
schema, "xsd-schema/compact/lrml-compact.xsd" as well as its companion schema "xsd-
schema/compact/ruleml.xsd" for the RuleML namespace 

** "generation/lrml4xsd-normal.rnc" is the source used to generate the XSD normalized serialization 
schema, lrml-normal.xsd as well as its companion schema "xsd-schema/normal/ruleml.xsd" for the 
RuleML namespace 

** "generation/lrml4xsd-normal.rnc" is the source used to generate the basic dialect simplified schema, 
"simplified/lrml-basic4simp.rnc" 

** "generation/drivers4simp/lrml-compact4simp.rnc" is the source used to generate the compact 
serialization simplified schema, "simplified/lrml-compact4simp.rnc" 

** "generation/drivers4simp/lrml-normal4simp.rnc"is the source used to generate the normalized 
serialization simplified schema, "simplified/lrml-normal4simp.rnc"  

5.18 XSD Schema Derivation 

5.18.1 XSD-Conversion Drivers 

To accomplish the automated conversion from Relax NG to XSD, XSD-conversion drivers were 
constructed (generation/lrml4xsd-basic.rnc, generation/lrml4xsd-compact.rnc, and generation/lrml4xsd-
normal.rnc). These schemas differ from the normative Relax NG schemas only in the following ways:  

* inclusion of a different module (generation/modules/time4xsd_module.rnc) defining the type of the 
content of <ruleml:Data> within <ruleml:Time> to be xsd:dateTime, xsd:date, or 

xsd:duration, omitting the explicit implementation of the @xsi:type attribute because it is inherently 

implemented in XSD schemas.  

* inclusion of a different module (generation/modules/stripe_required_4xsd_module.rnc) defining the 
Leaf/Branch-type edge elements by a lenient pattern that is exactly expressible in XSD  

* inclusion of a modified RuleML schema suitable for conversion to XSD.  

5.18.2 Conversion using Trang  

The Trang software (https://code.google.com/p/jing-trang/downloads/detail?name=trang-20091111.zip) 
was used to convert the Relax NG schemas into XSD, selecting the options to disable abstract elements 
and perform lax processing of elements of type xs:anyType.  

5.18.3 Post-processing with XSLT 

Due to differences in the expressivity of the Relax NG and XSD schema languages, and the particularities 
of the Trang software used to make the conversion, some post-processing of the generated XSD was 
necessary to obtain a valid XSD schema that appropriately approximates the original Relax NG schemas. 
The post-processing was accomplished with XSLT transformations generation/xslt-xsd/basic-rnc2xsd.xslt, 
generation/xslt-xsd/compact-rnc2xsd.xslt and generation/xslt-xsd/normal-rnc2xsd.xslt, as appropriate. 

relaxng/lrml-basic.rnc
relaxng/lrml-compact.rnc
relaxng/lrml-normal.rnc
generation/lrml4xsd-basic.rnc
xsd-schema/basic/lrml-basic.xsd
xsd-schema/basic/lrml-basic.xsd
xsd-schema/basic/ruleml.xsd
generation/lrml4xsd-compact.rnc
xsd-schema/compact/lrml-compact.xsd
xsd-schema/compact/ruleml.xsd
xsd-schema/compact/ruleml.xsd
generation/lrml4xsd-normal.rnc
xsd-schema/normal/ruleml.xsd
generation/lrml4xsd-normal.rnc
generation/drivers4simp/lrml-compact4simp.rnc
generation/drivers4simp/lrml-normal4simp.rnc
generation/lrml4xsd-basic.rnc
generation/lrml4xsd-compact.rnc
generation/lrml4xsd-normal.rnc
generation/lrml4xsd-normal.rnc
generation/modules/time4xsd_module.rnc
generation/modules/stripe_required_4xsd_module.rnc
https://code.google.com/p/jing-trang/downloads/detail?name=trang-20091111.zip
generation/xslt-xsd/basic-rnc2xsd.xslt
generation/xslt-xsd/compact-rnc2xsd.xslt
generation/xslt-xsd/normal-rnc2xsd.xslt
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These XSLT transformations eliminate duplicate include statements and unused definitions, fix the 
definitions of elements with wildcard content to have xs:anyType in the XSD (<ruleml:Data>, 

<lrml:Comment>, <lrml:Paraphrase>), fix the definitions of elements with required @index 

attribute, sets the datatype of the @key and @refersTo attributes to xs:ID.      

5.19 Differences between Relax NG and XSD Schemas 

5.19.1 @xsi:type 

XSD schemas do not have the capability to constrain the appearance of the @xsi:type attribute (as in 

http://www.w3.org/TR/xmlschema-1/#no-xsi), nor may they alter the definition from the definition built into 
XSD schemas (https://www.w3.org/2001/XMLSchema.xsd). As a consequence, to be XSD valid, the 
value of any @xsi:type attribute must correspond to some predefined type (e.g. xsd:string) or a 

user-defined type in the schema, such as the RuleML complex types, e.g. ruleml:integer that permits 

attributes (e.g. @key) on the <ruleml:Data> element while still constraining the content to be of type 

xsd:integer. Further, XSD validation requires that the attributes and content of the element on which 

the @xsi:type attribute appears must conform to that specified type definition.  

Relax NG intentionally treat @xsi:type attributes just like any other attribute, so it must be explicitly 

implemented. It is not possible to implement the @xsi:type attribute in Relax NG in a way that is 

equivalent to its nature in XSD schemas.  

RuleML uses the @xsi:type attribute on the <ruleml:Data> element to manage the datatype. The 

RuleML Relax NG schemas implement a limited form of the @xsi:type attribute on <ruleml:Data>, 

such that only certain types are allowed. In particular, the XSD datatypes are allowed, and user-defined 
datatypes in the RuleML namespace are implemented which allow attributes on the <ruleml:Data> 

element in addition to simple content according to a particular XSD datatype. Otherwise, RuleML does 
not permit the use of @xsi:type on elements in the RuleML namespace, a constraint enforced by the 

normative Relax NG schemas.  

LegalRuleML introduces no additional elements where the use of @xsi:type is appropriate and does 

allow embedded <ruleML:Data> with @xsi:type attributes to be validated by the LegalRuleML Relax 

NG schemas, through importing the corresponding Relax NG schema module. In addition, LegalRuleML 
derives a restricted <ruleml:Data> element for use in temporal characteristics. This use of @xsi:type 

is fully supported in the XSD schemas by default, but the XSD schemas are not able to express the 
constraint against other uses of @xsi:type attributes, and thus are lenient in this regard, relative to the 

Relax NG schemas.  

5.19.2 @xsi:schemaLocation 

Like other attributes in the xsi namespace, XSD schemas may not constrain the occurrence of the 

@xsi:schemaLocation attribute or alter the definition from the definition built into XSD schemas 

https://www.w3.org/2001/XMLSchema.xsd).  

Relax NG treats @xsi:schemaLocation just like any other attribute. RuleML implements the 

@xsi:schemaLocation attribute in the Relax NG schemas, and allows it to appear on any element.  

For LegalRuleML, the occurrence of the @xsi:schemaLocation attribute on a skippable edge causes 

problems in regard to objective #7, due to inability to reconstruct the attribute because it is deleted along 
with the edge tags during compactification. Because there does not appear to be any usecase for the 
@xsi:schemaLocation attribute on any element other than the root element of the LegalRuleML 

document, the @xsi:schemaLocation attribute is implemented in the LegalRuleML Relax NG schemas 

in this restricted fashion, and the RuleML module that implements the @xsi:schemaLocation attribute 

on elements in the RuleML namespace is not included into the LegalRuleML Relax NG drivers. This is a 
sacrifice of objective #4 in favor of objective #7.  

Therefore, the Relax NG schemas are more restrictive than the XSD schemas in this regard.  

http://www.w3.org/TR/xmlschema-1/#no-xsi
https://www.w3.org/2001/XMLSchema.xsd
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5.19.3 @xsi:nil and @xsi:noNamespaceSchemaLocation 

Again, XSD schemas allow the @xsi:nil and @xsi:noNamespaceSchemaLocation attributes to 

occur anywhere. In both LegalRuleML and RuleML, these attributes are not defined in the Relax NG 
schemas, and so are not permitted anywhere in instances that meet the Relax NG conformance criterion. 
Again, the Relax NG schemas are more restrictive than the XSD schemas in this regard.  

5.19.4 @xml:base 

Attributes in the xml namespace do not have built-in definitions in either XSD or Relax NG schemas, and 

so must be explicitly defined if their use is desired.  

In RuleML, the @xml:base attribute may appear only on the <ruleml:Data> element, where it may be 

used in the resolution of a data value that is a relative IRI.  

In LegalRuleML, the @xml:base attribute is additionally permitted on the document root 

<lrml:LegalRuleML> element.  

Relax NG and XSD schemas express this equivalently.  

5.19.5 @xml:id 

In the original RuleML grammar, the @xml:id attribute is allowed on any element, although there is a 

compatibility requirement with an @xsi:type attribute if both appear on a <ruleml:Data> element. 

This causes problems in regard to objective #7 if @xml:id appears on a skippable edge, since the 

information is lost upon compactification.  

In LegalRuleML, @xml:id, or any other attribute, is not allowed on skippable edges in the lrml 

namespace through the LegalRuleML Relax NG schemas.  

In order to satisfy objective #7 as fully as possible, while somewhat sacrificing #8, the @xml:id attribute 

is disallowed on skippable RuleML edges that are embedded in LegalRuleML documents. This is 
accomplished in both Relax NG and XSD schemas through redefining the imported RuleML Relax NG 
modules prior to conversion to XSD.  

A separate issue is in regard to enforcing the uniqueness of @xml:id values within a document. This is 

partially accomplished by the XSD schemas. It is not possible to enforce this at all in the RELAX NG 
schemas due to some interference from wild card patterns, a known issue ( 
https://github.com/relaxng/jing-trang/issues/178). This means the XSD schemas are necessarily more 
restrictive than the RELAX NG schemas in this regard.  

5.19.6 @key/@keyref 

In the original RuleML grammar, the key and keyref attributes are allowed on all elements, including 
skippable edges. Since @key has an IRI (or CURIE) datatype rather than an @xsd:ID datatype, it is not 

incompatible with the @xml:id attribute, and so both are allowed to occur on the same element. Like 

@xml:id discussed above, this causes problems in regard to objective #7. This is only an issue on 

skippable edges in the RuleML namespace. In RuleML, what is "skippable" varies somewhat depending 
on the expressivity. In some languages, <ruleml:if> and <ruleml:then> edges are skippable, and 

in others they are not. In LegalRuleML, <ruleml:if> and <ruleml:then> edges, within either 

<ruleml:Rule> or <ruleml:Implies> elements, are not skippable.  

In order to satisfy objective #7 as fully as possible, while somewhat sacrificing #8, the @key attribute is 

disallowed on skippable RuleML edges that are embedded in LegalRuleML documents. This is 
accomplished in both RELAX NG and XSD schemas through redefining the imported RuleML RELAX NG 
modules prior to conversion to XSD.  

As mentioned in item 5.16.5, the xsd:ID datatype for @key on LegalRuleML elements is enforced by the 

XSD but not the RELAX NG schemas. This imposes a uniqueness requirement on the @key attribute but 

only relative to other attributes with xsd:ID datatype, which does not include @key on RuleML elements, 

but does include @xml:id attributes.  

https://github.com/relaxng/jing-trang/issues/178
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5.19.7 Document Root Element 

The LegalRuleML RELAX NG schemas enforce the requirement that the root element is 
lrml:LegalRuleML. This requirement is not enforced in the XSD schemas, although it could be done with a 
refactoring of the definitions. The challenge is that any element defined at the global level in an XSD 
schema is allowed to be the root element. To restrict the XSD schema so that only LegalRuleML 
elements may be the root, all element definitions would have to be contained within the definition of the 
LegalRuleML element. For enhanced readability of the XSD schemas, this requirement is thus only 
enforced by the RELAX NG schemas.  

5.19.8 Leaf/Branch Type Edges 

Edges of this type, which only occur in the LegalRuleML namespace, may optionally have a child element 
and optionally may have attributes. When there is a child, the attributes on the edge are typically 
meaningless, except for @xml:id which serves simply to label the edge. When the conversion is made to 

the RDF-based representation of the abstract syntax, the @key and @keyref attributes are ignored, 

while an @xml:id attribute is honored. Thus if a document is parsed into the abstract syntax through the 

XSLT to RDF, and then serialized back into the XML syntax, the (meaningless) @key and @keyref 

attributes are lost. The ideal solution would be to disallow the @key and @keyref attributes on this type 

of edge element.  

Unfortunately, it is not possible to construct an XSD 1.0 schema that allows attributes on an element only 
when it does not have a child. However this is possible with RELAX NG, and with Schematron or XSD 
1.1. Also, the removal of such (meaningless) attributes is easily accomplished with XSLT, so a validating 
XSLT transformation can be constructed for this constraint.  

The RELAX NG schema main drivers (relaxng/lrml-compact.rnc and relaxng/lrml-normal.rnc) implement 
the choice (exclusive or) between attributes and content on edges of Leaf/Branch type. This favors 
objective #3, as well as clarity, at the expense of an additional deviation between Relax NG and XSD 
schemas. The Relax NG schema drivers that are used for the conversion to XSD (generation/lrml4xsd-
compact.rnc and generation/lrml4xsd-normal.rnc) implement the attributes and content of Leaf/Branch-
type edges as an “inclusive or”, so that the converter does not need to approximate.  

There is a validator XSLT (xslt/lrml-xml/validator/lrml_validator-leaf-branch.xslt) that strips these attributes 
away from a LegalRuleML document, and also uses the xsl:message capability to inform the user when 

such attributes were present in the input.  

5.20 Prefix Mapping XSLT Transformation 

A number of RuleML and LegalRuleML attributes have values which should be treated as CURIEs. That 
is, they should be evaluated to IRIs according to a prefix mapping, which is defined by the 
<lrml:Prefix> element.  

The XSLT at xslt/lrml-xml/normalizer/lrml_normal_canonicalizer.xslt performs CURIE evaluation, in 
addition to some other modifications, as preparation for applying the parsing XSLT that produces RDF 
(xslt/lrml-rdf/triplifyMerger-ids.xsl)  

This evaluation also applies to the values of @refID within <lrml:Reference> and 

<lrml:LegalReference>, which are not constrained to be IRIs or CURIEs. The choice of xs:string 

for the datatype of the prefix mapping (also called @refID) enables this usage, allowing CURIE-like 

abbreviation to be used within <lrml:Reference> and <lrml:LegalReference>, as illustrated in 

examples/compactified/ex1-curies-compact.lrml for identifiers of Akoma Ntoso.  

5.21 Validating XSLT Transformations 

Conformance to the additional constraint Section 5.18 point 1 may be checked by applying the XSLT 
transformation  xslt/lrml-xml/normalizer/lrml_prefix_evaluation.xslt, and validating the output. This 
transformation is abstract-syntax preserving. Conformance to the additional constraint Section 5.18 point 
2 may be checked through the XLST transformation xslt/lrml-xml/validator/lrml_validator-sequential-
indexing.xslt.  

relaxng/lrml-compact.rnc
relaxng/lrml-normal.rnc
generation/lrml4xsd-compact.rnc
generation/lrml4xsd-compact.rnc
generation/lrml4xsd-normal.rnc
xslt/lrml-xml/validator/lrml_validator-leaf-branch.xslt
xslt/lrml-rdf/triplifyMerger-ids.xsl
examples/compactified/ex1-curies-compact.lrml
xslt/lrml-xml/normalizer/lrml_prefix_evaluation.xslt
xslt/lrml-xml/validator/lrml_validator-sequential-indexing.xslt
xslt/lrml-xml/validator/lrml_validator-sequential-indexing.xslt
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This transformation is abstract-syntax preserving when applied following the xslt/lrml-xml/validator/lrml_ 
validator-sequential-indexing.xslt transformation. 

xslt/lrml-xml/validator/lrml_validator-sequential-indexing.xslt
xslt/lrml-xml/validator/lrml_validator-sequential-indexing.xslt
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6 Comprehensive Examples (non-normative) 

6.1 Section 29 of the Australian “National Consumer Credit Protection 
Act 2009” (Act No. 134 of 2009) 

In this section we illustrate the use of LegalRuleML by modeling a fragment of Section 29 of the 
Australian “National Consumer Credit Protection Act 2009” (Act No. 134 of 2009). The fragment, entitled 
“Prohibition on engaging in credit activities without a licence”, states: 

A person must not engage in a credit activity if the person does not hold a licence authorising the 
person to engage in the credit activity. Civil penalty: 2,000 penalty units.  [. . . ]  Criminal penalty: 
200 penalty units, or 2 years imprisonment, or both. 

In the norm, we see that the penalties are stated as separate statements. Accordingly the best way to 
capture the structure is to use <Penalty> elements for them. There is a general statement of a 

prohibition in '...must not...' along with an implied statement of a permission under certain circumstances.  
A preference order is implied, the general statement over the particular circumstances. We paraphrase 
the statements as: 

 A person is prohibited from engaging in credit activity. 

 A person is permitted to engage in a credit activity if the person holds a licence. 

Based on the observation and paraphrases above we can model the norm with the following rules (and 
auxiliary statements). 

 

ps1: Person(x) => [FORB]EngageCreditActivity(x) 

ps2: HasLicence(x) => [PERM]EngageCreditActivity(x) 

ps2 > ps1 

pen1: [OBL] PayCivilUnits(x,2000) 

pen2:  

 [OBL] PayCriminalUnits(x,200) 

 [OBL] Imprisonment(x,2y), 

 [OBL] PayPenaltyUnitsPlusImprisonment(x,200,2y) 

rep1: [Violation]ps1, pen1 

rep2: [Violation]ps1, pen2 

 

This norm can be represented in LegalRuleML as follows38: 

 

<lrml:LegalSources> 

 <lrml:LegalSource key="ls1"  

 sameAs="http://www.comlaw.gov.au/Details/C2009A00134/Html/Text#param43"/> 

</lrml:LegalSources> 

 

the block above is for declaring the source of the legal provisions and to give it a key to refer to it. An 
Associations block links legal provisions with the rules (and other statements) that model them 

 

<lrml:Context key="psInfo1"> 

 <lrml:appliesAssociations> 

  <lrml:Associations> 

   <lrml:Association> 

    <lrml:appliesSource keyref="#ls1/> 

    <lrml:toTarget keyref="#ps1"/> 

    <lrml:toTarget keyref="#ps2"/> 

 

 
38  examples/compactified/ex5-section29new-compact.lrml 

examples/compactified/ex5-section29new-compact.lrml
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    <lrml:toTarget keyref="#pen1"/> 

    <lrml:toTarget keyref="#pen2"/> 

   </lrml:Association> 

  </lrml:Associations> 

</lrml:appliesAssociations> 

</lrml:Context> 

 

In this case, the norm referred to by the key ls1 is modelled by a set of statements, namely ps1, ps2, 

pen1, pen2, rep1, and rep2. The LegalRuleML statements for representing the statements ps1, pen2, 

rep1, and rep2 are given in the code below. 

 

<lrml:Statements key="textblock1"> 

<lrml:hasQualification> 

  <lrml:Override over="#ps2" under="#ps1"/> 

  </lrml:hasQualification> 

  <lrml:PrescriptiveStatement key="ps1"> 

      <ruleml:Rule key=":rule1" closure="universal"> 

        <lrml:hasStrength> 

          <lrml:DefeasibleStrength key="str1" iri="&defeasible-

ontology;#defeasible1"/> 

        </lrml:hasStrength> 

        <ruleml:if> 

          <ruleml:Atom> 

            <ruleml:Rel iri=":person"/> 

            <ruleml:Var>X</ruleml:Var> 

          </ruleml:Atom> 

        </ruleml:if> 

        <ruleml:then> 

          <lrml:SuborderList> 

            <lrml:Prohibition> 

              <ruleml:Atom> 

                <ruleml:Rel iri=":engageCreditActivity"/> 

                <ruleml:Var>X</ruleml:Var> 

              </ruleml:Atom> 

            </lrml:Prohibition> 

          </lrml:SuborderList> 

        </ruleml:then> 

      </ruleml:Rule> 

    </lrml:PrescriptiveStatement> 

 

    <lrml:PenaltyStatement key="pen2"> 

      <lrml:SuborderList> 

        <lrml:Obligation> 

          <ruleml:Atom> 

            <ruleml:Rel iri=":payPenalUnits"/> 

            <ruleml:Var>X</ruleml:Var> 

            <ruleml:Ind>200</ruleml:Ind> 

          </ruleml:Atom> 

        </lrml:Obligation> 

        <lrml:Obligation> 

          <ruleml:Atom> 

            <ruleml:Rel iri=":imprisonment"/> 

            <ruleml:Var>X</ruleml:Var> 

            <ruleml:Ind>2 years</ruleml:Ind> 

          </ruleml:Atom> 

        </lrml:Obligation> 

        <lrml:Obligation> 

          <ruleml:Atom> 

            <ruleml:Rel iri=":payPenalUnitPlusImprisonment"/> 

            <ruleml:Var>X</ruleml:Var> 

            <ruleml:Ind>200</ruleml:Ind> 

            <ruleml:Ind>2 years</ruleml:Ind> 
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          </ruleml:Atom> 

        </lrml:Obligation> 

      </lrml:SuborderList> 

    </lrml:PenaltyStatement> 

 

    <lrml:ReparationStatement key="rep1"> 

      <lrml:Reparation key="assoc1"> 

        <lrml:appliesPenalty keyref="#pen1"/> 

        <lrml:toPrescriptiveStatement keyref="#ps1"/> 

      </lrml:Reparation> 

    </lrml:ReparationStatement> 

    <lrml:ReparationStatement key="rep2"> 

      <lrml:Reparation keyref="#assoc1"> 

        <lrml:appliesPenalty keyref="#pen2"/> 

        <lrml:toPrescriptiveStatement keyref="#ps1"/> 

      </lrml:Reparation> 

    </lrml:ReparationStatement> 

</lrml:Statements> 

6.2 Case 18/96, Bologna Tribunal, Imola Section 

In this section, we examine a case (taken from the Italian legal system and jurisprudence, originally 
discussed in [23]), where there are multiple (alternative) interpretations of a norm. We show possible 
formalisations of the case and the interpretations using LegalRuleML. The case is based on a dispute of 
Art. 1, Comma 2, Law 379/1990. The article recites: 

The benefit referred to in comma 1 shall be paid in an amount equal 80 per cent of five-twelfths of 
the income earned and reported for tax purposes by the freelancer in the second year preceding 
the year of application. 

The case 18/96, Bologna Tribunal, Imola Section, concerns the interpretation of the conjunction in phrase 
"...the income earned and reported for tax purposes...". 

A fundamental and indisputable fact of the law is its close connection with natural language; in particular, 
the interpretation of a textual provision should be the ordinary meaning conveyed by the text of the 
provision taking into account its context in the act in which it appears and the purpose or object 
underlying the act. For example, in the Italian legal systems, this connection is prescribed by Article 12 of 
the Preleggi, Italian Civil Code, stating: 

In applying a statute, the interpreter should not attribute to it a meaning different from that made 
evident by the proper meaning of the words and by their connection, as well as by the intention of 
the law maker. 

Accordingly, the literal interpretation of the above norm of Art. 1, Comma 2, Law 379/1990 is given by the 
following rule: 

 

(earned ($income, $year-2)  reported ($income, $year-2))=>[OBL 

auxiliary=%freelancer, bearer=%employer] paybenefit (f($income),$year)     (1) 

The arguments of the predicates earned and reported are the income $income earned/reported by the 

freelancer  in the year in the second argument (year-2). Similarly for paybenefit, where the function 

f encodes the computation of the value of the benefit based on the value of the income. 

However, according to the Italian taxation legislation in force at the time of the dispute the income 
received in one year is reported for tax purposes the year after the year in which it has been earned. 
Thus, for example, the income earned in 1995 is reported in 1996. This principle can be formulated as 
follows: 

 

earned($income, $year) -> reported($income, $year + 1)     (2) 

reported($income, $year) -> earned($income, $year - 1)     (3) 
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Consider now the Amount constant obtained by applying Russell’s definite description operator (⍳) on the 
conjunction in the left-hand side of (1). 

 

Amount = ⍳x(earned($income, $year)  reported($income, $year))    (4) 

 

The problem is that the constant Amount does not have a denotation, though the interpretation of 

Amount does; that is, there is no income “entity” that is earned and reported in one and the same year. 

Hence, the left hand side of the rule in (1) never holds, and the rule never fires, against the intentions of 
the legislator. 

Based on the textual provision, two possible interpretations are possible: in the first interpretation the 
temporal expression “in the second year preceding the year of application” refers to the income earned in 
the second year preceding the application; in the second interpretation the temporal expression refers to 
the income reported for tax purposes in the second year preceding the application. For example, for an 
application in year 1998, the first interpretation bases the computation on the income earned in 1996 (and 
reported in 1997), while for the second interpretation, the value of the benefit is computed starting from 
the income reported in 1996 (and earned in 1995). 

Accordingly, the first interpretation, proposed by the freelancer in the case, can be formalized by the rule 

 

earned($income, $year -2) =>[OBL auxiliary=%freelancer, bearer=%employer] 

paybenefit (f($income),$year)     (5) 

 

In contrast, the second interpretation, the interpretation proposed by the employer, can be represented by 
the rule 

The task of the Judge was to decide which of the two interpretations has to be used for the application of 
the norm. In the case the Judge argued in favour of the interpretation advanced by the freelancer.We 
have presented three possible interpretations of the norm: the literal interpretation (example 1), the 
interpretation of the freelancer (example 5), and the interpretation of the employer (example 6). Each 
interpretation is formalized in LegalRuleML fragments. The formalisations of these three statements can 
be represented as prescriptive rules which are encoded by <lrml:PrescriptiveStatement> blocks 

in LegalRuleML, each containing one <ruleml:Rule> Template. Since LegalRuleML is built on top of 

RuleML we can reuse all RuleML facilities, in particular we can use <ruleml:Expr> and 

<ruleml:Fun> to encode the computation of the benefit to be paid to the freelancer. 

 

reported($income, $year -2) )=>[OBL auxiliary=%freelancer, bearer=%employer] 

paybenefit (f($income),$year)     (6) 

 

The following fragment corresponds to the literal interpretation, i.e., (1) 

 

<lrml:PrescriptiveStatement key="literal"> 

    <ruleml:Rule closure="universal" key=":literal-template"> 

        <ruleml:if> 

            <ruleml:And> 

                <ruleml:Atom key=":atom-earned"> 

                    <ruleml:Rel iri=":earned"/> 

             <ruleml:Var>income</ruleml:Var> 

             <ruleml:Expr> 

           <ruleml:Fun iri=":subtract"/> 

       <ruleml:Var>year</ruleml:Var> 

     <ruleml:Data xsi:type="xs:integer">2</ruleml:Data> 
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             </ruleml:Expr> 

         </ruleml:Atom> 

               <ruleml:Atom key=":atom-reported"> 

             <ruleml:Rel iri=":reported"/> 

             <ruleml:Var>income</ruleml:Var> 

                    <ruleml:Expr> 

                 <ruleml:Fun iri=":subtract"/> 

                 <ruleml:Var>year</ruleml:Var> 

                 <ruleml:Data xsi:type="xs:integer">2</ruleml:Data> 

             </ruleml:Expr> 

         </ruleml:Atom> 

          </ruleml:And> 

      </ruleml:if> 

        <ruleml:then> 

             <lrml:Obligation key="obl-paybenefit"> 

                  <ruleml:slot> 

                      <lrml:Bearer/> 

                      <ruleml:Var>Employer</ruleml:Var> 

                  </ruleml:slot> 

                  <ruleml:slot> 

                      <lrml:AuxiliaryParty/> 

                      <ruleml:Var>Freelancer</ruleml:Var> 

                  </ruleml:slot> 

                  <ruleml:Atom> 

                      <ruleml:Rel iri=":paybenefit"/> 

                     <ruleml:Expr> 

                          <ruleml:Fun iri=":80_percent_of_five-twelfths_of"/> 

                          <ruleml:Var>income</ruleml:Var> 

                      </ruleml:Expr> 

                      <ruleml:Var>year</ruleml:Var> 

                  </ruleml:Atom> 

              </lrml:Obligation> 

          </ruleml:then> 

      </ruleml:Rule> 

</lrml:PrescriptiveStatement> 

 

 

The next snippet captures the interpretation of the freelancer, i.e., (5). Notice that inside this statement we 
can use keyrefs to refer to the elements already defined in the block corresponding to the literal 

interpretation. 

 

<lrml:PrescriptiveStatement key="freelancer"> 

      <ruleml:Rule closure="universal" key=":freelancer-template"> 

        <ruleml:if> 

            <ruleml:Atom keyref=":atom-earned"/> 

        </ruleml:if> 

        <ruleml:then> 

          <lrml:Obligation keyref="#obl-paybenefit"/> 

        </ruleml:then> 

      </ruleml:Rule> 

    </lrml:PrescriptiveStatement> 

 

Similar considerations apply to the block modeling (6), the employer’s interpretation, below. 

 

<lrml:PrescriptiveStatement key="employer"> 

      <ruleml:Rule closure="universal" key=":employer-template"> 

        <ruleml:if> 

            <ruleml:Atom keyref=":atom-reported"/> 

        </ruleml:if> 
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        <ruleml:then> 

          <lrml:Obligation keyref="#obl-paybenefit"/> 

        </ruleml:then> 

      </ruleml:Rule> 

    </lrml:PrescriptiveStatement> 

 

The following LegalRuleML Constitutive Statement represents the principle expressed in (2), that earned 
income will be reported in the following year. Because a Constitutive Statement defines concepts and 
does not prescribe behaviours, the consequent of its <ruleml:Rule> Template does not contain deontic 

operators. 

 

    <lrml:ConstitutiveStatement key="tax1"> 

  <ruleml:Rule closure="universal"> 

        <lrml:Paraphrase>If income is earned in some year, then it is reported 

in the following year. 

      </lrml:Paraphrase> 

        <ruleml:if> 

          <ruleml:Atom> 

            <ruleml:Rel iri=":earned"/> 

            <ruleml:Var>income</ruleml:Var> 

            <ruleml:Var>year</ruleml:Var> 

          </ruleml:Atom> 

        </ruleml:if> 

        <ruleml:then> 

          <ruleml:Atom> 

            <ruleml:Rel iri=":reported"/> 

            <ruleml:Var>income</ruleml:Var> 

            <ruleml:Expr key=":year+1"> 

              <ruleml:Fun iri=":add"/> 

              <ruleml:Var>year</ruleml:Var> 

              <ruleml:Data xsi:type="xs:integer">1</ruleml:Data> 

            </ruleml:Expr> 

          </ruleml:Atom> 

        </ruleml:then> 

      </ruleml:Rule> 

    </lrml:ConstitutiveStatement> 

 

 

Similarly, the following fragment represents the principle that reported income was earned in the previous 
year, as expressed in (3). 

 

 
   <lrml:ConstitutiveStatement key="tax2"> 

  <ruleml:Rule closure="universal"> 

        <lrml:Paraphrase>If income is reported in some year, then it was 

earned in the previous year. 

        </lrml:Paraphrase> 

        <ruleml:if> 

          <ruleml:Atom> 

            <ruleml:Rel iri=":reported"/> 

            <ruleml:Var>income</ruleml:Var> 

            <ruleml:Var>year</ruleml:Var> 

          </ruleml:Atom> 

        </ruleml:if> 

        <ruleml:then> 

          <ruleml:Atom> 

            <ruleml:Rel iri=":earned"/> 

            <ruleml:Var>income</ruleml:Var> 

            <ruleml:Expr key=":year-1"> 

              <ruleml:Fun iri=":subtract"/> 
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              <ruleml:Var>year</ruleml:Var> 

              <ruleml:Data xsi:type="xs:integer">1</ruleml:Data> 

            </ruleml:Expr> 

          </ruleml:Atom> 

        </ruleml:then> 

      </ruleml:Rule> 

    </lrml:ConstitutiveStatement> 

 

 

After the renderings of the alternative interpretations and the relationships between the predicates earned 

and reported given by the three constitutive rules, we have to specify that they are mutually exclusive 
formalisations of the same norm. This can be achieved by following Alternatives block that represents a 
mutually-exclusive collection of renderings of the Legal Norms from the Legal Source #ls1. The 

<lrml:LegalSource> with key #ls1, not shown in the text, contains the references to the actual text of 

the norm. 

   <lrml:Alternatives key="maternity-alts"> 

     <lrml:Comment> 

       These alternatives are mutually incompatible formalizations of the same 

legal source: keyref="#ls1". 

     </lrml:Comment> 

     <lrml:hasAlternative keyref="#literal"/> 

    <lrml:hasAlternative keyref="#freelancer"/> 

    <lrml:hasAlternative keyref="#employer"/> 

  </lrml:Alternatives> 

 

A <lrml:Context> block is used to render a collection of Associations, e.g. the Association of a Legal 

Source with a rendering of it as a LegalRuleML Statement, or to constrain other Contexts with respect to 
Alternatives. The following Context establishes a constraint that at most one of the Alternatives from the 
collection #maternity-alts may be selected by each Context. The <Context> metadata, e.g. authorship, 

source, authority, temporal and jurisdictional properties, are specified in an external (to the <Contex<t) 

<Association> block with identifier asn-alts, not shown in the paper, which is referenced using 

@keyref. Similarly other <Context> blocks (also not shown in the paper) are given with the metadata 

about the authors of the various Statements. This allows us to establish the provenance of the 
interpretations. 

 

   <lrml:Context key="maternity-alts-ctxt"> 

     <lrml:appliesAssociations keyref="#asn-alts"/> 

     <lrml:appliesAlternatives keyref="#maternity-alts"/> 

   </lrml:Context> 

 

In the following fragment, a particular Alternative – that proposed by the freelancer – is selected, leading 
to the generation of the corresponding <ruleml:Rule> from the rule Template :freelancer-

template. 

 

   <lrml:Context key="adjudication"> 

     <lrml:appliesAssociation keyref="#asn-adjudication"/> 

     <lrml:inScope keyref="#freelancer"/> 

   </lrml:Context> 

Unlike the first <Context> block, this one contains an <lrml:inScope> element. Such Contexts render 

interpretations that select one or more Statements as their scope of interpretation. When a Context is 
processed for presentation or inference, Legal rules are generated from the <ruleml:Rule>. Templates 

of in-scope Statements, annotated and optionally modified semantically by the Associations of the 
Context. 
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In this example the external Association asn-adjudication links the metadata for the adjudication of the 

case with a particular rendering of the norm, the rendering freelancer, corresponding to the interpretation 
proposed by the freelancer and confirmed by the judge39. 

6.3 US Code section 504 

We use a fragment of the US Code, Title 17, sec. 504, point (c) on copyright infringement to present how 
LegalRuleML can model complex legal norms in elegant way. Section 504 was modified seven times over 
several years. However only three versions are relevant in our scenario: i) the version entered into force at 
Oct. 19, 1976; ii) the version entered into force at Oct. 31, 1988; iii) the version entered into force at Dec. 
9, 1999 that is valid till today. The original version is: 

 
17 USC Sec. 504 
(c) Statutory Damages. 
(1) Except as provided by clause (2) of this subsection, the copyright owner 
may elect, at any time before final judgement is rendered, to recover, instead of 
actual damages and profits, an award of statutory damages for all infringements 
involved in the action, with respect to any one work, for which any one infringer 
is liable individually, or for which any two or more infringers are liable jointly 
and severally, in a sum of not less than $250 or more than $10,000 as the court 
considers just. For the purposes of this subsection, all the parts of a compilation 
or derivative work constitute one work. 
(2) In a case where the copyright owner sustains the burden of proving, and the 
court finds that infringement was committed willfully, the court in its discretion 
may increase the award of statutory damages to a sum of not more than $50,000. 
In a case where the infringer sustains the burden of proving, and the court finds, 
that such infringer was not aware and had no reason to believe that his or her 
acts constituted an infringement of copyright, the court in its discretion may 
reduce the award of statutory damages to a sum of not less than $100. 

 

The Copyright Act establishes conditions to protect various types of intellectual property or work, by 
preventing, in general, the use of such works without a license and by providing exceptions to the general 
provision. The conditions can be paraphrased using the following prescriptive rule: 

 

R1: if a piece of work is covered by copyright, then it is forbidden to use 

it. (1) 

And its companion constitutive rule: 

C1: an infringer is defined as somebody who used a piece of work when it was 

forbidden to use it. (2) 

The provisions in Section 504 can now be paraphrased as follows: 

– R2: if the copyright owner claims statutory damages then the penalty for the infringer is to pay 
statutory damages of between USD250 and USD10,000. 

– R3: if the copyright owner sustains the burden of proof and the infringer infringes copyright 
willfully then the penalty for the infringer is to pay statutory damages of between USD250 and 
USD50,000. 

– R4: if the infringer sustains the burden of proof and the infringer infringes NOT willfully then the 
penalty for the infringer is to pay statutory damages of between USD100 and USD10,000. 

– Defeasability: R4 > R3 > R2 

 

 
39 The full example is available from examples/compactified/ex5-section29new-compact.lrml  

examples/compactified/ex5-section29new-compact.lrml
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Over time the penalties change as follow: 

Statutory Damages 

Interval of efficacy of 
the norm 

min max Willfully  Not Willfully 

[1976-10-19, 1995-
03-01[ 

USDUSD250 USD10,000 USD50,000 USD100 

[1995-03-01, 2001-
02-01[ 

USD500 USD20,000 USD100,000 USD200 

[2001-02-01, today [ USD750 USD30,000 USD150,000 USD200 

 

The prescriptive rule that represents the first case is the following: 

<lrml:PrescriptiveStatement key="ps2-tblock1"> 

  <ruleml:Rule key=":rule2-tblock1" closure="universal"> 

   <ruleml:if> 

    <ruleml:And> 

     <ruleml:Atom keyref=":rule0-ruleml-Atom1"/> 

     <ruleml:Atom key=":rule2-tblock1-ruleml-Atom1"> 

      <ruleml:Rel 

iri="glevo:claimStatutoryDamages"> claims statutory damages 

      </ruleml:Rel> 

      <ruleml:Var 

type="lovo:copyrightOwner">X</ruleml:Var> 

     </ruleml:Atom> 

    </ruleml:And> 

   </ruleml:if> 

   <ruleml:then> 

    <lrml:Reparation keyref="#rep1-tblock1"/> 

   </ruleml:then> 

  </ruleml:Rule> 

 </lrml:PrescriptiveStatement> 

The <lrml:Reparation keyref=”#rep1-tblock1”/> is a reference to the following fragment of 

code that connects penalty1 related to the time tblock1 (keyref="#penalty1-tblock1") with the 

prescriptive rule #ps1 that is violated: 

   <lrml:ReparationStatement> 

    <lrml:Reparation key="rep1-tblock1"> 

     <lrml:appliesPenalty keyref="#penalty1-tblock1"/> 

     <lrml:toPrescriptiveStatement keyref="#ps1"/> 

    </lrml:Reparation> 

   </lrml:ReparationStatement> 

Finally the penalty is modelled in the following way for representing the range of the sanction: 

   <lrml:PenaltyStatement key="penalty1-tblock1"> 

    <lrml:Obligation key="penalty1-tblock1-obl1"> 

     <ruleml:slot> 

      <lrml:Bearer iri="deovo:oblBearer"/> 

      <ruleml:Var>Y</ruleml:Var> 

     </ruleml:slot> 

     <ruleml:slot> 

      <lrml:AuxiliaryParty 

iri="deovo:auxParty"/> 

      <ruleml:Var>X</ruleml:Var> 

     </ruleml:slot> 

     <ruleml:Atom key=":penalty1-tblock1-obl1-axm1"> 
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      <ruleml:Rel 

iri="lovo:payStatutoryDamages"/> 

      <ruleml:slot> 

       <ruleml:Ind iri="lovo:payMin"/> 

       <ruleml:Ind>$250</ruleml:Ind> 

      </ruleml:slot> 

      <ruleml:slot> 

       <ruleml:Ind iri="lovo:payMax"/> 

       <ruleml:Ind>$10,000</ruleml:Ind> 

      </ruleml:slot> 

     </ruleml:Atom> 

    </lrml:Obligation> 

   </lrml:PenaltyStatement> 
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7 Conformance 
#1 A XML file is compliant with the LegalRuleML specifications as a LegalRuleML-XML file if it is a well 
formed XML file whose root is <lrml:LegalRuleML> and it is valid against at least one XML LegalRuleML 
Schema: 
  1. As a Basic Dialect XML File, it MUST be valid against the LegalRuleML XSD Schema for the basic 
dialect of the compact serialization (xsd-schema/basic/lrml-basic.xsd). 
   2. As a Compact XML File 
       2.1. the Compact XML File MUST be valid against the LegalRuleML XSD Schema for the compact 
serialization (xsd-schema/compact/lrml-compact.xsd) OR 
        2.2. the Compact XML File MUST be valid against the LegalRuleML RelaxNG schema for the 
compact serialization (relaxng/lrml-compact.rnc) OR 
        2.3. the Compact XML File MUST be valid against both schemas (xsd-schema/compact/lrml-
compact.xsd and relaxng/lrml-compact.rnc). 
   3. As a Normalized XML file 
       3.1. the Normalized XML File MUST be valid against the LegalRuleML XSD schema for the normal 
serialization (xsd-schema/normal/lrml-normal.xsd) OR 
        3.2. the Normalized XML File MUST be valid against the LegalRuleML RelaxNG schema for the 
normal serialization (relaxng/lrml-normal.rnc) OR 
        3.3. the Normalized XML File MUST be valid against both schemas (xsd-schema/normal/lrml-
normal.xsd and relaxng/lrml-normal.rnc). 

 

#2 The following compliance conditions for LegalRuleML-XML Files are enforced by neither Relax NG nor 
XSD schema 

1. Every conformance claim under this section MUST hold for both the original document and the 
modified document after application of the Prefix mapping.  

2. RuleML collection edges, i.e. those edges with @index attributes, MUST have values of @index in 

agreement with their position in the node set of sibling collection edges.  

3. IRIs occurring as attribute values, whether originally expressed as an IRI or a CURIE, are REQUIRED 
to be fully conformant to [RFC 3987]. In the case of CURIEs, this restriction applies after expansion to an 
IRI according to the prefix.  

4. Each occurrence within any LegalRuleML document of @key on LegalRuleML and RuleML elements 

MUST have a value (after deletion of the leading colon on values of @key within RuleML elements) that is 

unique within that document. 

5. In the LegalRuleML RDF abstract syntax representation, triples whose properties correspond to 
skippable edges in the concrete syntax MUST NOT be reified with @rdf:id.  

 

#3. The RDF graph MUST be RDFS-entailed [1] by the graph that would be obtained if the normative ... 
XSLT were applied to the normative LegalRuleML XSLT (xslt/lrml-rdf/triplifyMerger-ids.xsl) to an 
LegalRuleML-XML file that is a manifestation of the LegalRuleML document. 

 

#4 An implementation conforms with LegalRuleML specifications if it handles Basic Dialect or Normal or 
Compact LegalRuleML-XML files that satisfy respectivelyconditions #1.1 or #1.2 or #1.3,  and #2 and 
optionally RDF files that satisfy condition #3.  

xsd-schema/basic/lrml-basic.xsd
xsd-schema/compact/lrml-compact.xsd
relaxng/lrml-compact.rnc
xsd-schema/compact/lrml-compact.xsd
xsd-schema/compact/lrml-compact.xsd
relaxng/lrml-compact.rnc
xsd-schema/normal/lrml-normal.xsd
relaxng/lrml-normal.rnc
xsd-schema/normal/lrml-normal.xsd
xsd-schema/normal/lrml-normal.xsd
relaxng/lrml-normal.rnc
xslt/lrml-rdf/triplifyMerger-ids.xsl
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Annex A - RelaxNG schema 

Zip linked with hyperlink to the folder 

relaxng 

relaxng
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Annex B - XML-schema 

Zip linked with hyperlink to the folder 

xsd-schema 

xsd-schema/basic 

xsd-schema/compact 

xsd-schema/datatypes  

xsd-schema/normal 

xsd-schema
xsd-schema
xsd-schema/basic
xsd-schema/basic
xsd-schema/compact
xsd-schema/compact
xsd-schema/datatypes
xsd-schema/datatypes
xsd-schema/normal
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Annex C - RDFS and XSLT  

Zip linked with hyperlink to the folder 

rdfs 

xslt/lrml-rdf 

xslt/lrml-xml 

rdfs
rdfs
xslt/lrml-rdf
xslt/lrml-rdf
xslt/lrml-xml
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Annex D – Metamodel Graph – (non-normative) 

Zip linked with hyperlink to the folder 

diagrams 

diagrams
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Annex E – Examples – (non-normative) 

Zip linked with hyperlink to the folder 

examples/normalized 

examples/compactified  

examples/normalized
examples/compactified
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Annex F – Example Fragments in Normal Form– (non-
normative) 

Example 1 (normal form)40: 

      <lrml:hasStatement> 

        <lrml:OverrideStatement> 

          <lrml:hasTemplate> 

            <lrml:Override over="#cs2" under="#cs1"/> 

          </lrml:hasTemplate> 

        </lrml:OverrideStatement> 

      </lrml:hasStatement> 

 

Example 2 (normal form)41: 

 

  <lrml:hasContext> 

    <lrml:Context key="ruleInfo1"> 

      <lrml:appliesStrength            

   iri="http://www.w3.org/2001/XMLSchema#defeasible2"/> 

      <lrml:inScope keyref="#cs1"/> 

    </lrml:Context> 

  </lrml:hasContext> 

 

 

Example 3 (normal form)42: 

<ruleml:Rule key=":ruletemplate3" keyref=":ruletemplate2"> 

 <lrml:hasStrength> 

 <lrml:Defeater key="str4"/> 

 </lrml:hasStrength> 

</ruleml:Rule> 

 

Example 4 (normal form)43: 

<lrml:hasStatements> 

  <lrml:Statements key="textblock2"> 

   <lrml:hasStatement> 

    <lrml:PrescriptiveStatement key="ps1"> 

     <lrml:hasTemplate> 

      <ruleml:Rule key="ex:key1"> 

       <lrml:hasStrength> 

        <lrml:StrictStrength 

key="str3" iri="http://www.w3.org/2001/XMLSchema#strict1"/> 

       </lrml:hasStrength> 

       <ruleml:if> 

        <ruleml:Atom 

key=":atom1"></ruleml:Atom> 

 

 

40  examples/normalized/ex8-defeasible-normal.lrml 

41  examples/normalized/ex8-defeasible-normal.lrml 

42  examples/normalized/ex8-defeasible-normal.lrml 

43  examples/normalized/ex8-defeasible-normal.lrml 

examples/normalized/ex8-defeasible-normal.lrml
examples/normalized/ex8-defeasible-normal.lrml
examples/normalized/ex8-defeasible-normal.lrml
examples/normalized/ex8-defeasible-normal.lrml
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       </ruleml:if> 

       <ruleml:then> 

       

 <lrml:SuborderList></lrml:SuborderList> 

       </ruleml:then> 

      </ruleml:Rule> 

     </lrml:hasTemplate> 

    </lrml:PrescriptiveStatement> 

   </lrml:hasStatement> 

  </lrml:Statements> 

 </lrml:hasStatements> 

 

Example 5 (normal form)44: 

 <lrml:hasStatements> 

  <lrml:Statements key="textblock2"> 

   <lrml:hasStatement> 

    <lrml:ConstitutiveStatement key="ps1"> 

     <lrml:hasTemplate> 

      <ruleml:Rule key="ruleml:key1"> 

       <lrml:hasStrength> 

        <lrml:DefeasibleStrength 

key="str1" iri="http://www.w3.org/2001/XMLSchema#defeasible1"/> 

       </lrml:hasStrength> 

       <ruleml:if> 

        <ruleml:Atom key=":atom1"> 

    </ruleml:Atom> 

       </ruleml:if> 

       <ruleml:then> 

        <ruleml:Atom key=":atom1"> 

     </ruleml:Atom> 

       </ruleml:then> 

      </ruleml:Rule> 

     </lrml:hasTemplate> 

    </lrml:ConstitutiveStatement> 

   </lrml:hasStatement> 

  </lrml:Statements> 

 </lrml:hasStatements> 

Example 6 (normal form): 

<lrml:Obligation  
    key="oblig1" 
    iri="ex:achievementObligation"> 
    ... 
</lrml:Obligation> 

Example 7 (normal form)45: 

 <lrml:hasAssociations> 

  <lrml:Associations key="sourceBlock1"> 

   <lrml:hasAssociation> 

    <lrml:Association> 

     <lrml:appliesModality 

iri="ex:maintenanaceObligation"/> 

     <lrml:toTarget keyref="#obl101"/> 

 

 

44  examples/normalized/ex8-defeasible-normal.lrml 

45  examples/normalized/ex3-deontic-normal.lrml 

examples/normalized/ex8-defeasible-normal.lrml
examples/normalized/ex3-deontic-normal.lrml
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    </lrml:Association> 

   </lrml:hasAssociation> 

  </lrml:Associations> 

 </lrml:hasAssociations> 

Example 8 (normal form)46: 

 <ruleml:formula index="1"> 

  lrml:Obligation key="oblig1" iri="ex:obl1"> 

   <ruleml:formula> 

    <ruleml:Atom/> 

   </ruleml:formula> 

  </lrml:Obligation> 

 </ruleml:formula> 

 <ruleml:formula index="1"> 

  <lrml:Obligation key="oblig2" iri="ex:obl1"> 

    <ruleml:slot> 

    <lrml:Bearer iri="ex:oblBearer"/> 

     <ruleml:Ind>Y</ruleml:Ind> 

   </ruleml:slot> 

   <ruleml:formula> 

    <ruleml:Atom key="ex:atom2"> 

     <ruleml:op> 

      <ruleml:Rel iri="ex:rel2"/> 

     </ruleml:op> 

     <ruleml:arg index="1"> 

      <ruleml:Ind>X</ruleml:Ind> 

     </ruleml:arg> 

    </ruleml:Atom> 

   </ruleml:formula> 

  </lrml:Obligation> 

 </ruleml:formula> 

Example 9 (normal form)47: 

 

 <lrml:hasStatements> 

  <lrml:Statements> 

   <lrml:hasStatement> 

    <lrml:PenaltyStatement key="pen1"> 

     <lrml:hasTemplate> 

      <lrml:SuborderList> </lrml:SuborderList> 

     </lrml:hasTemplate> 

    </lrml:PenaltyStatement> 

   </lrml:hasStatement> 

  </lrml:Statements> 

 </lrml:hasStatements> 

 

 Example 10 (normal form)48: 

<lrml:hasStatements> 

  <lrml:Statements> 

   <lrml:hasStatement> 

    <lrml:ReparationStatement key="reps1"> 

     <lrml:hasTemplate> 

      <lrml:Reparation key="rep1"> 

 

 

46  examples/normalized/ex3-deontic-normal.lrml 

47  examples/normalized/ex3-deontic-normal.lrml 

48  examples/normalized/ex3-deontic-normal.lrml 

examples/normalized/ex3-deontic-normal.lrml
examples/normalized/ex3-deontic-normal.lrml
examples/normalized/ex3-deontic-normal.lrml
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       <lrml:appliesPenalty 

keyref="#pen1"/> 

       <lrml:toPrescriptiveStatement 

keyref="#ps1"/> 

      </lrml:Reparation> 

     </lrml:hasTemplate> 

    </lrml:ReparationStatement> 

   </lrml:hasStatement> 

  </lrml:Statements> 

 </lrml:hasStatements> 

 

 

 Example 11 (normal form)49: 

  <lrml:hasAlternatives> 

    <lrml:Alternatives key="alt1"> 

      <lrml:fromLegalSources keyref="#ls5"/> 

      <lrml:hasAlternative keyref="#ps1"/> 

      <lrml:hasAlternative keyref="#cs2"/> 

    </lrml:Alternatives> 

  </lrml:hasAlternatives> 

 

 Example 12 (normal form)50: 

 <lrml:hasAssociations> 

  <lrml:Associations key="s1"> 

   <lrml:hasAssociation> 

    <lrml:Association> 

     <lrml:appliesSource keyref="#ref1"/> 

     <lrml:appliesSource keyref="#ref2"/> 

     <lrml:toTarget keyref="#rule1"/> 

    </lrml:Association> 

   </lrml:hasAssociation> 

  </lrml:Associations> 

 </lrml:hasAssociations> 

 <lrml:hasAssociations> 

  <lrml:Associations key="s2"> 

   <lrml:hasAssociation> 

    <lrml:Association> 

     <lrml:appliesSource keyref="#ref3"/> 

     <lrml:appliesSource keyref="#ref2"/> 

     <lrml:toTarget keyref="#rule2"/> 

    </lrml:Association> 

   </lrml:hasAssociation> 

  </lrml:Associations> 

 </lrml:hasAssociations> 

 

 <lrml:hasAlternatives> 

  <lrml:Alternatives key="alt1"> 

   <lrml:hasAlternative keyref="#s1"/> 

   <lrml:hasAlternative keyref="#s2"/> 

  </lrml:Alternatives> 

 </lrml:hasAlternatives> 

 

 

 

 

49  examples/normalized/ex9-alternatives-normal.lrml 

50  examples/normalized/ex9-alternatives-normal.lrml 

examples/normalized/ex9-alternatives-normal.lrml
examples/normalized/ex9-alternatives-normal.lrml
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 Example 13 (normal form)51: 

 <lrml:Alternatives key="alt3"> 

  <lrml:fromLegalSources keyref="#ref1"/> 

  <lrml:hasAlternative keyref="#ss1"/> 

  <lrml:hasAlternative keyref="#ss2"/> 

 </lrml:Alternatives> 

 

<lrml:Statements key="ss1"> 

 <lrml:ConstitutiveStatement keyref="#ps1"/> 

 <lrml:ConstitutiveStatement keyref="#ps2"/> 

</lrml:Statements> 

 

<lrml:Statements key="ss2"> 

 <lrml:ConstitutiveStatement keyref="#ps3"/> 

</lrml:Statements> 

 

Example 14 (normal form)52: 

 <lrml:hasAssociations> 

  <lrml:Associations key="s1"> 

   <lrml:hasAssociation> 

    <lrml:Association> 

     <lrml:appliesSource keyref="#ref1"/> 

     <lrml:appliesSource keyref="#ref2"/> 

     <lrml:toTarget keyref="#rule1"/> 

     <lrml:toTarget keyref="#rule2"/> 

    </lrml:Association> 

   </lrml:hasAssociation> 

  </lrml:Associations> 

 </lrml:hasAssociations> 

 <lrml:hasAssociations> 

  <lrml:Associations key="s2"> 

   <lrml:hasAssociation> 

    <lrml:Association> 

     <lrml:appliesSource keyref="#ref1"/> 

     <lrml:appliesSource keyref="#ref2"/> 

     <lrml:toTarget keyref="#rule2"/> 

     <lrml:toTarget keyref="#rule3"/> 

    </lrml:Association> 

   </lrml:hasAssociation> 

  </lrml:Associations> 

 </lrml:hasAssociations> 

 

 <lrml:hasAlternatives> 

  <lrml:Alternatives key="alt4"> 

   <lrml:hasAlternative keyref="#s1"/> 

   <lrml:hasAlternative keyref="#s2"/> 

  </lrml:Alternatives> 

 </lrml:hasAlternatives> 

Example 15 (normal form)53: 

 <lrml:hasLegalReferences> 

 

 

51  examples/normalized/ex9-alternatives-normal.lrml 

52  examples/normalized/ex9-alternatives-normal.lrml 

53  examples/normalized/ex2-references-normal.lrml 

examples/normalized/ex9-alternatives-normal.lrml
examples/normalized/ex9-alternatives-normal.lrml
examples/normalized/ex2-references-normal.lrml
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  <lrml:LegalReferences xmlns:appex="http://docs.oasis-

open.org/legalruleml/examples/approved/" 

refType="http://example.legalruleml.org/lrml#LegalSource"> 

   <lrml:hasLegalReference> 

    <lrml:LegalReference refersTo="ref1" refID="/au/2012-

05-30/C628:2012/eng@/main#sec2.2" refIDSystemName="AkomaNtoso3.0-2016-03"/> 

   </lrml:hasLegalReference> 

   <lrml:hasLegalReference> 

    <lrml:LegalReference refersTo="ref6" 

refID="ECLI:country:court:year:number" refIDSystemName="European Case Law 

Identifier" refIDSystemSource="OJ:C:2011:127:0001:0007:EN:PDF"/> 

   </lrml:hasLegalReference> 

  </lrml:LegalReferences> 

 </lrml:hasLegalReferences> 

Example 16 (normal form)54: 

 <lrml:hasLegalSources> 

  <lrml:LegalSources> 

   <lrml:hasLegalSource> 

    <lrml:LegalSource key="ref2" 

sameAs="http://www.law.cornell.edu/uscode/text/17/504#psection-1"/> 

   </lrml:hasLegalSource> 

  </lrml:LegalSources> 

 </lrml:hasLegalSources> 

Example 17 (normal form)55: 

 <lrml:hasSources> 

  <lrml:Sources> 

   <lrml:hasSource> 

    <lrml:Source key="ex-rule_1b" 

sameAs="http://example.com/ex2.1.1-references-b#rule_1b"/> 

   </lrml:hasSource> 

   <lrml:hasSource> 

    <lrml:Source key="oasis-rule_1b" 

sameAs="http://docs.oasis-open.org/legalruleml/examples/approved/ex2.1.1-

references-b#rule_1b"/> 

   </lrml:hasSource> 

  </lrml:Sources> 

 </lrml:hasSources> 

Example 18 (normal form)56: 

 <lrml:hasAssociations> 

  <lrml:Associations key="sourceBlock2"> 

   <lrml:hasAssociation> 

    <lrml:Association> 

     <lrml:appliesSource keyref="#ref1"/> 

     <lrml:toTarget keyref="#rule1"/> 

     <lrml:toTarget keyref="#rule2"/> 

    </lrml:Association> 

   </lrml:hasAssociation> 

  </lrml:Associations> 

 </lrml:hasAssociations> 

 

 

54  examples/normalized/ex2-references-normal.lrml 

55  examples/normalized/ex2-references-normal.lrml 

56  examples/normalized/ex9-alternatives-normal.lrml 

examples/normalized/ex2-references-normal.lrml
examples/normalized/ex2-references-normal.lrml
examples/normalized/ex9-alternatives-normal.lrml
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Example 19 (normal form)57: 

 <lrml:hasAssociations> 

  <lrml:Associations key="sourceBlock3"> 

   <lrml:hasAssociation> 

    <lrml:Association> 

     <lrml:appliesSource keyref="#ref1"/> 

     <lrml:appliesSource keyref="#ref2"/> 

     <lrml:toTarget keyref="#rule1"/> 

    </lrml:Association> 

   </lrml:hasAssociation> 

  </lrml:Associations> 

 </lrml:hasAssociations> 

Example 20 (normal form)58: 

 

 <lrml:hasAgents> 

  <lrml:Agents> 

   <lrml:hasAgent> 

    <lrml:Agent key="mp" 

sameAs="http:example.org/agents#MonicaPalmirani"> 

     <lrml:hasType 

iri="http://example.org/types#Person"/> 

    </lrml:Agent> 

   </lrml:hasAgent> 

   <lrml:hasAgent> 

    <lrml:Agent key="ta" 

sameAs="http://example.org/agents#TaraAthan"/> 

   </lrml:hasAgent> 

  </lrml:Agents> 

 </lrml:hasAgents> 

Example 21 (normal form)59: 

 <lrml:hasFigures> 

  <lrml:Figures> 

   <lrml:hasMemberType iri="http://example.org/figure-

types#LegislativeFigure"/> 

   <lrml:hasFigure> 

    <lrml:Figure key="fs"> 

     <lrml:hasFunction 

iri="http://example.org/functions#Senator"/> 

     <lrml:hasActor keyref="#ta"/> 

    </lrml:Figure> 

   </lrml:hasFigure> 

  </lrml:Figures> 

 </lrml:hasFigures> 

Example 22 (normal form)60: 

 

 <lrml:hasRoles> 

  <lrml:Roles> 

   <lrml:hasRole> 

 

 

57  examples/normalized/ex9-alternatives-normal.lrml 

58  examples/normalized/ex4-meta-normal.lrml 

59  examples/normalized/ex4-meta-normal.lrml 

60  examples/normalized/ex4-meta-normal.lrml 

examples/normalized/ex9-alternatives-normal.lrml
examples/normalized/ex4-meta-normal.lrml
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    <lrml:Role key="role1" 

iri="http://example.org/roles#author"> 

     <lrml:filledBy keyref="#mp"/> 

     <lrml:filledBy keyref="#ta"/> 

     <lrml:forExpression keyref="#rule1a"/> 

    </lrml:Role> 

   </lrml:hasRole> 

   <lrml:hasRole> 

    <lrml:Role key="role2" 

iri="http://example.org/roles#author"> 

     <lrml:filledBy keyref="#mp"/> 

     <lrml:forExpression keyref="#atom2a"/> 

     <lrml:forExpression keyref="#atom2b"/> 

    </lrml:Role> 

   </lrml:hasRole> 

  </lrml:Roles> 

 </lrml:hasRoles> 

Example 23 (normal form)61: 

 <lrml:hasJurisdictions> 

  <lrml:Jurisdictions> 

   <lrml:hasJurisdiction> 

    <lrml:Jurisdiction key="us" 

sameAs="http://example.org/jurisdiction#unitedStatesOfAmerica"/> 

   </lrml:hasJurisdiction> 

  </lrml:Jurisdictions> 

 </lrml:hasJurisdictions> 

Example 24 (compact form)62: 

 

 <lrml:hasJurisdictions> 

  <lrml:Jurisdictions> 

   <lrml:hasJurisdiction> 

    <lrml:Jurisdiction key="exd" 

sameAs="http://example.org/jurisdiction#executiveDepartments"/> 

   </lrml:hasJurisdiction> 

  </lrml:Jurisdictions> 

 </lrml:hasJurisdictions> 

Example 25 (normal form)63: 

 <lrml:hasAuthorities> 

  <lrml:Authorities> 

   <lrml:hasAuthority> 

    <lrml:Authority key="house" 

sameAs="http://example.org/authority#house-of-representatives"/> 

   </lrml:hasAuthority> 

  </lrml:Authorities> 

 </lrml:hasAuthorities> 

Example 26 (normal form)64: 

 <lrml:hasTimes> 

  <lrml:Times> 

 

 

61  examples/normalized/ex4-meta-normal.lrml 

62  examples/normalized /ex4-meta-normal.lrml 

63  examples/normalized/ex4-meta-normal.lrml 

64  examples/normalized/ex12-USC_17_504_context-normal.lrml 

examples/normalized/ex4-meta-normal.lrml
examples/normalized/ex4-meta-normal.lrml
examples/normalized/ex4-meta-normal.lrml
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   <lrml:hasTime> 

    <ruleml:Time key=":t1"> 

     <ruleml:arg index="1"> 

      <ruleml:Data xsi:type="xs:dateTime">1978-

01-01T00:00:00</ruleml:Data> 

     </ruleml:arg> 

    </ruleml:Time> 

   </lrml:hasTime> 

  </lrml:Times> 

 </lrml:hasTimes> 

Example 27 (normal form)65: 

<lrml:hasTemporalCharacteristics> 

  <lrml:TemporalCharacteristics key="tblock1"> 

   <lrml:hasTemporalCharacteristic> 

    <lrml:TemporalCharacteristic key="nev1"> 

     <lrml:forStatus iri="http://docs.oasis-

open.org/legalruleml/ns/v1.0/vocab#Efficacious"/> 

     <lrml:hasStatusDevelopment 

iri="http://docs.oasis-open.org/legalruleml/ns/v1.0/vocab#Starts"/> 

     <lrml:atTime keyref="#t1"/> 

    </lrml:TemporalCharacteristic> 

   </lrml:hasTemporalCharacteristic> 

   <lrml:hasTemporalCharacteristic> 

    <lrml:TemporalCharacteristic key="nev2"> 

     <lrml:forStatus iri="http://docs.oasis-

open.org/legalruleml/ns/v1.0/vocab#InForce"/> 

     <lrml:hasStatusDevelopment 

iri="http://docs.oasis-open.org/legalruleml/ns/v1.0/vocab#Starts"/> 

     <lrml:atTime keyref="#t2"/> 

    </lrml:TemporalCharacteristic> 

   </lrml:hasTemporalCharacteristic> 

  </lrml:TemporalCharacteristics> 

 </lrml:hasTemporalCharacteristics> 

Example 28 (compact form)66: 

 

 <lrml:hasAssociations> 

  <lrml:Associations> 

   <lrml:hasAssociation> 

    <lrml:Association> 

     <lrml:appliesSource keyref="#ref1"/> 

     <lrml:toTarget keyref="#nev1"/> 

     <lrml:toTarget keyref="#nev2"/> 

    </lrml:Association> 

   </lrml:hasAssociation> 

  </lrml:Associations> 

 </lrml:hasAssociations> 

Example 29 (normal form)67: 

 <lrml:hasAssociations> 

  <lrml:Associations key="ascs1"> 

   <lrml:hasAssociation> 

    <lrml:Association> 

 

 

65  examples/normalized/ex6-temporal-normal.lrml 

66  examples/normalized/ex6-temporal-normal.lrml 

67  examples/normalized/ex6-temporal-normal.lrml 

examples/normalized/ex6-temporal-normal.lrml
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     <lrml:appliesTemporalCharacteristics 

keyref="#tblock1"/> 

     <lrml:toTarget keyref="#rule1"/> 

     <lrml:toTarget keyref="#atom1"/> 

     <lrml:toTarget keyref="#body1"/> 

    </lrml:Association> 

   </lrml:hasAssociation> 

  </lrml:Associations> 

 </lrml:hasAssociations> 

 

 <lrml:hasContext> 

  <lrml:Context key="ruleContext1"> 

   <lrml:appliesAssociations keyref="#ascs1"/> 

   <lrml:inScope keyref="#stmt1"/> 

  </lrml:Context> 

 </lrml:hasContext> 

Example 30 (normal form)68: 

 <lrml:hasAssociations> 

  <lrml:Associations key="sourceBlock1"> 

   <lrml:hasAssociation> 

    <lrml:Association> 

     <lrml:appliesTemporalCharacteristics 

keyref="#tblock1"/> 

     <lrml:toTarget keyref="#ps1"/> 

     <lrml:toTarget keyref="#ps2"/> 

    </lrml:Association> 

   </lrml:hasAssociation> 

   <lrml:hasAssociation> 

    <lrml:Association> 

     <lrml:appliesAuthority keyref="#congress"/> 

     <lrml:appliesJurisdiction keyref="#us"/> 

     <lrml:toTarget keyref="#ps1"/> 

     <lrml:toTarget keyref="#ps3"/> 

    </lrml:Association> 

   </lrml:hasAssociation> 

  </lrml:Associations> 

 </lrml:hasAssociations> 

Example 31 (normal form)69: 

<lrml:appliesModality iri="/ontology/deontic/"/> 

Example 32 (normal form)70: 

<lrml:appliesSource keyref="#sec504-clsc-pnt1"/> 

Example 33 (normal form)71: 

<lrml:appliesTemporalCharacteristics keyref="#tblock1"/> 

Example 34 (normal form)72: 

<lrml:appliesStrength iri="/ontology/defeasible"/> 

 

 
68  examples/normalized/ex9-alternatives-normal.lrml 

69  examples/normalized/ex12-USC_17_504_context-normal.lrml 

70  examples/normalized/ex12-USC_17_504_context-normal.lrml 

71  examples/normalized/ex12-USC_17_504_context-normal.lrml 

72  examples/normalized/ex12-USC_17_504_context-normal.lrml 
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Example 35 (normal form)73: 

<lrml:appliesAuthority keyref="#congress"/> 

 

Example 36 (normal form)74: 

<lrml:appliesJurisdiction keyref="#us"/> 

 

Example 37 (normal form)75: 

 <lrml:hasContext> 

  <lrml:Context key="Context1"> 

   <lrml:appliesSource keyref="#sec504-clsc-pnt1"/> 

   <lrml:appliesTemporalCharacteristics keyref="#tblock1"/> 

   <lrml:appliesModality iri="/ontology/deontic/"/> 

   <lrml:appliesStrength iri="/ontology/defeasible"/> 

   <lrml:appliesAuthority keyref="#congress"/> 

   <lrml:appliesJurisdiction keyref="#us"/> 

   <lrml:appliesAssociations keyref="#assoc1"/> 

   <lrml:appliesAlternatives keyref="#alt2"/> 

   <lrml:inScope keyref="#s1"/> 

  </lrml:Context> 

 </lrml:hasContext> 

 

Example 38 (normal form)76: 

 <lrml:hasContext> 

  <lrml:Context key="ruleInfo4" hasCreationDate="#t1"> 

   <lrml:appliesSource keyref="#sec504-clsc-pnt2"/> 

   <lrml:appliesTemporalCharacteristics keyref="#tblock1"/> 

   <lrml:appliesStrength iri="/ontology/defeater"/> 

   <lrml:appliesAuthority keyref="#congress"/> 

   <lrml:appliesJurisdiction keyref="#us"/> 

   <lrml:appliesAssociations keyref="#assoc1"/> 

   <lrml:appliesAlternatives keyref="#alt2"/> 

   <lrml:inScope keyref="#rule1"/> 

   <lrml:inScope keyref="#rule4"/> 

  </lrml:Context> 

 </lrml:hasContext> 

 

 

 

 
73  examples/normalized/ex12-USC_17_504_context-normal.lrml 
74  examples/normalized/ex12-USC_17_504_context-normal.lrml 

75  examples/normalized/ex12-USC_17_504_context-normal.lrml 

76  examples/normalized/ex12-USC_17_504_context-normal.lrml 
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Annex G – Generation – (non-normative) 

This material aims to provide tools for automatically generate xsd-schemas from relaxng schemas. For 
more details see Section 5.18 XSD Schema Derivation. 

generation 

generation
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