

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 1 of 55

OASIS Committee Note

Key Management Interoperability
Protocol Usage Guide Version 2.0

Committee Note 01

24 October 2019

This version:
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/cn01/kmip-ug-v2.0-cn01.docx (Authoritative)
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/cn01/kmip-ug-v2.0-cn01.html
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/cn01/kmip-ug-v2.0-cn01.pdf

Previous version:
N/A

Latest version:
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/kmip-ug-v2.0.docx (Authoritative)
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/kmip-ug-v2.0.html
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/kmip-ug-v2.0.pdf

Technical Committee:
OASIS Key Management Interoperability Protocol (KMIP) TC

Chairs:
Tony Cox (tony.cox@cryptsoft.com), Cryptsoft Pty Ltd.
Judith Furlong (Judith.Furlong@dell.com), Dell EMC

Editor:
Judith Furlong (Judith.Furlong@dell.com), Dell EMC

Related work:
This document replaces or supersedes:

• Key Management Interoperability Protocol Usage Guide Version 1.4. Edited by Judith Furlong. Latest
version: http://docs.oasis-open.org/kmip/ug/v1.4/kmip-ug-v1.4.html.

This document is related to:

• Key Management Interoperability Protocol Specification Version 2.0. Edited by Tony Cox and Charles

White. Latest version: https://docs.oasis-open.org/kmip/kmip-spec/v2.0/kmip-spec-v2.0.html.

• Key Management Interoperability Protocol Profiles Version 2.0. Edited by Tim Hudson and Robert

Lockhart. Latest version: https://docs.oasis-open.org/kmip/kmip-profiles/v2.0/kmip-profiles-v2.0.html.

• Key Management Interoperability Protocol Test Cases Version 2.0. Edited by Tim Hudson and Mark
Joseph. Latest version: https://docs.oasis-open.org/kmip/kmip-testcases/v2.0/kmip-testcases-
v2.0.html.

Abstract:

This document is intended for developers and architects who wish to design systems and applications
that interoperate using the Key Management Interoperability Protocol specification.

Status:
This is a Non-Standards Track Work Product. The patent provisions of the OASIS IPR Policy do not
apply.

https://docs.oasis-open.org/kmip/kmip-ug/v2.0/cn01/kmip-ug-v2.0-cn01.docx
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/cn01/kmip-ug-v2.0-cn01.html
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/cn01/kmip-ug-v2.0-cn01.pdf
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/kmip-ug-v2.0.docx
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/kmip-ug-v2.0.html
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/kmip-ug-v2.0.pdf
https://www.oasis-open.org/committees/kmip/
mailto:tony.cox@cryptsoft.com
http://cryptsoft.com/
mailto:Judith.Furlong@dell.com
http://www.emc.com/
mailto:Judith.Furlong@dell.com
http://www.emc.com/
http://docs.oasis-open.org/kmip/ug/v1.4/kmip-ug-v1.4.html
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/kmip-spec-v2.0.html
https://docs.oasis-open.org/kmip/kmip-profiles/v2.0/kmip-profiles-v2.0.html
https://docs.oasis-open.org/kmip/kmip-testcases/v2.0/kmip-testcases-v2.0.html
https://docs.oasis-open.org/kmip/kmip-testcases/v2.0/kmip-testcases-v2.0.html
https://www.oasis-open.org/

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 2 of 55

This document was last revised or approved by the OASIS Key Management Interoperability Protocol
(KMIP) TC on the above date. The level of approval is also listed above. Check the "Latest version"
location noted above for possible later revisions of this document.
Technical Committee (TC) members should send comments on this document to the TC's email list.
Others should send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/kmip/.

Citation format:
When referencing this document the following citation format should be used:

[kmip-ug-v2.0]

Key Management Interoperability Protocol Usage Guide Version 2.0. Edited by Judith Furlong. 24
October 2019. OASIS Committee Note 01. https://docs.oasis-open.org/kmip/kmip-ug/v2.0/cn01/kmip-ug-
v2.0-cn01.html. Latest version: https://docs.oasis-open.org/kmip/kmip-ug/v2.0/kmip-ug-v2.0.html.

https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=kmip
https://www.oasis-open.org/committees/kmip/
https://www.oasis-open.org/committees/kmip/
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/cn01/kmip-ug-v2.0-cn01.html
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/cn01/kmip-ug-v2.0-cn01.html
https://docs.oasis-open.org/kmip/kmip-ug/v2.0/kmip-ug-v2.0.html

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 3 of 55

Notices

Copyright © OASIS Open 2019. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

https://www.oasis-open.org/policies-guidelines/ipr

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 4 of 55

Table of Contents
1 Introduction .. 7

1.1 References (non-normative) ... 7

2 Assumptions .. 10

2.1 Island of Trust .. 10

2.2 Message Security .. 10

2.3 State-less Server ... 10

2.4 Extensible Protocol .. 10

2.5 Server Policy ... 10

2.6 Synchronous and Asynchronous Operations .. 10

2.7 Support for “Intelligent Clients” and “Key Using Devices” ... 10

2.8 Batched Requests and Responses ... 11

2.9 Reliable Message Delivery .. 11

2.10 Large Responses .. 11

2.11 Key Life-cycle and Key State .. 11

3 Using KMIP Functionality .. 12

3.1 Authentication .. 12

3.1.1 Credential ... 12

3.2 Authorization for Revoke, Recover, Destroy and Archive Operations .. 14

3.3 Returning Related Objects .. 15

3.4 Compromised Objects ... 15

3.5 ID Placeholder ... 15

3.6 Use of Meta-Data Only (MDO) Keys ... 16

3.7 Using the Same Asymmetric Key Pair in Multiple Algorithms ... 17

3.8 Non-Cryptographic Objects ... 17

3.9 Split Key .. 17

3.10 Asymmetric Concepts with Symmetric Keys ... 18

3.11 Key Block .. 19

3.12 Key Encoding .. 19

3.12.1 AES Key Encoding ... 19

3.12.2 Triple-DES Key Encoding ... 20

3.12.3 AES-XTS Key Encoding ... 20

3.13 Elliptic Curve Cryptography (ECC) Recommended Curve Mapping .. 20

3.14 Attributes ... 23

3.15 Key State and Times ... 24

3.16 Mutating Attributes .. 25

3.17 Application Specific Information .. 25

3.18 Description and Comment Attributes .. 26

3.19 Cryptographic Length of Asymmetric Keys ... 26

3.20 Default Crypto Parameters .. 27

3.21 Multi-instance Hash ... 27

3.22 Extractable and Sensitive Attributes ... 27

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 5 of 55

3.23 Key Format Type ... 27

3.24 Using the “Raw” Key Format Type .. 27

3.25 PKCS#12 Key Format ... 28

3.26 Object Group ... 28

3.27 Protection Storage Mask ... 29

3.28 Revocation Reason Codes ... 29

3.29 Unique Identifiers .. 29

3.30 Usage Allocation ... 30

3.31 Canceling Asynchronous Operations .. 30

3.32 Full Async .. 30

3.33 Cryptographic Services ... 30

3.33.1 Streaming Cryptographic Services ... 31

3.33.2 Security Considerations for Server State Handling. ... 31

3.34 Archive Operations .. 31

3.35 Certify and Re-certify... 31

3.36 Using Offset in Re-key and Re-certify Operations .. 32

3.37 Certificate Renewal, Update, and Re-key ... 32

3.38 Certificate Revocation Lists ... 33

3.39 Delegated Login .. 33

3.40 Discover Versions ... 33

3.41 Interop ... 33

3.42 Handling Large Locate Result Sets... 33

3.43 Login and Logout... 33

3.44 Query ... 34

3.44.1 Query Function ... 34

3.44.2 Identifying Authenticated Operations ... 34

3.45 Registering a Key Pair .. 34

3.46 Using Notify and Put Operations ... 35

3.47 Flow Control .. 35

3.48 Client and Server Correlation Values .. 35

3.49 Reducing Multiple Requests Through the Use of Batch ... 35

3.50 Maximum Message Size ... 36

3.51 Message Extensions ... 36

3.52 Result Message Text... 36

3.53 Result Reasons ... 36

3.54 Passing Attestation Data ... 36

3.55 Vendor Extensions .. 37

4 Applying KMIP Functionality .. 38

4.1 Locating Keys in Specific States ... 38

4.2 Using Wrapped Keys with KMIP ... 39

4.2.1 Encrypt-only Example with a Symmetric Key as an Encryption Key for a Get Request and
Response... 40

4.2.2 Encrypt-only Example with a Symmetric Key as an Encryption Key for a Register Request and
Response... 40

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 6 of 55

4.2.3 Encrypt-only Example with an Asymmetric Key as an Encryption Key for a Get Request and
Response... 41

4.2.4 MAC-only Example with an HMAC Key as an Authentication Key for a Get Request and
Response... 41

4.2.5 Registering a Wrapped Key as an Opaque Cryptographic Object ... 42

4.2.6 Encoding Option for Wrapped Keys ... 42

4.3 Interoperable Key Naming for Tape .. 43

4.3.1 Native Tape Encryption by a KMIP Client .. 43

4.4 Registering Extension Information .. 46

4.5 Using KMIP for PGP Keys .. 47

4.6 KMIP Client Registration Models .. 47

4.6.1 Manual Client Registration ... 48

4.6.2 Automated Client Registration .. 48

4.6.3 Registering Sub-Clients Based on a Trusted Primary Client ... 49

4.7 Using One Time Pad Algorithms ... 49

4.8 Cryptographic Shredding (Erasure) .. 49

4.9 Key Shredding ... 50

4.10 ReEncrypt .. 50

5 Deprecated KMIP Functionality ... 51

5.1 KMIP Deprecation Rule ... 51

5.2 Deprecated Functions ... 51

Appendix A. Acknowledgments ... 52

Appendix B. Table of Figures and Tables ... 54

Appendix C. Revision History .. 55

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 7 of 55

1 Introduction
This Key Management Interoperability Protocol Usage Guide Version 2.0 is intended to complement the
Key Management Interoperability Protocol Specification [KMIP-Spec] by providing guidance on how to
implement the Key Management Interoperability Protocol (KMIP) most effectively to ensure
interoperability and to address key management usage scenarios. It includes the following guidance:

• Clarification of assumptions and requirements that drive or influence the design of KMIP and the
implementation of KMIP-compliant key management.

• Specific recommendations for implementation of KMIP functionality.

• Clarification of mandatory and optional capabilities for conformant implementations.

• Descriptions of how to use KMIP functionality to address specific key management usage scenarios
or to solve key management related issues.

A selected set of conformance profiles and authentication suites are defined in the KMIP Profiles
specification [KMIP-PROFILES].

Further assistance for implementing KMIP is provided by the KMIP Test Cases document [KMIP-TC] that
describes a set of recommended test cases and provides the TTLV (Tag/Type/Length/Value) format for
the message exchanges defined by those test cases.

1.1 References (non-normative)

[KMIP-SPEC] Key Management Interoperability Protocol Specification Version 2.0. Edited by Tony
Cox and Charles White. Latest version: https://docs.oasis-open.org/kmip/kmip-
spec/v2.0/kmip-spec-v2.0.html.

[KMIP-PROF] Key Management Interoperability Protocol Profiles Version 2.0. Edited by Tim
Hudson and Robert Lockhart. Latest version: https://docs.oasis-open.org/kmip/kmip-
profiles/v2.0/kmip-profiles-v2.0.html.

[KMIP-TC] Key Management Interoperability Protocol Test Cases Version 2.0. Edited by Tim
Hudson and Mark Joseph. Latest version: https://docs.oasis-open.org/kmip/kmip-
testcases/v2.0/kmip-testcases-v2.0.html.

[DoD5220.22M] National Industrial Security Program Operating Manual, February 2006 (Incorporating
Change 1 March 28, 2013),
http://www.dtic.mil/whs/directives/corres/pdf/522022m.pdf

[ECC-Brainpool] ECC Brainpool Standard Curves and Curve Generation v. 1.0.19.10.2005,
http://www.ecc-brainpool.org/download/Domain-parameters.pdf.

[FIPS 180-4] Secure Hash Standard (SHS), FIPS PUB 180-4, March 2012,
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[FIPS 186-4] Digital Signature Standard (DSS). FIPS PUB 186-4. July 2013.
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[FIPS 197] Advanced Encryption Standard (AES). FIPS PUB 197. November 26, 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[FIPS 198-1] The Keyed-Hash Message Authentication Code (HMAC). FIPS PUB 198-1. July
2008. http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

[PKCS#1] RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard. June 14, 2002.
http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-
cryptography-standard.htm.

[PKCS#10] RSA Laboratories. PKCS #10 v1.7: Certification Request Syntax Standard. May 26,
2000. http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs10-
certification-request-syntax-standard.htm.

[PKCS#11] OASIS PKCS#11 Cryptographic Token Interface Base Specification Version 3.0

[RFC1321] R. Rivest, The MD5 Message-Digest Algorithm, IETF RFC 1321, Apr 1992,
http://www.ietf.org/rfc/rfc1321.txt

https://docs.oasis-open.org/kmip/kmip-spec/v2.0/kmip-spec-v2.0.html
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/kmip-spec-v2.0.html
https://docs.oasis-open.org/kmip/kmip-profiles/v2.0/kmip-profiles-v2.0.html
https://docs.oasis-open.org/kmip/kmip-profiles/v2.0/kmip-profiles-v2.0.html
https://docs.oasis-open.org/kmip/kmip-testcases/v2.0/kmip-testcases-v2.0.html
https://docs.oasis-open.org/kmip/kmip-testcases/v2.0/kmip-testcases-v2.0.html
http://www.dtic.mil/whs/directives/corres/pdf/522022m.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm
http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm
http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs10-certification-request-syntax-standard.htm
http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs10-certification-request-syntax-standard.htm
http://www.ietf.org/rfc/rfc1321.txt

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 8 of 55

[RFC1421] J. Linn, Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption
and Authentication Procedures, IETF RFC 1421, Feb 1993,
http://www.ietf.org/rfc/rfc1421.txt

[RFC3647] S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu. RFC3647: Internet X.509
Public Key Infrastructure Certificate Policy and Certification Practices Framework.
November 2003. http://www.ietf.org/rfc/rfc3647.txt

[RFC4210] C. Adams, S. Farrell, T. Kause and T. Mononen, Internet X.509 Public Key
Infrastructure Certificate Management Protocol (CMP), IETF RFC 2510, Sep 2005,
http://www.ietf.org/rfc/rfc4210.txt

[RFC4211] J. Schaad, Internet X.509 Public Key Infrastructure Certificate Request Message
Format (CRMF), IETF RFC 4211, Sep 2005, http://www.ietf.org/rfc/rfc4211.txt

[RFC4949] R. Shirey. RFC4949: Internet Security Glossary, Version 2. August 2007.
http://www.ietf.org/rfc/rfc4949.txt

[RFC4880] J. Callas, L. Donnerhacke, H. Finney, D. Shaw and R. Thayer. RFC4880: OpenPGP
Message Format. November 2007. http://www.ietf.org/rfc/rfc4880.txt

[RFC5272] J. Schaad and M. Meyers, Certificate Management over CMS (CMC), IETF RFC
5272, Jun 2008, http://www.ietf.org/rfc/rfc5272.txt

[RFC5280] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. RFC5280:
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. May 2008. http://www.ietf.org/rfc/rfc5280.txt

[RFC5639] M. Lochter, J. Merkle, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves
and Curve Generation, IETF RFC 5639, March 2010,
http://www.ietf.org/rfc/rfc5639.txt.

[RFC7292] K. Moriarty, M. Nystrom, S. Parkinson, A. Rusch, M. Scott, PKCS#12: Personal
Information Exchange Syntax v1.1, IETF RFC 7292, July 2014,
https://tools.ietf.org/html/rfc7292

[RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves for Security", RFC 7748,
DOI 10.17487/RFC7748, January 2016, https://www.rfc-editor.org/info/rfc7748

[SEC2] SEC 2: Recommended Elliptic Curve Domain Parameters,
,http://www.secg.org/SEC2-Ver-1.0.pdf.

[SP800-38A] M. Dworkin. Recommendation for Block Cipher Modes of Operation – Methods and
Techniques. NIST Special Publication 800-38A, Dec 2001.
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf

[SP800-38D] M. Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC. NIST Special Publication 800-38D. Nov 2007.
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf.

[SP800-38E] M. Dworkin, Recommendation for Block Cipher Modes of Operation: The XTS-AES
Mode for Confidentiality on Block-Oriented Storage Devices, NIST Special
Publication 800-38E, January 2010,
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf.

[SP800-56A] E. Barker, L. Chen, A. Roginsky, and M. Smid, Recommendations for Pair-Wise Key
Establishment Schemes Using Discrete Logarithm Cryptography, NIST Special
Publication 800-56A Revision 2, May 2013,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

[SP800-57-1] E. Barker, W. Barker, W. Burr, W. Polk and M. Smid, Recommendations for Key
Management – Part 1: General (Revision 3), NIST Special Publication 800-57 Part 1
Revision 3, July 2012, http://csrc.nist.gov/publications/nistpubs/800-57/sp800-
57_part1_rev3_general.pdf

[SP800-67] W. Barker and E. Barker, Recommendations for the Triple Data Encryption Algorithm
(TDEA) Block Cipher, NIST Special Publication 800-67 Revision 1, January 2012,
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf

[SP800-88] R. Kissel, A. Regenscheid, M. Scholl, K. Stine, Guidelines for Media Sanitization,
NIST Special Publication 800-88 Revision 1, December 2014,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf

http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc3647.txt
http://www.ietf.org/rfc/rfc4210.txt
http://www.ietf.org/rfc/rfc4211.txt
http://www.ietf.org/rfc/rfc4949.txt
http://www.ietf.org/rfc/rfc4880.txt
http://www.ietf.org/rfc/rfc5272.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5639.txt
https://tools.ietf.org/html/rfc7292
https://www.rfc-editor.org/info/rfc7748
http://www.secg.org/SEC2-Ver-1.0.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 9 of 55

[X.509] International Telecommunications Union (ITU)-T, X.509: Information technology –
Open systems interconnection – The Directory: Public-key and attribute certificate
frameworks, November 2008, https://www.itu.int/rec/T-REC-
X.509/recommendation.asp?lang=en&parent=T-REC-X.509-200811-S

[X9.31] ANSI, X9.31: Digital Signatures Using Reversible Public Key Cryptography for the
Financial Services Industry (rDSA). September 1998.

[X9.42] ANSI, X9.42: Public Key Cryptography for the Financial Services Industry:
Agreement of Symmetric Keys Using Discrete Logarithm Cryptography. 2003.

[X9.62] ANSI, X9.62: Public Key Cryptography for the Financial Services Industry, The
Elliptic Curve Digital Signature Algorithm (ECDSA), 2005.

https://www.itu.int/rec/T-REC-X.509/recommendation.asp?lang=en&parent=T-REC-X.509-200811-S
https://www.itu.int/rec/T-REC-X.509/recommendation.asp?lang=en&parent=T-REC-X.509-200811-S

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 10 of 55

2 Assumptions
The section describes assumptions that underlie the KMIP protocol and the implementation of clients and
servers that utilize the protocol.

2.1 Island of Trust

Clients may be provided key material by the server, but they only use that keying material for the
purposes explicitly listed in the delivery payload. Clients that ignore these instructions and use the keys in
ways not explicitly allowed by the server are non-compliant. There is no requirement for the key
management system, however, to enforce this behavior.

2.2 Message Security

KMIP relies on the chosen authentication suite as specified in [KMIP-PROF] to authenticate the client and
on the underlying transport protocol to provide confidentiality, integrity, message authentication and
protection against replay attack. KMIP offers a wrapping mechanism for the Key Value that does not rely
on the transport mechanism used for the messages; the wrapping mechanism is intended for importing or
exporting managed cryptographic objects.

2.3 State-less Server

The protocol operates on the assumption that the server is state-less, which means that there is no
concept of “sessions” inherent in the protocol. This does not mean that the server itself maintains no
state, only that the protocol does not require it.

2.4 Extensible Protocol

The protocol provides for “private” or vendor-specific extensions, which allow for differentiation among
vendor implementations. However, any objects, attributes and operations included in an implementation
are always implemented as specified in [KMIP-SPEC], regardless of whether they are optional or
mandatory.

2.5 Server Policy

A server is expected to be conformant to KMIP and supports the conformance clauses as specified in
[KMIP-SPEC]. However, a server may refuse a server-supported operation or client-settable attribute if
disallowed by the server policy (whether expressed within or outside KMIP). Such a decision by the
server may reflect the trust relationship with a particular client, performance impact of the requested
operation, or any of a number of other considerations.

2.6 Synchronous and Asynchronous Operations

The protocol allows two modes of operation: synchronous and asynchronous. Synchronous operations
are those in which a client sends a request and waits for a response from the server. Asynchronous
operations (are those in which the client sends a request, the server responds with a “pending” status,
and the client polls the server for the completed response and completion status. Server implementations
must support synchronous operations but may choose not to support asynchronous operations.

2.7 Support for “Intelligent Clients” and “Key Using Devices”

The protocol supports intelligent clients, such as end-user workstations, which are capable of requesting
all of the functions of KMIP. It also allows subsets of the protocol and possible alternate message
representations in order to support less-capable devices, which only need a subset of the features of
KMIP.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 11 of 55

2.8 Batched Requests and Responses

The protocol contains a mechanism for sending batched requests and receiving the corresponding
batched responses, to allow for higher throughput on operations that deal with a large number of entities,
e. g., requesting dozens or hundreds of keys from a server at one time, and performing operations in a
group. A Batch Error Continuation option is provided to indicate whether to undo all previous successful
operations once a request in the batch fails; to continue processing requests after an earlier request in
the batch fails; or to stop processing the remaining requests in the batch (but not undo previously
successful operations). Information may be pipelined between one or more batch items using either the
ID Placeholder mechanism (which involves omitting the Unique Identifier) or via an indirect reference
using an enumerated type or an integer to indicate explicitly the origin of the value.

2.9 Reliable Message Delivery

The reliable message delivery function is relegated to the transport protocol and is not part of the key
management protocol itself.

2.10 Large Responses

For requests that could result in large responses, a mechanism in the protocol allows a client to specify in
a request the maximum allowed size of a response, or in the case of the Locate operation, the maximum
number of items which should be returned. The server indicates in a response to such a request that the
response would have been too large and, therefore, is not returned.

2.11 Key Life-cycle and Key State

[KMIP-SPEC] describes the key life-cycle model, based on the [SP800-57-1] key state definitions,
supported by the KMIP protocol. Particular implications of the key life-cycle model in terms of defining
time-related attributes of objects are discussed in Section 3.15.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 12 of 55

3 Using KMIP Functionality
This section provides guidance on using the functionality described in the Key Management
Interoperability Protocol (KMIP) Specification.

3.1 Authentication

As discussed in [KMIP-SPEC], a conforming KMIP implementation establishes and maintains channel
confidentiality and integrity and provides assurance of server authenticity for KMIP messaging. Client
authentication is performed according to the chosen KMIP authentication suite as specified in [KMIP-
PROF]. Other mechanisms for client and server authentication are possible and optional for KMIP
implementations.

KMIP implementations that support the KMIP-defined Credential Types or use other vendor-specific
mechanisms for authentication may use the optional Authentication structure specified inside the Request
Header to include additional identification information. Depending on the server’s configuration, the server
may interpret the identity of the requestor from the Credential structure, contained in the Authentication
structure if it is not provided during the channel-level authentication. For example, in addition to
performing mutual authentication during a TLS handshake, the client passes the Credential structure
(e.g., a username and password) in the request. If the requestor’s username is not specified inside the
client certificate and is instead specified in the Credential structure, the server interprets the identity of the
requestor from the Credential structure. This supports use cases where channel-level authentication
authenticates a machine or service that is used by multiple users of the KMIP server. If the client provides
the username of the requestor in both the client certificate and the Credential structure, the server verifies
that the usernames are the same. If they differ, the authentication fails, and the server returns an error. If
no Credential structure is included in the request, the username of the requestor is expected to be
provided inside the certificate. If no username is provided in the client certificate and no Credential
structure is included in the request message, the server is expected to refuse authentication and return
an error.

If authentication is unsuccessful, and it is possible to return an “authentication not successful” error, this
error should be returned in preference to any other result status. This prevents status code probing by a
client that is not able to authenticate.

Server decisions regarding which operations to reject if there is insufficiently strong authentication of the
client are not specified in the protocol. However, see Section 3.2 for operations for which authentication
and authorization are particularly important.

3.1.1 Credential

The Credential object defined in the [KMIP-SPEC] is a structure used to convey information about the
client, but the contents of this object are not managed by the key management server. The type of
information convey within this object varies based on the type of credential (e.g. Username and
Password, Device Credential and Attestation).

3.1.1.1 Username and Password Credential Type

[KMIP-SPEC] defines the Username and Password structure for the Credential Type Username and
Password. The structure consists of two fields: Username and Password. Password is a recommended,
but optional, field, which may be excluded only if the client is authenticated using one of the
authentication suites defined in [KMIP-PROF] For example, if the client performs client certificate
authentication during the TLS handshake, and the Authentication structure is provided in the Message
Request, the Password field is an optional field in the Username and Password structure of the Credential
structure.

The Credential structure is used to provide additional identification information. As described above, for
certain use cases, channel-level authentication may only authenticate a machine or service that is used
by multiple clients of the KMIP server. The Credential structure may be used in this scenario to identify
individual clients by specifying the username in the Username and Password structure.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 13 of 55

3.1.1.2 Device Credential Type

The Device Credential may be used to uniquely identify back-end devices by specifying Device as the
Credential Type in the Credential structure.

The Device Credential may be used in a proxy environment where the proxy authenticates with the client
certificate and supports KMIP while the back-end devices may not support KMIP or TLS. An example is
illustrated below:

FIGURE 1: AGGREGATOR CLIENT EXAMPLE

The end device identifies itself with a device unique set of identifier values that include the device
hardware serial number, the network identifier, the machine identifier, or the media identifier. For many of
the self-encrypting devices there is a unique serial number assigned to the device during manufacturing.
The ability to use network, machine, or media identifier explicitly should map to different device types and
achieve better interoperability since different types of identifier values are explicitly enumerated. The
device identifier is included for more generic usage. An optional password or shared secret may be used
to further authenticate the device.

Server implementations may choose to enforce rules for uniqueness for different types of identifier
values, combinations of TLS certificate used in combination with the Device Credential, and optionally
enforce the use of a Device Credential password.

Four identifiers are optionally provided but are unique in aggregate:

1. Serial Number, for example the hardware serial number of the device
2. Network Identifier, for example the MAC address for Ethernet connected devices
3. Machine Identifier, for example the client aggregator identifier, such as a tape library aggregating

tape drives
4. Media Identifier, for example the volume identifier used for a tape cartridge

The device identifier by choice of server policy may or may not be used in conjunction with the above
identifiers to insure uniqueness.

These additional identifiers are generally useful for auditing and monitoring encryption and could
according to server policy be logged or used in server implementation specific validation.

A specific example for self-encrypting tape drive and tape library would be:

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 14 of 55

1. the tape drive has a serial number that is unique for that manufacturer and the vendor has
procedures for maintaining and tracking serial number usage

2. a password optionally is created and stored either on the drive or the library to help authenticate the
drive

3. the tape drives may be connected via fiber channel to the library and therefore have a World Wide
Name assigned

4. a machine identifier can be used to identify the tape library that is aggregating the device in question
5. the media identifier helps identify the individual media such as a tape cartridge for proof of

encryption reporting

Another example using self-encrypting disk drives inside of a server would be:

1. the disk drive has a unique serial number
2. a password may be supplied by configuration of the drive or the server where the drive is located
3. the network identifier may come from the internal attachment identifier for the disk drive in the server
4. the machine identifier may come from a server’s motherboard or service processor identifier,
5. and the media identifier comes from the volume name used by the server’s operating system to

identify the volume on the disk drive

Server implementations could control what devices may read and write keys and use the device
credential fields to influence access control enforcement.

Another example applied to server virtualization and encryption built into virtualization would be:

1. the virtual machine instance has a unique identifier that is used for the serial number
2. the hypervisor supplies a shared secret that is used as the password to authenticate the virtual

machine
3. the network identifier could be used to identify the MAC address of the physical server where the

virtual machine is running
4. the machine identifier could be used to identify the hypervisor
5. the media identifier could be used to identify the storage volume used by the virtual machine

These are examples of usage and are not meant to define all device credential usage patterns nor restrict
server specific implementations.

The device credentials may be explicitly added by the administrator or may be captured in line with the
request and implicitly registered depending upon server policy.

When a server is not able to resolve the identifier values in the device credential to a unique client
identification, it may choose to reject the request with an error code of operation failed and reason code of
item not found.

3.2 Authorization for Revoke, Recover, Destroy and Archive Operations

The authentication suite, as specified in [KMIP-PROF], describes how the client identity is established for
KMIP-compliant implementations. This authentication is performed for all KMIP operations.

Certain operations that may be requested by a client via KMIP, particularly Revoke, Recover, Destroy and
Archive, may have a significant impact on the availability of a key, on server performance and/or on key
security. When a server receives a request for one of these operations, it should ensure that the client
has authenticated its identity (see the Authentication Suites section in [KMIP-PROF]. The server should
also ensure that the client requesting the operation is an object owner, security officer or other identity
authorized to issue the request. It may also require additional authentication to ensure that the object
owner or a security officer has issued that request. Even with such authentication and authorization,
requests for these operations should be considered only a “hint” to the key management system, which
may or may not choose to act upon this request depending on server policy.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 15 of 55

3.3 Returning Related Objects

The key block returns a single object, with associated attributes and other data. For those cases in which
multiple related objects are needed by a client, such as the private key and the related certificate, the
client should issue multiple Get requests to obtain these related objects.

3.4 Compromised Objects

A Cryptographic Object or Opaque Object may be compromised for a variety of reasons. In KMIP, a client
indicates to the server that a Cryptographic Object is to be considered compromised by performing a
Revoke Operation with a Revocation Reason of Key Compromise or CA Compromise. The KMIP client
should provide a Compromise Occurrence Date (if the Revocation Reason is Key Compromise or CA
Compromise) and if it is unable to estimate when the compromise occurred then it should provide a
Compromise Occurrence Date equal to the Initial Date.

The KMIP specification [KMIP-SPEC] places no requirements on a KMIP server to perform any action on
any Managed Object that references (i.e., via Link attributes) a Cryptographic Object or Opaque Object
that a client has performed a Revoke operation with a Revocation Reason of Key Compromise or CA
Compromise. However, KMIP users should be aware that there may be security relevant implications in
continuing to use a Managed Cryptographic Object in the following circumstances:

• For a compromised Private Key, the linked Public Key and/or Certificate;

• For a compromised Public Key, the linked Private Key and/or Certificate;

• For a compromised Derived Key, the linked derived key and/or Secret Data Object

In these circumstances, it is the responsibility of the client to either check the state of the referenced
Managed Object or to also perform a Revoke operation on the referenced Managed Object.

3.5 ID Placeholder

A number of operations are affected by a mechanism referred to as the ID Placeholder. This is a
temporary variable consisting of a single Unique Identifier that is stored inside the server for the duration
of executing a batch of operations.

The Unique Identifier value when omitted indicates use of the ID Placeholder. A general mechanism of
specification of the Unique Identifier either via an enumeration that indicates which Unique Identifier value
from the response batch item should be used or via an integer indicating which batch item in the request
should be referenced allows for additional flexibility in pipelining requests.

The ID Placeholder is obtained from the Unique Identifier returned by certain operations; the applicable
operations are identified in Table 1, along with a list of operations that accept the ID Placeholder as input.

Operation ID Placeholder at
the beginning of
the operation

ID Placeholder upon completion of the
operation (in case of operation failure, a batch
using the ID Placeholder stops)

Create - ID of new Object

Create Key Pair - ID of new Private Key (ID of new Public Key may
be obtained via a Locate)

Create Split Key - ID of the split whose Key Part Identifier is 1

Join Split Key ID of returned object

Register - ID of newly registered Object

Derive Key - (multiple Unique
Identifiers may be

ID of new Symmetric Key

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 16 of 55

specified in the
request)

Locate - ID of located Object

Get ID of Object no change

Validate - -

Get Attributes
List/Modify/Add/Delete

ID of Object no change

Activate ID of Object no change

Revoke ID of Object no change

Destroy ID of Object no change

Archive/Recover ID of Object no change

Certify ID of Public Key ID of new Certificate

Re-certify ID of Certificate ID of new Certificate

Re-key ID of Symmetric
Key to be rekeyed

ID of new Symmetric Key

Re-key Key Pair ID of Private Key
to be rekeyed

ID of new Private Key (ID of new Public Key may
be obtained via a Locate)

Obtain Lease ID of Object no change

Get Usage Allocation ID of Key no change

Check ID of Object no change

TABLE 1: ID PLACEHOLDER PRIOR TO AND RESULTING FROM A KMIP OPERATION

3.6 Use of Meta-Data Only (MDO) Keys

Meta-Data Only (MDO) keys are those Managed Key Objects for which no Key Value is present. MDO
objects can be one of the following: Symmetric Keys, Private Keys, Split Keys, or Secret Data.

This may be a result of the KMIP client only wanting to register information (Meta-Data) about the key
with a Key Management System, without having the key itself leave the client’s physical boundary. One
such example could be for keys created and stored within a Hardware Security Module (HSM), with a
policy that does not allow for the keys to leave its hardware. In such cases, the KMIP client will not
include a Key Value within the Key Block during a Register operation, although it may optionally include a
Key Value Location attribute indicating the location of the Key Value instead. For such keys, as part of
the Register operation, the server will create a Key Value Present attribute and set it to false to indicate
the key value is not stored on the server.

The KMIP protocol does not support the addition of a Key Value to an existing MDO key object on the
server. If for some reason the client wanted to do this, it would have to carry out another Register
operation and create a new managed object with the Key Value.

Finally, because there is no Key Value associated with an MDO key on the server, KMIP operations for
Re-key, Re-key Key Pair and Derive Key cannot be carried out on an MDO key object. An attempt to do
so will return an appropriate error as specified in the Error Handling section of [KMIP-SPEC].

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 17 of 55

3.7 Using the Same Asymmetric Key Pair in Multiple Algorithms

There are mathematical relationships between certain asymmetric cryptographic algorithms such as the
Digital Signature Algorithm (DSA) and Diffie-Hellman (DH) and their elliptic curve equivalents ECDSA and
ECDH that allow the same asymmetric key pair to be used in both algorithms. In addition, there are
overlaps in the key format used to represent the asymmetric key pair for each algorithm type.

Even though a single key pair may be used in multiple algorithms, the KMIP Specification has chosen to
specify separate key formats for representing the asymmetric key pair for use in each algorithm. This
approach keeps KMIP in line with the reference standards (e.g., NIST [FIPS 186-4], ANSI [X9.42], etc.)
from which the key formats are obtained and the best practice documents (e.g., NIST [SP800-57-1], NIST
[SP800-56A] etc.) which recommend that a key pair only be used for one purpose.

3.8 Non-Cryptographic Objects

The KMIP protocol allows clients to register Secret Data objects. Secret Data objects may include
passwords or data that are used to derive keys.

KMIP defines Secret Data as cryptographic objects. Even if the object is not used for cryptographic
purposes, clients may still set certain attributes, such as the Cryptographic Usage Mask, for this object
unless otherwise stated. Similarly, servers set certain attributes for this object, including the Digest, State,
and certain Date attributes, even if the attributes may seem relevant only for other types of cryptographic
objects.

When registering a Secret Data object, the following attributes are set by the server:

• Unique Identifier

• Object Type

• Digest

• State

• Initial Date

• Last Change Date

When registering a Secret Data object for non-cryptographic purposes, the following attributes are set by
either the client or the server:

• Cryptographic Usage Mask

3.9 Split Key

KMIP allow a client to register a Split Key that was created or otherwise obtained by the client. To request
that the server generate a split key, the client sends a Create Split Key request that includes the Split Key
parameters (Split Key Parts, Split Key Threshold, Split Key Method) and desired key attributes (e.g.
Object Type, Cryptographic Length). If the client supplies the Unique Identifier of an existing base key in a
Create Split Key request, the server will use the supplied key in the key splitting operation instead of
generating a new one. The server will respond with a list of Unique Identifiers for the newly created Split
Keys.

The client may want to add link attributes to more easily locate the complete set of related Split Keys as
follows. The client adds a Previous Link from the Split Key with Key Part Identifier K to the Split Key with
Key Part Identifier K-1 and a Next Link to the Split Key with Key Part Identifier K+1. Denoting the value of
Split Key Parts by N, the client adds a Previous Link from the Split Key with Key Part Identifier 1 to the
Split Key with Key Part Identifier N and a Next Link from the Split Key with Key Part Identifier N to the
Split Key with Key Part Identifier 1. If the client supplies the Unique Identifier of an existing base key in a
Create Split Key request, the client may want to add a Parent Link attribute from each newly generated
Split Key to the base key that was supplied in the Create Split Key request.

To request that the server recombine a set of split keys, the client sends a Join Split Key request that
includes the type of object to be returned (e.g. Symmetric Key, Private Key, or Secret Data) and a list of
Unique Identifiers of the Split Keys to be combined. The number of Unique Identifiers in the request

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 18 of 55

needs to be at least the value of Split Key Threshold in the Split Keys to ensure the server will be able to
combine the keys according to the Split Key Method. The server will respond with the Unique Identifier of
the key obtained by combining the provided Split Keys.

3.10 Asymmetric Concepts with Symmetric Keys

The Cryptographic Usage Mask attribute is intended to support asymmetric concepts using symmetric
keys. This is common practice in established crypto systems: the MAC is an example of an operation
where a single symmetric key is used at both ends, but policy dictates that one end may only generate
cryptographic tokens using this key (the MAC) and the other end may only verify tokens. The security of
the system fails if the verifying end can use the key to perform generation operations.

In these cases, it is not sufficient to describe the usage policy on the keys in terms of cryptographic
primitives like “encrypt” vs. “decrypt” or “sign” vs. “verify”. There are two reasons why this is the case.

• In some of these operations, such as MAC generation and verification, the same cryptographic
primitive is used in both of the complementary operations. MAC generation involves computing
and returning the MAC, while MAC verification involves computing that same MAC and
comparing it to a supplied value to determine if they are the same. Thus, both generation and
verification use the “encrypt” operation, and the two usages are not able to be distinguished by
considering only “encrypt” vs. “decrypt”.

• Some operations which require separate key types use the same fundamental cryptographic
primitives. For example, encryption of data, encryption of a key, and computation of a MAC all
use the fundamental operation “encrypt”, but in many applications, securely differentiated keys
are used for these three operations. Simply looking for an attribute that permits “encrypt” is not
sufficient.

Allowing the use of these keys outside of their specialized purposes may compromise security. Instead,
specialized application-level permissions are necessary to control the use of these keys. KMIP provides
several pairs of such permissions in the Cryptographic Usage Mask, such as:

MAC GENERATE
MAC VERIFY

For cryptographic MAC operations. Although it is
possible to compose certain MACs using a series
of encrypt calls, the security of the MAC relies on
the operation being atomic and specific.

GENERATE CRYPTOGRAM
VALIDATE CRYPTOGRAM

For composite cryptogram operations such as
financial CVC or ARQC. To specify exactly which
cryptogram the key is used for it is also necessary
to specify a role for the key

TRANSLATE ENCRYPT
TRANSLATE DECRYPT

TRANSLATE WRAP
TRANSLATE UNWRAP

To accommodate secure routing of traffic and
data. In many areas that rely on symmetric
techniques (notably, but not exclusively financial
networks), information is sent from place to place
encrypted using shared symmetric keys. When
encryption keys are changed, it is desirable for
the change to be an atomic operation, otherwise
distinct unwrap-wrap or decrypt-encrypt steps risk
leaking the plaintext data during the translation
process.

TRANSLATE ENCRYPT/DECRYPT is used for
data encipherment.

TRANSLATE WRAP/UNWRAP is used for key
wrapping.

TABLE 2: CRYPTOGRAPHIC USAGE MASKS PAIRS

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 19 of 55

3.11 Key Block

The protocol uses the Key Block structure to transport a key to the client or server. This Key Block
consists of the Key Value Type, the Key Value, and the Key Wrapping Data. The Key Value Type
identifies the format of the Key Material, e.g., Raw format or Transparent Key structure. The Key Value
consists of the Key Material and optional attributes. The Key Wrapping Data provides information about
the wrapping key and the wrapping mechanism and is returned only if the client requests the Key Value to
be wrapped by specifying the Key Wrapping Specification inside the Get Request Payload. The Key
Wrapping Data may also be included inside the Key Block if the client registers a wrapped key.

The protocol allows any attribute to be included inside the Key Value and allows these attributes to be
cryptographically bound to the Key Material (i.e., by signing, MACing, encrypting, or both encrypting and
signing/MACing the Key Value). Some of the attributes that may be included include the following:

• Unique Identifier – uniquely identifies the key

• Cryptographic Algorithm (e.g., AES, 3DES, RSA) – this attribute is either specified inside the Key
Block structure or the Key Value structure

• Cryptographic Length (e.g., 128, 256, 2048) – this attribute is either specified inside the Key
Block structure or the Key Value structure

• Cryptographic Usage Mask– identifies the cryptographic usage of the key (e.g., Encrypt, Wrap
Key, Export)

• Cryptographic Parameters – provides additional parameters for determining how the key may be
used

• Block Cipher Mode (e.g., CBC, NISTKeyWrap, GCM) – this parameter identifies the mode of
operation, including block cipher-based MACs or wrapping mechanisms

• Padding Method (e.g., OAEP, X9.31, PSS) – identifies the padding method and if applicable
the signature or encryption scheme

• Hashing Algorithm (e.g., SHA-256) – identifies the hash algorithm to be used with the
signature/encryption mechanism or Mask Generation Function; note that the different HMACs
are defined individually as algorithms and do not require the Hashing Algorithm parameter to
be set

• Key Role Type – Identifies the functional key role (e.g., DEK, KEK)

• State (e.g., Active)

• Dates (e.g., Activation Date, Process Start Date, Protect Stop Date)

• Custom Attribute – allows vendors and clients to define vendor-specific attributes; may also be
used to prevent replay attacks by setting a nonce

3.12 Key Encoding

Two parties receiving the same key as a Key Value Byte String make use of the key in exactly the same
way in order to interoperate. To ensure that, it is necessary to define a correspondence between the
abstract syntax of Key and the notation in the standard algorithm description that defines how the key is
used. The next sections establish that correspondence for the algorithms AES [FIPS 197] and Triple-DES
[SP800-67].

3.12.1 AES Key Encoding

AES Key Encoding [FIPS 197] section 5.2, titled Key Expansion, uses the input key as an array of bytes
indexed starting at 0. The first byte of the Key becomes the key byte in AES that is labeled index 0 in
[FIPS 197] and the other key bytes follow in index order.

Proper parsing and key load of the contents of the Key for AES is determined by using the following Key
byte string to generate and match the key expansion test vectors in [FIPS 197] Appendix A for the 128-bit
(16 byte) AES Cipher Key: 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 20 of 55

3.12.2 Triple-DES Key Encoding

A Triple-DES key consists of three keys for the cryptographic engine (Key1, Key2, and Key3) that are
each 64 bits (even though only 56 are used); the three keys are also referred to as a key bundle (KEY)
[SP800-67]. A key bundle may employ either two or three mutually independent keys. When only two are
employed (called two-key Triple-DES), then Key1 = Key3.

Each key in a Triple-DES key bundle is expanded into a key schedule according to a procedure defined in
[SP800-67] Appendix A. That procedure numbers the bits in the key from 1 to 64, with number 1 being
the left most, or most significant bit. The first byte of the Key is bits 1 through 8 of Key1, with bit 1 being
the most significant bit. The second byte of the Key is bits 9 through 16 of Key1, and so forth, so that the
last byte of the KEY is bits 57 through 64 of Key3 (or Key2 for two-key Triple-DES).

Proper parsing and key load of the contents of Key for Triple-DES is determined by using the following
Key byte string to generate and match the key expansion test vectors in [SP800-67] Appendix B for the
key bundle:

Key1 = 0123456789ABCDEF

Key2 = 23456789ABCDEF01

Key3 = 456789ABCDEF0123

3.12.3 AES-XTS Key Encoding

AES-XTS1 is an implementation of the AES encryption algorithm with the XTS (XEX (XOR Encrypt XOR)
Tweakable Block Cipher with Ciphertext Stealing) cipher mode (see [SP800-38E]). What is unique about
the XTS mode is that it requires the use of two AES keys. AES-XTS 512 requires two 256-bit AES keys
while AES-XTS 256 requires two 128-bit AES keys.

KMIP implementations should treat the required XTS keys as two distinct keys (e.g. two 256-bit AES
keys). KMIP operations (e.g. Create, Register, Get) associated with these two keys are batched within
the profile to logically keep the handling of these associated keys together. A simple custom attribute (X-
ID) is used to specify a naming convention that associates the two AES keys. The Link attribute (with
Link Types of Next Link and Previous Link) is used to associate the two AES keys with one another on
the KMIP server.

3.13 Elliptic Curve Cryptography (ECC) Recommended Curve Mapping

The KMIP Specification [KMIP-SPEC] specifies a number of ECC recommended curves ([FIPS 186-4]
[SEC2] [X9.62] [ECC-Brainpool] [RFC5639] [RFC7748]). These recommended curves are defined in
multiple source documents and in some cases, the same algorithm is known by multiple names since the
algorithm is defined in multiple documents. The following table provides a mapping of the ECC
recommended curves specified in the KMIP specification [KMIP-SPEC]. The table identifies the KMIP
enumeration, the Object Identifier (OID) and multiples names (synonyms) for the ECC recommended
curves.

Recommended
Curve Name

KMIP Enumeration
Value

OID Recommended
Curve

Synonym(s)

P-192 00000001 1.2.840.10045.3.1.1
SECP192R1

ANSIX9P192V1

K-163 00000002 1.3.132.0.1 SECT163K1

B-163 00000003 1.3.132.0.15 SECT163R2

P-224 00000004 1.3.132.0.33 SECP224R1

1 Also referred to as XTS-AES

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 21 of 55

K-233 00000005 1.3.132.0.26 SECT233K1

B-233 00000006 1.3.132.0.27 SECT233R1

P-256 00000007 1.2.840.10045.3.1.7
SECP256R1

ANSIX9P256V1

K-283 00000008 1.3.132.0.16 SECT283K1

B-283 00000009 1.3.132.0.17 SECT283R1

P-384 0000000A 1.3.132.0.34 SECP384R1

K-409 0000000B 1.3.132.0.36 SECT409K1

B-409 0000000C 1.3.132.0.37 SECT409R1

P-521 0000000D 1.3.132.0.35 SECP521R1

K-571 0000000E 1.3.132.0.38 SECT571K1

B-571 0000000F 1.3.132.0.39 SECT571R1

SECP112R1 00000010 1.3.132.0.6

SECP112R2 00000011 1.3.132.0.7

SECP128R1 00000012 1.3.132.0.28

SECP128R2 00000013 1.3.132.0.29

SECP160K1 00000014 1.3.132.0.9

SECP160R1 00000015 1.3.132.0.8

SECP160R2 00000016 1.3.132.0.30

SECP192K1 00000017 1.3.132.0.31

SECP192R1 00000001 1.2.840.10045.3.1.1
P-192

ANSIX9P192V1

SECP224K1 00000018 1.3.132.0.32

SECP224R1 00000004 1.3.132.0.33 P-224

SECP256K1 00000019 1.3.132.0.10

SECP256R1 00000007 1.2.840.10045.3.1.7
P-256

ANSIX9P256V1

SECP384R1 0000000A 1.3.132.0.34 P-384

SECP521R1 0000000D 1.3.132.0.35 P-521

SECT113R1 0000001A 1.3.132.0.4

SECT113R2 0000001B 1.3.132.0.5

SECT131R1 0000001C 1.3.132.0.22

SECT131R2 0000001D 1.3.132.0.23

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 22 of 55

SECT163K1 00000002 1.3.132.0.1 K-163

SECT163R1 0000001E 1.3.132.0.2

SECT163R2 00000003 1.3.132.0.15 B-163

SECT193R1 0000001F 1.3.132.0.24

SECT193R2 00000020 1.3.132.0.25

SECT233K1 00000005 1.3.132.0.26 K-233

SECT233R1 00000006 1.3.132.0.27 B-233

SECT239K1 00000021 1.3.132.0.3

SECT283K1 00000008 1.3.132.0.16 K-283

SECT283R1 00000009 1.3.132.0.17 B-283

SECT409K1 0000000B 1.3.132.0.36 K-409

SECT409R1 0000000C 1.3.132.0.37 B-409

SECT571K1 0000000E 1.3.132.0.38 K-571

SECT571R1 0000000F 1.3.132.0.39 B-571

ANSIX9P192V1 00000001 1.2.840.10045.3.1.1
P-192

SECP192R1

ANSIX9P192V2 00000022 1.2.840.10045.3.1.2

ANSIX9P192V3 00000023 1.2.840.10045.3.1.3

ANSIX9P239V1 00000024 1.2.840.10045.3.1.4

ANSIX9P239V2 00000025 1.2.840.10045.3.1.5

ANSIX9P239V3 00000026 1.2.840.10045.3.1.6

ANSIX9P256V1 00000007 1.2.840.10045.3.1.7
P-256

SECP256R1

ANSIX9C2PNB163V1 00000027 1.2.840.10045.3.0.1

ANSIX9C2PNB163V2 00000028 1.2.840.10045.3.0.2

ANSIX9C2PNB163V3 00000029 1.2.840.10045.3.0.3

ANSIX9C2PNB176V1 0000002A 1.2.840.10045.3.0.4

ANSIX9C2TNB191V1 0000002B 1.2.840.10045.3.0.5

ANSIX9C2TNB191V2 0000002C 1.2.840.10045.3.0.6

ANSIX9C2TNB191V3 0000002D 1.2.840.10045.3.0.7

ANSIX9C2PNB208W1 0000002E 1.2.840.10045.3.0.10

ANSIX9C2TNB239V1 0000002F 1.2.840.10045.3.0.11

ANSIX9C2TNB239V2 00000030 1.2.840.10045.3.0.12

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 23 of 55

ANSIX9C2TNB239V3 00000031 1.2.840.10045.3.0.13

ANSIX9C2PNB272W1 00000032 1.2.840.10045.3.0.16

ANSIX9C2PNB304W1 00000033 1.2.840.10045.3.0.17

ANSIX9C2TNB359V1 00000034 1.2.840.10045.3.0.18

ANSIX9C2PNB368W1 00000035 1.2.840.10045.3.0.19

ANSIX9C2TNB431R1 00000036 1.2.840.10045.3.0.20

BRAINPOOLP160R1 00000037 1.3.36.3.3.2.8.1.1.1

BRAINPOOLP160T1 00000038 1.3.36.3.3.2.8.1.1.2

BRAINPOOLP192R1 00000039 1.3.36.3.3.2.8.1.1.3

BRAINPOOLP192T1 0000003A 1.3.36.3.3.2.8.1.1.4

BRAINPOOLP224R1 0000003B 1.3.36.3.3.2.8.1.1.5

BRAINPOOLP224T1 0000003C 1.3.36.3.3.2.8.1.1.6

BRAINPOOLP256R1 0000003D 1.3.36.3.3.2.8.1.1.7

BRAINPOOLP256T1 0000003E 1.3.36.3.3.2.8.1.1.8

BRAINPOOLP320R1 0000003F 1.3.36.3.3.2.8.1.1.9

BRAINPOOLP320T1 00000040 1.3.36.3.3.2.8.1.1.10

BRAINPOOLP384R1 00000041 1.3.36.3.3.2.8.1.1.11

BRAINPOOLP384T1 00000042 1.3.36.3.3.2.8.1.1.12

BRAINPOOLP512R1 00000043 1.3.36.3.3.2.8.1.1.13

BRAINPOOLP512T1 00000044 1.3.36.3.3.2.8.1.1.14

CURVE25519 00000045 1.3.101.110

X25519

ed25519

CURVE448 00000046 1.3.101.111 X448

TABLE 3: ECC RECOMMENDED CURVE MAPPING

3.14 Attributes

All managed objects within KMIP have associated attributes. Initial attribute values are provided during
object creation or registration (via Create, CreateKeyPair, Certify, DeriveKey, ReKey, ReKeyKeyPair,
ReCertify, and Register).

Attributes have associated rules. They may be mandatory or optional. They may be single instance, or
multi-instance. They may be set or updated only by the client or by the server. Within the Specification,
each attribute section contains a table defining these rules.

Specific operations allow for working with attributes.

• Attribute values may be created using either Add Attribute or Set Attribute

• Attribute values may be modified using either Modify Attribute or Set Attribute.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 24 of 55

• Set Attribute is more appropriate for single-instance attributes as it does not require knowledge of
whether the attribute previously had a value. Set Attribute cannot be used for multi-instance
attributes.

• Both multi-instance and single-instance attributes may be removed using Delete Attributes.

• Instances of multi-instance attributes are identified by specifying their current value when using
either Modify Attribute of Delete Attribute.

• Adjust Attribute should be used where applicable, both because it is more convenient and is
transaction-safe.

3.15 Key State and Times

[KMIP-SPEC] provides a number of time-related attributes, including the following:

• Initial Date: The date and time when the managed cryptographic object was first created by or

registered at the server.

• Activation Date: The date and time when the managed cryptographic object should begin to be

used for applying cryptographic protection to data.

• Process Start Date: The date and time when a managed symmetric key object should begin to be

used for processing cryptographically protected data. The managed symmetric key object should

not be used prior to this date.

• Protect Stop Date: The date and time when a managed symmetric key object should no longer be

used for applying cryptographic protection to data

• Deactivation Date: The date and time when the managed cryptographic object should no longer

be used for applying cryptographic protection (e.g., encryption, signing, wrapping, MACing,

deriving). Under extraordinary circumstances and when special permission is granted the

managed symmetric key object can be used for decryption, signature verification, unwrapping, or

MAC verification,

• Destroy Date: The date and time when the managed cryptographic object was destroyed

• Compromise Occurrence Date: The date and time when the managed cryptographic object was

first believed to be compromised.

• Compromise Date: The date and time when the managed cryptographic object entered the

compromised state.

• Archive Date: The date and time when the managed object was placed in Off-Line storage.

These attributes apply to all cryptographic objects (symmetric keys, asymmetric keys, etc.) with
exceptions as noted in [KMIP-SPEC]. However, certain of these attributes (such as the Initial Date) are
not specified by the client and are implicitly set by the server.

In using these attributes, the following guidelines should be observed:

• As discussed for each of these attributes in [KMIP-SPEC], a number of these times are set once,

and it is not possible for the client or server to modify them. However, several of the time

attributes (particularly the Activation Date, Protect Start Date, Process Stop Date and

Deactivation Date) may be set by the server and/or requested by the client. Coordination of time-

related attributes between client and server, therefore, is primarily the responsibility of the server,

as it manages the cryptographic object and its state. However, special conditions related to time-

related attributes, governing when the server accepts client modifications to time-related

attributes, may be communicated out-of-band between the client and server outside the scope of

KMIP.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 25 of 55

• In general, state transitions occur as a result of operational requests, such as Create, Create Key

Pair, Register, Activate, Revoke, and Destroy. However, clients may need to specify times in the

future for such things as Activation Date, Deactivation Date, Process Start Date, and Protect Stop

Date. KMIP also allows clients to specify times in the past for such attributes as Activation Date

and Deactivation Date..

• It is valid to have a projected Deactivation Date when there is no Activation Date. This means,

however, that the key is not yet active, even though its projected Deactivation Date has been

specified. A valid Deactivation Date is greater than or equal to the Activation Date (if the

Activation Date has been set).

• The Protect Stop Date may be equal to but may not be later than the Deactivation Date. Similarly,

the Process Start Date may be equal to, but may not precede, the Activation Date. KMIP

implementations should consider specifying both these attributes, particularly for symmetric keys,

as a key may be needed for processing protected data (e.g., decryption) long after it is no longer

appropriate to use it for applying cryptographic protection to data (e.g., encryption).

• KMIP does not allow an Active object to be destroyed with the Destroy operation. The server

returns an error, if the client invokes the Destroy operation on an Active object. To destroy an

Active object, clients first call the Revoke operation or explicitly set the Deactivation Date of the

object. Once the object is in Deactivated state, clients may destroy the object by calling the

Destroy operation. These operations may be performed in a batch. If other time-related attributes

(e.g., Protect Stop Date) are set to a future date, the server should set these to the Deactivation

Date.

• After a cryptographic object is destroyed, a key management server may retain certain

information about the object, such as the Unique Identifier.

3.16 Mutating Attributes

KMIP does not support server mutation of client-supplied attributes. If a server does not accept an
attribute value that is being specified inside the request by the client, the server returns an error and
specifies “Invalid Field” as Result Reason.

If a client sets a time-related attribute to the current date and time (as perceived by the client), but as a
result of a clock skew, the specified date of the attribute is earlier than the time perceived by the server,
the server’s policy is used to determine whether to accept the “backdated attribute”. KMIP does not
require the server to fail a request if a backdated attribute is set by the client.

If a server does not support backdated attributes, and cryptographic objects are expected to change state
at the specified current date and time (as perceived by the client), clients are recommended to issue the
operation that would implicitly set the date for the client. For example, instead of explicitly setting the
Activation Date, clients could issue the Activate operation. This would require the server to set the
Activation Date to the current date and time as perceived by the server.

If it is not possible to set a date attribute via an operation, and the server does not support backdated
attributes, clients need to take into account that potential clock skew issues may cause the server to
return an error even if a date attribute is set to the client’s current date and time.

For additional information, refer to the sections describing the State attribute and the Time Stamp field in
[KMIP-SPEC].

3.17 Application Specific Information

The Application Specific Information attribute is used to store data which is specific to the application(s)
using the object. Some examples of Application Namespace and Application Data pairs are given below.

• SMIME, 'someuser@company.com'

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 26 of 55

• TLS, 'some.domain.name'

• Volume Identification, '123343434'

• File Name, 'secret.doc'

• Client Generated Key ID, ‘450994003'

The following Application Namespaces are recommended:

• SMIME

• TLS

• IPSEC

• HTTPS

• PGP

• Volume Identification

• File Name

• LTO4, LTO5, and LTO6

• LIBRARY-LTO, LIBRARY-LTO4, LIBRARY-LTO5 and LIBRARY-LTO6

KMIP provides optional support for server-generated Application Data. Clients may request the server to
generate the Application Data for the client by omitting Application Data while setting or modifying the
Application Specific Information attribute. A server only generates the Application Data if the Application
Data is completely omitted from the request, and the client-specified Application Namespace is
recognized and supported by the server. An example for requesting the server to generate the Application
Data is shown below:

AddAttribute(Unique ID, AppSpecInfo{AppNameSpace=’LIBRARY-LTO4’});

If the server does not recognize the namespace, the “Application Namespace Not Supported” error is
returned to the client.

If the Application Data is provided, and the Application Namespace is recognized by the server, the
server uses the provided Application Data, and does not generate the Application Data for the client. In
the example below, the server stores the Application Specific Information attribute with the Application
Data value set to null.

AddAttribute(Unique ID, AppSpecInfo{AppNameSpace=’LIBRARY-LTO4’, AppData=null});

3.18 Description and Comment Attributes

The Description and Comment attributes are used to convey information about the purpose and use of an
object. Description is intended to be a concise imperative statement about an object (e.g. “Root Key for
internal servers”). Comment is a complementary field which allows more verbose communication
regarding what activity or why an activity applies to an object (e.g. “Make sure to update new internal
servers with the Root key as they are brought on line”). Both attributes are optional, and their contents
should be used for informational purposes and not for policy enforcement.

3.19 Cryptographic Length of Asymmetric Keys

The value (e.g., 2048 bits) referred to in the KMIP Cryptographic Length attribute for an asymmetric
(public or private) key may be misleading, since this length only refers to certain portions of the
mathematical values that comprise the key. The actual length of all the mathematical values comprising
the public or the private key is longer than the referenced value. This point may be illustrated by looking
at the components of a RSA public and private key.

The RSA public key is comprised of a modulus (n) and an (public) exponent (e). When one indicates that
the RSA public key is 2048 bits in length that is a reference to the bit length of the modulus (n) only. So
the full length of the RSA public key is actually longer than 2048 bits, since it also includes the length of
the exponent (e) and the overhead of the encoding (e.g., ASN.1) of the key material.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 27 of 55

The RSA private key is comprised of a modulus (n), the public exponent (e), the private exponent (d),
prime 1 (p), prime 2 (q), exponent 1 (d mod (p-1)), exponent 2 (d mod (p-1)), and coefficient ((inverse of
q) mod p). Once again, the 2048 bit key length is referring only to the length of the modulus (n), so the
overall length of the private key would be longer given the number of additional components which
comprise the key and the overhead of encoding (e.g., ASN.1) of the key material.

KMIP implementations need to ensure they do not make assumptions about the actual length of
asymmetric (public and private) key material based on the value specified in the Cryptographic Length
attribute.

3.20 Default Crypto Parameters

There are certain cryptographic parameters that the server must know in order to create objects. These
parameters are the CryptographicAlgorithm (e.g., AES), the CryptographicLength (e.g., 128) and the
CryptographicUsageMask. These parameters can be provided to the server by the clientServers may
supply defaults for some or all of these parameters, and if a client omits them, the server will fill in the
values and satisfy the client request rather than failing the request. The server defaults are discoverable
via Query Defaults Information.

3.21 Multi-instance Hash

The Digest attribute contains the output of hashing a managed object, such as a key or a certificate. The
server always generates the SHA-256 hash value when the object is created or generated. KMIP allows
multiple instances of the digest attribute to be associated with the same managed object. For example, it
is common practice for publicly trusted CAs to publish two digests (often referred to as the fingerprint or
the thumbprint) of their certificate: one calculated using the SHA-1 algorithm and another using the MD5
algorithm. In this case, each digest would be calculated by the server using a different hash algorithm.

3.22 Extractable and Sensitive Attributes

KMIP supports attributes which can be used to indicate the sensitivity of a cryptographic object and
whether a cryptographic object may leave the server. These attributes are modeled after similar
attributes within [PKCS#11].

The Sensitive attribute is used to specify whether a cryptographic object can only leave the KMIP server
(via the Get operation) in wrapped (encrypted) form.

The Always Sensitive attribute is used to track whether a cryptographic object has ever been considered
sensitive during its existence within the KMIP server.

The Extractable attribute is used to control whether a cryptographic object is ever allowed to leave the
KMIP server.

The Never Extractable attribute is used to track whether extraction of a cryptographic object has been
restricted during its existence within the KMIP server.

3.23 Key Format Type

A client may wish to use the digest attribute of an object to compare objects. If a client does not specify a
key format type on a constructor, the server may choose any of a number of key format types to use to
encode that object. If the server chooses a format that the client cannot handle, then the client will be
unable to use the digest of that format in any meaningful way. The key format attribute was added so that
the client can tell the server exactly which format to use else fail the construction. The server is free to
add digests of other formats.

3.24 Using the “Raw” Key Format Type

The “raw” key format is intended to be used for “a key that contains only cryptographic key material,
encoded as a string of bytes”. The “raw” key format supports situations such as “non-KMIP-aware end-
clients are aware how wrapped cryptographic objects (possibly Raw keys) from the KMIP server should

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 28 of 55

be used without having to rely on the attributes provided by the Get Attributes operation” and in that
regard is similar to the Opaque key format type. “Raw” key format is intended to be applied to symmetric
keys and not asymmetric keys.

3.25 PKCS#12 Key Format

PKCS#12 was originally introduced in the early days of PKI and is used as a keystore format and as a
key and certificate exchange mechanism. The addition of PKCS#12 to KMIP as a key format type is
intended as a means of admitting the basic forms of PKCS#12 into a managed environment, as well as
extracting basic forms of PKCS#12 from the KMIP world to be consumed/used in existing environments
and workflows.

The intent of KMIP’s PKCS#12 key format is that a PKCS#12-conformant blob can be Registered by the
client, and a PKCS#12-conformant blob can be returned from a KMIP server on a Get. It is presumed
that a single private key is what is being Registered (along with its related certificate or certificate chain),
so the Unique Identifier that KMIP servers return on a Register PKCS#12 operation is that of the private
key. It is also presumed that the client doing a Get with a key format type of PKCS#12 will be passing in
the private key’s Unique Identifier, and that the KMIP server is responsible for returning a PKCS#12 blob
with the referenced private key and any related certificates.

If the PKCS#12 blob being Registered has multiple private keys, then the client can indicate which ONE
of them is being Registered on a particular request by specifying the PKCS#12 Friendly Name attribute.
If the client does not supply the Friendly Name (a.k.a. “alias”), then the server is free to just Register the
first that it finds in the PKCS#12 blob. If the client wants more than one private key within a PKCS#12
blob to be Registered from a single PKCS#12 blob, then it will have to request repeatedly with that
PKCS#12 blob using a different Friendly Name for each request.

Those familiar with PKCS#12 objects, particularly those containing sensitive material such as private
keys, know that such objects are usually password-protected. KMIP honors such constraints by requiring
SecretData objects to be referenced and used for the normal password-based encryption (PBE) schemes
employed to protect PKCS#12 objects. Hence Register requests for objects with PKCS#12 key format
must supply a Link attribute with a LinkType of “PKCS#12 Password Link”, so that the server can find the
SecretData object containing the password for the PKCS#12 blob being sent to the server and decrypt
and verify its contents. Such a SecretData object must be in the Active state and have a Cryptographic
Usage Mask that indicates “DeriveKey” for it to be used for password-based key derivation. At the end of
the Register operation, one can expect the KMIP server to have decrypted and verified the contents of
the PKCS#12 blob, registered the (specified or defaulted) private key, added the PKCS#12 Password
Link to the SecretData in the new PrivateKey, found and Registered the certificate(s) that make up the
private key’s certificate chain, and linked these Certificates from the PrivateKey via the PKCS#12
CertificateLink (the link to the first Certificate is from the PrivateKey; any subsequent Certificates would be
linked by a PKCS#12 Certificate Link in the previous Certificate).

When a client issues a Get PKCS#12 key format request on a PrivateKey Unique Identifier, the KMIP
server traverses all the links set up on the Register to reassemble the PKCS#12 blob and protect it with
the SecretData specified on the PrivateKey PKCS#12 Password Link. If the client wants a different
password on the PKCS#12 blob resulting from a Get, it should modify the PKCS#12 Password Link on
the PrivateKey to a different SecretData before performing the Get. Similarly, if the client wants a
different Friendly Name for the key entry in a PKCS#12 blob, it should modify the PKCS#12 Friendly
Name attribute in the PrivateKey object before performing the Get.

A client can set up all this machinery by hand to be able to Get PKCS#12 key format without a
corresponding Register PKCS#12 key format.

3.26 Object Group

The key management system may specify rules for valid group names which may be created by the
client. Clients are informed of such rules by a mechanism that is not specified by [KMIP-SPEC]. In the
protocol, the group names themselves are text strings of no specified format. Specific key management
system implementations may choose to support hierarchical naming schemes or other syntax restrictions
on the names. Groups may be used to associate objects for a variety of purposes. A set of keys used for

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 29 of 55

a common purpose, but for different time intervals, may be linked by a common Object Group. Servers
may create predefined groups and add objects to them independently of client requests.

KMIP allows clients to specify whether it wants a “fresh” or “default” object from a common Object Group.
Fresh is an indication of whether a member of a group has been retrieved by a client with the Get
operation. The value of fresh may be set as an attribute when creating or registering an object.
Subsequently, the Fresh attribute is modifiable only by the server. For example, a set of symmetric keys
belong to the Object Group “SymmetricKeyGroup1” and the Fresh attribute is set to true for members of
the group at the time of creating or registering the member. To add a new symmetric key to the group, the
Object Group attribute is set to “SymmetricKeyGroup1” and the Fresh attribute is set to true when
creating or registering the symmetric key object.

The definition of a “default” object in a group is based on server policy. One example of server policy is to
use round robin selection to serve a key from a group. In this case when a client requests the default key
from a group, the server uses round robin selection to serve the key.

An object may be removed from a group by deleting the Object Group attribute, as long as server policy
permits it. A client would need to delete each individual member of a group to remove all members of a
group.

The Object Group Member flag is specified in the Locate request to indicate the type of group member to
return. Object Group Member is an enumeration that can take the value Group Member Fresh or Group
Member Default. Following are examples of how the Object Group Member flag is used:

When a Locate request is made by specifying the Object Group attribute (e.g., "symmetricKeyGroup1)
and setting the Object Group Member flag to "Group Member Fresh", matching objects from the specified
group (e.g., "symmetricKeyGroup1”) have the Fresh attribute set to true. If there are no fresh objects
remaining in the group, the server may generate a new object on the fly based on server policy.

When a Locate request is made by specifying the Object Group attribute (e.g., "symmetricKeyGroup2)
and setting the Object Group Member flag to "Group Member Default", a default object is returned from
the group. In this example, the server policy defines default to be the next key in the group
"symmetricKeyGroup2”; the group has three group members whose Unique Identifiers are uuid1, uuid2,
uuid3. If the client performs four consecutive batched Locate and Get operations with Object Group set
to "symmetricKeyGroup2" and Object Group Member set to “Group Member Default” in the Locate
request, the server returns uuid1, uuid2, uuid3, and uuid1 (restarting from the beginning with uuid1 for the
fourth request) in the four Get responses.

3.27 Protection Storage Mask

The server may have multiple ways in which keys can be stored and protected. The client may wish to
avail themselves of particular variations. The client can specify an ordered list of preferences for said
storage, one of which the server must meet in its entirety or fail the request. One example of this might be
the requirement for cryptographic material to remain within a geographical location or boundary (data
sovereignty)

3.28 Revocation Reason Codes

The enumerations for the Revocation Reason attribute specified in KMIP [KMIP-SPEC]) are aligned with
the Reason Code specified in [X.509] and referenced in [RFC5280] with the following exceptions. The
certificateHold and removeFromCRL reason codes have been excluded from [KMIP-SPEC] since KMIP
does not support certificate suspension (putting a certificate hold) or unsuspension (removing a certificate
from hold). The aaCompromise reason code has been excluded from [KMIP-SPEC] since it only applies
to attribute certificates, which are out-of-scope for [KMIP-SPEC]. The privilegeWithdrawn reason code is
included in [KMIP-SPEC] since it may be used for either attribute or public key certificates. In the context
of its use within KMIP it is assumed to only apply to public key certificates.

3.29 Unique Identifiers

For clients that require unique identifiers in a special form, out-of-band registration/configuration may be
used to communicate this requirement to the server.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 30 of 55

3.30 Usage Allocation

Usage should be allocated and handled carefully at the client, since power outages or other types of
client failures (crashes) may render allocated usage lost. For example, in the case of a key being used for
the encryption of tapes, such a loss of the usage allocation information following a client failure during
encryption may result in the necessity for the entire tape backup session to be re-encrypted using a
different key, if the server is not able to allocate more usage. It is possible to address this through such
approaches as caching usage allocation information on stable storage at the client, and/or having
conservative allocation policies at the server (e.g., by keeping the maximum possible usage allocation per
client request moderate). In general, usage allocations should be as small as possible; it is preferable to
use multiple smaller allocation requests rather than a single larger request to minimize the likelihood of
unused allocation.

3.31 Canceling Asynchronous Operations

If an asynchronous operation is cancelled by the client, no information is returned by the server in the
result code regarding any operations that may have been partially completed. Identification and
remediation of partially completed operations is the responsibility of the server.

It is the responsibility of the server to determine when to discard the status of asynchronous operations.
The determination of how long a server should retain the status of an asynchronous operation is
implementation-dependent and not defined by KMIP.

Once a client has received the status on an asynchronous operation other than “pending”, any
subsequent request for status of that operation may return either the same status as in a previous polling
request or an “unavailable” response.

3.32 Full Async

"Mandatory" Asynchronous operations in the request header establishes that the server will return
Asynchronous Correlation Value for all the batch items. The expectation is that one of the batch items
may have a longer response time than a client is willing to maintain a connection. This is useful in an IoT
environment that has limited resources.

3.33 Cryptographic Services

KMIP supports creation and registration of managed objects and retrieval of managed objects in both
plaintext and optionally wrapped with another managed object. KMIP also includes support for a subset of
the operations necessary for certificate management (certifying certificate requests and validating
certificate hierarchies). KMIP defines a range of Hash-based and MAC-based key derivation options.

There are certain situations in which having capability for a KMIP client to request cryptographic
operations from a KMIP server is beneficial in terms of simplifying the client implementation,
strengthening the integration between the key management and cryptographic operations, or improving
the overall security of a solution.

KMIP includes support for cryptographic services in the form of client-to-server operations for
cryptographic services using managed objects for encryption, decryption, signature generation, signature
verification, MAC generation, MAC verification, random number generation, and general hashing.

This support for cryptographic services is similar to the approach taken in KMIP for certificates. The
protocol supports a base set of operations on certificates that enable a key manager to act as a proxy for
a Certification Authority (CA) or in fact operate as a CA in the contexts where that is appropriate. A KMIP
server supporting cryptographic services may be acting as a proxy for another cryptographic device or in
fact operating as a cryptographic device in the contexts where that is appropriate.

KMIP clients and KMIP servers using cryptographic services operations should be mindful of selecting a
level of protection for the communication channel (the TLS connection) that provides sufficient protection
of the plaintext data included in cryptographic operations and commensurate with the security strength of
the operation. There is no requirement for the KMIP server to enforce selection of a level of protection.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 31 of 55

Similarly, server policy regarding accepting random data from a client should reflect the level of
confidence that that server has in a particular client or all clients. Issues in the quality or integrity of
random data provided in RNG Seed can affect key creation, nonce and IV generation, client-server TLS
session key creation, and the random data delivered to clients with the RNG Retrieve Operation. KMIP,
as a protocol, does not itself enforce restrictions on the quality or nature of the random data provided by a
client in the RNG Seed operation.

A KMIP server that supports the RNG Retrieve and RNG Seed operations may have a single RNG for the
server, an RNG which is shared in an unspecified manner by KMIP clients or a separate RNG for each
KMIP client. There is no requirement for the KMIP server to implement any specific RNG model.

3.33.1 Streaming Cryptographic Services

KMIP allows for multi-part (streaming) operations where the data required for the operations may be
provided in multiple separate requests. Each of the existing encryption, decryption, signature generation,
signature verification, MAC generation, MAC verification, and general hashing operations now support
additional parameters to allow for each of the stages of multi-part usage – initialization, update, and
finalization.

The server returns to the client a Correlation Value in the first response. This correlation value is used by
the client in each subsequent request for performing multi-part (streaming) operations. Each
cryptographic operation has additional optional parameters in the request that enable the client to indicate
which stage of multi-part usage (initialization, update, and finalization) is being requested.

A client can use the Query Capability Information to determine if a KMIP server supports the multi-part
(streaming) operations by checking if the Streaming Capability is set to true in the response to a Query
operation with the Query Function value of Query Capability Information.

3.33.2 Security Considerations for Server State Handling.

When a server is processing a correlation value either for asynchronous or multi-part (streaming)
operations and matching an incoming request against server state on behalf of a client, the following may
be relevant to consider as part of determining whether or not to accept the specified correlation value:

- Matching TLS mutual authentication client credentials

- Matching KMIP authentication header information

- Matching link-level (network end-point) details (i.e. source address information)

- Matching TLS session identifiers

- Requiring the first and last operations to be within a specified time period

- Requiring each operation to be within a specified time period

- Re-check the access rights on all referenced managed objects

The KMIP specification does not require that any of these items are considered as the determination of
which items are relevant is both server implementation and security context dependent.

3.34 Archive Operations

When the Archive operation is performed, it is recommended that a unique identifier and a minimal set of
attributes be retained within the server for operational efficiency. In such a case, the retained attributes
may include Unique Identifier and State.

3.35 Certify and Re-certify

The key management system may contain multiple embedded CAs or may have access to multiple
external CAs. How the server routes a certificate request to a CA is vendor-specific and outside the scope
of KMIP. If the server requires and supports the capability for clients to specify the CA to be used for
signing a Certificate Request, then this information may be provided by including the X.509 Certificate
Issuer attribute in the Certify or Re-certify request.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 32 of 55

[KMIP-SPEC] supports multiple options for submitting a certificate request to the key management server
within a Certify or Re-Certify operation. It is a vendor decision as to whether the key management server
offers certification authority (CA) functionality or proxies the certificate request onto a separate CA for
processing. The type of certificate request formats supported is also a vendor decision, and this may, in
part, be based upon the request formats supported by any CA to which the server proxies the certificate
requests.

All certificate request formats for requesting X.509 certificates specified in [KMIP-SPEC] (i.e., PKCS#10,
PEM and CRMF) provide a means for allowing the CA to verify that the client that created the certificate
request possesses the private key corresponding to the public key in the certificate request. This is
referred to as Proof-of-Possession (POP). However, it should be noted that in the case of the CRMF
format, some CAs may not support the CRMF POP option, but instead rely upon the underlying certificate
management protocols (i.e., CMP and CMC) to provide POP. In the case where the CA does not support
POP via the CRMF format (including CA functionality within the key management server), an alternative
certificate request format (i.e., PKCS#10, PEM) would need to be used if POP needs to be verified.

3.36 Using Offset in Re-key and Re-certify Operations

The Re-key, Re-key Key Pair, and Re-certify operations allow the specification of an offset interval.

The Re-key and the Re-key Key Pair operations allow the client to specify an offset interval for activation
of the key. This offset specifies the duration of time between the time the request is made and the time
when the activation of the key occurs. If an offset is specified, all other times for the new key are
determined from the new Activation Date, based on the intervals used by the previous key, i.e., from the
Activation Date to the Process Start Date, Protect Stop Date, etc.

The Re-certify operation allows the client to specify an offset interval that indicates the difference between
the Initial Date of the new certificate and the Activation Date of the new certificate. As with the Re-key
operation, all other times for the certificate are determined using the intervals used for the previous
certificate.

Note that in the Re-key and Re-key Key Pair operations if activation date, process start date, protect stop
date and deactivation date are obtained from the existing key, and the initial date is obtained from the
current time, then the deactivation/activation date/process start date/protect stop date is smaller or less
than initial date. KMIP allows forward-dating of these values to prevent a contradiction.

3.37 Certificate Renewal, Update, and Re-key

The process of generating a new certificate to replace an existing certificate may be referred to by
multiple terms, based upon what data within the certificate is changed when the new certificate is created.
In all situations, the new certificate includes a new serial number and new validity dates.

[KMIP-SPEC] uses the following terminology which is aligned with the definitions found in IETF
[RFC3647] and [RFC4949]:

• Certificate Renewal: The issuance of a new certificate to the subject without changing the subject
public key or other information (except the serial number and certificate validity dates) in the
certificate.

• Certificate Update: The issuance of a new certificate, due to changes in the information in the
certificate other than the subject public key.

• Certificate Rekey: The generation of a new key pair for the subject and the issuance of a new
certificate that certifies the new public key.

The KMIP Specification supports certificate renewals using the Re-Certify operation and certificate
updates using the Certify operation. Certificate rekey is supported through the submission of a Re-key
Key Pair operation, which generates a replacement (new) key pair, followed by a Certify operation, which
issues a new certificate containing the replacement (new) public key.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 33 of 55

3.38 Certificate Revocation Lists

Any Certificate Revocation List (CRL) checking which may be required for certificate-related operations
such as Register and Re-key should be performed by the client prior to requesting the operation from a
server.

3.39 Delegated Login

 The Delegated Login operation supports a client delegating a subset of client rights. The operation allows
specification of a time limit and/or a request usage count, along with a list of operations and a list of
objects that the returned login ticket is permitted to use.

3.40 Discover Versions

The Discover Versions operation allows clients and servers to identify a KMIP protocol version that both
client and server understand. The operation addresses both the “dumb” and “smart” client scenarios.
Dumb clients may simply pick the first protocol version that is returned by the server, assuming that the
client provides the server with a list of supported protocol version. Smart clients may request the server to
return a complete list of supported protocol versions by sending an empty request payload and picking a
protocol version that is supported by both client and server.

Clients specify the protocol version in the request header and optionally provide a list of protocol versions
in the request payload. If the protocol version in the request header is not specified in the request payload
and the server does not support any protocol version specified in the request payload, the server returns
an empty list in the response payload. In this scenario, clients are aware that the request did not result in
an error and could communicate with the server using the protocol version specified in the request
header.

3.41 Interop

During formal KMIP interoperability testing it is helpful for a client to be able to indicate which test case is
being executed to enable a server to denote this within its logs and use the information for automated
comparison against expected results.

3.42 Handling Large Locate Result Sets

The Offset Items field in the Locate operation allows a KMIP client to request different parts of a larger
Locate result set from the KMIP server. KMIP servers are also permitted to return the number of items in
the Located Items field which match a Locate.

With the knowledge of the number of Located items and the combined use of the Offset Items and
Maximum Items fields, a KMIP client is able to “page” or “browse” through a large Locate result set to find
the items of interest.

The KMIP specification does not require that the results be returned in a specific order. If operations are
performed between Locate requests that alter the result set that is returned by a Locate operation, then
items may be missed, or items may be returned more than once across separate Locate requests that
simply vary the offset items value. The same circumstances apply when performing separate Locate
requests without an offset value.

3.43 Login and Logout

The Login and Logout operations support caching of authentication checks to enable more efficient
interaction with authentication services. The Login operation allows specification of a time limit or request
usage count for the returned login ticket.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 34 of 55

3.44 Query

Query is defined as both a Client-to-Server and Server to Client operation. Conceptually, the Client-to-
Server Query and Server to Client Query operations are equivalent, but the parameters used in each of
these queries may differ since some concepts are only applicable to a server or to a client.

3.44.1 Query Function

Function values allow a KMIP client to obtain a wide range of information about a KMIP server and allow
a KMIP client to determine which extensions a KMIP server supports (Query Extension List and Query
Extension Map); which random number generators a KMIP server supports (Query RNGs); which external
validations (e.g., FIPS140, Common Criteria) apply to the KMIP server (Query Validations); which KMIP
Profiles from each version of the KMIP specification a KMIP server supports (Query Profiles); which
optional areas of the KMIP specification and alternate behaviors a KMIP server supports (Query
Capabilities); and which methods of automatic client credential registration (Query Client Registration
Methods) are supported by the KMIP server.

Test cases for using these various Query functions may be found in the KMIP Test Case document
[KMIP-TC].

3.44.2 Identifying Authenticated Operations

Query does not explicitly support client requests to determine what operations require authentication. To
determine whether an operation requires authentication, a client should request that operation.

3.45 Registering a Key Pair

During a Create Key Pair or Re-key Key Pair operation, a Link Attribute is automatically created by the
server for each object (i.e., a link is created from the private key to the public key and vice versa). Certain
attributes are the same for both objects and are set by the server while creating the key pair. The KMIP
protocol does not support an equivalent operation for registering a key pair. Clients can register the
objects independently and manually set the Link attributes to make the server aware that these keys are
associated with each other. When the Link attribute is set for both objects, the server should verify that
the registered objects indeed correspond to each other and apply similar restrictions as if the key pair was
created on the server.

Clients should perform the following steps when registering a key pair:

1. Register the public key and set all associated attributes:

a. Cryptographic Algorithm

b. Cryptographic Length

c. Cryptographic Usage Mask

1. Register the private key and set all associated attributes

a. Cryptographic Algorithm is the same for both public and private key

b. Cryptographic Length is the same for both public and private key

c. Cryptographic Parameters may be set; if set, the value is the same for both the public and

private key

d. Cryptographic Usage Mask is set, but does not contain the same value for both the public

and private key

e. Link is set for the Private Key with Link Type Public Key Link and the Linked Object Identifier

of the corresponding Public Key

f. Link is set for the Public Key with Link Type Private Key Link and the Linked Object Identifier

of the corresponding Private Key

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 35 of 55

3.46 Using Notify and Put Operations

The Notify and Put operations are operations in the KMIP protocol that are initiated by the server, rather
than the client. As client-initiated requests are able to perform these functions (e.g., by polling to request
notification), these operations are optional for conforming KMIP implementations. However, they provide
a mechanism for optimized communication between KMIP servers and clients.

In using Notify and Put, the following constraints and guidelines should be observed:

• The client enrolls with the server, so that the server knows how to locate the client to which a
Notify or Put is being sent and which events for the Notify are supported. However, such
registration is outside the scope of the KMIP protocol. Registration also includes a specification of
whether a given client supports Put and Notify, and what attributes may be included in a Put for a
particular client.

• Communication between the client and the server is authenticated. Authentication for a particular
client/server implementation is at a minimum accomplished using one of the mandatory
authentication mechanisms (see [KMIP-PROF]). Further strengthening of the client/server
communications integrity by means of signed message content and/or wrapped keys is
recommended.

• In order to minimize possible divergence of key or state information between client and server as
a result of server-initiated communication, any client receiving Notify or Put messages returns
acknowledgements of these messages to the server. This acknowledgement may be at
communication layers below the KMIP layer, such as by using transport-level acknowledgement
provided in TCP/IP.

For client devices that are incapable of responding to messages from the server, communication with the
server happens via a proxy entity that communicates with the server, using KMIP, on behalf of the client.
It is possible to secure communication between a proxy entity and the client using other, potentially
proprietary mechanisms.

3.47 Flow Control

Flow Control or "Endpoint Role" is useful for "Put" and "Notify" operations for clients that are available
intermittently or are not directly accessible to the server. It provides a uniform means of delivering data
from the server to the client that would be available by requests from a polling client.

3.48 Client and Server Correlation Values

The Client Correlation Value can be used by a client to provide additional, non-critical information to a
server. The value need not be unique. The server should log the value and be able to identify log
records that contain a given Client Correlation Value. An example use of the Client Correlation value is to
track the KMIP test case number used when performing interoperability testing by the KMIP Technical
Committee.

The Server Correlation Value is generated by a server and used to uniquely identify each request. The
value should be globally unique and should be logged by the server for each request. The server
provides the value to the client within the response to each KMIP operation and the client should store the
value in its log. Ideally both the client and server should locate log records that contain a given Server
Correlation Value so that the workflow associated with each request may be traced across client and
server.

3.49 Reducing Multiple Requests Through the Use of Batch

KMIP supports batch operations in order to reduce the number of calls between the client and server. For
example, Locate and Get are likely to be commonly accomplished within a single batch request.

KMIP does not ensure that batch operations are atomic on the server side. If servers implement such
atomicity, the client is able to use the optional “undo” mode to request roll‐back for batch operations
implemented as atomic transactions. However, support for “undo” mode is optional in the protocol, and

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 36 of 55

there is no guarantee that a server that supports “undo” mode has effectively implemented atomic
batches.

A client can determine if a server supports the optional “undo” or the optional “continue” mode using a
Query operation with the Query Function value of Query Capability Information and by checking the value
of the Batch Undo Capability or Batch Continue Capability fields in the response.

3.50 Maximum Message Size

When a server is processing requests in a batch, it should compare the cumulative response size of the
message to be returned after each request with the specified Maximum Response Size. If the message is
too large, it should prepare a maximum message size error response message at that point, rather than
continuing with operations in the batch. This increases the client’s ability to understand what operations
have and have not been completed.

When processing individual requests within the batch, the server that has encountered a Maximum
Response Size error should not return attribute values or other information as part of the error response.

The Locate operation also supports the concept of a maximum item count to include in the returned list of
unique identifiers.

3.51 Message Extensions

Any number of vendor-specific extensions may be included in the Message Extension optional structure.
This allows KMIP implementations to create multiple extensions to the protocol.

3.52 Result Message Text

KMIP specifies the Result Status, the Result Reason and the Result Message as normative message
contents. For the Result Status and Result Reason, the enumerations provided in [KMIP-SPEC] are the
normative values. The values for the Result Message text are implementation-specific. In consideration of
internationalization, it is recommended that any vendor implementation of KMIP provide appropriate
language support for the Return Message. How a client specifies the language for Result Messages is
outside the scope of the KMIP.

3.53 Result Reasons

Additional Result Reasons have been added to enable a client to self-diagnose error situations with
additional information about the nature of the error. Previously many common error conditions resulted in
a single Result Reason. More specificity improves the adoption of additional capabilities within the
specification.

3.54 Passing Attestation Data

In some scenarios the server may want assurance of the integrity of the client’s system before honoring a
client’s request. Additionally, the server may want a guarantee of the freshness of the attestation
computation in the integrity measurement.

Generally, the process takes four passes:

1. The client sends a request to the server which requires attestation.
2. The server returns a random nonce to the client that will be used in the attestation computation to

guarantee the freshness of the measurement.
3. The client sends a request to the server which includes the measurement of the client’s system,

and the measurement contains the nonce from the server.
4. The server verifies the measurement and sends the appropriate response to the client.

Passing attestation data with a client request can be achieved in KMIP as follows:

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 37 of 55

1. The client sends a request to the server with the Attestation Capable Indicator set to True in the

request header.

2. If the request requires attestation, the server will return an “Attestation Required” error with a

Nonce object in the response header. {If the client request fails for any reason other than

“Attestation Required”, the server will not include a nonce in the error message.}

3. The client uses the nonce received from the server in the attestation computation that will be

used in the measurement.

a. The client forms an Attestation Credential Object which contains either the measurement

from the client or an assertion from a third party if the server is not capable or willing to

verify the attestation data from the client.

b. The client then issues a request which contains the Attestation Credential Object in the

request header.

4. The server validates the measurement or assertion data in the Credential Object, checks that the

nonce in the Credential Object matches one sent recently by the server, then sends the

appropriate response to complete the request issued by the client. {If the measurement or

assertion data in the Credential Object does not validate or if the nonce does not match one sent

recently by the server, the server will return an “Attestation Failed” error instead of completing the

request issued by the client.}

The server needs to be capable of processing and verifying multiple Credential Objects in the same
request header since Attestation Credentials do not provide the same type of authentication as the
Username and Password or Device Credential.

How frequently (e.g. every request, every 100 requests, etc.) the server generates a new random nonce
depends on server policy. The lifetime of the nonce once the server has sent it to the client (i.e., the
timeframe in which the client must return the nonce before needs to request a fresh nonce from the
server) also depends on server policy.

If the client sends a request that requires attestation, but the client has not set the Attestation Capable
Indicator to True, then the server will send a “Permission Denied” error and will not include a Nonce
object in the response header.

3.55 Vendor Extensions

KMIP allows for vendor extensions in a number of areas:

1. Enumerations have specific ranges which are noted as extensions

2. Item Tag values of the form 0x54xxxx are reserved for vendor extensions

3. Attributes may be defined by the client with a “x-“ prefix or by the server with a “y-“ prefix

Extensions may be used by vendors to communicate information between a KMIP client and a KMIP
server that is not currently defined within the KMIP specification.

A common use of extensions is to allow for the structured definition of attributes using KMIP TTLV
encoding rather than encoding vendor specific information in opaque byte strings.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 38 of 55

4 Applying KMIP Functionality
This section describes how to apply the functionality described in the Key Management Interoperability
Protocol Specification to address specific key management usage scenarios or to solve key management
related issues.

4.1 Locating Keys in Specific States

It is possible to formulate Locate queries to address any of the following conditions:

• Exact match of a transition to a given state. Locate the key(s) with a transition to a certain state at
a specified time (t).

• Range match of a transition to a given state. Locate the key(s) with a transition to a certain state
at any time at or between two specified times (t and t’).

• Exact match of a state at a specified time. Locate the key(s) that are in a certain state at a
specified time (t).

• Match of a state during an entire time range. Locate the key(s) that are in a certain state during
an entire time specified with times (t and t’). Note that the Activation Date could occur at or before
t and that the Deactivation Date could occur at or after t’+1.

• Match of a state at some point during a time range. Locate the key(s) that are in a certain state at
some time at or between two specified times (t and t’). In this case, the transition to that state
could be before the start of the specified time range.

This is accomplished by allowing any date/time attribute to be present either once (for an exact match) or
at most twice (for a range match).

For instance, if the state we are interested in is Active, the Locate queries would be the following
(corresponding to the bulleted list above):

• Exact match of a transition to a given state: Locate (ActivationDate(t)). Locate keys with an
Activation Date of t.

• Range match of a transition to a given state: Locate (ActivationDate(t), ActivationDate(t')). Locate
keys with an Activation Date at or between t and t’.

• Exact match of a state at a specified time: Locate (ActivationDate (0), ActivationDate (t),
DeactivationDate (t+1), DeactivationDate (MAX_INT), CompromiseDate (t+1), CompromiseDate
(MAX_INT)). Locate keys in the Active state at time t, by looking for keys with a transition to
Active before or until t, and a transition to Deactivated or Compromised after t (because we don't
want the keys that have a transition to Deactivated or Compromised before t). The server
assumes that keys without a DeactivationDate or CompromiseDate is equivalent to MAX_INT
(i.e., infinite).

• Match of a state during an entire time range: Locate (ActivationDate (0), ActivationDate (t),
DeactivationDate (t'+1), DeactivationDate (MAX_INT), CompromiseDate (t'+1), CompromiseDate
(MAX_INT)). Locate keys in the Active state during the entire time from t to t’.

• Match of a state at some point during a time range: Locate (ActivationDate (0), ActivationDate (t'-
1), DeactivationDate (t+1), DeactivationDate (MAX_INT), CompromiseDate (t+1),
CompromiseDate (MAX_INT)). Locate keys in the Active state at some time from t to t’, by
looking for keys with a transition to Active between 0 and t’-1 and exit out of Active on or after t+1.

The queries would be similar for Initial Date, Deactivation Date, Compromise Date and Destroy Date.

In the case of the Destroyed-Compromise state, there are two dates recorded: the Destroy Date and the
Compromise Date. For this state, the Locate operation would be expressed as follows:

• Exact match of a transition to a given state: Locate (CompromiseDate (t), State (Destroyed-
Compromised)) and Locate (DestroyDate (t), State (Destroyed-Compromised)). KMIP does not
support the OR in the Locate request, so two requests should be issued. Locate keys that were

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 39 of 55

Destroyed and transitioned to the Destroyed-Compromised state at time t, and locate keys that
were Compromised and transitioned to the Destroyed-Compromised state at time t.

• Range match of a transition to a given state: Locate (CompromiseDate (t), CompromiseDate (t'),
State (Destroyed-Compromised)) and Locate (DestroyDate (t), DestroyDate (t'), State
(Destroyed-Compromised)). Locate keys that are Destroyed-Compromised and were
Compromised or Destroyed at or between t and t’.

• Exact match of a state at a specified time: Locate (CompromiseDate (0), CompromiseDate (t),
DestroyDate (0), DestroyDate (t)); nothing else is needed, since there is no exit transition. Locate
keys with a Compromise Date at or before t, and with a Destroy Date at or before t. These keys
are, therefore, in the Destroyed-Compromised state at time t.

• Match of a state during an entire time range: Locate (CompromiseDate (0), CompromiseDate (t),
DestroyDate (0), DestroyDate (t)). Same as above. As there is no exit transition from the
Destroyed-Compromised state, the end of the range (t’) is irrelevant.

• Match of a state at some point during a time range: Locate (CompromiseDate (0),
CompromiseDate (t'-1), DestroyDate (0), DestroyDate (t'-1)). Locate keys with a Compromise
Date at or before t’-1, and with a Destroy Date at or before t’-1. As there is no exit transition from
the Destroyed-Compromised state, the start of the range (t) is irrelevant.

4.2 Using Wrapped Keys with KMIP

KMIP provides the option to register and get keys in wrapped format. Clients request the server to return
a wrapped key by including the Key Wrapping Specification in the Get Request Payload. Similarly, clients
register a wrapped key by including the Key Wrapping Data in the Register Request Payload.

The Wrapping Method within the Key Wrapping Data identifies the type of mechanism used to wrap the
key, but does not identify the algorithm or block cipher mode. It is possible to determine these from the
attributes set for the specified Encryption Key or MAC/Signing Key. If a key has multiple Cryptographic
Parameters set, clients may include the applicable parameters in Key Wrapping Specification. If omitted,
the server chooses the Cryptographic Parameter attribute with the lowest index.

The Key Value includes both the Key Material and, optionally, attributes of the key; these may be
provided by the client in the Register Request Payload; the server only includes attributes when
requested in the Key Wrapping Specification of the Get Request Payload. The Key Value may be
encrypted, signed/MACed, or both encrypted and signed/MACed (and vice versa). In addition, clients
have the option to request or import a wrapped Key Block according to standards, such as ANSI TR-31,
or vendor-specific key wrapping methods.

It is important to note that if the Key Wrapping Specification is included in the Get Request Payload, the
Key Value may not necessarily be encrypted. If the Wrapping Method is MAC/sign, the returned Key
Value is in plaintext, and the Key Wrapping Data includes the MAC or Signature of the Key Value.

The Key Wrap Type parameter in the Get operation may be used to determine how a key that was
registered as a wrapped key is returned to a client. Specifying a value of Not Wrapped ensures that the
server returns the unwrapped key value. A value of As Registered can be used to retrieve the key value
as it was provided in the Register operation. In the latter case, the wrapping key need not be known to
the server. If no Key Wrap Type is provided, then the server may choose to return the key either
wrapped or unwrapped. A Get operation may use both a Key Wrap Type and a Wrapping Key
Specification, in which case the Key Wrap Type is processed as if there was no Wrapping Key
Specification, and the result is then wrapped as specified.

Prior to wrapping or unwrapping a key, the server should verify that the wrapping key is allowed to be
used for the specified purpose. For example, if the Unique ID of a symmetric key is specified in the Key
Wrapping Specification inside the Get request, the symmetric key should have the “Wrap Key” bit set in
its Cryptographic Usage Mask. Similarly, if the client registers a signed key, the server should verify that
the Signature Key, as specified by the client inside the Key Wrapping Data, has the “Verify” bit set in the
Cryptographic Usage Mask. If the wrapping key is not permitted to be used for the requested purpose
(e.g., when the Cryptographic Usage Mask is not set), the server should return the Operation Failed result
status.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 40 of 55

4.2.1 Encrypt-only Example with a Symmetric Key as an Encryption Key for a
Get Request and Response

The client sends a Get request to obtain a key that is stored on the server. When the client sends a Get
request to the server, a Key Wrapping Specification may be included. If a Key Wrapping Specification is
included in the Get request, and a client wants the requested key and its Cryptographic Usage Mask
attribute to be wrapped with AES key wrap, the client includes the following information in the Key
Wrapping Specification:

• Wrapping Method: Encrypt

• Encryption Key Information

• Unique Key ID: Key ID of the AES wrapping key

• Cryptographic Parameters: The Block Cipher Mode is NISTKeyWrap (not necessary if default
block cipher mode for wrapping key is NISTKeyWrap)

• Attribute Name: Cryptographic Usage Mask

The server uses the Unique Key ID specified by the client to determine the attributes set for the proposed
wrapping key. For example, the algorithm of the wrapping key is not explicitly specified inside the Key
Wrapping Specification. The server determines the algorithm to be used for wrapping the key by
identifying the Algorithm attribute set for the specified Encryption Key.

The Cryptographic Parameters attribute should be specified by the client if multiple instances of the
Cryptographic Parameters exist, and the lowest index does not correspond to the NIST key wrap mode of
operation. The server should verify that the AES wrapping key has NISTKeyWrap set as an allowable
Block Cipher Mode, and that the “Wrap Key” bit is set in the Cryptographic Usage Mask.

If the correct data was provided to the server, and no conflicts exist, the server AES key wraps the Key
Value (both the Key Material and the Cryptographic Usage Mask attribute) for the requested key with the
wrapping key specified in the Encryption Key Information. The wrapped key (byte string) is returned in the
server’s response inside the Key Value of the Key Block.

The Key Wrapping Data of the Key Block in the Get Response Payload includes the same data as
specified in the Key Wrapping Specification of the Get Request Payload except for the Attribute Name.

4.2.2 Encrypt-only Example with a Symmetric Key as an Encryption Key for a
Register Request and Response

The client sends a Register request to the server and includes the wrapped key and the Unique ID of the
wrapping key inside the Request Payload. The wrapped key is provided to the server inside the Key
Block. The Key Block includes the Key Value Type, the Key Value, and the Key Wrapping Data. The Key
Value Type identifies the format of the Key Material, the Key Value consists of the Key Material and
optional attributes that may be included to cryptographically bind the attributes to the Key Material, and
the Key Wrapping Data identifies the wrapping mechanism and the encryption key used to wrap the
object and the wrapping mechanism.

Similar to the example in 4.2.1 the key is wrapped using the AES key wrap. The Key Value includes four
attributes: Cryptographic Algorithm, Cryptographic Length, Cryptographic Parameters, and Cryptographic
Usage Mask.

The Key Wrapping Data includes the following information:

• Wrapping Method: Encrypt

• Encryption Key Information

• Unique Key ID: Key ID of the AES wrapping key

• Cryptographic Parameters: The Block Cipher Mode is NISTKeyWrap (not necessary if default
block cipher mode for wrapping key is NISTKeyWrap)

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 41 of 55

Attributes do not need to be specified in the Key Wrapping Data. When registering a wrapped Key Value
with attributes, clients may include these attributes inside the Key Value without specifying them inside
the Template-Attribute.

Prior to unwrapping the key, the server determines the wrapping algorithm from the Algorithm attribute set
for the specified Unique ID in the Encryption Key Information. The server verifies that the wrapping key
may be used for the specified purpose. In particular, if the client includes the Cryptographic Parameters in
the Encryption Key Information, the server verifies that the specified Block Cipher Mode is set for the
wrapping key. The server also verifies that the wrapping key has the “Unwrap Key” bit set in the
Cryptographic Usage Mask.

The Register Response Payload includes the Unique ID of the newly registered key and an optional list of
attributes that were implicitly set by the server.

4.2.3 Encrypt-only Example with an Asymmetric Key as an Encryption Key for a
Get Request and Response

The client sends a Get request to obtain a key (either symmetric or asymmetric) that is stored on the
server. When the client sends a Get request to the server, a Key Wrapping Specification may be
included. If a Key Wrapping Specification is included, and the key is to be wrapped with an RSA public
key using the OAEP encryption scheme, the client includes the following information in the Key Wrapping
Specification. Note that for this example, attributes for the requested key are not requested.

• Wrapping Method: Encrypt

• Encryption Key Information

• Unique Key ID: Key ID of the RSA public key

• Cryptographic Parameters:

Padding Method: OAEP

Hashing Algorithm: SHA-256

The Cryptographic Parameters attribute is specified by the client if multiple instances of Cryptographic
Parameters exist for the wrapping key, and the lowest index does not correspond to the associated
padding method. The server should verify that the specified Cryptographic Parameters in the Key
Wrapping Specification and the “Wrap Key” bit in the Cryptographic Usage Mask are set for the
corresponding wrapping key.

The Key Wrapping Data returned by the server in the Key Block of the Get Response Payload includes
the same data as specified in the Key Wrapping Specification of the Get Request Payload.

The Mask Generator and Mask Generator Hashing Algorithm enumerations allow the Mask Generation
Function (MGF) and associated algorithm to be explicitly specified. If Mask Generator Hashing Algorithm
is omitted, then the value specified for Hashing Algorithm is assumed.

The example above assumes the same algorithm (SHA-256) is used for both the Mask Generation
Function (MGF) and hashing data.

4.2.4 MAC-only Example with an HMAC Key as an Authentication Key for a Get
Request and Response

The client sends a Get request to obtain a key that is stored on the server. When the client sends a Get
request to the server, a Key Wrapping Specification may be included. If a key and Custom Attribute (i.e.,
x-Nonce) is to be MACed with HMAC SHA-256, the following Key Wrapping Specification is specified:

• Wrapping Method: MAC/sign

• MAC/Signature Key Information

• Unique Key ID: Key ID of the MACing key (note that the algorithm associated with this key
would be HMAC-SHA256)

• Attribute Name: x-Nonce

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 42 of 55

For HMAC, no Cryptographic Parameters need to be specified, since the algorithm, including the hash
function, may be determined from the Algorithm attribute set for the specified MAC Key. The server
should verify that the HMAC key has the “MAC Generate” bit set in the Cryptographic Usage Mask. Note
that an HMAC key does not require the “Wrap Key” bit to be set in the Cryptographic Usage Mask.

The server creates an HMAC value over the Key Value if the specified MACing key may be used for the
specified purpose and no conflicts exist. The Key Value is returned in plaintext, and the Key Block
includes the following Key Wrapping Data:

• Wrapping Method: MAC/sign

• MAC/Signature Key Information

• Unique Key ID: Key ID of the MACing key

• MAC/Signature: HMAC result of the Key Value

In the example, the custom attribute x-Nonce was included to help clients, who are relying on the proxy
model, to detect replay attacks. End-clients, who communicate with the key management server, may not
support TLS and may not be able to rely on the message protection mechanisms provided by a security
protocol. An alternative approach for these clients would be to use the custom attribute to hold a random
number, counter, nonce, date, or time. The custom attribute needs to be created before requesting the
server to return a wrapped key and is recommended to be set if clients frequently wrap/sign the same key
with the same wrapping/signing key.

4.2.5 Registering a Wrapped Key as an Opaque Cryptographic Object

Clients may want to register and store a wrapped key on the server without the server being able to
unwrap the key (i.e., the wrapping key is not known to the server). Instead of storing the wrapped key as
an opaque object, clients have the option to store the wrapped key inside the Key Block as an opaque
cryptographic object, i.e., the wrapped key is registered as a managed cryptographic object, but the
encoding of the key is unknown to the server. Registering an opaque cryptographic object allows clients
to set all the applicable attributes that apply to cryptographic objects (e.g., Cryptographic Algorithm and
Cryptographic Length),

Opaque cryptographic objects are set by specifying the following inside the Key Block structure:

• Key Format Type: Opaque

• Key Material: Wrapped key as a Byte String

The Key Wrapping Data does not need to be specified.

4.2.6 Encoding Option for Wrapped Keys

KMIP provides the option to specify the Encoding Option inside the Key Wrapping Specification and Key
Wrapping Data. This option allows users to Get or Register the Key Value in a non-TTLV encoded format.
This may be desirable in a proxy environment, where the end-client is not KMIP-aware.

The Encoding Option is only available if no attributes are specified inside the Key Value. The server
returns the Encoding Option Error if both the Encoding Option and Attribute Names are specified inside
the Key Wrapping Specification. Similarly, the server is expected to return the Encoding Option Error
when registering a wrapped object with attributes inside the Key Value and the Encoding Option is set in
the Key Wrapping Data. If no Encoding Option is specified, KMIP assumes that the Key Value is TTLV-
encoded. Thus, by default, the complete TTLV-encoded Key Value content, as shown in the example
below, is wrapped:

Key Material || Byte String || Length || Key Material Value

420043 || 08 || 00000010 || 0123456789ABCDEF0123456789ABCDEF

Some end-clients may not understand or have the space for anything more than the actual key material
(i.e., 0123456789ABCDEF0123456789ABCDEF in the above example). To wrap only the Key Material
value during a Get operation, the Encoding Option (00001 for no encoding) should be specified inside the
Key Wrapping Specification. The same Encoding Option should be specified in the Key Wrapping Data

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 43 of 55

when returning the non-TTLV encoded wrapped object inside the Get Response Payload or when
registering a wrapped object in non-TTLV encoded format.

It is important to be aware of the risks involved when excluding the attributes from the Key Value. Binding
the attributes to the key material in certain environments is essential to the security of the end-client. An
untrusted proxy could change the attributes (provided separately via the Get Attributes operation) that
determine how the key is being used (e.g., Cryptographic Usage). Including the attributes inside the Key
Value and cryptographically binding it to the Key Material could prevent potential misuse of the
cryptographic object and may prevent a replay attack if, for example, a nonce is included as a custom
attribute. The exclusion of attributes and therefore the usage of the Encoding Option are only
recommended in at least one of the following scenarios:

1. End-clients are registered with the KMIP server and are communicating with the server directly (i.e.,
the TLS connection is between the server and client).

2. The environment is controlled and non-KMIP-aware end-clients are aware how wrapped
cryptographic objects (possibly Raw keys) from the KMIP server should be used without having to
rely on the attributes provided by the Get Attributes operation.

3. The wrapped cryptographic object consists of attributes inside the Key Material value. These
attributes are not interpreted by the KMIP server but are understood by the end-client. This may be
the case if the Key Format Type is opaque or vendor-specific.

4. The proxy communicating with the KMIP server on behalf of the end-client is considered to be trusted
and is operating in a secure environment.

Registering a wrapped object without attributes is not recommended in a proxy environment, unless
scenario 4 is met.

4.3 Interoperable Key Naming for Tape

This section describes methods and provides examples for creating and storing key identifiers that are
interoperable across multi-vendor KMIP clients, using the KMIP Tape Library Profiles.

4.3.1 Native Tape Encryption by a KMIP Client

A common method for naming and retrieving keys is needed to support moving tape cartridges between 2
or more KMIP-compliant tape libraries that are all registered with the same KMIP key manager.

4.3.1.1 Method Overview

The method uses the KMIP Tape Library Profile. This profile specifies use of the KMIP Application
Specific Information (ASI) attribute. The method supports both client-generated and server-generated key
identifiers.

The key identifier is a KMIP string, composed of hexadecimal numeric characters. This string of
characters is unique within a chosen namespace. Methods of generating the string are determined by
policy. The LIBRARY-LTO namespace is preferred for maximum interoperability.

A compressed (numeric) transformation of the identifier string is stored in the tape format’s Key
Associated Data. This allows for future retrieval of the key for decryption.

Interoperability is achieved by a) standardized algorithms to map byte values between the numeric (KAD)
and text (ASI) representations of the identifier; and b) standardized ordering of bytes within the KAD so
the identifier can be re-assembled in the correct sequence by other compliant implementations.
Examples of the algorithms are provided below.

4.3.1.2 Definitions

Key Associated Data (KAD): Part of the tape format. May be segmented into authenticated and
unauthenticated fields. KAD usage is detailed in the SCSI SSC-3 standard from the T10 organization.

Application Specific Information (ASI): A KMIP attribute.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 44 of 55

Hexadecimal numeric characters: Case-sensitive, printable, single byte ASCII characters representing the
numbers 0 through 9 and uppercase alpha A through F. (US-ASCII characters 30h-39h and 41h-46h).

Hexadecimal numeric characters are always paired, each pair representing a single 8-bit numeric value.
A leading zero character is provided, if necessary, so that every byte in the tape’s KAD is represented by
exactly two hexadecimal numeric characters.

N(k): The number of bytes in the tape format combined KAD fields (both authenticated and
unauthenticated).

N(a), N(u): The number of bytes in the tape formats authenticated, and unauthenticated KAD fields,
respectively.

4.3.1.3 Implementation Example of Algorithm 1. Key identifier string to numeric
direction (Converting the ASI string to tape format’s KAD)

Refer to the KMIP Tape profile for algorithm 1.

This algorithm is associated with writing the KAD, typically to allow future retrieval of a key. An example
implementation is as follows.

1. The client creates a key identifier or obtains one from the server. The identifier is a KMIP string of
hexadecimal numeric characters. Copy the string to an input buffer of size 2*N(k) bytes. For LTO4, an
88 character string is sufficient to represent any key name stored directly in the KAD fields. For LTO5,
a 184 character string is sufficient to represent any key name stored directly in the KAD fields.

2. Define output buffers for unauthenticated KAD, and authenticated KAD, of size N(u) and N(a)
respectively. For LTO4, this would be 32 bytes of unauthenticated data, and 12 bytes of authenticated
data. For LTO5, this would be 32 bytes of unauthenticated data and 60 bytes of authenticated data.

3. Define the standard POSIX (also known as C) locale. Each character in the string is a single-byte US-
ASCII character.

4. First, populate the authenticated KAD buffer, converting a sub-string consisting of the last (rightmost)
2*N(a) characters of the key identifier string.

5. When the authenticated KAD is filled, next populate the unauthenticated KAD buffer, by converting
the remaining hexadecimal character pairs (if any) of the identifier string.

4.3.1.4 Implementation Example of Algorithm 2. Numeric to key identifier string
direction (Converting tape format’s KAD to ASI string)

This algorithm is associated with reading the KAD, typically in preparation for retrieving a key. An
example implementation is as follows

1. Define an input buffer sized for N(k). For LTO4, N(k) is 44 bytes (12 bytes authenticated, 32

unauthenticated). For LTO5, N(k) is 92 bytes (60 bytes authenticated, 32 bytes unauthenticated).

2. Define an output buffer sufficient to contain a string with a maximum length of 2*N(k) bytes.

3. Define the standard POSIX (also known as C) locale. Each character in the string is a single-byte US-

ASCII character.

4. First, copy the tape format’s unauthenticated KAD data (if any) to the input buffer. Next, bytes from

the authenticated KAD are concatenated, after the unauthenticated bytes. In many implementations

the unauthenticated KAD is empty, and in those cases the entire input buffer will be populated with

bytes from authenticated KAD.

5. For each byte in the input buffer, convert to US-ASCII as follows:

6. Convert the byte's value to exactly 2 hexadecimal numeric characters, including a leading 0 where

necessary. Append these 2 numeric characters to the output buffer, with the high-nibble represented

by the left-most hexadecimal numeric character.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 45 of 55

4.3.1.5 Usage Example

The following usage example will create a key identifier which can be stored in ASI. The identifier will
then be translated for storage into a tape format’s KAD, using algorithm 1. Both LTO4 and LTO5
examples of KAD contents are provided.

The reverse translation from KAD bytes to the KMIP key identifier is not shown but would be
accomplished via algorithm 2. This re-constructed key identifier string would be used to Locate the key
via ASI.

Example of creating a key identifier. Implementation-specific material is used to generate a key
identifier. The content of this material is based on server or client policy. An example of a text string
which could be used to generate a KMIP key identifier for tape is as follows.

SN123456_MFR:XYZ INC_BAR12345_TM20131234

This example is a set of 40 characters which will be used to create a KMIP key identifier for use as
specified in the KMIP Tape Profile. Every 8th character is bold.

This set of characters is suitable as a key identifier for either LTO4 or LTO5, since it will fit within the
smaller 44 character KAD space of LTO4.

The corresponding KMIP key identifier, which is a string of hexadecimal numeric character pairs, is shown
below. This string will be stored in ASI Application Data.

53 4E 31 32 33 34 35 36 5F 4D 46 52 3A 58 59 5A 20 49 4E 43 5F 42 41 52

 31 32 33 34 35 5F 54 4D 32 30 31 33 31 32 33 34

Spaces are shown for to improve readability but are NOT part of the ASI string. Every 8th hexadecimal
numeric pair is bold.

Note the identifier has exactly 2x more characters than the material used to generate the KMIP key
identifier.

Translating the key identifier to KAD bytes (LTO4). The corresponding KAD content, for use with an
LTO4 tape cartridge is shown in the following figure.

U
K

A
D

A
K

A
D

28 of 32 bytes utilized

3331 3432

32 3330 3135 54 4D5F

3331 3432

53 34 35 364E 31 32 33

5F 4D 46 52 3A 5A58 59

4E20 4349 42 415F 52

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 46 of 55

FIGURE 2: KAD CONTENT FOR LTO4

Each square is 1 byte (8 bits). Each square contains the 8-bit value which represents a pair of
hexadecimal numeric characters in the KMIP key identifier string.

Every 8th byte of KAD is shaded.

The KAD was populated by converting the rightmost 24 characters (12-character pairs) of the identifier
string into bytes of authenticated KAD. The remaining characters of the identifier were written to
unauthenticated KAD.

Translating the key identifier to KAD bytes (LTO5). The corresponding KAD for use with an LTO5 and
later tape cartridge is shown in the following figure.

A
K

A
D

U
K

A
D

53 34 35 364E 31 32 33

5F 4D 46 52 3A 5A58 59

4E20 4349 42 415F 52

3331 3432 35 54 4D5F

32 3330 31 3331 3432

40 of 60 bytes utilized

0 of 32 bytes utilized

FIGURE 3: KAD CONTENT FOR LTO5

Each square is 1 byte (8 bits). Each square contains the 8-bit value which represents a pair of
hexadecimal numeric characters in the key identifier string.

Every 8th byte of KAD is shaded.

The KAD was populated by converting the rightmost 80 characters (40-character pairs) of the identifier
string into bytes of authenticated KAD. The unauthenticated KAD is not used because all of the data fits
within authenticated KAD.

4.4 Registering Extension Information

As tag values and their interpretation for the most part should be known for a client and server to
meaningfully use an extension, the following registration procedure should be used.

1. Document the Extensions including:

a. Extension Tag, Extension Name, Extension Type values to be reserved

b. A brief description of the purpose of the Extension

c. Example use case messages (requests and responses)

d. Example Guidance

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 47 of 55

2. Send the Document to the KMIP TC requesting review

3. Request a KMIP TC ballot on accepting the reservation of the Extension

It is anticipated that a template document may be produced for this registration process.

4.5 Using KMIP for PGP Keys

PGP, both as vendor product and as standard, provides a rich environment for key management that
addresses significant use cases related to such areas as secure exchange of email, documents and other
resources. Although KMIP is by no means required for support of PGP environments, it can provide a
valuable mechanism for movement of PGP keys between a particular PGP environment, such as
Symantec Encryption Management Server (SEMS, née PGP Universal), and another key management
environment.

KMIP does not attempt to represent the full range of functionality in PGP environments. However, the use
cases related to movement of PGP keys across environments, described in the KMIP Use Cases
document, can be supported by taking advantage both of the PGP-specific capabilities in KMIP, such as
the PGP Key object introduced in KMIP V1.2, and of KMIP messages, objects, operations and attributes
in general.

The PGP Key managed object contains a PGP key (specified in [RFC4880]) as an opaque blob. KMIP
compliant servers do not need to understand the fine structure of PGP keys. The intention here is that
PGP-enabled clients be able to discover the PGP Key managed cryptographic objects by searching for
one of the various names contained within the block. The Alternative Name attribute can be used to
specify one or more names (e.g. User IDs) that are attached to the PGP Key object. The PGP-enabled
clients are expected to digest the PGP Key object and properly assign these Alternative Name attributes
on to the cryptographic managed object. The KMIP server does not have to do this work.

Internally, PGP keys may contain many public-private key pairs, each tied to a specific type of encryption
operations (one key for signing, one for encryption, and one to tie the other two together in a trust
relationship is one typical arrangement.) The Link attribute supports new values that enable the
description of this set of PGP Key relationships. The new values are parent, child, previous and next. For
example, the private and public keys associated with a PGP Key can be pointed to from the PGP Key
with the “child” link attribute. Additional Decryption Keys (ADK) can be pointed to from the PGP Key with
the “child” link attribute and can be point to each other with the “previous” and “next” link attributes. In this
way, the link attributes can be used to define the structural relationships required to establish the web of
trust for a PGP Key.

As mentioned above, KMIP does not attempt to represent all the information about PGP keys that would
be managed within a PGP implementation. For example, policies such as algorithms supported, by a
PGP key are not expressed within KMIP. Instead, KMIP enables the specification of these attributes, if
necessary, as information enclosed within the opaque value defined for a given PGP key. This
information would be handled by security administration and out-of-band coordination between the PGP
environments that participate in the KMIP exchanges related to PGP keys.

KMIP complaint servers are not expected to be able to create PGP Key objects from scratch. PGP-
enabled clients will do the key creation and pass the resulting information up to KMIP.

4.6 KMIP Client Registration Models

There are several common approaches to registering KMIP clients with KMIP servers:

• Manual client registration within a single trust boundary

• Automatic client registration across multiple trust boundaries

• Configuring a KMIP Server for use with Automatic Client Registration

The goal of these approaches is to establish the KMIP-interoperable secure channel or channels between
KMIP servers and clients, such as a mutually-authenticated TLS channel.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 48 of 55

In order to support the goal of establishing an interoperable approach to establishing this channel, this
section provides more detailed information about these approaches to client registration.

The Query Function, Client Registration Methods, provides a client a means to determine which
automated client registrations method(s) a KMIP server supports. Although a KMIP server is not required
to support any automated registration method. Reflecting common usage for KMIP, all three of the
scenarios described below discuss the use of X.509 certificates for trust establishment; other
mechanisms may be used instead but are not described here. Similarly, all three scenarios describe the
establishment of a mutually-authenticated TLS connection as the basis trusted exchange of KMIP
messages, corresponding to the published KMIP authentication suite profiles; other authentication
mechanisms can be used with KMIP, but are not described here.

4.6.1 Manual Client Registration

In this approach, there is no assumption of pre-population of authentication credentials in the client, such
as by installing an X.509 certificate into a tape library or drive during the manufacturing process. Rather, a
credential is propagated out-of-band to the client administrator, who installs it into the client environment.
The credential is then used on initial and subsequent contact between the client and server systems.

This registration model often entails the server administrator creating a package that contains 1) X.509
certificate that the client will use to identify itself to the server when creating a TLS mutually-authenticated
session; 2) information about the X.509 certificate that will be presented by the server to the client during
negotiation of the mutual authentication, enabling the client to verify the server identity; and 3) possibly
additional information that can be included in the credential of the KMIP message sent across the
established channel, such as to provide finer granularity for particular drives within a tape library. As
indicated, the use of this package of materials takes place during two phases: first during the
establishment of the TLS secure channel; second during the transmission of KMIP messages. The server
administrator must have configured the server to recognize the X.509 certificate presented by the client,
to present the correct X.509 certificate of its own to the client in return and to recognize the additional
information provided in the credential object in the KMIP message, if any.

In this model, KMIP is not used to transmit the X.509 certificate and server information used in
establishing the secure channel. There is nothing to prevent KMIP being used to send this information;
but commonly this is done using mechanisms other than KMIP, nor is there any expectation that KMIP is
a required or default mechanism for propagating the credential and the information. The distribution
mechanism, therefore, may well vary across vendors.

The use of additional information as the credential in the KMIP message is also neither required nor a
default. Inclusion of such a credential in the package distributed to the client administrator and in one or
more KMIP messages is also, therefore, likely to vary across vendors.

4.6.2 Automated Client Registration

In this approach the credential used to establish a mutually-authenticated TLS connection is not provided
in the package provided by the server administrator. Instead, the establishment of trust between the client
and server is accomplished by some other mechanism.

A client may use the Query Function, Client Registration Methods, to identify which automated client
registrations method(s) a KMIP server supports. Methods included in the enumeration are Unspecified,
Server Pre-generated, Server On-demand, Client Generated and Client Registered. Test cases which
cover how to use the Client Registration Method Query Function and implement the referenced
automated client registration methods are included in the KMIP Test Cases document [KMIP-TC].

One example of a Server Pre-generated method is having an X.509 certificate installed in a client device
during the manufacturing process. This certificate is then used as a bootstrap mechanism for the
subsequent exchange of the kind of information exchanged between client administrator and server
administrator.

There will often be configuration activity for the client device based on information, such as a Service ID,
received from the server administrator. Once the client administrator initiates auto-registration, the client
device sends the X.509 certificate to the server, for example in order to use it to establish an initial TLS
session. The server then sends the equivalent of the registration packet in section 4.6.1 above to the

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 49 of 55

client and the client returns the certificate to be used for establishing the secure TLS channel with the
server.

In this model, administrator intervention may be required to determine whether the initial client certificate
should be accepted. The scenario above assumes that the return of the server’s packet of registration is
immediate and automatic; alternatively, the return of the packet of information may be done manually by
the server administrator, as in section 4.6.1 above; or the return of the packet of server information may
be done by the server, but only after that action has been approved by an administrator.

As discussed in section 4.6.1, KMIP can be used by the client in sending the X.509 certificates to the
server. However, this is not required. If it is sent to the server using a KMIP register operation, the server
must be able to distinguish that this operation is intended not only to register the cryptographic object, but
also to initiate the registration of the client as a legitimate participant in KMIP message exchange.

4.6.3 Registering Sub-Clients Based on a Trusted Primary Client

Another model is to register sub-clients of a trusted client. In this model, the establishment of trust
between the client and server can be accomplished using either of the approaches in section 4.6.1 or
4.6.2. However, the server may also send additional information to the client, such as a “tenant identifier”,
which it will have to provide to sub-clients for them to use they attempt to register individually. The
individual sub-clients would follow a registration model such as that described in section 4.6.2, but would
also provide the tenant identifier along with the X.509 certificate so that the server can decide whether to
accept the client, based on such criteria as (for example) the TCP/IP address of the sub-client relative to
that of the primary client.

This approach can be used for tiered clients that need to be grouped based on their association with a
larger trusted entity, but that also need individual identities and trust relationships established based on
those identities.

KMIP can be used for sending both the client certificate and the tenant identifier to the server.

4.7 Using One Time Pad Algorithms

A One Time Pad within the Cryptographic Algorithm enumeration allows for One Time Pad algorithms to
be used within the context of KMIP. One Time Pads can be used for cryptographic operations where the
key material is either not known to the KMIP server or the KMIP server is not willing to provide that
information to the KMIP client. Test cases and examples which demonstrate the usage of the One Time
Pad algorithm in combination with the cryptographic operations may be found the KMIP Test Cases
document [KMIP-TC].

4.8 Cryptographic Shredding (Erasure)

Cryptographic (Crypto) Shredding, which is also referred to as Cryptographic Erasure) is the deletion of a
cryptographic key in order to render data encrypted with that key unrecoverable. Cryptographic
shredding may be supported with KMIP via the Client-to-Server Destroy operation and via the Server-to-
Client Notify operation.

If key material used to encrypt data is only persisted (stored) at the KMIP server and not at the encryption
point (KMIP client is co-located with or a proxy to the encryption point) then cryptographic shredding may
be achieved by sending a KMIP Destroy request to the KMIP server. How the KMIP server destroys the
key and whether the server choices to retain meta-data about the deleted key is a vendor implementation
decision and outside of the scope of KMIP. Please see section 4.9 regarding options for determining the
type of key deletion a KMIP server or a KMIP client supports.

If the key material is persisted at the encryption point (in addition to the at the KMIP server) then the
KMIP server may use the (optional) Notify operation with the Destroy Date attribute included to inform the
KMIP client (co-customer attributed with or a proxy to the encryption point) that the key has been deleted.
Upon receipt of this notification the KMIP Client (and encryption point) could be programmed to destroy
any copy of the key that it has stored. Note that KMIP does not require that either a KMIP Server or
KMIP client to support the Notify operation nor does KMIP require that a KMIP client behave in a specific
manner based on a notification. This example just demonstrates how Notify could be used to facilitate

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 50 of 55

key destruction and cryptographic shredding. The method the KMIP client uses to destroy the key and
whether to maintain meta-data for the key is a vendor implementation and is also out of scope of KMIP.

4.9 Key Shredding

Key destruction is eliminating a cryptographic key so that it is no longer accessible for use in a
cryptographic function (e.g. NIST [SP800-57-1] Destroy state). Key shredding is taking the destruction
process a step further so that the cryptographic key is destroyed using a methods where the key is no
only inaccessible from the cryptographic application in which the key was used, but that the key is not
recoverable using forensics methods outside of the cryptographic application. This type of destruction
method normally follows a data sanitization method such as overwriting key with random data (e.g.
[DoD5220.22M] NIST [SP800-88]). KMIP does not impose any requirements on the methods a KMIP
client or KMIP server uses to destroy a key. However, it is possible to query the type of destruction
methods that a KMIP client or KMIP server support by using the Query Capabilities function within the
Query operation. The Capability Information object which is returned in the Query response may contain
the Shredding Algorithm which specifies the supported destruction method.

4.10 ReEncrypt

There are contexts in which a client may wish to change the key being used to protect information without
having to expose the plaintext to the client.

The Ephemeral tag within the Request Batch item allows the client to request that the plaintext output
from a cryptographic operation is not returned to the client.

When combined with the Data Enumeration, to refer to the output from a previous Batch Item, a client can
request a Decryption followed by an Encryption without the plaintext output from the Decryption being
returned to the client.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 51 of 55

5 Deprecated KMIP Functionality
This section describes KMIP functionality that has been deprecated.

Use of deprecated functionality is discouraged since such functionality may be dropped in a future
release of the [KMIP-SPEC].

5.1 KMIP Deprecation Rule

Items in the normative KMIP Specification [KMIP-SPEC] document can be marked deprecated in any
document version but will be removed only in a major version. Similarly, conformance clauses or other
normative information in the KMIP Profiles [KMIP-PROFILES] document can be deprecated in any
document version but removed only in a major version. Information in the non-normative KMIP Usage
Guide [this document] and KMIP Test Cases [KMIP-TC] documents may be removed in any document
version.

5.2 Deprecated Functions

As this is the first release of KMIP 2.0 there are presently no deprecated functions.

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 52 of 55

Appendix A. Acknowledgments

The following individuals have participated in the creation of this document and are gratefully
acknowledged:

Participants:
Rinkesh Bansal - IBM
Jeff Bartell - Individual
Gabriel Becker - KRYPTUS
Andre Bereza - KRYPTUS
Anthony Berglas - Cryptsoft Pty Ltd.
Mathias Bjorkqvist - IBM
Joseph Brand - Semper Fortis Solutions
Alan Brown - Thales e-Security
Andrew Byrne - Dell
Tim Chevalier - NetApp
Kenli Chong - QuintessenceLabs Pty Ltd.
Justin Corlett - Cryptsoft Pty Ltd.
Tony Cox - Cryptsoft Pty Ltd.
James Crossland - Northrop Grumman
Stephen Edwards - Semper Fortis Solutions
Stan Feather - Hewlett Packard Enterprise (HPE)
Indra Fitzgerald - Utimaco IS GmbH
Judith Furlong - Dell
Gary Gardner - Fornetix
Susan Gleeson - Oracle
Steve He - Thales e-Security
Christopher Hillier - Hewlett Packard Enterprise (HPE)
Tim Hudson - Cryptsoft Pty Ltd.
Nitin Jain - SafeNet, Inc.
Gershon Janssen - Individual
Mark Joseph - P6R, Inc
Paul Lechner - KeyNexus Inc
John Leiseboer - QuintessenceLabs Pty Ltd.
Jarrett Lu - Oracle
Jeff MacMillan - KeyNexus Inc
John Major - QuintessenceLabs Pty Ltd.
Cecilia Majorel - Quintessence Labs
Gabriel Mandaji - KRYPTUS
Jon Mentzell - Fornetix
Prashant Mestri - IBM
Kevin Mooney - Fornetix
Ladan Nekuii - Thales e-Security
Jason Novecosky - KeyNexus Inc
Matt O'reilly - Fornetix
Sanjay Panchal - IBM
Mahesh Paradkar - IBM
Steve Pate - Thales e-Security
Greg Pepus - Semper Fortis Solutions
Bruce Rich - Cryptsoft Pty Ltd.
Thad Roemer - Dyadic Security Ltd.
Thad Roemer - Unbound Tech
Greg Scott - Cryptsoft Pty Ltd.
Martin Shannon - QuintessenceLabs Pty Ltd.
Gerald Stueve - Fornetix
Jim Susoy - P6R, Inc

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 53 of 55

Jason Thatcher - Cryptsoft Pty Ltd.
Peter Tsai - Thales e-Security
Charles White - Fornetix
Steven Wierenga - Utimaco IS GmbH
Kyle Wuolle - KeyNexus Inc

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 54 of 55

Appendix B. Table of Figures and Tables

Table of Figures
Figure 1: Aggregator Client Example .. 13

Figure 2: KAD Content for LTO4 ... 46

Figure 3: KAD Content for LTO5 ... 46

Table of Tables
Table 1: ID Placeholder Prior to and Resulting from a KMIP Operation ... 16

Table 2: Cryptographic Usage Masks Pairs .. 18

Table 3: ECC Recommended Curve Mapping.. 23

kmip-ug-v2.0-cn01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 55 of 55

Appendix C. Revision History

Revision Date Editor Changes Made

V2.0-wd01 14 July 2017 Judy Furlong Initial Draft

Copied KMIP 1.4 UG content into KMIP
2.0 starter document.

V2.0-wd01b 25 February
2019

Judy Furlong Initial Draft for 2019 F2F Meeting

Now in latest KMIP CN template

V2.0-wd02 3 April 2019 Judy Furlong Align with KMIP 2.0 Spec

Incorporate content developed during F2F
meeting

Other editorial changes

V2.0-wd03 16 April 2019 Judy Furlong Incorporate review comments

Added Acknowledgements

V2.0-wd04 19 April 2019 Judy Furlong Incorporate additional review comments

[Rev number] [Rev Date] [Modified By] [Summary of Changes]

