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Notices 

Copyright © OASIS Open 2019.  All Rights Reserved. 

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual 
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website. 

This document and translations of it may be copied and furnished to others, and derivative works that 
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, 
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice 
and this section are included on all such copies and derivative works. However, this document itself may 
not be modified in any way, including by removing the copyright notice or references to OASIS, except as 
needed for the purpose of developing any document or deliverable produced by an OASIS Technical 
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must 
be followed) or as required to translate it into languages other than English. 

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors 
or assigns. 

This document and the information contained herein is provided on an "AS IS" basis and OASIS 
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY 
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. 

https://www.oasis-open.org/policies-guidelines/ipr
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1 Introduction 
This Key Management Interoperability Protocol Usage Guide Version 2.0 is intended to complement the 
Key Management Interoperability Protocol Specification [KMIP-Spec] by providing guidance on how to 
implement the Key Management Interoperability Protocol (KMIP) most effectively to ensure 
interoperability and to address key management usage scenarios. It includes the following guidance: 

• Clarification of assumptions and requirements that drive or influence the design of KMIP and the 
implementation of KMIP-compliant key management. 

• Specific recommendations for implementation of KMIP functionality. 

• Clarification of mandatory and optional capabilities for conformant implementations. 

• Descriptions of how to use KMIP functionality to address specific key management usage scenarios 
or to solve key management related issues. 

A selected set of conformance profiles and authentication suites are defined in the KMIP Profiles 
specification [KMIP-PROFILES]. 

Further assistance for implementing KMIP is provided by the KMIP Test Cases document [KMIP-TC] that 
describes a set of recommended test cases and provides the TTLV (Tag/Type/Length/Value) format for 
the message exchanges defined by those test cases. 

1.1 References (non-normative) 

[KMIP-SPEC] Key Management Interoperability Protocol Specification Version 2.0. Edited by Tony 
Cox and Charles White. Latest version: https://docs.oasis-open.org/kmip/kmip-
spec/v2.0/kmip-spec-v2.0.html. 

[KMIP-PROF] Key Management Interoperability Protocol Profiles Version 2.0. Edited by Tim 
Hudson and Robert Lockhart. Latest version: https://docs.oasis-open.org/kmip/kmip-
profiles/v2.0/kmip-profiles-v2.0.html. 

[KMIP-TC] Key Management Interoperability Protocol Test Cases Version 2.0. Edited by Tim 
Hudson and Mark Joseph. Latest version: https://docs.oasis-open.org/kmip/kmip-
testcases/v2.0/kmip-testcases-v2.0.html. 

[DoD5220.22M] National Industrial Security Program Operating Manual, February 2006 (Incorporating 
Change 1 March 28, 2013), 
http://www.dtic.mil/whs/directives/corres/pdf/522022m.pdf 

[ECC-Brainpool] ECC Brainpool Standard Curves and Curve Generation v. 1.0.19.10.2005, 
http://www.ecc-brainpool.org/download/Domain-parameters.pdf. 

[FIPS 180-4] Secure Hash Standard (SHS), FIPS PUB 180-4, March 2012, 
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf 

[FIPS 186-4] Digital Signature Standard (DSS). FIPS PUB 186-4. July 2013. 
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf  

[FIPS 197] Advanced Encryption Standard (AES). FIPS PUB 197. November 26, 2001. 
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf 

[FIPS 198-1] The Keyed-Hash Message Authentication Code (HMAC). FIPS PUB 198-1. July 
2008. http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf 

[PKCS#1] RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard. June 14, 2002. 
http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-
cryptography-standard.htm. 

[PKCS#10] RSA Laboratories. PKCS #10 v1.7: Certification Request Syntax Standard. May 26, 
2000. http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs10-
certification-request-syntax-standard.htm. 

[PKCS#11] OASIS PKCS#11 Cryptographic Token Interface Base Specification Version 3.0 

[RFC1321] R. Rivest, The MD5 Message-Digest Algorithm, IETF RFC 1321, Apr 1992, 
http://www.ietf.org/rfc/rfc1321.txt 

https://docs.oasis-open.org/kmip/kmip-spec/v2.0/kmip-spec-v2.0.html
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/kmip-spec-v2.0.html
https://docs.oasis-open.org/kmip/kmip-profiles/v2.0/kmip-profiles-v2.0.html
https://docs.oasis-open.org/kmip/kmip-profiles/v2.0/kmip-profiles-v2.0.html
https://docs.oasis-open.org/kmip/kmip-testcases/v2.0/kmip-testcases-v2.0.html
https://docs.oasis-open.org/kmip/kmip-testcases/v2.0/kmip-testcases-v2.0.html
http://www.dtic.mil/whs/directives/corres/pdf/522022m.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm
http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm
http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs10-certification-request-syntax-standard.htm
http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs10-certification-request-syntax-standard.htm
http://www.ietf.org/rfc/rfc1321.txt
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[RFC1421] J. Linn, Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption 
and Authentication Procedures, IETF RFC 1421, Feb 1993, 
http://www.ietf.org/rfc/rfc1421.txt 

[RFC3647] S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu. RFC3647: Internet X.509 
Public Key Infrastructure Certificate Policy and Certification Practices Framework. 
November 2003. http://www.ietf.org/rfc/rfc3647.txt 

[RFC4210] C. Adams, S. Farrell, T. Kause and T. Mononen, Internet X.509 Public Key 
Infrastructure Certificate Management Protocol (CMP), IETF RFC 2510, Sep 2005, 
http://www.ietf.org/rfc/rfc4210.txt 

[RFC4211] J. Schaad, Internet X.509 Public Key Infrastructure Certificate Request Message 
Format (CRMF), IETF RFC 4211, Sep 2005, http://www.ietf.org/rfc/rfc4211.txt 

[RFC4949] R. Shirey. RFC4949:  Internet Security Glossary, Version 2. August 2007. 
http://www.ietf.org/rfc/rfc4949.txt 

[RFC4880] J. Callas, L. Donnerhacke, H. Finney, D. Shaw and R. Thayer. RFC4880:  OpenPGP 
Message Format. November 2007. http://www.ietf.org/rfc/rfc4880.txt 

[RFC5272] J. Schaad and M. Meyers, Certificate Management over CMS (CMC), IETF RFC 
5272, Jun 2008, http://www.ietf.org/rfc/rfc5272.txt 

[RFC5280] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. RFC5280: 
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List 
(CRL) Profile. May 2008. http://www.ietf.org/rfc/rfc5280.txt 

[RFC5639] M. Lochter, J. Merkle, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves 
and Curve Generation, IETF RFC 5639, March 2010, 
http://www.ietf.org/rfc/rfc5639.txt. 

[RFC7292] K. Moriarty, M. Nystrom, S. Parkinson, A. Rusch, M. Scott, PKCS#12:  Personal 
Information Exchange Syntax v1.1, IETF RFC 7292, July 2014, 
https://tools.ietf.org/html/rfc7292 

[RFC7748]  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves for Security", RFC 7748, 
DOI 10.17487/RFC7748, January 2016, https://www.rfc-editor.org/info/rfc7748 

[SEC2] SEC 2: Recommended Elliptic Curve Domain Parameters, 
,http://www.secg.org/SEC2-Ver-1.0.pdf. 

[SP800-38A] M. Dworkin. Recommendation for Block Cipher Modes of Operation – Methods and 
Techniques. NIST Special Publication 800-38A, Dec 2001. 
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf 

[SP800-38D] M. Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter 
Mode (GCM) and GMAC. NIST Special Publication 800-38D. Nov 2007. 
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf. 

[SP800-38E] M. Dworkin, Recommendation for Block Cipher Modes of Operation: The XTS-AES 
Mode for Confidentiality on Block-Oriented Storage Devices, NIST Special 
Publication 800-38E, January 2010, 
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf. 

[SP800-56A] E. Barker, L. Chen, A. Roginsky, and M. Smid, Recommendations for Pair-Wise Key 
Establishment Schemes Using Discrete Logarithm Cryptography, NIST Special 
Publication 800-56A Revision 2, May 2013, 
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf 

[SP800-57-1] E. Barker, W. Barker, W. Burr, W. Polk and M. Smid, Recommendations for Key 
Management – Part 1:  General (Revision 3), NIST Special Publication 800-57 Part 1 
Revision 3, July 2012, http://csrc.nist.gov/publications/nistpubs/800-57/sp800-
57_part1_rev3_general.pdf 

[SP800-67] W. Barker and E. Barker, Recommendations for the Triple Data Encryption Algorithm 
(TDEA) Block Cipher, NIST Special Publication 800-67 Revision 1, January 2012, 
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf 

[SP800-88] R. Kissel, A. Regenscheid, M. Scholl, K. Stine, Guidelines for Media Sanitization, 
NIST Special Publication 800-88 Revision 1, December 2014, 
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf 

http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc3647.txt
http://www.ietf.org/rfc/rfc4210.txt
http://www.ietf.org/rfc/rfc4211.txt
http://www.ietf.org/rfc/rfc4949.txt
http://www.ietf.org/rfc/rfc4880.txt
http://www.ietf.org/rfc/rfc5272.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5639.txt
https://tools.ietf.org/html/rfc7292
https://www.rfc-editor.org/info/rfc7748
http://www.secg.org/SEC2-Ver-1.0.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf
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2 Assumptions 
The section describes assumptions that underlie the KMIP protocol and the implementation of clients and 
servers that utilize the protocol. 

2.1 Island of Trust 

Clients may be provided key material by the server, but they only use that keying material for the 
purposes explicitly listed in the delivery payload. Clients that ignore these instructions and use the keys in 
ways not explicitly allowed by the server are non-compliant. There is no requirement for the key 
management system, however, to enforce this behavior. 

2.2 Message Security 

KMIP relies on the chosen authentication suite as specified in [KMIP-PROF] to authenticate the client and 
on the underlying transport protocol to provide confidentiality, integrity, message authentication and 
protection against replay attack. KMIP offers a wrapping mechanism for the Key Value that does not rely 
on the transport mechanism used for the messages; the wrapping mechanism is intended for importing or 
exporting managed cryptographic objects. 

2.3 State-less Server 

The protocol operates on the assumption that the server is state-less, which means that there is no 
concept of “sessions” inherent in the protocol. This does not mean that the server itself maintains no 
state, only that the protocol does not require it. 

2.4 Extensible Protocol 

The protocol provides for “private” or vendor-specific extensions, which allow for differentiation among 
vendor implementations. However, any objects, attributes and operations included in an implementation 
are always implemented as specified in [KMIP-SPEC], regardless of whether they are optional or 
mandatory. 

2.5 Server Policy 

A server is expected to be conformant to KMIP and supports the conformance clauses as specified in 
[KMIP-SPEC].  However, a server may refuse a server-supported operation or client-settable attribute if 
disallowed by the server policy (whether expressed within or outside KMIP). Such a decision by the 
server may reflect the trust relationship with a particular client, performance impact of the requested 
operation, or any of a number of other considerations. 

2.6 Synchronous and Asynchronous Operations 

The protocol allows two modes of operation:  synchronous and asynchronous. Synchronous operations 
are those in which a client sends a request and waits for a response from the server. Asynchronous 
operations (are those in which the client sends a request, the server responds with a “pending” status, 
and the client polls the server for the completed response and completion status. Server implementations 
must support synchronous operations but may choose not to support asynchronous operations. 

2.7 Support for “Intelligent Clients” and “Key Using Devices” 

The protocol supports intelligent clients, such as end-user workstations, which are capable of requesting 
all of the functions of KMIP. It also allows subsets of the protocol and possible alternate message 
representations in order to support less-capable devices, which only need a subset of the features of 
KMIP. 
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2.8 Batched Requests and Responses 

The protocol contains a mechanism for sending batched requests and receiving the corresponding 
batched responses, to allow for higher throughput on operations that deal with a large number of entities, 
e. g., requesting dozens or hundreds of keys from a server at one time, and performing operations in a 
group. A Batch Error Continuation option is provided to indicate whether to undo all previous successful 
operations once a request in the batch fails; to continue processing requests after an earlier request in 
the batch fails; or to stop processing the remaining requests in the batch (but not undo previously 
successful operations).  Information may be pipelined between one or more batch items using either the 
ID Placeholder mechanism (which involves omitting the Unique Identifier) or via an indirect reference 
using an enumerated type or an integer to indicate explicitly the origin of the value. 

2.9 Reliable Message Delivery 

The reliable message delivery function is relegated to the transport protocol and is not part of the key 
management protocol itself. 

2.10 Large Responses 

For requests that could result in large responses, a mechanism in the protocol allows a client to specify in 
a request the maximum allowed size of a response, or in the case of the Locate operation, the maximum 
number of items which should be returned. The server indicates in a response to such a request that the 
response would have been too large and, therefore, is not returned. 

2.11 Key Life-cycle and Key State 

[KMIP-SPEC] describes the key life-cycle model, based on the [SP800-57-1] key state definitions, 
supported by the KMIP protocol. Particular implications of the key life-cycle model in terms of defining 
time-related attributes of objects are discussed in Section 3.15. 
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3 Using KMIP Functionality 
This section provides guidance on using the functionality described in the Key Management 
Interoperability Protocol (KMIP) Specification. 

3.1 Authentication 

As discussed in [KMIP-SPEC], a conforming KMIP implementation establishes and maintains channel 
confidentiality and integrity and provides assurance of server authenticity for KMIP messaging. Client 
authentication is performed according to the chosen KMIP authentication suite as specified in [KMIP-
PROF]. Other mechanisms for client and server authentication are possible and optional for KMIP 
implementations. 

KMIP implementations that support the KMIP-defined Credential Types or use other vendor-specific 
mechanisms for authentication may use the optional Authentication structure specified inside the Request 
Header to include additional identification information. Depending on the server’s configuration, the server 
may interpret the identity of the requestor from the Credential structure, contained in the Authentication 
structure if it is not provided during the channel-level authentication. For example, in addition to 
performing mutual authentication during a TLS handshake, the client passes the Credential structure 
(e.g., a username and password) in the request. If the requestor’s username is not specified inside the 
client certificate and is instead specified in the Credential structure, the server interprets the identity of the 
requestor from the Credential structure. This supports use cases where channel-level authentication 
authenticates a machine or service that is used by multiple users of the KMIP server. If the client provides 
the username of the requestor in both the client certificate and the Credential structure, the server verifies 
that the usernames are the same. If they differ, the authentication fails, and the server returns an error. If 
no Credential structure is included in the request, the username of the requestor is expected to be 
provided inside the certificate. If no username is provided in the client certificate and no Credential 
structure is included in the request message, the server is expected to refuse authentication and return 
an error. 

If authentication is unsuccessful, and it is possible to return an “authentication not successful” error, this 
error should be returned in preference to any other result status. This prevents status code probing by a 
client that is not able to authenticate. 

Server decisions regarding which operations to reject if there is insufficiently strong authentication of the 
client are not specified in the protocol. However, see Section 3.2 for operations for which authentication 
and authorization are particularly important. 

3.1.1 Credential 

The Credential object defined in the [KMIP-SPEC] is a structure used to convey information about the 
client, but the contents of this object are not managed by the key management server.  The type of 
information convey within this object varies based on the type of credential (e.g. Username and 
Password, Device Credential and Attestation). 

3.1.1.1 Username and Password Credential Type 

[KMIP-SPEC] defines the Username and Password structure for the Credential Type Username and 
Password. The structure consists of two fields: Username and Password. Password is a recommended, 
but optional, field, which may be excluded only if the client is authenticated using one of the 
authentication suites defined in [KMIP-PROF] For example, if the client performs client certificate 
authentication during the TLS handshake, and the Authentication structure is provided in the Message 
Request, the Password field is an optional field in the Username and Password structure of the Credential 
structure. 

The Credential structure is used to provide additional identification information. As described above, for 
certain use cases, channel-level authentication may only authenticate a machine or service that is used 
by multiple clients of the KMIP server. The Credential structure may be used in this scenario to identify 
individual clients by specifying the username in the Username and Password structure. 
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3.1.1.2 Device Credential Type 

The Device Credential may be used to uniquely identify back-end devices by specifying Device as the 
Credential Type in the Credential structure. 

The Device Credential may be used in a proxy environment where the proxy authenticates with the client 
certificate and supports KMIP while the back-end devices may not support KMIP or TLS. An example is 
illustrated below: 

 

FIGURE 1: AGGREGATOR CLIENT EXAMPLE 

The end device identifies itself with a device unique set of identifier values that include the device 
hardware serial number, the network identifier, the machine identifier, or the media identifier.  For many of 
the self-encrypting devices there is a unique serial number assigned to the device during manufacturing. 
The ability to use network, machine, or media identifier explicitly should map to different device types and 
achieve better interoperability since different types of identifier values are explicitly enumerated. The 
device identifier is included for more generic usage. An optional password or shared secret may be used 
to further authenticate the device. 

Server implementations may choose to enforce rules for uniqueness for different types of identifier 
values, combinations of TLS certificate used in combination with the Device Credential, and optionally 
enforce the use of a Device Credential password. 

Four identifiers are optionally provided but are unique in aggregate: 

1. Serial Number, for example the hardware serial number of the device 
2. Network Identifier, for example the MAC address for Ethernet connected devices 
3. Machine Identifier, for example the client aggregator identifier, such as a tape library aggregating 

tape drives 
4. Media Identifier, for example the volume identifier used for a tape cartridge 

 

The device identifier by choice of server policy may or may not be used in conjunction with the above 
identifiers to insure uniqueness. 

These additional identifiers are generally useful for auditing and monitoring encryption and could 
according to server policy be logged or used in server implementation specific validation. 

A specific example for self-encrypting tape drive and tape library would be: 



 

kmip-ug-v2.0-cn01  24 October 2019 
Non-Standards Track Copyright © OASIS Open 2019.  All Rights Reserved. Page 14 of 55 

1. the tape drive has a serial number that is unique for that manufacturer and the vendor has 
procedures for maintaining and tracking serial number usage 

2. a password optionally is created and stored either on the drive or the library to help authenticate the 
drive 

3. the tape drives may be connected via fiber channel to the library and therefore have a World Wide 
Name assigned 

4. a machine identifier can be used to identify the tape library that is aggregating the device in question 
5. the media identifier helps identify the individual media such as a tape cartridge for proof of 

encryption reporting 

 

Another example using self-encrypting disk drives inside of a server would be: 

1. the disk drive has a unique serial number 
2. a password may be supplied by configuration of the drive or the server where the drive is located 
3. the network identifier may come from the internal attachment identifier for the disk drive in the server 
4. the machine identifier may come from a server’s motherboard or service processor identifier, 
5. and the media identifier comes from the volume name used by the server’s operating system to 

identify the volume on the disk drive 

 

Server implementations could control what devices may read and write keys and use the device 
credential fields to influence access control enforcement. 

 

Another example applied to server virtualization and encryption built into virtualization would be: 

1. the virtual machine instance has a unique identifier that is used for the serial number 
2. the hypervisor supplies a shared secret that is used as the password to authenticate the virtual 

machine 
3. the network identifier could be used to identify the MAC address of the physical server where the 

virtual machine is running 
4. the machine identifier could be used to identify the hypervisor  
5. the media identifier could be used to identify the storage volume used by the virtual machine 

 

These are examples of usage and are not meant to define all device credential usage patterns nor restrict 
server specific implementations. 

The device credentials may be explicitly added by the administrator or may be captured in line with the 
request and implicitly registered depending upon server policy. 

When a server is not able to resolve the identifier values in the device credential to a unique client 
identification, it may choose to reject the request with an error code of operation failed and reason code of 
item not found. 

3.2 Authorization for Revoke, Recover, Destroy and Archive Operations 

The authentication suite, as specified in [KMIP-PROF], describes how the client identity is established for 
KMIP-compliant implementations. This authentication is performed for all KMIP operations. 

Certain operations that may be requested by a client via KMIP, particularly Revoke, Recover, Destroy and 
Archive, may have a significant impact on the availability of a key, on server performance and/or on key 
security. When a server receives a request for one of these operations, it should ensure that the client 
has authenticated its identity (see the Authentication Suites section in [KMIP-PROF]. The server should 
also ensure that the client requesting the operation is an object owner, security officer or other identity 
authorized to issue the request. It may also require additional authentication to ensure that the object 
owner or a security officer has issued that request. Even with such authentication and authorization, 
requests for these operations should be considered only a “hint” to the key management system, which 
may or may not choose to act upon this request depending on server policy. 
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3.3 Returning Related Objects 

The key block returns a single object, with associated attributes and other data. For those cases in which 
multiple related objects are needed by a client, such as the private key and the related certificate, the 
client should issue multiple Get requests to obtain these related objects. 

3.4 Compromised Objects 

A Cryptographic Object or Opaque Object may be compromised for a variety of reasons. In KMIP, a client 
indicates to the server that a Cryptographic Object is to be considered compromised by performing a 
Revoke Operation with a Revocation Reason of Key Compromise or CA Compromise. The KMIP client 
should provide a Compromise Occurrence Date (if the Revocation Reason is Key Compromise or CA 
Compromise) and if it is unable to estimate when the compromise occurred then it should provide a 
Compromise Occurrence Date equal to the Initial Date.  

The KMIP specification [KMIP-SPEC] places no requirements on a KMIP server to perform any action on 
any Managed Object that references (i.e., via Link attributes) a Cryptographic Object or Opaque Object 
that a client has performed a Revoke operation with a Revocation Reason of Key Compromise or CA 
Compromise.  However, KMIP users should be aware that there may be security relevant implications in 
continuing to use a Managed Cryptographic Object in the following circumstances: 

• For a compromised Private Key, the linked Public Key and/or Certificate;  

• For a compromised Public Key, the linked Private Key and/or Certificate;  

• For a compromised Derived Key, the linked derived key and/or Secret Data Object 

In these circumstances, it is the responsibility of the client to either check the state of the referenced 
Managed Object or to also perform a Revoke operation on the referenced Managed Object. 

3.5 ID Placeholder 

A number of operations are affected by a mechanism referred to as the ID Placeholder. This is a 
temporary variable consisting of a single Unique Identifier that is stored inside the server for the duration 
of executing a batch of operations. 

The Unique Identifier value when omitted indicates use of the ID Placeholder. A general mechanism of 
specification of the Unique Identifier either via an enumeration that indicates which Unique Identifier value 
from the response batch item should be used or via an integer indicating which batch item in the request 
should be referenced allows for additional flexibility in pipelining requests. 

The ID Placeholder is obtained from the Unique Identifier returned by certain operations; the applicable 
operations are identified in Table 1, along with a list of operations that accept the ID Placeholder as input. 

Operation ID Placeholder at 
the beginning of 
the operation 

ID Placeholder upon completion of the 
operation (in case of operation failure, a batch 
using the ID Placeholder stops) 

Create - ID of new Object 

Create Key Pair - ID of new Private Key (ID of new Public Key may 
be obtained via a Locate) 

Create Split Key - ID of the split whose Key Part Identifier is 1 

Join Split Key  ID of returned object 

Register - ID of newly registered Object 

Derive Key - (multiple Unique 
Identifiers may be 

ID of new Symmetric Key 
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specified in the 
request) 

Locate - ID of located Object 

Get ID of Object no change 

Validate - - 

Get Attributes 
List/Modify/Add/Delete 

ID of Object no change 

Activate ID of Object no change 

Revoke ID of Object no change 

Destroy ID of Object no change 

Archive/Recover ID of Object no change 

Certify ID of Public Key ID of new Certificate 

Re-certify ID of Certificate ID of new Certificate 

Re-key ID of Symmetric 
Key to be rekeyed 

ID of new Symmetric Key 

Re-key Key Pair ID of Private Key 
to be rekeyed 

ID of new Private Key (ID of new Public Key may 
be obtained via a Locate) 

Obtain Lease ID of Object no change 

Get Usage Allocation ID of Key no change 

Check ID of Object no change 

TABLE 1: ID PLACEHOLDER PRIOR TO AND RESULTING FROM A KMIP OPERATION 

3.6 Use of Meta-Data Only (MDO) Keys 

Meta-Data Only (MDO) keys are those Managed Key Objects for which no Key Value is present. MDO 
objects can be one of the following: Symmetric Keys, Private Keys, Split Keys, or Secret Data. 

This may be a result of the KMIP client only wanting to register information (Meta-Data) about the key 
with a Key Management System, without having the key itself leave the client’s physical boundary. One 
such example could be for keys created and stored within a Hardware Security Module (HSM), with a 
policy that does not allow for the keys to leave its hardware.  In such cases, the KMIP client will not 
include a Key Value within the Key Block during a Register operation, although it may optionally include a 
Key Value Location attribute indicating the location of the Key Value instead.  For such keys, as part of 
the Register operation, the server will create a Key Value Present attribute and set it to false to indicate 
the key value is not stored on the server. 

The KMIP protocol does not support the addition of a Key Value to an existing MDO key object on the 
server. If for some reason the client wanted to do this, it would have to carry out another Register 
operation and create a new managed object with the Key Value. 

Finally, because there is no Key Value associated with an MDO key on the server, KMIP operations for 
Re-key, Re-key Key Pair and Derive Key cannot be carried out on an MDO key object. An attempt to do 
so will return an appropriate error as specified in the Error Handling section of [KMIP-SPEC]. 



 

kmip-ug-v2.0-cn01  24 October 2019 
Non-Standards Track Copyright © OASIS Open 2019.  All Rights Reserved. Page 17 of 55 

3.7 Using the Same Asymmetric Key Pair in Multiple Algorithms 

There are mathematical relationships between certain asymmetric cryptographic algorithms such as the 
Digital Signature Algorithm (DSA) and Diffie-Hellman (DH) and their elliptic curve equivalents ECDSA and 
ECDH that allow the same asymmetric key pair to be used in both algorithms. In addition, there are 
overlaps in the key format used to represent the asymmetric key pair for each algorithm type. 

Even though a single key pair may be used in multiple algorithms, the KMIP Specification has chosen to 
specify separate key formats for representing the asymmetric key pair for use in each algorithm. This 
approach keeps KMIP in line with the reference standards (e.g., NIST [FIPS 186-4], ANSI [X9.42], etc.) 
from which the key formats are obtained and the best practice documents (e.g., NIST [SP800-57-1], NIST 
[SP800-56A] etc.) which recommend that a key pair only be used for one purpose. 

3.8 Non-Cryptographic Objects 

The KMIP protocol allows clients to register Secret Data objects. Secret Data objects may include 
passwords or data that are used to derive keys.  

KMIP defines Secret Data as cryptographic objects. Even if the object is not used for cryptographic 
purposes, clients may still set certain attributes, such as the Cryptographic Usage Mask, for this object 
unless otherwise stated. Similarly, servers set certain attributes for this object, including the Digest, State, 
and certain Date attributes, even if the attributes may seem relevant only for other types of cryptographic 
objects.  

When registering a Secret Data object, the following attributes are set by the server: 

• Unique Identifier 

• Object Type 

• Digest 

• State 

• Initial Date 

• Last Change Date 

When registering a Secret Data object for non-cryptographic purposes, the following attributes are set by 
either the client or the server: 

• Cryptographic Usage Mask 

3.9 Split Key 

KMIP allow a client to register a Split Key that was created or otherwise obtained by the client. To request 
that the server generate a split key, the client sends a Create Split Key request that includes the Split Key 
parameters (Split Key Parts, Split Key Threshold, Split Key Method) and desired key attributes (e.g. 
Object Type, Cryptographic Length). If the client supplies the Unique Identifier of an existing base key in a 
Create Split Key request, the server will use the supplied key in the key splitting operation instead of 
generating a new one. The server will respond with a list of Unique Identifiers for the newly created Split 
Keys. 

The client may want to add link attributes to more easily locate the complete set of related Split Keys as 
follows. The client adds a Previous Link from the Split Key with Key Part Identifier K to the Split Key with 
Key Part Identifier K-1 and a Next Link to the Split Key with Key Part Identifier K+1. Denoting the value of 
Split Key Parts by N, the client adds a Previous Link from the Split Key with Key Part Identifier 1 to the 
Split Key with Key Part Identifier N and a Next Link from the Split Key with Key Part Identifier N to the 
Split Key with Key Part Identifier 1. If the client supplies the Unique Identifier of an existing base key in a 
Create Split Key request, the client may want to add a Parent Link attribute from each newly generated 
Split Key to the base key that was supplied in the Create Split Key request. 

To request that the server recombine a set of split keys, the client sends a Join Split Key request that 
includes the type of object to be returned (e.g. Symmetric Key, Private Key, or Secret Data) and a list of 
Unique Identifiers of the Split Keys to be combined. The number of Unique Identifiers in the request 
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needs to be at least the value of Split Key Threshold in the Split Keys to ensure the server will be able to 
combine the keys according to the Split Key Method. The server will respond with the Unique Identifier of 
the key obtained by combining the provided Split Keys. 

3.10 Asymmetric Concepts with Symmetric Keys 

The Cryptographic Usage Mask attribute is intended to support asymmetric concepts using symmetric 
keys. This is common practice in established crypto systems: the MAC is an example of an operation 
where a single symmetric key is used at both ends, but policy dictates that one end may only generate 
cryptographic tokens using this key (the MAC) and the other end may only verify tokens. The security of 
the system fails if the verifying end can use the key to perform generation operations. 

In these cases, it is not sufficient to describe the usage policy on the keys in terms of cryptographic 
primitives like “encrypt” vs. “decrypt” or “sign” vs. “verify”. There are two reasons why this is the case. 

• In some of these operations, such as MAC generation and verification, the same cryptographic 
primitive is used in both of the complementary operations. MAC generation involves computing 
and returning the MAC, while MAC verification involves computing that same MAC and 
comparing it to a supplied value to determine if they are the same. Thus, both generation and 
verification use the “encrypt” operation, and the two usages are not able to be distinguished by 
considering only “encrypt” vs. “decrypt”. 

• Some operations which require separate key types use the same fundamental cryptographic 
primitives. For example, encryption of data, encryption of a key, and computation of a MAC all 
use the fundamental operation “encrypt”, but in many applications, securely differentiated keys 
are used for these three operations. Simply looking for an attribute that permits “encrypt” is not 
sufficient. 

Allowing the use of these keys outside of their specialized purposes may compromise security. Instead, 
specialized application-level permissions are necessary to control the use of these keys. KMIP provides 
several pairs of such permissions in the Cryptographic Usage Mask, such as: 

MAC GENERATE 
MAC VERIFY 

For cryptographic MAC operations.  Although it is 
possible to compose certain MACs using a series 
of encrypt calls, the security of the MAC relies on 
the operation being atomic and specific. 

GENERATE CRYPTOGRAM 
VALIDATE CRYPTOGRAM 

For composite cryptogram operations such as 
financial CVC or ARQC. To specify exactly which 
cryptogram the key is used for it is also necessary 
to specify a role for the key 

TRANSLATE ENCRYPT 
TRANSLATE DECRYPT 

TRANSLATE WRAP 
TRANSLATE UNWRAP 

To accommodate secure routing of traffic and 
data.  In many areas that rely on symmetric 
techniques (notably, but not exclusively financial 
networks), information is sent from place to place 
encrypted using shared symmetric keys. When 
encryption keys are changed, it is desirable for 
the change to be an atomic operation, otherwise 
distinct unwrap-wrap or decrypt-encrypt steps risk 
leaking the plaintext data during the translation 
process. 

TRANSLATE ENCRYPT/DECRYPT is used for 
data encipherment. 

TRANSLATE WRAP/UNWRAP is used for key 
wrapping. 

TABLE 2: CRYPTOGRAPHIC USAGE MASKS PAIRS 
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3.11 Key Block 

The protocol uses the Key Block structure to transport a key to the client or server. This Key Block 
consists of the Key Value Type, the Key Value, and the Key Wrapping Data. The Key Value Type 
identifies the format of the Key Material, e.g., Raw format or Transparent Key structure. The Key Value 
consists of the Key Material and optional attributes. The Key Wrapping Data provides information about 
the wrapping key and the wrapping mechanism and is returned only if the client requests the Key Value to 
be wrapped by specifying the Key Wrapping Specification inside the Get Request Payload. The Key 
Wrapping Data may also be included inside the Key Block if the client registers a wrapped key. 

The protocol allows any attribute to be included inside the Key Value and allows these attributes to be 
cryptographically bound to the Key Material (i.e., by signing, MACing, encrypting, or both encrypting and 
signing/MACing the Key Value). Some of the attributes that may be included include the following: 

• Unique Identifier – uniquely identifies the key 

• Cryptographic Algorithm (e.g., AES, 3DES, RSA) – this attribute is either specified inside the Key 
Block structure or the Key Value structure 

• Cryptographic Length (e.g., 128, 256, 2048) – this attribute is either specified inside the Key 
Block structure or the Key Value structure 

• Cryptographic Usage Mask– identifies the cryptographic usage of the key (e.g., Encrypt, Wrap 
Key, Export) 

• Cryptographic Parameters – provides additional parameters for determining how the key may be 
used 

• Block Cipher Mode (e.g., CBC, NISTKeyWrap, GCM) – this parameter identifies the mode of 
operation, including block cipher-based MACs or wrapping mechanisms 

• Padding Method (e.g., OAEP, X9.31, PSS) – identifies the padding method and if applicable 
the signature or encryption scheme 

• Hashing Algorithm (e.g., SHA-256) – identifies the hash algorithm to be used with the 
signature/encryption mechanism or Mask Generation Function; note that the different HMACs 
are defined individually as algorithms and do not require the Hashing Algorithm parameter to 
be set 

• Key Role Type – Identifies the functional key role (e.g., DEK, KEK) 

• State (e.g., Active) 

• Dates (e.g., Activation Date, Process Start Date, Protect Stop Date) 

• Custom Attribute – allows vendors and clients to define vendor-specific attributes; may also be 
used to prevent replay attacks by setting a nonce 

3.12 Key Encoding 

Two parties receiving the same key as a Key Value Byte String make use of the key in exactly the same 
way in order to interoperate. To ensure that, it is necessary to define a correspondence between the 
abstract syntax of Key and the notation in the standard algorithm description that defines how the key is 
used. The next sections establish that correspondence for the algorithms AES [FIPS 197] and Triple-DES 
[SP800-67]. 

3.12.1 AES Key Encoding 

AES Key Encoding [FIPS 197] section 5.2, titled Key Expansion, uses the input key as an array of bytes 
indexed starting at 0. The first byte of the Key becomes the key byte in AES that is labeled index 0 in 
[FIPS 197] and the other key bytes follow in index order. 

Proper parsing and key load of the contents of the Key for AES is determined by using the following Key 
byte string to generate and match the key expansion test vectors in [FIPS 197] Appendix A for the 128-bit 
(16 byte) AES Cipher Key: 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C. 
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3.12.2 Triple-DES Key Encoding 

A Triple-DES key consists of three keys for the cryptographic engine (Key1, Key2, and Key3) that are 
each 64 bits (even though only 56 are used); the three keys are also referred to as a key bundle (KEY) 
[SP800-67]. A key bundle may employ either two or three mutually independent keys. When only two are 
employed (called two-key Triple-DES), then Key1 = Key3.  

Each key in a Triple-DES key bundle is expanded into a key schedule according to a procedure defined in 
[SP800-67] Appendix A. That procedure numbers the bits in the key from 1 to 64, with number 1 being 
the left most, or most significant bit. The first byte of the Key is bits 1 through 8 of Key1, with bit 1 being 
the most significant bit. The second byte of the Key is bits 9 through 16 of Key1, and so forth, so that the 
last byte of the KEY is bits 57 through 64 of Key3 (or Key2 for two-key Triple-DES). 

Proper parsing and key load of the contents of Key for Triple-DES is determined by using the following 
Key byte string to generate and match the key expansion test vectors in [SP800-67] Appendix B for the 
key bundle: 

Key1 = 0123456789ABCDEF 

Key2 = 23456789ABCDEF01 

Key3 = 456789ABCDEF0123 

3.12.3 AES-XTS Key Encoding 

AES-XTS1 is an implementation of the AES encryption algorithm with the XTS (XEX (XOR Encrypt XOR) 
Tweakable Block Cipher with Ciphertext Stealing) cipher mode (see [SP800-38E]). What is unique about 
the XTS mode is that it requires the use of two AES keys.  AES-XTS 512 requires two 256-bit AES keys 
while AES-XTS 256 requires two 128-bit AES keys. 

KMIP implementations should treat the required XTS keys as two distinct keys (e.g. two 256-bit AES 
keys).  KMIP operations (e.g. Create, Register, Get) associated with these two keys are batched within 
the profile to logically keep the handling of these associated keys together.  A simple custom attribute (X-
ID) is used to specify a naming convention that associates the two AES keys.  The Link attribute (with 
Link Types of Next Link and Previous Link) is used to associate the two AES keys with one another on 
the KMIP server. 

3.13 Elliptic Curve Cryptography (ECC) Recommended Curve Mapping 

The KMIP Specification [KMIP-SPEC] specifies a number of ECC recommended curves ([FIPS 186-4] 
[SEC2] [X9.62] [ECC-Brainpool] [RFC5639] [RFC7748]).  These recommended curves are defined in 
multiple source documents and in some cases, the same algorithm is known by multiple names since the 
algorithm is defined in multiple documents.  The following table provides a mapping of the ECC 
recommended curves specified in the KMIP specification [KMIP-SPEC].  The table identifies the KMIP 
enumeration, the Object Identifier (OID) and multiples names (synonyms) for the ECC recommended 
curves. 

Recommended 
Curve Name 

KMIP Enumeration 
Value 

OID Recommended 
Curve 

Synonym(s) 

P-192 00000001 1.2.840.10045.3.1.1 
SECP192R1 

ANSIX9P192V1 

K-163 00000002 1.3.132.0.1 SECT163K1 

B-163 00000003 1.3.132.0.15 SECT163R2 

P-224 00000004 1.3.132.0.33 SECP224R1 

 

1 Also referred to as XTS-AES 



 

kmip-ug-v2.0-cn01  24 October 2019 
Non-Standards Track Copyright © OASIS Open 2019.  All Rights Reserved. Page 21 of 55 

K-233 00000005 1.3.132.0.26 SECT233K1 

B-233 00000006 1.3.132.0.27 SECT233R1 

P-256 00000007 1.2.840.10045.3.1.7 
SECP256R1 

ANSIX9P256V1 

K-283 00000008 1.3.132.0.16 SECT283K1 

B-283 00000009 1.3.132.0.17 SECT283R1 

P-384 0000000A 1.3.132.0.34 SECP384R1 

K-409 0000000B 1.3.132.0.36 SECT409K1 

B-409 0000000C 1.3.132.0.37 SECT409R1 

P-521 0000000D 1.3.132.0.35 SECP521R1 

K-571 0000000E 1.3.132.0.38 SECT571K1 

B-571 0000000F 1.3.132.0.39 SECT571R1 

SECP112R1 00000010 1.3.132.0.6  

SECP112R2 00000011 1.3.132.0.7  

SECP128R1 00000012 1.3.132.0.28  

SECP128R2 00000013 1.3.132.0.29  

SECP160K1 00000014 1.3.132.0.9  

SECP160R1 00000015 1.3.132.0.8  

SECP160R2 00000016 1.3.132.0.30  

SECP192K1 00000017 1.3.132.0.31  

SECP192R1 00000001 1.2.840.10045.3.1.1 
P-192 

ANSIX9P192V1 

SECP224K1 00000018 1.3.132.0.32  

SECP224R1 00000004 1.3.132.0.33 P-224 

SECP256K1 00000019 1.3.132.0.10  

SECP256R1 00000007 1.2.840.10045.3.1.7 
P-256 

ANSIX9P256V1 

SECP384R1 0000000A 1.3.132.0.34 P-384 

SECP521R1 0000000D 1.3.132.0.35 P-521 

SECT113R1 0000001A 1.3.132.0.4  

SECT113R2 0000001B 1.3.132.0.5  

SECT131R1 0000001C 1.3.132.0.22  

SECT131R2 0000001D 1.3.132.0.23  
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SECT163K1 00000002 1.3.132.0.1 K-163 

SECT163R1 0000001E 1.3.132.0.2  

SECT163R2 00000003 1.3.132.0.15 B-163 

SECT193R1 0000001F 1.3.132.0.24  

SECT193R2 00000020 1.3.132.0.25  

SECT233K1 00000005 1.3.132.0.26 K-233 

SECT233R1 00000006 1.3.132.0.27 B-233 

SECT239K1 00000021 1.3.132.0.3  

SECT283K1 00000008 1.3.132.0.16 K-283 

SECT283R1 00000009 1.3.132.0.17 B-283 

SECT409K1 0000000B 1.3.132.0.36 K-409 

SECT409R1 0000000C 1.3.132.0.37 B-409 

SECT571K1 0000000E 1.3.132.0.38 K-571 

SECT571R1 0000000F  1.3.132.0.39 B-571 

ANSIX9P192V1 00000001 1.2.840.10045.3.1.1 
P-192 

SECP192R1 

ANSIX9P192V2 00000022 1.2.840.10045.3.1.2  

ANSIX9P192V3 00000023 1.2.840.10045.3.1.3  

ANSIX9P239V1 00000024 1.2.840.10045.3.1.4  

ANSIX9P239V2 00000025 1.2.840.10045.3.1.5  

ANSIX9P239V3 00000026 1.2.840.10045.3.1.6  

ANSIX9P256V1 00000007 1.2.840.10045.3.1.7 
P-256 

SECP256R1 

ANSIX9C2PNB163V1 00000027 1.2.840.10045.3.0.1  

ANSIX9C2PNB163V2 00000028 1.2.840.10045.3.0.2  

ANSIX9C2PNB163V3 00000029 1.2.840.10045.3.0.3  

ANSIX9C2PNB176V1 0000002A 1.2.840.10045.3.0.4  

ANSIX9C2TNB191V1 0000002B 1.2.840.10045.3.0.5  

ANSIX9C2TNB191V2 0000002C 1.2.840.10045.3.0.6  

ANSIX9C2TNB191V3 0000002D 1.2.840.10045.3.0.7  

ANSIX9C2PNB208W1 0000002E 1.2.840.10045.3.0.10  

ANSIX9C2TNB239V1 0000002F 1.2.840.10045.3.0.11  

ANSIX9C2TNB239V2 00000030 1.2.840.10045.3.0.12  
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ANSIX9C2TNB239V3 00000031 1.2.840.10045.3.0.13  

ANSIX9C2PNB272W1 00000032 1.2.840.10045.3.0.16  

ANSIX9C2PNB304W1 00000033 1.2.840.10045.3.0.17  

ANSIX9C2TNB359V1 00000034 1.2.840.10045.3.0.18  

ANSIX9C2PNB368W1 00000035 1.2.840.10045.3.0.19  

ANSIX9C2TNB431R1 00000036 1.2.840.10045.3.0.20  

BRAINPOOLP160R1 00000037 1.3.36.3.3.2.8.1.1.1  

BRAINPOOLP160T1 00000038 1.3.36.3.3.2.8.1.1.2  

BRAINPOOLP192R1 00000039 1.3.36.3.3.2.8.1.1.3  

BRAINPOOLP192T1 0000003A 1.3.36.3.3.2.8.1.1.4  

BRAINPOOLP224R1 0000003B 1.3.36.3.3.2.8.1.1.5  

BRAINPOOLP224T1 0000003C 1.3.36.3.3.2.8.1.1.6  

BRAINPOOLP256R1 0000003D 1.3.36.3.3.2.8.1.1.7  

BRAINPOOLP256T1 0000003E 1.3.36.3.3.2.8.1.1.8  

BRAINPOOLP320R1 0000003F 1.3.36.3.3.2.8.1.1.9  

BRAINPOOLP320T1 00000040 1.3.36.3.3.2.8.1.1.10  

BRAINPOOLP384R1 00000041 1.3.36.3.3.2.8.1.1.11  

BRAINPOOLP384T1 00000042 1.3.36.3.3.2.8.1.1.12  

BRAINPOOLP512R1 00000043 1.3.36.3.3.2.8.1.1.13  

BRAINPOOLP512T1 00000044 1.3.36.3.3.2.8.1.1.14  

CURVE25519 00000045 1.3.101.110 

 

X25519  

ed25519 

CURVE448 00000046 1.3.101.111 X448 

TABLE 3: ECC RECOMMENDED CURVE MAPPING 

3.14 Attributes 

All managed objects within KMIP have associated attributes.  Initial attribute values are provided during 
object creation or registration (via Create, CreateKeyPair, Certify, DeriveKey, ReKey, ReKeyKeyPair, 
ReCertify, and Register). 

Attributes have associated rules. They may be mandatory or optional. They may be single instance, or 
multi-instance. They may be set or updated only by the client or by the server. Within the Specification, 
each attribute section contains a table defining these rules. 

Specific operations allow for working with attributes. 

• Attribute values may be created using either Add Attribute or Set Attribute 

• Attribute values may be modified using either Modify Attribute or Set Attribute. 
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• Set Attribute is more appropriate for single-instance attributes as it does not require knowledge of 
whether the attribute previously had a value. Set Attribute cannot be used for multi-instance 
attributes. 

• Both multi-instance and single-instance attributes may be removed using Delete Attributes. 

• Instances of multi-instance attributes are identified by specifying their current value when using 
either Modify Attribute of Delete Attribute. 

• Adjust Attribute should be used where applicable, both because it is more convenient and is 
transaction-safe. 

3.15 Key State and Times 

[KMIP-SPEC] provides a number of time-related attributes, including the following: 

• Initial Date: The date and time when the managed cryptographic object was first created by or 

registered at the server. 

• Activation Date: The date and time when the managed cryptographic object should begin to be 

used for applying cryptographic protection to data. 

• Process Start Date: The date and time when a managed symmetric key object should begin to be 

used for processing cryptographically protected data.  The managed symmetric key object should 

not be used prior to this date. 

• Protect Stop Date: The date and time when a managed symmetric key object should no longer be 

used for applying cryptographic protection to data 

• Deactivation Date: The date and time when the managed cryptographic object should no longer 

be used for applying cryptographic protection (e.g., encryption, signing, wrapping, MACing, 

deriving).  Under extraordinary circumstances and when special permission is granted the 

managed symmetric key object can be used for decryption, signature verification, unwrapping, or 

MAC verification, 

• Destroy Date: The date and time when the managed cryptographic object was destroyed 

• Compromise Occurrence Date: The date and time when the managed cryptographic object was 

first believed to be compromised. 

• Compromise Date: The date and time when the managed cryptographic object entered the 

compromised state. 

• Archive Date: The date and time when the managed object was placed in Off-Line storage. 

These attributes apply to all cryptographic objects (symmetric keys, asymmetric keys, etc.) with 
exceptions as noted in [KMIP-SPEC]. However, certain of these attributes (such as the Initial Date) are 
not specified by the client and are implicitly set by the server. 

In using these attributes, the following guidelines should be observed: 

• As discussed for each of these attributes in [KMIP-SPEC], a number of these times are set once, 

and it is not possible for the client or server to modify them. However, several of the time 

attributes (particularly the Activation Date, Protect Start Date, Process Stop Date and 

Deactivation Date) may be set by the server and/or requested by the client. Coordination of time-

related attributes between client and server, therefore, is primarily the responsibility of the server, 

as it manages the cryptographic object and its state. However, special conditions related to time-

related attributes, governing when the server accepts client modifications to time-related 

attributes, may be communicated out-of-band between the client and server outside the scope of 

KMIP.  
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• In general, state transitions occur as a result of operational requests, such as Create, Create Key 

Pair, Register, Activate, Revoke, and Destroy. However, clients may need to specify times in the 

future for such things as Activation Date, Deactivation Date, Process Start Date, and Protect Stop 

Date.  KMIP also allows clients to specify times in the past for such attributes as Activation Date 

and Deactivation Date..  

• It is valid to have a projected Deactivation Date when there is no Activation Date. This means, 

however, that the key is not yet active, even though its projected Deactivation Date has been 

specified. A valid Deactivation Date is greater than or equal to the Activation Date (if the 

Activation Date has been set). 

• The Protect Stop Date may be equal to but may not be later than the Deactivation Date. Similarly, 

the Process Start Date may be equal to, but may not precede, the Activation Date. KMIP 

implementations should consider specifying both these attributes, particularly for symmetric keys, 

as a key may be needed for processing protected data (e.g., decryption) long after it is no longer 

appropriate to use it for applying cryptographic protection to data (e.g., encryption).  

• KMIP does not allow an Active object to be destroyed with the Destroy operation. The server 

returns an error, if the client invokes the Destroy operation on an Active object. To destroy an 

Active object, clients first call the Revoke operation or explicitly set the Deactivation Date of the 

object. Once the object is in Deactivated state, clients may destroy the object by calling the 

Destroy operation. These operations may be performed in a batch. If other time-related attributes 

(e.g., Protect Stop Date) are set to a future date, the server should set these to the Deactivation 

Date.  

• After a cryptographic object is destroyed, a key management server may retain certain 

information about the object, such as the Unique Identifier. 

3.16 Mutating Attributes 

KMIP does not support server mutation of client-supplied attributes. If a server does not accept an 
attribute value that is being specified inside the request by the client, the server returns an error and 
specifies “Invalid Field” as Result Reason. 

If a client sets a time-related attribute to the current date and time (as perceived by the client), but as a 
result of a clock skew, the specified date of the attribute is earlier than the time perceived by the server, 
the server’s policy is used to determine whether to accept the “backdated attribute”. KMIP does not 
require the server to fail a request if a backdated attribute is set by the client. 

If a server does not support backdated attributes, and cryptographic objects are expected to change state 
at the specified current date and time (as perceived by the client), clients are recommended to issue the 
operation that would implicitly set the date for the client. For example, instead of explicitly setting the 
Activation Date, clients could issue the Activate operation. This would require the server to set the 
Activation Date to the current date and time as perceived by the server. 

If it is not possible to set a date attribute via an operation, and the server does not support backdated 
attributes, clients need to take into account that potential clock skew issues may cause the server to 
return an error even if a date attribute is set to the client’s current date and time. 

For additional information, refer to the sections describing the State attribute and the Time Stamp field in 
[KMIP-SPEC]. 

3.17 Application Specific Information 

The Application Specific Information attribute is used to store data which is specific to the application(s) 
using the object. Some examples of Application Namespace and Application Data pairs are given below. 

• SMIME, 'someuser@company.com' 
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• TLS, 'some.domain.name' 

• Volume Identification, '123343434' 

• File Name, 'secret.doc' 

• Client Generated Key ID, ‘450994003' 

The following Application Namespaces are recommended: 

• SMIME 

• TLS 

• IPSEC 

• HTTPS 

• PGP 

• Volume Identification 

• File Name 

• LTO4, LTO5, and LTO6 

• LIBRARY-LTO, LIBRARY-LTO4, LIBRARY-LTO5 and LIBRARY-LTO6 

KMIP provides optional support for server-generated Application Data. Clients may request the server to 
generate the Application Data for the client by omitting Application Data while setting or modifying the 
Application Specific Information attribute. A server only generates the Application Data if the Application 
Data is completely omitted from the request, and the client-specified Application Namespace is 
recognized and supported by the server. An example for requesting the server to generate the Application 
Data is shown below: 

AddAttribute(Unique ID, AppSpecInfo{AppNameSpace=’LIBRARY-LTO4’}); 

If the server does not recognize the namespace, the “Application Namespace Not Supported” error is 
returned to the client. 

If the Application Data is provided, and the Application Namespace is recognized by the server, the 
server uses the provided Application Data, and does not generate the Application Data for the client. In 
the example below, the server stores the Application Specific Information attribute with the Application 
Data value set to null. 

AddAttribute(Unique ID, AppSpecInfo{AppNameSpace=’LIBRARY-LTO4’, AppData=null}); 

3.18 Description and Comment Attributes 

The Description and Comment attributes are used to convey information about the purpose and use of an 
object.  Description is intended to be a concise imperative statement about an object (e.g. “Root Key for 
internal servers”).  Comment is a complementary field which allows more verbose communication 
regarding what activity or why an activity applies to an object (e.g. “Make sure to update new internal 
servers with the Root key as they are brought on line”).  Both attributes are optional, and their contents 
should be used for informational purposes and not for policy enforcement. 

3.19 Cryptographic Length of Asymmetric Keys 

The value (e.g., 2048 bits) referred to in the KMIP Cryptographic Length attribute for an asymmetric 
(public or private) key may be misleading, since this length only refers to certain portions of the 
mathematical values that comprise the key.  The actual length of all the mathematical values comprising 
the public or the private key is longer than the referenced value.  This point may be illustrated by looking 
at the components of a RSA public and private key. 

The RSA public key is comprised of a modulus (n) and an (public) exponent (e).  When one indicates that 
the RSA public key is 2048 bits in length that is a reference to the bit length of the modulus (n) only.  So 
the full length of the RSA public key is actually longer than 2048 bits, since it also includes the length of 
the exponent (e) and the overhead of the encoding (e.g., ASN.1) of the key material. 
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The RSA private key is comprised of a modulus (n), the public exponent (e), the private exponent (d), 
prime 1 (p), prime 2 (q), exponent 1 (d mod (p-1)), exponent 2 (d mod (p-1)), and coefficient ((inverse of 
q) mod p).  Once again, the 2048 bit key length is referring only to the length of the modulus (n), so the 
overall length of the private key would be longer given the number of additional components which 
comprise the key and the overhead of encoding (e.g., ASN.1) of the key material. 

KMIP implementations need to ensure they do not make assumptions about the actual length of 
asymmetric (public and private) key material based on the value specified in the Cryptographic Length 
attribute. 

3.20 Default Crypto Parameters 

There are certain cryptographic parameters that the server must know in order to create objects.   These 
parameters are the CryptographicAlgorithm (e.g., AES), the CryptographicLength (e.g., 128) and the 
CryptographicUsageMask.  These parameters can be provided to the server by the clientServers may 
supply defaults for some or all of these parameters, and if a client omits them, the server will fill in the 
values and satisfy the client request rather than failing the request.  The server defaults are discoverable 
via Query Defaults Information. 

3.21 Multi-instance Hash 

The Digest attribute contains the output of hashing a managed object, such as a key or a certificate. The 
server always generates the SHA-256 hash value when the object is created or generated. KMIP allows 
multiple instances of the digest attribute to be associated with the same managed object. For example, it 
is common practice for publicly trusted CAs to publish two digests (often referred to as the fingerprint or 
the thumbprint) of their certificate: one calculated using the SHA-1 algorithm and another using the MD5 
algorithm. In this case, each digest would be calculated by the server using a different hash algorithm. 

3.22 Extractable and Sensitive Attributes 

KMIP supports attributes which can be used to indicate the sensitivity of a cryptographic object and 
whether a cryptographic object may leave the server.  These attributes are modeled after similar 
attributes within [PKCS#11]. 

The Sensitive attribute is used to specify whether a cryptographic object can only leave the KMIP server 
(via the Get operation) in wrapped (encrypted) form. 

The Always Sensitive attribute is used to track whether a cryptographic object has ever been considered 
sensitive during its existence within the KMIP server. 

The Extractable attribute is used to control whether a cryptographic object is ever allowed to leave the 
KMIP server. 

The Never Extractable attribute is used to track whether extraction of a cryptographic object has been 
restricted during its existence within the KMIP server. 

3.23 Key Format Type 

A client may wish to use the digest attribute of an object to compare objects. If a client does not specify a 
key format type on a constructor, the server may choose any of a number of key format types to use to 
encode that object. If the server chooses a format that the client cannot handle, then the client will be 
unable to use the digest of that format in any meaningful way. The key format attribute was added so that 
the client can tell the server exactly which format to use else fail the construction. The server is free to 
add digests of other formats. 

3.24 Using the “Raw” Key Format Type 

The “raw” key format is intended to be used for “a key that contains only cryptographic key material, 
encoded as a string of bytes”. The “raw” key format supports situations such as “non-KMIP-aware end-
clients are aware how wrapped cryptographic objects (possibly Raw keys) from the KMIP server should 
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be used without having to rely on the attributes provided by the Get Attributes operation” and in that 
regard is similar to the Opaque key format type.  “Raw” key format is intended to be applied to symmetric 
keys and not asymmetric keys. 

3.25 PKCS#12 Key Format 

PKCS#12 was originally introduced in the early days of PKI and is used as a keystore format and as a 
key and certificate exchange mechanism.  The addition of PKCS#12 to KMIP as a key format type is 
intended as a means of admitting the basic forms of PKCS#12 into a managed environment, as well as 
extracting basic forms of PKCS#12 from the KMIP world to be consumed/used in existing environments 
and workflows. 

The intent of KMIP’s PKCS#12 key format is that a PKCS#12-conformant blob can be Registered by the 
client, and a PKCS#12-conformant blob can be returned from a KMIP server on a Get.  It is presumed 
that a single private key is what is being Registered (along with its related certificate or certificate chain), 
so the Unique Identifier that KMIP servers return on a Register PKCS#12 operation is that of the private 
key.  It is also presumed that the client doing a Get with a key format type of PKCS#12 will be passing in 
the private key’s Unique Identifier, and that the KMIP server is responsible for returning a PKCS#12 blob 
with the referenced private key and any related certificates. 

If the PKCS#12 blob being Registered has multiple private keys, then the client can indicate which ONE 
of them is being Registered on a particular request by specifying the PKCS#12 Friendly Name attribute.  
If the client does not supply the Friendly Name (a.k.a. “alias”), then the server is free to just Register the 
first that it finds in the PKCS#12 blob.  If the client wants more than one private key within a PKCS#12 
blob to be Registered from a single PKCS#12 blob, then it will have to request repeatedly with that 
PKCS#12 blob using a different Friendly Name for each request. 

Those familiar with PKCS#12 objects, particularly those containing sensitive material such as private 
keys, know that such objects are usually password-protected.  KMIP honors such constraints by requiring 
SecretData objects to be referenced and used for the normal password-based encryption (PBE) schemes 
employed to protect PKCS#12 objects. Hence Register requests for objects with PKCS#12 key format 
must supply a Link attribute with a LinkType of “PKCS#12 Password Link”, so that the server can find the 
SecretData object containing the password for the PKCS#12 blob being sent to the server and decrypt 
and verify its contents.   Such a SecretData object must be in the Active state and have a Cryptographic 
Usage Mask that indicates “DeriveKey” for it to be used for password-based key derivation.  At the end of 
the Register operation, one can expect the KMIP server to have decrypted and verified the contents of 
the PKCS#12 blob, registered the (specified or defaulted) private key, added the PKCS#12 Password 
Link to the SecretData in the new PrivateKey, found and Registered the certificate(s) that make up the 
private key’s certificate chain,  and linked these Certificates from the PrivateKey via the PKCS#12 
CertificateLink (the link to the first Certificate is from the PrivateKey; any subsequent Certificates would be 
linked by a PKCS#12 Certificate Link in the previous Certificate). 

When a client issues a Get PKCS#12 key format request on a PrivateKey Unique Identifier, the KMIP 
server traverses all the links set up on the Register to reassemble the PKCS#12 blob and protect it with 
the SecretData specified on the PrivateKey PKCS#12 Password Link.  If the client wants a different 
password on the PKCS#12 blob resulting from a Get, it should modify the PKCS#12 Password Link on 
the PrivateKey to a different SecretData before performing the Get.  Similarly, if the client wants a 
different Friendly Name for the key entry in a PKCS#12 blob, it should modify the PKCS#12 Friendly 
Name attribute in the PrivateKey object before performing the Get. 

A client can set up all this machinery by hand to be able to Get PKCS#12 key format without a 
corresponding Register PKCS#12 key format. 

3.26 Object Group 

The key management system may specify rules for valid group names which may be created by the 
client. Clients are informed of such rules by a mechanism that is not specified by [KMIP-SPEC]. In the 
protocol, the group names themselves are text strings of no specified format. Specific key management 
system implementations may choose to support hierarchical naming schemes or other syntax restrictions 
on the names. Groups may be used to associate objects for a variety of purposes. A set of keys used for 
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a common purpose, but for different time intervals, may be linked by a common Object Group. Servers 
may create predefined groups and add objects to them independently of client requests. 

KMIP allows clients to specify whether it wants a “fresh” or “default” object from a common Object Group. 
Fresh is an indication of whether a member of a group has been retrieved by a client with the Get 
operation. The value of fresh may be set as an attribute when creating or registering an object. 
Subsequently, the Fresh attribute is modifiable only by the server.  For example, a set of symmetric keys 
belong to the Object Group “SymmetricKeyGroup1” and the Fresh attribute is set to true for members of 
the group at the time of creating or registering the member. To add a new symmetric key to the group, the 
Object Group attribute is set to “SymmetricKeyGroup1” and the Fresh attribute is set to true when 
creating or registering the symmetric key object. 

The definition of a “default” object in a group is based on server policy. One example of server policy is to 
use round robin selection to serve a key from a group. In this case when a client requests the default key 
from a group, the server uses round robin selection to serve the key. 

An object may be removed from a group by deleting the Object Group attribute, as long as server policy 
permits it. A client would need to delete each individual member of a group to remove all members of a 
group. 

The Object Group Member flag is specified in the Locate request to indicate the type of group member to 
return. Object Group Member is an enumeration that can take the value Group Member Fresh or Group 
Member Default. Following are examples of how the Object Group Member flag is used: 

When a Locate request is made by specifying the Object Group attribute (e.g., "symmetricKeyGroup1) 
and setting the Object Group Member flag to "Group Member Fresh", matching objects from the specified 
group (e.g., "symmetricKeyGroup1”) have the Fresh attribute set to true. If there are no fresh objects 
remaining in the group, the server may generate a new object on the fly based on server policy. 

When a Locate request is made by specifying the Object Group attribute (e.g., "symmetricKeyGroup2) 
and setting the Object Group Member flag to "Group Member Default", a default object is returned from 
the group. In this example, the server policy defines default to be the next key in the group 
"symmetricKeyGroup2”; the group has three group members whose Unique Identifiers are uuid1, uuid2, 
uuid3.  If the client performs four consecutive batched Locate and Get operations with Object Group set 
to "symmetricKeyGroup2" and Object Group Member set to “Group Member Default” in the Locate 
request, the server returns uuid1, uuid2, uuid3, and uuid1 (restarting from the beginning with uuid1 for the 
fourth request) in the four Get responses. 

3.27 Protection Storage Mask 

The server may have multiple ways in which keys can be stored and protected.  The client may wish to 
avail themselves of particular variations.  The client can specify an ordered list of preferences for said 
storage, one of which the server must meet in its entirety or fail the request. One example of this might be 
the requirement for cryptographic material to remain within a geographical location or boundary (data 
sovereignty) 

3.28 Revocation Reason Codes 

The enumerations for the Revocation Reason attribute specified in KMIP  [KMIP-SPEC]) are aligned with 
the Reason Code specified in [X.509] and referenced in [RFC5280] with the following exceptions. The 
certificateHold and removeFromCRL reason codes have been excluded from [KMIP-SPEC] since KMIP 
does not support certificate suspension (putting a certificate hold) or unsuspension (removing a certificate 
from hold). The aaCompromise reason code has been excluded from [KMIP-SPEC] since it only applies 
to attribute certificates, which are out-of-scope for [KMIP-SPEC]. The privilegeWithdrawn reason code is 
included in [KMIP-SPEC] since it may be used for either attribute or public key certificates. In the context 
of its use within KMIP it is assumed to only apply to public key certificates. 

3.29 Unique Identifiers 

For clients that require unique identifiers in a special form, out-of-band registration/configuration may be 
used to communicate this requirement to the server. 
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3.30 Usage Allocation 

Usage should be allocated and handled carefully at the client, since power outages or other types of 
client failures (crashes) may render allocated usage lost. For example, in the case of a key being used for 
the encryption of tapes, such a loss of the usage allocation information following a client failure during 
encryption may result in the necessity for the entire tape backup session to be re-encrypted using a 
different key, if the server is not able to allocate more usage. It is possible to address this through such 
approaches as caching usage allocation information on stable storage at the client, and/or having 
conservative allocation policies at the server (e.g., by keeping the maximum possible usage allocation per 
client request moderate). In general, usage allocations should be as small as possible; it is preferable to 
use multiple smaller allocation requests rather than a single larger request to minimize the likelihood of 
unused allocation.  

3.31 Canceling Asynchronous Operations 

If an asynchronous operation is cancelled by the client, no information is returned by the server in the 
result code regarding any operations that may have been partially completed. Identification and 
remediation of partially completed operations is the responsibility of the server. 

It is the responsibility of the server to determine when to discard the status of asynchronous operations. 
The determination of how long a server should retain the status of an asynchronous operation is 
implementation-dependent and not defined by KMIP. 

Once a client has received the status on an asynchronous operation other than “pending”, any 
subsequent request for status of that operation may return either the same status as in a previous polling 
request or an “unavailable” response. 

3.32 Full Async 

"Mandatory" Asynchronous operations in the request header establishes that the server will return 
Asynchronous Correlation Value for all the batch items. The expectation is that one of the batch items 
may have a longer response time than a client is willing to maintain a connection. This is useful in an IoT 
environment that has limited resources. 

3.33 Cryptographic Services 

KMIP supports creation and registration of managed objects and retrieval of managed objects in both 
plaintext and optionally wrapped with another managed object. KMIP also includes support for a subset of 
the operations necessary for certificate management (certifying certificate requests and validating 
certificate hierarchies). KMIP defines a range of Hash-based and MAC-based key derivation options.  

There are certain situations in which having capability for a KMIP client to request cryptographic 
operations from a KMIP server is beneficial in terms of simplifying the client implementation, 
strengthening the integration between the key management and cryptographic operations, or improving 
the overall security of a solution.  

KMIP includes support for cryptographic services in the form of client-to-server operations for 
cryptographic services using managed objects for encryption, decryption, signature generation, signature 
verification, MAC generation, MAC verification, random number generation, and general hashing.  

This support for cryptographic services is similar to the approach taken in KMIP for certificates. The 
protocol supports a base set of operations on certificates that enable a key manager to act as a proxy for 
a Certification Authority (CA) or in fact operate as a CA in the contexts where that is appropriate. A KMIP 
server supporting cryptographic services may be acting as a proxy for another cryptographic device or in 
fact operating as a cryptographic device in the contexts where that is appropriate. 

KMIP clients and KMIP servers using cryptographic services operations should be mindful of selecting a 
level of protection for the communication channel (the TLS connection) that provides sufficient protection 
of the plaintext data included in cryptographic operations and commensurate with the security strength of 
the operation. There is no requirement for the KMIP server to enforce selection of a level of protection. 
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Similarly, server policy regarding accepting random data from a client should reflect the level of 
confidence that that server has in a particular client or all clients.  Issues in the quality or integrity of 
random data provided in RNG Seed can affect key creation, nonce and IV generation, client-server TLS 
session key creation, and the random data delivered to clients with the RNG Retrieve Operation.  KMIP, 
as a protocol, does not itself enforce restrictions on the quality or nature of the random data provided by a 
client in the RNG Seed operation. 

A KMIP server that supports the RNG Retrieve and RNG Seed operations may have a single RNG for the 
server, an RNG which is shared in an unspecified manner by KMIP clients or a separate RNG for each 
KMIP client. There is no requirement for the KMIP server to implement any specific RNG model. 

3.33.1 Streaming Cryptographic Services 

KMIP allows for multi-part (streaming) operations where the data required for the operations may be 
provided in multiple separate requests. Each of the existing encryption, decryption, signature generation, 
signature verification, MAC generation, MAC verification, and general hashing operations now support 
additional parameters to allow for each of the stages of multi-part usage – initialization, update, and 
finalization.  

The server returns to the client a Correlation Value in the first response. This correlation value is used by 
the client in each subsequent request for performing multi-part (streaming) operations. Each 
cryptographic operation has additional optional parameters in the request that enable the client to indicate 
which stage of multi-part usage (initialization, update, and finalization) is being requested. 

A client can use the Query Capability Information to determine if a KMIP server supports the multi-part 
(streaming) operations by checking if the Streaming Capability is set to true in the response to a Query 
operation with the Query Function value of Query Capability Information. 

3.33.2 Security Considerations for Server State Handling. 

When a server is processing a correlation value either for asynchronous or multi-part (streaming) 
operations and matching an incoming request against server state on behalf of a client, the following may 
be relevant to consider as part of determining whether or not to accept the specified correlation value: 

- Matching TLS mutual authentication client credentials  

- Matching KMIP authentication header information 

- Matching link-level (network end-point) details (i.e. source address information)  

- Matching TLS session identifiers 

- Requiring the first and last operations to be within a specified time period 

- Requiring each operation to be within a specified time period 

- Re-check the access rights on all referenced managed objects 

The KMIP specification does not require that any of these items are considered as the determination of 
which items are relevant is both server implementation and security context dependent. 

3.34 Archive Operations 

When the Archive operation is performed, it is recommended that a unique identifier and a minimal set of 
attributes be retained within the server for operational efficiency. In such a case, the retained attributes 
may include Unique Identifier and State. 

3.35 Certify and Re-certify 

The key management system may contain multiple embedded CAs or may have access to multiple 
external CAs. How the server routes a certificate request to a CA is vendor-specific and outside the scope 
of KMIP. If the server requires and supports the capability for clients to specify the CA to be used for 
signing a Certificate Request, then this information may be provided by including the X.509 Certificate 
Issuer attribute in the Certify or Re-certify request. 
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[KMIP-SPEC] supports multiple options for submitting a certificate request to the key management server 
within a Certify or Re-Certify operation. It is a vendor decision as to whether the key management server 
offers certification authority (CA) functionality or proxies the certificate request onto a separate CA for 
processing. The type of certificate request formats supported is also a vendor decision, and this may, in 
part, be based upon the request formats supported by any CA to which the server proxies the certificate 
requests. 

All certificate request formats for requesting X.509 certificates specified in [KMIP-SPEC] (i.e., PKCS#10, 
PEM and CRMF) provide a means for allowing the CA to verify that the client that created the certificate 
request possesses the private key corresponding to the public key in the certificate request. This is 
referred to as Proof-of-Possession (POP). However, it should be noted that in the case of the CRMF 
format, some CAs may not support the CRMF POP option, but instead rely upon the underlying certificate 
management protocols (i.e., CMP and CMC) to provide POP.  In the case where the CA does not support 
POP via the CRMF format (including CA functionality within the key management server), an alternative 
certificate request format (i.e., PKCS#10, PEM) would need to be used if POP needs to be verified. 

3.36 Using Offset in Re-key and Re-certify Operations 

The Re-key, Re-key Key Pair, and Re-certify operations allow the specification of an offset interval. 

The Re-key and the Re-key Key Pair operations allow the client to specify an offset interval for activation 
of the key. This offset specifies the duration of time between the time the request is made and the time 
when the activation of the key occurs. If an offset is specified, all other times for the new key are 
determined from the new Activation Date, based on the intervals used by the previous key, i.e., from the 
Activation Date to the Process Start Date, Protect Stop Date, etc. 

The Re-certify operation allows the client to specify an offset interval that indicates the difference between 
the Initial Date of the new certificate and the Activation Date of the new certificate. As with the Re-key 
operation, all other times for the certificate are determined using the intervals used for the previous 
certificate. 

Note that in the Re-key and Re-key Key Pair operations if activation date, process start date, protect stop 
date and deactivation date are obtained from the existing key, and the initial date is obtained from the 
current time, then the deactivation/activation date/process start date/protect stop date is smaller or less 
than initial date. KMIP allows forward-dating of these values to prevent a contradiction. 

3.37 Certificate Renewal, Update, and Re-key 

The process of generating a new certificate to replace an existing certificate may be referred to by 
multiple terms, based upon what data within the certificate is changed when the new certificate is created. 
In all situations, the new certificate includes a new serial number and new validity dates. 

[KMIP-SPEC] uses the following terminology which is aligned with the definitions found in IETF 
[RFC3647] and [RFC4949]: 

• Certificate Renewal:  The issuance of a new certificate to the subject without changing the subject 
public key or other information (except the serial number and certificate validity dates) in the 
certificate.   

• Certificate Update:  The issuance of a new certificate, due to changes in the information in the 
certificate other than the subject public key. 

• Certificate Rekey:  The generation of a new key pair for the subject and the issuance of a new 
certificate that certifies the new public key. 

The KMIP Specification supports certificate renewals using the Re-Certify operation and certificate 
updates using the Certify operation. Certificate rekey is supported through the submission of a Re-key 
Key Pair operation, which generates a replacement (new) key pair, followed by a Certify operation, which 
issues a new certificate containing the replacement (new) public key.  
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3.38 Certificate Revocation Lists 

Any Certificate Revocation List (CRL) checking which may be required for certificate-related operations 
such as Register and Re-key should be performed by the client prior to requesting the operation from a 
server. 

3.39 Delegated Login 

 The Delegated Login operation supports a client delegating a subset of client rights. The operation allows 
specification of a time limit and/or a request usage count, along with a list of operations and a list of 
objects that the returned login ticket is permitted to use. 

3.40 Discover Versions 

The Discover Versions operation allows clients and servers to identify a KMIP protocol version that both 
client and server understand. The operation addresses both the “dumb” and “smart” client scenarios. 
Dumb clients may simply pick the first protocol version that is returned by the server, assuming that the 
client provides the server with a list of supported protocol version. Smart clients may request the server to 
return a complete list of supported protocol versions by sending an empty request payload and picking a 
protocol version that is supported by both client and server. 

Clients specify the protocol version in the request header and optionally provide a list of protocol versions 
in the request payload. If the protocol version in the request header is not specified in the request payload 
and the server does not support any protocol version specified in the request payload, the server returns 
an empty list in the response payload. In this scenario, clients are aware that the request did not result in 
an error and could communicate with the server using the protocol version specified in the request 
header. 

3.41 Interop 

During formal KMIP interoperability testing it is helpful for a client to be able to indicate which test case is 
being executed to enable a server to denote this within its logs and use the information for automated 
comparison against expected results. 

3.42 Handling Large Locate Result Sets 

The Offset Items field in the Locate operation allows a KMIP client to request different parts of a larger 
Locate result set from the KMIP server.  KMIP servers are also permitted to return the number of items in 
the Located Items field which match a Locate. 

With the knowledge of the number of Located items and the combined use of the Offset Items and 
Maximum Items fields, a KMIP client is able to “page” or “browse” through a large Locate result set to find 
the items of interest. 

The KMIP specification does not require that the results be returned in a specific order. If operations are 
performed between Locate requests that alter the result set that is returned by a Locate operation, then 
items may be missed, or items may be returned more than once across separate Locate requests that 
simply vary the offset items value. The same circumstances apply when performing separate Locate 
requests without an offset value. 

3.43 Login and Logout 

The Login and Logout operations support caching of authentication checks to enable more efficient 
interaction with authentication services.  The Login operation allows specification of a time limit or request 
usage count for the returned login ticket.   
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3.44 Query 

Query is defined as both a Client-to-Server and Server to Client operation.  Conceptually, the Client-to-
Server Query and Server to Client Query operations are equivalent, but the parameters used in each of 
these queries may differ since some concepts are only applicable to a server or to a client. 

3.44.1 Query Function 

Function values allow a KMIP client to obtain a wide range of information about a KMIP server and allow 
a KMIP client to determine which extensions a KMIP server supports (Query Extension List and Query 
Extension Map); which random number generators a KMIP server supports (Query RNGs); which external 
validations (e.g., FIPS140, Common Criteria) apply to the KMIP server (Query Validations); which KMIP 
Profiles from each version of the KMIP specification a KMIP server supports (Query Profiles); which 
optional areas of the KMIP specification and alternate behaviors a KMIP server supports (Query 
Capabilities); and which methods of automatic client credential registration (Query Client Registration 
Methods) are supported by the KMIP server. 

Test cases for using these various Query functions may be found in the KMIP Test Case document 
[KMIP-TC]. 

3.44.2 Identifying Authenticated Operations 

Query does not explicitly support client requests to determine what operations require authentication. To 
determine whether an operation requires authentication, a client should request that operation. 

3.45 Registering a Key Pair 

During a Create Key Pair or Re-key Key Pair operation, a Link Attribute is automatically created by the 
server for each object (i.e., a link is created from the private key to the public key and vice versa). Certain 
attributes are the same for both objects and are set by the server while creating the key pair. The KMIP 
protocol does not support an equivalent operation for registering a key pair. Clients can register the 
objects independently and manually set the Link attributes to make the server aware that these keys are 
associated with each other. When the Link attribute is set for both objects, the server should verify that 
the registered objects indeed correspond to each other and apply similar restrictions as if the key pair was 
created on the server. 

Clients should perform the following steps when registering a key pair: 

1. Register the public key and set all associated attributes: 

a. Cryptographic Algorithm 

b. Cryptographic Length 

c. Cryptographic Usage Mask 

1. Register the private key and set all associated attributes 

a. Cryptographic Algorithm is the same for both public and private key 

b. Cryptographic Length is the same for both public and private key 

c. Cryptographic Parameters may be set; if set, the value is the same for both the public and 

private key 

d. Cryptographic Usage Mask is set, but does not contain the same value for both the public 

and private key 

e. Link is set for the Private Key with Link Type Public Key Link and the Linked Object Identifier 

of the corresponding Public Key 

f. Link is set for the Public Key with Link Type Private Key Link and the Linked Object Identifier 

of the corresponding Private Key 
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3.46 Using Notify and Put Operations 

The Notify and Put operations are operations in the KMIP protocol that are initiated by the server, rather 
than the client. As client-initiated requests are able to perform these functions (e.g., by polling to request 
notification), these operations are optional for conforming KMIP implementations. However, they provide 
a mechanism for optimized communication between KMIP servers and clients. 

In using Notify and Put, the following constraints and guidelines should be observed: 

• The client enrolls with the server, so that the server knows how to locate the client to which a 
Notify or Put is being sent and which events for the Notify are supported. However, such 
registration is outside the scope of the KMIP protocol. Registration also includes a specification of 
whether a given client supports Put and Notify, and what attributes may be included in a Put for a 
particular client. 

• Communication between the client and the server is authenticated. Authentication for a particular 
client/server implementation is at a minimum accomplished using one of the mandatory 
authentication mechanisms (see [KMIP-PROF]). Further strengthening of the client/server 
communications integrity by means of signed message content and/or wrapped keys is 
recommended.  

• In order to minimize possible divergence of key or state information between client and server as 
a result of server-initiated communication, any client receiving Notify or Put messages returns 
acknowledgements of these messages to the server. This acknowledgement may be at 
communication layers below the KMIP layer, such as by using transport-level acknowledgement 
provided in TCP/IP. 

For client devices that are incapable of responding to messages from the server, communication with the 
server happens via a proxy entity that communicates with the server, using KMIP, on behalf of the client. 
It is possible to secure communication between a proxy entity and the client using other, potentially 
proprietary mechanisms. 

3.47 Flow Control 

Flow Control or "Endpoint Role" is useful for "Put" and "Notify" operations for clients that are available 
intermittently or are not directly accessible to the server. It provides a uniform means of delivering data 
from the server to the client that would be available by requests from a polling client. 

3.48 Client and Server Correlation Values 

The Client Correlation Value can be used by a client to provide additional, non-critical information to a 
server.  The value need not be unique.  The server should log the value and be able to identify log 
records that contain a given Client Correlation Value.  An example use of the Client Correlation value is to 
track the KMIP test case number used when performing interoperability testing by the KMIP Technical 
Committee. 

The Server Correlation Value is generated by a server and used to uniquely identify each request.  The 
value should be globally unique and should be logged by the server for each request.  The server 
provides the value to the client within the response to each KMIP operation and the client should store the 
value in its log.  Ideally both the client and server should locate log records that contain a given Server 
Correlation Value so that the workflow associated with each request may be traced across client and 
server. 

3.49 Reducing Multiple Requests Through the Use of Batch 

KMIP supports batch operations in order to reduce the number of calls between the client and server. For 
example, Locate and Get are likely to be commonly accomplished within a single batch request. 

KMIP does not ensure that batch operations are atomic on the server side. If servers implement such 
atomicity, the client is able to use the optional “undo” mode to request roll‐back for batch operations 
implemented as atomic transactions. However, support for “undo” mode is optional in the protocol, and 
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there is no guarantee that a server that supports “undo” mode has effectively implemented atomic 
batches. 

 

A client can determine if a server supports the optional “undo” or the optional “continue” mode using a 
Query operation with the Query Function value of Query Capability Information and by checking the value 
of the Batch Undo Capability or Batch Continue Capability fields in the response. 

3.50 Maximum Message Size 

When a server is processing requests in a batch, it should compare the cumulative response size of the 
message to be returned after each request with the specified Maximum Response Size. If the message is 
too large, it should prepare a maximum message size error response message at that point, rather than 
continuing with operations in the batch. This increases the client’s ability to understand what operations 
have and have not been completed. 

When processing individual requests within the batch, the server that has encountered a Maximum 
Response Size error should not return attribute values or other information as part of the error response. 

The Locate operation also supports the concept of a maximum item count to include in the returned list of 
unique identifiers.  

3.51 Message Extensions 

Any number of vendor-specific extensions may be included in the Message Extension optional structure. 
This allows KMIP implementations to create multiple extensions to the protocol. 

3.52 Result Message Text 

KMIP specifies the Result Status, the Result Reason and the Result Message as normative message 
contents. For the Result Status and Result Reason, the enumerations provided in [KMIP-SPEC] are the 
normative values. The values for the Result Message text are implementation-specific. In consideration of 
internationalization, it is recommended that any vendor implementation of KMIP provide appropriate 
language support for the Return Message. How a client specifies the language for Result Messages is 
outside the scope of the KMIP. 

3.53 Result Reasons 

Additional Result Reasons have been added to enable a client to self-diagnose error situations with 
additional information about the nature of the error. Previously many common error conditions resulted in 
a single Result Reason. More specificity improves the adoption of additional capabilities within the 
specification. 

3.54 Passing Attestation Data 

In some scenarios the server may want assurance of the integrity of the client’s system before honoring a 
client’s request. Additionally, the server may want a guarantee of the freshness of the attestation 
computation in the integrity measurement.  

Generally, the process takes four passes:  

1. The client sends a request to the server which requires attestation. 
2. The server returns a random nonce to the client that will be used in the attestation computation to 

guarantee the freshness of the measurement. 
3. The client sends a request to the server which includes the measurement of the client’s system, 

and the measurement contains the nonce from the server. 
4. The server verifies the measurement and sends the appropriate response to the client.  

 

Passing attestation data with a client request can be achieved in KMIP as follows: 
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1. The client sends a request to the server with the Attestation Capable Indicator set to True in the 

request header. 

2. If the request requires attestation, the server will return an “Attestation Required” error with a 

Nonce object in the response header. {If the client request fails for any reason other than 

“Attestation Required”, the server will not include a nonce in the error message.} 

3. The client uses the nonce received from the server in the attestation computation that will be 

used in the measurement. 

a. The client forms an Attestation Credential Object which contains either the measurement 

from the client or an assertion from a third party if the server is not capable or willing to 

verify the attestation data from the client. 

b. The client then issues a request which contains the Attestation Credential Object in the 

request header. 

4. The server validates the measurement or assertion data in the Credential Object, checks that the 

nonce in the Credential Object matches one sent recently by the server, then sends the 

appropriate response to complete the request issued by the client.  {If the measurement or 

assertion data in the Credential Object does not validate or if the nonce does not match one sent 

recently by the server, the server will return an “Attestation Failed” error instead of completing the 

request issued by the client.} 

The server needs to be capable of processing and verifying multiple Credential Objects in the same 
request header since Attestation Credentials do not provide the same type of authentication as the 
Username and Password or Device Credential. 

How frequently (e.g. every request, every 100 requests, etc.) the server generates a new random nonce 
depends on server policy.  The lifetime of the nonce once the server has sent it to the client (i.e., the 
timeframe in which the client must return the nonce before needs to request a fresh nonce from the 
server) also depends on server policy. 

If the client sends a request that requires attestation, but the client has not set the Attestation Capable 
Indicator to True, then the server will send a “Permission Denied” error and will not include a Nonce 
object in the response header. 

3.55 Vendor Extensions 

KMIP allows for vendor extensions in a number of areas: 

1. Enumerations have specific ranges which are noted as extensions 

2. Item Tag values of the form 0x54xxxx are reserved for vendor extensions 

3. Attributes may be defined by the client with a “x-“ prefix or by the server with a “y-“ prefix 

Extensions may be used by vendors to communicate information between a KMIP client and a KMIP 
server that is not currently defined within the KMIP specification.  

A common use of extensions is to allow for the structured definition of attributes using KMIP TTLV 
encoding rather than encoding vendor specific information in opaque byte strings. 
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4 Applying KMIP Functionality 
This section describes how to apply the functionality described in the Key Management Interoperability 
Protocol Specification to address specific key management usage scenarios or to solve key management 
related issues. 

4.1 Locating Keys in Specific States 

It is possible to formulate Locate queries to address any of the following conditions: 

• Exact match of a transition to a given state. Locate the key(s) with a transition to a certain state at 
a specified time (t). 

• Range match of a transition to a given state. Locate the key(s) with a transition to a certain state 
at any time at or between two specified times (t and t’). 

• Exact match of a state at a specified time. Locate the key(s) that are in a certain state at a 
specified time (t). 

• Match of a state during an entire time range. Locate the key(s) that are in a certain state during 
an entire time specified with times (t and t’). Note that the Activation Date could occur at or before 
t and that the Deactivation Date could occur at or after t’+1. 

• Match of a state at some point during a time range. Locate the key(s) that are in a certain state at 
some time at or between two specified times (t and t’). In this case, the transition to that state 
could be before the start of the specified time range. 

This is accomplished by allowing any date/time attribute to be present either once (for an exact match) or 
at most twice (for a range match). 

For instance, if the state we are interested in is Active, the Locate queries would be the following 
(corresponding to the bulleted list above): 

• Exact match of a transition to a given state: Locate (ActivationDate(t)). Locate keys with an 
Activation Date of t. 

• Range match of a transition to a given state: Locate (ActivationDate(t), ActivationDate(t')). Locate 
keys with an Activation Date at or between t and t’. 

• Exact match of a state at a specified time: Locate (ActivationDate (0), ActivationDate (t), 
DeactivationDate (t+1), DeactivationDate (MAX_INT), CompromiseDate (t+1), CompromiseDate 
(MAX_INT)). Locate keys in the Active state at time t, by looking for keys with a transition to 
Active before or until t, and a transition to Deactivated or Compromised after t (because we don't 
want the keys that have a transition to Deactivated or Compromised before t). The server 
assumes that keys without a DeactivationDate or CompromiseDate is equivalent to MAX_INT 
(i.e., infinite).  

• Match of a state during an entire time range: Locate (ActivationDate (0), ActivationDate (t), 
DeactivationDate (t'+1), DeactivationDate (MAX_INT), CompromiseDate (t'+1), CompromiseDate 
(MAX_INT)). Locate keys in the Active state during the entire time from t to t’. 

• Match of a state at some point during a time range: Locate (ActivationDate (0), ActivationDate (t'-
1), DeactivationDate (t+1), DeactivationDate (MAX_INT), CompromiseDate (t+1), 
CompromiseDate (MAX_INT)). Locate keys in the Active state at some time from t to t’, by 
looking for keys with a transition to Active between 0 and t’-1 and exit out of Active on or after t+1. 

The queries would be similar for Initial Date, Deactivation Date, Compromise Date and Destroy Date. 

In the case of the Destroyed-Compromise state, there are two dates recorded: the Destroy Date and the 
Compromise Date. For this state, the Locate operation would be expressed as follows: 

• Exact match of a transition to a given state: Locate (CompromiseDate (t), State (Destroyed-
Compromised)) and Locate (DestroyDate (t), State (Destroyed-Compromised)). KMIP does not 
support the OR in the Locate request, so two requests should be issued. Locate keys that were 
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Destroyed and transitioned to the Destroyed-Compromised state at time t, and locate keys that 
were Compromised and transitioned to the Destroyed-Compromised state at time t. 

• Range match of a transition to a given state: Locate (CompromiseDate (t), CompromiseDate (t'), 
State (Destroyed-Compromised)) and Locate (DestroyDate (t), DestroyDate (t'), State 
(Destroyed-Compromised)). Locate keys that are Destroyed-Compromised and were 
Compromised or Destroyed at or between t and t’.  

• Exact match of a state at a specified time: Locate (CompromiseDate (0), CompromiseDate (t), 
DestroyDate (0), DestroyDate (t)); nothing else is needed, since there is no exit transition. Locate 
keys with a Compromise Date at or before t, and with a Destroy Date at or before t. These keys 
are, therefore, in the Destroyed-Compromised state at time t.  

• Match of a state during an entire time range: Locate (CompromiseDate (0), CompromiseDate (t), 
DestroyDate (0), DestroyDate (t)). Same as above. As there is no exit transition from the 
Destroyed-Compromised state, the end of the range (t’) is irrelevant. 

• Match of a state at some point during a time range: Locate (CompromiseDate (0), 
CompromiseDate (t'-1), DestroyDate (0), DestroyDate (t'-1)). Locate keys with a Compromise 
Date at or before t’-1, and with a Destroy Date at or before t’-1. As there is no exit transition from 
the Destroyed-Compromised state, the start of the range (t) is irrelevant. 

4.2 Using Wrapped Keys with KMIP 

KMIP provides the option to register and get keys in wrapped format. Clients request the server to return 
a wrapped key by including the Key Wrapping Specification in the Get Request Payload. Similarly, clients 
register a wrapped key by including the Key Wrapping Data in the Register Request Payload. 

The Wrapping Method within the Key Wrapping Data identifies the type of mechanism used to wrap the 
key, but does not identify the algorithm or block cipher mode. It is possible to determine these from the 
attributes set for the specified Encryption Key or MAC/Signing Key. If a key has multiple Cryptographic 
Parameters set, clients may include the applicable parameters in Key Wrapping Specification. If omitted, 
the server chooses the Cryptographic Parameter attribute with the lowest index. 

The Key Value includes both the Key Material and, optionally, attributes of the key; these may be 
provided by the client in the Register Request Payload; the server only includes attributes when 
requested in the Key Wrapping Specification of the Get Request Payload. The Key Value may be 
encrypted, signed/MACed, or both encrypted and signed/MACed (and vice versa). In addition, clients 
have the option to request or import a wrapped Key Block according to standards, such as ANSI TR-31, 
or vendor-specific key wrapping methods. 

It is important to note that if the Key Wrapping Specification is included in the Get Request Payload, the 
Key Value may not necessarily be encrypted. If the Wrapping Method is MAC/sign, the returned Key 
Value is in plaintext, and the Key Wrapping Data includes the MAC or Signature of the Key Value. 

The Key Wrap Type parameter in the Get operation may be used to determine how a key that was 
registered as a wrapped key is returned to a client.  Specifying a value of Not Wrapped ensures that the 
server returns the unwrapped key value.  A value of As Registered can be used to retrieve the key value 
as it was provided in the Register operation.  In the latter case, the wrapping key need not be known to 
the server.  If no Key Wrap Type is provided, then the server may choose to return the key either 
wrapped or unwrapped.  A Get operation may use both a Key Wrap Type and a Wrapping Key 
Specification, in which case the Key Wrap Type is processed as if there was no Wrapping Key 
Specification, and the result is then wrapped as specified. 

Prior to wrapping or unwrapping a key, the server should verify that the wrapping key is allowed to be 
used for the specified purpose. For example, if the Unique ID of a symmetric key is specified in the Key 
Wrapping Specification inside the Get request, the symmetric key should have the “Wrap Key” bit set in 
its Cryptographic Usage Mask. Similarly, if the client registers a signed key, the server should verify that 
the Signature Key, as specified by the client inside the Key Wrapping Data, has the “Verify” bit set in the 
Cryptographic Usage Mask. If the wrapping key is not permitted to be used for the requested purpose 
(e.g., when the Cryptographic Usage Mask is not set), the server should return the Operation Failed result 
status. 
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4.2.1 Encrypt-only Example with a Symmetric Key as an Encryption Key for a 
Get Request and Response 

The client sends a Get request to obtain a key that is stored on the server. When the client sends a Get 
request to the server, a Key Wrapping Specification may be included. If a Key Wrapping Specification is 
included in the Get request, and a client wants the requested key and its Cryptographic Usage Mask 
attribute to be wrapped with AES key wrap, the client includes the following information in the Key 
Wrapping Specification: 

• Wrapping Method: Encrypt 

• Encryption Key Information 

• Unique Key ID: Key ID of the AES wrapping key 

• Cryptographic Parameters: The Block Cipher Mode is NISTKeyWrap (not necessary if default 
block cipher mode for wrapping key is NISTKeyWrap) 

• Attribute Name: Cryptographic Usage Mask 

The server uses the Unique Key ID specified by the client to determine the attributes set for the proposed 
wrapping key. For example, the algorithm of the wrapping key is not explicitly specified inside the Key 
Wrapping Specification. The server determines the algorithm to be used for wrapping the key by 
identifying the Algorithm attribute set for the specified Encryption Key. 

The Cryptographic Parameters attribute should be specified by the client if multiple instances of the 
Cryptographic Parameters exist, and the lowest index does not correspond to the NIST key wrap mode of 
operation. The server should verify that the AES wrapping key has NISTKeyWrap set as an allowable 
Block Cipher Mode, and that the “Wrap Key” bit is set in the Cryptographic Usage Mask. 

If the correct data was provided to the server, and no conflicts exist, the server AES key wraps the Key 
Value (both the Key Material and the Cryptographic Usage Mask attribute) for the requested key with the 
wrapping key specified in the Encryption Key Information. The wrapped key (byte string) is returned in the 
server’s response inside the Key Value of the Key Block.  

The Key Wrapping Data of the Key Block in the Get Response Payload includes the same data as 
specified in the Key Wrapping Specification of the Get Request Payload except for the Attribute Name. 

4.2.2 Encrypt-only Example with a Symmetric Key as an Encryption Key for a 
Register Request and Response 

The client sends a Register request to the server and includes the wrapped key and the Unique ID of the 
wrapping key inside the Request Payload. The wrapped key is provided to the server inside the Key 
Block. The Key Block includes the Key Value Type, the Key Value, and the Key Wrapping Data. The Key 
Value Type identifies the format of the Key Material, the Key Value consists of the Key Material and 
optional attributes that may be included to cryptographically bind the attributes to the Key Material, and 
the Key Wrapping Data identifies the wrapping mechanism and the encryption key used to wrap the 
object and the wrapping mechanism. 

Similar to the example in 4.2.1 the key is wrapped using the AES key wrap. The Key Value includes four 
attributes: Cryptographic Algorithm, Cryptographic Length, Cryptographic Parameters, and Cryptographic 
Usage Mask.  

The Key Wrapping Data includes the following information: 

• Wrapping Method: Encrypt 

• Encryption Key Information 

• Unique Key ID: Key ID of the AES wrapping key 

• Cryptographic Parameters: The Block Cipher Mode is NISTKeyWrap (not necessary if default 
block cipher mode for wrapping key is NISTKeyWrap) 
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Attributes do not need to be specified in the Key Wrapping Data. When registering a wrapped Key Value 
with attributes, clients may include these attributes inside the Key Value without specifying them inside 
the Template-Attribute. 

Prior to unwrapping the key, the server determines the wrapping algorithm from the Algorithm attribute set 
for the specified Unique ID in the Encryption Key Information. The server verifies that the wrapping key 
may be used for the specified purpose. In particular, if the client includes the Cryptographic Parameters in 
the Encryption Key Information, the server verifies that the specified Block Cipher Mode is set for the 
wrapping key. The server also verifies that the wrapping key has the “Unwrap Key” bit set in the 
Cryptographic Usage Mask.  

The Register Response Payload includes the Unique ID of the newly registered key and an optional list of 
attributes that were implicitly set by the server. 

4.2.3 Encrypt-only Example with an Asymmetric Key as an Encryption Key for a 
Get Request and Response 

The client sends a Get request to obtain a key (either symmetric or asymmetric) that is stored on the 
server. When the client sends a Get request to the server, a Key Wrapping Specification may be 
included. If a Key Wrapping Specification is included, and the key is to be wrapped with an RSA public 
key using the OAEP encryption scheme, the client includes the following information in the Key Wrapping 
Specification. Note that for this example, attributes for the requested key are not requested. 

• Wrapping Method: Encrypt 

• Encryption Key Information 

• Unique Key ID: Key ID of the RSA public key 

• Cryptographic Parameters:  

Padding Method: OAEP 

Hashing Algorithm: SHA-256 

The Cryptographic Parameters attribute is specified by the client if multiple instances of Cryptographic 
Parameters exist for the wrapping key, and the lowest index does not correspond to the associated 
padding method. The server should verify that the specified Cryptographic Parameters in the Key 
Wrapping Specification and the “Wrap Key” bit in the Cryptographic Usage Mask are set for the 
corresponding wrapping key.  

The Key Wrapping Data returned by the server in the Key Block of the Get Response Payload includes 
the same data as specified in the Key Wrapping Specification of the Get Request Payload. 

The Mask Generator and Mask Generator Hashing Algorithm enumerations allow the Mask Generation 
Function (MGF) and associated algorithm to be explicitly specified.  If Mask Generator Hashing Algorithm 
is omitted, then the value specified for Hashing Algorithm is assumed. 

The example above assumes the same algorithm (SHA-256) is used for both the Mask Generation 
Function (MGF) and hashing data. 

4.2.4 MAC-only Example with an HMAC Key as an Authentication Key for a Get 
Request and Response 

The client sends a Get request to obtain a key that is stored on the server. When the client sends a Get 
request to the server, a Key Wrapping Specification may be included. If a key and Custom Attribute (i.e., 
x-Nonce) is to be MACed with HMAC SHA-256, the following Key Wrapping Specification is specified: 

• Wrapping Method: MAC/sign 

• MAC/Signature Key Information 

• Unique Key ID: Key ID of the MACing key (note that the algorithm associated with this key 
would be HMAC-SHA256) 

• Attribute Name: x-Nonce 



 

kmip-ug-v2.0-cn01  24 October 2019 
Non-Standards Track Copyright © OASIS Open 2019.  All Rights Reserved. Page 42 of 55 

For HMAC, no Cryptographic Parameters need to be specified, since the algorithm, including the hash 
function, may be determined from the Algorithm attribute set for the specified MAC Key. The server 
should verify that the HMAC key has the “MAC Generate” bit set in the Cryptographic Usage Mask. Note 
that an HMAC key does not require the “Wrap Key” bit to be set in the Cryptographic Usage Mask. 

The server creates an HMAC value over the Key Value if the specified MACing key may be used for the 
specified purpose and no conflicts exist. The Key Value is returned in plaintext, and the Key Block 
includes the following Key Wrapping Data: 

• Wrapping Method: MAC/sign 

• MAC/Signature Key Information 

• Unique Key ID: Key ID of the MACing key  

• MAC/Signature: HMAC result of the Key Value 

In the example, the custom attribute x-Nonce was included to help clients, who are relying on the proxy 
model, to detect replay attacks. End-clients, who communicate with the key management server, may not 
support TLS and may not be able to rely on the message protection mechanisms provided by a security 
protocol. An alternative approach for these clients would be to use the custom attribute to hold a random 
number, counter, nonce, date, or time. The custom attribute needs to be created before requesting the 
server to return a wrapped key and is recommended to be set if clients frequently wrap/sign the same key 
with the same wrapping/signing key. 

4.2.5 Registering a Wrapped Key as an Opaque Cryptographic Object 

Clients may want to register and store a wrapped key on the server without the server being able to 
unwrap the key (i.e., the wrapping key is not known to the server). Instead of storing the wrapped key as 
an opaque object, clients have the option to store the wrapped key inside the Key Block as an opaque 
cryptographic object, i.e., the wrapped key is registered as a managed cryptographic object, but the 
encoding of the key is unknown to the server. Registering an opaque cryptographic object allows clients 
to set all the applicable attributes that apply to cryptographic objects (e.g., Cryptographic Algorithm and 
Cryptographic Length), 

Opaque cryptographic objects are set by specifying the following inside the Key Block structure: 

• Key Format Type: Opaque 

• Key Material: Wrapped key as a Byte String 

The Key Wrapping Data does not need to be specified. 

4.2.6 Encoding Option for Wrapped Keys 

KMIP provides the option to specify the Encoding Option inside the Key Wrapping Specification and Key 
Wrapping Data. This option allows users to Get or Register the Key Value in a non-TTLV encoded format. 
This may be desirable in a proxy environment, where the end-client is not KMIP-aware. 

The Encoding Option is only available if no attributes are specified inside the Key Value. The server 
returns the Encoding Option Error if both the Encoding Option and Attribute Names are specified inside 
the Key Wrapping Specification. Similarly, the server is expected to return the Encoding Option Error 
when registering a wrapped object with attributes inside the Key Value and the Encoding Option is set in 
the Key Wrapping Data. If no Encoding Option is specified, KMIP assumes that the Key Value is TTLV-
encoded. Thus, by default, the complete TTLV-encoded Key Value content, as shown in the example 
below, is wrapped: 

Key Material  || Byte String   || Length   || Key Material Value 

420043       || 08            || 00000010 || 0123456789ABCDEF0123456789ABCDEF 

Some end-clients may not understand or have the space for anything more than the actual key material 
(i.e., 0123456789ABCDEF0123456789ABCDEF in the above example). To wrap only the Key Material 
value during a Get operation, the Encoding Option (00001 for no encoding) should be specified inside the 
Key Wrapping Specification. The same Encoding Option should be specified in the Key Wrapping Data 
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when returning the non-TTLV encoded wrapped object inside the Get Response Payload or when 
registering a wrapped object in non-TTLV encoded format. 

It is important to be aware of the risks involved when excluding the attributes from the Key Value. Binding 
the attributes to the key material in certain environments is essential to the security of the end-client. An 
untrusted proxy could change the attributes (provided separately via the Get Attributes operation) that 
determine how the key is being used (e.g., Cryptographic Usage). Including the attributes inside the Key 
Value and cryptographically binding it to the Key Material could prevent potential misuse of the 
cryptographic object and may prevent a replay attack if, for example, a nonce is included as a custom 
attribute. The exclusion of attributes and therefore the usage of the Encoding Option are only 
recommended in at least one of the following scenarios: 

1. End-clients are registered with the KMIP server and are communicating with the server directly (i.e., 
the TLS connection is between the server and client). 

2. The environment is controlled and non-KMIP-aware end-clients are aware how wrapped 
cryptographic objects (possibly Raw keys) from the KMIP server should be used without having to 
rely on the attributes provided by the Get Attributes operation. 

3. The wrapped cryptographic object consists of attributes inside the Key Material value. These 
attributes are not interpreted by the KMIP server but are understood by the end-client. This may be 
the case if the Key Format Type is opaque or vendor-specific. 

4. The proxy communicating with the KMIP server on behalf of the end-client is considered to be trusted 
and is operating in a secure environment. 

Registering a wrapped object without attributes is not recommended in a proxy environment, unless 
scenario 4 is met. 

4.3 Interoperable Key Naming for Tape 

This section describes methods and provides examples for creating and storing key identifiers that are 
interoperable across multi-vendor KMIP clients, using the KMIP Tape Library Profiles. 

4.3.1 Native Tape Encryption by a KMIP Client 

A common method for naming and retrieving keys is needed to support moving tape cartridges between 2 
or more KMIP-compliant tape libraries that are all registered with the same KMIP key manager. 

4.3.1.1 Method Overview 

The method uses the KMIP Tape Library Profile. This profile specifies use of the KMIP Application 
Specific Information (ASI) attribute. The method supports both client-generated and server-generated key 
identifiers. 

The key identifier is a KMIP string, composed of hexadecimal numeric characters.  This string of 
characters is unique within a chosen namespace.    Methods of generating the string are determined by 
policy. The LIBRARY-LTO namespace is preferred for maximum interoperability. 

A compressed (numeric) transformation of the identifier string is stored in the tape format’s Key 
Associated Data.  This allows for future retrieval of the key for decryption. 

Interoperability is achieved by a) standardized algorithms to map byte values between the numeric (KAD) 
and text (ASI) representations of the identifier; and b) standardized ordering of bytes within the KAD so 
the identifier can be re-assembled in the correct sequence by other compliant implementations.  
Examples of the algorithms are provided below. 

4.3.1.2 Definitions 

Key Associated Data (KAD): Part of the tape format. May be segmented into authenticated and 
unauthenticated fields. KAD usage is detailed in the SCSI SSC-3 standard from the T10 organization. 

Application Specific Information (ASI): A KMIP attribute. 
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Hexadecimal numeric characters: Case-sensitive, printable, single byte ASCII characters representing the 
numbers 0 through 9 and uppercase alpha A through F. (US-ASCII characters 30h-39h and 41h-46h). 
 
Hexadecimal numeric characters are always paired, each pair representing a single 8-bit numeric value. 
A leading zero character is provided, if necessary, so that every byte in the tape’s KAD is represented by 
exactly two hexadecimal numeric characters. 

N(k): The number of bytes in the tape format combined KAD fields (both authenticated and 
unauthenticated). 

N(a), N(u): The number of bytes in the tape formats authenticated, and unauthenticated KAD fields, 
respectively. 

4.3.1.3  Implementation Example of Algorithm 1.  Key identifier string to numeric 
direction (Converting the ASI string to tape format’s KAD) 

Refer to the KMIP Tape profile for algorithm 1. 

This algorithm is associated with writing the KAD, typically to allow future retrieval of a key.  An example 
implementation is as follows. 

1. The client creates a key identifier or obtains one from the server.   The identifier is a KMIP string of 
hexadecimal numeric characters. Copy the string to an input buffer of size 2*N(k) bytes. For LTO4, an 
88 character string is sufficient to represent any key name stored directly in the KAD fields. For LTO5, 
a 184 character string is sufficient to represent any key name stored directly in the KAD fields. 

2. Define output buffers for unauthenticated KAD, and authenticated KAD, of size N(u) and N(a) 
respectively. For LTO4, this would be 32 bytes of unauthenticated data, and 12 bytes of authenticated 
data. For LTO5, this would be 32 bytes of unauthenticated data and 60 bytes of authenticated data. 

3. Define the standard POSIX (also known as C) locale. Each character in the string is a single-byte US-
ASCII character. 

4. First, populate the authenticated KAD buffer, converting a sub-string consisting of the last (rightmost) 
2*N(a) characters of the key identifier string. 

5. When the authenticated KAD is filled, next populate the unauthenticated KAD buffer, by converting 
the remaining hexadecimal character pairs (if any) of the identifier string. 

4.3.1.4 Implementation Example of Algorithm 2.   Numeric to key identifier string 
direction (Converting tape format’s KAD to ASI string) 

This algorithm is associated with reading the KAD, typically in preparation for retrieving a key.   An 
example implementation is as follows 

1. Define an input buffer sized for N(k). For LTO4, N(k) is 44 bytes (12 bytes authenticated, 32 

unauthenticated). For LTO5, N(k) is 92 bytes (60 bytes authenticated, 32 bytes unauthenticated). 

2. Define an output buffer sufficient to contain a  string with a maximum length of 2*N(k) bytes.  

3. Define the standard POSIX (also known as C) locale. Each character in the string is a single-byte US-

ASCII character. 

4. First, copy the tape format’s unauthenticated KAD data (if any) to the input buffer. Next, bytes from 

the authenticated KAD are concatenated, after the unauthenticated bytes.  In many implementations 

the unauthenticated KAD is empty, and in those cases the entire input buffer will be populated with 

bytes from authenticated KAD. 

5. For each byte in the input buffer, convert to US-ASCII as follows: 

6. Convert the byte's value to exactly 2 hexadecimal numeric characters, including a leading 0 where 

necessary. Append these 2 numeric characters to the output buffer, with the high-nibble represented 

by the left-most hexadecimal numeric character. 
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4.3.1.5 Usage Example 

The following usage example will create a key identifier which can be stored in ASI.  The identifier will 
then be translated for storage into a tape format’s KAD, using algorithm 1.   Both LTO4 and LTO5 
examples of KAD contents are provided. 

The reverse translation from KAD bytes to the KMIP key identifier is not shown but would be 
accomplished via algorithm 2.  This re-constructed key identifier string would be used to Locate the key 
via ASI. 

Example of creating a key identifier.   Implementation-specific material is used to generate a key 
identifier.  The content of this material is based on server or client policy.  An example of a text string 
which could be used to generate a KMIP key identifier for tape is as follows. 

SN123456_MFR:XYZ INC_BAR12345_TM20131234 

This example is a set of 40 characters which will be used to create a KMIP key identifier for use as 
specified in the KMIP Tape Profile.  Every 8th character is bold.     

This set of characters is suitable as a key identifier for either LTO4 or LTO5, since it will fit within the 
smaller 44 character KAD space of LTO4. 

The corresponding KMIP key identifier, which is a string of hexadecimal numeric character pairs, is shown 
below.   This string will be stored in ASI Application Data.    

53 4E 31 32 33 34 35 36 5F 4D 46 52 3A 58 59 5A 20 49 4E 43 5F 42 41 52 

 31 32 33 34 35 5F 54 4D 32 30 31 33 31 32 33 34  

Spaces are shown for to improve readability but are NOT part of the ASI string.   Every 8th hexadecimal 
numeric pair is bold. 

Note the identifier has exactly 2x more characters than the material used to generate the KMIP key 
identifier. 

Translating the key identifier to KAD bytes (LTO4).   The corresponding KAD content, for use with an 
LTO4 tape cartridge is shown in the following figure. 

U
K

A
D

A
K

A
D

28 of 32 bytes utilized

3331 3432

32 3330 3135 54 4D5F

3331 3432

53 34 35 364E 31 32 33

5F 4D 46 52 3A 5A58 59

4E20 4349 42 415F 52
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FIGURE 2: KAD CONTENT FOR LTO4 

Each square is 1 byte (8 bits).   Each square contains the 8-bit value which represents a pair of 
hexadecimal numeric characters in the KMIP key identifier string. 

Every 8th byte of KAD is shaded. 

The KAD was populated by converting the rightmost 24 characters (12-character pairs) of the identifier 
string into bytes of authenticated KAD.   The remaining characters of the identifier were written to 
unauthenticated KAD. 

Translating the key identifier to KAD bytes (LTO5).  The corresponding KAD for use with an LTO5 and 
later tape cartridge is shown in the following figure. 

A
K

A
D

U
K

A
D

53 34 35 364E 31 32 33

5F 4D 46 52 3A 5A58 59

4E20 4349 42 415F 52

3331 3432 35 54 4D5F

32 3330 31 3331 3432

40 of 60 bytes utilized

0 of 32 bytes utilized

 

FIGURE 3: KAD CONTENT FOR LTO5 

Each square is 1 byte (8 bits).   Each square contains the 8-bit value which represents a pair of 
hexadecimal numeric characters in the key identifier string. 

Every 8th byte of KAD is shaded. 

The KAD was populated by converting   the rightmost 80 characters (40-character pairs) of the identifier 
string into bytes of authenticated KAD.   The unauthenticated KAD is not used because all of the data fits 
within authenticated KAD. 

4.4 Registering Extension Information 

As tag values and their interpretation for the most part should be known for a client and server to 
meaningfully use an extension, the following registration procedure should be used. 

1. Document the Extensions including: 

a. Extension Tag, Extension Name, Extension Type values to be reserved 

b. A brief description of the purpose of the Extension 

c. Example use case messages (requests and responses) 

d. Example Guidance  
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2. Send the Document to the KMIP TC requesting review 

3. Request a KMIP TC ballot on accepting the reservation of the Extension 

It is anticipated that a template document may be produced for this registration process. 

4.5 Using KMIP for PGP Keys 

PGP, both as vendor product and as standard, provides a rich environment for key management that 
addresses significant use cases related to such areas as secure exchange of email, documents and other 
resources. Although KMIP is by no means required for support of PGP environments, it can provide a 
valuable mechanism for movement of PGP keys between a particular PGP environment, such as 
Symantec Encryption Management Server (SEMS, née PGP Universal), and another key management 
environment. 

KMIP does not attempt to represent the full range of functionality in PGP environments. However, the use 
cases related to movement of PGP keys across environments, described in the KMIP Use Cases 
document, can be supported by taking advantage both of the PGP-specific capabilities in KMIP, such as 
the PGP Key object introduced in KMIP V1.2, and of KMIP messages, objects, operations and attributes 
in general. 

The PGP Key managed object contains a PGP key (specified in [RFC4880]) as an opaque blob.  KMIP 
compliant servers do not need to understand the fine structure of PGP keys.  The intention here is that 
PGP-enabled clients be able to discover the PGP Key managed cryptographic objects by searching for 
one of the various names contained within the block.  The Alternative Name attribute can be used to 
specify one or more names (e.g. User IDs) that are attached to the PGP Key object. The PGP-enabled 
clients are expected to digest the PGP Key object and properly assign these Alternative Name attributes 
on to the cryptographic managed object.  The KMIP server does not have to do this work. 

Internally, PGP keys may contain many public-private key pairs, each tied to a specific type of encryption 
operations (one key for signing, one for encryption, and one to tie the other two together in a trust 
relationship is one typical arrangement.)  The Link attribute supports new values that enable the 
description of this set of PGP Key relationships. The new values are parent, child, previous and next. For 
example, the private and public keys associated with a PGP Key can be pointed to from the PGP Key 
with the “child” link attribute. Additional Decryption Keys (ADK) can be pointed to from the PGP Key with 
the “child” link attribute and can be point to each other with the “previous” and “next” link attributes. In this 
way, the link attributes can be used to define the structural relationships required to establish the web of 
trust for a PGP Key.  

As mentioned above, KMIP does not attempt to represent all the information about PGP keys that would 
be managed within a PGP implementation.   For example, policies such as algorithms supported, by a 
PGP key are not expressed within KMIP. Instead, KMIP enables the specification of these attributes, if 
necessary, as information enclosed within the opaque value defined for a given PGP key. This 
information would be handled by security administration and out-of-band coordination between the PGP 
environments that participate in the KMIP exchanges related to PGP keys.  

KMIP complaint servers are not expected to be able to create PGP Key objects from scratch.  PGP-
enabled clients will do the key creation and pass the resulting information up to KMIP. 

4.6 KMIP Client Registration Models 

There are several common approaches to registering KMIP clients with KMIP servers: 

• Manual client registration within a single trust boundary 

• Automatic client registration across multiple trust boundaries 

• Configuring a KMIP Server for use with Automatic Client Registration 

The goal of these approaches is to establish the KMIP-interoperable secure channel or channels between 
KMIP servers and clients, such as a mutually-authenticated TLS channel. 
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In order to support the goal of establishing an interoperable approach to establishing this channel, this 
section provides more detailed information about these approaches to client registration. 

The Query Function, Client Registration Methods, provides a client a means to determine which 
automated client registrations method(s) a KMIP server supports.  Although a KMIP server is not required 
to support any automated registration method. Reflecting common usage for KMIP, all three of the 
scenarios described below discuss the use of X.509 certificates for trust establishment; other 
mechanisms may be used instead but are not described here.  Similarly, all three scenarios describe the 
establishment of a mutually-authenticated TLS connection as the basis trusted exchange of KMIP 
messages, corresponding to the published KMIP authentication suite profiles; other authentication 
mechanisms can be used with KMIP, but are not described here. 

4.6.1 Manual Client Registration 

In this approach, there is no assumption of pre-population of authentication credentials in the client, such 
as by installing an X.509 certificate into a tape library or drive during the manufacturing process. Rather, a 
credential is propagated out-of-band to the client administrator, who installs it into the client environment. 
The credential is then used on initial and subsequent contact between the client and server systems. 

This registration model often entails the server administrator creating a package that contains 1) X.509 
certificate that the client will use to identify itself to the server when creating a TLS mutually-authenticated 
session; 2) information about the X.509 certificate that will be presented by the server to the client during 
negotiation of the mutual authentication, enabling the client to verify the server identity; and 3) possibly 
additional information that can be included in the credential of the KMIP message sent across the 
established channel, such as to provide finer granularity for particular drives within a tape library. As 
indicated, the use of this package of materials takes place during two phases: first during the 
establishment of the TLS secure channel; second during the transmission of KMIP messages. The server 
administrator must have configured the server to recognize the X.509 certificate presented by the client, 
to present the correct X.509 certificate of its own to the client in return and to recognize the additional 
information provided in the credential object in the KMIP message, if any. 

In this model, KMIP is not used to transmit the X.509 certificate and server information used in 
establishing the secure channel. There is nothing to prevent KMIP being used to send this information; 
but commonly this is done using mechanisms other than KMIP, nor is there any expectation that KMIP is 
a required or default mechanism for propagating the credential and the information. The distribution 
mechanism, therefore, may well vary across vendors. 

The use of additional information as the credential in the KMIP message is also neither required nor a 
default. Inclusion of such a credential in the package distributed to the client administrator and in one or 
more KMIP messages is also, therefore, likely to vary across vendors. 

4.6.2 Automated Client Registration 

In this approach the credential used to establish a mutually-authenticated TLS connection is not provided 
in the package provided by the server administrator. Instead, the establishment of trust between the client 
and server is accomplished by some other mechanism.   

A client may use the Query Function, Client Registration Methods, to identify which automated client 
registrations method(s) a KMIP server supports.  Methods included in the enumeration are Unspecified, 
Server Pre-generated, Server On-demand, Client Generated and Client Registered.  Test cases which 
cover how to use the Client Registration Method Query Function and implement the referenced 
automated client registration methods are included in the KMIP Test Cases document [KMIP-TC]. 

One example of a Server Pre-generated method is having an X.509 certificate installed in a client device 
during the manufacturing process. This certificate is then used as a bootstrap mechanism for the 
subsequent exchange of the kind of information exchanged between client administrator and server 
administrator. 

There will often be configuration activity for the client device based on information, such as a Service ID, 
received from the server administrator. Once the client administrator initiates auto-registration, the client 
device sends the X.509 certificate to the server, for example in order to use it to establish an initial TLS 
session. The server then sends the equivalent of the registration packet in section 4.6.1 above to the 
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client and the client returns the certificate to be used for establishing the secure TLS channel with the 
server. 

In this model, administrator intervention may be required to determine whether the initial client certificate 
should be accepted. The scenario above assumes that the return of the server’s packet of registration is 
immediate and automatic; alternatively, the return of the packet of information may be done manually by 
the server administrator, as in section 4.6.1 above; or the return of the packet of server information may 
be done by the server, but only after that action has been approved by an administrator. 

As discussed in section 4.6.1, KMIP can be used by the client in sending the X.509 certificates to the 
server. However, this is not required. If it is sent to the server using a KMIP register operation, the server 
must be able to distinguish that this operation is intended not only to register the cryptographic object, but 
also to initiate the registration of the client as a legitimate participant in KMIP message exchange. 

4.6.3 Registering Sub-Clients Based on a Trusted Primary Client 

Another model is to register sub-clients of a trusted client. In this model, the establishment of trust 
between the client and server can be accomplished using either of the approaches in section 4.6.1 or 
4.6.2. However, the server may also send additional information to the client, such as a “tenant identifier”, 
which it will have to provide to sub-clients for them to use they attempt to register individually. The 
individual sub-clients would follow a registration model such as that described in section 4.6.2, but would 
also provide the tenant identifier along with the X.509 certificate so that the server can decide whether to 
accept the client, based on such criteria as (for example) the TCP/IP address of the sub-client relative to 
that of the primary client. 

This approach can be used for tiered clients that need to be grouped based on their association with a 
larger trusted entity, but that also need individual identities and trust relationships established based on 
those identities. 

KMIP can be used for sending both the client certificate and the tenant identifier to the server. 

4.7 Using One Time Pad Algorithms 

A One Time Pad within the Cryptographic Algorithm enumeration allows for One Time Pad algorithms to 
be used within the context of KMIP. One Time Pads can be used for cryptographic operations where the 
key material is either not known to the KMIP server or the KMIP server is not willing to provide that 
information to the KMIP client. Test cases and examples which demonstrate the usage of the One Time 
Pad algorithm in combination with the cryptographic operations may be found the KMIP Test Cases 
document [KMIP-TC]. 

4.8 Cryptographic Shredding (Erasure) 

Cryptographic (Crypto) Shredding, which is also referred to as Cryptographic Erasure) is the deletion of a 
cryptographic key in order to render data encrypted with that key unrecoverable.  Cryptographic 
shredding may be supported with KMIP via the Client-to-Server Destroy operation and via the Server-to-
Client Notify operation. 

If key material used to encrypt data is only persisted (stored) at the KMIP server and not at the encryption 
point (KMIP client is co-located with or a proxy to the encryption point) then cryptographic shredding may 
be achieved by sending a KMIP Destroy request to the KMIP server.  How the KMIP server destroys the 
key and whether the server choices to retain meta-data about the deleted key is a vendor implementation 
decision and outside of the scope of KMIP.  Please see section 4.9 regarding options for determining the 
type of key deletion a KMIP server or a KMIP client supports. 

If the key material is persisted at the encryption point (in addition to the at the KMIP server) then the 
KMIP server may use the (optional) Notify operation with the Destroy Date attribute included to inform the 
KMIP client (co-customer attributed with or a proxy to the encryption point) that the key has been deleted.  
Upon receipt of this notification the KMIP Client (and encryption point) could be programmed to destroy 
any copy of the key that it has stored.  Note that KMIP does not require that either a KMIP Server or 
KMIP client to support the Notify operation nor does KMIP require that a KMIP client behave in a specific 
manner based on a notification.  This example just demonstrates how Notify could be used to facilitate 
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key destruction and cryptographic shredding.  The method the KMIP client uses to destroy the key and 
whether to maintain meta-data for the key is a vendor implementation and is also out of scope of KMIP. 

4.9 Key Shredding 

Key destruction is eliminating a cryptographic key so that it is no longer accessible for use in a 
cryptographic function (e.g. NIST [SP800-57-1] Destroy state).  Key shredding is taking the destruction 
process a step further so that the cryptographic key is destroyed using a methods where the key is no 
only inaccessible from the cryptographic application in which the key was used, but that the key is not 
recoverable using forensics methods outside of the cryptographic application.  This type of destruction 
method normally follows a data sanitization method such as overwriting key with random data (e.g. 
[DoD5220.22M] NIST [SP800-88]).  KMIP does not impose any requirements on the methods a KMIP 
client or KMIP server uses to destroy a key.  However, it is possible to query the type of destruction 
methods that a KMIP client or KMIP server support by using the Query Capabilities function within the 
Query operation.  The Capability Information object which is returned in the Query response may contain 
the Shredding Algorithm which specifies the supported destruction method. 

4.10 ReEncrypt 

There are contexts in which a client may wish to change the key being used to protect information without 
having to expose the plaintext to the client. 

The Ephemeral tag within the Request Batch item allows the client to request that the plaintext output 
from a cryptographic operation is not returned to the client.  

When combined with the Data Enumeration, to refer to the output from a previous Batch Item, a client can 
request a Decryption followed by an Encryption without the plaintext output from the Decryption being 
returned to the client. 



 

kmip-ug-v2.0-cn01  24 October 2019 
Non-Standards Track Copyright © OASIS Open 2019.  All Rights Reserved. Page 51 of 55 

5 Deprecated KMIP Functionality 
This section describes KMIP functionality that has been deprecated. 

Use of deprecated functionality is discouraged since such functionality may be dropped in a future 
release of the [KMIP-SPEC]. 

5.1 KMIP Deprecation Rule 

Items in the normative KMIP Specification [KMIP-SPEC] document can be marked deprecated in any 
document version but will be removed only in a major version. Similarly, conformance clauses or other 
normative information in the KMIP Profiles [KMIP-PROFILES] document can be deprecated in any 
document version but removed only in a major version. Information in the non-normative KMIP Usage 
Guide [this document] and KMIP Test Cases [KMIP-TC] documents may be removed in any document 
version. 

5.2 Deprecated Functions 

As this is the first release of KMIP 2.0 there are presently no deprecated functions. 
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