Key Management Interoperability Protocol Specification Version 2.0

Committee Specification 01

12 June 2019

This version:
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/cs01/kmip-spec-v2.0-cs01.docx (Authoritative)
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/cs01/kmip-spec-v2.0-cs01.html
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/cs01/kmip-spec-v2.0-cs01.pdf

Previous version:
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/csd01/kmip-spec-v2.0-csd01.docx (Authoritative)
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/csd01/kmip-spec-v2.0-csd01.html
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/csd01/kmip-spec-v2.0-csd01.pdf

Latest version:
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/kmip-spec-v2.0.docx (Authoritative)
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/kmip-spec-v2.0.html
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/kmip-spec-v2.0.pdf

Technical Committee:
OASIS Key Management Interoperability Protocol (KMIP) TC

Chairs:
Tony Cox (tony.cox@cryptsoft.com), Cryptsoft Pty Ltd.
Judith Furlong (Judith.Furlong@dell.com), Dell

Editors:
Tony Cox (tony.cox@cryptsoft.com), Cryptsoft Pty Ltd.
Charles White (chuck@fornetix.com), Fornetix

Related work:
This specification replaces or supersedes:

This specification is related to:

Abstract:
This document is intended for developers and architects who wish to design systems and applications that interoperate using the Key Management Interoperability Protocol Specification.

Status:
This document was last revised or approved by the OASIS Key Management Interoperability Protocol (KMIP) TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=kmip#technical.

TC members should send comments on this specification to the TC’s email list. Others should send comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/kmip/.

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established. For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-open.org/committees/kmip/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this Work Product is provided in separate plain text files. In the event of a discrepancy between any such plain text file and display content in the Work Product’s prose narrative document(s), the content in the separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[kmip-spec-v2.0]

Notices

Copyright © OASIS Open 2019. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.
Table of Contents

1 Introduction ... 11
 1.1 IPR Policy .. 11
 1.2 Terminology ... 11
 1.3 Normative References ... 14
 1.4 Non-Normative References 17
 1.5 Item Data Types .. 17
2 Objects .. 18
 2.1 Certificate .. 18
 2.2 Certificate Request ... 18
 2.3 Opaque Object ... 18
 2.4 PGP Key .. 18
 2.5 Private Key .. 19
 2.6 Public Key .. 19
 2.7 Secret Data ... 19
 2.8 Split Key ... 19
 2.9 Symmetric Key ... 20
3 Object Data Structures .. 21
 3.1 Key Block .. 21
 3.2 Key Value ... 22
 3.3 Key Wrapping Data ... 22
 3.4 Transparent Symmetric Key 23
 3.5 Transparent DSA Private Key 24
 3.6 Transparent DSA Public Key 24
 3.7 Transparent RSA Private Key 24
 3.8 Transparent RSA Public Key 25
 3.9 Transparent DH Private Key 25
 3.10 Transparent DH Public Key 25
 3.11 Transparent EC Private Key 25
 3.12 Transparent EC Public Key 26
4 Object Attributes .. 27
 4.1 Activation Date ... 28
 4.2 Alternative Name .. 29
 4.3 Always Sensitive ... 29
 4.4 Application Specific Information 30
 4.5 Archive Date .. 31
 4.6 Certificate Attributes ... 31
 4.7 Certificate Type ... 32
 4.8 Certificate Length .. 33
 4.9 Comment ... 33
 4.10 Compromise Date .. 33
 4.11 Compromise Occurrence Date 34
 4.12 Contact Information .. 34
 4.13 Cryptographic Algorithm 35
4.14 Cryptographic Domain Parameters ... 35
4.15 Cryptographic Length ... 36
4.16 Cryptographic Parameters.. 37
4.17 Cryptographic Usage Mask .. 39
4.18 Deactivation Date ... 39
4.19 Description ... 40
4.20 Destroy Date .. 40
4.21 Digest ... 41
4.22 Digital Signature Algorithm .. 42
4.23 Extractable .. 42
4.24 Fresh .. 43
4.25 Initial Date .. 43
4.26 Key Format Type .. 44
4.27 Key Value Location .. 45
4.28 Key Value Present ... 45
4.29 Last Change Date .. 46
4.30 Lease Time ... 46
4.31 Link ... 47
4.32 Name .. 48
4.33 Never Extractable ... 49
4.34 NIST Key Type .. 49
4.35 Object Group ... 50
4.36 Object Type ... 50
4.37 Opaque Data Type ... 51
4.38 Original Creation Date ... 51
4.39 PKCS#12 Friendly Name ... 52
4.40 Process Start Date ... 52
4.41 Protect Stop Date ... 53
4.42 Protection Level ... 54
4.43 Protection Period .. 54
4.44 Protection Storage Mask ... 54
4.45 Quantum Safe ... 55
4.46 Random Number Generator ... 55
4.47 Revocation Reason ... 56
4.48 Sensitive ... 57
4.49 Short Unique Identifier ... 57
4.50 State ... 58
4.51 Unique Identifier ... 60
4.52 Usage Limits ... 61
4.53 Vendor Attribute ... 62
4.54 X.509 Certificate Identifier .. 62
4.55 X.509 Certificate Issuer ... 63
4.56 X.509 Certificate Subject .. 64
5 Attribute Data Structures ... 65
5.1 Attributes ... 65
5.2 Common Attributes ... 65
5.3 Private Key Attributes .. 65
5.4 Public Key Attributes .. 65
5.5 Attribute Reference .. 66
5.6 Current Attribute ... 66
5.7 New Attribute ... 66

6 Operations .. 67

6.1 Client-to-Server Operations .. 67
6.1.1 Activate ... 68
6.1.2 Add Attribute ... 68
6.1.3 Adjust Attribute .. 69
6.1.4 Archive .. 70
6.1.5 Cancel .. 71
6.1.6 Certify ... 71
6.1.7 Check .. 73
6.1.8 Create ... 75
6.1.9 Create Key Pair ... 75
6.1.10 Create Split Key ... 77
6.1.11 Decrypt ... 78
6.1.12 Delegated Login ... 80
6.1.13 Delete Attribute .. 81
6.1.14 Derive Key ... 82
6.1.15 Destroy .. 83
6.1.16 Discover Versions ... 84
6.1.17 Encrypt .. 85
6.1.18 Export ... 87
6.1.19 Get .. 88
6.1.20 Get Attributes .. 89
6.1.21 Get Attribute List .. 90
6.1.22 Get Usage Allocation .. 91
6.1.23 Hash ... 92
6.1.24 Import .. 93
6.1.25 Interop ... 94
6.1.26 Join Split Key ... 95
6.1.27 Locate ... 96
6.1.28 Log ... 98
6.1.29 Login .. 99
6.1.30 Logout .. 99
6.1.31 MAC ... 100
6.1.32 MAC Verify ... 102
6.1.33 Modify Attribute ... 104
6.1.34 Obtain Lease ... 105
6.1.35 PKCS#11 ... 106
6.1.36 Poll .. 107
6.1.37 Query .. 107
6.1.38 Recover ... 110
6.1.39 Register ... 111
6.1.40 Revoke ... 112
6.1.41 Re-certify .. 113
6.1.42 Re-key ... 116
6.1.43 Re-key Key Pair ... 117
6.1.44 Re-Provision .. 120
6.1.45 RNG Retrieve .. 121
6.1.46 RNG Seed .. 121
6.1.47 Set Attribute ... 122
6.1.48 Set Endpoint Role .. 123
6.1.49 Sign ... 124
6.1.50 Signature Verify ... 126
6.1.51 Validate ... 128
6.2 Server-to-Client Operations ... 129
 6.2.1 Discover Versions .. 129
 6.2.2 Notify ... 130
 6.2.3 Put ... 131
 6.2.4 Query ... 132
 6.2.5 Set Endpoint Role ... 134
7 Operations Data Structures ... 135
 7.1 Authenticated Encryption Additional Data 135
 7.2 Authenticated Encryption Tag 135
 7.3 Capability Information ... 135
 7.4 Correlation Value ... 136
 7.5 Data ... 136
 7.6 Data Length .. 136
 7.7 Defaults Information ... 136
 7.8 Derivation Parameters ... 137
 7.9 Extension Information ... 138
 7.10 Final Indicator ... 138
 7.11 Interop Function ... 138
 7.12 Interop Identifier .. 138
 7.13 Init Indicator ... 139
 7.14 Key Wrapping Specification 139
 7.15 Log Message ... 139
 7.16 MAC Data ... 140
 7.17 Objects .. 140
 7.18 Object Defaults .. 140
 7.19 Operations .. 140
 7.20 PKCS#11 Function .. 140
 7.21 PKCS#11 Input Parameters 140
 7.22 PKCS#11 Interface .. 141
 7.23 PKCS#11 Output Parameters 141
 7.24 PKCS#11 Return Code .. 141
7.25 Profile Information ... 142
7.26 Profile Version ... 142
7.27 Protection Storage Masks .. 142
7.28 Right .. 142
7.29 Rights .. 143
7.30 RNG Parameters .. 143
7.31 Server Information ... 144
7.32 Signature Data ... 144
7.33 Ticket .. 144
7.34 Usage Limits ... 144
7.35 Validation Information .. 145
8 Messages .. 146
8.1 Request Message .. 146
8.2 Request Header ... 146
8.3 Request Batch Item ... 147
8.4 Response Message .. 147
8.5 Response Header ... 147
8.6 Response Batch Item .. 148
9 Message Data Structures ... 149
9.1 Asynchronous Correlation Value .. 149
9.2 Asynchronous Indicator ... 149
9.3 Attestation Capable Indicator ... 149
9.4 Authentication ... 149
9.5 Batch Count .. 150
9.6 Batch Error Continuation Option 150
9.7 Batch Item .. 150
9.8 Batch Order Option .. 150
9.9 Correlation Value (Client) ... 150
9.10 Correlation Value (Server) .. 151
9.11 Credential .. 151
9.12 Maximum Response Size .. 153
9.13 Message Extension .. 153
9.14 Nonce ... 154
9.15 Operation .. 154
9.16 Protocol Version .. 154
9.17 Result Message ... 154
9.18 Result Reason ... 155
9.19 Result Status ... 155
9.20 Time Stamp .. 155
9.21 Unique Batch Item ID .. 155
10 Message Protocols ... 157
10.1 TTLV .. 157
10.1.1 Tag ... 157
10.1.2 Type .. 157
10.1.3 Length .. 158
10.1.4 Value ... 158
10.1.5 Padding ... 158
10.2 Other Message Protocols .. 158
 10.2.1 HTTPS .. 158
 10.2.2 JSON ... 159
 10.2.3 XML ... 159
10.3 Authentication ... 159
10.4 Transport ... 159
11 Enumerations ... 160
 11.1 Adjustment Type Enumeration 160
 11.2 Alternative Name Type Enumeration 160
 11.3 Asynchronous Indicator Enumeration 161
 11.4 Attestation Type Enumeration 161
 11.5 Batch Error Continuation Option Enumeration 161
 11.6 Block Cipher Mode Enumeration 162
 11.7 Cancellation Result Enumeration 163
 11.8 Certificate Request Type Enumeration 163
 11.9 Certificate Type Enumeration 164
 11.10 Client Registration Method Enumeration 164
 11.11 Credential Type Enumeration 165
 11.12 Cryptographic Algorithm Enumeration 165
 11.13 Data Enumeration .. 166
 11.14 Derivation Method Enumeration 167
 11.15 Destroy Action Enumeration 168
 11.16 Digital Signature Algorithm Enumeration 169
 11.17 DRBG Algorithm Enumeration 170
 11.18 Encoding Option Enumeration 170
 11.19 Endpoint Role Enumeration 170
 11.20 FIPS186 Variation Enumeration 171
 11.21 Hashing Algorithm Enumeration 171
 11.22 Interop Function Enumeration 172
 11.23 Item Type Enumeration .. 172
 11.24 Key Compression Type Enumeration 173
 11.25 Key Format Type Enumeration 173
 11.26 Key Role Type Enumeration 173
 11.27 Key Value Location Type Enumeration 175
 11.28 Link Type Enumeration ... 176
 11.29 Key Wrap Type Enumeration 177
 11.30 Mask Generator Enumeration 177
 11.31 Name Type Enumeration ... 177
 11.32 NIST Key Type Enumeration 178
 11.33 Object Group Member Enumeration 179
 11.34 Object Type Enumeration 179
 11.35 Opaque Data Type Enumeration 179
 11.36 Operation Enumeration .. 179
11.37 Padding Method Enumeration ... 181
11.38 PKCS#11 Function Enumeration .. 181
11.39 PKCS#11 Return Code Enumeration .. 181
11.40 Profile Name Enumeration .. 182
11.41 Protection Level Enumeration .. 183
11.42 Put Function Enumeration ... 183
11.43 Query Function Enumeration .. 183
11.44 Recommended Curve Enumeration .. 184
11.45 Result Reason Enumeration ... 186
11.46 Result Status Enumeration ... 191
11.47 Revocation Reason Code Enumeration ... 191
11.48 RNG Algorithm Enumeration ... 192
11.49 RNG Mode Enumeration ... 192
11.50 Secret Data Type Enumeration .. 192
11.51 Shredding Algorithm Enumeration .. 193
11.52 Split Key Method Enumeration ... 193
11.53 State Enumeration .. 193
11.54 Tag Enumeration ... 193
11.55 Ticket Type Enumeration ... 204
11.56 Unique Identifier Enumeration .. 204
11.57 Unwrap Mode Enumeration ... 205
11.58 Usage Limits Unit Enumeration .. 205
11.59 Validity Indicator Enumeration .. 206
11.60 Wrapping Method Enumeration .. 206
11.61 Validation Authority Type Enumeration ... 207
11.62 Validation Type Enumeration ... 207

12 Bit Masks ... 208
 12.1 Cryptographic Usage Mask ... 208
 12.2 Protection Storage Mask ... 210
 12.3 Storage Status Mask .. 210

13 Algorithm Implementation ... 211
 13.1 Split Key Algorithms .. 211

14 KMIP Client and Server Implementation Conformance 212
 14.1 KMIP Client Implementation Conformance ... 212
 14.2 KMIP Server Implementation Conformance ... 212

Appendix A. Acknowledgments ... 213
Appendix B. Acronyms ... 215
Appendix C. List of Figures and Tables .. 218
Appendix D. Revision History .. 229
1 Introduction

This document is intended as a specification of the protocol used for the communication (request and response messages) between clients and servers to perform certain management operations on objects stored and maintained by a key management system. These objects are referred to as Managed Objects in this specification. They include symmetric and asymmetric cryptographic keys and digital certificates. Managed Objects are managed with operations that include the ability to generate cryptographic keys, register objects with the key management system, obtain objects from the system, destroy objects from the system, and search for objects maintained by the system. Managed Objects also have associated attributes, which are named values stored by the key management system and are obtained from the system via operations. Certain attributes are added, modified, or deleted by operations.

This specification is complemented by several other documents. The KMIP Usage Guide [KMIP-UG] provides illustrative information on using the protocol. The KMIP Profiles Specification [KMIP-Prof] provides a normative set of base level conformance profiles and authentication suites that include the specific tests used to test conformance with the applicable KMIP normative documents. The KMIP Test Cases [KMIP-TC] provides samples of protocol messages corresponding to a set of defined test cases that are also used in conformance testing.

This specification defines the KMIP protocol version major 2 and minor 0 (see 6.1).

1.1 IPR Policy

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established. For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-open.org/committees/kmip/ipr.php).

1.2 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

For acronyms used in this document, see Appendix B. For definitions not found in this document, see [SP800-57-1].

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archive</td>
<td>To place information not accessed frequently into long-term storage.</td>
</tr>
<tr>
<td>Asymmetric key pair</td>
<td>A public key and its corresponding private key; a key pair is used with a</td>
</tr>
<tr>
<td>(key pair)</td>
<td>public key algorithm.</td>
</tr>
<tr>
<td>Authentication</td>
<td>A process that establishes the origin of information, or determines an</td>
</tr>
<tr>
<td></td>
<td>entity’s identity.</td>
</tr>
<tr>
<td>Authentication code</td>
<td>A cryptographic checksum based on a security function.</td>
</tr>
<tr>
<td>Authorization</td>
<td>Access privileges that are granted to an entity; conveying an “official”</td>
</tr>
<tr>
<td></td>
<td>sanction to perform a security function or activity.</td>
</tr>
<tr>
<td>Certificate length</td>
<td>The length (in bytes) of an X.509 public key certificate.</td>
</tr>
<tr>
<td>Certification authority</td>
<td>The entity in a Public Key Infrastructure (PKI) that is responsible for</td>
</tr>
<tr>
<td></td>
<td>issuing certificates, and exacting compliance to a PKI policy.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ciphertext</td>
<td>Data in its encrypted form.</td>
</tr>
<tr>
<td>Compromise</td>
<td>The unauthorized disclosure, modification, substitution or use of sensitive data (e.g., keying material and other security-related information).</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>The property that sensitive information is not disclosed to unauthorized entities.</td>
</tr>
<tr>
<td>Cryptographic algorithm</td>
<td>A well-defined computational procedure that takes variable inputs, including a cryptographic key and produces an output.</td>
</tr>
</tbody>
</table>
| Cryptographic key (key) | A parameter used in conjunction with a cryptographic algorithm that determines its operation in such a way that an entity with knowledge of the key can reproduce or reverse the operation, while an entity without knowledge of the key cannot. Examples include:
1. The transformation of plaintext data into ciphertext data,
2. The transformation of ciphertext data into plaintext data,
3. The computation of a digital signature from data,
4. The verification of a digital signature,
5. The computation of an authentication code from data, and
6. The verification of an authentication code from data and a received authentication code. |
| Decryption | The process of changing ciphertext into plaintext using a cryptographic algorithm and key. |
| Digest (or hash) | The result of applying a hashing algorithm to information. |
| Digital signature (signature) | The result of a cryptographic transformation of data that, when properly implemented with supporting infrastructure and policy, provides the services of:
1. origin authentication
2. data integrity, and
3. signer non-repudiation. |
| Digital Signature Algorithm | A cryptographic algorithm used for digital signature. |
| Encryption | The process of changing plaintext into ciphertext using a cryptographic algorithm and key. |
| Hashing algorithm (or hash algorithm, hash function) | An algorithm that maps a bit string of arbitrary length to a fixed length bit string. Approved hashing algorithms satisfy the following properties:
1. (One-way) It is computationally infeasible to find any input that maps to any pre-specified output, and
2. (Collision resistant) It is computationally infeasible to find any two distinct inputs that map to the same output. |
<p>| Integrity | The property that sensitive data has not been modified or deleted in an unauthorized and undetected manner. |</p>
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Key derivation (derivation) | A function in the lifecycle of keying material; the process by which one or more keys are derived from:
1) Either a shared secret from a key agreement computation or a pre-shared cryptographic key, and
2) Other information. |
| Key management | The activities involving the handling of cryptographic keys and other related security parameters (e.g., IVs and passwords) during the entire life cycle of the keys, including their generation, storage, establishment, entry and output, and destruction. |
| Key wrapping (wrapping) | A method of encrypting and/or MACing/signing keys. |
| Message Authentication Code | A cryptographic checksum on data that uses a symmetric key to detect both accidental and intentional modifications of data. |
| (MAC) | |
| Private key | A cryptographic key used with a public key cryptographic algorithm that is uniquely associated with an entity and is not made public. The private key is associated with a public key. Depending on the algorithm, the private key MAY be used to:
1. Compute the corresponding public key,
2. Compute a digital signature that can be verified by the corresponding public key,
3. Decrypt data that was encrypted by the corresponding public key, or
4. Compute a piece of common shared data, together with other information. |
| Profile | A specification of objects, attributes, operations, message elements and authentication methods to be used in specific contexts of key management server and client interactions (see [KMIP-Prof]). |
| Public key | A cryptographic key used with a public key cryptographic algorithm that is uniquely associated with an entity and that MAY be made public. The public key is associated with a private key. The public key MAY be known by anyone and, depending on the algorithm, MAY be used to:
1. Verify a digital signature that is signed by the corresponding private key,
2. Encrypt data that can be decrypted by the corresponding private key, or
3. Compute a piece of shared data. |
<p>| Public key certificate | A set of data that uniquely identifies an entity, contains the entity's public key and possibly other information, and is digitally signed by a trusted party, thereby binding the public key to the entity. |
| (certificate) | |
| Public key cryptographic | A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys have the property that determining the private key from the public key is computationally infeasible. |
| algorithm | |</p>
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Key Infrastructure</td>
<td>A framework that is established to issue, maintain and revoke public key certificates.</td>
</tr>
<tr>
<td>Recover</td>
<td>To retrieve information that was archived to long-term storage.</td>
</tr>
<tr>
<td>Split Key</td>
<td>A process by which a cryptographic key is split into n multiple key components, individually providing no knowledge of the original key, which can be subsequently combined to recreate the original cryptographic key. If knowledge of k (where k is less than or equal to n) components is necessary to construct the original key, then knowledge of any k-1 key components provides no information about the original key other than, possibly, its length.</td>
</tr>
<tr>
<td>Symmetric key</td>
<td>A single cryptographic key that is used with a secret (symmetric) key algorithm.</td>
</tr>
<tr>
<td>Symmetric key algorithm</td>
<td>A cryptographic algorithm that uses the same secret (symmetric) key for an operation and its inverse (e.g., encryption and decryption).</td>
</tr>
<tr>
<td>X.509 certificate</td>
<td>The ISO/ITU-T X.509 standard defined two types of certificates – the X.509 public key certificate, and the X.509 attribute certificate. Most commonly (including this document), an X.509 certificate refers to the X.509 public key certificate.</td>
</tr>
<tr>
<td>X.509 public key certificate</td>
<td>The public key for a user (or device) and a name for the user (or device), together with some other information, rendered unforgeable by the digital signature of the certification authority that issued the certificate, encoded in the format defined in the ISO/ITU-T X.509 standard.</td>
</tr>
</tbody>
</table>

Table 1: Terminology

1.3 Normative References

[AWS-SIGV4] Authenticating Requests (AWS Signature Version 4)
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.htm

[ECC-Brainpool] ECC Brainpool Standard Curves and Curve Generation v. 1.0.19.10.2005,

[FIPS180-4] Secure Hash Standard (SHS), FIPS PUB 186-4, March 2012,

[FIPS186-4] Digital Signature Standard (DSS), FIPS PUB 186-4, July 2013,

[FIPS197] Advanced Encryption Standard, FIPS PUB 197, November 2001,

[FIPS202] SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions, August 2015.

1.4 Non-Normative References

1.5 Item Data Types

The following are the data types of which all items (Objects, Attributes and Messages) are composed of Integer, Long Integer, Big Integer, Enumeration, Boolean, Text String, Byte String, Date Time, Interval, Date Time Extended, and Structure.
2 Objects

Managed Objects are objects that are the subjects of key management operations. Managed Cryptographic Objects are the subset of Managed Objects that contain cryptographic material.

2.1 Certificate

A Managed Cryptographic Object that is a digital certificate. It is a DER-encoded X.509 public key certificate.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Certificate Type</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Certificate Value</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 2: Certificate Object Structure

2.2 Certificate Request

A Managed Cryptographic Object containing the Certificate Request.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Request</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Certificate Request Type</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Certificate Request Value</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 3: Certificate Request Structure

2.3 Opaque Object

A Managed Object that the key management server is possibly not able to interpret. The context information for this object MAY be stored and retrieved using Custom Attributes.

An Opaque Object MAY be a Managed Cryptographic Object depending on the client context of usage and as such is treated in the same manner as a Managed Cryptographic Object for handling of attributes.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opaque Object</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Opaque Data Type</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Opaque Data Value</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 4: Opaque Object Structure

2.4 PGP Key

A Managed Cryptographic Object that is a text-based representation of a PGP key. The Key Block field, indicated below, will contain the ASCII-armored export of a PGP key in the format as specified in RFC 4880. It MAY contain only a public key block, or both a public and private key block. Two different versions of PGP keys, version 3 and version 4, MAY be stored in this Managed Cryptographic Object.
KMIP implementers SHOULD treat the Key Block field as an opaque blob. PGP-aware KMIP clients SHOULD take on the responsibility of decomposing the Key Block into other Managed Cryptographic Objects (Public Keys, Private Keys, etc.).

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGP Key</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>PGP Key Version</td>
<td>Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>Key Block</td>
<td>Object Data Structure</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 5: PGP Key Object Structure

2.5 Private Key

A Managed Cryptographic Object that is the private portion of an asymmetric key pair.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Key</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Key Block</td>
<td>Object Data Structure</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 6: Private Key Object Structure

2.6 Public Key

A Managed Cryptographic Object that is the public portion of an asymmetric key pair. This is only a public key, not a certificate.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Key</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Key Block</td>
<td>Object Data Structure</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 7: Public Key Object Structure

2.7 Secret Data

A Managed Cryptographic Object containing a shared secret value that is not a key or certificate (e.g., a password). The Key Block of the Secret Data object contains a Key Value of the Secret Data Type. The Key Value MAY be wrapped.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secret Data</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Secret Data Type</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Key Block</td>
<td>Object Data Structure</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 8: Secret Data Object Structure

2.8 Split Key

A Managed Cryptographic Object that is a Split Key. A split key is a secret, usually a symmetric key or a private key that has been split into a number of parts, each of which MAY then be distributed to several key holders, for additional security. The Split Key Parts field indicates the total number of parts, and the
Split Key Threshold field indicates the minimum number of parts needed to reconstruct the entire key. The Key Part Identifier indicates which key part is contained in the cryptographic object, and SHALL be at least 1 and SHALL be less than or equal to Split Key Parts.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split Key</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Split Key Parts</td>
<td>Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>Key Part Identifier</td>
<td>Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>Split Key Threshold</td>
<td>Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>Split Key Method</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Prime Field Size</td>
<td>Big Integer</td>
<td>No, REQUIRED only if Split Key Method is Polynomial Sharing Prime Field.</td>
</tr>
<tr>
<td>Key Block</td>
<td>Object Data Structure</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 9: Split Key Object Structure

2.9 Symmetric Key

A Managed Cryptographic Object that is a symmetric key.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric Key</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Key Block</td>
<td>Structure</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 10: Symmetric Key Object Structure
3 Object Data Structures

3.1 Key Block

A Key Block object is a structure used to encapsulate all of the information that is closely associated with a cryptographic key.

The Key Block MAY contain the Key Compression Type, which indicates the format of the elliptic curve public key. By default, the public key is uncompressed.

The Key Block also has the Cryptographic Algorithm and the Cryptographic Length of the key contained in the Key Value field. Some example values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA keys</td>
<td>Typically 1024, 2048 or 3072 bits in length.</td>
</tr>
<tr>
<td>3DES keys</td>
<td>Typically from 112 to 192 bits (depending upon key length and the presence of parity bits).</td>
</tr>
<tr>
<td>AES keys</td>
<td>128, 192 or 256 bits in length</td>
</tr>
</tbody>
</table>

Table 11: Key Block Cryptographic Algorithm & Length Description

The Key Block SHALL contain a Key Wrapping Data structure if the key in the Key Value field is wrapped (i.e., encrypted, or MACed/signed, or both).

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Block</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Key Format Type</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Key Compression Type</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Key Value</td>
<td>Byte String: for wrapped Key Value; Structure: for plaintext Key Value</td>
<td>No</td>
</tr>
<tr>
<td>Cryptographic Algorithm</td>
<td>Enumeration</td>
<td>Yes. MAY be omitted only if this information is available from the Key Value. Does not apply to Secret Data or Opaque. If present, the Cryptographic Length SHALL also be present.</td>
</tr>
<tr>
<td>Cryptographic Length</td>
<td>Integer</td>
<td>Yes. MAY be omitted only if this information is available from the Key Value. Does not apply to Secret Data or Opaque. If present, the Cryptographic Algorithm SHALL also be present.</td>
</tr>
<tr>
<td>Key Wrapping Data</td>
<td>Object Data Structure</td>
<td>No. SHALL only be present if the key is wrapped.</td>
</tr>
</tbody>
</table>

Table 12: Key Block Object Structure
3.2 Key Value

The *Key Value* is used only inside a Key Block and is either a Byte String or a:

- The Key Value structure contains the key material, either as a byte string or as a Transparent Key structure, and OPTIONAL attribute information that is associated and encapsulated with the key material. This attribute information differs from the attributes associated with Managed Objects, and is obtained via the Get Attributes operation, only by the fact that it is encapsulated with (and possibly wrapped with) the key material itself.

- The Key Value Byte String is either the wrapped TTLV-encoded Key Value structure, or the wrapped un-encoded value of the Byte String Key Material field.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Material</td>
<td>Byte String: for Raw, Opaque, PKCS1, PKCS8, ECPrivateKey, or Extension Key Format types; Structure: for Transparent, or Extension Key Format Types</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Attributes</td>
<td>Structure</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 13: Key Value Object Structure

3.3 Key Wrapping Data

The Key Block MAY also supply OPTIONAL information about a cryptographic key wrapping mechanism used to wrap the Key Value. This consists of a *Key Wrapping Data* structure. It is only used inside a Key Block.

This structure contains fields for:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrapping Method</td>
<td>Indicates the method used to wrap the Key Value.</td>
</tr>
<tr>
<td>Encryption Key Information</td>
<td>Contains the Unique Identifier value of the encryption key and associated cryptographic parameters.</td>
</tr>
<tr>
<td>MAC/Signature Key Information</td>
<td>Contains the Unique Identifier value of the MAC/signature key and associated cryptographic parameters.</td>
</tr>
<tr>
<td>MAC/Signature</td>
<td>Contains a MAC or signature of the Key Value</td>
</tr>
<tr>
<td>IV/Counter/Nonce</td>
<td>If REQUIRED by the wrapping method.</td>
</tr>
<tr>
<td>Encoding Option</td>
<td>Specifies the encoding of the Key Material within the Key Value structure of the Key Block that has been wrapped. If No Encoding is specified, then the Key Value structure SHALL NOT contain any attributes.</td>
</tr>
</tbody>
</table>

Table 14: Key Wrapping Data Structure Description

If wrapping is used, then the whole Key Value structure is wrapped unless otherwise specified by the Wrapping Method. The algorithms used for wrapping are given by the Cryptographic Algorithm attributes of the encryption key and/or MAC/signature key; the block-cipher mode, padding method, and hashing algorithm used for wrapping are given by the Cryptographic Parameters in the Encryption Key Information.
and/or MAC/Signature Key Information, or, if not present, from the Cryptographic Parameters attribute of the respective key(s). Either the Encryption Key Information or the MAC/Signature Key Information (or both) in the Key Wrapping Data structure SHALL be specified.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Wrapping Data Structure</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Wrapping Method Enumeration</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Encryption Key Information</td>
<td>Structure, see below</td>
<td>No</td>
</tr>
<tr>
<td>MAC/Signature Key Information</td>
<td>Structure, see below</td>
<td>No</td>
</tr>
<tr>
<td>MAC/Signature</td>
<td>Byte String</td>
<td>No</td>
</tr>
<tr>
<td>IV/Counter/Nonce</td>
<td>Byte String</td>
<td>No</td>
</tr>
<tr>
<td>Encoding Option Enumeration</td>
<td>No. Specifies the encoding of the Key Value Byte String. If not present, the wrapped Key Value structure SHALL be TTLV encoded.</td>
<td></td>
</tr>
</tbody>
</table>

Table 15: Key Wrapping Data Object Structure

The structures of the Encryption Key Information and the MAC/Signature Key Information are as follows:

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption Key Information</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Unique Identifier Text string</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Cryptographic Parameters</td>
<td>Structure</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 16: Encryption Key Information Object Structure

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC/Signature Key Information</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Unique Identifier Text string</td>
<td>Yes, It SHALL be either the Unique Identifier of the Symmetric Key used to MAC, or of the Private Key (or its corresponding Public Key) used to sign.</td>
<td></td>
</tr>
<tr>
<td>Cryptographic Parameters</td>
<td>Structure</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 17: MAC/Signature Key Information Object Structure

3.4 Transparent Symmetric Key

If the Key Format Type in the Key Block is Transparent Symmetric Key, then Key Material is a structure.
3.5 Transparent DSA Private Key

If the Key Format Type in the Key Block is *Transparent DSA Private Key*, then Key Material is a structure.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 18: Key Material Object Structure for Transparent Symmetric Keys

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>Q</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>G</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>X</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 19: Key Material Object Structure for Transparent DSA Private Keys

3.6 Transparent DSA Public Key

If the Key Format Type in the Key Block is *Transparent DSA Public Key*, then Key Material is a structure.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Material</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>Q</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>G</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>Y</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 20: Key Material Object Structure for Transparent DSA Public Keys

3.7 Transparent RSA Private Key

If the Key Format Type in the Key Block is *Transparent RSA Private Key*, then Key Material is a structure.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Material</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Modulus</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>Private Exponent</td>
<td>Big Integer</td>
<td>No</td>
</tr>
<tr>
<td>Public Exponent</td>
<td>Big Integer</td>
<td>No</td>
</tr>
<tr>
<td>P</td>
<td>Big Integer</td>
<td>No</td>
</tr>
<tr>
<td>Q</td>
<td>Big Integer</td>
<td>No</td>
</tr>
<tr>
<td>Prime Exponent P</td>
<td>Big Integer</td>
<td>No</td>
</tr>
<tr>
<td>Prime Exponent Q</td>
<td>Big Integer</td>
<td>No</td>
</tr>
<tr>
<td>CRT Coefficient</td>
<td>Big Integer</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 21: Key Material Object Structure for Transparent RSA Private Keys
One of the following SHALL be present (refer to [PKCS#1]):

- Private Exponent,
- \(P \) and \(Q \) (the first two prime factors of Modulus), or
- Prime Exponent \(P \) and Prime Exponent \(Q \).

3.8 Transparent RSA Public Key

If the Key Format Type in the Key Block is *Transparent RSA Public Key*, then Key Material is a structure.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Material</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Modulus</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>Public Exponent</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 22: Key Material Object Structure for Transparent RSA Public Keys

3.9 Transparent DH Private Key

If the Key Format Type in the Key Block is *Transparent DH Private Key*, then Key Material is a structure.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Material</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>(P)</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>(Q)</td>
<td>Big Integer</td>
<td>No</td>
</tr>
<tr>
<td>(G)</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>(J)</td>
<td>Big Integer</td>
<td>No</td>
</tr>
<tr>
<td>(X)</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 23: Key Material Object Structure for Transparent DH Private Keys

3.10 Transparent DH Public Key

If the Key Format Type in the Key Block is *Transparent DH Public Key*, then Key Material is a structure.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Material</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>(P)</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>(Q)</td>
<td>Big Integer</td>
<td>No</td>
</tr>
<tr>
<td>(G)</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>(J)</td>
<td>Big Integer</td>
<td>No</td>
</tr>
<tr>
<td>(Y)</td>
<td>Big Integer</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 24: Key Material Object Structure for Transparent DH Public Keys

3.11 Transparent EC Private Key

If the Key Format Type in the Key Block is *Transparent EC Private Key*, then Key Material is a structure.
3.12 Transparent EC Public Key

If the Key Format Type in the Key Block is *Transparent EC Public Key*, then Key Material is a structure.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Material</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Recommended Curve</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Q String</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 26: Key Material Object Structure for Transparent EC Public Keys
4 Object Attributes

The following subsections describe the attributes that are associated with Managed Objects. Attributes that an object MAY have multiple instances of are referred to as multi-instance attributes. All instances of an attribute SHOULD have a different value. Similarly, attributes which an object SHALL only have at most one instance of are referred to as single-instance attributes. Attributes are able to be obtained by a client from the server using the Get Attribute operation. Some attributes are able to be set by the Add Attribute operation or updated by the Modify Attribute operation, and some are able to be deleted by the Delete Attribute operation if they no longer apply to the Managed Object. Read-only attributes are attributes that SHALL NOT be modified by either server or client, and that SHALL NOT be deleted by a client.

When attributes are returned by the server (e.g., via a Get Attributes operation), the attribute value returned SHALL NOT differ for different clients unless specifically noted against each attribute.

The first table in each subsection contains the attribute name in the first row. This name is the canonical name used when managing attributes using the Get Attributes, Get Attribute List, Add Attribute, Modify Attribute, and Delete Attribute operations.

A server SHALL NOT delete attributes without receiving a request from a client until the object is destroyed. After an object is destroyed, the server MAY retain all, some or none of the object attributes, depending on the object type and server policy.

The second table in each subsection lists certain attribute characteristics (e.g., “SHALL always have a value. The server policy MAY further restrict these attribute characteristics.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shall always have a value</td>
<td>All Managed Objects that are of the Object Types for which this attribute applies, SHALL always have this attribute set once the object has been created or registered, up until the object has been destroyed.</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Who is permitted to initially set the value of the attribute (if the attribute has never been set, or if all the attribute values have been deleted)?</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Is the server allowed to change an existing value of the attribute without receiving a request from a client?</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>Is the client able to change an existing value of the attribute value once it has been set?</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>Is the client able to delete an instance of the attribute?</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>Are multiple instances of the attribute permitted?</td>
</tr>
</tbody>
</table>
| When implicitly set | Which operations MAY cause this attribute to be set even if the attribute is not }
<table>
<thead>
<tr>
<th>Object</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric Key</td>
<td>Cryptographic Algorithm</td>
</tr>
<tr>
<td></td>
<td>Cryptographic Length</td>
</tr>
<tr>
<td></td>
<td>Cryptographic Usage Mask</td>
</tr>
<tr>
<td>Private Key</td>
<td>Cryptographic Algorithm</td>
</tr>
<tr>
<td></td>
<td>Cryptographic Length</td>
</tr>
<tr>
<td></td>
<td>Cryptographic Usage Mask</td>
</tr>
<tr>
<td>Public Key</td>
<td>Cryptographic Algorithm</td>
</tr>
<tr>
<td></td>
<td>Cryptographic Length</td>
</tr>
<tr>
<td></td>
<td>Cryptographic Usage Mask</td>
</tr>
<tr>
<td>Certificate</td>
<td>Cryptographic Algorithm</td>
</tr>
<tr>
<td></td>
<td>Cryptographic Length</td>
</tr>
<tr>
<td></td>
<td>Digital Signature Algorithm</td>
</tr>
<tr>
<td>Split Key</td>
<td>Cryptographic Algorithm</td>
</tr>
<tr>
<td></td>
<td>Cryptographic Length</td>
</tr>
<tr>
<td></td>
<td>Cryptographic Usage Mask</td>
</tr>
<tr>
<td>Secret Data</td>
<td>Cryptographic Usage Mask</td>
</tr>
</tbody>
</table>

Table 28: Default Cryptographic Parameters

4.1 Activation Date

The Activation Date attribute contains the date and time when the Managed Object MAY begin to be used. This time corresponds to state transition. The object SHALL NOT be used for any cryptographic purpose before the Activation Date has been reached. Once the state transition from Pre-Active has occurred, then this attribute SHALL NOT be changed or deleted before the object is destroyed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation Date</td>
<td>Date-Time</td>
</tr>
</tbody>
</table>

Table 29: Activation Date Attribute
<table>
<thead>
<tr>
<th>SHALL always have a value</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially set by</td>
<td>Server or Client</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Yes, only while in Pre-Active state</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>Yes, only while in Pre-Active state</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Create, Create Key Pair, Register, Derive Key, Activate Certify, Re-certify, Re-key, Re-key Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 30: Activation Date Attribute Rules

4.2 Alternative Name

The *Alternative Name* attribute is used to identify and locate the object. This attribute is assigned by the client, and the *Alternative Name Value* is intended to be in a form that humans are able to interpret. The key management system MAY specify rules by which the client creates valid alternative names. Clients are informed of such rules by a mechanism that is not specified by this standard. Alternative Names MAY NOT be unique within a given key management domain.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Name</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Alternative Name Value</td>
<td>Text String</td>
<td>Yes</td>
</tr>
<tr>
<td>Alternative Name Type</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 31: Alternative Name Attribute Structure

<table>
<thead>
<tr>
<th>SHALL always have a value</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially set by</td>
<td>Client</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Yes (Only if no value present)</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>Yes</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>Yes</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 32: Alternative Name Attribute Rules

4.3 Always Sensitive

The server SHALL create this attribute, and set it to True if the Sensitive attribute has always been True. The server SHALL set it to False if the Sensitive attribute has ever been set to False.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive</td>
<td>Boolean</td>
</tr>
</tbody>
</table>

Table 33: Always Sensitive Attribute
4.4 Application Specific Information

The Application Specific Information attribute is a structure used to store data specific to the application(s) using the Managed Object. It consists of the following fields: an Application Namespace and Application Data specific to that application namespace.

Clients MAY request to set (i.e., using any of the operations that result in new Managed Object(s) on the server or adding/modifying the attribute of an existing Managed Object an instance of this attribute with a particular Application Namespace while omitting Application Data. In that case, if the server supports this namespace (as indicated by the Query operation), then it SHALL return a suitable Application Data value. If the server does not support this namespace, then an error SHALL be returned.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Specific Information</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Application Namespace</td>
<td>Text String</td>
<td>Yes</td>
</tr>
<tr>
<td>Application Data</td>
<td>Text String</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 35: Application Specific Information Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Initially set by</td>
<td>Client or Server (only if the Application Data is omitted, in the client request)</td>
<td></td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Yes (only if the Application Data is omitted in the client request)</td>
<td></td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Deletable by client</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Re-key, Re-key Key Pair, Re-certify</td>
<td></td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
<td></td>
</tr>
</tbody>
</table>

Table 36: Application Specific Information Attribute Rules
4.5 Archive Date

The *Archive Date* attribute is the date and time when the Managed Object was placed in archival storage. This value is set by the server as a part of the Archive operation. The server SHALL delete this attribute whenever a Recover operation is performed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archive Date</td>
<td>Date-Time</td>
</tr>
</tbody>
</table>

Table 37: Archive Date Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>No</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Archive</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 38: Archive Date Attribute Rules

4.6 Certificate Attributes

The Certificate Attributes are the various items included in a certificate. The following list is based on RFC2253.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Subject CN</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Subject O</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Subject OU</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Subject Email</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Subject C</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Subject ST</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Subject L</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Subject UID</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Subject Serial Number</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Subject Title</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Subject DC</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Subject DN Qualifier</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Issuer CN</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Issuer O</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Issuer OU</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Issuer Email</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Issuer C</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Issuer ST</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Issuer L</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Issuer UID</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Issuer Serial Number</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Issuer Title</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Issuer DC</td>
<td>Text String</td>
</tr>
<tr>
<td>Certificate Issuer DN Qualifer</td>
<td>Text String</td>
</tr>
</tbody>
</table>

Table 39: Certificate Attributes

<table>
<thead>
<tr>
<th>Shall always have a value</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>Yes</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Register, Certify, Re-certify</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>Certificates</td>
</tr>
</tbody>
</table>

Table 40: Certificate Attribute Rules

4.7 Certificate Type

The Certificate Type attribute is a type of certificate (e.g., X.509).

The Certificate Type value SHALL be set by the server when the certificate is created or registered and then SHALL NOT be changed or deleted before the object is destroyed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Type</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 41: Certificate Type Attribute

<table>
<thead>
<tr>
<th>Shall always have a value</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Register, Certify, Re-certify</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>Certificates</td>
</tr>
</tbody>
</table>

Table 42: Certificate Type Attribute Rules
4.8 Certificate Length

The Certificate Length attribute is the length in bytes of the Certificate object. The Certificate Length SHALL be set by the server when the object is created or registered, and then SHALL NOT be changed or deleted before the object is destroyed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Length</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Table 43: Certificate Length Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shall always have a value</td>
<td>Yes</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Register, Certify, Re-certify</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>Certificates</td>
</tr>
</tbody>
</table>

4.9 Comment

The Comment attribute is used for descriptive purposes only. It is not used for policy enforcement. The attribute is set by the client or the server.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Text String</td>
</tr>
</tbody>
</table>

Table 45: Comment Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shall always have a value</td>
<td>No</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Client or Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Yes</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>Yes</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 46: Comment Rules

4.10 Compromise Date

The Compromise Date attribute contains the date and time when the Managed Cryptographic Object entered into the compromised state. This time corresponds to state transitions 3, 5, 8, or 10. This time indicates when the key management system was made aware of the compromise, not necessarily when the compromise occurred. This attribute is set by the server when it receives a Revoke operation with a Revocation Reason containing a Revocation Reason Code of Compromised code, or due to server policy or out-of-band administrative action.
Table 47: Compromise Date Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compromise Date</td>
<td>Date-Time</td>
</tr>
</tbody>
</table>

4.11 Compromise Date Occurrence Date

The *Compromise Occurrence Date* attribute is the date and time when the Managed Object was first believed to be compromised. If it is not possible to estimate when the compromise occurred, then this value SHOULD be set to the Initial Date for the object.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compromise Occurrence Date</td>
<td>Date-Time</td>
</tr>
</tbody>
</table>

Table 48: Compromise Date Attribute Rules

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shall always have a value</td>
<td>No</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Revoke</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

4.12 Contact Information

The *Contact Information* attribute is used for descriptive purposes only. It is not used for policy enforcement. The attribute is set by the client or the server.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Information</td>
<td>Text String</td>
</tr>
</tbody>
</table>

Table 51: Contact Information Attribute
4.13 Cryptographic Algorithm

The Cryptographic Algorithm of an object. The Cryptographic Algorithm of a Certificate object identifies the algorithm for the public key contained within the Certificate. The digital signature algorithm used to sign the Certificate is identified in the Digital Signature Algorithm attribute. This attribute SHALL be set by the server when the object is created or registered and then SHALL NOT be changed or deleted before the object is destroyed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Algorithm</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 53: Cryptographic Algorithm Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>Yes (except for Secret Data and Opaque Object)</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Certify, Create Key Pair, Re-certify, Register, Derive Key, Re-key, Re-key Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 54: Cryptographic Algorithm Attribute Rules

4.14 Cryptographic Domain Parameters

The Cryptographic Domain Parameters attribute is a structure that contains fields that MAY need to be specified in the Create Key Pair Request Payload. Specific fields MAY only pertain to certain types of Managed Cryptographic Objects.

The domain parameter Qlength corresponds to the bit length of parameter Q (refer to [RFC7778], [SEC2] and [SP800-56A]).
Qlength applies to algorithms such as DSA and DH. The bit length of parameter P (refer to [RFC7778], [SEC2] and [SP800-56A]) is specified separately by setting the Cryptographic Length attribute.

Recommended Curve is applicable to elliptic curve algorithms such as ECDSA, ECDH, and ECMQV.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Domain Parameters</td>
<td>Structure</td>
<td>Yes</td>
</tr>
<tr>
<td>Qlength</td>
<td>Integer</td>
<td>No</td>
</tr>
<tr>
<td>Recommended Curve</td>
<td>Enumeration</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 55: Cryptographic Domain Parameters Attribute Structure

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shall always have a value</td>
<td>No</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Client</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Re-key, Re-key Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>Public Keys, Private Keys</td>
</tr>
</tbody>
</table>

Table 56: Cryptographic Domain Parameters Attribute Rules

4.15 Cryptographic Length

For keys, Cryptographic Length is the length in bits of the clear-text cryptographic key material of the Managed Cryptographic Object. For certificates, Cryptographic Length is the length in bits of the public key contained within the Certificate. This attribute SHALL be set by the server when the object is created or registered, and then SHALL NOT be changed or deleted before the object is destroyed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Length</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Table 57: Cryptographic Length Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>Yes (Except for Opaque Object)</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Certify, Create, Create Key Pair, Re-certify, Register, Derive Key, Re-key, Re-key Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>
4.16 Cryptographic Parameters

The Cryptographic Parameters attribute is a structure that contains a set of OPTIONAL fields that describe certain cryptographic parameters to be used when performing cryptographic operations using the object. Specific fields MAY pertain only to certain types of Managed Objects. The Cryptographic Parameters attribute of a Certificate object identifies the cryptographic parameters of the public key contained within the Certificate.

The Cryptographic Algorithm is also used to specify the parameters for cryptographic operations. For operations involving digital signatures, either the Digital Signature Algorithm can be specified or the Cryptographic Algorithm and Hashing Algorithm combination can be specified.

Random IV can be used to request that the KMIP server generate an appropriate IV for a cryptographic operation that uses an IV. The generated Random IV is returned in the response to the cryptographic operation.

IV Length is the length of the Initialization Vector in bits. This parameter SHALL be provided when the specified Block Cipher Mode supports variable IV lengths such as CTR or GCM.

Tag Length is the length of the authenticator tag in bytes. This parameter SHALL be provided when the Block Cipher Mode is GCM.

The IV used with counter modes of operation (e.g., CTR and GCM) cannot repeat for a given cryptographic key. To prevent an IV/key reuse, the IV is often constructed of three parts: a fixed field, an invocation field, and a counter as described in [SP800-38A] and [SP800-38D]. The Fixed Field Length is the length of the fixed field portion of the IV in bits. The Invocation Field Length is the length of the invocation field portion of the IV in bits. The Counter Length is the length of the counter portion of the IV in bits.

Initial Counter Value is the starting counter value for CTR mode (for [RFC3686] it is 1).
<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Parameters</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Block Cipher Mode</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Padding Method</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Hashing Algorithm</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Key Role Type</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Digital Signature Algorithm</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Cryptographic Algorithm</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Random IV</td>
<td>Boolean</td>
<td>No</td>
</tr>
<tr>
<td>IV Length</td>
<td>Integer</td>
<td>No unless Block Cipher Mode supports variable IV lengths</td>
</tr>
<tr>
<td>Tag Length</td>
<td>Integer</td>
<td>No unless Block Cipher Mode is GCM</td>
</tr>
<tr>
<td>Fixed Field Length</td>
<td>Integer</td>
<td>No</td>
</tr>
<tr>
<td>Invocation Field Length</td>
<td>Integer</td>
<td>No</td>
</tr>
<tr>
<td>Counter Length</td>
<td>Integer</td>
<td>No</td>
</tr>
<tr>
<td>Initial Counter Value</td>
<td>Integer</td>
<td>No</td>
</tr>
<tr>
<td>Salt Length</td>
<td>Integer</td>
<td>No (if omitted, defaults to the block size of the Mask Generator Hashing Algorithm)</td>
</tr>
<tr>
<td>Mask Generator</td>
<td>Enumeration</td>
<td>No (if omitted defaults to MGF1)</td>
</tr>
<tr>
<td>Mask Generator Hashing Algorithm</td>
<td>Enumeration</td>
<td>No (if omitted defaults to SHA-1)</td>
</tr>
<tr>
<td>P Source</td>
<td>Byte String</td>
<td>No (if omitted, defaults to an empty byte string for encoding input P in OAEP padding)</td>
</tr>
<tr>
<td>Trailer Field</td>
<td>Integer</td>
<td>No (if omitted, defaults to the standard one-byte trailer in PSS padding)</td>
</tr>
</tbody>
</table>

Table 59: Cryptographic Parameters Attribute Structure
4.17 Cryptographic Usage Mask

The *Cryptographic Usage Mask* attribute defines the cryptographic usage of a key. This is a bit mask that indicates to the client which cryptographic functions MAY be performed using the key, and which ones SHALL NOT be performed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Table 61: *Cryptographic Usage Mask Attribute*

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>Yes (Except for Opaque Object)</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Server or Client</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Yes</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 62: *Cryptographic Usage Mask Attribute Rules*

4.18 Deactivation Date

The *Deactivation Date* attribute is the date and time when the Managed Object SHALL NOT be used for any purpose, except for decryption, signature verification, or unwrapping, but only under extraordinary circumstances and only when special permission is granted. This time corresponds to state transition 6. This attribute SHALL NOT be changed or deleted before the object is destroyed, unless the object is in the Pre-Active or Active state.
Table 63: Deactivation Date Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deactivation Date</td>
<td>Date-Time</td>
</tr>
</tbody>
</table>

Table 64: Deactivation Date Attribute Rules

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Initially set by</td>
</tr>
<tr>
<td>Server or Client</td>
</tr>
<tr>
<td>Modifiable by server</td>
</tr>
<tr>
<td>Yes, only while in Pre-Active or Active state</td>
</tr>
<tr>
<td>Modifiable by client</td>
</tr>
<tr>
<td>Yes, only while in Pre-Active or Active state</td>
</tr>
<tr>
<td>Deletable by client</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
</tr>
<tr>
<td>Create, Create Key Pair, Register, Derive Key, Revoke Certify, Re-certify, Re-key Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
</tr>
<tr>
<td>All Objects</td>
</tr>
</tbody>
</table>

4.19 Description

The Description attribute is used for descriptive purposes only. It is not used for policy enforcement. The attribute is set by the client or the server.

Table 65: Description Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Text String</td>
</tr>
</tbody>
</table>

Table 66: Description Attribute Rules

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Initially set by</td>
</tr>
<tr>
<td>Client or Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>Modifiable by client</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>Deletable by client</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Applies to Object Types</td>
</tr>
<tr>
<td>All Objects</td>
</tr>
</tbody>
</table>

4.20 Destroy Date

The Destroy Date attribute is the date and time when the Managed Object was destroyed. This time corresponds to state transitions 2, 7, or 9. This value is set by the server when the object is destroyed due to the reception of a Destroy operation, or due to server policy or out-of-band administrative action.
Table 67: Destroy Date Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destroy Date</td>
<td>Date-Time</td>
</tr>
</tbody>
</table>

Table 68: Destroy Date Attribute Rules

<table>
<thead>
<tr>
<th>Item</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>No</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Destroy</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

4.21 Digest

The *Digest* attribute is a structure that contains the digest value of the key or secret data (i.e., digest of the Key Material), certificate (i.e., digest of the Certificate Value), or opaque object (i.e., digest of the Opaque Data Value). If the Key Material is a Byte String, then the Digest Value SHALL be calculated on this Byte String. If the Key Material is a structure, then the Digest Value SHALL be calculated on the TTLV-encoded Key Material structure. The Key Format Type field in the Digest attribute indicates the format of the Managed Object from which the Digest Value was calculated. Multiple digests MAY be calculated using different algorithms and/or key format types. If this attribute exists, then it SHALL have a mandatory attribute instance computed with the SHA-256 hashing algorithm and the default Key Value Format for this object type and algorithm. Clients may request via supplying a non-default Key Format Value attribute on operations that create a Managed Object, and the server SHALL produce an additional Digest attribute for that Key Value Type. The digest(s) are static and SHALL be set by the server when the object is created or registered, provided that the server has access to the Key Material or the Digest Value (possibly obtained via out-of-band mechanisms).

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digest</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Hashing Algorithm</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Digest Value</td>
<td>Byte String</td>
<td>Yes, if the server has access to the Digest Value or the Key Material (for keys and secret data), the Certificate Value (for certificates) or the Opaque Data Value (for opaque objects).</td>
</tr>
<tr>
<td>Key Format Type</td>
<td>Enumeration</td>
<td>Yes, if the Managed Object is a key or secret data object.</td>
</tr>
</tbody>
</table>
SHALL always have a value | Yes, if the server has access to the Digest Value or the Key Material (for keys and secret data), the Certificate Value (for certificates) or the Opaque Data Value (for opaque objects).

Initially set by | Server
Modifiable by server | No
Modifiable by client | No
Deletable by client | No
Multiple instances permitted | Yes
When implicitly set | Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair
Applies to Object Types | All Objects

Table 70: Digest Attribute Rules

4.22 Digital Signature Algorithm

The Digital Signature Algorithm attribute identifies the digital signature algorithm associated with a digitally signed object (e.g., Certificate). This attribute SHALL be set by the server when the object is created or registered and then SHALL NOT be changed or deleted before the object is destroyed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Signature Algorithm</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 71: Digital Signature Algorithm Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>Yes</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>Yes for PGP keys. No for X.509 certificates.</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Certify, Re-certify, Register</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>Certificates, PGP keys</td>
</tr>
</tbody>
</table>

Table 72: Digital Signature Algorithm Attribute Rules

4.23 Extractable

If False then the server SHALL prevent the object value being retrieved. The server SHALL set its value to True if not provided by the client.
4.24 Fresh

The *Fresh* attribute is a Boolean attribute that indicates that the object has not yet been served to a client using a Get operation. The Fresh attribute SHALL be set to True when a new object is created on the server unless the client provides a False value in Register or Import. The server SHALL change the attribute value to False as soon as the object has been served via the Get operation to a client.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extractable</td>
<td>Boolean</td>
</tr>
</tbody>
</table>

Table 73: Extractable Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>Yes</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Client or Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Yes</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>Yes</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>When object is created or registered</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 74: Extractable Attribute Rules

4.25 Initial Date

The *Initial Date* attribute contains the date and time when the Managed Object was first created or registered at the server. This time corresponds to state transition 1. This attribute SHALL be set by the server when the object is created or registered, and then SHALL NOT be changed or deleted before the object is destroyed. This attribute is also set for non-cryptographic objects when they are first registered with the server.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>Boolean</td>
</tr>
</tbody>
</table>

Table 75: Fresh Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>Yes</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Client or Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Yes</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair, Re-key Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>
Table 77: Initial Date Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Date</td>
<td>Date-Time</td>
</tr>
</tbody>
</table>

Table 78: Initial Date Attribute Rules

4.26 Key Format Type

The Key Format Type attribute is a required attribute of a Cryptographic Object. It is set by the server, but a particular Key Format Type MAY be requested by the client if the cryptographic material is produced by the server (i.e., Create, Create Key Pair, Create Split Key, Re-key, Re-key Key Pair, Derive Key) on the client’s behalf. The server SHALL comply with the client’s requested format or SHALL fail the request.

When the server calculates a Digest for the object, it SHALL compute the digest on the data in the assigned Key Format Type, as well as a digest in the default KMIP Key Format Type for that type of key and the algorithm requested (if a non-default value is specified).

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Format Type</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 79: Key Format Type Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>Yes</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 80: Key Format Type Attribute Rules

Keys have a default Key Format Type that SHALL be produced by KMIP servers. The default Key Format Type by object (and algorithm) is listed in the following table:
<table>
<thead>
<tr>
<th>Object</th>
<th>Default Key Format Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate</td>
<td>X.509</td>
</tr>
<tr>
<td>Certificate Request</td>
<td>PKCS#10</td>
</tr>
<tr>
<td>Opaque Object</td>
<td>Opaque</td>
</tr>
<tr>
<td>PGP Key</td>
<td>Raw</td>
</tr>
<tr>
<td>Secret Data</td>
<td>Raw</td>
</tr>
<tr>
<td>Symmetric Key</td>
<td>Raw</td>
</tr>
<tr>
<td>Split Key</td>
<td>Raw</td>
</tr>
<tr>
<td>RSA Private Key</td>
<td>PKCS#1</td>
</tr>
<tr>
<td>RSA Public Key</td>
<td>PKCS#1</td>
</tr>
<tr>
<td>EC Private Key</td>
<td>Transparent EC Private Key</td>
</tr>
<tr>
<td>EC Public Key</td>
<td>Transparent EC Public Key</td>
</tr>
<tr>
<td>DSA Private Key</td>
<td>Transparent DSA Private Key</td>
</tr>
<tr>
<td>DSA Public Key</td>
<td>Transparent DSA Public Key</td>
</tr>
</tbody>
</table>

Table 81: Default Key Format Type, by Object

4.27 Key Value Location

Key Value Location MAY be specified by the client when the Key Value is omitted from the Key Block in a Register request. Key Value Location is used to indicate the location of the Key Value absent from the object being registered.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Value Location</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text String</td>
<td>Yes</td>
</tr>
<tr>
<td>Key Value Location Type</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 82: Key Value Location Attribute

SHALL always have a value | No
Initially set by | Client
Modifiable by server | No
Modifiable by client | Yes
Deletable by client | Yes
Multiple instances permitted | Yes
When implicitly set | Never
Applies to Object Types | All Objects

4.28 Key Value Present

Key Value Present is an attribute of the managed object created by the server. It SHALL NOT be specified by the client in a Register request. *Key Value Present* SHALL be created by the server if the
Key Value is absent from the Key Block in a Register request. The value of Key Value Present SHALL NOT be modified by either the client or the server. Key Value Present attribute MAY be used as a part of the Locate operation.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Value Present</td>
<td>Boolean</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 83: Key Value Present Attribute

- SHALL always have a value: No
- Initially set by: Server
- Modifiable by server: No
- Modifiable by client: No
- Deletable by client: No
- Multiple instances permitted: No
- When implicitly set: During Register operation
- Applies to Object Types: All Objects

Table 84: Key Value Present Attribute Rules

4.29 Last Change Date

The Last Change Date attribute contains the date and time of the last change of the specified object.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Change Date</td>
<td>Date-Time</td>
</tr>
</tbody>
</table>

Table 85: Last Change Date Attribute

- SHALL always have a value: Yes
- Initially set by: Server
- Modifiable by server: Yes
- Modifiable by client: No
- Deletable by client: No
- Multiple instances permitted: No
- When implicitly set: Create, Create Key Pair, Register, Derive Key, Activate, Revoke, Destroy, Archive, Recover, Certify, Re-certify, Re-key, Re-key Key Pair, Add Attribute, Modify Attribute, Delete Attribute, Get Usage Allocation
- Applies to Object Types: All Objects

Table 86: Last Change Date Attribute Rules

4.30 Lease Time

The Lease Time attribute defines a time interval for a Managed Object beyond which the client SHALL NOT use the object without obtaining another lease. This attribute always holds the initial length of time allowed for a lease, and not the actual remaining time. Once its lease expires, the client is only able to renew the lease by calling Obtain Lease. A server SHALL store in this attribute the maximum Lease Time
it is able to serve and a client obtains the lease time (with Obtain Lease) that is less than or equal to the maximum Lease Time. This attribute is read-only for clients. It SHALL be modified by the server only.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lease Time</td>
<td>Interval</td>
</tr>
</tbody>
</table>

Table 87: Lease Time Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>No</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Yes</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 88: Lease Time Attribute Rules

4.31 Link

The Link attribute is a structure used to create a link from one Managed Cryptographic Object to another, closely related target Managed Cryptographic Object. The link has a type, and the allowed types differ, depending on the Object Type of the Managed Cryptographic Object, as listed below. The Linked Object Identifier identifies the target Managed Cryptographic Object by its Unique Identifier. The link contains information about the association between the Managed Objects (e.g., the private key corresponding to a public key; the parent certificate for a certificate in a chain; or for a derived symmetric key, the base key from which it was derived).

The Link attribute SHOULD be present for private keys and public keys for which a certificate chain is stored by the server, and for certificates in a certificate chain.

Note that it is possible for a Managed Object to have multiple instances of the Link attribute (e.g., a Private Key has links to the associated certificate, as well as the associated public key; a Certificate object has links to both the public key and to the certificate of the certification authority (CA) that signed the certificate).

It is also possible that a Managed Object does not have links to associated cryptographic objects. This MAY occur in cases where the associated key material is not available to the server or client (e.g., the registration of a CA Signer certificate with a server, where the corresponding private key is held in a different manner).
<table>
<thead>
<tr>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text String</td>
<td>Unique Identifier of a Managed Object.</td>
</tr>
<tr>
<td>Enumeration</td>
<td>Unique Identifier Enumeration</td>
</tr>
<tr>
<td>Integer</td>
<td>Zero based nth Unique Identifier in the response. If negative the count is</td>
</tr>
<tr>
<td></td>
<td>backwards from the beginning of the current operation’s batch item.</td>
</tr>
</tbody>
</table>

Table 89: Linked Object Identifier encoding descriptions

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Link Type</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Linked Object Identifier</td>
<td>Text String/Enumeration/Integer</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 90: Link Attribute Structure

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>No</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Client or Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Yes</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>Yes</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>Yes</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Create Key Pair, Derive Key, Certify, Re-</td>
</tr>
<tr>
<td></td>
<td>certify, Re-key, Re-key Key Pair, Register</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 91: Link Attribute Structure Rules

4.32 Name

The **Name** attribute is a structure used to identify and locate an object. This attribute is assigned by the client, and the **Name Value** is intended to be in a form that humans are able to interpret. The key management system MAY specify rules by which the client creates valid names. Clients are informed of such rules by a mechanism that is not specified by this standard. Names SHALL be unique within a given key management domain, but are NOT REQUIRED to be globally unique.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Name Value</td>
<td>Text String</td>
<td>Yes</td>
</tr>
<tr>
<td>Name Type</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 92: Name Attribute Structure
4.33 Never Extractable

The server SHALL create this attribute, and set it to True if the Extractable attribute has always been False.

The server SHALL set it to False if the Extractable attribute has ever been set to True.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never Extractable</td>
<td>Boolean</td>
</tr>
</tbody>
</table>

Table 94: Never Extractable Attribute

4.34 NIST Key Type

The NIST SP800-57 Key Type is an attribute of a Key (or Secret Data object). It MAY be set by the client, preferably when the object is registered or created. Although the attribute is optional, once set, MAY NOT be deleted or modified by either the client or the server. This attribute is intended to reflect the NIST SP-800-57 view of cryptographic material, so an object SHOULD have only one usage (see [SP800-57-1] for rationale), but this is not enforced at the server.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIST Key Type</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 96 SP800-57 Key Type Attribute
4.35 Object Group

A Managed Object MAY be part of a group of objects. An object MAY belong to more than one group of objects. To assign an object to a group of objects, the object group name SHOULD be set into this attribute.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Group</td>
<td>Text String</td>
</tr>
</tbody>
</table>

Table 98: Object Group Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>No</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Client</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>Yes</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 97 SP800-57 Key Type Attribute Rules

4.36 Object Type

The *Object Type* of a Managed Object (e.g., public key, private key, symmetric key, etc.) SHALL be set by the server when the object is created or registered and then SHALL NOT be changed or deleted before the object is destroyed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Type</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 100: Object Type Attribute
SHALL always have a value	Yes
Initially set by | Server
Modifiable by server | No
Modifiable by client | No
Deletable by client | No
Multiple instances permitted | No
When implicitly set | Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair
Applies to Object Types | All Objects

Table 101: Object Type Attribute Rules

4.37 Opaque Data Type

The *Opaque Data Type* of an Opaque Object SHALL be set by the server when the object is registered and then SHALL NOT be changed or deleted before the object is destroyed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opaque Data Type</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 102: Opaque Data Type Attribute

SHALL always have a value	Yes
Initially set by | Server
Modifiable by server | No
Modifiable by client | No
Deletable by client | No
Multiple instances permitted | No
When implicitly set | Register
Applies to Object Types | Opaque Objects

Table 103: Opaque Data Type Attribute Rules

4.38 Original Creation Date

The *Original Creation Date* attribute contains the date and time the object was originally created, which can be different from when the object is registered with a key management server.

It is OPTIONAL for an object being registered by a client. The *Original Creation Date* MAY be set by the client during a Register operation. If no *Original Creation Date* attribute was set by the client during a Register operation, it MAY do so at a later time through an Add Attribute operation for that object.

It is mandatory for an object created on the server as a result of a Create, Create Key Pair, Derive Key, Re-key, or Re-key Key Pair operation. In such cases the *Original Creation Date* SHALL be set by the server and SHALL be the same as the *Initial Date* attribute.

In all cases, once the *Original Creation Date* is set, it SHALL NOT be deleted or updated.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Creation Date</td>
<td>Date-Time</td>
</tr>
</tbody>
</table>
Table 104: Original Creation Date Attribute

<table>
<thead>
<tr>
<th>SHALL always have a value</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially set by</td>
<td>Client or Server (when object is generated by Server)</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Create, Create Key Pair, Derive Key, Re-key, Re-key Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 105: Original Creation Date Attribute Rules

4.39 PKCS#12 Friendly Name

PKCS#12 Friendly Name is an attribute used for descriptive purposes. If supplied on a Register Private Key with Key Format Type PKCS#12, it informs the server of the alias/friendly name (see [RFC7292]) under which the private key and its associated certificate chain SHALL be found in the Key Material. If no such alias/friendly name is supplied, the server SHALL record the alias/friendly name (if any) it finds for the first Private Key in the Key Material.

When a Get with Key Format Type PKCS#12 is issued, this attribute informs the server what alias/friendly name the server SHALL use when encoding the response. If this attribute is absent for the object on which the Get is issued, the server SHOULD use an alias/friendly name of “alias”. Since the PKCS#12 Friendly Name is defined in ASN.1 with an EQUALITY MATCHING RULE of caseIgnoreMatch, clients and servers SHOULD utilize a lowercase text string.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCS#12 Friendly Name</td>
<td>Text String</td>
</tr>
</tbody>
</table>

Table 106: PKCS#12 Friendly Name Attribute

<table>
<thead>
<tr>
<th>SHALL always have a value</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially set by</td>
<td>Client or Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>Yes</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 107: Friendly Name Attribute Rules

4.40 Process Start Date

The Process Start Date attribute is the date and time when a valid Managed Object MAY begin to be used to process cryptographically protected information (e.g., decryption or unwrapping), depending on the value of its Cryptographic Usage Mask attribute. The object SHALL NOT be used for these cryptographic purposes before the Process Start Date has been reached. This value MAY be equal to or later than, but SHALL NOT precede, the Activation Date. Once the Process Start Date has occurred, then this attribute SHALL NOT be changed or deleted before the object is destroyed.
Table 108: Process Start Date Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Start Date</td>
<td>Date-Time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shall always have a value</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially set by</td>
<td>Server or Client</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Yes, only while in Pre-Active or Active state and as long as the Process Start Date has been not reached.</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>Yes, only while in Pre-Active or Active state and as long as the Process Start Date has been not reached.</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Create, Register, Derive Key, Re-key</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 109: Process Start Date Attribute Rules

4.41 Protect Stop Date

The Protect Stop Date attribute is the date and time after which a valid Managed Object SHALL NOT be used for applying cryptographic protection (e.g., encryption or wrapping), depending on the value of its Cryptographic Usage Mask attribute. This value MAY be equal to or earlier than, but SHALL NOT be later than the Deactivation Date. Once the Protect Stop Date has occurred, then this attribute SHALL NOT be changed or deleted before the object is destroyed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protect Stop Date</td>
<td>Date-Time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shall always have a value</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially set by</td>
<td>Server or Client</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Yes, only while in Pre-Active or Active state and as long as the Protect Stop Date has not been reached.</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>Yes, only while in Pre-Active or Active state and as long as the Protect Stop Date has not been reached.</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Create, Register, Derive Key, Re-key</td>
</tr>
</tbody>
</table>
4.42 Protection Level

The *Protection Level* attribute is the Level of protection required for a given object.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection Level</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 112: Protection Level Attribute

- SHALL always have a value: No
- Initially set by: Client
- Modifiable by server: No
- Modifiable by client: Yes
- Deletable by client: Yes
- Multiple instances permitted: No
- When implicitly set:
- Applies to Object Types: All Objects

Table 115: Protection Period Attribute Rules

4.43 Protection Period

The *Protection Period* attribute is the period of time for which the output of an operation or a *Managed Cryptographic Object* SHALL remain safe. The *Protection Period* is specified as an *Interval*.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection Period</td>
<td>Interval</td>
</tr>
</tbody>
</table>

Table 114: Protection Period Attribute

- SHALL always have a value: No
- Initially set by: Client
- Modifiable by server: No
- Modifiable by client: Yes
- Deletable by client: Yes
- Multiple instances permitted: No
- When implicitly set:
- Applies to Object Types: All Objects

Table 115: Protection Period Attribute Rules

4.44 Protection Storage Mask

The *Protection Storage Mask* attribute records which of the requested mask values have been used for protection storage.
Table 116: Protection Storage Mask

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection Storage Mask</td>
<td>Integer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shall always have a value</td>
<td></td>
</tr>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>When object is stored</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 117: Protection Storage Mask Rules

4.45 Quantum Safe

The *Quantum Safe* attribute is a flag to be set to indicate an object is required to be Quantum Safe for the given *Protection Period* and *Protection Level*.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Safe</td>
<td>Boolean</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shall always have a value</td>
<td></td>
</tr>
<tr>
<td>Initially set by</td>
<td>Client</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>Yes</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td></td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 118: Quantum Safe Attribute Rules

4.46 Random Number Generator

The *Random Number Generator* attribute contains the details of the random number generator used during the creation of the managed cryptographic object.

The *Random Number Generator* MAY be set by the client during a Register operation. If no *Random Number Generator* attribute was set by the client during a Register operation, it MAY do so at a later time through an Add Attribute operation for that object.

It is mandatory for an object created on the server as a result of a Create, Create Key Pair, Derive Key, Re-key, or Re-key Key Pair operation. In such cases the *Random Number Generator* SHALL be set by the server depending on which random number generator was used. If the specific details of the random
number generator are unknown then the RNG Algorithm within the RNG Parameters structure SHALL be set to Unspecified.

If one or more Random Number Generator attribute values are provided in the Attributes in a Create, Create Key Pair, Derive Key, Re-key, or Re-key Key Pair operation then the server SHALL use a random number generator that matches one of the Random Number Generator attributes. If the server does not support or is otherwise unable to use a matching random number generator then it SHALL fail the request.

The Random Number Generator attribute SHALL NOT be copied from the original object in a Re-key or Re-key Key Pair operation.

In all cases, once the Random Number Generator attribute is set, it SHALL NOT be deleted or updated.

Note: the encoding is the same as the RNG Parameters structure using a different tag; it does not contain a nested RNG Parameters structure.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Number Generator</td>
<td>RNG Parameters</td>
</tr>
</tbody>
</table>

Table 120: Random Number Generator Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>No</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Client (when the object is generated by the Client and registered) or Server (when object is generated by Server)</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Create, Create Key Pair, Derive Key, Re-key, Re-key Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 121: Random Number Generator Attribute Rules

4.47 Revocation Reason

The Revocation Reason attribute is a structure used to indicate why the Managed Cryptographic Object was revoked (e.g., “compromised”, “expired”, “no longer used”, etc.). This attribute is only set by the server as a part of the Revoke Operation.

The Revocation Message is an OPTIONAL field that is used exclusively for audit trail/logging purposes and MAY contain additional information about why the object was revoked (e.g., “Laptop stolen”, or “Machine decommissioned”).

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revocation Reason</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Revocation Reason Code</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Revocation Message</td>
<td>Text String</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 122: Revocation Reason Attribute Structure
SHALL always have a value	**No**
Initially set by | Server
Modifiable by server | Yes
Modifiable by client | No
Deletable by client | No
Multiple instances permitted | No
When implicitly set | Revoke
Applies to Object Types | All Objects

Table 123: Revocation Reason Attribute Rules

4.48 Sensitive

If True then the server SHALL prevent the object value being retrieved (via the Get operation) unless it is wrapped by another key. The server SHALL set the value to False if the value is not provided by the client.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive</td>
<td>Boolean</td>
</tr>
</tbody>
</table>

Table 124: Sensitive Attribute

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Initially set by</td>
<td>Client or Server</td>
<td></td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>When implicitly set</td>
<td>When object is created or registered</td>
<td></td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
<td></td>
</tr>
</tbody>
</table>

Table 125: Sensitive Attribute Rules

4.49 Short Unique Identifier

The Short Unique Identifier is generated by the key management system to uniquely identify a Managed Object using a shorter identifier. It is only REQUIRED to be unique within the identifier space managed by a single key management system, however this identifier SHOULD be globally unique in order to allow for a key management domain export of such objects. This attribute SHALL be assigned by the key management system upon creation or registration of a Unique Identifier, and then SHALL NOT be changed or deleted before the object is destroyed.

The Short Unique Identifier SHOULDN’T be generated as a SHA-256 hash of the Unique Identifier and SHALL be a 32 byte byte string.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Unique Identifier</td>
<td>Byte String</td>
</tr>
</tbody>
</table>

Table 126: Unique Identifier Attribute
Table 127: Short Unique Identifier Attribute Rules

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>Yes</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Create, Create Key Pair,</td>
</tr>
<tr>
<td></td>
<td>Register, Derive Key,</td>
</tr>
<tr>
<td></td>
<td>Certify, Re-certify, Re-key</td>
</tr>
<tr>
<td></td>
<td>Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

4.50 State

This attribute is an indication of the *State* of an object as known to the key management server. The State SHALL NOT be changed by using the Modify Attribute operation on this attribute. The State SHALL only be changed by the server as a part of other operations or other server processes. An object SHALL be in one of the following states at any given time.

Note: The states correspond to those described in [SP800-57-1].

Figure 1: Cryptographic Object States and Transitions

- **Pre-Active**: The object exists and SHALL NOT be used for any cryptographic purpose.
- **Active**: The object SHALL be transitioned to the *Active* state prior to being used for any cryptographic purpose. The object SHALL only be used for all cryptographic purposes that are allowed by its Cryptographic Usage Mask attribute. If a Process Start Date attribute is set, then the object SHALL NOT be used for cryptographic purposes prior to the Process Start Date. If a
Protect Stop attribute is set, then the object SHALL NOT be used for cryptographic purposes after the Process Stop Date.

- **Deactivated:** The object SHALL NOT be used for applying cryptographic protection (e.g., encryption, signing, wrapping, MACing, deriving). The object SHALL only be used for cryptographic purposes permitted by the Cryptographic Usage Mask attribute. The object SHOULD only be used to process cryptographically-protected information (e.g., decryption, signature verification, unwrapping, MAC verification under extraordinary circumstances and when special permission is granted.

- **Compromised:** The object SHALL NOT be used for applying cryptographic protection (e.g., encryption, signing, wrapping, MACing, deriving). The object SHOULD only be used to process cryptographically-protected information (e.g., decryption, signature verification, unwrapping, MAC verification in a client that is trusted to use managed objects that have been compromised. The object SHALL only be used for cryptographic purposes permitted by the Cryptographic Usage Mask attribute.

- **Destroyed:** The object SHALL NOT be used for any cryptographic purpose.

- **Destroyed Compromised:** The object SHALL NOT be used for any cryptographic purpose; however its compromised status SHOULD be retained for audit or security purposes.

State transitions occur as follows:

1. The transition from a non-existent key to the Pre-Active state is caused by the creation of the object. When an object is created or registered, it automatically goes from non-existent to Pre-Active. If, however, the operation that creates or registers the object contains an Activation Date that has already occurred, then the state immediately transitions from Pre-Active to Active. In this case, the server SHALL set the Activation Date attribute to the value specified in the request, or fail the request attempting to create or register the object, depending on server policy. If the operation contains an Activation Date attribute that is in the future, or contains no Activation Date, then the Cryptographic Object is initialized in the key management system in the Pre-Active state.

2. The transition from Pre-Active to Destroyed is caused by a client issuing a Destroy operation. The server destroys the object when (and if) server policy dictates.

3. The transition from Pre-Active to Compromised is caused by a client issuing a Revoke operation with a Revocation Reason containing a *Revocation Reason Code* of Compromised.

4. The transition from Pre-Active to Active SHALL occur in one of three ways:
 - The Activation Date is reached,
 - A client successfully issues a Modify Attribute operation, modifying the Activation Date to a date in the past, or the current date, or
 - A client issues an Activate operation on the object. The server SHALL set the Activation Date to the time the Activate operation is received.

5. The transition from Active to Compromised is caused by a client issuing a Revoke operation with a Revocation Reason containing a *Revocation Reason Code* of Compromised.

6. The transition from Active to Deactivated SHALL occur in one of three ways:
 - The object’s Deactivation Date is reached,
 - A client issues a Revoke operation, with a Revocation Reason containing a *Revocation Reason Code* other than Compromised, or
 - The client successfully issues a Modify Attribute operation, modifying the Deactivation Date to a date in the past, or the current date.

7. The transition from Deactivated to Destroyed is caused by a client issuing a Destroy operation, or by a server, both in accordance with server policy. The server destroys the object when (and if) server policy dictates.
8. The transition from Deactivated to Compromised is caused by a client issuing a Revoke operation with a Revocation Reason containing a Revocation Reason Code of Compromised.

9. The transition from Compromised to Destroyed Compromised is caused by a client issuing a Destroy operation, or by a server, both in accordance with server policy. The server destroys the object when (and if) server policy dictates.

10. The transition from Destroyed to Destroyed Compromised is caused by a client issuing a Revoke operation with a Revocation Reason containing a Revocation Reason Code of Compromised.

Only the transitions described above are permitted.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 128: State Attribute

<table>
<thead>
<tr>
<th>Shall always have a value</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>Yes</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No, but only by the server in response to certain requests (see above)</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Create, Create Key Pair, Register, Derive Key, Activate, Revoke, Destroy, Certify, Re-certify, Re-key, Re-key Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 129: State Attribute Rules

4.51 Unique Identifier

The Unique Identifier is generated by the key management system to uniquely identify a Managed Object. It is only REQUIRED to be unique within the identifier space managed by a single key management system, however this identifier SHOULD be globally unique in order to allow for a key management domain export of such objects. This attribute SHALL be assigned by the key management system at creation or registration time, and then SHALL NOT be changed or deleted before the object is destroyed.

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text String</td>
<td>Unique Identifier of a Managed Object.</td>
</tr>
<tr>
<td>Enumeration</td>
<td>Unique Identifier Enumeration</td>
</tr>
<tr>
<td>Integer</td>
<td>Zero based nth Unique Identifier in the response. If negative the count is backwards from the beginning of the current operation's batch item.</td>
</tr>
</tbody>
</table>

Table 130: Unique Identifier encoding descriptions
Item Encoding

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Text String, Enumeration or Integer</td>
</tr>
</tbody>
</table>

Table 131: Unique Identifier Attribute

<table>
<thead>
<tr>
<th>Shall always have a value</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>All Objects</td>
</tr>
</tbody>
</table>

Table 132: Unique Identifier Attribute Rules

4.52 Usage Limits

The Usage Limits attribute is a mechanism for limiting the usage of a Managed Object. It only applies to Managed Objects that are able to be used for applying cryptographic protection and it SHALL only reflect their usage for applying that protection (e.g., encryption, signing, etc.). This attribute does not necessarily exist for all Managed Cryptographic Objects, since some objects are able to be used without limit for cryptographically protecting data, depending on client/server policies. Usage for processing cryptographically protected data (e.g., decryption, verification, etc.) is not limited. The Usage Limits attribute contains the Usage Limit structure which has the three following fields:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage Limits Total</td>
<td>The total number of Usage Limits Units allowed to be protected. This is the total value for the entire life of the object and SHALL NOT be changed once the object begins to be used for applying cryptographic protection.</td>
</tr>
<tr>
<td>Usage Limits Count</td>
<td>The currently remaining number of Usage Limits Units allowed to be protected by the object.</td>
</tr>
<tr>
<td>Usage Limits Unit</td>
<td>The type of quantity for which this structure specifies a usage limit (e.g., byte, object).</td>
</tr>
</tbody>
</table>

Table 133: Usage Limits Descriptions

When the attribute is initially set (usually during object creation or registration), the Usage Limits Count is set to the Usage Limits Total value allowed for the useful life of the object, and are decremented when the object is used. The server SHALL ignore the Usage Limits Count value if the attribute is specified in an operation that creates a new object. Changes made via the Modify Attribute operation reflect corrections to the Usage Limits Total value, but they SHALL NOT be changed once the Usage Limits Count value has changed by a Get Usage Allocation operation. The Usage Limits Count value SHALL NOT be set or modified by the client via the Add Attribute or Modify Attribute operations.
4.53 Vendor Attribute

A vendor specific Attribute is a structure used for sending and receiving a Managed Object attribute. The Vendor Identification and Attribute Name are text-strings that are used to identify the attribute. The Attribute Value is either a primitive data type or structured object, depending on the attribute. Vendor identification values “x” and “y” are reserved for KMIP v2.0 and later implementations referencing KMIP v1.x Custom Attributes.

Vendor Attributes created by the client with Vendor Identification “x” are not created (provided during object creation), set, added, adjusted, modified or deleted by the server.

Vendor Attributes created by the server with Vendor Identification “y” are not created (provided during object creation), set, added, adjusted, modified or deleted by the client.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Vendor Identification</td>
<td>Text String (with usage limited to alphanumeric, underscore and period – i.e. [A-Za-z0-9_.])</td>
<td>Yes</td>
</tr>
<tr>
<td>Attribute Name</td>
<td>Text String</td>
<td>Yes</td>
</tr>
<tr>
<td>Attribute Value</td>
<td>Varies, depending on attribute.</td>
<td>Yes, except for the Notify operation</td>
</tr>
</tbody>
</table>

Table 135: Attribute Object Structure

4.54 X.509 Certificate Identifier

The X.509 Certificate Identifier attribute is a structure used to provide the identification of an X.509 public key certificate. The X.509 Certificate Identifier contains the Issuer Distinguished Name (i.e., from the Issuer field of the X.509 certificate) and the Certificate Serial Number (i.e., from the Serial Number field of the X.509 certificate). The X.509 Certificate Identifier SHALL be set by the server when the X.509 certificate is created or registered and then SHALL NOT be changed or deleted before the object is destroyed.
Table 136: X.509 Certificate Identifier Attribute Structure

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.509 Certificate Identifier</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Issuer Distinguished Name</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
<tr>
<td>Certificate Serial Number</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 137: X.509 Certificate Identifier Attribute Rules

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.509 Certificate Issuer</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Issuer Distinguished Name</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
<tr>
<td>Issuer Alternative Name</td>
<td>Byte String, MAY be repeated</td>
<td>No</td>
</tr>
</tbody>
</table>

4.55 X.509 Certificate Issuer

The **X.509 Certificate Issuer** attribute is a structure used to identify the issuer of a X.509 certificate, containing the Issuer Distinguished Name (i.e., from the Issuer field of the X.509 certificate). It MAY include one or more alternative names (e.g., email address, IP address, DNS name) for the issuer of the certificate (i.e., from the Issuer Alternative Name extension within the X.509 certificate). The server SHALL set these values based on the information it extracts from a X.509 certificate that is created as a result of a Certify or a Re-certify operation or is sent as part of a Register operation. These values SHALL NOT be changed or deleted before the object is destroyed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.509 Certificate Issuer</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Issuer Distinguished Name</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
<tr>
<td>Issuer Alternative Name</td>
<td>Byte String, MAY be repeated</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 138: X.509 Certificate Issuer Attribute Structure

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.509 Certificate Issuer</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Issuer Distinguished Name</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
<tr>
<td>Issuer Alternative Name</td>
<td>Byte String, MAY be repeated</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 139: X.509 Certificate Issuer Attribute Rules
4.56 X.509 Certificate Subject

The X.509 Certificate Subject attribute is a structure used to identify the subject of a X.509 certificate. The X.509 Certificate Subject contains the Subject Distinguished Name (i.e., from the Subject field of the X.509 certificate). It MAY include one or more alternative names (e.g., email address, IP address, DNS name) for the subject of the X.509 certificate (i.e., from the Subject Alternative Name extension within the X.509 certificate). The X.509 Certificate Subject SHALL be set by the server based on the information it extracts from the X.509 certificate that is created (as a result of a Certify or a Re-certify operation) or registered (as part of a Register operation) and SHALL NOT be changed or deleted before the object is destroyed.

If the Subject Alternative Name extension is included in the X.509 certificate and is marked critical within the X.509 certificate itself, then an X.509 certificate MAY be issued with the subject field left blank. Therefore an empty string is an acceptable value for the Subject Distinguished Name.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.509 Certificate Subject</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Subject Distinguished Name</td>
<td>Byte String</td>
<td>Yes, but MAY be the empty string</td>
</tr>
<tr>
<td>Subject Alternative Name</td>
<td>Byte String, MAY be repeated</td>
<td>Yes, if the Subject Distinguished Name is an empty string.</td>
</tr>
</tbody>
</table>

Table 140: X.509 Certificate Subject Attribute Structure

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHALL always have a value</td>
<td>Yes</td>
</tr>
<tr>
<td>Initially set by</td>
<td>Server</td>
</tr>
<tr>
<td>Modifiable by server</td>
<td>No</td>
</tr>
<tr>
<td>Modifiable by client</td>
<td>No</td>
</tr>
<tr>
<td>Deletable by client</td>
<td>No</td>
</tr>
<tr>
<td>Multiple instances permitted</td>
<td>No</td>
</tr>
<tr>
<td>When implicitly set</td>
<td>Register, Certify, Re-certify</td>
</tr>
<tr>
<td>Applies to Object Types</td>
<td>X.509 Certificates</td>
</tr>
</tbody>
</table>

Table 141: X.509 Certificate Subject Attribute Rules
5 Attribute Data Structures

5.1 Attributes

This structure is used in various operations to provide the desired attribute values in the request and to return the actual attribute values in the response.

The Attributes structure is defined as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Any attribute in §4 - Object Attributes</td>
<td>Any, MAY be repeated</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 142: Attributes Definition

5.2 Common Attributes

This structure is used in various operations to provide the desired attribute values in the request and to return the actual attribute values in the response.

The Common Attributes structure is defined as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Attributes</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Any attribute in §4 - Object Attributes</td>
<td>Any, MAY be repeated</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 143: Common Attributes Definition

5.3 Private Key Attributes

This structure is used in various operations to provide the desired attribute values in the request and to return the actual attribute values in the response.

The Private Key Attributes structure is defined as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Key Attributes</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Any attribute in §4 - Object Attributes</td>
<td>Any, MAY be repeated</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 144: Private Key Attributes Definition

5.4 Public Key Attributes

This structure is used in various operations to provide the desired attribute values in the request and to return the actual attribute values in the response.

The Public Key Attributes structure is defined as follows:
5.5 Attribute Reference

These structures are used in various operations to provide reference to an attribute by name or by tag in a request or response.

The **Attribute Reference** definition is as follows:

<table>
<thead>
<tr>
<th>Attribute Reference Structure</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor Identification</td>
<td>Text String (with usage limited to alphanumeric, underscore and period – i.e. [A-Za-z0-9_])</td>
<td>Yes</td>
</tr>
<tr>
<td>Attribute Name</td>
<td>Text String</td>
<td>Yes</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Attribute Reference Structure</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute Reference</td>
<td>Enumeration (Tag)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

5.6 Current Attribute

Structure used in various operations to provide the **Current Attribute** value in the request.

The **Current Attribute** structure is defined identically as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Attribute</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Any attribute in §4 - Object Attributes</td>
<td>Any</td>
<td>Yes</td>
</tr>
</tbody>
</table>

5.7 New Attribute

Structure used in various operations to provide the **New Attribute** value in the request.

The **New Attribute** structure is defined identically as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Attribute</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Any attribute in §4 - Object Attributes</td>
<td>Any</td>
<td>Yes</td>
</tr>
</tbody>
</table>
6 Operations

6.1 Client-to-Server Operations

The following subsections describe the operations that MAY be requested by a key management client. Not all clients have to be capable of issuing all operation requests; however any client that issues a specific request SHALL be capable of understanding the response to the request. All Object Management operations are issued in requests from clients to servers, and results obtained in responses from servers to clients. Multiple operations MAY be combined within a batch, resulting in a single request/response message pair.

A number of the operations whose descriptions follow are affected by a mechanism referred to as the ID Placeholder.

The key management server SHALL implement a temporary variable called the ID Placeholder. This value consists of a single Unique Identifier. It is a variable stored inside the server that is only valid and preserved during the execution of a batch of operations. Once the batch of operations has been completed, the ID Placeholder value SHALL be discarded and/or invalidated by the server, so that subsequent requests do not find this previous ID Placeholder available.

The ID Placeholder is obtained from the Unique Identifier returned in response to the Create, Create Pair, Register, Derive Key, Re-key, Re-key Key Pair, Certify, Re-Certify, Locate, and Recover operations. If any of these operations successfully completes and returns a Unique Identifier, then the server SHALL copy this Unique Identifier into the ID Placeholder variable, where it is held until the completion of the operations remaining in the batched request or until a subsequent operation in the batch causes the ID Placeholder to be replaced. If the Batch Order Option is set to true (or unspecified), then subsequent operations in the batched request MAY make use of the ID Placeholder by omitting the Unique Identifier field from the request payloads for these operations.

Requests MAY contain attribute values to be assigned to the object. This information is specified with zero or more individual attributes.

For any operations that operate on Managed Objects already stored on the server, any archived object SHALL first be made available by a Recover operation before they MAY be specified (i.e., as on-line objects).

Multi-part cryptographic operations (operations where a stream of data is provided across multiple requests from a client to a server) are optionally supported by those cryptographic operations that include the Correlation Value, Init Indicator and Final Indicator request parameters.

For multi-part cryptographic operations the following sequence is performed:

1. On the first request
 a. Provide an Init Indicator with a value of True
 b. Provide any other required parameters
 c. Preserve the Correlation Value returned in the response for use in subsequent requests
 d. Use the Data output (if any) from the response

2. On subsequent requests
 a. Provide the Correlation Value from the response to the first request
 b. Provide any other required parameters
 c. Use the next block of Data output (if any) from the response

3. On the final request
 a. Provide the Correlation Value from the response to the first request
 b. Provide a Final Indicator with a value of True
 c. Use the final block of Data output (if any) from the response
Single-part cryptographic operations (operations where a single input is provided and a single response returned) the following sequence is performed:

1. On each request
 a. Do not provide an Init Indicator, Final Indicator or Correlation Value or provide an Init indicator and Final Indicator but no Correlation Value.
 b. Provide any other required parameters
 c. Use the Data output from the response

Data is always required in cryptographic operations except when either Init Indicator or Final Indicator is true.

6.1.1 Activate

This operation requests the server to activate a Managed Object. The operation SHALL only be performed on an object in the Pre-Active state and has the effect of changing its state to Active, and setting its Activation Date to the current date and time.

<table>
<thead>
<tr>
<th>Request Payload</th>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td></td>
<td>Determines the object being activated. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
</tbody>
</table>

Table 149: Activate Request Payload

<table>
<thead>
<tr>
<th>Response Payload</th>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td></td>
<td>The Unique Identifier of the object.</td>
</tr>
</tbody>
</table>

Table 150: Activate Response Payload

6.1.1.1 Error Handling – Activate

This section details the specific Result Reasons that SHALL be returned for errors detected in a Activate Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Object Type, Object Not Found, Wrong Key Lifecycle State, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 151: Activate Errors

6.1.2 Add Attribute

This operation requests the server to add a new attribute instance to be associated with a Managed Object and set its value. The request contains the Unique Identifier of the Managed Object to which the attribute pertains, along with the attribute name and value. For single-instance attributes, this creates the attribute value. For multi-instance attributes, this is how the first and subsequent values are created.

Existing attribute values SHALL NOT be changed by this operation. Read-Only attributes SHALL NOT be added using the Add Attribute operation.
Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>The Unique Identifier of the object. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>New Attribute</td>
<td>Yes</td>
<td>Specifies the attribute to be added to the object.</td>
</tr>
</tbody>
</table>

Table 152: Add Attribute Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
</tbody>
</table>

Table 153: Add Attribute Response Payload

6.1.2.1 Error Handling - Add Attribute

This section details the specific Result Reasons that SHALL be returned for errors detected in a Add Attribute Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Attribute Single Valued, Invalid Attribute, Invalid Message, Non Unique Name Attribute, Object Not Found, Read Only Attribute, Server Limit Exceeded, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 154: Add Attribute Errors

6.1.3 Adjust Attribute

This operation requests the server to adjust the value of an attribute. The request contains the Unique Identifier of the Managed Object to which the attribute pertains, along with the attribute reference and value. If the object did not have value for the attribute, the previous value is assumed to be a 0 for numeric types and intervals, or false for Boolean, otherwise an error is raised. If the object had exactly one instance, then it is modified. If it has more than one instance an error is raised. Read-Only attributes SHALL NOT be added or modified using this operation.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>The Unique Identifier of the object. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>Attribute Reference</td>
<td>Yes</td>
<td>The attribute to be adjusted.</td>
</tr>
<tr>
<td>Adjustment Type</td>
<td>Yes</td>
<td>The adjustment to be made.</td>
</tr>
<tr>
<td>Adjustment Value</td>
<td>No</td>
<td>The value for the adjustment</td>
</tr>
</tbody>
</table>

Table 155: Adjust Attribute Request Payload
Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
</tbody>
</table>

Table 156: Adjust Attribute Response Payload

6.1.3.1 Error Handling - Adjust Attribute

This section details the specific Result Reasons that SHALL be returned for errors detected in a Adjust Attribute Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Data Type, Item Not Found, Multi Valued Attribute, Numeric Range, Object Archived, Read Only Attribute, Unsupported Attribute, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 157: Adjust Attribute Errors

6.1.4 Archive

This operation is used to specify that a Managed Object MAY be archived. The actual time when the object is archived, the location of the archive, or level of archive hierarchy is determined by the policies within the key management system and is not specified by the client. The request contains the Unique Identifier of the Managed Object. This request is only an indication from a client that, from its point of view, the key management system MAY archive the object.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>Determines the object being archived. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
</tbody>
</table>

Table 158: Archive Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
</tbody>
</table>

Table 159: Archive Response Payload

6.1.4.1 Error Handling – Archive

This section details the specific Result Reasons that SHALL be returned for errors detected in a Archive Operation.
6.1.5 Cancel

This operation requests the server to cancel an outstanding asynchronous operation. The correlation value of the original operation SHALL be specified in the request. The server SHALL respond with a Cancellation Result. The response to this operation is not able to be asynchronous.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous Correlation Value</td>
<td>Yes</td>
<td>Specifies the request being canceled.</td>
</tr>
</tbody>
</table>

Table 161: Cancel Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous Correlation Value</td>
<td>Yes</td>
<td>Specified in the request.</td>
</tr>
<tr>
<td>Cancellation Result</td>
<td>Yes</td>
<td>Enumeration indicating the result of the cancellation.</td>
</tr>
</tbody>
</table>

Table 162: Cancel Response Payload

This section details the specific Result Reasons that SHALL be returned for errors detected in a Cancel Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Asynchronous Correlation Value, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 163: Cancel Errors

6.1.6 Certify

This request is used to generate a Certificate object for a public key. This request supports the certification of a new public key, as well as the certification of a public key that has already been certified (i.e., certificate update). Only a single certificate SHALL be requested at a time.

The Certificate Request object MAY be omitted, in which case the public key for which a Certificate object is generated SHALL be specified by its Unique Identifier only. If the Certificate Request Type and the Certificate Request objects are omitted from the request, then the Certificate Type SHALL be specified using the Attributes object.

The Certificate Request is passed as a Byte String, which allows multiple certificate request types for X.509 certificates (e.g., PKCS#10, PEM, etc.) to be submitted to the server.

The generated Certificate object whose Unique Identifier is returned MAY be obtained by the client via a Get operation in the same batch, using the ID Placeholder mechanism.
For the public key, the server SHALL create a Link attribute of Link Type Certificate pointing to the generated certificate. For the generated certificate, the server SHALL create a Link attribute of Link Type Public Key pointing to the Public Key.

The server SHALL copy the Unique Identifier of the generated certificate returned by this operation into the ID Placeholder variable.

If the information in the Certificate Request conflicts with the attributes specified in the Attributes, then the information in the Certificate Request takes precedence.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>The Unique Identifier of the Public Key or the Certificate Request being certified. If omitted and Certificate Request is not present, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>Certificate Request Type</td>
<td>No</td>
<td>An Enumeration object specifying the type of certificate request. It is REQUIRED if the Certificate Request is present.</td>
</tr>
<tr>
<td>Certificate Request Value</td>
<td>No</td>
<td>A Byte String object with the certificate request.</td>
</tr>
<tr>
<td>Attributes</td>
<td>No</td>
<td>Specifies desired object attributes.</td>
</tr>
<tr>
<td>Protection Storage Masks</td>
<td>No</td>
<td>Specifies all permissible Protection Storage Mask selections for the new object</td>
</tr>
</tbody>
</table>

Table 164: Certify Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the generated Certificate object.</td>
</tr>
</tbody>
</table>

Table 165: Certify Response Payload

6.1.6.1 Error Handling – Certify

This section details the specific Result Reasons that SHALL be returned for errors detected in a Certify Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid CSR, Invalid Object Type, Item Not Found, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Protection Storage Unavailable, Response Too Large</td>
</tr>
</tbody>
</table>

Table 166: Certify Errors
6.1.7 Check

This operation requests that the server check for the use of a Managed Object according to values specified in the request. This operation SHOULD only be used when placed in a batched set of operations, usually following a Locate, Create, Create Pair, Derive Key, Certify, Re-Certify, Re-key or Re-key Key Pair operation, and followed by a Get operation.

If the server determines that the client is allowed to use the object according to the specified attributes, then the server returns the Unique Identifier of the object.

If the server determines that the client is not allowed to use the object according to the specified attributes, then the server empties the ID Placeholder and does not return the Unique Identifier, and the operation returns the set of attributes specified in the request that caused the server policy denial. The only attributes returned are those that resulted in the server determining that the client is not allowed to use the object, thus allowing the client to determine how to proceed.

In a batch containing a Check operation the Batch Order Option SHOULD be set to true. Only STOP or UNDO Batch Error Continuation Option values SHOULD be used by the client in such a batch. Additional attributes that MAY be specified in the request are limited to:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage Limits Count</td>
<td>The request MAY contain the usage amount that the client deems necessary to complete its needed function. This does not require that any subsequent Get Usage Allocation operations request this amount. It only means that the client is ensuring that the amount specified is available.</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>This is used to specify the cryptographic operations for which the client intends to use the object (see Section 3.19). This allows the server to determine if the policy allows this client to perform these operations with the object. Note that this MAY be a different value from the one specified in a Locate operation that precedes this operation. Locate, for example, MAY specify a Cryptographic Usage Mask requesting a key that MAY be used for both Encryption and Decryption, but the value in the Check operation MAY specify that the client is only using the key for Encryption at this time.</td>
</tr>
<tr>
<td>Lease Time</td>
<td>This specifies a desired lease time (see Section 3.20). The client MAY use this to determine if the server allows the client to use the object with the specified lease or longer. Including this attribute in the Check operation does not actually cause the server to grant a lease, but only indicates that the requested lease time value MAY be granted if requested by a subsequent, batched Obtain Lease operation.</td>
</tr>
</tbody>
</table>

Table 167: Check value description

Note that these objects are not encoded in an Attribute structure.
Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>Determines the object being checked. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>Usage Limits Count</td>
<td>No</td>
<td>Specifies the number of Usage Limits Units to be protected to be checked against server policy.</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>No</td>
<td>Specifies the Cryptographic Usage for which the client intends to use the object.</td>
</tr>
<tr>
<td>Lease Time</td>
<td>No</td>
<td>Specifies a Lease Time value that the Client is asking the server to validate against server policy.</td>
</tr>
</tbody>
</table>

Table 168: Check Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes, unless a failure,</td>
<td>The Unique Identifier of the object.</td>
</tr>
<tr>
<td>Usage Limits Count</td>
<td>No</td>
<td>Returned by the Server if the Usage Limits value specified in the Request Payload is larger than the value that the server policy allows.</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>No</td>
<td>Returned by the Server if the Cryptographic Usage Mask specified in the Request Payload is rejected by the server for policy violation.</td>
</tr>
<tr>
<td>Lease Time</td>
<td>No</td>
<td>Returned by the Server if the Lease Time value in the Request Payload is larger than a valid Lease Time that the server MAY grant.</td>
</tr>
</tbody>
</table>

Table 169: Check Response Payload

6.1.7.1 Error Handling – Check

This section details the specific Result Reasons that SHALL be returned for errors detected in a Check Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Illegal Object Type, Incompatible Cryptographic Usage Mask, Object Not Found, Usage Limit Exceeded, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 170: Check Errors
6.1.8 Create

This operation requests the server to generate a new symmetric key or generate Secret Data as a Managed Cryptographic Object.

The request contains information about the type of object being created, and some of the attributes to be assigned to the object (e.g., Cryptographic Algorithm, Cryptographic Length, etc.).

The response contains the Unique Identifier of the created object. The server SHALL copy the Unique Identifier returned by this operation into the ID Placeholder variable.

<table>
<thead>
<tr>
<th>Request Payload</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Type</td>
<td>Yes</td>
<td>Determines the type of object to be created.</td>
</tr>
<tr>
<td>Attributes</td>
<td>Yes</td>
<td>Specifies desired attributes to be associated with the new object.</td>
</tr>
<tr>
<td>Protection Storage Masks</td>
<td>No</td>
<td>Specifies all permissible Protection Storage Mask selections for the new object.</td>
</tr>
</tbody>
</table>

Table 171: Create Request Payload

<table>
<thead>
<tr>
<th>Response Payload</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Type</td>
<td>Yes</td>
<td>Type of object created.</td>
</tr>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the newly created object.</td>
</tr>
</tbody>
</table>

Table 172: Create Response Payload

6.1.8.1 Error Handling - Create

This section details the specific Result Reasons that SHALL be returned for errors detected in a Create operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Attribute Read Only, Attribute Single Valued, Cryptographic Failure, Invalid Attribute, Invalid Attribute Value, Invalid Object Type, Non Unique Name Attribute, Read Only Attribute, Server Limit Exceeded, Unsupported Attribute, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Protection Storage Unavailable, Response Too Large</td>
</tr>
</tbody>
</table>

Table 173: Create Errors

6.1.9 Create Key Pair

This operation requests the server to generate a new public/private key pair and register the two corresponding new Managed Cryptographic Objects.
The request contains attributes to be assigned to the objects (e.g., Cryptographic Algorithm, Cryptographic Length, etc.). Attributes MAY be specified for both keys at the same time by specifying a Common Attributes object in the request. Attributes not common to both keys (e.g., Name, Cryptographic Usage Mask) MAY be specified using the Private Key Attributes and Public Key Attributes objects in the request, which take precedence over the Common Attributes object.

For the Private Key, the server SHALL create a Link attribute of Link Type Public Key pointing to the Public Key. For the Public Key, the server SHALL create a Link attribute of Link Type Private Key pointing to the Private Key. The response contains the Unique Identifiers of both created objects. The ID Placeholder value SHALL be set to the Unique Identifier of the Private Key.

Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Attributes</td>
<td>No</td>
<td>Specifies desired attributes to be associated with the new object that apply to both the Private and Public Key Objects.</td>
</tr>
<tr>
<td>Private Key Attributes</td>
<td>No</td>
<td>Specifies the attributes to be associated with the new object that apply to the Private Key Object.</td>
</tr>
<tr>
<td>Public Key Attributes</td>
<td>No</td>
<td>Specifies the attributes to be associated with the new object that apply to the Public Key Object.</td>
</tr>
<tr>
<td>Common Protection Storage Masks</td>
<td>No</td>
<td>Specifies all Protection Storage Mask selections that are permissible for the new Private Key and Public Key objects.</td>
</tr>
<tr>
<td>Private Protection Storage Masks</td>
<td>No</td>
<td>Specifies all Protection Storage Mask selections that are permissible for the new Private Key object.</td>
</tr>
<tr>
<td>Public Protection Storage Masks</td>
<td>No</td>
<td>Specifies all Protection Storage Mask selections that are permissible for the new Public Key object.</td>
</tr>
</tbody>
</table>

Table 174: Create Key Pair Request Payload

For multi-instance attributes, the union of the values found in the attributes of the Common, Private, and Public Key Attributes SHALL be used.

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Key Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the newly created Private Key object.</td>
</tr>
<tr>
<td>Public Key Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the newly created Public Key object.</td>
</tr>
</tbody>
</table>

Table 175: Create Key Pair Response Payload

Table 176 indicates which attributes SHALL have the same value for the Private and Public Key.
<table>
<thead>
<tr>
<th>Attribute</th>
<th>SHALL contain the same value for both Private and Public Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Algorithm</td>
<td>Yes</td>
</tr>
<tr>
<td>Cryptographic Length</td>
<td>Yes</td>
</tr>
<tr>
<td>Cryptographic Domain Parameters</td>
<td>Yes</td>
</tr>
<tr>
<td>Cryptographic Parameters</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 176: Create Key Pair Attribute Requirements

Setting the same Cryptographic Length value for both private and public key does not imply that both keys are of equal length. For RSA, Cryptographic Length corresponds to the bit length of the Modulus. For DSA and DH algorithms, Cryptographic Length corresponds to the bit length of parameter P, and the bit length of Q is set separately in the Cryptographic Domain Parameters attribute. For ECDSA, ECDH, and ECMQV algorithms, Cryptographic Length corresponds to the bit length of parameter Q.

6.1.9.1 Error Handling - Create Key Pair

This section details the specific Result Reasons that SHALL be returned for errors detected in a Create Key Pair Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Attribute Read Only, Attribute Single Valued, Cryptographic Failure, Invalid Attribute, Invalid Attribute Value, Non Unique Name Attribute, Server Limit Exceeded, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Private Protection Storage Unavailable, Public Protection Storage Unavailable, Response Too Large</td>
</tr>
</tbody>
</table>

Table 177: Create Key Pair Errors

6.1.10 Create Split Key

This operation requests the server to generate a new split key and register all the splits as individual new Managed Cryptographic Objects.

The request contains attributes to be assigned to the objects (e.g., Split Key Parts, Split Key Threshold, Split Key Method, Cryptographic Algorithm, Cryptographic Length, etc.). The request MAY contain the Unique Identifier of an existing cryptographic object that the client requests be split by the server. If the attributes supplied in the request do not match those of the key supplied, the attributes of the key take precedence.

The response contains the Unique Identifiers of all created objects. The ID Placeholder value SHALL be set to the Unique Identifier of the split whose Key Part Identifier is 1.
Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Type</td>
<td>Yes</td>
<td>Determines the type of object to be created.</td>
</tr>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>The Unique Identifier of the key to be split (if applicable).</td>
</tr>
<tr>
<td>Split Key Parts</td>
<td>Yes</td>
<td>The total number of parts.</td>
</tr>
<tr>
<td>Split Key Threshold</td>
<td>Yes</td>
<td>The minimum number of parts needed to reconstruct the entire key.</td>
</tr>
<tr>
<td>Split Key Method</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Prime Field Size</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Attributes</td>
<td>Yes</td>
<td>Specifies desired object attributes.</td>
</tr>
<tr>
<td>Protection Storage Masks</td>
<td>No</td>
<td>Specifies all permissible Protection Storage Mask selections for the new object</td>
</tr>
</tbody>
</table>

Table 178: Create Split Key Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes, MAY be repeated</td>
<td>The list of Unique Identifiers of the newly created objects.</td>
</tr>
</tbody>
</table>

Table 179: Create Split Key Response Payload

6.1.10.1 Error Handling - Create Split Key

This section details the specific Result Reasons that SHALL be returned for errors detected in a Create Split Key Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Bad Cryptographic Parameters, Cryptographic Failure, Invalid Attribute Value, Server Limit Exceeded, Unsupported Cryptographic Parameters, Attestation Failed, Feature Not Supported, Operation Not Supported, Permission Denied, Protection Storage Unavailable, Response Too Large</td>
</tr>
</tbody>
</table>

Table 180: Create Split Key Errors

6.1.11 Decrypt

This operation requests the server to perform a decryption operation on the provided data using a Managed Cryptographic Object as the key for the decryption operation.

The request contains information about the cryptographic parameters (mode and padding method), the data to be decrypted, and the IV/Counter/Nonce to use. The cryptographic parameters MAY be omitted from the request as they can be specified as associated attributes of the Managed Cryptographic Object.
The initialization vector/counter/nonce MAY also be omitted from the request if the algorithm does not use an IV/Counter/Nonce.

The response contains the Unique Identifier of the Managed Cryptographic Object used as the key and the result of the decryption operation.

The success or failure of the operation is indicated by the Result Status (and if failure the Result Reason) in the response header.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>The Unique Identifier of the Managed Cryptographic Object that is the key to use for the decryption operation. If omitted, then the ID Placeholder value SHALL be used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>Cryptographic Parameters</td>
<td>No</td>
<td>The Cryptographic Parameters (Block Cipher Mode, Padding Method) corresponding to the particular decryption method requested. If there are no Cryptographic Parameters associated with the Managed Cryptographic Object and the algorithm requires parameters then the operation SHALL return with a Result Status of Operation Failed.</td>
</tr>
<tr>
<td>Data</td>
<td>Yes for single-part. No for multi-part.</td>
<td>The data to be decrypted.</td>
</tr>
<tr>
<td>IV/Counter/Nonce</td>
<td>No</td>
<td>The initialization vector, counter or nonce to be used (where appropriate).</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Specifies the existing stream or by-parts cryptographic operation (as returned from a previous call to this operation).</td>
</tr>
<tr>
<td>Init Indicator</td>
<td>No</td>
<td>Initial operation as Boolean</td>
</tr>
<tr>
<td>Final Indicator</td>
<td>No</td>
<td>Final operation as Boolean</td>
</tr>
<tr>
<td>Authenticated Encryption Additional Data</td>
<td>No</td>
<td>Additional data to be authenticated via the Authenticated Encryption Tag. If supplied in multi-part decryption, this data MUST be supplied on the initial Decrypt request</td>
</tr>
<tr>
<td>Authenticated Encryption Tag</td>
<td>No</td>
<td>Specifies the tag that will be needed to authenticate the decrypted data and the additional authenticated data. If supplied in multi-part decryption, this data MUST be supplied on the initial Decrypt request</td>
</tr>
</tbody>
</table>

Table 181: Decrypt Request Payload
6.11.1 Error Handling - Decrypt

This section details the specific Result Reasons that SHALL be returned for errors detected in a Decrypt Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Bad Cryptographic Parameters, Cryptographic Failure, Cryptographic Failure, Incompatible Cryptographic Usage Mask, Invalid Correlation Value, Invalid Object Type, Key Value Not Present, Missing Initialization Vector, Object Not Found, Unsupported Cryptographic Parameters, Wrong Key Lifecycle State, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 183: Decrypt Errors

6.12 Delegated Login

This operation requests the server to allow future requests to be authenticated using Ticket data that is returned by this operation. Requests using the ticket MUST only be permitted to perform the operations specified in the Rights section.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lease Time</td>
<td>No</td>
<td>The lease time Interval or Date Time for the ticket.</td>
</tr>
<tr>
<td>Request Count</td>
<td>No</td>
<td>The integer count of the number of requests that can be made with the ticket</td>
</tr>
<tr>
<td>Usage Limits</td>
<td>No</td>
<td>The usage limits for operations performed.</td>
</tr>
<tr>
<td>Rights</td>
<td>Yes</td>
<td>List of Rights granted to the ticket holder which may only perform operations allowed by at least one of the contained Right structures.</td>
</tr>
</tbody>
</table>

Table 184: Delegated Login Request Payload
Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ticket</td>
<td>Yes</td>
<td>The Ticket that is returned</td>
</tr>
</tbody>
</table>

Table 185: Delegated Login Response Payload

6.1.12.1 Error Handling – Delegated Login

This section details the specific Result Reasons that SHALL be returned for errors detected in a Delegated Login Operation

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Field, Permission Denied, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 186: Delegated Login Errors

6.1.13 Delete Attribute

This operation requests the server to delete an attribute associated with a Managed Object. The request contains the Unique Identifier of the Managed Object whose attribute is to be deleted, the Current Attribute of the attribute. Attributes that are always REQUIRED to have a value SHALL never be deleted by this operation. Attempting to delete a non-existent attribute or specifying an Current Attribute for which there exists no attribute value SHALL result in an error. If no Current Attribute is specified in the request, and an Attribute Reference is specified, then all instances of the specified attribute SHALL be deleted.

<table>
<thead>
<tr>
<th>Request Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Unique Identifier</td>
</tr>
<tr>
<td>Current Attribute</td>
</tr>
<tr>
<td>Attribute Reference</td>
</tr>
</tbody>
</table>

Table 187: Delete Attribute Request Payload

<table>
<thead>
<tr>
<th>Response Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Unique Identifier</td>
</tr>
</tbody>
</table>

Table 188: Delete Attribute Response Payload

6.1.13.1 Error Handling - Delete Attribute

This section details the specific Result Reasons that SHALL be returned for errors detected in a Delete Attribute Operation.
Result Status

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Attribute Instance Not Found, Attribute Not Found, Attribute Read Only, Invalid Attribute, Object Not Found, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 189: Delete Attribute Errors

6.1.14 Derive Key

This request is used to derive a Symmetric Key or Secret Data object from keys or Secret Data objects that are already known to the key management system. The request SHALL only apply to Managed Objects that have the Derive Key bit set in the Cryptographic Usage Mask attribute of the specified Managed Object (i.e., are able to be used for key derivation). If the operation is issued for an object that does not have this bit set, then the server SHALL return an error. For all derivation methods, the client SHALL specify the desired length of the derived key or Secret Data object using the Cryptographic Length attribute. If a key is created, then the client SHALL specify both its Cryptographic Length and Cryptographic Algorithm. If the specified length exceeds the output of the derivation method, then the server SHALL return an error. Clients MAY derive multiple keys and IVs by requesting the creation of a Secret Data object and specifying a Cryptographic Length that is the total length of the derived object. If the specified length exceeds the output of the derivation method, then the server SHALL return an error.

The fields in the Derive Key request specify the Unique Identifiers of the keys or Secret Data objects to be used for derivation (e.g., some derivation methods MAY use multiple keys or Secret Data objects to derive the result), the method to be used to perform the derivation, and any parameters needed by the specified method.

The server SHALL perform the derivation function, and then register the derived object as a new Managed Object, returning the new Unique Identifier for the new object in the response. The server SHALL copy the Unique Identifier returned by this operation into the ID Placeholder variable.

For the keys or Secret Data objects from which the key or Secret Data object is derived, the server SHALL create a Link attribute of Link Type Derived Key pointing to the Symmetric Key or Secret Data object derived as a result of this operation. For the Symmetric Key or Secret Data object derived as a result of this operation, the server SHALL create a Link attribute of Link Type Derivation Base Object pointing to the keys or Secret Data objects from which the key or Secret Data object is derived.

<table>
<thead>
<tr>
<th>Request Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Object Type</td>
</tr>
<tr>
<td>Unique Identifier</td>
</tr>
<tr>
<td>Derivation Method</td>
</tr>
<tr>
<td>Derivation Parameters</td>
</tr>
<tr>
<td>Attributes</td>
</tr>
</tbody>
</table>
Table 190: Derive Key Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the newly derived key or Secret Data object.</td>
</tr>
</tbody>
</table>

Table 191: Derive Key Response Payload

6.1.14.1 Error Handling - Derive Key

This section details the specific Result Reasons that SHALL be returned for errors detected in a Derive Key Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Bad Cryptographic parameters, Cryptographic Failure, Incompatible Cryptographic Usage Mask, Invalid Attribute, Invalid Field, Invalid Message, Invalid ObjectType, Key Value Not Present, Non Unique Name Attribute, Object Not Found, Unsupported Cryptographic Parameters, Wrong Key Lifecycle State, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 192: Derive Key Errors

6.1.15 Destroy

This operation is used to indicate to the server that the key material for the specified Managed Object SHALL be destroyed or rendered inaccessible. The meta-data for the key material SHALL be retained by the server. Objects SHALL only be destroyed if they are in either Pre-Active or Deactivated state.

Table 193: Destroy Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>Determines the object being destroyed. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
</tbody>
</table>

Table 194: Destroy Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
</tbody>
</table>

6.1.15.1 Error Handling – Destroy

This section details the specific Result Reasons that SHALL be returned for errors detected in a Destroy Operation.
6.1.16 Discover Versions

This operation is used by the client to determine a list of protocol versions that is supported by the server. The request payload contains an OPTIONAL list of protocol versions that is supported by the client. The protocol versions SHALL be ranked in decreasing order of preference.

The response payload contains a list of protocol versions that are supported by the server. The protocol versions are ranked in decreasing order of preference. If the client provides the server with a list of supported protocol versions in the request payload, the server SHALL return only the protocol versions that are supported by both the client and server. The server SHOULD list all the protocol versions supported by both client and server. If the protocol version specified in the request header is not specified in the request payload and the server does not support any protocol version specified in the request payload, the server SHALL return an empty list in the response payload. If no protocol versions are specified in the request payload, the server SHOULD return all the protocol versions that are supported by the server.

Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol Version</td>
<td>No, MAY be Repeated</td>
<td>The list of protocol versions supported by the client ordered in decreasing order of preference.</td>
</tr>
</tbody>
</table>

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol Version</td>
<td>No, MAY be repeated</td>
<td>The list of protocol versions supported by the server ordered in decreasing order of preference.</td>
</tr>
</tbody>
</table>

6.1.16.1 Error Handling - Discover Versions

This section details the specific Result Reasons that SHALL be returned for errors detected in a Discover Versions Operation.

Result Status | Result Reason

| Operation Failed | Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large |

Table 195: Destroy Errors

Table 196: Discover Versions Request Payload

Table 197: Discover Versions Response Payload

Table 198: Discover Versions Errors
6.1.17 Encrypt

This operation requests the server to perform an encryption operation on the provided data using a Managed Cryptographic Object as the key for the encryption operation.

The request contains information about the cryptographic parameters (mode and padding method), the data to be encrypted, and the IV/Counter/Nonce to use. The cryptographic parameters MAY be omitted from the request as they can be specified as associated attributes of the Managed Cryptographic Object. The IV/Counter/Nonce MAY also be omitted from the request if the cryptographic parameters indicate that the server shall generate a Random IV on behalf of the client or the encryption algorithm does not need an IV/Counter/Nonce. The server does not store or otherwise manage the IV/Counter/Nonce.

If the Managed Cryptographic Object referenced has a Usage Limits attribute then the server SHALL obtain an allocation from the current Usage Limits value prior to performing the encryption operation. If the allocation is unable to be obtained the operation SHALL return with a result status of Operation Failed and result reason of Permission Denied.

The response contains the Unique Identifier of the Managed Cryptographic Object used as the key and the result of the encryption operation.

The success or failure of the operation is indicated by the Result Status (and if failure the Result Reason) in the response header.

<table>
<thead>
<tr>
<th>Request Payload</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>The Unique Identifier of the Managed Cryptographic Object that is the key to use for the encryption operation. If omitted, then the ID Placeholder value SHALL be used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>Cryptographic Parameters</td>
<td>No</td>
<td>The Cryptographic Parameters (Block Cipher Mode, Padding Method, RandomIV) corresponding to the particular encryption method requested. If there are no Cryptographic Parameters associated with the Managed Cryptographic Object and the algorithm requires parameters then the operation SHALL return with a Result Status of Operation Failed.</td>
</tr>
<tr>
<td>Data</td>
<td>Yes for single-part. No for multi-part.</td>
<td>The data to be.</td>
</tr>
<tr>
<td>IV/Counter/Nonce</td>
<td>No</td>
<td>The initialization vector, counter or nonce to be used (where appropriate).</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Specifies the existing stream or by-parts cryptographic operation (as returned from a previous call to this operation).</td>
</tr>
<tr>
<td>Init Indicator</td>
<td>No</td>
<td>Initial operation as Boolean</td>
</tr>
<tr>
<td>Final Indicator</td>
<td>No</td>
<td>Final operation as Boolean</td>
</tr>
</tbody>
</table>
Authenticated Encryption Additional Data

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the Managed Cryptographic Object that was the key used for the encryption operation.</td>
</tr>
<tr>
<td>Data</td>
<td>No.</td>
<td>The encrypted data (as a Byte String).</td>
</tr>
<tr>
<td>IV/Counter/Nonce</td>
<td>No</td>
<td>The value used if the Cryptographic Parameters specified Random IV and the IV/Counter/Nonce value was not provided in the request and the algorithm requires the provision of an IV/Counter/Nonce.</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Specifies the stream or by-parts value to be provided in subsequent calls to this operation for performing cryptographic operations.</td>
</tr>
<tr>
<td>Authenticated Encryption Tag</td>
<td>No</td>
<td>Specifies the tag that will be needed to authenticate the decrypted data (and any “additional data”). Only returned on completion of the encryption of the last of the plaintext by an authenticated encryption cipher.</td>
</tr>
</tbody>
</table>

Table 199: Encrypt Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the Managed Cryptographic Object that was the key used for the encryption operation.</td>
</tr>
<tr>
<td>Data</td>
<td>No.</td>
<td>The encrypted data (as a Byte String).</td>
</tr>
<tr>
<td>IV/Counter/Nonce</td>
<td>No</td>
<td>The value used if the Cryptographic Parameters specified Random IV and the IV/Counter/Nonce value was not provided in the request and the algorithm requires the provision of an IV/Counter/Nonce.</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Specifies the stream or by-parts value to be provided in subsequent calls to this operation for performing cryptographic operations.</td>
</tr>
<tr>
<td>Authenticated Encryption Tag</td>
<td>No</td>
<td>Specifies the tag that will be needed to authenticate the decrypted data (and any “additional data”). Only returned on completion of the encryption of the last of the plaintext by an authenticated encryption cipher.</td>
</tr>
</tbody>
</table>

Table 200: Encrypt Response Payload

6.1.17.1 Error Handling – Encrypt

This section details the specific Result Reasons that SHALL be returned for errors detected in a Encrypt Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Bad Cryptographic Parameters, Cryptographic Failure, Incompatible Cryptographic Usage Mask, Invalid Correlation Value, Invalid Object Type, Key Value Not Present, Missing Initialization Vector, Object Not Found, Unsupported Cryptographic Parameters, Usage Limit Exceeded, Wrong Key Lifecycle State, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 201: Encrypt Errors
6.1.18 Export

This operation requests that the server returns a Managed Object specified by its Unique Identifier, together with its attributes.

The Key Format Type, Key Wrap Type, Key Compression Type and Key Wrapping Specification SHALL have the same semantics as for the Get operation. If the Managed Object has been Destroyed then the key material for the specified managed object SHALL not be returned in the response.

The server SHALL copy the Unique Identifier returned by this operations into the ID Placeholder variable.

<table>
<thead>
<tr>
<th>Request Payload</th>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unique Identifier</td>
<td>No</td>
<td>Determines the object being requested. If omitted, then the IDPlaceholder value is used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td></td>
<td>Key Format Type</td>
<td>No</td>
<td>Determines the key format type to be returned.</td>
</tr>
<tr>
<td></td>
<td>Key Wrap Type</td>
<td>No</td>
<td>Determines the Key Wrap Type of the returned key value.</td>
</tr>
<tr>
<td></td>
<td>Key Compression Type</td>
<td>No</td>
<td>Determines the compression method for elliptic curve public keys.</td>
</tr>
<tr>
<td></td>
<td>Key Wrapping Specification</td>
<td>No</td>
<td>Specifies keys and other information for wrapping the returned object.</td>
</tr>
</tbody>
</table>

Table 202: Export Request Payload

<table>
<thead>
<tr>
<th>Response Payload</th>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Object Type</td>
<td>Yes</td>
<td>Type of object</td>
</tr>
<tr>
<td></td>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
<tr>
<td></td>
<td>Attributes</td>
<td>Yes</td>
<td>All of the object's Attributes.</td>
</tr>
<tr>
<td></td>
<td>Any Object (Section 2)</td>
<td>Yes</td>
<td>The object value being returned, in the same manner as the Get operation.</td>
</tr>
</tbody>
</table>

Table 203: Export Response Payload

6.1.18.1 Error Handling – Export

This section details the specific Result Reasons that SHALL be returned for errors detected in a Export Operation.
Result Status

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Bad Cryptographic Parameters, Encoding Option Error, Incompatible Cryptographic Usage Mask, Invalid Object Type, Key Compression Type Not Supported, Key Format Type Not Supported, Key Value Not Present, Key Wrap Type Not Supported, Object Not Found, Wrapping Object Archived, Wrapping Object Destroyed, Wrapping Object Not Found, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 204: Export Errors

6.1.19 Get

This operation requests that the server returns the Managed Object specified by its Unique Identifier.

Only a single object is returned. The response contains the Unique Identifier of the object, along with the object itself, which MAY be wrapped using a wrapping key as specified in the request.

The following key format capabilities SHALL be assumed by the client; restrictions apply when the client requests the server to return an object in a particular format:

- If a client registered a key in a given format, the server SHALL be able to return the key during the Get operation in the same format that was used when the key was registered.
- Any other format conversion MAY be supported by the server.

If Key Format Type is specified to be PKCS#12 then the response payload shall be a PKCS#12 container as specified by [RFC7292]. The Unique Identifier shall be either that of a private key or certificate to be included in the response. The container shall be protected using the Secret Data object specified via the private key or certificate’s PKCS#12 Password Link. The current certificate chain shall also be included as determined by using the private key’s Public Key link to get the corresponding public key (where relevant), and then using that public key’s PKCS#12 Certificate Link to get the base certificate, and then using each certificate’s Certificate Link to build the certificate chain. It is an error if there is more than one valid certificate chain.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>Determines the object being requested. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>Key Format Type</td>
<td>No</td>
<td>Determines the key format type to be returned.</td>
</tr>
<tr>
<td>Key Wrap Type</td>
<td>No</td>
<td>Determines the Key Wrap Type of the returned key value.</td>
</tr>
<tr>
<td>Key Compression Type</td>
<td>No</td>
<td>Determines the compression method for elliptic curve public keys.</td>
</tr>
<tr>
<td>Key Wrapping Specification</td>
<td>No</td>
<td>Specifies keys and other information for wrapping the returned object.</td>
</tr>
</tbody>
</table>

Table 205: Get Request Payload
Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Type</td>
<td>Yes</td>
<td>Type of object.</td>
</tr>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
<tr>
<td>Any Object (Section 2)</td>
<td>Yes</td>
<td>The object being returned.</td>
</tr>
</tbody>
</table>

Table 206: Get Response Payload

6.1.19.1 Error Handling – Get

This section details the specific Result Reasons that SHALL be returned for errors detected in a Get Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Bad Cryptographic Parameters, Encoding Option Error, Encoding Option Error,</td>
</tr>
<tr>
<td></td>
<td>Incompatible Cryptographic Usage Mask, Incompatible Cryptographic Usage Mask,</td>
</tr>
<tr>
<td></td>
<td>Invalid Object Type, Key Compression Type Not Supported, Key Format Type</td>
</tr>
<tr>
<td></td>
<td>Not Supported, Key Value Not Present, Key Wrap Type Not Supported, Not</td>
</tr>
<tr>
<td></td>
<td>Extractable, Object Not Found, Sensitive, Wrapping Object Archived, Wrapping</td>
</tr>
<tr>
<td></td>
<td>Object Destroyed, Wrapping Object Not Found, Attestation Failed, Attestation</td>
</tr>
<tr>
<td></td>
<td>Required, Feature Not Supported, Invalid Field, Invalid Message, Operation</td>
</tr>
<tr>
<td></td>
<td>Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 207: Get Errors

6.1.20 Get Attributes

This operation requests one or more attributes associated with a Managed Object. The object is specified by its Unique Identifier, and the attributes are specified by their name in the request. If a specified attribute has multiple instances, then all instances are returned. If a specified attribute does not exist (i.e., has no value), then it SHALL NOT be present in the returned response. If none of the requested attributes exist, then the response SHALL consist only of the Unique Identifier. The same Attribute Reference SHALL NOT be present more than once in a request.

If no Attribute Reference is provided, the server SHALL return all attributes.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>Determines the object whose attributes are being requested. If</td>
</tr>
<tr>
<td></td>
<td></td>
<td>omitted, then the ID Placeholder value is used by the server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>as the Unique Identifier.</td>
</tr>
<tr>
<td>Attribute Reference</td>
<td>No, MAY</td>
<td>Specifies an attribute associated with the object.</td>
</tr>
<tr>
<td></td>
<td>be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>repeated</td>
<td></td>
</tr>
</tbody>
</table>

Table 208: Get Attributes Request Payload
Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
<tr>
<td>Attributes</td>
<td>Yes</td>
<td>The requested attributes associated with the object.</td>
</tr>
</tbody>
</table>

Table 209: Get Attributes Response Payload

6.1.20.1 Error Handling - Get Attributes

This section details the specific Result Reasons that SHALL be returned for errors detected in a Get Attributes Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Attribute, Object Not Found, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 210: Get Attributes Errors

6.1.21 Get Attribute List

This operation requests a list of the attribute names associated with a Managed Object. The object is specified by its Unique Identifier.

If no Attribute Reference is provided, the server SHALL return all attributes.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>Determines the object whose attribute names are being requested. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
</tbody>
</table>

Table 211: Get Attribute List Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
<tr>
<td>Attribute Reference</td>
<td>Yes, MAY be repeated</td>
<td>The attributes associated with the object.</td>
</tr>
</tbody>
</table>

Table 212: Get Attribute List Response Payload

6.1.21.1 Error Handling - Get Attribute List

This section details the specific Result Reasons that SHALL be returned for errors detected in a Get Attribute List Operation.
6.1.22 Get Usage Allocation

This operation requests the server to obtain an allocation from the current Usage Limits value to allow the client to use the Managed Cryptographic Object for applying cryptographic protection. The allocation only applies to Managed Objects that are able to be used for applying protection (e.g., symmetric keys for encryption, private keys for signing, etc.) and is only valid if the Managed Object has a Usage Limits attribute. Usage for processing cryptographically protected information (e.g., decryption, verification, etc.) is not limited and is not able to be allocated. A Managed Object that has a Usage Limits attribute SHALL NOT be used by a client for applying cryptographic protection unless an allocation has been obtained using this operation. The operation SHALL only be requested during the time that protection is enabled for these objects (i.e., after the Activation Date and before the Protect Stop Date). If the operation is requested for an object that has no Usage Limits attribute, or is not an object that MAY be used for applying cryptographic protection, then the server SHALL return an error.

The field in the request specifies the number of units that the client needs to protect. If the requested amount is not available or if the Managed Object is not able to be used for applying cryptographic protection at this time, then the server SHALL return an error. The server SHALL assume that the entire allocated amount is going to be consumed. Once the entire allocated amount has been consumed, the client SHALL NOT continue to use the Managed Object for applying cryptographic protection until a new allocation is obtained.

Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>Determines the object whose usage allocation is being requested. If omitted, then the ID Placeholder is substituted by the server.</td>
</tr>
<tr>
<td>Usage Limits Count</td>
<td>Yes</td>
<td>The number of Usage Limits Units to be protected.</td>
</tr>
</tbody>
</table>

Table 214: Get Usage Allocation Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
</tbody>
</table>

Table 215: Get Usage Allocation Response Payload

6.1.22.1 Error Handling - Get Usage Allocation

This section details the specific Result Reasons that SHALL be returned for errors detected in a Get Usage Allocation Operation.

Result Status

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
</table>

Table 216: Get Usage Allocation Errors

6.1.23 Hash

This operation requests the server to perform a hash operation on the data provided.

The request contains information about the cryptographic parameters (hash algorithm) and the data to be hashed.

The response contains the result of the hash operation.

The success or failure of the operation is indicated by the Result Status (and if failure the Result Reason) in the response header.

Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Parameters</td>
<td>Yes</td>
<td>The Cryptographic Parameters (Hashing Algorithm) corresponding to the particular hash method requested.</td>
</tr>
<tr>
<td>Data</td>
<td>Yes for single-part. No for multi-part.</td>
<td>The data to be hashed.</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Specifies the existing stream or by-parts cryptographic operation (as returned from a previous call to this operation).</td>
</tr>
<tr>
<td>Init Indicator</td>
<td>No</td>
<td>Initial operation as Boolean</td>
</tr>
<tr>
<td>Final Indicator</td>
<td>No</td>
<td>Final operation as Boolean</td>
</tr>
</tbody>
</table>

Table 217: Hash Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Yes for single-part. No for multi-part.</td>
<td>The hashed data (as a Byte String).</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Specifies the stream or by-parts value to be provided in subsequent calls to this operation for performing cryptographic operations.</td>
</tr>
</tbody>
</table>

Table 218: Hash Response Payload
6.1.23.1 Error Handling - HASH

This section details the specific Result Reasons that SHALL be returned for errors detected in a Hash Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Cryptographic Failure, Invalid Correlation Value, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 219: HASH Errors

6.1.24 Import

This operation requests the server to Import a Managed Object specified by its Unique Identifier. The request specifies the object being imported and all the attributes to be assigned to the object. The attribute rules for each attribute for “Initially set by” and “When implicitly set” SHALL NOT be enforced as all attributes MUST be set to the supplied values rather than any server generated values.

The response contains the Unique Identifier provided in the request or assigned by the server. The server SHALL copy the Unique Identifier returned by this operations into the ID Placeholder variable.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object to be imported</td>
</tr>
<tr>
<td>Object Type</td>
<td>Yes</td>
<td>Determines the type of object being imported.</td>
</tr>
<tr>
<td>Replace Existing</td>
<td>No</td>
<td>A Boolean. If specified and true then any existing object with the same Unique Identifier SHALL be replaced by this operation. If absent or false and an object exists with the same Unique Identifier then an error SHALL be returned.</td>
</tr>
<tr>
<td>Key Wrap Type</td>
<td>If and only if the key object is wrapped.</td>
<td></td>
</tr>
<tr>
<td>Attributes</td>
<td>Yes</td>
<td>Specifies object attributes to be associated with the new object.</td>
</tr>
<tr>
<td>Any Object (Section 2)</td>
<td>Yes</td>
<td>The object being imported. The object and attributes MAY be wrapped.</td>
</tr>
</tbody>
</table>

Table 220: Import Request Payload
6.1.24.1 Error Handling – Import

This section details the specific Result Reasons that SHALL be returned for errors detected in a Import Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Attribute Read Only, Attribute Single Valued, Encoding Option Error, Invalid Attribute, Invalid Attribute Value, Invalid Field, Non Unique Name Attribute, Object Already Exists, Server Limit Exceeded, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Protection Storage Unavailable, Response Too Large</td>
</tr>
</tbody>
</table>

Table 222: Import Errors

6.1.25 Interop

This operation informs the server about the status if interop tests. It SHALL NOT be available in a production server. The Interop Operation uses three Interop Functions (Begin, End and Reset).

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interop Function</td>
<td>Yes</td>
<td>The function to be performed</td>
</tr>
<tr>
<td>Interop Identifier</td>
<td>Yes</td>
<td>The identifier if the test case to be submitted.</td>
</tr>
</tbody>
</table>

Table 223: Interop Request Payload

6.1.25.1 Error Handling – Interop

This section details the specific Result Reasons that SHALL be returned for errors detected in an Interop Operation.
<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Field, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 225: Interop Errors

6.1.26 Join Split Key

This operation requests the server to combine a list of Split Keys into a single Managed Cryptographic Object. The number of Unique Identifiers in the request SHALL be at least the value of the Split Key Threshold defined in the Split Keys.

The request contains the Object Type of the Managed Cryptographic Object that the client requests the Split Key Objects be combined to form. If the Object Type formed is Secret Data, the client MAY include the Secret Data Type in the request.

The response contains the Unique Identifier of the object obtained by combining the Split Keys. The server SHALL copy the Unique Identifier returned by this operation into the ID Placeholder variable.

<table>
<thead>
<tr>
<th>Request Payload</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Object Type</td>
<td>Yes</td>
<td>Determines the type of object to be created.</td>
</tr>
<tr>
<td>Unique Identifier</td>
<td>Yes, MAY be repeated</td>
<td>Determines the Split Keys to be combined to form the object returned by the server. The minimum number of identifiers is specified by the Split Key Threshold field in each of the Split Keys.</td>
</tr>
<tr>
<td>Secret Data Type</td>
<td>No</td>
<td>Determines which Secret Data type the Split Keys form.</td>
</tr>
<tr>
<td>Attributes</td>
<td>No</td>
<td>Specifies desired object attributes.</td>
</tr>
<tr>
<td>Protection Storage Masks</td>
<td>No</td>
<td>Specifies all permissible Protection Storage Mask selections for the new object</td>
</tr>
</tbody>
</table>

Table 226: Join Split Key Request Payload

<table>
<thead>
<tr>
<th>Response Payload</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object obtained by combining the Split Keys.</td>
</tr>
</tbody>
</table>

Table 227: Join Split Key Response Payload

6.1.26.1 Error Handling - Join Split Key

This section details the specific Result Reasons that SHALL be returned for errors detected in a Join Split Key Operation.
Result Status

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Attribute Read Only, Attribute Single Valued, Bad Cryptographic Parameters, Cryptographic Failure, Invalid Attribute, Invalid Attribute Value, Invalid Object Type, Non Unique Name Attribute, Object Not Found, Server Limit Exceeded, Unsupported Cryptographic Parameters, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Protection Storage Unavailable, Response Too Large</td>
</tr>
</tbody>
</table>

Table 228: Join Split Key Errors

6.1.27 Locate

This operation requests that the server search for one or more Managed Objects, depending on the attributes specified in the request. All attributes are allowed to be used. The request MAY contain a *Maximum Items* field, which specifies the maximum number of objects to be returned. If the Maximum Items field is omitted, then the server MAY return all objects matched, or MAY impose an internal maximum limit due to resource limitations.

The request MAY contain an *Offset Items* field, which specifies the number of objects to skip that satisfy the identification criteria specified in the request. An *Offset Items* field of 0 is the same as omitting the *Offset Items* field. If both *Offset Items* and *Maximum Items* are specified in the request, the server skips *Offset Items* objects and returns up to *Maximum Items* objects.

If more than one object satisfies the identification criteria specified in the request, then the response MAY contain Unique Identifiers for multiple Managed Objects. Responses containing Unique Identifiers for multiple objects SHALL be returned in descending order of object creation (most recently created object first). Returned objects SHALL match all of the attributes in the request. If no objects match, then an empty response payload is returned. If no attribute is specified in the request, any object SHALL be deemed to match the Locate request. The response MAY include *Located Items* which is the count of all objects that satisfy the identification criteria.

The server returns a list of Unique Identifiers of the found objects, which then MAY be retrieved using the Get operation. If the objects are archived, then the Recover and Get operations are REQUIRED to be used to obtain those objects. If a single Unique Identifier is returned to the client, then the server SHALL copy the Unique Identifier returned by this operation into the ID Placeholder variable. If the Locate operation matches more than one object, and the *Maximum Items* value is omitted in the request, or is set to a value larger than one, then the server SHALL empty the ID Placeholder, causing any subsequent operations that are batched with the Locate, and which do not specify a Unique Identifier explicitly, to fail. This ensures that these batched operations SHALL proceed only if a single object is returned by Locate.

The Date attributes in the Locate request (e.g., Initial Date, Activation Date, etc.) are used to specify a time or a time range for the search. If a single instance of a given Date attribute is used in the request (e.g., the Activation Date), then objects with the same Date attribute are considered to be matching candidate objects. If two instances of the same Date attribute are used (i.e., with two different values specifying a range), then objects for which the Date attribute is inside or at a limit of the range are considered to be matching candidate objects. If a Date attribute is set to its largest possible value, then it is equivalent to an undefined attribute.

When the Cryptographic Usage Mask attribute is specified in the request, candidate objects are compared against this field via an operation that consists of a logical AND of the requested mask with the mask in the candidate object, and then a comparison of the resulting value with the requested mask. For example, if the request contains a mask value of 10001100010000, and a candidate object mask contains 10000100010000, then the logical AND of the two masks is 10000100010000, which is compared against the mask value in the request (10001100010000) and the match fails. This means that a matching candidate object has all of the bits set in its mask that are set in the requested mask, but MAY have additional bits set.
When the Usage Limits attribute is specified in the request, matching candidate objects SHALL have a Usage Limits Count and Usage Limits Total equal to or larger than the values specified in the request.

When an attribute that is defined as a structure is specified, all of the structure fields are not REQUIRED to be specified. For instance, for the Link attribute, if the Linked Object Identifier value is specified without the Link Type value, then matching candidate objects have the Linked Object Identifier as specified, irrespective of their Link Type.

When the Object Group attribute and the Object Group Member flag are specified in the request, and the value specified for Object Group Member is ‘Group Member Fresh’, matching candidate objects SHALL be fresh objects from the object group. If there are no more fresh objects in the group, the server MAY choose to generate a new object on-the-fly, based on server policy. If the value specified for Object Group Member is ‘Group Member Default’, the server locates the default object as defined by server policy.

The Storage Status Mask field is used to indicate whether on-line objects (not archived or destroyed), archived objects, destroyed objects or any combination of the above are to be searched. The server SHALL NOT return unique identifiers for objects that are destroyed unless the Storage Status Mask field includes the Destroyed Storage indicator. The server SHALL NOT return unique identifiers for objects that are archived unless the Storage Status Mask field includes the Archived Storage indicator.

<table>
<thead>
<tr>
<th>Request Payload</th>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Items</td>
<td>No</td>
<td>An Integer object that indicates the maximum number of object identifiers the server MAY return.</td>
<td></td>
</tr>
<tr>
<td>Offset Items</td>
<td>No</td>
<td>An Integer object that indicates the number of object identifiers to skip that satisfy the identification criteria specified in the request.</td>
<td></td>
</tr>
<tr>
<td>Storage Status Mask</td>
<td>No</td>
<td>An Integer object (used as a bit mask) that indicates whether only on-line objects, only archived objects, destroyed objects or any combination of these, are to be searched. If omitted, then only on-line objects SHALL be returned.</td>
<td></td>
</tr>
<tr>
<td>Object Group Member</td>
<td>No</td>
<td>An Enumeration object that indicates the object group member type.</td>
<td></td>
</tr>
<tr>
<td>Attributes</td>
<td>Yes</td>
<td>Specifies an attribute and its value(s) that are REQUIRED to match those in a candidate object (according to the matching rules defined above). Note: the Attributes structure MAY be empty indicating all objects should match.</td>
<td></td>
</tr>
</tbody>
</table>

Table 229: Locate Request Payload
6.1.27 Locate

This section details the specific Result Reasons that SHALL be returned for errors detected in a Locate Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Attribute, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 231: Locate Errors

6.1.28 Log

This operation requests the server to log a message to the server log. The response payload returned is empty.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Message</td>
<td>Yes</td>
<td>The message to log</td>
</tr>
</tbody>
</table>

Table 232: Log Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 233: Log Response Payload

6.1.28.1 Error Handling – Log

This section details the specific Result Reasons that SHALL be returned for errors detected in a Query Operation.
6.1.29 Login

This operation requests the server to allow future requests to be authenticated using a ticket that is returned by this operation.

Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lease Time</td>
<td>No</td>
<td>The lease time Interval or Date Time for the ticket</td>
</tr>
<tr>
<td>Request Count</td>
<td>No</td>
<td>The integer count of the number of requests that can be made with the ticket</td>
</tr>
<tr>
<td>Usage Limits</td>
<td>No</td>
<td>The usage limits for the operations performed</td>
</tr>
</tbody>
</table>

Table 235: Login Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ticket</td>
<td>Yes</td>
<td>The ticket that is returned</td>
</tr>
</tbody>
</table>

Table 236: Login Response Payload

6.1.29.1 Error Handling - Login

This section details the specific Result Reasons that SHALL be returned for errors detected in a Login Operation.

Result Status

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Field, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 237: Login Errors

6.1.30 Logout

This operation requests the server to terminate the Login and prevent future unauthenticated sessions from being created without the ticket.
Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ticket</td>
<td>Yes</td>
<td>The ticket to be invalidated</td>
</tr>
</tbody>
</table>

Table 238: Logout Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
</table>

Table 239: Logout Response Payload

6.1.30.1 Error Handling - Logout

This section details the specific Result Reasons that SHALL be returned for errors detected in a Logout Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Ticket, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 240: Logout Errors

6.1.31 MAC

This operation requests the server to perform message authentication code (MAC) operation on the provided data using a Managed Cryptographic Object as the key for the MAC operation.

The request contains information about the cryptographic parameters (cryptographic algorithm) and the data to be MACed. The cryptographic parameters MAY be omitted from the request as they can be specified as associated attributes of the Managed Cryptographic Object.

The response contains the Unique Identifier of the Managed Cryptographic Object used as the key and the result of the MAC operation.

The success or failure of the operation is indicated by the Result Status (and if failure the Result Reason) in the response header.
Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>The Unique Identifier of the Managed Cryptographic Object that is the key to use for the MAC operation. If omitted, then the ID Placeholder value SHALL be used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>Cryptographic Parameters</td>
<td>No</td>
<td>The Cryptographic Parameters (Cryptographic Algorithm) corresponding to the particular MAC method requested. If there are no Cryptographic Parameters associated with the Managed Cryptographic Object and the algorithm requires parameters then the operation SHALL return with a Result Status of Operation Failed.</td>
</tr>
<tr>
<td>Data</td>
<td>Yes for single-part. No for multi-part.</td>
<td>The data to be MACed.</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Specifies the existing stream or by-parts cryptographic operation (as returned from a previous call to this operation).</td>
</tr>
<tr>
<td>Init Indicator</td>
<td>No</td>
<td>Initial operation as Boolean</td>
</tr>
<tr>
<td>Final Indicator</td>
<td>No</td>
<td>Final operation as Boolean</td>
</tr>
</tbody>
</table>

Table 241: MAC Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the Managed Cryptographic Object that is the key used for the MAC operation.</td>
</tr>
<tr>
<td>MAC Data</td>
<td>Yes for single-part. No for multi-part</td>
<td>The data MACed (as a Byte String).</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Specifies the stream or by-parts value to be provided in subsequent calls to this operation for performing cryptographic operations.</td>
</tr>
</tbody>
</table>

Table 242: MAC Response Payload

6.1.31.1 Error Handling - MAC

This section details the specific Result Reasons that SHALL be returned for errors detected in a MAC Operation.
<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Bad Cryptographic Parameters, Cryptographic Failure, Incompatible Cryptographic Usage Mask, Incorrect Cryptographic Usage Mask, Invalid Correlation Value, Invalid Object Type, Key Value Not Present, Object Not Found, Usage Limit Exceeded, Wrong Key Lifecycle State, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 243: MAC Errors

6.1.32 MAC Verify

This operation requests the server to perform message authentication code (MAC) verify operation on the provided data using a Managed Cryptographic Object as the key for the MAC verify operation.

The request contains information about the cryptographic parameters (cryptographic algorithm) and the data to be MAC verified and MAY contain the data that was passed to the MAC operation (for those algorithms which need the original data to verify a MAC). The cryptographic parameters MAY be omitted from the request as they can be specified as associated attributes of the Managed Cryptographic Object.

The response contains the Unique Identifier of the Managed Cryptographic Object used as the key and the result of the MAC verify operation. The validity of the MAC is indicated by the Validity Indicator field.

The response message SHALL include the Validity Indicator for single-part MAC Verify operations and for the final part of a multi-part MAC Verify operation. Non-Final parts of multi-part MAC Verify operations SHALL NOT include the Validity Indicator.

The success or failure of the operation is indicated by the Result Status (and if failure the Result Reason) in the response header.
Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>The Unique Identifier of the Managed Cryptographic Object that is the key to use for the MAC verify operation. If omitted, then the ID Placeholder value SHALL be used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>Cryptographic Parameters</td>
<td>No</td>
<td>The Cryptographic Parameters (Cryptographic Algorithm) corresponding to the particular MAC method requested. If there are no Cryptographic Parameters associated with the Managed Cryptographic Object and the algorithm requires parameters then the operation SHALL return with a Result Status of Operation Failed.</td>
</tr>
<tr>
<td>Data</td>
<td>No</td>
<td>The data that was MACed.</td>
</tr>
<tr>
<td>MAC Data</td>
<td>Yes for single-part. No for multi-part.</td>
<td>The data to be MAC verified (as a Byte String).</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Specifies the existing stream or by-parts cryptographic operation (as returned from a previous call to this operation).</td>
</tr>
<tr>
<td>Init Indicator</td>
<td>No</td>
<td>Initial operation as Boolean</td>
</tr>
<tr>
<td>Final Indicator</td>
<td>No</td>
<td>Final operation as Boolean</td>
</tr>
</tbody>
</table>

Table 244: MAC Verify Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the Managed Cryptographic Object that is the key used for the verification operation.</td>
</tr>
<tr>
<td>Validity Indicator</td>
<td>Yes for single-part. No for multi-part.</td>
<td>An Enumeration object indicating whether the MAC is valid, invalid, or unknown.</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Specifies the stream or by-parts value to be provided in subsequent calls to this operation for performing cryptographic operations.</td>
</tr>
</tbody>
</table>

Table 245: MAC Verify Response Payload

6.1.32.1 Error Handling - MAC Verify

This section details the specific Result Reasons that SHALL be returned for errors detected in a MAC Verify Operation.
Table 246: MAC Verify Errors

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Bad Cryptographic Parameters, Cryptographic Failure, Incompatible Cryptographic Usage Mask, Invalid Correlation Value, Invalid Object Type, Key Value Not Present, Object Not Found, Permission Denied, Wrong Key Lifecycle State, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

6.1.33 Modify Attribute

This operation requests the server to modify the value of an existing attribute instance associated with a Managed Object. The request contains the Unique Identifier of the Managed Object whose attribute is to be modified, the OPTIONAL Current Attribute existing value and the New Attribute new value. If no Current Attribute is specified in the request, then if there is only a single instance of the Attribute it SHALL be selected as the attribute instance to be modified to the New Attribute value, and if there are multiple instances of the Attribute an error SHALL be returned (as the specific instance of the attribute is unable to be determined). Only existing attributes MAY be changed via this operation. Only the specified instance of the attribute SHALL be modified. Specifying a Current Attribute for which there exists no Attribute associated with the object SHALL result in an error.

Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>The Unique Identifier of the object. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>Current Attribute</td>
<td>No</td>
<td>Specifies the existing attribute value associated with the object to be modified.</td>
</tr>
<tr>
<td>New Attribute</td>
<td>Yes</td>
<td>Specifies the new value for the attribute associated with the object.</td>
</tr>
</tbody>
</table>

Table 247: Modify Attribute Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
</tbody>
</table>

Table 248: Modify Attribute Response Payload

6.1.33.1 Error Handling - Modify Attribute

This section details the specific Result Reasons that SHALL be returned for errors detected in a Modify Attribute Operation.
6.1.34 Obtain Lease

This operation requests the server to obtain a new Lease Time for a specified Managed Object. The Lease Time is an interval value that determines when the client’s internal cache of information about the object expires and needs to be renewed. If the returned value of the lease time is zero, then the server is indicating that no lease interval is effective, and the client MAY use the object without any lease time limit. If a client’s lease expires, then the client SHALL NOT use the associated cryptographic object until a new lease is obtained. If the server determines that a new lease SHALL NOT be issued for the specified cryptographic object, then the server SHALL respond to the Obtain Lease request with an error.

The response payload for the operation contains the current value of the Last Change Date attribute for the object. This MAY be used by the client to determine if any of the attributes cached by the client need to be refreshed, by comparing this time to the time when the attributes were previously obtained.

Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>Determines the object for which the lease is being obtained. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
</tbody>
</table>

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
<tr>
<td>Lease Time</td>
<td>Yes</td>
<td>An interval (in seconds) that specifies the amount of time that the object MAY be used until a new lease needs to be obtained.</td>
</tr>
<tr>
<td>Last Change Date</td>
<td>Yes</td>
<td>The date and time indicating when the latest change was made to the contents or any attribute of the specified object.</td>
</tr>
</tbody>
</table>

6.1.34.1 Error Handling - Obtain Lease

This section details the specific Result Reasons that SHALL be returned for errors detected in a Obtain Lease Operation.
6.1.35 PKCS#11

This operation enables the server to perform a PKCS#11 operation.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCS#11 Interface</td>
<td>No</td>
<td>The name of the interface. If absent, the default V3.0 interface is used.</td>
</tr>
<tr>
<td>PKCS#11 Function</td>
<td>Yes</td>
<td>The function to perform. An Enumeration for PKCS#11 defined functions or an Integer for vendor defined function.</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Must be returned to the server if provided in a previous response.</td>
</tr>
<tr>
<td>PKCS#11 Input Parameters</td>
<td>No</td>
<td>The parameters to the function. The format is specified in the PKCS#11 Profile and the [PKCS#11] standard document</td>
</tr>
</tbody>
</table>

Table 254: PKCS#11 Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCS#11 Interface</td>
<td>No</td>
<td>The name of the interface. If absent, the default V3.0 interface is used.</td>
</tr>
<tr>
<td>PKCS#11 Function</td>
<td>Yes</td>
<td>The function that was performed. An Enumeration for PKCS#11 defined functions or an Integer for vendor defined function.</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Server defined Byte String that the client must provide in the next request.</td>
</tr>
<tr>
<td>PKCS#11 Output Parameters</td>
<td>No</td>
<td>The parameters output from the function. The format is specified in the PKCS#11 Profile [KMIP-Prof] and the [PKCS#11] standard document.</td>
</tr>
<tr>
<td>PKCS#11 Return Code</td>
<td>Yes</td>
<td>The PKCS#11 return code as specified in the CK_RV values in [PKCS#11]</td>
</tr>
</tbody>
</table>

Table 253: PKCS#11 Response Payload

Table 252: Obtain Lease Errors

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Object Not Found, Usage Limit Exceeded, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>
6.1.35.1 Error Handling – PKCS#11

This section details the specific Result Reasons that SHALL be returned for errors detected in a PKCS#11 Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Asynchronous Correlation Value, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large, PKCS#11 Codec Error, PKCS#11 Invalid Function, PKCS#11 Invalid Interface</td>
</tr>
</tbody>
</table>

Table 255: PKCS#11 Errors

6.1.36 Poll

This operation is used to poll the server in order to obtain the status of an outstanding asynchronous operation. The correlation value of the original operation SHALL be specified in the request. The response to this operation SHALL NOT be asynchronous.

<table>
<thead>
<tr>
<th>Request Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Asynchronous Correlation Value</td>
</tr>
</tbody>
</table>

Table 256: Poll Request Payload

The server SHALL reply with one of two responses:

If the operation has not completed, the response SHALL contain no payload and a Result Status of Pending.

If the operation has completed, the response SHALL contain the appropriate payload for the operation. This response SHALL be identical to the response that would have been sent if the operation had completed synchronously.

6.1.36.1 Error Handling – Poll

This section details the specific Result Reasons that SHALL be returned for errors detected in a Poll Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Asynchronous Correlation Value, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 257: Poll Errors

6.1.37 Query

This operation is used by the client to interrogate the server to determine its capabilities and/or protocol mechanisms.

For each Query Function specified in the request, the corresponding items SHALL be returned in the response.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations</td>
<td>Contains Operation enumerated values, which SHALL list all the operations that the server supports.</td>
</tr>
<tr>
<td>Object Type</td>
<td>Contains Object Type enumerated values, which SHALL list all the object types that the server supports.</td>
</tr>
<tr>
<td>Server Information</td>
<td>A structure containing vendor-specific fields and/or substructures.</td>
</tr>
<tr>
<td>Application Namespace</td>
<td>Contains the namespaces that the server SHALL generate values for if requested by the client.</td>
</tr>
<tr>
<td>Extension List</td>
<td>Contains the descriptions of Objects with Item Tag values in the Extensions range that are supported by the server. If the request contains a Query Extension List and/or Query Extension Map value in the Query Function field, then the Extensions Information fields SHALL be returned in the response.</td>
</tr>
<tr>
<td>Extension Map</td>
<td></td>
</tr>
<tr>
<td>Attestation Type</td>
<td>Contains Attestation Type enumerated values, which SHALL list all the attestation types that the server supports.</td>
</tr>
<tr>
<td>RNG Parameters</td>
<td>Contains a listing of the RNGs supported. The response SHALL list all the Random Number Generators that the server supports. If the request contains a Query RNGs value in the Query Function field, then this field SHALL be returned in the response.</td>
</tr>
<tr>
<td>Validation Information</td>
<td>A structure containing details of each formal validation which the server asserts. If the request contains a Query Validations value, then zero or more Validation Information fields SHALL be returned in the response. A server MAY elect to return no validation information in the response.</td>
</tr>
<tr>
<td>Profile Information</td>
<td>A structure containing details of the profiles that a server supports including potentially how it supports that profile. If the request contains a Query Profiles value in the Query Function field, then this field SHALL be returned in the response if the server supports any Profiles.</td>
</tr>
<tr>
<td>Capability Information</td>
<td>Contains details of the capability of the server.</td>
</tr>
<tr>
<td>Client Registration Method</td>
<td>Contains Client Registration Method enumerated values, which SHALL list all the client registration methods that the server supports. If the request contains a Query Client Registration Method value in the Query Function field, then this field SHALL be returned in the response if the server supports any Client Registration Methods.</td>
</tr>
<tr>
<td>Defaults Information</td>
<td>A structure containing Object Defaults structures, which list the default values that the server SHALL use on Cryptographic Objects if the client omits them.</td>
</tr>
<tr>
<td>Protection Storage Masks</td>
<td>Contains ProtectionStorageMask attribute(s) for the alternatives that a server supports</td>
</tr>
</tbody>
</table>

Table 258: Query Functions

If both Query Extension List and Query Extension Map are specified in the request, then only the response to Query Extension Map SHALL be returned and the Query Extension List SHALL be ignored.

If the Query Function RNG Parameters is specified in the request and If the server is unable to specify details of the RNG then it SHALL return an RNG Parameters with the RNG Algorithm enumeration of Unspecified.

Note that the response payload is empty if there are no values to return.

The Query Function field in the request SHALL contain one or more of the following items:
Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Function</td>
<td>Yes, MAY be Repeated</td>
<td>Determines the information being queried.</td>
</tr>
</tbody>
</table>

Table 259: Query Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>No, MAY be repeated</td>
<td>Specifies an Operation that is supported by the server.</td>
</tr>
<tr>
<td>Object Type</td>
<td>No, MAY be repeated</td>
<td>Specifies a Managed Object Type that is supported by the server.</td>
</tr>
<tr>
<td>Vendor Identification</td>
<td>No</td>
<td>SHALL be returned if Query Server Information is requested. The Vendor Identification SHALL be a text string that uniquely identifies the vendor.</td>
</tr>
<tr>
<td>Server Information</td>
<td>No</td>
<td>Contains vendor-specific information possibly be of interest to the client.</td>
</tr>
<tr>
<td>Application Namespace</td>
<td>No, MAY be repeated</td>
<td>Specifies an Application Namespace supported by the server.</td>
</tr>
<tr>
<td>Extension Information</td>
<td>No, MAY be repeated</td>
<td>SHALL be returned if Query Extension List or Query Extension Map is requested and supported by the server.</td>
</tr>
<tr>
<td>Attestation Type</td>
<td>No, MAY be repeated</td>
<td>Specifies an Attestation Type that is supported by the server.</td>
</tr>
<tr>
<td>RNG Parameters</td>
<td>No, MAY be repeated</td>
<td>Specifies the RNG that is supported by the server.</td>
</tr>
<tr>
<td>Profile Information</td>
<td>No, MAY be repeated</td>
<td>Specifies the Profiles that are supported by the server.</td>
</tr>
<tr>
<td>Validation Information</td>
<td>No, MAY be repeated</td>
<td>Specifies the validations that are supported by the server.</td>
</tr>
<tr>
<td>Capability Information</td>
<td>No, MAY be repeated</td>
<td>Specifies the capabilities that are supported by the server.</td>
</tr>
<tr>
<td>Client Registration Method</td>
<td>No, MAY be repeated</td>
<td>Specifies a Client Registration Method that is supported by the server.</td>
</tr>
<tr>
<td>Defaults Information</td>
<td>No</td>
<td>Specifies the defaults that the server will use if the client omits them.</td>
</tr>
<tr>
<td>Protection Storage Masks</td>
<td>Yes</td>
<td>Specifies the list of Protection Storage Mask values supported by the server. A server MAY elect to provide an empty list in the Response if it is unable or unwilling to provide this information.</td>
</tr>
</tbody>
</table>

Table 260: Query Response Payload
6.1.37.1

6.1.37.2 Error Handling – Query

This section details the specific Result Reasons that SHALL be returned for errors detected in a Query Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 261: Query Errors

6.1.38 Recover

This operation is used to obtain access to a Managed Object that has been archived. This request MAY need asynchronous polling to obtain the response due to delays caused by retrieving the object from the archive. Once the response is received, the object is now on-line, and MAY be obtained (e.g., via a Get operation). Special authentication and authorization SHOULD be enforced to perform this request (see [KMIP-UG]).

<table>
<thead>
<tr>
<th>Item</th>
<th>Request Payload</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>Determines the object being recovered. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
</tbody>
</table>

Table 262: Recover Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>Response Payload</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
</tbody>
</table>

Table 263: Recover Response Payload

6.1.38.1 Error Handling – Recover

This section details the specific Result Reasons that SHALL be returned for errors detected in a Recover Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Object Not Found, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 264: Recover Errors
6.1.39 Register

This operation requests the server to register a Managed Object that was created by the client or obtained by the client through some other means, allowing the server to manage the object. The arguments in the request are similar to those in the Create operation, but contain the object itself for storage by the server.

The request contains information about the type of object being registered and attributes to be assigned to the object (e.g., Cryptographic Algorithm, Cryptographic Length, etc.). This information SHALL be specified by the use of a Attributes object.

If the Managed Object being registered is wrapped, the server SHALL create a Link attribute of Link Type Wrapping Key Link pointing to the Managed Object with which the Managed Object being registered is wrapped.

The response contains the Unique Identifier assigned by the server to the registered object. The server SHALL copy the Unique Identifier returned by this operation into the ID Placeholder variable. The Initial Date attribute of the object SHALL be set to the current time.

<table>
<thead>
<tr>
<th>Request Payload</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>REQUIRED</td>
</tr>
<tr>
<td>Object Type</td>
<td>Yes</td>
</tr>
<tr>
<td>Attributes</td>
<td>Yes</td>
</tr>
<tr>
<td>Any Object (Section 2)</td>
<td>Yes</td>
</tr>
<tr>
<td>Protection Storage Masks</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 265: Register Request Payload

<table>
<thead>
<tr>
<th>Response Payload</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>REQUIRED</td>
</tr>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 266: Register Response Payload

If a Managed Cryptographic Object is registered, then the following attributes SHALL be included in the Register request.
<table>
<thead>
<tr>
<th>Attribute</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Algorithm</td>
<td>Yes, MAY be omitted only if this information is encapsulated in the Key Block. Does not apply to Secret Data. If present, then Cryptographic Length below SHALL also be present.</td>
</tr>
<tr>
<td>Cryptographic Length</td>
<td>Yes, MAY be omitted only if this information is encapsulated in the Key Block. Does not apply to Secret Data. If present, then Cryptographic Algorithm above SHALL also be present.</td>
</tr>
<tr>
<td>Certificate Length</td>
<td>Yes. Only applies to Certificates.</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Yes.</td>
</tr>
<tr>
<td>Digital Signature Algorithm</td>
<td>Yes, MAY be omitted only if this information is encapsulated in the Certificate object. Only applies to Certificates.</td>
</tr>
</tbody>
</table>

Table 267: Register Attribute Requirements

6.1.39.1 Error Handling – Register

This section details the specific Result Reasons that SHALL be returned for errors detected in a Register Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Attribute Read Only, Attribute Single Valued, Bad Password, Encoding Option Error, Invalid Attribute, Invalid Attribute Value, Invalid Object Type, Non Unique Name Attribute, Server Limit Exceeded, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Protection Storage Unavailable, Response Too Large</td>
</tr>
</tbody>
</table>

Table 268: Register Errors

6.1.40 Revoke

This operation requests the server to revoke a Managed Cryptographic Object or an Opaque Object. The request contains a reason for the revocation (e.g., “key compromise”, “cessation of operation”, etc.). The operation has one of two effects. If the revocation reason is “key compromise” or “CA compromise”, then the object is placed into the “compromised” state; the Date is set to the current date and time; and the Compromise Occurrence Date is set to the value (if provided) in the Revoke request and if a value is not provided in the Revoke request then Compromise Occurrence Date SHOULD be set to the Initial Date for the object. If the revocation reason is neither “key compromise” nor “CA compromise”, the object is placed into the “deactivated” state, and the Deactivation Date is set to the current date and time.
Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>Determines the object being revoked. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>Revocation Reason</td>
<td>Yes</td>
<td>Specifies the reason for revocation.</td>
</tr>
<tr>
<td>Compromise Occurrence Date</td>
<td>No</td>
<td>SHOULD be specified if the Revocation Reason is ‘key compromise’ or ‘CA compromise’ and SHALL NOT be specified for other Revocation Reason enumerations.</td>
</tr>
</tbody>
</table>

Table 269: Revoke Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
</tbody>
</table>

Table 270: Revoke Response Payload

6.1.40.1 Error Handling – Revoke

This section details the specific Result Reasons that SHALL be returned for errors detected in a Revoke Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Field, Invalid Object Type, Object Not Found, Wrong Key Lifecycle State, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 271: Revoke Errors

6.1.41 Re-certify

This request is used to renew an existing certificate for the same key pair. Only a single certificate SHALL be renewed at a time.

The Certificate Request object MAY be omitted, in which case the public key for which a Certificate object is generated SHALL be specified by its Unique Identifier only. If the Certificate Request Type and the Certificate Request objects are omitted and the Certificate Type is not specified using the Attributes object in the request, then the Certificate Type of the new certificate SHALL be the same as that of the existing certificate.

The Certificate Request is passed as a Byte String, which allows multiple certificate request types for X.509 certificates (e.g., PKCS#10, PEM, etc.) to be submitted to the server.

The server SHALL copy the Unique Identifier of the new certificate returned by this operation into the ID Placeholder variable.

If the information in the Certificate Request field in the request conflicts with the attributes specified in the Attributes, then the information in the Certificate Request takes precedence.
As the new certificate takes over the name attribute of the existing certificate, Re-certify SHOULD only be performed once on a given (existing) certificate.

For the existing certificate, the server SHALL create a Link attribute of Link Type Replacement pointing to the new certificate. For the new certificate, the server SHALL create a Link attribute of Link Type Replaced pointing to the existing certificate. For the public key, the server SHALL change the Link attribute of Link Type Certificate to point to the new certificate.

An Offset MAY be used to indicate the difference between the Initial Date and the Activation Date of the new certificate. If no Offset is specified, the Activation Date and Deactivation Date values are copied from the existing certificate. If Offset is set and dates exist for the existing certificate, then the dates of the new certificate SHALL be set based on the dates of the existing certificate as follows:

<table>
<thead>
<tr>
<th>Attribute in Existing Certificate</th>
<th>Attribute in New Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Date (IT₁)</td>
<td>Initial Date (IT₂) > IT₁</td>
</tr>
<tr>
<td>Activation Date (AT₁)</td>
<td>Activation Date (AT₂) = IT₂ + Offset</td>
</tr>
<tr>
<td>Deactivation Date (DT₁)</td>
<td>Deactivation Date = DT₁ + (AT₂ - AT₁)</td>
</tr>
</tbody>
</table>

Table 272: Computing New Dates from Offset during Re-certify

Attributes that are not copied from the existing certificate and that are handled in a specific way for the new certificate are:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Date</td>
<td>Set to current time.</td>
</tr>
<tr>
<td>Destroy Date</td>
<td>Not set.</td>
</tr>
<tr>
<td>Revocation Reason</td>
<td>Not set.</td>
</tr>
<tr>
<td>Unique Identifier</td>
<td>New value generated.</td>
</tr>
<tr>
<td>Name</td>
<td>Set to the name(s) of the existing certificate; all name attributes are removed from the existing certificate.</td>
</tr>
<tr>
<td>State</td>
<td>Set based on attributes values, such as dates.</td>
</tr>
<tr>
<td>Digest</td>
<td>Recomputed from the new certificate value.</td>
</tr>
<tr>
<td>Link</td>
<td>Set to point to the existing certificate as the replaced certificate.</td>
</tr>
<tr>
<td>Last Change Date</td>
<td>Set to current time.</td>
</tr>
</tbody>
</table>

Table 273: Re-certify Attribute Requirements
Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>The Unique Identifier of the Certificate being renewed. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>Certificate Request Unique Identifier</td>
<td>No</td>
<td>The Unique Identifier of the Certificate Request.</td>
</tr>
<tr>
<td>Certificate Request Type</td>
<td>No</td>
<td>An Enumeration object specifying the type of certificate request. It is REQUIRED if the Certificate Request is present.</td>
</tr>
<tr>
<td>Certificate Request Value</td>
<td>No</td>
<td>A Byte String object with the certificate request.</td>
</tr>
<tr>
<td>Offset</td>
<td>No</td>
<td>An Interval object indicating the difference between the Initial Date of the new certificate and the Activation Date of the new certificate.</td>
</tr>
<tr>
<td>Attributes</td>
<td>No</td>
<td>Specifies desired object attributes.</td>
</tr>
<tr>
<td>Protection Storage Masks</td>
<td>No</td>
<td>Specifies all permissible Protection Storage Mask selections for the new object.</td>
</tr>
</tbody>
</table>

Table 274: Re-certify Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the new certificate.</td>
</tr>
</tbody>
</table>

Table 275: Re-certify Response Payload

6.1.41.1 Error Handling - Re-certify

This section details the specific Result Reasons that SHALL be returned for errors detected in a Re-certify Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid CSR, Invalid Message, Invalid Object Type, Object Not Found, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Protection Storage Unavailable, Response Too Large</td>
</tr>
</tbody>
</table>

Table 276: Re-certify Errors
6.1.42 Re-key

This request is used to generate a replacement key for an existing symmetric key. It is analogous to the Create operation, except that attributes of the replacement key are copied from the existing key, with the exception of the attributes listed in Re-key Attribute Requirements.

As the replacement key takes over the name attribute of the existing key, Re-key SHOULD only be performed once on a given key.

The server SHALL copy the Unique Identifier of the replacement key returned by this operation into the ID Placeholder variable.

For the existing key, the server SHALL create a Link attribute of Link Type Replacement Object pointing to the replacement key. For the replacement key, the server SHALL create a Link attribute of Link Type Replaced Key pointing to the existing key.

An Offset MAY be used to indicate the difference between the Initial Date and the Activation Date of the replacement key. If no Offset is specified, the Activation Date, Process Start Date, Protect Stop Date and Deactivation Date values are copied from the existing key. If Offset is set and dates exist for the existing key, then the dates of the replacement key SHALL be set based on the dates of the existing key as follows:

<table>
<thead>
<tr>
<th>Attribute in Existing Key</th>
<th>Attribute in Replacement Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Date (IT_1)</td>
<td>Initial Date (IT_2) > IT_1</td>
</tr>
<tr>
<td>Activation Date (AT_1)</td>
<td>Activation Date (AT_2) = IT_2 + Offset</td>
</tr>
<tr>
<td>Process Start Date (CT_1)</td>
<td>Process Start Date = CT_1 + (AT_2 - AT_1)</td>
</tr>
<tr>
<td>Protect Stop Date (TT_1)</td>
<td>Protect Stop Date = TT_1 + (AT_2 - AT_1)</td>
</tr>
<tr>
<td>Deactivation Date (DT_1)</td>
<td>Deactivation Date = DT_1 + (AT_2 - AT_1)</td>
</tr>
</tbody>
</table>

Table 277: Computing New Dates from Offset during Re-key

Attributes requiring special handling when creating the replacement key are:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Date</td>
<td>Set to the current time</td>
</tr>
<tr>
<td>Destroy Date</td>
<td>Not set</td>
</tr>
<tr>
<td>Compromise Occurrence Date</td>
<td>Not set</td>
</tr>
<tr>
<td>Compromise Date</td>
<td>Not set</td>
</tr>
<tr>
<td>Revocation Reason</td>
<td>Not set</td>
</tr>
<tr>
<td>Unique Identifier</td>
<td>New value generated</td>
</tr>
<tr>
<td>Usage Limits</td>
<td>The Total value is copied from the existing key, and the Count value in the existing key is set to the Total value.</td>
</tr>
<tr>
<td>Name</td>
<td>Set to the name(s) of the existing key; all name attributes are removed from the existing key.</td>
</tr>
<tr>
<td>State</td>
<td>Set based on attributes values, such as dates.</td>
</tr>
<tr>
<td>Digest</td>
<td>Recomputed from the replacement key value</td>
</tr>
<tr>
<td>Link</td>
<td>Set to point to the existing key as the replaced key</td>
</tr>
<tr>
<td>Last Change Date</td>
<td>Set to current time</td>
</tr>
<tr>
<td>Random Number Generator</td>
<td>Set to the random number generator used for creating the new managed object. Not copied from the original object.</td>
</tr>
</tbody>
</table>

Table 278: Re-key Attribute Requirements
Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>Determines the existing Symmetric Key being re-keyed. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>Offset</td>
<td>No</td>
<td>An Interval object indicating the difference between the Initial Date and the Activation Date of the replacement key to be created.</td>
</tr>
<tr>
<td>Attributes</td>
<td>No</td>
<td>Specifies desired object attributes.</td>
</tr>
<tr>
<td>Protection Storage Masks</td>
<td>No</td>
<td>Specifies all permissible Protection Storage Mask selections for the new object.</td>
</tr>
</tbody>
</table>

Table 279: Re-key Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the newly-created replacement Symmetric Key.</td>
</tr>
</tbody>
</table>

Table 280: Re-key Response Payload

6.1.42.1 Error Handling - Re-key

This section details the specific Result Reasons that SHALL be returned for errors detected in a Re-key Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Cryptographic Failure, Invalid Field, Invalid Message, Invalid Object Type, Key Value Not Present, Object Not Found, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Protection Storage Unavailable, Response Too Large</td>
</tr>
</tbody>
</table>

Table 281: Re-key Errors

6.1.43 Re-key Key Pair

This request is used to generate a replacement key pair for an existing public/private key pair. It is analogous to the Create Key Pair operation, except that attributes of the replacement key pair are copied from the existing key pair, with the exception of the attributes listed in Re-key Key Pair Attribute Requirements for. As the replacement of the key pair takes over the name attribute for the existing public/private key pair, Re-key Key Pair SHOULD only be performed once on a given key pair.

For both the existing public key and private key, the server SHALL create a Link attribute of Link Type Replacement Key pointing to the replacement public and private key, respectively. For both the replacement public and private key, the server SHALL create a Link attribute of Link Type Replaced Key pointing to the existing public and private key, respectively.
The server SHALL copy the Private Key Unique Identifier of the replacement private key returned by this operation into the ID Placeholder variable.

An Offset MAY be used to indicate the difference between the Initial Date and the Activation Date of the replacement key pair. If no Offset is specified, the Activation Date and Deactivation Date values are copied from the existing key pair. If Offset is set and dates exist for the existing key pair, then the dates of the replacement key pair SHALL be set based on the dates of the existing key pair as follows:

<table>
<thead>
<tr>
<th>Attribute in Existing Key Pair</th>
<th>Attribute in Replacement Key Pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Date ((IT_1))</td>
<td>Initial Date ((IT_2) > IT_1)</td>
</tr>
<tr>
<td>Activation Date ((AT_1))</td>
<td>Activation Date ((AT_2) = IT_2 + \text{ Offset})</td>
</tr>
<tr>
<td>Deactivation Date ((DT_1))</td>
<td>Deactivation Date (= DT_1 + (AT_2 - AT_1))</td>
</tr>
</tbody>
</table>

Table 282: Computing New Dates from Offset during Re-key Key Pair

Attributes for the replacement key pair that are not copied from the existing key pair and which are handled in a specific way are:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Key Unique Identifier</td>
<td>New value generated</td>
</tr>
<tr>
<td>Public Key Unique Identifier</td>
<td>New value generated</td>
</tr>
<tr>
<td>Name</td>
<td>Set to the name(s) of the existing public/private keys; all name attributes of the existing public/private keys are removed.</td>
</tr>
<tr>
<td>Digest</td>
<td>Recomputed for both replacement public and private keys from the new public and private key values</td>
</tr>
<tr>
<td>Usage Limits</td>
<td>The Total Bytes/Total Objects value is copied from the existing key pair, while the Byte Count/Object Count values are set to the Total Bytes/Total Objects.</td>
</tr>
<tr>
<td>State</td>
<td>Set based on attributes values, such as dates.</td>
</tr>
<tr>
<td>Initial Date</td>
<td>Set to the current time</td>
</tr>
<tr>
<td>Destroy Date</td>
<td>Not set</td>
</tr>
<tr>
<td>Compromise Occurrence Date</td>
<td>Not set</td>
</tr>
<tr>
<td>Compromise Date</td>
<td>Not set</td>
</tr>
<tr>
<td>Revocation Reason</td>
<td>Not set</td>
</tr>
<tr>
<td>Link</td>
<td>Set to point to the existing public/private keys as the replaced public/private keys</td>
</tr>
<tr>
<td>Last Change Date</td>
<td>Set to current time</td>
</tr>
<tr>
<td>Random Number Generator</td>
<td>Set to the random number generator used for creating the new managed object. Not copied from the original object.</td>
</tr>
</tbody>
</table>

Table 283: Re-key Key Pair Attribute Requirements
Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Key Unique Identifier</td>
<td>No</td>
<td>Determines the existing Asymmetric key pair to be re-keyed. If omitted, then the ID Placeholder is substituted by the server.</td>
</tr>
<tr>
<td>Offset</td>
<td>No</td>
<td>An Interval object indicating the difference between the Initial Date and the Activation Date of the replacement key pair to be created.</td>
</tr>
<tr>
<td>Common Attributes</td>
<td>No</td>
<td>Specifies desired attributes that apply to both the Private and Public Key Objects.</td>
</tr>
<tr>
<td>Private Key Attributes</td>
<td>No</td>
<td>Specifies attributes that apply to the Private Key Object.</td>
</tr>
<tr>
<td>Public Key Attributes</td>
<td>No</td>
<td>Specifies attributes that apply to the Public Key Object.</td>
</tr>
<tr>
<td>Common Protection Storage Masks</td>
<td>No</td>
<td>Specifies all Protection Storage Mask selections that are permissible for the new Private Key and new Public Key objects.</td>
</tr>
<tr>
<td>Private Protection Storage Masks</td>
<td>No</td>
<td>Specifies all Protection Storage Mask selections that are permissible for the new Private Key object.</td>
</tr>
<tr>
<td>Public Protection Storage Masks</td>
<td>No</td>
<td>Specifies all Protection Storage Mask selections that are permissible for the new Public Key object.</td>
</tr>
</tbody>
</table>

Table 284: Re-key Key Pair Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Key Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the newly created replacement Private Key object.</td>
</tr>
<tr>
<td>Public Key Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the newly created replacement Public Key object.</td>
</tr>
</tbody>
</table>

Table 285: Re-key Key Pair Response Payload

6.1.43.1 Error Handling - Re-key Key Pair

This section details the specific Result Reasons that SHALL be returned for errors detected in a Re-key Key Pair Operation.
6.1.44 Re-Provision

This request is used to generate a replacement client link level credential from an existing client link level credential. The client requesting re-provisioning SHALL provide a certificate signing request, or a certificate, or no parameters if the server will create the client credential.

If the client provides a certificate signing request, the server SHALL process the certificate signing request and assign the new certificate to the be the client link level credential. The server SHALL return the unique identifier for the signed certificate stored on the server.

If the client provides a certificate, the server SHALL associate the certificate with the client as the client’s link level credential. The server SHALL return the unique identifier for the certificate stored on the server.

Where no parameters are provided, the server shall generate a key pair and certificate associated with the client. The server SHALL return the unique identifier for the private key. The client may then subsequently retrieve the private key via a Get operation.

The current client credential SHALL be made invalid and cannot be used in future KMIP requests.

Re-Provision SHALL be called by the client that requires new credentials.

Re-Provision SHOULD fail if the certificate that represents the client credential has expired.

Re-Provision SHALL fail if the certificate that represents the client credential has been Revoked.

Re-Provision SHALL fail if the certificate that represents the client credential has been compromised.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Request</td>
<td>No</td>
<td>The certificate request to be signed</td>
</tr>
<tr>
<td>Certificate</td>
<td>No</td>
<td>The certificate to replace the existing certificate</td>
</tr>
</tbody>
</table>

Table 287: Re-Provision Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>The Certificate or Private Key unique identifier</td>
</tr>
</tbody>
</table>

Table 288: Re-Provision Response Payload

6.1.44.1 Error Handling – Re-Provision

This section details the specific Result Reasons that SHALL be returned for errors detected in a Re-Provision Operation.
6.1.45 RNG Retrieve

This operation requests the server to return output from a Random Number Generator (RNG).

The request contains the quantity of output requested.

The response contains the RNG output.

The success or failure of the operation is indicated by the Result Status (and if failure the Result Reason) in the response header.

<table>
<thead>
<tr>
<th>Request Payload</th>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Length</td>
<td>Yes</td>
<td></td>
<td>The amount of random number generator output to be returned (in bytes).</td>
</tr>
</tbody>
</table>

Table 290: RNG Retrieve Request Payload

<table>
<thead>
<tr>
<th>Response Payload</th>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Yes</td>
<td></td>
<td>The random number generator output.</td>
</tr>
</tbody>
</table>

Table 291: RNG Retrieve Response Payload

6.1.45.1 Error Handling - RNG Retrieve

This section details the specific Result Reasons that SHALL be returned for errors detected in a RNG Retrieve Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Cryptographic Failure, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 292: RNG Retrieve Errors

6.1.46 RNG Seed

This operation requests the server to seed a Random Number Generator.

The request contains the seeding material.

The response contains the amount of seed data used.

The success or failure of the operation is indicated by the Result Status (and if failure the Result Reason) in the response header.
The server MAY elect to ignore the information provided by the client (i.e. not accept the seeding material) and MAY indicate this to the client by returning zero as the value in the Data Length response. A client SHALL NOT consider a response from a server which does not use the provided data as an error.

<table>
<thead>
<tr>
<th>Request Payload</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>REQUIRED</td>
</tr>
<tr>
<td>Data</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 293: RNG Seed Request Payload

<table>
<thead>
<tr>
<th>Response Payload</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>REQUIRED</td>
</tr>
<tr>
<td>Data Length</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 294: RNG Seed Response Payload

6.1.46.1 Error Handling - RNG Seed

This section details the specific Result Reasons that SHALL be returned for errors detected in a RNG Seed Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Cryptographic Failure, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 295: RNG Seed Errors

6.1.47 Set Attribute

This operation requests the server to either add or modify an attribute. The request contains the Unique Identifier of the Managed Object to which the attribute pertains, along with the attribute and value. If the object did not have any instances of the attribute, one is created. If the object had exactly one instance, then it is modified. If it has more than one instance an error is raised. Read-Only attributes SHALL NOT be added or modified using this operation.

<table>
<thead>
<tr>
<th>Request Payload</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>REQUIRED</td>
</tr>
<tr>
<td>Unique Identifier</td>
<td>No</td>
</tr>
<tr>
<td>New Attribute</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 296: Set Attribute Request Payload
6.1.47.1 Error Handling - Set Attribute

This section details the specific Result Reasons that SHALL be returned for errors detected in a Set Attribute Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Attribute Value, Invalid Attribute Value, Multi Valued Attribute, Non Unique Name Attribute, Object Not Found, Read Only Attribute, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 298: Set Attribute Errors

6.1.48 Set Endpoint Role

This operation requests specifying the role of server for subsequent requests and responses over the current client-to-server communication channel. After successful completion of the operation the server assumes the client role, and the client assumes the server role, but the communication channel remains as established.

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint Role</td>
<td>Yes</td>
<td>The endpoint role for the server to apply.</td>
</tr>
</tbody>
</table>

Table 299: Set Endpoint Role Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint Role</td>
<td>Yes</td>
<td>The accepted endpoint role as applied by the server.</td>
</tr>
</tbody>
</table>

Table 300: Set Endpoint Role Response Payload

6.1.48.1 Error Handling - Set Endpoint Role

This section details the specific Result Reasons that SHALL be returned for errors detected in a Set Endpoint Role Operation.
<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Permission Denied, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 301: Set Endpoint Role Errors

6.1.49 Sign

This operation requests the server to perform a signature operation on the provided data using a Managed Cryptographic Object as the key for the signature operation.

The request contains information about the cryptographic parameters (digital signature algorithm or cryptographic algorithm and hash algorithm) and the data to be signed. The cryptographic parameters MAY be omitted from the request as they can be specified as associated attributes of the Managed Cryptographic Object.

If the Managed Cryptographic Object referenced has a Usage Limits attribute then the server SHALL obtain an allocation from the current Usage Limits value prior to performing the signing operation. If the allocation is unable to be obtained the operation SHALL return with a result status of Operation Failed and result reason of Permission Denied.

The response contains the Unique Identifier of the Managed Cryptographic Object used as the key and the result of the signature operation.

The success or failure of the operation is indicated by the Result Status (and if failure the Result Reason) in the response header.

<table>
<thead>
<tr>
<th>Request Payload</th>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unique Identifier</td>
<td>No</td>
<td>The Unique Identifier of the Managed Cryptographic Object that is the key to use for the signature operation. If omitted, then the ID Placeholder value SHALL be used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td></td>
<td>Cryptographic Parameters</td>
<td>No</td>
<td>The Cryptographic Parameters (Digital Signature Algorithm or Cryptographic Algorithm and Hashing Algorithm) corresponding to the particular signature generation method requested. If there are no Cryptographic Parameters associated with the Managed Cryptographic Object and the algorithm requires parameters then the operation SHALL return with a Result Status of Operation Failed.</td>
</tr>
</tbody>
</table>
Data | Yes for single-part, unless Digested Data is supplied. No for multi-part. | The data to be.

| Digested Data | No | The digested data to be signed (as a Byte String).
| Correlation Value | No | Specifies the existing stream or by-parts cryptographic operation (as returned from a previous call to this operation).
| Init Indicator | No | Initial operation as Boolean
| Final Indicator | No | Final operation as Boolean

Table 302: Sign Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the Managed Cryptographic Object that is the key used for the signature operation.</td>
</tr>
<tr>
<td>Signature Data</td>
<td>Yes for single-part. No for multi-part.</td>
<td>The signed data (as a Byte String).</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Specifies the stream or by-parts value to be provided in subsequent calls to this operation for performing cryptographic operations.</td>
</tr>
</tbody>
</table>

Table 303: Sign Response Payload

6.1.49.1 Error Handling - Sign

This section details the specific Result Reasons that SHALL be returned for errors detected in a sign Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Bad Cryptographic Parameters, Cryptographic Failure, Incompatible Cryptographic Usage Mask, Invalid Correlation Value, Invalid Object Type, Key Value Not Present, Object Not Found, Unsupported Cryptographic Parameters, Usage Limit Exceeded, Wrong Key Lifecycle State, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 304: Sign Errors
6.1.50 Signature Verify

This operation requests the server to perform a signature verify operation on the provided data using a Managed Cryptographic Object as the key for the signature verification operation.

The request contains information about the cryptographic parameters (digital signature algorithm or cryptographic algorithm and hash algorithm) and the signature to be verified and MAY contain the data that was passed to the signing operation (for those algorithms which need the original data to verify a signature).

The cryptographic parameters MAY be omitted from the request as they can be specified as associated attributes of the Managed Cryptographic Object.

The response contains the Unique Identifier of the Managed Cryptographic Object used as the key and the OPTIONAL data recovered from the signature (for those signature algorithms where data recovery from the signature is supported). The validity of the signature is indicated by the Validity Indicator field.

The response message SHALL include the Validity Indicator for single-part Signature Verify operations and for the final part of a multi-part Signature Verify operation. Non-Final parts of multi-part Signature Verify operations SHALL NOT include the Validity Indicator.

The success or failure of the operation is indicated by the Result Status (and if failure the Result Reason) in the response header.
<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>No</td>
<td>The Unique Identifier of the Managed Cryptographic Object that is the key to use for the signature verify operation. If omitted, then the ID Placeholder value SHALL be used by the server as the Unique Identifier.</td>
</tr>
<tr>
<td>Cryptographic Parameters</td>
<td>No</td>
<td>The Cryptographic Parameters (Digital Signature Algorithm or Cryptographic Algorithm and Hashing Algorithm) corresponding to the particular signature verification method requested. If there are no Cryptographic Parameters associated with the Managed Cryptographic Object and the algorithm requires parameters then the operation SHALL return with a Result Status of Operation Failed.</td>
</tr>
<tr>
<td>Data</td>
<td>No</td>
<td>The data that was.</td>
</tr>
<tr>
<td>Digested Data</td>
<td>No</td>
<td>The digested data to be verified (as a Byte String)</td>
</tr>
<tr>
<td>Signature Data</td>
<td>Yes for single-part. No for multi-part.</td>
<td>The signature to be verified (as a Byte String).</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Specifies the existing stream or by-parts cryptographic operation (as returned from a previous call to this operation).</td>
</tr>
<tr>
<td>Init Indicator</td>
<td>No</td>
<td>Initial operation as Boolean</td>
</tr>
<tr>
<td>Final Indicator</td>
<td>No</td>
<td>Final operation as Boolean</td>
</tr>
</tbody>
</table>

Table 305: Signature Verify Request Payload
Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the Managed Cryptographic Object that is the key used for the verification operation.</td>
</tr>
<tr>
<td>Validity Indicator</td>
<td>Yes for single-part. No for multi-part.</td>
<td>An Enumeration object indicating whether the signature is valid, invalid, or unknown.</td>
</tr>
<tr>
<td>Data</td>
<td>No</td>
<td>The OPTIONAL recovered data (as a Byte String) for those signature algorithms where data recovery from the signature is supported.</td>
</tr>
<tr>
<td>Correlation Value</td>
<td>No</td>
<td>Specifies the stream or by-parts value to be provided in subsequent calls to this operation for performing cryptographic operations.</td>
</tr>
</tbody>
</table>

Table 306: Signature Verify Response Payload

6.1.50.1 Error Handling - Signature Verify

This section details the specific Result Reasons that SHALL be returned for errors detected in a signature Verify Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Bad Cryptographic Parameters, Cryptographic Failure, Incompatible Cryptographic Usage Mask, Invalid Correlation Value, Invalid Object Type, Key Value Not Present, Object Not Found, Unsupported Cryptographic Parameters, Wrong Key Lifecycle State, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 307: Signature Verify Errors

6.1.51 Validate

This operation requests the server to validate a certificate chain and return information on its validity. Only a single certificate chain SHALL be included in each request.

The request MAY contain a list of certificate objects, and/or a list of Unique Identifiers that identify Managed Certificate objects. Together, the two lists compose a certificate chain to be validated. The request MAY also contain a date for which all certificates in the certificate chain are REQUIRED to be valid.

The method or policy by which validation is conducted is a decision of the server and is outside of the scope of this protocol. Likewise, the order in which the supplied certificate chain is validated and the specification of trust anchors used to terminate validation are also controlled by the server.
Request Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate</td>
<td>No, MAY be repeated</td>
<td>One or more Certificates.</td>
</tr>
<tr>
<td>Unique Identifier</td>
<td>No, MAY be repeated</td>
<td>One or more Unique Identifiers of Certificate Objects.</td>
</tr>
<tr>
<td>Validity Date</td>
<td>No</td>
<td>A Date-Time object indicating when the certificate chain needs to be valid. If omitted, the current date and time SHALL be assumed.</td>
</tr>
</tbody>
</table>

Table 308: Validate Request Payload

Response Payload

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validity Indicator</td>
<td>Yes</td>
<td>An Enumeration object indicating whether the certificate chain is valid, invalid, or unknown.</td>
</tr>
</tbody>
</table>

Table 309: Validate Response Payload

6.1.51.1 Error Handling – Validate

This section details the specific Result Reasons that SHALL be returned for errors detected in a Validate Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Invalid Field, Invalid Object Type, Object Not Found, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 310: Validate Errors

6.2 Server-to-Client Operations

Server-to-client operations are used by servers to send information or Managed Objects to clients via means outside of the normal client-server request-response mechanism. These operations are used to send Managed Objects directly to clients without a specific request from the client.

6.2.1 Discover Versions

This operation is used by the server to determine a list of protocol versions that is supported by the client. The request payload contains an OPTIONAL list of protocol versions that is supported by the server. The protocol versions SHALL be ranked in decreasing order of preference.

The response payload contains a list of protocol versions that are supported by the client. The protocol versions are ranked in decreasing order of preference. If the server provides the client with a list of supported protocol versions in the request payload, the client SHALL return only the protocol versions that are supported by both the client and server. The client SHOULD list all the protocol versions supported by both client and server. If the protocol version specified in the request header is not specified in the request payload and the client does not support any protocol version specified in the request
payload, the client SHALL return an empty list in the response payload. If no protocol versions are specified in the request payload, the client SHOULD return all the protocol versions that are supported by the client.

<table>
<thead>
<tr>
<th>Request Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Protocol Version</td>
</tr>
</tbody>
</table>

Table 311: Discover Versions Request Payload

<table>
<thead>
<tr>
<th>Response Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Protocol Version</td>
</tr>
</tbody>
</table>

6.2.1.1 Error Handling – Discover Versions

This section details the specific Result Reasons that SHALL be returned for errors detected in a Discover Versions Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Permission Denied, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 312: Discover Versions Errors

6.2.2 Notify

This operation is used to notify a client of events that resulted in changes to attributes of an object. This operation is only ever sent by a server to a client via means outside of the normal client request/response protocol, using information known to the server via unspecified configuration or administrative mechanisms. It contains the Unique Identifier of the object to which the notification applies, and a list of the attributes whose changed values or deletion have triggered the notification. The client SHALL send a response in the form of a Response containing no payload, unless both the client and server have prior knowledge (obtained via out-of-band mechanisms) that the client is not able to respond.

<table>
<thead>
<tr>
<th>Message Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Unique Identifier</td>
</tr>
<tr>
<td>Attributes</td>
</tr>
<tr>
<td>Attribute Reference</td>
</tr>
</tbody>
</table>
6.2.2.1 Error Handling – Notify

This section details the specific Result Reasons that SHALL be returned for errors detected in a Notify Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Permission Denied, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 313: Notify Message Errors

6.2.3 Put

This operation is used to “push” Managed Objects to clients. This operation is only ever sent by a server to a client via means outside of the normal client request/response protocol, using information known to the server via unspecified configuration or administrative mechanisms. It contains the Unique Identifier of the object that is being sent, and the object itself. The client SHALL send a response in the form of a Response Message containing no payload, unless both the client and server have prior knowledge (obtained via out-of-band mechanisms) that the client is not able to respond.

The *Put Function* field indicates whether the object being “pushed” is a new object, or is a replacement for an object already known to the client (e.g., when pushing a certificate to replace one that is about to expire, the Put Function field would be set to indicate replacement, and the Unique Identifier of the expiring certificate would be placed in the *Replaced Unique Identifier field*). The Put Function SHALL contain one of the following values:

- *New* – which indicates that the object is not a replacement for another object.
- *Replace* – which indicates that the object is a replacement for another object, and that the Replaced Unique Identifier field is present and contains the identification of the replaced object. In case the object with the Replaced Unique Identifier does not exist at the client, the client SHALL interpret this as if the Put Function contained the value New.

The Attribute field contains one or more attributes that the server is sending along with the object. The server MAY include the attributes associated with the object.

<table>
<thead>
<tr>
<th>Message Payload Item</th>
<th>REQUIRED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Identifier</td>
<td>Yes</td>
<td>The Unique Identifier of the object.</td>
</tr>
<tr>
<td>Put Function</td>
<td>Yes</td>
<td>Indicates function for Put message.</td>
</tr>
<tr>
<td>Replaced Unique Identifier</td>
<td>No</td>
<td>Unique Identifier of the replaced object. SHALL be present if the Put Function is Replace.</td>
</tr>
<tr>
<td>All Objects</td>
<td>Yes</td>
<td>The object being sent to the client.</td>
</tr>
<tr>
<td>Attributes</td>
<td>No</td>
<td>The additional attributes that the server wishes to send with the object.</td>
</tr>
</tbody>
</table>

6.2.3.1 Error Handling – Put

This section details the specific Result Reasons that SHALL be returned for errors detected in a Put Operation.
6.2.4 Query

This operation is used by the server to interrogate the client to determine its capabilities and/or protocol mechanisms. The *Query Function* field in the request SHALL contain one or more of the following items:

- Query Operations
- Query Objects
- Query Server Information
- Query Extension List
- Query Extension Map
- Query Attestation Types
- Query RNGs
- Query Validations
- Query Profiles
- Query Capabilities
- Query Client Registration Methods

The *Operation* fields in the response contain Operation enumerated values, which SHALL list all the operations that the client supports. If the request contains a Query Operations value in the Query Function field, then these fields SHALL be returned in the response.

The *Object Type* fields in the response contain Object Type enumerated values, which SHALL list all the object types that the client supports. If the request contains a Query Objects value in the Query Function field, then these fields SHALL be returned in the response.

The *Server Information* field in the response is a structure containing vendor-specific fields and/or substructures. If the request contains a Query Server Information value in the Query Function field, then this field SHALL be returned in the response.

The *Extension Information* fields in the response contain the descriptions of Objects with Item Tag values in the Extensions range that are supported by the server. If the request contains a Query Extension List and/or Query Extension Map value in the Query Function field, then the Extensions Information fields SHALL be returned in the response. If the Query Function field contains the Query Extension List value, then Extension Tag and Extension Type fields SHALL be specified in the Extension Information values. If both Query Extension List and Query Extension Map are specified in the request, then only the response to Query Extension Map SHALL be returned and the Query Extension List SHALL be ignored.

The *Attestation Type* fields in the response contain Attestation Type enumerated values, which SHALL list all the attestation types that the client supports. If the request contains a Query Attestation Types value in the Query Function field, then this field SHALL be returned in the response if the server supports any Attestation Types.

The *RNG Parameters* fields in the response SHALL list all the Random Number Generators that the client supports. If the request contains a Query RNGs value in the Query Function field, then this field SHALL be returned in the response. If the server is unable to specify details of the RNG then it SHALL return an RNG Parameters with the *RNG Algorithm* enumeration of *Unspecified*.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Permission Denied, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 314: Put Errors
The *Validation Information* field in the response is a structure containing details of each formal validation which the client asserts. If the request contains a *Query Validations* value, then zero or more *Validation Information* fields SHALL be returned in the response. A client MAY elect to return no validation information in the response.

A *Profile Information* field in the response is a structure containing details of the profiles that a client supports including potentially how it supports that profile. If the request contains a *Query Profiles* value in the *Query Function* field, then this field SHALL be returned in the response if the client supports any Profiles.

The *Capability Information* fields in the response contain details of the capability of the client.

The *Client Registration Method* fields in the response contain Client Registration Method enumerated values, which SHALL list all the client registration methods that the client supports. If the request contains a *Query Client Registration Methods* value in the *Query Function* field, then this field SHALL be returned in the response if the server supports any Client Registration Methods.

Note that the response payload is empty if there are no values to return.

<table>
<thead>
<tr>
<th>Request Payload</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>REQUIRED</td>
</tr>
<tr>
<td>Query Function</td>
<td>Yes, MAY be</td>
</tr>
<tr>
<td></td>
<td>Repeated</td>
</tr>
</tbody>
</table>

Table 315: Query Request Payload

<table>
<thead>
<tr>
<th>Response Payload</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>REQUIRED</td>
</tr>
<tr>
<td>Operation</td>
<td>No, MAY be</td>
</tr>
<tr>
<td></td>
<td>repeated</td>
</tr>
<tr>
<td>Object Type</td>
<td>No, MAY be</td>
</tr>
<tr>
<td></td>
<td>repeated</td>
</tr>
<tr>
<td>Vendor Identification</td>
<td>No</td>
</tr>
<tr>
<td>Server Information</td>
<td>No</td>
</tr>
<tr>
<td>Extension Information</td>
<td>No, MAY be repeated</td>
</tr>
<tr>
<td>Attestation Type</td>
<td>No, MAY be</td>
</tr>
<tr>
<td></td>
<td>repeated</td>
</tr>
<tr>
<td>RNG Parameters</td>
<td>No, MAY be</td>
</tr>
<tr>
<td></td>
<td>repeated</td>
</tr>
<tr>
<td>Profile Information</td>
<td>No, MAY be repeated</td>
</tr>
<tr>
<td>Validation Information</td>
<td>No, MAY be repeated</td>
</tr>
<tr>
<td>Capability Information</td>
<td>No, MAY be repeated</td>
</tr>
</tbody>
</table>
6.2.4.1 Error Handling – Query

This section details the specific Result Reasons that SHALL be returned for errors detected in a Query Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Permission Denied, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 316: Query Errors

6.2.5 Set Endpoint Role

This operation requests specifying the role of server for subsequent requests and responses over the current client-to-server communication channel. After successful completion of the operation the server assumes the client role, and the client assumes the server role, but the communication channel remains as established.

<table>
<thead>
<tr>
<th>Request Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Endpoint Role</td>
</tr>
</tbody>
</table>

Table 317: Set Endpoint Role Request Payload

<table>
<thead>
<tr>
<th>Response Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Endpoint Role</td>
</tr>
</tbody>
</table>

Table 318: Set Endpoint Role Response Payload

6.2.5.1 Error Handling - Set Endpoint Role

This section details the specific Result Reasons that SHALL be returned for errors detected in a Set Endpoint Role Operation.

<table>
<thead>
<tr>
<th>Result Status</th>
<th>Result Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Failed</td>
<td>Permission Denied, Attestation Failed, Attestation Required, Feature Not Supported, Invalid Field, Invalid Message, Operation Not Supported, Permission Denied, Response Too Large</td>
</tr>
</tbody>
</table>

Table 319: Set Endpoint Role Errors
7 Operations Data Structures

Common structure used across multiple operations

7.1 Authenticated Encryption Additional Data

The Authenticated Encryption Additional Data object is used in authenticated encryption and decryption operations that require the transmission of that data between client and server.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authenticated Encryption Additional Data</td>
<td>Byte String</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 320 Authenticated Encryption Additional Data

7.2 Authenticated Encryption Tag

The Authenticated Encryption Tag object is used to validate the integrity of the data encrypted and decrypted in “Authenticated Encryption” mode. See [SP800-38D].

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authenticated Encryption Tag</td>
<td>Byte String</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 321 Authenticated Encryption Tag

7.3 Capability Information

The Capability Information base object is a structure that contains details of the supported capabilities.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capability Information</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Streaming Capability</td>
<td>Boolean</td>
<td>No</td>
</tr>
<tr>
<td>Asynchronous Capability</td>
<td>Boolean</td>
<td>No</td>
</tr>
<tr>
<td>Attestation Capability</td>
<td>Boolean</td>
<td>No</td>
</tr>
<tr>
<td>Batch Undo Capability</td>
<td>Boolean</td>
<td>No</td>
</tr>
<tr>
<td>Batch Continue Capability</td>
<td>Boolean</td>
<td>No</td>
</tr>
<tr>
<td>Unwrap Mode</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Destroy Action</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Shredding Algorithm</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>RNG Mode</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Quantum Safe Capability</td>
<td>Boolean</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 322: Capability Information Structure
7.4 Correlation Value

The Correlation Value is used in requests and responses in cryptographic operations that support multi-part (streaming) operations. This is generated by the server and returned in the first response to an operation that is being performed across multiple requests. Note: the server decides which operations are supported for multi-part usage. A server-generated correlation value SHALL be specified in any subsequent cryptographic operations that pertain to the original operation.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation Value</td>
<td>Byte String</td>
</tr>
</tbody>
</table>

Table 323: Correlation Value Structure

7.5 Data

The Data object is used in requests and responses in cryptographic operations that pass data between the client and the server.

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte String</td>
<td>The Data</td>
</tr>
<tr>
<td>Enumeration</td>
<td>Data Enumeration</td>
</tr>
<tr>
<td>Integer</td>
<td>Zero based nth Data in the response. If negative the count is backwards from the beginning of the current operation's batch item.</td>
</tr>
</tbody>
</table>

Table 324: Data encoding descriptions

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Byte String, Enumeration or Integer</td>
</tr>
</tbody>
</table>

Table 325: Data

7.6 Data Length

The Data Length is used in requests in cryptographic operations to indicate the amount of data expected in a response.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Length</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Table 326: Data Length Structure

7.7 Defaults Information

The Defaults Information is a structure used in Query responses for values that servers will use if clients omit them from factory operations requests.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defaults Information</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Object Defaults</td>
<td>Structure, may be repeated</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 327: Defaults Information Structure
7.8 Derivation Parameters

The Derivation Parameters for all derivation methods consist of the following parameters.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivation Parameters</td>
<td>Structure</td>
<td>Yes.</td>
</tr>
<tr>
<td>Cryptographic Parameters,</td>
<td>Structure</td>
<td>No, depends on the PRF.</td>
</tr>
<tr>
<td>Initialization Vector</td>
<td>Byte String</td>
<td>No, depends on the PRF (if different than those defined in [PKCS#5]) and mode of operation: an empty IV is assumed if not provided.</td>
</tr>
<tr>
<td>Derivation Data</td>
<td>Byte String</td>
<td>Yes, unless the Unique Identifier of a Secret Data object is provided. May be repeated.</td>
</tr>
<tr>
<td>Salt</td>
<td>Byte String</td>
<td>Yes if Derivation method is PBKDF2.</td>
</tr>
<tr>
<td>Iteration Count</td>
<td>Integer</td>
<td>Yes if Derivation method is PBKDF2.</td>
</tr>
</tbody>
</table>

Table 328: Derivation Parameters Structure

Cryptographic Parameters identify the Pseudorandom Function (PRF) or the mode of operation of the PRF (e.g., if a key is to be derived using the HASH derivation method, then clients are REQUIRED to indicate the hash algorithm inside Cryptographic Parameters; similarly, if a key is to be derived using AES in CBC mode, then clients are REQUIRED to indicate the Block Cipher Mode).

If a key is derived using HMAC, then the attributes of the derivation key provide enough information about the PRF, and the Cryptographic Parameters are ignored.

Derivation Data is either the data to be encrypted, hashed, or HMACed. For the NIST SP 800-108 methods [SP800-108], Derivation Data is Label||[0x00]||Context, where the all-zero byte is optional.

Most derivation methods (e.g., Encrypt) REQUIRE a derivation key and the derivation data to be used. The HASH derivation method REQUIRES either a derivation key or derivation data. Derivation data MAY either be explicitly provided by the client with the Derivation Data field or implicitly provided by providing the Unique Identifier of a Secret Data object. If both are provided, then an error SHALL be returned.

For the AWS Signature Version 4 derivation method, the Derivation Data is (in order) the Date, Region, and Service.

For the HKDF derivation method, the Input Key Material is provided by the specified managed object, the salt is provided in the Salt field of the Derivation Parameters, the optional information is provided in the Derivation Data field of the Derivation Parameters, the output length is specified in the Cryptographic Length attribute provided in the Attributes request parameter. The default hash function is SHA-256 and may be overridden by specifying a Hashing Algorithm in the Cryptographic Parameters field of the Derivation Parameters.
7.9 Extension Information

An Extension Information object is a structure describing Objects with Item Tag values in the Extensions range. The Extension Name is a Text String that is used to name the Object. The Extension Tag is the Item Tag Value of the Object. The Extension Type is the Item Type Value of the Object.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension Information</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Extension Name</td>
<td>Text String</td>
<td>Yes</td>
</tr>
<tr>
<td>Extension Tag</td>
<td>Integer</td>
<td>No</td>
</tr>
<tr>
<td>Extension Type</td>
<td>Enumeration (Item Type)</td>
<td>No</td>
</tr>
<tr>
<td>Extension Enumeration</td>
<td>Integer</td>
<td>No</td>
</tr>
<tr>
<td>Extension Attribute</td>
<td>Boolean</td>
<td>No</td>
</tr>
<tr>
<td>Extension Parent Structure Tag</td>
<td>Integer</td>
<td>No</td>
</tr>
<tr>
<td>Extension Description</td>
<td>Text String</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 329: Extension Information Structure

7.10 Final Indicator

The Final Indicator is used in requests in cryptographic operations that support multi-part (streaming) operations. This is provided in the final (last) request with a value of True to an operation that is being performed across multiple requests.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Indicator</td>
<td>Boolean</td>
</tr>
</tbody>
</table>

Table 330: Final Indicator Structure

7.11 Interop Function

The Interop Function is used in requests and responses in to indicate the commencement or completion of an interop operation.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interop Function</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 331: Interop Function Structure

7.12 Interop Identifier

The Interop Function is used in requests and responses in to indicate that which interop test is being performed.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interop identifier</td>
<td>TextString</td>
</tr>
</tbody>
</table>

Table 332: Interop Function Structure
7.13 Init Indicator

The *Init Indicator* is used in requests in cryptographic operations that support multi-part (streaming) operations. This is provided in the first request with a value of True to an operation that is being performed across multiple requests.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init Indicator</td>
<td>Boolean</td>
</tr>
</tbody>
</table>

Table 333: Init Indicator Structure

7.14 Key Wrapping Specification

This is a separate structure that is defined for operations that provide the option to return wrapped keys. The *Key Wrapping Specification* SHALL be included inside the operation request if clients request the server to return a wrapped key. If Cryptographic Parameters are specified in the Encryption Key Information and/or the MAC/Signature Key Information of the Key Wrapping Specification, then the server SHALL verify that they match one of the instances of the Cryptographic Parameters attribute of the corresponding key. If the corresponding key does not have any Cryptographic Parameters attribute, or if no match is found, then an error is returned.

This structure contains:

- A Wrapping Method that indicates the method used to wrap the Key Value.
- Encryption Key Information with the Unique Identifier value of the encryption key and associated cryptographic parameters.
- MAC/Signature Key Information with the Unique Identifier value of the MAC/signature key and associated cryptographic parameters.
- Zero or more Attribute Names to indicate the attributes to be wrapped with the key material.
- An Encoding Option, specifying the encoding of the Key Value before wrapping. If No Encoding is specified, then the Key Value SHALL NOT contain any attributes.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Wrapping Specification</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Wrapping Method</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Encryption Key Information</td>
<td>Structure</td>
<td>No, SHALL be present if MAC/Signature Key Information is omitted</td>
</tr>
<tr>
<td>MAC/Signature Key Information</td>
<td>Structure</td>
<td>No, SHALL be present if Encryption Key Information is omitted</td>
</tr>
<tr>
<td>Attribute Name</td>
<td>Text String, MAY be repeated</td>
<td>No</td>
</tr>
<tr>
<td>Encoding Option</td>
<td>Enumeration</td>
<td>No. If Encoding Option is not present, the wrapped Key Value SHALL be TTLV encoded.</td>
</tr>
</tbody>
</table>

Table 334: Key Wrapping Specification Object Structure

7.15 Log Message

The *Log Message* is used in the Log operation.
7.16 MAC Data

The MAC Data is used in requests and responses in cryptographic operations that pass MAC data between the client and the server.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Data</td>
<td>Byte String</td>
</tr>
</tbody>
</table>

Table 336: MAC Data Structure

7.17 Objects

A list of Object Unique Identifiers.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objects</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Unique Identifier</td>
<td>Text String, Enumeration or Integer</td>
<td>No, May be repeated.</td>
</tr>
</tbody>
</table>

Table 337: Objects Structure

7.18 Object Defaults

The Object Defaults is a structure that details the values that the server will use if the client omits them on factory methods for objects. The structure list the Attributes and their values by Object Type enumeration.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Defaults</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Object Type</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Attributes</td>
<td>Structure</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 338: Object Defaults Structure

7.19 Operations

A list of Operations.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Enumeration</td>
<td>No, May be repeated.</td>
</tr>
</tbody>
</table>

Table 339: Operations Structure

7.20 PKCS#11 Function

The PKCS#11 Function structure contains details of the PKCS#11 Function. Specific fields MAY pertain only to certain types of profiles.
<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCS#11 Function</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>PKCS#11 Function</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 340: PKCS#11 Function Structure

7.21 PKCS#11 Input Parameters

The *PKCS#11 Input Parameters* structure contains details of the PKCS#11 Input Parameters. Specific fields MAY pertain only to certain types of profiles.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCS#11 Input Parameters</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>PKCS#11 Input Parameters</td>
<td>ByteString</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 341: PKCS#11 Input Parameters Structure

7.22 PKCS#11 Interface

The *PKCS#11 Interface* structure contains details of the PKCS#11 Interface. Specific fields MAY pertain only to certain types of profiles.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCS#11 Interface</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>PKCS#11 Interface</td>
<td>TextString</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 342: PKCS#11 Interface Structure

7.23 PKCS#11 Output Parameters

The *PKCS#11 Output Parameters* structure contains details of the PKCS#11 Output Parameters. Specific fields MAY pertain only to certain types of profiles.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCS#11 Output Parameters</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>PKCS#11 Output Parameters</td>
<td>ByteString</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 343: PKCS#11 Output Parameters Structure

7.24 PKCS#11 Return Code

The *PKCS#11 Return Code* structure contains details of the PKCS#11 Return Code. Specific fields MAY pertain only to certain types of profiles.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCS#11 Return Code</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>PKCS#11 Return Code</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 344: PKCS#11 Return Code Structure
7.25 Profile Information

The Profile Information structure contains details of the supported profiles. Specific fields MAY pertain only to certain types of profiles.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile Information</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Profile Name</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Profile Version</td>
<td>Structure</td>
<td>No</td>
</tr>
<tr>
<td>Server URI</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>Server Port</td>
<td>Integer</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 345: Profile Information Structure

7.26 Profile Version

The Profile Version structure contains the version number of the profile, ensuring that the profile is fully understood by both communicating parties. The version number SHALL be specified in two parts, major and minor.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile Version</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Profile Version Major</td>
<td>Integer</td>
<td>Yes</td>
</tr>
<tr>
<td>Profile Version Minor</td>
<td>Integer</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 346: Profile Version Structure

7.27 Protection Storage Masks

The Protection Storage Masks operations data object is a structure that contains an ordered collection of Protection Storage Mask selections acceptable to the client. The server MAY service the request with ANY Storage Protection Mask that the client passes, but SHALL return an error if no single Storage Protection Mask can be satisfied in its entirety (all bits match). When more than one Protection Storage Mask is specified by a Client, then all are acceptable alternatives. Note that there are also variants of Protection Storage Masks to deal with the operations that deal with asymmetric pairs (Common Protection Storage Masks, Private Protection Storage Masks and Public Protection Storage Masks), as the client may have different requirements on the parts of the pair, but the layout of those variants is identical to the one expressed here.

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection Storage Masks</td>
<td>Structure</td>
</tr>
</tbody>
</table>

Table 347: Protection Storage Mask Structure

7.28 Right

The Right base object is a structure that defines a right to perform specific numbers of specific operations on specific managed objects. If any field is omitted, then that aspect is unrestricted.
7.29 Rights

A list of Rights.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rights</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>Structure</td>
<td>No, May be repeated.</td>
</tr>
</tbody>
</table>

Table 349: Rights Structure

7.30 RNG Parameters

The *RNG Parameters* base object is a structure that contains a mandatory RNG Algorithm and a set of OPTIONAL fields that describe a Random Number Generator. Specific fields pertain only to certain types of RNGs.

The RNG Algorithm SHALL be specified and if the algorithm implemented is unknown or the implementation does not want to provide the specific details of the RNG Algorithm then the Unspecified enumeration SHALL be used.

If the cryptographic building blocks used within the RNG are known they MAY be specified in combination of the remaining fields within the RNG Parameters structure.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNG Parameters</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>RNG Algorithm</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Cryptographic Algorithm</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Cryptographic Length</td>
<td>Integer</td>
<td>No</td>
</tr>
<tr>
<td>Hashing Algorithm</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>DRBG Algorithm</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Recommended Curve</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>FIPS186 Variation</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Prediction Resistance</td>
<td>Boolean</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 350: RNG Parameters Structure
7.31 Server Information

The Server Information base object is a structure that contains a set of OPTIONAL fields that describe server information. Where a server supports returning information in a vendor-specific field for which there is an equivalent field within the structure, the server SHALL provide the standardized version of the field.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Information</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Server name</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>Server serial number</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>Server version</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>Server load</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>Product name</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>Build level</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>Build date</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>Cluster info</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>Alternative failover endpoints</td>
<td>Text String, MAY be repeated</td>
<td>No</td>
</tr>
<tr>
<td>Vendor-Specific</td>
<td>Any, MAY be repeated</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 351: Server Information Structure

7.32 Signature Data

The Signature Data is used in requests and responses in cryptographic operations that pass signature data between the client and the server.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature Data</td>
<td>Byte String</td>
</tr>
</tbody>
</table>

Table 352: Signature Data Structure

7.33 Ticket

The ticket structure used to specify a Ticket

<table>
<thead>
<tr>
<th>Item</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ticket</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Ticket Type</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Ticket Value</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 353: Ticket Structure

7.34 Usage Limits

The Usage Limits structure is used to limit the number of operations that may be performed.
7.35 Validation Information

The **Validation Information** base object is a structure that contains details of a formal validation. Specific fields MAY pertain only to certain types of validations.

Table 355: Validation Information Structure

The Validation Authority along with the Validation Version Major, Validation Type and Validation Level SHALL be provided to uniquely identify a validation for a given validation authority. If the Validation Certificate URI is not provided the server SHOULD include a Validation Vendor URI from which information related to the validation is available.

The Validation Authority Country is the two letter ISO country code.
8 Messages

The messages in the protocol consist of a message header, one or more batch items (which contain OPTIONAL message payloads), and OPTIONAL message extensions. The message headers contain fields whose presence is determined by the protocol features used (e.g., asynchronous responses). The field contents are also determined by whether the message is a request or a response. The message payload is determined by the specific operation being requested or to which is being replied.

The message headers are structures that contain some of the following objects.

Messages contain the following objects and fields. All fields SHALL appear in the order specified.

If the client is capable of accepting asynchronous responses, then it MAY set the Asynchronous Indicator in the header of a batched request. The batched responses MAY contain a mixture of synchronous and asynchronous responses only if the Asynchronous Indicator is present in the header.

8.1 Request Message

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Message</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Request Header</td>
<td>Structure</td>
<td>Yes</td>
</tr>
<tr>
<td>Batch Item</td>
<td>Structure, MAY be repeated</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 356: Request Message Structure

8.2 Request Header

<table>
<thead>
<tr>
<th>Object</th>
<th>REQUIRED in Message</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Header</td>
<td>Yes</td>
<td>Structure</td>
</tr>
<tr>
<td>Protocol Version</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Maximum Response Size</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Client Correlation Value</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Server Correlation Value</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Indicator</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Attestation Capable Indicator</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Attestation Type</td>
<td>No, MAY be repeated</td>
<td></td>
</tr>
<tr>
<td>Authentication</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Batch Error Continuation Option</td>
<td>No</td>
<td>If omitted, then Stop is assumed</td>
</tr>
<tr>
<td>Batch Order Option</td>
<td>No</td>
<td>If omitted, then True is assumed</td>
</tr>
</tbody>
</table>
8.3 Request Batch Item

<table>
<thead>
<tr>
<th>Object</th>
<th>REQUIRED in Message</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch Item</td>
<td>Yes</td>
<td>Structure</td>
</tr>
<tr>
<td>Operation</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Ephemeral</td>
<td>No</td>
<td>Indicates that the Data output of the operation should not be returned to the client. Boolean.</td>
</tr>
<tr>
<td>Unique Batch Item ID</td>
<td>No</td>
<td>REQUIRED if Batch Count > 1</td>
</tr>
<tr>
<td>Request Payload</td>
<td>Yes</td>
<td>Structure, contents depend on the Operation</td>
</tr>
<tr>
<td>Message Extension</td>
<td>No, MAY be repeated</td>
<td></td>
</tr>
</tbody>
</table>

Table 358: Request Batch Item Structure

8.4 Response Message

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Message</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Response Header</td>
<td>Structure</td>
<td>Yes</td>
</tr>
<tr>
<td>Batch Item</td>
<td>Structure, MAY be repeated</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 359: Response Message Structure

8.5 Response Header

<table>
<thead>
<tr>
<th>Object</th>
<th>REQUIRED in Message</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Header</td>
<td>Yes</td>
<td>Structure</td>
</tr>
<tr>
<td>Protocol Version</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Time Stamp</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Nonce</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Server Hashed Password</td>
<td>Yes, if Hashed Password credential was used</td>
<td>Hash(Timestamp</td>
</tr>
</tbody>
</table>

Table 358: Request Header Structure
Attestation Type	No, MAY be repeated	REQUIRED in Attestation Required error message if client set Attestation Capable Indicator to True in the request
Client Correlation Value | No |
Server Correlation Value | No |
Batch Count | Yes |

Table 360: Response Header Structure

8.6 Response Batch Item

<table>
<thead>
<tr>
<th>Response Batch Item</th>
<th>Object</th>
<th>REQUIRED in Message</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch Item</td>
<td>Yes</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Yes, if specified in Request Batch Item</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unique Batch Item ID</td>
<td>No</td>
<td>REQUIRED if present in Request Batch Item</td>
<td></td>
</tr>
<tr>
<td>Result Status</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Result Reason</td>
<td>Yes, if Result Status is Failure</td>
<td>REQUIRED if Result Status is Failure, otherwise OPTIONAL</td>
<td></td>
</tr>
<tr>
<td>Result Message</td>
<td>No</td>
<td>OPTIONAL if Result Status is not Pending or Success</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Correlation Value</td>
<td>No</td>
<td>REQUIRED if Result Status is Pending</td>
<td></td>
</tr>
<tr>
<td>Response Payload</td>
<td>Yes, if not a failure</td>
<td>Structure, contents depend on the Operation</td>
<td></td>
</tr>
<tr>
<td>Message Extension</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 361: Response Batch Item Structure
9 Message Data Structures

Data structures passed within request and response messages.

9.1 Asynchronous Correlation Value

This is returned in the immediate response to an operation that is pending and that requires asynchronous polling. Note: the server decides which operations are performed synchronously or asynchronously. A server-generated correlation value SHALL be specified in any subsequent Poll or Cancel operations that pertain to the original operation.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous Correlation Value</td>
<td>Byte String</td>
</tr>
</tbody>
</table>

Table 362: Asynchronous Correlation Value in Response Batch Item

9.2 Asynchronous Indicator

This Enumeration indicates whether the client is able to accept an asynchronous response. If not present in a request, then Prohibited is assumed. If the value is Prohibited, the server SHALL process the request synchronously.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous Indicator</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 363: Asynchronous Indicator in Message Request Header

9.3 Attestation Capable Indicator

The *Attestation Capable Indicator* flag indicates whether the client is able to create an Attestation Credential object. It SHALL have Boolean value True if the client is able to create an Attestation Credential object, and the value False otherwise. If not present, the value False is assumed. If a client indicates that it is not able to create an Attestation Credential Object, and the client has issued an operation that requires attestation such as Get, then the server SHALL respond to the request with a failure.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attestation Capable Indicator</td>
<td>Boolean</td>
</tr>
</tbody>
</table>

Table 364: Attestation Capable Indicator in Message Request Header

9.4 Authentication

This is used to authenticate the requester. It is an OPTIONAL information item, depending on the type of request being issued and on server policies. Servers MAY require authentication on no requests, a subset of the requests, or all requests, depending on policy. Query operations used to interrogate server features and functions SHOULD NOT require authentication. The Authentication structure SHALL contain one or more Credential structures. If multiple Credential structures are provided then they must ALL be satisfied.

The authentication mechanisms are described and discussed in Section Error! Reference source not found. .
Object Encoding
Authentication Structure
Credential, MAY be repeated Structure

Table 365: Authentication Structure in Message Header

9.5 Batch Count
This field contains the number of Batch Items in a message and is REQUIRED. If only a single operation is being requested, then the batch count SHALL be set to 1. The Message Payload, which follows the Message Header, contains one or more batch items.

Object Encoding
Batch Count Integer

Table 366: Batch Count in Message Header

9.6 Batch Error Continuation Option
This option SHALL only be present if the Batch Count is greater than 1. This option SHALL have one of three values (Undo, Stop or Continue). If not specified, then Stop is assumed.

Object Encoding
Batch Error Continuation Option Enumeration

Table 367: Batch Error Continuation Option in Message Request Header

9.7 Batch Item
This field consists of a structure that holds the individual requests or responses in a batch, and is REQUIRED. The contents of the batch items are described in Section Error! Reference source not found..

Object Encoding
Batch Item Structure

Table 368: Batch Item in Message

9.8 Batch Order Option
A Boolean value used in requests where the Batch Count is greater than 1. If True, then batched operations SHALL be executed in the order in which they appear within the request. If False, then the server MAY choose to execute the batched operations in any order. If not specified, then True is assumed.

Object Encoding
Batch Order Option Boolean

Table 369: Batch Order Option in Message Request Header

9.9 Correlation Value (Client)
The Client Correlation Value is a string that MAY be added to messages by clients to provide additional
information to the server. It need not be unique. The server SHOULD log this information.
For client to server operations, the Client Correlation Value is provided in the request. For server to client operations the Client Correlation Value is provided in the response.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Correlation Value</td>
<td>Text String</td>
</tr>
</tbody>
</table>

Table 370: Client Correlation Value in Message Request Header

9.10 Correlation Value (Server)

The Server Correlation Value SHOULD be provided by the server and SHOULD be globally unique, and SHOULD be logged by the server with each request.

For client to server operations the Server Correlation Value is provided in the response. For server to client operations, the Server Correlation Value is provided in the request.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Correlation Value</td>
<td>Text String</td>
</tr>
</tbody>
</table>

Table 371: Server Correlation Value in Message Request Header

9.11 Credential

A *Credential* is a structure used for client identification purposes and is not managed by the key management system (e.g., user id/password pairs, Kerberos tokens, etc.). It MAY be used for authentication purposes as indicated in [KMIP-Prof].

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credential</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Credential Type</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Credential Value</td>
<td>Varies based on Credential Type.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 372: Credential Object Structure

If the Credential Type in the Credential is *Username and Password*, then Credential Value is a structure. The Username field identifies the client, and the Password field is a secret that authenticates the client.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credential Value</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Username</td>
<td>Text String</td>
<td>Yes</td>
</tr>
<tr>
<td>Password</td>
<td>Text String</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 373: Credential Value Structure for the Username and Password Credential

If the Credential Type in the Credential is *Device*, then Credential Value is a. One or a combination of the *Device Serial Number*, *Network Identifier*, *Machine Identifier*, and *Media Identifier* SHALL be unique. Server implementations MAY enforce policies on uniqueness for individual fields. A shared secret or password MAY also be used to authenticate the client. The client SHALL provide at least one field.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credential Value</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Device Serial Number</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>Password</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>Device Identifier</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>----</td>
</tr>
<tr>
<td>Network Identifier</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>Machine Identifier</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>Media Identifier</td>
<td>Text String</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 374: Credential Value Structure for the Device Credential

If the Credential Type in the Credential is **Attestation**, then Credential Value is a structure. The **Nonce Value** is obtained from the key management server in a Nonce Object. The Attestation Credential Object can contain a measurement from the client or an assertion from a third party if the server is not capable or willing to verify the attestation data from the client. Neither type of attestation data (**Attestation Measurement** or **Attestation Assertion**) is necessary to allow the server to accept either. However, the client SHALL provide attestation data in either the **Attestation Measurement** or **Attestation Assertion** fields.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credential Value</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Nonce</td>
<td>Structure</td>
<td>Yes</td>
</tr>
<tr>
<td>Attestation Type</td>
<td>Enumeration</td>
<td>Yes</td>
</tr>
<tr>
<td>Attestation Measurement</td>
<td>Byte String</td>
<td>No</td>
</tr>
<tr>
<td>Attestation Assertion</td>
<td>Byte String</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 375: Credential Value Structure for the Attestation Credential

If the Credential Type in the Credential is One Time Password, then Credential Value is a structure. The Username field identifies the client, and the Password field is a secret that authenticates the client. The One Time Password field contains a one time password (OTP) which may only be used for a single authentication.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credential Value</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Username</td>
<td>Text String</td>
<td>Yes</td>
</tr>
<tr>
<td>Password</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>One Time Password</td>
<td>Text String</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 376: Credential Value Structure for the One Time Password Credential

If the Credential Type in the Credential is Hashed Password, then Credential Value is a structure. The Username field identifies the client. The timestamp is the current timestamp used to produce the hash and SHALL monotonically increase. The Hashing Algorithm SHALL default to SHA 256. The Hashed Password is define as

\[
\text{Hashed Password} = \text{Hash(S1 || Timestamp) || S2}
\]

Where

\[
\begin{align*}
S1 &= \text{Hash(Username || Password)} \\
S2 &= \text{Hash(Password || Username)}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credential Value</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Username</td>
<td>Text String</td>
<td>Yes</td>
</tr>
<tr>
<td>Password</td>
<td>Text String</td>
<td>No</td>
</tr>
<tr>
<td>One Time Password</td>
<td>Text String</td>
<td>Yes</td>
</tr>
<tr>
<td>Object</td>
<td>Encoding</td>
<td>REQUIRED</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Credential Value</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Username</td>
<td>Text String</td>
<td>Yes</td>
</tr>
<tr>
<td>Timestamp</td>
<td>Date Time Extended</td>
<td>Yes</td>
</tr>
<tr>
<td>Hashing Algorithm</td>
<td>Enumeration</td>
<td>No</td>
</tr>
<tr>
<td>Hashed Password</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 377: Credential Value Structure for the Hashed Password Credential

If the Credential Type in the Credential is Ticket, then Credential Value is a structure.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credential Value</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Ticket</td>
<td>Structure</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 378: Credential Value Structure for the Ticket

9.12 Maximum Response Size

This is an OPTIONAL field contained in a request message, and is used to indicate the maximum size of a response, in bytes, that the requester SHALL be able to handle. It SHOULD only be sent in requests that possibly return large replies.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Response Size</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Table 379: Maximum Response Size in Message Request Header

9.13 Message Extension

The Message Extension is an OPTIONAL structure that MAY be appended to any Batch Item. It is used to extend protocol messages for the purpose of adding vendor-specified extensions. The Message Extension is a structure that SHALL contain the Vendor Identification, Criticality Indicator, and Vendor Extension fields. The Vendor Identification SHALL be a text string that uniquely identifies the vendor, allowing a client to determine if it is able to parse and understand the extension. If a client or server receives a protocol message containing a message extension that it does not understand, then its actions depend on the Criticality Indicator. If the indicator is True (i.e., Critical), and the receiver does not understand the extension, then the receiver SHALL reject the entire message. If the indicator is False (i.e., Non-Critical), and the receiver does not understand the extension, then the receiver MAY process the rest of the message as if the extension were not present. The Vendor Extension structure SHALL contain vendor-specific extensions.
Object Encoding

<table>
<thead>
<tr>
<th>Message Extension Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor Identification Text String (with usage limited to alphanumeric, underscore and period – i.e. [A-Za-z0-9_.])</td>
</tr>
<tr>
<td>Criticality Indicator Boolean</td>
</tr>
<tr>
<td>Vendor Extension Structure</td>
</tr>
</tbody>
</table>

Table 380: Message Extension Structure in Batch Item

9.14 Nonce

A Nonce object is a structure used by the server to send a random value to the client. The Nonce Identifier is assigned by the server and used to identify the Nonce object. The Nonce Value consists of the random data created by the server.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonce</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Nonce ID</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
<tr>
<td>Nonce Value</td>
<td>Byte String</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 381: Nonce Structure

9.15 Operation

This field indicates the operation being requested or the operation for which the response is being returned.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 382: Operation in Batch Item

9.16 Protocol Version

This field contains the version number of the protocol, ensuring that the protocol is fully understood by both communicating parties. The version number SHALL be specified in two parts, major and minor. Servers and clients SHALL support backward compatibility with versions of the protocol with the same major version. Support for backward compatibility with different major versions is OPTIONAL.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol Version Structure</td>
<td></td>
</tr>
<tr>
<td>Protocol Version Major Integer</td>
<td></td>
</tr>
<tr>
<td>Protocol Version Minor Integer</td>
<td></td>
</tr>
</tbody>
</table>

Table 383: Protocol Version Structure in Message Header

9.17 Result Message

This field MAY be returned in a response. It contains a more descriptive error message, which MAY be provided to an end user or used for logging/auditing purposes.
9.18 Result Reason

This field indicates a reason for failure or a modifier for a partially successful operation and SHALL be present in responses that return a Result Status of Failure. In such a case, the Result Reason SHALL be set as specified. It SHALL NOT be present in any response that returns a Result Status of Success.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result Reason</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 385: Result Reason in Response Batch Item

9.19 Result Status

This is sent in a response message and indicates the success or failure of a request. The following values MAY be set in this field:

- **Success** – The requested operation completed successfully.
- **Operation Pending** – The requested operation is in progress, and it is necessary to obtain the actual result via asynchronous polling. The asynchronous correlation value SHALL be used for the subsequent polling of the result status.
- **Operation Undone** – The requested operation was performed, but had to be undone (i.e., due to a failure in a batch for which the Error Continuation Option was set to Undo).
- **Operation Failed** – The requested operation failed.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result Status</td>
<td>Enumeration</td>
</tr>
</tbody>
</table>

Table 386: Result Status in Response Batch Item

9.20 Time Stamp

This is an OPTIONAL field contained in a client request. It is REQUIRED in a server request and response. It is used for time stamping, and MAY be used to enforce reasonable time usage at a client (e.g., a server MAY choose to reject a request if a client's time stamp contains a value that is too far off the server's time). Note that the time stamp MAY be used by a client that has no real-time clock, but has a countdown timer, to obtain useful “seconds from now” values from all of the Date attributes by performing a subtraction.

<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Stamp</td>
<td>Date-Time</td>
</tr>
</tbody>
</table>

Table 387: Time Stamp in Message Header

9.21 Unique Batch Item ID

This is an OPTIONAL field contained in a request, and is used for correlation between requests and responses. If a request has a Unique Batch Item ID, then responses to that request SHALL have the same Unique Batch Item ID.
<table>
<thead>
<tr>
<th>Object</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Batch Item ID</td>
<td>Byte String</td>
</tr>
</tbody>
</table>

Table 388: Unique Batch Item ID in Batch Item
10 Message Protocols

10.1 TTLV

In order to minimize the resource impact on potentially low-function clients, one encoding mechanism to be used for protocol messages is a simplified TTLV (Tag, Type, Length, Value) scheme.

The scheme is designed to minimize the CPU cycle and memory requirements of clients that need to encode or decode protocol messages, and to provide optimal alignment for both 32-bit and 64-bit processors. Minimizing bandwidth over the transport mechanism is considered to be of lesser importance.

10.1.1 Tag

An Item Tag is a three-byte binary unsigned integer, transmitted big endian, which contains the Tag Enumeration Value (using only the three least significant bytes of the enumeration).

10.1.2 Type

An Item Type is a byte containing a coded value that indicates the data type of the data object using the specified Item Type Enumeration (using only the least significant byte of the enumeration).

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>Encoded as the concatenated encodings of the elements of the structure. All structures defined in this specification SHALL have all of their fields encoded in the order in which they appear in their respective structure descriptions</td>
</tr>
<tr>
<td>Integer</td>
<td>Encoded as four-byte long (32 bit) binary signed numbers in 2's complement notation, transmitted big-endian.</td>
</tr>
<tr>
<td>Long Integer</td>
<td>Encoded as eight-byte long (64 bit) binary signed numbers in 2's complement notation, transmitted big-endian.</td>
</tr>
<tr>
<td>Big Integer</td>
<td>Encoded as a sequence of eight-bit bytes, in two's complement notation, transmitted big-endian. If the length of the sequence is not a multiple of eight bytes, then Big Integers SHALL be padded with the minimal number of leading sign-extended bytes to make the length a multiple of eight bytes. These padding bytes are part of the Item Value and SHALL be counted in the Item Length.</td>
</tr>
<tr>
<td>Enumeration</td>
<td>Encoded as four-byte long (32 bit) binary unsigned numbers transmitted big-endian. Extensions, which are permitted, but are not defined in this specification, contain the value 8 hex in the first nibble of the first byte.</td>
</tr>
<tr>
<td>Boolean</td>
<td>Encoded as an eight-byte hex value 0000000000000000, indicating the Boolean value False, or the hex value 0000000000000001, indicating the Boolean value True, transmitted big-endian.</td>
</tr>
<tr>
<td>Text String</td>
<td>Sequences of bytes that encode character values according to [RFC3629] the UTF-8 encoding standard.</td>
</tr>
<tr>
<td>Byte String</td>
<td>Sequences of bytes containing individual eight-bit binary values.</td>
</tr>
<tr>
<td>Date Time</td>
<td>Encoded as eight-byte long (64 bit) binary signed numbers in 2's complement notation, transmitted big-endian.</td>
</tr>
<tr>
<td>Interval</td>
<td>Encoded as four-byte long (32 bit) binary unsigned numbers, transmitted big-endian.</td>
</tr>
<tr>
<td>Date Time Extended</td>
<td>Encoded as eight-byte long (64 bit) binary signed numbers in 2's complement notation, transmitted big-endian.</td>
</tr>
</tbody>
</table>
10.1.3 Length

An Item Length is a 32-bit binary integer, transmitted big-endian, containing the number of bytes in the Item Value. The allowed values are:

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>Varies, multiple of 8</td>
</tr>
<tr>
<td>Integer</td>
<td>4</td>
</tr>
<tr>
<td>Long Integer</td>
<td>8</td>
</tr>
<tr>
<td>Big Integer</td>
<td>Varies, multiple of 8</td>
</tr>
<tr>
<td>Enumeration</td>
<td>4</td>
</tr>
<tr>
<td>Boolean</td>
<td>8</td>
</tr>
<tr>
<td>Text String</td>
<td>Varies</td>
</tr>
<tr>
<td>Byte String</td>
<td>Varies</td>
</tr>
<tr>
<td>Date Time</td>
<td>8</td>
</tr>
<tr>
<td>Interval</td>
<td>4</td>
</tr>
<tr>
<td>Date Time Extended</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 389: Allowed Item Length Values

10.1.4 Value

The item value is a sequence of bytes containing the value of the data item, depending on the type.

10.1.5 Padding

If the Item Type is Structure, then the Item Length is the total length of all of the sub-items contained in the structure, including any padding. If the Item Type is Integer, Enumeration, Text String, Byte String, or Interval, then the Item Length is the number of bytes excluding the padding bytes. Text Strings and Byte Strings SHALL be padded with the minimal number of bytes following the Item Value to obtain a multiple of eight bytes. Integers, Enumerations, and Intervals SHALL be padded with four bytes following the Item Value.

10.2 Other Message Protocols

In addition to the mandatory TTLV messaging protocol, a number of optional message-encoding mechanisms to support different transport protocols and different client capabilities.

10.2.1 HTTPS

The HTTPS messaging protocol is specified in [KMIP-Prof].
10.2.2 JSON
The JSON messaging protocol is specified in [KMIP-Prof].

10.2.3 XML
The XML messaging protocol is specified in [KMIP-Prof].

10.3 Authentication
The mechanisms used to authenticate the client to the server and the server to the client are not part of the message definitions, and are external to the protocol. The KMIP Server SHALL support authentication as defined in [KMIP-Prof].

10.4 Transport
KMIP Servers and Clients SHALL establish and maintain channel confidentiality and integrity, and provide assurance of authenticity for KMIP messaging as specified in [KMIP-Prof].
11 Enumerations

The following tables define the values for enumerated lists. Values not listed (outside the range 80000000 to 8FFFFFFF) are reserved for future KMIP versions.

Implementations SHALL NOT use Tag Values marked as Reserved.

11.1 Adjustment Type Enumeration

The Adjustment Type enumerations are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increment</td>
<td>Add the Adjustment Parameter to the value. Applies to Integer, Long Integers, Big Integer, Interval, Date Time, and Date Time Extended. The default is parameter is 1 for numeric types, 1 second for Date Time, and 1 microsecond for Date Time Extended.</td>
</tr>
<tr>
<td>Decrement</td>
<td>Subtract the Adjustment Parameter to the value. Applies to Integer, Long Integers, Big Integer, Interval, Date Time, and Date Time Extended. The default is parameter is 1 for numeric types, 1 second for Date Time, and 1 microsecond for Date Time Extended.</td>
</tr>
<tr>
<td>Negate</td>
<td>Negate the value. Applies to Integer, Long Integers, Big Integer and Boolean types.</td>
</tr>
</tbody>
</table>

Table 390: Adjustment Type Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increment</td>
<td>00000001</td>
</tr>
<tr>
<td>Decrement</td>
<td>00000002</td>
</tr>
<tr>
<td>Negate</td>
<td>00000003</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 391: Adjustment Type Enumeration

11.2 Alternative Name Type Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninterpreted Text String</td>
<td>00000001</td>
</tr>
<tr>
<td>URI</td>
<td>00000002</td>
</tr>
<tr>
<td>Object Serial Number</td>
<td>00000003</td>
</tr>
<tr>
<td>Email Address</td>
<td>00000004</td>
</tr>
<tr>
<td>DNS Name</td>
<td>00000005</td>
</tr>
<tr>
<td>X.500 Distinguished Name</td>
<td>00000006</td>
</tr>
<tr>
<td>IP Address</td>
<td>00000007</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 392: Alternative Name Type Enumeration
11.3 Asynchronous Indicator Enumeration

Asynchronous Indicator enumerations are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
<td>The server SHALL process all batch items in the request asynchronously (returning an Asynchronous Correlation Value for each batch item).</td>
</tr>
<tr>
<td>Optional</td>
<td>The server MAY process each batch item in the request either asynchronously (returning an Asynchronous Correlation Value for a batch item) or synchronously. The method or policy by which the server determines whether or not to process an individual batch item asynchronously is a decision of the server and is outside of the scope of this protocol.</td>
</tr>
<tr>
<td>Prohibited</td>
<td>The server SHALL NOT process any batch item asynchronously. All batch items SHALL be processed synchronously.</td>
</tr>
</tbody>
</table>

Table 393: Asynchronous Indicator Descriptions

<table>
<thead>
<tr>
<th>Asynchronous Indicator</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mandatory</td>
<td>00000001</td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td>00000002</td>
</tr>
<tr>
<td></td>
<td>Prohibited</td>
<td>00000003</td>
</tr>
<tr>
<td></td>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 394: Asynchronous Indicator Enumeration

11.4 Attestation Type Enumeration

<table>
<thead>
<tr>
<th>Attestation Type</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TPM Quote</td>
<td>00000001</td>
</tr>
<tr>
<td></td>
<td>TCG Integrity Report</td>
<td>00000002</td>
</tr>
<tr>
<td></td>
<td>SAML Assertion</td>
<td>00000003</td>
</tr>
<tr>
<td></td>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 395: Attestation Type Enumeration

11.5 Batch Error Continuation Option Enumeration

Batch Error Continuation Option enumerations are:
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Undo</td>
<td>If any operation in the request fails, then the server SHALL undo all the previous operations. Batch item fails and Result Status is set to Operation Failed. Responses to batch items that have already been processed are returned normally. Responses to batch items that have not been processed are not returned.</td>
<td></td>
</tr>
<tr>
<td>Stop</td>
<td>If an operation fails, then the server SHALL NOT continue processing subsequent operations in the request. Completed operations SHALL NOT be undone. Batch item fails and Result Status is set to Operation Failed. Responses to other batch items are returned normally.</td>
<td></td>
</tr>
<tr>
<td>Continue</td>
<td>Return an error for the failed operation, and continue processing subsequent operations in the request. Batch item fails and Result Status is set to Operation Failed. Batch items that had been processed have been undone and their responses are returned with Undone result status.</td>
<td></td>
</tr>
</tbody>
</table>

Table 396: Batch Error Continuation Option Descriptions

<table>
<thead>
<tr>
<th>Batch Error Continuation</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continue</td>
<td>00000001</td>
</tr>
<tr>
<td></td>
<td>Stop</td>
<td>00000002</td>
</tr>
<tr>
<td></td>
<td>Undo</td>
<td>00000003</td>
</tr>
<tr>
<td></td>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 397: Batch Error Continuation Option Enumeration

11.6 Block Cipher Mode Enumeration

<table>
<thead>
<tr>
<th>Block Cipher Mode</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC</td>
<td>00000001</td>
<td></td>
</tr>
<tr>
<td>ECB</td>
<td>00000002</td>
<td></td>
</tr>
<tr>
<td>PCBC</td>
<td>00000003</td>
<td></td>
</tr>
<tr>
<td>CFB</td>
<td>00000004</td>
<td></td>
</tr>
<tr>
<td>OFB</td>
<td>00000005</td>
<td></td>
</tr>
<tr>
<td>CTR</td>
<td>00000006</td>
<td></td>
</tr>
<tr>
<td>CMAC</td>
<td>00000007</td>
<td></td>
</tr>
<tr>
<td>CCM</td>
<td>00000008</td>
<td></td>
</tr>
<tr>
<td>GCM</td>
<td>00000009</td>
<td></td>
</tr>
<tr>
<td>CBC-MAC</td>
<td>0000000A</td>
<td></td>
</tr>
<tr>
<td>XTS</td>
<td>0000000B</td>
<td></td>
</tr>
<tr>
<td>AESKeyWrapPadding</td>
<td>0000000C</td>
<td></td>
</tr>
</tbody>
</table>
11.7 Cancellation Result Enumeration

A Cancellation Result enumerations are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canceled</td>
<td>The cancel operation succeeded in canceling the pending operation.</td>
</tr>
<tr>
<td>Unable to Cancel</td>
<td>The cancel operation is unable to cancel the pending operation.</td>
</tr>
<tr>
<td>Completed</td>
<td>The pending operation completed successfully before the cancellation operation was able to cancel it.</td>
</tr>
<tr>
<td>Failed</td>
<td>The pending operation completed with a failure before the cancellation operation was able to cancel it.</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Unavailable – The specified correlation value did not match any recently pending or completed asynchronous operations.</td>
</tr>
</tbody>
</table>

Table 399: Cancellation Result Enumeration Descriptions

<table>
<thead>
<tr>
<th>Cancellation Result</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canceled</td>
<td>00000001</td>
<td></td>
</tr>
<tr>
<td>Unable to Cancel</td>
<td>00000002</td>
<td></td>
</tr>
<tr>
<td>Completed</td>
<td>00000003</td>
<td></td>
</tr>
<tr>
<td>Failed</td>
<td>00000004</td>
<td></td>
</tr>
<tr>
<td>Unavailable</td>
<td>00000005</td>
<td></td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXX</td>
<td></td>
</tr>
</tbody>
</table>

Table 400: Cancellation Result Enumeration

11.8 Certificate Request Type Enumeration
Certificate Request Type

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRMF</td>
<td>00000001</td>
</tr>
<tr>
<td>PKCS#10</td>
<td>00000002</td>
</tr>
<tr>
<td>PEM</td>
<td>00000003</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>00000004</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 401: Certificate Request Type Enumeration

11.9 Certificate Type Enumeration

Certificate Type

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.509</td>
<td>00000001</td>
</tr>
<tr>
<td>(PGP)</td>
<td>00000002</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 402: Certificate Type Enumeration

11.10 Client Registration Method Enumeration

Client Registration Method enumerations are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Pre-Generated</td>
<td>The server has pre-generated the client’s private key. The returned PKCS#12 is protected with HEX(SHA256(Username</td>
</tr>
<tr>
<td>Server On-Demand</td>
<td>The server generates the client’s private key on demand. The returned PKCS#12 is protected with HEX(SHA256(Username</td>
</tr>
<tr>
<td>Client Generated</td>
<td>The client generates the private key and sends a Certificate Signing Request to the server to generate the certificate. The returned PKCS#12 is protected with HEX(SHA256(Username</td>
</tr>
<tr>
<td>Client Registered</td>
<td>The client generates the private key and the certificates and registers the certificate with the server.</td>
</tr>
</tbody>
</table>

Table 403: Client Registration Method Enumeration Descriptions
11.11 Credential Type Enumeration

<table>
<thead>
<tr>
<th>Credential Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username and Password</td>
<td>00000001</td>
</tr>
<tr>
<td>Device</td>
<td>00000002</td>
</tr>
<tr>
<td>Attestation</td>
<td>00000003</td>
</tr>
<tr>
<td>One Time Password</td>
<td>00000004</td>
</tr>
<tr>
<td>Hashed Password</td>
<td>00000005</td>
</tr>
<tr>
<td>Ticket</td>
<td>00000006</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>

Table 404: Credential Type Enumeration

11.12 Cryptographic Algorithm Enumeration

<table>
<thead>
<tr>
<th>Cryptographic Algorithm</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES</td>
<td>00000001</td>
</tr>
<tr>
<td>3DES</td>
<td>00000002</td>
</tr>
<tr>
<td>AES</td>
<td>00000003</td>
</tr>
<tr>
<td>RSA</td>
<td>00000004</td>
</tr>
<tr>
<td>DSA</td>
<td>00000005</td>
</tr>
<tr>
<td>ECDSA</td>
<td>00000006</td>
</tr>
<tr>
<td>HMAC-SHA1</td>
<td>00000007</td>
</tr>
<tr>
<td>HMAC-SHA224</td>
<td>00000008</td>
</tr>
<tr>
<td>HMAC-SHA256</td>
<td>00000009</td>
</tr>
<tr>
<td>HMAC-SHA384</td>
<td>000000A</td>
</tr>
<tr>
<td>HMAC-SHA512</td>
<td>000000B</td>
</tr>
<tr>
<td>HMAC-MD5</td>
<td>000000C</td>
</tr>
<tr>
<td>DH</td>
<td>000000D</td>
</tr>
<tr>
<td>Algorithm</td>
<td>Key Identifier</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>ECDH</td>
<td>0000000E</td>
</tr>
<tr>
<td>ECMQV</td>
<td>0000000F</td>
</tr>
<tr>
<td>Blowfish</td>
<td>00000010</td>
</tr>
<tr>
<td>Camellia</td>
<td>00000011</td>
</tr>
<tr>
<td>CAST5</td>
<td>00000012</td>
</tr>
<tr>
<td>IDEA</td>
<td>00000013</td>
</tr>
<tr>
<td>MARS</td>
<td>00000014</td>
</tr>
<tr>
<td>RC2</td>
<td>00000015</td>
</tr>
<tr>
<td>RC4</td>
<td>00000016</td>
</tr>
<tr>
<td>RC5</td>
<td>00000017</td>
</tr>
<tr>
<td>SKIPJACK</td>
<td>00000018</td>
</tr>
<tr>
<td>Twofish</td>
<td>00000019</td>
</tr>
<tr>
<td>EC</td>
<td>0000001A</td>
</tr>
<tr>
<td>One Time Pad</td>
<td>0000001B</td>
</tr>
<tr>
<td>ChaCha20</td>
<td>0000001C</td>
</tr>
<tr>
<td>Poly1305</td>
<td>0000001D</td>
</tr>
<tr>
<td>ChaCha20Poly1305</td>
<td>0000001E</td>
</tr>
<tr>
<td>SHA3-224</td>
<td>0000001F</td>
</tr>
<tr>
<td>SHA3-256</td>
<td>00000020</td>
</tr>
<tr>
<td>SHA3-384</td>
<td>00000021</td>
</tr>
<tr>
<td>SHA3-512</td>
<td>00000022</td>
</tr>
<tr>
<td>HMAC-SHA3-224</td>
<td>00000023</td>
</tr>
<tr>
<td>HMAC-SHA3-256</td>
<td>00000024</td>
</tr>
<tr>
<td>HMAC-SHA3-384</td>
<td>00000025</td>
</tr>
<tr>
<td>HMAC-SHA3-512</td>
<td>00000026</td>
</tr>
<tr>
<td>SHAKE-128</td>
<td>00000027</td>
</tr>
<tr>
<td>SHAKE-256</td>
<td>00000028</td>
</tr>
<tr>
<td>ARIA</td>
<td>00000029</td>
</tr>
<tr>
<td>SEED</td>
<td>0000002A</td>
</tr>
<tr>
<td>SM2</td>
<td>0000002B</td>
</tr>
<tr>
<td>SM3</td>
<td>0000002C</td>
</tr>
<tr>
<td>SM4</td>
<td>0000002D</td>
</tr>
<tr>
<td>GOST R 34.10-2012</td>
<td>0000002E</td>
</tr>
<tr>
<td>GOST R 34.11-2012</td>
<td>0000002F</td>
</tr>
<tr>
<td>GOST R 34.13-2015</td>
<td>00000030</td>
</tr>
<tr>
<td>GOST 28147-89</td>
<td>00000031</td>
</tr>
<tr>
<td>XMSS</td>
<td>00000032</td>
</tr>
<tr>
<td>SPHINCS-256</td>
<td>00000033</td>
</tr>
</tbody>
</table>
11.13 Data Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Data Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrypt</td>
<td>00000001</td>
</tr>
<tr>
<td>Encrypt</td>
<td>00000002</td>
</tr>
<tr>
<td>Hash</td>
<td>00000003</td>
</tr>
<tr>
<td>MAC MAC Data</td>
<td>00000004</td>
</tr>
<tr>
<td>RNG Retrieve</td>
<td>00000005</td>
</tr>
<tr>
<td>Sign Signature Data</td>
<td>00000006</td>
</tr>
<tr>
<td>Signature Verify</td>
<td>00000007</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 406: Data Enumeration

11.14 Derivation Method Enumeration

The *Derivation Method* enumerations are:
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBKDF2</td>
<td>This method is used to derive a symmetric key from a password or pass phrase.</td>
<td>[PKCS#5] and [RFC2898]</td>
</tr>
<tr>
<td>HASH</td>
<td>This method derives a key by computing a hash over the derivation key or the derivation data.</td>
<td></td>
</tr>
<tr>
<td>HMAC</td>
<td>This method derives a key by computing an HMAC over the derivation data.</td>
<td></td>
</tr>
<tr>
<td>ENCRYPT</td>
<td>This method derives a key by encrypting the derivation data.</td>
<td></td>
</tr>
<tr>
<td>NIST800-108-C</td>
<td>This method derives a key by computing the KDF in Counter Mode</td>
<td>[SP800-108]</td>
</tr>
<tr>
<td>NIST800-108-F</td>
<td>This method derives a key by computing the KDF in Feedback Mode</td>
<td>[SP800-108]</td>
</tr>
<tr>
<td>NIST800-108-DPI</td>
<td>This method derives a key by computing the KDF in Double-Pipeline Iteration Mode</td>
<td>[SP800-108]</td>
</tr>
<tr>
<td>Asymmetric Key</td>
<td>This method derives a key using asymmetric key agreement between a private and public key.</td>
<td></td>
</tr>
<tr>
<td>AWS Signature Version 4</td>
<td>As defined in Amazon Web Services Signature Version 4.</td>
<td>[AWS-SIGV4]</td>
</tr>
<tr>
<td>HKDF</td>
<td>HMAC-based Extract-and-Expand Key Derivation Function</td>
<td>[RFC5869]</td>
</tr>
</tbody>
</table>

Table 407: Derivation Method Enumeration Descriptions

<table>
<thead>
<tr>
<th>Derivation Method Name</th>
<th>Derivation Method Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBKDF2</td>
<td>00000001</td>
</tr>
<tr>
<td>HASH</td>
<td>00000002</td>
</tr>
<tr>
<td>HMAC</td>
<td>00000003</td>
</tr>
<tr>
<td>ENCRYPT</td>
<td>00000004</td>
</tr>
<tr>
<td>NIST800-108-C</td>
<td>00000005</td>
</tr>
<tr>
<td>NIST800-108-F</td>
<td>00000006</td>
</tr>
<tr>
<td>NIST800-108-DPI</td>
<td>00000007</td>
</tr>
<tr>
<td>Asymmetric Key</td>
<td>00000008</td>
</tr>
<tr>
<td>AWS Signature Version 4</td>
<td>00000009</td>
</tr>
<tr>
<td>HKDF</td>
<td>0000000A</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXXX</td>
</tr>
</tbody>
</table>

Table 408: Derivation Method Enumeration
11.15 Destroy Action Enumeration

<table>
<thead>
<tr>
<th>Destroy Action Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspecified</td>
<td>00000001</td>
</tr>
<tr>
<td>Key Material Deleted</td>
<td>00000002</td>
</tr>
<tr>
<td>Key Material Shredded</td>
<td>00000003</td>
</tr>
<tr>
<td>Meta Data Deleted</td>
<td>00000004</td>
</tr>
<tr>
<td>Meta Data Shredded</td>
<td>00000005</td>
</tr>
<tr>
<td>Deleted</td>
<td>00000006</td>
</tr>
<tr>
<td>Shredded</td>
<td>00000007</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>

11.16 Digital Signature Algorithm Enumeration

<table>
<thead>
<tr>
<th>Digital Signature Algorithm</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD2 with RSA Encryption</td>
<td>00000001</td>
</tr>
<tr>
<td>MD5 with RSA Encryption</td>
<td>00000002</td>
</tr>
<tr>
<td>SHA-1 with RSA Encryption</td>
<td>00000003</td>
</tr>
<tr>
<td>SHA-224 with RSA Encryption</td>
<td>00000004</td>
</tr>
<tr>
<td>SHA-256 with RSA Encryption</td>
<td>00000005</td>
</tr>
<tr>
<td>SHA-384 with RSA Encryption</td>
<td>00000006</td>
</tr>
<tr>
<td>SHA-512 with RSA Encryption</td>
<td>00000007</td>
</tr>
<tr>
<td>RSASSA-PSS</td>
<td>00000008</td>
</tr>
<tr>
<td>DSA with SHA-1</td>
<td>00000009</td>
</tr>
<tr>
<td>DSA with SHA224</td>
<td>0000000A</td>
</tr>
<tr>
<td>DSA with SHA256</td>
<td>0000000B</td>
</tr>
<tr>
<td>ECDSA with SHA-1</td>
<td>0000000C</td>
</tr>
<tr>
<td>ECDSA with SHA224</td>
<td>0000000D</td>
</tr>
<tr>
<td>ECDSA with SHA256</td>
<td>0000000E</td>
</tr>
<tr>
<td>ECDSA with SHA384</td>
<td>0000000F</td>
</tr>
<tr>
<td>ECDSA with SHA512</td>
<td>00000010</td>
</tr>
<tr>
<td>SHA-256 with RSA Encryption</td>
<td>00000011</td>
</tr>
<tr>
<td>SHA-384 with RSA Encryption</td>
<td>00000012</td>
</tr>
<tr>
<td>SHA-512 with RSA Encryption</td>
<td>00000013</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>
11.17 DRBG Algorithm Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>DRBG Algorithm Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspecified</td>
<td>00000001</td>
</tr>
<tr>
<td>Dual-EC</td>
<td>00000002</td>
</tr>
<tr>
<td>Hash</td>
<td>00000003</td>
</tr>
<tr>
<td>HMAC</td>
<td>00000004</td>
</tr>
<tr>
<td>CTR</td>
<td>00000005</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>

Table 410: DRBG Algorithm Enumeration

11.18 Encoding Option Enumeration

The following encoding options are currently defined:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Encoding</td>
<td>the wrapped un-encoded value of the Byte String Key Material field in the Key Value structure</td>
</tr>
<tr>
<td>TTLV Encoding</td>
<td>the wrapped TTLV-encoded Key Value structure</td>
</tr>
</tbody>
</table>

Table 411: Encoding Option Description

<table>
<thead>
<tr>
<th>Encoding Option</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Encoding</td>
<td>No Encoding</td>
<td>00000001</td>
</tr>
<tr>
<td>TTLV Encoding</td>
<td>TTLV Encoding</td>
<td>00000002</td>
</tr>
<tr>
<td>Extensions</td>
<td>Extensions</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>

Table 412: Encoding Option Enumeration

11.19 Endpoint Role Enumeration

The following endpoint roles are currently defined:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>The endpoint that sends requests and receives responses.</td>
</tr>
<tr>
<td>Server</td>
<td>The endpoint that receives requests and sends responses.</td>
</tr>
</tbody>
</table>

Table 413: Endpoint Role Description
11.20 FIPS186 Variation Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>FIPS186 Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspecified</td>
<td>00000001</td>
</tr>
<tr>
<td>GP x-Original</td>
<td>00000002</td>
</tr>
<tr>
<td>GP x-Change Notice</td>
<td>00000003</td>
</tr>
<tr>
<td>x-Original</td>
<td>00000004</td>
</tr>
<tr>
<td>x-Change Notice</td>
<td>00000005</td>
</tr>
<tr>
<td>k-Original</td>
<td>00000006</td>
</tr>
<tr>
<td>k-Change Notice</td>
<td>00000007</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Note: the user should be aware that a number of these algorithms are no longer recommended for general use and/or are deprecated. They are included for completeness.

11.21 Hashing Algorithm Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Hashing Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD2</td>
<td>00000001</td>
</tr>
<tr>
<td>MD4</td>
<td>00000002</td>
</tr>
<tr>
<td>MD5</td>
<td>00000003</td>
</tr>
<tr>
<td>SHA-1</td>
<td>00000004</td>
</tr>
<tr>
<td>SHA-224</td>
<td>00000005</td>
</tr>
<tr>
<td>SHA-256</td>
<td>00000006</td>
</tr>
<tr>
<td>SHA-384</td>
<td>00000007</td>
</tr>
<tr>
<td>SHA-512</td>
<td>00000008</td>
</tr>
<tr>
<td>RIPEMD-160</td>
<td>00000009</td>
</tr>
<tr>
<td>Tiger</td>
<td>0000000A</td>
</tr>
<tr>
<td>Whirlpool</td>
<td>0000000B</td>
</tr>
<tr>
<td>SHA-512/224</td>
<td>0000000C</td>
</tr>
<tr>
<td>SHA-512/256</td>
<td>0000000D</td>
</tr>
<tr>
<td>SHA3-224</td>
<td>0000000E</td>
</tr>
<tr>
<td>SHA3-256</td>
<td>0000000F</td>
</tr>
<tr>
<td>SHA3-384</td>
<td>00000010</td>
</tr>
<tr>
<td>SHA3-512</td>
<td>00000011</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Note: the user should be aware that a number of these algorithms are no longer recommended for general use and/or are deprecated. They are included for completeness.
11.22 Interop Function Enumeration

Interop Function enumerations are:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A specified test is about to begin</td>
</tr>
<tr>
<td>End</td>
<td>A specified test has ended</td>
</tr>
<tr>
<td>Reset</td>
<td>Resets the server to the state it would be in at the beginning of an interop session</td>
</tr>
</tbody>
</table>

Table 417: Interop Function Descriptions

<table>
<thead>
<tr>
<th>Interop Function</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>00000001</td>
<td></td>
</tr>
<tr>
<td>End</td>
<td>00000002</td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td>00000003</td>
<td></td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXX</td>
<td></td>
</tr>
</tbody>
</table>

Table 418: Interop Function Enumeration

11.23 Item Type Enumeration

Item Type enumerations are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>The ordered concatenation of items.</td>
</tr>
<tr>
<td>Integer</td>
<td>Four-byte long (32 bit) signed numbers</td>
</tr>
<tr>
<td>Long Integer</td>
<td>Eight-byte long (64 bit) signed numbers</td>
</tr>
<tr>
<td>Big Integer</td>
<td>A sequence of eight-bit bytes</td>
</tr>
<tr>
<td>Enumeration</td>
<td>Four-byte long (32 bit) unsigned numbers</td>
</tr>
<tr>
<td>Boolean</td>
<td>The value True or False.</td>
</tr>
<tr>
<td>Text String</td>
<td>Sequences of character values.</td>
</tr>
<tr>
<td>Byte String</td>
<td>Sequences of bytes containing individual unspecified eight-bit binary values</td>
</tr>
<tr>
<td>Date Time</td>
<td>Eight-byte long (64 bit) POSIX Time values in seconds.</td>
</tr>
<tr>
<td>Interval</td>
<td>Four-byte long (32 bit) unsigned numbers in seconds</td>
</tr>
<tr>
<td>Date Time Extended</td>
<td>Eight-byte long (64 bit) POSIX Time values in micro-seconds.</td>
</tr>
</tbody>
</table>

Table 419: Item Type Descriptions

<table>
<thead>
<tr>
<th>Item Type</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Structure</td>
<td>00000001</td>
</tr>
<tr>
<td></td>
<td>Integer</td>
<td>00000002</td>
</tr>
<tr>
<td>Item Type</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Long Integer</td>
<td>00000003</td>
<td></td>
</tr>
<tr>
<td>Big Integer</td>
<td>00000004</td>
<td></td>
</tr>
<tr>
<td>Enumeration</td>
<td>00000005</td>
<td></td>
</tr>
<tr>
<td>Boolean</td>
<td>00000006</td>
<td></td>
</tr>
<tr>
<td>Text String</td>
<td>00000007</td>
<td></td>
</tr>
<tr>
<td>Byte String</td>
<td>00000008</td>
<td></td>
</tr>
<tr>
<td>Date Time</td>
<td>00000009</td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>0000000A</td>
<td></td>
</tr>
<tr>
<td>Date Time Extended</td>
<td>0000000B</td>
<td></td>
</tr>
</tbody>
</table>

Table 420: Item Type Enumeration

11.24 Key Compression Type Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC Public Key Type Uncompressed</td>
<td>00000001</td>
</tr>
<tr>
<td>EC Public Key Type X9.62 Compressed Prime</td>
<td>00000002</td>
</tr>
<tr>
<td>EC Public Key Type X9.62 Compressed Char2</td>
<td>00000003</td>
</tr>
<tr>
<td>EC Public Key Type X9.62 Hybrid</td>
<td>00000004</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>

Table 421: Key Compression Type Enumeration values

11.25 Key Format Type Enumeration

A **Key Block** contains a **Key Value** of one of the following **Key Format Types**:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>A key that contains only cryptographic key material, encoded as a string of bytes.</td>
</tr>
</tbody>
</table>
Key Format Types

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opaque</td>
<td>An encoded key for which the encoding is unknown to the key management system. It is encoded as a string of bytes.</td>
</tr>
<tr>
<td>PKCS1</td>
<td>An encoded private key, expressed as a DER-encoded ASN.1 PKCS#1 object.</td>
</tr>
<tr>
<td>PKCS8</td>
<td>An encoded private key, expressed as a DER-encoded ASN.1 PKCS#8 object, supporting both the RSAPrivateKey syntax and EncryptedPrivateKey</td>
</tr>
<tr>
<td>X.509</td>
<td>An encoded object, expressed as a DER-encoded ASN.1 X.509 object.</td>
</tr>
<tr>
<td>ECPrivateKey</td>
<td>An ASN.1 encoded elliptic curve private key.</td>
</tr>
<tr>
<td>Several Transparent Key types</td>
<td>Algorithm-specific structures containing defined values for the various key types.</td>
</tr>
<tr>
<td>Extensions</td>
<td>Vendor-specific extensions to allow for proprietary or legacy key formats.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Format Type</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>Raw</td>
<td>00000001</td>
</tr>
<tr>
<td>Opaque</td>
<td>Opaque</td>
<td>00000002</td>
</tr>
<tr>
<td>PKCS#1</td>
<td>PKCS#1</td>
<td>00000003</td>
</tr>
<tr>
<td>PKCS#8</td>
<td>PKCS#8</td>
<td>00000004</td>
</tr>
<tr>
<td>X.509</td>
<td>X.509</td>
<td>00000005</td>
</tr>
<tr>
<td>ECPrivateKey</td>
<td>ECPrivateKey</td>
<td>00000006</td>
</tr>
<tr>
<td>Transparent Symmetric Key</td>
<td>Transparent Symmetric Key</td>
<td>00000007</td>
</tr>
<tr>
<td>Transparent DSA Private Key</td>
<td>Transparent DSA Private Key</td>
<td>00000008</td>
</tr>
<tr>
<td>Transparent DSA Public Key</td>
<td>Transparent DSA Public Key</td>
<td>00000009</td>
</tr>
<tr>
<td>Transparent RSA Private Key</td>
<td>Transparent RSA Private Key</td>
<td>0000000A</td>
</tr>
<tr>
<td>Transparent RSA Public Key</td>
<td>Transparent RSA Public Key</td>
<td>0000000B</td>
</tr>
<tr>
<td>Transparent DH Private Key</td>
<td>Transparent DH Private Key</td>
<td>0000000C</td>
</tr>
<tr>
<td>Transparent DH Public Key</td>
<td>Transparent DH Public Key</td>
<td>0000000D</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>(Reserved)</td>
<td>0000000E</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>(Reserved)</td>
<td>0000000F</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>(Reserved)</td>
<td>00000010</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>(Reserved)</td>
<td>00000011</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>(Reserved)</td>
<td>00000012</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>(Reserved)</td>
<td>00000013</td>
</tr>
<tr>
<td>Transparent EC Private Key</td>
<td>Transparent EC Private Key</td>
<td>00000014</td>
</tr>
<tr>
<td>Transparent EC Public Key</td>
<td>Transparent EC Public Key</td>
<td>00000015</td>
</tr>
<tr>
<td>PKCS#12</td>
<td>PKCS#12</td>
<td>00000016</td>
</tr>
<tr>
<td>PKCS#10</td>
<td>PKCS#10</td>
<td>00000017</td>
</tr>
</tbody>
</table>

Table 422: Key Format Types Description
Table 423: Key Format Type Enumeration

11.26 Key Role Type Enumeration

<table>
<thead>
<tr>
<th>Key Role Type</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDK</td>
<td>00000001</td>
<td></td>
</tr>
<tr>
<td>CVK</td>
<td>00000002</td>
<td></td>
</tr>
<tr>
<td>DEK</td>
<td>00000003</td>
<td></td>
</tr>
<tr>
<td>MKAC</td>
<td>00000004</td>
<td></td>
</tr>
<tr>
<td>MKSMC</td>
<td>00000005</td>
<td></td>
</tr>
<tr>
<td>MKSMI</td>
<td>00000006</td>
<td></td>
</tr>
<tr>
<td>MKDAC</td>
<td>00000007</td>
<td></td>
</tr>
<tr>
<td>MKDN</td>
<td>00000008</td>
<td></td>
</tr>
<tr>
<td>MKCP</td>
<td>00000009</td>
<td></td>
</tr>
<tr>
<td>MKOTH</td>
<td>0000000A</td>
<td></td>
</tr>
<tr>
<td>KEK</td>
<td>0000000B</td>
<td></td>
</tr>
<tr>
<td>MAC16609</td>
<td>0000000C</td>
<td></td>
</tr>
<tr>
<td>MAC97971</td>
<td>0000000D</td>
<td></td>
</tr>
<tr>
<td>MAC97972</td>
<td>0000000E</td>
<td></td>
</tr>
<tr>
<td>MAC97973</td>
<td>0000000F</td>
<td></td>
</tr>
<tr>
<td>MAC97974</td>
<td>00000010</td>
<td></td>
</tr>
<tr>
<td>MAC97975</td>
<td>00000011</td>
<td></td>
</tr>
<tr>
<td>ZPK</td>
<td>00000012</td>
<td></td>
</tr>
<tr>
<td>PVKIBM</td>
<td>00000013</td>
<td></td>
</tr>
<tr>
<td>PVKPVV</td>
<td>00000014</td>
<td></td>
</tr>
<tr>
<td>PVKOTH</td>
<td>00000015</td>
<td></td>
</tr>
<tr>
<td>DUKPT</td>
<td>00000016</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>00000017</td>
<td></td>
</tr>
<tr>
<td>TRKPK</td>
<td>00000018</td>
<td></td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
<td></td>
</tr>
</tbody>
</table>

Table 424: Key Role Type Enumeration

Note that while the set and definitions of key role types are chosen to match [X9 TR-31] there is no necessity to match binary representations.

11.27 Key Value Location Type Enumeration

Key Value Location Type

<table>
<thead>
<tr>
<th>Key Value Location Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
<tr>
<td>Name</td>
<td>Value</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Uninterpreted Text String</td>
<td>00000001</td>
</tr>
<tr>
<td>URI</td>
<td>00000002</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXXX</td>
</tr>
</tbody>
</table>

Table 425: Key Value Location Type Enumeration

11.28 Link Type Enumeration

Possible values of *Link Type* in accordance with the Object Type of the Managed Cryptographic Object are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Key Link</td>
<td>For a Public Key object: the private key corresponding to the public key.</td>
</tr>
<tr>
<td>Public Key Link</td>
<td>For a Private Key object: the public key corresponding to the private key.</td>
</tr>
<tr>
<td></td>
<td>For a Certificate object: the public key contained in the certificate.</td>
</tr>
<tr>
<td>Certificate Link</td>
<td>For Certificate objects: the parent certificate for a certificate in a</td>
</tr>
<tr>
<td></td>
<td>certificate chain. For Public Key objects: the corresponding certificate(s),</td>
</tr>
<tr>
<td></td>
<td>containing the same public key.</td>
</tr>
<tr>
<td>Derivation Base Object Link</td>
<td>For a derived Symmetric Key or Secret Data object: the object(s) from</td>
</tr>
<tr>
<td></td>
<td>which the current symmetric key was derived.</td>
</tr>
<tr>
<td>Derived Key Link</td>
<td>The symmetric key(s) or Secret Data object(s) that were derived from</td>
</tr>
<tr>
<td></td>
<td>the current object.</td>
</tr>
<tr>
<td>Replacement Object Link</td>
<td>For a Symmetric Key, an Asymmetric Private Key, or an Asymmetric Public Key</td>
</tr>
<tr>
<td></td>
<td>object: the key that resulted from the re-key of the current key. For a</td>
</tr>
<tr>
<td></td>
<td>Certificate object: the certificate that resulted from the re-certify. Note</td>
</tr>
<tr>
<td></td>
<td>that there SHALL be only one such replacement object per Managed Object.</td>
</tr>
<tr>
<td>Replaced Object Link</td>
<td>For a Symmetric Key, an Asymmetric Private Key, or an Asymmetric Public Key</td>
</tr>
<tr>
<td></td>
<td>object: the key that was re-keyed to obtain the current key. For a Certificate</td>
</tr>
<tr>
<td></td>
<td>object: the certificate that was re-certified to obtain the current</td>
</tr>
<tr>
<td></td>
<td>certificate.</td>
</tr>
<tr>
<td>Parent Link</td>
<td>For all object types: the container or other parent object corresponding</td>
</tr>
<tr>
<td></td>
<td>to the object.</td>
</tr>
<tr>
<td>Child Link</td>
<td>For all object types: the subordinate, derived or other child object</td>
</tr>
<tr>
<td></td>
<td>corresponding to the object.</td>
</tr>
<tr>
<td>Previous Link</td>
<td>For all object types: the previous object to this object.</td>
</tr>
<tr>
<td>Next Link</td>
<td>For all object types: the next object to this object.</td>
</tr>
<tr>
<td>PKCS#12 Certificate Link</td>
<td></td>
</tr>
<tr>
<td>PKCS#12 Password Link</td>
<td></td>
</tr>
<tr>
<td>Wrapping Key Link</td>
<td>For wrapped objects: the object that was used to wrap this object.</td>
</tr>
</tbody>
</table>

Table 426: Link Type Enumeration Descriptions
Link Type

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Link</td>
<td>00000101</td>
</tr>
<tr>
<td>Public Key Link</td>
<td>00000102</td>
</tr>
<tr>
<td>Private Key Link</td>
<td>00000103</td>
</tr>
<tr>
<td>Derivation Base Object Link</td>
<td>00000104</td>
</tr>
<tr>
<td>Derived Key Link</td>
<td>00000105</td>
</tr>
<tr>
<td>Replacement Object Link</td>
<td>00000106</td>
</tr>
<tr>
<td>Replaced Object Link</td>
<td>00000107</td>
</tr>
<tr>
<td>Parent Link</td>
<td>00000108</td>
</tr>
<tr>
<td>Child Link</td>
<td>00000109</td>
</tr>
<tr>
<td>Previous Link</td>
<td>0000010A</td>
</tr>
<tr>
<td>Next Link</td>
<td>0000010B</td>
</tr>
<tr>
<td>PKCS#12 Certificate Link</td>
<td>0000010C</td>
</tr>
<tr>
<td>PKCS#12 Password Link</td>
<td>0000010D</td>
</tr>
<tr>
<td>Wrapping Key Link</td>
<td>0000010E</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 427: Link Type Enumeration

11.29 Key Wrap Type Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Key Wrap Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Wrapped</td>
<td></td>
<td>00000001</td>
</tr>
<tr>
<td>As Registered</td>
<td></td>
<td>00000002</td>
</tr>
<tr>
<td>Extensions</td>
<td></td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

11.30 Mask Generator Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Mask Generator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFG1</td>
<td></td>
<td>00000001</td>
</tr>
<tr>
<td>Extensions</td>
<td></td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

11.31 Name Type Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Name Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninterpreted Text String</td>
<td></td>
<td>00000001</td>
</tr>
<tr>
<td>URI</td>
<td></td>
<td>00000002</td>
</tr>
<tr>
<td>Extensions</td>
<td></td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>
11.32 NIST Key Type Enumeration

<table>
<thead>
<tr>
<th>NIST Key Type Enumeration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private signature key</td>
<td>00000001</td>
</tr>
<tr>
<td>Public signature verification key</td>
<td>00000002</td>
</tr>
<tr>
<td>Symmetric authentication key</td>
<td>00000003</td>
</tr>
<tr>
<td>Private authentication key</td>
<td>00000004</td>
</tr>
<tr>
<td>Public authentication key</td>
<td>00000005</td>
</tr>
<tr>
<td>Symmetric data encryption key</td>
<td>00000006</td>
</tr>
<tr>
<td>Symmetric key wrapping key</td>
<td>00000007</td>
</tr>
<tr>
<td>Symmetric random number generation key</td>
<td>00000008</td>
</tr>
<tr>
<td>Symmetric master key</td>
<td>00000009</td>
</tr>
<tr>
<td>Private key transport key</td>
<td>0000000A</td>
</tr>
<tr>
<td>Public key transport key</td>
<td>0000000B</td>
</tr>
<tr>
<td>Symmetric key agreement key</td>
<td>0000000C</td>
</tr>
<tr>
<td>Private static key agreement key</td>
<td>0000000D</td>
</tr>
<tr>
<td>Public static key agreement key</td>
<td>0000000E</td>
</tr>
<tr>
<td>Private ephemeral key agreement key</td>
<td>0000000F</td>
</tr>
<tr>
<td>Public ephemeral key agreement key</td>
<td>00000010</td>
</tr>
<tr>
<td>Symmetric authorization key</td>
<td>00000011</td>
</tr>
<tr>
<td>Private authorization key</td>
<td>00000012</td>
</tr>
<tr>
<td>Public authorization key</td>
<td>00000013</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXXX</td>
</tr>
</tbody>
</table>
11.33 Object Group Member Enumeration

<table>
<thead>
<tr>
<th>Object Group Member Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Member Fresh</td>
<td>00000001</td>
</tr>
<tr>
<td>Group Member Default</td>
<td>00000002</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXXX</td>
</tr>
</tbody>
</table>

Table 429: Object Group Member Enumeration

11.34 Object Type Enumeration

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate</td>
<td>00000001</td>
</tr>
<tr>
<td>Symmetric Key</td>
<td>00000002</td>
</tr>
<tr>
<td>Public Key</td>
<td>00000003</td>
</tr>
<tr>
<td>Private Key</td>
<td>00000004</td>
</tr>
<tr>
<td>Split Key</td>
<td>00000005</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>00000006</td>
</tr>
<tr>
<td>Secret Data</td>
<td>00000007</td>
</tr>
<tr>
<td>Opaque Object</td>
<td>00000008</td>
</tr>
<tr>
<td>PGP Key</td>
<td>00000009</td>
</tr>
<tr>
<td>Certificate Request</td>
<td>0000000A</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXXX</td>
</tr>
</tbody>
</table>

Table 430: Object Type Enumeration

11.35 Opaque Data Type Enumeration

<table>
<thead>
<tr>
<th>Opaque Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensions</td>
<td>8XXXXXXXXX</td>
</tr>
</tbody>
</table>

Table 431: Opaque Data Type Enumeration

11.36 Operation Enumeration

<table>
<thead>
<tr>
<th>Operation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create</td>
<td>00000001</td>
</tr>
<tr>
<td>Create Key Pair</td>
<td>00000002</td>
</tr>
<tr>
<td>Register</td>
<td>00000003</td>
</tr>
</tbody>
</table>

Table 432: Operation Enumeration
<table>
<thead>
<tr>
<th>Operation</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-key</td>
<td>00000004</td>
</tr>
<tr>
<td>Derive Key</td>
<td>00000005</td>
</tr>
<tr>
<td>Certify</td>
<td>00000006</td>
</tr>
<tr>
<td>Re-certify</td>
<td>00000007</td>
</tr>
<tr>
<td>Locate</td>
<td>00000008</td>
</tr>
<tr>
<td>Check</td>
<td>00000009</td>
</tr>
<tr>
<td>Get</td>
<td>0000000A</td>
</tr>
<tr>
<td>Get Attributes</td>
<td>0000000B</td>
</tr>
<tr>
<td>Get Attribute List</td>
<td>0000000C</td>
</tr>
<tr>
<td>Add Attribute</td>
<td>0000000D</td>
</tr>
<tr>
<td>Modify Attribute</td>
<td>0000000E</td>
</tr>
<tr>
<td>Delete Attribute</td>
<td>0000000F</td>
</tr>
<tr>
<td>Obtain Lease</td>
<td>00000010</td>
</tr>
<tr>
<td>Get Usage Allocation</td>
<td>00000011</td>
</tr>
<tr>
<td>Activate</td>
<td>00000012</td>
</tr>
<tr>
<td>Revoke</td>
<td>00000013</td>
</tr>
<tr>
<td>Destroy</td>
<td>00000014</td>
</tr>
<tr>
<td>Archive</td>
<td>00000015</td>
</tr>
<tr>
<td>Recover</td>
<td>00000016</td>
</tr>
<tr>
<td>Validate</td>
<td>00000017</td>
</tr>
<tr>
<td>Query</td>
<td>00000018</td>
</tr>
<tr>
<td>Cancel</td>
<td>00000019</td>
</tr>
<tr>
<td>Poll</td>
<td>0000001A</td>
</tr>
<tr>
<td>Notify</td>
<td>0000001B</td>
</tr>
<tr>
<td>Put</td>
<td>0000001C</td>
</tr>
<tr>
<td>Re-key Key Pair</td>
<td>0000001D</td>
</tr>
<tr>
<td>Discover Versions</td>
<td>0000001E</td>
</tr>
<tr>
<td>Encrypt</td>
<td>0000001F</td>
</tr>
<tr>
<td>Decrypt</td>
<td>00000020</td>
</tr>
<tr>
<td>Sign</td>
<td>00000021</td>
</tr>
<tr>
<td>Signature Verify</td>
<td>00000022</td>
</tr>
<tr>
<td>MAC</td>
<td>00000023</td>
</tr>
<tr>
<td>MAC Verify</td>
<td>00000024</td>
</tr>
<tr>
<td>RNG Retrieve</td>
<td>00000025</td>
</tr>
<tr>
<td>RNG Seed</td>
<td>00000026</td>
</tr>
<tr>
<td>Hash</td>
<td>00000027</td>
</tr>
<tr>
<td>Create Split Key</td>
<td>00000028</td>
</tr>
<tr>
<td>Join Split Key</td>
<td>00000029</td>
</tr>
</tbody>
</table>
11.37 Padding Method Enumeration

<table>
<thead>
<tr>
<th>Padding Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>000000001</td>
</tr>
<tr>
<td>OAEP</td>
<td>000000002</td>
</tr>
<tr>
<td>PKCS5</td>
<td>00000003</td>
</tr>
<tr>
<td>SSL3</td>
<td>00000004</td>
</tr>
<tr>
<td>Zeros</td>
<td>00000005</td>
</tr>
<tr>
<td>ANSI X9.23</td>
<td>00000006</td>
</tr>
<tr>
<td>ISO 10126</td>
<td>00000007</td>
</tr>
<tr>
<td>PKCS1 v1.5</td>
<td>00000008</td>
</tr>
<tr>
<td>X9.31</td>
<td>00000009</td>
</tr>
<tr>
<td>PSS</td>
<td>0000000A</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 433: Padding Method Enumeration

11.38 PKCS#11 Function Enumeration

The PKCS#11 Function enumerations are the 1-based offset count of the function in the CK_FUNCTION_LIST_3_0 structure as specified in [PKCS#11]

11.39 PKCS#11 Return Code Enumeration

The PKCS#11 Return Codes enumerations representing PKCS#11 return codes as specified in the CK_RV values in [PKCS#11]
11.40 Profile Name Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Reserved)</td>
<td>00000001-00000103</td>
</tr>
<tr>
<td>Complete Server Basic</td>
<td>00000104</td>
</tr>
<tr>
<td>Complete Server TLS v1.2</td>
<td>00000105</td>
</tr>
<tr>
<td>Tape Library Client</td>
<td>00000106</td>
</tr>
<tr>
<td>Tape Library Server</td>
<td>00000107</td>
</tr>
<tr>
<td>Symmetric Key Lifecycle Client</td>
<td>00000108</td>
</tr>
<tr>
<td>Symmetric Key Lifecycle Server</td>
<td>00000109</td>
</tr>
<tr>
<td>Asymmetric Key Lifecycle Client</td>
<td>0000010A</td>
</tr>
<tr>
<td>Asymmetric Key Lifecycle Server</td>
<td>0000010B</td>
</tr>
<tr>
<td>Basic Cryptographic Client</td>
<td>0000010C</td>
</tr>
<tr>
<td>Basic Cryptographic Server</td>
<td>0000010D</td>
</tr>
<tr>
<td>Advanced Cryptographic Client</td>
<td>0000010E</td>
</tr>
<tr>
<td>Advanced Cryptographic Server</td>
<td>0000010F</td>
</tr>
<tr>
<td>RNG Cryptographic Client</td>
<td>00000110</td>
</tr>
<tr>
<td>RNG Cryptographic Server</td>
<td>00000111</td>
</tr>
<tr>
<td>Basic Symmetric Key Foundry Client</td>
<td>00000112</td>
</tr>
<tr>
<td>Intermediate Symmetric Key Foundry Client</td>
<td>00000113</td>
</tr>
<tr>
<td>Advanced Symmetric Key Foundry Client</td>
<td>00000114</td>
</tr>
<tr>
<td>Symmetric Key Foundry Server</td>
<td>00000115</td>
</tr>
<tr>
<td>Opaque Managed Object Store Client</td>
<td>00000116</td>
</tr>
<tr>
<td>Opaque Managed Object Store Server</td>
<td>00000117</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>00000118</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>00000119</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>0000011A</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>0000011B</td>
</tr>
<tr>
<td>Storage Array with Self Encrypting Drive Client</td>
<td>0000011C</td>
</tr>
<tr>
<td>Storage Array with Self Encrypting Drive Server</td>
<td>0000011D</td>
</tr>
<tr>
<td>HTTPS Client</td>
<td>0000011E</td>
</tr>
<tr>
<td>HTTPS Server</td>
<td>0000011F</td>
</tr>
<tr>
<td>JSON Client</td>
<td>00000120</td>
</tr>
<tr>
<td>JSON Server</td>
<td>00000121</td>
</tr>
<tr>
<td>XML Client</td>
<td>00000122</td>
</tr>
<tr>
<td>XML Server</td>
<td>00000123</td>
</tr>
<tr>
<td>AES XTS Client</td>
<td>00000124</td>
</tr>
<tr>
<td>AES XTS Server</td>
<td>00000125</td>
</tr>
</tbody>
</table>
Quantum Safe Client 00000126
Quantum Safe Server 00000127
PKCS#11 Client 00000128
PKCS#11 Server 00000129
Baseline Client 0000012A
Baseline Server 0000012B
Complete Server 0000012C
Extensions 8XXXXXXX

Table 434: Profile Name Enumeration

11.41 Protection Level Enumeration

<table>
<thead>
<tr>
<th>Protection Level</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>00000001</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>00000002</td>
</tr>
<tr>
<td></td>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 435: Protection Level Enumeration

11.42 Put Function Enumeration

<table>
<thead>
<tr>
<th>Put Function</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New</td>
<td>00000001</td>
</tr>
<tr>
<td></td>
<td>Replace</td>
<td>00000002</td>
</tr>
<tr>
<td></td>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 436: Put Function Enumeration

11.43 Query Function Enumeration

<table>
<thead>
<tr>
<th>Query Function</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Query Operations</td>
<td>00000001</td>
</tr>
<tr>
<td></td>
<td>Query Objects</td>
<td>00000002</td>
</tr>
<tr>
<td></td>
<td>Query Server Information</td>
<td>00000003</td>
</tr>
<tr>
<td></td>
<td>Query Application Namespaces</td>
<td>00000004</td>
</tr>
<tr>
<td></td>
<td>Query Extension List</td>
<td>00000005</td>
</tr>
<tr>
<td></td>
<td>Query Extension Map</td>
<td>00000006</td>
</tr>
<tr>
<td></td>
<td>Query Attestation Types</td>
<td>00000007</td>
</tr>
<tr>
<td></td>
<td>Query RNGs</td>
<td>00000008</td>
</tr>
<tr>
<td></td>
<td>Query Validations</td>
<td>00000009</td>
</tr>
<tr>
<td></td>
<td>Query Profiles</td>
<td>0000000A</td>
</tr>
<tr>
<td>Name</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>P-192</td>
<td>00000001</td>
<td></td>
</tr>
<tr>
<td>K-163</td>
<td>00000002</td>
<td></td>
</tr>
<tr>
<td>B-163</td>
<td>00000003</td>
<td></td>
</tr>
<tr>
<td>P-224</td>
<td>00000004</td>
<td></td>
</tr>
<tr>
<td>K-233</td>
<td>00000005</td>
<td></td>
</tr>
<tr>
<td>B-233</td>
<td>00000006</td>
<td></td>
</tr>
<tr>
<td>P-256</td>
<td>00000007</td>
<td></td>
</tr>
<tr>
<td>K-283</td>
<td>00000008</td>
<td></td>
</tr>
<tr>
<td>B-283</td>
<td>00000009</td>
<td></td>
</tr>
<tr>
<td>P-384</td>
<td>0000000A</td>
<td></td>
</tr>
<tr>
<td>K-409</td>
<td>0000000B</td>
<td></td>
</tr>
<tr>
<td>B-409</td>
<td>0000000C</td>
<td></td>
</tr>
<tr>
<td>P-521</td>
<td>0000000D</td>
<td></td>
</tr>
<tr>
<td>K-571</td>
<td>0000000E</td>
<td></td>
</tr>
<tr>
<td>B-571</td>
<td>0000000F</td>
<td></td>
</tr>
<tr>
<td>SECP112R1</td>
<td>00000010</td>
<td></td>
</tr>
<tr>
<td>SECP112R2</td>
<td>00000011</td>
<td></td>
</tr>
<tr>
<td>SECP128R1</td>
<td>00000012</td>
<td></td>
</tr>
<tr>
<td>SECP128R2</td>
<td>00000013</td>
<td></td>
</tr>
<tr>
<td>SECP160K1</td>
<td>00000014</td>
<td></td>
</tr>
<tr>
<td>SECP160R1</td>
<td>00000015</td>
<td></td>
</tr>
<tr>
<td>SECP160R2</td>
<td>00000016</td>
<td></td>
</tr>
<tr>
<td>SECP192K1</td>
<td>00000017</td>
<td></td>
</tr>
<tr>
<td>SECP224K1</td>
<td>00000018</td>
<td></td>
</tr>
<tr>
<td>SECP256K1</td>
<td>00000019</td>
<td></td>
</tr>
<tr>
<td>SECT113R1</td>
<td>0000001A</td>
<td></td>
</tr>
</tbody>
</table>

Table 437: Query Function Enumeration
SECT113R2	0000001B
SECT131R1	0000001C
SECT131R2	0000001D
SECT163R1	0000001E
SECT193R1	0000001F
SECT193R2	00000020
SECT239K1	00000021
ANSI9P192V2	00000022
ANSI9P192V3	00000023
ANSI9P239V1	00000024
ANSI9P239V2	00000025
ANSI9P239V3	00000026
ANSI9C2PNB163V1	00000027
ANSI9C2PNB163V2	00000028
ANSI9C2PNB163V3	00000029
ANSI9C2PNB176V1	0000002A
ANSI9C2TNB191V1	0000002B
ANSI9C2TNB191V2	0000002C
ANSI9C2TNB191V3	0000002D
ANSI9C2PNB208W1	0000002E
ANSI9C2TNB239V1	0000002F
ANSI9C2TNB239V2	00000030
ANSI9C2TNB239V3	00000031
ANSI9C2PNB272W1	00000032
ANSI9C2PNB304W1	00000033
ANSI9C2TNB359V1	00000034
ANSI9C2PNB368W1	00000035
ANSI9C2TNB431R1	00000036
BRAINPOOLP160R1	00000037
BRAINPOOLP160T1	00000038
BRAINPOOLP192R1	00000039
BRAINPOOLP192T1	0000003A
BRAINPOOLP224R1	0000003B
BRAINPOOLP224T1	0000003C
BRAINPOOLP256R1	0000003D
BRAINPOOLP256T1	0000003E
BRAINPOOLP320R1	0000003F
BRAINPOOLP320T1	00000040
Table 438: Recommended Curve Enumeration for ECDSA, ECDH, and ECMQV

<table>
<thead>
<tr>
<th>Curve</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAINPOOLP384R1</td>
<td>00000041</td>
</tr>
<tr>
<td>BRAINPOOLP384T1</td>
<td>00000042</td>
</tr>
<tr>
<td>BRAINPOOLP512R1</td>
<td>00000043</td>
</tr>
<tr>
<td>BRAINPOOLP512T1</td>
<td>00000044</td>
</tr>
<tr>
<td>CURVE25519</td>
<td>00000045</td>
</tr>
<tr>
<td>CURVE448</td>
<td>00000046</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>

11.45 Result Reason Enumeration

Following are the Result Reason enumerations.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Namespace Not Supported</td>
<td>The particular Application Namespace is not supported, and the server was not able to generate the Application Data field of an Application Specific Information attribute if the field was omitted from the client request</td>
</tr>
<tr>
<td>Attestation Failed</td>
<td>Operation requires attestation data and the attestation data provided by the client does not validate</td>
</tr>
<tr>
<td>Attestation Required</td>
<td>Operation requires attestation data which was not provided by the client, and the client has set the Attestation Capable indicator to True</td>
</tr>
<tr>
<td>Attribute Instance Not Found</td>
<td>A referenced attribute was found, but the specific instance was not found</td>
</tr>
<tr>
<td>Attribute Not Found</td>
<td>A referenced attribute was not found at all on an object</td>
</tr>
<tr>
<td>Attribute Read Only</td>
<td>Attempt to set a Read Only Attribute</td>
</tr>
<tr>
<td>Attribute Single Instance</td>
<td>Attempt to provide multiple values for a single instance attribute</td>
</tr>
<tr>
<td>Authentication not successful</td>
<td>The authentication information in the request could not be validated, or was not found</td>
</tr>
<tr>
<td>Bad Cryptographic Parameters</td>
<td>Bad Cryptographic Parameters</td>
</tr>
<tr>
<td>Bad Password</td>
<td>Key Format Type is PKCS#12, but missing or multiple PKCS#12 Password Links, or not Secret Data, or not Active</td>
</tr>
<tr>
<td>Codec Error</td>
<td>The low level TTLV, XML, JSON etc. was badly formed and not understood by the server. TTLV connections should be closed as future requests might not be correctly separated</td>
</tr>
<tr>
<td>Cryptographic Failure</td>
<td>The operation failed due to a cryptographic error</td>
</tr>
<tr>
<td>Encoding Option Error</td>
<td>The Encoding Option is not supported as specified by the Encoding Option Enumeration</td>
</tr>
</tbody>
</table>

kmip-spec-v2.0-cs01 Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. 12 June 2019 Page 186 of 230
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Not Supported</td>
<td>The operation is supported, but not a specific feature specified in the request is not supported</td>
</tr>
<tr>
<td>General failure</td>
<td>The request failed for a reason other than the defined reasons above</td>
</tr>
<tr>
<td>Illegal Object Type</td>
<td>Check cannot be performed on this object type</td>
</tr>
<tr>
<td>Incompatible Cryptographic Usage Mask</td>
<td>The cryptographic algorithm or other parameters is not valid for the requested operation</td>
</tr>
<tr>
<td>Internal Server Error</td>
<td>The server had an internal error and could not process the request at this time.</td>
</tr>
<tr>
<td>Invalid Asynchronous Correlation Value</td>
<td>No outstanding operation with the specified Asynchronous Correlation Value exists</td>
</tr>
<tr>
<td>Invalid Attribute</td>
<td>An attribute is invalid for this object for this operation</td>
</tr>
<tr>
<td>Invalid Attribute Value</td>
<td>The value supplied for an attribute is invalid</td>
</tr>
<tr>
<td>Invalid Correlation Value</td>
<td>For streaming cryptographic operations</td>
</tr>
<tr>
<td>Invalid CSR</td>
<td>Invalid Certificate Signing Request</td>
</tr>
<tr>
<td>Invalid Data Type</td>
<td>A data type was invalid for the requested operation</td>
</tr>
<tr>
<td>Invalid Field</td>
<td>The request is syntactically valid but some data in the request (other than an attribute value) has an invalid value</td>
</tr>
<tr>
<td>Invalid Message</td>
<td>The request message was not syntactically understood by the server. For example - the invalid use of a known tag</td>
</tr>
<tr>
<td>Invalid Object Type</td>
<td>Specified object is not valid for the requested operation</td>
</tr>
<tr>
<td>Invalid Password</td>
<td></td>
</tr>
<tr>
<td>Invalid Ticket</td>
<td>The ticket was invalid</td>
</tr>
<tr>
<td>Item Not Found</td>
<td>No object with the specified Unique Identifier exists</td>
</tr>
<tr>
<td>Key Compression Type Not Supported</td>
<td>The object exists, but the server is unable to provide it in the desired Key Compression Type</td>
</tr>
<tr>
<td>Key Format Type Not Supported</td>
<td>The object exists, but the server is unable to provide it in the desired Key Format Type</td>
</tr>
<tr>
<td>Key Value Not Present</td>
<td>A meta data only object. The key value is not present on the server</td>
</tr>
<tr>
<td>Key Wrap Type Not Supported</td>
<td>Key Wrap Type Type is not supported by the server</td>
</tr>
<tr>
<td>Missing data</td>
<td>The operation REQUIRED additional information in the request, which was not present</td>
</tr>
<tr>
<td>Missing Initialization Vector</td>
<td>Missing IV when required for crypto operation</td>
</tr>
<tr>
<td>Multi Valued Attribute</td>
<td>Attempt to Set or Adjust an attribute that has multiple values</td>
</tr>
<tr>
<td>Non Unique Name Attribute</td>
<td>Trying to perform an operation that requests the server to break the constraint on Name attribute being unique</td>
</tr>
<tr>
<td>Not Extractable</td>
<td>Object is not Extractable</td>
</tr>
<tr>
<td>Numeric Range</td>
<td>An operation produced a number that is too large or too small to be stored in the specified data type</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Object Already Exists</td>
<td>for operations such as Import that require that no object with a specific unique identifier exists on a server</td>
</tr>
<tr>
<td>Object Archived</td>
<td>The object SHALL be recovered from the archive before performing the operation</td>
</tr>
<tr>
<td>Object Destroyed</td>
<td>Object exists, but has already been destroyed</td>
</tr>
<tr>
<td>Object Not Found</td>
<td>A requested managed object was not found or did not exist</td>
</tr>
<tr>
<td>Object Type</td>
<td>Invalid object type for the operation</td>
</tr>
<tr>
<td>Operation canceled by requester</td>
<td>The operation was asynchronous, and the operation was canceled by the Cancel operation before it completed successfully</td>
</tr>
<tr>
<td>Operation Not Supported</td>
<td>The operation requested by the request message is not supported by the server</td>
</tr>
<tr>
<td>Permission Denied</td>
<td>Client is not allowed to perform the specified operation</td>
</tr>
<tr>
<td>PKCS#11 Codec Error</td>
<td>There is a Codec error in the Input parameter</td>
</tr>
<tr>
<td>PKCS#11 Invalid Function</td>
<td>The PKCS function is not in the interface</td>
</tr>
<tr>
<td>PKCS#11 Invalid Interface</td>
<td>The interface is unknown or unavailable in the server</td>
</tr>
<tr>
<td>Protection Storage Unavailable</td>
<td>The operation could not be completed with the protections requested (or defaulted).</td>
</tr>
<tr>
<td>Read Only Attribute</td>
<td>Attempt to set a Read Only Attribute</td>
</tr>
<tr>
<td>Response Too Large</td>
<td>Maximum Response Size has been exceeded</td>
</tr>
<tr>
<td>Sensitive</td>
<td>Sensitive keys may not be retrieved unwrapped</td>
</tr>
<tr>
<td>Server Limit Exceeded</td>
<td>Some limit on the server such as database size has been exceeded</td>
</tr>
<tr>
<td>Unknown Enumeration</td>
<td>An enumerated value is not known by the server</td>
</tr>
<tr>
<td>Unknown Message Extension</td>
<td>The server does not support the supplied Message Extension</td>
</tr>
<tr>
<td>Unknown Tag</td>
<td>A tag is not known by the server</td>
</tr>
<tr>
<td>Unsupported Attribute</td>
<td>Attribute is valid in the specification but unsupported by the Server</td>
</tr>
<tr>
<td>Unsupported Cryptographic Parameters</td>
<td>Cryptographic Parameters are valid in the specification but unsupported by the Server</td>
</tr>
<tr>
<td>Unsupported Protocol Version</td>
<td>The operation cannot be performed with the provided protocol version</td>
</tr>
<tr>
<td>Usage Limit Exceeded</td>
<td>The usage limits or request count has been exceeded</td>
</tr>
<tr>
<td>Wrapping Object Archived</td>
<td>Wrapping Object is archived</td>
</tr>
<tr>
<td>Wrapping Object Destroyed</td>
<td>The object exists, but is destroyed</td>
</tr>
<tr>
<td>Wrapping Object Not Found</td>
<td>Wrapping object does not exist</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Wrong Key Lifecycle State</td>
<td>The key lifecycle state is invalid for</td>
</tr>
<tr>
<td></td>
<td>the operation, for example not Active</td>
</tr>
<tr>
<td></td>
<td>for an Encrypt operation</td>
</tr>
<tr>
<td>General failure</td>
<td>The request failed for a reason other</td>
</tr>
<tr>
<td></td>
<td>than any other reason enumeration value.</td>
</tr>
</tbody>
</table>

Table 439: Result Reason Encoding Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Not Found</td>
<td>00000001</td>
</tr>
<tr>
<td>Response Too Large</td>
<td>00000002</td>
</tr>
<tr>
<td>Authentication Not Successful</td>
<td>00000003</td>
</tr>
<tr>
<td>Invalid Message</td>
<td>00000004</td>
</tr>
<tr>
<td>Operation Not Supported</td>
<td>00000005</td>
</tr>
<tr>
<td>Missing Data</td>
<td>00000006</td>
</tr>
<tr>
<td>Invalid Field</td>
<td>00000007</td>
</tr>
<tr>
<td>Feature Not Supported</td>
<td>00000008</td>
</tr>
<tr>
<td>Operation Canceled By Requester</td>
<td>00000009</td>
</tr>
<tr>
<td>Cryptographic Failure</td>
<td>0000000A</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>0000000B</td>
</tr>
<tr>
<td>Permission Denied</td>
<td>0000000C</td>
</tr>
<tr>
<td>Object Archived</td>
<td>0000000D</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>0000000E</td>
</tr>
<tr>
<td>Application Namespace Not Supported</td>
<td>0000000F</td>
</tr>
<tr>
<td>Key Format Type Not Supported</td>
<td>00000010</td>
</tr>
<tr>
<td>Key Compression Type Not Supported</td>
<td>00000011</td>
</tr>
<tr>
<td>Encoding Option Error</td>
<td>00000012</td>
</tr>
<tr>
<td>Key Value Not Present</td>
<td>00000013</td>
</tr>
<tr>
<td>Attestation Required</td>
<td>00000014</td>
</tr>
<tr>
<td>Attestation Failed</td>
<td>00000015</td>
</tr>
<tr>
<td>Sensitive</td>
<td>00000016</td>
</tr>
<tr>
<td>Not Extractable</td>
<td>00000017</td>
</tr>
<tr>
<td>Object Already Exists</td>
<td>00000018</td>
</tr>
<tr>
<td>Invalid Ticket</td>
<td>00000019</td>
</tr>
<tr>
<td>Usage Limit Exceeded</td>
<td>0000001A</td>
</tr>
<tr>
<td>Numeric Range</td>
<td>0000001B</td>
</tr>
<tr>
<td>Invalid Data Type</td>
<td>0000001C</td>
</tr>
<tr>
<td>Error Description</td>
<td>Hex Code</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Read Only Attribute</td>
<td>0000001D</td>
</tr>
<tr>
<td>Multi Valued Attribute</td>
<td>0000001E</td>
</tr>
<tr>
<td>Unsupported Attribute</td>
<td>0000001F</td>
</tr>
<tr>
<td>Attribute Instance Not Found</td>
<td>00000020</td>
</tr>
<tr>
<td>Attribute Not Found</td>
<td>00000021</td>
</tr>
<tr>
<td>Attribute Read Only</td>
<td>00000022</td>
</tr>
<tr>
<td>Attribute Single Valued</td>
<td>00000023</td>
</tr>
<tr>
<td>Bad Cryptographic Parameters</td>
<td>00000024</td>
</tr>
<tr>
<td>Bad Password</td>
<td>00000025</td>
</tr>
<tr>
<td>Codec Error</td>
<td>00000026</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>00000027</td>
</tr>
<tr>
<td>Illegal Object Type</td>
<td>00000028</td>
</tr>
<tr>
<td>Incompatible Cryptographic Usage Mask</td>
<td>00000029</td>
</tr>
<tr>
<td>Internal Server Error</td>
<td>0000002A</td>
</tr>
<tr>
<td>Invalid Asynchronous Correlation Value</td>
<td>0000002B</td>
</tr>
<tr>
<td>Invalid Attribute</td>
<td>0000002C</td>
</tr>
<tr>
<td>Invalid Attribute Value</td>
<td>0000002D</td>
</tr>
<tr>
<td>Invalid Correlation Value</td>
<td>0000002E</td>
</tr>
<tr>
<td>Invalid CSR</td>
<td>0000002F</td>
</tr>
<tr>
<td>Invalid Object Type</td>
<td>00000030</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>00000031</td>
</tr>
<tr>
<td>Key Wrap Type Not Supported</td>
<td>00000032</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>00000033</td>
</tr>
<tr>
<td>Missing Initialization Vector</td>
<td>00000034</td>
</tr>
<tr>
<td>Non Unique Name Attribute</td>
<td>00000035</td>
</tr>
<tr>
<td>Object Destroyed</td>
<td>00000036</td>
</tr>
<tr>
<td>Object Not Found</td>
<td>00000037</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>00000038</td>
</tr>
<tr>
<td>Not Authorised</td>
<td>00000039</td>
</tr>
<tr>
<td>Server Limit Exceeded</td>
<td>0000003A</td>
</tr>
<tr>
<td>Unknown Enumeration</td>
<td>0000003B</td>
</tr>
<tr>
<td>Unknown Message Extension</td>
<td>0000003C</td>
</tr>
<tr>
<td>Unknown Tag</td>
<td>0000003D</td>
</tr>
<tr>
<td>Unsupported Cryptographic Parameters</td>
<td>0000003E</td>
</tr>
<tr>
<td>Unsupported Protocol Version</td>
<td>0000003F</td>
</tr>
<tr>
<td>Wrapping Object Archived</td>
<td>00000040</td>
</tr>
</tbody>
</table>
Wrapping Object Destroyed 00000041
Wrapping Object Not Found 00000042
Wrong Key Lifecycle State 00000043
Protection Storage Unavailable 00000044
PKCS#11 Codec Error 00000045
PKCS#11 Invalid Function 00000046
PKCS#11 Invalid Interface 00000047
Private Protection Storage Unavailable 00000048
Public Protection Storage Unavailable 00000049
General Failure 00000100
Extensions 8XXXXXXXX

Table 440: Result Reason Enumeration

11.46 Result Status Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Result Status</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
<td>Result Status</td>
<td>00000000</td>
</tr>
<tr>
<td>Operation Failed</td>
<td>Result Status</td>
<td>00000001</td>
</tr>
<tr>
<td>Operation Pending</td>
<td>Result Status</td>
<td>00000002</td>
</tr>
<tr>
<td>Operation Undone</td>
<td>Result Status</td>
<td>00000003</td>
</tr>
<tr>
<td>Extensions</td>
<td>Result Status</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>

Table 441: Result Status Enumeration

11.47 Revocation Reason Code Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Revocation Reason Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspecified</td>
<td>Revocation Reason Code</td>
<td>00000001</td>
</tr>
<tr>
<td>Key Compromise</td>
<td>Revocation Reason Code</td>
<td>00000002</td>
</tr>
<tr>
<td>CA Compromise</td>
<td>Revocation Reason Code</td>
<td>00000003</td>
</tr>
<tr>
<td>Affiliation Changed</td>
<td>Revocation Reason Code</td>
<td>00000004</td>
</tr>
<tr>
<td>Superseded</td>
<td>Revocation Reason Code</td>
<td>00000005</td>
</tr>
<tr>
<td>Cessation of Operation</td>
<td>Revocation Reason Code</td>
<td>00000006</td>
</tr>
<tr>
<td>Privilege Withdrawn</td>
<td>Revocation Reason Code</td>
<td>00000007</td>
</tr>
<tr>
<td>Extensions</td>
<td>Revocation Reason Code</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>

Table 442: Revocation Reason Code Enumeration
11.48 RNG Algorithm Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspecified</td>
<td>00000001</td>
</tr>
<tr>
<td>FIPS 186-2</td>
<td>00000002</td>
</tr>
<tr>
<td>DRBG</td>
<td>00000003</td>
</tr>
<tr>
<td>NRBG</td>
<td>00000004</td>
</tr>
<tr>
<td>ANSI X9.31</td>
<td>00000005</td>
</tr>
<tr>
<td>ANSI X9.62</td>
<td>00000006</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>

Note: the user should be aware that a number of these algorithms are no longer recommended for general use and/or are deprecated. They are included for completeness.

11.49 RNG Mode Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspecified</td>
<td>00000001</td>
</tr>
<tr>
<td>Shared Instantiation</td>
<td>00000002</td>
</tr>
<tr>
<td>Non-Shared Instantiation</td>
<td>00000003</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>

11.50 Secret Data Type Enumeration

<table>
<thead>
<tr>
<th>Secret Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password</td>
<td>00000001</td>
</tr>
<tr>
<td>Seed</td>
<td>00000002</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>

Table 443: Secret Data Type Enumeration
11.51 Shredding Algorithm Enumeration

<table>
<thead>
<tr>
<th>Shredding Algorithm</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspecified</td>
<td>00000001</td>
</tr>
<tr>
<td>Cryptographic</td>
<td>00000002</td>
</tr>
<tr>
<td>Unsupported</td>
<td>00000003</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

11.52 Split Key Method Enumeration

<table>
<thead>
<tr>
<th>Split Key Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>XOR</td>
<td>00000001</td>
</tr>
<tr>
<td>Polynomial Sharing GF (2^{16})</td>
<td>00000002</td>
</tr>
<tr>
<td>Polynomial Sharing Prime Field</td>
<td>00000003</td>
</tr>
<tr>
<td>Polynomial Sharing GF (2^{8})</td>
<td>00000004</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 444: Split Key Method Enumeration

11.53 State Enumeration

<table>
<thead>
<tr>
<th>State</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Active</td>
<td>00000001</td>
</tr>
<tr>
<td>Active</td>
<td>00000002</td>
</tr>
<tr>
<td>Deactivated</td>
<td>00000003</td>
</tr>
<tr>
<td>Compromised</td>
<td>00000004</td>
</tr>
<tr>
<td>Destroyed</td>
<td>00000005</td>
</tr>
<tr>
<td>Destroyed Compromised</td>
<td>00000006</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 445: State Enumeration

11.54 Tag Enumeration

All tags SHALL contain either the value 42 in hex or the value 54 in hex as the first byte of a three (3) byte enumeration value. Tags defined by this specification contain hex 42 in the first byte. Extensions contain the value 54 hex in the first byte.

<table>
<thead>
<tr>
<th>Tag Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Unused)</td>
<td>000000 - 420000</td>
</tr>
<tr>
<td>Activation Date</td>
<td>420001</td>
</tr>
<tr>
<td>Tag Name</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Application Data</td>
<td>420002</td>
</tr>
<tr>
<td>Application Namespace</td>
<td>420003</td>
</tr>
<tr>
<td>Application Specific Information</td>
<td>420004</td>
</tr>
<tr>
<td>Archive Date</td>
<td>420005</td>
</tr>
<tr>
<td>Asynchronous Correlation Value</td>
<td>420006</td>
</tr>
<tr>
<td>Asynchronous Indicator</td>
<td>420007</td>
</tr>
<tr>
<td>Attribute</td>
<td>420008</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>420009</td>
</tr>
<tr>
<td>Attribute Name</td>
<td>42000A</td>
</tr>
<tr>
<td>Attribute Value</td>
<td>42000B</td>
</tr>
<tr>
<td>Authentication</td>
<td>42000C</td>
</tr>
<tr>
<td>Batch Count</td>
<td>42000D</td>
</tr>
<tr>
<td>Batch Error Continuation Option</td>
<td>42000E</td>
</tr>
<tr>
<td>Batch Item</td>
<td>42000F</td>
</tr>
<tr>
<td>Batch Order Option</td>
<td>420010</td>
</tr>
<tr>
<td>Block Cipher Mode</td>
<td>420011</td>
</tr>
<tr>
<td>Cancellation Result</td>
<td>420012</td>
</tr>
<tr>
<td>Certificate</td>
<td>420013</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>420014</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>420015</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>420016</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>420017</td>
</tr>
<tr>
<td>Certificate Request</td>
<td>420018</td>
</tr>
<tr>
<td>Certificate Request Type</td>
<td>420019</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>42001A</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>42001B</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>42001C</td>
</tr>
<tr>
<td>Certificate Type</td>
<td>42001D</td>
</tr>
<tr>
<td>Certificate Value</td>
<td>42001E</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>42001F</td>
</tr>
<tr>
<td>Compromise Date</td>
<td>420020</td>
</tr>
<tr>
<td>Compromise Occurrence Date</td>
<td>420021</td>
</tr>
<tr>
<td>Contact Information</td>
<td>420022</td>
</tr>
<tr>
<td>Credential</td>
<td>420023</td>
</tr>
<tr>
<td>Credential Type</td>
<td>420024</td>
</tr>
<tr>
<td>Credential Value</td>
<td>420025</td>
</tr>
<tr>
<td>Tag</td>
<td>Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Criticality Indicator</td>
<td>420026</td>
</tr>
<tr>
<td>CRT Coefficient</td>
<td>420027</td>
</tr>
<tr>
<td>Cryptographic Algorithm</td>
<td>420028</td>
</tr>
<tr>
<td>Cryptographic Domain Parameters</td>
<td>420029</td>
</tr>
<tr>
<td>Cryptographic Length</td>
<td>42002A</td>
</tr>
<tr>
<td>Cryptographic Parameters</td>
<td>42002B</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>42002C</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>42002D</td>
</tr>
<tr>
<td>D</td>
<td>42002E</td>
</tr>
<tr>
<td>Deactivation Date</td>
<td>42002F</td>
</tr>
<tr>
<td>Derivation Data</td>
<td>420030</td>
</tr>
<tr>
<td>Derivation Method</td>
<td>420031</td>
</tr>
<tr>
<td>Derivation Parameters</td>
<td>420032</td>
</tr>
<tr>
<td>Destroy Date</td>
<td>420033</td>
</tr>
<tr>
<td>Digest</td>
<td>420034</td>
</tr>
<tr>
<td>Digest Value</td>
<td>420035</td>
</tr>
<tr>
<td>Encryption Key Information</td>
<td>420036</td>
</tr>
<tr>
<td>G</td>
<td>420037</td>
</tr>
<tr>
<td>Hashing Algorithm</td>
<td>420038</td>
</tr>
<tr>
<td>Initial Date</td>
<td>420039</td>
</tr>
<tr>
<td>Initialization Vector</td>
<td>42003A</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>42003B</td>
</tr>
<tr>
<td>Iteration Count</td>
<td>42003C</td>
</tr>
<tr>
<td>IV/Counter/Nonce</td>
<td>42003D</td>
</tr>
<tr>
<td>J</td>
<td>42003E</td>
</tr>
<tr>
<td>Key</td>
<td>42003F</td>
</tr>
<tr>
<td>Key Block</td>
<td>420040</td>
</tr>
<tr>
<td>Key Compression Type</td>
<td>420041</td>
</tr>
<tr>
<td>Key Format Type</td>
<td>420042</td>
</tr>
<tr>
<td>Key Material</td>
<td>420043</td>
</tr>
<tr>
<td>Key Part Identifier</td>
<td>420044</td>
</tr>
<tr>
<td>Key Value</td>
<td>420045</td>
</tr>
<tr>
<td>Key Wrapping Data</td>
<td>420046</td>
</tr>
<tr>
<td>Key Wrapping Specification</td>
<td>420047</td>
</tr>
<tr>
<td>Last Change Date</td>
<td>420048</td>
</tr>
<tr>
<td>Tag</td>
<td>Name</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Lease Time</td>
<td></td>
</tr>
<tr>
<td>Link</td>
<td></td>
</tr>
<tr>
<td>Link Type</td>
<td></td>
</tr>
<tr>
<td>Linked Object Identifier</td>
<td></td>
</tr>
<tr>
<td>MAC/Signature</td>
<td></td>
</tr>
<tr>
<td>MAC/Signature Key Information</td>
<td></td>
</tr>
<tr>
<td>Maximum Items</td>
<td></td>
</tr>
<tr>
<td>Maximum Response Size</td>
<td></td>
</tr>
<tr>
<td>Message Extension</td>
<td></td>
</tr>
<tr>
<td>Modulus</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Name Type</td>
<td></td>
</tr>
<tr>
<td>Name Value</td>
<td></td>
</tr>
<tr>
<td>Object Group</td>
<td></td>
</tr>
<tr>
<td>Object Type</td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
</tr>
<tr>
<td>Opaque Data Type</td>
<td></td>
</tr>
<tr>
<td>Opaque Data Value</td>
<td></td>
</tr>
<tr>
<td>Opaque Object</td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>(Reserved)</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Padding Method</td>
<td></td>
</tr>
<tr>
<td>Prime Exponent P</td>
<td></td>
</tr>
<tr>
<td>Prime Exponent Q</td>
<td></td>
</tr>
<tr>
<td>Prime Field Size</td>
<td></td>
</tr>
<tr>
<td>Private Exponent</td>
<td></td>
</tr>
<tr>
<td>Private Key</td>
<td></td>
</tr>
<tr>
<td>(Reserved)</td>
<td></td>
</tr>
<tr>
<td>Private Key Unique Identifier</td>
<td></td>
</tr>
<tr>
<td>Process Start Date</td>
<td></td>
</tr>
<tr>
<td>Protect Stop Date</td>
<td></td>
</tr>
<tr>
<td>Protocol Version</td>
<td></td>
</tr>
<tr>
<td>Protocol Version Major</td>
<td></td>
</tr>
<tr>
<td>Protocol Version Minor</td>
<td></td>
</tr>
<tr>
<td>Public Exponent</td>
<td></td>
</tr>
<tr>
<td>Tag</td>
<td>Name</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Public Key</td>
</tr>
<tr>
<td></td>
<td>(Reserved)</td>
</tr>
<tr>
<td></td>
<td>Public Key Unique Identifier</td>
</tr>
<tr>
<td></td>
<td>Put Function</td>
</tr>
<tr>
<td></td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>Q String</td>
</tr>
<tr>
<td></td>
<td>Qlength</td>
</tr>
<tr>
<td></td>
<td>Query Function</td>
</tr>
<tr>
<td></td>
<td>Recommended Curve</td>
</tr>
<tr>
<td></td>
<td>Replaced Unique Identifier</td>
</tr>
<tr>
<td></td>
<td>Request Header</td>
</tr>
<tr>
<td></td>
<td>Request Message</td>
</tr>
<tr>
<td></td>
<td>Request Payload</td>
</tr>
<tr>
<td></td>
<td>Response Header</td>
</tr>
<tr>
<td></td>
<td>Response Message</td>
</tr>
<tr>
<td></td>
<td>Response Payload</td>
</tr>
<tr>
<td></td>
<td>Result Message</td>
</tr>
<tr>
<td></td>
<td>Result Reason</td>
</tr>
<tr>
<td></td>
<td>Result Status</td>
</tr>
<tr>
<td></td>
<td>Revocation Message</td>
</tr>
<tr>
<td></td>
<td>Revocation Reason</td>
</tr>
<tr>
<td></td>
<td>Revocation Reason Code</td>
</tr>
<tr>
<td></td>
<td>Key Role Type</td>
</tr>
<tr>
<td></td>
<td>Salt</td>
</tr>
<tr>
<td></td>
<td>Secret Data</td>
</tr>
<tr>
<td></td>
<td>Secret Data Type</td>
</tr>
<tr>
<td></td>
<td>(Reserved)</td>
</tr>
<tr>
<td></td>
<td>Server Information</td>
</tr>
<tr>
<td></td>
<td>Split Key</td>
</tr>
<tr>
<td></td>
<td>Split Key Method</td>
</tr>
<tr>
<td></td>
<td>Split Key Parts</td>
</tr>
<tr>
<td></td>
<td>Split Key Threshold</td>
</tr>
<tr>
<td></td>
<td>State</td>
</tr>
<tr>
<td></td>
<td>Storage Status Mask</td>
</tr>
<tr>
<td></td>
<td>Symmetric Key</td>
</tr>
<tr>
<td></td>
<td>(Reserved)</td>
</tr>
<tr>
<td>Tag</td>
<td>Name</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>420091</td>
<td>(Reserved)</td>
</tr>
<tr>
<td>420092</td>
<td>Time Stamp</td>
</tr>
<tr>
<td>420093</td>
<td>Unique Batch Item ID</td>
</tr>
<tr>
<td>420094</td>
<td>Unique Identifier</td>
</tr>
<tr>
<td>420095</td>
<td>Usage Limits</td>
</tr>
<tr>
<td>420096</td>
<td>Usage Limits Count</td>
</tr>
<tr>
<td>420097</td>
<td>Usage Limits Total</td>
</tr>
<tr>
<td>420098</td>
<td>Usage Limits Unit</td>
</tr>
<tr>
<td>420099</td>
<td>Username</td>
</tr>
<tr>
<td>42009A</td>
<td>Validity Date</td>
</tr>
<tr>
<td>42009B</td>
<td>Validity Indicator</td>
</tr>
<tr>
<td>42009C</td>
<td>Vendor Extension</td>
</tr>
<tr>
<td>42009D</td>
<td>Vendor Identification</td>
</tr>
<tr>
<td>42009E</td>
<td>Wrapping Method</td>
</tr>
<tr>
<td>42009F</td>
<td>X</td>
</tr>
<tr>
<td>4200A0</td>
<td>Y</td>
</tr>
<tr>
<td>4200A1</td>
<td>Password</td>
</tr>
<tr>
<td>4200A2</td>
<td>Device Identifier</td>
</tr>
<tr>
<td>4200A3</td>
<td>Encoding Option</td>
</tr>
<tr>
<td>4200A4</td>
<td>Extension Information</td>
</tr>
<tr>
<td>4200A5</td>
<td>Extension Name</td>
</tr>
<tr>
<td>4200A6</td>
<td>Extension Tag</td>
</tr>
<tr>
<td>4200A7</td>
<td>Extension Type</td>
</tr>
<tr>
<td>4200A8</td>
<td>Fresh</td>
</tr>
<tr>
<td>4200A9</td>
<td>Machine Identifier</td>
</tr>
<tr>
<td>4200AA</td>
<td>Media Identifier</td>
</tr>
<tr>
<td>4200AB</td>
<td>Network Identifier</td>
</tr>
<tr>
<td>4200AC</td>
<td>Object Group Member</td>
</tr>
<tr>
<td>4200AD</td>
<td>Certificate Length</td>
</tr>
<tr>
<td>4200AE</td>
<td>Digital Signature Algorithm</td>
</tr>
<tr>
<td>4200AF</td>
<td>Certificate Serial Number</td>
</tr>
<tr>
<td>4200B0</td>
<td>Device Serial Number</td>
</tr>
<tr>
<td>4200B1</td>
<td>Issuer Alternative Name</td>
</tr>
<tr>
<td>4200B2</td>
<td>Issuer Distinguished Name</td>
</tr>
<tr>
<td>4200B3</td>
<td>Subject Alternative Name</td>
</tr>
<tr>
<td>4200B4</td>
<td>Subject Distinguished Name</td>
</tr>
<tr>
<td>Tag</td>
<td>Name</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>X.509 Certificate Identifier</td>
</tr>
<tr>
<td></td>
<td>X.509 Certificate Issuer</td>
</tr>
<tr>
<td></td>
<td>X.509 Certificate Subject</td>
</tr>
<tr>
<td></td>
<td>Key Value Location</td>
</tr>
<tr>
<td></td>
<td>Key Value Location Value</td>
</tr>
<tr>
<td></td>
<td>Key Value Location Type</td>
</tr>
<tr>
<td></td>
<td>Key Value Present</td>
</tr>
<tr>
<td></td>
<td>Original Creation Date</td>
</tr>
<tr>
<td></td>
<td>PGP Key</td>
</tr>
<tr>
<td></td>
<td>PGP Key Version</td>
</tr>
<tr>
<td></td>
<td>Alternative Name</td>
</tr>
<tr>
<td></td>
<td>Alternative Name Value</td>
</tr>
<tr>
<td></td>
<td>Alternative Name Type</td>
</tr>
<tr>
<td></td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td>Signature Data</td>
</tr>
<tr>
<td></td>
<td>Data Length</td>
</tr>
<tr>
<td></td>
<td>Random IV</td>
</tr>
<tr>
<td></td>
<td>MAC Data</td>
</tr>
<tr>
<td></td>
<td>Attestation Type</td>
</tr>
<tr>
<td></td>
<td>Nonce</td>
</tr>
<tr>
<td></td>
<td>Nonce ID</td>
</tr>
<tr>
<td></td>
<td>Nonce Value</td>
</tr>
<tr>
<td></td>
<td>Attestation Measurement</td>
</tr>
<tr>
<td></td>
<td>Attestation Assertion</td>
</tr>
<tr>
<td></td>
<td>IV Length</td>
</tr>
<tr>
<td></td>
<td>Tag Length</td>
</tr>
<tr>
<td></td>
<td>Fixed Field Length</td>
</tr>
<tr>
<td></td>
<td>Counter Length</td>
</tr>
<tr>
<td></td>
<td>Initial Counter Value</td>
</tr>
<tr>
<td></td>
<td>Invocation Field Length</td>
</tr>
<tr>
<td></td>
<td>Attestation Capable Indicator</td>
</tr>
<tr>
<td></td>
<td>Offset Items</td>
</tr>
<tr>
<td></td>
<td>Located Items</td>
</tr>
<tr>
<td></td>
<td>Correlation Value</td>
</tr>
<tr>
<td></td>
<td>Init Indicator</td>
</tr>
<tr>
<td></td>
<td>Final Indicator</td>
</tr>
<tr>
<td>Tag</td>
<td>Name</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>RNG Parameters</td>
<td>RNG Algorithm</td>
</tr>
<tr>
<td></td>
<td>DRBG Algorithm</td>
</tr>
<tr>
<td></td>
<td>FIPS186 Variation</td>
</tr>
<tr>
<td></td>
<td>Prediction Resistance</td>
</tr>
<tr>
<td></td>
<td>Random Number Generator</td>
</tr>
<tr>
<td></td>
<td>Validation Information</td>
</tr>
<tr>
<td></td>
<td>Validation Authority Type</td>
</tr>
<tr>
<td></td>
<td>Validation Authority Country</td>
</tr>
<tr>
<td></td>
<td>Validation Authority URI</td>
</tr>
<tr>
<td></td>
<td>Validation Version Major</td>
</tr>
<tr>
<td></td>
<td>Validation Version Minor</td>
</tr>
<tr>
<td></td>
<td>Validation Type</td>
</tr>
<tr>
<td></td>
<td>Validation Level</td>
</tr>
<tr>
<td></td>
<td>Validation Certificate Identifier</td>
</tr>
<tr>
<td></td>
<td>Validation Certificate URI</td>
</tr>
<tr>
<td></td>
<td>Validation Vendor URI</td>
</tr>
<tr>
<td></td>
<td>Validation Profile</td>
</tr>
<tr>
<td></td>
<td>Profile Information</td>
</tr>
<tr>
<td></td>
<td>Profile Name</td>
</tr>
<tr>
<td></td>
<td>Server URI</td>
</tr>
<tr>
<td></td>
<td>Server Port</td>
</tr>
<tr>
<td></td>
<td>Streaming Capability</td>
</tr>
<tr>
<td></td>
<td>Asynchronous Capability</td>
</tr>
<tr>
<td></td>
<td>Attestation Capability</td>
</tr>
<tr>
<td></td>
<td>Unwrap Mode</td>
</tr>
<tr>
<td></td>
<td>Destroy Action</td>
</tr>
<tr>
<td></td>
<td>Shredding Algorithm</td>
</tr>
<tr>
<td></td>
<td>RNG Mode</td>
</tr>
<tr>
<td></td>
<td>Client Registration Method</td>
</tr>
<tr>
<td></td>
<td>Capability Information</td>
</tr>
<tr>
<td></td>
<td>Key Wrap Type</td>
</tr>
<tr>
<td></td>
<td>Batch Undo Capability</td>
</tr>
<tr>
<td></td>
<td>Batch Continue Capability</td>
</tr>
<tr>
<td></td>
<td>PKCS#12 Friendly Name</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>Tag</td>
<td>Name</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Comment</td>
<td>Authenticated Encryption Additional Data</td>
</tr>
<tr>
<td></td>
<td>Authenticated Encryption Tag</td>
</tr>
<tr>
<td>Salt Length</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mask Generator</td>
</tr>
<tr>
<td></td>
<td>Mask Generator Hashing Algorithm</td>
</tr>
<tr>
<td></td>
<td>P Source</td>
</tr>
<tr>
<td></td>
<td>Trailer Field</td>
</tr>
<tr>
<td></td>
<td>Client Correlation Value</td>
</tr>
<tr>
<td></td>
<td>Server Correlation Value</td>
</tr>
<tr>
<td></td>
<td>Digested Data</td>
</tr>
<tr>
<td></td>
<td>Certificate Subject CN</td>
</tr>
<tr>
<td></td>
<td>Certificate Subject O</td>
</tr>
<tr>
<td></td>
<td>Certificate Subject OU</td>
</tr>
<tr>
<td></td>
<td>Certificate Subject Email</td>
</tr>
<tr>
<td></td>
<td>Certificate Subject C</td>
</tr>
<tr>
<td></td>
<td>Certificate Subject ST</td>
</tr>
<tr>
<td></td>
<td>Certificate Subject L</td>
</tr>
<tr>
<td></td>
<td>Certificate Subject UID</td>
</tr>
<tr>
<td></td>
<td>Certificate Subject Serial Number</td>
</tr>
<tr>
<td></td>
<td>Certificate Subject Title</td>
</tr>
<tr>
<td></td>
<td>Certificate Subject DC</td>
</tr>
<tr>
<td></td>
<td>Certificate Subject DN Qualifier</td>
</tr>
<tr>
<td></td>
<td>Certificate Issuer CN</td>
</tr>
<tr>
<td></td>
<td>Certificate Issuer O</td>
</tr>
<tr>
<td></td>
<td>Certificate Issuer OU</td>
</tr>
<tr>
<td></td>
<td>Certificate Issuer Email</td>
</tr>
<tr>
<td></td>
<td>Certificate Issuer C</td>
</tr>
<tr>
<td></td>
<td>Certificate Issuer ST</td>
</tr>
<tr>
<td></td>
<td>Certificate Issuer L</td>
</tr>
<tr>
<td></td>
<td>Certificate Issuer UID</td>
</tr>
<tr>
<td></td>
<td>Certificate Issuer Serial Number</td>
</tr>
<tr>
<td></td>
<td>Certificate Issuer Title</td>
</tr>
<tr>
<td></td>
<td>Certificate Issuer DC</td>
</tr>
<tr>
<td></td>
<td>Certificate Issuer DN Qualifier</td>
</tr>
<tr>
<td>Name</td>
<td>Value</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Sensitive</td>
<td>420120</td>
</tr>
<tr>
<td>Always Sensitive</td>
<td>420121</td>
</tr>
<tr>
<td>Extractable</td>
<td>420122</td>
</tr>
<tr>
<td>Never Extractable</td>
<td>420123</td>
</tr>
<tr>
<td>Replace Existing Attributes</td>
<td>420124</td>
</tr>
<tr>
<td>Common Attributes</td>
<td>420126</td>
</tr>
<tr>
<td>Private Key Attributes</td>
<td>420127</td>
</tr>
<tr>
<td>Public Key Attributes</td>
<td>420128</td>
</tr>
<tr>
<td>Extension Enumeration</td>
<td>420129</td>
</tr>
<tr>
<td>Extension Attribute</td>
<td>42012A</td>
</tr>
<tr>
<td>Extension Parent Structure Tag</td>
<td>42012B</td>
</tr>
<tr>
<td>Extension Description</td>
<td>42012C</td>
</tr>
<tr>
<td>Server Name</td>
<td>42012D</td>
</tr>
<tr>
<td>Server Serial Number</td>
<td>42012E</td>
</tr>
<tr>
<td>Server Version</td>
<td>42012F</td>
</tr>
<tr>
<td>Server Load</td>
<td>420130</td>
</tr>
<tr>
<td>Product Name</td>
<td>420131</td>
</tr>
<tr>
<td>Build Level</td>
<td>420132</td>
</tr>
<tr>
<td>Build Date</td>
<td>420133</td>
</tr>
<tr>
<td>Cluster Info</td>
<td>420134</td>
</tr>
<tr>
<td>Alternate Failover Endpoints</td>
<td>420135</td>
</tr>
<tr>
<td>Short Unique Identifier</td>
<td>420136</td>
</tr>
<tr>
<td>Reserved</td>
<td>420137</td>
</tr>
<tr>
<td>Tag</td>
<td>420138</td>
</tr>
<tr>
<td>Certificate Request Unique Identifier</td>
<td>420139</td>
</tr>
<tr>
<td>NIST Key Type</td>
<td>42013A</td>
</tr>
<tr>
<td>Attribute Reference</td>
<td>42013B</td>
</tr>
<tr>
<td>Current Attribute</td>
<td>42013C</td>
</tr>
<tr>
<td>New Attribute</td>
<td>42013D</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>42013E</td>
</tr>
<tr>
<td>(Reserved)</td>
<td>42013F</td>
</tr>
<tr>
<td>Certificate Request Value</td>
<td>420140</td>
</tr>
<tr>
<td>Log Message</td>
<td>420141</td>
</tr>
<tr>
<td>Profile Version</td>
<td>420142</td>
</tr>
<tr>
<td>Tag</td>
<td>Name</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>kmip-spec-v2.0-cs01</td>
<td>Standards Track Work Product</td>
</tr>
<tr>
<td>Copyright © OASIS Open 2019. All Rights Reserved.</td>
<td></td>
</tr>
<tr>
<td>kmip-spec-v2.0-cs01</td>
<td></td>
</tr>
<tr>
<td>Page 203 of 230</td>
<td></td>
</tr>
<tr>
<td>Tag Name</td>
<td>Value</td>
</tr>
<tr>
<td>Profile Version Major</td>
<td>420143</td>
</tr>
<tr>
<td>Profile Version Minor</td>
<td>420144</td>
</tr>
<tr>
<td>Protection Level</td>
<td>420145</td>
</tr>
<tr>
<td>Protection Period</td>
<td>420146</td>
</tr>
<tr>
<td>Quantum Safe</td>
<td>420147</td>
</tr>
<tr>
<td>Quantum Safe Capability</td>
<td>420148</td>
</tr>
<tr>
<td>Ticket</td>
<td>420149</td>
</tr>
<tr>
<td>Ticket Type</td>
<td>42014A</td>
</tr>
<tr>
<td>Ticket Value</td>
<td>42014B</td>
</tr>
<tr>
<td>Request Count</td>
<td>42014C</td>
</tr>
<tr>
<td>Rights</td>
<td>42014D</td>
</tr>
<tr>
<td>Objects</td>
<td>42014E</td>
</tr>
<tr>
<td>Operations</td>
<td>42014F</td>
</tr>
<tr>
<td>Right</td>
<td>420150</td>
</tr>
<tr>
<td>Endpoint Role</td>
<td>420151</td>
</tr>
<tr>
<td>Defaults Information</td>
<td>420152</td>
</tr>
<tr>
<td>Object Defaults</td>
<td>420153</td>
</tr>
<tr>
<td>Ephemeral</td>
<td>420154</td>
</tr>
<tr>
<td>Server Hashed Password</td>
<td>420155</td>
</tr>
<tr>
<td>One Time Password</td>
<td>420156</td>
</tr>
<tr>
<td>Hashed Password</td>
<td>420157</td>
</tr>
<tr>
<td>Adjustment Type</td>
<td>420158</td>
</tr>
<tr>
<td>PKCS#11 Interface</td>
<td>420159</td>
</tr>
<tr>
<td>PKCS#11 Function</td>
<td>42015A</td>
</tr>
<tr>
<td>PKCS#11 Input Parameters</td>
<td>42015B</td>
</tr>
<tr>
<td>PKCS#11 Output Parameters</td>
<td>42015C</td>
</tr>
<tr>
<td>PKCS#11 Return Code</td>
<td>42015D</td>
</tr>
<tr>
<td>Protection Storage Mask</td>
<td>42015E</td>
</tr>
<tr>
<td>Protection Storage Masks</td>
<td>42015F</td>
</tr>
<tr>
<td>Interop Function</td>
<td>420160</td>
</tr>
<tr>
<td>Interop Identifier</td>
<td>420161</td>
</tr>
<tr>
<td>Adjustment Value</td>
<td>420162</td>
</tr>
<tr>
<td>Common Protection Storage Masks</td>
<td>420163</td>
</tr>
<tr>
<td>Private Protection Storage Masks</td>
<td>420164</td>
</tr>
<tr>
<td>Public Protection Storage Masks</td>
<td>420165</td>
</tr>
</tbody>
</table>
Table 446: Tag Enumeration

<table>
<thead>
<tr>
<th>Tag</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Reserved)</td>
<td>420XXX – 42FFFF</td>
<td></td>
</tr>
<tr>
<td>(Unused)</td>
<td>430000 – 53FFFF</td>
<td></td>
</tr>
<tr>
<td>Extensions</td>
<td>540000 – 54FFFF</td>
<td></td>
</tr>
<tr>
<td>(Unused)</td>
<td>550000 – FFFFFF</td>
<td></td>
</tr>
</tbody>
</table>

11.55 Ticket Type Enumeration

Table 447: Ticket Type Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login</td>
<td>00000001</td>
<td></td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
<td></td>
</tr>
</tbody>
</table>

11.56 Unique Identifier Enumeration

The following values may be specified in an operation request for a Unique Identifier: If multiple unique identifiers would be referenced then the operation is repeated for each of them. If an operation appears multiple times in a request, it is the most recent that is referred to.
Unique Identifier Enumerations

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID Placeholder</td>
<td>00000001</td>
</tr>
<tr>
<td>Certify</td>
<td>00000002</td>
</tr>
<tr>
<td>Create</td>
<td>00000003</td>
</tr>
<tr>
<td>Create Key Pair</td>
<td>00000004</td>
</tr>
<tr>
<td>Create Key Pair Private Key</td>
<td>00000005</td>
</tr>
<tr>
<td>Create Key Pair Public Key</td>
<td>00000006</td>
</tr>
<tr>
<td>Create Split Key</td>
<td>00000007</td>
</tr>
<tr>
<td>Derive Key</td>
<td>00000008</td>
</tr>
<tr>
<td>Import</td>
<td>00000009</td>
</tr>
<tr>
<td>Join Split Key</td>
<td>0000000A</td>
</tr>
<tr>
<td>Locate</td>
<td>0000000B</td>
</tr>
<tr>
<td>Register</td>
<td>0000000C</td>
</tr>
<tr>
<td>Re-key</td>
<td>0000000D</td>
</tr>
<tr>
<td>Re-certify</td>
<td>0000000E</td>
</tr>
<tr>
<td>Re-key Key Pair</td>
<td>0000000F</td>
</tr>
<tr>
<td>Re-key Key Pair Private Key</td>
<td>00000010</td>
</tr>
<tr>
<td>Re-key Key Pair Public Key</td>
<td>00000011</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 448: Unique Identifier Enumeration

11.57 Unwrap Mode Enumeration

<table>
<thead>
<tr>
<th>Unwrap Mode</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspecified</td>
<td>00000001</td>
</tr>
<tr>
<td>Processed</td>
<td>00000002</td>
</tr>
<tr>
<td>Not Processed</td>
<td>00000003</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 449: Unwrap Mode Enumeration

11.58 Usage Limits Unit Enumeration

<table>
<thead>
<tr>
<th>Usage Limits Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte</td>
<td>00000001</td>
</tr>
<tr>
<td>Object</td>
<td>00000002</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 450: Usage Limits Unit Enumeration
11.59 Validity Indicator Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>00000001</td>
</tr>
<tr>
<td>Invalid</td>
<td>00000002</td>
</tr>
<tr>
<td>Unknown</td>
<td>00000003</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 451: Validity Indicator Enumeration

11.60 Wrapping Method Enumeration

The following wrapping methods are currently defined:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encrypt only</td>
<td>encryption using a symmetric key or public key, or authenticated encryption algorithms that use a single key</td>
</tr>
<tr>
<td>MAC/sign only</td>
<td>either MACing the Key Value with a symmetric key, or signing the Key Value with a private key</td>
</tr>
<tr>
<td>Encrypt then MAC/sign</td>
<td></td>
</tr>
<tr>
<td>MAC/sign then encrypt.</td>
<td></td>
</tr>
<tr>
<td>TR-31</td>
<td></td>
</tr>
<tr>
<td>Extensions</td>
<td></td>
</tr>
</tbody>
</table>

Table 452: Key Wrapping Methods Description

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encrypt</td>
<td>00000001</td>
</tr>
<tr>
<td>MAC/sign</td>
<td>00000002</td>
</tr>
<tr>
<td>Encrypt then MAC/sign</td>
<td>00000003</td>
</tr>
<tr>
<td>MAC/sign then encrypt</td>
<td>00000004</td>
</tr>
<tr>
<td>TR-31</td>
<td>00000005</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXX</td>
</tr>
</tbody>
</table>

Table 453: Wrapping Method Enumeration
11.61 Validation Authority Type Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Validation Authority Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspecified</td>
<td>00000001</td>
</tr>
<tr>
<td>NIST CMVP</td>
<td>00000002</td>
</tr>
<tr>
<td>Common Criteria</td>
<td>00000003</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>

11.62 Validation Type Enumeration

<table>
<thead>
<tr>
<th>Name</th>
<th>Validation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspecified</td>
<td>00000001</td>
</tr>
<tr>
<td>Hardware</td>
<td>00000002</td>
</tr>
<tr>
<td>Software</td>
<td>00000003</td>
</tr>
<tr>
<td>Firmware</td>
<td>00000004</td>
</tr>
<tr>
<td>Hybrid</td>
<td>00000005</td>
</tr>
<tr>
<td>Extensions</td>
<td>8XXXXXXXX</td>
</tr>
</tbody>
</table>
12Bit Masks

All mask values SHALL be encoded as Integers in TTLV encoding and SHALL be encoded as Integers but in symbolic form in XML and JSON encodings.

12.1 Cryptographic Usage Mask

The following Cryptographic Usage Masks are currently defined:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Valid KMIP Server Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign</td>
<td>Allow for signing. Applies to Sign operation. Valid for PGP Key, Private Key</td>
<td>Yes</td>
</tr>
<tr>
<td>Verify</td>
<td>Allow for signature verification. Applies to Signature Verify and Validate operations. Valid for PGP Key, Certificate and Public Key.</td>
<td>Yes</td>
</tr>
<tr>
<td>Encrypt</td>
<td>Allow for encryption. Applies to Encrypt operation. Valid for PGP Key, Private Key, Public Key and Symmetric Key. Encryption for the purpose of wrapping is separate Wrap Key value.</td>
<td>Yes</td>
</tr>
<tr>
<td>Decrypt</td>
<td>Allow for decryption. Applies to Decrypt operation. Valid for PGP Key, Private Key, Public Key and Symmetric Key. Decryption for the purpose of unwrapping is separate Unwrap Key value.</td>
<td>Yes</td>
</tr>
<tr>
<td>Wrap Key</td>
<td>Allow for key wrapping. Applies to Get operation when wrapping is required by Wrapping Specification is provided on the object used to Wrap. Valid for PGP Key, Private Key and Symmetric Key. Note: even if the underlying wrapping mechanism is encryption, this value is logically separate.</td>
<td>Yes</td>
</tr>
<tr>
<td>Unwrap Key</td>
<td>Allow for key unwrapping. Applies to Get operation when unwrapping is required on the object used to Unwrap. Valid for PGP Key, Private Key, Public Key and Symmetric Key. Not interchangeable with Decrypt. Note: even if the underlying unwrapping mechanism is decryption, this value is logically separate.</td>
<td>Yes</td>
</tr>
<tr>
<td>(Reserved)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC Generate</td>
<td>Allow for MAC generation. Applies to MAC operation. Valid for Symmetric Keys</td>
<td>Yes</td>
</tr>
<tr>
<td>MAC Verify</td>
<td>Allow for MAC verification. Applies to MAC Verify operation. Valid for Symmetric Keys</td>
<td>Yes</td>
</tr>
<tr>
<td>Derive Key</td>
<td>Allow for key derivation. Applied to Derive Key operation. Valid for PGP Keys, Private Keys, Public Keys, Secret Data and Symmetric Keys.</td>
<td>Yes</td>
</tr>
<tr>
<td>Key Agreement</td>
<td>Allow for Key Agreement. Valid for PGP Keys, Private Keys, Public Keys, Secret Data and Symmetric Keys</td>
<td>No</td>
</tr>
<tr>
<td>CRL Sign</td>
<td>Allow for CRL Sign. Valid for Private Keys</td>
<td>Yes</td>
</tr>
<tr>
<td>Authenticate</td>
<td>Allow for Authentication. Valid for Secret Data.</td>
<td>Yes</td>
</tr>
<tr>
<td>Unrestricted</td>
<td>Cryptographic Usage Mask contains no Usage Restrictions.</td>
<td>Yes</td>
</tr>
<tr>
<td>FPE Encrypt</td>
<td>Allow for Format Preserving Encrypt. Valid for Symmetric Keys, Public Keys and Private Keys</td>
<td>Yes</td>
</tr>
<tr>
<td>FPE Decrypt</td>
<td>Allow for Format Preserving Decrypt. Valid for Symmetric Keys, Public Keys and Private Keys</td>
<td>Yes</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>Extensions</td>
<td>Extensions</td>
<td></td>
</tr>
</tbody>
</table>

Table 454: Cryptographic Usage Masks Description

<table>
<thead>
<tr>
<th>Cryptographic Usage Mask</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Sign</td>
<td>00000001</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Verify</td>
<td>00000002</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Encrypt</td>
<td>00000004</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Decrypt</td>
<td>00000008</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Wrap Key</td>
<td>00000010</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Unwrap Key</td>
<td>00000020</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>(Reserved)</td>
<td>00000040</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>MAC Generate</td>
<td>00000080</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>MAC Verify</td>
<td>00000100</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Derive Key</td>
<td>00000200</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>(Reserved)</td>
<td>00000400</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Key Agreement</td>
<td>00000800</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Certificate Sign</td>
<td>00001000</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>CRL Sign</td>
<td>00002000</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>(Reserved)</td>
<td>00004000</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>(Reserved)</td>
<td>00008000</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>(Reserved)</td>
<td>00010000</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>(Reserved)</td>
<td>00020000</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>(Reserved)</td>
<td>00040000</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>(Reserved)</td>
<td>00080000</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Authenticate</td>
<td>00100000</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Unrestricted</td>
<td>00200000</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>FPE Encrypt</td>
<td>00400000</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>FPE Decrypt</td>
<td>00800000</td>
</tr>
<tr>
<td>Cryptographic Usage Mask</td>
<td>Extensions</td>
<td>XXX00000</td>
</tr>
</tbody>
</table>

Table 455: Cryptographic Usage Mask enumerations

This list takes into consideration values which MAY appear in the Key Usage extension in an X.509 certificate.
12.2 Protection Storage Mask

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>00000001</td>
</tr>
<tr>
<td>Hardware</td>
<td>00000002</td>
</tr>
<tr>
<td>On Processor</td>
<td>00000004</td>
</tr>
<tr>
<td>On System</td>
<td>00000008</td>
</tr>
<tr>
<td>Off System</td>
<td>00000010</td>
</tr>
<tr>
<td>Hypervisor</td>
<td>00000020</td>
</tr>
<tr>
<td>Operating System</td>
<td>00000040</td>
</tr>
<tr>
<td>Container</td>
<td>00000080</td>
</tr>
<tr>
<td>On Premises</td>
<td>00000100</td>
</tr>
<tr>
<td>Off Premises</td>
<td>00000200</td>
</tr>
<tr>
<td>Self Managed</td>
<td>00000400</td>
</tr>
<tr>
<td>Outsourced</td>
<td>00000800</td>
</tr>
<tr>
<td>Validated</td>
<td>00001000</td>
</tr>
<tr>
<td>Same Jurisdiction</td>
<td>00002000</td>
</tr>
<tr>
<td>Extensions</td>
<td>XXXXXXXX0</td>
</tr>
</tbody>
</table>

Table 456: Protection Storage Mask enumerations

12.3 Storage Status Mask

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-line storage</td>
<td>00000001</td>
</tr>
<tr>
<td>Archival storage</td>
<td>00000002</td>
</tr>
<tr>
<td>Destroyed storage</td>
<td>00000004</td>
</tr>
<tr>
<td>Extensions</td>
<td>XXXXXXXX0</td>
</tr>
</tbody>
</table>

Table 457: Storage Status Mask enumerations
13Algorithm Implementation

13.1 Split Key Algorithms

There are three Split Key Methods for secret sharing: the first one is based on XOR, and the other two are based on polynomial secret sharing, according to [w1979].

Let \(L \) be the minimum number of bits needed to represent all values of the secret.

- When the Split Key Method is XOR, then the Key Material in the Key Value of the Key Block is of length \(L \) bits. The number of split keys is Split Key Parts (identical to Split Key Threshold), and the secret is reconstructed by XORing all of the parts.

- When the Split Key Method is Polynomial Sharing Prime Field, then secret sharing is performed in the field \(GF(Prime \ Field \ Size) \), represented as integers, where Prime Field Size is a prime bigger than \(2^L \).

- When the Split Key Method is Polynomial Sharing \(GF(2^{16}) \), then secret sharing is performed in the field \(GF(2^{16}) \). The Key Material in the Key Value of the Key Block is a bit string of length \(L \), and when \(L \) is bigger than \(2^{16} \), then secret sharing is applied piecewise in pieces of 16 bits each. The Key Material in the Key Value of the Key Block is the concatenation of the corresponding shares of all pieces of the secret.

Secret sharing is performed in the field \(GF(2^{15}) \), which is represented as an algebraic extension of \(GF(2^3) \):

\[
GF(2^{16}) = GF(2^8)[y]/(y^2+y+m), \quad \text{where } m \text{ is defined later.}
\]

An element of this field then consists of a linear combination \(uy + v \), where \(u \) and \(v \) are elements of the smaller field \(GF(2^8) \).

The representation of field elements and the notation in this section rely on [FIPS197], Sections 3 and 4. The field \(GF(2^8) \) is as described in a format consistent with [FIPS197], \(GF(2^8) = 285 - x^8+x^4+x^3+x^2+1 \).

An element of \(GF(2^8) \) is represented as a byte. Addition and subtraction in \(GF(2^8) \) is performed as a bit-wise XOR of the bytes. Multiplication and inversion are more complex (see [FIPS197] Section 4.1 and 4.2 for details).

An element of \(GF(2^{16}) \) is represented as a pair of bytes \((u, v)\). The element \(m \) is given by

\[
m = x^5+x^4+x^3+x,
\]

which is represented by the byte 0x3A (or \{3A\} in notation according to [FIPS197]).

Addition and subtraction in \(GF(2^{16}) \) both correspond to simply XORing the bytes. The product of two elements \(ry + s \) and \(uy + v \) is given by

\[
(ry + s)(uy + v) = ((r + s)(u + v) + sv)y + (ru + svm).
\]

The inverse of an element \(uy + v \) is given by

\[
(uy + v)^{-1} = ud^{-1}y + (u + v)d^{-1}, \quad \text{where } d = (u + v)v + mu^2.
\]
14 KMIP Client and Server Implementation Conformance

14.1 KMIP Client Implementation Conformance

An implementation is a conforming KMIP Client if the implementation meets the conditions specified in one or more client profiles specified in [KMIP-Prof].

A KMIP client implementation SHALL be a conforming KMIP Client.

If a KMIP client implementation claims support for a particular client profile, then the implementation SHALL conform to all normative statements within the clauses specified for that profile and for any subclauses to each of those clauses.

14.2 KMIP Server Implementation Conformance

An implementation is a conforming KMIP Server if the implementation meets the conditions specified in one or more server profiles specified in [KMIP-Prof].

A KMIP server implementation SHALL be a conforming KMIP Server.

If a KMIP server implementation claims support for a particular server profile, then the implementation SHALL conform to all normative statements within the clauses specified for that profile and for any subclauses to each of those clauses.
Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants:

Rinkesh Bansal - IBM
Jeff Bartell - Individual
Gabriel Becker - KRYPTUS
Andre Bereza - KRYPTUS
Anthony Berglas - Cryptsoft Pty Ltd.
Mathias Bjorkqvist - IBM
Joseph Brand - Semper Fortis Solutions
Alan Brown - Thales e-Security
Andrew Byrne - Dell
Tim Chevalier - NetApp
Kenli Chong - QuintessenceLabs Pty Ltd.
Justin Corlett - Cryptsoft Pty Ltd.
Tony Cox - Cryptsoft Pty Ltd.
James Crossland - Northrop Grumman
Stephen Edwards - Semper Fortis Solutions
Stan Feather - Hewlett Packard Enterprise (HPE)
Indra Fitzgerald - Utimaco IS GmbH
Judith Furlong - Dell
Gary Gardner - Fornetix
Susan Gleeson - Oracle
Steve He - Thales e-Security
Christopher Hillier - Hewlett Packard Enterprise (HPE)
Tim Hudson - Cryptsoft Pty Ltd.
Nitin Jain - SafeNet, Inc.
Gershon Janssen - Individual
Mark Joseph - P6R, Inc
Paul Lechner - KeyNexus Inc
John Leiseboer - QuintessenceLabs Pty Ltd.
Jarrett Lu - Oracle
Jeff MacMillan - KeyNexus Inc
John Major - QuintessenceLabs Pty Ltd.
Cecilia Majorel - Quintessence Labs
Gabriel Mandaji - KRYPTUS
Jon Mentzell - Fornetix
Prashant Mestri - IBM
Kevin Mooney - Fornetix
Ladan Nekuik - Thales e-Security
Jason Novecosky - KeyNexus Inc
Matt O'reilly - Fornetix
Sanjay Panchal - IBM
Mahesh Paradkar - IBM
Steve Pate - Thales e-Security
Greg Pepus - Semper Fortis Solutions
Bruce Rich - Cryptsoft Pty Ltd.
Thad Roemer - Dyadic Security Ltd.
Thad Roemer - Unbound Tech
Greg Scott - Cryptsoft Pty Ltd.
Martin Shannon - QuintessenceLabs Pty Ltd.
Gerald Stueve - Fornetix
Jim Susoy - P6R, Inc
Jason Thatcher - Cryptsoft Pty Ltd.
Peter Tsai - Thales e-Security
Charles White - Fornetix
Steven Wierenga - Utimaco IS GmbH
Kyle Wuolle - KeyNexus Inc
Appendix B. Acronyms

The following abbreviations and acronyms are used in this document:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DES</td>
<td>Triple Data Encryption Standard specified in ANSI X9.52</td>
</tr>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard specified in [FIPS197]FIPS 197</td>
</tr>
<tr>
<td>ASN.1</td>
<td>Abstract Syntax Notation One specified in ITU-T X.680</td>
</tr>
<tr>
<td>BDK</td>
<td>Base Derivation Key specified in ANSI X9 TR-31</td>
</tr>
<tr>
<td>CA</td>
<td>Certification Authority</td>
</tr>
<tr>
<td>CBC</td>
<td>Cipher Block Chaining</td>
</tr>
<tr>
<td>CCM</td>
<td>Counter with CBC-MAC specified in [SP800-38C]</td>
</tr>
<tr>
<td>CFB</td>
<td>Cipher Feedback specified in [SP800-38A]</td>
</tr>
<tr>
<td>CMAC</td>
<td>Cipher-based MAC specified in [SP800-38B]</td>
</tr>
<tr>
<td>CMC</td>
<td>Certificate Management Messages over CMS specified in [RFC5272]</td>
</tr>
<tr>
<td>CMP</td>
<td>Certificate Management Protocol specified in [RFC4210]</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CRL</td>
<td>Certificate Revocation List specified in [RFC5280]</td>
</tr>
<tr>
<td>CRMF</td>
<td>Certificate Request Message Format specified in [RFC4211]</td>
</tr>
<tr>
<td>CRT</td>
<td>Chinese Remainder Theorem</td>
</tr>
<tr>
<td>CTR</td>
<td>Counter specified in [SP800-38A]</td>
</tr>
<tr>
<td>CVK</td>
<td>Card Verification Key specified in ANSI X9 TR-31</td>
</tr>
<tr>
<td>DEK</td>
<td>Data Encryption Key</td>
</tr>
<tr>
<td>DER</td>
<td>Distinguished Encoding Rules specified in ITU-T X.690</td>
</tr>
<tr>
<td>DES</td>
<td>Data Encryption Standard specified in FIPS 46-3</td>
</tr>
<tr>
<td>DH</td>
<td>Diffie-Hellman specified in ANSI X9.42</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name Server</td>
</tr>
<tr>
<td>DSA</td>
<td>Digital Signature Algorithm specified in FIPS 186-3</td>
</tr>
<tr>
<td>DSKPP</td>
<td>Dynamic Symmetric Key Provisioning Protocol</td>
</tr>
<tr>
<td>ECB</td>
<td>Electronic Code Book</td>
</tr>
<tr>
<td>ECDH</td>
<td>Elliptic Curve Diffie-Hellman specified in [X9.63][SP800-56A]</td>
</tr>
<tr>
<td>ECDSA</td>
<td>Elliptic Curve Digital Signature Algorithm specified in [X9.62]</td>
</tr>
<tr>
<td>ECMQV</td>
<td>Elliptic Curve Menezes Qu Vanstone specified in [X9.63][SP800-56A]</td>
</tr>
<tr>
<td>FFC</td>
<td>Finite Field Cryptography</td>
</tr>
<tr>
<td>FIPS</td>
<td>Federal Information Processing Standard</td>
</tr>
<tr>
<td>GCM</td>
<td>Galois/Counter Mode specified in [SP800-38D]</td>
</tr>
<tr>
<td>GF</td>
<td>Galois field (or finite field)</td>
</tr>
<tr>
<td>HKDF</td>
<td>HMAC-based Extract-and-Expand Key Derivation Function (HKDF) [RFC5869]</td>
</tr>
<tr>
<td>HMAC</td>
<td>Keyed-Hash Message Authentication Code specified in [FIPS198-1][RFC2104]</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hyper Text Transfer Protocol</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>HTTP(S)</td>
<td>Hyper Text Transfer Protocol (Secure socket)</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IETF</td>
<td>Internet Engineering Task Force</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPsec</td>
<td>Internet Protocol Security</td>
</tr>
<tr>
<td>IV</td>
<td>Initialization Vector</td>
</tr>
<tr>
<td>KEK</td>
<td>Key Encryption Key</td>
</tr>
<tr>
<td>KMIP</td>
<td>Key Management Interoperability Protocol</td>
</tr>
<tr>
<td>MAC</td>
<td>Message Authentication Code</td>
</tr>
<tr>
<td>MKAC</td>
<td>EMV/chip card Master Key: Application Cryptograms specified in ANSI X9 TR-31</td>
</tr>
<tr>
<td>MKCP</td>
<td>EMV/chip card Master Key: Card Personalization specified in ANSI X9 TR-31</td>
</tr>
<tr>
<td>MKDAC</td>
<td>EMV/chip card Master Key: Data Authentication Code specified in ANSI X9 TR-31</td>
</tr>
<tr>
<td>MKDN</td>
<td>EMV/chip card Master Key: Dynamic Numbers specified in ANSI X9 TR-31</td>
</tr>
<tr>
<td>MKOTH</td>
<td>EMV/chip card Master Key: Other specified in ANSI X9 TR-31</td>
</tr>
<tr>
<td>MKSMD</td>
<td>EMV/chip card Master Key: Secure Messaging for Confidentiality specified in X9 TR-31</td>
</tr>
<tr>
<td>MKSMI</td>
<td>EMV/chip card Master Key: Secure Messaging for Integrity specified in ANSI X9 TR-31</td>
</tr>
<tr>
<td>MD2</td>
<td>Message Digest 2 Algorithm specified in [RFC1319]</td>
</tr>
<tr>
<td>MD4</td>
<td>Message Digest 4 Algorithm specified in [RFC1320]</td>
</tr>
<tr>
<td>MD5</td>
<td>Message Digest 5 Algorithm specified in [RFC1321]</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>OAEP</td>
<td>Optimal Asymmetric Encryption Padding specified in [PKCS#1]</td>
</tr>
<tr>
<td>OFB</td>
<td>Output Feedback specified in [SP800-38A]</td>
</tr>
<tr>
<td>PBKDF2</td>
<td>Password-Based Key Derivation Function 2 specified in [RFC2898]</td>
</tr>
<tr>
<td>PCBC</td>
<td>Propagating Cipher Block Chaining</td>
</tr>
<tr>
<td>PEM</td>
<td>Privacy Enhanced Mail specified in [RFC1421]</td>
</tr>
<tr>
<td>PGP</td>
<td>OpenPGP specified in [RFC4880]</td>
</tr>
<tr>
<td>PKCS</td>
<td>Public-Key Cryptography Standards</td>
</tr>
<tr>
<td>PKCS#1</td>
<td>RSA Cryptography Specification Version 2.1 specified in [RFC3447]</td>
</tr>
<tr>
<td>PKCS#5</td>
<td>Password-Based Cryptography Specification Version 2 specified in [RFC2898]</td>
</tr>
<tr>
<td>PKCS#8</td>
<td>Private-Key Information Syntax Specification Version 1.2 specified in Error! Reference source not found.</td>
</tr>
<tr>
<td>PKCS#10</td>
<td>Certification Request Syntax Specification Version 1.7 specified in [RFC2986]</td>
</tr>
<tr>
<td>PKCS#11</td>
<td>Cryptographic Token Interface Standard</td>
</tr>
<tr>
<td>PKCS#12</td>
<td>Personal Information Exchange Syntax</td>
</tr>
<tr>
<td>POSIX</td>
<td>Portable Operating System Interface</td>
</tr>
<tr>
<td>RFC</td>
<td>Request for Comments documents of IETF</td>
</tr>
<tr>
<td>RSA</td>
<td>Rivest, Shamir, Adelman (an algorithm)</td>
</tr>
<tr>
<td>RNG</td>
<td>Random Number Generator</td>
</tr>
<tr>
<td>SCEP</td>
<td>Simple Certificate Enrollment Protocol</td>
</tr>
<tr>
<td>SCVP</td>
<td>Server-based Certificate Validation Protocol</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>SHA</td>
<td>Secure Hash Algorithm specified in FIPS 180-2</td>
</tr>
<tr>
<td>SP</td>
<td>Special Publication</td>
</tr>
<tr>
<td>SSL/TLS</td>
<td>Secure Sockets Layer/Transport Layer Security</td>
</tr>
<tr>
<td>S/MIME</td>
<td>Secure/Multipurpose Internet Mail Extensions</td>
</tr>
<tr>
<td>TDEA</td>
<td>see 3DES</td>
</tr>
<tr>
<td>TCP</td>
<td>Transport Control Protocol</td>
</tr>
<tr>
<td>TTLV</td>
<td>Tag, Type, Length, Value</td>
</tr>
<tr>
<td>URI</td>
<td>Uniform Resource Identifier</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
</tr>
<tr>
<td>UTF-8</td>
<td>Universal Transformation Format 8-bit specified in [RFC3629]</td>
</tr>
<tr>
<td>XKMS</td>
<td>XML Key Management Specification</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
<tr>
<td>XTS</td>
<td>XEX Tweakable Block Cipher with Ciphertext Stealing specified in [SP800-38E]</td>
</tr>
<tr>
<td>X.509</td>
<td>Public Key Certificate specified in [RFC5280]</td>
</tr>
<tr>
<td>ZPK</td>
<td>PIN Block Encryption Key specified in ANSI X9 TR-31</td>
</tr>
</tbody>
</table>
Appendix C. List of Figures and Tables

Figure 1: Cryptographic Object States and Transitions ... 58

Table 1: Terminology ... 14
Table 2: Certificate Object Structure ... 18
Table 3: Certificate Request Structure .. 18
Table 4: Opaque Object Structure .. 18
Table 5: PGP Key Object Structure .. 19
Table 6: Private Key Object Structure .. 19
Table 7: Public Key Object Structure .. 19
Table 8: Secret Data Object Structure .. 19
Table 9: Split Key Object Structure .. 20
Table 10: Symmetric Key Object Structure ... 20
Table 11: Key Block Cryptographic Algorithm & Length Description .. 21
Table 12: Key Block Object Structure ... 21
Table 13: Key Value Object Structure .. 22
Table 14: Key Wrapping Data Structure Description .. 22
Table 15: Key Wrapping Data Object Structure ... 23
Table 16: Encryption Key Information Object Structure ... 23
Table 17: MAC/Signature Key Information Object Structure ... 23
Table 18: Key Material Object Structure for Transparent Symmetric Keys .. 24
Table 19: Key Material Object Structure for Transparent DSA Private Keys 24
Table 20: Key Material Object Structure for Transparent DSA Public Keys 24
Table 21: Key Material Object Structure for Transparent RSA Private Keys 24
Table 22: Key Material Object Structure for Transparent RSA Public Keys 25
Table 23: Key Material Object Structure for Transparent DH Private Keys 25
Table 24: Key Material Object Structure for Transparent DH Public Keys 25
Table 25: Key Material Object Structure for Transparent EC Private Keys 26
Table 26: Key Material Object Structure for Transparent EC Public Keys ... 26
Table 27: Attribute Rules .. 28
Table 28: Default Cryptographic Parameters .. 28
Table 29: Activation Date Attribute .. 28
Table 30: Activation Date Attribute Rules .. 29
Table 31: Alternative Name Attribute Structure ... 29
Table 32: Alternative Name Attribute Rules ... 29
Table 33: Always Sensitive Attribute ... 29
Table 34: Always Sensitive Attribute Rules .. 30
Table 35: Application Specific Information Attribute .. 30
Table 36: Application Specific Information Attribute Rules ... 30
Table 37: Archive Date Attribute ... 31
Table 38: Archive Date Attribute Rules ... 31
Table 39: Certificate Attributes ... 32
Table 40: Certificate Attribute Rules .. 32
Table 41: Certificate Type Attribute .. 32
Table 42: Certificate Type Attribute Rules .. 32
Table 43: Certificate Length Attribute .. 33
Table 44: Certificate Length Attribute Rules .. 33
Table 45: Comment Attribute .. 33
Table 46: Comment Rules ... 33
Table 47: Compromise Date Attribute .. 34
Table 48: Compromise Date Attribute Rules .. 34
Table 49: Compromise Occurrence Date Attribute ... 34
Table 50: Compromise Occurrence Date Attribute Rules 34
Table 51: Contact Information Attribute .. 34
Table 52: Contact Information Attribute Rules .. 35
Table 53: Cryptographic Algorithm Attribute .. 35
Table 54: Cryptographic Algorithm Attribute Rules 35
Table 55: Cryptographic Domain Parameters Attribute Structure 36
Table 56: Cryptographic Domain Parameters Attribute Rules 36
Table 57: Cryptographic Length Attribute .. 36
Table 58: Cryptographic Length Attribute Rules ... 36
Table 59: Cryptographic Parameters Attribute Structure 38
Table 60: Cryptographic Parameters Attribute Rules 39
Table 61: Cryptographic Usage Mask Attribute ... 39
Table 62: Cryptographic Usage Mask Attribute Rules 39
Table 63: Deactivation Date Attribute .. 40
Table 64: Deactivation Date Attribute Rules ... 40
Table 65: Description Attribute .. 40
Table 66: Description Attribute Rules ... 40
Table 67: Destroy Date Attribute .. 41
Table 68: Destroy Date Attribute Rules ... 41
Table 69: Digest Attribute Structure .. 41
Table 70: Digest Attribute Rules .. 41
Table 71: Digital Signature Algorithm Attribute ... 42
Table 72: Digital Signature Algorithm Attribute Rules 42
Table 73: Extractable Attribute ... 43
Table 74: Extractable Attribute Rules .. 43
Table 75: Fresh Attribute .. 43
Table 76: Fresh Attribute Rules ... 43
Table 77: Initial Date Attribute .. 44
Table 78: Initial Date Attribute Rules ... 44
Table 79: Key Format Type Attribute .. 44
Table 80: Key Format Type Attribute Rules .. 44
Table 81: Default Key Format Type, by Object ... 45
Table 82: Key Value Location Attribute ... 45
Table 83: Key Value Present Attribute ... 46
Table 84: Key Value Present Attribute Rules ... 46
Table 85: Last Change Date Attribute ... 46
Table 86: Last Change Date Attribute Rules ... 46
Table 87: Lease Time Attribute .. 47
Table 88: Lease Time Attribute Rules .. 47
Table 89: Linked Object Identifier encoding descriptions .. 48
Table 90: Link Attribute Structure .. 48
Table 91: Link Attribute Structure Rules ... 48
Table 92: Name Attribute Structure .. 48
Table 93: Name Attribute Rules ... 49
Table 94: Never Extractable Attribute .. 49
Table 95: Never Extractable Attribute Rules ... 49
Table 96 SP800-57 Key Type Attribute .. 49
Table 97 SP800-57 Key Type Attribute Rules ... 50
Table 98: Object Group Attribute ... 50
Table 99: Object Group Attribute Rules .. 50
Table 100: Object Type Attribute ... 50
Table 101: Object Type Attribute Rules .. 50
Table 102: Opaque Data Type Attribute ... 51
Table 103: Opaque Data Type Attribute Rules ... 51
Table 104: Original Creation Date Attribute ... 52
Table 105: Original Creation Date Attribute Rules .. 52
Table 106: PKCS#12 Friendly Name Attribute ... 52
Table 107: Friendly Name Attribute Rules ... 52
Table 108: Process Start Date Attribute ... 53
Table 109: Process Start Date Attribute Rules .. 53
Table 110: Protect Stop Date Attribute .. 53
Table 111: Protect Stop Date Attribute Rules ... 54
Table 112: Protection Level Attribute .. 54
Table 113: Protection Level Attribute Rules ... 54
Table 114: Protection Period Attribute .. 54
Table 115: Protection Period Attribute Rules ... 54
Table 116: Protection Storage Mask .. 55
Table 117: Protection Storage Mask Rules .. 55
Table 118: Quantum Safe Attribute .. 55
Table 119: Quantum Safe Attribute Rules .. 55
Table 120: Random Number Generator Attribute ... 56
Table 121: Random Number Generator Attribute Rules .. 56
Table 122: Revocation Reason Attribute Structure ... 56
<table>
<thead>
<tr>
<th>Table</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 165</td>
<td>Certify Response Payload</td>
<td>72</td>
</tr>
<tr>
<td>Table 166</td>
<td>Certify Errors</td>
<td>72</td>
</tr>
<tr>
<td>Table 167</td>
<td>Check value description</td>
<td>73</td>
</tr>
<tr>
<td>Table 168</td>
<td>Check Request Payload</td>
<td>74</td>
</tr>
<tr>
<td>Table 169</td>
<td>Check Response Payload</td>
<td>74</td>
</tr>
<tr>
<td>Table 170</td>
<td>Check Errors</td>
<td>74</td>
</tr>
<tr>
<td>Table 171</td>
<td>Create Request Payload</td>
<td>75</td>
</tr>
<tr>
<td>Table 172</td>
<td>Create Response Payload</td>
<td>75</td>
</tr>
<tr>
<td>Table 173</td>
<td>Create Errors</td>
<td>75</td>
</tr>
<tr>
<td>Table 174</td>
<td>Create Key Pair Request Payload</td>
<td>76</td>
</tr>
<tr>
<td>Table 175</td>
<td>Create Key Pair Response Payload</td>
<td>76</td>
</tr>
<tr>
<td>Table 176</td>
<td>Create Key Pair Attribute Requirements</td>
<td>77</td>
</tr>
<tr>
<td>Table 177</td>
<td>Create Key Pair Errors</td>
<td>77</td>
</tr>
<tr>
<td>Table 178</td>
<td>Create Split Key Request Payload</td>
<td>78</td>
</tr>
<tr>
<td>Table 179</td>
<td>Create Split Key Response Payload</td>
<td>78</td>
</tr>
<tr>
<td>Table 180</td>
<td>Create Split Key Errors</td>
<td>78</td>
</tr>
<tr>
<td>Table 181</td>
<td>Decrypt Request Payload</td>
<td>79</td>
</tr>
<tr>
<td>Table 182</td>
<td>Decrypt Response Payload</td>
<td>80</td>
</tr>
<tr>
<td>Table 183</td>
<td>Decrypt Errors</td>
<td>80</td>
</tr>
<tr>
<td>Table 184</td>
<td>Delegated Login Request Payload</td>
<td>80</td>
</tr>
<tr>
<td>Table 185</td>
<td>Delegated Login Response Payload</td>
<td>81</td>
</tr>
<tr>
<td>Table 186</td>
<td>Delegated Login Errors</td>
<td>81</td>
</tr>
<tr>
<td>Table 187</td>
<td>Delete Attribute Request Payload</td>
<td>81</td>
</tr>
<tr>
<td>Table 188</td>
<td>Delete Attribute Response Payload</td>
<td>81</td>
</tr>
<tr>
<td>Table 189</td>
<td>Delete Attribute Errors</td>
<td>82</td>
</tr>
<tr>
<td>Table 190</td>
<td>Derive Key Request Payload</td>
<td>83</td>
</tr>
<tr>
<td>Table 191</td>
<td>Derive Key Response Payload</td>
<td>83</td>
</tr>
<tr>
<td>Table 192</td>
<td>Derive Key Errors</td>
<td>83</td>
</tr>
<tr>
<td>Table 193</td>
<td>Destroy Request Payload</td>
<td>83</td>
</tr>
<tr>
<td>Table 194</td>
<td>Destroy Response Payload</td>
<td>83</td>
</tr>
<tr>
<td>Table 195</td>
<td>Destroy Errors</td>
<td>84</td>
</tr>
<tr>
<td>Table 196</td>
<td>Discover Versions Request Payload</td>
<td>84</td>
</tr>
<tr>
<td>Table 197</td>
<td>Discover Versions Response Payload</td>
<td>84</td>
</tr>
<tr>
<td>Table 198</td>
<td>Discover Versions Errors</td>
<td>84</td>
</tr>
<tr>
<td>Table 199</td>
<td>Encrypt Request Payload</td>
<td>86</td>
</tr>
<tr>
<td>Table 200</td>
<td>Encrypt Response Payload</td>
<td>86</td>
</tr>
<tr>
<td>Table 201</td>
<td>Encrypt Errors</td>
<td>86</td>
</tr>
<tr>
<td>Table 202</td>
<td>Export Request Payload</td>
<td>87</td>
</tr>
<tr>
<td>Table 203</td>
<td>Export Response Payload</td>
<td>87</td>
</tr>
<tr>
<td>Table 204</td>
<td>Export Errors</td>
<td>88</td>
</tr>
<tr>
<td>Table 205</td>
<td>Get Request Payload</td>
<td>88</td>
</tr>
<tr>
<td>Table 206</td>
<td>Get Response Payload</td>
<td>89</td>
</tr>
</tbody>
</table>
Table 249: Modify Attribute Errors ... 105
Table 250: Obtain Lease Request Payload ... 105
Table 251: Obtain Lease Response Payload ... 105
Table 252: Obtain Lease Errors ... 106
Table 253: PKCS#11 Request Payload ... 106
Table 254: PKCS#11 Response Payload .. 106
Table 255: PKCS#11 Errors .. 107
Table 256: Poll Request Payload ... 107
Table 257: Poll Errors ... 107
Table 258: Query Functions .. 108
Table 259: Query Request Payload ... 109
Table 260: Query Response Payload ... 109
Table 261: Query Errors .. 110
Table 262: Recover Request Payload ... 110
Table 263: Recover Response Payload ... 110
Table 264: Recover Errors .. 110
Table 265: Register Request Payload ... 111
Table 266: Register Response Payload .. 111
Table 267: Register Attribute Requirements ... 112
Table 268: Register Errors ... 112
Table 269: Revoke Request Payload ... 113
Table 270: Revoke Response Payload ... 113
Table 271: Revoke Errors ... 113
Table 272: Computing New Dates from Offset during Re-certify 114
Table 273: Re-certify Attribute Requirements ... 114
Table 274: Re-certify Request Payload ... 115
Table 275: Re-certify Response Payload .. 115
Table 276: Re-certify Errors .. 115
Table 277: Computing New Dates from Offset during Re-key 116
Table 278: Re-key Attribute Requirements ... 116
Table 279: Re-key Request Payload ... 117
Table 280: Re-key Response Payload .. 117
Table 281: Re-key Errors ... 117
Table 282: Computing New Dates from Offset during Re-key Key Pair 118
Table 283: Re-key Key Pair Attribute Requirements 118
Table 284: Re-key Key Pair Request Payload .. 119
Table 285: Re-key Key Pair Response Payload .. 119
Table 286: Re-key Key Pair Errors ... 120
Table 287: Re-Provision Request Payload ... 120
Table 288: Re-Provision Response Payload ... 120
Table 289: RNG Retrieve Errors ... 121
Table 290: RNG Retrieve Request Payload .. 121
Table 328: Derivation Parameters Structure .. 136
Table 329: Extension Information Structure .. 138
Table 330: Final Indicator Structure .. 138
Table 331: Interop Function Structure ... 138
Table 332: Interop Function Structure ... 138
Table 333: Init Indicator Structure ... 139
Table 334: Key Wrapping Specification Object Structure 139
Table 335: Log Message Structure .. 140
Table 336: MAC Data Structure ... 140
Table 337: Objects Structure .. 140
Table 338: Object Defaults Structure .. 140
Table 339: Operations Structure .. 140
Table 340: PKCS#11 Function Structure .. 141
Table 341: PKCS#11 Input Parameters Structure .. 141
Table 342: PKCS#11 Interface Structure ... 141
Table 343: PKCS#11 Output Parameters Structure .. 141
Table 344: PKCS#11 Return Code Structure ... 141
Table 345: Profile Information Structure ... 142
Table 346: Profile Version Structure .. 142
Table 347: Protection Storage Mask Structure .. 142
Table 348: Right Structure ... 143
Table 349: Rights Structure ... 143
Table 350: RNG Parameters Structure ... 143
Table 351: Server Information Structure ... 144
Table 352: Signature Data Structure ... 144
Table 353: Ticket Structure ... 144
Table 354: Usage limits Structure ... 145
Table 355: Validation Information Structure ... 145
Table 356: Request Message Structure ... 146
Table 357: Request Header Structure .. 147
Table 358: Request Batch Item Structure .. 147
Table 359: Response Message Structure ... 147
Table 360: Response Header Structure ... 148
Table 361: Response Batch Item Structure .. 148
Table 362: Asynchronous Correlation Value in Response Batch Item 149
Table 363: Asynchronous Indicator in Message Request Header 149
Table 364: Attestation Capable Indicator in Message Request Header 149
Table 365: Authentication Structure in Message Header 150
Table 366: Batch Count in Message Header ... 150
Table 367: Batch Error Continuation Option in Message Request Header............... 150
Table 368: Batch Item in Message .. 150
Table 369: Batch Order Option in Message Request Header 150
Table 370: Client Correlation Value in Message Request Header 151
Table 371: Server Correlation Value in Message Request Header 151
Table 372: Credential Object Structure .. 151
Table 373: Credential Value Structure for the Username and Password Credential 151
Table 374: Credential Value Structure for the Device Credential 152
Table 375: Credential Value Structure for the Attestation Credential .. 152
Table 376: Credential Value Structure for the One Time Password Credential 152
Table 377: Credential Value Structure for the Hashed Password Credential 153
Table 378: Credential Value Structure for the Ticket .. 153
Table 379: Maximum Response Size in Message Request Header ... 153
Table 380: Message Extension Structure in Batch Item ... 154
Table 381: Nonce Structure .. 154
Table 382: Operation in Batch Item ... 154
Table 383: Protocol Version Structure in Message Header .. 154
Table 384: Result Message in Response Batch Item ... 155
Table 385: Result Reason in Response Batch Item ... 155
Table 386: Result Status in Response Batch Item ... 155
Table 387: Time Stamp in Message Header ... 155
Table 388: Unique Batch Item ID in Batch Item ... 156
Table 389: Allowed Item Length Values ... 158
Table 390: Adjustment Type Descriptions ... 160
Table 391: Adjustment Type Enumeration ... 160
Table 392: Alternative Name Type Enumeration .. 160
Table 393: Asynchronous Indicator Descriptions .. 161
Table 394: Asynchronous Indicator Enumeration .. 161
Table 395: Attestation Type Enumeration ... 161
Table 396: Batch Error Continuation Option Descriptions ... 162
Table 397: Batch Error Continuation Option Enumeration .. 162
Table 398: Block Cipher Mode Enumeration .. 163
Table 399: Cancellation Result Enumeration Descriptions ... 163
Table 400: Cancellation Result Enumeration ... 163
Table 401: Certificate Request Type Enumeration ... 164
Table 402: Certificate Type Enumeration .. 164
Table 403: Client Registration Method Enumeration Descriptions .. 164
Table 404: Credential Type Enumeration ... 165
Table 405: Cryptographic Algorithm Enumeration ... 167
Table 406: Data Enumeration .. 167
Table 407: Derivation Method Enumeration Descriptions ... 168
Table 408: Derivation Method Enumeration .. 168
Table 409: Digital Signature Algorithm Enumeration ... 169
Table 410: DRGB Algorithm Enumeration .. 170
Table 411: Encoding Option Description ... 170
Table 412: Encoding Option Enumeration ... 170
Table 413: Endpoint Role Description ... 170
Table 414: Endpoint Role Enumeration .. 171
Table 415: FIPS186 Variation Enumeration ... 171
Table 416: Hashing Algorithm Enumeration ... 171
Table 417: Interop Function Descriptions ... 172
Table 418: Interop Function Enumeration ... 172
Table 419: Item Type Descriptions ... 172
Table 420: Item Type Enumeration ... 173
Table 421: Key Compression Type Enumeration values .. 173
Table 422: Key Format Types Description ... 174
Table 423: Key Format Type Enumeration ... 175
Table 424: Key Role Type Enumeration .. 175
Table 425: Key Value Location Type Enumeration ... 176
Table 426: Link Type Enumeration Descriptions ... 176
Table 427: Link Type Enumeration ... 177
Table 428: Name Type Enumeration ... 178
Table 429: Object Group Member Enumeration .. 179
Table 430: Object Type Enumeration .. 179
Table 431: Opaque Data Type Enumeration .. 179
Table 432: Operation Enumeration ... 181
Table 433: Padding Method Enumeration .. 181
Table 434: Profile Name Enumeration ... 183
Table 435: Protection Level Enumeration .. 183
Table 436: Put Function Enumeration ... 183
Table 437: Query Function Enumeration .. 184
Table 438: Recommended Curve Enumeration for ECDSA, ECDH, and ECMQV 186
Table 439: Result Reason Encoding Descriptions ... 189
Table 440: Result Reason Enumeration .. 191
Table 441: Result Status Enumeration .. 191
Table 442: Revocation Reason Code Enumeration .. 191
Table 443: Secret Data Type Enumeration .. 192
Table 444: Split Key Method Enumeration .. 193
Table 445: State Enumeration ... 193
Table 446: Tag Enumeration ... 204
Table 447: Ticket Type Enumeration ... 204
Table 448: Unique Identifier Enumeration .. 205
Table 449: Unwrap Mode Enumeration .. 205
Table 450: Usage Limits Unit Enumeration .. 205
Table 451: Validity Indicator Enumeration .. 206
Table 452: Key Wrapping Methods Description .. 206
Table 453: Wrapping Method Enumeration ... 206
Table 454: Cryptographic Usage Masks Description .. 209
Table 455: Cryptographic Usage Mask enumerations ... 209
Table 456: Protection Storage Mask enumerations .. 210
Table 457: Storage Status Mask enumerations ... 210
Appendix D. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Editor</th>
<th>Changes Made</th>
</tr>
</thead>
<tbody>
<tr>
<td>WD01</td>
<td>December 6, 2017</td>
<td>Tony Cox</td>
<td>Initial Draft incorporating items approved at the February 2017 Face to Face Technical Committee meeting.</td>
</tr>
<tr>
<td>WD02</td>
<td>January 9, 2018</td>
<td>Tony Cox</td>
<td>Updated following initial feedback on WD01. See KMIP TC archives and change bar pdf for details. Mainly editorial corrections.</td>
</tr>
</tbody>
</table>
| WD03 | February 15, 2018 | Tony Cox & Chuck White| - Rolled in PQC items
- Added and amended enumerations
- Corrected Put Operation behavior
- Completed addition of Certificate Request as an Object
- Updated Mac Verify and Signature Verify for multi-part operations |
| WD04 | October 18, 2018 | Tony Cox & Chuck White| - OTP
- Key Format Type
- Cryptographic Usage Mask - Export
- Cryptographic Usage Mask - Other
- Hashed Passwords
- Login
- Delegated Login
- Client Provisioning
- Multiple ID Placeholders
- Add Attribute - Current Attribute
- Set Attribute
- AdjustAttribute
- Full Async
- AWS Signature
- Flow Control
- Default Crypto Params
- Re-Encrypt |
| WD05 | November 01, 2018 | Tony Cox & Chuck White| - Result Reasons |
| WD06 | November 08, 2018 | Tony Cox & Chuck White| - Storage Protection Mask
- PKCS#11 Encapsulation
- HKDF |
| WD07 | November 18, 2018 | Tony Cox & Chuck White| - Amended Process Start Date and Protect Stop Date
- Client Reprovisioning
- Multiple changes Result Reason enums & content
- Range of editorial changes
- Added Certificate Attributes |
<p>| WD07r2 | December 20, 2018 | Tony Cox & Chuck White| - Minor corrections |</p>
<table>
<thead>
<tr>
<th>WD08</th>
<th>December 21, 2018</th>
<th>Tony Cox & Chuck White</th>
<th>- Minor corrections</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSD01</td>
<td>December 21, 2018</td>
<td>Tony Cox & Chuck White</td>
<td>-Publication of CSD</td>
</tr>
<tr>
<td>WD09</td>
<td>9 April 2019</td>
<td>Tony Cox & Chuck White</td>
<td>--Editorial cleanup</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Added missing Protection Storage Mask proposal content</td>
</tr>
</tbody>
</table>