
FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 1 of 138

Field Force Management Integration
Interface Specification Version 1.0

Committee Specification 01

05 October 2012

Specification URIs
This version:

http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/cs01/FFMII-SPEC-v1.0-cs01.pdf (Authoritative)
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/cs01/FFMII-SPEC-v1.0-cs01.html
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/cs01/FFMII-SPEC-v1.0-cs01.doc

Previous version:
https://www.oasis-open.org/committees/download.php/46595/FFMII-Specification-v1.0-
csprd02.zip

Latest version:
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/FFMII-SPEC-v1.0.pdf (Authoritative)
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/FFMII-SPEC-v1.0.html
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/FFMII-SPEC-v1.0.doc

Technical Committee:

OASIS Field Force Management (FFM) TC

Chair:

Thinh Nguyenphu (thinh.nguyenphu@nsn.com), Nokia Siemens Networks

Editor:

Thinh Nguyenphu (thinh.nguyenphu@nsn.com), Nokia Siemens Networks

Additional artifacts:
This prose specification is one component of a Work Product which also includes:

 WSDL files: http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/cs01/wsdl/

 XML Schema files: http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/cs01/wsdl/schemas/

Declared XML namespaces:
The following namespaces are declared in Section 9.1.1:

 http://docs.oasis-open.org/ffm/ns/v1.0/ws/implementation

 http://docs.oasis-open.org/ffm/ns/v1.0/ws/manager

 http://docs.oasis-open.org/ffm/ns/v1.0/common/api

 http://docs.oasis-open.org/ffm/ns/v1.0/common/model

 http://docs.oasis-open.org/ffm/ns/v1.0/system/info/api

 http://docs.oasis-open.org/ffm/ns/v1.0/system/info/model

 http://docs.oasis-open.org/ffm/ns/v1.0/system/capability/api

 http://docs.oasis-open.org/ffm/ns/v1.0/system/capability/model

 http://docs.oasis-open.org/ffm/ns/v1.0/wrm/api

 http://docs.oasis-open.org/ffm/ns/v1.0/wrm/model

 http://docs.oasis-open.org/ffm/ns/v1.0/firm/api

 http://docs.oasis-open.org/ffm/ns/v1.0/firm/model

 http://docs.oasis-open.org/ffm/ns/v1.0/rdm/api

 http://docs.oasis-open.org/ffm/ns/v1.0/rdm/model

http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/cs01/FFMII-SPEC-v1.0-cs01.pdf
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/cs01/FFMII-SPEC-v1.0-cs01.html
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/cs01/FFMII-SPEC-v1.0-cs01.doc
https://www.oasis-open.org/committees/download.php/46595/FFMII-Specification-v1.0-csprd02.zip
https://www.oasis-open.org/committees/download.php/46595/FFMII-Specification-v1.0-csprd02.zip
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/FFMII-SPEC-v1.0.pdf
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/FFMII-SPEC-v1.0.html
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/FFMII-SPEC-v1.0.doc
http://www.oasis-open.org/committees/ffm/
mailto:thinh.nguyenphu@nsn.com
http://www.nsn.com/
mailto:thinh.nguyenphu@nsn.com
http://www.nsn.com/
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/cs01/wsdl/
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/cs01/wsdl/schemas/
http://docs.oasis-open.org/ffm/ns/v1.0/ws/implementation
http://docs.oasis-open.org/ffm/ns/v1.0/ws/manager
http://docs.oasis-open.org/ffm/ns/v1.0/common/api
http://docs.oasis-open.org/ffm/ns/v1.0/common/model
http://docs.oasis-open.org/ffm/ns/v1.0/system/info/api
http://docs.oasis-open.org/ffm/ns/v1.0/system/info/model
http://docs.oasis-open.org/ffm/ns/v1.0/system/capability/api
http://docs.oasis-open.org/ffm/ns/v1.0/system/capability/model
http://docs.oasis-open.org/ffm/ns/v1.0/wrm/api
http://docs.oasis-open.org/ffm/ns/v1.0/wrm/model
http://docs.oasis-open.org/ffm/ns/v1.0/firm/api
http://docs.oasis-open.org/ffm/ns/v1.0/firm/model
http://docs.oasis-open.org/ffm/ns/v1.0/rdm/api
http://docs.oasis-open.org/ffm/ns/v1.0/rdm/model

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 2 of 138

 http://docs.oasis-open.org/ffm/ns/v1.0/rdm/model/profile

Abstract:
This document describes the Field Force Management Integration Interface (FFMII). FFMII
provides a flexible interface between Enterprise Resource Management System (ERMS) and
Field Force Management System (FFMS). The role of ERMS is to take a holistic view at work
scheduling and resource allocation from the corporate point of view. For this purpose it needs to
manage individual units of work performed without strong supervisory guidance (Field Work) in a
way aligned with the business objectives of the company. The role of FFMS is to communicate
with available set of workers (Field Force) and to provide individual workers (Assignees)
performing Field Work with technical means of accessing information about and sending
feedback on work assigned to them. While ERMS defines the structure, content and resource
allocation of dispatched work, FFMS is responsible for communicating that information to the field
and enforcing any specified constraints on user provided feedback. For facilitating structured
communication between ERMS and FFMS in heterogeneous scenarios, FFMII defines flexible
mechanisms that enable Work Request modeling (data content, workflow), exchange, work
history collection, and collection of data from the field. Information carried with work requests,
work request structure (work-flow, schedule) and data to be collected can all be defined
dynamically ‘as data’. This data driven architecture makes FFMII very flexible and adaptable to
numerous industries. Additional FFMII capabilities include Field-Initiated Requests that facilitate
structured requests and reporting information outside the usual work flow, such as reporting
absence, requesting additional work, or providing a sales lead. Reference Data Management
provides means to establish custom data repositories with arbitrary content. This enables e.g.
input value selection, content validation, or delivery of documents to Field Force. Furthermore,
flexible Integration Topologies are supported. Further flexibility is provided by scalability of FFMII
itself: Basic features of FFMII are mandatory, and some features are optional. This allows both
simple basic implementations and a range of more complete implementations.

Status:
This document was last revised or approved by the OASIS Field Force Management (FFM) TC
on the above date. The level of approval is also listed above. Check the “Latest version” location
noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at https://www.oasis-
open.org/committees/ffm/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/ffm/ipr.php).

Citation format:
When referencing this specification the following citation format should be used:

[FFMII-SPEC-v1.0]

Field Force Management Integration Interface Specification Version 1.0. 05 October 2012. OASIS
Committee Specification 01.
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/cs01/FFMII-SPEC-v1.0-cs01.html.

http://docs.oasis-open.org/ffm/ns/v1.0/rdm/model/profile
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=ffm
https://www.oasis-open.org/committees/ffm/
https://www.oasis-open.org/committees/ffm/
https://www.oasis-open.org/committees/ffm/ipr.php
https://www.oasis-open.org/committees/ffm/ipr.php
http://docs.oasis-open.org/ffm/FFMII-SPEC/v1.0/cs01/FFMII-SPEC-v1.0-cs01.html

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 3 of 138

Notices

Copyright © OASIS Open 2012. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

http://www.oasis-open.org/policies-guidelines/ipr
http://www.oasis-open.org/
http://www.oasis-open.org/policies-guidelines/trademark

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 4 of 138

Table of Contents

1 Document Scope .. 7

2 References ... 8

2.1 Normative References .. 8

2.2 Non-Normative References .. 9

3 Definitions and Conventions ... 10

3.1 Conventions .. 10

3.1.1 Usage of Requirement Level Keywords .. 10

3.1.2 Notation for data structure declaration .. 10

3.1.3 Notation for diagrams .. 10

3.1.4 Normative and Non-Normative parts of the document .. 10

3.2 Definitions ... 10

3.3 Abbreviations .. 13

4 FFMII Interface Context .. 14

4.1 System Context .. 14

4.2 Interaction Styles .. 15

4.2.1 Manager-Initiated Interactions ... 15

4.2.2 Field-Initiated Interactions ... 15

4.3 Integration Topologies .. 16

4.3.1 Multi-tenancy support .. 18

5 FFMII Interface Domain Model ... 19

5.1 Field Work ... 19

5.1.1 Overview .. 19

5.1.2 Work Type Specification .. 20

5.1.3 Schedule .. 28

5.1.4 Data Forms .. 29

5.1.5 Work Request Status and Work Request Administrative Closing Status 34

5.1.6 Work Request Status Record .. 36

5.2 Reference Data ... 38

5.3 Work Request Status Change Notification ... 39

5.4 Field-Initiated Request .. 41

5.4.1 Introduction .. 41

5.4.2 Declaring available Field-Initiated Requests within a Work Type Specification 43

5.4.3 Responses to Topical Inquiries ... 44

6 FFMII Interface Architecture ... 46

6.1 Overview ... 46

6.2 Operations Domains ... 47

6.2.1 Identity and Capabilities Discovery (Manager and Implementation) ... 47

6.2.2 Work Request Management (Implementation) ... 48

6.2.3 Reference Data Management (Implementation) ... 48

6.2.4 Change Notification Management (Manager) ... 49

6.2.5 Field-Initiated Request Management (Manager) ... 49

6.2.6 Response Notification Management (Implementation) ... 49

6.3 Core Data Model ... 49

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 5 of 138

6.4 Common Functionality Layers .. 50

6.4.1 Connectivity and Transport Security ... 50

6.4.2 Protocol Binding and Payload Encapsulation ... 50

6.4.3 Message Handling ... 50

7 Core Data Model .. 52

7.1 Introduction ... 52

7.2 Primitive Data Types ... 52

7.3 Derived Data Types .. 53

7.4 Composite Data Types ... 53

7.5 Specialized Data Types .. 54

7.5.1 Multi-Language Text (MLText) .. 54

7.5.2 Location ... 54

7.5.3 MultiChoiceAlternative ... 54

7.5.4 Custom Properties ... 55

8 Data Types and Operations ... 56

8.1 Identity and Capabilities Discovery ... 56

8.1.1 Introduction .. 56

8.1.2 Data Types .. 56

8.1.3 Standard capabilities ... 57

8.1.4 Operations ... 62

8.2 Work Request Management ... 63

8.2.1 Data Types .. 63

8.2.2 Operations ... 80

8.3 Reference Data Management .. 82

8.3.1 Introduction .. 82

8.3.2 Data Types .. 83

8.3.3 Operations ... 85

8.4 Field-Initiated Requests .. 91

8.4.1 Data Type .. 91

8.4.2 Operations ... 94

8.5 Data Form Data Types ... 96

8.5.1 Data Form and Data Elements .. 96

8.5.2 Data Field Specification ... 98

8.5.3 Data Attachment Specification .. 101

8.5.4 Data Matrix Specification ... 102

8.5.5 Data Group Specification .. 103

8.5.6 Data Element Formatting Tags ... 103

8.5.7 Data Element Source Tags ... 105

8.5.8 Data Binding .. 105

8.5.9 Data Values ... 106

8.5.10 Data Variables ... 108

8.6 Expressions .. 109

8.6.1 Constants and Data Access .. 109

8.6.2 Unary Operators .. 110

8.6.3 Binary Operators ... 111

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 6 of 138

8.6.4 Conjunction and Disjunction .. 113

8.6.5 Work Request State Access .. 114

8.7 Error Codes... 114

8.8 Common Request and Response Format .. 117

8.8.1 Requests ... 117

8.8.2 Responses ... 117

8.8.3 Batch Operations ... 118

8.9 “Users” Repository .. 119

8.9.1 Introduction .. 119

8.9.2 Repository Descriptor .. 119

8.9.3 Visibility and access rules ... 119

8.9.4 Data types ... 120

8.9.5 User Roles ... 123

8.9.6 Repository-specific semantics and restrictions ... 123

8.10 “WorkTypes” repository .. 123

8.10.1 Introduction .. 123

8.10.2 Repository descriptor .. 124

8.10.3 Visibility and access rules ... 124

8.10.4 Data types ... 124

8.10.5 Repository-specific semantics and restrictions ... 124

8.11 “FieldInitiatedRequests” Repository ... 124

8.11.1 Introduction .. 124

8.11.2 Repository Descriptor .. 125

8.11.3 Visibility and access rules ... 125

8.11.4 Data types ... 125

8.11.5 Repository-specific semantics and restrictions ... 125

9 FFMII Protocol Bindings ... 126

9.1 SOAP over HTTP (Web Service) ... 126

9.1.1 XML namespace ... 126

9.1.2 Parameter Encoding .. 127

9.1.3 Data types and operations .. 127

9.2 Primitive and derived data types .. 128

9.3 Composite and specialized data types ... 129

9.4 Operations .. 130

9.5 Authentication ... 131

9.6 WSDL Files ... 132

10 Conformance .. 133

Appendix A. Acknowledgements ... 134

Appendix B. Revision History .. 135

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 7 of 138

1 Document Scope 1

This document describes the Field Force Management Integration Interface (FFMII) comprising of the 2
following topics: 3

 Foundation: Context definitions, Domain Model, Architecture, Core Data Model. 4

 Identity and Capabilities Discovery 5

 Principal Functional Areas: Work Request Management, Reference Data Management, Change 6

Notification Management, and Field-Initiated Request Management. 7

Figure 1 outlines the structure of the FFMII specification: 8

 9

Figure 1: FFMII Interface Specification Overview 10

Field Force Management Integration Interface Requirements are specified in [FFMII-REQ] 11

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 8 of 138

2 References 12

2.1 Normative References 13

 14

[FFMII-WSDL] Field Force Management Integration Interface Specification WSDL. Location 15
provided in “Additional artifacts” section in header material of this document. 16

[KML] Open GeoSpatial Consortium OGC 07-147r2, "OGC KML", 17
http://www.opengeospatial.org/standards/kml, version 2.2.0, April 2008 18

[ISO-639] ISO 639-1:2002, Part 1: Alpha-2 Codes, "Codes for the representation of names 19
of languages", 20
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumb21
er=22109 22

[ISO-3166] ISO 3166-1:2006, Alpha-2 Country Codes, 23
http://www.iso.org/iso/country_codes.htm 24

[ISO/IEC 8859-1] ISO/IEC 8859-1:1998, Information technology — 8-bit single-byte coded graphic 25
character sets — Part 1: Latin alphabet No. 1 26

 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumb27
er=28245 28

[RFC2046] Freed, N. and Borenstein, N. Multipurpose Internet Mail Extensions (MIME) Part 29
Two: Media Types, http://tools.ietf.org/html/rfc2046, IETF RFC 2046, November 30
1996 31

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 32
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 33

[RFC2616] IETF RFC 2616 “Hypertext Transfer Protocol – HTTP/1.1”, R. Fielding, June 34
1999, URL: http://www.ietf.org/rfc/rfc2616.txt 35

[RFC2818] IETF RFC 2818 “HTTP Over TLS”, Rescorla, E., May 2000, URL: 36
http://www.ietf.org/rfc/rfc2818.txt 37

[Schema2] P. V. Biron et al. XML Schema Part 2: Datatypes. World Wide Web Consortium 38
Recommendation, May 2001. See http://www.w3.org/TR/xmlschema-2/ 39

[SOAP] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), Martin 40
Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik Frystyk 41
Nielsen, Anish Karmarkar, Yves Lafon, Editors. World Wide Web Consortium, 27 42
April 2007. This version is http://www.w3.org/TR/2007/REC-soap12-part1-43
20070427. The latest version is available at http://www.w3.org/TR/soap12-part1/. 44

[UML] OMG Unified Modeling Language Specification, Version 1.5. March 2003. 45
http://www.omg.org/spec/UML/1.5/PDF/. Non-normative note: Version 1 (e.g. 46
latest version 1.5) is sufficient for FFMII. http://www.uml.org/ provides access to 47
the various versions of UML, including the newest one. 48

[WSS] Web Services Security: SOAP Message Security Version 1.1.1. 18 May 2012. 49
OASIS Standard. http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-50
SOAPMessageSecurity.pdf. 51

[WSS-UTP] Web Services Security Username Token Profile Version 1.1.1. 18 May 2012. 52
OASIS Standard. http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-53
UsernameTokenProfile.pdf. 54

 55

http://www.opengeospatial.org/standards/kml
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22109
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22109
http://www.iso.org/iso/country_codes.htm
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28245
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28245
http://tools.ietf.org/html/rfc2046
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427
http://www.w3.org/TR/2007/REC-soap12-part1-20070427
http://www.w3.org/TR/soap12-part1/
http://www.omg.org/spec/UML/1.5/PDF/
http://www.uml.org/
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 9 of 138

2.2 Non-Normative References 56

[FFMII-REQ] Field Force Management Integration Interface Requirements Version 1.0. 05 57
October 2012. OASIS Committee Note 01. 58
http://docs.oasis-open.org/ffm/FFMII-REQ/v1.0/cn01/FFMII-REQ-v1.0-cn01.html. 59

[UML-informal] Allen Holub's UML Quick Reference, provides an easy to access summary to 60
UML notation. http://www.holub.com/goodies/uml/ 61

 62

http://docs.oasis-open.org/ffm/FFMII-REQ/v1.0/cn01/FFMII-REQ-v1.0-cn01.html
http://www.holub.com/goodies/uml/

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 10 of 138

3 Definitions and Conventions 63

3.1 Conventions 64

3.1.1 Usage of Requirement Level Keywords 65

This specification uses normative text. The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", 66
"SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 67
specification are to be interpreted as described in [RFC2119]: 68

…they MUST only be used where it is actually required for interoperation or to limit behavior 69
which has potential for causing harm (e.g., limiting retransmissions)… 70

These keywords are thus capitalized when used to unambiguously specify requirements over protocol 71
and application features and behavior that affect the interoperability and security of implementations. 72
When these words are not capitalized, they are meant in their natural-language sense. 73

3.1.2 Notation for data structure declaration 74

Throughout this document, structured data types of fixed content (classes) are declared using the 75
following convention: 76

< Class Name >

Property Type M/O Description

<property –name-1> <property-data-type> <optionality

indicator>

< notes and descriptions >

<property –name-2> <property-data-type> <optionality

indicator>

< notes and descriptions >

 77

The <Class Name > label represents the name of the class being introduced. The column “Property” 78
introduces names of individual constituents of the class in question, and column “Type” the type of each 79
property. Type can be reference to any data type specified as part of the Core Data Model (6.3), or any 80
other class introduced in this specification. 81

Property is regarded mandatory if its optionality indicator is set to “M”, or optional if set to “O”. 82

3.1.3 Notation for diagrams 83

Throughout this document, diagrams illustrate and specify concepts of the FFMII interface, interaction 84
patterns etc. UML notation is applied [UML]. Non-normative note: There are many guides and summaries 85
of UML notation that may be quicker to access than the UML standard. For example, see [UML-informal]. 86

3.1.4 Normative and Non-Normative parts of the document 87

All sections and appendixes, except “Document Scope” are normative, unless they are explicitly indicated 88
to be informative. 89

3.2 Definitions 90

 91

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 11 of 138

Activity Activity represents a distinct part of the Task the Assignee is requested to
accomplish. An Assignee can carry at most single Activity at any given time
while being allowed to switch between Activities under certain conditions.
Progress and the Activity completion status form the basis for reporting to the
upper levels of enterprise resources management. An Activity consists of one
or more Steps, possibly forming a controlled micro-flow within the Activity
itself.

Activity State
Model

An Activity State Model is a combination of States, Steps and Actions, defined
for each Activity. The Work flow of a Task is specified through Activity State
Models of each included Activity. Activity State Models are defined as data to
remain neutral with respect to types of Task a Work Request that can be
represented.

Assignee Assignee is a human resource performing field operations

Data Form Data Forms are used to model dynamically specified structured information for
the purpose of conveying e.g. Work Request header, overview and
instructions, user input and Field Initiated Request contents They consist of
Data Form Elements such as individual Data Fields, Data Attachments and
Data Matrixes, with means to group the Data Elements.

ERMS Enterprise Resource Management System (ERMS) refers to one or more
software components collectively responsible for assignment of resources into
company business operations, including work planning, execution and
exception handling

Field Force Field Force refers to a group of Assignees to whom Work Requests are
delivered using FFMII interface

FFMII The Field Force Management Integration Interface (FFMII) provides a flexible
interface between ERMS and FFMS for the purpose of Work Request
modeling, exchange, and collection of data from the field

FFMS Field Force Management System (FFMS) refers to one or more software
components collectively responsible for efficient communication with the Field
Force

Field Work Field Work refers to work that is expected to be conducted by an individual (or
a group of closely co-operating individuals) without need for strong supervisory
guidance. Units of Field Work are informally referred to as Tasks, and a unit of
Field Work is modeled as a Work Request associated with a Work Type
Specification, see [FFMII-SPEC] Section 5.1.1 and Task below.

Field-Initiated
Request

Interaction pattern used for relying requests initiated by an Assignee in the
field and targeting specific functionality inside of Manager. Field-Initiated
Interactions are either Topical Notifications or Topical Inquiries, depending on
whether any response is expected for the request in question or not.

Implementation Implementation is the role of a software system communicating with ERMS
through the FFMII interface. Implementation refers to parts of FFMS
implementing behavioral patterns specified by this document and exposed
through the Interface. For example, an Implementation submits Status Change
Notifications and creates Field-Initiated Requests though the FFMII interface.

Interface Interface refers to the Field-Force Management Integration Interface (FFMII)
specified throughout this document, unless stated otherwise

Manager Manager is the role of a software system communicating with FFMS through
the FFMII interface. Manager refers to parts of ERMS implementing behavioral

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 12 of 138

patterns specified by this document and exposed through the Interface. For
example, a Manager creates, updates, and queries units of Field Work though
the FFMII interface.

Peer Peer is an Assignee cooperating in delivery of particular Field Work with one
or more other Assignees

Reference Data Implementations MAY offer system and/or custom repositories that store
Reference Data. System repositories provide access to selected data on
Implementation side, such as Assignee identities (Users), and reusable types
of Work Requests and Field-Initiated Requests. Custom repositories can store
arbitrary content. Content of such repositories is commonly denoted as
“Reference Data”, Custom Reference Data MAY be used for input value
selection, lookup of display values or content validation in Work Requests.

State An Activity declares the set of available States of that Activity. Each Step is
associated with a specific State. Each State belongs to exactly one Status
category such as ‘Active’ or ‘Closed’ (see Section 5.1.2.4), and MAY be
associated with one of the predefined (e.g. ‘OnSite’) or custom Status
Indicators (see Section 5.1.2.4).

Step Step describes a single recorded Action to be taken by the Assignee while
performing a certain Activity. A Step may carry additional detailed instructions
and it may require user input. In its simplest form, a Step can be merely an
acknowledgement of certain part of the Activity being completed.

Task Task refers to a well-specified group of Activities performed by one or more
Assignee(s). Task is not a formal concept in FFMII. FFMII represents Tasks as
Work Requests associated with a Work Type Specification. Such a Task may
be completely independent of other Tasks, or be part of a larger project.

Topical Inquiry Type of Field-Initiated Interaction, for which data is expected as an
asynchronous response

Topical
Notification

Type of Field-Initiated Request, for which no data is expected as a response

Work Request Work Request is a structured representation of a Task, including basic
description of the Task, specification of all included Activities, details of those
Activities, Task and Activity completion status data, and all information
necessary for status reconciliation in ERMS. Specification of a Work Request
MUST contain sufficient amount of information necessary for accomplishing
specified work in self-guided way, within expected time window and resulting
into desired outcome.

Work Request
Status Change
Notification

Asynchronous message sent by Implementation to Manager whenever State
of Work Request changes due to Assignee actions

Work Request
Status Record

Work Request Status Record stores State changes of a Work Request after it
has been received by the Implementation. It contains exactly one Tasks Status
Record that gives an overview of the status of the Task, and zero or more
Change History Entries that record Activity State changes, and Data Change
History Entries that reflect changes in updateable Data Elements.

Work Type
Specification

A Work Type Specification (WTS) specifies content and structure of a Work
Request. These include Activities, their work flow, and the structure of
associated data content. Activities can be performed in sequence or parallel,
and they may have dependencies on each other. A Work Request provides
Task instance specific data that fills in the structural definition, such as values

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 13 of 138

for data elements.

3.3 Abbreviations 92

 93

ERMS See Section 3.2 Definitions

FFMII See Section 3.2 Definitions

FFMS See Section 3.2 Definitions

FIR Field-Initiated Request

UTC Coordinated Universal Time

WR Work Request

WTS Work Type Specification

 94

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 14 of 138

4 FFMII Interface Context 95

4.1 System Context 96

Field Force Management Integration Interface (FFMII) establishes a logical link between two types of 97

functional components: 98

 Enterprise Resource Management System (ERMS) represents a stereotype of a functional 99

component that takes a holistic view at work scheduling and resource allocation from the 100

corporate point of view. The ultimate purpose of an ERMS is to manage Field Work in a way 101

aligned with the business objectives of the company. In doing so, Manager component of an 102

ERMS uses services of FFMS to communicate with the Field Force. 103

 104

 Field Force Management System (FFMS) communicates with Field Force, providing Assignees 105

with technical means of accessing information about and sending feedback on work assigned to 106

them. While ERMS defines the structure, content and resource allocation of dispatched work, 107

FFMS is responsible for communicating that information to the field and enforcing any specified 108

constraints on user provided feedback. The Implementation component realizes the FFMII 109

interface for the services provided by FFMS. 110

Figure 2 outlines the relative positioning of ERMS, FFMS and FFMII. ERMS creates, generates updates, 111
and queries units of Field Work using services provided by FFMS through the FFMII interface. 112
Throughout the rest of this document, ERMS is therefore referred to as “Manager”, and FFMS as 113
“Implementation”. However, from system integration point of view, the FFMII interface also includes 114
services that ERMS MAY implement to receive notifications and Field-Initiated requests from FFMS. 115

 116

Figure 2: Field Force Management Integration Interface Overview 117

Enterprise Resources
Management System

Field-Force
Management System

Manager

FFMII

Implementation

Field Force

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 15 of 138

4.2 Interaction Styles 118

4.2.1 Manager-Initiated Interactions 119

FFMII employs Manager-Initiated Interactions concept for exchanging Work Request and status updates. 120
Using this interaction pattern, a Manager submits Work Requests to an Implementation, and MAY update 121
or cancel those as needed. A Manager MAY also poll for status changes of submitted Work Requests as 122
necessary. An Implementation MAY, if adequately equipped, actively send Work Request Status Change 123
Notifications towards the Manager whenever State of Work Request changes due to Assignee actions. 124

Figure 3 provides an overview of Manager Initiated Interaction pattern: 125

 126

Figure 3: Manager-Initiated Work Requests 127

An Implementation MUST support Work Request status polling and it SHOULD support sending of status 128
change notifications. 129

4.2.2 Field-Initiated Interactions 130

FFMII employs Field-Initiated Interactions concept for relying requests initiated by an Assignee in the field 131
and targeting specific functionality inside of ERMS. Such interactions can be used for triggering ERMS 132
actions in the context of specific Work Request, or as request not related to any Work Request in 133
particular. 134

Field-Initiated Requests take form of either Topical Notifications or Topical Inquiries, depending on 135
whether response data is expected for the request in question. Responses to Topical Inquiries are 136
asynchronous, whereby Implementation polls for responses related to the requests it has submitted. 137
Implementation MAY also poll for responses to several Field-Initiated Requests at once. 138

Figure 4 describes Topical Notifications and Topical Inquiries from the data type interaction point of view: 139

Force State Transition

 Manager

 Implementation

Update Work Request

Create Work Request

Query Status

Query History

Prepare Work Type
Specification

Manager submitting Work Requests and
polling for their status changes

Force State Transition

 Manager

 Implementation

Update Work Request

Create Work Request

Status Change Notification

Query History

Prepare Work Type
Specification

Manager submitting Work Requests and
Implementation sending status changes notifications

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 16 of 138

 140

Figure 4: Field-Initiated Interactions 141

Note: In the FFMII context, the ultimate receiver of Field-Initiated Requests is the Manager. However, the 142
Manager may also act as a relay agent forwarding requests (in their direct or modified form) to another 143
integrated system, and relaying responses back to Implementation. 144

4.3 Integration Topologies 145

FFMII interface offers several ways to integrate Managers and Implementations with each other: 146

 Simple topology: a single Manager and a single Implementation interacting 147

 Distributed work realization: A single Manager interacting with several Implementations for 148

communicating with distinct groups of field personnel 149

 Shared Field Force: multiple Managers interacting with a single Implementation 150

Figure 5 outlines principal differences between each type of integration scenario: 151

Topical
Inquiry

Topical
Notification

 Manager

 Implementation

 Assignee

Request

Request

Acknowledgement

Request

Response
Validation

Response

Poll-for-Response
(optional)

Response

Acknowledgement

Request

Acknowledgement

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 17 of 138

 152

 153

 154

Figure 5: Simple and Advanced Integration Topologies 155

In Figure 5 the arrows between Managers and Implementations represent logical links between 156
computing systems of specific roles and different system identity. On the network level, Managers and 157
Implementations MAY access their counter-parts through several networking end-points if needed. 158

Individual integration topologies MUST not exclude each other. For example, a single Manager might be 159
sharing a specific Implementation with another Manager for some Work Requests (“shared Field Force” 160
scenario), while at the same time deploying other Work Requests to another Implementation (“distributed 161
work realization”). FFMII interface also does not impose any restrictions on the number of 162
Implementations a Manager can be integrated with, and vice-versa. 163

Figure 6 shows an example of a multi-paradigm integration topology featuring several Managers and 164
several Implementations simultaneously: 165

 166

Figure 6: Multi-paradigm Integration Topology 167

Manager

Implementation

Manager

Multi-paradigm integration topology (example)

Implementation Implementation

Shared
field
force

Distributed
work

realization

Manager

Implementation

Manager

Shared Field Force

Implementation

Manager

Implementation

Distributed work realization

Implementation

Manager

Simple topology

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 18 of 138

4.3.1 Multi-tenancy support 168

Managers are identified through credentials included with every request they issue. When multiple 169
Managers access the same instance of Implementation, the instance offers a private data view to each 170
Manager, except for: 171

 data explicitly exposed for sharing by one of the Managers, 172

 data exposed for sharing by local configuration of the Implementation, and 173

 data defined as shared by this Interface specification 174

Whenever multiple Managers communicate with the same Implementation using the same credentials, 175
they are regarded as a single Manager (logical data type) accessing the Implementation from several 176
physical access points. 177

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 19 of 138

5 FFMII Interface Domain Model 178

5.1 Field Work 179

5.1.1 Overview 180

Manager produces series of self-contained Work Requests representing Tasks related to Field Works. 181
Each Work Request is to be performed by one or more Assignees belonging to the addressable Field 182
Force. A Manager communicates with one or more Implementations over the FFMII interface to make the 183
Work Requests accessible to corresponding Assignees. 184

Figure 7 below outlines relations between Manager, Implementation, Field Force, Assignees and high 185
levels structure of Work Requests representing the Tasks. 186

 187

Figure 7: FFMII Interface Domain Model 188

A Task is described by a Work Request associated with a Work Type Specification. The Work Type 189
Specification provides the structural definition of the Task. The Work Type Specification specifies the 190

 Manager

 Work Request

 Activity

 Step

1..*

involves

Work Type

Specification

 Action

 Assignee

 Schedule

0..*

leads
to

1

1

1

0..*

0..*

1

0..1

1

 Field Force

 Implementation

 Field Work

manages
1..*

1

0..*

1

<<interface>>

FFMII

Activity Location

0..1

1..*

0..* declares 1

1..*

1..* 1..*

1..*

assigns
works to

makes tasks
accessible to

1..*

1

0..*

0..1 starts
with

 Work Request
Status Record

Status

Snapshot
Record

Activity

History Entry

1 0..*

1

1..*

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 20 of 138

associated Activities, their work flow, and the structure of associated data content. A Work Request 191
provides Task instance specific data that fills in the structural definition, such as values for Data 192
Elements. Several Work Requests may share the same Work Type Specification if the related Tasks have 193
the same structure 194

A Work Type Specification MUST specify one or more Activities involved with the particular type of work. 195
The Work Request provides Task specific data for the Activities. Each Activity MAY be associated with a 196
specific Location and MAY be constrained by a Schedule. The Activity MUST be further divided into one 197
or more Steps describing the flow of work. The Steps do not have to be sequential. One Step MUST be 198
designated as the initial Step. Initial Step of each Activity is entered into as soon as the Activities are 199
instantiated in the Implementation. 200

Each Activity MAY be associated with one Assignee who is responsible for performing it. Activities without 201
an Assignee make it possible to create Work Requests before knowing who will perform the 202
corresponding Activities. An Activity MUST be assigned to a specific Assignee before the Assignee can 203
perform Actions in context of the Activity. The Assignee invokes Actions to report work progress. Each 204
Step MAY have any number of Actions that define the possible transitions from one Step to another. 205
 206
An Implementation MUST maintain a Work Request Status Record for each Work Request. A Work 207
Request Status Record consists of a Status Snapshot Record collecting current states of Work Request 208
and Activity and collection of Activity History Entries recording executed Actions and data supplied by the 209
Assignee. See Section 5.1.6 for a detailed specification of Work Request Status Record. 210

5.1.2 Work Type Specification 211

5.1.2.1 External and In-lined Work Type Specifications 212

A Work Type Specification (WTS) describes content and structure of a Work Request. A Work Type 213
Specification MAY be included as part of the Work Request itself (in-lined WTS), or declared though a 214
reference to an entry in Work Type Repository managed by Implementation (external WTS). 215

 216

Figure 8: Work Type Specification 217

An external Work Type Specification MAY be shared among any number of Work Requests, while an in-218
lined Work Type Specification is not visible outside of the enclosing Work Request. 219

5.1.2.2 Work Type Specification structure 220

Work Type Specification divides into several parts as per the Figure 9: 221

 222

 Work Request

Work Type

Specification

1

0..*

Work Type
Repository

0..*
includes

0..1 stores 0..1

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 21 of 138

 223

Figure 9: Work Type Specification Structure 224

A Work Type Specification MUST include a number of mandatory, and MAY include several optional 225
information elements modeled as Data Forms. Work Request information elements are further discussed 226

in Section 5.1.2.3, while Data Dorms are discussed in Section 5.1.4. 227

A Work Type Specification MUST prescribes one or more Activities with optional Data Form for Activity 228
Location Data. Activities MAY be indicated as so-called Supplementary Activity (see later part of this 229
section for details). A Work Type Specification MUST includes at least one Activity that is not indicated as 230
Supplementary. 231

An Activity MUST consist of one or more Steps. Each Step defines zero or more Actions. An Action MAY 232
require user input, and it MUST specify the target Step the Activity is transited to upon Action completion. 233

Each Step MUST be associated with a specific State. An Activity MUST declare one or more States. Each 234
State MUST belong to exactly one Status category (see Section 5.1.2.4), and MAY be associated with 235
one of the predefined Status Indicators (see Section 5.1.2.4). A single State MAY be shared among 236
several Steps. In this way, for example, Work Requests MAY have several Steps that are collectively 237
regarded as “Suspended” State, even if each Step might be carrying different display information and 238
provide different exit paths (transitions to other Steps). 239

Steps, Actions and States form an Activity-level logical state model. Within this model, each Activity 240
MUST have exactly one initial Step, and thereby also State. The final transition of the Activity State Model 241
will be a transition to a State associated with Status Category “Closed” (see Section 5.1.2.4) or asserting 242
Administrative Closing Status for the Work Request (see Section 5.1.5). 243

An Action MAY have an Enable Condition. If Enable Condition is False, then the Action is not available to 244
the Assignee. 245

Activity Specification

 Work Type
Specification

Data Form

Specification

 Header

 Work Overview

 Work Instructions

0..1

1

1

0..1

 Activity

 Step

Activity

Location Data

1..*

1..*

Action Input

Form

 Step Instructions

 Action

0..1

0..1

 State

1..*

1

leads
to

0..*

1

1..*

declares

0..*

1

 Condition

0..1

+enable
Condition

+enable
Condition

0..1

 Status Category

 Status Indicator

1

0..1

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 22 of 138

An Activity MAY have an Enable Condition. If Enable Condition is False, then the Activity is not available 246
to the Assignee. Enable Conditions on Activity and Action MAY be used to enforce dependencies on 247
specific Activity States (see Section 5.1.2.5 for more details). 248

Supplementary Activity 249

Any Activity in a Work Type Specification MAY be declared as so-called Supplementary Activity. A 250
Supplementary Activity is not directly involved with performing some specific part of the associated Task 251
but provides Actions (Supplementary Actions) that are related to the Task as a whole, such as logging a 252
note, reporting change in the requested delivery time or providing Task completion report. 253

With regards to Work Request status and State changes the Supplementary Activity and the associated 254
state model behaves just like any other Activity. However, the Implementation SHOULD present the 255
Supplementary Activity and the associated Supplementary Actions as being related to the Task as a 256
whole rather than being part of specific Activity only. 257

A potential use of multiple Supplementary Activities is to group related Supplementary Actions such as 258
time-keeping Actions, recording notes, controlling equipment. This can be used, for example, for user 259
interface purposes. 260

5.1.2.3 Work Request Information Elements 261

A Work Request contains several information elements that specify data structures used in various 262
contexts. These information elements are modeled as Data Forms. 263

A Data Form MUST includes one or more Data Elements. A Data Element may be used for displaying 264
data or requesting user input. For more details regarding Data Form specification refer to Section 5.1.4. 265

Purpose and intended usage of each Data Form defined in Work Type Specification is described below: 266

Header [Mandatory] 267
Specifies terse identification information that allows an Assignee to identify a particular Work 268
Request. Header information is intended to be used when an Assignee needs to choose 269
between or otherwise identify several Work Requests, such as in list or schedule views. A 270
Header typically includes a title or an identifier for the Work Request and possibly some 271
other key information, such as an address or a customer name. 272

Work Overview [Mandatory] 273
Specifies overview information describing the associated Task to the Assignee on a general 274
level. Work Overview typically includes information about the kind of work involved, when 275
and where the work needs to be performed and contact information. However, overview 276
does not need to include all the details the Assignee may need to know when actually 277
performing the Task. 278

Work Instructions [Optional] 279
Specifies detailed instructions and other information the Assignee will need to complement 280
the Work Overview for performing the associated Task. In addition to specific instructions, 281
this form may also include other detailed information, such as related documentation, fault 282
history of the associated component or the change history of the Work Request. 283

Step Instructions [Optional] 284
Specifies detailed instructions and other information the Assignee will need for a particular 285
Step of an Activity, if any, to complement Work Overview and Work Instructions. Step 286
Instructions is always associated with a specific Step. 287

Activity Location Data [Optional] 288
Specifies any special information the Assignee will need to reach the location associated 289
with a particular Activity (Activity Location) in addition to overview information. Activity 290
Location Data is specific to the Activity Location associated with a particular Activity and it 291
typically includes information about special access restrictions or access procedures, and 292
possibly detailed instructions for finding the Activity Location. 293

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 23 of 138

Action Input Form [Optional] 294
Specifies information the Assignee is required to provide when performing a particular 295
Action. This form is primarily used for requesting input from the Assignee, however it MAY 296
contain display elements as well. 297

5.1.2.4 Activity State Model 298

A combination of States, Steps and Actions form an Activity State Model. FFMII interface does not 299
prescribe or imply usage of any specific Activity State Model in order to remain neutral with respect to 300
types of Task a Work Request may represent. As an implication of this design decision, a Manager MUST 301
specify an Activity State Model as part of the Work Request’s Work Type Specification, and an 302
Implementation MUST adhere to the specified Activity State Model. 303

Figure 10 is an example illustrating the relationship of Steps, Actions and States within an Activity. Each 304
Step in the figure is related to some progress made by the Assignee or other resources and/or processes 305
supporting the Assignee's work. Each Step is also associated with a specific State. Each Action in the 306
figure leads from a Step to some other Step, in the same State or in some other State. Status Categories 307
are marked in double angle brackets (example: "<<Open>>") and the Status Indicators are marked below 308
each Status Category. Status Indicators starting with "X-" denote Implementation-specific indicators. 309

 310

Figure 10: Relationship of Steps, Actions and States within an Activity 311

Step 1

Step 2

Step 3 Step 4 Step 5

Step 6

Step 7

State: State A

Status Category: <<Open>>

Status Indicator: Dispatched

State B
<<Active>>
OnSite

Action: {push}

Obtain-approval

State C
 <<Inactive>>
X-Obtain-approval

Action: {pop}

Resume

State E
<<Closed>>

Completed

Action:

Replace

Action:

Transition to

X-Finalize

Action: Transition to OnSite

Action:

Repair

Action:

Transition to

X-Finalize

Action: Transition to Completed

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 24 of 138

In this example, the OnSite State requires the Assignee to decide whether the Task may be completed by 312
repairing the customer's equipment, or whether it is necessary to replace the equipment with a new unit. 313
Therefore there are two possible Actions leading from Step 2, and both of them are enabled so that the 314
Assignee may select either of them (enabling conditions aren't visualized in this diagram). If the Assignee 315
chooses the Replace Action, the Action leads to Step 4. In this example, replacement requires approval, 316
so the dashed Action transfers the task to an Inactive State, pushing the current Step into the Step Stack. 317
At that point, the other Action leading from Step 4 is not enabled, due to an enabling condition which 318
depends on receiving the approval. Once the approval arrives, the next Action pops the Step Stack to 319
return to Step 4. 320

Note: a more complete scenario would probably also include Action that should lead from Step 5, for 321
handling the case when approval is not granted, possibly leading to another State in the Closed category 322
which reflects cancellation of the Work Request. 323

Figure 11 contains an example Task composed of three Activities, of which the state model of “Activity 1” 324
is discussed in more detail: 325

 326

Figure 11: Activity State Model 327

Activity 1

Example Activity State Model

<<Open>>
Dispatched

<<Active>>
OnSite

<<Closed>>
Completed

<<Inactive>>
Suspended

New Travelling
to Site

Resolving
Issue

Completed

Suspended

> Start < > On site < > Ready <

> Suspend <
{push}

> Resume <
{pop}

Activity 2

Activity 3

Activity

<<Status Category>>
Status Indicator

Step

> Action <

Association of Action in
context of specific Step

Transition to
another Step

Task
<<Status Category>>

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 25 of 138

In Figure 11, Activity 1 is composed of five Steps associated with four different States. Of these, Step 328
“New” is the initial Step. Each State is associated with one Status Category, describing the overall status 329
of the work while in that State. 330

Each Step, except for “Completed” has at least one Action associated. An Action, once invoked, transits 331
the Activity to the designated target Step and the associated State. 332

While at the “Traveling to Site” and “Resolving Issue” Step, there are two Actions declared as the possible 333
exit paths. As there are no Conditions associated with any of the Actions, the Implementation MUST offer 334
choice of respective two Actions to the Assignee at these Steps. 335

The “Suspended” Step offers two exit paths through the same “Resume” Action, returning back to the 336
Step where the “Suspend” Action was originally triggered. This is enabled by a concept of a Step Stack 337
which MUST be supported by Implementation. An Action specifying a “{push}” classifier causes the 338
identity of the Step triggering the Action to be stored into the top of the Step Stack. Consequently, an 339
Action specifying a “{pop}” classifier causes the identity of the target Step to be retrieved from the top of 340
the Step Stack rather than exactly identified in the state model. Each Activity has a separate Step Stack. 341

Status Categories and Status Indicators 342

As the creator of an Activity State Model, the Manager implicitly knows the semantic meaning of each 343
State. Progress and status of the Activity is tracked based on information about State and Step 344
transitions. However, the Implementation also needs some information about the semantic meaning of 345
each State to be able to properly indicate and visualize the current status of the Activity to the Assignee. 346
This information is conveyed using Status Categories and Status Indicators. 347

Each State MUST be associated with exactly one of the predefined Status Categories. The Status 348
Category indicates the overall status of the Activity when it is in this State. 349

The following Status Categories shall be used. 350

 Open (i.e. Assignee has not yet started working on the Activity) 351

 Active (i.e. Assignee is actively pursuing the work in question) 352

 Inactive (i.e. Assignee has started work in question but has suspended it) 353

 Closed (i.e. Activity has been completed or it is of no relevance to Assignee anymore) 354

Additionally, each State MAY be also associated with one of the pre-defined or Implementation specific 355
Status Indicators belonging to the Status Category associated with the State. The Status Indicator 356
provides more fine grained information about the status of the Activity when it is in a particular State. 357
Table 1 specifies pre-defined Status Indicators and their semantics. These MAY be used in Activity State 358
Models. Implementation specific Status Indicators MUST begin with “X-“. 359

Status

Category

Status

Indicator

Description

Open Open The initial default status. Indicates that the WR or Activity exists

but is not currently assigned.

Scheduled The WR or Activity is scheduled, meaning that it has been

assigned to specific Assignee(s) at specific times. It is not

necessarily available to the Assignee (since it may be far in the

future, or there may be a significant probability that new

information will cause it to be assigned), but Assignees who

query for WRs and Activities may still see items in Scheduled

status (or any other status) subject to access rules imposed by

Manager.

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 26 of 138

Status

Category

Status

Indicator

Description

Tentative The Activity is scheduled and assigned to specific Assignee(s) at

specific time, and is available to the Assignee even though there

remains some time before the actual dispatch, so the Manager

may still re-assign the Activity. Rationale: In many cases,

Assignees continuously need to have a glimpse into the plan for

the rest of the day (or any other reasonably-close future period),

even knowing that the plan is subject to change.

Dispatched The Activity is firmly assigned to specific Assignee(s), so that

under non-exceptional circumstances (e.g. emergency), the

Manager will not re-assign it to someone else.

Acknowledged The Assignee acknowledged the Activity assigned to him or her.

Active EnRoute Assignee is traveling towards service site

OnSite Assignee is on site

Inactive Suspended Work is on hold, pending some action such as delivery of parts

Closed Rejected The Assignee rejected the Activity assigned to him or her.

Cancelled The WR or Activity has been cancelled. This is typically an end-

state that will not transition to any other State.

Completed The WR or Activity has been completed. This is typically an end-

state that will not transition to any other State.

Incomplete The WR or Activity has been closed but not all the required work

has been completed. Any further work will need to open a new

WR or Activity. This is typically an end-state that will not

transition to any other State.

Table 1: Pre-defined Status Indicators 360

5.1.2.5 Activity dependencies 361

Activities MAY have dependencies on other Activities being in specific States. 362

FFMII interface does not provide dedicated data constructs for modeling Activity and Action 363
dependencies. Instead, both types of dependencies are modeled using Boolean expressions referred to 364
as Conditions. 365

Activity-Enabling dependencies are specified as an Enable Condition associated with the Activity. If an 366
Enable Condition is specified, the Implementation MUST NOT makes the Activity available to the 367
Assignee, unless the Enable Condition evaluates to True. Once an Activity is initially made available to 368
the Assignee, it MUST remain available regardless of the value of the associated Enable Condition. 369

Action-Enabling dependencies are specified as an Enable Condition associated with the Action. If an 370
Enable Condition is specified, the Implementation MUST NOT allows triggering of the Action unless the 371
Enable Condition evaluates to True. 372

The use of generic Boolean expressions makes it possible for Activities and Actions to be dependent also 373
on other information, such as Work Request data values or system supplied values, including more 374
complex expressions build on top of those. Conditions are in more detail discussed in Section 5.1.4. 375

Figure 12 extends the Activity State Model introduced in Section 5.1.2.4 by adding sample Activity 376
dependencies: 377

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 27 of 138

 378

Figure 12: Activity State Model (Dependency) 379

In the example of Figure 12, Activity 1 is not made available to the Assignee until Activity 3 is in 380
“Completed” State. Additionally, while at the “New” Step, Activity 1 won’t be allowed to proceed towards 381
the next Step, “Traveling to Site”, unless Activity 2 is at any Step associated with the State “Ongoing”. 382
However, should Activity 2 proceed to the State “Completed” while Activity 1 is still in Step “New”, the 383
associated Action “Start” becomes disabled again. Activity 2 and Activity 3 have no dependencies on 384
each other or Activity 1 and may therefore proceed independently at any time. 385

Activity 1

Example Activity State Model
(with dependencies)

<<Open>>
Dispatched

<<Active>>
OnSite

<<Closed>>
Completed

<<Inactive>>
Suspended

New Travelling
to Site

Resolving
Issue

Completed

Suspended

> Start < > On site < > Ready <

> Suspend
<

> Resume
<

Activity

<<Status Category>>
Status Indicator

Step

> Action <

Association of Action in
context of specific Step

Transition to
another Step

Activity 2

<<Open>>
Dispatched

<<Active>>
OnSite

<<Closed>>
Completed

Activity 3

<<Open>>
Dispatched

<<Closed>>
Completed

Dependency of Activity or Action on State of another Activity

Task
<<Status Category>>

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 28 of 138

No explicit deadlock prevention 386

An improperly specified Activity State Models may result into deadlock on Task Level, i.e. a situation 387
where the Task is not able to reach a Closed Work Request Status (see Section 5.1.5) by actions taken 388
by the Assignee. Such situation may occur, for example, when there is a dependency loop between two 389
Activities. 390

The Interface itself does not include proactive means of deadlock prevention. Instead, the Manager 391
SHOULD ensure that each produced Work Request allows reaching its desired final Closed Work 392
Request Status. Additionally, the Manager MAY cancel any Work Request using WR_INVOKE_ACTION 393
operation as described in Section 8.2.2. 394

5.1.2.6 Work Type Specification change constraints 395

Work Type Specifications stored in the "WorkTypes" repository MAY be updated at any time via 396
Reference Data Management. However, the Implementation MUST retain internally and apply to a Work 397
Request the version of the Work Type Specification that was used at the time the Work Request was 398
initially created or last updated. Therefore, from Work Request perspective the associated Work Type 399
Specification may only change when the Work Request itself is updated. 400

When an existing Work Request is updated, the associated Work Type Specification MUST NOT changes 401
in a way that would void integrity of the existing data in the associated Work Request Status Record or 402
otherwise contradict the current Work Request State. If the constraints are violated then the 403
Implementation MUST reject Work Request update with error code E3017 ILLEGAL_WTS_UPDATE (See 404
Section 8.7). The following changes constraints MUST be honored. 405

 Existing Activities MUST NOT be removed. 406

 If Work Request Status (see section 5.1.5) is Closed before the update then new Activities MUST 407

NOT be added. 408

 The new state model associated with existing Activities MUST contain the current Step of the 409

Activity. 410

 Status Category of State associated with the current Step of each existing Activity MUST NOT 411

change. 412

5.1.3 Schedule 413

An Activity MUST be constrained by a Schedule. 414

The Schedule associated with an Activity has two logical parts: The time constraints defining when the 415
Activity may be executed; and the planned time for executing the Activity; 416

The Schedule MUST have a "time constraints" part, which has the following attributes: 417

Latest Start (Mandatory) 418

A date-time data element, specifying the latest time when the Activity may be started. Note 419
that this does not constrain the time when the Activity may be finished. 420

Earliest Start (optional) 421

A date-time data element specifying the earliest time when the Activity may be started (if not 422
specified, it is assumed that the Activity may be started at any time between the present and 423
the Latest Start). 424

Latest Finish (optional) 425

A date-time data element specifying the latest time when the Activity may be finished (if not 426
specified, the finishing time is not constrained). 427

Appointment Start, Appointment Finish (optional) 428

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 29 of 138

Date-time data elements specify the start and end of the appointment that is the time window 429
during which the service provider has promised that the service would be delivered. If one of 430
these elements is specified, the other one MUST be specified as well. 431

The Appointment constraint consists of Appointment Start and Appointment Finish. If specified, 432
Appointment constraint supersedes other constraints. It is intended for use in cases similar to the 433
following common use case: Assume the customer has a service contract specifying that service must be 434
provided within 2 business days from the time when the customer requested the service. Therefore, if the 435
customer calls on Tuesday noon, the Latest Start will be set to Thursday noon. During the interaction 436
between the customer and the service provider, they may set a service appointment for Wednesday 437
between 10AM and noon. This will be specified in the Appointment Start and Appointment Finish 438
elements. Still, it is useful for the Assignee to know the Latest Start data: for example, the Assignee might 439
have some delays and check which of the Assignee's planned Activities may be moved and still meet the 440
original Latest Start. 441

The Activity MAY have a "planned time" part. If this part exists, it MUST include a "Planned Start" date-442
time data element. In the above example, where the service appointment was set for Wednesday 443
between 10AM and noon, the Planned Start element might show that the Activity was set to start at 444
11AM. It MAY also include a "Planned Finish" date-time data element. 445

No enforcement of logical relationships between the Schedule elements: The Manager and 446
Implementation MAY enforce logical relationships between the Schedule elements. For example, it is 447
permissible for the Planned Start to be in violation of the timing constraint specified by the Latest Start 448
element. Such a situation may arise, for example, if the Manager is unable to schedule the Activity in 449
such a way that obeys the constraint (possibly due to lack of work capacity) but schedules it at a later 450
time, since being late may be better than not performing the Activity at all. 451

5.1.4 Data Forms 452

5.1.4.1 Overview 453

Data Forms are used to model dynamically specified structured information. Data Forms are used, for 454
example, for the purpose of defining Work Request header, overview and instructions, Step level 455
instructions and user input. 456

Data Forms related to Work Requests are declared using Data Forms as part of Work Type Specification. 457
Data Forms related to Field-Initiated Requests (Request Form, ResponseForm) are declared using Data 458
Forms as parts of Field-Initiated Request Specification. 459

A Data Form (DataForm) MUST contain one or more Data Elements providing descriptive information 460
about the associated values (see sections 5.1.4.2 and 5.1.4.3 for details). A Data Element is either a Data 461
Element Specification or in case of Data Form declared by a Work Type Specification, a reference to 462
share a Data Element Specification specified by the Work Type Specification. This allows the same Data 463
Element Specification to be used as part of several Data Forms defined by the same Work Type 464
Specification. 465

The actual values of Data Elements are provided by a Work Request or a Field-Initiated Request 466
associated with the specification declaring the data Form. Data Values are provided as a set of Data 467
Bindings. Data Bindings are also used when referring to information provided by the Assignee. 468

Figure 13 illustrates the structure of a Data Form and its relations to the declaring specification as well as 469
to the Work Request or Field-Initiated Request instance providing the actual data values. 470

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 30 of 138

 471

Figure 13: Data Form Data Types 472

5.1.4.2 Data Element Specification (abstract) 473

Data Element Specification itself is an abstraction that supports a common set of attributes as per the 474
following figure: 475

Data Form data

Data Form structure

1 0..*

 Data Form

 Data Element

1..*

Data Element
Specification

Data Element

Reference

1..*

 Data Binding

 Data Value

0..1

 Data Field Spec

Data Attachment Spec

 Data Group Spec

 Data Matrix Spec

1..*

1

 Work Type Spec

 Field-Initiated
Request Spec

 Work Request

 Work Request
Status Record

 Field-Initiated
Request

 Field-Initiated
Request Response

shared
Data Elements

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 31 of 138

 476

Figure 14: Data Element Specification 477

Label [Optional] 478
Specifies text identifying the associated Data Element on the user interface. 479

Formatting Tags [Optional] 480
Specifies the way the associated Data Element SHOULD be visualized using a sequence of 481
standard or custom formatting tags. Standard tags are specified in Section 8.5.6. 482
Additionally, an Implementation MAY introduce own set of custom tags is necessary. Names 483
of Implementation-specific tags MUST” be prefixed with “X-“. 484

Enable Condition [Optional] 485
An expression that specifies when the associated Data Element is in enabled state. When 486
NOT enabled, the Data Element MUST not be shown to the user, and its content MUST not 487
be validated. 488
 489
Default value of Enable Condition is True (i.e. Data Element having no Enable Condition 490
defined is regarded as enabled). 491

Updateable Condition [Optional] 492
An expression that specifies when the content of the associated Data Element can be 493
updated by the user. In order to be updateable, the Data Element in question MUST also be 494
enabled. 495
 496
Default value of Updateable Condition is False (i.e. Data Element having no Updateable 497
Condition defined is regarded as non-updateable) in case of Header, Work Overview, Work 498
Instructions and Activity Location Data, Data Forms. Default value of Updateable Condition 499
is True in case of an Action Input Form. 500

Validation Condition [Optional] 501
An expression that specifies an expression used to validate user input of updateable Data 502
Elements. 503
 504
Default value of Validation Condition is True (i.e. value of Data Element without Validation 505
Condition is not checked for validity). 506

Concrete sub-classes
(see 5.1.4)

 Label

 <<tags>>
Formatting

 <<expression>>
Enable Condition

 <<expression>>
Validation Condition

0..1

0..1

0..1

0..1

0..1

 <<expression>>
Updateable Condition

…

Data Element
Specification

 Source
0..1

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 32 of 138

Source [Optional] 507
Identifies the expected source of Assignee provided data and provides a hint on how the 508
Implementation SHOULD obtains the data, such as using a camera. See Section 8.5.7 for a list of 509
standard source identifiers. 510

Enable Condition, Updateable Condition and Validation Condition are conditions specified as 511
Expressions. These Expressions evaluate into Boolean True or False. Expressions refer to Work Request 512
Data Elements, system properties, elements of Reference Data or defined constants, and combinations 513
thereof. Expressions are in more detail discussed in Section 8.6. 514

5.1.4.3 Data Element Types 515

Types of concrete Data Element Specifications are: 516

Data Field Specification 517
Specifies a data field displaying or accepting a single value. 518
 519
A Data Field Specification MUST specify the type of the associated value (one of primitive 520
data types such as String, Integer or Boolean, see Section 7.2) and it MAY specify a unit 521
label to be displayed along the value. A Data Field Specification MAY specify the set of valid 522
value alternatives, effectively resulting into a multiple choice field. The value alternatives are 523
specified either directly or by referring to Reference Data. A Data Field Specification MAY 524
also specify one or more primary alternatives. Primary alternatives specify the values an 525
Assignee is most likely to provide as input data on an updateable data field and the 526
Implementation MAY leverage those, for example to improve user experience. 527
 528
Data Field Specification is described in more detail in Section 8.5. 529

 530

Data Field
Specification

+ Type
+ Unit-label
+ Alternatives
+ Alternatives

Repository Id
+ Primary

Alternatives

Data Element
Specification

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 33 of 138

 531

 532

Data Matrix Specification 533
Specifies a two-dimensional matrix of data composed of rows and columns. 534
 535
Data Matrix Specification MUST declares one or more columns using Data Matrix Column 536
Specification which is a kind of Data Field Specification. The attributes of Data Field 537
Specification, such as label and type, are applied to the column and the values contained in 538
the column. Data Matrix Column Specification MAY also specify a default value to be used 539
automatically in the corresponding column for any new row added by the Assignee. 540
 541
Data Matrix Specification MAY also specify whether rows of an updateable matrix can be 542
deleted by the Assignee. By default the rows of an updateable matrix can be deleted. 543
 544
Data Matrix Specification is described in more detail in Section 8.5.4. 545
 546

 547

Data Attachment Specification 548
Specifies an unstructured data object, such as an image or a document, to be made 549
available to or provided by the Assignee. 550
 551
When used for user input (i.e. an updateable element), Data Attachment Specification MAY 552
specify the expected base MIME type from [RFC2046] (e.g. “image”) and the maximum 553

Data Attachment
Specification

+ Mime Type Base
+ Max Size

Data Element
Specification

Data Matrix
Specification

+ Rows Deletable

Data Element
Specification

1..*

columns

Data Field
Specification

Data Matrix Column
Specification

+ Value for Added
Row

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 34 of 138

allowed size for attachment data provided by the Assignee. 554
Data Attachment Specification is described in more detail in Section 8.5.3. 555
 556

 557

Data Group Specification 558
Specifies a group of other Data Elements. 559
 560
A Data Group Specification MUST contains one or more other Data Elements declared as 561
Data Element Specifications. Data Group Specifications MAY be nested within each other. 562
The Implementation MUST regard the contained elements as pieces of related information 563
and SHOULD visualize those in such a way that grouping is visible to the user. 564
 565
Data Group Specification MAY introduce own Enable Condition, Updateable Condition or 566
Validation Condition that have a cascading effect on the contained elements. 567
 568
Data Group Specification is described in more detail in Section 8.5.5. 569

5.1.5 Work Request Status and Work Request Administrative Closing 570

Status 571

While each Activity has its own state model, from the Manager point of view it is also important to be able 572
to determine the overall status of a Work Request. For example, in order to save network bandwidth, a 573
Manager MAY want to ignore any Work Request that is already in a closed State or, on the other hand, 574
query the status of only those Work Requests that have not yet been started. 575

The Implementation MUST maintain Work Request Status for each Work Request. The current Work 576
Request Status of a Work Request MUST also be made available to the Manager as part of the 577
associated Work Request Status Record (see Section 5.1.6 for details). 578

Work Request Status is implicit, and its value is based on the Status Category associated with the current 579
State of each included Activity and weather the Administrative Closing Status has been asserted or not. 580
Work Request Status is indicated using the same Status Categories (See Table 1) as for indicating the 581
overall status of an Activity (see Section 5.1.2.4). 582

The following diagram depicts Work Request Status and its relations to other data types. 583

 584

Data Group
Specification

Element
Specification

1..*

elements

Data Form
Element

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 35 of 138

 585

Figure 15: Work Request Status and Task Relationship 586

Work Request Status changes when Actions are performed on Activities of the Task changing the current 587
State of the Activity. 588

An Action MAY also assert the Administrative Closing Status to force the Task Status to “Closed”, 589
regardless of the current State of each included Activity. The Action MAY assert the Administrative 590
Closing Status to any value. The chosen value itself does not affect Task Status; however the Manager 591
MAY use different values to keep track of the reason the Task was closed. The asserted value of the 592
Administrative Closing Status, if any, is exposed to Manager as part of the Work Request Status Record 593
(see Section 5.1.6). 594

The following chart depicts the possible Work Request Status values and the possible transitions 595
between them. 596

 597

1..*

Work Request

Status

 Work Request

 Activity

 Step

1..*

Administrative
Closing Status

 Action

1..*

leads
to

1

1
1

0..1

0..*

0..1

asserts

 State

1..*

 Status Category

currently in

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 36 of 138

 598

Figure 16: Work Request Status State Model 599

Work Request Status is determined by the following set of rules. The rules are evaluated in the listed 600
order and the first rule that can be applied determines Work Request Status. 601

 Work Request Status is “Closed” if all included Activities are currently in a State associated with 602

Status Category “Closed” or if Administrative Closing Status has been asserted. 603

 Otherwise, Work Request Status is “Active” if at least one included Activity is currently in a State 604

associated with Status Category “Active”. No Administrative Closing Status has been asserted. 605

 Otherwise, Work Request Status is “Inactive” if at least one included Activity is currently in a State 606

associated with Status Category “Inactive”. No included Activity is currently in a State associated 607

with Status Category “Active” and no Administrative Closing Status has been asserted. 608

 Otherwise, Work Request Status is “Open”. At least one included Activity is currently in a State 609

associated with Status Category “Open” and none in a State associated with Status Categories 610

“Active” or “Inactive” and no Administrative Closing Status has been asserted. 611

Once Work Request Status becomes “Closed” the Implementation MUST prevent further Actions from 612
being performed on any of the included Activities, making this the last transition of the Task state model. 613

5.1.6 Work Request Status Record 614

Work Request Status Record is a data structure reflecting state changes of Work Request after it has 615
been received by the Implementation. An Implementation MUST maintain one Work Request Status 616
Record per each Work Request, and make it available for retrieval through appropriate interface 617
operations. 618

Work Request Status Record MUST contain exactly one Tasks Status Record, and zero or more Change 619
History Entries as indicated in Figure 17: 620

Active

Open

Work Request Status Model

Closed

All Activities in “Closed” State
or Administrative Closing Status asserted

Inactive

 At least one Activity in
“Active” State

At least one Activity in
“Inactive” State and none in

“Active” State

At least one Activity in
“Open” State and none in

“Active” or “Inactive” States

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 37 of 138

 621

Figure 17: Work Request Work Request Status Record 622

A Status Snapshot Record is a snapshot of current Work Request status information. A Status Snapshot 623
Record MUST contains the following data elements unless indicated as optional: 624

 Current Work Request Status determined as described in Section 5.1.5 625

 Whether Administrative Closing Status has been asserted and its value, if any 626

 Current Activity State of each defined Activity 627

 An Activity Instantiation Timestamp indicating the time when the Activity was made available to 628

the Assignee (Optional, present if and only if made available to the Assignee) 629

 A monotonically increasing Revision Number reflecting the number of changes made to the 630

Work Request by Assignee or Manager since the creation of the Work Request 631

 Revision Timestamp for the latest revision 632

1..*

 Work Request

 Task

 Activity

 Step

1..*

 Action

1

1

0..1

Action Input

Form

Status Snapshot

Record

 Data Change

History Entry

0..*

Work Request

Status

 Activity State

1

*

Revision
Number

Activity
Instantiation
Timestamp

*

1

1

 Updated Data

 Cause
1

1

1

 Assignee Id

0..1

 Activity Change

History Entry

0..1

 Input Data

 Activity Id

 Step Id

 Action Id

1

1

1

 Assignee Id

0..1

1
Change History Entry

+ Change Time
+ Resulting Revision

Work Request
Status Record

Revision

Timestamp

1

1..*

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 38 of 138

Change History Entries record the circumstances, under which an Activity transited from one Step to 633
another (Activity Change History Entry) as well as Work Request data changes made by Assignees (Data 634
Change History Entry). Each Change History Entry MUST contains the following common data elements: 635

 Timestamp of the change 636

 Resulting revision number of the Status Snapshot Record 637

Activity Change History Entries record Activity State Model transitions initiated either by an Assignee or a 638
Manager invoking an Action on the Activity. Activity Change History Entries MUST contains the common 639
data elements for Change History Entries and MUST additionally include the following data elements 640
unless indicated as optional. 641

 Identification of the Assignee that initiated the transition,(Optional, present only in 642

Assignee initiated transitions) 643

 An identification of the related Activity 644

 An identification of the Step and the associated State the Activity reached after the 645

transition 646

 An identification of the Action that triggered the transition 647

 Any input data the Assignee supplied in connection to the Action. (Optional present only 648

if input data was supplied) 649

Data Change History Entries record Work Request data changes caused by direct manipulation of 650
updateable Data Elements by the Assignee or by Data Update Operations (specified in Section 8.2.1.5) 651
associated with Actions invoked by an Assignee or the Manager. Direct Work Request data updates by 652
Manager are not recorded in Work Request Status Record. Data Change History Entries MUST contain 653
the common data elements for Change History Entries and additionally the following data elements 654

unless indicated as optional. 655

 Identification of the Assignee that updated Work Request data ,(Optional, present only in 656

Assignee initiated transitions) 657

 Identification of the cause, whether caused by an Action or direct manipulation of updateable 658

Data Element 659

 Any updated data 660

5.2 Reference Data 661

An Implementation MAY provide means for the Manager to establish custom data repositories with 662
arbitrary content. Content of such repositories is commonly denoted as “Reference Data”, and MAY be 663
used for input value selection, lookup of display values or content validation in Work Requests. 664

An Implementation MAY also provide access to system repositories providing access to selected data on 665
Implementation side, such as Assignee identities. System repositories have reserved identifiers, and they 666
MAY impose restrictions on their content. 667

Figure 18 presents the domain model of Reference Data in FFMII context: 668

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 39 of 138

 669

Figure 18: Reference Data Overview 670

Each Reference Data Item stored in a Reference Data Repository MUST have an identifier and MAY 671
have a value. The value MUST be either a primitive value, a dictionary value, or a strongly-typed class 672
value matching the repository constraints. 673

Each Reference Data Item MAY also have zero or more references to other Reference Data Items 674
residing in the same or different Reference Data Repository managed by the same Implementation. The 675
semantics of the references depends on the type of the repository and the context in which the data is 676
used. A single set of operations may be used to manage the references. 677

Reference Data Management is described in detail in section 8.3. 678

5.3 Work Request Status Change Notification 679

A Work Request Status Change Notification informs Manager of changes to a Work Request it has 680

deployed to the Implementation. This off-loads Manager from having to poll for status updates frequently. 681

A Work Request Status Change Notification contains a copy of the Tasks Status Record, and one or 682
more Change History Entries (see Section 5.1.6) covering data and Activity changes of the Work Request 683
since last successful notification. Each transition in the Activity State Model MUST be notified as an 684
Activity Change History Entry. Any change on Data Form content MUST be notified as a Data Change 685
History Entry. In addition, a Header element is provided to identify the Work Request in question. 686

A single message may contain several Work Request Status Change Notifications concerning several 687

Work Requests if the Manager has advertised the corresponding capability (see Section 8.1). 688

Figure 19 provides an overview of Work Request Status Change Notification structure: 689

 Implementation

0..*

Custom

Repository

Reference Data

Repository

System

Repository

0..*

 Reference Data
Item

1

1

 Identifier

 Value

 Reference

1

0..*

maintains

<<strongly typed>>

Class Value

<< type-less>>

Dictionary Value

<<strongly typed>>

Primitive Value

Note: Reference may
also target items
residing in different
repository

1 0..1 0..*

Repository
Descriptor

+ id

{ specific types only }

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 40 of 138

 690

Figure 19: Work Request Status Change Notification 691

Feature availability 692

The ability to dispatch and receive Work Request Status Change Notifications is optional for 693
Implementation and Manager, respectively. If supported, Implementation and Manager MUST indicate 694
availability of the feature through appropriate Capability Descriptor as described in Section 8.1 of Identity 695
and Capabilities Discovery chapter. 696

Bundling of Activity History Entries 697

An Implementation MAY combine several Change History Entries within a single Work Request Status 698
Change Notification. Reason for such behavior might be re-transmissions caused by transient network 699
errors, asynchronous dispatch of notifications, or matter of policy for saving network bandwidth. The 700
Implementation MUST preserve chronological order of Change History Entries included in a single Work 701
Request Status Notification. 702

Chronological order of notifications 703

 Work Request
Status Record

Status
Snapshot
Record

 Data Change

History Entry

0..*

Work Request

Status

 Activity State

1

*

Revision

Timestamp

Revision
Number

Activity
Instantiation
Timestamp

*

1

1

 Updated Data

 Cause
1

1

1

<<ordered>>
 1..*

 Work Request Status
Change Notification

1

1

1
Header

+ request-id

Work Request Status
Change Notification

Message

1..*

 Assignee Id

0..1

 Activity Change

History Entry

0..1

 Input Data

 Activity Id

 Step Id

 Action Id

1

1

1

 Assignee Id

0..1

1
Change History Entry

+ Change Time
+ Resulting Revision

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 41 of 138

The Implementation MUST always send Work Request Status Change Notifications associated with a 704
specific Work Request in chronological order. A Work Request Status Change Notification MUST NOT be 705
sent if some earlier notification associated with the same Work Request has not been sent or has not 706
been successfully acknowledged by the Manager. 707

However, the Implementation SHOULD continue sending Work Request Status Change Notifications for 708
other Work Requests to prevent a problem with a single Work Request from stopping the flow of all 709
notifications. The Implementation SHOULD also retry delivery of failed notifications, subject to 710
implementation-specific policy. 711

Manager-side constraints 712

Through Capability Descriptors, a Manager MAY specify constraints concerning processing of Work 713
Request Status Change Notification messages. An Implementation MUST comply with specified 714
constraints. The available Manager-side constraints are described as part of the corresponding Capability 715
Descriptor in Section 8.1.3.2.1. 716

Specification of delivery target 717

Work Request Status Change Notifications logically target the Manager that created the corresponding 718
Work Requests. Resolution of the delivery end-point (such as URL) is implementation-specific, and not 719
subject to the FFMII interface specification. 720

5.4 Field-Initiated Request 721

5.4.1 Introduction 722

Field-Initiated Request (FIR) is a request initiated by an Assignee and dispatched as a structured 723
message from Implementation to Manager. It is intended for making requests or reporting information 724
outside the usual Activity work flow, such as requesting activation or reset of a specific device, reporting 725
absence of the Assignee, or requesting additional work for the Assignee. 726

A Field-Initiated Request is either a Topical Inquiry or a Topical Notification, depending whether the 727

Manager is expected to return data as a response or not, respectively. 728

Each Field-Initiated Request MUST address exactly one Topic. A Topic determines operation semantics 729
on the Manager side and the required request data content. A Topic also defines whether the request 730
should be associated with a Work Request or not. The Manager processes each request based on the 731
addressed Topic and request content. This may result into consequent interaction between the Manager 732
and another system integrated with it. Such interactions, however, are transparent to Implementation and 733
outside the scope of the FFMII. 734

Topics are Manager specific and they are registered with the Implementation by storing a Field-Initiated 735
Request Specification into repository “FieldInitiatedRequests” via Reference Data Management. See 736
Section 5.2 for details on Reference Data Management and the Field-Initiated Requests repository. 737

Figure 20 presents a concept model of a Field-Initiated Request. 738

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 42 of 138

 739

Figure 20: Field-Initiated Request 740

A Field-Initiated Request is a message transmitted from Implementation to Manager and it contains. 741

 Unique Identifier generated by the Implementation (Mandatory) 742

 Request initiation Timestamp (Mandatory) 743

 Identifier of the addressed Topic (Mandatory) 744

 Identifier or the initiating Assignee (Mandatory) 745

 Invocation context as Work Request, Activity and Step identifiers; mandatory if invoked from 746

the context of a specific Work Request (Optional) 747

 Request data supplied by the Assignee (Mandatory, but may be empty if allowed by 748

corresponding Request Form specification) 749

Request data included with a Field-Initiated Request MUST conform to the structure and Validation 750
Condition defined by Request Form included as part of the Field-Initiated Request Specification 751

associated with the Topic. 752

For each Field-Initiated Request there MUST be an existing Field-Initiated Request Specification with the 753
same Topic identifier. The Field-Initiated Request Specification is provided dynamically by the Manager 754
and stored into the Field-Initiated Request repository using Reference Data Management. 755

A Field-Initiated Request Specification contains following information. 756

Work Request

 Field-Initiated
Request

Topical Notification

Topical Inquiry

1

Request Data
1

0..*

Topic Assignee

1 0..1

Field-Initiated
Request

Specification

<< RDM Repository>>

Field-Initiated Requests
Repository Data Form

Specification

1

Request Form Response Form

0..1

0..*

WR
Processing
Topics

1

1

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 43 of 138

 Identifier of the associated Manager (Mandatory) 757

 Identifier of the associated Topic (Mandatory) 758

 FIRType of the Topic, Topical Inquiry or Topical Notification (Mandatory) 759

 Topic Label to be used for visualization purposes by the Implementation (Mandatory) 760

 Group Label to be used for visualizing grouping of different Topics (Optional) 761

 Request Form specifies data to be supplied by the Assignee (Mandatory, but may be empty) 762

 Response Form specifies data to be returned, if FIRType is a Topical Inquiry (Optional, may be 763

empty) 764

 Whether Manager returns Work Requests as a response, if FIRType is Topical Inquiry 765

(Mandatory) 766

 Set of available Work Request processing Topics, if Manager returns Work Requests 767

(Optional) 768

 Whether resulting FIR must be bound to a Work Request or not (Mandatory) 769

Request and response data is modeled as a Data Form Specification which is described in more detail in 770
Section 5.1.4. 771

The Field-Initiated Request Specification indicates whether Manager returns Work Requests when 772
FIRType is Topical Inquiry. Such inquiries can be used, for example, to request additional work for the 773
Assignee. If Work Request processing Topics have also been specified then the Assignee should be able 774
to choose any of the returned Work Requests and initiate Field-Initiated Requests associated with the 775
listed Topics on any of the returned Work Requests. 776

Support for Field-Initiated Requests is optional. Manager MAY support incoming Field-Initiated Requests. 777
Implementation MAY support the Field-Initiated Requests repository. 778

Field-Initiated Requests are described in more detail in Section 8.4. 779

5.4.2 Declaring available Field-Initiated Requests within a Work Type 780

Specification 781

Field-Initiated Request is bound to a Work Request if (and only if) it is declared to be available in and 782
invoked from within the work flow of the associated Work Type Specification. 783

For each Step within an Activity, a Work Type Specification MAY declare any number of available Topics 784
for which Field-Initiated Requests may be initiated, as illustrated in Figure 21. Additionally, each available 785
Topic MAY have an associated Enable Condition making the request available to the Assignee only if 786
specified pre-requisites are met. 787

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 44 of 138

 788

Figure 21: FIR within Work Type Specification 789

5.4.3 Responses to Topical Inquiries 790

A response to a Topical Inquiry is delivered from Manager to an Implementation as a structured response 791
message, Field-Initiated Request Response. The response MUST refer to an earlier request and its 792

information content MUST conform to the specification associated with the request. 793

The Manager MAY send any number of intermediate responses for a request before sending the final 794
response containing the Final indicator having the value True. Consequent responses to the same 795
request are identified and ordered by a monotonically increasing sequence number. An Implementation 796
SHOULD regard Intermediate responses as progress indications and a later response MUST override 797
any information contained in previous responses to the same request. 798

Figure 22 outlines the concept model for Field-Initiated Request Response. 799

Work Type Specification

Step

1..*

Action

0..*

0..1

 Available
Topic

Activity

0..*

<<expression>>
Enable Condition

0..1

Topic
1

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 45 of 138

 800

Figure 22: Field-Initiated Request Response 801

Field-Initiated Request Response contains following information. 802

 Identifier of the associated Field-Initiated Request (Mandatory) 803

 Sequence Number starting with 0 and monotonically increasing for further responses associated 804

with the same Field-Initiated Request (Mandatory) 805

 Response Timestamp (Mandatory) 806

 Response Data returned by the Manager (Mandatory, but may be empty) 807

 Any number of Work Requests returned by the Manager, if allowed by the specification 808

associated with the request (Optional) 809

 Whether response is Final or not (Mandatory) 810

Response data included with a Field-Initiated Request Response MUST conform to the structure defined 811
by Response Form included as part of the Field-Initiated Request Specification associated with the Topic. 812
Response MUST NOT include Work Requests unless specifically allowed by the associated Field-813
Initiated Request Specification. 814

Work Request

 Field-Initiated
Request Response

1

Response Data
1

Topic Assignee

1 0..1

Field-Initiated
Request

Specification

Data Form
Specification

0..1

1

Response Form Request Form

1

Topical Inquiry

1

Final
0..1

1

Work Request
0..*

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 46 of 138

6 FFMII Interface Architecture 815

6.1 Overview 816

The FFMII interface logically divides into several functional layers and operations domains. Out of these, 817

some functionality is targeted at Implementation and some at Manager. Both Manager and 818
Implementation MUST conform to the applicable parts the Core Data Model, implement functionality 819
necessary for identity and capabilities discovery, and comply with the requirements of message handling, 820
protocol binding and transport as prescribed by the Interface. 821

Figure 23 outlines subsystems of FFMII interface and their relative positioning: 822

 823

Figure 23: FFMII Architecture 824

As seen above, the “Connectivity and Transport Security” (Section 6.4.1) and “Protocol Binding and 825
Payload Encapsulation” (Section 6.4.2) layers, and “Message Handling” (Section 6.4.3) subsystem, form 826
a common infrastructure for Implementation and Manager to leverage when implementing functionality 827
within their respective scope. Additionally, adherence to a common Core Data Model (Section 6.3, 7) is 828
required on messaging and operations layers in order to ensure Implementation and Manager’s 829
interoperability across various choices of the transport technology used. 830

Within the operations domains layer, each domain further defines the specific type of data it processes, 831
and functions it offers, as outlined in Figure 24: 832

Manager Operations
Implementation Operations

Connectivity and Transport Security

Protocol Binding and Payload Encapsulation

Message Handling
Inbound Outbound

Access Control Error Indication

Work Request
Management

Reference Data
Management

Identity
&

Capabilities
Discovery

FFMII Architecture

Change
Notification

Management

Field-Initiated
Request

Management

C
o

re
 D

a
ta

 M
o

d
e

l
Credentials Error Handling

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 47 of 138

 833

Figure 24: FFMII Operation Domains 834

The purpose and principal content of each operation domain is discussed in more detail throughout 835
Section 6.2. The FFMII interface specifies a rich set of functionalities addressing a broad set of use 836
cases. However, mandatory functionality is limited to support for Identity and Capabilities Discovery and 837
mandatory functions of Work Request Management on Implementation side. 838

6.2 Operations Domains 839

6.2.1 Identity and Capabilities Discovery (Manager and Implementation) 840

The Identity and Capabilities Discovery area provides functionality for Implementation and Manager to 841
expose basic descriptive information about itself. Such information includes identification of the product 842

FFMII Operations Domains (detailed view)

Identity &
Capabilities Discovery

System
Identification

Capabilities
Retrieval

Work Request Management

Work Request Mgmt

Work Type Mgmt

Work
Requests

Work Type
Repository

Work
History

Reference Data
Management

Content Mgmt

Catalogue Mgmt

System catalogues

Custom catalogues

Field-Initiated Request
Management

Inquiries Notifications

Field-Initiated Request
Mgmt

Change Notification
Management

Change Notification
Mgmt

Work Request Change
History

Implementation Scope

Manager Scope

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 48 of 138

and vendor, version of the supported FFMII interface variants as well as identification and profiles of 843
provided mandatory and optional features. 844

An Implementation MUST always expose the Identity and Capabilities Discovery functionality to the 845
Managers accessing it, or towards which it submits Work Request Status Change Notifications or Field-846
Initiated Requests. A Manager MUST expose the Identity and Capabilities Discovery functionality towards 847
the Implementation, from where it receives Work Request Status Change Notifications or Field-Initiated 848
Requests. 849

Implementations and Managers MAY expose their Identity and Capabilities Discovery functionality to any 850
other known Managers and Implementations, respectively, given that access is properly authenticated as 851
described in Section 6.4.3. 852

System Identity Descriptor: 853

A system Identity Descriptor provides basic descriptive data about the system. This information is 854
primarily intended for system administrator as an additional means of ensuring authenticity of the remote 855
end-point being accessed. Additionally, it allows an accessing a party to make certain assumptions about 856
behavior and capabilities of the remote end beyond the scope of FFMII interface specification. 857

Capability Descriptors: 858

Capability Descriptors allow Managers and Implementations to advertise their capabilities. Capability 859
Descriptor is structured information of pre-defined identifier informing of existence of particular capability 860
and eventually its dimensioning and other parameters. While the mechanism for retrieving Capability 861
Descriptors is the same for Manager and Implementation, the set of applicable capabilities differs. 862

Functionality of the Identity and Capabilities Discovery area is further discussed in Section 8.1. 863
List of defined capabilities is provided in Section 8.1. 864

6.2.2 Work Request Management (Implementation) 865

Work Request Management (WRM) manages Work Requests and their updates submitted by Manager to 866
Implementation. Each Work Request has unique identity. The Implementation maintains a Work Request 867
Status Record that reflects the lifecycle of the Work Request as described in Section 5.1.6. Work Request 868
Management is a mandatory capability of Implementation. 869

An Implementation MAY support Work Type Repository as an optional capability. If supported, a Manager 870
MAY store Work Type Specifications in the Work Type Repository, and refer to those from within of Work 871
Requests, rather than embedding a Work Type Specification in each Work Request separately. 872

Work Request Management is described in detail in Section 8.2. 873

6.2.3 Reference Data Management (Implementation) 874

Reference Data Management (RDM) provides a content-neutral method for Managers to deploy arbitrary 875
data sets into the Implementation, managing content of those remotely and creating linkage (including 876
creation of hierarchies) between individual Reference Data Items. Data managed through RDM 877
subsystem are collectively denoted as “Reference Data”. 878

The primary use case of Reference Data is the ability to refer to individual RDM items or sets of items 879
from within Work Requests, using a normalized abstract notation. For example, Reference Data can be 880
used to specify the set of Work Types, valid values for an input Data Element or to store documents that 881
are referred to from within Work Requests. Additionally, an Implementation may utilize Reference Data 882
Management subsystem for exposing certain system information, such as user profile registry. 883

Note that the RDM subsystem of FFMII interface only defines and abstract interface for exchange of 884
Reference Data between Managers and Implementation. It is the responsibility of Managers to keep the 885
data up to date, while Implementation is in charge of Reference Data persistency. Any eventual 886
distribution of Reference Data inside of Implementation (for example replication to mobile terminals) is 887
transparent to the Manager. 888

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 49 of 138

Implementation MAY support Reference Data Management. 889

Reference Data Management is described in detail in Section 8.3. 890

6.2.4 Change Notification Management (Manager) 891

Change Notification Management allows a Manager to receive Work Request Status Change 892
Notifications related to the lifecycle of Work Requests. Notifications are dispatched by Implementation 893
whenever Work Request State or content change of relevance is discovered. A Manager acknowledges 894
reception of Work Request Status Change Notifications, and processes those internally. 895

Manager MAY support Change Notification Management. 896

Change Notification Management is in more detail described in Section 8.1.3.2.1. 897

Alternatively, the Manager MAY poll the Implementation for changes on pending Work Requests using 898
Work Request Management services. 899

6.2.5 Field-Initiated Request Management (Manager) 900

Field-Initiated Request Management processes Field-Initiated Requests as introduced in Section 4.2.2. 901
Field-Initiated Requests are initiated by Assignees and are therefore asynchronous from the Manager 902
point of view. 903

Field-Initiated Requests can either be Topical Notifications, for which no response is expected, or Topical 904
Inquiries, for which a valid response or an error indication is expected. 905

Note that while Field-Initiated Requests are received by a Manager, the Manager MAY also act as a 906
proxy forwarding those to other systems it is integrated with transparently from the Implementation point 907
of view. 908

Manager MAY support Field-Initiated Request. 909

Field-Initiated Request Management is in more detail discussed in Section 8.4. 910

6.2.6 Response Notification Management (Implementation) 911

Response Notification Management allows an Implementation to receive notifications about responses to 912
Topical Inquiries (specific type of Field-Initiated Requests) it has sent to a Manager. Field-Initiated 913
Request Response notifications are dispatched by the Manager whenever new responses to pending 914
Topical Inquiries become available. The Implementation acknowledges reception of notifications. 915

The Implementation MAY support Response Notification Management. 916

Alternatively, the Implementation MAY poll the Manager for new responses on pending Topical Inquiries 917
using Field-Initiated Request Management services 918

6.3 Core Data Model 919

Core Data Model contains a common set of data types used either directly or as a base for deriving 920

functional area specific data types throughout the rest of FFMII interface specification. 921

Content of Core Data Model is divided into four groups of data types: 922

- primitive data types (Section 7.2) establish a foundation out of which all other data types are built, 923

- derived data types (Section 7.3) are constrained versions of primitive data types for specific 924

purposes and are associated with additional semantics, 925

- composite data types (Section 7.4) define more complex structures such as dictionaries and 926

sequences, and 927

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 50 of 138

- specialized data types (Section 7.5) address specific common use cases throughout different 928

parts of the FFMII interface specification 929

Each data type is described from the perspective of ifs nature and constraints, yet independently from any 930
protocol binding technology in particular. 931

Core Data Model of the FFMII interface in more detail discussed in Section 7. 932

6.4 Common Functionality Layers 933

6.4.1 Connectivity and Transport Security 934

The Connectivity and Transport Security layer realizes the communication end-points of the Interface 935
implementation. This layer provides reliable and secure means of transferring data between a Manager 936
and an Implementation. 937

6.4.2 Protocol Binding and Payload Encapsulation 938

The Protocol Binding and Payload Encapsulation layer translates requests, responses, associated input 939
parameters, and result data between the logical FFMII model and data actually transferred over the 940
Connectivity and Transport Security layer. 941

FFMII SOAP Protocol Binding is described in detail in Section 9. 942

6.4.3 Message Handling 943

The Message Handling layer provides a unified mechanism for the Manager to invoke operations of 944
Implementation, and vice-versa. The layer establishes common set of rules and behaviors both Manager 945
and Implementation MUST follow when interacting with each other. 946

The degree of required conformance depends on the range of FFMII features Manager and 947
Implementation realize as follows: 948

- Implementation MUST provide functionality of Message Handling layer for in-bound messages, 949

and Manager MUST implement functionality of Message Handling layer for out-bound messages, 950

since submitting Work Requests from Manager to Implementation and discovering of 951

Implementation capabilities are fundamental mandatory use cases for FFMII. 952

- Manager MUST implement functionality of Message Handling layer for in-bound messages if it 953

implements any of Identity and Capabilities Discovery (Section 6.2.1), Change Notification 954

Management (Section 6.2.4) or Field-Initiated Request Management (Section 6.2.5) 955

functionalities. 956

- Implementation MUST implement functionality of Message Handling layer for out-bound 957

messages if it supports invocation of Identity and Capabilities Discovery, Change Notification 958

Management or Field-Initiated Request Management functionality on Manager side. 959

6.4.3.1 In-bound traffic 960

Access Control: 961

Implementation or Manager accepting in-bound traffic MUST support at least one of the defined 962
authentication methods defined in Section 9.5. To maintain an adequate level of security, an receiving 963
party SHOULD reject authentication using system-identifier/password pairs if non-secure protocol (e.g. 964
HTTP) is used on the transport level and network based access control is not in use. 965

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 51 of 138

Error Indication: 966

The Message Handling layer defines a common way of encapsulating error codes and error messages in 967
operation responses. Additionally it defines a set of error codes related to the availability of the target 968
operation to be invoked, see Section 8.1. 969

With every incoming request, the receiving party MUST perform access control task. Should the access 970
be rejected, it MUST respond with corresponding E2010 error code and message. 971

Following a successful access control check on in-bound message, Message Handling layer MUST verify 972
availability of the target operation being invoked. Should the operation in question be unavailable, an 973
error message containing appropriate error code MUST be returned to the sender. 974

Should the invocation of the target operation finish with an error result, Message Handling layer MUST 975
respond with corresponding error code and message. 976

If access control check is successful, target operation identified and available for the calling party and the 977
operation succeeds, Message Handling layer MUST respond with “OK” response along with enclosing 978
any data returned by the target operation. 979

6.4.3.2 Out-bound traffic 980

Credentials: 981

Every outbound message MUST contain valid authentication credentials, whether in the form of system-982
identifier/password token pair or SSL certificate. The credentials are consequently processed in receiving 983
end by the Message Handling subsystem as described in Section 6.4.3.1. 984

Error Handling: 985

Should message transfer fail due to transient errors (network outage or remote service temporarily 986
unavailable), the message SHOULD be scheduled for re-transmission at later moment according to 987
defined policies. Additionally, should multiple messages be targeting same Work Request or relate to 988
same instance of Field-Initiated Request, all such messages must be scheduled for retransmission in 989
their original order of appearance. 990

Should message transfer fail due to permanent error (authentication error, invalid or unavailable target 991
operation, or invalid operation parameters), the message MUST NOT be retransmitted anymore, as 992
consequent attempts would result into the same errors. 993

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 52 of 138

7 Core Data Model 994

7.1 Introduction 995

This section describes a set of data types that are used as the foundation for all other data types 996
throughout the FFMII interface specification. The minimum requirements and the general characteristics 997
of each data type are described throughout this, while the way the corresponding values are expressed 998
for the purpose of message exchange depends in the protocol binding in use. 999

FFMII Core Data Model divides into primitive data types, derived data types, composite data types and 1000
specialized data types as described in the following sections. 1001

7.2 Primitive Data Types 1002

Primitive data types served as foundation for building specialized derived and composite data types used 1003
throughout the FFMII interface specification. Table 2 specifies the primitive data types used in this 1004
specification. 1005

Type Description Notes

String Sequence of zero or more UNICODE

characters

As defined by [Schema2]

Integer Signed integer value As defined by [Schema2]

Double Double-precision floating point value As defined by [Schema2]

Decimal Arbitrary-precision decimal value For example, monetary values;

As defined by [Schema2]

Boolean True or False As defined by [Schema2]

Date Date information comprising of year, month

and day of month

As defined by [Schema2]; See

note below regarding time zones.

Time Time of day comprising of hour, minute and

second information, and optionally

including time zone offset relative to UTC

[Schema2]

DateTime Combined date and time value following

requirements for “Date” and “Time” data

types

Duration Represents time duration

Binary Sequence of zero or more binary digits Opaque binary data,

corresponding to binary data

types defined in [Schema2]

Table 2: Primitive Data Types 1006

Notes: 1007

1. Time zones: 1008

a. When generating messages, the sender MAY specify Date, Time, and DateTime values 1009

with or without time zone information (rationale: since a common use case is for all work 1010

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 53 of 138

to be in the same time zone; presumably Implementations will have an internal 1011

configuration option for setting the default time zone). 1012

b. When receiving messages, the receiver MUST correctly process Date, Time, and 1013

DateTime values both when given with time zone information and when given without it 1014

(in the latter case, correct processing means using a default time zone that is 1015

implementation-defined). 1016

2. While definitions use the XML Schema, they may be used in any protocol binding. 1017

7.3 Derived Data Types 1018

Derived data types are based on primitive data types with additional constraints and semantics applied to 1019
them. The Table 3 describes specialized core data types of FFMII interface: 1020

Type Base Type Description

Identifier String Sequence of characters used as identifier of data objects or for

reference purposes

An Identifier consists of one or more alpha-numeric characters

from [ISO/IEC 8859-1], underscore (_) or dot (.), where first

character is an underscore or alpha character, and last character

is not dot.

ErrorCode String Upper case letter 'E' followed by four decimal digits. For example,

“E0000”, “E1234”, etc.

LocaleSpecifier String A locale specifier consisting of a lower-case two-letter language

code as defined by [ISO-639] optionally followed by an

underscore (_) and an upper-case two-letter country code as

defined by [ISO-3166]

Example: “en”, “en_US”, “fi_FI”.

Table 3: Derived Data Types 1021

7.4 Composite Data Types 1022

Composite data types are structures composed of primitive data types and multiplicity rules. The Table 4 1023
describes composite core data types of FFMII interface: 1024

Type Description Notes

Class Fixed set of named properties of specified type

(primitive, derived, specialized or composite)

Dictionary Dynamic collection of named primitive (key/value

pairs), order of which is not significant

Sequence Dynamic collection of unnamed items of a specified

type (primitive, derived, specialized or composite),

order of which is significant unless otherwise

specified

Table 4: Composite Data Types 1025

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 54 of 138

7.5 Specialized Data Types 1026

7.5.1 Multi-Language Text (MLText) 1027

MLText is a sequence of data elements containing one or more translations of the same textual 1028
information. 1029

MLText

Property Type M/O Description

Values Sequence of LocalizedString M Alternative localized strings

 1030

LocalizedString

Property Type M/O Description

Locale LocaleSpecifier O Locale this value is associated with.

If not specified, the associated value is

used as the default value unless more

specific match is found.

Value String M The localized string value

Table 5: Specialized Data Types 1031

The receiver of MLText data SHOULD display to user the most specific translation that matches the user 1032
preferences or otherwise the default alternative. Default alternative is the one for which no locale is 1033
specified, or if no such alternative exists, the first defined alternative. 1034

7.5.2 Location 1035

Location is a data element representing a geographical location. 1036

Location

Property Type M/O Description
Longitude Decimal M Longitude of location

Latitude Decimal M Latitude of location

Altitude Decimal O Altitude of location

Table 6: Location Data Type 1037

The coordinate system used for the location values is defined in [KML]. 1038

7.5.3 MultiChoiceAlternative 1039

MultiChoiceAlternative declares a valid value for a Data Field and MAY specify an associated label to be 1040
used for display purposes. 1041

MultiChoiceAlternative

Property Type M/O Description

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 55 of 138

MultiChoiceAlternative

Property Type M/O Description

Label MLText O Label to be displayed for this alternative
in the user interface. If not specified
then the value is used as the label.
Label may include data variables

Value DataValue M Valid value for this element.

Table 7: MultiChoiceAlternative Data Type 1042

7.5.4 Custom Properties 1043

Some data types (classes) defined through FFMII interface specification MAY contain a specific property 1044
called “CustomProperties” of type Dictionary. CustomProperties, if allowed within particular scope, are 1045
intended for exchange of implementation-specific information. As per the definition of the Dictionary type, 1046
custom properties are key-value pairs, and only values of Primitive or Derived Data Types may be used. 1047

Integrated software components are not necessarily aware of all implementation-specific features 1048
supported by the counter-parts. The following interoperability rules MUST be followed to ensure 1049
consistent behavior across Managers and Implementations of different origins: 1050

 Manager or Implementation MUST NOT supply or accept “CustomProperties” in association with 1051

data types for which no such property is defined 1052

 Manager and Implementation MUST implement the following interoperability rules and logic for 1053

any data type for which “CustomProperties” property is defined 1054

o if unsupported but grammatically valid custom properties are received, the receiving end 1055

MUST successfully accept the content as opaque data ignoring any semantics the 1056

content may have for the supplying end. The receiving end MAY warn about the 1057

unsupported content in the operation response. 1058

o if supported custom properties are received, the receiving end MUST validate the content 1059

based on the known semantics and signal an error if the supplied content is invalid. 1060

o any accepted (supported or unsupported) custom properties supplied as part of an object 1061

that is exposed for retrieval through the FFMII interface MUST be stored with the object 1062

itself, and returned whenever the object is retrieved in consequent operations. 1063

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 56 of 138

8 Data Types and Operations 1064

8.1 Identity and Capabilities Discovery 1065

8.1.1 Introduction 1066

Identity and Capabilities Discovery subsystem allows the remote party to verify identity of the FFMII end-1067
point it is accessing, and retrieve capabilities and operational constraints of the remote end. 1068

Implementation MUST support Identity and Capabilities Discovery. Manager MUST support Identity and 1069
Capabilities Discovery if Manager provides services to Implementation. 1070

8.1.2 Data Types 1071

8.1.2.1 Identity Descriptor 1072

System Identity Descriptor provides basic information about the end-point being accessed: 1073

IdentityDescriptor

Property Type M/O Description

SystemType Identifier M “ERMS” if the target system is Manager, or

“FFMS” if the target system is Implementation

SystemId Identifier O Identifier of the system being accessed

ProductId Identifier O Unique identifier of the product constructed

according to convention specified later in this

section

Properties Dictionary M Standard attributes providing additional

information about the system being accessed

CustomProperties Dictionary O Implementation-specific attributes providing

additional information about the system being

accessed outside of the scope of FFMII

interface

Table 8: IdentityDescriptor 1074

SystemId 1075

SystemId is an identifier for distinction between several systems of the same type. Usage of the identifier 1076
is optional. The purpose of this identifier is to bring an additional level of confidence particularly during 1077
early phase of system-to-system integrations. 1078

ProductId 1079

ProductId is a unique identifier of the product in question. Uniqueness of the identifier is the sole 1080
responsibility of the product vendor. However, the identifier MUST begin with an element (vendor tag) that 1081
uniquely identifies the vendor world-wide (such as domain name, registered trademark or registered 1082
project name). A Vendor MAY further refine the ProductId by including elements identifying specific 1083
product or version. 1084

Based on the discovered ProductId, the accessing party MAY make use of implementation-specific 1085
features or other assumptions beyond the scope of FFMII specification. 1086

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 57 of 138

Note: Extensive usage of Product identifier for decision making on the caller side may result in unwanted 1087

dependencies between ERMS and FFMS, and therefore must be considered carefully in advance 1088

Standard properties 1089

Properties element of System Identity Descriptor contains standard attributes that further describe the 1090
end-point. 1091

Table 9 specifies System Identity Descriptor standard properties recognized by this version of FFMII 1092
interface specification: 1093

Property name Type M/O Description

ProductName String O Name of the product whose services are being accessed

ProductVersion String O Version of the product whose services are being accessed

VendorName String O Name of the vendor of the product

Table 9: Standard Properties 1094

8.1.2.2 Capability Descriptor 1095

Capability Descriptor conveys details of a specific capability, identified through a standard identifier. The 1096
capability is typically optional, provided by an Implementation or a Manager. In specified cases, Capability 1097
Descriptors MAY expose additional details of mandatory capabilities, e.g. override or otherwise refine 1098
default parameters. 1099

If a Manager or an Implementation provides a Capability, it MUST expose the corresponding Capability 1100
Descriptor. If a Manager or an Implementation does not provide a Capability, it MUST NOT expose the 1101
corresponding Capability Descriptor. In other words, the existence of a Capability Descriptor signifies 1102
support for the corresponding Capability. Table 10 specifies elements of Capability Descriptor: 1103

CapabilityDescriptor

Property Type M/O Description

Id Identifier M Unique identifier of the capability. For

standard capabilities see Table 11.

Description String O Textual description of the capability for

informational purposes

Properties Dictionary O Additional information regarding the capability

in question (for example, sizing limits)

CustomProperties Dictionary O Implementation-specific attributes that provide

additional information about the capability

Table 10: Capability Descriptor 1104

Some Capability Descriptors have no mandatory properties, which are signified by ‘--‘ in Property, Type, 1105
M/O and Description columns of the Capability Descriptor. For example, see Section 8.1.3.1.1. Any 1106
Capability Descriptor MAY specify CustomProperties to convey implementation specific attributes. 1107

8.1.3 Standard capabilities 1108

Table 11 describes the standard capabilities for Implementation and Manager. 1109

Capability ID Description Provider M/O

WRM Work Request management Implementation M

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 58 of 138

Capability ID Description Provider M/O

RDM Reference Data Management Implementation O

RDM.Users User Information Repository Implementation O

RDM.WorkTypes Work Type Repository Implementation O

RDM.FIR Field-Initiated Requests Repository Implementation O

RDM.Custom Custom Reference Data Repositories Implementation O

Client.Webui.Handset Web UI enabled mobile client Implementation O

Client.Webui.Desktop Web UI enabled desktop client Implementation O

Client.Native Native client realization Implementation O

System.Locales Supported locales Implementation O

CNM Change Notification Management Manager O

FIRM Field-Initiated Request Management Manager O

Table 11: Standard Capabilities 1110

8.1.3.1 Implementation capabilities 1111

8.1.3.1.1 WRM 1112

An Implementation MUST support WRM capability. 1113

Capability Descriptor

Identifier WRM

Description Work Request Management

Property Type M/O Default Notes

-- -- -- -- --

8.1.3.1.2 RDM 1114

This Capability Descriptor informs of Reference Data Management (see Section 8.3) Capability provided 1115
by the Implementation. 1116

Capability Descriptor

Identifier RDM

Description Reference Data Management

Property Type M/O Default Notes

-- -- -- -- --

8.1.3.1.3 RDM.Users 1117

User repository stores information about Assignees known to Implementation, such as user names and 1118
credentials, user authorization for system and user administration, locale settings, and other types of 1119
preferences. The user identifier uniquely identifies the user for the purpose of assigning Work Requests 1120

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 59 of 138

through Work Request Management operations. When exposed as part of RDM, the content of the user 1121
profiles repository can be accessed and/or managed through RDM operations. In addition to rights 1122
specified in the Repository Descriptor, the further restrictions can be specified, see Capability Descriptor 1123
below. If RestrictedRead and/or RestrictedWrite properties are False or not specified, no access 1124
constraints between Managers are imposed on corresponding operations. 1125

Capability Descriptor

Identifier RDM.Users

Description User Profile Repository

Property Type M/O Default Notes

RestrictedRead Boolean O False If True, Manager can only read entries it has

created (while it still can refer to other entries by

their identifiers)

RestrictedWrite Boolean O False If True, Manager can only update or remove

entries it has created

 1126

Note: Structure of Users entries is discussed in Section 8.9. 1127

8.1.3.1.4 RDM.WorkTypes 1128

This capability signals that the Implementation supports the Work Type Repository, as described in 1129
Section 8.10 1130

Work Type Repository contains structural definitions of pre-defined Work Types. Work Type definitions do 1131
not include Work Request instance specific data. Work Requests can refer to Work Type entries. This 1132
eliminates the need to include full Work Request structure with each Work Request. 1133

Capability Descriptor

Identifier RDM.WorkTypes

Description Work Type Repository

Property Type M/O Default Notes

WriteProtected Boolean O False If True, Manager cannot update content of the

repository in any way

 1134

8.1.3.1.5 RDM.FIR 1135

FIR repository stores information about Field-Initiated Requests made available by the Manager to the 1136
Implementation. 1137

Capability Descriptor

Identifier RDM.FIR

Description Field-Initiated Requests Catalogue

Property Type M/O Default Notes

-- -- -- -- --

 1138

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 60 of 138

Note: Structure of FIR entries is discussed in Section 8.118.11. 1139

8.1.3.1.6 RDM.Custom 1140

An Implementation uses this Capability Descriptor to specify constraints of management of Custom 1141
Reference Data Repositories through RDM. 1142

Capability Descriptor

Identifier RDM.Custom

Description Custom Reference Data Repositories

Property Type M/O Default Notes

WriteProtected Boolean O False If True, a Manager can obtain a list of all Custom

Reference Data Repositories of the

Implementation, but it can neither remove nor

create new Custom Reference Data Repositories

 1143

8.1.3.1.7 Client.Webui.Handset 1144

Through this capability, an Implementation indicates that it supports web browser-enabled mobile devices 1145
as one of the client realization technologies. From the FFMII standpoint, this capability has indicative 1146
value only, since the Interface specification is neutral with respect to the type of clients and their 1147
implementation details. Nevertheless, an Implementation may use vendor specific attributes 1148
(CustomProperties) for disclosing implementation details of the client. 1149

Capability Descriptor

Identifier Client.Webui.Handset

Description Web UI enabled mobile client

Property Type M/O Default Notes

-- -- -- -- --

8.1.3.1.8 Client.Webui.Desktop 1150

Through this capability, an Implementation indicates that it supports web browser-enabled desktop 1151
computers and tablets as one of the client realization technologies. From the FFMII standpoint, this 1152
capability has indicative value only, since the Interface specification is neutral with respect to the type of 1153
clients and their implementation details. Nevertheless, an Implementation MAY use vendor specific 1154
attributes (CustomProperties) for disclosing implementation details of the client. 1155

Capability Descriptor

Identifier Client.Webui.Desktop

Description Web UI enabled desktop client

Property Type M/O Default Notes

-- -- -- -- --

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 61 of 138

8.1.3.1.9 Client.Native 1156

Through this capability, Implementation indicates that it supports native-code mobile client as one of the 1157
client realization technologies. From the FFMII standpoint, this capability has indicative value only, since 1158
the Interface specification is neutral with respect to the type of clients and their implementation details. 1159
Nevertheless, an Implementation MAY use vendor specific attributes (CustomProperties) for disclosing 1160
implementation details of the client. 1161

Capability Descriptor

Identifier Client.Native

Description Native client implementation

Property Type M/O Default Notes

-- -- -- -- --

8.1.3.1.10 System.Locales 1162

Through this capability an Implementation specifies the set of locales it supports and is able to relay to 1163
the end user. ERMS MAY use this information, for example, for reducing the amount of data included in 1164
Work Requests when the Implementation supports only a subset of locales ERMS is able to generate 1165
data for. 1166

NOTE: an Implementation MUST be able to receive data for any locale, even if it is not necessarily able 1167
to display that data to user properly. 1168

If this capability is not specified, the extent of the locale support is not defined and not known to ERMS. If 1169
the locales are not specified, ERMS MUST NOT assume that a specific locale is supported but it MAY 1170
send localized data targeted for any locale. 1171

Capability Descriptor

Identifier System.Locales

Description Supported locales

Property Type M/O Default Notes

supported-locales String M -- String containing a list of supported Locale

Identifiers (See Section 7) separated with a

single space. If only the language part is

present then any country variant is supported

for the language.

Example: “en_US en_UK”

Implementations supporting this capability

MUST advertise at least one supported locale.

8.1.3.2 Manager capabilities 1172

8.1.3.2.1 CNM 1173

This Capability Descriptor informs of Change Notification Management (see Section 6.2.4) functionality 1174
provided by the Manager 1175

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 62 of 138

Capability Descriptor

Identifier CNM

Description Change Notification Management

Property Type M/O Default Notes

largest-attachment Integer O -- Maximal size of an attachment the Manager is

able to accept as part of Change Notification

message.

The value is provided in kilobytes

(1kB = 1024 B).

If the property is not specified, the maximal size

of an attachment is not known or is not

constrained.

allow-wr-bundling Boolean O True If True, a single notification sent by

Implementation MAY contain changes related to

several different Work Requests

8.1.3.2.2 FIRM 1176

This Capability Descriptor informs of Field-Initiated Request Management (see Section 6.2.5) functionality 1177
provided by the Manager. . 1178

Capability Descriptor

Identifier FIRM

Description Field-Initiated Request Management

Property Type M/O Default Notes

-- -- -- -- --

 1179

8.1.4 Operations 1180

Identity and Capabilities Discovery subsystem exposes the following operations for usage by remote 1181
clients: 1182

Operation Description Notes

SYS_INFO_GET Returns System Identity Descriptor for the end-point being

accessed

Input parameters:

 None

Return value:

 IdentityDescriptor

SYS_CAPA_GET Returns sequence of System Capability Descriptors

exposed by the end-point being accessed

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 63 of 138

Operation Description Notes

Input parameters:

 None

Return value:

 Sequence of CapabilityDescriptor

 1183

8.2 Work Request Management 1184

8.2.1 Data Types 1185

This section specifies the data types associated with Work Request Management. The main data types 1186
are Work Type, Work Request and Work Request Status Record. They are specified in dedicated sections 1187
together with additional data types they refer to. 1188

8.2.1.1 Work Type 1189

A Work Type specifies the structure of a particular type of Task. It specifies the flow of work, possible 1190
States, data that needs to be provided with a Work Request, data to be collected from the Assignee 1191
during the work flow, and static data common to all Work Requests of the particular type. 1192

A Work Type is described by a Work Type Specification that is either stored in the Work Type Repository 1193
or provided in-line with a Work Request. Several Work Requests may share the same Work Type 1194
Specification by referring to it. 1195

WorkType (abstract base class)

Property Type M/O Description

 No common properties

Table 12: WorkType 1196

 1197

WorkTypeReference (extends WorkType)

Property Type M/O Description

Id Identifier M Identifier of the Work Type stored in the Work
Type Repository

Table 13: WorkTypeReference 1198

 1199

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 64 of 138

WorkTypeSpecification (extends WorkType)

Property Type M/O Description
SharedDataElements Sequence of

DataElementSpecifi
cation

O Shared Data Element Specifications that may
be referred to from within Data Forms specified
in this Work Type Specification.

See Section 8.5

SharedActions Sequence of
ActionSpecification

O Shared Actions that may be referred to from
within Actions property of a Step Specification
or invoked by the Manager via the
WR_ACTION operation.

See Section 8.2.1.3 for details

SharedStateModels Sequence of
StateModelSpecifica
tion

O Shared state model specifications that may be
referred to from within ActivitySpecifications of
this Work Type Specification.

See Section 8.2.1.2 for details

Header DataForm M Contains Work Request summary information
intended to be used in places, such as Work
Request list, where possibly several Work
Requests are presented to the user

All elements in this form must be declared as
for displaying only (i.e. not updateable)

Overview DataForm M Specifies the Data Elements that describe the
work on general level. These are used when
presenting an overview of the work to the
Assignee.

See Section 8.5 for details

Instructions DataForm O More detailed work instructions that should be
combined with possible Step-specific
instructions.

See Section 8.5 for details

Activities Sequence of
ActivitySpecification

M One or more Activities that are part of this type
of work

CustomProperties Dictionary O Implementation-specific custom properties

Table 14: WorkTypeSpecification 1200

8.2.1.2 Activity, State and Step 1201

The execution model for a Task is described in Section 5.1.2.4. This section specifies the related data 1202
types Activity, State and Step. 1203

An Activity is a distinct part of work associated with a Task. Multiple Activities may be used to model parts 1204
of work that are, for example, performed in different locations, are distinct phases that are not necessarily 1205
executed sequentially, or are performed by different Assignees. 1206

ActivitySpecification

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 65 of 138

Property Type M/O Description

Id Identifier M Unique identifier in the context of Activities
specified in the Work Type Specification

StateModel StateModel M Specifies the Activity State Model for this
Activity.
See section 5.1.2.4.

EnableCondition Expression O Specifies the Boolean Expression that
represents the Enable Condition of this Activity
See Section 5.1.2.5 on modeling dependencies
and Section 8.6 for expression structure.
If EnableCondition is not specified, the Activity
may proceed independently at any time.

ActivityLocationData DataForm O Data elements providing information the
Assignee will need to reach the location
associated with the Activity. See Section
5.1.2.3.

Supplementary Boolean O Indicates whether the Activity is
Supplementary. If this is not specified, the
Activity is considered to be non-
Supplementary.

CustomProperties Dictionary O Implementation-specific custom properties

Table 15: Activity Specification 1207

The State Model of an Activity may be specified either as an in-lined State Model Specification 1208
dynamically specifying the custom States, Steps and Actions or by referring to a State Model specified in 1209
the SharedStateModels property of the Work Type Specification, 1210

StateModel (abstract base class)

Property Type M/O Description

 No common properties

Table 16: StateModel 1211

 1212

StateModelReference (extends StateModel)

Property Type M/O Description

Id Identifier M Identifier of a State Model specified in the
SharedStateModels property of the Work Type
Specification.

Table 17: StateModelReference 1213

 1214

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 66 of 138

StateModelSpecification (extends StateModel)

Property Type M/O Description
Id Identifier M Unique identifier in the context of

SharedStateModels of the Work Type
Specification, or any identifier if in-lined with an
Activity Specification.

Steps Sequence of
StepSpecification

M Describes all the Steps the associated Activity
has. Work flow becomes defined through
Actions associated with Steps. The order in
which the Steps have been listed in this
property is not significant.

States Sequence of
StateSpecification

M Describes all the possible States the
associated Activity can be in. The order in
which the States have been listed in this
property is not significant.

InitialStepId Identifier M Identifier of the initial Step, referring to one of
the Steps defined within the States property of
this model

Table 18: StateModelSpecification 1215

A State Specification describes a possible top level State a particular Activity can be in. Possible States 1216
can be specified separately for each Activity type and they should describe the States of work the 1217
associated Manager is interested in. See Section 5.1.2.4 for an example of a State Model. The 1218
background idea is that each State is further divided to one or more Steps that describe the micro flow of 1219
work associated with the State and provide working instructions to the Assignee. Formally each Step is 1220
associated with a State. Thus, Steps associated with the same State form the State. Steps specify the 1221
possible transitions and provide work Instructions for the Step. 1222

 1223

StateSpecification

Property Type M/O Description

Id Identifier M Unique identifier in the context of States
specified in the Activity Specification

Label MLText M Label for this State for user-interface purposes.
Label may include data variables (see Section
8.5.10 Data Variables)

StatusCategory Identifier M The Status category that this State belongs to,
“Open”, “Active”, “Inactive”, or “Closed”.

See Section 5.1.2.4

StatusIndicator Identifier O The Status Indicator associated with this State,
if any.

See Section 5.1.2.4

Table 19: StateSpecification 1224

 1225

Step specification describes one Step to be performed by an Assignee. 1226

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 67 of 138

StepSpecification

Property Type M/O Description

Id Identifier M Unique identifier in the context of Steps
specified in the Activity Specification

StateId Identifier M Identifier of associated State.

Title MLText O Short title describing what the user is expected
to do in this Step. This should either be in an
imperative form or describe the overall State of
the Activity, such as “Completed”. Title may
include data variables (see Section 8.5.10).

Instructions DataForm O Specifies the Step Instruction for this Step. See
section 5.1.2.3.

Actions Sequence of Action O Defines the Actions available to the Assignee in
this Step. The first Action is the default for user-
interface purposes

AvailableTopics Sequence of
AvailableTopic

O Defines the FIR Topics available to the
Assignee

Table 20: StepSpecification 1227

8.2.1.3 Action 1228

The execution model for a Task is described in Section 5.1.2.4. This section describes the data types 1229
used to specify Actions. 1230

Actions may be specified in-line in Step Specifications using Action Specification or they can be specified 1231
in SharedActions property of the Work Type Specification and referred to using Action Reference. 1232

Action (abstract base class)

Property Type M/O Description

 No common properties

Table 21: Action 1233

ActionReference (extends Action)

Property Type M/O Description

Id Identifier M Identifier of an Action specified in
SharedActions of the Work Type Specification

Table 22: ActionReference 1234

 1235

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 68 of 138

ActionSpecification (extends Action)

Property Type M/O Description
Id Identifier M Unique identifier in the context of the

associated Work Type Specification

Label MLText M Label for this Action for user-interface
purposes. Label may include data variables
(see Section 8.5.10 Data Variables)

Keyword MLText O Short keyword or mnemonic to be used in
space-limited used interfaces, for example
SMS

GenericType Identifier O Pre-defined generic Action type. Can be used
as hint for the rendering of the user interface
view (for example inclusion of graphical Action
buttons instead of textual descriptions).

If present, GenericType MUST be one of

“Accept”, “Reject”, “Start”, “Suspend”,

“Resume”, or “Complete” corresponding to an

Action that accepts, rejects, starts, suspends,
resumes, or completes Activity, respectively

ConfirmRequired Boolean O Specifies if the user interface SHOULD confirm
whether the user really wants to execute this
Action. If False, confirmation of the Action is
not required. If True, the user interface
SHOULD confirm performing the Action.
Default is False,
Typically ConfirmRequired is set True in
association with irrevocable Actions that should
be confirmed.

EnableCondition Expression O Specifies the Boolean Expression that
represents the Enable Condition of this Action.
See Section 5.1.2.5 on modeling dependencies
and Section 8.6 for expression structure.

If an EnableCondition is not specified, the
Action is Enabled.

AvailableToAssignee Boolean O Specifies whether this Action can be invoked
by the Assignee.

If False, then this Action can only be invoked
by the Manager via the FFMII Interface. This
can be used to specify special State transitions
that are not available to the Assignee.

Default is True.

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 69 of 138

InputForm DataForm O Input Form that needs to be filled as part of
executing this Action.

The Implementation MUST validate the input
form before committing on this Action.

See Section 5.1.4.

NextStepId Identifier M Identifier of the next Step specified within this
Work Type Specification.

A special reserved value of “PopStepStack”
indicates transition to the Step retrieved from
the top of the Step Stack (see Section 8.2.1.8)

PushStep Boolean O Whether to push the identifier of the current
Step to the top of the Step Stack (see Section
8.2.1.8).

Default is False.

AssertAdministrativeClo
singStatusId

Identifier O If any value is specified, then executing this
Action asserts the Administrative Closing
Status for the associated Work Request. The
specified identifier becomes the Adminstrative
Closing Status value.

See Section 5.1.5 for details

DataUpdateOperations Sequence of
DataUpdateOper
ation

O Specifies the data update operations to be
performed on the Work Request when this
Action is invoked.

See Section 8.2.1.5 for details

CustomProperties Dictionary O Implementation-specific custom properties

Table 23: ActionSpecification 1236

8.2.1.4 Available Topics 1237

Topics on which Assignee may invoke Field-Initiated Requests in a particular Step of a Work Request are 1238
defined in a Step Specification (See Section 8.2.1.2) as a sequence of Available Topic instances. 1239

An Available Topic binds a specific Topic to a Step and MAY impose additional conditions on when the 1240
Topic is enabled. 1241

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 70 of 138

AvailableTopic

Property Type M/O Description

TopicId Identifier M Identifier of a Topic on which the Assignee may
invoke Field-Initiated Requests

EnableCondition Expression O Boolean Expression specifying if this Topic is
enabled and available to the Assignee.
See Section 8.6 for Expressions.

If an EnableCondition is not specified, the
Topic is Enabled.

Table 24: AvailableTopic 1242

8.2.1.5 Data Update Operations 1243

In addition to storing any provided user input data and supplementary input data to the Work Request 1244
Status Record, an Action may also update Work Request data directly. This feature is designed to enable 1245
instant user interface response on certain types of user input where otherwise interaction with upstream 1246
system (ERMS) would be required, and which would therefore possibly suffer from inherent round-trip 1247
delays between FFMS and ERMS. 1248

Data elements introduced in this chapter are used to specify data update operations associated with 1249
Actions. Both user-provided input data and specified supplementary data are interpreted equally when 1250
performing the update operations. 1251

If Work Request data is updated via such operations, the updated Data Element values are stored in the 1252
UpdatedData property of the associated Work Request Status Record, thereby made visible to the ERMS 1253
system for retrieval (and possible consolidation) at any point of time. 1254

Data Update Operation is the common base class for different kinds of update operations. 1255

DataUpdateOperation (abstract base class)

Property Type M/O Description

TargetElementId Identifier M Identifier of the target element, i.e. the Work
Request Data Element to be updated

Table 25: DataUpdateOperation 1256

Set Value Operation causes the value of the target element to be set to the evaluated value of the 1257
specified Expression which MAY refer to Work Request data or Action input data. 1258
 1259

SetValueOperation (extends DataUpdateOperation)

Property Type M/O Description

ValueExpression Expression M Expression evaluated to obtain the value to be
set to the target element. The evaluated value
MUST be compatible with the target element
specification.

Table 26: SetValueOperation 1260

Add Row Operation causes a new row to be added to the specified Data Matrix using the evaluated 1261
values of specified Expression as values for the new data row. 1262
 1263

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 71 of 138

AddRowOperation (extends DataUpdateOperation)

Property Type M/O Description

ValueExpressions Sequence of
Expression

M Sequence of Expression to be evaluated to
obtain values for the new data row, in the order
the columns were specified. Each evaluated
value MUST be compatible with the respective
column specification.

InsertPosition Identifier O Token indicating at which position the new item
should be included

Valid values are:

“First” (inserted in front of first value in the
data matrix, if any)
“Last” (appended after the last item in the data
matrix, if any)

Default is “Last”.

Table 27: AddRowOperation 1264

8.2.1.6 Work Request 1265

Each Activity of a Work Request MAY be assigned to an Assignee. Note that different Activities MAY be 1266
assigned to different Assignees. A Work Request refers to or includes a Work Type Specification for 1267
specification of the work flow and Data Elements and provides data values to be bound to the Data 1268
Elements declared in the specification. 1269

The Implementation MUST maintain the following data for each Work Request throughout the entire 1270
lifecycle of the request: 1271

 Work Type Specification (see Section 8.2.1.1) associated with the request as it was at the request 1272
creation time (changes to the specification within the Work Type Repository MUST NOT affect 1273
existing Work Requests referencing it) 1274

 Work Request Status Record (see Section 8.2.1.9) 1275

 Step Stack (see Section 8.2.1.8) 1276

 1277

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 72 of 138

WorkRequest

Property Type M/O Description

Id Identifier M Unique identifier in the context of the Manager

WorkType WorkType M Work Type specific template describing the
work. May either be a reference to the Work
Type Repository, or include an in-lined Work
Type Specification specifically for this request

WorkRequestData Sequence of
DataBinding

M Data content specified by the Work Type
Specification to be supplied in-lined with each
Work Request. Also values for data variables
can be set here. The order in which bindings
are listed in this property is not significant.

See Data Form Sections 5.1.4 for details

ActivityData Sequence of
ActivityDataRecord

O Activity-specific data. The order in which
records are listed in this property is not
significant. Each record identifies the
associated Activity by its identifier. There
MUST NOT be multiple records associated
with the same Activity.

PriorityIndicator Int O Relative priority of this request in range 1 to 10,
1 being the highest priority. Work for which
priority is not specified is lower priority than any
work for which priority is specified.

CustomProperties Dictionary O Implementation-specific custom properties

Table 28: WorkRequest 1278

Type ActivityDataRecord is used to specify or override Activity-specific data. 1279

 1280

ActivityDataRecord

Property Type M/O Description

Id Identifier M Identifier of the Activity for which data is being
provided.

AssigneeId Identifier O Identifier of the Assignee this Activity is

assigned to.

Refers to the Assignees stored in the “Users”

repository.

If not specified then the associated Activity is

not currently assigned to any Assignee.

Schedule ScheduleSpecification O Defines details on when the work is to be done

Table 29: ActivityDataRecord 1281

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 73 of 138

8.2.1.7 Schedule Specification 1282

The Schedule associated with an Activity has two logical parts: The time constraints defining when the 1283
Activity may be executed; and the planned time for executing the Activity. See Section 5.1.3 for 1284
definitions. 1285

 1286

ScheduleSpecification

Property Type M/O Description

LatestStart DateTime M The latest time when the Activity may be
started

EarliestStart DateTime O The earliest time when the Activity may be
started. If EarliestStart is not specified, it is
assumed that the Activity may be started at any
time between the present and the LatestStart

LatestFinish DateTime O The latest time when the Activity may be
finished. If LatestFinish is not specified, the
finishing time is not constrained

AppointmentStart DateTime O Start time of the appointment time window
during which the service provider has promised
that the service would be delivered.
AppointmentStart and AppointmentFinish
MUST be specified together as a pair.

AppointmentFinish DateTime O Finish time of the appointment time window
during which the service provider has promised
that the service would be delivered.
AppointmentStart and AppointmentFinish
MUST be specified together as a pair.

Duration Duration O Estimated duration of work to be done.

PlannedStart DateTime O Planned Start time of the Activity

PlannedFinish DateTime O Planned Finish time of the Activity. If
PlannedFinish is specified, PlannedStart MUST
be specified as well

Table 30: ScheduleSpecification 1287

8.2.1.8 Step Stack 1288

The Implementation MUST maintain a Step Stack for each Activity. The Step Stack is a stack of Step 1289
identifiers. New identifiers that need to be preserved are always stored (“pushed”) to the top of the stack, 1290
and top-most identifiers may be removed (“popped”) from the top of the stack when needed. 1291

Initially the Step Stack is empty but if a user takes an Action with the PushStep property set to True (see 1292
Section 8.2.1.3), the identifier of the current Step is stored on the top of the Step Stack. Another Action 1293
may later pop the top-most identifier from the stack to return to the pushed Step. 1294

The Step Stack makes it possible, for example, to introduce a generic State and Step for temporarily 1295
suspending the work and yet being able to later return to the Step where the interruption occurred. 1296

8.2.1.9 Work Request Status Record 1297

Work Request Status Record contains information about the current status of the associated Work 1298
Request as well as history of state transitions and Work Request data updates. 1299

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 74 of 138

WorkRequestStatusRecord

Property Type M/O Description

WorkRequestId Identifier M Identifier of the associated Work Request

StatusSnapshot StatusSnapshotR
ecord

M Current status of the Task

ChangeHistory Sequence of
ChangeHistoryEn
try

M Sequence of zero or more Change History
Entries in chronological order

CustomProperties Dictionary O Implementation-specific custom properties

Table 31: WorkRequestStatusRecord 1300

Status Snapshot Record contains information about the current status of a Work Request. 1301

StatusSnapshotRecord

Property Type M/O Description
RevisionNumber Int M Monotonically increasing revision number

starting from zero and incremented each
time the status record of this request is
updated (that is, for each invoked Action
and each time Work Request data content
is updated)

RevisionTime DateTime M When this status record was last updated
(time of last update or initial creation of the
request)

CurrentTaskStatusId Identifier M One of the Status Categories “Open”,
“Active”, “Inactive”, or “Closed” reflecting
overall Task Status as defined in Section
5.1.5

CurrentTaskStatusEnterTi
me

DateTime M When the current Task Status as indicated
by CurrentTaskStatusId was entered

AdministrativeClosingStat
usId

Identifier O The asserted Administrative Closing Status
value, if any.

See Section 5.1.5.

ActivityStatusInfo Sequence of
ActivityStatusRec
ord

M Status information for all associated
Activities. The order in which the records
are listed in this property is not significant.
Each record identifies the associated
Activity by its identifier. There MUST be
exactly one status record for each Activity.

Table 32: StatusSnapshotRecord 1302

Activity Status Record contains information about the current status of a specific Activity. 1303

ActivityStatusRecord

Property Type M/O Description

ActivityId Identifier M Identifier of the associated Activity

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 75 of 138

CurrentActivityStateId Identifier M Identifier of the current State of the Activity
State Model

CurrentActivityStateEnte
rTime

DateTime M Timestamp of when the current State as
reflected in CurrentActivityStateId was
initially entered

ActivityInstantiationTime DateTime O Timestamp of when the Activity was
initially made available for the Assignee

Table 33: ActivityStatusRecord 1304

Change History Entries record information about Activity State Model transitions and Work Request data 1305
updates. Table 34 describes the common abstract base class for different types of Change History 1306
Entries. 1307

ChangeHistoryEntry (abstract base class)

Property Type M/O Description

ChangeTime DateTime M Timestamp of this change

ResultingRevision Int M Revision number of the Work Request
Status Record revision resulting from this
change

Table 34: ChangeHistoryEntry 1308

Activity Change History Entries record information about Activity State Model transitions. 1309

ActivityChangeHistoryEntry (extends ChangeHistoryEntry)

Property Type M/O Description

AssigneeId Identifier O Identifier of the Assignee who initiated the
Action, if not Manager initiated. AssigneeId
MUST NOT be specified if Manager
initiated.

ActivityId Identifier M Identifier of the associated Activity

StateId Identifier M Identifier of the resulting State after
transition

StepId Identifier M Identifier of the resulting Step after
transition

ActionId Identifier M Identifier of the Action that caused this
transition

InputData Sequence of
DataBinding

O Input data provided by the Assignee or
Manager for the input form of the Action, if
an input form is specified for the Action.
The order in which bindings are listed is
not significant.

Table 35: ActivityChangeHistoryEntry 1310

Data Change History Entries record changes to Work Request data. 1311

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 76 of 138

DataChangeHistoryEntry (extends ChangeHistoryEntry)
Property Type M/O Description
AssigneeId Identifier O Identifier of the Assignee who initiated the

Action, if not Manager initiated. AssigneeId
MUST NOT be specified if Manager
initiated.

Cause Identifier M Either “Action” if this data change was
caused by a Data Update Operation
associated with an invoked “Action” or
“Update” if this data change was caused
by Assignee directly updating an
updateable Data Element.

If Cause is “Action” then the preceding
Change History Entry MUST be an Activity
Change History Entry describing the Action
that caused the update.

UpdatedData Sequence of
DataBinding

M Updated Work Request data. The order in
which bindings are listed is not significant.

Table 36: DataChangeHistoryEntry 1312

8.2.1.10 Work Request Update Structures 1313

Data types specified in this section are used in conjunction with the WR_PUT and WR_INVOKE_ACTION 1314
operations to update the content or state of Work Requests via the FFMII interface while managing 1315
potential update collisions between the user interface initiated and Manager initiated updates. 1316

The detection and management of update collisions is based on the revision number (RevisionNumber) 1317
of the Work Request Status Record associated with the Work Request being updated. The revision 1318
number is incremented every time the state of the Work Request changes or the associated data is 1319
updated. 1320

When updating the Work Request or invoking an Action on it, the Manager MAY specify the latest known 1321
revision number of the associated Work Request Status Record. If specified, the FFMII Implementation 1322
MUST checks that this is the latest revision before performing the update or otherwise signals an update 1323
collision. If latest revision is not specified, then the Implementation MUST perform the update. 1324

On update collision, the Manager SHOULD read the updated status using WR_GET_STATUS, apply any 1325
state changes locally and retry the update operation based on the latest known status, if the operation is 1326
still applicable. 1327

WrPutUpdateRequest is used when updating Work Request data content using WR_PUT. 1328

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 77 of 138

WrPutUpdateRequest

Property Type M/O Description
WorkRequest WorkRequest M Work Request being added or updated. An

update replaces the existing WorkRequest.

See notes of WR_PUT operation in Section
8.2.2.

BaseRevisionNumber Int O The revision number of the associated Work
Request Status Record this update is based
on, or -1 when adding a new non-existing
Work Request.

If the revision number is specified for Work
Request update then the FFMII
Implementation MUST check that it
matches the latest revision of the
associated Work Request Status Record or
otherwise signal a
WR_UPDATE_COLLISION error.

If -1 is specified and a Work Request with
the same identifier already exists, the
Implementation MUST signal a
WR_EXISTS error.

Table 37: WrPutUpdateRequest 1329

WrInvokeActionUpdateRequest is used to update Work Request status by invoking a specific Action on a 1330
specific Activity of the Work Request. 1331

WrInvokeActionUpdateRequest

Property Type M/O Description

WorkRequestId Identifier M Identifier of the Work Request to be
updated

BaseRevisionNumber Int O The revision number of the associated Work
Request Status Record this update is based
on.

If the base revision number is specified then
the FFMII Implementation MUST check that
it matches the latest revision of the
associated Work Request Status Record or
otherwise signal a
WR_UPDATE_COLLISION error.

ActivityId Identifier M Identifier of the Activity to be updated

ActionId Identifier M Identifier of the Action to be invoked on the
specified Activity

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 78 of 138

InputData Sequence of
DataBinding

O Input data to be submitted against the input
form of the Action. The provided data is
validated according to the validation rules
specified in the Data Form, just as user
provided input would be.

The Implementation MUST validate the
input and respond with error codes E3015
or E3016 if the input data is of illegal type or
fails validation.

An empty Sequence of Data Binding is
equivalent to omitting InputData altogether.
Input data MUST be omitted if the Action
has no input form and MAY be omitted if the
input form accepts an empty data set.

Table 38: WrInvokeActionUpdateRequest 1332

8.2.1.11 Work Request Query and Response Structures 1333

Data types specified in this section are used in conjunction with the WR_LIST operation used for querying 1334
identifiers of Work Requests managed by the Implementation and accessible to the requesting Manager. 1335

WR_LIST operation, by default, returns identifiers of all Work Requests accessible (visible) to given 1336
Manager. With WrListFilter structure provided as input parameter, the content of the response is further 1337

restricted as described in Table 39: 1338

WrListFilter

Property Type M/O Description

RevisedAfter DateTime O If provided, excludes from the response all
Work Requests that have not been
modified, or experienced any state change,
after specified point in time.

TaskState Sequence of
Identifier

O Return only Work Requests whose Work
Request Status (as defined in 5.1.5) is one
of the values contained in TaskState.
TaskState is a combination of Identifiers
[Open, Active, Inactive, Closed]

Table 39: WrListFilter 1339

WrListResult encapsulates core identification information about Work Requests. 1340

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 79 of 138

WrListResult

Property Type M/O Description
WorkRequestId Identifier M Identifier of the Work Request

CurrentTaskStateId Identifier M Either Open, Active, Inactive, or Closed
reflecting the Work Request Status (as
defined in 5.1.5)

RevisionNumber Int M Revision number of the associated Work
Request Status Record

Table 40: WrListResult 1341

8.2.1.12 Work Request Status Change Notification Structures 1342

Data types specified in this section are used together with the WR_NOTIFY_STATUS operation to send 1343
information about status changes of Work Requests. 1344

WorkRequestStatusChangeNotification

Property Type M/O Description

WorkRequestId Identifier M Identifier of the Work Request

StatusSnapshot StatusSnapshotR
ecord

M Current status of the Task

Changes Sequence of
ChangeHistoryEn
try

M Chronological sequence of one or more
new changes to the Work Request since
the last successfully delivered notification

CustomProperties Dictionary O Implementation-specific custom properties

Table 41: WorkRequestStatusChangeNotification 1345

8.2.1.13 Other Work Request Operation Result Structures 1346

Data types specified in this section are used as result types for various Work Request related batch 1347
operations, as defined in Section 8.2.2. 1348

WrPutResult is used as the result type of WR_PUT batch operation. The identifier property of 1349

BatchItemResult identifies the Work Request specified in the request. 1350

WrPutResult (extends BatchItemResult)

Property Type M/O Description

 Only base class properties

Table 42: WrPutResult 1351

WrGetStatusResult is used as the result type of WR_GET_STATUS batch operation. The identifier 1352
property of BatchItemResult identifies the Work Request specified in the request. 1353

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 80 of 138

WrGetStatusResult (extends BatchItemResult)

Property Type M/O Description
StatusRecord WorkRequestStat

usRecord
O Status Record of the Work Request

identified by the identifier property of this
Result.

MUST be present if ErrorCode of this result
is E0000.

Table 43: WrGetStatusResult 1354

WrInvokeActionResult is used as the result type of WR_INVOKE_ACTION batch operation. The identifier 1355
property of BatchItemResult identifies the Work Request specified in the request. 1356

WrInvokeActionResult (extends BatchItemResult)

Property Type M/O Description

 Only base class properties

Table 44: WrInvokeActionResult 1357

WrNotifyStatusResult is used as the result type of WR_NOTIFY_STATUS batch operation. The identifier 1358
property of BatchItemResult identifies the Work Request specified in the request. 1359

WrNotifyStatusResult (extends BatchItemResult)

Property Type M/O Description

 Only base class properties

Table 45: WrNotifyStatusResult 1360

 1361

8.2.2 Operations 1362

This chapter describes the operations associated with the Work Request Management. 1363

 1364

Operation Description Notes

WR_PUT

[exposed by

Implementation]

Creates new Work Requests or updates
existing ones with the same identifier.

Input parameters:

Updates: Sequence of

WrPutUpdateRequest

Return value:

Results: Sequence of

WrPutResult

If an existing Work Request is

updated:

1. Constraints on changes of

associated Work Type

Specification are specified in

Section 5.1.2.6.

2. The associated Status

Record remains as is except

that the UpdatedData property

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 81 of 138

Operation Description Notes

is cleared and the

RevisionNumber property is

incremented.

For details on request

structures and how potential

update collisions are managed,

see Section 8.2.1.10.

WR_LIST

[exposed by

Implementation]

Returns identifiers and status
information for Work Requests matching
the specified filter criteria (if provided).

Input parameters:

 Filter: WrListFilter

Return value:

 Results: Sequence of

WrListResult

Implicitly restricted to Work

Requests visible to the

requesting Manager.

For detailed description of the

filter and result structures, see

Section 8.2.1.11.

WR_GET_STATUS

[exposed by

Implementation]

Retrieves Work Request Status Record
for the identified Work Requests.

Input parameters:

WorkRequestIds: Sequence

of Identifier

Return value:

Results: Sequence of

WrGetStatusResult

WR_INVOKE_ACTION

[exposed by

Implementation]

Invokes the specified list of Actions on

specified Activities and Work Requests,

in the order they were specified. Each

Action is invoked just like user would

have performed it.

Input parameters:

Updates: Sequence of

WrInvokeActionUpdateReque

This operation can be used, for

example, to cancel a Work

Request or to suspend and

resume Activities, provided that

corresponding Actions are

available in the Activity State

Model.

The identified Activity MUST be

specified the Work Type

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 82 of 138

Operation Description Notes

st

Return value:

Results: Sequence of

WrInvokeActionResult

Specification of the Work

Request and the identified

Action in the current Step of the

Activity. The provided input

data is validated against the

input form of the Action.

For details on request

structures and how potential

update collisions are managed,

see Section 8.2.1.10.

WR_NOTIFY_STATUS

[exposed by Manager]

Delivers information about status

changes of one or more Work Requests

from Implementation to the Manager

when status change notifications are

used in contrast to Implementation

polling the status with the

WR_GET_STATUS operation.

Input parameters:

 Notifications: Sequence

of

WorkRequestStatusChangeNotifi

cation

Return value:

 Results: Sequence of

 WrNotifyStatusResult

Table 46: Work Request Management Operations 1365

8.3 Reference Data Management 1366

8.3.1 Introduction 1367

Reference Data Management (RDM) provides means for the Manager to establish custom data 1368
repositories with arbitrary content within scope of the Implementation. The content of such repositories is 1369
commonly denoted as “Reference Data”, and MAY be used for input value selection, lookup of display 1370
values or content validation in Work Requests. A further use is to provide additional information such as 1371
documents for Assignees. The objective of the RDM subsystem is to enforce a unified way of managing 1372
data content in all repositories, and a common way of referring to repositories and their content across 1373
data types, across repositories and from within Work Requests. In order to do so, a common set of 1374
generic repository management operations is defined, as well as a common format of unique data type 1375

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 83 of 138

identifiers and fully qualified references. See Section 5.2 for an overview of the RDM domain model. 1376

An Implementation MAY also provide access to system repositories providing access to selected data on 1377
Implementation side, such as Assignee identities and alike. System repositories have reserved identifiers, 1378
and they MAY impose restrictions on their content. FFMII interface defines single system repository for 1379
managing user information as described in Section 8.9. 1380

8.3.2 Data Types 1381

8.3.2.1 Repository Descriptor 1382

Each repository within RDM is has repository descriptor, structure of which is defined in Table 47: 1383

 1384

RepositoryDescriptor

Property Type M/O Description

Id Identifier M Repository identifier

Description String O Verbal description of the repository

Readable Boolean M For custom repositories, Readable specifies whether

other Managers than the creator have permission to

read repository content using Reference Data

Management services. The manager that created the

repository MUST be able to read repository content

using Reference Data Management services.

For system repositories, semantics is specified as part

of the description of the repository.

Writable Boolean M For custom repositories, Writable specifies whether

other Managers than the creator have permission to

update repository content using Reference Data

Management services. The manager that created the

repository MUST have full write access (update,

initialize, delete) to repository using Reference Data

Management services.

For system repositories, semantics is specified as part

of the description of the repository.

CustomProperties Dictionary O Implementation-specific custom properties

Table 47: Repository Descriptor 1385

8.3.2.1.1 Custom Repository Identifiers 1386

Identifiers of custom repositories MUST begin with prefix “X”. A Manager MUST NOT create a custom 1387
repository without the prefix and MUST use system repositories only for the purposes described in the 1388
FFMII specification. 1389

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 84 of 138

8.3.2.2 Reference Data Item 1390

The content of all RDM repositories MUST use the common data type model described in Section 5.2. 1391

Each Reference Data Item managed by RDM MUST have an identifier unique within the repository, and 1392
MAY contain a value and a Sequence of references to other items. Any item may therefore act equally as 1393
a leaf Reference Data Item, as a collection of references, or as a combination of both. 1394

The Table 48 specifies the structure of a Reference Data Item. 1395

ReferenceDataItem

Property Type M/O Description

Id Identifier M Unique identifier in the context of Reference Data

Items stored into a specific repository.

Value (varies, see below) O Value associated with this item

References Sequence of

Reference

O Further references associated with this item.

Table 48: Reference Data Item 1396

Type of Values of Reference Data Items in custom repositories MUST be primitive data type (see Section 1397
7.2), Dictionary (see Section 7.4), MLText (see Section 7.5.1), DataAttachmentValue (see Section 8.5.9), 1398
DataMatrixValue (see Section 8.5.9), Location (see Section 7.5.2) or MultiChoiceAlternative (see Section 1399
7.5.3). Allowed type of Value in system repositories is specific to a particular repository and subject to 1400
constraints of the repository (see Sections 8.9, 8.10 and 8.11). 1401

References allow linking with other Reference Data Items managed through RDM. References can be 1402
fully-qualified, referring to items in any RDM repository, or relative, referring to items in the same 1403
repository. 1404

Reference

Property Type M/O Description

ItemId Identifier M Identifier of the reference item within its containing

repository

RepositoryId Identifier O Identifier of the target repository in case of fully

qualified references. If RepositoryId is not

specified, the reference is interpreted as a relative

reference to the same repository

Table 49: Reference 1405

8.3.2.3 Reference Data Operation Result Structures 1406

Data types specified in this section are used as result types for various Reference Data related batch 1407
operations, as defined in Section 8.3.3. 1408

RdInitResult is used as the result type of RD_INIT batch operation. The identifier property of 1409

BatchItemResult identifies the Reference Data Item specified in the request. 1410

RdInitResult (extends BatchItemResult)

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 85 of 138

Property Type M/O Description

 Only base class properties

Table 50: RdInitREsult 1411

RdPutResult is used as the result type of RD_PUT batch operation. The identifier property of 1412

BatchItemResult identifies the Reference Data Item specified in the request. 1413

RdPutResult (extends BatchItemResult)

Property Type M/O Description

 Only base class properties

Table 51: RdPutResult 1414

RdGetResult is used as the result type of RD_GET batch operation. The identifier property of 1415

BatchItemResult identifies the Reference Data Item specified in the request. 1416

RdGetResult (extends BatchItemResult)

Property Type M/O Description

Item ReferenceDataItem O Reference Data Item identified by the
identifier property of this Result.

MUST be present if ErrorCode of this result
is E0000.

Table 52: RdGetResult 1417

8.3.3 Operations 1418

Following Table 53 and Table 54 specify interface operations for manipulation RDM repository content as 1419
well as operations for creation and removal of custom repositories: 1420

 1421

Operation Description Notes

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 86 of 138

Operation Description Notes

RD_INIT

[exposed by

Implementation]

Initializes specified repository with the specified set

of Reference Data Items.

Input parameters:

 RepositoryId: Identifier

 Items : Sequence of

 Reference Data Item

Return value:

 Results: Sequence of RdInitResult

If Repository does not

already exist, then

RD_INIT creates a new

repository with a default

Repository Descriptor

All existing Reference Data

Items, if any, are removed

from the repository before

new items are stored

RD_PUT

[exposed by

Implementation]

Inserts or replaces/updates data in a repository.

Input parameters:

 RepositoryId : Identifier

 Items : Sequence of

 Reference Data Item

Return value:

 Results: Sequence of RdPutResult

Replaces any existing

Reference Data Items that

have the same identifier

If no Reference Data Item

with a specified identifier

exists, a new one is added

to the repository.

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 87 of 138

Operation Description Notes

RD_DELETE

[exposed by

Implementation]

Removes identified Reference Data Item(s) from the

repository.

Input parameters:

 RepositoryId: Identifier

 ItemIds: Sequence of

 Identifier

Return value:

 NumDeleted: Integer

Silently ignores non-

existing items

Returns the number of

items that were deleted

RD_LIST

[exposed by

Implementation]

Returns a Sequence of Identifiers identifying

Reference Data Items in the specified repository.

Input parameters:

 RepositoryId: Identifier

 Offset: Integer (optional)

 MaxResults: Integer (optional)

Return value:

 ItemIds: Sequence of Identifier

 MoreAvailable: Boolean

Starts with the item at the

specified Offset (zero

based), or with the first

item by default. Returns at

most MaxResult identifiers

or all remaining item

identifiers by default.

The order in which the item

identifiers are returned is

implementation-specific

but the order MUST be

consistent.

Returns flag MoreAvailable

telling whether there are

more items available.

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 88 of 138

Operation Description Notes

RD_GET

[exposed by

Implementation]

Retrieves the identified or all Reference Data Items

contained in the specified Reference Data

Repository.

Input parameters:

 RepositoryId: Identifier

 ItemIds: Sequence of Identifier

(Optional)

Return value:

 Results: Sequence of RdGetResult

If ItemIds is specified then

retrieves only the identified

Reference Data Items

contained in the repository.

If no item with the specified

identifier exists then the

Implementation MUST

return an error result for

the identifier.

If ItemIds is not specified

then retrieves all

Reference Data Items

contained in the repository.

RD_REFS_GET

[exposed by

Implementation]

Retrieves references of the specified Reference Data

Item.

Input parameters:

 RepositoryId: Identifier

 ItemId: Identifier

Return value:

 References: Sequence of Reference

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 89 of 138

Operation Description Notes

RD_REFS_PUT

[exposed by

Implementation]

Stores references as part of the specified Reference

Data Item.

Input parameters:

 RepositoryId: Identifier

 ItemId: Identifier

 References:

 Sequence of Reference

Return value:

 NONE

Silently ignores existing

duplicate references

RD_REFS_DEL

ETE

[exposed by

Implementation]

Removes all references from the specified

Reference Data Item.

Input parameters:

 RepositoryId: Identifier

 ItemId: Identifier

Return value:

 NONE

Table 53: Common Reference Data Operations 1422

Additionally, the following operations are defined for manipulating the Reference Data repository 1423
catalogue: 1424

 1425

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 90 of 138

Operation Description Notes
RD_REPO_LIST

[exposed by

Implementation]

Retrieves repository descriptors of all repositories

available to the requesting Manager.

Input parameters:

 NONE

Return value:

 Repositories: Sequence of

 RepositoryDescriptor

RD_REPO_CRE

ATE

[exposed by

Implementation]

Creates a new empty custom repository.

Input parameters:

 Descriptor:

 RepositoryDescriptor

Return value:

 NONE

Implicitly sets values of

Writable to True,

irrespectively of the values

supplied in the descriptor

parameter (i.e. Manager is

always granted access to

repositories it creates).

Fails if the repository exists

already.

RD_REPO_DELE

TE

[exposed by

Implementation]

Removes the specified custom repository.

Input parameters:

 RepositoryId: Identifier

Return value:

 NONE

Silently ignores non-

existing repositories. Fails

if the repository is not

empty or is a system

repository.

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 91 of 138

Operation Description Notes
RD_REPO_UPD

ATE_PROPS

[exposed by

Implementation]

Replaces custom properties in descriptor of the

specified custom repository with the specified

properties.

Input parameters:

 RepositoryId: Identifier

 CustomProperties: Dictionary

Return value:

 NONE

Fails if the repository does

not exist or is not writable

by the Manager

Table 54: Repository Catalogue Management Operations (RDM) 1426

8.4 Field-Initiated Requests 1427

8.4.1 Data Type 1428

This section describes the data types associated with Field-Initiated Requests. The main data types are 1429
FieldInitiatedRequestSpecification, FieldInitiatedRequest, and FieldInitiatedRequestResponse. They are 1430
specified in dedicated sections together with the additional data types they refer to. 1431

8.4.1.1 Field-Initiated Request Specification 1432

A FieldInitiatedRequestSpecification data type describes how a particular Field-Initiated Request is made 1433
available by a Manager to the Implementation. See discussion in Section 5.4. 1434

How Field Initiated Request Specifications are made available in context of each Work Request is 1435
described in the Work Type Specification. Several Work Requests may share the same Field-Initiated 1436
Request Specification by referring to them. 1437

 1438

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 92 of 138

FieldInitiatedRequestSpecification

Property Type M/O Description

FIRType Identifier M Either "TopicalInquiry" or "TopicalNotification"

TopicLabel MLText M Used for visualization purposes by the
Implementation

GroupLabel MLText O Used for visualizing grouping of different Topics

SharedDataElements Sequence of
DataElementSpecifi
cation

O Shared Data Element Specifications that may
be referred to from within Data Forms specified
in this Field Initiated Request Specification.

RequestForm DataForm O Specifies data to be supplied by the Assignee

ResponseForm DataForm O Specifies data to be returned by Manager, if
FIRType is “TopicalInquiry”. ResponseForm
MUST NOT be specified if FIRType is
“TopicalNotification”.

ReturnsWRs Boolean M Whether Manager returns Work Requests as a
response. MUST be False if FIRType is
“TopicalNotification”.

AvailableTopicsForR
eturnedWRs

Sequence of
Identifier

O Set of available Work Request processing
Topics, if Manager returns Work Requests
(Manager identifier is implicitly the identifier of
the Manager returning the Work Requests)

BoundToWR Boolean M True if resulting FIR must be bound to a Work
Request

Table 55: FieldInitiatedRequestSpecification 1439

8.4.1.2 Field-Initiated Request 1440

A FIR data type embodies a Field-Initiated Request. See discussion in Section 5.4. 1441

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 93 of 138

FieldInitiatedRequest

Property Type M/O Description

Id Identifier M Unique Identifier generated by the
Implementation

Timestamp DateTime M Time of request initiation

TopicId Identifier M Identifies the requested Topic (no need to
specify Manager Identifier since this is sent to
a specific Manager)

AssigneeId Identifier M Identifier or the initiating Assignee

WorkRequestId Identifier O identifier of the Invocation context (Work
Request, Activity and Step) if Field-Initiated
Request was invoked in the context of a
specific Work Request

ActivityId Identifier O

StepId Identifier O

RequestData Sequence of
DataBinding

M Request data supplied by the Assignee (may
be empty if allowed by corresponding Request
Form specification)

Table 56: FieldInitiatedRequest 1442

8.4.1.3 Field-Initiated Request Response 1443

A Manager MUST respond to a Field-Initiated Request of FIRType TopicalInquiry with one or more Field-1444
Initiated Request Response. See discussion in Section 5.4. 1445

FieldInitiatedRequestResponse

Property Type M/O Description

FieldInitiatedRequest
Id

Identifier M identifier of the associated Field-Initiated
Request

SeqNum Integer M Starting with 0 and monotonically increasing for
further responses associated with the same
Field-Initiated Request

Timestamp DateTime M Time of response

ResponseData Sequence of
DataBinding

M Data retuned by Manager (may be empty)

WorkRequests Sequence of
WorkRequests

O Any number of Work Requests returned by the
Manager, if allowed by the specification
associated with the request

FinalIndicator Boolean M True if response is final, False if this Field-
Initiated Request Response is intermediate. An
intermediate response MUST be followed by a
later Field-Initiated Request Response. A later
Field-Initiated Request Response MUST
override any information contained in previous
Field-Initiated Request Responses to the same
request.

Table 57: FieldInitiatedRequestResponse 1446

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 94 of 138

8.4.1.4 Field-Initiated Request Operation Result Structures 1447

Data types specified in this section are used as result types for various Field-Initiated Request related 1448
batch operations, as defined in Section 8.4.2. 1449

FirGetResponseResult is used as the result type of FIR_GET_RESPONSE batch operation. The identifier 1450

property of BatchItemResult identifies the Field-Initiated Request specified in the request. 1451

FirGetResponseResult (extends BatchItemResult)

Property Type M/O Description

Responses Sequence of
FieldInitiatedRequ
estResponse

O Responses to Field-Initiated Request
identified by the identifier property of this
Result. Responses MUST be in
chronological order.

MUST be present if ErrorCode of this result
is E0000.

The sequence MUST be present but empty
if Field-Initiated Request is known and
accessible to the Implementation but no
new responses are available for it.

Table 58: FirGetResponseResult 1452

FirNotifyResponseResult is used as the result type of FIR_NOTIFY_RESPONSE batch operation. The 1453
identifier property of BatchItemResult is the Field-Initiated Request identifier of the response being 1454
acknowledged by this result. 1455

FirNotifyResponseResult (extends BatchItemResult)

Property Type M/O Description

SeqNum Integer M SeqNum of the Field-Initiated Request
Response being acknowledged by this
result.

Table 59: FirNotifyResponseResult 1456

8.4.2 Operations 1457

The Field-Initiated Requests subsystem exposes the following operations: 1458

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 95 of 138

Operation Description Notes
FIR_EXECUTE

[exposed by

Manager]

Implementation uses this operation to

send a Field-Initiated Request to

Manager.

Input parameters:

 FieldInitiatedRequest:

FieldInitiatedRequest

Return value:

 NONE

FIR_GET_RESPO

NSE

[exposed by

Manager]

Implementation uses this operation to

check if the Manager has generated

responses for specified Field-Initiated

Requests sent by Implementation. The

Implementation specifies the Field-

Initiated Request for which responses

are requested by the identifier

of the Field-Initiated

Request.

Input parameters:

FieldInitiatedRequestIds:

Sequence of Identifier

Return value:

Results: Sequence of

FirGetResponseResult

The returned sequence may be

empty if no responses are available

yet. If the results include more than

one Field-Initiated Request

Response data type, the Manager

may choose to provide all of them in

one operation, or provide a smaller

number of Field-Initiated Request

Responses in each response,

Implementation SHOULD continue

polling until it receives a response

with the FinalIndicator field set to

True.

If the requested Field-Initiated

Request identifier does not specify a

Field-Initiated Request which the

Manager is currently processing,

Manager MUST return an

UNKNOWN_FIR_ID error.

This polling mechanism is intended

for use when both Manager and

Implementation are configured for

using polling in Field-Initiated

Request processing. The

configuration mechanism is not

specified by this standard.

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 96 of 138

Operation Description Notes
FIR_NOTIFY_RES

PONSE

[exposed by

Implementation]

Manager uses this operation to send

FIR results to the requesting

Implementation.

Input parameters:

 Responses: Sequence of

FieldInitiatedRequestResp

onse

Return value:

Results: Sequence of

FirNotifyResponseResult

If the results include more than one

Field-Initiated Request Response

data type, a Manager may choose to

provide all of them in one operation,

or provide a smaller number of Field-

Initiated Request Responses in each

response. An Implementation

SHOULD expect more responses

until it receives a response with the

FinalIndicator field set to True.

This notification mechanism is

intended for use when both Manager

and Implementation are configured

for using notification in Field-Initiated

Request processing. The

configuration mechanism is not

specified by this standard.

Table 60: Field-Initiated Request Operations 1459

8.5 Data Form Data Types 1460

8.5.1 Data Form and Data Elements 1461

This section describes the Data Form class together with core Data Element classes. Data Element 1462
Specification subclasses are described in following sections. 1463

A Data Form aggregates a sequence of Data Elements that form a data view or an input form. The order 1464
of Data Element declarations is significant and the Implementation SHOULD use it as a hint for ordering 1465
the elements within the user interface. 1466

DataForm

Property Type M/O Description

Elements Sequence of

DataElement

M One or more Data Elements

Table 61: DataForm 1467

A Data Element describes a named piece of data or a data group. They provide the information needed 1468
by the user interface implementation to display the data fields together with the desired label and 1469
grouping. A value can be bound to a Data Element via a Data Binding included in the associated data 1470
type providing the instance data such as Work Request, Field-Initiated Request or Field-Initiated Request 1471
Response. 1472

Data Elements MAY contain validation rules. User provided data MUST be validated against the specified 1473
validation rules. 1474

Data Elements are defined either as in-lined Data Element Specifications, specifying the details of the 1475
Data Element, or as Data Element References, referring to one of the shared Data Element 1476
Specifications specified in the SharedDataElements property of the Work Type Specification or Field-1477
Initiated Request Specification contains the reference. 1478

DataElement (abstract base class)

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 97 of 138

Property Type M/O Description

 No Common properties

Table 62: DataElement (abstract base class) 1479

 1480

DataElementReference (extends DataElement)

Property Type M/O Description

Id Identifier M Identifies a shared Data Element Specification to

be substituted in place of this reference.

There MUST exist a Data Element Specification

with the specified identifier in the

SharedDataElements property of the Work Type

Specification or Field Initiated Request

Specification containing this reference.

Table 63: DataElementReference (extends DataElement) 1481

There are several subclasses of Data Element Specifications. All subclasses have the following common 1482
properties as part of the common abstract base: 1483

DataElementSpecification (abstract, extends DataElement)

Property Type M/O Description

Id Identifier M Unique identifier among the Data Element

Specifications specified in the containing Work

Type Specification or Field-Initiated Request

Specification.

Label MLText M Label for user interface purposes. Data variables

(see section 8.5.12) MUST be Supported in

Labels.

Keyword MLText O Short keyword or mnemonic to be used in a

space-limited user interface, for example SMS

HelpText MLText O Help text describing the content of the element. .

Data variables (see section 8.5.12) MUST be

Supported in HelpText,

ValidationCondition Expression O Validation condition specifies an Expression that

evaluates to True for valid values.

The Implementation MUST verify that any user

provided data satisfies the ValidationCondition.

If not present, any value is considered as valid.

See section 8.5.6 for details.

EnableCondition Expression O Condition that defines when this Data Element

is enabled. If the element is not enabled then it

is not shown nor is it validated.

If not present, the Data Element is considered

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 98 of 138

DataElementSpecification (abstract, extends DataElement)

Property Type M/O Description

as enabled.

See section 8.5.7 for details.

UpdateableCondition Expression O Specifies whether the value of this Data

Element may be updated by the user. Default is

False for Data Elements in data views and True

for Data Elements in input forms.

This property makes it possible to introduce

user-updateable Data Elements in data views,

for example to make it possible to update

incorrect background data associated with the

work.

Formatting Sequence of

Identifier

O Sequence of predefined or implementation-

specific formatting tags that further specify how

the data should be formatted. The order in

which the formatting tags are listed is not

significant.

See section 8.5.8 for details.

Source Identifier

O A predefined or implementation-specific tag

providing a hint on how the content should be

obtained. An Implementation SHOULD try to

comply with this tag.

See section 8.5.7 for details.

Table 64: DataElementSpecification (abstract, extends DataElement) 1484

8.5.2 Data Field Specification 1485

Data Field Specification specifies a simple data field. 1486

Multiple choice fields can be created by specifying valid MultiChoiceAlternative values. It is up to the user 1487
interface implementation to decide how to present the data field, e.g. depending on the number of the 1488
possible values. 1489

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 99 of 138

DataFieldSpecification (extends DataElementSpecification)

Property Type M/O Description
Type Identifier M Type of the data field value.

The supported values are names of primitive

data types (see section 7.2), and “Location” for

Location data type (see Section 7.5.2)

UnitLabel MLText O Unit label to be displayed for this data field (e.g.

“€”, “km”, “days”, etc). Data variables (see

section 8.5.12) MUST be Supported in Unit label.

Alternatives Sequence of

MultiChoiceAltern

ative

O Sequence of valid values for this multiple choice

fields.

Specified value MUST be compatible with this

Data Field Specification.

If Alternatives is specified then the

Implementation MUST NOT accept any other

values for this field. The Implementation

SHOULD display the alternatives to the Assignee

in the order they were specified.

This property MUST NOT be specified if the

AlternativesRespositoryId property is specified.

AlternativesRepository

Id

Identifier O Identifier of a custom Reference Data repository

that specifies the valid values for this multiple

choice field as values of the contained Reference

Data Items. The values of Reference Data Items

MUST be either of type MultiChoiceAlternative

containing an optional label together with the

value or a plain value.

Specified values MUST be compatible with this

Data Field Specification.

If AlternativesRepositoryId is specified then the

Implementation MUST NOT accept any other

values for this field. The Implementation

SHOULD assist the Assignee in choosing one of

the valid values.

The Reference Data MAY also form a selection

tree structure, as described in Section 8.5.2.1.

This property MUST NOT be specified if the

Alternatives property is specified.

PrimaryAlternatives Sequence of

MultiChoiceAltern

ative

O Provides a sequence of most likely input values

for this field, in the decreasing order of

importance. This property is only meaningful for

input fields or updateable output fields.

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 100 of 138

DataFieldSpecification (extends DataElementSpecification)

Property Type M/O Description

The Implementation MAY use this property to

offer the user shortcuts to most likely input

values, while also allowing other valid values to

be entered. The user interface should generally

display the alternatives in the order they were

specified, unless further heuristics are available.

The intention is to enhance usability, especially in

compact mobile user interfaces. Any specified

alternatives that do not satisfy the validation

conditions of this field MUST be ignored.

Table 65: DataFieldSpecification (extends DataElementSpecification) 1490

8.5.2.1 Hierarchical Selection Tree 1491

A Data Field Specification MAY specify a hierarchical selection tree to assist the Assignee in selecting a 1492
correct value for the field when there is a large set of valid alternatives and they can be organized in a 1493
hierarchical tree structure. For example, replacement part codes could be organized into a selection tree 1494
where the first level would be a device category, the second level a device type, the third level a device 1495
model, and the fourth level a replacement part code. 1496

A hierarchical selection tree can be specified by storing all valid alternatives and their hierarchy into a 1497
custom Reference Data repository that is identified in property AlternativesRepositoryId of the Data Field 1498
Specification. In this case the references between Reference Data Items stored into the repository define 1499
the hierarchy as follows. 1500

Those Reference Data Items in the identified repository that are not referred to from any other items in 1501
the repository form the top level of the selection tree, i.e. the first set of selections presented to the 1502
Assignee. The Reference Data Items referred to from each top level item form the next level of the 1503
selection tree, and so forth. The Reference Data Items not referring to any other items are the leaf nodes 1504
of the selection tree. The Assignee is presented with selections starting from the top level selections and 1505
narrowing down the value set until a leaf node is selected, determining the chosen value. 1506

A Reference Data Item stored in the identified repository MAY refer to an item stored in another 1507
repository. A Reference Data Item that is part of a selection tree MUST NOT contain a cyclic reference to 1508
itself either directly or indirectly via an upper level item. A single Reference Data Item MAY be referred to 1509
from more than one other item, i.e. it may belong to several sub-trees. 1510

Each Reference Data Item being part of a selection tree MUST have a Value. If the type of Value is 1511
MultiChoiceAlternative then its Label, if any, is used as the display label of the selection and Value as the 1512
selection value. Otherwise the plain Value is used as the display label of the selection. The 1513
Implementation MUST NOT accept values other than those specified by the leaf nodes of the tree for the 1514
field. 1515

As an example (see Figure 25), let there be Reference Data Items from A to G stored into a custom 1516
Reference Data repository used as the source of alternatives for a field. Item A refers to Items B and E. 1517
Item C refers to Items B, F and G. Item F refers to E. Items A, C, and D are top level selections and Items 1518
B, D, E, G are leaf-nodes. 1519

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 101 of 138

 1520

Figure 25: Hierarchical Selection Tree - Example 1521

8.5.3 Data Attachment Specification 1522

Data Attachment Specification specifies an attachment type of a Data Element. The exact attachment 1523
type, file name and content is provided as Data Attachment Value (see Section 8.5.9 for details). 1524

DataAttachmentSpecification (extends DataElementSpecification)

Property Type M/O Description

MimeTypeBase String O Base MIME type requirement for the attachment

in accordance with [RFC2046]. For example,

“image” specifies that an attachment should be

an image. If no base type has been specified

then any attachment is valid.

The base type can also be used as a hint for the

user interface implementation on how to show or

capture the related input data. An attachment of

type “image” could be shown as an image and in

an input form it might enable photo shooting, if

such feature is available.

MaxSize Int O Maximum allowed size of the attachment data in

bytes. Default is unlimited, subject to

implementation-specific limits.

Table 66: DataAttachmentSpecification (extends DataElementSpecification) 1525

Item A

Item B

Item C

Item D

Item E Item F

Item G

Reference Data Selection Tree

Root

C

G E

D

F

A

B B

E

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 102 of 138

8.5.4 Data Matrix Specification 1526

Data Matrix Specification specifies a two-dimensional array of data. The specification includes a data type 1527
specification for each column of the array. The array may have any number of rows with each element on 1528
a row matching the type specified for the corresponding column. The labels of the column specifications 1529
are used as the column labels for user interface purposes. 1530

For example, MatrixElementSpecification with column element types of (String, Int) will specify a table 1531
with any number of lines having a string value in the first column and an integer value in the second 1532
column. 1533

The UpdateableCondition property inherited from Data Element Specification determines whether user 1534
may add new rows to the matrix. It also affects whether user may delete rows and update cell values but 1535
this can be overridden by more specific properties in the following Data Matrix related data type 1536
specifications. 1537

DataMatrixSpecification (extends DataElementSpecification)

Property Type M/O Description
Columns Sequence of

DataMatrixColum

nSpecification

M Specifies the labels and element types for the

columns of the matrix.

RowsDeletableConditi

on

Expression O Whether the user may delete rows of this matrix.

May be overridden by row-specific property

Deletable in DataMatrixRowValue. This value is

also used as a default value of Deletable

property for newly added rows.

If not specified, the default value is given by the

UpdateableCondition property of this matrix

specification.

Table 67: DataMatrixSpecification (extends DataElementSpecification) 1538

Matrix column element types are specified as a Sequence of Data Matrix Column Specifications. It 1539
extends Data Field Specification by adding matrix column specific properties. 1540

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 103 of 138

DataMatrixColumnSpecification (extends DataFieldSpecification)

Property Type M/O Description
ValueForAddedRow DataValue

O If specified then the given value is used

automatically for the corresponding column on

newly added rows. The user is not asked to enter

a value for this column while adding a new row.

The type of the specified value must match the

Type property. MLText values can be specified for

“String” type of fields. Data variables (see Section

8.5.10) MUST be Supported in String and MLText

values. MLText value is converted to String value

according to the current user locale and any data

variables are expanded upon adding the row.

To automatically use undefined value for the

column, specify a DataValue container with no

Value property.

If not specified the user is expected to enter a

value while adding a new row.

Table 68: DataMatrixColumnSpecification (extends DataFieldSpecification) 1541

8.5.5 Data Group Specification 1542

Data Group Specification specifies a group of Data Elements. It can be used for user interface purposes 1543
to group related Data Elements but it does not have any relations to the data content. 1544

DataGroupSpecification (extends DataElementSpecification)

Property Type M/O Description

Contents Sequence of

DataElement

M One or more Data Elements contained within this

group

Table 69: DataGroupSpecification (extends DataElementSpecification) 1545

8.5.6 Data Element Formatting Tags 1546

The following predefined Data Element formatting tags MAY be used in Data Element Specification (see 1547
Section 8.5.11). An Implementation MAY use this information to determine how to display the data. 1548
Implementation-specific tags MAY be defined and MUST begin with “X-”. 1549

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 104 of 138

Formatting Tag Description

Title Value of the associated Data Element is to be displayed

as the title of a Work Request (actual visual

interpretation of this tag is implementation specific).

Note that this tag may appear in several forms, typically

in Header and Overview of Work Request, in which case

it is expected that the visualization paradigm used is

consistent across all of them.

This formatting tag MUST NOT be used for updatable

elements

Subtitle Like “title”, but visually expressed as an element related

to, and further refining the content of element tagged with

“title”

This formatting tag MUST NOT be used for updatable

elements

Header The column corresponding to this Data Element

SHOULD be visualized as a header in a data matrix

Monospace The value of the element SHOULD be displayed with a

fixed width font

Preformatted The line breaks, if any, present in the value of the

element SHOULD be respected and displayed

Phonenumber The value of the element is a phone number and, if

supported by the device, MAY be used for

communication services

Weblink The value of the element is a web URL and MAY be

displayed as a hyper link

Log The associated data matrix SHOULD be displayed as a

log of events or data. E.g. usually an ordered list of rows

with one column with a key such as a time-stamp, and

associated data in other columns.

Collapsed The Data element SHOULD be displayed initially in a

collapsed view, for example displaying only the label and

making it possible for the user to expand the element to

show its content

Preview Preview of the Data Element content (for example, first

few lines of text or a thumbnail image) SHOULD be

displayed but rest of the content MAY be collapsed if the

full value would take considerable space on the display. It

MUST be possible for the user to expand a collapsed

value as needed

Slider The value of this element MAY be displayed and adjusted

along a finite range along an axis, using a user-interface

component such as a slider

Icon The value of this element is an Attachment whose

content is a binary representation of a graphic icon, and

the element MAY be displayed by displaying that icon

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 105 of 138

Location The value of the element specifies a geographical

location (see Section 7.5.2) and MAY be associated with

navigation and mapping

Table 70: Data Element Formatting Tags 1550

8.5.7 Data Element Source Tags 1551

The following predefined Data Element source tags can be used in Data Elements Specification (see 1552
Section 8.5.1). An Implementation MAY use this information to determine how to obtain the data. 1553
Implementation-specific tags MAY be defined and MUST begin with “X-”. 1554

Source Tag Description

Camera Element data SHOULD be obtained using on-device

camera and MUST be stored as an Attachment

Barcode Element Attachment data SHOULD be obtained using on-

device or connected bar code reader

GPS Element data SHOULD be obtained from the on-device

GPS

File Element data SHOULD be obtained from a user selected

file (default source) and therefore the element MUST be

an Attachment

Signature Element data SHOULD be obtained using digital

signature capture and MUST be stored as an Attachment.

Table 71: Data Element Source Tags 1555

8.5.8 Data Binding 1556

A Data Binding provides a value for a Data Element (see Section 8.5.1) or a Data Variable (see Section 1557
8.5.10). 1558

The WorkRequestData property of a Work Request contains a Sequence of Data Bindings providing 1559
initial values for the Data Elements specified in the associated Work Type Specification. Similarly, the 1560
RequestData property of a Field Initiated Request and the ResponseData property of a Field Initiated 1561
Request Response contain a Sequence of Data Bindings providing values for the Data Elements 1562
specified in the RequestForm and ResponseForm properties of the associated Field Initiated Request 1563
Specification, respectively. 1564

A Work Request Status Record and the associated change history entries, on the other hand, use Data 1565
Bindings to record user provided input and user updated values. 1566

Data Bindings in the WorkRequestData property of a Work Request are also used to provide values for 1567
Data Variables (see Section 8.5.9). The same Data Binding can provide a value both for a Data Element 1568
and a Data Variable. 1569

A Sequence of Data Bindings sent by the Manager MAY contain one or more Data Bindings with the 1570
same identifier as long as they have different values of the Locale property. In this case the receiving 1571
Implementation SHOULD use the Value of the Data Binding having the Locale value that is a best match 1572
for the locale preference of the associated Assignee. 1573

DataBinding

Property Type M/O Description

Id Identifier M An identifier of a Data Element specified in the

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 106 of 138

DataBinding

Property Type M/O Description

associated Work Type Specification or Field-

Initiated Request Specification or an identifier of

a Data Variable to be set to the specified Value

Value DataValue O Value to be set to the identified Data Element or

Data Variable. If value is to be set to a Data

Element then the type of Value MUST be

compatible with the Data Element Specification. If

the type of Value is not compatible then the

Implementation MUST return an error code

E3015. See Section 8.5.9 for details

An alternative way of specifying a value is to

specify a Value Reference, see below. Either

Value or ValueReference MUST be specified but

not both.

ValueReference Reference O A Value Reference MAY be specified instead of a

Value to refer to a value stored in a Reference

Data repository.

If Value Reference is specified then the

Implementation MUST use the value of the

Reference Data Item referred to by the Value

Reference as if it was included in the DataValue

container of the Value property. If no such

Reference Data Item exists then the

Implementation MUST behave as if no Value was

specified in the DataValue container.

The Implementation MUST NOT use Value

Reference when communicating user provided

input to the Manager as part of Work Request

Status Record or Field Initiated Request, even if

the user provided input is based on alternatives

specified in a custom Reference Data repository.

Either Value or ValueReference MUST be

specified but not both.

Locale LocaleSpecifier

O Specifies the locale for this value.

Table 72: DataBinding 1574

8.5.9 Data Values 1575

Data Value is a container for a Data Element value. The type of value must match the type of the Data 1576
Element. 1577

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 107 of 138

DataValue

Property Type M/O Description

(name of contained

type)

Any primitive type

or MLText or

DataAttachmentVal

ue or

DataMatrixValue or

Location

O A single value of any primitive type or MLText or

DataAttachmentValue or DataMatrixValue

Not specifying a value means that no value is

bound to the associated element (i.e. it's value is

undefined).

Table 73: DataValue 1578

Data Attachment Value provides a value for Data Attachment Specification. 1579

DataAttachmentValue

Property Type M/O Description

MimeType String O MIME type of the attachment, for example

“image/jpeg”. The type MUST be compatible with

the base type specified in the Data Attachment

Specification, if any.

The correct MIME type SHOULD be specified if it

is known. If type is not specified or recognized

then the Implementation typically handles the

attachment data as opaque binary data.

FileName String O File name for the attachment. A name SHOULD

be specified if the attachment is based on a

physical file.

Data Binary M Binary data of the attachment.

Table 74: DataAttachmentValue 1580

Data Matrix Value provides a value for a Data Matrix Specification. A sequence of Data Matrix Row Value 1581
is included, corresponding to individual rows of the matrix. Each Data Matrix Row Value contains values 1582
for columns of the row, corresponding to the Data Matrix Column Specifications in the Columns property 1583
of Data Matrix Specification. 1584

DataMatrixValue

Property Type M/O Description
RowValues Sequence of

DataMatrixRowValu

e

M Data rows for this matrix

Table 75: DataMatrixValue 1585

DataMatrixRowValue

Property Type M/O Description

Id Identifier O Optional identifier uniquely identifying this row

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 108 of 138

DataMatrixRowValue

Property Type M/O Description

within the matrix. Not used for display purposes.

The Implementation MUST return any identifier
originally supplied by the Manager.

For a row added via the user interface the

Implementation MUST generate an identifier

starting with prefix “UI-” that uniquely identifies

the row among any other rows added to the

same matrix via the user interface.

ColumnValues Sequence of

DataValue

M Provides data for one row of the DataMatrix.

Contains one value for each column in the order

the columns were defined in the associated Data

Matrix specification. The types of values MUST

match the corresponding column specifications.

Deletable Boolean O Whether this row may be deleted by the user.

The default value is given by the

RowsDeletableCondition property of the

associated DataMatrixSpecification.

UpdateableCells Sequence of

Boolean

O A sequence of Boolean values, corresponding to

the data cells of this row. The sequence MUST

have one value for each matrix column. The

values indicate whether the value of the

corresponding cell may be updated by the user.

The default values are given by the

UpdateableCondition property of the

corresponding column specification, or if not

specified, the Updateable property of associated

DataMatrixSpecification.

Table 76: DataMatrixRowValue 1586

8.5.10 Data Variables 1587

Data Variables provide a mechanism for substituting variable values into textual data content. A Data 1588
Variable reference occurring in a String type of value is substituted with the value of the Data Variable 1589
whenever the String value is evaluated and used. 1590

The Manager MAY refer to Data Variables from within String or MLText type of Values of Data Bindings 1591
included in the WorkRequestData property of a Work Request. Additionally, the Manager MAY refer to 1592
Data Variables from within String or MLText type of properties of data types only if the description of the 1593
property explicitly allows the use of Data Variables. The Manager MUST NOT refer to Data Variables 1594
from other Strings. 1595

The Implementation MUST support Data Variables. 1596

A Data Variable reference MUST use the following format (without the enclosing quotes): 1597

 “${variable.name}” or 1598

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 109 of 138

 “${variable.name/member.name}” 1599

Where, “variable.name” is the identifier of the referred Data Variable. The reference in whole is replaced 1600
with the textual representation of the Data Variable value. 1601

Members of composite type variables, such as rows and cells of Data Matrix, can be referred to using “/” 1602
(slash sign) as separator between variable and member identifiers. For example, 1603
“variable.name/row.name” refers to row identified as “row.name”, if such row exists. Correspondingly, 1604
“variable.name/row.name/column.name” refers to the cell in the column “column.name” on that row. 1605

Values of Data Variables are specified using Data Bindings (see Section 8.5.8). It is an error if no value is 1606
bound to a Data Variable referenced from within a String to be evaluated. 1607

System-defined variables: 1608

In addition to Data Variables bound by Data Bindings, the following system variables are always available 1609
and automatically bound to valid, current value by the Implementation: 1610

Variable Description Notes

System.CurrentTime The current date and time Bound to a value of type

DateTime

Table 77: System-defined Variables 1611

8.6 Expressions 1612

Expressions make it possible to declare flexible constructs that can be dynamically evaluated to a value 1613
based on Data Element or Data Variable values, current State of an Activity contained in the associated 1614
Work Type Specification, reference data, constants or other data that can be referenced. They are used 1615
for specifying data validation, visibility and updateability conditions, and enabling conditions for Activities, 1616
Actions and Field-Initiated Requests associated with a Step in Work Requests. An Expression can be 1617
evaluated to a value but MUST NOT have any side effects. The ability to describe expressions as 1618
structured data eliminates the need to implement lexers and parsers to interpret and evaluate 1619
expressions. 1620

Expression is an abstract base class for all expressions. 1621

Expression (abstract base class)

Property Type M/O Description

 No common properties

Table 78: Expression 1622

Constant Expression evaluates into a constant value. If Value property of the specified DataValue 1623
container is omitted then the expression evaluates into undefined value. 1624

8.6.1 Constants and Data Access 1625

ConstantExpression (extends Expression)

Property Type M/O Description

Value DataValue M The constant value this expression evaluates

into

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 110 of 138

Table 79: ConstantExpression 1626

VariableExpression evaluates into the value bound to the identified Data Element or Data Variable. If no 1627
such Data Element or Data Variable exists, the expression evaluates into undefined value. 1628

 1629

VariableExpression (extends Expression)

Property Type M/O Description

VariableId String M Identifier of a Data Element or a Data Variable
in the associated Work Request, Field-Initiated
Request or Field-Initiated Request Response.
MAY also refer to a member value of a
composite type using the same notation as
used in Data Variable references.

See section 8.5.10 for notation used to

address members of composite data types.

Table 80: VariableExpression 1630

Unary Operator Expression applies an unary operator on the evaluated value of the parameter 1631
expression. The resulting value depends on the operator and its semantics. 1632

8.6.2 Unary Operators 1633

UnaryOperatorExpression (extends Expression)

Property Type M/O Description

Operator Identifier M Identifier of the operator to be applied to

parameters. Table 82 specifies all valid unary

operators. It is an error to specify any other

value.

Param Expression M Expression that evaluates to the parameter

value

Table 81: UnaryOperatorExpression 1634

The following table lists all valid unary operators and their semantics for Unary Operator Expression. 1635

 1636

Operator Identifier Semantics

Defined Evaluates into Boolean. True when the parameter expression
evaluates into some defined value and False when it evaluates into
undefined value.

Negation Evaluates into logical negation of the parameter value. It is an error
if the parameter expression does not evaluate into Boolean.

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 111 of 138

Length Evaluates into Int. For String parameter returns the number of
characters in the string. For DataMatrixValue parameter returns the
number of rows in the matrix.

It is an error if the type of the parameter value is not String or
DataMatrixValue.

Table 82: Unary Operators 1637

8.6.3 Binary Operators 1638

Binary Operator Expression applies a binary operator on the evaluated values of left-hand side and right-1639
hand side parameter expressions. The resulting value depends on the operator and its semantics. 1640

 1641

BinaryOperatorExpression (extends Expression)

Property Type M/O Description

Operator Identifier M Identifier of the operator to be applied to

parameters. Table 84 specifies all valid binary

operators. It is an error to specify any other

value.

LeftParam Expression M Left-hand side parameter expression

RightParam Expression M Right-hand side parameter expression

Table 83: BinaryOperatorExpression 1642

The following table lists all valid binary operators and their semantics for Binary Operator Expression. 1643

 1644

Operator Identifier Semantics
Less Evaluates into Boolean.

For two numeric parameters both of the same numeric type Int, Double or
Decimal returns whether the left-hand side parameter value is numerically
strictly less than the right-hand side parameter value.

For two parameters both of the same type DateTime, Date or Time returns
whether the left-hand side timestamp comes strictly before the right-hand
side timestamp.

For two parameters of type Duration returns whether the left-hand side
duration is strictly less than the right-hand side duration.

It is an error if parameters are of some other type or undefined.

LessOrEqual Evaluates into Boolean.

For two numeric parameters both of the same numeric type Int, Double or
Decimal returns whether the left-hand side parameter value is numerically

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 112 of 138

less than or equal to the right-hand side parameter value.

For two parameters both of the same type DateTime, Date or Time returns
whether the left-hand side timestamp comes before or is equal to the right-
hand side timestamp.

For two parameters of type Duration returns whether the left-hand side
duration is less than or equal to the right-hand side duration.

It is an error if parameters are of some other type or undefined.

Equal Evaluates into Boolean.

For two numeric parameters both of the same numeric type Int, Double or
Decimal returns whether the parameter values are numerically equal.

For two parameters of type String returns whether the parameter values are
identical.

For two parameters both of the same type DateTime, Date or Time returns
whether the timestamps are equal.

For two parameters of type Duration returns whether the durations are
equal.

It is an error if parameters are of some other type or undefined.

GreaterOrEqual Identical to “LessOrEqual” but with the order of parameters reversed.

Greater Identical to “Less” but with the order of parameters reversed.

MatchesPattern Evaluates into Boolean. Type of both parameter values must be String.
Returns True if the left-hand side String completely matches the right-hand
side pattern String, and False otherwise.

The pattern is a simplified regular expression using the following
constructs.

 x – matches character x

 [abc] – matches one of the characters a, b or c

 [a-cf-z] – matches one of the characters a-c or f-z

 . - matches any one character

 X* - matches expression X zero or more times

 X? - matches expression X zero or one time

 (,), [,], *, ?, {, }, \, ^, $ - reserved characters for current or future
FFMII use

 \ - quote next character and treat it as literal

Addition Evaluates into an arithmetic sum of the parameters (addition operation).

For two parameters both of the same type Integer, Double, Decimal or
Duration evaluates into a sum of the same type.

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 113 of 138

For left-hand side parameter being a timestamp of type DateTime, Date or
Time and right-hand side parameter of type Duration evaluates into a
timestamp value having the duration added. Type of result value is the
same as that of the left-hand side parameter.

It is an error if parameters are of some other type or undefined.

Subtraction Evaluates into an arithmetic difference of the parameters (subtraction
operation).

For two parameters both of the same type Integer, Double, Decimal or
Duration evaluates into a difference of the same type.

For two parameters both of the same type DateTime, Date or Time
evaluates into a difference of type Duration.

For left-hand side parameter being a timestamp of type DateTime, Date or
Time and right-hand side parameter of type Duration evaluates into a
timestamp value having the duration subtracted. Type of result value is the
same as that of the left-hand side parameter.

It is an error if parameters are of some other type or undefined.

Multiplication Evaluates into an arithmetic product of the parameters (multiplication
operation).

For two parameters both of the same type Integer, Double or Decimal
evaluates into a product of the same type.

It is an error if parameters are of some other type or undefined.

Division Evaluates into an arithmetic quotient of the parameters (division operation).

For two parameters both of the same type Integer, Double or Decimal
evaluates into a quotient of the same type.

It is an error if parameters are of some other type or undefined or if the
right-hand side parameter is zero.

AerialDistanceBetwe
en

Evaluates to a Double value specifying the aerial distance between the
specified Locations in meters, using spherical geometry.

Both parameters MUST be of type Location.

Table 84: Binary Operators 1645

8.6.4 Conjunction and Disjunction 1646

Conjunction is a Boolean expression that evaluates to True if and only if all of its parameter expressions 1647
evaluate to True. Otherwise it evaluates to False. Parameters of Conjunction are evaluated in the order 1648
they are listed and only up to the first parameter that evaluates to False. It is an error if some parameter 1649
evaluates to a value other than Boolean. 1650

 1651

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 114 of 138

Conjunction (extends Expression)

Property Type M/O Description

Params Sequence of

Expression

M One or more expressions evaluating to

Boolean values.

Table 85: Conjunction 1652

Disjunction is a Boolean expression that evaluates to True if an only if at least one of its parameter 1653
expressions evaluate to True. Otherwise it evaluates to False. Parameters of Disjunction are evaluated in 1654
the order they are listed and only up to the first parameter that evaluates to True. It is an error if some 1655
parameter evaluates to a value other than Boolean. 1656

 1657

Disjunction (extends Expression)

Property Type M/O Description

Params Sequence of

Expression

M One or more expressions evaluating to

Boolean values.

Table 86: Disjunction 1658

8.6.5 Work Request State Access 1659

ActivityStateExpression is a Boolean expression which evaluates to True if an only if the specified Activity 1660
is in the specified State. It is used to specify dependencies on an Activity being in a specific State (or set 1661
of States by combining several expressions using Disjunction). 1662

ActivityStateExpression (extends Expression)

Property Type M/O Description

ActivityId Identifier M Identifier of the Activity being examined

StateId Identifier M Identifier of the State within the Activity.

Table 87: Activity State Expression 1663

8.7 Error Codes 1664

FFMII interface specification defines the following error codes for inclusion in responses generated by 1665
Message Handling subsystem: 1666

Code ID Code Title Meaning

Common Errors:

E0000 OK No Error

E0001 PARTIAL_ERROR Some or all requests in batch operation have

failed (detailed error codes are included with

responses per each failing element)

E0002 INTERNAL_ERROR Uncategorized internal error

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 115 of 138

Code ID Code Title Meaning

E1001 INVALID_OPERATION Operation to be invoked not recognized by the

Implementation or not available to given

Manager

E1002 UNSUPPORTED_OPERATION Operation is not supported by recipient

E1003 INVALID_DATA Data on input is not valid or incomplete

E1004 AUTHENTICATION_FAILED Authentication failed or authentication required /

missing authentication data

Reference Data Management:

E2001 INVALID_REPOSITORY Unrecognized repository or invalid repository

name

E2002 INVALID_OPERATION The operation requested cannot be performed

within the context of given repository or item

E2003 REPOSITORY_FULL Unable to add more items to the repository

E2004 REPOSITORY_TABLE_FULL Unable to add more repositories

E2005 REPOSITORY_EXISTS Attempt to create repository that already exists

in the system

E2006 REPOSITORY_NOT_EMPTY Unable to remove requested repository due to

not being empty

E2010 ACCESS_DENIED Repository or item cannot be accessed through

the Interface (even if reference to it may exist

and can be used in other places)

E2011 REPOSITORY_READ_ONLY Trying to update WriteProtected repository

E2012 INVALID_REFERENCE Reference is not valid

Work Request Management:

E3001 UNKNOWN_WTS Work Request refers to an unknown Work Type

Specification

E3002 UNKNOWN_WR Operation arguments refer to an unknown Work

Request

E3003 UNKNOWN_ACTIVITY Operation arguments refer to an unknown

Activity

E3004 UNKNOWN_STATE_MODEL Activity Specification refers to an unknown State

Model

E3005 UNKNOWN_ACTION Work Type Specification or operation arguments

refer to an unknown Action within the associated

Work Type Specification

E3006 UNKNOWN STATE Requests refer to an unknown State

E3007 UNKNOWN_STEP Action Specification refers to an unknown Step

within the associated Work Type Specification

E3008 UNKNOWN_DATA_ELEMENT Work Type Specification or Work Request refers

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 116 of 138

Code ID Code Title Meaning

to an unknown Data Element within the

associated Work Type Specification

E3009 DUPLICATE_ACTIVITY Work Type Specification contains more than one

Activity Specification with the same identifier

E3010 DUPLICATE_STATE_MODEL Work Type Specification contains more than one

State Model Specification with the same

identifier

E3011 DUPLICATE_ACTION Work Type Specification contains more than one

Action Specification with the same identifier

E3012 DUPLICATE_STATE Work Type Specification contains more than one

State Specification with the same identifier

E3013 DUPLICATE_STEP Work Type Specification contains more than one

Step Specification with the same identifier

E3014 DUPLICATE_DATA_ELEMENT Work Type Specification contains more than one

Data Element Specification with the same

identifier

E3015 ILLEGAL_DATA_TYPE Work Request data does not match the data

types of the Data Elements specified by the

associated Work Type Specification

E3016 VALIDATION_ERROR Work Request data does not match the

validation rules of the Data Elements specified

by the associated Work Type Specification

E3017 ILLEGAL_WTS_UPDATE Work Request update refers to or contains a

Work Type Specification that is not identical to

the WTS originally associated with the WR

E3018 WR_EXISTS Work Request already exists while it was

specified to WR_PUT that a new non-existing

Work Request was being created.

E3019 WR_UPDATE_COLLISION Base revision number was specified for a Work

Request update but it did not match the current

revision number of the associated Work

Request Status Record. That is, the Work

Request has been updated after the client has

last read the status record.

E3020 UPDATEABLE_ELEMENTS_IN_

HEADER

Elements declared as updateable have been

detected in Work Request Header form

E3021 ILLEGAL_ACTION The Action invoked using

WR_INVOKE_ACTION is not available in the

current Step of the identified Activity or is not

currently enabled

Field-Initiated Requests Management:

E4001 UNKNOWN_FIR_ID Specified Field-Initiated Request identifier does

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 117 of 138

Code ID Code Title Meaning

not refer to a currently active Field-Initiated

Request

Table 88: Error Codes 1667

8.8 Common Request and Response Format 1668

This section describes the properties common to all request and response messages. 1669

8.8.1 Requests 1670

When invoking operations defined by the Interface, the request arguments are operation-specific. Thus, 1671
there are no common request arguments in the abstract BaseRequest class described in Table 89. 1672
Derived operation-specific request types MAY specify additional operation-specific request data. 1673

BaseRequest (abstract base class)

Property Type M/O Description

 No common request properties

Table 89: BaseRequest 1674

8.8.2 Responses 1675

Every operation defined by the Interface returns an error code and an optional cause description in 1676
addition to operation-specific response data. The abstract BaseResponse class described in Table 90 1677
defines the response data common to all operations. Derived operation-specific response types MAY 1678
specify additional response data. 1679

BaseResponse (abstract base class)

Property Type M/O Description

ErrorCode ErrorCode M Operation result as an error code.

Common error codes are specified in Section 8.7.

Cause String O Optional description of the error or supplementary
information for an E0000 (OK) response

Table 90: BaseResponse 1680

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 118 of 138

8.8.3 Batch Operations 1681

A batch operation is a single type of an operation performed on one or more identified items within a 1682
single invocation. A batch operation MAY return a distinct error code for each processed item. The 1683
semantics for such operations is as if the operation was performed on each item individually. Item-specific 1684
failures MUST NOT stop the operation from being attempted on other specified items. 1685

The following operations are batch operations. 1686

 WR_PUT 1687

 WR_GET_STATUS 1688

 WR_INVOKE_ACTION 1689

 WR_NOTIFY_STATUS 1690

 RD_INIT 1691

 RD_PUT 1692

 RD_GET 1693

 FIR_GET_RESPONSE 1694

 FIR_NOTIFY_RESPONSE 1695

There are also other operations updating or returning several items within a single invocation but this 1696
section does not apply to them. 1697

For batch operations, the value of the ErrorCode property in the BaseResponse class MUST adhere to 1698
the following rules. 1699

 E0000 (OK) MUST be returned if and only if all specified items were processed successfully. 1700

 E0001 (PARTIAL_ERROR) MUST be returned if some or all per-item operations failed due to 1701
item-specific error. 1702

 Error code other than E0000 and E0001 (see Section 8.7 for defined error codes) MUST be 1703
returned if the batch operation fails on other than item-specific error. 1704

Additionally, operation-specific response classes of batch operations contain an optional “Results” 1705
property, as shown in Table 91. 1706

BatchOperationResponse (template, extends BaseResponse)

Property Type M/O Description

Results Sequence of operation-
specific result classes
extending
BatchItemResult

O Per-item results of this batch operation.
The structure of results depends on
operation. See the result data types defined
for operations domains.

Table 91: BatchOperationResponse 1707

If a BatchOperationResponse contains an error code E0000 or E0001 in ErrorCode property of the 1708
BaseResponse class then its Results property MUST contain an operation-specific result, derived from 1709
the abstract BatchItemResult described in Table 92, for each item specified in the corresponding batch 1710

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 119 of 138

operation request. If an error code other than E0000 or E0001 is returned in ErrorCode property of the 1711
BaseResponse class then the Results property SHOULD NOT be included in the response. 1712

BatchItemResult (abstract base class)

Property Type M/O Description

Id Identifier M Identifier of the item being accessed

ErrorCode ErrorCode M Result of per-item operation. Error codes
are specified in Section 8.7.

Cause String O Optional description of the error or
supplementary information for an E0000
(OK) response

Table 92: BatchItemResult 1713

8.9 “Users” Repository 1714

8.9.1 Introduction 1715

Repository with identifier “Users” contains configuration data necessary to authenticate, authorize and 1716

communicate with individual Assignees and administrative users. Type of Values of Reference Data Items 1717
stored in the repository MUST be UserProfile. Each profile MUST have a unique identifier, which can 1718
consequently be included in Work Requests to indicate work ownership. UserProfiles also contain 1719
information required for authentication and authorization purposes. Other data suitable for this registry is 1720
description of the type of terminals the Assignee can use, and general or device-specific presets and user 1721
preferences. 1722

8.9.2 Repository Descriptor 1723

User repository MUST use the following standard Repository Descriptor: 1724

Id “Users”

Description “Catalogue of user profiles”

Readable <implementation specific>

Writable <implementation specific>

CustomProperties <implementation specific>

Table 93: Users Repository 1725

8.9.3 Visibility and access rules 1726

The Implementation MUST support “Users” repository internally. 1727

The Implementation MAY support RDM for publishing user profiles. Readable flag indicates whether user 1728
profiles are readable over RDM. Writable flag indicates whether user profiles are updateable over RDM. If 1729
user profiles are not published over RDM then it is assumed that user information is synchronized in an 1730
implementation-specific manner. 1731

An Implementation MAY restrict access to user profiles repository on per-Manager basis. 1732

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 120 of 138

8.9.4 Data types 1733

This section describes data types defined in the context of user profiles repository. 1734

UserProfile

Property Type M/O Description
PersonalInfo PersonalInfoRec M Basic identification of the user

UserRoles Sequence of
Identifier

M Roles granted to the user. The roles define the
privileges the user has as well as determine
the views and functions that are relevant for
the user. The order in which the roles have
been listed is not significant.

See section 8.9.5 for available roles

DeviceProfiles Sequence of
DeviceProfile

M Describes what types of devices (and client)
technologies can be used for communication
with the Assignee

Credentials Sequence of
CredentialSpec

M All credentials (or authentication services
references) that can be used for authenticating
the user

NOTE: Some credential types may be
applicable for certain types of clients only (e.g.
WebUI, mobile client, etc…)

Preferences UsagePreferences O General usage preferences. These may be
overridden by device specific usage
preferences in Device Profiles. If not specified,
auto-detected usage preferences or
implementation-specific defaults are used.

(see note below for additional details)

EnabledSince DateTime O The user is enabled and active after this date
and time. Before that the user record should be
treated as if it did not exist

If not specified, the user is active immediately

EnabledUntil DateTime O The user is enabled and active until this date
and time. After that the user record should be
treated as expired

If not specified, the user is valid indefinitely
(has no expiration point set)

CustomProperties Dictionary O Implementation-specific custom properties

Table 94: UserProfile 1735

Note: Usage Preferences describe general or device specific user preferences for the 1736
Implementation. The Implementation SHOULD take into account usage preferences specified 1737
in the user profile, and customize the usage experience accordingly. 1738

If a specified preference setting is not supported then the Implementation MUST fail gracefully 1739
by defaulting to a known working setting. 1740

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 121 of 138

If some of the preferences have not been specified then the Implementation SHOULD use the 1741
information provided by the user client to detect user preferences, if possible. 1742

PersonalInfoRec

Property Type M/O Description

FirstName String M First name of the user

MiddleName String O Middle name(s) or middle initial(s) of the user

LastName String M Last name of the user

ShortName String O If provided, used in place of the full name

Table 95: PersonalInfoRec 1743

DeviceProfile

Property Type M/O Description

Id Identifier M Unique identifier for this device profile

Enabled Boolean O Whether this device profile is enabled.

If not specified, default is True.

DeviceTypeId Identifier O Implementation-specific device type identifier

Preferences UsagePreferences O Device specific usage preferences that
override general Preferences specified in the
User Profile by individual preference Property.
E.g. if PreferredLocales and Theme are
specified in the User Profile, and the Device
Specific Preferences only specify Theme,
PreferredLocales in the User Profile locale will
be applied..

If not specified, any UsagePreferences are
used instead.

In the absence of user-level and general
preferences, any automatically determined
preferences, or implementation-specific
defaults are used

CustomProperties Dictionary O Implementation-specific custom properties

Table 96: DeviceProfile 1744

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 122 of 138

CredentialSpec (abstract base class)

Property Type M/O Description
Id Identifier M Unique identifier within the context of the

UserProfile

Enabled Boolean M Administratively enabled for use

ValidUntil DateTime O The date and time after which this credential is
not valid (if not specified, no time limit exists for
the validity of this credential)

Locked Boolean M If set to “True”, the credential is locked due to
breach of policies (e.g. number of failed login
attempts exceeded)

Defaults to “False” when a new entry is
created, or when no policy framework is
provided by the Implementation

Table 97: CredentialSpec 1745

PasswordCredentialSpec (extends CredentialSpec)

Property Type M/O Description

LoginName String M User Login Name

Password String O User Password

An Implementation SHOULD NOT expose
existing password information, unless
otherwise configured using an Implementation
specific mechanism. If a password is not to be
exposed or if the password to be set is
disabled, this property MUST be omitted.

PasswordProtectionS
cheme

Identifier O Indicates whether the password is delivered by
the Manager as plain text (default) or secure
hash of particular type

Predefined values are:
 - “Plain” (default)
 - “MD5”
 - “SHA”

Implementation-specific identifiers MAY be
used and they MUST start with prefix “X-“

Table 98: PasswordCredentialSpec 1746

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 123 of 138

UsagePreferences

Property Type M/O Description
PreferredLocales Sequence of

LocaleSpecifier
O Sequence of the preferred locales to be used

for the user interface and the content, in
descending order of preference.

Theme Identifier O Chooses one of the different visual themes that
are made available by the Implementation.
Themes can be used either to create a familiar
user experience (such as a company-specific
theme) or to choose a special visual
experience tailored for a group of users (such
as a high contrast theme). Available themes
are implementation-specific

Table 99: UsagePreferences 1747

8.9.5 User Roles 1748

The following generic user roles are predefined. The Implementation MAY support the predefined roles. 1749
Implementation-specific roles MAY be introduced and they MUST have identifiers starting with prefix “X-“. 1750

 1751

Role Description Notes

Assignee Assignee can receive Work Requests and process them
according to the Work Type Specification, and initiate Field-
Initiated Requests.

TeamLeader TeamLeader may have additional privileges for accessing
Work Requests assigned to other Assignees

WorkPlanner WorkPlanner is responsible for planning and scheduling
execution of work

UserAdmin UserAdmin can administer and maintain the user registry, if
Implementation provides a local user interface for this

SystemAdmin SystemAdmin can administer and maintain system
parameters and Reference Data repositories, if
Implementation provides a local user interface for this

Table 100: User Roles 1752

8.9.6 Repository-specific semantics and restrictions 1753

Only UserProfile type of values can be stored in this repository. 1754

The semantics of references within this repository are out of scope of this specification. 1755

8.10 “WorkTypes” repository 1756

8.10.1 Introduction 1757

A Reference Data repository with identifier ”WorkTypes”, also known as the Work Type Repository, 1758
contains information about registered Work Types that may be shared among multiple Work Requests. 1759
Type of Values of Reference Data Items stored to the repository MUST be WorkTypeSpecification. A Work 1760

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 124 of 138

Request MAY contain a reference to a Work Type specified in this repository. 1761

8.10.2 Repository descriptor 1762

The Work Type Repository MUST use the following standard Repository Descriptor: 1763

Id “WorkTypes”

Description “Catalogue of work types”

Readable <implementation specific>

Writable <implementation specific>

CustomProperties <implementation specific>

Table 101: WorkTypes Repository 1764

8.10.3 Visibility and access rules 1765

The Implementation MAY support the Work Type Repository. 1766

Work Types stored into the Work Type Repository by a specific Manager MUST be available to that 1767
Manager. However, the Implementation SHOULD, by default, hide these entries from other Managers 1768
and allow different Managers to use overlapping Work Type identifiers. In this case any Work Type 1769
reference MUST be interpreted in the context of the requesting Manager. 1770

The Implementation MAY also support alternative configurable implementation-specific visibility policies. 1771
A Manager using the Work Type Repository for Manager-specific Work Types MUST be able to generate 1772
identifiers containing an element that uniquely identifies the Manager. For example, to support a 1773
configurable prefix for the identifiers. 1774

The Implementation MAY impose Manager-specific access restrictions for the Work Type Repository. 1775
Readable flag indicates whether the requesting Manager can read Work Type Repository entries over 1776
RDM. Writable flag indicates whether the requesting Manager is allowed to update Work Type Repository 1777
entries over RDM. 1778

The Implementation MAY also provide implementation-specific means for statically initializing and 1779
modifying the contents of the Work Type Repository in addition to RDM based interface. 1780

8.10.4 Data types 1781

See definition of WorkTypeSpecification in Section 8.2.1.1. 1782

8.10.5 Repository-specific semantics and restrictions 1783

Only values of type WorkTypeSpecification can be stored in this repository. 1784

The semantics of references within this repository are out of scope of this specification. 1785

8.11 “FieldInitiatedRequests” Repository 1786

8.11.1 Introduction 1787

A Reference Data repository with identifier ”FieldInitiatedRequests”, also known as the Field-Initiated 1788
Requests Repository, contains specifications of registered activities that the Implementation may request 1789
a Manager to perform if the Manager supports Field-Initiated Requests. Type of Values of Reference Data 1790
Items stored in this repository MUST be Field-Initiated Request Specification. A Work Request MAY 1791
contain a reference to a Field-Initiated Request Specification specified in this repository. 1792

The Implementation MAY support Field-Initiated Requests. If so, it MUST support a Field-Initiated 1793

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 125 of 138

Requests repository. 1794

8.11.2 Repository Descriptor 1795

The Field-Initiated Requests Repository MUST use the following standard Repository Descriptor: 1796

Id “FieldInitiatedRequests”

Description “Catalogue of Field-Initiated Requests”

Readable <implementation specific>

Writable <implementation specific>

CustomProperties <implementation specific>

Table 102: Field-Initiated Requests Repository 1797

8.11.3 Visibility and access rules 1798

The Implementation MAY support the Field-Initiated Requests Repository. 1799

Field-Initiated Request Specifications stored into the Field-Initiated Requests Repository by a specific 1800
Manager MUST be available to that Manager. However, the Implementation SHOULD, by default, hide 1801
these entries from other Managers and allow different Managers to use overlapping Field-Initiated 1802
Request identifiers. In this case any reference to Field-Initiated Request MUST be interpreted in the 1803
context of the requesting Manager. 1804

The Implementation MAY also support alternative configurable implementation-specific visibility policies. 1805
A Manager using the Field-Initiated Requests Repository for Manager-specific Field-Initiated Request 1806
entries MUST be able to generate identifiers containing an element that uniquely identifies the Manager. 1807
For example, to support a configurable prefix for the identifiers. 1808

The Implementation MAY impose Manager-specific access restrictions for the Field-Initiated Requests 1809
Repository. Readable flag indicates whether the requesting Manager can read Field-Initiated Request 1810
entries over RDM. Writable flag indicates whether the requesting Manager is allowed to update Field-1811
Initiated Request entries over RDM. 1812

The Implementation MAY also provide implementation-specific means for statically initializing the Field-1813
Initiated Requests in addition to RDM based interface. 1814

8.11.4 Data types 1815

See definition of FieldInitiatedRequestSpecification data type in Section 8.4.1.1. 1816

8.11.5 Repository-specific semantics and restrictions 1817

Only values of type FieldInitiatedRequestSpecification can be stored in this repository. 1818

The semantics of references within this repository are out of scope of this specification. 1819

An Implementation MUST NOT send a Field-Initiated Request to a Manager that does not support that 1820
type of Field-Initiated Request, i.e. based on Field-Initiated Request Specification not registered by the 1821
Manager. 1822

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 126 of 138

9 FFMII Protocol Bindings 1823

Protocol Binding and Payload Encapsulation layer performs conversion of command sequences, input 1824
parameters, error codes and return values between their wire line and software-level representations. 1825

This version of the Interface specification supports a single protocol binding, SOAP, as listed in Table 1826
103. 1827

Protocol Requirement Normative Reference

SOAP (Web Services) mandatory [SOAP]

Table 103: Protocol Binding and Payload Encapsulation 1828

9.1 SOAP over HTTP (Web Service) 1829

Table 104 summarizes transport protocols recognized by FFMII specification and their required support 1830
level: 1831

Protocol Requirement Normative Reference

HTTPS mandatory [RFC2818]

HTTP optional [RFC2616]

Table 104: Transport Protocol 1832

The method of discovering end-points is out of the scope of the FFMII specification. 1833

Other transport protocols MAY be supported. 1834

9.1.1 XML namespace 1835

All the XML types and services use fully-qualified XML names. The following XML namespaces are used 1836
in the SOAP binding. 1837

Namespace Description

http://docs.oasis-

open.org/ffm/ns/v1.0/ws/implementation

FFMII web service and port declarations for the

Implementation

http://docs.oasis-

open.org/ffm/ns/v1.0/ws/manager

FFMII web service and port declarations for the

Manager

http://docs.oasis-

open.org/ffm/ns/v1.0/common/api

Operation invocation related XML types shared by

different parts of the Interface. Includes abstract

base types for request objects, response objects

and client credentials.

http://docs.oasis-

open.org/ffm/ns/v1.0/common/model

Domain model XML types shared by different parts

of the Interface. Includes core data types such as

Dictionary and MultiLanguageString.

http://docs.oasis-

open.org/ffm/ns/v1.0/system/info/api

Operation invocation related XML and elements

types for system information operations. Includes

related request and response objects.

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 127 of 138

Namespace Description

http://docs.oasis-

open.org/ffm/ns/v1.0/system/info/model

Domain model XML types for system information

operations. Includes IdentityDescriptor.

http://docs.oasis-

open.org/ffm/ns/v1.0/system/capability/api

Operation invocation related XML types and

elements for capability management. Includes

related request and response objects.

http://docs.oasis-

open.org/ffm/ns/v1.0/system/capability/mod

el

Domain model XML types for capability

management. Includes CapabilityDescriptor.

http://docs.oasis-

open.org/ffm/ns/v1.0/wrm/api

Operation invocation related XML types and

elements for Work Request Management. Includes

related request and response objects.

http://docs.oasis-

open.org/ffm/ns/v1.0/wrm/model

Domain model XML types for Work Request

Management. Includes Work Type and Work

Request related objects.

http://docs.oasis-

open.org/ffm/ns/v1.0/firm/api

Operation invocation related XML types and

elements for Field-Initiated Request. Includes

related request and response objects.

http://docs.oasis-

open.org/ffm/ns/v1.0/firm/model

Domain model XML types for Field-Initiated

request. Includes Field-Initiated Requests domain

objects.

http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/api

Operation invocation related XML types and

elements for Reference Data Management.

Includes related request and response objects.

http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/model

Domain model XML types for Reference Data

Management. Includes Reference Data related

objects.

http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/model/profile

User profile related XML types.

Table 105: XML namespaces 1838

9.1.2 Parameter Encoding 1839

SOAP requests use document literal encoding for request and response parameters. Each Interface 1840
operation has distinct request and response types that utilize shared abstract base types as applicable. 1841

9.1.3 Data types and operations 1842

The primitive data types are mapped to the corresponding XML Schema types. Other data types are 1843
declared in WSDL as complex XML Schema types. 1844

The operations supported by Implementation are declared in WSDL as operations bound to a single 1845
service called “FieldForceManagementImplementationService”. 1846

The operations supported by Manager are declared in WSDL as operations bound to a single service 1847
called “FieldForceManagementManagerService”. 1848

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 128 of 138

9.2 Primitive and derived data types 1849

The primitive data types specified in section 7.2 are mapped directly to the corresponding XML Schema 1850
types [Schema2] according to the following table. 1851

Primitive Types XML Schema Type

String xs:string

Integer xs:int

Double xs:double

Decimal xs:decimal

Boolean xs:boolean

DateTime xs:dateTime

Date xs:date

Time xs:time

Duration xs:duration

Binary xs:base64Binary

Table 106: Primitive Data types / XML schema types mappings 1852

Derived data types specified in Section 7.3 are mapped to XML types that extend the corresponding XML 1853
base type. Additional XML types have been specified to model properties of complex types that only 1854
accept an enumerated set of valid values of type Identifier. 1855

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 129 of 138

Table 107 lists derived data types and the corresponding XML types. 1856

Derived Type XML Schema Type Notes

Identifier Identifier The XML schema does not enforce

Identifier well-formedness. The Manager

or Implementation sending or receiving

data is responsible for enforcing well-

formedness.

Additional derived XML types have been

specified for some enumerated value

sets. These types are listed below.

 BinaryOperator BinaryOperatorExpression property

Operator

 DataChangeHistoryEntryCause DataChangeHistoryEntry property Cause

 DataFieldType DataFieldSpecification property Type

 FieldInitiatedRequestSpecificationType FieldInitiatedRequestSpecification

property FIRType

 GenericActionType ActionSpecification property GenericType

 InsertPosition AddRowOperation property InsertPosition

 StatusCategory StateSpecification property

StatusCategory

 SystemType IdentityDescriptor property SystemType

 UnaryOperator UnaryOperatorExpression property

Operator

ErrorCode ErrorCode

LocaleSpecifier LocaleSpecifier

Table 107: Derived data types / XML schema types mappings 1857

9.3 Composite and specialized data types 1858

The composite types specified in Section 7.4 are mapped to corresponding XML structures or complex 1859
types according to the following mapping. 1860

Composite Types XML Schema Type Notes

Class Classes are modeled as complex XML types

with the same local name as used for the class.

Properties are modeled as contained elements.

Properties accepting more than one type of a

value derived from a common base type “Type”

use a container XML type “AnyType”. The

container type includes a choice of elements

each having the name and type of one

compatible type. For example, properties

accepting any primitive value use the type

See Section 9.1.1 for

used namespaces

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 130 of 138

Composite Types XML Schema Type Notes

AnyPrimitive that accepts content such as

“<Int>3</Int>” or “<String>Example</String>”.

Dictionary Type Dictionary in namespace

http://docs.oasis-

open.org/ffm/ns/v1.0/common/model

Sequence Sequences of some particular type “Type” are

modeled as an XML type “TypeSequence”

containing a sequence of elements having the

name and type of the specified contained type.

Sequences accepting more than one type of

values are specified as choice of elements

each having the name and type of one

compatible type.

See Section 9.1.1 for used

namespaces

Table 108: Composite Type / XML Structure Mappings 1861

Specialized data types specified in Section 7.5 are modeled like a corresponding class with the exception 1862
of the MLText data type. 1863

The MLText data type specified in Section 7.5.1 uses a specialized XML binding to produce simplified 1864
XML. The XML type MLText does not have a container element for the Values Sequence. Instead the 1865
associated values are directly contained in MLText as elements having the name Value and type 1866
LocalizedString. The XML type LocalizedString extends the simple XML Schema type xs:string directly, 1867
containing the Value and having the Locale property as an attribute. 1868

9.4 Operations 1869

The operations have been mapped to the following web service operations to unify the naming 1870
convention used for types and operations. 1871

FFMII Operation Web Service

Operation

Request/Response namespace

SYS_INFO_GET SysInfoGet http://docs.oasis-

open.org/ffm/ns/v1.0/system/info/api

SYS_CAPA_GET SysCapaGet http://docs.oasis-

open.org/ffm/ns/v1.0/system/capability/api

WR_PUT WrPut http://docs.oasis-

open.org/ffm/ns/v1.0/wrm/api

WR_LIST WrList http://docs.oasis-

open.org/ffm/ns/v1.0/wrm/api

WR_GET_STATUS WrGetStatus http://docs.oasis-

open.org/ffm/ns/v1.0/wrm/api

WR_INVOKE_ACTION WrInvokeAction http://docs.oasis-

open.org/ffm/ns/v1.0/wrm/api

WR_NOTIFY_STATUS WrNofityStatus http://docs.oasis-

open.org/ffm/ns/v1.0/wrm/api

RD_INIT RdInit http://docs.oasis-

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 131 of 138

FFMII Operation Web Service

Operation

Request/Response namespace

open.org/ffm/ns/v1.0/rdm/api

RD_PUT RdPut http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/api

RD_DELETE RdDelete http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/api

RD_LIST RdList http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/api

RD_GET RdGet http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/api

RD_REFS_GET RdRefsGet http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/api

RD_REFS_PUT RdRefsPut http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/api

RD_REFS_DELETE RdRefsDelete http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/api

RD_REPO_LIST RdRepoList http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/api

RD_REPO_CREATE RdRepoCreate http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/api

RD_REPO_DELETE RdRepoDelete http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/api

RD_REPO_UPDATE_PRO

PS

RdRepoUpdateProps

http://docs.oasis-

open.org/ffm/ns/v1.0/rdm/api

FIR_EXECUTE FirExecute http://docs.oasis-

open.org/ffm/ns/v1.0/firm/api

FIR_GET_RESPONSE FirGetResponse http://docs.oasis-

open.org/ffm/ns/v1.0/firm/api

FIR_NOTIFY_RESPONSE FirNotifyResponse http://docs.oasis-

open.org/ffm/ns/v1.0/firm/api

Table 109: Operations / Web Services Mappings 1872

For each operation, there is a corresponding request and response XML type named after the operation. 1873
For example, for “SysCapaGet” operation there is a request XML type “SysCapaGetRequest” and a 1874
response XML type “SysCapaGetResponse” in the “http://docs.oasis-open.org/ffm/ns/v1.0/capability/api” 1875
namespace. The request type defines the operation arguments and the response type the response data. 1876
All request and response types are based on common abstract types “BaseRequest” and 1877
“BaseResponse” in the “http://docs.oasis-open.org/ffm/ns/v1.0/common/api” namespace. Additional 1878
intermediate abstract types have been used where applicable. 1879

9.5 Authentication 1880

The Manager or Implementation making a web service request MAY supply a X.509 client certificate 1881
which is transmitted and verified as part of the two-way TLS/SSL certificate exchange. 1882

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 132 of 138

The Manager or Implementation making a web service request MAY supply a username and a plaintext 1883
password in SOAP headers conforming to the Username Token Profile [WSS-UTP] of OASIS Web 1884
Services Security [WSS]. This method SHOULD only be used with TLS/SSL secured or otherwise secure 1885
transport layer. 1886

The Manager or Implementation making a web service request MAY authenticate using other security 1887
profiles defined in OASIS Web Services Security [WSS]. 1888

The Implementation or Manager capable of receiving web service requests SHOULD support two-way 1889
TLS/SSL certificate exchange and username based authentication conforming to the Username Token 1890
Profile [WSS-UTP] with plaintext password and MAY support other security profiles defined in OASIS 1891
Web Services Security [WSS]. 1892

The Manager or Implementation making a web service request SHOULD use TLS/SSL and check the 1893
received server certificate against the configured server identity or trust chain before sending request 1894
data to the server in order to authenticate the server and to prevent sensitive information from being 1895
exposed. 1896

9.6 WSDL Files 1897

The WSDL description of the FFMII interface is included in an archive [FFMII-WSDL] containing the 1898
WSDL for both Implementation and Manager interfaces as well as the XML Schema type definitions for 1899
the associated XML namespaces. 1900

Notice that some operations declared in the interfaces are optional and a Manager does not necessarily 1901
have a web service endpoint at all. 1902

The following files contain the WSDL description of the Implementation and Manager interfaces. 1903

WSDL File Description

FFMII_v1_0_ws_implementation.wsdl Web service interface of the Implementation

FFMII_v1_0_ws_manager.wsdl Web service interface of the Manager

Table 110: WSDL Files 1904

 1905

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 133 of 138

10 Conformance 1906

An implementation of Manager or Implementation conforms to this specification if it meets all of the 1907
following requirements: 1908

1) It meets the requirements indicated throughout this specification by keywords specified in Section 1909

3.1.1, and 1910

2) it complies with semantics and structure of operations and data types specified in Sections 5, 6, 7 1911

and 8, and 1912

3) it is compatible with the web service binding specified in Section 9. 1913

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 134 of 138

Appendix A. Acknowledgements 1914

The following individuals have participated in the creation of this specification and are gratefully 1915
acknowledged: 1916

Participants: 1917
Liat Zahavi-Barzily ClickSoftware Technologies Ltd 1918
Israel Beniaminy ClickSoftware Technologies Ltd. 1919
Jiri Hlusi, Nokia Siemens Networks GmbH & Co. KG 1920
Johannes Lehtinen Rossum Oy 1921
Thinh Nguyenphu Nokia Siemens Networks GmbH & Co. KG 1922
Ilkka Salminen Newelo Oy 1923
Jose Siles Nokia Siemens Networks GmbH & Co. KG 1924
Juha Tiihonen Aalto University Foundation 1925
Sami Vaskuu Newelo Oy 1926
 1927

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 135 of 138

Appendix B. Revision History 1928

 1929

Revision Date Editor Changes Made
01 26 August

2011
Thinh
Nguyenphu

Initial draft based on FFMIISpecification-Foundation20110720-D

01 11
September,
2011

Thinh
Nguyenphu

Input from

FFMII-Specification-Foundation-20110826-v1.0-wd01--
architecture-upd2

FFMII-Specification-Foundation-20110826-v1.0-wd01--
architecture-upd2

01 30
September,
2011

Thinh
Nguyenphu

Input from

FFMII-Specification-Foundation-20110919-JL-statushandling02

FFMII-Specification-Foundation-20110826-v1.0-wd01--
CoreDataModel-upd2

01 06 October,
2011

Thinh
Nguyenphu

Input from

FFMII-Specification-Foundation-20110930-v1.0-wd01-IB-
20111004

FFMII-Specification-Foundation-20110930-v1.0-wd01-
FieldRequest-rev02

01 12 October,
2011

Thinh
Nguyenphu

Input from

FFMII-Specification-Foundation-20110930-v1.0-wd01-
statemodel-edits-01

FFMII-Specification-Foundation-20111006-v1.0-wd01_work-req-
status-change-notification-edits-02

Editorial clean up (fixing fonts, references, etc.)

01 26 October,
2011

Thinh
Nguyenphu

Input from

FFMII-Specification-Foundation-20111012-v1.0-wd01
Capablities-01_JTComments-02

FFMII-Specification-Foundation-20111017-v1 0-wd01 Error
Codes -02

FFMII-Specification-Foundation-20111017-v1.0-wd01 Protocol
Binding-02

FFMII-Specification-Foundation-20111017-v1.0-wd01Data
Forms-02

FFMII-Specification-Foundation-20111012-v1.0-wd01 WRM-02

Editorial fix all of figures

01 01
November,

Thinh
Nguyenphu

FFMII-Specification-Foundation-20111012-v1.0-wd01-
RequestResponse-02

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 136 of 138

2011 Diagram of States, Steps and Actions v02

FFMII Status indicator explanations IB-v04

FFMII-Specification-Foundation-20111017-v1.0-wd01Data
Forms-04

FFMII-Specification-Foundation-20110911-v1.0-wd01-IB-
13Sep11

FFMII-Specification-Foundation-20111012-v1.0-wd01-RDM-02

FFMII-Specification-Foundation-20111012-v1.0-wd01-WRM-04-
StatusRecord

01 17
November
2011

Thinh
Nguyenphu

http://lists.oasis-open.org/archives/ffm/201111/msg00011.html

http://lists.oasis-open.org/archives/ffm/201111/msg00016.html

FFMII-Specification-Foundation-20111101-v1.0-wd01-
AvailableTopics-01.docx

01 29
November,
2011

Thinh
Nguyenphu

FFMII-Specification-Foundation-20111117-v1.0-wd01
editcleanup sec6_4_3_1-01

FFMII-Specification-Foundation-20111117-v1.0-wd01
Namespace-01

FFMII-Specification-Foundation-20111101-v1.0-wd01-IB-
workorder+supplementary+locationtype

01 13
December,
2011

Thinh
Nguyenphu

FFMII-Specification-Foundation-20111129-v1.0-
wd01_multichoicealternative-edits-02

FFMII-Specification-Foundation-20111129-v1.0-wd01-
WorkTypeRepository-01

FFMII-Specification-Foundation-20111129-v1.0-wd01-
ActionAvailable-02

FFMII-Specification-Expressions-03

01 19
December,
2011

Thinh
Nguyenphu

FFMII-Specification-Foundation-20111129-v1.0-wd01-
ChangeNotificationManagement-02

FFMII-Specification-Foundation-201111214-v2.0-wd01-ib-fir

FFMII-Specification-Foundation-201111214-v1.0-wd01-
ExpressionEdits-01

01 19 January
2012

Thinh
Nguyenphu

FFMII-Specification-Foundation-201111214-v4.0-wd01-ib-fir

FFMII-Specification-Foundation-201111219-v1.0-wd01-JL-
WTRepoEdits-WSS-WSDL-02

01 27 January
2012

Thinh
Nguyenphu

FFMII-Specification-Foundation-20120124-v1.0-wd01-cleanup-
02-Clean

FFMII-Specification-Foundation-20120119-v1.0-wd01-
JL_WSDL_edits-02

01 14 March
2012

Thinh
Nguyenphu

FFMII-Specification-20120127-v1.0-
wd01Clean_JT_Comments_05

01 15 March
2012

Thinh
Nguyenphu

https://lists.oasis-open.org/archives/ffm/201202/msg00021.html

FFMII-Specification-20120306-v1.0-wd01Clean-IB-charset-

https://lists.oasis-open.org/archives/ffm/201202/msg00021.html

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 137 of 138

definition

FFMII-Specification-20120127-v1.0-wd01Clean
ThinhComments-02: (Section 1 – 8.1.4)

01 22 March
2012

Thinh
Nguyenphu

FFMII-Specification-20120127-v1.0-wd01Clean
ThinhComments-03 (Section 8.2 to end)

01 29 March
2012

Thinh
Nguyenphu

FFMII-Specification-20120127-v1.0-wd01Clean-JL-Review-05

01 04 April
2012

Thinh
Nguyenphu

FFMII-Specification-20120329-v1 0-wd01Thinh clean-up

FFMII-Specification-20120315-v1.0-wd01Clean_JuhaActions-02

FFMII-Specification-20120322-v1.0-wd01_JS

FFMII-Specification-20120329-v1 0-wd01-JL-20120402-02

FFMII-Specification-20120329-v1_0-wd01-JTSequence

01 11 April
2012

Thinh
Nguyenphu

https://lists.oasis-open.org/archives/ffm/201204/msg00018.html

https://lists.oasis-open.org/archives/ffm/201204/msg00021.html

https://lists.oasis-open.org/archives/ffm/201204/msg00024.html

01 08 May
2012

Thinh
Nguyenphu

https://lists.oasis-open.org/archives/ffm/201204/msg00046.html

FFMII-Specification-20120411-v1 0-
wd01_JT_CHECKWSDL_NOTES-02

FFMII-Specification-20120411-v1 0-wd01 IB comments (after
discussion)

FFMII-Specification-20120411-v1 0-wd01 Thinh Comments v02

FFMII-Specification-20120411-v1 0-wd01-JL_WSDL_review_01

FFMII-Specification-20120411-v1 0-
wd01_JL_entity_20120417_01

FFMII-Specification-20120411-v1 0-
wd01_JL_input_20120418_01

FFMII-Specification-20120411-v1 0-
wd01_JL_xmltypes_20120424_01

FFMII-Specification-20120411-v1 0-
wd01_JL_topics_20120424_01

FFMII-Specification-20120411-v1 0-
wd01_JT_task_to_informal_concept-02

02 21 May
2012

Thinh
Nguyenphu

Global editorial clean-up (formats, page breaks, etc.)

Conformance Section

02 23 May
2012

Thinh
Nguyenphu

Conformance Section

03 29 June
2012

Thinh
Nguyenphu

Fixed all of broken reference links and editorial clean up on all of
figures, based on 30 days public review comments.

03 09 July
2012

Thinh
Nguyenphu

FFMII-Specification-20120629-v1 0-wd03_JL_RDfix_20120707-
01

04 09
September
2012

Thinh
Nguyenphu

Editorial clean per TC Admin

https://lists.oasis-open.org/archives/ffm/201204/msg00018.html
https://lists.oasis-open.org/archives/ffm/201204/msg00021.html
https://lists.oasis-open.org/archives/ffm/201204/msg00024.html
https://lists.oasis-open.org/archives/ffm/201204/msg00046.html

FFMII-SPEC-v1.0-cs01 05 October 2012
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved. Page 138 of 138

05 12
September
2012

Thinh
Nguyenphu

Editorial clean up references links and Acknowledgement list

06 20
September
2012

Thinh
Nguyenphu

Fixed broken link reference at lines 1230, 1828 and 1831.

 1930

