OASIS 13

Darwin Information Typing Architecture
(DITA) Version 1.3 Part 2: Technical
Content Edition

Committee Specification Draft 01
30 June 2015

Specification URIs

This version:
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-
content.html (Authoritative version)
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.pdf

Previous version:
Not applicable

Latest version:
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.html (Authoritative version)
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.pdf

Technical Committee:
OASIS Darwin Information Typing Architecture (DITA) TC

Chair:
Kristen James Eberlein (kris@eberleinconsulting.com), Eberlein Consulting LLC

Editors:
Robert D. Anderson (robander@us.ibm.com), IBM
Kristen James Eberlein (kris@eberleinconsulting.com), Eberlein Consulting LLC

Additional artifacts:
This prose specification is one component of a work product that also includes:

+ Darwin Information Typing Architecture (DITA) Part 0: Overview. http://docs.oasis-open.org/dita/dita/
v1.3/csd01/part0-overview/dita-v1.3-csd01-part0-overview.html.

+ Darwin Information Typing Architecture (DITA) Part 1: Base Edition. http://docs.oasis-open.org/dita/
dita/v1.3/csd01/part1-base/dita-v1.3-csd01-part1-base.html. This edition contains topic and map; it is
designed for implementers and users who need only the most fundamental pieces of the DITA
framework.

» Darwin Information Typing Architecture (DITA) Part 2: Technical Content Edition (this document).
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-
content.html. This edition contains the base architecture plus the technical-content specializations; it
is designed for authors who use information typing and document complex applications and devices.

+ Darwin Information Typing Architecture (DITA) Part 3: All-Inclusive Edition. http://docs.oasis-
open.org/dita/dita/v1.3/csd01/part3-all-inclusive/dita-v1.3-csd01-part3-all-inclusive.html. This edition

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 1 of 867


http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.pdf
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.pdf
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.pdf
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.pdf
https://www.oasis-open.org/committees/dita/
mailto:kris@eberleinconsulting.com
http://eberleinconsulting.com/
mailto:robander@us.ibm.com
http://www.ibm.com
mailto:kris@eberleinconsulting.com
http://eberleinconsulting.com/
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part0-overview/dita-v1.3-csd01-part0-overview.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part0-overview/dita-v1.3-csd01-part0-overview.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part0-overview/dita-v1.3-csd01-part0-overview.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part0-overview/dita-v1.3-csd01-part0-overview.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part1-base/dita-v1.3-csd01-part1-base.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part1-base/dita-v1.3-csd01-part1-base.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part1-base/dita-v1.3-csd01-part1-base.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part1-base/dita-v1.3-csd01-part1-base.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part3-all-inclusive/dita-v1.3-csd01-part3-all-inclusive.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part3-all-inclusive/dita-v1.3-csd01-part3-all-inclusive.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part3-all-inclusive/dita-v1.3-csd01-part3-all-inclusive.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part3-all-inclusive/dita-v1.3-csd01-part3-all-inclusive.html

contains the base architecture, technical content, and the learning and training specializations. It is
designed for implementers who want all OASIS-approved specializations, as well as users who
develop learning and training materials.

» ZIP file that contains a CHM version of the written specification for this part. http://docs.oasis-
open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-chm.zip

» ZIP file that contains an HTML version of the written specification for this part. http://docs.oasis-
open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-html.zip

« Z|P file that contains the grammar files for this part.http://docs.oasis-open.org/dita/dita/v1.3/csd01/
part2-tech-content/dita-v1.3-csd01-part2-tech-content-grammars.zip

« ZIP file that contains the DITA source for this part. http://docs.oasis-open.org/dita/dita/v1.3/csd01/
part2-tech-content/dita-v1.3-csd01-part2-tech-content-dita.zip

For more information about the editions and what they contain, see Editions.

Abstract:

Status:

The Darwin Information Typing Architecture (DITA) 1.3 specification defines both a) a set of document
types for authoring and organizing topic-oriented information; and b) a set of mechanisms for combining,
extending, and constraining document types.

This document was last revised or approved by the OASIS Darwin Information Typing Architecture
(DITA) TC on the above date. The level of approval is also listed above. Check the “Latest version”
location noted above for possible later revisions of this document. Any other numbered Versions and
other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=dita#technical.

TC members should send comments on this specification to the TC’s email list. Others should send
comments to the TC’s public comment list, after subscribing to it by following the instructions at the
“Send A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/comments/
index.php?wg_abbrev=dita.

For information on whether any patents have been disclosed that may be essential to implementing this
specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights
section of the TC’s web page (https://www.oasis-open.org/committees/dita/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[DITA-v1.3-part2-tech-content]
Darwin Information Typing Architecture (DITA) Version 1.3 Part 2: Technical Content Edition. Edited
by Robert D. Anderson and Kristen James Eberlein. 30 June 2015. OASIS Committee Specification
Draft 01. http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-
tech-content.html. Latest version: http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-
content.html.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 2 of 867


http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-chm.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-chm.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-chm.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-chm.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-html.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-html.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-html.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-html.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-grammars.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-grammars.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-grammars.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-grammars.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-dita.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-dita.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-dita.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content-dita.zip
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part0-overview/introduction/about-the-dita-specification.html#editions
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=dita
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=dita
https://www.oasis-open.org/committees/dita/ipr.php
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/csd01/part2-tech-content/dita-v1.3-csd01-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.html
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.html

Notices

Copyright © OASIS Open 2015. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property
Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment
on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this section are
included on all such copies and derivative works. However, this document itself may not be modified in any way,
including by removing the copyright notice or references to OASIS, except as needed for the purpose of
developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules
applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or
assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify
OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent
claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this
specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any
patent claims that would necessarily be infringed by implementations of this specification by a patent holder that
is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS
Technical Committee that produced this specification. OASIS may include such claims on its website, but
disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be
claimed to pertain to the implementation or use of the technology described in this document or the extent to
which any license under such rights might or might not be available; neither does it represent that it has made
any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or
deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims
of rights made available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or
users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC
Administrator. OASIS makes no representation that any information or list of intellectual property rights will at
any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used
only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and
use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see https:/
www.oasis-open.org/policies-guidelines/trademark for above guidance.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 3 of 867


https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark
https://www.oasis-open.org/policies-guidelines/trademark

Table of contents

R Lo e [¥Tex (o] T (o TN I N I Nt PP PPUTTPPR 20
1.1 About the DITA specification: Technical content edition ... e 20
22 =11 o 111 0o (oo Y SRS 21
1.3 NOMMALIVE TEIEIENCES oottt e e e st e e e s aa bt e e e e s sbteeeeeessbaeeeesssteeeeesanseneeeeans 22
1.4 NoN-nOrmMative refErENCES ... ettt e et e e e e e e e e e e e e e eneeeaaaaaeaaan 23
1.5 Formatting conventions in the XHTML version of the specification  ..........ccccoiiiiiii e, 24

2 Architectural specification: Technical content edition ... 27
b2 I oo o 18 oz 1T oI (o 10 15 1 OO URER 27

2.1.1 DITA terminology and NOtation ... e e e e e ee e e 27
P I = 7= 1= o oo [o7=Y o] -SSP 31
D2 T 1 L= =4 (= ] [ 1 SRR 32
2.1.4 Producing different deliverables from a single SOUrce  ........ccooiiiiiiiiiiiiie e 32
D 1IN 1 = 5 U T o TR 33
D20t O L N o o] o= SRR 33
2.2.1.1 The topic as the basic unit of information ... 33
2.2.1.2 The benefits of a topic-based architecture  ............ccccooiiiiiii e 34
2.2.1.3 Disciplined, topic-oriented WIitiNg  ...oooiiiii e 34
2.2.1.4 InfOrmation tyPING  ..eeeiieiiiiiiii et e e e e e e n e e e e e nneeas 35
A B €T 1Y ok (o] o) oSSR PSP PPRPP 36
At T G oo (o= i (U o (0 (= PSR 36
A I oo (o oo ] 4 (=1 o | PRSP UPR 37
A I N 4 = T o =S 38
2.2.2.1 Definition Of DITA MaPS  coiiiiiiiiiiii et e ettt e et e e e e e e e e et ee e e e e e aaeeeaeaaaannnnennneeeeaaaaens 38
2.2.2.2 PUrpOSE Of DITA MAPS ooiiiiiiiie ettt ettt e ettt e e e e et e e e e e st e e e e e s bte e e e e e annteeeeeannees 39
2.2.2.3 DITAMAP ElEBMENTS oo e e e e s e e e e e e e e e e e eeeeeeeeeeeesesensnannnnanan 39
2.2.2.4 DITAMAP attriDULES ..ot e e e e e e e e et e e e e e e e e e e e e neeeeeaaaeeas 41
2.2.2.5 EXampIes Of DITA MEPS oottt ettt e ettt e e e s ettt e e e sbte e e e e e snbeeeeaeaanteeeaeeanes 44
2.2.3 Subject scheme maps and their USAgE  ....oooeiiiiiiii e e 47
2.2.3.1 SUDJECE SChEME MAPS oo e e e e e e 47
2.2.3.2 Defining controlled values for attributes ... 48
2.2.3.3 Binding controlled values to an attribute ... 49
2.2.3.4 Processing controlled attribute values ... 50
2.2.3.5 Extending SUDJECE SChEMES  ...oiiiiiiiie e st e e e e eeeeaae 51
2.2.3.6 Scaling a list of controlled values to define a taxonomy  ......ccoccciviiiicine e 51
PR T A O - TS o= 14 (o) o I 0 4 =1 o <SSR 52
2.2.3.8 Examples of subject SCheme Maps  .....eoiiiiii e 52
A B | N 4T = To - | = LT PUR PSP 57
2.2.4.1 Metadata lements .o e e e e e e e e e e e e e an 57
2.2.4.2 Metadata attributes ... e e e e e e e anae 57
2.2.4.3 Metadata in maps and tOPICS  ..ooeiiiiiiiiire e ————————— 60
2.2.4.4 Cascading of metadata attributes in @ DITAMAP ..o 60
2.2.4.5 Reconciling topic and map metadata elements ... 63
2.2.4.6 Map-to-map cascading behaviors ... 66
2.2.4.7 Context hooks and window metadata for user assistance  ........cccccoeiiii e 69
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 4 of 867



P B I N = T [ [ =TT oo PP OUPUURPTPRP 70
P2 R B 1 I 1 401U £ SRR 70
A A | 1N [ 14 o T SRRSO 71
2.3.3 URI-based (direCt) addreSSiNG  ...coooiiiiiiiiiiiiie ettt e e e et e e et e e s anneee e s 72
2.3.4 Indirect key-based addreSSING  ..occciiiiiiiiieieeeee e ——————————————————— 74

2.3.4.1 Core concepts for working With KeYS ..o 74
PR B B (- VT o] o 1Y PR EPR 76
2.3.4.3 Using keys for addreSSiNg  .ooceiiiiiiiiiiiie e a e e e e e e 77
2.3.4.4 AJdressing KEYS ACrOSS SCOPES  oiiiiiiiiuuiiiiiiieeaaa e e e e e aa ettt eeeeaaaa e e e e s e e nnnbeeeeeeeaaaaeeeeeaaaannneennnees 77
2.3.4.5 Cross-deliverable addressing and lINKING  ...ooooiiiiiiiii e 79
2.3.4.6 Processing KEY FEfErENCES  .oooiiiii i e e e e e e e e 80
2.3.4.7 Processing key references for navigation links and images  ......ccccooiiiiiiiiie e 81
2.3.4.8 Processing key references on <topicref> elements ..o 82
2.3.4.9 Processing key references to generate text or link text  .......ccceeiiieiiiiiiiiiii 82
2.3.4.10 EXamPIes Of KBYS oottt e oot e e e e e e e e e e e e e e e e e e e e ae e e e e e annnene 84

D L I o ToT =T o T PRSP 97

2 3 I\ = T -« T o 98
2411 Table Of CONENTS ..o et e e e e e e e e e e e e e e eeaaaeeeeaan 98
At B [ g To [ PR 98

2.4.2 Content referenCe (CONIET) ... e e e e e e e e e e e et r e e e e eaaeeeee e s nnanrnnneees 98
2.4.2.1 CONIEf OVEIVIEW .ottt et e e e e e e e e et e e e e e aaaeeeeeaaannnbnneeeeaaaaaens 99
2.4.2.2 ProCessiNg CONIEIS oot e et e e et e e e e bt e e e e eneeeas 99
2.4.2.3 Processing attributes when resolving conrefs ... 100
2.4.2.4 Processing xrefs and conrefs within a conref ... 101

2.4.3 Conditional processing (Profiling)  .oeeiii i 103
2.4.3.1 Conditional processing values and groUPS  ....ceeiiiieeiiiiiiiiiiiiee e e e e e e e e e e e e e e e e e e e esnnnes 103
A T 11 =Y o SRS 105
P TR I - To o |1 o PP 106
2.4.3.4 Conditional processing to generate multiple deliverable types — .......ccocveveeiieiiiiiiiiccieee, 106
2.4.3.5 Examples of conditional proCeSSING  .....eeiiiiiiiiiiiie e 108

P =T =T aTed o I 11 Y o o PRSP 109
2.4.4.1 Overview of branch filtering ... 109
2.4.4.2 Branch filtering: Single condition set for a branch ... 110
2.4.4.3 Branch filtering: Multiple condition sets forabranch ... 110
2.4.4 .4 Branch filtering: Impact on resource and KEY NAMES  ......ccvviiiiiiiiiee e 111
2.4.4.5 Branch filtering: Implications of processing order ... 113
2.4.4.6 Examples of branch filtering  ....oooueiiii i 114

P ST 1 418 ] 1< o PRSP 122
2.4.5.1 Using the @chunk attribute  .......cooiiiiiii e 122
2.4.5.2 Chunking eXampIEs oo e e e nreeas 124

2.4.6 Translation and 10CaliZatioN ... e 127
2.4.6.1 The @xmlilang attribute ..o e e e e e 127
2.4.6.2 The @Ir atribULE  ...oooeeie ettt e e et e e e ene e e e e e e sneeeeanneeean 129

2.4.7 Processing documents with different values of the @domains attribute  ................coeiiinnn, 130

R IR T o o SRS 131

2.5 Configuration, specialization, generalization, and constraints  .......cccccoe i 132
2.5.1 Overview of DITA extension facilitiesS  ......c..ooiiiiiiiie e e e 132

dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 5 of

867



B I 07 o] 0110 18] =1 1] o PRSP 132

2.5.2.1 Overview of document-type ShellS  ........ooiiiiiiiii e 132
2.5.2.2 Rules for document-type shells ... 133
2.5.2.3 Equivalence of document-type Shells ... 134
2.5.2.4 Conformance of document-type shells ... 134
2.5.3 SPECIAliZAtiON oo e e e e e e e e e e e e e e e e e e e ——————— 134
2.5.3.1 Overview of Specialization . .....c.eeiiiii e 134
2.5.3.2 MOAUIAIZAtION ..ottt et e e st e e s e e e e e e e e s eee e 135
2.5.3.3 Vocabulary MOdUIES .o a e e e e e e e e e e e an 136
2.5.3.4 Specialization rules for element types ..o 136
2.5.3.5 Specialization rules for attributes  ..........oooiiiiiiii i ——— 137
2.5.3.6 @class attribute rules and SYNtax ... 137
2.5.3.7 @domains attribute rules and SYNtaX ... 138
2.5.3.8 Specializing to include Non-DITA CONtENE  ..ooeiiiiiiiii e 141
2.5.3.9 Sharing elements across specializations ..o 143
B €= =T = 4= 11 (o] o TSRS 143
2.5.4.1 Overview of generalization  ..........oooiiiiiiiiiie e 143
2.5.4.2 Element generalization ... e e e e 144
2.5.4.3 Processor expectations when generalizing elements ... 144
2.5.4.4 Attribute generalization  ..........e e —————— 146
2.5.4.5 Generalization with cross-specialization dependencies  .........cococecciiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee, 147

B TR T 70 13 = 11 ] £ PSSR 147
2.5.5.1 Overview Of CONSIrAINIS  ...oiiiiiiiiie e 147
2.5.5.2 CoNnStraint FUIES ..o ettt e e e e et et e e e e e e e e e e e eeeeaaaeaeeaaanns 148
2.5.5.3 Constraints, processing, and interoperability  ...........cccooiiiiiiiii 149
2.5.5.4 Weak and strong CONSIraintS  ......cooiiiiiiiiiiee e ——————————— 149
2.5.5.5 Conref compatibility with constraints ... 149
2.5.5.6 Examples: CoNSIraintS ..o e 152
2.6 Coding practices for DITA grammar fileS  ....oooiiii i e e e e e e e e e 157
2.6.1 Recognized XML-document grammar mechaniSmS ... 157
2.6.2 Normative versions of DITA grammar filesS ... 157
2.6.3 DTD coding reqUIrEMENTS  .oiiiiiii e s e e e e e e e e e e e e e e et et e e e et eeaesesastasnnana e e eeeeeaeeas 158
2.6.3.1 DTD: Overview of coding requIremMeNnts ... 158
2.6.3.2 DTD: Coding requirements for document-type shells ..., 159
2.6.3.3 DTD: Coding requirements for element type declarations  ...........ccccoiiieeeiee e, 162
2.6.3.4 DTD: Coding requirements for structural modules ..., 164
2.6.3.5 DTD: Coding requirements for element domain modules  .........ccccceeeeiiiiiiiiiiiiieee e 166
2.6.3.6 DTD: Coding requirements for attribute domain modules  ...........ccccciiiiieie e, 166
2.6.3.7 DTD: Coding requirements for constraint modules ... 166
2.6.4 RELAX NG coding reqQUIrEMENTES ..ottt ettt e e et e e e nnbee e e e e enneee 168
2.6.4.1 RELAX NG: Overview of coding requirements  .........ccccciiiiiiiiiie e 168
2.6.4.2 RELAX NG: Coding requirements for document-type shells ... 169
2.6.4.3 RELAX NG: Coding requirements for element type declarations — .........cccccciviiiiiniiiienen. 171
2.6.4.4 RELAX NG: Coding requirements for structural modules  ............c.cccoooiiiiiiiiiiiecee e, 174
2.6.4.5 RELAX NG: Coding requirements for element domain modules  ...........ccccccoiiiiiiiiiiiieeen. 175
2.6.4.6 RELAX NG: Coding requirements for attribute domain modules ... 176
2.6.4.7 RELAX NG: Coding requirements for constraint modules  ..........ccccciiiiieiie e, 177
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 6 of 867



2.6.5 XML Schema coding reqQUIFEMENTS  ......eiiiiiiiiie et e e st e e e e anreeeeeeaaee 178

2.6.5.1 XML Schema: Overview and limitations of coding requirements  ............cccooviiieeeee i, 178
2.6.5.2 XML Schema: Coding requirements for document-type shells ..., 179
2.6.5.3 XML Schema: Coding requirements for element type declarations  .........cccccoiviiiiineen, 181
2.6.5.4 XML Schema: Coding requirements for structural modules  .........cccccceeiiiiiiiiiiiiiiiiieeeeeee, 183
2.6.5.5 XML Schema: Coding requirements for attribute domain modules  .............occci. 184
2.6.5.6 XML Schema: Coding requirements for constraint modules ..o, 184

2.7 Technical content SpecializationNs  .....coooiiiiiii e e e e e e e e e e 185
2.7.1 Technical content: DOCUMENT tYPES oo e e e e e e e e e e 185

P A I B ©7o ) o= o] B (o] o[ PR RRR 186

2.7 1.2 REfErENCE TOPIC ooeiiiiiiiiee i e e e e e e e e e e e e e e e e e e abrareeeeaeaeeeeeeaans 187
2.7.1.3 General task tOPIC oo e —————————————— 188
2.7.1.4 Task topiC (SIHCETASK) oo e 189
2.7.1.5 Machinery Task tOPIC  .oooiiiiiii e e e e e e e e s e e e e aaaaaas 191

P2 0 TG T I (o]0 o] F=Y< g T T} i1 Vo R o] o o2 USSP 192
2.7.1.7 GlOSSAry €NIrY tOPIC  eeeeiiiee ittt e e e ettt e e s e e e e e e e nneeee s 194
2.7.1.8 GlOSSAry groUP TOPIC  .uuvviiiiiiieiee i i i s ettt e e e e e e e e e e s e e et e e e e e e e e e e arbe e e e e e aaaaeeeaeaannnnnraeaeees 195
2. 7. 1.9 BOOKMAD oottt eeaeaeaaaaaaaaaeeeteerera————————————— 195

A V2 - Tor o a1 o= ot ] o] (=T g Ao (o0 0 =11 =R 196

A A T B L= G o o .= 11 o R RPSOPI 196
2.7.2.2 XNAL usage guUIdeliNeS ...ttt e e e e e e e e et e e e e e e e e e e e e e nnnes 197
2.7.2.3 MathML and equation dOMaiNS  ......cooiiiiiiiii it e e s sneeeee e 200
2.7.2.4 Release management dOMaiN  ...ooiooiiiiiiiiiiicirie e e e e e e e e e e e e e e aaaaaas 200

2.7.3 Troubleshooting iNnfOrmation ... e e e e e e e e e e e e 202

3 Language reference: Technical content edition ... 204
3.1 Element QUICK FEFEIENCE  ....eeiieiiiiiiee et e e e e e e e e e e e e e e e e e e e e e e s e e s enntabeeereeeaaaeaeas 204
3.1.1 Base DITA EleMENTS, A 10 Z oo ettt e et e e e e e e et e e e st e e s e e enaaes 204
3.1.2 Technical content €lemMeENntS, A0 Z ..o e e e e e e e e e e e e e e 208

G T2 o] o] [ =1 =T o 4 1= | (=SSP 213
3.2.1 BasiC tOPIC EIEMENES ..o et —————————————— 213

B 0 Iy S (o] o) o> RS PRSPPI 213

B 0 S 1= RROPI 214

B0 I IS 111 USRS 214
3.2.1.4 <SEAIChEItIE™ e e e e e e e e e a e aaaaaaeeaaaan 215
3.2.1.5 KNAVEIIE™ e e e e e e e ar b e e e e e nraeas 215

B Tt I G IS o o T (o [ o> PP EEPRRR 216

B Tt B A= o1 = T SO 219

R 0 < T oo o | RS RRR 221

B 0 I TR o Yo Yo | 11 PSSR 221
3.2.1.10 <related-liNKS™ ..o e e e e e e e e e e e e araaaaaaaeeaaaan 222

R 0 e I o 1 - USSR 222

B I = T T VA =Y 1= 0 0= o SRR 223
3.2.2.1 <A™ e e e e e e e e e e e e e et ra e e e e aabreeeeeaares 223
B o (= PRSP 223
B0 T o [0 SRR S 224
3.2.2.4 KABSC> i e e et e e e e e e e e e ———e e e e e ————eeeaa——aeaeaaaraeeaeanararaes 224

B 0 T o [ | o SRS 225
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 7 of 867



3.2.2.8 SAIV> e e e r e e e e e s r e e e ne e e re e e aneee e 226

G T (N o | PP UETT PP PPPPP 227
I < TN | 1= 01 {2 PSSP 228
3.2.2.9 KAINEAA> oo e e e e ereaae e e e e e e e e ———areraaaaaaeaeeaaaannranneees 229
G T2 O IS | =TT PPUPPRPT 229
3.2.2.11 <Araft-CommMENt> oo e e e e e e e e e e e e e e reaaa——— 230
G Tt 1~ o |1 T DU 231
3.2.2.13 SEXAMPIE> i — e et e aeaaaaaaaetettttt——r————————————————— 231
G T I S o b PSSR 232
3.2.2.15 <fiQQIOUDP™ oot e e e n e e e e e b et e e e e nbbee e e e nreeas 232
B0y L RS i o PSPPSR 233
G It I AN 11 =T = PSSP 235
B It B < IR =Yoo PSSR 236
G T2t 1 N [ PSP P PP PPPPTPPN 237
G I O IS [ 1= PR 237
3.2.2.210 <IONGAESCIEf> oo e et e e eee s 238
3.2.2.22 <IONQQUOLEIET> oo e e e e e e et e e e e e e e e e e raaaaaaaaaan 239
G T2 TS o PSSP 239
B I S T ] (U SEEER 240
3.2.2.25 <OD O > e e e e e e e e e e e e e e e e e e e e e 241
G I G S o PSPPSR 244
B I A (0~ o > PR 245
G T S T o - - 12 S UPPPR 245
G I S RN o] o b PPUEPRR 246
I |0 IR o] =TSP TPPRRP 247
G I BN o b TP PPUPPRPP 247
3.2.2.32 SSECHON> oottt e e e e e e e e e ae e e e et e ———————————————————————_ 248
B T 1 1= o1 110 T |1 USSR 248
B I 7 S PSP PP PPPPUPPN 249
G T 1 TS | b PR 249
B T 16 RS (=Y 0 S 250
IR ¥ (S (= 4 o PP UETT PP U PPPPP 250
G TG 1S S 1 2 b PR 251
B T 1 S U | SRR 251
3.2, 2,40 XTI > oottt e e e e e — e e e e e n b et e e e e nbae e e e e nree e e e e nrreeeeeanreeas 252
3. 2.3 TabIE BlEMENTS oo ——————————————————— 254
B T Tt S -1 o] = SRR 254
G TG TS (|0 o 2SR 259
3.2.83.8 SOOI S P> i e e e e e ———————— e aaeaaaaaaaaaaaeeeereerra————. 259
BT B S 1 T T D PREEER 260
3.2.3.0 SHDOAY > e e e e e e e 260
B.2.3.0 SEOW ™ oottt e e i et e et et et e e e eeeeeeeeeeeeaeeeeeeeeetete———————————————————— e aaaaaaaaaees 260
IO T A - o1 1 7 PSPPI 261
3.2.3.8 <SIMPIEtable™ e aaaaaaaaaaaaeee e rraa————_ 262
G T S IS 1 == T b PSSP 263
B T Tt 1 0 S {0 1.7 EEPRR 264
G T2 TR I TS (= o 1172 264
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 8 of 867



3.2.4 Related lINKS CIBMENTS ... et e et e e et e e et e e e e e e e e e e et e e eenaas 264

R 00 30 B 1 0SSR 264
3.2.4.2 <IINKISE> oot e e e e e e e e e et r e e e e e ntar e e e e e rreeaeeaanraeeeeeennees 265
I G TS {1014 o To o PSPPSR 267
I B S 1014 1= ) TP PRRPN 268
3.2.4.5 <IINKINFOD™ oottt e ettt e e e ettt e e e st e e e e e et e et e e e e ettt e e e e aanta e e e e e atraaeeeaanraeeaeaans 268
KR 1V =T oI =1 [T o =T o] £ PP RPP 269
3.3.1 BasiC Map €lemMENTS .o aaaaaaaaaaaaaaaraaa—. 269
G TG T I IR 11 o > OO P PO POUOPPPPPRRRN 269
TR R S (o] o) [ 1= PSPPSR 270

G TG TR G TS (o] o] o 1 =1 = >R 271

G TR Tt I s T o o PR 272

B TR Tt T T Y U 273

G TR Tt B GRS 1= =] o] = PR TR PP U PPPPP 274

G TR Tt B A = o Y USSP 276

B TR Tt RS 1= (=Y | b PSSR 276

G TR Tt IR IR =1 | 1= To [ OO PUU PP 276
B.3.1.10 SFEICOISPEC> e e e e aeaaaaaaaaaeeeereara—————— 277
BT T e B BT . 5 To [0 1T SO PO 279
BTG T2 |V F= T o I e | (o 1U] o J=1 (=1 o =Y o RSP PRP 281
G TR T2 s T g o 1 =Y USSR 281

B TR T (= Yo [~ = SRS 282

BT T IS 4 T T o] (=) PRSPPI 283

B TRC T2 A0S (o] o oo {01 o - PSPPSR 284
3.3.2.5 <tOPICNEAU> e e et e e s 285

G TG T2 IS (o] o] o= 285
3.3, 2.7 <IOPICSE IO > e e e e e e e e e et e ————— 286

B V1Y o= To F= L = T = [T 0 0 1= SRR 288
3.4.1 Prolog (metadata) €lemMeNntS ..o 288
G 2 Bt Rt N o] ][0T DU 288

B g s 1 T 1 =Y g = PP EEPERR 288
B I T 1 1 o T TSRS 289
B I o = 1 o PSPPSR 290
K I T o= =Yo (o] VPR ORI 290

G T 3 I S IR oo 1 1] 0T ] 1= | SRR 291

G g B AN oo 017/ 4 o | ] =P PEPPRR 291
I I T oo o)V 1 Lo [0 =T o= SRR 292
BT T IR IR oo )/ = | SRR 293

G g Bt O RN o Y- 1 (=T PR 293

B Bt it I o] 41 0 =1 =Y PSR 293
B Iy DS (=Y 11 4 PSSR 294

G Bt B RN (=YY o L= USSP 294

G I g I N 311 = o L= | = PSR 295
341158 <OThErMeta™ oo e e e e e e 296
3.4.1.16 <SPEIMIUSSIONSS oot e et e e e e e e e e e e e e e e et e et e e eeaeee st st aaaaaeeeeaaaaaaaaaeeeeeeerenarnnas 296
R I AN o] =1 1 0] 1 4 PR 297

B I g Bt B S RN o] o o [ 0 {0 1 PPUPPPRR 297
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 9 of 867



I I e IR o] o To [ = g =TSP 298

G T 3 7 0 IS o 0o |1 1 2 SRR 298
341,27 SPUDIISNEI> e e e e e e e e e e e e et ————— 299
3.4.1.22 SIESOUICEIA> oot e e e e e e e e e e e e et e e et a e e e e e eeaaaaaaeans 299

G T S 7 TS =V £ =Y o b 301
341,24 <SEIIES> oo e e et ee et eeeaeeeeeaaaaaeeeeetetear————————————— 301

B o 2 S Yo 11 (o7 >R RSRRPR 302

G T T 2 SV 4 0 1111 302
B 1.27 SVIMN> ettt e et e e e e e e e e e e e e et ettt ettt e te b et e e — e eeeeeeaaaeaeaeaeeeeeeer e e —a——ara———————————————— 303
3.4.2 Indexing group €lemMENS ..o 303
G T 2 IS | 1o 1= (=1 f .2 PR 304
3.4.2.2 <INAEXIEIMIIE > e e e e e e e ————————— 308
3.4.2.3 SINABX-SEE> ittt ettt et e e ettt aeaeaeeeeaaeaeaeeeeerea————————————— 308
3.4.2.4 <INAEX-SEE-AIS0O> ..ot e e e e e ——————————————————————— 309
3.4.2.5 <INAEX-SOM-GS> ..ot e e e ————————————————————— 310
3.4.3 Delayed conref resolution €lements ... 311
3.4.3.1 <EXPOMANCROIS™ i a e ——— i ——————————————aaaaaaas 311
3.4.3.2 SANCNOIIA> oo e e ————————————————————— 315
3.4.3.3 <ANCROTKEY > e ee s 318
3.5 DOMaAIN ElEMENES oo e e e e e e e e e e e ———————————————————aaaaaaaaaaaas 320
3.5.1 Hazard statement €lements ... ———————— 320
3.5.1.1 <hazardstatement™ ... ————————— 320

G TR T 2 oo | [T =Y [ U= g o= 322
3.5.1.3 <hazardsymbol> ..o a e e e e e e 322
3.5.1.4 <hOWEI0AVOIA> ettt et a e e e e e e e aeaaaaaaeeeeeeeraaa———— 324
3.5.1.5 KMESSAQEPANEIS oo e ———————————————— 324
3.5.1.6 <typeofhazard> ..o e e e 325
3.5.2 Highlighting €lements ... e e e e e e 325
G 78 20230 IR o > OSSN 325
B0 2.2 QI > e e e e e eeeeeeeeeeeeeeeee e ———————————————————— e aaaaaaaaaaes 326

B TR 2 ST | o >SS SSP 326
3.0, 2.4 SUD > e e e e e e e e e e ee e et et et ——————————————————————— e aaaaaaaaaes 326
B0, 2. D U > e eeeeeeeaaaaaaaaaeeeeeerer———————————— 327
30,20 U ettt ————————aeeeeeeeeeaaaaaaeaeeeeeerera———————————— 327

G TR T2 AR 11 g T 1 0 (o 10 T | USSP 328
3.5.2.8 SOVEIINE> ettt ettt aeaeeeeeaaaaaeeeeeeere e ——————————— 328
3.5 3 ULIILIES BIEMENTS oot e e e e e e e e e e e e e e e e e e e e ———— 329
G TR TR TR I - DR 329

3. 0.3.2 SCOOIMIS ™ oottt e e e e e e e e e e et et ——————————————————aaaaaaaaes 329
RIS TRC TG T ¢ 0 =T [T 0 0 =1 o PRSP 330

G TR TR TR S o = T 0 1= SRR 331

3. 0.8, 0 KOOM-AS™ oo e e e e e eeeaeaeaeaeeeee e ——————————————— 332
3.5.4 DITAVAL reference dOmain ..ottt e e e e e e e et e e e e eeeeeas 334
3.5.4.1 KAIAVAIFET> oo a e e e e e e ———raaaaaaeeaeaaaaaae 334
3.5.4.2 <AItavalmeEta™ oo ————————————— 336
3.5.4.3 <AVIRESOUICEPTEIiIX> L oo e e e e e e e e e e e e e e e e e e aea e aaaaaas 336
3.5.4.4 <dVrRESOUICESUTTIX>  oooiiiiiii e e e e e e e e e e s s aeeraeaaeas 337
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 10 of 867



3.5.4.5 <dVrKeySCOPEPTEfiIX> ..o 338

3.5.4.6 <dvrKeySCOPESUTIXS  ..oiiiiiiiiiiii e e e e e e e e e e e e e e e e e e e 339

3.6 Classification @lemMENtS ... e e e e e e e e e e e e e e e e e e s 340
3.6.1 Subject scheme €leMENtS ..o 340
3.6.1.1 <SUDJECISChEME™ o e a e e e e e e e e 340

G TG Tt B S ot 1= o 1= 1 oSS 341
3.6.1.3 Sh@SINSIANCES ..o e e e e e et e e e e e e e e e e e rareaeaaaaeeaaaan 342

BTG I g - T 1 T PSPPSR 342
3.6.1.5 SNASNAITOW > ettt e e e e e e e e e e e e e e e e e e e e raneeeeeaaaeeeeaeaannne 343
3.6.1.6 SNASPar™ e e e e e e e e e e e e e a i rareaaaaaaeeaaaan 344
3.6.1.7 <h@sRelated™ .o 344
3.6.1.8 <enumMeEratioNder> e e e e e e 345
3.6.1.9 <elementdef> e e e et raaaa e e e e e a b eneeees 346
3.6.1.10 <attribUIEAEr™ e e e nraeas 347
3.6.1.11 <defaultSUDJECE> ..o e 348
3.6.1.12 <sUDJECTHEAA™ ..o e 349
3.6.1.13 <subjectHeadMeta™ ... —————————— 350
3.6.1.14 <SUD e CIAE > e e e e e e e e e e e e e e an 351
3.6.1.15 <relatedSUDJECTS™ ..o 352
3.6.1.16 <SUDJECIREITADIE™ .. e et e e e e e e aaaaaaas 353
3.6.1.17 <subjectRelHEader> ... e e e e e 354
3.6.1.18 <SSUDJECIREI> oo e 355
3.6.1.19 <SSUDJECIROIE™ L e —aaaaaaas 355

3.6.2 Classification domain €lemeENnts ... e 356
316,21 SSUD IO > e e e s 356

BT CIVZI020S (o] o] [o7=1 o] o] 1Y 2SR 357

BT T2 IS (o] o1 (o= 0] o) =Y 2 o U 358
3.6.2.4 <topiCSUDJECITADIE> ... 359
3.6.2.5 <topiCSUDJECTHEAUEI> .o e e a e e 361
3.6.2.6 <tOPICSUDJECIROWS L.t e e e e e e et e e e e e e e e e e e e e e nnneeeeeeas 361
KIS (o] o] [ 0= | b PRSPPI 362
3.6.2.8 <SUDJECICEIIZ .o e e e e e e e e e e e e e nnaeeee s 362

3.7 Specialization EleMENTS ..o e e e e e e e e e e e e e ——————— 362
B T A0t B o T T == o bSO 363

B A o - | - PRSP 363

B T ARG IR0 - = = o o 111 USSP 365

K A B (o] =T o b PP 366
3.7.5 SINAEX-DASE> e a e e e 367

G I A G IR 1 (=10 T 11 ] USSR 368
I A AR ¢ (o (o] o] (o o T 1] 3T 1 PRSP 368
A S IS - | (= > PP PSP OP PP PPPPPPPP 369

B TS IR U o143 o1/ o PP URETURR 369
3.8 Legacy CONVErSiON IEMENTS ..ot e e e e e et e e e e b e e e e e nneeas 370
G TR T IR (= To [ U 11 =Yo Ko 1= =T U] o 370
3.9 DITAVAL €lemMENTS oottt ettt et e e e e e e e e e s e aae e teeeeeeeeaeeaeaaa e nnnasaeeeeaaaaaaeeeaaaannnnnnes 371
B TRt S - | RS 371
3.9.2 <StYIE-CONTlICE> et e e e e e e e e e e e e e e e e s raraaaaaaeaaaan 374
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 11 of 867



K TG TR o] o] > SRR 374

G IR I I =AY/ o] ] o RPN 376
B IR S ESTES - {1 1 =T PR 377
K ST =TT =T bSO PRRTPP 378
R I A | (54 PP SO PO PPPPPPPP 378
3.10 CoNCEPL BIEMENTS oo et e e e e e e e e e e e ——————————— e aaaaaaas 379
I 20010 Ry B oo T =T o) =PSRRI 379
G T 0 T2 oo ] o To Lo |1 PSRN 380
1 Tt L0 IR o o T |0 |1V 2RSSR 380
Tt I T = =] Q=1 1= 0 T o £SO EERRR 381
R Tt I S =T PP PPPPPTP PP 381
10 Tt I IVZES - T 4 Lo o YU ERRTRTR 382
K Tt I G TS o =T T bR PURROTPPRPP 382
R Tt I I B oo 1 (=4 PP PPPP PP 383
B D RO PS> oo et ———— et —— e aeaeeeaaaaaeaaeeeererrar————————— 383
3.11.6 <StEPS-INfOIMAI> Lo e e 384
G T I B A== (= o TS H [ T o = =Y PRSP 384
G T I < TR (= o ORI 385
B T I e IS (=T o 1T = 1o o bR 386
1 Tt I I 0 o1 ¢ o b P T P SO OO PPPPPPPP 386
B Tt I Pt I IS {1 0 >SS 387
Tt I I =T | 013 (T 1= PP URROPPPRPP 387
G T I P G TS ] 1] (=T o PR 387
B T e B RS (=Y 0 ) 1 o > PP PPPPP PP PUUUPPPRPRIRS 388
B Tt I B T o] o (o] = ] =SSP 388
B Tt I I S Il | == T PSP PPPPPPPP 389
31117 <ChOPHONNA> e e e e e e e e e e e e e e e e a— i ————— 389
B0 Tt I I S o] o =T o PSSR 390
K Tt I I ot o] o 1Y PP PP PP 390
B Tt e 24 0 IR ol [o] o 1 0] o b PP P P UPUUUUPTPRPRN 391
B Tt I I o] g o =T 392
R Tt I IV S ol g o (o= PP PP TR OPPTP 392
B Tt I 0 S g o o = PP URETRRR 393
3.11.24 <steptroublesShOOtiNg™ ... sttt e e e st e e e eaeea 393
G T 24 S RS- (= ) =1 | SRR 394
B Tt I 02 G IS (D (] = 1) o > USRS 394
3.11.27 <taskitroubleshooting™ ..o e 395
B Tt I BV S R U | TSP OP PP PPPPPPPP 396
311,20 SPOS O™ oo e eeeeeeeaaaaeaaaeeeeereer————————————————— 396
T D =) (=T =Y Lot I =Y 1o o T o £ S SS 396
K T I B = 1= =Yg o= USSP 397
I Tt D = § o 0 Y RSP 398
B Tt G RS 1= oo o LYo 1Y SRS 398
B Tt B A =) 53 o bSO PPRRPPR 399
T B S IR o] o] o 1= [T P POOSO PSP PRRR 399
K I 7 SIS o] oo Y= Lo b U RPP 400
G T 2 A o o 0] 1 o= o o 400
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 12 of 867



3.12.8 <PropvalUBNA™ o e e e nnaeea s 401

G T 228 IR o] o 0 To 111 o 1 401
B Tt 70 O RN o] o =1 o USSP 401
K T 17 I BN o] o] 0] 1 01 PSPPSR 402
G T 2 7 o] 0 012 11 1= 402
B T 2 G TR o] o oo [ o> PRI 402
3.13 Troubleshooting EleMENTS .. ..o et e e e e e e e 403
B T G T (RS 1 o 10 o] 1= T Yo 1] Vo S PURRRP 403
1 Tt B T2 o 18] o] [T oo o 1Y SO 404
B Tt 1 0 0 oo 3 o 1110 o SRR 404
3.13.4 <troubIESOIULION™ .o 405
B Tt B o= U T RSO 405
K T G T ST =10 =Y | RSP PR 406
3.13.7 <respoONSIDIEPaArtY> ... ———————————————— 406
K T 7 €1 (o TS T A Y =Y g 1Y o (SRR 406
3.14.1 GIOSSENLIY ElEMENES .ot e e s e e e et e e e e e bt e e e e e nbre e e e e 406
G T 7 S I B0 | (o T T=T= T o 1 Y2 406

B T It B2 | (o 7] (T 0 0 P EEPRRR 407
3.14.1.3 <OIOSSAET> oo e e e e nreeas 408
3.14.1.4 <gloSSADDIEVIatioN™ ... e ————————————— 408

G T It ISR | (o 7= 0] )Y/ 2 PP EEPRRR 408

R Tt 3 B G IR | 01T N | =PRI 409
3.14.1.7 <gIoSSAREINAtEF Or> oo a e e e e e e e e e e e e e aa———— 409
31418 <OI0SSBOAY > o e e e e e e e e e e e e e e e e e e e e aannne 410
3.14.1.9 <glossPartOfSPeECh™ ... e 410
3.14.1.10 <OIOSSPIOPEITY > oo a e e e et ——————————— 411
3.14.1.11 <GloSSSCOPENOIE> .o et e e e e e e e e e e e e e e e e e ee s 411
3.14.1.12 <gIoSSShOMFOIrM> Lo e e e 412
314113 <IOSSSTAtUS™ oo e e e e e e e raaaa e e e e e aaaaae 413
3.14.1.14 <gloSSSUMACEF OrM> Lot e e e e e e e e e e e e e e e nnneeeeeeas 413
3.14.1.15 <GIOSSSYMDOI> oo 414
3.14.1.16 <GIOSSSYNONYIM> Lo oottt e e e e e e e e e e e e e e e e e e s et s aeeeeeeaeeseesaassnntsraeeeeaaaeeeaaaan 415

G T It B I Ao | (o 1] U= T [PPSR 416
3.14.2 Glossary related elemeEntS ... 416
3.14.2.1 <abbreviated-fOrmM> .. e 416

B T A S o | (o 1] (= PP EEPPRR 418

K Tt 37 B | [0 1T To | o 1H o > PRSP 420

G T Ko =TT ] 1qa 0 F=T o 2= 1T o =Y o £ 420
3.15.1 Bookmap content €lemMENtS ..o —————————— 420
R Tt 5 T8 P B o To Lo (g 1 =1 o PR PRP 420
3.15.1.2 <ADDIEVIIST™ oo e e e et e e e e nraeas 422
3.15.1.3 <AMEBNAMENTSS> i et e et r e e e e e e e e e e e e e e e e e e e e e e e e e e e nnneeenees 422
Tt o T B =T o] o= T [ =R 423

G TR I TR I T o] o =1 o o [ PO 423
315,16 <baCKM At e > e e e e e e e 424

R Tt 5 T B A o] o] o = PP PR 424
3.15.1.8 <POOKADSIIACT> ..o 425
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 13 of 867



K Tt £ T IS IR o Yo To ) {11 o] =1 V2SRRI 425

315,110 SPOOKIST> et e e e e e e e e e e e 426
G Tt 5 Tt I RS 0T T {153 £ =PSRRI 426
G Tt T Wt 1 Yo T 14 <SRRI 427
3.15.1.13 <POOKILIEAITS e 427
315,114 SCNAP O™ e e e e e e e e e e e e e e e e e e —————— 428
R Tt 5 T8 It £ RS 7] o] o] s o o b PPROPI 428
315,116 <AEAICAtION™ .o e e e e e e e e e e e e e e e e an 429
G Tt o Tt I I Ao [ =11 11 0 TS 429
B Tt o Tt B S TS o 0 =1 USSR 430
315,119 <froNtMAatIer™ e e e e nraeas 430
3.15.1.20 <IOSSarylist™ e e e e e e e e e e e e e eeees 431
G TRt I Tt 0 S {3 o =1 RS 431
3.15.1.22 <mainbOOKLItIe™ ... 432
B Tt 5 Tt B B T ] (1= USRS 432
G TRt I Tt 0 S o Y- o RS 433
B Tt Tt IS RS o] = = Tod > PPUPPRRR 434
G T o Tt I G R = o] =Y 13 USSR 434
G Tt o Tt 0 S (o T o> USSR 435
3.15.1.28 <trademarklist™ oo a e e 435
3.15.2 Bookmap metadata elements ... e e 436
3.15.2.1 <DOOKMEIA™ e e e e et raaaa e e e e e e nnnrenanees 436
B TR T2 T o] o] 0 1Y =T OSSN 437
3.15.2.3 <bookchangehistory> ... e 438
3.15.2.4 <DOOKEVENT> oo r e e e e e e e e e e e —a—aararaaaaeeeaeaaannnes 438
3.15.2.5 <DOOKEVEN Y PE> oo ——————————————— 439
G Tt 5 022 G IR 0T T ] (o PP PEPPRRP 439
3.15.2.7 <DOOKNUMDEI> oottt e e e e e e e e e ettt e e e e e e e e e e e e e e nnnnteeneeeaaaaeeeaaann 439
3.15.2.8 SDOOKOWNEI> et e e e e et e e e e e e e e 440
3.15.2.9 <BOOKPAMNO™ oo e e e e e e e e e e e e e e ————— 440
B Tt o 0720 0 IR o Yo Yo (=] 1 (o 1 o] o b USRI 441
3.15.2.11 SPOOKIIGNES> et e e e e e e et e e e e e e e e e e 441
3.15.2.12 <COMPIELEA> e e e e e e e e e e e e e e e e e a———————————— 442
K Tt £ T2 B IS o] o)/ o {1 £ U UPRRUPI 442
B.15.2.14 <COPYIIASTS oo e —————————————— 442
G Tt o 02 5 S o F- | USSP 443
B Tt o T 1 ¢ RS = 11 (=Yoo 443
G Tt £ 02 I S =To 11 o] o b PP PPPPPPPN 443
G Tt o 02t S RS £ o] o PP PEPPRR 444
3.15.2.19 <MaAINTAINEI™ ettt e e e e e e e e e e e e e e e e —reeraaaee e e e e e nnnranneees 444
3.15.2.20 SMONTN> e e et e e e e e e e e e e r e e e e e e e e e e aaan 445
3.15.2.21 <Organization™ oo e e e e e e e e e e e e e reeaaaeeeaeaaannne 445
T £ T2 A o 1= =] PSSR 445
3.15.2.23 <PrintloCation™ ..o e —————————————— 446
G T 02 B o 10 o] 1] 1= o P EURRRR 446
3.15.2.25 <publisherinformation> ... .. s 447
3.15.2.26 <PUDIISNIYPE™> e e e e e e e 447
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 14 of 867



BT Ko TV AR 1=\ =1,/ TR 447

3.15.2.28 SFEVISIONIA™  Loeiiiiiiiiiii ettt et e e e ettt e e e sttt e e e e anbe e e e e s abte e e e e e anbteeeeeannreeeaean 448

BT Eo TS IS = - (=Y b USRS 448
3.15.2.30 SSUMIMAIY™ oottt ettt e e ettt e e e e e bt e e e e e sttt e e e e e b beee e e e s beeeeeeannbeeeeeeanbeeeeeeanbeeeeeeannees 449

B Tt T2 S (=1 (=0 bR RRR 449

G T T2 S Vo | 11 o 1= > PP EEPPRR 450

BT E T2 X S Y- | o PSR 450
3.16 Technical-content domains elements ... e 450
3.16.1 Equation domain IEMENTS ..o ————————————— 450
3.16.1.1 <eqUAtiON-DIOCK™ ..o et e e e e nreeas 451
3.16.1.2 <eqUAtiON-FIQUIE™ L. oo e e e e e e e e e e e e raaaaeaeaaan 452
3.16.1.3 <eqUAatioN-INIINE™ ... e ————————————— 453
3.16.1.4 <eqUAatiON-NUMDEI> .o ettt e e et e e e s s b e e e e e anbte e e e e arnbeeeeeens 454

B T L T2 |V =T (T o I [0 2 -1 o PP RP 455
3.16.2.1 SMaArKUPNAIME™ oot e e e e e e e e e e e eeaeeeeeeeeeee s e aesesesbaraa e es 455
3.16.3 MathML domain €IE€MENTS  ...ooiiiiiiii et e e e e e e e e e e e e e e e e e e s nnnenneeeeees 456
R Tt 170 Tt BN 4= 112 12 PRSP 456
3.16.3.2 <MaAthmMIrE > ettt e e e e e e e e e e e e e e e e 457
3.16.4 Programming €IEMENTS ... i e e e a e e 459
G T R S I o] F= T 1 1SR 459
3.16.4.2 <COAEDIOCKS o et e e e e e e e e e e neees 459

R Tt SR AR oo T [T o] o bR PPP 460
BTt R A oo T [T =Y PSSR 460
Bi1B.4.5 <OPHONS oo e et ——————————————————aaaaaaaaes 460

BT LR IR o= 14 40 0 F= 1 =TSP 461

G TR G TR S A o 7= 0] USSP 461

G T LG S RN o] 1= o1 PSSR 462

B Tt R0 e IR o] OO SOTPPRRR P 462

B Tt 1620 e 0 R o o SRS 463

G Tt 1 G g I S o T ] o PP PEPPRRR 463
3.16.4.12 <SYNtaxdiagram™ oo e e e e e e nreeas 463
3.16.4.13 SOIOUPSEU™ toieeieeieiiieniutiti i aaaiasaeeeeesaeaaaaaaeteteet et aeaetsasssasanaa e aaaeeaaaaaaaaaeeeseeeeeessesessnnnnnnnnnn 464
3.16.4.14 <GrOUPCROICE™ oottt e e e e e e ettt et e e e e ea e e e e e e e e nnbenreeeeeaaaeeeaeaaannne 465

R T LSRR o Ko S o [ (0T oo o] ] o > PSR 465
3.16.4.16 <fragment™ . oo e e e e e e s e e aaaa e e e e s aaaaarrr—aaas 466

G Tt G g I A i = o | = PSRRI 467
318,418 <SSYNDIK> oo e e e e e e e e e e e e e e e ————raarraaaeaeeeeaaaannrennnees 468

G T TR S 1 TS 1 Y o T = >SS 468
3.16.4.20 <SYNNOtEIE > e e e e e e e e e 469
B1B.4.271 SKWO> oot e e e e e e e e e e e e e e e e —e e e e e e baeaeeaaaraeaeeanaraes 469

BT GRSV o USSR 470
3164, 28 OP B > oo e e e e e e e e e e e e e et e e e e —————————————————— e eaeaeaaaaaaaeaereerrerea————_ 471
3.16.4.24 <AEIIM> oot e e e e e e — e e e b —e e e e e —ae e e e e aaraeeaeanaraaaeas 471

BT R RS =TT o RSP 472
B.16.4.26 SIEPSEP™ oiiiiiiiiiiiitie et e ie e e e e e e e e e e eeeeeeeeeeeet—e——————————————————_eeeeeeeeeaeaaaeeeeteeeertrrrrrr————————— 473
3.16.5 Release-management domain elements ... 474
3.16.5.1 <change-ComPleted™ ..o o e e —————— 474
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 15 of 867



3.16.5.2 <change-historylist>
3.16.5.3 <change-item>
3.16.5.4 <change-organization>
3.16.5.5 <change-person>
3.16.5.6 <change-request-id>
3.16.5.7 <change-request-reference>
3.16.5.8 <change-request-system>
3.16.5.9 <change-revisionid>
3.16.5.10 <change-started>
3.16.5.11 <change-summary>
3.16.6 Software elements

3.16.6.1 <msgph> .
3.16.6.2 <msgblock>
3.16.6.3 <msgnum>
3.16.6.4 <cmdname>
3.16.6.5 <varname>
3.16.6.6 <filepath>
3.16.6.7 <userinput>

3.16.6.8 <systemoutput>
3.16.7 SVG elements
3.16.7.1 <svg-container>

3.16.7.2 <svgref>

3.16.8 Task requirements domain

3.16.8.1 <prelreqs>
3.16.8.2 <closereqs>
3.16.8.3 <reqconds>
3.16.8.4 <reqcond>
3.16.8.5 <noconds>
3.16.8.6 <reqcontp>
3.16.8.7 <reqpers>
3.16.8.8 <personnel>
3.16.8.9 <perscat>
3.16.8.10 <perskill>
3.16.8.11 <esttime>
3.16.8.12 <supeqli>
3.16.8.13 <supequi>
3.16.8.14 <supequip>
3.16.8.15 <nosupeqg>
3.16.8.16 <supplies>
3.16.8.17 <supply>
3.16.8.18 <supplyli>
3.16.8.19 <nosupply>

3.16.8.20 <spare> .

3.16.8.21 <spares>
3.16.8.22 <sparesli>
3.16.8.23 <nospares>
3.16.8.24 <nosafety>

dita-v1.3-csd01-part2-tech-content
Standards Track Work Product

30 June 2015

Copyright © OASIS Open 2015. All Rights Reserved. Page 16 of 867



O L RS VA IR =T= | (=Yoo [0 =TT 496

B1B.8.26 <SAfBIY™ oo e e e e e e e e e e s e ———rraaaaaeeaeaaanaae 496
3.16.9 Userinterface lementS ...t ———————— 497
B.16.9.1 SUICONIIOI> ettt e e e e e e e e e e e e e aeaeeeeeeeeeeeaeseaeabaranaannas 497
B.16.9.2 SWINTIE> oot e e e e e e e e e e e e e et e e e e e —— i —————— 497

BT oI G RN 1 T=Y [0 o= T Yoz Lo [T 497

BT Lo TR IR A o To ] (o1 | o SRR 498

G T TR IR TS T == o DR 499
3.16.10 XML mMention dOMain ..o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaas 499
3.16.10.1 SNUMCAITET> ettt e e e e e e e e e e e e aeaaeaeeeeeeereaeaaens 500
3.16.10.2 <parameterentity™ ... —————————— 500

G Tt Gt L0 S (5 4 (=Y 011U ERRRRR 501
BU16.10.4 SXMIAt> e e e e e e e e e e e e e e e e e e e ae i —————— 501
3.16.10.5 <XMIBIEMENTS oo e e ——————————————— 502
3.16.10.6 SXMINSNAMES Loooiiiiiiiii i e e e e e e e e e e e e e e e e e e e e e ee e e eeeestsba b e e eaeeens 502

B TRt 1 0t 00 A0Sy 111 PSSR 502
3.16.11 XNAL domain €lemMENtS  .o.eeeiiii e e e e e e e e e e e —————— 503
3.16.11.1 <authorinformation™ ... e ——————— 503
3.16.11.2 <addressdetails™ ..o e e e e aaaaa—a 504
3.16.11.3 <administrativearea™ ... ————————————— 504
3.16.11.4 <CONtACINUMDEI> et e e e e aaaa e 505
3.16.11.5 <CONtACINUMDEIS™ oo e e e e e e e e e e e e e e e e e aa e aaaas 505

G 70 L 70 B T oo 11 1 72T 506
3.16.11.7 <eMaAIladAresS™ ..oeeiiiii e ——————————————— 506
3.16.11.8 <eMaAIladAreSSES™ .ottt e e e e e e e aaaaaaeaee e eraaa———— 507
3.16.11.9 <firStNAMIE™ e e e e e e e e et e e e e e e e e e s ———aaes 507
3.16.11.10 <generationidentifier> ... e a e 508

G 70 L T B e B R 1 o T Lo 4 > PP UPUUUPU SRR 508

G T 1 T B I 20N = 1= g = 0 1= U 509

G Tt 1 G 0t I I G T (o T 1114 PR 509

R Tt 1o 20 B 7 3 [ Yo 11770 =1 41 PSSR 509
3.16.11.15 <MIAAIENAMES oo e e e e e e e e e e e e e e e e e e e — i ——————— 510
3.16.11.16 <NAaMEdEtailS™ ... ————————————— 510
3.16.11.17 <organizationinfO> .o e 511
3.16.11.18 <OrganizatioNNameE™ ... i e e e e e e e e e —————— 511
3.16.11.19 <organizationnamedetailS™ ... e 512
3.16.11.20 <OthEINTO> oo e e e e e e e e e e e e e e e e e e e e e e e e e eeaererearaaaaaaas 513
3.16.11.21 <SPEISONINTOS> i e e e e e e e e e e e e e e e e e e e e s aa b e e eeeeeeeaeaeeessaennnrennnees 513
3.16.11.22 <PEISONNAIMES  Loooiiiiiiiiiiiieie i e ettt et et e e e e e e e e et ettt eeeeeet e b aesesesaeaaaaaaasaeeseeeeeseersrsssnsnsanas 514
3.16.11.23 <SPOSLAICOUES ..o e e e e e e e nreeas 514
3.16.11.24 <thOroUGhTare> ... e e e e e e e e e e e ae e e e e aaaeeeaaan 515
BB, 1. 25 QUM > ettt e e e e e e e aaaaaaeaeeeeee e ———————— 515
BUAB. 11,26 SUTIS> oot et e e e e e e e e e e e e e e e e et e ———————————————————a 516

G TR A 11 0T | YN 516
3.17.1 Universal attribute groUp ..o e e e e e 516
R Tt I 0 B I 1B = (| o 10 (= (0T o R PRSPPSO 517
3.17.1.2 Metadata attribute group ..o ————————— 517
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 17 of 867



3.17.1.3 Localization attribute group ... s 519

3.17.1.4 Debug attribute group ..o —————— 519
3.17.2 Architectural attribute groUp ... e e e 520
3.17.3 Attributes common to many map elements ... 520
3.17.4 Complex-table attribute group ..o ————————— 523
3.17.5 Data element attributes group ..o 524
3.17.6 Date attribUIES groUD i e ettt e e e ettt e e e e sn e e e e e abeeeeaeaaa 525
3.17.7 Display attribUte groUD oo e e e e e e e e et e e ———————————————————— 525
3.17.8 Link relationship attribute group ..o 526
3.17.9 Other common attribUIES .o e e e e e e e e e e e e nnnes 526
3.17.10 Simpletable attribute group ... ——————————————— 527
3.17.11 Specialization attributes group ..o 527
3.17.12 Topicref element attributes group  ....ooooiei e 528
3.17.13 Complex attribute definitioNs ... —————— 528

3.17.13.1 The @href attribue ..o e e e e e e s snraeee e anes 528

3.17.13.2 The @KeyYs attribUute ... 529

3.17.13.3 The @Keyref attribUte  ....coooiiieee e e e e e e 529

3.17.13.4 The @keyscope attribUe  ....cooiiiiii e e e e nes 530

3.17.13.5 The @conref attribute ... 530

3.17.13.6 The @conaction attribute ..o 532

3.17.13.7 The @conrefend atiribUte  ........coooiiiiii e 535

3.17.13.8 The @conkeyref attribute ... 539

3.17.13.9 The @type attribDULE  ..oooiieee e e e e e e 539

3.17.13.10 The @format attribute  ......oooiiiiiii e s e e 541

3.17.13.11 The @scope attribute ... e 542

3.17.13.12 The @role and @otherrole attributes  ..........oooviiiiiiiiiii e 542

o] a1 0] 3o ¢ =1 o o7 XU SURRURR 544
Appendix A. ACKNOWIEBAGMENTS ...ttt e e sttt e e e s ettt e e e anbe e e e e e e nbbe e e e e annneeeas 547
Appendix B. Non-normative information ... 548
B.1 About the SpecCifiCation SOUICE ... e e e e e aaaa e 548
B.2 Changes frOm PreViOUS VEISIONS  ....oiiiiiiiiiie ittt et e e e st e e e e ettt e e e s nnneeaeeanneeeens 548
B.2.1 Changes from DITA 1.2 10 DITA 1.3 i e e e e e e e e e e e e e e e an 548

B.2.2 Changes from DITA 1.1 10 DIT A 1.2 et e e e e e e e e 550

B.2.3 Changes from DITA 1.0 10 DITA 1.1 oot e e 552

= G I =Y o= o 1T o [ eTo] o V7= o 11 o] o <SS 552
B.4 Migrating to New Versions Of DIT A oot e e e e e e e e e e e e e e e e e nnneeneeeas 555
B.4.1 Migrating from DITA 1.2 10 1.3 oot be e e e 555

B.4.2 Migrating from DITA 1.1 80 1.2 oo e e e e e e e e e e s s na e e eaeees 556

B.5 Considerations for generalizing <foreign> elements ... 559
B.6 Element-by-element recommendations for translators: Technical content edition  ..............ccccoe. 560
D NN D o]0 o] oo [T o) 1= =SSR 582
B.8 XML Schema catalog identifiers ... e 583
B.9 Domains and constraints in the OASIS specification ..o 583
B.9.1 Domains and constraints in the OASIS specification ..., 583

B.9.2 Base domains: Where they are USed ... 585

B.9.3 Technical content domains and constraints: Where they are used ... 586

B.9.4 Base document types: Included dOMains  ....ccoooiiiii i 588
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 18 of 867



B.9.5 Technical content document types: Included domains and constraints  ..........cccccoceiiiiiieninene, 589

B.10 Processing interoperability CONSIAerations  ........iiiiiiiii e 594
B.11 Specialization design, customization, and the limits of specialization ... 596
Appendix C. Content models: Technical content edition ... 600
O I =Y g TT o] (PPt 600
O = =Y (=Y 4 1Y o1 TS 610
C.3 G BlBMENES ittt ettt aeaeeeaeeaaeaeaeteeeeerr————————————— 620
O3 N B =110 1 1= o) PP 648
O =Y (=Y o 1Y o1 TSR 667
CLB F BlBMENES oottt et e e e e e e e e e e e e e e ettt ettt — bbb aeaaeaaaaaaaaaeeeeeeeraea—————_ 674
O A € =1 1= 0 1T o1 £ PURPPPR 683
CLB H BlBMENES ettt ettt oo oo e e ettt e e ieeeaeeaaaaeaaeeeeterra————————————— 691
GO L BIBMEBNES ettt ettt e et ieeeeeeeeaaaaaaaeeetererrre———————————— 695
O O Q=1 =1 43T o £ PUUUPRROt 707
C L BlEMEBNES et ettt ettt e e e e e e e et et ettt e et e e t— e ———— e aeeeeeeaaeaeaaaaeeeteeeerrar———————————— 711
CAZ2 M BIEBMEBNES ettt ettt et oo e e e ettt b ieeeeeeaeaaeaaaaaeeeeeerrre———————————— 722
O B B A=Y 114 0 1= o) PSRRI 733
C.14 O lEMENTS oot e e e e e e e e e e e e e e e e e e e e ettt ——————————————————————— e aaaaaaaaees 740
O E =Y = 0 =Y o) TSR 748
O G @ I =T 4 1Y o] £ S PURPPPR 772
O A S =1 1= 4 01T o £ PP UUUURPRPRR 773
CA8 S BlEBMENTIS et e e e e e e e e e e e e e e e e e et et et e ————————————————————————————— 784
O 1 T I =Y =T =Y o £ PPPPRRR 821
C.20 U BlBMENES ittt e et et et e e e e e e e e ettt ettt e et et et e aeaeeeaeeaaeaeaeeeteterra—————————————— 846
O B VA=Y =1 0 =Y o) ST 854
C.22 W BlEBMENES ittt e e e e e e e e e e e e e e e e eeeeeeese e e ————eeeeeeaaaeeeeaaaanbtrraareaaaaaaeeeaaaannnane 858
O I =) = 4 =Y o) £ TP 859
C.24 Y ElBMENTIS ettt ettt e e e e e e e e e e e e e e e e e et e ee e ——————————————————————————aaa 867
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 19 of 867



1 Introduction to DITA 1.3

The Darwin Information Typing Architecture (DITA) specification defines a set of document types for authoring
and organizing topic-oriented information, as well as a set of mechanisms for combining, extending, and

constraining document types.

1.1 About the DITA specification: Technical content edition

The technical content edition of the DITA specification is the medium-sized edition. It is designed for users who
use information typing and document complex applications and devices, such as software, hardware, medical

devices, machinery, and more.

Technical content edition

The following graphic illustrates the contents of the technical content edition; it also highlights how the technical
content edition relates to the other editions.

\
Technical Content:
Concept, task, reference; book map;
glossary; classification map; machine Part2:
industry; troubleshooting Technical
Content
Edition
Base architecture:
Map; topic; subject scheme
4

Base edition

The base edition contains topic, map, and subject scheme map. It is the smallest edition; it is designed for
application developers and users who need only the most fundamental pieces of the DITA framework.

Technical content edition (this edition)
The technical content edition includes the base architecture and the specializations usually used by technical
communicators: concept, task, and reference topics; machine industry task; troubleshooting topic; bookmap;
glossaries; and classification map. It is the medium-sized edition; it is designed for authors who use information
typing and document complex applications and devices, such as software, hardware, medical devices, machinery,
and more.

All-inclusive edition
The all-inclusive edition contains the base architecture, the technical content pieces, and the learning and training
specializations. It is the largest edition; it is designed for implementers who want all OASIS-approved
specializations, as well as users who develop learning and training materials.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 20 of 867



XML grammar files

The DITA markup for DITA vocabulary modules and DITA document types is available in several XML
languages: RELAX NG (RNG), XML Document-Type Definitions (DTD), and W3C XML Schema (XSD).

While the files should define the same DITA elements, the RELAX NG grammars are normative if there is a
discrepancy. If there is a discrepancy between the written specification (this document) and the RELAX NG
grammars, the written specification takes precedence.

DITA written specification

The specification is written for implementers of the DITA standard, including tool developers and XML architects
who develop specializations. The documentation contains several parts:

* Introduction
+ Architectural specification
 Language reference
+ Conformance statement
» Appendices
The DITA written specification is available in the following formats; the XHTML version is authoritative:
* XHTML (available from the OASIS Web site)
+ CHM
- PDF
» DITA source
ZIP of XHTML (optimized for local use)

1.2 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT,
"RECOMMEND", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119
(http://www.ietf.org/rfc/rfc2119.1xt).

MUST
This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an absolute requirement of the
specification.
MUST NOT
This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.
SHOULD
This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular

circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before
choosing a different course.

SHOULD NOT

This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular
circumstances when the particular behavior is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any behavior described with this label.

MAY
This word, or the adjective "OPTIONAL", means that an item is truly optional. One vendor may choose to include

the item because a particular marketplace requires it or because the vendor feels that it enhances the product while
another vendor may omit the same item. An implementation which does not include a particular option must be

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 21 of 867



prepared to interoperate with another implementation which does include the option, though perhaps with reduced
functionality. In the same vein an implementation which does include a particular option must be prepared to
interoperate with another implementation which does not include the option (except, of course, for the feature the
option provides).

1.3 Normative references

Normative references are references to external documents or resources to which implementers of DITA MUST
comply.

[MathML 3.0]

D. Carlisle, P. lon, and R. Miner, editors, Mathematical Markup Language (MathML) Version 3.0 , http:/
www.w3.org/TR/MathML3/, W3C Recommendation, 21 October 2010.

[Namespaces in XML 1.0]

T. Bray, D. Hollander, A. Layman, R. Tobin, and H. S. Thompson, editors, Namespaces in XML 1.0 (Third Edition),
http://www.w3.0rg/TR/2009/RE C-xml-names-20091208/, W3C Recommendation, 8 December 2009.

[Namespaces in XML 1.1]

T. Bray, D. Hollander, A. Layman, and R. Tobin, editors, Namespaces in XML 1.1 (Second Edition), http://
www.w3.0rg/TR/2006/REC-xml-names11-20060816/, W3C Recommendation, 16 August 2006

[RELAX NG]

J. Clark and M. Murata, editors, RELAX NG Specification, http.//www.oasis-open.org/committees/relax-ng/
spec-20011203.html, OASIS Committee Specification, 3 December 2001.

[RELAX NG Compact Syntax]

J. Clark, editor, RELAX NG Compact Syntax, http://www.oasis-open.org/committees/relax-ng/
compact-20021121.html, OASIS Committee Specification, 21 November 2002.

[RELAX NG DTD Compatibility]

J. Clark and M. Murata, editors, RELAX NG DTD Compatibility, http://www.oasis-open.org/committees/relax-ng/
compatibility-20011203.html, OASIS Committee Specification, 3 December 2001.

[RFC 2119]

S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http.//www.ietf.org/rfc/rfc2119.txt, IETF
RFC 2119, March 1997.

[RFC 3986]

T. Berners-Lee, R. Fielding, and L. Masinter, Uniform Resource Identifiers (URI): Generic Syntax, http.//
tools.ietf.org/html/rfc3986, IETF RFC 3986, January 2005.

[RFC 5646]
A. Phillips and M. Davis, editors, Tags for Identifying Languages, http://tools.ietf.org/pdf/rfc5646.pdf, IETF RFC
5646, September 2009.

[SVG 1.1]
E. Dahlstrom, P. Dengler, A. Grasso, C. Lilley, C. McCormack, D. Schepers, J. Watt, J. Ferraiolo, J. Fujisawa, and
D. Jackson, editors, Scalable Vector Graphics (SVG) 1.1 (Second Edition), http.//www.w3.0rg/TR/SVG/, W3C
Recommendation, 16 August 2011.

[XML 1.0]

T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, editors, Extensible Markup Language (XML)
1.0 (Fifth Edition), http.//www.w3.0rg/TR/REC-xml/, W3C Recommendation, 26 November 2008.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 22 of 867


http://www.w3.org/TR/MathML3/
http://www.w3.org/TR/MathML3/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2006/REC-xml-names11-20060816/
http://www.w3.org/TR/2006/REC-xml-names11-20060816/
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
http://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
http://www.ietf.org/rfc/rfc2119.txt
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/pdf/rfc5646.pdf
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/REC-xml/

[XML 1.1]

T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, F.Yergeau, and J. Cowan, editors, Extensible Markup
Language (XML) 1.1 (Second Edition),http.//www.w3.0rg/TR/2006/REC-xml11-20060816/, W3C Recommendation,
16 August 2006, edited in place 29 September 2006.

[XSD 1.0 Structures]

H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, editors, XML Schema Part 1: Structures Second
Edition, http.//www.w3.0rg/TR/xmiIschema-1/, W3C Recommendation, 28 October 2004.

[XSD 1.0 Datatypes]

P. V. Biron and A. Malhotra, editors, XML Schema Part 2: Datatypes Second Edition, http://www.w3.org/TR/
xmischema-2/, W3C Recommendation, 28 October 2004.

1.4 Non-normative references

Non-normative references are references to external documents or resources that implementers of DITA might
find useful.

[cig-v3.0]

OASIS Committee Specification 02, Customer Information Quality Specifications Version 3.0. Name (xNL), Address
(XAL), Name and Address (xNAL) and Party (xPIL), http://www.oasis-open.org/committees/download.php/29877/
OASIS%20CIQ%20V3.0%20CS02.zip, 20 September 2008.

[CSS 2.1]

B. Bos, T. Celik, I. Hickson, and H.W. Lie, editors, Cascading Style Sheets Level 2 Revision 1 (CSS 2.1)
Specification, http:.//www.w3.0rg/TR/CSS2/, W3C Candidate Recommendation, 08 September 2009.

[ISO 8601]

ISO/TC 154, Data elements and interchange formats—Information interchange—Representation of dates and
times, 3rd edition, http://www.iso.org/iso/catalogue_detail?csnumber=40874, 12 December 2004.

[ISO/IEC 19757-3]

ISO/IEC JTC 1/SC 34 Document description and processing languages, Information technology—Document
Schema Definition Languages (DSDL)—Part 3: Rule-based validation—Schematron, http.//www.iso.org/iso/
catalogue_detail.htm?csnumber=40833, 1 June 20086.

[OASIS Table Model]

XML Exchange Table Model Document Type Definition. Edited by Norman Walsh, 1999. Technical Memorandum
TR 9901:1999. https.//www.oasis-open.org/specs/tm9901.htm.

[XHTML 1.0]

W3C HTML Working Group, XHTML 1.0 The Extensible HyperText Markup Language (Second Edition): A
Reformulation of HTML 4 in XML 1.0, http.//www.w3.0rg/TR/xhtml1/, W3C Recommendation, 26 January 2000,
revised 1 August 2002.

[XHTML 1.1]

M. Altheim and S. McCarron, editors, XHTML 1.1 - Module-based XHTML, http.//www.w3.0rg/TR/xhtml11/, W3C
Recommendation, 31 May 2001.

[XPointer 1.0]

S. DeRose, E. Maler, and R. Daniel Jr., editors, XML Pointer Language (XPointer) Version 1.0, http://
www.w3.0rg/TR/WD-xptr, W3C Last Call Working Draft, 8 January 2001.

[XLIFF 1.2]
OASIS Standard, XLIFF Version 1.2, 1 February 2008, http.//docs.oasis-open.org/xliff/xliff-core/xliff-core.html.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 23 of 867


http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.oasis-open.org/committees/download.php/29877/OASIS%20CIQ%20V3.0%20CS02.zip
http://www.oasis-open.org/committees/download.php/29877/OASIS%20CIQ%20V3.0%20CS02.zip
http://www.w3.org/TR/CSS2/
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail.htm?csnumber=40833
http://www.iso.org/iso/catalogue_detail.htm?csnumber=40833
https://www.oasis-open.org/specs/tm9901.htm
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/WD-xptr
http://www.w3.org/TR/WD-xptr
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html

[XML Catalogs 1.1]

OASIS Standard, XML Catalogs Version 1.1, 7 October 2005, https.//www.oasis-open.org/committees/
download.php/14809/xml-catalogs.html.
[xml:tm 1.0]

A. Zydron, R. Raya, and B. Bogacki, editors, XML Text Memory (xml:tm) 1.0 Specification, http:.//www.gala-
global.org/oscarStandards/xmi-tm/, The Localization Industry Standards Association (LISA) xml:tm 1.0, 26
February 2007.

[XQuery 1.0]
S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Siméon, editors, XQuery 1.0: An XML
Query Language, http://www.w3.org/TR/xquery/, W3C Recommendation, 23 January 2007.

[XSL 1.0]

S. Adler, A. Berglund, J. Caruso, S. Deach, T. Graham, P. Grosso, E. Gutentag, A. Milowski, S. Parnell, J.
Richman, and S. Zilles, Extensible Stylesheet Language (XSL) Version 1.0, http://www.w3.0rg/TR/2001/REC-
xsl-20011015/, W3C Recommendation, 15 October 2001.

[XSL 1.1]

A. Berglund, editor, Extensible Stylesheet Language (XSL) Version 1.1, http://www.w3.0rg/TR/xsl11/, W3C
Recommendation, 05 December 2006

[XSLT 1.0]

J. Clark, editor, XSL Transformations (XSLT) Version 1.0, http://www.w3.0rg/TR/xslt, W3C Recommendation, 16
November 1999

[XSLT 2.0]

M. Kay, editor, XSL Transformations (XSLT) Version 2.0, http://www.w3.0rg/TR/xslt20/, W3C Recommendation, 23
January 2007

[XTM 1.0]

S. Pepper and G. Moore, editors, XML Topic Maps (XTM) 1.0, http://www.topicmaps.org/xtm/index.html,
TopicMaps.Org XTM 1.0, 2001.

1.5 Formatting conventions in the XHTML version of the specification

Given the size and complexity of the specification, it is not generated as a single XHTML file. Instead, each DITA
topic is rendered as a separate XHTML file. The XHTML version of the specification uses certain formatting
conventions to aid readers in navigating through the specification and locating material easily: Link previews and
navigation links.

Link previews

The DITA specification uses the content of the DITA <shortdesc> element to provide link previews for its
readers. These link previews are visually highlighted by a border and a colored background. The link previews
are not normative; they contain the content of the <shortdesc> element for the child topic, which is rendered in
a normative context as the first paragraph of the topic; the content is identical in both renditions. The link
previews serve as enhanced navigation aids, enabling readers to more easily locate content. This usability
enhancement is one of the ways in which the specification illustrates the capabilities of DITA and exemplifies
DITA best practices.

The following screen capture illustrates how link previews are displayed in the XHTML version of the
specification:

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 24 of 867


https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.gala-global.org/oscarStandards/xml-tm/
http://www.gala-global.org/oscarStandards/xml-tm/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/xsl11/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20/
http://www.topicmaps.org/xtm/index.html

MO AT P, BRI BRI Do NN e A

2.2.1 DITA topics

DITA topics are the basic units of DITA content and the basic units of reuse. Each
topic contains a single subject. Topics may be of specific specialized information
types, such as task, concept, or reference, or may be generic, that is, without a
specified information type.

2.2.2 DITA maps

This topic collection contains information about DITA maps and the purposes that
they semve. It also includes high-level information about DITA map elements,
attributes, and metadata.

2.2.3 Subject scheme maps and their usage

Subject scheme maps can be used to define controlled values, taxonomies, and
ontalogies. The controlled values can be bound to attributes, as well as element
and attribute pairs. The taxonomic subjects can contain metadata and provide
links to more detailed information; the taxonomic subjects can be used to classify
te

Figure 1: Link previews

Navigation links
To ease readers in navigating from one topic to another, each XHTML file generated by a DITA topic contains
the following navigation links at the bottom:
Parent topic
Takes readers to the parent topic, which the topic referenced by the closest topic in the containment hierarchy
Previous topic
Takes readers to the previous topic in the reading sequence
Next topic
Takes readers to the next topic in the reading sequence
Return to main page
Takes readers to the place in the table of contents for the current topic in the reading sequence

The following screen capture illustrates how navigation links are displayed in the XHTML version of the
specification:

Parent topic: 2.2.3 Subject scheme maps and their usage
Previous topic: 2.2.3 Subject scheme maps and their usage
Next topic: 2.2 3.2 Defining controlled values for attributes

Return to main page.

Figure 2: Navigation links

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 25 of 867



When readers hover over the navigation links, the short description of the DITA topic also is displayed.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 26 of 867



2 Architectural specification: Technical content edition

The architectural specification portion of the DITA specification outlines the framework of DITA. It contains an
overview of DITA markup; addressing; processing; configuration, specialization, generalization, and constraints;
as well as information about coding DITA grammair files.

The technical content edition also contains information about the techical-content document types and domains,
as well as a topic that provides an overview of the DITA elements that support documenting troubleshooting
information.

2.1 Introduction to DITA

The Darwin Information Typing Architecture (DITA) is an XML-based architecture for authoring, producing, and
delivering topic-oriented, information-typed content that can be reused and single-sourced in a variety of ways.
While DITA historically has been driven by the requirements of large-scale technical documentation authoring,
management, and delivery, it is a standard that is applicable to any kind of publication or information that might
be presented to readers, including interactive training and educational materials, standards, reports, business
documents, trade books, travel and nature guides, and more.

DITA is designed for creating new document types and describing new information domains based on existing
types and domains. The process for creating new types and domains is called specialization. Specialization
enables the creation of specific, targeted XML grammars that can still use tools and design rules that were
developed for more general types and domains; this is similar to how classes in an object-oriented system can
inherit the methods of ancestor classes.

Because DITA topics are conforming XML documents, they can be readily viewed, edited, and validated using
standard XML tools, although realizing the full potential of DITA requires using DITA-aware tools.

2.1.1 DITA terminology and notation

The DITA specification uses specific notation and terms to define the components of the DITA standard.

Notation

The following conventions are used throughout the specification:
attribute types

Attribute names are preceded by @ to distinguish them from elements or surrounding text, for example, the
@props or the @class attribute.

element types
Element names are delimited with angle brackets (< and >) to distinguish them from surrounding text, for example,
the <keyword> or the <prolog> element.

In general, the unqualified use of the term map or topic can be interpreted to mean "a <map> element and any
specialization of a <map> element " or "a <topic> element or any specialization of a <topic> element."
Similarly, the unqualified use of an element type name (for example, <p>) can be interpreted to mean the
element type or any specialization of the element type.

Normative and non-normative information

The DITA specification contains normative and non-normative information:
Normative information

Normative information is the formal portion of the specification that describes the rules and requirements that make
up the DITA standard and which must be followed.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 27 of 867



Non-normative information
Non-normative information includes descriptions that provide background, examples, notes, and other useful
information that are not formal requirements or rules that must be followed.

All information in the specification should be considered normative unless it is an example, a note, an appendix,
or is explicitly labeled as non-normative. The DITA specification contains examples to help clarify or illustrate
specific aspects of the specification. Because examples are specific rather than general, they might not illustrate
all aspects or be the only way to accomplish or implement an aspect of the specification. Therefore all examples
are non-normative.

Basic DITA terminology

The following terminology is used to discuss basic DITA concepts:
DITA document

An XML document that conforms to the requirements of this specification. A DITA document MUST have as its root
element one of the following elements:

* <map> Or a specialization of the <map> element

* <topic> or a specialization of the <topic> element

* <dita>, which cannot be specialized, but which allows documents with multiple sibling topics

DITA document type

A unique set of structural modules, domain modules, and constraint modules that taken together provide the XML
element and attribute declarations that define the structure of DITA documents.

DITA document-type shell

A set of DTD, XSD, or RELAX NG declarations that implement a DITA document type by using the rules and
design patterns that are included in the DITA specification. A DITA document-type shell includes and configures
one or more structural modules, zero or more domain modules, and zero or more constraint modules. With the
exception of the optional declarations for the <dita> element and its attributes, DITA document-type shells do not
declare any element or attribute types directly.

DITA element

An XML element instance whose type is a DITA element type. DITA elements must exhibit a @class attribute that
has a value that conforms to the rules for specialization hierarchy specifications.

DITA element type

An element type that is either one of the base element types that are defined by the DITA specification, or a
specialization of one of the base element types.

map instance
An occurrence of a map type in a DITA document.
map type
A map or a specialization of map that defines a set of relationships among topic instances.
structural type instance
An occurrence of a topic type or a map type in a DITA document.
topic instance
An occurrence of a topic type in a DITA document.
topic type
A topic or a specialization of topic that defines a complete unit of content.

Specialization terminology

The following terminology is used to discuss DITA specialization:

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 28 of 867



base type
An element or attribute type that is not a specialization. All base types are defined by the DITA specification.
extension element

Within a vocabulary module, an element type that can be extended, replaced, or constrained for use in a DITA
document type.

generalization

The process by which a specialized element is transformed into a less-specialized ancestor element or a
specialized attribute is transformed into a less-specialized ancestor attribute. The original specialization-hierarchy
information can be preserved in the generalized instance; this allows the original specialized type to be recreated
from the generalized instance.

specialization
(1) The act of defining new element or attribute types as a semantic refinement of existing element or attribute
types
(2) An element or attribute type that is a specialization of a base type

(3) A process by which a generalized element is transformed into one of its more specialized element types or a
generalized attribute is transformed into a more specialized attribute.

specialization hierarchy

The sequence of element or attribute types, from the most general to most specialized, from which a given element
or attribute type is specialized. The specialization hierarchy for a DITA element is formally declared through its
@class attribute.

structural type
A topic type or map type.

DITA modules

The following terminology is used to discuss DITA modules:
attribute domain module

A domain module that defines a specialization of either the @base or @props attribute.
constraint module

A set of declarations that imposes additional constraints onto the element or attribute types that are defined in a
specific vocabulary module.

domain module

A vocabulary module that defines a set of element types or an attribute type that supports a specific subject or
functional area.

element domain module

A domain module that defines one or more element types for use within maps or topics.
structural module

A vocabulary module that defines a top-level map type or topic type.
vocabulary module

A set of element or attribute declarations.

Linking and addressing terms

The following terminology is used to discuss linking and addressing terms:
referenced element
An element that is referenced by another DITA element. See also referencing element.
Example

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 29 of 867



Consider the following code sample from a installation-reuse.dita topic. The <step> element that
it contains is a referenced element; other DITA topics reference the <step> element by using the @conref
attribute.

<step id="run-startcmd-script">
<cmd>Run the startcmd script that is applicable to your operating-system environment.</cmd>
</step>
referencing element

An element that references another DITA element by specifying an addressing attribute. See also referenced
element and addressing attribute

Example

The following <step> element is a referencing element. It uses the @conref attribute to reference a <step>
elementinthe installation-reuse.dita topic.

<step conref="installation-reuse.dita#reuse/run-startcmd-script">
<cmd/>
</step>
addressing attribute

An attribute, such as @conref, @conkeyref, @keyref, and @href, that specifies an address.

Terminology related to keys

The following terminology is used to discuss keys:
resource
For the purposes of keys and key resolution, one of the following:

* An object addressed by URI
* Metadata specified on a resource, such as a @scope or @format attribute
» Text or metadata located within a <topicmeta> element

key
A name for a resource. See Using keys for addressing (77) for more information.
key definition
A <topicref> element that binds one or more key names to zero or more resources.
key reference
An attribute that references a key, such as @keyref or @conkeyref.
key space
A list of key definitions that are used to resolve key references.
effective key definition

The definition for a key within a key space that is used to resolve references to that key. A key might have multiple
definitions within a key space, but only one of those definitions is effective.

key scope

A map or section of a map that defines its own key space and serves as the resolution context for its key
references.

Map terms
root map
The DITA map that is provided as input for a processor.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 30 of 867



submap

A DITA map that is referenced with a @scope attribute that evaluates as "local". The value of the scope attribute
might be explicitly set, be defaulted, or cascade from another element.

peer map
A DITA map that is referenced with a @scope attribute that evaluates as "peer". The value of the scope attribute
might be explicitly set, be defaulted, or cascade from another element.

map branch

A <topicref> element or a specialization of <topicref>, along with any child elements and all resources that
are referenced by the original element or its children.

2.1.2 Basic concepts

DITA has been designed to satisfy requirements for information typing, semantic markup, modularity, reuse,
interchange, and production of different deliverable forms from a single source. These topics provide an
overview of the key DITA features and facilities that serve to satisfy these requirements.

DITA topics

In DITA, a topic is the basic unit of authoring and reuse. All DITA topics have the same basic structure: a title and,
optionally, a body of content. Topics can be generic or more specialized; specialized topics represent more specific
information types or semantic roles, for example, <concept>, <task>, <reference>, Or <learningContent>.
See DITA topics (33) for more information.

DITA maps

DITA maps are documents that organize topics and other resources into structured collections of information. DITA
maps specify hierarchy and the relationships among the topics; they also provide the contexts in which keys are
defined and resolved. DITA maps SHOULD have .ditamap as the file extension. See DITA maps (38) for more
information.

Information typing

Information typing is the practice of identifying types of topics, such as concept, reference, and task, to clearly
distinguish between different types of information. Topics that answer different reader questions (How ...? What

is ...7) can be categorized with different information types. The base information types provided by DITA
specializations (for example, technical content, machine industry, and learning and training) provide starter sets of
information types that can be adopted immediately by many technical and business-related organizations. See
Information typing (35) for more information.

DITA addressing

DITA provides two addressing mechanisms. DITA addresses either are direct URI-based addresses, or they are
indirect key-based addresses. Within DITA documents, individual elements are addressed by unique identifiers
specified on the @id attribute. DITA defines two fragment-identifier syntaxes; one is the full fragment-identifier
syntax, and the other is an abbreviated fragment-identifier syntax that can be used when addressing non-topic
elements from within the same topic. See DITA addressing (70) for more information.

Content reuse

The DITA @conref, @Qconkeyref, @conrefend, and @conaction attributes provide mechanisms for reusing
content within DITA topics or maps. These mechanisms can be used both to pull and push content. See Content
reuse (98) for more information

Conditional processing

Conditional processing, also known as profiling, is the filtering or flagging of information based on processing-time
criteria. See Conditional processing (103) for more information.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 31 of 867



Configuration

A document type shell is an XML grammar file that specifies the elements and attributes that are allowed in a DITA
document. The document type shell integrates structural modules, domain modules, and constraint modules. In
addition, a document type shell specifies whether and how topics can nest. See Configuration (132) for more
information.

Specialization

The specialization feature of DITA allows for the creation of new element types and attributes that are explicitly and

formally derived from existing types. This facilitates interchange of conforming DITA content and ensures a

minimum level of common processing for all DITA content. It also allows specialization-aware processors to add

specialization-specific processing to existing base processing. See Specialization (134) for more information.
Constraints

Constraint modules define additional constraints for vocabulary modules in order to restrict content models or

attribute lists for specific element types, remove certain extension elements from an integrated domain module, or

replace base element types with domain-provided, extension element types. See Constraints (147) for more
information.

2.1.3 File extensions
DITA uses certain file extensions for topics, maps, and conditional processing profiles.

Files that contain DITA content SHOULD use the following file extensions:
DITA topics

« *.dita (preferred)

*

e *xml

DITA maps
*.ditamap
Conditional processing profiles

*.ditaval

2.1.4 Producing different deliverables from a single source

DITA is designed to enable the production of multiple deliverable formats from a single set of DITA content. This
means that many rendition details are specified neither in the DITA specification nor in the DITA content; the
rendition details are defined and controlled by the processors.

Like many XML-based applications for human-readable documentation, DITA supports the separation of content
from presentation. This is necessary when content is used in different contexts, since authors cannot predict how
or where the material that they author will be used. The following features and mechanisms enable users to
produce different deliverable formats from a single source:

DITA maps

Different DITA maps can be optimized for different delivery formats. For example, you might have a book map for
printed output and another DITA map to generate online help; each map uses the same content set.

Specialization

The DITA specialization facility enables users to create XML elements that can provide appropriate rendition
distinctions. Because the use of specializations does not impede interchange or interoperability, DITA users can
safely create the specializations that are demanded by their local delivery and rendition requirements, with a
minimum of additional impact on the systems and business processes that depend on or use the content. While
general XML practices suggest that element types should be semantic, specialization can be used to define

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 32 of 867



element types that are purely presentational in nature. The highlighting domain is an example of such a
specialization.

Conditional processing
Conditional processing makes it possible to have a DITA topic or map that contains delivery-specific content.
Content referencing

The conref mechanism makes it possible to construct delivery-specific maps or topics from a combination of
generic components and delivery-context-specific components.

Key referencing

The keyref mechanism makes it possible to have key words be displayed differently in different deliverables. It also
allows a single link to resolve to different targets in different deliverables.

@outputclass attribute

The Goutputclass attribute provides a mechanism whereby authors can indicate specific rendition intent where
necessary. Note that the DITA specification does not define any values for the @outputclass attribute; the use of
the @outputclass attribute is processor specific.

While DITA is independent of any particular delivery format, it is a standard that supports the creation of human-
readable content. As such, it defines some fundamental document components including paragraphs, lists, and
tables. When there is a reasonable expectation that such basic document components be rendered consistently,
the DITA specification defines default or suggested renderings.

2.2 DITA markup

Topics and maps are the basic building blocks of the Darwin Information Typing Architecture (DITA). Metadata
attributes and values can be added to DITA topics and maps, as well as to elements within topics, to allow for
conditional publishing and content reuse.

DITA topics and maps are XML documents that conform to the XML specification. As such, they can be viewed,
edited, validated, and processed with standard XML tools, although some DITA-specific features, such as
content reference, key reference, and specialization require DITA-specific processing for full implementation and
validation.

2.2.1 DITA topics

DITA topics are the basic units of DITA content and the basic units of reuse. Each topic contains a single
subject. Topics may be of specific specialized information types, such as task, concept, or reference, or may be
generic, that is, without a specified information type.

2.2.1.1 The topic as the basic unit of information

In DITA, a topic is the basic unit of authoring and reuse. All DITA topics have the same basic structure: a title
and, optionally, a body of content. Topics can be generic or more specialized; specialized topics represent more
specific information types or semantic roles, for example, <concept>, <task>, <reference>, Or
<learningContent>.

DITA topics consist of content units that can be as generic as sets of paragraphs and unordered lists or as
specific as sets of instructional steps in a procedure or cautions to be considered before a procedure is
performed. Content units in DITA are expressed using XML elements and can be conditionally processed using
metadata attributes.

Classically, a DITA topic is a titled unit of information that can be understood in isolation and used in multiple
contexts. It should be short enough to address a single subject or answer a single question but long enough to
make sense on its own and be authored as a self-contained unit. However, DITA topics also can be less self-
contained units of information, such as topics that contain only titles and short descriptions and serve primarily to

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 33 of 867



organize subtopics or links or topics that are designed to be nested for the purposes of information
management, authoring convenience, or interchange.

DITA topics are used by reference from DITA maps. DITA maps enable topics to be organized in a hierarchy for
publication. Large units of content, such as complex reference documents or book chapters, are created by
nesting topic references in a DITA map. The same set of DITA topics can be used in any number of maps.

DITA topics also can be used and published individually; for example, one can represent an entire deliverable as
a single DITA document that consists of a root topic and nested topics. This strategy can accommodate the
migration of legacy content that is not topic-oriented; it also can accommodate information that is not meaningful
outside the context of a parent topic. However, the power of DITA is most fully realized by storing each DITA
topic in a separate XML document and using DITA maps to organize how topics are combined for delivery. This
enables a clear separation between how topics are authored and stored and how topics are organized for
delivery.

2.2.1.2 The benefits of a topic-based architecture
Topics enable the development of usable and reusable content.

While DITA does not require the use of any particular writing practice, the DITA architecture is designed to
support authoring, managing, and processing of content that is designed to be reused. Although DITA provides
significant value even when reuse is not a primary requirement, the full value of DITA is realized when content is
authored with reuse in mind. To develop topic-based information means creating units of standalone information
that are meaningful with little or no surrounding context.

By organizing content into topics that are written to be reusable, authors can achieve several goals:

» Content is readable when accessed from an index or search, not just when read in sequence as part of an
extended narrative. Since most readers do not read technical and business-related information from
beginning to end, topic-oriented information design ensures that each unit of information can be read
independently.

» Content can be organized differently for online and print delivery. Authors can create task flows and concept
hierarchies for online delivery and create a print-oriented hierarchy to support a narrative content flow.

» Content can be reused in different collections. Since a topic is written to support random access (as by
search), it should also be understandable when included as part of various product deliverables. Topics
permit authors to refactor information as needed, including only the topics that apply to each unique scenario.

» Content is more manageable in topic form whether managed as individual files in a traditional file system or
as objects in a content management system.

» Content authored in topics can be translated and updated more efficiently and less expensively than
information authored in larger or more sequential units.

» Content authored in topics can be filtered more efficiently, encouraging the assembly and deployment of
information subsets from shared information repositories.

Topics written for reuse should be small enough to provide opportunities for reuse but large enough to be
coherently authored and read. When each topic is written to address a single subject, authors can organize a set
of topics logically and achieve an acceptable narrative content flow.

2.2.1.3 Disciplined, topic-oriented writing

Topic-oriented writing is a disciplined approach to writing that emphasizes modularity and reuse of concise units
of information: topics. Well-designed DITA topics can be reused in many contexts, as long as writers are careful
to avoid unnecessary transitional text.

Conciseness and appropriateness

Readers who are trying to learn or do something quickly appreciate information that is written in a structure that
is easy to follow and contains only the information needed to complete that task or grasp a fact. Recipes,

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 34 of 867



encyclopedia entries, car repair procedures--all serve up a uniquely focused unit of information. The topic
contains everything required by the reader.

Locational independence

A well-designed topic is reusable in other contexts to the extent that it is context free, meaning that it can be
inserted into a new document without revision of its content. A context-free topic avoids transitional text. Phrases
like "As we considered earlier ..." or "Now that you have completed the initial step ..." make little sense if a topic
is reused in a new context in which the relationships are different or no longer exist. A well-designed topic reads
appropriately in any new context because the text does not refer the reader outside the topic.

Navigational independence

Most print publications or web pages are a mixture of content and navigation. Internal links lead a reader through
a sequence of choices as he or she navigates through a website. DITA supports the separation of navigation
from content by assembling independent topics into DITA maps. Nonetheless, writers may want to provide links
within a topic to additional topics or external resources. DITA does not prohibit such linking within individual
topics. The DITA relationship table enables links between topics and to external content. Since it is defined in
the DITA map, it is managed independently of the topic content.

Links in the content are best used for cross-references within a topic. Links from within a topic to additional
topics or external resources should be avoided because they limit the reusability of the topic. To link from a term
or keyword to its definition, use the DITA keyref facility to avoid creating topic-to-topic dependencies that are
difficult to maintain. See Key-based addressing (74).

2.2.1.4 Information typing

Information typing is the practice of identifying types of topics, such as concept, reference, and task, to clearly
distinguish between different types of information. Topics that answer different reader questions (How ...? What
is ...?) can be categorized with different information types. The base information types provided by DITA
specializations (for example, technical content, machine industry, and learning and training) provide starter sets
of information types that can be adopted immediately by many technical and business-related organizations.

Information typing has a long history of use in the technical documentation field to improve information quality. It
is based on extensive research and experience, including Robert Horn's Information Mapping and Hughes
Aircraft's STOP (Sequential Thematic Organization of Proposals) technique. Note that many DITA topic types
are not necessarily closely connected with traditional Information Mapping.

Information typing is a practice designed to keep documentation focused and modular, thus making it clearer to
readers, easier to search and navigate, and more suitable for reuse. Classifying information by type helps
authors perform the following tasks:

» Develop new information more consistently

» Ensure that the correct structure is used for closely related kinds of information (retrieval-oriented structures
like tables for reference information and simple sequences of steps for task information)

» Avoid mixing content types, thereby losing reader focus

» Separate supporting concept and reference information from tasks, so that users can read the supporting
information if needed and ignore if it is not needed

* Eliminate unimportant or redundant detail
+ Identify common and reusable subject matter

DITA currently defines a small set of well-established information types that reflects common practices in certain
business domains, for example, technical communication and instruction and assessment. However, the set of
possible information types is unbounded. Through the mechanism of specialization, new information types can
be defined as specializations of the base topic type (<topic>) or as refinements of existing topics types, for
example, <concept>, <task>, <reference>, Of <learningContent>.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 35 of 867



You need not use any of the currently-defined information types. However, where a currently-defined information
type matches the information type of your content, the currently-defined information type should be used, either
directly, or as a base for specialization. For example, information that is procedural in nature should use the task
information type or a specialization of task. Consistent use of established information types helps ensure smooth
interchange and interoperability of DITA content.

2.2.1.5 Generic topics
The element type <topic> is the base topic type from which all other topic types are specialized. All topics have
the same basic structure.

For authors, typed content is preferred to support consistency in writing and presentation to readers. The generic
topic type should only be used if authors are not trained in information typing or when a specialized topic type is
inappropriate. The OASIS DITA standard provides several specialized topic types, including concept, task, and
reference that are critical for technical content development.

For those pursuing specialization, new specialized topic types should be specialized from appropriate ancestors
to meet authoring and output requirements.
2.2.1.6 Topic structure
All topics have the same basic structure, regardless of topic type: title, description or abstract, prolog, body,
related links, and nested topics.
All DITA topics must have an XML identifier (the @id attribute) and a title. The basic topic structure consists of
the following parts, some of which are optional:
Topic element
The topic element holds the required @id attribute and contains all other elements.
Title
The title contains the subject of the topic.
Alternate titles
Titles specifically for use in navigation or search. When not provided, the base title is used for all contexts.
Short description or abstract

A short description of the topic or a longer abstract with an embedded short description. The short description may
be used both in topic content (as the first paragraph), in generated summaries that include the topic, and in links to
the topic. Alternatively, the abstract lets you create more complex introductory content and uses an embedded
short description element to define the part of the abstract that is suitable for summaries and link previews.

While short descriptions aren't required, they can make a dramatic difference to the usability of an information set
and should generally be provided for all topics.

Prolog
The prolog is the container for topic metadata, such as change history, audience, product, and so on.
Body

The topic body contains the topic content: paragraphs, lists, sections, and other content that the information type
permits.

Related links

Related links connect to other topics. When an author creates a link as part of a topic, the topic becomes
dependent on the other topic being available. To reduce dependencies between topics and thereby increase the
reusability of each topic, authors may use DITA maps to define and manage links between topics, instead of
embedding links directly in each related topic.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 36 of 867



Nested topics

Topics can be defined inside other topics. However, nesting requires special care because it can result in complex
documents that are less usable and less reusable. Nesting may be appropriate for information that is first converted
from desktop publishing or word processing files or for topics that are unusable independent from their parent or
sibling topics.

The rules for topic nesting can be configured in a document-type shells. For example, the standard DITA
configuration for concept topics only allows nested concept topics. However, local configuration of the concept topic
type could allow other topic types to nest or disallow topic nesting entirely. In addition, the @chunk attribute enables
topics to be equally re-usable regardless of whether they are separate or nested. The standard DITA configuration
for ditabase document-type documents allows unrestricted topic nesting and may be used for holding sets of
otherwise unrelated topics that hold re-usable content. It may also be used to convert DITA topics from non-DITA
legacy source without first determining how individual topics should be organized into separate XML documents.

2.2.1.7 Topic content

The content of all topics, regardless of topic type, is built on the same common structures.

Topic body
The topic body contains all content except for that contained in the title or the short description/abstract. The topic
body can be constrained to remove specific elements from the content model; it also can be specialized to add

additional specialized elements to the content model. The topic body can be generic while the topic title and prolog
are specialized.

Sections and examples

The body of a topic might contain divisions, such as sections and examples. They might contain block-level
elements like titles and paragraphs and phrase-level elements like APl names or text. It is recommend that sections
have titles, whether they are entered directly into the <title> element or rendered using a fixed or default title.

Either body divisions or untitled sections or examples may be used to delimit arbitrary structures within a topic
body. However, body divisions may nest, but sections and examples cannot contain sections.

<sectiondiv>
The <sectiondiv> element enables the arbitrary grouping of content within a section for the purpose of content
reuse. The <sectiondiv> element does not include a title. Content that requires a title should use <section> or
<example>.

<bodydiv>
The <bodydiv> element enables the arbitrary grouping of content within the body of a topic for the purpose of
content reuse. The <bodydiv> element does not include a title. Content that requires a title should use <section>
Or <example>.

<div>
The <div> element enables the arbitrary grouping of content within a topic. The <div> element does not include a
title. Content that requires a title should use <section> or <example> or, possibly, <fig>.

Block-level elements
Paragraphs, lists, figures, and tables are types of "block" elements. As a class of content, they can contain other
blocks, phrases, or text, though the rules vary for each structure.

Phrases and keywords
Phrase level elements can contain markup to label parts of a paragraph or parts of a sentence as having special

semantic meaning or presentation characteristics, such as <uicontrol> or <b>. Phrases can usually contain other
phrases and keywords as well as text. Keywords can only contain text.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 37 of 867



Images

Images can be inserted to display photographs, illustrations, screen captures, diagrams, and more. At the phrase
level, they can display trademark characters, icons, toolbar buttons, and so forth.

Multimedia

The <object> element enables authors to include multimedia, such as diagrams that can be rotated and
expanded. The <foreign> element enables authors to include media within topic content, for example, SVG
graphics, MathML equations, and so on.

2.2.2 DITA maps

This topic collection contains information about DITA maps and the purposes that they serve. It also includes
high-level information about DITA map elements, attributes, and metadata.

2.2.2.1 Definition of DITA maps

DITA maps are documents that organize topics and other resources into structured collections of information.
DITA maps specify hierarchy and the relationships among the topics; they also provide the contexts in which
keys are defined and resolved. DITA maps SHOULD have .ditamap as the file extension.

Maps draw on a rich set of existing best practices and standards for defining information models, such as
hierarchical task analysis. They also support the definition of non-hierarchical relationships, such as matrices
and groups, which provide a set of capabilities that has similarities to Resource Description Framework (RDF)
and I1SO topic maps.

DITA maps use <topicref> elements to reference DITA topics, DITA maps, and non-DITA resources, for
example, HTML and TXT files. The <topicref> elements can be nested or grouped to create relationships
among the referenced topics, maps, and non-DITA files; the <topicref> elements can be organized into
hierarchies in order to represent a specific order of navigation or presentation.

DITA maps impose an architecture on a set of topics. Information architects can use DITA maps to specify what
DITA topics are needed to support a given set of user goals and requirements; the sequential order of the topics;
and the relationships that exist among those topics. Because DITA maps provide this context for topics, the
topics themselves can be relatively context-free; they can be used and reused in multiple different contexts.

DITA maps often represent a single deliverable, for example, a specific Web site, a printed publication, or the
online help for a product. DITA maps also can be subcomponents for a single deliverable, for example, a DITA
map might contain the content for a chapter in a printed publication or the troubleshooting information for an
online help system. The DITA specification provides specialized map types; book maps represent printed
publications, subject scheme maps represent taxonomic or ontological classifications, and learning maps
represent formal units of instruction and assessment. However, these map types are only a starter set of map
types reflecting well-defined requirements.

DITA maps establish relationships through the nesting of <topicref> elements and the application of the
@collection-type attribute. Relationship tables may also be used to associate topics with each other based
on membership in the same row; for example, task topics can be associated with supporting concept and
reference topics by placing each group in cells of the same row. During processing, these relationships can be
rendered in different ways, although they typically result in lists of "Related topics" or "For more information"
links. Like many aspects of DITA, the details about how such linking relationships are presented is determined
by the DITA processor.

DITA maps also define keys and organize the contexts (key scopes) in which key references are resolved.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 38 of 867



2.2.2.2 Purpose of DITA maps
DITA maps enable the scalable reuse of content across multiple contexts. They can be used by information
architects, writers, and publishers to plan, develop, and deliver content.

DITA maps support the following uses:

Defining an information architecture

Maps can be used to define the topics that are required for a particular audience, even before the topics
themselves exist. DITA maps can aggregate multiple topics for a single deliverable.

Defining what topics to build for a particular output

Maps reference topics that are included in output processing. Information architects, authors, and publishers can
use maps to specify a set of topics that are processed at the same time, instead of processing each topic
individually. In this way, a DITA map can serve as a manifest or bill of materials.

Defining navigation
Maps can define the online navigation or table of contents for a deliverable.
Defining related links

Maps define relationships among the topics they reference. These relationships are defined by the nesting of
elements in the DITA map, relationship tables, and the use of elements on which the @collection-type attribute
is set. On output, these relationships might be expressed as related links or the hierarchy of a table of contents
(TOC).

Defining an authoring context
The DITA map can define the authoring framework, providing a starting point for authoring new topics and
integrating existing ones.

Defining keys and key scopes

Maps can define keys, which provide an indirect addressing mechanism that enhances portability of content. The
keys are defined by <topicref> elements or specializations of <topicref> elements, such as <keydef>. The
<keydef> element is a convenience element; it is a specialized type of a <topicref> element with the following
attributes:

* Arequired @keys attribute
* A @processing-role attribute with a default value of "resource-only".

Maps also define the context or contexts for resolving key-based references, such as elements that specify the
@keyref or @conkeyref attribute. Elements within a map structure that specify a @keyscope attribute create a
new context for key reference resolution. Key references within such elements are resolved against the set of
effective key definitions for that scope.

Specialized maps can provide additional semantics beyond those of organization, linking, and indirection. For
example, the subjectScheme map specialization adds the semantics of taxonomy and ontology definition.
2.2.2.3 DITA map elements
A DITA map describes the relationships among a set of DITA topics. The DITA map and map-group domain
elements organize topics into hierarchies, groups, and relationships; they also define keys.
A DITA map is composed of the following elements:
<map>

The <map> element is the root element of the DITA map.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 39 of 867



<topicref>

The <topicref> elements are the basic elements of a map. A <topicref> element can reference a DITA
topic, a DITA map, or a non-DITA resource. A <topicref> element also can have a title, short description,
and the same kind of prolog-level metadata that is available in topics.

The <topicref> elements can be nested to create a hierarchy, which can be used to define a table of
contents (TOC) for print output, online navigation, and parent/child links. Hierarchies can be annotated using
the @collection-type attribute to define a particular type of relationship, such as a set of choices, a
sequence, or a family. These collection types can affect link generation, and they may be interpreted
differently for different outputs.

<reltable>

Relationship tables are defined with the <reltable> element. Relationship tables can be used to define
relationships among DITA topics or among DITA topics and non-DITA resources. In a relationship table, the
columns define common attributes, metadata, or information types (for example, task or troubleshooting) for
the resources that are referenced in that column. The rows define relationships between the resources in
different cells of the same row.

The <relrow>, <relcell>, <relheader>, and <relcolspec> elements are used to define the components
of the relationship table. Relationships defined in the relationship table also can be further refined by using
the Gcollection-type attribute.

<topicgroup>
The <topicgroup> element defines a group or collection outside of a hierarchy or relationship table. Itis a
convenience element that is equivalent to a <topicref> element without an ehref attribute or navigation title.
Groups can be combined with hierarchies and relationship tables, for example, by including a <topicgroup>
element within a set of siblings in a hierarchy or within a table cell. The <topicref> elements so grouped can then
share inherited attributes and linking relationships with no effect on the navigation or table of contents.

<topicmeta>
Most map-level elements, including the map itself, can contain metadata inside the <topicmeta> element.
Metadata typically is applied to an element and its descendants.

<ux-window>
The <ux-window> element enables authors to define windowing information for the display of output topics that are

appropriate to the delivery platform. Window management is important in user assistance and help system outputs,
as well as for other hypertext and electronic delivery modes.

<topichead>
The <topichead> element provides a navigation title; it is a convenience element that is equivalent to a
<topicref> element with a navigation title but no associated resource.

<anchor>

The <anchor> element provides an integration point that another map can reference in order to insert its

navigation into the referenced map's navigation tree. For those familiar with Eclipse help systems, this serves the

same purpose as the <anchor> element in that system. It might not be supported for all output formats.
<navref>

The <navref> element represents a pointer to another map which should be preserved as a transcluding link in
the result deliverable rather than resolved when the deliverable is produced. Output formats that support such
linking can integrate the referenced resource when displaying the referencing map to an end user.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 40 of 867



<keydef>
Enables authors to define keys. This element is a convenience element; it is a specialization of <topicref> that
sets the default value of the @processing-role attribute to "resource-only". Setting the @processing-role
attribute to resource-only ensures that the resource referenced by the key definition is not directly included in the
navigation that is defined by the map.

<mapref>
Enables authors to reference an entire DITA map, including hierarchy and relationship tables. This element is a
convenience element; it is a specialization of <topicref> that sets the default value of the @ format attribute to
"ditamap". The <mapref> element represents a reference from a parent map to a subordinate map.

<topicset>
Enables authors to define a branch of navigation in a DITA map so that it can be referenced from another DITA
map.

<topicsetref>
Enables authors to reference a navigation branch that is defined in another DITA map.

<anchorref>

Enables authors to define a map fragment that is pushed to the location defined by an anchor.

2.2.2.4 DITA map attributes

DITA maps have unique attributes that are designed to control the way that relationships are interpreted for
different output purposes. In addition, DITA maps share many metadata and linking attributes with DITA topics.

DITA maps often encode structures that are specific to a particular medium or output, for example, Web pages
or a PDF document. Attributes, such as @deliveryTarget and @toc, are designed to help processors interpret
the DITA map for each kind of output. Many of these attributes are not available in DITA topics; individual topics,
once separated from the high-level structures and dependencies associated with a particular kind of output,
should be entirely reusable regardless of the intended output format.

@collection-type
The @collection-type attribute specifies how the children of a <topicref> element relate to their parent and to
each other. This attribute, which is set on the parent element, typically is used by processors to determine how to
generate navigation links in the rendered topics. For example, a @collection-type value of "sequence" indicates
that children of the specifying <topicref> element represent an ordered sequence of topics; processors might
add numbers to the list of child topics or generate next/previous links for online presentation. This attribute is
available in topics on the <1inklist> and <linkpool> elements, where it has the same behavior. Where the
@collection-type attribute is available on elements that cannot directly contain elements (such as <reltable>
or <topicref>), the behavior of the attribute is reserved for future use.

@linking
By default, the relationships between the topics that are referenced in a map are reciprocal:

 Child topics link to parent topics and vice versa.
* Next and previous topics in a sequence link to each other.
* Topics in a family link to their sibling topics.

» Topics referenced in the table cells of the same row in a relationship table link to each other. A topic referenced
within a table cell does not (by default) link to other topics referenced in the same table cell.
This behavior can be modified by using the @1inking attribute, which enables an author or information
architect to specify how a topic should participate in a relationship. The following values are valid:
linking="none"
Specifies that the topic does not exist in the map for the purposes of calculating links.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 41 of 867



linking="sourceonly"
Specifies that the topic will link to its related topics but not vice versa.
linking="targetonly"
Specifies that the related topics will link to it but not vice versa.
linking="normal"
Default value. It specifies that linking will be reciprocal (the topic will link to related topics, and they will link back
to it).

Authors also can create links directly in a topic by using the <xref> or <1ink> elements, but in most cases

map-based linking is preferable, because links in topics create dependencies between topics that can hinder
reuse.

Note that while the relationships between the topics that are referenced in a map are reciprocal, the
relationships merely imply reciprocal links in generated output that includes links. The rendered navigation
links are a function of the presentation style that is determined by the processor.

@toc

Specifies whether topics are excluded from navigation output, such as a Web site map or an online table of
contents. By default, <topicref> hierarchies are included in navigation output; relationship tables are excluded.

@navtitle
Specifies a navigation title. This is a shorter version of the title that is used in the navigation only. By default, the
@navtitle attribute is ignored; it serves only to help the DITA map author keep track of the title of the topic.

Note: The @navtitle attribute is deprecated in favor of the <navtitle> element. When both a <navtitle>
element and a @navtitle attribute are specified, the <navtitle> element should be used.
@locktitle

If @locktitle is setto "yes", the <navtitle> element or @navtitle attribute is used if it is present.
Otherwise, the <navtitle> element or @navtitle attribute is ignored and the navigation title is retrieved
from the referenced file.

Note: The @navtitle attribute is deprecated in favor of the <navtitle> element. When both a <navtitle>
element and a @navtitle attribute are specified, the <navtitle> element should be used.
@print
Specifies whether the topic should be included in printed output.
Note: Beginning with DITA 1.3, the @print attribute is deprecated. It is replaced with a conditional processing
attribute: @deliveryTarget. See @deliveryTarget for more details.
@search
Specifies whether the topic should be included in search indexes.
@chunk
Specifies that the processor generates an interim set of DITA topics that are used as the input for the final
processing. This can produce the following output results:
» Multi-topic files are transformed into smaller files, for example, individual HTML files for each DITA topic.
* Individual DITA topics are combined into a single file.

Specifying a value for the @chunk attribute on a <map> element establishes chunking behavior that applies to
the entire map, unless overridden by @chunk attributes that are set on more specific elements in the DITA
map. For a detailed description of the @chunk attribute and its usage, see Chunking (122).

@copy-to

In most situations, specifies whether a duplicate version of the topic is created when it is transformed. This
duplicate version can be either literal or virtual. The value of the Rcopy-to attribute specifies the uniform

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 42 of 867



resource identifier (URI) by which the topic can be referenced by a @conref attribute, <topicref> element,
or <xref> element. The duplication is a convenience for output processors that use the URI of the topic to
generate the base address of the output. The @keys and @keyref attributes provide an alternative
mechanism; they enable references to topics in specific-use contexts.

The ecopy-to attribute also can be used to specify the name of a new chunk when topics are being
chunked; it also can be used to determine the name of the stub topic that is generated from a <topicref>
element that contains a title but does not specify a target. In both of those cases, no duplicate version of the
topic is generated.

For information on how the @copy-to attribute can be used with the @chunk attribute, see Chunking (122).

@processing-role
Specifies whether the topic or map referenced should be processed normally or treated as a resource that is only
included in order to resolve key or content references.
processing-role="normal"
The topic is a readable part of the information set. It is included in navigation and search results. This is the
default value for the <topicref> element.
processing-role="resource-only"

The topic should be used only as a resource for processing. It is not included in navigation or search results, nor
is it rendered as a topic. This is the default value for the <keydef> element.

If the @processing-role attribute is not specified locally, the value cascades from the closest element in the
containment hierarchy.
@cascade
Specifies whether the default rules for the cascading of metadata attributes in a DITA map apply. In addition to the
following specified values, processors also MAY define additional values.
cascade="merge"
The metadata attributes cascade; the values of the metadata attributes are additive. This is the processing
default for the ecascade attribute and was the only defined behavior for DITA 1.2 and earlier.
cascade="nomerge"

The metadata attributes cascade; however, they are not additive for <topicref> elements that specify a
different value for a specific metadata attribute. If the cascading value for an attribute is already merged based
on multiple ancestor elements, that merged value continues to cascade until a new value is encountered (that is,
setting cascade="nomerge" does not undo merging that took place on ancestors).

For more information, see Example: How the cascade attribute functions (47).

@keys
Specifies one or more key names.

@keyscope
Defines a new scope for key definition and resolution, and gives the scope one or more names. For more
information about key scopes, see Indirect key-based addressing (74).

Attributes in the list above are used exclusively or primarily in maps, but many important map attributes are
shared with elements in topics. DITA maps also use many of the following attributes that are used with linking
elements in DITA topics, such as <1ink> and <xref>:

* @format
* @href
* Qkeyref

* @scope

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 43 of 867



* @Qtype
The following metadata and reuse attributes are used by both DITA maps and DITA topics:
* @product, @platform, @audience, Qotherprops, @rev, @status, @importance
* @dir, @xml:lang, @translate
* @id, @conref, @conrefend, @conkeyref, @conaction
* @props and any attribute specialized from @props (such as @deliveryTarget)
* @search

When new attributes are specialized from @props or @base as a domain, they can be incorporated into both
map and topic structural types.

2.2.2.5 Examples of DITA maps

This section of the specification contains simple examples of DITA maps. The examples illustrate a few of the
ways that DITA maps are used.

2.2.2.5.1 Example: DITA map that references a subordinate map
This example illustrates how one map can reference a subordinate map using either <mapref> or the basic
<topicref> element.

The following code sample illustrates how a DITA map can use the specialized <mapre > element to reference
another DITA map:

<map>
<title>DITA work at OASIS</title>
<topicref href="oasis-dita-technical-committees.dita">
<topicref href="dita technical committee.dita"/>
<topicref href="dita adoption_technical committee.dita"/>
</topicref>
<mapref href="oasis-processes.ditamap"/>
<l=-= .0 ==
</map>

The <mapref> element is a specialized <topicref> intended to make it easier to reference another map; use
of <mapref> is not required for this task. This map also could be tagged in the following way:

<map>
<title>DITA work at OASIS</title>
<topicref href="oasis-dita-technical-committees.dita">
<topicref href="dita technical committee.dita"/>
<topicref href="dita adoption technical committee.dita"/>
</topicref>
<topicref href="oasis-processes.ditamap" format="ditamap"/>
Lle== o450 ==
</map>

With either of the above examples, during processing, the map is resolved in the following way:

<map>

<title>DITA work at OASIS</title>

<topicref href="oasis-dita-technical-committees.dita">
<topicref href="dita technical committee.dita"/>
<topicref href="dita adoption technical committee.dita"/>

</topicref>

<!-- Contents of the oasis-processes.ditamap file -->

<topicref href="oasis-processes.dita">
== 500 =2

</topicref>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 44 of 867



2.2.2.5.2 Example: DITA map with a simple relationship table
This example illustrates how to interpret a basic three-column relationship table used to maintain links between

concept, task, and reference material.

The following example contains the markup for a simple relationship table:

<map>
lo= 500 ==2
<reltable>
<relheader>
<relcolspec type="concept"/>
<relcolspec type="task"/>
<relcolspec type="reference"/>
</relheader>
<relrow>
<relcell>
<topicref href="A.dita"/>
</relcell>
<relcell>
<topicref href="B.dita"/>
</relcell>
<relcell>
<topicref href="Cl.dita"/>
<topicref href="C2.dita"/>
</relcell>
</relrow>
</reltable>
</map>

A DITA-aware tool might represent the relationship table graphically:

type="concept" type="task" type="reference"
A B C
Cc2

When the output is generated, the topics contain the following linkage:
A
Links to B, C1, and C2
B
Links to A, C1, and C2
C1,C2
Links to A and B

2.2.2.5.3 Example: How the @collection-type and @linking attributes determine links

In this scenario, a simple map establishes basic hierarchical and relationship table links. The @collection-
type and @1inking attributes are then added to modify how links are generated.

The following example illustrates how linkage is defined in a DITA map:

<topicref href="A.dita" collection-type="sequence">
<topicref href="Al.dita"/>
<topicref href="A2.dita"/>
</topicref>
<reltable>
<relrow>
<relcell><topicref href="A.dita"/></relcell>
<relcell><topicref href="B.dita"/></relcell>

dita-v1.3-csd01-part2-tech-content

30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 45 of 867




</relrow>
</reltable>

Figure 3: Simple linking example

When the output is generated, the topics contain the following linkage. Sequential (next/previous) links between

A1 and A2 are present because of the @collection-type attribute on the parent:
A
Links to A1, A2 as children
Links to B as related
A1
Links to A as a parent
Links to A2 as next in the sequence
A2
Links to A as a parent
Links to A1 as previous in the sequence
B

Links to A as related

The following example illustrates how setting the @1inking attribute can change the default behavior:

<topicref href="A.dita" collection-type="sequence">
<topicref href="B.dita" linking="none"/>
<topicref href="Al.dita"/>
<topicref href="A2.dita"/>
</topicref>
<reltable>
<relrow>
<relcell><topicref href="A.dita"/></relcell>
<relcell linking="sourceonly"><topicref href="B.dita"/></relcell>
</relrow>
</reltable>

Figure 4: Linking example with the @linking attribute

When the output is generated, the topics contain the following linkage:
A

Links to A1, A2 as children

Does not link to B as a child or related topic
A1

Links to A as a parent

Links to A2 as next in the sequence

Does not link to B as previous in the sequence
A2

Links to A as a parent

Links to A1 as previous in the sequence
B

Links to A as a related topic

dita-v1.3-csd01-part2-tech-content
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

30 June 2015
Page 46 of 867



2.2.2.5.4 Example: How the @cascade attribute functions

The following example illustrates how the @cascade attribute can be used to fine tune how the values for the
@platform attribute apply to topics referenced in a DITA map.

Here a DITA map contains a collection of topics that apply to Windows, Linux, and Macintosh OS; it also
contains a topic that is only applicable to users running the application on Linux.

<map product="PuffinTracker" platform="win linux mac" cascade="nomerge'>

<title>Puffin Tracking Software</title>

<topicref href="intro.dita" navtitle="Introduction"/>

<topicref href="setup.dita" navtitle="Setting up the product"/>

<topicref href="linux-instructions.dita" navtitle="Linux instructions" platform="linux"/>
</map>

The values of the @platform attribute set at the map level cascade throughout the map and apply to the
"Introduction" and "Setting up the product" topics. However, since the value of the @cascade attribute is set to
"nomerge", the value of the @platform attribute for the "Linux instructions" topic does not merge with the values
that cascade from above in the DITA map. The effective value of the @platform attribute for 1inux-
instructions.dita is "linux".

The same results are produced by the following mark-up:

<map product="PuffinTracker" platform="win linux mac">

<title>Puffin Tracking Software</title>

<topicref href="intro.dita" navtitle="Introduction"/>

<topicref href="setup.dita" navtitle="Setting up the product"/>

<topicref href="linux-instructions.dita" navtitle="Linux instructions" platform="linux"
cascade="nomerge" />
</map>

2.2.3 Subject scheme maps and their usage

Subject scheme maps can be used to define controlled values and subject definitions. The controlled values can
be bound to attributes, as well as element and attribute pairs. The subject definitions can contain metadata and
provide links to more detailed information; they can be used to classify content and provide semantics that can
be used in taxonomies and ontologies.

A DITA map can reference a subject scheme map by using a <mapref> element. Processors also MAY provide
parameters by which subject scheme maps are referenced.

2.2.3.1 Subject scheme maps
Subject scheme maps use key definitions to define collections of controlled values and subject definitions.

Controlled values are keywords that can be used as values for attributes. For example, the Raudience attribute
can take a value that identifies the users that are associated with a particular product. Typical values for a
medical-equipment product line might include "therapist", "oncologist", "physicist", and "radiologist". In a subject
scheme map, an information architect can define a list of these values for the @audience attribute. Controlled
values can be used to classify content for filtering and flagging at build time.

Subject definitions are classifications and sub-classifications that compose a tree. Subject definitions provide
semantics that can be used in conjunction with taxonomies and ontologies. In conjunction with the classification
domain, subject definitions can be used for retrieval and traversal of the content at run time when used with
information viewing applications that provide such functionality.

Key references to controlled values are resolved to a key definition using the same precedence rules as apply to
any other key. However, once a key is resolved to a controlled value, that key reference does not typically result
in links or generated text.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 47 of 867



2.2.3.2 Defining controlled values for attributes

Subject scheme maps can define controlled values for DITA attributes without having to define specializations or
constraints. The list of available values can be modified quickly to adapt to new situations.

Each controlled value is defined using a <subjectdef> element, which is a specialization of the <topicref>
element. The <subjectdef> element is used to define both a subject category and a list of controlled values.

The parent <subjectdef> element defines the category, and the children <subjectdef> elements define the
controlled values.

The subject definitions can include additional information within a <topicmeta> element to clarify the meaning
of a value:

* The <navtitle> element can provide a more readable value name.
* The <shortdesc> element can provide a definition.

In addition, the <subjectdef> element can reference a more detailed definition of the subject, for example,
another DITA topic or an external resource..

The following behavior is expected of processors:

 Authoring tools SHOULD use these lists of controlled values to provide lists from which authors can select
values when they specify attribute values.

» Authoring tools MAY give an organization a list of readable labels, a hierarchy of values to simplify selection,
and a shared definition of the value.

» An editor MAY support accessing and displaying the content of the subject definition resource in order to
provide users with a detailed explanation of the subject.

» Tools MAY produce a help file, PDF, or other readable catalog to help authors better understand the
controlled values.

Example: Controlled values that provide additional information about the subject

The following code fragment illustrates how a subject definition can provide a richer level of information about a
controlled value:

<subjectdef keys="terminology" href="https://www.oasis-open.org/policies-guidelines/keyword-
guidelines">
<subjectdef keys="rfc2119" href="rfc-2119.dita">
<topicmeta>
<navtitle>RFC-2119 terminology</navtitle>
<shortdesc>The normative terminology that the DITA TC uses for the DITA specification</
shortdesc>
</topicmeta>
</subjectdef>
<subjectdef keys="iso" href="iso-terminology.dita">
<topicmeta>
<navtitle>ISO keywords</navtitle>
<shortdesc>The normative terminology used by some other OASIS technical committees</shortdesc>
</topicmeta>
</subjectdef>
</subjectdef>

The content of the <navtitle> and <shortdesc> elements provide additional information that a processor
might display to users as they select attribute values or classify content. The resources referenced by the ehref
attributes provide even more detailed information; a processor might render clickable links as part of a user
interface that implements a progressive disclosure strategy

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 48 of 867



2.2.3.3 Binding controlled values to an attribute

The controlled values defined in a subject scheme map can be bound to an attribute or an element and attribute
pair. This affects the expected behavior for processors and authoring tools.

The <enumerationdef> element binds the set of controlled values to an attribute. Valid attribute values are
those that are defined in the set of controlled values; invalid attribute values are those that are not defined in the
set of controlled values. An enumeration can specify an empty <subjectdef> element. In that case, no value is
valid for the attribute. An enumeration also can specify an optional default value by using the
<defaultSubject> element.

If an enumeration is bound, processors SHOULD validate attribute values against the controlled values that are
defined in the subject scheme map. For authoring tools, this validation prevents users from entering misspelled
or undefined values. Recovery from validation errors is implementation specific.

The default attribute values that are specified in a subject scheme map apply only if a value is not otherwise
specified in the DITA source or as a default value by the XML grammar.

To determine the effective value for a DITA attribute, processors check for the following in the order outlined:
1. An explicit value in the element instance

A default value in the XML grammar

Cascaded value within the document

Cascaded value from a higher level document to the document

A default controlled value, as specified in the <defaultSubject> element

o a0 M w N

A value set by processing rules

Example: Binding a list of controlled values to the @audience attribute

The following example illustrates the use of the <subjectdef> element to define controlled values for types of
users. It also binds the controlled values to the caudience attribute:

<subjectScheme>

<!-- Define types of users -->

<subjectdef keys="users">
<subjectdef keys="therapist"/>
<subjectdef keys="oncologist"/>
<subjectdef keys="physicist"/>
<subjectdef keys="radiologist"/>

</subjectdef>

<!-- Bind the "users" subject to the @audience attribute.
This restricts the @audience attribute to the following
values: therapist, oncologist, physicist, radiologist -->
<enumerationdef>
<attributedef name="audience"/>
<subjectdef keyref="users"/>
</enumerationdef>
</subjectScheme>

When the above subject scheme map is used, the only valid values for the @audience attribute are "therapist”,
"oncologist", "physicist", and "radiologist". Note that "users" is not a valid value for the @audience attribute; it
merely identifies the parent or container subject.

Example: Binding an attribute to an empty set
The following code fragment declares that there are no valid values for the Goutputclass attribute.
<subjectScheme>

<enumerationdef>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 49 of 867



<attributedef name="outputclass"/>
<subjectdef/>
</enumerationdef>
</subjectScheme>

2.2.3.4 Processing controlled attribute values

An enumeration of controlled values can be defined with hierarchical levels by nesting subject definitions. This
affects how processors perform filtering and flagging.

The following algorithm applies when processors apply filtering and flagging rules to attribute values that are
defined as a hierarchy of controlled values and bound to an enumeration:

1. If an attribute specifies a value in the taxonomy, and a DITAVAL or other categorization tool is configured
with that value, the rule matches.

2. Otherwise, if the parent value in the taxonomy has a rule, that matches.
3. Otherwise, continue up the chain in the taxonomy until a matching rule is found.
The following behavior is expected of processors:

» Processors SHOULD be aware of the hierarchies of attribute values that are defined in subject scheme maps
for purposes of filtering, flagging, or other metadata-based categorization.

* Processors SHOULD validate that the values of attributes that are bound to controlled values contain only
valid values from those sets. (The list of controlled values is not validated by basic XML parsers.) If the
controlled values are part of a named key scope, the scope name is ignored for the purpose of validating the
controlled values.

* Processors SHOULD check that all values listed for an attribute in a DITAVAL file are bound to the attribute
by the subject scheme before filtering or flagging. If a processor encounters values that are not included in the
subject scheme, it SHOULD issue a warning.

Example: A hierarchy of controlled values and conditional processing

The following example illustrates a set of controlled values that contains a hierarchy.

<subjectScheme>
<subjectdef keys="users">
<subjectdef keys="therapist">
<subjectdef keys="novice-therapist"/>
<subjectdef keys="expert-therapist"/>
</subjectdef>
<subjectdef keys="oncologist"/>
<subjectdef keys="physicist"/>
<subjectdef keys="radiologist"/>
</subjectdef>
<enumerationdef>
<attributedef name="audience"/>
<subjectdef keyref="users"/>
</enumerationdef>
</subjectScheme>

Processors that are aware of the hierarchy that is defined in the subject scheme map will handle filtering and
flagging in the following ways:

« If "therapist" is excluded, both "novice-therapist" and "expert-therapist" are by default excluded (unless they
are explicitly set to be included).

« If "therapist” is flagged and "novice-therapist" is not explicitly flagged, processors automatically should flag
"novice" since it is a type of therapist.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 50 of 867



2.2.3.5 Extending subject schemes

The <schemeref> element provides a mechanism for extending a subject scheme. This makes it possible to
add new relationships to existing subjects and extend enumerations of controlled values.

The <schemeref> element provides a reference to another subject scheme map. Typically, the referenced
subject-scheme map defines a base set of controlled values that are extended by the current subject-scheme
map. The values in the referenced subject-scheme map are merged with the values in the current subject-
scheme map; the result is equivalent to specifying all of the values in a single subject scheme map.

2.2.3.6 Scaling a list of controlled values to define a taxonomy
Optional classification elements make it possible to create a taxonomy from a list of controlled values.

A taxonomy differs from a controlled values list primarily in the degree of precision with which the metadata
values are defined. A controlled values list sometimes is regarded as the simplest form of taxonomy. Regardless
of whether the goal is a simple list of controlled values or a taxonomy:

* The same core elements are used: <subjectScheme> and <subjectdef>.
+ A category and its subjects can have a binding that enumerates the values of an attribute.

Beyond the core elements and the attribute binding elements, sophisticated taxonomies can take advantage of
some optional elements. These optional elements make it possible to specify more precise relationships among
subjects. The <hasNarrower>, <hasPart>, <hasKind>, <hasInstance>, and <hasRelated> elements
specify the kind of relationship in a hierarchy between a container subject and its contained subjects.

While users who have access to sophisticated processing tools benefit from defining taxonomies with this level
of precision, other users can safely ignore this advanced markup and define taxonomies with hierarchies of
<subjectdef> elements that are not precise about the kind of relationship between the subjects.

Example: A taxonomy defined using subject scheme elements
The following example defines San Francisco as both an instance of a city and a geographic part of California.

<subjectScheme>
<hasInstance>
<subjectdef keys="city" navtitle="City">
<subjectdef keys="la" navtitle="Los Angeles"/>
<subjectdef keys="nyc" navtitle="New York City"/>
<subjectdef keys="sf" navtitle="San Francisco"/>
</subjectdef>
<subjectdef keys="state" navtitle="State">
<subjectdef keys="ca" navtitle="California"/>
<subjectdef keys="ny" navtitle="New York"/>
</subjectdef>
</hasInstance>
<hasPart>
<subjectdef keys="place" navtitle="Place">
<subjectdef keyref="ca">
<subjectdef keyref="la"/>
<subjectdef keyref="sf"/>
</subjectdef>
<subjectdef keyref="ny">
<subjectdef keyref="nyc"/>
</subjectdef>
</subjectdef>
</hasPart>
</subjectScheme>

Sophisticated tools can use this subject scheme map to associate content about San Francisco with related
content about other California places or with related content about other cities (depending on the interests of the
current user).

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 51 of 867



The subject scheme map also can define relationships between subjects that are not hierarchical. For instance,
cities sometimes have "sister city" relationships. An information architect could add a <subjectRelTable>
element to define these associative relationships, with a row for each sister-city pair and the two cities in different
columns in the row.

2.2.3.7 Classification maps
A classification map is a DITA map in which the classification domain has been made available.

The classification domain provides elements that enable map authors to indicate information about the subject
matter of DITA topics. The subjects must be defined in subjectScheme maps, and the map authors references
the subjects using the ekeyref attribute.

2.2.3.8 Examples of subject scheme maps
This section contains examples and scenarios that illustrate the use of subject scheme maps.

2.2.3.8.1 Example: How hierarchies defined in a subject scheme map affect filtering

This scenario demonstrates how a processor evaluates attribute values when it performs conditional processing
for an attribute that is bound to a set of controlled values.

A company defines a subject category for "Operating system," with a key set to "os. There are sub-categories for
Linux, Windows, and z/OS, as well as specific Linux variants: Red Hat Linux and SuSE Linux. The company
then binds the values that are enumerated in the "Operating system" category to the @platform attribute.

<!-- This examples uses @navtitle rather than <navtitle> solely
to conserve space. Best practises for translate include using <navtitle>. -->
<subjectScheme>
<subjectdef keys="os" navtitle="Operating system">
<subjectdef keys="linux" navtitle="Linux">
<subjectdef keys="redhat" navtitle="RedHat Linux"/>
<subjectdef keys="suse" navtitle="SuSE Linux"/>
</subjectdef>
<subjectdef keys="windows" navtitle="Windows"/>
<subjectdef keys="zos" navtitle="z/0S"/>
</subjectdef>
<enumerationdef>
<attributedef name="platform"/>
<subjectdef keyref="os"/>
</enumerationdef>
</subjectScheme>

The enumeration limits valid values for the @platform attribute to the following: "linux", "redhat", "suse",
"windows", and "zos". If any other values are encountered, processors validating against the scheme should
issue a warning.

The following table illustrates how filtering and flagging operate when the above map is processed by a
processor. The first two columns provide the values specified in the DITAVAL file; the third and fourth columns
indicate the results of the filtering or flagging operation

att="platform"
val="linux"

att="platform"
val="redhat"

How platform="redhat" is
evaluated

How platform="linux" is
evaluated

action="exclude"

action="exclude

Excluded.

Excluded.

dita-v1.3-csd01-part2-tech-content
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

30 June 2015
Page 52 of 867




att="platform"
val="linux"

att="platform"
val="redhat"

How platform="redhat" is
evaluated

How platform="linux" is
evaluated

action="include"or
action="flag"

Excluded. This is an error
condition, because if all
"linux" content is excluded,
"redhat" also is excluded.
Applications may recover by
generating an error
message.

Excluded.

Unspecified

Excluded, because "redhat"
is a kind of "linux", and
"linux" is excluded.

Excluded.

action="include

action="exclude"

Excluded, because all
"redhat" content is
excluded.

Included.

action="include"

Included.

Included.

action="flag"

Included and flagged with
the "redhat" flag.

Included.

Unspecified

Included, because all "linux"
content is included.

Included.

action="flag" action="exclude" Excluded, because all Included and flagged with
"redhat" content is the "linux" flag.
excluded.
action="include" Included and flagged with Included and flagged with
the "linux" flag, because the "linux" flag.
"linux" is flagged and
"redhat" is a type of "linux".
action="flag" Included and flagged with Included and flagged with
the "redhat" flag, because a | the "linux" flag.
flag is available that is
specifically for "redhat".
Unspecified Included and flagged with Included and flagged with
the "linux" flag, because the "linux" flag.
"linux" is flagged and
"redhat" is a type of linux
Unspecified action="exclude" Excluded, because all If the default for

"redhat" content is excluded

@platform values is
"include", this is included. If
the default for @platform
values is "exclude", this is
excluded.

dita-v1.3-csd01-part2-tech-content
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

30 June 2015
Page 53 of 867




att="platform" att="platform" How platform="redhat" is | How platform="linux" is
val="linux" val="redhat" evaluated evaluated

Included. Included, because all
"redhat" content is
included, and general Linux
content also applies to

action="include

RedHat
action="flag" Included and flagged with Included, because all
the "redhat" flag. "redhat" content is

included, and general Linux
content also applies to

RedHat
Unspecified If the default for @platform [ If the default for
values is "include", this is @platform values is
included. If the default for "include", this is included. If
@platform values is the default for @platform
"exclude", this is excluded. |values is "exclude", this is
excluded.

2.2.3.8.2 Example: Extending a subject scheme

You can extend a subject scheme by creating another subject scheme map and referencing the original map
using a <schemeref> element. This enables information architects to add new relationships to existing subjects
and extend enumerations of controlled values.

A company uses a common subject scheme map (base0OS.ditamap) to set the values for the @platform
attribute.

<subjectScheme>
<subjectdef keys="os" navtitle="Operating system">
<subjectdef keys="linux" navtitle="Linux">
<subjectdef keys="redhat" navtitle="RedHat Linux"/>
<subjectdef keys="suse" navtitle="SuSE Linux"/>
</subjectdef>
<subjectdef keys="windows" navtitle="Windows"/>
<subjectdef keys="zos" navtitle="z/0S"/>
</subjectdef>
<enumerationdef>
<attributedef name="platform"/>
<subjectdef keyref="os"/>
</enumerationdef>
</subjectScheme>

The following subject scheme map extends the enumeration defined in base0S.ditamap. It adds "macos" as
a child of the existing "o0s" subject; it also adds special versions of Windows as children of the existing "windows"
subject:

<subjectScheme>
<schemeref href="baseOS.ditamap"/>
<subjectdef keyref="os">
<subjectdef keys="macos" navtitle="Macintosh"/>
<subjectdef keyref="windows">
<subjectdef keys="winxp" navtitle="Windows XP"/>
<subjectdef keys="winvis" navtitle="Windows Vista"/>
</subjectdef>
</subjectdef>
</subjectScheme>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 54 of 867



Note that the references to the subjects that are defined in base0S.ditamap use the Rkeyref attribute. This
avoids duplicate definitions of the keys and ensures that the new subjects are added to the base enumeration.

The effective result is the same as the following subject scheme map:

<subjectScheme>
<subjectdef keys="os" navtitle="Operating system">
<subjectdef keys="linux" navtitle="Linux">
<subjectdef keys="redhat" navtitle="RedHat Linux"/>
<subjectdef keys="suse" navtitle="SuSE Linux"/>
</subjectdef>
<subjectdef keys="macos" navtitle="Macintosh"/>
<subjectdef keys="windows" navtitle="Windows">
<subjectdef keys="winxp" navtitle="Windows XP"/>
<subjectdef keys="win98" navtitle="Windows Vista"/>
</subjectdef>
<subjectdef keys="zos" navtitle="z/0S"/>
</subjectdef>
<enumerationdef>
<attributedef name="platform"/>
<subjectdef keyref="os"/>
</enumerationdef>
</subjectScheme>

2.2.3.8.3 Example: Extending a subject scheme upwards

You can broaden the scope of a subject category by creating a new subject scheme map that defines the
original subject category as a child of a broader category.

The following subject scheme map creates a "Software" category that includes operating systems as well as
applications. The subject scheme map that defines the operation system subjects is pulled in by reference, while
the application subjects are defined directly in the subject scheme map below.

<subjectScheme>
<schemeref href="baseOS.ditamap"/>
<subjectdef keys="sw" navtitle="Software">
<subjectdef keyref="os"/>
<subjectdef keys="app" navtitle="Applications">
<subjectdef keys="apacheserv" navtitle="Apache Web Server"/>
<subjectdef keys="mysqgl" navtitle="MySQL Database"/>
</subjectdef>
</subjectdef>
</subjectScheme>

If the subject scheme that is defined in base0S.ditamap binds the "o0s" subject to the @platform attribute,
the app subjects that are defined in the extension subject scheme do not become part of that enumeration, since
they are not part of the "o0s" subject

To enable the upward extension of an enumeration, information architects can define the controlled values in
one subject scheme map and bind the controlled values to the attribute in another subject scheme map. This
approach will let information architects bind an attribute to a different set of controlled values with less rework.

An adopter would use the extension subject scheme as the subject scheme that governs the controlled values.
Any subject scheme maps that are referenced by the extension subject scheme are effectively part of the
extension subject scheme.

2.2.3.8.4 Example: Defining values for @deliveryTarget
You can use a subject scheme map to define the values for the @deliveryTarget attribute. This filtering
attribute, which is new in DITA 1.3, is intended for use with a set of hierarchical, controlled values.

In this scenario, one department produces electronic publications (EPUB, EPUB2, EPUB3, Kindle, etc.) while
another department produces traditional, print-focused output. Each department needs to exclude a certain
category of content when they build documentation deliverables.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 55 of 867



The following subject scheme map provides a set of values for the @deliveryTarget attribute that
accommodates the needs of both departments.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE subjectScheme PUBLIC "-//OASIS//DTD DITA Subject Scheme Map//EN" "subjectScheme.dtd">
<subjectScheme>
<subjectHead>
<subjectHeadMeta>
<navtitle>Example of values for the @deliveryTarget attribute</navtitle>
<shortdesc>Provides a set of values for use with the
@deliveryTarget conditional-processing attribute. This set of values is
illustrative only; you can use any values with the @deliveryTarget
attribute.</shortdesc>
</subjectHeadMeta>
</subjectHead>
<subjectdef keys="deliveryTargetValues">
<topicmeta><navtitle>Values for @deliveryTarget attributes</navtitle></topicmeta>
<!-- A tree of related values -->
<subjectdef keys="print">
<topicmeta><navtitle>Print-primary deliverables</navtitle></topicmeta>
<subjectdef keys="pdf">
<topicmeta><navtitle>PDF</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="css-print">
<topicmeta><navtitle>CSS for print</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="xsl-fo">
<topicmeta><navtitle>XSL-FO</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="afp">
<topicmeta><navtitle>Advanced Function Printing</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="ms-word">
<topicmeta><navtitle>Microsoft Word</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="indesign">
<topicmeta><navtitle>Adobe InDesign</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="open-office">
<topicmeta><navtitle>Open Office</navtitle></topicmeta>
</subjectdef>
</subjectdef>
<subjectdef keys="online">
<topicmeta><navtitle>Online deliverables</navtitle></topicmeta>
<subjectdef keys="html-based">
<topicmeta><navtitle>HTML-based deliverables</navtitle></topicmeta>
<subjectdef keys="html">
<topicmeta><navtitle>HTML</navtitle></topicmeta>
<subjectdef keys="html5">
<topicmeta><navtitle>HTML5</navtitle></topicmeta>
</subjectdef>
</subjectdef>
<subjectdef keys="help">
<topicmeta><navtitle>Contextual help</navtitle></topicmeta>
<subjectdef keys="htmlhelp">
<topicmeta><navtitle>HTML Help</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="webhelp">
<topicmeta><navtitle>Web help</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="javahelp">
<topicmeta><navtitle>Java Help</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="eclipseinfocenter">
<topicmeta><navtitle>Eclipse InfoCenter</navtitle></topicmeta>
</subjectdef>
</subjectdef>
<subjectdef keys="epub">
<topicmeta><navtitle>EPUB</navtitle></topicmeta>
<subjectdef keys="epub2">
<topicmeta><navtitle>EPUB2</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="epub3">
<topicmeta><navtitle>EPUB3</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="ibooks">

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 56 of 867



<topicmeta><navtitle>iBooks</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="nook">
<topicmeta><navtitle>nook</navtitle></topicmeta>
</subjectdef>
</subjectdef>
<subjectdef keys="kindle">
<topicmeta><navtitle>Amazon Kindle</navtitle></topicmeta>
<subjectdef keys="kindle8">

<topicmeta><navtitle>Kindle Version 8</navtitle></topicmeta>

</subjectdef>
</subjectdef>
</subjectdef>
</subjectdef>
</subjectdef>
<enumerationdef>
<attributedef name="deliveryTarget"/>
<subjectdef keyref="deliveryTargetValues"/>
</enumerationdef>
</subjectScheme>

2.2.4 DITA metadata

Metadata can be applied in both DITA topics and DITA maps. Metadata that is assigned in DITA topics can be
supplemented or overridden by metadata that is assigned in a DITA map; this design facilitates the reuse of

DITA topics in different DITA maps and use-specific contexts.

2.2.4.1 Metadata elements

The metadata elements, many of which map to Dublin core metadata, are available in topics and DITA maps.
This design enables authors and information architects to use identical metadata markup in both topics and

maps.

The <metadata> element is a wrapper element that contains many of the metadata elements. In topics, the
<metadata> element is available in the <prolog> element. In maps, the <metadata> element is available in

the <topicmeta> element.

In DITA maps, the metadata elements also are available directly in the <topicmeta> element. Collections of

metadata can be shared between DITA maps and topics by using the conref or keyref mechanism.

In general, specifying metadata in a <topicmeta> element is equivalent to specifying it in the <prolog>
element of a referenced topic. The value of specifying the metadata at the map level is that the topic then can be
reused in other maps where different metadata might apply. Many items in the <topicmeta> element also

cascade to nested <topicref> elements within the map.

Note: Not all metadata elements are available in the <metadata> element. However, they are available in

either the topic <prolog> element or the map <topicmeta> element.

Related Links
Dublin Core Metadata Initiative (DCMI)

2.2.4.2 Metadata attributes

Certain attributes are common across most DITA elements. These attributes support content referencing,

conditional processing, application of metadata, and globalization and localization.

2.2.4.2.1 Conditional processing attributes

The metadata attributes specify properties of the content that can be used to determine how the content should
be processed. Specialized metadata attributes can be defined to enable specific business-processing needs,

such as semantic processing and data mining.

Metadata attributes typically are used for the following purposes:

« Filtering content based on the attribute values, for example, to suppress or publish profiled content

dita-v1.3-csd01-part2-tech-content

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

30 June 2015
Page 57 of 867


http://dublincore.org/

» Flagging content based on the attribute values, for example, to highlight specific content on output
» Performing custom processing, for example, to extract business-critical data and store it in a database

Typically @audience, @platform, @product, RGotherprops, @props, @deliveryTarget, and specializations
of the eprops attributes are used for filtering; the same attributes plus the @rev attribute are used for flagging.
The @status and @importance attributes, as well as custom attributes specialized from @base, are used for
application-specific behavior, such as identifying metadata to aid in search and retrieval.

Filtering and flagging attributes

The following conditional-processing attributes are available on most elements:
@product
The product that is the subject of the discussion.
@platform
The platform on which the product is deployed.
@audience
The intended audience of the content.
@deliveryTarget
The intended delivery target of the content, for example "html", "pdf", or "epub”. This attribute is a replacement for
the now deprecated @print attribute.

The @deliveryTarget attribute is specialized from the cprops attribute. It is defined in the
deliveryTargetAttDomain, which is integrated into all OASIS-provided document-type shells. If this domain is
not integrated into a given document-type shell, the edeliveryTarget attribute will not be available.

@rev

The revision or draft number of the current document. (This is used only for flagging.)
@otherprops

Other properties that do not require semantic identification.
@props

A generic conditional processing attribute that can be specialized to create new semantic conditional-processing
attributes.

Other metadata attributes

Other attributes are still considered metadata on an element, but they are not designed for filtering or flagging.
@importance
The degree of priority of the content. This attribute takes a single value from an enumeration.
@status
The current state of the content. This attribute takes a single value from an enumeration.
@base

A generic attribute that has no specific purpose, but is intended to act as the basis for specialized attributes that
have a simple value syntax like the conditional processing attributes (one or more alphanumeric values separated
by whitespace or parenthesized groups of values).

@outputclass
Provides a label on one or more element instances, typically to specify a role or other semantic distinction. As the
@outputclass attribute does not provide a formal type declaration or the structural consistency of specialization, it
should be used sparingly, usually only as a temporary measure while a specialization is developed. For example,
<uicontrol> elements that define button labels could be distinguished by adding an @outputclass attribute:

<uicontrol outputclass="button">Cancel</uicontrol>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 58 of 867



The value of the Goutputclass attribute can be used to trigger XSLT or CSS rules, while providing a mapping to
be used for future migration to a more specialized set of user interface elements.

Related Links
3.17.1.2 Metadata attribute group (517)
The metadata attribute group includes common metadata attributes, several of which support conditional processing (filtering and
flagging) or the creation of new attribute domain specializations.

3.9 DITAVAL elements (371)
A conditional processing profile (DITAVAL file) is used to identify which values are to be used for conditional processing during a
particular output, build, or some other purpose. The profile should have an extension of .ditaval.

2.4.3 Conditional processing (profiling) (103)
Conditional processing, also known as profiling, is the filtering or flagging of information based on processing-time criteria.

2.2.4.2.2 Translation and localization attributes

DITA elements have several attributes that support localization and translation.

@xml:lang
Identifies the language of the content, using the standard language and country codes. For instance, French
Canadian is identified by the value fr-CA. The @xm1 : 1ang attribute asserts that all content and attribute values
within the element bearing the attribute are in the specified language, except for contained elements that declare a
different language.

@translate
Determines whether the element requires translation. A default value can often be inferred from the element type.
For example, <apiname> may be untranslated by default, whereas <p> may be translated by default.

@dir
Determines the direction in which the content should be rendered.

2.2.4.2.3 Architectural attributes

The architectural attributes specify the version of DITA that the content supports; they also identify the DITA
domains, structural types, and specializations that are in use by the content.

The architectural attributes should not be marked up in the source DITA map and topics. Instead, the values of
the architectural attributes are handled by the processor when the content is processed, preferably through
defaults set in the XML grammar. This practice ensures that the DITA content instances do not specify invalid
values for the architectural attributes.

The architectural attributes are as follows:

@class

This attribute identifies the specialization hierarchy for the element type. Every DITA element (except the <dita>
element that is used as the root of a ditabase document) MUST declare a @class attribute.

@domains

This attribute identifies the domain modules (and optionally the structural modules) that are used in a map or topic.
Each module also declares its module dependencies. The root element of every topic and map MUST declare a
@domains attribute.

@DITAArchVersion

This attribute identifies the version of the DITA architecture that is used by the XML grammar. The root element of
every topic and map MUST declare a @DITAArchVersion attribute. The attribute is declared in a DITA namespace
to allow namespace-sensitive tools to detect DITA markup.

To make the document instance usable in the absence of an XML grammar, a normalization process can set the
architectural attributes in the document instance.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 59 of 867



Related Links
2.4.7 Processing documents with different values of the domains attribute (130)
When DITA elements are copied from one document to another, processors need to determine the validity of the copied
elements. This copying might occur as the result of a content reference (conref) or key reference (keyref), or it might occur in the
context of an author editing a DITA document.

2.2.4.3 Metadata in maps and topics

Topic metadata can be specified in a DITA map as well as in the topics that the map references. By default,
metadata in the map supplements or overrides metadata that is specified at the topic level, unless the
@lockmeta attribute of the <topicmeta> element is set to "no".

Where metadata about topics can be specified

Information about topics can be specified as metadata on the map, as attributes on the <topicref> element, or

as metadata attributes or elements in the topic itself:

DITA map: Metadata elements
At the map level, properties can be set by using metadata elements. They can be set for an individual topic,
for a set of topics, or globally for the entire document. The metadata elements are authored within a
<topicmeta> element, which associates metadata with the parent element and its children. Because the
topics in a branch of the hierarchy typically have some common subjects or properties, this is a convenient
mechanism to define properties for a set of topics. For example, the <topicmeta> elementin a
<relcolspec> can associate metadata with all the topics that are referenced in the <reltable> column.

A map can override or supplement everything about a topic except its primary title and body content. All the
metadata elements that are available in a topic also are available in a map. In addition, a map may provide
alternate titles and a short description. The alternate titles can override their equivalents in the topic. The
short description in the map MAY override the short description in the topic if the <topicref> element
specifies a @copy-to attribute.

DITA map: Attributes of the <topicref> element
At the map level, properties can be set as attributes of the <topicref> element.

DITA topic

Within a topic, authors can either set metadata attributes on the root element or add metadata elements in the
<prolog> element.

How metadata set at both the map and topic level intersects

In a topic, the metadata elements apply to the entire topic. In a map, they supplement or override any metadata
that is provided in the referenced topics. When the same metadata element or attribute is specified in both a
map and a topic, by default the value in the map takes precedence; the assumption here is that the author of the
map has more knowledge of the reusing context than the author of the topic. The @1ockmeta attribute on the
<topicmeta> element controls whether map-specified values override values in the referenced topic.

The <navtitle> element is an exception to the rule of how metadata specified by the <topicmeta> element
cascades. The content of the <navtitle> elementis used as a navigation title only if the @1locktitle attribute
of the parent <topicref> elementis set to "yes".

2.2.4.4 Cascading of metadata attributes in a DITA map

Certain map-level attributes cascade throughout a map, which facilitates attribute and metadata management.
When attributes cascade, they apply to the elements that are children of the element where the attributes were
specified. Cascading applies to a containment hierarchy, as opposed to a element-type hierarchy.

The following attributes cascade when set on the <map> element or when set within a map:
* @audience, @platform, @product, @otherprops, @rev

* @props and any attribute specialized from eprops

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 60 of 867



* @linking, @toc, @print, @search
* @format, @scope, Qtype

* @xml:lang, @dir, @translate

* @processing-role

* Qcascade

Cascading is additive for attributes that accept multiple values, except when the @cascade attribute is set to
avoid adding values to attributes. For attributes that take a single value, the closest value defined on a
containing element takes effect. In a relationship table, row-level metadata is considered more specific than
column-level metadata, as shown in the following containment hierarchy:

* <map> (Most general)
— <topicref> container (more specific)
* <topicref> (most specific)
— <reltable> (more specific)
* <relcolspec> (more specific)
— <relrow> (more specific)

* <topicref> (most specific)

Merging of cascading attributes

The ecascade attribute can be used to modify the additive nature of attribute cascading (though it does not turn
off cascading altogether). The attribute has two predefined values: "merge" and "nomerge".

cascade="merge"

The metadata attributes cascade; the values of the metadata attributes are additive. This is the processing default
for the @cascade attribute and was the only defined behavior for DITA 1.2 and earlier.

cascade="nomerge"

The metadata attributes cascade; however, they are not additive for <topicref> elements that specify a different
value for a specific metadata attribute. If the cascading value for an attribute is already merged based on multiple
ancestor elements, that merged value continues to cascade until a new value is encountered (that is, setting
cascade="nomerge" does not undo merging that took place on ancestors).

Implementers MAY define their own custom, implementation-specific tokens. To avoid name conflicts between
implementations or with future additions to the standard, implementation-specific tokens SHOULD consist of a
prefix that gives the name or an abbreviation for the implementation followed by a colon followed by the token or
method name.

For example, a processor might define the token "appToken:audience" in order to specify cascading and
merging behaviors for only the caudience attribute. The following rules apply:

» The predefined values for the @cascade attribute MUST precede any implementation-specific tokens, for
example, cascade="merge appToken:audience".

» Tokens can apply to a set of attributes, specified as part of the @cascade value. In that case, the syntax for
specifying those values consists of the implementation-specific token, followed by a parenthetical group that
uses the same syntax as groups within the caudience, @platform, @product, and Gotherprops attributes.
For example, a token that applies to only @platform and @product could be specified as
cascade="appname:token (platform product)".

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 61 of 867



Examples of the @cascade attribute in use

Consider the following code examples:

<map audience="a b" cascade="merge">
<topicref href="topic.dita" audience="c"/>
</map>

Figure 5: Map A

<map audience="a b" cascade="nomerge">
<topicref href="topic.dita" audience="c"/>
</map>

Figure 6: Map B

For map A, the values for the attribute are merged, and the effective value of the @audience attribute for
topic.ditais "a b c". For map B, the values for the attribute are not additive, and the effective value of the
@audience attribute for topic.dita is"c"

In the following example, merging is active at the map level but turned off below:

<map platform="a" product="x" cascade="merge">
<topicref href="one.dita" platform="b" product="y">
<topicref href="two.dita" cascade="nomerge" product="z"/>
</topicref>
</map>

Figure 7: Map C

In map C, the reference to one . dita has effective merged values of "a b" for @platform and "x y" for
@product.

The reference to two . dita turns off merging, so the explicit eproduct value of "z" is used (it does not merge
with ancestor values). The @platform attribute is not present, so the already-merged value of "a b" continues to
cascade and the effective value of @platform on this reference.

Order for processing cascading attributes in a map

When determining the value of an attribute, processors MUST evaluate each attribute on each individual
element in a specific order; this order is specified in the following list. Applications MUST continue through the
list until a value is established or until the end of the list is reached (at which point no value is established for the
attribute). In essence, the list provides instructions on how processors can construct a map where all attribute
values are set and all cascading is complete.

For example, in the case of <topicref toc="yes">, applications MUST stop at item 2 (62) in the list; a
value is specified for @toc in the document instance, so @toc values from containing elements will not cascade
to that specific <topicref> element. The toc="yes" setting on that <topicref> element will cascade to
contained elements, provided those elements reach item 5 (63) below when evaluating the @toc attribute.

For attributes within a map, the following processing order MUST occur:
1. The Rconref and @keyref attributes are evaluated.

2. The explicit values specified in the document instance are evaluated. For example, a <topicref> element
with the @toc attribute set to "no" will use that value.

3. The default or fixed attribute values are evaluated. For example, the @toc attribute on the <reltable>
element has a default value of "no".

4. The default values that are supplied by a controlled values file are evaluated.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 62 of 867



5. The attributes cascade.

6. The processing-supplied default values are applied.

7. After the attributes are resolved within the map, they cascade to referenced maps.

Note: The processing-supplied default values do not cascade to other maps. For example, most
processors will supply a default value of toc="yes" when no @toc attribute is specified. However, a
processor-supplied default of toc="yes" MUST not override a value of toc="no" thatis set on a
referenced map. If the toc="yes" value is explicitly specified, is given as a default through a DTD,
XSD, RNG, or controlled values file, or cascades from a containing element in the map, it MUST
override a toc="no" setting on the referenced map. See Map-to-map cascading behaviors (66) for

more details.

8. Repeat steps 7 (62) to 4 (62) for each referenced map.

9. The attributes cascade within each referenced map.

10. The processing-supplied default values are applied within each referenced map.

11. Repeat the process for maps referenced within the referenced maps.

2.2.4.5 Reconciling topic and map metadata elements
The <topicmeta> element in maps contains numerous elements that can be used to declare metadata. These

metadata elements have an effect on the parent <topicref> element, any child <topicref> elements, and — if
a direct child of the <map> element — on the map as a whole.

For each element that can be contained in the <topicmeta> element, the following table addresses the

following questions:

How does it apply to the topic?
This column describes how the metadata specified within the <topicmeta> element interacts with the metadata
specified in the topic. In most cases, the properties are additive. For example, when the <audience> element is
set to "user" at the map level, the value "user" is added during processing to any audience metadata that is

specified within the topic.

Does it cascade to other topics in the map?
This column indicates whether the specified metadata value cascades to nested <topicref> elements. For
example, when an <audience> element is set to "user" at the map level, all child <topicref> elements implicitly
have an <audience> element set to "user" also. Elements that can apply only to the specific <topicref> element,
such as <linktext>, do not cascade.

What is the purpose when specified on the <map> element?

The map element allows metadata to be specified for the entire map. This column describes what effect, if any, an
element has when specified at this level.

Table 1: Topicmeta elements and their properties

What is the purpose
How does it apply to the | Does it cascade to child |when set on the <map>

Element topic? <topicref> elements? element?

<audience> Add to the topic Yes Specify an audience for the
entire map

<author> Add to the topic Yes Specify an author for the
entire map

<category> Add to the topic Yes Specify a category for the
entire map

dita-v1.3-csd01-part2-tech-content
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

30 June 2015
Page 63 of 867




How does it apply to the

Does it cascade to child

What is the purpose
when set on the <map>

Element topic? <topicref> elements? element?

<copyright> Add to the topic Yes Specify a copyright for the
entire map

<critdates> Add to the topic Yes Specify critical dates for the
entire map

<data> Add to the topic No, unless specialized for a | No stated purpose, until the

purpose that cascades

element is specialized

<data-about>

Add the property to the
specified target

No, unless specialized for a
purpose that cascades

No stated purpose, until the
element is specified

<foreign> Add to the topic No, unless specialized for a | No stated purpose, until the
purpose that cascades element is specified
<keywords> Add to the topic No No stated purpose
<linktext> Not added to the topic; No No stated purpose
applies only to links created
based on this occurrence in
the map
<metadata> Add to the topic Yes Specify metadata for the
entire map
<navtitle> Not added to the topic; No No stated purpose
applies only to navigation
that is created based on
this occurrence in the map.
The navigation title will be
used whenever the
@locktitle attribute on
the containing <topicref>
element is set to "yes".
<othermeta> Add to the topic No Define metadata for the
entire map
<permissions> Add to the topic Yes Specify permissions for the
entire map
<prodinfo> Add to the topic Yes Specify product info for the
entire map
<publisher> Add to the topic Yes Specify a publisher for the
map
<resourceid> Add to the topic No Specify a resource ID for

the map

dita-v1.3-csd01-part2-tech-content
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

30 June 2015
Page 64 of 867




Element

How does it apply to the
topic?

Does it cascade to child
<topicref> elements?

What is the purpose
when set on the <map>
element?

<searchtitle>

Replace the one in the
topic. If multiple
<searchtitle> elements
are specified for a single
target, processors may
choose to issue a warning.

No

No stated purpose

<shortdesc>

Only added to the topic
when the <topicref>
element specifies a @copy-
to attribute. Otherwise, it
applies only to links created
based on this occurrence in
the map.

Note: Processors MAY or
MAY NOT implement this
behavior.

No

Provide a description of the
map

<source>

Add to the topic

No

Specify a source for the
map

<unknown>

Add to the topic

No, unless specialized for a
purpose that cascades

No stated purpose, until the
element is specified

<ux-window>

Not added to the topic

No

Definitions are global, so
setting at map level is
equivalent to setting
anywhere else.

Example of metadata elements cascading in a DITA map

The following code sample illustrates how an information architect can apply certain metadata to all the DITA

topics in a map:

<map title="DITA maps" xml:lang="en-us">

<topicmeta>

<author>Kristen James Eberlein</author>

<copyright>

<copyryear year="2009"/>
<copyrholder>0ASIS</copyrholder>

</copyright>
</topicmeta>

<topicref href="dita maps.dita" navtitle="DITA maps">
<topicref href="definition ditamaps.dita" navtitle="Definition of DITA maps"></topicref>
<topicref href="purpose ditamaps.dita" navtitle="Purpose of DITA maps"></topicref>

l== 50 ==>
</topicref>
</map>

The author and copyright information cascades to each of the DITA topics referenced in the DITA map. When
the DITA map is processed to XHTML, for example, each XHTML file contains the metadata information.

dita-v1.3-csd01-part2-tech-content
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

30 June 2015
Page 65 of 867




2.2.4.6 Map-to-map cascading behaviors
When a DITA map (or branch of a DITA map) is referenced by another DITA map, by default, certain rules apply.

These rules pertain to the cascading behaviors of attributes, metadata elements, and roles assigned to content
(for example, the role of "Chapter" assigned by a <chapter> element). Attributes and elements that cascade
within a map generally follow the same rules when cascading from one map to another map, but there are some
exceptions and additional rules that apply.
2.2.4.6.1 Cascading of attributes from map to map
Certain elements cascade from map to map, although some of the attributes that cascade within a map do not
cascade from map to map.
The following attributes cascade from map to map:

* @audience, @platform, @product, Gotherprops, @Grev

* @props and any attribute specialized from @props

* @linking, @toc, @print, @search

* Qtype

* @translate

* Qprocessing-role

* @cascade

Note that the above list excludes the following attributes:

@format
The eformat attribute must be set to "ditamap" in order to reference a map or a branch of a map, so it cannot
cascade through to the referenced map.

@xml:lang and @dir
Cascading behavior for @xm1 : 1ang is defined in The xml:lang attribute (127). The @dir attribute work the same
way.

@scope
The value of the @scope attribute describes the map itself, rather than the content. When the @scope attribute is

set to "external", it indicates that the referenced map itself is external and unavailable, so the value cannot cascade
into that referenced map.

The @class attribute is used to determine the processing roles that cascade from map to map. See Cascading
of roles from map to map (68) for more information.

As with values that cascade within a map, the cascading is additive if the attribute permits multiple values (such
as Qaudience). When the attribute only permits one value, the cascading value overrides the top-level element.
Example of attributes cascading between maps

For example, assume the following references in test.ditamap:

<map>
<topicref href="a.ditamap" format="ditamap" toc="no"/>
<mapref href="b.ditamap" audience="developer"/>
<topicref href="c.ditamap#branchl" format="ditamap" print="no"/>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 66 of 867



<mapref href="c.ditamap#branch2" platform="myPlatform"/>
</map>

* The map a.ditamap is treated as if toc="no" is specified on the root <map> element. This means that the
topics that are referenced by a . ditamap do not appear in the navigation generated by test.ditamap
(except for branches within the map that explicitly set toc="yes").

* The map b.ditamap is treated as if audience="developer" is set on the root <map> element. If the
@Raudience attribute is already set on the root <map> element within b . ditamap, the value "developer" is
added to any existing values.

* The element with id="branch1" within the map c.ditamap is treated as if print="no" is specified on
that element. This means that the topics within the branch with id="branch1" do not appear in the printed
output generated by test .ditamap (except for nested branches within that branch that explicitly set
print="yes").

* The element with id="branch2" within the map c.ditamap is treated as if platform="myPlatform"

is specified on that element. If the @platform attribute is already specified on the element with
id="branch", the value "myPlatform" is added to existing values.

2.2.4.6.2 Cascading of metadata elements from map to map

Elements that are contained within <topicmeta> or <metadata> elements follow the same rules for cascading
from map to map as the rules that apply within a single DITA map.

For a complete list of which elements cascade within a map, see the column "Does it cascade to child
<topicref> elements?" in the topic Reconciling topic and map metadata elements (63).

Note: It is possible that a specialization might define metadata that should replace rather than add to
metadata in the referenced map, but DITA (by default) does not currently support this behavior.

For example, consider the following code examples:

<map>
<topicref href="a.ditamap" format="ditamap">
<topicmeta>
<shortdesc>This map contains information about Acme defects.</shortdesc>
</topicmeta>
</topicref>
<topicref href="b.ditamap" format="ditamap">
<topicmeta>
<audience type="programmer"/>
</topicmeta>
</topicref>

<mapref href="c.ditamap" format="ditamap"/>
<mapref href="d.ditamap" format="ditamap"/>
</map>

Figure 8: test-2.ditamap

<map>
<topicmeta>
<audience type="writer"/>
</topicmeta>
<topicref href="b-1.dita"/>
<topicref href="b-2.dita"/>
</map>

Figure 9: b.ditamap

When test-2.ditamap is processed, the following behavior occurs:

» Because the <shortdesc> element does not cascade, it does not apply to the DITA topics that are
referenced in a.ditamap.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 67 of 867



* Because the <audience> element cascades, the <audience> element in the reference to b.ditamap
combines with the <audience> element that is specified at the top level of b.ditamap. The result is that the
b-1.dita topic and b-2.d1ita topic are processed as though hey each contained the following child
<topicmeta> element:

<topicmeta>
<audience type="programmer"/>
<audience type="writer"/>
</topicmeta>

2.2.4.6.3 Cascading of roles from map to map
When specialized <topicref> elements (such as <chapter> or <mapref>) reference a map, they typically
imply a semantic role for the referenced content.

The semantic role reflects the @c1ass hierarchy of the referencing <topicref> element; it is equivalent to
having the @class attribute from the referencing <topicref> cascade to the top-level <topicref> elements in
the referenced map. Although this cascade behavior is not universal, there are general guidelines for when
@class values should be replaced.

When a <topicref> element or a specialization of a <topicref> element references a DITA resource, it
defines a role for that resource. In some cases this role is straightforward, such as when a <topicref> element
references a DITA topic (giving it the already known role of "topic"), or when a <mapref> element references a
DITA map (giving it the role of "DITA map").

Unless otherwise instructed, a specialized <topicref> element that references a map supplies a role for the
referenced content. This means that, in effect, the eclass attribute of the referencing element cascades to top-
level topicref elements in the referenced map. In situations where this should not happen - such as all elements
from the mapgroup domain - the non-default behavior should be clearly specified.

For example, when a <chapter> element from the bookmap specialization references a map, it supplies a role
of "chapter" for each top-level <topicref> element in the referenced map. When the <chapter> element
references a branch in another map, it supplies a role of "chapter" for that branch. The @class attribute for
<chapter> ("- map/topicref bookmap/chapter ") cascades to the top-level <topicref> element in the nested
map, although it does not cascade any further.

Alternatively, the <mapref> element in the mapgroup domain is a convenience element; the top-level
<topicref> elements in the map referenced by a <mapref> element MUST NOT be processed as if they are
<mapref> elements. The @class attribute from the <mapref> element ("+ map/topicref mapgroup-d/mapref ")
does not cascade to the referenced map.

In some cases, preserving the role of the referencing element might result in out-of-context content. For
example, a <chapter> element that references a bookmap might pull in <part> elements that contain nested
<chapter> elements. Treating the <part> element as a <chapter> will result in a chapter that nests other
chapters, which is not valid in bookmap and might not be understandable by processors. The result is
implementation specific; processors MAY choose to treat this as an error, issue a warning, or simply assign new
roles to the problematic elements.

Example of cascading roles between maps

Consider the scenario of a <chapter> element that references a DITA map. This scenario could take several
forms:

Referenced map contains a single top-level <topicref> element

The entire branch functions as if it were included in the bookmap; the top-level <topicref> element is processed
as if it were the <chapter> element.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 68 of 867



Referenced map contains multiple top-level <topicref> elements

Each top-level <topicref> element is processed as if it were a <chapter> element (the referencing element).
Referenced map contains a single <appendix> element

The <appendix> element is processed as it were a <chapter> element.
Referenced map contains a single <part> element, with nested <chapter> elements.

The <part> element is processed as it were a chapter element. Nested <chapter> elements might not be
understandable by processors; applications MAY recover as described above.

<chapter> element references a single <topicref> element rather than a map

The referenced <topicref> element is processed as if it were a <chapter> element.

2.2.4.7 Context hooks and window metadata for user assistance

Context hook information specified in the <resourceid> element in the DITA map or in a DITA topic enables
processors to generate the header, map, alias and other types of support files that are required to integrate the
user assistance with the application. Some user assistance topics might need to be displayed in a specific
window or viewport, and this windowing metadata can be defined in the DITA map within the <ux-window>
element.

Context hook and windowing information is ignored if the processor does not support this metadata.

User interfaces for software application often are linked to user assistance (such as help systems and tool tips)
through context hooks. Context hooks are identifiers that associate a part of the user interface with the location
of a help topic. Context hooks can be direct links to URIs, but more they are indirect links (numeric context
identifiers and context strings) that can be processed into external resource files. Context hooks can be direct
links to URIs, but more often they are indirect links (numeric context identifiers and context strings) that can
processed into external resource files. These external resource and mapping files are then used directly by
context-sensitive help systems and other downstream tream applications.

Context hooks can define either one-to-one or one-to-many relationships between user interface controls and
target help content.

The metadata that is available in <resourceid> and <ux-window> provides flexibility for content developers:

* You can overload maps and topics with all the metadata needed to support multiple target help systems. This
supports single-sourcing of help content and help metadata.

* You can choose whether to add <resourceid> metadata to <topicref> elements, <prolog> elements, or
both. Context-dependent metadata might be best be kept with maps, while persistent, context-independent
metadata might best stay with topics in <prolog> elements

Context hook information is defined within DITA topics and DITA maps through attributes of the <resourceid>
element:

@appid
Specifies an identifier that is used by an application to identify the topic.
@ux-context-string
Contains the value of a user-assistance context string that is used to identify the topic.
@ux-source-priority
(For <resourcid> elements within maps) Contains a value that indicates the precedence of context hooks in the
map and context hooks in the topic. This makes it possible to avoid problems where context hooks defined in the

DITA map potentially conflict with those defined in the topics; the values of the Gux-source-priority attribute
indicate how potential conflicts should be resolved.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 69 of 867



(For <resourcid> elements within topics) This usage is undefined and reserved for future use. Processors should
ignore the @ux-source-priority attribute.

@ux-windowref

References the name of the window to be used to display the help topic. The window characteristics are separately
defined in a <ux-window> element in the DITA map.

In some help systems, a topic might need to be displayed in a specifically sized or featured window. For
example, a help topic might need to be displayed immediately adjacent to the user interface control that it
supports in a window of a specific size that always remains on top, regardless of the focus within the operating
system. Windowing metadata can be defined in the DITA map within the <ux-window> element.

The <ux-window> element provides the @top, @left, Gheight, @width, Gon-top, @features, Rrelative,
and @full-screen attributes.

Related Links
3.4.1.22 resourceid (299)
The <resourceid> element provides an identifier for applications that must use their own identifier scheme, such as context-
sensitive help systems and databases.

3.3.1.11 ux-window (279)
Use the <ux-window> element to provide specifications for a window or viewport in which a user assistance topic or Web page
can be displayed. The window or viewport can be referenced by the <resourceid> element associated with a topic or
<topicref> element.

2.3 DITA addressing

DITA provides two addressing mechanisms. DITA addresses either are direct URI-based addresses, or they are
indirect key-based addresses. Within DITA documents, individual elements are addressed by unique identifiers
specified on the @id attribute. DITA defines two fragment-identifier syntaxes; one is the full fragment-identifier
syntax, and the other is an abbreviated fragment-identifier syntax that can be used when addressing non-topic
elements from within the same topic.

2.3.1 ID attribute

The @id attribute assigns an identifier to DITA elements so that the elements can be referenced.

The @id attribute is available for most elements. An element must have a valid value for the eid attribute before
it can be referenced using a fragment identifier. The requirements for the @id attribute differ depending on
whether it is used on a topic element, a map element, or an element within a topic or map.

All values for the @id attribute must be XML name tokens.

The @id attributes for topic and map elements are declared as XML attribute type ID; therefore, they must be
unique with respect to other XML IDs within the XML document that contains the topic or map element. The @id
attribute for most other elements within topics and maps are not declared to be XML IDs; this means that XML
parsers do not require that the values of those attributes be unique. However, the DITA specification requires
that all IDs be unique within the context of a topic. For this reason, tools might provide an additional layer of
validation to flag violations of this rule.

Within documents that contain multiple topics, the values of the @1id attribute for all non-topic elements that have
the same nearest-ancestor-topic element should be unique with respect to each other. The values of the cid
attribute for non-topic elements can be the same as non-topic elements with different nearest-ancestor-topic
elements. Therefore, within a single DITA document that contains more than one topic, the values of the @id
attribute of the non-topic elements need only to be unique within each topic.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 70 of 867



Within a map document, the values of the @id attributes for all elements SHOULD be unique. When two

elements within a map have the same value for the @id attribute, processors MUST resolve references to that ID

to the first element with the given ID value in document order.

Element XML attribute type for | Must be unique Required?
eid within
<map> ID document No
<topic> ID document Yes
sub-map (elements nested within | NMTOKEN document Usually no, with some
a map) exceptions
sub-topic (elements nested NMTOKEN individual topic Usually no, with some
within a topic) exceptions

Figure 10: Summary of requirements for the @id attribute

Note: For all elements other than footnote (<£n>), the presence of a value for the @id attribute has no
impact on processing. For <fn>, the presence or absence of a valid @1id attribute affects how the element is
processed. This is important for tools that automatically assign @id attributes to all elements.

2.3.2 DITA linking

DITA supports many different linking elements, but they all use the same set of attributes to describe
relationships between content.

URI-based addressing

URI-based links are described by the following attributes.

@href
The @href attribute specifies the URI of the resource that is being addressed.

@format
The @format attribute identifies the format of the resource being addressed. For example, references to DITA
topics are identified with format="dita", whereas references to DITA maps use format="ditamap".
References to other types of content should use other values for this attribute. By default, references to non-XML
content use the extension of the URI in the ehref attribute as the effective format.

@scope
The @scope attribute describes the closeness of the relationship between the current document and the target
resource. Resources in the same information unit are considered "1ocal"; resources in the same system as the

referencing content but not part of the same information unit are considered "peer"; and resources outside the
system, such as Web pages, are considered "external".

@type
The @type attribute is used on cross-references to describe the target of the reference. Most commonly, the @type
attribute names the element type being referenced when format="dita".

These four attributes act as a unit, describing whatever link is established by the element that carries them.

The @format and @scope attributes are assigned default values based on the URI that is specified in the @href

attribute. Thus they rarely need to be explicitly specified in most cases. However, they can be useful in many
non-traditional linking scenarios or environments.

dita-v1.3-csd01-part2-tech-content
Standards Track Work Product

30 June 2015

Copyright © OASIS Open 2015. All Rights Reserved. Page 71 of 867



Indirect key-based addressing

DITA also supports indirect links and cross-references in which a DITA map assigns unique names, or keys, to
the resources being referenced by the publication. This is done using <topicref> elements that specify the
@keys attribute. Using the ekeyref attribute, individual links, cross-references, and images then reference
resources by their keys instead of their URIs . Links defined using ekeyref thus allow context-specific linking
behavior. That is, the links in a topic or map might resolve to one set of resources in one context, and a
completely different set of resources in another, without the need for any modifications to the link markup.

When links are defined using ckeyref, values for the four linking attributes described above are typically all
specified (or given default values) on the key defining element.

2.3.3 URI-based (direct) addressing

Content reference and link relationships can be established from DITA elements by using URI references. DITA
uses URI references in @href, @conref, and other attributes for all direct addressing of resources.

URI references address resources and (in some cases) subcomponents of those resources. In this context, a
resource is a DITA document (map, topic, or DITA base document) or a non-DITA resource (for example, an
image, a Web page, or a PDF document).

URI references that are URLs must conform to the rules for URLs and URIs. Windows paths that contains a
backslash (\) are not valid URLs.

URIs and fragment identifiers

For DITA resources, fragment identifiers can be used with the URI to address individual elements. The fragment
identifier is the part of the URI that starts with a number sign (#), for example, #topicid/elementid. URI
references also can include a query component that is introduced with a question mark (?). DITA processors
MAY ignore queries on URI references to DITA resources. URI references that address components in the same
document MAY consist of just the fragment identifier.

For addressing DITA elements within maps and topics or individual topics within documents containing multiple
topics, URI references must include the appropriate DITA-defined fragment identifier. URI references can be
relative or absolute. A relative URI reference can consist of just a fragment identifier. Such a reference is a
reference to the document that contains the reference.

Addressing non-DITA targets using a URI

DITA can use URI references to directly address non-DITA resources. Any fragment identifier used must
conform to the fragment identifier requirements that are defined for the target media type or provided by
processors.

Addressing elements within maps using a URI

When addressing elements within maps, URI references can include a fragment identifier that includes the ID of
the map element, for example, filename.ditamap#mapId or #mapId. The same-topic, URI-reference
fragment identifier of a period (.) must not be used in URI references to elements within maps.

Addressing topics using a URI

When addressing a DITA topic element, URI references may include a fragment identifier that includes the ID of
the topic element (filename.dita#topicIdor #topicId). When addressing the DITA topic element that
contains the URI reference, the URI reference may include the same topic fragment identifier of "." (4 . ).

Topics always can be addressed by a URI reference whose fragment identifier consists of the topic ID. For the

purposes of linking, a reference to a topic-containing document addresses the first topic within that document in
document order. For the purposes of rendering, a reference to a topic-containing document addresses the root

element of the document.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 72 of 867



Consider the following examples:

» Given a document whose root element is a topic, a URI reference (with no fragment identifier) that addresses
that document implicitly references the topic element.

» Given a <dita> document that contains multiple topics, for the purposes of linking, a URI reference that
addresses the <dita> document implicitly references the first child topic.

+ Given a <dita> document that contains multiple topics, for the purposes of rendering, a URI reference that
addresses the <dita> document implicitly references all the topics that are contained by the <dita>
element. This means that all the topics that are contained by the<dita> element are rendered in the result.

Addressing non-topic elements using a URI

When addressing a non-topic element within a DITA topic, a URI reference must use a fragment identifier that
contains the ID of the ancestor topic element of the non-topic element being referenced, a slash ("/"), and the ID
of the non-topic element (filename.dita#topicId/elementId or #topicId/elementId). When
addressing a non-topic element within the topic that contains the URI reference, the URI reference can use an
abbreviated fragment-identifier syntax that replaces the topic ID with "." (# . /elementId).

This addressing model makes it possible to reliably address elements that have values for the @id attribute that
are unique within a single DITA topic, but which might not be unique within a larger XML document that contains

multiple DITA topics.

Examples: URI reference syntax

The following table shows the URI syntax for common use cases.

Use case

Sample syntax

Reference a table in a topic at a network
location

"http://example.com/file.dita#topicID/tableID"

Reference a section in a topic on a local
file system

"directory/file.dita#topicID/sectionID"

Reference a figure contained in the same
XML document

"#topicID/figureID"

Reference a figure contained in the same
topic of an XML document

"#./figureID"

Reference an element within a map

"http://example.com/map.ditamap#elementID" (and a value of
"ditamap" for the @format attribute)

Reference a map element within the
same map document

"#elementID" (and a value of "ditamap" for the @ format attribute)

Reference an external Web site

"http://www.example.com", "http://
www.example.comfsomefragment" or any other valid URI

Reference an element within a local map

"filename.ditamap#elementid" (and a value of "ditamap” for the
@format attribute)

Reference a local map

"filename.ditamap" (and a value of "ditamap” for the @ format
attribute)

Reference a local topic

Reference a local topic "filename.dita" or "path/
filename.dita"

dita-v1.3-csd01-part2-tech-content
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

30 June 2015
Page 73 of 867




Use case Sample syntax

Reference a specific topic in a local "filename.dita#topicid" or "path/filename.dita#topicid"
document

Reference a specific topic in the same file | "#topicid"

Reference the same topic in the same BE
XML document

Reference a peer map for cross- "../book-b/book-b.ditamap" (and a value of "ditamap" for the
deliverable linking @format attribute, a value of "peer" for the @scope attribute, and a value
for the @keyscope attribute)

2.3.4 Indirect key-based addressing

DITA keys provide an alternative to direct addressing. The key reference mechanism provides a layer of
indirection so that resources (for example, URIs, metadata, or variable text strings) can be defined at the DITA
map level instead of locally in each topic.

For information about using keys to define and reference controlled values, see Subject scheme maps and their
usage (47).

Note: The material in this section of the DITA specification is exceptionally complex; it is targeted at
implementers who build processors and other rendering applications.

2.3.4.1 Core concepts for working with keys
The concepts described below are critical for a full understanding of keys and key processing.

The use of the phases "<map> element" or "<topicref> element" should be interpreted as "<map> element and
any specialization of <map> element " or " <topicref> element or any specialization of <topicref> element."

Definitions related to keys
resource
For the purposes of keys and key resolution, one of the following:

* An object addressed by URI
* Metadata specified on a resource, such as a @scope or @format attribute
» Text or metadata located within a <topicmeta> element

key
A name for a resource. See Using keys for addressing (77) for more information.
key definition
A <topicref> element that binds one or more key names to zero or more resources.
key reference
An attribute that references a key, such as @keyref or Gconkeyref.
key space
A list of key definitions that are used to resolve key references.
effective key definition

The definition for a key within a key space that is used to resolve references to that key. A key might have multiple
definitions within a key space, but only one of those definitions is effective.

key scope

A map or section of a map that defines its own key space and serves as the resolution context for its key
references.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 74 of 867



Key definitions
A key definition binds one or more keys to zero or more resources. Resources can be:
* Any URI-addressed resource that is referenced directly by the @href attribute or indirectly by the @keyref

attribute on the key definition. References to the key are considered references to the URI-addressed
resource.

+ (If the key definition contains a child <topicmeta> element) The child elements of the <topicmeta>
element. The content of those elements can be used to populate the content of elements that reference the
key.

If a key definition does not contain a <topicmeta> element and does not refer to a resource by @href or
@keyref, it is nonetheless a valid key definition. References to the key definition are considered resolvable, but
no linking or content transclusion occurs.

Key scopes

All key definitions and key references exist within a key scope. If the @keyscope attribute is never specified
within the map hierarchy, all keys exist within a single, default key scope.

Additional key scopes are created when the @keyscope attribute is used. The @keyscope attribute specifies a
name or names for the scope. Within a map hierarchy, key scopes are bounded by the following:

* The root map.
» The root element of submaps when the root elements of the submaps specify the @keyscope attribute

* Any <topicref> elements that specify the @keyscope attribute

Key spaces

The key space associated with a key scope is used to resolve all key references that occur immediately within
that scope. Key references in child scopes are resolved using the key spaces that are associated with those
child scopes.

A key scope is associated with exactly one key space. That key space contains all key definitions that are
located directly within the scope; it may also contain definitions that exist in other scopes. Specifically, the key
space associated with a key scope is comprised of the following key definitions, in order of precedence:

1. All key definitions from the key space associated with the parent key scope, if any.

2. Key definitions within the scope-defining element, including those defined in directly-addressed, locally-
scoped submaps, but excluding those defined in child scopes. (Keys defined in child scopes cannot be
addressed without qualifiers.)

3. The key definitions from child scopes, with each key prepended by the child scope name followed by a
period. If a child scope has multiple names, the keys in that scope are addressable from the parent scope
using any of the scope names as a prefix.

Note: Because of rules 1 and 3, the key space that is associated with a child scope includes the scope-
qualified copies of its own keys that are inherited from the key space of the parent scope, as well as those
from other "sibling" scopes.

Effective key definitions

A key space can contain many definitions for a given key, but only one definition is effective for the purpose of
resolving key references.

When a key has a definition in the key space that is inherited from a parent scope, that definition is effective.
Otherwise, a key definition is effective if it is first in a breadth-first traversal of the locally-scoped submaps
beneath the scope-defining element. Put another way, a key definition is effective if it is the first definition for that

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 75 of 867



key name in the shallowest map that contains that key definition. This allows higher-level map authors to
override keys defined in referenced submaps.

Note: A key definition that specifies more than one key name in its @keys attribute may be the effective
definition for some of its keys but not for others.

Within a key scope, keys do not have to be defined before they are referenced. The key space is effective for the
entire scope, so the order of key definitions and key references relative to one another is not significant. This has
the following implications for processors:

« All key spaces for a root map must be determined before any key reference processing can be performed.

+ Maps referenced solely by key reference have no bearing on key space contents.

For purposes of key definition precedence, the scope-qualified key definitions from a child scope are considered

to occur at the location of the scope-defining element within the parent scope. See Example: How key scopes
affect key precedence (95) for more information.

2.3.4.2 Key scopes
Key scopes enable map authors to specify different sets of key definitions for different map branches.

A key scope is defined by a <map> or <topicref> element that specifies the @keyscope attribute. The
@keyscope attribute specifies the names of the scope, separated by spaces.

A key scope includes the following components:

* The scope-defining element

» The elements that are contained by the scope-defining element, minus the elements that are contained by
child key scopes

* The elements that are referenced by the scope-defining element or its descendants, minus the elements that
are contained by child key scopes

If the ekeyscope attribute is specified on both a reference to a DITA map and the root element of the referenced
map, only one scope is created; the submap does not create another level of scope hierarchy. The single key
scope that results from this scenario has multiple names; its names are the union of the values of the
@keyscope attribute on the map reference and the root element of the submap. This means that processors can
resolve references to both the key scopes specified on the map reference and the key scopes specified on the
root element of the submap.

The root element of a root map always defines a key scope, regardless of whether a ekeyscope attribute is
present. All key definitions and key references exist within a key scope, even if it is an unnamed, implicit key
scope that is defined by the root element in the root map.

Each key scope has its own key space that is used to resolve the key references that occur within the scope.
The key space that is associated with a key scope includes all of the key definitions within the key scope. This
means that different key scopes can have different effective key definitions:

+ A given key can be defined in one scope, but not another.

» A given key also can be defined differently in different key scopes.

Key references in each key scope are resolved using the effective key definition that is specified within its own
key scope.

Example: Key scopes specified on both the map reference and the root element of the
submap

Consider the following scenario:
<map>

<mapref keyscope="A" href="installation.ditamap"/>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 76 of 867



Ll== o0 ==
</map>

Figure 11: Root map

<map keyscope="B">

Figure 12: installation.ditamap

Only one key scope is created; it has key scope names of "A" and "B".

2.3.4.3 Using keys for addressing

For topic references, image references, and other link relationships, resources can be indirectly addressed by
using the ckeyref attribute. For content reference relationships, resources can be indirectly addressed by using
the @conkeyref attribute.

Syntax

For references to topics, maps, and non-DITA resources, the value of the @keyref attribute is simply a key
name (for example, keyref="topic-key").

For references to non-topic elements within topics, the value of the ckeyref attribute is a key name, a slash
("/"), and the ID of the target element (for example, keyref="topic-key/some-element-id".)

Example

For example, consider this topic in the document file.dita:

<topic id="topicid">
<title>Example referenced topic</title>
<body>
<section id="section-01">Some content.</section>
</body>
</topic>

and this key definition:

<map>
<topicref keys="myexample"
href="file.dita"
/>
</map>

A cross reference of the form xref="myexample/section-01" resolves to the <section> element in the
topic. The key reference is equivalent to the URI reference xref="file.dita#topicid/section-01".

2.3.4.4 Addressing keys across scopes

When referencing key definitions that are defined in a different key scope, key names might need to be qualified
with key scope names.

A root map might contain any number of key scopes; relationships between key scopes are discussed using the
following terms:

child scope

A key scope that occurs directly within another key scope. For example, in the figure below, key scopes "A-1" and
"A-2" are child scopes of key scope "A".

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 77 of 867



parent scope

A key scope that occurs one level above another key scope. For example, in the figure below, key scope "A" is a
parent scope of key scopes "A-1" and "A-2".

ancestor scope

A key scope that occurs any level above another key scope. For example, in the figure below, key scopes "A" and
"Root" are both ancestor scopes of key scopes "A-1" and "A-2"

descendant scope

A key scope that occurs any level below another key scope. For example, in the figure below, key scopes "A",
"A-1", and "A-2" are all descendant scopes of the implicit, root key scope

sibling scope

A key scope that shares a common parent with another key scope. For example, in the figure below, key scopes
"A" and "B" are sibling scopes; they both are children of the implicit, root key scope.

key scope hierarchy

A key scope and all of its descendant scopes.

A-1

A-2

Root

Figure 13: A key scope hierarchy

Keys that are defined in parent key scopes

The key space that is associated with a key scope also includes all key definitions from its parent key scope. If a
key name is defined in both a key scope and its parent scope, the key definition in the parent scope takes
precedence. This means that a key definition in a parent scope overrides all definitions for the same key name in
all descendant scopes. This enables map authors to override the keys that are defined in submaps, regardless
of whether the submaps define key scopes.

In certain complex cases, a scope-qualified key name (such as "scope.key") can override an unqualified key
name from the parent scope. See Example: How key scopes affect key precedence (95).

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 78 of 867



Keys that are defined in child key scopes

The key space associated with a key scope does not include the unqualified key definitions from the child
scopes. However, it does include scope-qualified keys from the child scopes. This enables sibling key scopes to
have different key definitions for the same key name.

A scope-qualified key name is a key name, prepended by one or more key scope names and separated by
periods. For example, to reference a key "keyName" defined in a child scope named "keyScope", specify
keyref="keyScope. keyName".

If a key scope has multiple names, its keys can be addressed from its parent scope using any of the scope
names. For example, if a key scope is defined with keyscope="a b c¢", and it contains a key name of
"product", that key can be referenced from the parent scope by keyref="a.product",
keyref="b.product", or keyref="c.product"

Because a child scope contributes its scope-qualified keys to its parent scope, and that parent scope contributes
its scope-qualified keys to jts parent scope, it is possible to address the keys in any descendant scope by using
the scope-qualified key name. For example, consider a key scope named "ancestorScope" that has a child
scope named "parentScope" which in turn has a child scope named "childScope". The scope "childScope”
defines a key named "keyName". To reference the key "keyName" from scope "ancestorScope", specify the
scope-qualified key name: keyref="parentScope.childScope.keyName".

Keys that are defined in sibling key scopes

Because a parent key scope contains scope-qualified keys from all of its child scopes, and a child scope inherits
all of the key definitions (including scope-qualified keys) from its parent scope, it is possible for a child scope to
reference its own scope-qualified keys, as well as those defined by its sibling scopes.

For example, consider two sibling scopes, "scope1" and "scope2". Each scope defines the key "productName".
References to "productName" in each scope resolve to the local definition. However, since each scope inherits
the scope-qualified keys that are available in their parent scope, either scope can reference
"scope1.productName" and "scope2.productName" to refer to the scope-specific definitions for that key.

2.3.4.5 Cross-deliverable addressing and linking

A map can use scoped keys to reference keys that are defined in a different root map. This cross-deliverable
addressing can support the production of deliverables that contain working links to other deliverables.

When maps are referenced and the value of the @scope attribute is set to "peer"”, the implications are that the
two maps are managed in tandem, and that the author of the referencing map might have access to the
referenced map. Adding a key scope to the reference indicates that the peer map should be treated as a
separate deliverable for the purposes of linking.

The keys that are defined by the peer map belong to any key scopes that are declared on the <topicref>
element that references that map. Such keys can be referenced from content in the referencing map by using
scope-qualified key names. However, processors handle references to keys that are defined in peer maps
differently from how they handle references to keys that are defined in submaps.

DITA processors are not required to resolve key references to peer maps. However, if all resources are available
in the same processing or management context, processors have the potential to resolve key references to peer
maps. There might be performance, scale, and user interface challenges in implementing such systems, but the

ability to resolve any given reference is ensured when the source files are physically accessible.

Note the inverse implication; if the peer map is not available, then it is impossible to resolve the key reference.
Processors that resolve key references to peer maps should provide appropriate messages when a reference to
a peer map cannot be resolved. Depending on how DITA resources are authored, managed, and processed,
references to peer maps might not be resolvable at certain points in the content life cycle.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 79 of 867



The peer map might specify @keyscope on its root element. In that case, the @keyscope on the peer map is
ignored for the purpose of resolving scoped key references from the referencing map. This avoids the need for
processors to have access to the peer map in order to determine whether a given key definition comes from the
peer map.

Example: A root map that declares a peer map

Consider the DITA maps map-a.ditamap and map-b.ditamap. Map A designates Map B as a peer map by
using the following markup:

<map>
<title>Map A</title>
<topicref
scope="peer"
format="ditamap"
keyscope="map-b"

href="../map-b/map-b.ditamap"
processing-role="resource-only"
/>
Ll== -=>
</map>

In this example, map-b.ditamap is not a submap of Map A; it is a peer map.

Example: Key resolution in a peer map that contains a @keyscope attribute on the root
element

Consider the map reference in map Map A:

<mapref
keyscope="scope-b"
scope="peer"
href="map-b.ditamap"
/>

where map-b.ditamap contains the following markup:

<map keyscope="product-x">
== (o0 ==
</map>

From the context of Map A, key references of the form "scope-b.somekey" are resolved to keys that are defined
in the global scope of map B, but key references of the form "product-x.somekey" are not. The presence of a
@keyscope attribute on the <map> element in Map B has no effect. A key reference to the scope "scope-
b.somekey" is equivalent to the unscoped reference "somekey" when processed in the context of Map B as the
root map. In both cases, the presence of @keyscope on the root element of Map B has no effect; in the first case
it is explicitly ignored, and in the second case the key reference is within the scope "product-x" and so does not
need to be scope qualified.

2.3.4.6 Processing key references

Key references can resolve as links, as text, or as both. Within a map, they also can be used to create or
supplement information on a topic reference. This topic covers information that is common to all key processing,
regardless of how the key is used.

Processing of undefined keys

If both ekeyref and @href attributes are specified on an element, the @href value MUST be used as a fallback
address when the key name is undefined. If both @conkeyref and @conref attributes are specified on an
element, the @conref value MUST be used as a fallback address when the key name is undefined.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 80 of 867



Determining effective attributes on the key-referencing element

The attributes that are common to the key-defining element and the key-referencing element, other than the
@keys, @processing-role, and @id attributes, are combined as for content references, including the special
processing for the @xml:1ang, @dir, and @translate attributes. There is no special processing associated
with either the @1locktitle or the @lockmeta attributes when attributes are combined.

Keys and conditional processing

The effective key definitions for a key space might be affected by conditional processing (filtering). Processors
SHOULD perform conditional processing before determining the effective key definitions. However, processors
might determine effective key definitions before filtering. Consequently, different processors might produce
different effective bindings for the same map when there are key definitions that might be filtered out based on
their filtering attributes.

Note: In order to retain backwards compatibility with DITA 1.0 and 1.1, the specification does not mandate a
processing order for different DITA features. This makes it technically possible to determine an effective key
definition, resolve references to that key definition, and then filter out the definition. However, the preferred
approach is to take conditional processing into account when resolving keys, so that key definitions which
are excluded by processing are not used in resolving key references.

Reusing a topic in multiple key scopes

If a topic that contains key references is reused in multiple key scopes within a given root map such that its
references resolve differently in each use context, processors MUST produce multiple copies of the source topic
in resolved output for each distinct set of effective key definitions that are referenced by the topic. In such cases,
authors can use the @copy-to attribute to specify different source URIs for each reference to a topic.

Error conditions

If a referencing element contains a key reference with an undefined key, it is processed as if there were no key
reference, and the value of the ehref attribute is used as the reference. If the @href attribute is not specified,
the element is not treated as a navigation link. If it is an error for the element to be empty, an implementation
MAY give an error message; it also MAY recover from this error condition by leaving the key reference element
empty.

2.3.4.7 Processing key references for navigation links and images

Keys can be used to create or redirect links and cross references. Keys also can be used to address resources
such as images or videos. This topic explains how to evaluate key references on links and cross references to
determine a link target.

When a key definition is bound to a resource that is addressed by the @href or @keyref attributes, and does
not specify "none" for the @1inking attribute, all references to that key definition become links to the bound
resource. When a key definition is not bound to a resource or specifies "none" for the @1inking attribute,
references to that key definition do not become links.

When a key definition has no @href value and no ekeyref value, references to that key will not result in a link,
even if they do contain an @href attribute of their own. If the key definition also does not contain a
<topicmeta> subelement, empty elements that refer to the key (such as <1ink keyref="a"/>or <xref
keyref="a" href="fallback.dita"/>) are ignored.

The <object> element has additional key-referencing attributes (carchivekeyrefs, @classidkeyref,
@codebasekeyref, and @datakeyref). Key names in these attributes are resolved using the same processing
that is described for the normal @keyref attribute.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 81 of 867



2.3.4.8 Processing key references on <topicref> elements

While <topicref> elements are used to define keys, they also can reference keys that are defined elsewhere.
This topic explains how to evaluate key references on <topicref> elements and its specializations.

For topic references that use the ekeyref attribute, the effective value of the <topicref> elementis

determined in the following way:

Determining the effective resource
The effective resource bound to the <topicref> element is determined by resolving all intermediate key
references. Each key reference is resolved either to a resource addressed directly by URI reference in an
@href attribute, or to no resource. Processors MAY impose reasonable limits on the number of intermediate
key references that they will resolve. Processors SHOULD support at least three levels of key references.

Note: This rule applies to all topic references, including those that define keys. The effective bound resource
for a key definition that uses the ekeyref attribute cannot be determined until the key space has been
constructed.

Combining metadata

Content from a key-defining element cascades to the key-referencing element following the rules for
combining metadata between maps and other maps and between maps and topics. The @1lockmeta attribute
is honored when metadata content is combined.

The combined attributes and content cascade from one map to another or from a map to a topic, but this is
controlled by existing rules for cascading, which are not affected by the use of key references.

If, in addition to the @keys attribute, a key definition specifies a ckeyref attribute that can be resolved after the
key resolution context for the key definition has been determined, the resources bound to the referenced key
definition take precedence.

2.3.4.9 Processing key references to generate text or link text

Key references can be used to pull text from the key definition. This topic explains how to generate text from a
key definition, regardless of whether the key reference also results in a link.

Note: The processing described in this topic is unrelated to the @conkeyref attribute. In that case
@Qconkeyref is used to determine the target of a @conref attribute, after which the normal @conref rules

apply.

Empty elements that include a key reference with a defined key might get their effective content from the key
definition. Empty elements are defined as elements that meet the following criteria:

* Have no text content, including white space
* Have no sub-elements
» Have no attributes that would be used as text content (such as @alt on the <image> element)

When an empty element as defined above references a key definition that has a child <topicmeta> element,
content from that <topicmeta> element is used to determine the effective content of the referencing element.
Effective content from the key definition becomes the element content, with the following exceptions:

» For empty <image> elements, effective content is used as alternate text, equivalent to creating an <alt> sub-
element to hold that content.

« For empty <1ink> elements, effective content is used as link text, equivalent to creating a <linktext> sub-
element to hold that content.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 82 of 867



* For empty <1ink> and <xref> elements, a key definition can be used to provide a short description in
addition to the normal effective content. If the key definition includes <shortdesc> inside of <topicmeta>,
that <shortdesc> should be used to provide effective content for a <desc> sub-element.

* The <longdescref> and <longquoteref> elements are empty elements with no effective content. Key
definitions are not used to set effective text for these elements.

* The <param> element does not have any effective content, so key definitions do not result in any effective
content for <param> elements.

» The <indextermref> element is not completely defined, so determining effective content for this element is
also left undefined.

* The <abbreviated-form> element is an empty element with special rules that determine its effective
content.

Effective text content is determined using the following set of rules:
1. Forthe <abbreviated-form> element, see the rules described in abbreviated-form (416)

2. For elements that also exist as a child of <topicmeta> in the key definition, effective content is taken from
the first matching direct child of <topicmeta>. For example, given the following key definition, an empty
<author> element with the attribute keyref="justMe" would result in the matching content "Just M.
Name™":

<keydef keys="justMe" href="http://www.example.com/my-profile" format="html" scope="external">
<topicmeta>
<author>Just M. Name</author>
</topicmeta>
</keydef>

3. For elements that do not allow the e@href attribute, content is taken from the first <keyword> element
inside of <keywords> inside of the <topicmeta>. For example, given the following key definition, empty
<keyword>, <term>, and <dt> elements with the attribute keyref="nohref" would all result in the
matching content "first":

<keydef keys="nohref">
<topicmeta>
<keywords><keyword>first</keyword><keyword>second</keyword><keyword>third</keyword></
keywords>

</topicmeta>
</keydef>

4. For elements that do allow chref, elements from within <topicmeta> that are legal within the element
using @keyref are considered matching text. For example, the <xref> element allows @href, and also
allows <keyword> as a child. Using the code sample from the previous item, an empty <xref> with
keyref="nohref" would use all three of these elements as text content; after processing, the result
would be equivalent to:

<xref keyref="test"><keyword>first</keyword><keyword>second</keyword><keyword>third</keyword></
xref>

5. Otherwise, if <1inktext> is specified inside of <topicmeta>, the contents of <1inktext> are used as
the effective content.

Note: Because all elements that get effective content will eventually look for content in the <1inktext>
element, using <linktext> for effective content is a best practice for cases where all elements getting
text from a key definition should result in the same value.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 83 of 867



6. Otherwise, if the element with the key reference results in a link, normal link text determination rules apply
as they would for <xref> (for example, using the <navtitle> or falling back to the URI of the link target).

When the effective content for a key reference element results in invalid elements, those elements SHOULD be
generalized to produce a valid result. For example, <1inktext> in the key definition may use a domain
specialization of <keyword> that is not valid in the key reference context, in which case the specialized element
should be generalized to <keyword>. If the generalized content is also not valid, a text equivalent should be
used instead. For example, <1inktext> may include <ph> or a specialized <ph> in the key definition, but
neither of those are valid as the effective content for a <keyword>. In that case, the text content of the <ph>
should be used.

2.3.4.10 Examples of keys

This section of the specification contains examples and scenarios. They illustrate a wide variety of ways that
keys can be used.

2.3.4.10.1 Examples: Key definition

The <topicref> element, and any specialization of <topicref> that allows the ckeys attribute, can be used to
define keys.

In the following example, a <topicref> element is used to define a key; the <topicref> element also
contributes to the navigation structure.

<map>
Lle=mg oo ==
<topicref keys="apple-definition" href="apple-gloss-en-US.dita" />
Lll==s,, ==>

</map>

The presence of the Gkeys attribute does not affect how the <topicref> element is processed.

In the following example, a <keyde£> element is used to define a key.

<map>
Rl==g,, ==>
<keydef keys="apple-definition" href="apple-gloss-en-US.dita"/>
Rl==g0o ==>

</map>

Because the <keydef> element sets the default value of the @processing-role attribute to "resource-only”,
the key definition does not contribute to the map navigation structure; it only serves as a key definition for the
key name "apple-definition”.

2.3.4.10.2 Examples: Key definitions for variable text

Key definitions can be used to store variable text, such as product names and user-interface labels. Depending
on the key definition, the rendered output might have a link to a related resource.

In the following example, a "product-name" key is defined. The key definition contains a child <keyword>
element nested within a <keydef>element.

<map>
<keydef keys="product-name">
<topicmeta>
<keywords>
<keyword>Thing-O-Matic</keyword>
</keywords>
</topicmeta>
</keydef>
</map>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 84 of 867



A topic can reference the "product-name" key by using the following markup:

<topic id="topicid">
<p><keyword keyref="product-name"/> is a product designed to ...</p>
</topic>

When processed, the output contains the text "Thing-O-Matic is a product designed to ... ".
In the following example, the key definition contains both a reference to a resource and variable text.

<map>
<keydef keys="product-name" href="thing-o-matic.dita">
<topicmeta>
<keywords>
<keyword>Thing-O-Matic</keyword>
</keywords>
</topicmeta>
</keydef>
</map>

When processed using the key reference from the first example, the output contains the "Thing-O-Matic is a
product designed to ... " text. The phrase "Thing-O-Matic" also is a link to the thing-o-matic.dita topic.

2.3.4.10.3 Example: Scoped key definitions for variable text

Scoped key definitions can be used for variable text. This enables you to use the same DITA topic multiple times
in a DITA map, and in each instance the variable text can resolve differently.

The Acme Tractor Company produces two models of tractor: X and Y. Their product manual contains sets of
instructions for each model. While most maintenance procedures are different for each model, the instructions
for changing the oil are identical for both model X and model Y. The company policies call for including the
specific model number in each topic, so a generic topic that could be used for both models is not permitted.

1. The authoring team references the model information in the changing-the-o0il.dita topic by using
the following mark-up:

<keyword keyref="model" />

2. The information architect examines the root map for the manual, and decides how to define key scopes.
Originally, the map looked like the following:

<map>
<!-- Model X: Maintenance procedures -->
<topicref href="model-x-procedures.dita">
<topicref href="model-x/replacing-a-tire.dita"/>
<topicref href="model-x/adding-fluid.dita"/>
</topicref>

<!-- Model Y: Maintenance procedures -->
<topicref href="model-y-procedures.dita">
<topicref href="model-y/replacing-a-tire.dita"/>
<topicref href="model-y/adding-fluid.dita"/>
</topicref>
</map>

3. The information architect wraps each set of procedures in a <topicgroup> element and sets the
@keyscope attribute.

<map>
<!-- Model X: Maintenance procedures -->
<topicgroup keyscope="model-x">
<topicref href="model-x-procedures.dita">
<topicref href="model-x/replacing-a-tire.dita"/>
<topicref href="model-x/adding-fluid.dita"/>
</topicref>
</topicgroup>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 85 of 867



<!-- Model Y: Maintenance procedures -->
<topicgroup keyscope="model-y">
<topicref href="model-y-procedures.dita">
<topicref href="model-y/replacing-a-tire.dita"/>
<topicref href="model-y/adding-fluid.dita"/>
</topicref>
</topicgroup>
</map>

This defines the key scopes for each set of procedures.

4. The information architect then adds key definitions to each set of procedures, as well as a reference to the
changing-the-oil.dita topic.

<map>
<!-- Model X: Maintenance procedures -->
<topicgroup keyscope="model-x">
<keydef keys="model">
<topicmeta>
<linktext>X</linktext>
</topicmeta>
</keydef>
<topicref href="model-x-procedures.dita">
<topicref href="model-x/replacing-a-tire.dita"/>
<topicref href="model-x/adding-fluid.dita"/>
<topicref href="common/changing-the-oil.dita"/>
</topicref>
</topicgroup>

<!-- Model Y: Maintenance procedures -->
<topicgroup keyscope="model-y">
<keydef keys="model">
<topicmeta>
<linktext>Y¥</linktext>
</topicmeta>
</keydef>
<topicref href="model-y-procedures.dita">
<topicref href="model-y/replacing-a-tire.dita"/>
<topicref href="model-y/adding-fluid.dita"/>
<topicref href="common/changing-the-oil.dita"/>
</topicref>
</topicgroup>
</map>

When the DITA map is processed, the changing-the-o0il.dita topic is rendered twice. The model
variable is rendered differently in each instance, using the text as specified in the scoped key definition.
Without key scopes, the first key definition would win, and "model "X" would be used in all topics.

2.3.4.10.4 Example: Duplicate key definitions within a single map
In this scenario, a DITA map contains duplicate key definitions. How a processor finds the effective key definition
depends on document order and the effect of filtering applied to the key definitions.

In the following example, a map contains two definitions for the key "load-toner":

<l==l.. =-=>
<keydef keys="load-toner" href="model-1235-load-toner-proc.dita"/>
<keydef keys="load-toner" href="model-4545-load-toner-proc.dita"

==l ==>

In this example, only the first key definition (in document order) of the "load-toner" key is effective. All references
to the key within the scope of the map resolve to the topic mode1-1235-1ocad-toner-proc.dita.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 86 of 867



In the following example, a map contains two definitions for the "file-chooser-dialog" key; each key definition
specifies a different value for the @plat form attribute.

==, =2
<keydef keys="file-chooser-dialog" href="file-chooser-osx.dita" platform="osx"/>
<keydef keys="file-chooser-dialog" href="file-chooser-win7.dita" platform="windows7"/>
Rl==go0 =2

</map>

In this case, the effective key definition is determined not only by the order in which the definitions occur, but
also by whether the active value of the platform condition is "osx" or "windows7". Both key definitions are
potentially effective because they have distinct values for the conditional attribute. Note that if no active value is
specified for the @plat form attribute at processing time, then both of the key definitions are present and so the
first one in document order is the effective definition.

If the DITAVAL settings are defined so that both "osx" and "windows" values for the @platform attribute are
excluded, then neither definition is effective and the key is undefined. That case can be avoided by specifying an
unconditional key definition after any conditional key definitions, for example:

<map>
Lll==650 ==
<keydef keys="file-chooser-dialog" href="file-chooser-osx.dita" platform="osx"/>
<keydef keys="file-chooser-dialog" href="file-chooser-win7.dita" platform="windows7"/>
<keydef keys="file-chooser-dialog" href="file-chooser-generic.dita"/>
Lle=g oo ==>

If the above map is processed with both "osx" and "windows" values for the @platform attribute excluded, then
the effective key definition for "file-chooser-dialog" is the file-chooser-generic.dita resource.

2.3.4.10.5 Example: Duplicate key definitions across multiple maps

In this scenario, the root map contains references to two submaps, each of which defines the same key. The
effective key definition depends upon the document order of the direct URI references to the maps.

In the following example, a root map contains a key definition for the key "toner-specs" and references to two
submaps.

<map>
<keydef keys="toner-specs" href="toner-type-a-specs.dita"/>
<mapref href="submap-01.ditamap"/>
<mapref href="submap-02.ditamap"/>

</map>

The first submap, submap-01.ditamap, contains definitions for the keys "toner-specs" and "toner-handling":

<map>
<keydef keys="toner-specs" href="toner-type-b-specs.dita"/>
<keydef keys="toner-handling" href="toner-type-b-handling.dita"/>
</map>

The second submap, submap-02.ditamap, contains definitions for the keys "toner-specs”, "toner-handling",
and "toner-disposal":

<map>
<keydef keys="toner-specs" href="toner-type-c-specs.dita"/>
<keydef keys="toner-handling" href="toner-type-c-handling.dita"/>
<keydef keys="toner-disposal" href="toner-type-c-disposal.dita"/>
</map>

For this example, the effective key definitions are listed in the following table.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 87 of 867



Key Bound resource

toner-specs toner-type-a-specs.dita
toner-handling toner-type-b-handling.dita
toner-disposal toner-type-c-disposal.dita

The key definition for "toner-specs" in the root map is effective, because it is the first encountered in a breadth-
first traversal of the root map. The key definition for "toner-handling" in submap-01.ditamap is effective,
because submap-01 is included before submap-02 and so comes first in a breadth-first traversal of the submaps.
The key definition for "toner-disposal" is effective because it is the only definition of the key.

2.3.4.10.6 Example: Key definition with key reference

When a key definition also specifies a key reference, the key reference must also be resolved in order to
determine the effective resources bound to that key definition.

In the following example, a <topicref> element references the key "widget". The definition for "widget" in turn
references the key "mainProduct”.

<map>
<topicref keyref="widget" id="example"/>
<keydef keys="widget" href="widgetInfo.dita" scope="local" format="dita" rev="vlr2"
keyref="mainProduct">
<topicmeta><navtitle>Information about Widget</navtitle></topicmeta>
</keydef>
<keydef keys="mainProduct" href="http://example.com/productPage" scope="external" format="html"
product="prodCode" audience="sysadmin">
<topicmeta><navtitle>Generic product page</navtitle></topicmeta>
</keydef>
</map>

For this example, the key reference to "widget" pulls resources from that key definition, which in turn pulls
resources from "mainProduct". The metadata resources from "mainProduct” are combined with the resources
already specified on the "widget" key definition, resulting in the addition of Gproduct and Gaudience values.
Along with the navigation title, the @href, @scope, and @format attributes on the "widget" key definition override
those on "mainProduct". Thus after key references are resolved, the original reference from <topicref>is
equivalent to:

<topicref id="example"
href="widgetInfo.dita" scope="local" format="dita" rev="vlr2"
product="prodCode" audience="sysadmin">
<topicmeta><navtitle>Information about Widget</navtitle></topicmeta>
</topicref>

2.3.4.10.7 Example: References to scoped keys
You can address scoped keys from outside the key scope in which the keys are defined.

<map xml:lang="en">
<title>Examples of scoped key references</title>

<!-- Key scope #1 -->
<topicgroup keyscope="scope-1">
<keydef keys="key-1" href="topic-1.dita"/>
<topicref keyref="key-1"/>
<topicref keyref="scope-1l.key-1"/>
<topicref keyref="scope-2.key-1"/>
</topicgroup>

<!-- Key scope #2 -->

<topicgroup keyscope="scope-2">
<keydef keys="key-1" href="topic-2.dita"/>
<topicref keyref="key-1"/>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 88 of 867



<topicref keyref="scope-1.key-1"/>
<topicref keyref="scope-2.key-1" />
</topicgroup>

<topicref keyref="key-1" />
<topicref keyref="scope-1l.key-1" />
<topicref keyref="scope-2.key-1" />

</map>

For this example, the effective key definitions are listed in the following tables.

Table 2: Effective key definitions for scope-1

Key reference

Resource

key-1

topic-1.dita

scope-1.key-1

topic-1.dita

scope-2.key-1

topic-2.dita

Table 3: Effective key definitions for scope-2

Key reference

Resource

key-1

topic-2.dita

scope-1.key-1

topic-1.dita

scope-2.key-1

topic-2.dita

Table 4: Effective key definitions for the key scope associated with the root map

Key reference

Resource

key-1

Undefined

scope-1.key-1

topic-1.dita

scope-2.key-1

topic-2.dita

2.3.4.10.8 Example: Key definitions in nested key scopes

In this scenario, the root map contains nested key scopes, each of which contain duplicate key definitions. The
effective key definition depends on key-scope precedence rules.

Consider the following DITA map:

<map>
<title>Root map</title>
<!-- Root scope -->

<keydef keys="a"/>

<!-- Key scope A —-->
<topicgroup keyscope="A">
<keydef keys="b"/>

<!-- Key scope A-1 -->
<topicgroup keyscope="A-1">

<keydef keys="c"/>
</topicgroup>

<!-- Key scope A-2 -->
<topicgroup keyscope="A-2">

dita-v1.3-csd01-part2-tech-content

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

30 June 2015
Page 89 of 867




<keydef keys="d"/>
</topicgroup>
</topicgroup>

<!-- Key scope B -->

<topicgroup keyscope="B">
<keydef keys="a"/>
<keydef keys="e"/>

<!-- Key scope B-1 -->
<topicgroup keyscope="B-1">

<keydef keys="f"/>
</topicgroup>

<!-- Key scope B-2 -->
<topicgroup keyscope="B-2">
<keydef keys="g"/>
</topicgroup>
</topicgroup>
</map>

The key scopes in this map form a tree structure.

Root A 1 A-1
a b c
(Ab) |[€—— (A-1.c)
(A.A-1.c) (A-2.d) }
(A.A-2.d) < A d2
(B.a)
(B.e)
(B.B-1.f) i}
(B.B-2.g) B «— B
[a] f
€ e
(B-1.f) B-2
(B-2.9) E g

Figure 14: Graphical representation of the key scopes

Each box in the diagram represents a key scope; the name of the key scope is indicated in bold with upper-case
letters. Below the name of the key scope, the key definitions that are present in the scope are listed. Different
typographic conventions are used to indicate where the key definition occurs:

No styling
The key definition occurs in the immediate key scope and is not overriden by a key definition in a parent scope. For
example, key "a" in the root map.

Parentheses
The key definition occurs in a child scope. For example, keys "A-1.c" and "A-2.d" in key scope A.

Brackets
The key definition occurs in the immediate key scope, but it is overriden by a key definition in an ancestor scope.
For example, key "a" in key scope B.

Arrows points from child to parent scopes.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 90 of 867



Assume that each key scope contains numerous key references. The following tables demonstrate how key
references resolve in key scopes A-2 and B. The first column shows the value used in key references; the
second column shows the resource to which the key resolves.

Table 5: Key scope A-2

Key reference Resource to which the key resolves

a "a", defined in the root map

d "d", as defined in the immediate key scope

A-2d "d", as defined in the immediate key scope

c Undefined

A-1.c "A-1.c", as defined in key scope A-1. This key name is
available because it exists in the parent scope, key scope
A.

A.A-1.c "A-1.¢", as defined in key scope A-1. This key name is

available because it exists in the root key scope.

Table 6: Key scope B

Key reference Resource to which the key resolves
e "e", defined in the immediate key scope
a "a", as defined in the root key scope. (While a key

definition for "a" exists in the immediate key scope, it is
overriden by the key definition that occurs in the parent
key scope.)

B.a "a", as defined in the immediate key scope. Because
the key reference uses the scope-qualified names, it
resolves to the key "a" in scope B.

g Undefined. The key "g" is defined only in key scope B-2,
so no unqualified key named "g" is defined in scope B.

B-2.g "g", as defined in key scope B-2.

2.3.4.10.9 Example: Link redirection

This scenario outlines how different authors can redirect links to a common topic by using key definitions. This
could apply to <xref>, <1ink>, or any elements (such as <keyword> or <term>) that become navigation links.

A company wants to use a common DITA topic for information about recycling: recycling.dita. However,
the topic contains a cross-reference to a topic that needs to be unique for each product line; each such topic
contains product-specific URLs.

1. The editing team creates a recycling.dita topic that includes a cross-reference to the product-specific
topic. The cross reference is implemented using a key reference:

<xref keyref="product-recycling-info" href="generic-recycling-info.dita"/>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 91 of 867



The value of the @href attribute provides a fallback in the event that a product team forgets to include a
key definition for "product-recycling-info".

. Each product documentation group creates a unique key definition for "product-recycling-info". Each group

authors the key definition in a DITA map, for example:

<map>
Rl== ;0,0 ==2
<keydef keys="product-recycling-info" href="acme-server-recycling.dita"/>
Ll== -—>

</map>

Each team can use the recycling.dita topic, and the cross reference in the topic resolves differently
for each team.

A year later, there is an acquisition. The newly-acquired team wants to reuse Acme's common material, but
it needs to direct its users to an external Web site that lists the URLSs, rather than a topic in the product
documentation. Their key definition looks like the following:

<topicref keys="product-recycling-info"

href="http://acme.example.com/server/recycling"
scope="external" format="html"/>

When newly-acquired team uses the recycling.dita topic, it resolves to the external Web site;
however for all other teams, the cross reference in the topic continues to resolves to their product-specific
topic.

. A new product team is formed, and the team forgets to include a key definition for "product-recycling-info"

in one of their root maps. Because the cross reference in the recycling.dita topic contains a value for
the @href attribute, the link falls back to generic-recycling-info.dita, thus avoiding a broken
cross reference in the output.

2.3.4.10.10 Example: Link modification or removal
This scenario outlines how different authors can effectively remove or modify a <1ink> element in a shared

topic.

A company wants to use a shared topic for information about customer support. For most products, the shared
topic should include a link to a topic about extended warranties. But a small number of products do not offer
extended warranties.

1.

Team one creates the shared topic: customer-support.dita. The topic contains the following mark-
up:
<related-links>

<link keyref="extended-warranties" href="common/extended-warranties.dita"/>
</related-links>

. The teams that need the link to the topic about extended warranties can reference the customer-

support.dita topic in their DITA maps. When processed, the related link in the topic resolves to the
common/extended-warranties.dita topic.

The teams that do not want the related link to the topic about extended warranties can include a key
definition in their DITA map that does not include an @href attribute, for example:

<map>
K== 55, ==
<keydef keys="extended-warranties"/>
Ll== 5, ==>

</map>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 92 of 867



When processed, the related link in the topic is not rendered.

4. Yet another team wants to simply have a paragraph about extended warranties printed. They define the
key definition for "extended-warranties" as follows:
<map>
<l—— ... ——>
<keydef keys="extended-warranties"/>
<topicmeta>
<linktext>This product does not offer extended warranties.</linktext>
</topicmeta>
Llo= (50 ==
</map>

When this team renders their content, there is no hyperlink in the output, just the text "This product does
not offer extended warranties" statement.

2.3.4.10.11 Example: Links from <term> or <keyword> elements

The @keyref attribute enables authors to specify that references to keywords or terms in a DITA topic can be
rendered as a link to an associated resource.

In this scenario, a company with well-developed glossary wants to ensure that instances of a term that is defined
in the glossary always include a link to the glossary topic.

1. An information architect adds values for the @keys attribute to all the of the <topicref> elements that are
in the DITA map for the glossary, for example:
<map>
<title>Company-wide glossary</title>
<topicref keys="term-1" href="term-1.dita"/>
<topicref keys="term-2" href="term-2.dita"/>
<topicref keys="term-3" href="term-3.dita"/>

<topicref keys="term-4" href="term-4.dita"/>
</map>

2. When authors refer to a term in a topic, they use the following mark-up:

<term keyref="term-1"/>

When the <term> element is rendered, the content is provided by the <title> element of the glossary
topic. The <term> element also is rendered as a link to the glossary topic.

2.3.4.10.12 Example: conref redirection
The @conkeyref attribute enables authors to share DITA topics that reuse content. It also enables map authors
to specify different key definitions for common keys.

In this scenario, Acme produces content for a product that is also resold through a business partner. When the
DITA content is published for the partner, several items must be different, including the following:

¢ Product names
« Standard notes that contain admonitions

Simply using the @conref attribute would not be possible for teams that use a component content management
system where every DITA topic is addressed by a globally-unique identifier (GUID).

1. Authors reference the reusable content in their topics by using the @conkeyref attribute, for example:

<task id="reusable-product-content">
<title><keyword conkeyref="reuse/product-name"/> prerequisites</title>
<taskbody>
<prereg><note conkeyref="reuse/warning-1"/></prereqg>
Ll== ., ==>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 93 of 867



</taskbody>
</task>

2. Authors create two different topics; one topic contains elements appropriate for Acme, and the other topic
contains elements appropriate for the partner. Note that each reuse topic must use the same element types
(or compatible specializations) and values for the @id attribute. For example, the following reuse file is

appropriate for use by Acme:

<topic id="acme-reuse">
<title>Reuse topic for Acme</title>
<body>
<note id="warning-1">Admonitions for Acme</note>
<p><keyword id="product-name">Acme product name</keyword></p>
Klo= 400 ==
</body>
</topic>

The following reuse file is appropriate for use by the OEM partner:

<topic id="ocem-reuse">
<title>Reuse topic for OEM partner</title>
<body>
<note id="warning-1">Admonitions for partner</note>
<p><keyword id="product-name">OEM product name</keyword></p>
== 500 ==2
</body>
</topic>

3. The two versions of the DITA maps each contain different key definitions for the key name "reuse". (This
associates a key with the topic that contains the appropriate reusable elements.) For example:

<map>
<l== .0 ==>
<keydef keys="reuse" href="acme-reuse.dita"/>
K== 500 ==

</map>

Figure 15: DITA map for Acme

<map>
Ll== ., ==>
<keydef keys="reuse" href="oem-reuse.dita"/>
== SE

</map>

Figure 16: DITA map for OEM partner

When each of the DITA maps is published, the elements that are referenced by @conkeyref will use the reuse
topic that is referenced by the <keydef> element in the map. The product names and warnings will be different

in the output.

2.3.4.10.13 Example: Key scopes and omnibus publications

Key scopes enable you to create omnibus publications that include multiple submaps that define the same key

names for common items, such as product names or common topic clusters.

In this scenario, a training organization wants to produce a deliverable that includes all of their training course
materials. Each course manual uses common keys for standard parts of the course materials, including

"prerequisites," "overview", "assessment”, and "summary.
An information architect creates a root map that contains the following markup:

<map xml:lang="en">
<title>Training courses</title>
<mapref href="course-1.ditamap"/>
<mapref href="course-2.ditamap"/>

dita-v1.3-csd01-part2-tech-content

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

30 June 2015
Page 94 of 867



<mapref href="course-3.ditamap"/>
<topicref href="omnibus-summary.dita"/>
</map>

Each of the submaps contain <topicref> elements that refer to resources using the @keyref attribute. Each
submap uses common keys for standard parts of the course materials, including "prerequisites," "overview",
"assessment”, and "summary", and their key definitions bind the key names to course-specific resources. For
example:

<map xml:lang="en">
<title>Training course #1</title>
<mapref href="course-1l/key-definitions.ditamap"/>
<topicref keyref="prerequisites"/>
<topicref keyref="overview"/>
<topicref keyref="assessment"/>
<topicref keyref="summary"/>
</map>

Without using key scopes, the effective key definitions for the common keys resolve to those found in
course-1.ditamap. This is not the desired outcome. By adding key scopes to the submaps, however, the
information architect can ensure that the key references in the submaps resolve to the course-specific key
definitions.

<map xml:lang="en">
<title>Training courses</title>
<mapref href="course-1l.ditamap" keyscope="course-1"/>
<mapref href="course-2.ditamap" keyscope="course-2"/>
<mapref href="course-3.ditamap" keyscope="course-3"/>
<topicref href="omnibus-summary.dita"/>

</map>

The information architect does not set keys="summary" on the <topicref> element in the root map. Doing
so would mean that all key references to "summary" in the submaps would resolve to omnibus-

summary .dita, rather than the course-specific summary topics. This is because key definitions located in
parent scopes override those located in child scopes.

2.3.4.10.14 Example: How key scopes affect key precedence

For purposes of key definition precedence, the scope-qualified key definitions from a child scope are considered
to occur at the location of the scope-defining element within the parent scope.

Within a single key scope, key precedence is determined by which key definition comes first in the map, or by
the depth of the submap that defines the key. This was true for all key definitions prior to DITA 1.3, because all
key definitions were implicitly in the same key scope. Scope-qualified key names differ in that precedence is
determined by the location where the key scope is defined.

This distinction is particularly important when key names or key scope names contain periods. While avoiding
periods within these names will avoid this sort of issue, such names are legal so processors will need to handle
them properly.

The following root map contains one submap and one key definition. The submap defines a key named
"sample".
<map>

<!-- The following mapref defines the key scope "scopeName" -->
<mapref href="submap.ditamap" keyscope="scopeName"/>

<!-- The following keydef defines the key "scopeName.sample" -->
<keydef keys="scopeName.sample" href="losing-key.dita"/>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 95 of 867



<!-- Other content, key definitions, etc. -->
</map>

Figure 17: Root map

<map>

<keydef keys="sample" href="winning-key.dita"/>
<!-- Other content, key definitions, etc. -->
</map>

Figure 18: Submap

When determining precedence, all keys from the key scope "scopeName" occur at the location of the scope-
defining element -- in this case, the <mapref> element in the root map. Because the <mapref> comes first in
the root map, the scope-qualified key name "scopeName.sample" that is pulled from submap.ditamap occurs
before the definition of "scopeName.sample" in the root map. This means that in the context of the root map, the
effective definition of "scopeName.sample" is the scope-qualified key definition that references winning-
key.dita.

The following illustration shows a root map and several submaps. Each submap defines a new key scope, and
each map defines a key. In order to aid understanding, this sample does not use valid DITA markup; instead, it
shows the content of submaps inline where they are referenced.

<map> <!-- Start of the root map -->

<mapref href="submapA.ditamap" keyscope="scopeA">
<!-- Contents of submapA.ditamap begin here -->
<mapref href="submapB.ditamap" keyscope="scopeB">
<!-- Contents of submapB.ditamap: define key MYKEY -->
<keydef keys="MYKEY" href="example-ONE.dita"/>
</mapref>
<keydef keys="scopeB.MYKEY" href="example-TWO.dita"/>
<!-- END contents of submapA.ditamap -->
</mapref>

<mapref href="submapC.ditamap" keyscope="scopeA.scopeB">

<!-- Contents of submapC.ditamap begin here -->
<keydef keys="MYKEY" href="example-THREE.dita"/>
</mapref>

<keydef keys="scopeA.scopeB.MYKEY" href="example-FOUR.dita"/>
</map>

Figure 19: Complex map with multiple submaps and scopes

The sample map shows four key definitions. From the context of the root scope, all have key names of
"scopeA.scopeB.MYKEY".

1. submapB.ditamap defines the key "MYKEY". The key scope "scopeB" is defined on the <mapref> to
submapB.ditamap, so from the context of submapA . ditamap, the scope-qualified key name is
"scopeB.MYKEY". The key scope "scopeA" is defined on the <mapref> to submapA.ditamap, so from
the context of the root map, the scope-qualified key name is "scopeA.scopeB.MYKEY".

2. submapA.ditamap defines the key "scopeB.MYKEY". The key scope "scopeA" is defined on the
<mapref> to submapA.ditamap, so from the context of the root map, the scope-qualified key name is
"scopeA.scopeB.MYKEY".

3. submapC.ditamap defines the key "MYKEY". The key scope "scopeA.scopeB" is defined on the
<mapref> to submapC.ditamap, so from the context of the root map, the scope-qualified key name is
"scopeA.scopeB.MYKEY".

4. Finally, the root map defines the key "scopeA.scopeB.MYKEY".

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 96 of 867



Because scope-qualified key definitions are considered to occur at the location of the scope-defining element,
the effective key definition is the one from submapB . ditamap (the definition that references example-
ONE.dita).

2.3.4.10.15 Example: Keys and collaboration

Keys enable authors to collaborate and work with evolving content with a minimum of time spent reworking topic
references.

In this scenario, authors collaborate on a publication that includes content for a product that is in the early stages
of development. The company documentation is highly-structured and uses the same organization for all
publications: "Introduction," "Example," and "Reference."

1. Author one creates a submap for the new product information. She knows the structure that the final
content will have, but she does not want to create empty topics for information that is not yet available. She
decides to initially author what content is available in a single topic. When more content is available, she'll
create additional topics. Her DITA map looks like the following:

<map>

<title>New product content</title>

<topicref keys="l-overview l-intro l-example l-reference" href="l-overview.dita"/>
</map>

2. Author two knows that he needs to add a <topicref> to the "Example" topic that will eventually be
authored by author one. He references the not-yet-authored topic by key reference:

<topicref keyref="l-example"/>

His topic reference initially resolves to the 1-overview.dita topic.

3. Author one finally gets the information that she was waiting on. She creates additional topics and modifies
her DITA map as follows:

<map>
<title>New product content</title>
<topicref keys="l-overview" href="l-overview.dita">
<topicref keys="l-intro" href="l-intro.dita"/>
<topicref keys="l-example" href="l-example.dita"/>
<topicref keys="l-reference" href="l-reference.dita"/>
</topicref>
</map>

Without needing to make any changes to the content, author two's topic reference now resolves to the 1-
example.dita topic.

2.4 DITA processing

DITA processing is affected by a number of factors, including attributes that indicate the set of vocabulary and
constraint modules on which a DITA document depends; navigation; linking; content reuse (using direct or
indirect addressing); conditional processing; branch filtering; chunking; and more. In addition, translation of DITA
content is expedited through the use of the @dir, @translate, and @xml: lang attributes, and the <index-
sort-as> element.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 97 of 867



2.4.1 Navigation

DITA includes markup that processors can use to generate reader navigation to or across DITA topics. Such
navigation behaviors include table of contents (TOCs) and indexes.

2.4.1.1 Table of contents

Processors can generate a table of contents (TOC) based on the hierarchy of the elements in a DITA map. By
default, each <topicref> element in a map represents a node in the TOC. These topic references define a
navigation tree.

When a map contains a topic reference to a map (often called a map reference), processors should integrate the
navigation tree of the referenced map with the navigation tree of the referencing map at the point of reference. In
this way, a deliverable can be compiled from multiple DITA maps.

Note: If a <topicref> element that references a map contains child <topicref> elements, the processing
behavior regarding the child <topicref> elements is undefined.

The effective navigation title is used for the value of the TOC node. A TOC node is generated for every
<topicref> element that references a topic or specifies a navigation title, except in the following cases:

* The @processing-role attribute that is specified on the <topicref> element or an ancestor element is set
to "resource-only".

+ Conditional processing is used to filter out the node or an ancestor node.

* The @print attribute is specified on the <topicref> element or an ancestor element, and the current
processing does not match the value set by the @print attribute. For example, print="printonly" and
the output format is XHTML-based, or print="no" and the output format is PDF. (Note that the @print
attribute is deprecated in DITA 1.3; it is replaced by the @deliveryTarget attribute.)

» There is no information from which a TOC entry can be constructed; there is no referenced resource or
navigation title.

» The node is a <topicgroup> element, even if it specifies a navigation title.

To suppress a <topicref> element from appearing in the TOC, set the @toc attribute to "no". The value of the
@toc attribute cascades to child <topicref> elements, so if @toc is set to "no" on a particular <topicref>, all
children of the <topicref> element are also excluded from the TOC. If a child <topicref> overrides the
cascading operation by specifying toc="yes", then the node that specifies toc="yes" appears in the TOC
(minus the intermediate nodes that set @toc to "no").

2.41.2 Indexes
An index can be generated from index entries that occur in topic bodies, topic prologs, or DITA maps.

The specialized indexing domain also provides elements to enable additional indexing function, such as "See"
and "See also".

For more information, see Indexing group elements (303).

2.4.2 Content reference (conref)

The DITA conref attributes provide mechanisms for reusing content. DITA content references support reuse
scenarios that are difficult or impossible to implement using other XML-based inclusion mechanisms like
XlInclude and entities. Additionally, DITA content references have rules that help ensure that the results of
content inclusion remain valid after resolution

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 98 of 867



2.4.2.1 Conref overview

The DITA @conref, @conkeyref, @conrefend, and @conaction attributes provide mechanisms for reusing
content within DITA topics or maps. These mechanisms can be used both to pull and push content.

This topic uses the definitions of referenced element and referencing element as defined in DITA terminology
and notation (27).

Pulling content to the referencing element

When the @conref or @conkeyref attribute is used alone, the referencing element acts as a placeholder for

the referenced element, and the content of the referenced element is rendered in place of the referencing
element.

The combination of the @conrefend attribute with either econref or @conkeyref specifies a range of
elements that is rendered in place of the referencing element. Although the start and end elements must be of
the same type as the referencing element (or specialized from that element type), the elements inside the
range can be any type.

Pushing content from the referencing element

The @conaction attribute reverses the direction of reuse from pull to push. With a push, the referencing
element is rendered before, after, or in place of the referenced element. The location (before, after, or in
place of) is determined by the value of the @conaction attribute. Because the @conaction and @conrefend

attributes cannot both be used within the same referencing element, it is not possible to push a range of
elements.

A fragment of DITA content, such as an XML document that contains only a single paragraph without a topic
ancestor, does not contain enough information for the conref processor to be able to determine the validity of a
reference to it. Consequently, the value of a conref must specify one of the following items:

* A referenced element within a DITA map
* A referenced element within a DITA topic
* An entire DITA map
* An entire DITA topic

Related Links

3.17.13.6 The conaction attribute (532)
The @conaction attribute allows users to push content from one topic into another. It causes the @conref attribute to work in
reverse, so that the content is pushed from the current topic into another, rather than pulled from another topic into the current
one. Allowable values for @conaction are: pushafter, pushbefore, pushreplace, mark, and -dita-use-conref-target.

3.17.13.8 The conkeyref attribute (539)
The @conkeyref attribute provides an indirect content reference to topic elements, map elements, or elements within maps or
topics. When the DITA content is processed, the key references are resolved using key definitions from DITA maps.

3.17.13.5 The conref attribute (530)
The @conref attribute is used to reference content that can be reused. It allows reuse of DITA elements, including topic or map
level elements.

3.17.13.7 The conrefend attribute (535)
The @conrefend attribute is used when referencing a range of elements with the conref mechanism. The @conref or
@conkeyref attribute references the first element in the range, while @conrefend references the last element in the range.

2.4.2.2 Processing conrefs

When processing content references, DITA processors compare the restrictions of each context to ensure that
the conrefed content is valid in its new context.

Except where allowed by weak constraints, a conref processor MUST NOT permit resolution of a reuse
relationship that could be rendered invalid under the rules of either the reused or reusing content.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 99 of 867



Note: The DITA Qconref attribute is a transclusion mechanism similar to Xinclude and to HyTime value
references. DITA differs from these mechanisms, however, in that conref validity does not apply simply to the
current content at the time of replacement, but to the possible content given the restrictions of both the
referencing document type and the referenced document type.

When pulling content with the conref mechanism, if the referenced element is the same type as the referencing
element, and the set of domains declared on the @domains attribute in the referenced topic or map instance is
the same as or a subset of the domains declared in the referencing document, the element set allowed in the
referenced element is guaranteed to be the same as, or a subset of, the element set allowed in the referencing
element.

When pushing content with the conref mechanism, the domain checking algorithm is reversed. In this case, if the
set of domains declared on the @domains attribute in the referencing topic or map instance is the same as or a
subset of the domains declared in the referenced document, the element set allowed in the pushed content is
guaranteed to be the same as, or a subset of, the element set allowed in the new location.

In both cases, processors resolving conrefs SHOULD tolerate specializations of valid elements and generalize
elements in the pushed or pulled content fragment as needed for the resolving context.
Related Links
2.5.3.7 domains attribute rules and syntax (138)
The @domains attribute enables processors to determine whether two elements or two documents use compatible domains. The
attribute is declared on the root element for each topic or map type. Each structural, domain, and constraint module defines its
ancestry as a parenthesized sequence of space-separated module names; the effective value of the @domains attribute is
composed of these parenthesized sequences.

2.4.2.3 Processing attributes when resolving conrefs

When resolving conrefs, processors need to combine the attributes that are specified on the referencing and
referenced element.

The attribute specifications on the resolved element are drawn from both the referencing element and the
referenced element, according to the following priority:

1. All attributes as specified on the referencing element, except for attributes set to "-dita-use-conref-target”.
2. All attributes as specified on the referenced element except the @id attribute.
3. The @xml:lang attribute has special treatment as described in The xml:lang attribute (127).

The token -dita-use-conref-target is defined by the specification to enable easier use of @conref on elements
with required attributes. The only time the resolved element would include an attribute whose specified value is
"-dita-use-conref-target” is when the referenced element had that attribute specified with the "-dita-use-conref-
target" value and the referencing element either had no specification for that attribute or had it also specified with
the "-dita-use-conref-target" value. If the final resolved element (after the complete resolution of any conref
chain, as explained below) has an attribute with the "-dita-use-conref-target" value, that element MUST be
treated as equivalent to having that attribute unspecified.

A given attribute value on the resolved element comes in its entirety from either the referencing element or the
referenced element; the attribute values of the referencing and referenced elements for a given attribute are
never additive, even if the property (such as @audience) takes a list of values.

If the referenced element has a @conref attribute specified, the above rules should be applied recursively with
the resolved element from one referencing/referenced combination becoming one of the two elements
participating in the next referencing/referenced combination. The result should preserve without generalization
all elements that are valid in the originating context, even if they are not valid in an intermediate context.

For example, if topic A and topic C allow highlighting, and topic B does not, then a content reference chain of
topic A-to-topic B-to-topic C should preserve any highlighting elements in the referenced content. The result,

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 100 of 867



however it is achieved, must be equivalent to the result of resolving the conref pairs recursively starting from the
original referencing element in topic A.
Related Links
3.17.13.5.1 Using the -dita-use-conref-target value (531)
The value -dita-use-conref-target is available on enumerated attributes and may also be specified on other attributes. When an
element uses @conref to pull in content, for any of its attributes assigned a value of "-dita-use-conref-target”, the resulting value
for those attributes is also pulled in from the referenced element.

2.4.2.4 Processing xrefs and conrefs within a conref

When referenced content contains a content reference or cross reference, the effective target of the reference
depends on the form of address that is used in the referenced content. It also might depend on the map context,
especially when key scopes are present.

Direct URI reference (but not a same-topic fragment identifier )

When the address is a direct URI reference of any form other than a same-topic fragment identifier, processors
MUST resolve it relative to the source document that contains the original URI reference.

Same-topic fragment identifier

When the address is a same-topic fragment identifier, processors MUST resolve it relative to the location of the
content reference (referencing context).

Key reference

When the address is a key reference, processors MUST resolve it relative to the location of the content reference
(referencing context).

When resolving key references or same-topic fragment identifiers, the phrase location of the content reference
means the final resolved context. For example, in a case where content references are chained (topic A pulls
from topic B, which in turn pulls a reference from topic C), the reference is resolved relative to the topic that is
rendered. When topic B is rendered, the reference is resolved relative to the content reference in topic B; when
topic A is rendered, the reference is resolved relative to topic A. If content is pushed from topic A to topic B to
topic C, then the same-topic fragment identifier is resolved in the context of topic C.

The implication is that a content reference or cross reference can resolve to different targets in different use
contexts. This is because a URI reference that contains a same-topic fragment identifier is resolved in the
context of the topic that contains the content reference, and a key reference is resolved in the context of the key
scope that is in effect for each use of the topic that contains the content reference.

Note: In the case of same-topic fragment identifiers, it is the responsibility of the author of the content
reference to ensure that any element IDs that are specified in same-topic fragment identifiers in the
referenced content will also be available in the referencing topic at resolution time.

Example: Resolving conrefs to elements that contain cross references

Consider the following paragraphs in paras—-01.dita that are intended to be used by reference from other
topics:

<topic id="paras-01"><title>Reusable paragraphs</title>
<body>
<p id="pl">See <xref href="#paras-01/p5"/>.</p>
<p id="p2">See <xref href="topic-02.dita#topic02/£fig-01"/>.</p>
<p 1d="p3">See <xref href="#./p5"/>.</p>
<p id="p4">See <xref keyref="task-remove-cover"/>.</p>
<p 1d="p5">Paragraph 5 in paras-01.</p>
</body>
</topic>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 101 of 867



The paragraphs are used by content reference from other topics, including the using-topic-01.dita topic:

<topic id="using-topic-01"><title>Using topic one</title>
<body>
<p 1d="A" conref="paras-01.dita#paras-01/pl"/>
<p 1d="B" conref="paras-01.dita#paras-01/p2"/>
<p id="C" conref="paras-01.dita#paras-01/p3"/>
<p 1d="D" conref="paras-01.dita#paras-01/p4"/>
<p id="p5">Paragraph 5 in using-topic-01</p>
</body>
</topic>

Following resolution of the content references and processing of the <xref> elements in the referenced
paragraphs, the rendered cross references in using-topic-01.dita are shown in the following table.

Paragraph Value of @id |<xref> within conrefed Resolution
attribute on paragraph
conrefed
paragraph
A p1 <xref The cross reference in paragraph p1 is a direct
href="#paras-01/p5"/> URI reference that does not contain a same-

topic fragment identifier. It can be resolved only
to paragraph p5 in paras-01.dita, which
contains the content "Paragraph 5 in paras-01".

B p2 <xref The cross reference in paragraph p2 is a direct
href="topic-02.dita#top |URI reference. It can be resolved only to the
ic02/fig-01"/> element with id="fig-01"in

topic-02.dita.

C p3 <xref href="#./p5"/> The cross reference in paragraph p3 is a

direct URI reference that contains a same-
topic fragment identifier. Because the URI
reference contains a same-topic fragment
identifier, the reference is resolved in the
context of the referencing topic (using-
topic-01.dita).

If using-topic-01.dita did not contain an
element with id="p5", then the conref to
paragraph p3 would result in a link resolution
failure.

D p4 <xref keyref="task- The cross reference in paragraph p4 is a key
remove-cover"/> reference. It is resolved to whatever resource is
bound to the key name "task-remove-cover" in
the applicable map context.

Example: Resolving conrefs to elements that contain key-based cross references

Consider the following map, which uses the topics from the previous example:

<map>
<topicgroup keyscope="product-1">
<topicref keys="task-remove-cover" href="prod-l-task-remove-cover.dita"/>
<topicref href="using-topic-01.dita"/>
</topicgroup>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 102 of 867



<topicgroup keyscope="product-2">
<topicref keys="task-remove-cover" href="prod-2-task-remove-cover.dita"/>
<topicref href="using-topic-01.dita"/>
</topicgroup>
</map>

The map establishes two key scopes: "product-1" and "product-2". Within the map branches, the key name
"task-remove-cover" is bound to a different topic. The topic using-topic-01.dita, which includes a conref
to a paragraph that includes a cross reference to the key name "task-remove-cover", is also referenced in each
branch. When each branch is rendered, the target of the cross reference is different.

In the first branch with the key scope set to "product-1", the cross reference from paragraph p4 is resolved to
prod-1l-task-remove-cover.dita. In the second branch with the key scope set to "product-2", the cross
reference from paragraph p4 is resolved to prod-2-task-remove-cover.dita.

2.4.3 Conditional processing (profiling)

Conditional processing, also known as profiling, is the filtering or flagging of information based on processing-
time criteria.

DITA defines attributes that can be used to enable filtering and flagging individual elements. The Qaudience,
@deliveryTarget, Qotherprops, @platform, and Gprops attributes (along with specializations of @props)
allow conditions to be assigned to elements so that the elements can be included, excluded, or flagged during
processing. The @rev flagging attribute allows values to be assigned to elements so that special formatting can
be applied to those elements during processing. A conditional-processing profile specifies which elements to
include, exclude, or flag. DITA defines a document type called DITAVAL for creating conditional-processing
profiles.

Processors SHOULD be able to perform filtering and flagging using the attributes listed above. The @props
attribute can be specialized to create new attributes, and processors SHOULD be able to perform conditional
processing on specializations of @props.

Although metadata elements exist with similar names, such as the <audience> element, processors are not
required to perform conditional processing using metadata elements.
Related Links
3.17.1.2 Metadata attribute group (517)
The metadata attribute group includes common metadata attributes, several of which support conditional processing (filtering and
flagging) or the creation of new attribute domain specializations.
3.9 DITAVAL elements (371)
A conditional processing profile (DITAVAL file) is used to identify which values are to be used for conditional processing during a
particular output, build, or some other purpose. The profile should have an extension of .ditaval.

2.2.4.2.1 Conditional processing attributes (57)
The metadata attributes specify properties of the content that can be used to determine how the content should be processed.
Specialized metadata attributes can be defined to enable specific business-processing needs, such as semantic processing and
data mining.

2.4.3.1 Conditional processing values and groups
Conditional processing attributes classify elements with metadata. The metadata is specified using space-
delimited string values or grouped values.

For example, the string values within @product in <p product="basic deluxe"> indicate that the
paragraph applies to the “basic” product and to the “deluxe” product.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 103 of 867



Groups organize classification metadata into subcategories. Groups can be used within @audience, @product,
@platform, or Gotherprops. The following rules apply:

» Groups consist of a name immediately followed by a parenthetical group of one or more space-delimited
string values. For example, "groupName (valueOne valueTwo)".

» Groups cannot be nested.

« If two groups with the same name are found in a single attribute, they should be treated as if all values are
specified in the same group. The following values for the @otherprops attribute are equivalent:

otherprops="groupA (a b) groupA(c) groupZ (APPNAME)"
otherprops="groupA(a b c) groupZ (APPNAME)"

* If both grouped values and ungrouped values are found in a single attribute, the ungrouped values belong to
an implicit group; the name of that group matches the name of the attribute. Therefore, the following values
for the @product attribute are equivalent:

product="a database (dbA dbB) b appserver (mySERVER) c"
product="product (a b c) database (dbA dbB) appserver (mySERVER)"

Setting a conditional processing attribute to an empty value, such as product="", is equivalent to omitting that
attribute from the element. An empty group within an attribute is equivalent to omitting that group from the
attribute. For example, <ph product="database () A">is equivalentto <ph product="A">.
Combining both rules into one example, <ph product="operatingSystem () "> is equivalent to <ph>.

If two groups with the same name exist on different attributes, a rule specified for that group will evaluate the
same way on each attribute. For example, if the group "sampleGroup" is specified within both @platform and
@otherprops, a DITAVAL rule for sampleGroup="value" will evaluate the same in each attribute. If there is
a need to distinguish between similarly named groups on different attributes, the best practice is to use more
specific group names such as platformGroupname and productGroupname. Alternatively, DITAVAL rules can be
specified based on the attribute name rather than the group name.

If the same group name is used in different attributes, a complex scenario could be created where different
defaults are specified for different attributes, with no rule set for a group or individual value. In this case a value
might end up evaluating differently in the different attributes. For example, a DITAVAL can set a default of
"exclude" for @platform and a default of "flag" for @product. If no rules are specified for group oddgroup (),
or for the value oddgroup="edgecase", the attribute platform="oddgroup (edgecase) " will evaluate
to "exclude" while product="oddgroup (edgecase) " will resolve to "flag". See DITAVAL elements (371) for
information on how to change default behaviors in DITAVAL provile.

Note: While the grouped values reuse the generalized attribute syntax found in Attribute generalization (146),
the Qaudience, @product, @platform, and Gotherprops attributes cannot be specialized or generalized.

Related Links
3.17.1.2 Metadata attribute group (517)
The metadata attribute group includes common metadata attributes, several of which support conditional processing (filtering and
flagging) or the creation of new attribute domain specializations.

3.9 DITAVAL elements (371)
A conditional processing profile (DITAVAL file) is used to identify which values are to be used for conditional processing during a
particular output, build, or some other purpose. The profile should have an extension of .ditaval.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 104 of 867



2.4.3.2 Filtering

At processing time, a conditional processing profile can be used to specify profiling attribute values that
determine whether an element with those values is included or excluded.

By default, values in conditional processing attributes that are not defined in a DITAVAL profile evaluate to
"include". For example, if the value audience="novice" is used on a paragraph, but this value is not defined in a
DITAVAL profile, the attribute evaluates to "include".

However, the DITAVAL profile can change this default to "exclude", so that any value not explicitly defined in the
DITAVAL profile will evaluate to "exclude". The DITAVAL profile also can be used to change the default for a
single attribute; for example, it can declare that values in the @platform attribute default to "exclude”, while
those in the @product attribute default to include. See DITAVAL elements (371) for information on how to set up
a DITAVAL profile and how to change default behaviors.

When deciding whether to include or exclude a particular element, a processor should evaluate each attribute
independently:

1. For each attribute:

+ If the attribute value does not contain any groups, then if any token in the attribute value evaluates to
"include", the element evaluates to "include"; otherwise it evaluates to "exclude". In other words, the
attribute evaluates to "exclude" only when all the values in that attribute evaluate to "exclude".

« If the attribute value does include groups, evaluate as follows, treating ungrouped tokens together as a
group:
1. For each group (including the group of ungrouped tokens), if any token inside the group evaluates to

"include", the group evaluates to "include"; otherwise it evaluates to "exclude". In other words, a
group evaluates to "exclude" only when every token in that group evaluates to "exclude".

2. If any group within an attribute evaluates to "exclude”, that attribute evaluates to "exclude";
otherwise it evaluates to "include".

2. If any single attribute evaluates to exclude, the element is excluded.

For example, if a paragraph applies to three products and the publisher has chosen to exclude all of them, the
processor should exclude the paragraph. This is true even if the paragraph applies to an audience or platform
that is not excluded. But if the paragraph applies to an additional product that has not been excluded, then its
content is still relevant for the intended output and should be preserved.

Similarly, with groups, a step might apply to one application server and two database applications:

<steps>
<step><cmd>Common step</cmd></step>
<step product="appserver (mySERVER) database (ABC dbOtherName) ">
<cmd>Do something special for databases ABC or OtherName when installing on mySERVER</cmd>
</step>
<!-- additional steps -->
</steps>

If a publisher decides to exclude the application server mySERVER, then the appserver() group evaluates to
exclude. This can be done by setting product="mySERVER" to exclude or by setting
appserver="mySERVER" to exclude. This means the step should be excluded, regardless of how the values
"ABC" or "dbOtherName" evaluate. If a rule is specified for both product="mySERVER" and
appserver="mySERVER", the rule for the more specific group name "appserver" takes precedence.

Similarly, if both "ABC" and "dbOtherName" evaluate to exclude, then the database() group evaluates to exclude
and the element should be excluded regardless of how the "mySERVER" value is set.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 105 of 867



In more advanced usage, a DITAVAL can be used to specify a rule for a group name. For example, an author
could create a DITAVAL rule that sets product="database" to "exclude". This is equivalent to setting a
default of "exclude" for any individual value in a database() group; it also excludes the more common usage of
"database" as a single value within the @product attribute. Thus when "myDB" appears in a database() group
within the @product attribute, the full precedence for determining whether to include or exclude the value is as
follows:

1. Check for a DITAVAL rule for database="myDB"

2. Check for a DITAVAL rule for product="myDB"

3. Check for a DITAVAL rule for product="database" (default for the database group)
4. Check for a DITAVAL rule for "product" (default for the @product attribute)

5. Check for a default rule for all conditions (default of include or exclude for all attributes)

6. Otherwise, evaluate to "include"

Related Links
3.17.1.2 Metadata attribute group (517)
The metadata attribute group includes common metadata attributes, several of which support conditional processing (filtering and
flagging) or the creation of new attribute domain specializations.

DITAVAL markup with extended filtering example (371)
The <val> element is the root element of a DITAVAL file.

2.4.3.3 Flagging

Flagging is the application of text, images, or styling during rendering. This can highlight the fact that content
applies to a specific audience or operating system, for example; it also can draw a reader's attention to content
that has been marked as being revised.

At processing time, a conditional processing profile can be used to specify profiling attribute values that
determine whether an element with those values is flagged.

When deciding whether to flag a particular element, a processor should evaluate each value. Wherever an
attribute value that has been set as flagged appears (for example, audience="administrator"), the
processor should add the flag. When multiple flags apply to a single element, multiple flags should be rendered,
typically in the order that they are encountered.

When the same element evaluates as both flagged and included, the element should be flagged and included.
When the same element evaluates as both flagged and filtered (for example, flagged because of a value for the
@audience attribute and filtered because of a value for the @product attribute value), the element should be
filtered.

Related Links
DITAVAL markup with extended flagging example (371)
The <val> element is the root element of a DITAVAL file.

DITAVAL markup for flagging revisions (376)
Identifies a value in the @rev attribute that should be flagged in some manner. Unlike the other conditional processing attributes,
which may be used for both filtering and flagging, the @rev attribute may only be used for flagging.

2.4.3.4 Conditional processing to generate multiple deliverable types

By default, the content of most elements is included in all output media. Within maps and topics, elements can
specify the delivery targets to which they apply.

Within maps, topic references can use the edeliveryTarget attribute to indicate the delivery targets to which
they apply. The map or topic references can still use the deprecated @print attribute to indicate whether they
are applicable to print deliverables.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 106 of 867



Within topics, most elements can use the @deliveryTarget attribute to indicate the delivery targets to which

they apply.

If a referenced topic should be excluded from all output formats, set the @processing-role attribute to
"resource-only" instead of using the @deliveryTarget or @print attribute. Content within that topic can still be
referenced for display in other locations.

@deliveryTarget attribute

@deliveryTarget

The intended delivery target of the content, for example "html", "pdf", or "epub”. This attribute is a replacement for
the now deprecated @print attribute.

The @deliveryTarget attribute is specialized from the @props attribute. It is defined in the
deliveryTargetAttDomain, which is integrated into all OASIS-provided document-type shells. If this domain is
not integrated into a given document-type shell, the @deliveryTarget attribute will not be available.

The edeliveryTarget attribute is processed the same way as any other conditional processing attribute. For
example, the element <topicref deliveryTarget="html5 epub" href="example.dita"/> uses
two values for edeliveryTarget. A conditional processing profile can then set rules for @deliveryTarget that
determine whether the topic example.dita is included or excluded when the map is rendered as HTML5 or

EPUB.

@print attribute

Note: Beginning with DITA 1.3, the @print attribute is deprecated. Its functionality is superseded by that of
the @deliveryTarget conditional processing attribute described above.

The @print attribute supports the following enumerated values, each of which control the way that print-oriented
processors handle the inclusion or exclusion of topics or groups of topics.

Value

Example

Print-oriented
processing

Non-print-oriented
processing

Unspecified (default)

<topicref href="foo.dita">

Topics are included
in output.

Topics are included
in output.

print="no">

Topics are
excluded from the
output.

yes <topicref href="foo.dita" Topics are included | Topics are included
print="yes"> in output. in output.
printonly <topicref href="foo.dita" Topics are included | Topics are
print="printonly"> in output. excluded from the
output.
no <topicref href="foo.dita"

Topics are included
in output.

-dita-use-conref-
target

<topicref conref="#foo-topic"
print="-dita-use-conref-target">

dita-v1.3-csd01-part2-tech-content

Standards Track Work Product

Topics derive a
value for the @print
attribute from the
@print attribute of
the referenced
element.

See Using the -dita-
use-conref-target

Copyright © OASIS Open 2015. All Rights Reserved.

Topics derive a
value for the @print
attribute from the
@print attribute of
the referenced
element.

See Using the -dita-
use-conref-target

30 June 2015
Page 107 of 867



Value Example Print-oriented Non-print-oriented
processing processing

value (531) for more | value (531) for more
information. information.

If a value for the @print is not specified explicitly in a map element, but is specified in a map that references the
map element, the eprint value cascades to the referenced map.

2.4.3.5 Examples of conditional processing
This section provides examples that illustrate the ways that conditional processing attributes can be set and
used.
Related Links
DITAVAL markup with additional filtering and flagging examples (371)
The <val> element is the root element of a DITAVAL file.

2.4.3.5.1 Example: Setting conditional processing values and groups
Elements may classify elements with conditional processing attributes using individual values or using groups.

Example: Simple product values

In the following example, the first configuration option applies only to the "extendedprod" product, while the
second option applies to both "extendedprod" and to "baseprod". The entire <p> element containing the list
applies to an audience of "administrator".

<p audience="administrator">Set the configuration options:
<ul>
<1li product="extendedprod">Set foo to bar</li>
<li product="basicprod extendedprod">Set your blink rate</1li>
<li>Do some other stuff</li>
<li>Do a special thing for Linux</1li>
</ul>
</p>

Example: Grouped values on an attribute

The following example indicates that a step applies to one application server and two databases. Specifically,
this step only applies when it is taken on the server "mySERVER?"; likewise, it only applies when used with the
databases "ABC" or "dbOtherName".

<steps>
<step><cmd>Common step</cmd></step>
<step product="appserver (mySERVER) database (ABC dbOtherName) ">
<cmd>Do something special for databases ABC or OtherName when installing on mySERVER</cmd>
</step>
<!-- additional steps -->
</steps>

2.4.3.5.2 Example: Filtering and flagging topic content

A publisher might want to flag information that applies to administrators, and to exclude information that applies
to the extended product.

Consider the following DITA source fragment and conditional processing profile:

<p audience="administrator">Set the configuration options:
<ul>
<li product="extendedprod">Set foo to bar</li>
<li product="basicprod extendedprod">Set your blink rate</1li>
<li>Do some other stuff</1i>
<li>Do a special thing for Linux</1li>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 108 of 867




</ul>
</p>

Figure 20: DITA source fragment

<val>
<prop att="audience" val="administrator" action="flag">
<startflag><alt-text>ADMIN</alt-text></startflag>
</prop>
<prop att="product" val="extendedprod" action="exclude"/>
</val>

Figure 21: DITAVAL profile

When the content is rendered, the paragraph is flagged, and the first list item is excluded (since it applies to
extendedprod). The second list item is still included; even though it does apply to extendedprod, it also applies to
basicprod, which was not excluded.

The result should look something like the following:
ADMIN Set the configuration options:

» Set your blink rate

* Do some other stuff

+ Do a special thing for Linux

2.4.4 Branch filtering

The branch filtering mechanism enables map authors to set filtering conditions for specific branches of a map.
This makes it possible for multiple conditional-processing profiles to be applied within a single publication.

Without the branch filtering mechanism, the conditions specified in a DITAVAL document are applied globally.
With branch filtering, the <ditavalref> element specifies a DITAVAL document that can be applied to a subset
of content; the location of the <ditavalref> element determines the content to which filtering conditions are
applied. The filtering conditions then are used to filter the map branch itself (map elements used to create the
branch), as well as the local maps or topics that are referenced by that branch.

The <ditavalref> element also provides the ability to process a single branch of content multiple times,
applying unique conditions to each instance of the branch.

2.4.4.1 Overview of branch filtering
Maps or map branches can be filtered by adding a <ditavalref> element that specifies the DITAVAL
document to use for that map or map branch.

The <ditavalref> element is designed to manage conditional processing for the following use cases.

1. A map branch needs to be filtered using conditions that do not apply to the rest of the publication. For
example, a root map might contain content that is written for both novice and expert users. However, the
authors want to add a section that targets only novice users. Using branch filtering, a map branch can be
filtered so that it only includes content germane to a novice audience, while the content of the rest of the
map remains appropriate for multiple audiences.

2. A map branch needs to be presented differently for different audiences. For example, a set of software
documentation might contain installation instructions that differ between operating systems. In that case,
the map branch with the installation instructions needs to be filtered multiple times with distinct sets of
conditions, while the rest of the map remains common to all operating systems.

Filtering rules often are specified globally, outside of the content. When global conditions set a property value to
"exclude", that setting overrides any other settings for the same property that are specified at a branch level.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 109 of 867



Global conditions that set a conditional property to "include" or "flag" do not override branch-level conditions that
set the same property to "exclude".

Using <ditavalref> elements, it is possible to specify one set of conditions for a branch and another set of
conditions for a subset of the branch. As with global conditions, properties set to "exclude" for a map branch
override any other settings for the same property specified for a subset of the branch. Branch conditions that set
a conditional property to "include" or "flag" do not override conditions on a subset of the branch that explicitly set
the same property to "exclude".

In addition to filtering, applications MAY support flagging at the branch level based on conditions that are
specified in referenced DITAVAL documents.

2.4.4.2 Branch filtering: Single condition set for a branch

Using a single <ditavalref> element as a child of a map or map branch indicates that the map or map branch
must be conditionally processed using the rules specified in the referenced DITAVAL document.

The following rules outline how the filtering conditions that are specified in DITAVAL document are applied:
<ditavalref> element as a direct child of a map

The filtering conditions are applied to the entire map.
<ditavalref> element within a map branch

The filtering conditions are used to process the entire branch, including the parent element that contains the
<ditavalref> element.

<ditavalref> element within a <topicref> reference to a local map
The filtering conditions are applied to the submap.
<ditavalref> element within a <topicref> reference to peer map

The reference conditions are not applied to the peer map.

2.4.4.3 Branch filtering: Multiple condition sets for a branch

Using multiple <ditavalref> elements as the children of a map or map branch indicates that the map or map
branch must be conditionally processed using the rules that are specified in the referenced DITAVAL
documents.

When multiple <ditavalref> elements occur as children of the same element, the rules in the referenced
DITAVAL documents are processed independently. This effectively requires a processor to maintain one copy of
the branch for each <ditavalref>, so that each copy can be filtered using different conditions.

Note: In most cases, it is possible to create a valid, fully-resolved view of a map with branches copied to
reflect the different <ditavalref> conditions. However, this might not be the case when multiple
<ditavalref> elements occur as direct children of a root map. In this case, it is possible that the map could
be filtered in a manner that results in two or more distinct versions of the <title> or metadata. How this is
handled is processor dependent. For example, when a root map has three <ditavalref> elements as
children of <map>, a conversion to EPUB could produce an EPUB with three versions of the content, or it
could produce three distinct EPUB documents.

When a processor maintains multiple copies of a branch for different condition sets, it has to manage situations
where a single resource with a single key name results in two distinct resources. Key names must be modified in
order to allow references to a specific filtered copy of the resource; without renaming, key references could only
be used to refer to a single filtered copy of the resource, chosen by the processor. See Branch filtering: Impact
on resource and key names (111) for details on how to manage resource names and key names.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 110 of 867



2.4.4.4 Branch filtering: Impact on resource and key names

When map branches are cloned by a processor in order to support multiple condition sets, processors must
manage conflicting resource and key names. The ditavalref domain includes metadata elements that authors
can use to specify how resource and key names are renamed.

Note: While the processing controls that are described here are intended primarily for use with map
branches that specify multiple condition sets, they also can be used with map branches that include only a
single <ditavalref> element.

When a map branch uses multiple condition sets, processors must create multiple effective copies of the branch
to support the different conditions. This results in potential conflicts for resource names, key names, and key
scopes. Metadata elements inside of the <ditavalref> element are available to provide control over these
values, so that keys, key scopes, and URlIs can be individually referenced within a branch.

For example, the following map branch specifies two DITAVAL documents:

<topicref href="productFeatures.dita" keys="features" keyscope="prodFeatures">
<ditavalref href="novice.ditaval"/>
<ditavalref href="admin.ditaval"/>
<topicref href="newFeature.dita" keys="newThing"/>

</topicref>

In this case, the processor has two effective copies of productFeatures.dita and newFeature.dita.
One copy of each topic is filtered using the conditions specified in novice.ditaval, and the other copy is
filtered using the conditions specified in admin.ditaval. If an author has referenced a topic using
keyref="features" or keyref="prodFeatures.features", there is no way for a processor to
distinguish which filtered copy is the intended target.

Metadata elements in the DITAVAL reference domain

Metadata within the <ditavalref> element makes it possible to control changes to resource names and key
scope names, so that each distinct filtered copy can be referenced in a predictable manner.

<dvrResourcePrefix>

Enables a map author to specify a prefix that is added to the start of resource names for each resource in the
branch.

<dvrResourceSuffix>

Enables a map author to specify a suffix that is added to the end of resource names (before any extension) for
each resource in the branch.

<dvrKeyscopePrefix>

Enables a map author to specify a prefix that is added to the start of key scope names for each key scope in the
branch. If no key scope is specified for the branch, this can be used to establish a new key scope, optionally
combined with a value specified in <dvrKeyscopeSuffix>.

<dvrKeyscopeSuffix>

Enables a map author to specify a suffix that is added to the end of key scope names for each key scope in the
branch.

For example, the previous code sample can be modified as follows to create predictable resource names and
key scopes for the copy of the branch that is filtered using the conditions that are specified in admin.ditaval.

<topicref href="productFeatures.dita" keys="features" keyscope="prodFeatures">
<ditavalref href="novice.ditaval"/>
<ditavalref href="admin.ditaval">
<ditavalmeta>
<dvrResourcePrefix>admin-</dvrResourcePrefix>
<dvrKeyscopePrefix>adminscope-</dvrKeyscopePrefix>
</ditavalmeta>
</ditavalref>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 111 of 867



<topicref href="newFeature.dita" keys="newThing"/>
</topicref>

The novice branch does not use any renaming, which allows it to be treated as the default copy of the branch.
As a result, when the topics are filtered using the conditions that are specified in novice.ditaval, the
resource names and key names are unmodified, so that references to the original resource name and key name
will resolve to topics in the novice copy of the branch. This has the following effect on topics that are filtered
using the conditions specified in admin.ditaval:

* The prefix admin- is added to the beginning of each resource name in the admin branch.
— The resource productFeatures.dita becomes admin-productFeatures.dita
— The resource newFeature.dita becomes admin-newFeature.dita

* The prefix adminscope- is added to the existing key scope "prodFeatures".

— The attribute value keyref="adminscope-prodFeatures. features" refers explicitly to the admin
copy of productFeatures.dita

— The attribute keyref="adminscope-prodFeatures.newThing" refers explicitly to the admin copy
of newFeature.dita

Note: In general, the best way to reference a topic that will be modified based on branch filtering is to use a
key rather than a URI. Key scopes and key names (including those modified based on the elements above)
must be calculated by processors before other processing. This means that in the example above, a key
reference to adminscope-prodFeatures. features will always refer explicitly to the instance of
productFeatures.dita filtered against the conditions in admin.ditaval, regardless of whether a
processor has performed the filtering yet. References that use the URI productFeatures.dita or
admin-productFeatures.dita could resolve differently (or fail to resolve), as discussed in Branch
filtering: Implications of processing order (113).

Renaming based on multiple <ditavalref> elements

It is possible for a branch with <ditavalref> already in effect to specify an additional <ditavalref>, where
each <ditavalref> includes renaming metadata. When renaming, metadata on the <ditavalref> nested
more deeply within the branch appears closer to the original resource or key name. For example:

<topicref href="branchParent.dita">
<ditavalref href="parent.ditaval">

<ditavalmeta>
<dvrResourcePrefix>parentPrefix-</dvrResourcePrefix>
</ditavalmeta>
</ditavalref>
<!-- additional topics or layers of nesting -->

<topicref href="branchChild.dita">
<ditavalref href="child.ditaval">
<ditavalmeta>
<dvrResourcePrefix>childPrefix-</dvrResourcePrefix>
</ditavalmeta>
</ditavalref>
</topicref>
</topicref>

In this situation, the resource branchChild.dita is given a prefix based on both the reference to
parent.ditaval and the reference to child.ditaval. The value "childPrefix-" is specified in the
<ditavalref> that is nested more deeply within the branch, so it appears closer to the original resource name.
The resource branchChild.dita would resultin parentPrefix-childPrefix-branchChild.dita.
Suffixes (if specified) would be added in a similar manner, resulting in a name like branchChild-
childsuffix-parentSuffix.dita. Note that the hyphens are part of the specified prefix; they are not
added automatically.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 112 of 867



Handling resource name conflicts

It is an error if <ditavalref>-driven branch cloning results in multiple copies of a topic that have the same
resolved name. Processors SHOULD report an error in such cases. Processors MAY recover by using an
alternate naming scheme for the conflicting topics.

In rare cases, a single topic might appear in different branches that set different conditions, yet still produce the
same result. For example, a topic might appear in both the admin and novice copies of a branch but not contain
content that is tailored to either audience; in that case, the filtered copies would match. A processor MAY
consider this form of equivalence when determining if two references to the same resource should be reported
as an error.

2.4.4.5 Branch filtering: Implications of processing order

Because the branch filtering process can result in new or renamed keys, key scopes, or URIs, the full effects of
the branch filtering process MUST be calculated by processors before they construct the effective map and key
scope structure.

Note: The rkeyref attribute and related attributes are explicitly disallowed on <ditavalref>. This prevents
any confusion resulting from a ekeyref that resolves to additional key- or resource-renaming metadata.

In general, the DITA specification refrains from mandating a processing order; thus publication results can vary
slightly depending on the order in which processes are run. With branch filtering, processors are not required to
apply filter conditions specified outside of the map and filter conditions specified with <ditavalref> at the
same time in a publishing process.

For example, a processor might use the following processing order:
1. Apply externally-specified filter conditions to maps
2. Apply filtering based on <ditavalref> elements

Because externally-specified "exclude" conditions always take precedence over branch-specific conditions,
content excluded based on external conditions will always be removed, regardless of the order in which
processors evaluate conditions.

Processors should consider the following points when determining a processing order:

« If links are generated based on the map hierarchy, those links should be created using the renamed keys and
URIs that result from evaluating the <ditavalref> filter conditions, to ensure that the links are consistent
within the modified branches. For example, sequential links based on a map hierarchy should remain within
the appropriate modified branch.

« If conrefs are resolved in topics before the <ditavalref> filtering conditions are evaluated, content that
applies to multiple audiences can be brought in and (later in the process) selectively filtered by branch. For
example, if a set of installation steps is pulled in with conref (from outside the branch), it might contain
information that is later filtered by platform based on <ditavalref>. This results in copies of the steps that
are specific to each operating system. If conref is processed after the <ditavalref>, content might be pulled
in that has not been appropriately filtered for the new context.

» The same scenario applies to conref values that push content into the branch.

— Pushing content into a branch before resolving the <ditavalref> conditions allows content for multiple
conditions to be pushed and then filtered by branch based on the <ditavalref> conditions.

— If the branch using <ditavalref> pushes content elsewhere, resolving <ditavalref> first could result in
multiple copies of the content to be pushed (one for each branch), resulting in multiple potentially conflicting
copies pushed to the new destination.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 113 of 867



2.4.4.6 Examples of branch filtering

The branch filtering examples illustrate the processing expectations for various scenarios that involve
<ditavalref> elements. Processing examples use either before and after sample markup or expanded syntax
that shows the equivalent markup without the <ditavalref> elements.

2.4.4.6.1 Example: Single <ditavalref> on a branch
A single <ditavalref> element can be used to supply filtering conditions for a branch.

Consider the following DITA map and the DITAVAL file that is referenced from the <ditavalref> element:

<map>
<topicref href="intro.dita"/>
<topicref href="install.dita">
<ditavalref href="novice.ditaval"/>
<topicref href="do-stuff.dita"/>
<topicref href="advanced-stuff.dita" audience="admin"/>
<!-- more topics -->
</topicref>
<!-- Several chapters worth of other material -->
</map>

Figure 22: input.ditamap:

<val>
<prop att="audience" val="novice" action="include"/>
<prop att="audience" val="admin" action="exclude"/>
</val>

Figure 23: Contents of novice.ditaval

When this content is published, the following processing occurs:

» The first topic (intro.dita) does not use any of the conditions that are specified in novice.ditaval. It
is published normally, potentially using other DITAVAL conditions that are specified externally.

» The second topic (install.dita) is filtered using any external conditions as well as the conditions that are
specified in novice.ditaval.

+ The third topic (do-stuff.dita)is filtered using any external conditions as well as the conditions that are
specified in novice.ditaval.

* The fourth topic (advanced-stuff.dita)is removed from the map entirely, because it is filtered out with
the conditions that are specified for the branch.

In this example, no resources are renamed based on the <ditavalref> processing.

Note: In cases where the original resource names map directly to names or anchors in a deliverable, the
absence of renaming ensures that external links to those topics are stable regardless of whether a DITAVAL
document is used.

2.4.4.6.2 Example: Multiple <ditavalref> elements on a branch
Multiple <ditavalref> elements can be used on a single map branch to create multiple distinct copies of the
branch.

Consider the following DITA map that contains a branch with three peer <ditavalref> elements. Because
topics in the branch are filtered in three different ways, processors are effectively required to handle three copies
of the entire branch. Sub-elements within the <ditavalref> elements are used to control how new resource

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 114 of 867



names are constructed for two copies of the branch; one copy (based on the conditions in win.ditaval)is left
with the original file names.

<map>
<topicref href="intro.dita"/>
<!-- Begining of installing branch -->

<topicref href="install.dita">
<ditavalref href="win.ditaval"/>
<ditavalref href="mac.ditaval">
<ditavalmeta>
<dvrResourceSuffix>-apple</dvrResourceSuffix>
</ditavalmeta>
</ditavalref>
<ditavalref href="linux.ditaval">
<ditavalmeta>
<dvrResourceSuffix>-1linux</dvrResourceSuffix>
</ditavalmeta>
</ditavalref>
<topicref href="do-stuff.dita">
<topicref href="mac-specific-stuff.dita" platform="mac"/>

</topicref>
<!-- End of installing branch -->
<topicref href="cleanup.dita"/>
</topicref>
</map>

Figure 24: input.ditamap

<val>
<prop att="platform" val="win" action="include"/>
<prop att="platform" action="exclude"/>

</val>

Figure 25: Contents of win.ditaval

<val>
<prop att="platform" val="mac" action="include"/>
<prop att="platform" action="exclude"/>

</val>

Figure 26: Contents of mac.ditaval

<val>
<prop att="platform" val="1linux" action="include"/>
<prop att="platform" action="exclude"/>

</val>

Figure 27: Contents of linux.ditaval

When a processor evaluates this markup, it results in three copies of the installing branch. The following
processing takes place:

» The first topic (intro.dita) is published normally, potentially using any other DITAVAL conditions that are
specified externally.

» The installing branch appears three times, once for each DITAVAL document. The branches are created as
follows:

— The first branch uses the first DITAVAL document (win.ditaval). Resources use their original names as
specified in the map. The mac-specific-stuff.dita topicis removed. The resulting branch, with
indenting to show the hierarchy, matches the original without the mac topic:

install.dita
do-stuff.dita

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 115 of 867



...more topics and nested branches...
cleanup.dita

— The second branch uses the second DITAVAL document (mac.ditaval). Resources are renamed based
on the <dvrResourceSuffix> element. The mac-specific-stuff.dita topicis included. The
resulting branch, with indenting to show the hierarchy, is as follows:

install-apple.dita
do-stuff-apple.dita
mac-specific-stuff-apple.dita
...more topics and nested branches...
cleanup-apple.dita

— The third branch uses the last DITAVAL document (1inux.ditaval). Resources are renamed based on
the <dvrResourceSuffix> element. The mac-specific-stuff.dita topic is removed. The resulting
branch, with indenting to show the hierarchy, is as follows:

install-linux.dita
do-stuff-linux.dita
...more topics and nested branches...
cleanup-linux.dita

The example used three DITAVAL documents to avoid triple maintenance of the installing branch in a map; the
following map is functionally equivalent, but it requires parallel maintenance of each branch.

<map>
<topicref href="intro.dita"/>
<!-- Windows installing branch -->

<topicref href="install.dita">
<ditavalref href="win.ditaval"/>
<topicref href="do-stuff.dita">

<!-- more topics and nested branches -->
</topicref>
<topicref href="cleanup.dita"/>
</topicref>
<!-- Mac installing branch -->

<topicref href="install.dita">
<ditavalref href="mac.ditaval">
<ditavalmeta><dvrResourceSuffix>-apple</dvrResourceSuffix></ditavalmeta>
</ditavalref>
<topicref href="do-stuff.dita">
<topicref href="mac-specific-stuff.dita" platform="mac"/>
<!-- more topics and nested branches -->
</topicref>
<topicref href="cleanup.dita"/>
</topicref>
<!-- Linux installing branch -->
<topicref href="install.dita">
<ditavalref href="linux.ditaval">
<ditavalmeta><dvrResourceSuffix>-1linux</dvrResourceSuffix></ditavalmeta>

</ditavalref>
<topicref href="do-stuff.dita">
<!-- more topics and nested branches -->
</topicref>
<topicref href="cleanup.dita"/>
</topicref>
<!-- Several chapters worth of other material -->
</map>

Figure 28: input.ditamap

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 116 of 867



2.4.4.6.3 Example: Single <ditavalref> as a child of <map>

Using a <ditavalref> element as a direct child of the <map> element is equivalent to setting global filtering
conditions for the map.

The following map is equivalent to processing all the contents of the map with the conditions in the
novice.ditaval document. If additional conditions are provided externally (for example, as a parameter to
the publishing process), those conditions take precedence.

<map>
<title>Sample map</title>
<ditavalref href="novice.ditaval"/>
<!-- lots of content -->

</map>

2.4.4.6.4 Example: Single <ditavalref> in a reference to a map

Using a <ditavalref> elementin a reference to a map is equivalent to setting filtering conditions for the
referenced map.

In the following example, other.ditamap is referenced by a root map. The <ditavalref> element indicates
that all of the content in other.ditamap should be filtered using the conditions specified in the
some.ditaval document.

<topicref href="parent.dita">
<topicref href="other.ditamap" format="ditamap">
<ditavalref href="some.ditaval"/>
</topicref>
</topicref>

Figure 29: Map fragment

<map>
<topicref href="nestedTopicl.dita">
<topicref href="nestedTopic2.dita"/>
</topicref>
<topicref href="nestedTopic3.dita"/>
</map>

Figure 30: Contents of other.ditamap

This markup is functionally equivalent to applying the conditions in some . ditaval to the topics that are
referenced in the nested map. For the purposes of filtering, it could be rewritten in the following way. The extra
<topicgroup> container is used here to ensure filtering is not applied to parent.dita, as it would not be in
the original example:

<topicref href="parent.dita">
<topicgroup>
<ditavalref href="some.ditaval"/>
<topicref href="nestedTopicl.dita">
<topicref href="nestedTopic2.dita"/>
</topicref>
<topicref href="nestedTopic3.dita"/>
</topicgroup>
</topicref>

For the purposes of filtering, this map also could be rewritten as follows.

<topicref href="parent.dita">
<topicref href="nestedTopicl.dita">
<ditavalref href="some.ditaval"/>
<topicref href="nestedTopic2.dita"/>
</topicref>
<topicref href="nestedTopic3.dita">

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 117 of 867



<ditavalref href="some.ditaval"/>
</topicref>
</topicref>

Filtering based on the <ditavalref> element applies to the containing element and its children, so in each
case, the files nestedTopicl.dita, nestedTopic2.dita, and nestedTopic3.dita are filtered
against the conditions specified in some .ditaval. In each version, parent.dita is not a parent for the
<ditavalref>, so itis not filtered.

2.4.4.6.5 Example: Multiple <ditavalref> elements as children of <map> in a root map
Using multiple instances of the <ditavalref> element as direct children of the <map> element in a root map is
equivalent to setting multiple sets of global filtering conditions for the root map.

Note: Unlike most other examples of branch filtering, this example cannot be rewritten using a single valid
map with alternate markup that avoids having multiple <ditavalref> elements as children of the same
grouping element.

Processing the following root map is equivalent to processing all the contents of the map with the conditions in
the mac.ditaval file and again with the 1inux.ditaval file. If additional conditions are provided externally
(for example, as a parameter to the publishing process), those global conditions take precedence.

<map>

<title>Setting up my product
on <keyword platform="mac">Mac</keyword><keyword platform="1linux">Linux</keyword></title>

<topicmeta>
<othermeta platform="mac" name="ProductID" content="1234M"/>
<othermeta platform="linux" name="ProductID" content="1234L"/>
</topicmeta>

<ditavalref href="mac.ditaval"/>

<ditavalref href="linux.ditaval"/>

<!-- lots of content, including relationship tables -->
</map>

Figure 31: input.ditamap

<val>
<prop att="platform" val="mac" action="include"/>
<prop att="platform" val="linux" action="exclude"/>
</val>

Figure 32: Contents of mac.ditaval

<val>
<prop att="platform" val="mac" action="exclude"/>
<prop att="platform" val="linux" action="include"/>
</val>

Figure 33: Contents of linux.ditaval

Because the title and metadata each contain filterable content, processing using the conditions that are
referenced by the <ditavalref> element results in two variants of the title and common metadata. While this
cannot be expressed using valid DITA markup, it is conceptually similar to something like the following.

<!-- The following wrapperElement is not a real DITA element.
It is used here purely as an example to illustrate one possible
way of picturing the conditions. -->
<wrapperElement>
<map>
<title>Setting up my product on <keyword platform="mac">Mac</keyword></title>
<topicmeta>
<othermeta platform="mac" name="ProductID" content="1234M"/>
</topicmeta>

<ditavalref href="mac.ditaval"/>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 118 of 867



<!-- lots of content, including relationship tables -->

</map>

<map>
<title>Setting up my product on <keyword platform="linux">Linux</keyword></title>
<topicmeta>

<othermeta platform="1linux" name="ProductID" content="1234L"/>

</topicmeta>
<ditavalref href="linux.ditaval"/>
<!-- lots of content, including relationship tables -->

</map>

</wrapperElement>

How this map is rendered is implementation dependent. If this root map is rendered as a PDF, possible
renditions might include the following:

» Two PDFs, with one using the conditions from mac.ditaval and another using the conditions from
linux.ditaval

« One PDF, with a title page that includes each filtered variant of the title and product ID, followed by Mac-
specific and Linux-specific renderings of the content as chapters in the PDF

» One PDF, with the first set of filter conditions used to set book level titles and metadata, followed by content
filtered with those conditions, followed by content filtered with conditions from the remaining <ditavalref>
element.

2.4.4.6.6 Example: Multiple <ditavalref> elements in a reference to a map

Using multiple instances of the <ditavalref> element in a reference to a map is equivalent to referencing that
map multiple times, with each reference nesting one of the <ditavalref> elements.

In the following example, other.ditamap is referenced by a root map. The <ditavalref> elements provide
conflicting sets of filter conditions.

<topicref href="parent.dita">
<topicref href="other.ditamap" format="ditamap">
<ditavalref href="audienceA.ditaval"/>
<ditavalref href="audienceB.ditaval"/>
<ditavalref href="audienceC.ditaval"/>
</topicref>
</topicref>

Figure 34: Map fragment

This markup is functionally equivalent to referencing other .ditamap three times, with each reference
including a single <ditavalref> elements. The fragment could be rewritten as:

<topicref href="parent.dita">
<topicref href="other.ditamap" format="ditamap">
<ditavalref href="audienceA.ditaval"/>
</topicref>
<topicref href="other.ditamap" format="ditamap">
<ditavalref href="audienceB.ditaval"/>
</topicref>
<topicref href="other.ditamap" format="ditamap">
<ditavalref href="audienceC.ditaval"/>
</topicref>
</topicref>

Figure 35: Map fragment

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 119 of 867



2.4.4.6.7 Example: <ditavalref> within a branch that already uses <ditavalref>

When a branch is filtered because a <ditavalref> elementis present, another <ditavalref> deeper within
that branch can supply additional conditions for a subset of the branch.

In the following map fragment, a set of operating system conditions applies to installation instructions. Within that
common branch, a subset of content applies to different audiences.

<topicref href="install.dita">
<ditavalref href="linux.ditaval"/>
<ditavalref href="mac.ditaval">

<ditavalmeta>
<dvrResourceSuffix>-mac</dvrResourceSuffix>
</ditavalmeta>
</ditavalref>
<ditavalref href="win.ditaval">
<ditavalmeta>
<dvrResourceSuffix>-win</dvrResourceSuffix>
</ditavalmeta>
</ditavalref>
<topicref href="perform-install.dita">
<!-- other topics-->
</topicref>
<!-- Begin configuration sub-branch -->

<topicref href="configure.dita">
<ditavalref href="novice.ditaval">
<ditavalmeta>
<dvrResourceSuffix>-novice</dvrResourceSuffix>
</ditavalmeta>
</ditavalref>
<ditavalref href="advanced.ditaval">
<ditavalmeta>
<dvrResourceSuffix>-admin</dvrResourceSuffix>
</ditavalmeta>
</ditavalref>
<!-- Other config topics -->
</topicref>
<!-- End configuration sub-branch -->
</topicref>

In this case, the effective map contains three copies of the complete branch. The branches are filtered by
operating system. Because topics in the branch are filtered in different ways, processors are effectively required
to handle three copies of the entire branch. The map author uses the <dvrResourcesuffix> elements to
control naming for each copy. The Linux branch does not specify a <dvrResourceSuffix> element, because it
is the default copy of the branch; this allows documents such as install.dita to retain their original names.

Within each operating system instance, the configuration sub-branch is repeated; it is filtered once for novice
users and then again for advanced users. As a result, there are actually six instances of the configuration sub-
branch. Additional <dvrResourcesSuffix> elements are used to control naming for each instance.

1. The first instance is filtered using the conditions in 1inux.ditaval and novice.ditaval. For this
instance, the resource configure.dita is treated as the resource configure-novice.dita. There
is no renaming based on 1inux.ditaval, and the <ditavalref> the references novice.ditaval
adds the suffix -novice.

2. The second instance is filtered using the conditions in 1inux.ditaval and advanced.ditaval. For
this instance, the resource configure.dita is treated as the resource configure-admin.dita.
There is no renaming based on 1inux.ditaval, and the <ditavalref> that references
advanced.ditaval adds the suffix —admin.

3. The third instance is filtered using the conditions in mac.ditaval and novice.ditaval. For this
instance, the resource configure.dita is treated as the resource configure-novice-mac.dita.
The <ditavalref> that references novice.ditaval adds the suffix -novice, resulting in

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 120 of 867



configure-novice.dita, and then the <ditavalref> that references mac.ditaval adds the
additional suffix -mac.

4. The fourth instance is filtered using the conditions in mac.ditaval and advanced.ditaval. For this
instance, the resource configure.dita is treated as the resource configure-admin-mac.dita.
The <ditavalref> that references admin.ditaval adds the suffix —admin, resulting in configure-
admin.dita, and then the <ditavalref> that references mac.ditaval adds the additional suffix -

mac.

5. The fifth instance is filtered using the conditions in win.ditaval and novice.ditaval. For this
instance, the resource configure.dita is treated as the resource configure-novice-win.dita.
The <ditavalref> that references novice.ditaval adds the suffix -novice, resulting in
configure-novice.dita, and then the <ditavalref> that references win.ditaval adds the
additional suffix —win.

6. The sixth instance is filtered using the conditions in win.ditaval and advanced.ditaval. For this
instance, the resource configure.dita is treated as the resource configure-admin-win.dita.
The <ditavalref> that references admin.ditaval adds the suffix —admin, resulting in configure-
admin.dita, and then the <ditavalref> that references win.ditaval adds the additional suffix -

win.

2.4.4.6.8 Example: <ditavalref> error conditions
It is an error condition when multiple, non-equivalent copies of the same file are created with the same resource
name.

The following map fragment contains several error conditions that result in name clashes:

<topicref href="a.dita" keys="a">
<ditavalref href="one.ditaval"/>
<ditavalref href="two.ditaval"/>
<topicref href="b.dita" keys="b"/>
</topicref>
<topicref href="a.dita"/>
<topicref href="c.dita" keys="c">
<ditavalref href="one.ditaval">
<ditavalmeta>
<dvrResourceSuffix>-token</dvrResourceSuffix>
</ditavalmeta>
</ditavalref>
<ditavalref href="two.ditaval">
<ditavalmeta>
<dvrResourceSuffix>-token</dvrResourceSuffix>
</ditavalmeta>
</ditavalref>
</topicref>

In this sample, the effective map that results from evaluating the filter conditions has several clashes. In some
cases the same document must be processed with conflicting conditions, using the same URI. In addition,
because no key scope is added or modified, keys in the branch are duplicated in such a way that only one
version is available for use. When the branches are evaluated to create distinct copies, the filtered branches
result in the following equivalent map:

<topicref href="a.dita" keys="a"> <!-- a.dita to be filtered by one.ditaval -->
<topicref href="b.dita" keys="b"/> <!-- b.dita to be filtered by one.ditaval -->
</topicref>
<topicref href="a.dita" keys="a"> <!-- a.dita to be filtered by two.ditaval; key "a" ignored -->
<topicref href="b.dita" keys="b"/> <!-- b.dita to be filtered by two.ditaval; key "b" ignored -->
</topicref>

<topicref href="a.dita"/>
<topicref href="c-token.dita" keys="c">
<!-- c-token.ditaval to be filtered by one.ditaval -->
</topicref>
<topicref href="c-token.dita" keys="c">

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 121 of 867



<!-- c-token.ditaval to be filtered by two.ditaval, key "c" ignored -->
</topicref>

The equivalent map highlights several problems with the original source:

» The key names "a" and "b" are present in a branch that will be duplicated. No key scope is introduced for
either version of the branch, meaning that the keys will be duplicated. Because there can only be one
effective key definition for "a" or "b", it only is possible to reference one version of the topic using keys.

* The key name "c" is present on another branch that will be duplicated, resulting in the same problem.

» The file c.dita is filtered with two sets of conditions, each of which explicitly maps the filtered resource to
c-token.dita. Thisis an error condition that should be reported by processors.

* In situations where resource names map directly to output file names, such as an HTML5 rendering that
creates files based on the original resource name, the following name conflicts also occur. In this case a
processor would need to report an error, use an alternate naming scheme, or both:

1. a.dita generates a.html using three alternate set of conditions. One version uses one.ditaval,
one version uses two.ditaval, and the third version uses no filtering.

2. b.dita generates b.html using two alternate set of conditions. One version uses one.ditaval, and
the other version uses two.ditaval.

2.4.5 Chunking

Content can be chunked (divided or merged into new output documents) in different ways for the purposes of
delivering content and navigation. For example, content best authored as a set of separate topics might need to
be delivered as a single Web page. A map author can use the @chunk attribute to split up multi-topic documents
into component topics or to combine multiple topics into a single document as part of output processing.

The @chunk attribute is commonly used for the following use cases.
Reuse of a nested topic

A content provider creates a set of topics as a single document. Another user wants to incorporate only one of the
nested topics from the document. The new user can reference the nested topic from a DITA map, using the
@chunk attribute to specify that the topic should be produced in its own document.

Identification of a set of topics as a unit

A curriculum developer wants to compose a lesson for a SCORM LMS (Learning Management System) from a set
of topics without constraining reuse of those topics. The LMS can save and restore the learner's progress through
the lesson if the lesson is identified as a referenceable unit. The curriculum developer defines the collection of
topics with a DITA map, using the @chunk attribute to identify the learning module as a unit before generating the
SCORM manifest.

2.4.5.1 Using the @chunk attribute

The specification defines tokens for the @chunk attribute that cover the most common chunking scenarios.
These tokens may be used to override whatever default chunking behavior is set by a processor. Chunking is
necessarily format specific, with chunked output required for some and not supported for other rendered formats.
Chunking is also implementation specific with some implementations supporting some, but not all, chunking
methods, or adding new methods to the standard ones described in this specification.

The value of the @chunk attribute consists of one or more space delimited tokens. Tokens are defined in three
categories: for selecting topics, for setting chunking policies, and for defining how the chunk values impact
rendering. It is an error to use two tokens from the same category on a single <topicref> element.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 122 of 867



Selecting topics

When addressing a document that contains multiple topics, these values determine which topics are selected.
These values are ignored when the element on which they are specified does not reference a topic. The defined
values are:

+ select-topic: Selects an individual topic without any ancestors, descendents, or peers from within the same
document.

+ select-document: Selects all topics in the target document.

+ select-branch: Selects the target topic together with its descendent topics.

Policies for splitting or combining documents

The chunking policy tokens determine how source topics are chunked to produce different output chunks, for output
formats where that makes sense. When specified on a <map> element, the policy becomes the default policy for all
topic references. When specified on a topic reference, the policy applies only to that <topicref> and not to any
descendant <topicref> elements.

* by-topic: A separate output chunk is produced for each of the selected topics. In particular, topics that are
part of multi-topic documents are processed as though they are the root topics within a separate XML document.

+ by-document: A single output chunk is produced for the referenced topic or topics, as though the selected
topics were all children of the same document.

Rendering the selection
The following tokens affect how the chunk values impact rendering of the map or topics.

* to-content: The selection should be rendered as a new chunk of content.

— When specified on a <topicref>, this means that the topics selected by this <topicref> and its children will
be rendered as a single chunk of content.

— When specified on the <map> element, this indicates that the contents of all topics referenced by the map are
to be rendered as a single document.

— When specified on a <topicref> that contains a title but no target, this indicates that processors MUST
generate a title-only topic in the rendered result, along with any topics referenced by child <topicref>
elements of this <topicref>. The rendition address of the generated topic is determined as defined for the
@copy-to attribute. If the @copy-to attribute is not specified and the <topicref> has no @id attribute, the
address of the generated topic is not required to be predictable or consistent across rendition instances.

For cross references to <topicref> elements, if the value of the @chunk attribute is "to-content” or is
unspecified, the cross reference is treated as a reference to the target topic. If the reference is to a
<topicref> with no target, it is treated as a reference to the generated title-only topic.

* to-navigation (DEPRECATED): The "to-navigation" token is deprecated in DITA 1.3. In earlier releases,
the "to-navigation" token indicates that a new chunk of navigation should be used to render the current selection
(such as an individual Table of Contents or related links). When specified on the <map> element, this token
indicates that the map should be presented as a single navigation chunk. If a cross reference is made to a
<topicref> that has a title but no target, and the @chunk value of that <topicref> is set to "to-navigation", the
resulting cross reference is treated as a reference to the rendered navigation document (such as an entry in the
table of contents).

Some tokens or combinations of tokens might not be appropriate for all output types. When unsupported or
conflicting tokens are encountered during output processing, processors SHOULD produce warning or error
messages. Recovery from such conflicts or other errors is implementation dependent.

There is no default value for the @chunk attribute on most elements and the @chunk attribute does not cascade
from container elements, meaning that the @chunk value on one <topicref> is not passed to its children. A
default by-xxx policy for an entire map may be established by setting the @chunk attribute on the <map> element,
which will apply to any <topicref> that does not specify its own by-xxx policy.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 123 of 867



When no @chunk attribute values are specified or defaulted, chunking behavior is implementation dependent.
When variations of this sort are not desired, a default for a specific map can be established by including a
@chunk attribute value on the <map> element.

When chunk processing results in new documents, the resource name or identifier for the new document (if
relevant) is determined as follows:

1. If an entire map is used to generate a single chunk (by placing to-content on the <map> element), the
resource name SHOULD be taken from the resource name of the map.

2. If the @copy-to attribute is specified, the resource name MUST taken from the @copy-to attribute.

3. If the @copy-to attribute is not specified and one or more keys are specified on the <topicref>, the
resource name SHOULD be constructed using one of the keys.

4. If ecopy-to and @keys are not specified and the by-topic policy is in effect, the resource name SHOULD
be taken from the @ id attribute of the topic.

5. If ecopy-to and Gkeys are not specified and the by-document policy is in effect, the resource name
SHOULD be taken from the resource name of the referenced document.

When following these steps results in resource name clashes, processors MAY recover by generating alternate
resource identifiers. For example, when two chunked topics use the same @id attribute, a processor could
recover by combining the original resource name with the @id value instead of using only the @id value.

Implementation-specific tokens and future considerations

Implementers MAY define their own custom, implementation-specific tokens. To avoid name conflicts between
implementations or with future additions to the standard, implementation-specific tokens SHOULD consist of a
prefix that gives the name or an abbreviation for the implementation followed by a colon followed by the token or
method name.

For example: “acme:level2” could be a token for the Acme DITA Toolkit that requests the “level2” chunking
method.

2.4.5.2 Chunking examples

The following examples cover many common chunking scenarios, such as splitting one document into many
rendered objects or merging many documents into one rendered object.

In the examples below, an extension of ".xxxx" is used in place of the actual extensions that will vary by output
format. For example, when the output format is HTML, the extension may actually be ".html", but this is not
required.

The examples below assume the existence of the following files:
* parentl.dita, parent2.dita, etc., each containing a single topic with id P1, P2, etc.
* childl.dita, child2.dita, etc., each containing a single topic with id C1, C2, etc.
* grandchildl.dita, grandchild2.dita, etc., each containing a single topic with id GC1, GC2, etc.

* nestedl.dita, nested2.dita, etc., each containing two topics: parent topics with id N1, N2, etc., and
child topics with ids N1a, N2a, etc.

* ditabase.dita, with the following contents:

<dita xml:lang="en-us">
<topic id="X">
<title>Topic X</title><body><p>content</p></body>
</topic>
<topic id="Y">
<title>Topic Y</title><body><p>content</p></body>
<topic id="Y1">
<title>Topic Y1</title><body><p>content</p></body>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 124 of 867



<topic id="Yla">
<title>Topic Yla</title><body><p>content</p></body>
</topic>
</topic>
<topic id="v2">
<title>Topic Y2</title><body><p>content</p></body>
</topic>
</topic>
<topic id="z">
<title>Topic z</title><body><p>content</p></body>
<topic id="zZ1">
<title>Topic Zl</title><body><p>content</p></body>
</topic>
</topic>
</dita>

1. The following map causes the entire map to generate a single output chunk.

<map chunk="to-content">
<topicref href="parentl.dita">
<topicref href="childl.dita"/>
<topicref href="child2.dita"/>
</topicref>
</map>

2. The following map will generate a separate chunk for every topic in every document referenced by the
map. In this case, it will result in the topics P1 . xxxx, N1.xxxx, and Nla.xxxx.

<map chunk="by-topic">
<topicref href="parentl.dita">
<topicref href="nestedl.dita"/>
</topicref>
</map>

3. The following map will generate two chunks: parent1 . xxxx will contain only topic P1, while
childl.xxxx will contain topic C1, with topics GC1 and GC2 nested within C1.

<map>
<topicref href="parentl.dita">
<topicref href="childl.dita" chunk="to-content">
<topicref href="grandchildl.dita"/>
<topicref href="grandchild2.dita"/>
</topicref>
</topicref>
</map>

4. The following map breaks down portions of ditabase.dita into three chunks. The first chunk Y . xxxx
will contain only the single topic Y. The second chunk Y1 . xxxx will contain the topic Y1 along with its child
Y1a. The final chunk Y2 . xxxx will contain only the topic Y2. For navigation purposes, the chunks for Y1
and Y2 are still nested within the chunk for Y.

<map>
<topicref href="ditabase.dita#Y" copy-to="Y.dita"
chunk="to-content select-topic">
<topicref href="ditabase.dita#Y1l" copy-to="Yl.dita"
chunk="to-content select-branch"/>
<topicref href="ditabase.dita#Y2" copy-to="Y2.dita"
chunk="to-content select-topic"/>
</topicref>
</map>

5. The following map will produce a single output chunk named parent1 . xxxx, containing topic P1, with
topic Y1 nested within P1, but without topic Y1a.

<map chunk="by-document">
<topicref href="parentl.dita" chunk="to-content">
<topicref href="ditabase.dita#Yl"
chunk="select-topic"/>

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 125 of 867



</topicref>

</map>
6. The following map will produce a single output chunk, parent1 . xxxx, containing topic P1, topic Y1
nested within P1, and topic Y1a nested within Y1.
<map chunk="by-document">
<topicref href="parentl.dita" chunk="to-content">
<topicref href="ditabase.dita#Yl"
chunk="select-branch"/>
</topicref>
</map>
7. The following map will produce a single output chunk, P1 . xxxx. The topic P1 will be the root topic, and
topics X, Y, and Z (together with their descendents) will be nested within topic P1.
<map chunk="by-topic">
<topicref href="parentl.dita" chunk="to-content">
<topicref href="ditabase.dita#Yl"
chunk="select-document" />
</topicref>
</map>
8. The following map will produce a single output chunk named parentchunk.xxxx containing topic P1 at
the root. Topic N1 will be nested within P1, and N1a will be nested within N1.
<map chunk="by-document">
<topicref href="parentl.dita" chunk="to-content" copy-to="parentchunk.dita">
<topicref href="nestedl.dita" chunk="select-branch"/>
</topicref>
</map>
9. The following map will produce two output chunks. The first chunk named parentchunk . xxxx will
contain the topics P1, C1, C3, and GC3. The "to-content" token on the reference to child2.dita causes
that branch to begin a new chunk named child2chunk. xxxx, which will contain topics C2 and GC2.
<map chunk="by-document">
<topicref href="parentl.dita"
chunk="to-content" copy-to="parentchunk.dita">
<topicref href="childl.dita" chunk="select-branch"/>
<topicref href="child2.dita"
chunk="to-content select-branch"
copy-to="child2chunk.dita">
<topicref href="grandchild2.dita"/>
</topicref>
<topicref href="child3.dita">
<topicref href="grandchild3.dita"
chunk="select-branch"/>
</topicref>
</topicref>
</map>
10. The following map produces a single chunk named nestedchunk. xxxx, which contains topic N1 with no
topics nested within.
<map>
<topicref href="nestedl.dita#N1"
copy-to="nestedchunk.dita"
chunk="to-content select-topic"/>
</map>
11. In DITA 1.3, the "to-navigation" chunk is deprecated. In earlier releases, the following map produced two
navigation chunks, one for P1, C1, and the other topic references nested under parentl.dita, and a
second for P2, C2, and the other topic references nested under parent2.dita.
<map>
<topicref href="parentl.dita"
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 126 of 867



navtitle="How to set up a web server"
chunk="to-navigation">
<topicref href="childl.dita"
chunk="select-branch"/>
Rl== 500 ==
</topicref>
<topicref href="parent2.dita"
navtitle="How to ensure database security"
chunk="to-navigation">
<topicref href="child2.dita"
chunk="select-branch"/>
<l== .0 ==>
</topicref>
Rl== 500 ==
</map>

2.4.6 Translation and localization

DITA has features that facilitate preparing content for translation and working with multilingual content, including
the @xm1:1lang attribute, the @dir attribute, and the @translate attribute. In addition, the <sort-as> and
<index-sort-as> elements provide support for sorting in languages in which the correct sorting of an element
requires text that is different from the base content of the element.

2.4.6.1 The @xml:lang attribute

The exml: lang attribute specifies the language and (optional) locale of the element content. The @xml:lang
attribute applies to all attributes and content of the element where it is specified, unless it is overridden with
@xml : lang on another element within that content.

The @xml:lang attribute SHOULD be explicitly set on the root element of each map and topic.

Setting the @xm1 : 1ang attribute in the DITA source ensures that processors handle content in a language- and
locale-appropriate way. If the @xm1 : 1ang attribute is not set, processors assume a default value which might not
be appropriate for the DITA content. When the @xm1 : 1ang attribute is specified for a document, DITA
processors MUST use the specified value to determine the language of the document.

Setting the @xm1: 1ang attribute in the source language document facilitates the translation process; it enables
translation tools (or translators) to simply change the value of the existing @xm1 : 1ang attribute to the value of
the target language. Some translation tools support changing the value of an existing @xm1 : 1ang attribute, but
they do not support adding new markup to the document that is being translated. Therefore, if source language
content does not set the @xm1: 1ang attribute, it might be difficult or impossible for the translator to add the
@xml: lang attribute to the translated document.

If the root element of a map or a top-level topic has no value for the@xm1 : 1ang attribute , a processor SHOULD
assume a default value. The default value of the processor can be either fixed, configurable, or derived from the
content itself, such as the @xml : 1ang attribute on the root map.

The @xml:lang attribute is described in the XML Recommendation. Note that the recommended style for the
@xml:lang attribute is lowercase language and (optional) uppercase, separated by a hyphen, for example, "en-
US" or "sp-SP" or "fr". According to RFC 5646, Tags for Identifying Languages, language codes are case
insensitive.

Recommended use in topics

For a DITA topic that contains a single language, set the @xm1 : 1ang attribute on the highest-level element that
contains content.

When a DITA topic contains more than one language, set the @xm1: 1ang attribute on the highest-level element
to specify the primary language and locale that applies to the topic. If part of a topic is written in a different
language, authors should ensure that the part is enclosed in an element with the @xm1 : 1ang attribute set
appropriately. This method of overriding the default document language applies to both block and inline

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 127 of 867


http://www.w3.org/TR/REC-xml/#sec-lang-tag

elements that use the alternate language. Processors SHOULD style each element in a way that is appropriate
for its language as identified by the @xm1: lang attribute.

Recommended use in maps

The @xm1:lang attribute can be specified on the <map> element. The @xm1 : 1ang attribute cascades within the
map in the same way that it cascades within a topic. However, since the @xm1 : 1ang attribute is an inherent
property of the XML document, the value of the @xm1 : 1ang attribute does not cascade from one map to another
or from a map to a topic; the value of the @xm1 : 1ang attribute that is specified in a map does not override

@xml : 1ang values that are specified in other maps or in topics.

The primary language for the map SHOULD be set on the <map> element. The specified language remains in
effect for all child <topicref> elements, unless a child specifies a different value for the @xm1 : 1ang attribute.

When no @xml:1ang value is supplied locally or on an ancestor, a processor-determined default value is
assumed.

Recommended use with the @conref or @conkeyref attribute

When a Gconref or Gconkeyref attribute is used to include content from one element into another, the
processor MUST use the effective value of the @xm1 : 1ang attribute from the referenced element, that is, the
element that contains the content. If the referenced element does not have an explicit value for the @xml:1lang
attribute, the processor SHOULD default to using the same value that is used for topics that do not set the
@xml:lang attribute.

This behavior is shown in the following example, where the value of the @xm1 : 1ang attribute of the included note
is obtained from its parent <section> element that sets the @xm1 : 1ang attribute to "fr". When the
installingAcme.dita topic is processed, the <note> element with the @id attribute set to "mynote" has an
effective value for the @xml : 1ang attribute of "fr".

<?xml version="1.0"?>
<!DOCTYPE task PUBLIC "-//OASIS//DTD DITA Task//EN" "task.dtd">
<task xml:lang="en" id="install acme">
<title>Installing Acme</title>
<shortdesc>Step-by-step details about how to install Acme.</shortdesc>
<taskbody>
<prereg>
<p>Special notes when installing Acme in France:</p>
<note id="mynote" conref="warningsAcme.dita#topic warnings/frenchwarnings"/>
</prereqg>
</taskbody>
</task>

Figure 36: installingAcme.dita

<?xml version="1.0"?>
<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
<topic id="topic warnings">
<title>Warnings</title>
<body>
<section id="ggwwee" xml:lang="fr">
<title>French warnings</title>
<p>These are our French warnings.</p>
<note id="frenchwarnings">Note in French!</note>
</section>
<section xml:lang="en">
<title>English warnings</title>
<p>These are our English warnings.</p>
<note id="englishwarnings">Note in English!</note>
</section>
</body>
</topic>

Figure 37: warningsAcme.dita

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 128 of 867



2.4.6.2 The @dir attribute
The edir attribute provides instructions to processors about how bi-directional text should be rendered.

Bi-directional text is text that contains text in both text directionalities, right-to-left (RTL) and left-to-right (LTR).
For example, languages such as Arabic, Hebrew, Farsi, Urdu, and Yiddish have text written from right-to-left;
however, numerics and embedded sections of Western language text are written from left to right. Some
multilingual documents also contain a mixture of text segments in two directions.

DITA contains the following attributes that have an effect on bi-directional text processing:
@xml:lang
Identifies the language and locale, and so can be used to identify text that requires bi-directional rendering.

@dir

Identifies or overrides the text directionality. It can be set to "ltr", "rtl", "Iro", or "rlo"

In general, properly-written mixed text does not need any special markers; the Unicode bidirectional algorithm
positions the punctuation correctly for a given language. The processor is responsible for displaying the text
properly. However, some rendering systems might need directions for displaying bidirectional text, such as
Arabic, properly. For example, Apache FOP might not render Arabic properly unless the left-to-right and right-to-
left indicators are used.

The use of the @dir attribute and the Unicode algorithm is explained in the article Specifying the direction of text
and tables: the dir attribute (http://www.w3.0rg/TR/html4/struct/dirlang.htmi#h-8.2) . This article contains
several examples of how to use the @dir attribute set to either "ltr" or "rtl". There is no example of setting the
@dir attribute to either "Iro" or "rlo", although it can be inferred from the example that uses the <bdo> element, a
now-deprecated W3C mechanism for overriding the entire Unicode bidirectional algorithm.

Recommended usage

The edir attribute, together with the @xm1: 1ang attribute, is essential for rendering table columns and definition
lists in the proper order.

In general text, the Unicode Bidirectional algorithm, as specified by the @xm1 : 1ang attribute together with the
@dir attribute, provides for various levels of bidirectionality:

« Directionality is either explicitly specified via the @xm1 : 1ang attribute in combination with the edir attribute on
the highest level element (topic or derived peer for topics, map for ditamaps) or assumed by the processing
application. If used, the edir attribute SHOULD be specified on the highest level element in the topic or
document element of the map.

* When embedding a right-to-left text run inside a left-to-right text run (or vice-versa), the default direction might
provide incorrect results based on the rendering mechanism, especially if the embedded text run includes
punctuation that is located at one end of the embedded text run. Unicode defines spaces and punctuation as
having neutral directionality and defines directionality for these neutral characters when they appear between
characters having a strong directionality (most characters that are not spaces or punctuation). While the
default direction is often sufficient to determine the correct directionality of the language, sometimes it renders
the characters incorrectly (for example, a question mark at the end of a Hebrew question might appear at the
beginning of the question instead of at the end or a parenthesis might render incorrectly). To control this
behavior, the @dir attribute is set to "ltr" or "rtl" as needed, to ensure that the desired direction is applied to
the characters that have neutral bidirectionality. The "Itr" and "rtl" values override only the neutral characters
(for example, spaces and punctuation), not all Unicode characters.

Note: Problems with Unicode rendering can be caused by the rendering mechanism. The problems are
not due to the XML markup itself.

» Sometimes you might want to override the default directionality for strongly bidirectional characters. Overrides
are done using the "Iro" and "rlo" values, which overrides the Unicode Bidirectional algorithm. This override
forces a direction on the contents of the element. These override attributes give the author a brute force way

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 129 of 867


http://www.w3.org/TR/html4/struct/dirlang.html#h-8.2
http://www.w3.org/TR/html4/struct/dirlang.html#h-8.2

of setting the directionality independent of the Unicode Bidirectional algorithm. The gentler "ltr" and "rtl" values
have a less radical effect, only affecting punctuation and other so-called neutral characters.

For most authoring needs, the "ltr" and "rtl" values are sufficient. Use the override values only when you cannot
achieve the desired effect using the the "Itr" and "rtl" values.

Processing expectations

Applications that process DITA documents, whether at the authoring, translation, publishing, or any other stage,
SHOULD fully support the Unicode bidirectional algorithm to correctly implement the script and directionality for
each language that is used in the document.

Applications SHOULD ensure that the root element in every topic document and the root element in the root map
has values for the @dir and @xm1l : lang attributes.
Related Links
What you need to know about the BIDI algorithm and inline markup (http.//www.w3.org/International/articles/inline-bidi-markup/)
XHTML Bi-directional Text Attribute Module (http://www.w3.0rg/TR/2004/WD-xhtmiI2-200407 22/mod-bidi.html)
Specifying the direction of text and tables: the dir attribute (http://www.w3.0rg/TR/html4/struct/dirlang.html#adef-dir)
HTML 4.0 Common Attributes (http.//www.htmlhelp.com/reference/html40/attrs.html)

2.4.7 Processing documents with different values of the @domains attribute

When DITA elements are copied from one document to another, processors need to determine the validity of the
copied elements. This copying might occur as the result of a content reference (conref) or key reference (keyref),
or it might occur in the context of an author editing a DITA document.

A processor can examine the value of the @domains attribute and compare the set of modules listed to the set of
modules for which it provides direct support. It then can take appropriate action if it does not provide support for
a given module, for example, issuing a warning before applying fallback processing.

Documents might have incompatible constraints applied; see Weak and strong constraints (149) for more
information about constraint compatibility checking.

When copying content from one DITA document to another, processors SHOULD determine if the data being
copied (the copy source) requires modules that are not required by the document into which the data is to be
copied (the copy target). Such a copy operation is always safe if the copy source requires a subset of the
modules that are required by the copy target. Such a copy is unsafe if the copy source requires modules that are
not required by the copy target.

When a copy operation is unsafe, processors MAY compare the copy source to the copy target to determine if
the copy source satisfies the constraints of the copy target. If the copy source meets the copy target constraints,
the copy operation can proceed. Processors SHOULD issue a warning that the copy was allowed but the
constraints are not compatible. If the copy source does not meet the constraints of the copy target, processors
MAY apply generalization until the generalized result either satisfies the copy target constraints or no further
generalization can be performed. If the copy operation can be performed following generalization, the processor
SHOULD issue a warning that the constraints are not compatible and generalization had to be performed in
order to complete the copy operation.
Related Links
2.5.3.7 domains attribute rules and syntax (138)
The @domains attribute enables processors to determine whether two elements or two documents use compatible domains. The
attribute is declared on the root element for each topic or map type. Each structural, domain, and constraint module defines its
ancestry as a parenthesized sequence of space-separated module names; the effective value of the @domains attribute is
composed of these parenthesized sequences.
2.2.4.2.3 Architectural attributes (59)
The architectural attributes specify the version of DITA that the content supports; they also identify the DITA domains, structural
types, and specializations that are in use by the content.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 130 of 867


http://www.w3.org/International/articles/inline-bidi-markup/
http://www.w3.org/TR/2004/WD-xhtml2-20040722/mod-bidi.html
http://www.w3.org/TR/html4/struct/dirlang.html#adef-dir
http://www.htmlhelp.com/reference/html40/attrs.html

2.4.8 Sorting

Processors can be configured to sort elements. Typical processing includes sorting glossary entries, lists of
parameters or reference entries in custom navigation structures, and tables based on the contents of cells in
specific columns or rows.

Each element to be sorted must have some inherent text on which it will be sorted. This text is the base sort
phrase for the element. For elements that have titles, the base sort phrase usually is the content of the <title>
element. For elements that do not have titles, the base sort phrase might be literal content in the DITA source, or
it might be generated or constructed based on the semantics of the element involved; for example, it could be
constructed from various attribute or metadata values. Processors that perform sorting SHOULD explicitly
document how the base sort phrase is determined for a given element.

The <sort-as> element can be used to specify an effective sort phrase when the base sort phrase is not
appropriate for sorting. For index terms, the <index-sort-as> element can be used to specify the effective sort
phrase for an index entry.

The details of sorting and grouping are implementation specific. Processors might provide different mechanisms
for defining or configuring collation and grouping details. Even where the <sort-as> element is specified, two
processors might produce different sorted and grouped results because they might use different collation and
grouping rules. For example, one processor might be configured to sort English terms before non-English terms,
while another might be configured to sort them after. The grouping and sorting of content is subject to local
editorial rules.

When a <sort-as> element is specified, processors that sort the containing element MUST construct the
effective sort phrase by prepending the content of the <sort-as> element to the base sort phrase. This ensures
that two items with the same <sort-as> element but different base sort phrases will sort in the appropriate
order.

For example, if a processor uses the content of the <title> element as the base sort phrase, and the title of a
topic is "24 Hour Support Hotline" and the value of the <sort-as> element is "twenty-four hour", then the
effective sort phrase would be "twenty-four hour24 Hour Support Hotline".
Related Links
3.5.3.5 sort-as (332)
For elements that are sorted, the <sort-as> element provides text that is combined with the base sort phrase to construct the
effective sort phrase. The text can be specified in the content of the <sort-as> element or in the @value attribute on the <sort-
as>element. The <sort-as> element is useful for elements where the base sort phrase is inadequate or non-existent, for
example, a glossary entry for a Japanese Kanji phrase.

3.4.2.5 index-sort-as (310)
The <index-sort-as> element specifies a sort phrase under which an index entry would be sorted.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 131 of 867



2.5 Configuration, specialization, generalization, and constraints

The extension facilities of DITA allow existing vocabulary and constraint modules to be combined to create
specific DITA document types. Vocabulary modules also can be specialized to meet requirements that are not
satisfied by existing markup.

2.5.1 Overview of DITA extension facilities

DITA provides three extension facilities: configuration, constraint, and specialization. In addition, generalization
augments specialization.

Configuration

Configuration enables the definition of DITA document types that include only the vocabulary modules that are
required for a given set of documents. There is no need to modify the vocabulary modules. Configurations are
implemented as document type shells.

Specialization
Specialization enables the creation of new element types in a way that preserves the ability to interchange those

new element types with conforming DITA applications. Specializations are implemented as vocabulary modules,
which are integrated into document-type shells.

Specializations are implemented as sets of vocabulary modules, each of which declares the markup and
entities that are unique to a specialization. The separation of the vocabulary and its declarations into modules
makes it easy to extend existing modules, because new modules can be added without affecting existing
document types. It also makes it easy to assemble elements from different sources into a single document-
type shell and to reuse specific parts of the specialization hierarchy in more than one document-type shell.

Generalization

Generalization is the process of reversing a specialization. It converts specialized elements or attributes into the
original types from which they were derived.

Constraint

Constraint enables the restriction of content models and attribute lists for individual elements. There is no need to
modify the vocabulary modules. Constraints are implemented as constraint modules, which are integrated into
document-type shells.

2.5.2 Configuration

Configuration enables the definition of DITA document types that include only the vocabulary modules that are
required for a given set of documents. There is no need to modify the vocabulary modules. Configurations are
implemented as document-type shells.

2.5.2.1 Overview of document-type shells

A document type shell is an XML grammair file that specifies the elements and attributes that are allowed in a
DITA document. The document type shell integrates structural modules, domain modules, and constraint
modules. In addition, a document type shell specifies whether and how topics can nest.

A DITA document must either have an associated document-type definition or all required attributes must be
made explicit in the document instances. Most DITA documents have an associated document-type shell. DITA
documents that reference a document-type shell can be validated using standard XML processors. Such
validation enables processors to read the XML grammar files and determine default values for the @domains
and @class attributes.

The following figure illustrates the relationship between a DTD-based DITA document, its document-type shell,
and the various vocabulary modules that it uses. A similar structure applies to DITA documents that use other
XML grammars.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 132 of 867



DITA document DITA document-type shell Vocabulary modules

myTopic.dita myTopic.did Structural modules
(topicor map types)
<1DOCTYPE myTopic ... >
<myloeic> myTopic.ent
: myTopic.mod
</myTopic>

Constraint Domain modules
module
highlightDomain.ent
strictMyTopicConstraint.mod highlightDomain.mod

| myPhraseDomain.mod

Figure 38: Document type shell

The DITA specification contains a starter set of document-type shells. These document type shells are
commented and can be used as templates for creating custom document-type shells. While the OASIS-provided
document-type shells can be used without any modification, creating custom document-type shells is a best
practice. If the document-type shells need to be modified in the future, for example, to include a specialization or
integrate a constraint, the existing DITA documents will not need to be modified to reference a new document-
type shell.

2.5.2.2 Rules for document-type shells

This topic collects the rules that concern DITA document-type shells.

» While the DITA specification only defines coding requirements for DTD, RELAX NG, and XML Schema
documents, conforming DITA documents MAY use other document-type constraint languages, such as
Schematron.

» With two exceptions, a document-type shell MUST NOT directly define element or attribute types; it only
includes and configures vocabulary and constraint modules. The exceptions to this rule are the following:

— The ditabase document-type shell directly defines the <dita> element.

— RNG- and XML Schema-based shells directly specify values for the @domains attribute; these values
reflect the details of the domains and structural types that are integrated by the document-type shell.

« Document type shells that are not provided by OASIS MUST have a unique public identifier, if public
identifiers are used.

» Document type shells that are not provided by OASIS MUST NOT indicate OASIS as the owner; the public
identifier or URN for such document-type shells SHOULD reflect the owner or creator of the document-type
shell.

For example, if example.com creates a copy of the document type shell for topic, an appropriate public
identifier would be "-//fexample.com//DTD DITA Topic//EN", where "example.com" is the owner identifier
component of the public identifier. An appropriate URN would be "urn:example.com:names:dita:rng:topic.rng".

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 133 of 867



2.5.2.3 Equivalence of document-type shells

Two distinct DITA document types that are taken from different tools or environments might be functionally
equivalent.

A DITA document type is defined by the following:

* The set of modules that are declared in the @domains attribute on the root element of the document
* The values of the @class attributes of all the elements in the document
* Rules for topic nesting

Two document-type shells define the same DITA document type if they integrate identical vocabulary modules,
constraint modules, and rules for topic nesting. For example, a document type shell that is an unmodified copy of
the OASIS-provided document-type shell for topic defines the same DITA document type as the original
document-type shell. However, the new document-type shell has the following differences:

* ltis a distinct file that is stored in a different location.
* It has a distinct system identifier.
« If it has a public identifier, the public identifier is unique.

Note: The public or system identifier that is associated with a given document-type shell is not, by itself,
necessarily distinguishing. This is because two different people or groups might use the same modules and
constraints to assemble equivalent document type shells, while giving them different names or public
identifiers.

2.5.2.4 Conformance of document-type shells

DITA documents typically are governed by a conforming DITA document-type shell. However, the conformance
of a DITA document is a function of the document instance, not its governing grammar. Conforming DITA
documents are not required to use a conforming document-type shell.

Conforming DITA documents are not required to have any governing document type declaration or schema.
There might be compelling or practical reasons to use non-conforming document-type shells. For example, a
document might use a document-type shell that does not conform to the DITA requirements for shells in order to
meet the needs of a specific application or tool. Such a non-conforming document-type shell still might enable
the creation of conforming DITA content.

2.5.3 Specialization

The specialization feature of DITA allows for the creation of new element types and attributes that are explicitly

and formally derived from existing types. This facilitates interchange of conforming DITA content and ensures a
minimum level of common processing for all DITA content. It also allows specialization-aware processors to add
specialization-specific processing to existing base processing.

2.5.3.1 Overview of specialization

Specialization allows information architects to define new kinds of information (new structural types or new
domains of information), while reusing as much of existing design and code as possible, and minimizing or
eliminating the costs of interchange, migration, and maintenance.

Specialization modules enable information architects to create new element types and attributes. These new
element types and attributes are derived from existing element types and attributes.

In traditional XML applications, all semantics for a given element instance are bound to the element type, such
as <para> for a paragraph or <title> for a title. The XML specification provides no built-in mechanism for
relating two element types to say "element type B is a subtype of element type A".

In contrast, the DITA specialization mechanism provides a standard mechanism for defining that an element type
or attribute is derived from an ancestor type. This means that a specialized type inherits the semantics and

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 134 of 867



default processing behavior from its ancestor type. Additional processing behavior optionally can be associated
with the specialized descendant type.

For example, the <section> element type is part of the DITA base or core. It represents an organizational
division in a topic. Within the task information type (itself a specialization of <topic>), the <section> element
type is further specialized to other element types (such as <prereg> and <context>) that provide more precise
semantics about the type of organizational division that they represent. The specialized element types inherit
both semantic meaning and default processing from the ancestor elements.

There are two types of DITA specializations:
Structural specialization

Structural specializations are developed from either topic or map types. Structural specializations enable
information architect to add new document types to DITA. The structures defined in the new document types
either directly use or inherit from elements found in other document types. For example; concept, task, and
reference are specialized from topic, whereas bookmap is specialized from map.

Domain specialization

Domain specializations are developed from elements defined with topic or map, or from the @props or @base
attributes. They define markup for a specific information domain or subject area. Domain specialization can be
added to document-type shells.

Each type of specialization module represents an “is a” hierarchy, in object-oriented terms, with each structural
type or domain being a subclass of its parent. For example, a specialization of task is still a task, and a
specialization of the user interface domain is still part of the user interface domain. A given domain can be used
with any map or topic type. In addition, specific structural types might require the use of specific domains.

Use specialization when you need a new structural type or domain. Specialization is appropriate in the following
circumstances:

* You need to create markup to represent new semantics (meaningful categories of information). This might
enable you to have increased consistency or descriptiveness in your content model.

* You have specific needs for output processing and formatting that cannot be addressed using the current
content model.

Do not use specialization to simply eliminate element types from specific content models. Use constraint
modules to restrict content models and attribute lists without changing semantics.

2.5.3.2 Modularization

Modularization is at the core of DITA design and implementation. It enables reuse and extension of the DITA
specialization hierarchy.

The DITA XML grammar files are a set of module files that declare the markup and entities that are required for
each specialization. The document-type shell then integrates the modules that are needed for a particular
authoring and publishing context.

Because all the pieces are modular, the task of developing a new information type or domain is easy. An
information architect can start with existing base types (topic or map) -- or with an existing specialization if it
comes close to matching their business requirements -- and only develop an extension that adds the extra
semantics or functionality that is required. A specialization reuses elements from ancestor modules, but it only
needs to declare the elements and attributes that are unique to the specialization. This saves considerable time
and effort; it also reduces error, enforces consistency, and makes interoperability possible.

Because all the pieces are modular, it is easy to reuse different modules in different contexts. For example, a
company that produces machines can use the task requirements and hazard statements domains, while a
company that produces software can use the software, user interface, and programming domains. A company

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 135 of 867



that produces health information for consumers can avoid using any of the standard domains, and instead
develop a new domain that contains the elements necessary for capturing and tracking the comments made by
medical professionals who review their information for accuracy and completeness.

Because all the pieces are modular, new modules can be created and put into use without affecting existing
document-type shells. For example, a marketing division of a company can develop a new specialization for
message campaigns and have their content authors begin using that specialization, without affecting any of the
other information types that they have in place.

2.5.3.3 Vocabulary modules

A DITA element type or attribute is declared in exactly one vocabulary module.

The following terminology is used to refer to DITA vocabulary modules:
structural module

A vocabulary module that defines a top-level map or topic type. Structural modules also can define specializations
of, or reuse elements from, domain or other structural modules. When this happens, the structural module becomes
dependent.

element domain module
A vocabulary module that defines one or more specialized element types that can be integrated with maps or
topics.

attribute domain module

A vocabulary module that defines exactly one specialization of either the @base or @props attribute.

For structural types, the module name is typically the same as the root element. For example, "task" is the name
of the structural vocabulary module whose root element is <task>.

For element domain modules, the module name is typically a name that reflects the subject domain to which the
domain applies, such as "highlight" or "software". Domain modules often have an associated short name, such
as "hi-d" for the highlighting domain or "sw-d" for the software domain.

The name (or short name) of an element domain module is used to identify the module in @class and @domains
attribute values. While module names need not be globally unique, module names must be unique within the
scope of a given specialization hierarchy. The short name must be a valid XML name token.

Structural modules based on topic MAY define additional topic types that are then allowed to occur as
subordinate topics within the top-level topic. However, such subordinate topic types MAY NOT be used as the
root elements of conforming DITA documents. For example, a top-level topic type might require the use of
subordinate topic types that would only ever be meaningful in the context of their containing type and thus would
never be candidates for standalone authoring or aggregation using maps. In that case, the subordinate topic
type can be declared in the module for the top-level topic type that uses it. However, in most cases, potential
subordinate topics should be defined in their own vocabulary modules.

Domain elements intended for use in topics MUST ultimately be specialized from elements that are defined in
the topic module. Domain elements intended for use in maps MUST ultimately be specialized from elements
defined by or used in the map module. Maps share some element types with topics but no map-specific
elements can be used within topics.

2.5.3.4 Specialization rules for element types
There are certain rules that apply to element type specializations.

A specialized element type has the following characteristics:
» A properly-formed @class attribute that specifies the specialization hierarchy of the element

» A content model that is the same or less inclusive than that of the element from which it was specialized

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 136 of 867



+ A set of attributes that are the same or a subset of those of the element from which it was specialized

» Values or value ranges of attributes that are the same or a subset of those of the element from which it was
specialized

DITA elements are never in a namespace. Only the @DITAArchversion attribute is in a DITA-defined
namespace. All other attributes, except for those defined by the XML standard, are in no namespace.

This limitation is imposed by the details of the @class attribute syntax, which makes it impractical to have
namespace-qualified names for either vocabulary modules or individual element types or attributes. Elements
included as descendants of the DITA <foreign> element type can be in any namespace.

Note: Domain modules that are intended for wide use should define element type names that are unlikely to
conflict with names used in other domains, for example, by using a domain-specific prefix on all names.

2.5.3.5 Specialization rules for attributes
There are certain rules that apply to attribute specializations.

A specialized attribute has the following characteristics:
* |t is specialized from @props or @base.
* Itis declared as a global attribute. Attribute specializations cannot be limited to specific element types.

+ It does not have values or value ranges that are more extensive than those of the attribute from which it was
specialized.

* lts values must be alphanumeric space-delimited values. In generalized form, the values must conform to the
rules for attribute generalization.

2.5.3.6 @class attribute rules and syntax

The specialization hierarchy of each DITA element is declared as the value of the @class attribute. The eclass
attribute provides a mapping from the current name of the element to its more general equivalents, but it also
can provide a mapping from the current name to more specialized equivalents. All specialization-aware
processing can be defined in terms of @class attribute values.

The @class attribute tells a processor what general classes of elements the current element belongs to. DITA

scopes elements by module type (for example topic type, domain type, or map type) instead of document type,
which lets document type developers combine multiple module types in a single document without complicating
transformation logic.

The sequence of values in the @class attribute is important because it tells processors which value is the most
general and which is most specific. This sequence is what enables both specialization aware processing and
generalization.

Syntax

Values for the eclass attribute have the following syntax requirements:

* An initial "-" or "+" character followed by one or more spaces. Use "-" for element types that are defined in
structural vocabulary modules, and use "+" for element types that are defined in domain modules.

» A sequence of one or more tokens of the form "modulename/ typename", with each taoken separated by
one or more spaces, where modulename is the short name of the vocabulary module and typename is the
element type name. Tokens are ordered left to right from most general to most specialized.

These tokens provide a mapping for every structural type or domain in the ancestry of the specialized
element. The specialization hierarchy for a given element type must reflect any intermediate modules
between the base type and the specialization type, even those in which no element renaming occurs.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 137 of 867



+ At least one trailing space character (" "). The trailing space ensures that string matches on the tokens can
always include a leading and trailing space in order to reliably match full tokens.

Rules

When the @class attribute is declared in an XML grammar, it MUST be declared with a default value. In order to
support generalization round-tripping (generalizing specialized content into a generic form and then returning it
to the specialized form) the default value MUST NOT be fixed. This allows a generalization process to overwrite
the default values that are defined by a general document type with specialized values taken from the document
being generalized.

A vocabulary module MUST NOT change the @class attribute for elements that it does not specialize, but
simply reuses by reference from more generic levels. For example, if <task>, <bctask>, and <guitask> use
the <p> element without specializing it, they MUST NOT declare mappings for it.

Authors SHOULD NOT modify the @class attribute.

Example: DTD declaration for @class attribute for the <step> element

The following code sample lists the DTD declaration for the @c1ass attribute for the <step> element:

<!ATTLIST step class CDATA "- topic/li task/step ">

This indicates that the <step> element is specialized from the <1i> element in a generic topic. It also indicates
explicitly that the <step> element is available in a task topic; this enables round-trip migration between upper
level and lower level types without the loss of information.

Example: Element with @class attribute made explicit

The following code sample shows the value of the @class attribute for the <wintitle> element:

<wintitle class="+ topic/keyword ui-d/wintitle ">A specialized keyword</wintitle>

The eclass attribute and its value is generally not surfaced in authored DITA topics, although it might be made
explicit as part of a processing operation.

Example: @class attribute with intermediate value

The following code sample shows the value of a @class attribute for an element in the guitask module, which is
specialized from <task>. The element is specialized from <keyword> in the base topic vocabulary, rather than
from an element in the task module:

<windowname class="- topic/keyword task/keyword guitask/windowname ">...</windowname>

The intermediate values are necessary so that generalizing and specializing transformations can map the values
simply and accurately. For example, if task/keyword was missing as a value, and a user decided to
generalize this guitask up to a task topic, then the transformation would have to guess whether to map to
keyword (appropriate if task is more general than guitask, which it is) or leave it as windowname (appropriate if
task were more specialized, which it isn't). By always providing mappings for more general values, processors
can then apply the simple rule that missing mappings must by default be to more specialized values than the
one we are generalizing to, which means the last value in the list is appropriate. For example, when generalizing
<guitask>to <task>, if a <p> element has no target value for <task>, we can safely assume that <p> does
not specialize from <task> and should not be generalized.

2.5.3.7 @domains attribute rules and syntax

The @domains attribute enables processors to determine whether two elements or two documents use
compatible domains. The attribute is declared on the root element for each topic or map type. Each structural,

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 138 of 867



domain, and constraint module defines its ancestry as a parenthesized sequence of space-separated module
names; the effective value of the @domains attribute is composed of these parenthesized sequences.

Document type shells collect the values that are provided by each module to construct the effective value of the
@domains attribute. Processors can examine the collected values when content from one document is used in
another, in order to determine whether the content is compatible.

For example, when an author pastes content from one topic into another topic within an XML editor, the
application can use the @domains attribute to determine if the two topics use compatible domains. If not, copied
content from the first topic might need to be generalized before it can be placed in the other topic.

The @domains attribute serves the same function when an element uses the @conref attribute to reference a
more specialized version of the element. For example, a <note> element in a concept topic conrefs a
<hazardstatement> element in a reference document. If the hazard statement domain is not available in the
concept topic, the <hazardstatement> element is generalized to a <note> element when the content
reference is resolved.

Syntax and rules

Each domain and constraint module MUST provide a value for use by the @domains attribute. Each structural
vocabulary module SHOULD provide a value for use by the @domains attribute, and it MUST do so when it has
a dependency on elements from any module that is not part of its specialization ancestry.

Values provided for the @domains attribute values are specified from root module (map or topic) to the provided
module.

structural modules
The value of the @domains attribute includes each module in the specialization ancestry:

'(', topic-or-map, (' ', module)+, ')'

For example, consider the <glossentry> specialization, in which the topic type is specialized to the concept
type, and the concept type is specialized to glossentry. The structural module contribution to the value of the
@domains attribute for the glossentry structural module is (topic concept glossentry).

structural modules with dependencies

Structural modules can directly reference or specialize elements from modules that are outside of their
specialization ancestry. They also can define specialized elements that reference specialized attributes. In
these cases the structural module has a dependency on the non-ancestor module, and the structural module
contribution to the value of the @domains attribute MUST include the names of each dependent, non-
ancestor module.

Dependencies are included in the value of the cdomains attribute following the name of the structural module
with the dependency on the non-ancestor module. Domain or attribute modules are appended to the name of
the structural module with the dependency on the non-ancestor module, or to previous dependencies,
separated by "+". Dependencies on structural specialization modules are appended to the name of the
structural module with the dependency on the non-ancestor module, or to previous dependencies, separated
by "++". The syntax is the same as for other structural modules, except that added modules can include these
dependencies:

'(', topic-or-map, (' ', module-plus-optional-dependency-list)+, ')'

When the structural module is included in a document-type shell, all dependency modules also are included
along with their own @domains values.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 139 of 867



For example, the cppAPIRef structural module is specialized from reference, which is specialized from topic.
The cppAPIRef module has a dependency on the cpp-d element domain and on the compilerTypeAtt-d
attribute domain. The dependencies are listed after the name of cppApiref:

(topic reference cppApiRef+cpp-d+compilerTypeAtt-d)

Similarly, a codeChecklist structural module is specialized from reference, which is specialized from topic.
The codeChecklist module has a dependency on the pr-d domain and on the task structural specialization.
Again, the dependencies are listed after the name of codeChecklist. The pr-d domain and the task

module each contribute their own values, so taken together these modules contribute the following values:

(topic reference codeChecklist+pr-d++task) (topic pr-d) (topic task)

element domains

The value includes the structural type ancestry and, if applicable, the domain module ancestry from which the
domain is specialized:

'(', topic-or-map, (' ', domain-module)+, ')'

For example, the highlighting domain (specialized from topic) supplies the following value: (topic hi-d).A
CPP domain that is specialized from the programming domain, which in turn is specialized from topic, supplies the
following value: (topic pr-d cpp-d).

structural constraint modules
The value includes the structural type ancestry followed by the name of the constraint domain:

'(', inheritance-hierarchy qualifierTagname-c, ')'

where:
* inheritance-hierarchy is the specialization hierarchy, for example, topic task.

* qualifier is a string that is specific to the constraints module and characterizes it, for example, "strict" or
"requiredTitle" or "myCompany-".

« Tagname is the element type name with an initial capital, for example, "Taskbody" or "Topic".
» The literal "-c" indicates that the name is the name of a constraint.

For example, the strictTaskbody constraint applies to the task module, which is specialized from topic,
resulting in the following value: (topic task strictTaskbody-c).

Optionally, a domains contribution can indicate a strong constraint by preceding the domains contribution with
the letter "s". For example, s (topic task strictTaskbody-c) indicates a strong constraint.

domain constraint modules
The value includes the specialization ancestry followed by the name of the constraint domain:

'(', inheritance-hierachy qualifierdomainDomain-c ')'

where:
* inheritance-hierarchy is the specialization hierarchy, for example, topic hi-d.

* qualifier is a string that is specific to the constraints module and characterizes it, for example, "noSyntaxDiagram"
or "myCompany-".

* domain is the name of the domain to which the constraints apply, for example, "Highlighting" or "Programming".

* The literal "-c¢" indicates that the name is the name of a constraint.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 140 of 867



For example, a domain constraint module that restricts the highlighting domain includes a value like the
following: (topic hi-d basic-HighlightingDomain-c)

attribute domains
The value uses an "a" before the initial parenthesis to indicate an attribute domain. Within the parenthesis,
the value includes the attribute specialization hierarchy, starting with @props or @base:

'a(', props-or-base, (' ', attname)+, ')'

For example, the @mySelectAttribute specialized from @props results in the following value: a (props
mySelectAttribute)

Example: Task with multiple domains

In this example, a document-type shell integrates the task structural module and the following domain modules:

Domain Domain short name
User interface ui-d

Software sw-d

Programming pr-d

The value of the @domains attribute includes one value from each module; the effective value is the following:

domains=" (topic task) (topic ui-d) (topic sw-d) (topic pr-d)"

If the document-type shell also used a specialization of the programming domain that describes C++
programming (with a short name of "cpp-d"), the new C++ programming domain would add an additional value to
the @domains attribute:

domains=" (topic task) (topic ui-d) (topic sw-d) (topic pr-d) (topic pr-d cpp-d)"

Note that the value for the @domains attribute is not authored; Instead, the value is defaulted based on the
modules that are included in the document type shell.

Related Links
2.4.7 Processing documents with different values of the domains attribute (130)
When DITA elements are copied from one document to another, processors need to determine the validity of the copied
elements. This copying might occur as the result of a content reference (conref) or key reference (keyref), or it might occur in the
context of an author editing a DITA document.

2.4.2.2 Processing conrefs (99)
When processing content references, DITA processors compare the restrictions of each context to ensure that the conrefed
content is valid in its new context.

2.5.3.8 Specializing to include non-DITA content

You can extend DITA to incorporate standard vocabularies for non-textual content, such as MathML and SVG,
as markup within DITA documents. This is done by specializing the <foreign> or <unknown> elements.

There are three methods of incorporating foreign content into DITA.
* A domain specialization of the <foreign> or <unknown> element. This is the usual implementation.

« A structural specialization using the <foreign> or <unknown> element. This affords more control over the
content.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 141 of 867



+ Directly embedding the non-DITA content within <foreign> or <unknown> elements. If the non-DITA content
has interoperability or vocabulary naming issues such as those that are addressed by specialization in DITA,
they must be addressed by means that are appropriate to the non-DITA content.

The <foreign> or <unknown> elements should not be used to include textual content or metadata in DITA
documents, except where such content acts as an example or display, rather than as the primary content of a
topic.

Note: Beginning with DITA 1.3, both MathML and SVG are domains shipped with the OASIS grammars; they
serve as working examples of <foreign> specializations.

Example: Including SVG markup within a specialization of <foreign>

The following code sample shows how SVG markup can be included within the <svgcontainer> element,
which is part of the SVG domain and a specialization of the <foreign> element.

<p>This is an ellipse:
<svg-container>
<svg:svg width="100%" height="100%" version="1.1"
xmlns="http://www.w3.0rg/2000/svg">

<ellipse cx="300" cy="150" rx="200" ry="80"
style="fill:rgb(200,100,50);
stroke:rgb(0,0,100) ;stroke-width:2"/>

</svg:svg>

</svg-container>.
</p>

Example: Creating an element domain specialization for SVG

The following code sample, which is from the svgDomain.ent file, shows the domain declaration for the SVG
domain.

<l-- -—>
<!l-- SVG DOMAIN ENTITIES o=
<!l-- —-—>
<!-- SVG elements must be prefixed, otherwise they conflict with

existing DITA elements (e.g., <desc> and <title>.
==>
<!ENTITY % NS.prefixed "INCLUDE" >
<!ENTITY % SVG.prefix "svg" >

<!ENTITY % svg-d-foreign

"svg-container
"

>

<!ENTITY svg-d-att
" (topic svg-d)"
>

Note that the SVG-specific $svG.prefix; parameter entity is declared. This establishes the default namespace
prefix to be used for the SVG content embedded with this domain. The namespace can be overridden in a
document-type shell by declaring the parameter entity before the reference to the svgDomain.ent file. Other
foreign domains may need similar entities when required by the new vocabulary.

For more information, see the svgDomain.mod file that is shipped with the OASIS DITA distributions. For an
example of including the SVG domain in a document type shell, see task.dtd.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 142 of 867



2.5.3.9 Sharing elements across specializations

Specialization enables easy reuse of elements from ancestor specializations. However, it is also possible to
reuse elements from non-ancestor specializations, as long as the dependency is properly declared in order to
prevent invalid generalization or conref processing.

A structural specialization can incorporate elements from unrelated domains or other structural specializations by
referencing them in the content model of a specialized element. The elements included in this manner must be
specialized from ancestor content that is valid in the new context. If the reusing and reused specializations share
common ancestry, the reused elements must be valid in the reusing context at every level they share in
common.

Although a well-designed structural specialization hierarchy with controlled use of domains is still the primary
means of sharing and reusing elements in DITA, the ability to also share elements declared elsewhere in the
hierarchy allows for situations where relevant markup comes from multiple sources and would otherwise be
developed redundantly.

Example: A specialization of <concept> reuses an element from the task module

A specialized concept topic could declare a specialized <process> section that contains the <steps> element
that is defined in the task module. This is possible because of the following factors:

* The <steps> element is specialized from <o1>.

* The <process> element is specialized from <section>, and the content model of <section> includes
<ol>.

The <steps> element in <process> always can be generalized back to <o1> in <section>.

Example: A specialization of <reference> reuses an element from the programming domain

A specialized reference topic could declare a specialized list (<apilist>)in which each <apilistitem>
contains an <apiname> element that is borrowed from the programming domain.

2.5.4 Generalization

Generalization is the process of reversing a specialization. It converts specialized elements or attributes into the
original types from which they were derived.

2.5.4.1 Overview of generalization

Specialized content can be generalized to any ancestor type. The generalization process can preserve
information about the former level of specialization to allow round-tripping between specialized and
unspecialized forms of the same content.

All DITA documents contain a mix of markup from at least one structural type and zero or more domains. When
generalizing the document, any individual structural type or domain can be left as-is, or it can be generalized to
any of its ancestors. If the document will be edited or processed in generalized form, it might be necessary to
have a document-type shell that includes all non-generalized modules from the original document-type shell.

Generalization serves several purposes:

* It can be used to migrate content. For example, if a specialization is unsuccessful or is no longer needed, the
content can be generalized back to a less specialized form.

* It can be used for temporary round-tripping. For example, if content is shared with a process that is not
specialization aware, it can be temporarily generalized for that process and then returned to specialized form.

« It can allow reuse of specialized content in an enviroment that does not support the specialization. Similar to
round-tripping, content can be generalized for sharing, without the need to re-specialize.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 143 of 867



When generalizing for migration, the @class attribute and @domains attribute should be absent from the
generalized instance document, so that the default values in the document-type shell are used. When
generalizing for round-tripping, the @class attribute and @domains attribute SHOULD retain the original
specialized values in the generalized instance document.

Note that when using constraints, a document instance can always be converted from a constrained document
type to an unconstrained document type merely by switching the binding of the document instance to the less
restricted document type shell (which would also have a different @domains attribute declaration). No renaming
of elements is needed to remove constraints.

2.5.4.2 Element generalization

Elements are generalized by examining the @class attribute. When a generalization process detects that an
element belongs to one of the modules that is being generalized, the element is renamed to a more general
form.

For example, the <step> element has a @class attribute value of "- topic/1i task/step ".Ifthe task
module is being generalized, the <step> element is renamed to its more general form from the topic module:
<li>.

For specific concerns when generalizing structural types with dependencies on non-ancestor modules, see
Generalization with cross-specialization dependencies (147).

While the tag name of a given element is normally the same as the type name of the last token in the Gclass
value, this is not required. For example, if a generalization process has already run on the element, the @class
attribute could contain tokens from two or more modules based on the original specialization. In that case, the
element name could already match the first token or an intermediate token in the @class attribute. A second
generalization process could end up renaming the element again or could leave it alone, depending on the target
module or document type.

Generalization and conref

To determine compatibility between a document instance and a target document type when resolving a conref
reference, a generalization processor can use the @domains and @class attributes for the document instance
and the @domains attribute for the target document type to determine how to rename elements in the resolved
instance. For each element type, a generalization processor:

* Iterates over the eclass attribute from specific to general, inspecting the vocabulary modules.

+ |Identifies the first vocabulary module that is both present in each document type, with a compatible set of
constraints for that vocabulary module. If such a module is not found, the instance can only be generalized to
a less constrained document type.

2.5.4.3 Processor expectations when generalizing elements

Generalization processors convert elements from one or more modules into their less specialized form. The list
of modules can be supplied to a generalization processor, or it can be inferred based on knowledge of a target
document-type shell.

The person or application initiating a generalization process can supply the source and target modules for each
generalization, for example, "generalize from reference to topic". Multiple target modules can be specified, for
example, "generalize from reference to topic and from ui-d to topic". When the source and target modules are
not supplied, the generalization process is assumed to be from all structural types to the base (topic or map),
and no generalization is performed for domains.

The person or application initiating a generalization process also can supply the target document-type shell.
When the target document-type shell is not supplied, the generalized document will not contain a reference to a
document-type shell.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 144 of 867



A generalization processor SHOULD be able to handle cases where it is given:

» Only source modules for generalization (in which case the designated source types are generalized to topic or
map)

» Only target modules for generalization (in which case all descendants of each target are generalized to that
target)

+ Both (in which case only the specified descendants of each target are generalized to that target)

For each structural type instance, the generalization processor checks whether the structural type instance is a
candidate for generalization, or whether it has domains that are candidates for generalization. It is important to
be selective about which structural type instances to process; if the process simply generalizes every element
based on its @class attribute values, an instruction to generalize "reference" to "topic" could leave a
specialization of reference with an invalid content model, since any elements it reuses from "reference" would
have been renamed to topic-level equivalents.

The @class attribute for the root element of the structural type is checked before generalizing structural types:

Source module unspecified Source module specified

Target module | Generalize this structural type to its | Check whether the root element of the topic type matches a
unspecified base ancestor specified source module; generalize to its base ancestor if it
does, otherwise ignore the structural type instance unless it
has domains to generalize.

Target module | Check whether the @class It is an error if the root element matches a specified source
specified attribute contains the target but its @class attribute does not contain the target. If the root
module. If it does contain the element matches a specified source module and its @class
target, rename the element to the | attribute does contain the target module, generalize to the
value associated with the target target module. Otherwise, ignore the structural type instance
module. Otherwise, ignore the unless it has domains to generalize.
element.

The edomains attribute for the root element of the structural type is checked before generalizing domains:

Source module unspecified Source module specified
Target module | Do not generalize domain Check whether the cdomains attribute lists the specified
unspecified specializations in this structural domain; proceed with generalization if it does, otherwise
type. ignore the structural type instance unless it is itself a

candidate for generalization.

Target module | Check whether the @domains It is an error if the @domains attribute matches a specified
specified attribute contains the target module. | source but the domain value string does not contain the
If it does, generalize to the target target. If the @domains attribute matches a specified source
module. Otherwise, skip the module and the domain value string does contain the target

structural type instance unless itis | module, generalize to the target module. Otherwise, ignore
itself a candidate for generalization. | the structural type instance unless it is itself a candidate for
generalization.

For each element in a candidate structural type instance:

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 145 of 867



Source module unspecified Source module specified

Target module | If the eclass attribute starts with "-" Check whether the last value of the eclass attribute
unspecified (part of a structural type), rename the matches a specified source; generalize to its base
element to its base ancestor equivalent. |ancestor if it does, otherwise ignore the element.
Otherwise ignore it.

Target module | Check whether the @class attribute It is an error if the last value in the @class attribute

specified contains the target module; rename the | matches a specified source but the previous values do
element to the value associated with the | not include the target. If the last value in the @class
target module if it does contain the attribute matches a specified source module and the
target, otherwise ignore the element. previous values do include the target module, rename

the element to the value associated with the target
module. Otherwise, ignore the element.

When renaming elements during round-trip generalization, the generalization processor SHOULD preserve the
values of all attributes. When renaming elements during one-way or migration generalization, the process
SHOULD preserve the values of all attributes except the @class and @domains attribute, both of which should
be supplied by the target document type.

2.5.4.4 Attribute generalization
DITA provides a syntax to generalize attributes that have been specialized from the eprops or @base attribute.

Specialization-aware processors SHOULD process both the specialized and generalized forms of an attribute as
equivalent in their values.

When a specialized attribute is generalized to an ancestor attribute, the value of the ancestor attribute consists
of the name of the specialized attribute followed by its specialized value in parentheses. For example, if
@jobrole is an attribute specialized from @person, which in turn is specialized from @props:

* jobrole="programmer" can be generalized to person="jobrole (programmer) " or to
props="jobrole (programmer) "

* props="jobrole (programmer) " can be respecialized to person="jobrole (programmer) " or to
jobrole="programmer"

In this example, processors performing generalization and respecialization can use the @domains attribute to
determine the ancestry of the specialized @jobrole attribute, and therefore the validity of the specialized
@person attribute as an intermediate target for generalization.

If more than one attribute is generalized, the value of each is separately represented in this way in the value of
the ancestor attribute.

Generalized attributes are typically not expected to be authored or edited directly. They are used by processors
to preserve the values of the specialized attributes during the time or in the circumstances in which the
document is in a generalized form.

Note: The Raudience, @platform, @product, and Qotherprops attributes allow grouped values that
reuse the generalized syntax described here; however, these attributes are not specialized or specializeable.
For these attributes, it may be typical to author or edit the grouped values directly.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 146 of 867



A single element MUST NOT contain both generalized and specialized values for the same attribute. For
example, the following <p> element provides two values for the @ jobrole attribute, one in a generalized syntax
and the other in a specialized syntax:

<p person="jobrole (programmer)" jobrole="admin">

This is an error condition, since it means the document has been only partially generalized, or that the document
has been generalized and then edited using a specialized document type.

2.5.4.5 Generalization with cross-specialization dependencies

Dependencies across specializations limit generalization targets to those that either preserve the dependency or
eliminate them. Some generalization targets will not be valid and should be detected before generalization
occurs.

When a structural specialization has a dependency on a domain specialization, then the domain cannot be
generalized without also generalizing the reusing structural specialization.

For example, a structural specialization codeConcept might incorporate and require the <codeblock> element
from the programming domain. A generalization process that turns programming domain elements back into
topic elements would convert <codeblock> to <pre>, making a document that uses codeConcept invalid.
However, codeConcept could be generalized to concept or topic, without generalizing programming domain
elements, as long as the target document type includes the programming domain.

When a structural specialization has a dependency on another structural specialization, then both must be
generalized together to a common ancestor.

For example, if the task elements in checklist were generalized without also generalizing checklist elements,
then the checklist content models that referenced task elements would be broken. And if the checklist elements
were generalized to topic without also generalizing the task elements, then the task elements would be out of
place, since they cannot be validly present in topic. However, checklist and task can be generalized together to
any ancestor they have in common: in this case topic.

When possible, generalizing processes SHOULD detect invalid generalization target combinations and report
them as errors.

2.5.5 Constraints

Constraint modules define additional constraints for vocabulary modules in order to restrict content models or
attribute lists for specific element types, remove certain extension elements from an integrated domain module,
or replace base element types with domain-provided, extension element types.

2.5.5.1 Overview of constraints

Constraint modules enable information architects to restrict the content models or attributes of OASIS-defined
DITA grammars. A constraint is a simplification of an XML grammar such that any instance that conforms to the
constrained grammar also will conform to the original grammar.

A constraint module can perform the following functions:
Restrict the content model for an element

Constraint modules can modify content models by removing optional elements, making optional elements required,
or requiring unordered elements to occur in a specific sequence. Constraint modules cannot make required
elements optional or change the order of element occurrence for ordered elements.

For example, a constraint for <topic> can require <shortdesc>, can remove <abstract>, and can require
that the first child of <body> be <p>. A constraint cannot allow <shortdesc> to follow <prolog>, because
the content model for <topic> requires that <shortdesc> precedes <prolog>.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 147 of 867



Restrict the attributes that are available on an element

Constraint modules can restrict the attributes that are available on an element. They also can limit the set of
permissible values for an attribute.

For example, a constraint for <note> can limit the set of allowed values for the @t ype attribute to "note" and
"tip". It also can omit the Gothertype attribute, since it is needed only when the value of the @type attribute
is "other".

Restrict the elements that are available in a domain

Constraint modules can restrict the set of extension elements that are provided in a domain. They also can
restrict the content models for the extension elements.

For example, a constraint on the programming domain can reduce the list of included extension elements to
<codeph> and <codeblock>.

Replace base elements with domain extensions

Constraint modules can replace base element types with the domain-provided extension elements.
For example, a constraint module can replace the <ph> element with the domain-provided elements, making
<ph> unavailable.

2.5.5.2 Constraint rules
There are certain rules that apply to the design and implementation of constraints.
Contribution to the @domains attribute

Each constraint that is integrated into a DITA document type MUST be declared in the @domains attribute for
each structural type that is integrated into the document type. For DTDs, the contribution for the @domains
attribute is specified in the constraint module file; for XSD and RELAX NG, the contribution to the @domains
attribute is specified directly in the document type shell.

Content model

The content model for a constrained element must be at least as restrictive as the unconstrained content
model for the element.

The content model and attributes of an element can be constrained by only one constraint module. If two
constraint modules exist that constrain the content model or attributes for a specific element, those two
modules must be replaced with a new constraint module that reflects the aggregation of the two original
constraint modules.

Domain constraints

When a domain module is integrated into a document-type shell, the base domain element can be omitted
from the domain extension group or parameter entity. In such a case, there is no separate constraint
declaration, because the content model is configured directly in the document-type shell.

A domain module can be constrained by only one constraint module. This means that all restrictions for the
extension elements that are defined in the domain must be contained within that one constraint module.

Structural constraints

Each constraint module may constrain elements from only one vocabulary module. For example, a single
constraint module that constrains <refsyn> from reference.mod and constrains <context> from
task.mod is not allowed. This rule maintains granularity of reuse at the module level.

Constraint modules that restrict different elements from within the same vocabulary module can be combined

with one another. Such combinations of constraints on a single vocabulary module have no meaningful order
or precedence.

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 148 of 867



2.5.5.3 Constraints, processing, and interoperability

Because constraints can make optional elements required, documents that use the same vocabulary modules
might have incompatible constraints. Thus the use of constraints can affect the ability for content from one topic
or map to be used in another topic or map.

A constraint does not change basic or inherited element semantics. The constrained instances remain valid
instances of the unconstrained element type, and the element type retains the same semantics and @class
attribute declaration. Thus, a constraint never creates a new case to which content processing might need to
react.

For example, a document type constrained to require the <shortdesc> element allows a subset of the possible
instances of the unconstrained document type with an optional <shortdesc> element. Thus, the content
processing for topic still works when <topic> is constrained to require a short description.

A constrained document type allows only a subset of the possible instances of the unconstrained document
type. Thus, for a processor to determine whether a document instance is compatible with another document
type, the document instance MUST declare any constraints on the document type.

For example, an unconstrained task is compatible with an unconstrained topic, because the <task> element can
be generalized to <topic>. However, if the topic is constrained to require the <shortdesc> element, a
document type with an unconstrained task is not compatible with the constrained document type, because some
instances of the task might not have a <shortdesc> element. However, if the task document type also has been
constrained to require the <shortdesc> element, it is compatible with the constrained topic document type.

2.5.5.4 Weak and strong constraints

Constraints can be classified into two categories: Weak and strong. This classification determines whether
processors enforce strict compatibility during @conref or @conkeyref resolution.

Strong constraints
Constraints for which processors enforce strict compatibility during @conref or @conkeyref resolution.
Weak constraints

Constraints for which a processor does not enforce strict compatibility during @conref or @conkeyref resolution.
By default, constraints are weak unless they are explicitly designated as strong.

Any constraint declaration can designate a constraint as strong. A constraint can be designated as strong by
prefixing the letter "s" to the domains attribute contribution, for example, "s (topic task
strictTaskbody-c) ". Processors also can be configured to treat all constraints as strong.

The following behavior is expected of processors:
» Processors MAY perform constraint compatibility checking.

* If processors perform constraint compatibility checking, they SHOULD enforce strict compatibility for strong
constraints.

* Processors MAY have an option for configuring whether all constraints are treated as strong constraints.

2.5.5.5 Conref compatibility with constraints

To determine compatibility between two document instances, a conref processor checks the @domains attribute
to confirm whether the referencing document has a superset of the vocabulary modules in the referenced
document. If one or both of the document instances are constrained, the conref processor checks to confirm the
compatibility of the constraints.

Conref processors take into account whether constraints are specified as strong. For strong constraints, the
following rules apply:

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 149 of 867



Conref pull

For each vocabulary module used by both document types, the module in the document type that contains the
referencing element must be less (or equally) constrained than the same module in the document type that
contains the referenced element. For example, if each document type uses the highlighting domain module, that
module must be less (or equally) constrained in the document type that contains the referencing element.

Conref push

For each vocabulary module used by both document types, the module in the document type that contains the
referencing element must be more (or equally) constrained than the same module in the document type that
contains the referenced element. For example, if each document type uses the highlighting domain module, that
module must be more (or equally) constrained in the document type that contains the referencing element.

Example: Conref pull and constraint compatibility

The following table contains scenarios where conref pull occurs between constrained and unconstrained
document instances. It assumes that the processor is not configured to treat all constraints as strong

constraints.

Values of @domains attribute in
document type that contains the
referencing element

Values of @domains attribute in
document type that contains the
referenced element

Resolutio
n

Comments

(topic)

(topic shortdescReg-c)

Allowed

The content model of
the referenced topic is
more constrained than
the referencing topic.

s (topic shortdescReg-c)

(topic)

Prevented

The constraint is
specified as a strong
constraint, and the
content model of the
referenced topic is less
constrained than the
referencing topic.

(topic shortdescReg-c)

(topic)

Allowed

Although the content
model of referenced
topic is less constrained
than the referencing
topic, this is a weak
constraint and so
permitted.

(topic task) (topic hi-d)
(topic hi-d

basicHighlightingDomain-c)

(topic simpleSection-c)
(topic task) (topic task

simpleStep-c)

Allowed

The referenced topic
has a subset of the
vocabulary modules that
are integrated into the
document-type shell for
the referencing topic.
Both document types
integrate constraints,
but for modules used in
both document types,

dita-v1.3-csd01-part2-tech-content
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

30 June 2015
Page 150 of 867




simpleSection-c) s (topic

simpleP-c)

(topic task) (topic hi-d)
(topic hi-d

basicHighlightingDomain-c)

Values of @domains attribute in Values of @domains attribute in Resolutio | Comments
document type that contains the document type that contains the n
referencing element referenced element
the referencing topic is
less constrained than
the referenced topic.
(topic hi-d) (topic (topic simpleSection-c) Prevented | The referencing

document has
constraints that are not
present in the
referenced document,
including a strong
constraint applied to the
<p> element.

Example: Conref push and constraint compatibility

The following table contains scenarios where conref push occurs between constrained and unconstrained
document instances. It assumes that the processor has not been configured to treat all constraints as strong

constraints.

Values of @domains attribute in
document type that contains the
referencing element

Values of @domains attribute in
document type that contains the
referenced element

Resolutio
n

Comments

(topic)

(topic shortdescReg-c)

Allowed

Although the content
model of the referenced
topic is more
constrained than the
referencing topic, this is
a weak constraint and
so permitted.

(topic)

s (topic shortdescReg-c)

Prevented

The constraint is
specified as a strong
constraint, and the
content model of the
referenced topic is more
constrained than the
referencing topic.

(topic shortdescReg-c)

(topic)

Allowed

The content model of
the referencing topic is
more constrained than
the referenced topic.

(topic task) (topic hi-d)
(topic hi-d

basicHighlightingDomain-c)

(topic simpleSection-c)
(topic task) (topic task

simpleStep-c)

Allowed

The referenced topic
has a subset of the
vocabulary modules that
are integrated into the
document-type shell for

dita-v1.3-csd01-part2-tech-content
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

30 June 2015
Page 151 of 867




Values of @domains attribute in
document type that contains the
referencing element

Values of @domains attribute in
document type that contains the
referenced element

Resolutio
n

Comments

the referencing topic.
For modules used in
both document types,
the referenced topic is
more constrained than
the referencing topic,
but this is a weak
constraint and so
permitted.

(topic simpleSection-c)
(topic task) (topic hi-d)
(topic hi-d

basicHighlightingDomain-c)

(topic hi-d)
simpleSection-c)

(topic
s (topic
simpleP-c)

Prevented

For the common topic
module, the referenced
document has more
constraints than the
referencing document,
including a strong
constraint applied to the
<p> element.

2.5.5.6 Examples: Constraints
This section of the specification contains examples and scenarios. They illustrate a variety of ways that

constraints can be used; they also provide examples of the DTD coding requirements for constraints and how
constraints are integrated into document-type shells.

2.5.5.6.1 Example: Redefine the content model for the <topic> element

In this scenario, an information architect for Acme, Incorporated wants to redefine the content model for the topic
document type. She wants to omit the <abstract> element and make the <shortdesc> element required; she
also wants to omit the <related-1inks> element and disallow topic nesting.

1. She creates a .mod file using the following naming conventions: qualiferTagnameConstraint .mod,
where qualifer is a string the describes the constraint, and Tagname is the element type name with an
initial capital. Her contraint module is named acme-TopicConstraint .mod.

2. She adds the following content to acme-TopicConstraint .mod:

<l--

<I--
€l==

CONSTRAINED TOPIC ENTITIES

<!-- Declares the entity for the constraint module and defines

<!-- its contribution to the @domains attribute.

<!ENTITY topic-constraints

" (topic basic-Topic-c)"
>

<!-- Declares the entities referenced in the constrained content -->
<!-- model. ==>
<!ENTITY % title "title">

<!ENTITY % titlealts "titlealts">

<!ENTITY % shortdesc "shortdesc">

<!ENTITY % prolog "prolog">

<!ENTITY % body "body">

dita-v1.3-csd01-part2-tech-content
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

30 June 2015
Page 152 of 867




<!-- Defines the constrained content model for <topic>. ==>

<!ENTITY % topic.content
"((%title;),
(%titlealts;) ?,
(%$shortdesc;),
($prolog;) ?,
($body;)2)"

3. She then integrates the constraint module into her document-type shell for topic by adding the following
section above the "TOPIC ELEMENT INTEGRATION" comment:

<l-- -—>
<l-- CONTENT CONSTRAINT INTEGRATION -—>
€l== —=>

<!ENTITY % topic-constraints-c-def
PUBLIC "-//ACME//ELEMENTS DITA Topic Constraint//EN"
"acme-TopicConstraint.mod">
$topic-constraints-c-def;

4. She then adds the constraint to the list of domains and constraints that need to be included in the value of
the @domains attribute for <topic>:

<l-- -—>
<l-- DOMAINS ATTRIBUTE OVERRIDE -—>
<l—- —=>

<!ENTITY included-domains
"ghi-d-att;
&ut-d-att;
&indexing-d-att;
&topic-constraints;

>

5. After updating the catalog.xml file to include the new constraints file, her work is done.

2.5.5.6.2 Example: Constrain attributes for the <section> element
In this scenario, an information architect wants to redefine the attributes for the <section> element. He wants to
make the @id attribute required and omit the @spectitle attribute.
1. He creates a .mod file named idRequiredSectionContraint.mod, where "idRequired" is a string
that characterizes the constraint.

2. He adds the following content to idRequiredSectionContraint.mod:

NE -—>
<l-- CONSTRAINED TOPIC ENTITIES -—>
gl== ==

<!ENTITY section-constraints
" (topic idRequired-section-c)"

>

<!-- Declares the entities referenced in the constrained content -->
<!-- model. ==
<!ENTITY % conref-atts

'conref CDATA #IMPLIED
conrefend CDATA #IMPLIED
conaction (mark|pushafter|pushbefore|pushreplace|-dita-use-conref-target) #IMPLIED
conkeyref CDATA #IMPLIED' >
<!ENTITY % filter-atts

'props CDATA #IMPLIED
platform CDATA #IMPLIED
product CDATA #IMPLIED

audience CDATA #IMPLIED

otherprops CDATA #IMPLIED

$props-attribute-extensions;' >
<!ENTITY % select-atts

dita-v1.3-csd01-part2-tech-content 30 June 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 153 of 867



'$filter-atts;

base CDATA #IMPLIED

$base-attribute-extensions;

importance (default|deprecated|high|low|normal|obsolete|optional|
recommended | required|urgent|-dita-use-conref-target) #IMPLIED

rev CDATA #IMPLIED

status (changed|deleted|unchanged|-dita-use-conref-target) #IMPLIED' >

<!ENTITY % localization-atts
'translate (nolyes|-dita-use-conref-target) #IMPLIED
xml:lang CDATA #IMPLIED

dir (lro|ltr|rlo|rtl|-dita-use-conref-target) #IMPLIED' >
<!-- Declares the constrained content model. Original definition ==
<!-- included %univ-atts;, spectitle, and outputclass; now includes-->
<!-- individual pieces of univ-atts, to make ID required. -——>

<!ENTITY % section.attributes
"id CDATA #REQUIRED
%conref-atts;
$select-atts;
$localization-atts;
outputclass CDATA #IMPLIED">

Note: The information architect had to declare all the parameter entities that are referenced in the
redefined attributes for <section>. If he did not do so, none of the attributes that are declared in the
$conref-atts;, $select-atts;, Or $localization-atts; parameter entities would be available
on the <section> element. Furthermore, since the $select-atts; parameter entity references the
$filter-atts; parameter entity, the sfilter-atts; must be declared and it must precede the
declaration for the $select-atts; parameter entity. The $props-attribute-extensions; and
$base-attribute-extensions; parameter entities do not need to be declared in the constraint

module, because they are declared in the document-type shells before the inclusion of the constraint
module.

3. He then integrates the constraint module into the applicable document-type shells and adds it to his
catalog.xmnl file.
2.5.5.6.3 Example: Constrain a domain module

In this scenario, an information architect wants to use only a subset of the elements defined in the highlighting
domain. She wants to use <b> and <i, > but not <1ine-through>, <overline>, <sup>, <sup>, <tt>, Of <u>.
She wants to integrate this constraint into the document-type shell for task.

1. She creates reducedHighlightingDomainConstraint.mod, where "reduced" is a string that
characterizes the constraint.

2. She adds the following content to reducedHighlightingDomainConstraint.mod:

gll== ——3
<! CONSTRAINED HIGHLIGHTING DOMAIN ENTITIES -—>
€l== -

<!ENTITY HighlightingDomain-constraints
" (topic hi-d basic-HighlightingDomain-c)"
>
<!ENTITY % HighlightingDomain-c-ph "b | 4" >
3. She then integrates the constraint module into her company-specific, document-type shell for the task topic
by adding the following section directly before the "DOMAIN ENTITY DECLARATIONS" comment:

<l--

-—>
L[== DOMAIN CONSTRAINT INTEGRATION ==
<l-- -->
<!ENTITY % HighlightingDomain-c-dec
PUBLIC "-//ACME//ENTITIES DITA Highlighting Domain Constraint//EN"
dita-v1.3-csd01-part2-tech-content 30 June 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 154 of 867



"acme-HighlightingDomainConstraint.mod"
>%basic-HighlightingDomain-c-dec;

4. In the "DOMAIN EXTENSIONS" section, she replaces the parameter entity for the highlighting domain with
the parameter entity for the constrained highlighting domain:

<!ENTITY $ ph "ph |
%$HighlightingDomain-c-ph; |
$sw-d-ph; |
%ui-d-ph;
"

5. She then adds the constraint to the list of domains and constraints that need to be included in the value of
the @domains attribute for <task>:

€l==

€l== DOMAINS ATTRIBUTE OVERRIDE ==
<I--

<!ENTITY included-domains
"&task-att;
&hi-d-att;
&indexing-d-att;
&pr-d-att;
&sw-d-att;
&ui-d-att;
&taskbody-constraints;
&HighlightingDomain-constraints