
Customer Data Platform Version 1.0
Committee Specification 01

04 October 2019

This version:
https://docs.oasis-open.org/cxs/cdp/v1.0/cs01/cdp-v1.0-cs01.adoc (Authoritative)
https://docs.oasis-open.org/cxs/cdp/v1.0/cs01/cdp-v1.0-cs01.html
https://docs.oasis-open.org/cxs/cdp/v1.0/cs01/cdp-v1.0-cs01.pdf

Previous version:
N/A

Latest version:
https://docs.oasis-open.org/cxs/cdp/v1.0/cdp-v1.0.adoc (Authoritative)
https://docs.oasis-open.org/cxs/cdp/v1.0/cdp-v1.0.html
https://docs.oasis-open.org/cxs/cdp/v1.0/cdp-v1.0.pdf

Technical Committee:
OASIS Context Server (CXS) TC

Chairs:
Serge Huber (shuber@jahia.com), Jahia Solutions Group SA
Thomas Lund Sigdestad (tsi@enonic.com), Enonic

Editors:
Thomas Lund Sigdestad (tsi@enonic.com), Enonic
Serge Huber (shuber@jahia.com), Jahia Solutions Group SA

Related work:

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 1 of 72

https://docs.oasis-open.org/cxs/cdp/v1.0/cs01/cdp-v1.0-cs01.adoc
https://docs.oasis-open.org/cxs/cdp/v1.0/cs01/cdp-v1.0-cs01.html
https://docs.oasis-open.org/cxs/cdp/v1.0/cs01/cdp-v1.0-cs01.pdf
https://docs.oasis-open.org/cxs/cdp/v1.0/cdp-v1.0.adoc
https://docs.oasis-open.org/cxs/cdp/v1.0/cdp-v1.0.html
https://docs.oasis-open.org/cxs/cdp/v1.0/cdp-v1.0.pdf
https://www.oasis-open.org/committees/cxs/
mailto:shuber@jahia.com
https://jahia.com
mailto:tsi@enonic.com
https://enonic.com
mailto:tsi@enonic.com
https://enonic.com
mailto:shuber@jahia.com
https://jahia.com

This specification is related to:

GraphQL: Query language and execution engine by https://graphql.org and the GraphQL specification.
Apache Unomi: Open source and reference implementation project of the CDP specification:
https://unomi.apache.org
Sample server: Sample CDP server based on NodeJS available to download and run from Github

Abstract:
This specification aims to standardize exchange of customer data across systems and silos by defining a web-based
API using GraphQL. The GraphQL api is a self-documented and strongly typed interface. It is designed to be
dynamically extended, and allows extensive implementation specific customization.

Status:
This document was last revised or approved by the OASIS Context Server (CXS) TC on the above date. The level of
approval is also listed above. Check the "Latest version" location noted above for possible later revisions of this
document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are
listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cxs#technical.

TC members should send comments on this specification to the TC’s email list. Others should send comments to the
TC’s public comment list, after subscribing to it by following the instructions at the "Send A Comment" button on the
TC’s web page at https://www.oasis-open.org/committees/cxs/.

This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode chosen when the
Technical Committee was established. For information on whether any patents have been disclosed that may be
essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual
Property Rights section of the TC’s web page (https://www.oasis-open.org/committees/cxs/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this Work Product
is provided in separate plain text files. In the event of a discrepancy between any such plain text file and display
content in the Work Product’s prose narrative document(s), the content in the separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

CDP-v1.0

Customer Data Platform Version 1.0. Edited by Thomas Lund Sigdestad and Serge Huber. 04 October 2019.
OASIS Committee Specification 01. https://docs.oasis-open.org/cxs/cdp/v1.0/cs01/cdp-v1.0-cs01.html. Latest
version: https://docs.oasis-open.org/cxs/cdp/v1.0/cdp-v1.0.html.

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 2 of 72

https://graphql.org
https://unomi.apache.org
https://github.com/oasis-tcs/cxs-cdp
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cxs#technical
https://www.oasis-open.org/committees/cxs/
https://www.oasis-open.org/committees/cxs/ipr.php
https://docs.oasis-open.org/cxs/cdp/v1.0/cs01/cdp-v1.0-cs01.html
https://docs.oasis-open.org/cxs/cdp/v1.0/cdp-v1.0.html

Notices
Copyright © OASIS Open 2019. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights
Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part,
without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and
derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice
or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an
OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE
OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be
infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC
Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner
consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims
that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a
license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced
this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in this document or the extent to which any license under
such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights.
Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical
Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for
the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard,
can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of
intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 3 of 72

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to
refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of,
specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-
open.org/policies-guidelines/trademark for above guidance.

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 4 of 72

https://www.oasis-open.org/policies-guidelines/trademark

Table of Contents
1. Introduction

1.1. IPR Policy
1.2. Terminology
1.3. Normative References

2. Use Cases
2.1. Consent management
2.2. Privacy management
2.3. Personalization
2.4. Newsletters
2.5. A/B testing

3. Domain objects
4. API

4.1. GraphQL limitations and workarounds
4.2. Scalars

4.2.1. JSON
4.2.2. Date
4.2.3. Time
4.2.4. DateTime
4.2.5. GeoPoint

4.3. Properties
4.3.1. CDP_PropertyInterface
4.3.2. CDP_PropertyInput
4.3.3. CDP_BooleanProperty
4.3.4. CDP_BooleanPropertyInput
4.3.5. CDP_DateProperty
4.3.6. CDP_DatePropertyInput
4.3.7. CDP_EnumProperty
4.3.8. CDP_EnumPropertyInput
4.3.9. CDP_FloatProperty
4.3.10. CDP_FloatPropertyInput
4.3.11. CDP_GeoPointProperty
4.3.12. CDP_GeoPointPropertyInput
4.3.13. CDP_IdentifierProperty
4.3.14. CDP_IdentifierPropertyInput
4.3.15. CDP_IntProperty
4.3.16. CDP_IntPropertyInput
4.3.17. CDP_StringProperty
4.3.18. CDP_StringPropertyInput
4.3.19. CDP_SetProperty
4.3.20. CDP_SetPropertyInput

4.4. Filters

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 5 of 72

4.4.1. Ordering
4.4.2. CDP_SortOrder
4.4.3. CDP_OrderByInput
4.4.4. CDP_DateFilter
4.4.5. CDP_DateFilterInput
4.4.6. CDP_GeoDistanceFilterUnit
4.4.7. CDP_GeoDistanceFilter
4.4.8. CDP_GeoDistanceFilterInput

4.5. Clients
4.5.1. CDP_Client
4.5.2. CDP_ClientInput

4.6. Sources
4.6.1. CDP_Source
4.6.2. CDP_SourceInput
4.6.3. CDP_Query
4.6.4. CDP_Mutation

4.7. Objects
4.7.1. URIs
4.7.2. CDP_Object
4.7.3. CDP_ObjectInput

4.8. Events
4.8.1. CDP_EventInterface
4.8.2. CDP_EventInput
4.8.3. CDP_Query
4.8.4. CDP_Mutation
4.8.5. CDP_Subscriptions
4.8.6. Event processing sample

4.9. EventTypes
4.9.1. Standard event types
4.9.2. Sample event types

4.10. EventFilters
4.10.1. CDP_EventFilter
4.10.2. CDP_EventFilterInput

4.11. Profiles
4.11.1. Profile properties
4.11.2. Profile merges
4.11.3. Deleting profile personal data (aka profile anonymizing)
4.11.4. CDP_ProfileID
4.11.5. CDP_ProfileIDInput
4.11.6. CDP_ProfileInterface
4.11.7. CDP_Profile
4.11.8. CDP_ProfileUpdateEvent
4.11.9. CDP_ProfileUpdateEventInput
4.11.10. CDP_ProfileUpdateEventFilter

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 6 of 72

4.11.11. CDP_ProfileUpdateEventFilterInput
4.11.12. CDP_Query
4.11.13. CDP_Mutation
4.11.14. CDP_Subscription

4.12. ProfileFilters
4.12.1. CDP_ProfileFilter
4.12.2. CDP_ProfileFilterInput
4.12.3. CDP_ProfilePropertiesFilter
4.12.4. CDP_ProfilePropertiesFilterInput
4.12.5. CDP_ProfileEventsFilter
4.12.6. CDP_ProfileEventsFilterInput

4.13. Sessions
4.13.1. CDP_SessionState
4.13.2. CDP_SessionEvent
4.13.3. CDP_SessionEventInput
4.13.4. CDP_SessionEventFilter
4.13.5. CDP_SessionEventFilterInput

4.14. Consents
4.14.1. CDP_ConsentStatus
4.14.2. CDP_Consent
4.14.3. CDP_ConsentUpdateEvent
4.14.4. CDP_ConsentUpdateEventInput
4.14.5. CDP_ConsentUpdateEventFilter
4.14.6. CDP_ConsentUpdateEventFilterInput

4.15. Views
4.15.1. CDP_View
4.15.2. CDP_ViewInput
4.15.3. CDP_Query
4.15.4. CDP_Mutation

4.16. Topics
4.16.1. CDP_Topic
4.16.2. CDP_TopicInput
4.16.3. CDP_TopicFilterInput
4.16.4. CDP_Query
4.16.5. CDP_Mutation

4.17. Interests
4.17.1. CDP_Interest
4.17.2. CDP_InterestInput
4.17.3. CDP_InterestFilter
4.17.4. CDP_InterestFilterInput

4.18. Personas
4.18.1. CDP_Persona
4.18.2. CDP_PersonaInput
4.18.3. CDP_PersonaConsentInput

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 7 of 72

4.18.4. CDP_Query
4.18.5. CDP_Mutation

4.19. Lists
4.19.1. CDP_List
4.19.2. CDP_ListInput
4.19.3. CDP_ListsUpdateEvent
4.19.4. CDP_ListsUpdateEventInput
4.19.5. CDP_ListsUpdateEventFilter
4.19.6. CDP_ListsUpdateEventFilterInput
4.19.7. CDP_ListFilterInput
4.19.8. CDP_Query
4.19.9. CDP_Mutation

4.20. Segments
4.20.1. CDP_Segment
4.20.2. CDP_SegmentInput
4.20.3. CDP_SegmentFilterInput
4.20.4. CDP_Query
4.20.5. CDP_Mutation

4.21. Profile matching
4.21.1. CDP_NamedFilterInput
4.21.2. CDP_FilterMatch

4.22. Data Intelligence
4.22.1. CDP_ScoredObject
4.22.2. CDP_AlgorithmInput

4.23. Optimizations
4.23.1. CDP_OptimizationResult
4.23.2. CDP_OptimizationInput
4.23.3. CDP_EventOccurenceBoostInput

4.24. Recommendations
4.24.1. CDP_RecommendationResult
4.24.2. CDP_RecommendationInput

5. Security Considerations
5.1. Attack surface
5.2. Network communication
5.3. Client tokens
5.4. Access control
5.5. Authentication
5.6. Audit logs
5.7. Input validation

6. Conformance
6.1. Conformance targets
6.2. CORE conformance
6.3. FULL conformance

7. Appendix A. Acknowledgments

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 8 of 72

8. Appendix B. Revision History

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 9 of 72

1. Introduction
Today, virtually all business is at some point digital, and the number of systems involved and the set of data collected is
growing rapidly. Each system creates new silos of customer data, spreading sensitive and personal data across both
organizational and geographical borders.

Even digital savvy businesses struggle to control and utilize this information. Businesses and users also rely on such data
to be accessible in real-time, and at scale - for instance to deliver personalizations. Additionally businesses now face
severe legal charges if customer data is not treated according to regulatory requirements (ref GDPR).

The Customer Data Platform (CDP) specification aims to standardize exchange of customer data across systems and
silos. This enables centralization of customer data - consequently giving control of the data back to the business, and the
customers.

The CDP standard is defined as a web-based API using GraphQL - providing a self-documented and strongly typed
interface.

It has been an explicit goal of the CXS committee to allow extensive customization of CDP deployments, in order to fit the
need of each different organization. As such, the API dynamically evolves as you customize your deployment.

1.1. IPR Policy
This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode chosen when the
Technical Committee was established. For information on whether any patents have been disclosed that may be essential
to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights
section of the TC’s web page (https://www.oasis-open.org/committees/cxs/ipr.php).

1.2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119 and
RFC8174 when, and only when, they appear in all capitals, as shown here.

1.3. Normative References
[GRAPHQL]

Lee Byron, "GraphQL specification", June 2018, https://graphql.github.io/graphql-spec/June2018/

[RFC3986]

T. Berners-Lee, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 8174, 10.17487/RFC3986,
January 2005, http://www.rfc-editor.org/info/rfc3986

[RFC3339]

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 10 of 72

https://www.oasis-open.org/committees/cxs/ipr.php
https://graphql.github.io/graphql-spec/June2018/
http://www.rfc-editor.org/info/rfc3986

G. Klyne, "Date and Time on the Internet: Timestamps", RFC 3339, DOI: 10.17487/RFC3339 , July 2002,
http://www.rfc-editor.org/info/rfc3339

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997, http://www.rfc-editor.org/info/rfc2119.

[RFC8174]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI
10.17487/RFC8174, May 2017, http://www.rfc-editor.org/info/rfc8174.

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 11 of 72

http://www.rfc-editor.org/info/rfc3339
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc8174

2. Use Cases
In this section we present a selection of use cases that are relevant to the scope covered by the CDP specification. They
are by no means exhaustive, but illustrate what may be achieved through the use of the standard.

2.1. Consent management
Privacy is a very important topic, especially when dealing with visitor data. For example, new legislation such as the GDPR
imposes strict restrictions on how visitor data collection should be processed. It is therefore very important that the CDP
specification provide standardized ways of complying with more and more stringent requirements.

In the above use case we illustrate the support of consent management that is available in CDP-compliant systems. A
visitor profile may store the state of consents (granted or not) and these may be updated by using specialized event types.

2.2. Privacy management
A core requirement for any business handling personal data is transparency. The ability to provide users with insight into
what data are stored, and optionally manage their own data is essential. A CDP not only aggregates personal data from
various sources, but can also manage consents and profiles. In specific cases, CDP may act as the source-of-truth
across systems, and enable effective privacy management.

In this use case, a custom "privacy management interface" is deployed in front of the CDP. The interface should be
specifically designed for the business, and require authentication.

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 12 of 72

https://eugdpr.org

Authenticated users can then in a controlled fashion see, delete or update their personal data. Examples or such might be
events, properties or consents.

2.3. Personalization
A common use case is delivering better and more personalized experiences across applications and web sites.

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 13 of 72

As illustrated above, the browser can interact with both a (headless or regular) Content Management System (CMS) and a
CDP-compliant server to first retrieve the HTML needed to deliver the page content or bootstrap a Progressive Web
Application (PWA). After this the next request to the CMS is a request for personalized content that will be customized
based on the profile retrieved from the CDP. The result is personalized content for the current visitor being sent back to the
browser.

This illustration is by no means the only way to implement personalization using a CDP but it serves as a simple
introduction to the possibilies such a system may offer. Even native mobile applications could be integrated using this
pattern.

2.4. Newsletters
This use case is relevant to users interested in delivering newsletters to the proper audience. For example it might be
interesting to send a newsletter to promote a product to a group of profiles that has not purchased the product before, but it
would not be a good idea to send it to people that have already purchased it.

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 14 of 72

In the above illustration the newsletter server can query the CDP for a group of profile using either a query or a pre-
defined segment to retrieve the subset of profiles it is interested in. Once those profiles are retrieved they may be used to
update the newsletters management system lists with information coming from those exported profiles. And finally, when the
newsletter is ready to be distributed, the updated lists may be used to send the emails using an email delivery server or
service.

This use case could be expanded to use segmentation, campaigns and other Marketing Automation technologies that could
benefit from the standardized functionalities exposed by this specification.

2.5. A/B testing
CDP systems may also be used to deliver A/B testing experiences. In this use case, the CDP server will use the visitor
profile information by updating it with the variants that the visitor has been exposed to, effectively "classifying" the visitor
into a sub-group.

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 15 of 72

In the above illustration, this use case is implemented by using a CMS to deliver the different variants of content that are
hidden by default. After that, the CDP is asked whether the profile is in variant A or B, which might be implemented in
different fashions but they will be remembered by the CDP for future displays.

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 16 of 72

3. Domain objects
Below is a short introduction to the core domain objects of the specification:

NOTE Blue objects are typically manually configured and managed, red objects are generated.

Events

Events represent the stream of "customer behaviour" events that help the CDP build Profiles

Profiles

Representing the data of the subject, or "customer" interacting with your business Objects

Personas

Use Personas to simulate real Profiles for testing and validation

Objects

Are the physical or virtual items/persons a "customer" interacts with through events

Lists

Manually or programatically managed Lists of profiles

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 17 of 72

Segments

Segments are lists of profiles defined by Filters

Consents

Consents granted or denied by the subjects Properties: Enable the definition of custom profile Properties within a CDP
deployment

Clients

Clients represent any entity connecting to CDP, either for storing or retrieving data

Views

Administrative Views are used for grouping managed entities, i.e. lists and segments

Interest

A profile’s weighted Interests for specific Topics

Topics

Represent "business areas" of the organisation deploying the CDP - i.e. a product or a location.

Filters

Filters are structured queries against other CDP domain objects

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 18 of 72

4. API
The Customer Data Platform (CDP) standard is built around a set of concepts, domain objects and services for interacting
with them. This is represented through a strongly typed API defined by GraphQL Types, Queries, Mutations and
Subscriptions.

Each section in the API reference will usually start with a description of the domain objects and then include the normative
GraphQL types, queries and mutations relevant to the domain objects.

This chapter describes the API in detail.

GraphQL requests are usually composed of two parts : operations and variables .

Throughout this document we will provide GraphQL request examples in the following form:

operation

GraphQL query, mutation or subscription

variables

JSON structure

Example operation

The above query retrieves all profileIDs for an existing profile (that’s why we set the createIfMissing argument to false). We
also define a variable called $profileID that must be passed in the "variables" section of the GraphQL request. Here’s an
example of the `variables part:

Example variables

As illustrated above, the variables may contain complex JSON structure that represent the values for the objects that are

query getExistingProfile($profileID : CDP_ProfileIDInput) {
 cdp {
 getProfile(createIfMissing: false, profileID: $profileID) {
 cdp_profileIDs {
 id
 }
 }
 }
}

{
 "profileID": {
 "clientID": "web-tracker",
 "id": "0bb99ae7-0571-4b5f-8267-978731cb62c2"
 }
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 19 of 72

passed as GraphQL arguments.

4.1. GraphQL limitations and workarounds
No support for inheritance in input types

as a workaround a wrapper type is used that contains fields for all the different possible sub-object types. The
CDP_PropertyInput type is an example of such a workaround

Namespacing

all types are prefixed with the CDP_ prefix to avoid conflicts with custom-defined types. Also for types that may mix CDP
standard and user-defined fields, a cdp_ prefix has been used.

Dynamic API

as parts of the API are generated from user-defined properties or event types, removal of fields and types may happen
dynamically. Implementors should advise users about this or create workarounds (such as depreciation).

4.2. Scalars
GraphQL provides several basic value types that are used extensively in this specification, for instance Int and String.
However, the CDP specification is also handling other value types in a similar fashion.

The following scalars have been specifically added:

4.2.1. JSON
For values and arguments that cannot be defined structurally

Scalar JSON

4.2.2. Date
For consistent representation of dates. Based on RFC-3339, for example 1996-12-19

Scalar Date

4.2.3. Time
For consistent representation of time. Based on RFC-3339, for example 16:39:57-08:00

Scalar Time

4.2.4. DateTime
For consistent representation of date and time. Based on RFC-3339, for example 1996-12-19T16:39:57-08:00

Scalar DateTime

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 20 of 72

https://www.apollographql.com/docs/graphql-tools/schema-directives

4.2.5. GeoPoint
Uses a string representation of lat,lon

Scalar GeoPoint

4.3. Properties
To properly store and query data CDP needs a way to describe the data dynamically.

A Property represents data stored in a key-value format. A single property can hold a single value, or an ordered array of
values. Each property has a specific valueType to limit what kind of values it may hold, such as Identifier , String
and Int .

Below are some examples of properties:

fullName(String) : "Jane Doe"
birthDate(Date) : "2003-07-01"
someInteger(Integer) : 1337
gender(Enumeration) : FEMALE
location(GeoPoint) : "lat,lon"
arrayOfStrings([String]) : ["This", "is", "nice"]
setOfProperties(Set) : {"prompt" : "hello", "response" : "yo"}
arrayOfSet([Set]) : [{"name1": "value1", "name2" : "value2"}], [{"name1": "value1", "name2" : "value2"}]

In the case of the enumeration value type, a GraphQL enum type will be generated based on the registered possible values
for the property.

The Set value type is special, as it enables nested properties and a tree-structure of properties. I.e. from the example
above: "setOfProperties.response" would hold the value "yo"

The arrayOfSet given as an example above is simply a Set property type with multiple values (see occurrences defined
below).

A property consists of:

Property name

it is recommended but not mandatory to prefix the property name

Value type

One of Identifier , String , Int , Float , Date , Boolean , GeoPoint , Enumeration and Set

Minimum occurrences

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 21 of 72

Minimum number of values a property may hold (array)

Maximum occurrences

Maximum number of values per property

Tags

A tag may be used to annotate the property with metadata information such as "personalData",
"requiredReadAuthorization".

Since the CDP api is defined using strongly typed GraphQL, the API is dynamically updated when properties are added
or changed.

4.3.1. CDP_PropertyInterface
The property interface defines the common fields for the different value types.

name

must be in a format that’s acceptable as a GraphQL field name (/[A-Za-z][_0-9A-Za-z]*/) , we highly RECOMMEND to
prefix it to avoid conflicts, i.e acme_pageView, acme_click. "cdp" is reserved.

minOccurences

Default = 0. For minOccurrences > 1 the property can hold multiple values in preserved order. minOccurences = 1
indicates the property is mandatory.

maxOccurences

Default = 1. maxOccurences = 0 indicates no limit. maxOccurences must be higher than minOccurences.

tags

System defined/generated tags. E.g: hidden, readOnly, personalData

4.3.2. CDP_PropertyInput
A property type may have different values types, but due to a limitation of GraphQL Input types it is not possible to
represent this using type inheritance. As a workaround, an input type containing all possible value types is used instead,
and only one of these fields is allowed to have a value corresponding to the declared property value type. All other value
fields must be null. It is REQUIRED that implementations check for this and return an error if invalid values are passed.

interface CDP_PropertyInterface {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
}

input CDP_PropertyInput {

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 22 of 72

4.3.3. CDP_BooleanProperty

4.3.4. CDP_BooleanPropertyInput

4.3.5. CDP_DateProperty

4.3.6. CDP_DatePropertyInput

4.3.7. CDP_EnumProperty

 identifier : CDP_IdentifierPropertyInput
 string : CDP_StringPropertyInput
 int : CDP_IntPropertyInput
 float : CDP_FloatPropertyInput
 date : CDP_DatePropertyInput
 boolean : CDP_BooleanPropertyInput
 geopoint : CDP_GeoPointPropertyInput
 enum : CDP_EnumPropertyInput
 set : CDP_SetPropertyInput
}

type CDP_BooleanProperty implements CDP_PropertyInterface {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 defaultValue : Boolean
}

input CDP_BooleanPropertyInput {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 defaultValue : Boolean
}

type CDP_DateProperty implements CDP_PropertyInterface {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 defaultValue : String
}

input CDP_DatePropertyInput {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 defaultValue : String
}

type CDP_EnumProperty implements CDP_PropertyInterface {
 name : ID!

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 23 of 72

4.3.8. CDP_EnumPropertyInput

4.3.9. CDP_FloatProperty

4.3.10. CDP_FloatPropertyInput

4.3.11. CDP_GeoPointProperty

4.3.12. CDP_GeoPointPropertyInput

 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 values : [String]
}

input CDP_EnumPropertyInput {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 values : [String]
}

type CDP_FloatProperty implements CDP_PropertyInterface {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 minValue : Float
 maxValue : Float
 defaultValue : Float
}

input CDP_FloatPropertyInput {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 minValue : Float
 maxValue : Float
 defaultValue : Float
}

type CDP_GeoPointProperty implements CDP_PropertyInterface {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 defaultValue : String
}

input CDP_GeoPointPropertyInput {
 name : ID!
 minOccurrences : Int

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 24 of 72

4.3.13. CDP_IdentifierProperty

4.3.14. CDP_IdentifierPropertyInput

4.3.15. CDP_IntProperty

4.3.16. CDP_IntPropertyInput

4.3.17. CDP_StringProperty

 maxOccurrences : Int
 tags : [String]
 defaultValue : String
}

type CDP_IdentifierProperty implements CDP_PropertyInterface {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 regexp : String
 defaultValue : String
}

input CDP_IdentifierPropertyInput {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 regexp : String
 defaultValue : String
}

type CDP_IntProperty implements CDP_PropertyInterface {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 minValue : Int
 maxValue : Int
 defaultValue : Int
}

input CDP_IntPropertyInput {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 minValue : Int
 maxValue : Int
 defaultValue : Int
}

type CDP_StringProperty implements CDP_PropertyInterface {
 name : ID!

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 25 of 72

4.3.18. CDP_StringPropertyInput

4.3.19. CDP_SetProperty

4.3.20. CDP_SetPropertyInput

4.4. Filters
Filters are widely used in CDP, and enable querying profiles, events, and other CDP objects. Filters are designed to be
easy to use for administrators and marketeers in visual user interfaces, but also in terms of technical implementation.

Filters are essentially composed from basic property comparison expressions, and may be chained with the operators
AND and OR, where AND is used by default.

For each operator available on a property’s value type a GraphQL field will be generated.

As we are expressing filters through GraphQL, filters will always be strongly typed. I.e. if the property "firstName" of
valueType string is available, the following filter options can be used:

firstName_equals

 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 regexp : String
 defaultValue : String
}

input CDP_StringPropertyInput {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 regexp : String
 defaultValue : String
}

type CDP_SetProperty implements CDP_PropertyInterface {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 properties : [CDP_PropertyInterface]
}

input CDP_SetPropertyInput {
 name : ID!
 minOccurrences : Int
 maxOccurrences : Int
 tags : [String]
 properties : [CDP_PropertyInput]
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 26 of 72

firstName_startsWith
firstName_endsWith
firstName_contains
firstName_regexp

Below are some basic filter examples:

{ "firstName_equals" : "Serge" }

{ "birthDate_greaterThan" : "1970-01-01" }

{
 "location_distance" : {
 "center" : { "longitude" : 59.91273, "latitude": 10.74609 },
 "unit" : "KILOMETERS",
 "distance" : 5
 }
}

{
 "or" : [
 { "firstName_equals" : "Serge" },
 { "birthDate_greaterThan" : "1970-01-01" }
]
}

GraphQL filter fields will be generated the following way:

PROPERTYNAME + "_" + OPERATOR

The following comparison operators are available:

Table 1. Operator availability for property value types

Operators Identifier String Int Float Date Boolean GeoPoint Enumeration Array

equals x x x x x x x x

startsWith x[o]

endsWith x[o]

contains x[o] x

regexp x[o]

lt x x x

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 27 of 72

lte x x x

gt x x x

gte x x x

distance x

Operators Identifier String Int Float Date Boolean GeoPoint Enumeration Array

[o] OPTIONAL operator

The Array column is a special case. It can be an array of any GraphQL type. In this case only the contains operator
is defined in the specification, but implementations are free to offer more advanced operators for this type.

4.4.1. Ordering
OrderBy is used in combination with filters and lets you sort the result based on properties available for the returned
objects.

Example:

"orderBy": [{
 "property": "firstName",
 "order": "ASC"
 }
]

4.4.2. CDP_SortOrder
Enumeration of allowed sorting operators

4.4.3. CDP_OrderByInput

fieldName

Specify the field to sort by, i.e. "endTime", "properties.location"

enum CDP_SortOrder {
 ASC,
 DESC,
 UNSPECIFIED
}

input CDP_OrderByInput {
 fieldName : String
 order : CDP_SortOrder
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 28 of 72

4.4.4. CDP_DateFilter

4.4.5. CDP_DateFilterInput

4.4.6. CDP_GeoDistanceFilterUnit

4.4.7. CDP_GeoDistanceFilter

4.4.8. CDP_GeoDistanceFilterInput

4.5. Clients
The CDP GraphQL API should only be accessible for specific authorized clients. Client represent any software that
interacts directly with the Customer Data Platform.

Examples of clients are:

type CDP_DateFilter {
 after : DateTime
 before : DateTime
 includeAfter : Boolean
 includeBefore : Boolean
}

input CDP_DateFilterInput {
 after : DateTime
 before : DateTime
 includeAfter : Boolean
 includeBefore : Boolean
}

enum CDP_GeoDistanceFilterUnit {
 METERS,
 KILOMETERS,
 MILES
}

type CDP_GeoDistanceFilter {
 center : GeoPoint
 unit : CDP_GeoDistanceFilterUnit
 distance : Float
}

input CDP_GeoDistanceFilterInput {
 center : GeoPoint
 unit : CDP_GeoDistanceFilterUnit
 distance : Float
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 29 of 72

Cookie-based (Javascript or other) tracker for website(s)
Integration with your CRM
Integration with your Identity System

Each Client is responsible for uniquely identifying visitors, for instance through the use of a cookie on the website, a
customer ID in the CRM or a user ID in the Identity system. The Customer Data Platform requires a unique profile ID
within every client. For instance, if a client is used to track visitors across multiple websites, it should aim to re-use the
same profile ID across all of them, for the same visitor.

NOTE
The standard does not specify Queries or Mutations for creating or retrieving Clients in the CDP
specification, as this is considered an implementation-specific feature. For any CDP implementation, a
Client MUST be defined for it to access the API.

4.5.1. CDP_Client

4.5.2. CDP_ClientInput

4.6. Sources
Sources are optional, but represent a way to identify the exact origin of events within a client. For instance, a web tracking
script may track visitors across many different sites, but treat each site as a source. As such, sources are comparable to
siteID’s in Google Analytics.

Sources may be reused across clients as desired.

4.6.1. CDP_Source

4.6.2. CDP_SourceInput

type CDP_Client {
 id : ID!
 title : String
}

input CDP_ClientInput {
 id : ID!
 title : String
}

type CDP_Source {
 id : ID!
 thirdParty : Boolean
}

input CDP_SourceInput {
 id : ID!
 thirdParty : Boolean

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 30 of 72

id

The "system" source ID is reserved for internal use by the CDP.

thirdParty

Optional, indicates that the source is a third party (useful for privacy regulations such as GDPR)

4.6.3. CDP_Query
Source related queries

4.6.4. CDP_Mutation
Source related mutations

4.7. Objects
Objects are representations of anything users interact with. For example: a web page, a product or another person.
Objects are used in Events to specify what the Profiles are interacting with. Objects are also used in Optimizations.

Objects may be part of one or more collections. Collections are used to classify objects. By placing objects into collections,
optimizations may execute on a reduced data set (i.e. : recommending products).

4.7.1. URIs
Objects are identified globally using URIs. Internal CDP objects may be referenced using reserved schemes, that each
have their associated syntax:

cdp_profile:client/id
cdp_segment:view/name
cdp_persona:view/name
cdp_topic:view/name
cdp_list:view/name

4.7.2. CDP_Object

}

 getSources : [CDP_Source]

 createOrUpdateSource(source : CDP_SourceInput) : CDP_Source
 deleteSource(sourceID : ID!) : Boolean

type CDP_Object {
 uri : ID! # uri format : scheme:path, https://tools.ietf.org/html/rfc3986
 scheme : String
 path : String
 topics : [CDP_Topic]
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 31 of 72

uri

Globally unique identifier using URI syntax according to RFC3986.

topics

A way of classifying objects.

4.7.3. CDP_ObjectInput

4.8. Events
Events are what drives the Customer Data Platform forward. Events are collected from different Clients, such as a specific
website, beacons, commerce systems or a CRM.

A single Client might still produce many different profiles for a "real person". For instance - if a visitor uses different
devices on a single web page, each device will produce a new profile, with a unique profileID.

The Customer Data Platform is essentially interested in "User behavioral events". An event could be anything from
someone clicking a link, to performing a transaction or consenting to use of his/hers information. Events are streamed or
delivered from authorized Clients to the Customer Data Platform.

As an example: Imagine an e-commerce site with a client that collect events from its visitors. When a visitor browses the
site with his laptop, the client assigns a cookie to his/her browser and starts feeding events to the CDP API. As the visitor
click on some product links, and maybe fills in a form that includes e-mail. CDP will gradually populate a profile, using the
cookie value as an ID. At a later point, the same visitor picks up a different device and returns to the site. As the client
cannot know this is the same individual, a new cookie is generated, and a new profile starts to build up.

A single client may be used to track Events from a number of different websites, where each website can be tagged with a
source. Sources provide a way to identify the exact origin of the events beyond the client. As such, sources are
comparable to siteID’s in Google Analytics.

4.8.1. CDP_EventInterface
Events make use of type inheritance. To avoid name space conflicts, all standard event fields are prefixed with ´´_´´.

input CDP_ObjectInput {
 uri : ID!
}

interface CDP_EventInterface {
 id: ID!
 cdp_source : CDP_Source
 cdp_client : CDP_Client
 cdp_profileID: CDP_ProfileID!
 cdp_profile : CDP_Profile!
 cdp_object: CDP_Object!
 cdp_location: GeoPoint
 cdp_timestamp: DateTime
 cdp_topics : [CDP_Topic]

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 32 of 72

4.8.2. CDP_EventInput

4.8.3. CDP_Query
Event queries

4.8.4. CDP_Mutation
Event mutations

4.8.5. CDP_Subscriptions
Event subscriptions

4.8.6. Event processing sample
Mutation

Mutation variables

}

input CDP_EventInput {
 id: ID
 cdp_sourceID : String
 cdp_profileID: CDP_ProfileIDInput!
 cdp_objectID: ID!
 cdp_location: GeoPoint
 cdp_timestamp: DateTime
 cdp_topics : [ID]
 cdp_profileUpdateEvent : CDP_ProfileUpdateEventInput
 cdp_consentUpdateEvent : CDP_ConsentUpdateEventInput
 cdp_listsUpdateEvent : CDP_ListsUpdateEventInput
 cdp_sessionEvent : CDP_SessionEventInput
 # Sample custom EventTypes below:
 # my_pageView : MY_PageViewEventInput
 # my_addedToCart : MY_addedToCartEventInput,
 # other_crmUpdate : OTHER_crmUpdateEventInput
}

 getEvent(id : String!) : CDP_EventInterface
 findEvents(filter : CDP_EventFilterInput, orderBy : [CDP_OrderByInput], first: Int, after: String, last:
Int, before: String) : CDP_EventConnection

 processEvents(events: [CDP_EventInput]!) : Int

 eventListener(filter: CDP_EventFilterInput) : CDP_EventInterface!

mutation profileUpdateExample($events: [CDP_EventInput]!) {
 cdp {
 processEvents(events: $events)
 }
}

{"events": [
 {

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 33 of 72

4.9. EventTypes
Events must always be of a specific type. CDP implementations must implement a set of standard EventTypes, any other
EventTypes are implementation specific.

For flexibility reasons, implementers are encouraged to make EventTypes pluggable. Implementation specific, or pluggable
EventTypes SHOULD be registered with a prefix, to avoid naming conflicts. All standard EventTypes will be prefixed with
CDP.

Every EventType will need both a regular GraphQL type, and a GraphQL input.

NOTE EventType fields MUST match the CDP propertyType format, and its underlying valueTypes

When custom EventTypes are registered in a server, new corresponding fields will be added to the in the CDP_EventInput
type and the convention is that the field name is the same as the type name but starting with lowercase characters instead
of an uppercase one. For prefixed eventTypes, the entire prefix should be lowercased.

Custom output event types must also inherit from the CDP_EventInterface interface.

Below are examples of what custom EventTypes might look like, we used VENDOR as prefix, since it is recommended to
avoid conflicts with other types:

Sample EventType for Page Views

 "_profileID": {
 "id": "1234567890",
 "clientID": "web-tracker"
 },
 "_objectID": "http://acme.org/aboutUs",
 "pageViewEvent": {
 "language" : "en"
 }
 }
]}

input VENDOR_PageViewEventInput {
 pageID : String,
 language : String,
 pageUrl : String,
 referrer : String,
 userAgent : String
}

type VENDOR_PageViewEvent implements CDP_EventInterface {
 # The following fields come from the EventInterface
 id: ID!
 cdp_source : CDP_Source
 cdp_client : CDP_Client
 cdp_profileID: CDP_ProfileID!
 cdp_profile : CDP_Profile!
 cdp_object: CDP_Object!
 cdp_location: GeoPoint

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 34 of 72

The CDP_EventInput type will therefore modified to add the new event type-specific field.

Sample EventType for Page Views

Once the event types are defined (in an implementation-specific manner), they can be sent using the processEvents
mutation field that uses the CDP_EventInput type and queried using the findEvents query field

Sample EventType for CRM updates

 cdp_timestamp: DateTime
 cdp_topics : [CDP_Topic]
 # The following fields are specific to this event type
 pageID : String,
 language : String,
 pageUrl : String,
 referrer : String,
 userAgent : String
}

input CDP_EventInput {
 id: ID
 cdp_sourceID : String
 cdp_profileID: CDP_ProfileIDInput!
 cdp_objectID: ID!
 cdp_location: GeoPoint
 cdp_timestamp: DateTime
 cdp_topics : [ID]
 cdp_profileUpdateEvent : CDP_ProfileUpdateEventInput
 cdp_consentUpdateEvent : CDP_ConsentUpdateEventInput
 cdp_listsUpdateEvent : CDP_ListsUpdateEventInput
 cdp_sessionEvent : CDP_SessionEventInput
 # Custom eventType - note the prefix lowercasing convention as well as the absence of the "Input" suffix.
 vendor_PageViewEvent : VENDOR_PageViewEventInput
}

input VENDOR_CrmLeadEventInput {
 leadStatus : String,
 leadID : String,
 firstName : String,
 lastName : String,
 email : String
}

type VENDOR_CrmLeadEvent implements CDP_EventInterface {
 # The following fields come from the EventInterface
 id: ID!
 cdp_source : CDP_Source
 cdp_client : CDP_Client
 cdp_profileID: CDP_ProfileID!
 cdp_profile : CDP_Profile!
 cdp_object: CDP_Object!
 cdp_location: GeoPoint
 cdp_timestamp: DateTime
 cdp_topics : [CDP_Topic]
 # The following fields are specific to this event type
 leadStatus : String,
 leadID : String,

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 35 of 72

The CDP_EventInput type will also have a new field called vendor_CrmLeadEvent : VENDOR_CrmLeadEventInput
as in the previous example.

4.9.1. Standard event types
The CDP specification includes some standard event types. They are actually documented in their relevant section but we
list them here to provide an overview.

Profile update

Update profile properties

Session

Track session state changes

Consent update

Update a profile consents

List update

Opt in/out of list

4.9.2. Sample event types
Based on popular demand, future versions of the CDP standard may extend the set of standard eventTypes. As an
inspiration to implementers, below is a small list of non-standard eventTypes identified:

Click

Interaction

View

View an object

Transaction

Generic transaction

Conversion

Purchase, download, signs up etc

Like

Positive reaction to object

 firstName : String,
 lastName : String,
 email : String
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 36 of 72

Dislike

Negative reaction to an object

Abuse

Reports spam or other negative use of an object

Rate

Score in an object (in percent?)

Download

After downloading a digital object

Submit

After completing a form or providing input

Contribute

Adding value to an object

Login

Signing in

Logout

Signing out

4.10. EventFilters
EventFilters are a specific version of filters for querying events.

Example: Filter for identifying events of type _profileUpdate with a first name starting with T and a last name ending
with d within the last 30 days.

Operation

query findEvents($filter: CDP_EventFilterInput) {
 cdp {
 findEvents(filter: $filter) {
 edges {
 node {
 __typename
 cdp_timestamp
 cdp_object {
 uri
 }
 }
 }
 }
 }
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 37 of 72

Variables

4.10.1. CDP_EventFilter

4.10.2. CDP_EventFilterInput

{
 "filter" : {
 "_timestamp_between" : {
 "after" : "NOW-30DAYS",
 "before" : "NOW",
 "includeBefore": false,
 "includeAfter": false
 },
 "_profileUpdateEvent" : {
 "firstName_startsWith" : "T",
 "lastName_endsWith" : "d"
 }
 }
}

type CDP_EventFilter {
 and : [CDP_EventFilter]
 or : [CDP_EventFilter]
 id_equals : String
 cdp_clientID_equals: String
 cdp_sourceID_equals : String
 cdp_profileID_equals : String
 cdp_objectID_equals : String
 cdp_location_distance : CDP_GeoDistanceFilter
 cdp_timestamp_equals : DateTime
 cdp_timestamp_lt : DateTime
 cdp_timestamp_lte : DateTime
 cdp_timestamp_gt : DateTime
 cdp_timestamp_gte : DateTime
 cdp_topics_equals : String
 cdp_profileUpdateEvent : CDP_ProfileUpdateEventFilter
 cdp_consentUpdateEvent : CDP_ConsentUpdateEventFilter
 cdp_listsUpdateEvent : CDP_ListsUpdateEventFilter
 cdp_sessionEvent : CDP_SessionEventFilter
 # generated event types will be listed here
}

input CDP_EventFilterInput {
 and : [CDP_EventFilterInput]
 or : [CDP_EventFilterInput]
 id_equals : String
 cdp_clientID_equals: String
 cdp_sourceID_equals : String
 cdp_profileID_equals : String
 cdp_objectID_equals : String
 cdp_location_distance : CDP_GeoDistanceFilterInput
 cdp_timestamp_equals : DateTime
 cdp_timestamp_lt : DateTime
 cdp_timestamp_lte : DateTime
 cdp_timestamp_gt : DateTime
 cdp_timestamp_gte : DateTime

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 38 of 72

4.11. Profiles
Profiles are in many ways the holy grail of CDP. The Customer Data Platform dynamically creates and build profiles from
events that occur over time.

A Profile can be created from an anonymous visitor on a webpage, populated from an identity system, a CRM, or the
combination of all of them.

Different Clients like a website tracking script, CRM or identity system can be configured to feed Events to the Customer
Data Platform.

The Customer Data Platform is responsible for building profiles based on the provided identifiers and the stream of events
coming from each Client.

4.11.1. Profile properties
Each deployment of CDP will be unique in how data are collected, and what data is stored per profile. Profile properties
enable us to define custom properties required by an organization.

Administrators and developers may define and maintain a consistent data model for profiles across different Clients. Any
data to be recorded in a profile must be mapped to a corresponding profile property.

The specification does not define a set of standard profile properties. However, implementors SHOULD include the
following standard properties :

fullName : string
email : identifier
phoneNumber : identifier
birthDay : datetime

Profiles are updated through events. The history of external or internal profile modifications is accessible through the
profile update events. CDP implementations SHOULD also support subscriptions on profile modifications so that external
systems can retrieve the profile modifications in real-time.

Properties can be dynamically defined for profiles using the createOrUpdateProfileProperties and
deleteProfileProperties mutations. Once a property is associated with a profile, it will become available in the
CDP_Profile and CDP_Persona types.

 cdp_profileUpdateEvent : CDP_ProfileUpdateEventFilterInput
 cdp_consentUpdateEvent : CDP_ConsentUpdateEventFilterInput
 cdp_listsUpdateEvent : CDP_ListsUpdateEventFilterInput
 cdp_sessionEvent : CDP_SessionEventFilterInput
 # generated event types will be listed here
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 39 of 72

NOTE
It is the responsability of clients accessing the GraphQL API to handle the lifecycle of properties properly,
as new properties may be defined at any time, or more importantly, properties may be also deleted,
potentially breaking a client’s use of the API.

As an example, let’s assume we have a starting CDP_Profile type that looks like this:

Profile before

Now let’s use the mutation to create a new property.

Operation

Variables

type CDP_Profile implements CDP_ProfileInterface {
 cdp_profileIDs : [CDP_ProfileID]
 cdp_events(filter : CDP_EventFilterInput, first : Int, last: Int, after : String, before: String) :
CDP_EventConnection
 cdp_lastEvents(count : Int, profileID : CDP_ProfileIDInput) : CDP_EventConnection
 cdp_segments(views : [ID]) : [CDP_Segment]
 cdp_interests(views : [ID]) : [CDP_Interest]
 cdp_consents : [CDP_Consent]
 cdp_lists(views : [ID]) : [CDP_List]
 cdp_matches(namedFilters : [CDP_NamedFilterInput]) : [CDP_FilterMatch]
 cdp_optimize(parameters : [CDP_OptimizationInput]) : [CDP_OptimizationResult]
 cdp_recommend(parameters : [CDP_RecommendationInput]) : [CDP_RecommendationResult]
 # fields will be added here according to registered profile properties
}

mutation addProperties($properties: [CDP_PropertyInput]) {
 cdp {
 createOrUpdateProfileProperties(properties: $properties)
 }
}

{
 "properties": [
 {
 "string": {
 "name": "firstName"
 }
 },
 {
 "set": {
 "name": "sample_Address",
 "properties": {
 "string": {"name": "streetName"},
 "string": {"name": "postalCode"}
 }
 }
 }
]
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 40 of 72

This will resulting in the following modifications to the CDP_Profile type:

Profile after

The following type is generated from the property definition. The name of the type starts with an uppercased character
from the property name.

Generated type

This will also generate new filter fields in the CDP_ProfilePropertiesFilterInput type:

Updated filters

type CDP_Profile implements CDP_ProfileInterface {
 cdp_profileIDs : [CDP_ProfileID]
 cdp_events(filter : CDP_EventFilterInput, first : Int, last: Int, after : String, before: String) :
CDP_EventConnection
 cdp_lastEvents(count : Int, profileID : CDP_ProfileIDInput) : CDP_EventConnection
 cdp_segments(views : [ID]) : [CDP_Segment]
 cdp_interests(views : [ID]) : [CDP_Interest]
 cdp_consents : [CDP_Consent]
 cdp_lists(views : [ID]) : [CDP_List]
 cdp_matches(namedFilters : [CDP_NamedFilterInput]) : [CDP_FilterMatch]
 cdp_optimize(parameters : [CDP_OptimizationInput]) : [CDP_OptimizationResult]
 cdp_recommend(parameters : [CDP_RecommendationInput]) : [CDP_RecommendationResult]
 # fields will be added here according to registered profile properties
 firstName : String
 sample_Address : Sample_Address
}

type Sample_Address {
 streetName : String,
 postalCode : String
}

type CDP_ProfilePropertiesFilter {
 and : [CDP_ProfilePropertiesFilter]
 or : [CDP_ProfilePropertiesFilter]
 # generated profile properties filters will be listed below
 firstName_equals : String,
 firstName_contains : String
 sample_Address : Sample_AddressFilter
}

type Sample_AddressFilter {
 streetName_equals : String,
 streetName_contains : String,
 postalCode_equals : String,
 streetName_contains : String
}

input CDP_ProfilePropertiesFilterInput {
 and : [CDP_ProfilePropertiesFilterInput]
 or : CDP_ProfilePropertiesFilterInput
 # generated profile properties filters will be listed below
 firstName_equals : String,

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 41 of 72

As you can see the generation system also creates filter types (input and output) and adds the "Filter" and "FilterInput"
suffix to them. This will always happen and implementations MUST do this.

Also not illustrated here, the same generation system will also add fields to the following types :

CDP_ProfileUpdateEvent
CDP_ProfileUpdateEventInput
CDP_ProfileUpdateEventFilter
CDP_ProfileUpdateEventFilterInput
CDP_Persona
CDP_PersonaInput

The naming and generation conventions are exactly the same as for the profiles properties.

4.11.2. Profile merges
Customer Data Platforms implementations MUST support profile merges.

As profiles evolve over time, the Customer Data Platform may discover that two profiles actually represent the same
individual. I.e. if the same e-mail address is registered in both two different profiles.

This may then result in a profile merge. During a profile merge, the Customer Data Platform will link two (or more) separate
profiles together. In order to keep event history and avoid re-processing of data, the merge process must not affect the
existing and unique profileIDs. This is why profiles are defined to have multiple profileIDs.

Example: As such, when visitors on a website are tracked through a cookie (defining the profileID), the cookie will remain
the same even if the profile is merged.

Profile merges may for instance be supported by using identifying profile properties (such as email and/or social security
number). The resulting merged profile MUST contain all the profile IDs of the merged profiles, as well as the merged profile
data. The original profiles that were merged may be flagged or deleted, this is implementation specific.

4.11.3. Deleting profile personal data (aka profile anonymizing)
The API provides a way to delete personal data associated with a profile. The effect of this operation is not specified in
details but it should respect existing privacy laws such as GDPR. For example, it could remove all properties flagged as

 firstName_contains : String
 sample_Address : Sample_AddressFilterInput
}

input Sample_AddressFilterInput {
 streetName_equals : String,
 streetName_contains : String,
 postalCode_equals : String,
 streetName_contains : String
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 42 of 72

containing personal data and/or it could even process events in ways to anonymize data.

4.11.4. CDP_ProfileID
Profiles are created from a client. As such, each profile has a composite key based on a unique ID within that client, and
the client.

4.11.5. CDP_ProfileIDInput

id

ID must be unique within the client

4.11.6. CDP_ProfileInterface
Common interface for Profiles and Personas

profileIDs

A single profile may consist of multiple id’s as profiles are being merged. The CDP may also generate a system profile
ID and expose it here

4.11.7. CDP_Profile

type CDP_ProfileID {
 client : CDP_Client!
 id : ID!
 uri : ID # "cdp_profile:source/id"
}

input CDP_ProfileIDInput {
 clientID : ID!
 id : ID!
}

interface CDP_ProfileInterface {
 cdp_profileIDs : [CDP_ProfileID]
 cdp_segments(views : [ID]) : [CDP_Segment]
 cdp_interests(views : [ID]) : [CDP_Interest]
 cdp_consents : [CDP_Consent]
 cdp_lists(views : [ID]) : [CDP_List]
}

type CDP_Profile implements CDP_ProfileInterface {
 cdp_profileIDs : [CDP_ProfileID]
 cdp_events(filter : CDP_EventFilterInput, first : Int, last: Int, after : String, before: String) :
CDP_EventConnection
 cdp_lastEvents(count : Int, profileID : CDP_ProfileIDInput) : CDP_EventConnection
 cdp_segments(views : [ID]) : [CDP_Segment]
 cdp_interests(views : [ID]) : [CDP_Interest]
 cdp_consents : [CDP_Consent]
 cdp_lists(views : [ID]) : [CDP_List]
 cdp_matches(namedFilters : [CDP_NamedFilterInput]) : [CDP_FilterMatch]
 cdp_optimize(parameters : [CDP_OptimizationInput]) : [CDP_OptimizationResult]

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 43 of 72

4.11.8. CDP_ProfileUpdateEvent
Profiles are crated and updated through this event type. This event is part of the standard and MUST be available for any
implementation of the specification.

4.11.9. CDP_ProfileUpdateEventInput
This is the input equivalent, notice because of missing input type inheritance in GraphQL, it only contains the actual
properties to update.

Operation

Variables

 cdp_recommend(parameters : [CDP_RecommendationInput]) : [CDP_RecommendationResult]
 # fields will be added here according to registered profile properties
}

type CDP_ProfileUpdateEvent implements CDP_EventInterface {
 id: ID!
 cdp_source : CDP_Source
 cdp_client : CDP_Client
 cdp_profileID: CDP_ProfileID!
 cdp_profile : CDP_Profile!
 cdp_object: CDP_Object!
 cdp_location: GeoPoint
 cdp_timestamp: DateTime
 cdp_topics : [CDP_Topic]
 # fields will be added here according to registered profile properties. To remove a property value pass a
null value
}

mutation updateProfile($events: [CDP_EventInput]!) {
 cdp {
 processEvents(events: $events)
 }
}

{"events": [
 {
 "_object" : "cdp_profile:crm/crm-profile-id",
 "_profileID": {
 "clientID": "crm",
 "id": "crm-profile-id"
 },
 "_profileUpdateEvent": {
 "firstName" : "Serge",
 "sample_Address" : {
 "streetName" : "My street name",
 "postalCode" : "12345"
 }
 }
 }
]}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 44 of 72

4.11.10. CDP_ProfileUpdateEventFilter
Sample ProfileUpdateEventFilter

4.11.11. CDP_ProfileUpdateEventFilterInput
Sample ProfileUpdateEventFilterInput

4.11.12. CDP_Query
Profile queries

4.11.13. CDP_Mutation
The profile property mutation fields (createOrUpdateProfileProperties, deleteProfileProperties) are OPTIONAL (see
Conformance section).

Profile mutations

4.11.14. CDP_Subscription
Profile subscriptions

4.12. ProfileFilters
Profile Filters are slightly more complex than EventFilters. As profileFilter are composed from both searching profile
properties, and events related to the profile.

Here is an example of a GraphQL query (with variables) that will retrieve profiles that "have joined the list with the id
NEWSLETTER-LIST-ID since June 28th, 2018 at 5:25"

input CDP_ProfileUpdateEventInput {
 firstname : String
 dateofbirth : Date
 # more fields will be available based on defined profile properties
}

input CDP_ProfileUpdateEventInput {
 firstname : String
 dateofbirth : Date
 # more fields will be available based on defined profile properties
}

 getProfile(profileID : CDP_ProfileIDInput, createIfMissing: Boolean) : CDP_Profile
 findProfiles(filter: CDP_ProfileFilterInput, orderBy: [CDP_OrderByInput], first: Int, after: String, last:
Int, before: String) : CDP_ProfileConnection
 getProfileProperties : CDP_PropertyConnection

 createOrUpdateProfileProperties(properties : [CDP_PropertyInput]) : Boolean
 deleteProfileProperties(propertyNames : [ID]!) : Boolean
 deleteProfile(profileID : CDP_ProfileIDInput) : CDP_Profile
 deleteAllPersonalData(profileID : CDP_ProfileIDInput) : Boolean

extend type CDP_Subscription {

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 45 of 72

Operation

Variables

4.12.1. CDP_ProfileFilter

query profileFilterExample(
 $profileFilter: CDP_ProfileFilterInput
 $orderBy: [CDP_OrderByInput]
) {
 cdp {
 findProfiles(filter: $profileFilter, orderBy: $orderBy, first : 10) {
 totalCount
 edges {
 node {
 cdp_profileIDs {
 client {
 id
 }
 id
 }
 cdp_segments {
 name
 }
 }
 }
 }
 }
}

{
 "profileFilter": {
 "lists_contains" : ["NEWSLETTER-LIST-ID"],
 "properties": {},
 "events": {
 "minimalCount": 1,
 "eventFilter": {
 "_timestamp_gt": "2018-06-28T05:25:28+00:00",
 "_listsUpdateEvent": {
 "joinLists_contains" : ["NEWSLETTER-LIST-ID"]
 }
 }
 }
 },
 "orderBy": [
 {"fieldName": "properties.firstName", "order": "ASC"}
]
}

type CDP_ProfileFilter {
 profileIDs : [String]
 properties : CDP_ProfilePropertiesFilter
 segments_contains : [ID]
 consents_contains : [ID]
 lists_contains : [ID]
 interests : CDP_InterestFilter
 events : CDP_ProfileEventsFilter
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 46 of 72

4.12.2. CDP_ProfileFilterInput

4.12.3. CDP_ProfilePropertiesFilter

4.12.4. CDP_ProfilePropertiesFilterInput

4.12.5. CDP_ProfileEventsFilter

4.12.6. CDP_ProfileEventsFilterInput

4.13. Sessions
When individuals interact, clients may enrich the data associated with interaction by specifying sessions. For instance, a
session may start when a user loads a specific app, and end when he closes it.

input CDP_ProfileFilterInput {
 profileIDs_contains : [String]
 properties : CDP_ProfilePropertiesFilterInput
 segments_contains : [ID]
 consents_contains : [ID]
 lists_contains: [ID]
 interests : CDP_InterestFilterInput
 events : CDP_ProfileEventsFilterInput
}

type CDP_ProfilePropertiesFilter {
 and : [CDP_ProfilePropertiesFilter]
 or : [CDP_ProfilePropertiesFilter]
 # generated profile properties filters will be listed below
}

input CDP_ProfilePropertiesFilterInput {
 and : [CDP_ProfilePropertiesFilterInput]
 or : CDP_ProfilePropertiesFilterInput
 # generated profile properties filters will be listed below
}

type CDP_ProfileEventsFilter {
 and : [CDP_ProfileEventsFilter]
 or : [CDP_ProfileEventsFilter]
 not : CDP_ProfileEventsFilter
 minimalCount : Int,
 maximalCount : Int,
 eventFilter : CDP_EventFilter
}

input CDP_ProfileEventsFilterInput {
 and : [CDP_ProfileEventsFilterInput]
 or : [CDP_ProfileEventsFilterInput]
 not : CDP_ProfileEventsFilterInput
 minimalCount : Int,
 maximalCount : Int,
 eventFilter : CDP_EventFilterInput
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 47 of 72

The CDP_SessionEventInput is used to signify the beginning, pause, resume or end of a session.

4.13.1. CDP_SessionState

4.13.2. CDP_SessionEvent

4.13.3. CDP_SessionEventInput

Example of how to update a session’s state

Operation

Variables

enum CDP_SessionState {
 START,
 STOP,
 PAUSE,
 RESUME
}

type CDP_SessionEvent implements CDP_EventInterface {
 id: ID!
 cdp_source : CDP_Source
 cdp_client : CDP_Client
 cdp_profileID: CDP_ProfileID!
 cdp_profile : CDP_Profile!
 cdp_object: CDP_Object!
 cdp_location: GeoPoint
 cdp_timestamp: DateTime
 cdp_topics : [CDP_Topic]
 state : CDP_SessionState
}

input CDP_SessionEventInput {
 state : CDP_SessionState
}

mutation updateSessions($events: [CDP_EventInput]!) {
 cdp {
 processEvents(events: $events)
 }
}

{
 "events": [
 {
 "_profileID": {
 "clientID": "crm",
 "id" : "crm-profile-id"
 },
 "_object": "cdp_profile:crm/crm-profile-id",
 "_sessionEvent": {
 "state": "PAUSE"
 }

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 48 of 72

4.13.4. CDP_SessionEventFilter
This type is used in EventFilters to filter session events

4.13.5. CDP_SessionEventFilterInput
This type is used in EventFilters to filter session events

4.14. Consents
New legislation and stricter rules for use of personal data is already here (i.e. GDPR). As such, consents are inherently
more important to ensure you are using and storing data in compliance with policies.

Consents hold an identifier that uniquely identifies the consent across your systems.

Consents are given and revoked through events. This means that the CDP specification defines reserved property types
for granting and revoking consents.

Sample GRANTED consent

Sample DENY consent

 }
]
}

type CDP_SessionEventFilter {
 state_equals : CDP_SessionState
}

input CDP_SessionEventFilterInput {
 state_equals : CDP_SessionState
}

 {
 "_sourceID" : "example.com",
 "_profileID": {
 "clientID": "crm",
 "id" : "crm-profile-id"
 },
 "_object": "cdp_profile:crm/crm-profile-id",
 "_consentUpdateEvent": {
 "type": "send-to-salesforce",
 "status": "GRANTED",
 "lastUpdate": "NOW",
 # no revoke date means it will not expire or defaults to system or legal standard (GDPR)
 }
 }

 {
 "_sourceID" : "example.com",
 "_profileID": {

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 49 of 72

Consent Types may include:

calling
tracking
message
e-mail
list membership
access to camera
access to friends / contacts
access to medical records
send personal data to third parties
send anonymous data to third parties

Consent types are not defined in the specification, only the format of the type identifier should use a URI convention.
Some URIs could actually be URLs and point to real resource that would give the semantics of the consent type. Types are
not globally unique, a combination of view and types are globally unique and context server implementations may use
"global" or "system" views to share types.

It is not in the scope of this specification to define how authentication and consents interact but it is expect that CDP
implementations secure consent modifications. Also, tracking consents processing is not specified but it is highly
recommended that implementations provide some mechanism to ease the pain of implementing tracking management with
minimal end-user disturbance.

4.14.1. CDP_ConsentStatus
Uniquely specifies the status of any given Consent

4.14.2. CDP_Consent

 "clientID": "crm",
 "id" : "crm-profile-id"
 },
 "_object": "cdp_profile:crm/crm-profile-id",
 "_consentUpdateEvent": {
 "type": "newsletter-subscription-latestNews",
 "status": "DENY",
 "lastUpdate": "NOW",
 # no revoke date means it will not expire or defaults to system or legal standard (GDPR)
 }
 }

enum CDP_ConsentStatus {
 GRANTED,
 DENIED,
 REVOKED
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 50 of 72

CDP_Consent represents a persisted Consent, always attached to a specific profile.

Token

Similar to OAuth 2 authorization tokens to access the consent without the profile, also useful to delete the consent

Type

Should be a Url or other meaningful identifier like //mycompany.com/consents/newsletters/weekly ,
//crmcompany.com/consents/push-to-crm or //oasis_open.org/cxs/consents/send-to-third-
parties

4.14.3. CDP_ConsentUpdateEvent
Standard EventType to create or update Consents.

4.14.4. CDP_ConsentUpdateEventInput
Input type for ConsentUpdateEvent

type CDP_Consent {
 token : ID!
 source : CDP_Source
 client : CDP_Client
 type : String!
 status : CDP_ConsentStatus!
 lastUpdate : DateTime
 expiration : DateTime
 profile : CDP_ProfileInterface
 events : CDP_EventConnection
}

type CDP_ConsentUpdateEvent implements CDP_EventInterface {
 id: ID!
 cdp_source : CDP_Source
 cdp_client : CDP_Client
 cdp_profileID: CDP_ProfileID!
 cdp_profile : CDP_Profile!
 cdp_object: CDP_Object!
 cdp_location: GeoPoint
 cdp_timestamp: DateTime
 cdp_topics : [CDP_Topic]
 type : String!
 status : String,
 lastUpdate : DateTime,
 expiration : DateTime
}

input CDP_ConsentUpdateEventInput {
 type : String!
 status : String,
 lastUpdate : DateTime,
 expiration : DateTime
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 51 of 72

Example of how to update a consent for a profile :

Operation

Variables

4.14.5. CDP_ConsentUpdateEventFilter
Filter for ConsentUpdateEvents

4.14.6. CDP_ConsentUpdateEventFilterInput
Input type for of ConsentUpdateEventsFilter

mutation updateConsent($events: [CDP_EventInput]!) {
 cdp {
 processEvents(events: $events)
 }
}

{
 "events": [
 {
 "_profileID": {
 "clientID": "crm",
 "id" : "crm-profile-id"
 },
 "_object": "cdp_profile:crm/crm-profile-id",
 "_consentUpdateEvent": {
 "type": "newsletter",
 "status": "GRANTED",
 "lastUpdate": "now",
 "expiration": "now+365d"
 }
 }
]
}

type CDP_ConsentUpdateEventFilter {
 type_equals : String,
 status_equals : String,
 lastUpdate_equals : DateTime,
 lastUpdate_lt : DateTime,
 lastUpdate_lte : DateTime,
 lastUpdate_gt : DateTime,
 lastUpdate_gte : DateTime,
 expiration_equals : DateTime,
 expiration_lt : DateTime,
 expiration_lte : DateTime,
 expiration_gt : DateTime,
 expiration_gte : DateTime
}

input CDP_ConsentUpdateEventFilterInput {
 type_equals : String,
 status_equals : String

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 52 of 72

4.15. Views
Views provide a way of grouping administrative objects in the Customer Data Platform. Profiles, Events and Consents are
all collected and stored globally, but other items are typically handled by administrators or marketeers, and benefit from
being grouped into different views to simplify handling.

Lists, Segments, Topics and Personas are all tagged with Views.

4.15.1. CDP_View

4.15.2. CDP_ViewInput

4.15.3. CDP_Query
View queries

4.15.4. CDP_Mutation
View mutations

4.16. Topics
Topics represent the core entities of the business that is using the Customer Data Platform. The Customer Data Platform
aims to find correlation between profiles and the topics. When such correlations are identified, it is called Interests.

CDP Administrators need to maintain a list of topics in order to obtain profile interests. Profile interests is typically a core
objective of Marketing activities, and targeting users with better content.

 lastUpdate_equals : DateTime,
 lastUpdate_lt : DateTime,
 lastUpdate_lte : DateTime,
 lastUpdate_gt : DateTime,
 lastUpdate_gte : DateTime,
 expiration_equals : DateTime,
 expiration_lt : DateTime,
 expiration_lte : DateTime,
 expiration_gt : DateTime,
 expiration_gte : DateTime
}

type CDP_View {
 name: ID!
}

input CDP_ViewInput {
 name: ID!
}

 getViews : [CDP_View]

 createOrUpdateView(view: CDP_ViewInput) : CDP_View
 deleteView(viewID : ID!) : Boolean

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 53 of 72

Example Topics for a car manufacturer might for instance be:

Model S
Model 3
Model X

Topics are associated with Objects and Profiles through Events. An example of how this might work in real life: A website
promoting a specific Product, for instance "Car type X", should also contain meta-data for the associated topic i.e. "model
X". The web tracking script can then feed this information back to the CDP, including both the object (web page in this
case), and the specific topic. This way, the CDP will be able to build a model of association.

4.16.1. CDP_Topic

4.16.2. CDP_TopicInput

4.16.3. CDP_TopicFilterInput

4.16.4. CDP_Query
Topic queries

4.16.5. CDP_Mutation
Topic mutations

type CDP_Topic {
 id : ID!
 view : CDP_View!
 name: String!
}

input CDP_TopicInput {
 id : ID
 view : ID!
 name: String!
}

input CDP_TopicFilterInput {
 and : [CDP_TopicFilterInput]
 or : [CDP_TopicFilterInput]
 view_equals : ID
 id_equals : String
 name_equals : String
}

 getTopic(topicID : ID) : CDP_Topic
 findTopics(filter: CDP_TopicFilterInput, orderBy: [CDP_OrderByInput], first: Int, after: String, last:
Int, before: String) : CDP_TopicConnection

 createOrUpdateTopic(topic : CDP_TopicInput) : CDP_Topic
 deleteTopic(topicID : String) : CDP_Topic

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 54 of 72

4.17. Interests
An important use-case for the Customer Data Platform is to determine a profile’s "Interests". Whenever the Customer
Data Platform registers an events that are associated with one or more Topics, this will affect the profile’s interest for the
specific Topic. A profile’s interest for a specific topic is measured between 0-1, where 1 is maximum. As such 0,5 would
indicate a higher interest than 0,35.

The algorithm for how a Customer Data Platform scores and interest is implementation specific - but implementations
should also take care of automatically decreasing interest over time, unless new and relevant events occur.

Example interests for products from a car manufacturer might be:

Model S = 0.1
Model 3 = 0.3
Model X = 0.9
Model Y = 1.0

4.17.1. CDP_Interest
Interests are calculated automatically based on implementation specific algorithm

score

will be between 0.0 to 1.0

4.17.2. CDP_InterestInput
Specifying interest is only relevant for Personas

4.17.3. CDP_InterestFilter
Used to filter interests, mostly for administration purposes

type CDP_Interest {
 topic: CDP_Topic!
 score : Float
}

input CDP_InterestInput {
 topic : ID!
 score : Float
}

type CDP_InterestFilter {
 and : [CDP_InterestFilter]
 or : [CDP_InterestFilter]
 topic_equals : ID
 score_equals : Float
 score_lt : Float

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 55 of 72

4.17.4. CDP_InterestFilterInput

4.18. Personas
A persona is a concept used to personify your audience. This may for instance be used to test personalization and
targeting of content in a 3rd party system.

In CDP, personas are essentially "dummy" profiles with the primary purpose of testing or emulating a real profile. A
common use-case would be testing personalized content in a CMS or a newsletter.

Personas and their fields can be explicitly created, where real profiles are built from a stream of events.

Here’s an example of creating a persona :

Operation

Variables

 score_lte : Float
 score_gt : Float
 score_gte : Float
}

input CDP_InterestFilterInput {
 and : [CDP_InterestFilterInput]
 or : [CDP_InterestFilterInput]
 topic_equals : ID
 score_equals : Float
 score_lt : Float
 score_lte : Float
 score_gt : Float
 score_gte : Float
}

mutation updatePersona($persona: CDP_PersonaInput) {
 cdp {
 createOrUpdatePersona(persona: $persona) {
 id
 }
 }
}

{
 "persona": {
 "_name": "mikeMarketing",
 "_view": "acme",
 "_segments": ["segment1", "segment2"],
 "_consents": [{
 "type": "newsletter",
 "status": "GRANTED",
 "lastUpdate": "NOW",
 "expiration" : "NOW+30DAYS"
 }],
 "_interests": [{"topic": "topic1", "score": 10}]

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 56 of 72

4.18.1. CDP_Persona

4.18.2. CDP_PersonaInput

4.18.3. CDP_PersonaConsentInput
Special type to set PersonaConsent without the use of events

4.18.4. CDP_Query
Persona queries

4.18.5. CDP_Mutation
Persona mutations

 "firstName" : "Mike",
 "lastName" : "Marketing"
 }
}

type CDP_Persona implements CDP_ProfileInterface {
 id : ID!
 cdp_name : String!
 cdp_view : CDP_View!
 cdp_profileIDs : [CDP_ProfileID]
 cdp_segments(views : [ID]) : [CDP_Segment]
 cdp_interests(views : [ID]) : [CDP_Interest]
 cdp_consents : [CDP_Consent]
 cdp_lists(views : [ID]) : [CDP_List]
 # fields will be added here according to registered profile properties
}

input CDP_PersonaInput {
 id : ID
 cdp_name : String!
 cdp_view : ID!
 cdp_profileIDs : [CDP_ProfileIDInput]
 cdp_segments : [ID]
 cdp_interests : [CDP_InterestInput]
 cdp_consents : [CDP_PersonaConsentInput]
 # fields will be added here according to registered profile properties
}

input CDP_PersonaConsentInput {
 type : String!
 status : String,
 lastUpdate : DateTime,
 expiration : DateTime
}

 getPersona(personaID : String) : CDP_Persona
 findPersonas(filter: CDP_ProfileFilterInput, orderBy: [CDP_OrderByInput], first: Int, after: String, last:
Int, before: String) : CDP_ProfileConnection

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 57 of 72

4.19. Lists
Lists are explicitly created and named in the Customer Data Platform. Profiles may then be added to a list, and later opt
out if desired. Whenever a profile opts out of a list, that information will also be stored. This prevents the profile from
accidentally being added back to the list at a later point.

A common use-case for lists is creating a list for a campaign, and add the target profiles to the list as the campaign starts.

4.19.1. CDP_List

id

Cannot change and is usually server generated

4.19.2. CDP_ListInput

4.19.3. CDP_ListsUpdateEvent
Standard Event to update profile membership for specified lists

4.19.4. CDP_ListsUpdateEventInput

 createOrUpdatePersona(persona : CDP_PersonaInput) : CDP_Persona
 deletePersona(personaID : String) : CDP_Persona

type CDP_List {
 id : ID!
 view: CDP_View!
 name : String!
 active(first: Int, after: String, last: Int, before: String) : CDP_ProfileConnection
 inactive(first: Int, after: String, last: Int, before: String) : CDP_ProfileConnection
}

input CDP_ListInput {
 id : ID
 view: ID!
 name : String!
}

type CDP_ListsUpdateEvent implements CDP_EventInterface {
 id: ID!
 cdp_source : CDP_Source
 cdp_client : CDP_Client
 cdp_profileID: CDP_ProfileID!
 cdp_profile : CDP_Profile!
 cdp_object: CDP_Object!
 cdp_location: GeoPoint
 cdp_timestamp: DateTime
 cdp_topics : [CDP_Topic]
 joinLists : [CDP_List]
 leaveLists : [CDP_List]
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 58 of 72

Example of how to update lists for a profile :

Operation

Variables

4.19.5. CDP_ListsUpdateEventFilter

4.19.6. CDP_ListsUpdateEventFilterInput
Used to filter list update events when querying events

4.19.7. CDP_ListFilterInput
Used to filter lists in for management purposes

input CDP_ListsUpdateEventInput {
 joinLists : [ID]
 leaveLists : [ID]
}

mutation updateLists($events: [CDP_EventInput]!) {
 cdp {
 processEvents(events: $events)
 }
}

{
 "events": [
 {
 "_profileID": {
 "clientID": "crm",
 "id" : "crm-profile-id"
 },
 "_object": "cdp_profile:crm/crm-profile-id",
 "_listsUpdateEvent": {
 "joinLists": ["list1", "list2"],
 "leaveLists": ["list3", "list4"]
 }
 }
]
}

type CDP_ListsUpdateEventFilter {
 joinLists_contains : [ID]
 leaveLists_contains : [ID]
}

input CDP_ListsUpdateEventFilterInput {
 joinLists_contains : [ID]
 leaveLists_contains : [ID]
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 59 of 72

4.19.8. CDP_Query
List queries

4.19.9. CDP_Mutation
List mutations

4.20. Segments
Segments are similar to lists in that profiles may be in the segment, or not. However, where profiles are explicitly added to
lists, they are dynamically resolved to segments based on the filter defined in the segment.

Administrative users define segments through Filters.

Example segments:

Rich europeans

Profiles in Europe with income above €1000k

Frequent buyer

Profiles that have completed more than 5 transactions in the last 3 months

Here’s an example operation to create a "male" segment (it assumes a "gender" profile property has been defined).

Operation

input CDP_ListFilterInput {
 and : [CDP_ListFilterInput]
 or : [CDP_ListFilterInput]
 view_equals : ID
 name_equals : String
}

 getList(listID : ID) : CDP_List
 findLists(filter: CDP_ListFilterInput, orderBy: [CDP_OrderByInput], first: Int, after: String, last: Int,
before: String) : CDP_ListConnection

 createOrUpdateList(list : CDP_ListInput) : CDP_List
 addProfileToList(listID : ID, profileID : CDP_ProfileIDInput, active : Boolean) : CDP_List
 removeProfileFromList(listID : ID, profileID : CDP_ProfileIDInput) : CDP_List
 deleteList(listID : ID) : CDP_List

mutation createSegment($segment: CDP_SegmentInput) {
 cdp {
 createOrUpdateSegment(segment: $segment) {
 name
 }
 }
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 60 of 72

Variables

4.20.1. CDP_Segment

4.20.2. CDP_SegmentInput

4.20.3. CDP_SegmentFilterInput

4.20.4. CDP_Query
Segment queries

4.20.5. CDP_Mutation
Segment mutations

{
 "segment": {
 "name": "males",
 "view": "acme",
 "profiles": {
 "properties": {
 "gender_equals" : "male"
 }
 }
 }
}

type CDP_Segment {
 id : ID!
 view: CDP_View!
 name : String!
 profiles : CDP_ProfileFilter
}

input CDP_SegmentInput {
 id : ID
 view : ID!
 name : String
 profiles : CDP_ProfileFilterInput
}

input CDP_SegmentFilterInput {
 and : [CDP_SegmentFilterInput]
 or : [CDP_SegmentFilterInput]
 view_equals : ID
 name_equals : String
}

 getSegment(segmentID : ID) : CDP_Segment
 findSegments(filter: CDP_SegmentFilterInput, orderBy: [CDP_OrderByInput], first: Int, after: String, last:
Int, before: String) : CDP_SegmentConnection

 createOrUpdateSegment(segment : CDP_SegmentInput) : CDP_Segment
 deleteSegment(segmentID : String) : CDP_Segment

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 61 of 72

4.21. Profile matching
Clients may want to identify in real time if a given profile matches a specific segment, or filter. This can effectively used in
order to produce personalized responses or messages.

4.21.1. CDP_NamedFilterInput
Named filters are used to evaluate filters against a profile - useful for building personalized experiences

4.21.2. CDP_FilterMatch
The result of a named filter match request

Below is an example of matching a profile with a filter in real-time:

Operation

Variables

input CDP_NamedFilterInput {
 name : String!
 filter: CDP_ProfileFilterInput
}

type CDP_FilterMatch {
 name : String
 matched : Boolean
 executionTimeMillis : Int
}

query profileMatching(
 $profileID: CDP_ProfileIDInput
 $namedFilters: [CDP_NamedFilterInput]
) {
 cdp {
 getProfile(profileID: $profileID) {
 cdp_matches(namedFilters: namedFilters) {
 name
 matched
 }
 }
 }
}

{
 "profileID": {
 "clientID": "crm",
 "id": "crm-profile-id"
 },
 "namedFilters": [
 {
 "name": "continentMatch",
 "filter": {
 "properties": {

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 62 of 72

4.22. Data Intelligence
The collection of structured information in a CDP enables potential beyond simply accessing these data. By applying
algorithms or machine learning techniques to the data, a CDP can act as a real-time data source for advanced use cases
in other applications.

The collection of structured information in a CDP enables potential beyond simply accessing these data.

4.22.1. CDP_ScoredObject
Objects with a specific scoring

4.22.2. CDP_AlgorithmInput
Defining a specific algorithm to apply.

Name

Implementation specific algorithms, examples may be collaborative-filtering , clustering , deep ,
trending , etc

Parameters

JSON object supported by the specified algorithm. Algorithms must validate the object themselves. Parameters can be
used to filter the results of the recommendation algorithm or any other custom processing that is supported by the
implementation.

4.23. Optimizations
This part of the specification is OPTIONAL

A specific application of data intelligence is smart decision making, or optimizations. In short, an optimization is done by
passing a number of objects in, and letting the system rank them according to which is considered optimal. For instance,

 "continent_equals" : "Europe"
 }
 }
 }
]
}

type CDP_ScoredObject {
 object : CDP_Object
 score : Float
}

input CDP_AlgorithmInput {
 name : String!
 parameters : JSON
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 63 of 72

which product is most relevant for a specific visitor.

4.23.1. CDP_OptimizationResult
The result of an optimization, containing scored objects

4.23.2. CDP_OptimizationInput
Definition of the optimization to perform

Strategy

Any strategy supported by the algorithm: Unspecified, random, scoring, best first match, worst match, a/b test

4.23.3. CDP_EventOccurenceBoostInput
Used to boost positively/negatively the algorithm based on event type and time span: i.e. return a list of products the profile
has viewed in the last year

Boost

Can also be a negative value

Example of an optimization of objects for a given profile :

Operation

type CDP_OptimizationResult {
 name : String!
 scoredObjects : [CDP_ScoredObject]
}

input CDP_OptimizationInput {
 name : String!
 objects : [ID],
 eventOccurenceBoosts : [CDP_EventOccurenceBoostInput]
 strategy : String
 size : Int
}

input CDP_EventOccurenceBoostInput {
 eventType : String
 boost : Int
 fromDate : DateTime
 toDate : DateTime
}

query profileOptimizations(
 $profileID: CDP_ProfileIDInput
 $optimizationParameters: [CDP_OptimizationInput]
) {
 cdp {
 getProfile(profileID: $profileID) {

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 64 of 72

Variables

4.24. Recommendations
This part of the specification is OPTIONAL

Unlike optimizations that act on a defined list of objects, recommendations take an object as input, only to suggest other
objects based on a specific algorithm.

4.24.1. CDP_RecommendationResult

 cdp_optimize(parameters: $optimizationParameters) {
 name
 scoredObjects {
 object {
 uri
 scheme
 path
 topics {
 name
 view {
 name
 }
 }
 }
 score
 }
 }
 }
 }
}

{
 "profileID": {
 "clientID": "crm",
 "id": "crm-profile-id"
 },
 "optimizationParameters": [
 {
 "name": "carPromotion",
 "objects" : [
 "cars:modelS",
 "cars:modelX",
 "cars:model3"
],
 "eventOccurenceBoosts": {
 "eventType": "configuredCar",
 "boost": 3.0,
 "fromDate" : "NOW-1MONTH",
 "toDate" : "NOW"
 },
 "strategy": "scoring",
 "size" : 2
 }
]
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 65 of 72

Provides a list of scored object

4.24.2. CDP_RecommendationInput

objectUri

Specific object that is the originator of the recommendation

topics

Objects have to be related to these specific topics

size

Maximum number of results to retrieve

Example of how to get a recommendation for a profile :

Operation

type CDP_RecommendationResult {
 name : String!
 scoredObjects : [CDP_ScoredObject]
}

input CDP_RecommendationInput {
 name : String!
 objectUri : ID
 topics : [ID]
 size : Int
 algorithm : CDP_AlgorithmInput
}

query profileRecommendations(
 $profileID: CDP_ProfileIDInput
 $recommendationParameters: [CDP_RecommendationInput]
) {
 cdp {
 getProfile(profileID: $profileID) {
 cdp_recommend(parameters: $recommendationParameters) {
 name
 scoredObjects {
 object {
 uri
 scheme
 path
 topics {
 name
 view {
 name
 }
 }
 }
 score
 }
 }

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 66 of 72

Variables

 }
 }
}

{
 "profileID": {
 "clientID": "crm",
 "id": "crm-profile-id"
 },
 "recommendationParameters": [
 {
 "name": "similarBooks",
 "objectUri": "books:BOOK-ISBN-CODE",
 "topics": ["murderMysteries"],
 "size": 10,
 "algorithm": {"name": "similar"}
 }
]
}

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 67 of 72

5. Security Considerations
The goal of CDP is to aggregate and store personal data. Failure in securing the data may have dramatic consequences,
both financially and in direct customer relationship for the involved parties.

5.1. Attack surface
Architecturally, CDP is designed to only be accessible through a single API. This limits the attack surface. Deliberately,
the standard does not specify how the API is secured, as this can be handled using traditional web security mechanisms,
such as IP filtering and certificates.

5.2. Network communication
All communication going through a network, be it a local or global one, should be encrypted using latest recommended
standards in the matter. In the case of the GraphQL API, it is highly recommended to use HTTPS connections to avoid
man-in-the-middle attacks and eavesdropping. It is also not recommended that the GraphQL API be publicly and directly
available, but only available to known and trusted clients.

5.3. Client tokens
Communicating with the API requires a valid Client. Implementers are strongly encouraged to use additional tokens or
similar for securing the client access further.

5.4. Access control
By default, clients get access to all data stored in the CDP.

Implementers are encouraged to implement different levels of access control beyond this. For instance using roles or
access control mechanisms, limiting clients to writing events, or allowing access to management objects, etc.

5.5. Authentication
The specification does not set any requirements for authentication However, CDP specifies management objects that are
intended to be created and handled by power-users and marketeers.

Implementers are encouraged to support a concepts for users in the implementation and API directly.

By combining the concept of client tokens above with users and/or autorization tokens (i.e using Oauth), implementers may
offer granular and controlled access to data through the CDP API.

NOTE
It is always recommended to proxy access to CDP through a gateway client. Direct access from end user
devices and other clients poses a higher risk of exposing sensitive data.

5.6. Audit logs

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 68 of 72

For interaction with management object in particular, it is recommended to implement audit logging.

5.7. Input validation
Thanks to the usage of GraphQL, the API is strongly typed, which implies that input validation is performed on any API
request, minimizing the attack surface even more. For more information:
https://facebook.github.io/graphql/June2018/#sec-Validation

However, the input validation provided by GraphQL does not free implementations from performing measures against
cross-site scripting and other script-injection attacks (eg: SQL injection).

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 69 of 72

https://facebook.github.io/graphql/June2018/#sec-Validation

6. Conformance
This section describes requirements for an implementation to claim specification conformance.

6.1. Conformance targets
There are two defined levels of conformance:

CORE (minimum level conformance)
FULL (complete implementation, including intelligence capabilities)

6.2. CORE conformance
CORE conformance CDP server implementations:

MUST implement the specifications of the API section
MAY implement any parts of the API specification marked as OPTIONAL

6.3. FULL conformance
FULL conformance CDP server implementations:

MUST meet all requirements of the CORE conformance
MUST additionally implement all OPTIONAL parts of the API specification

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 70 of 72

7. Appendix A. Acknowledgments
The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Jan Blessenohl, Progress Software
Kaloyan Nikolov, Progress Software
Chris Laprun, RedHat

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 71 of 72

8. Appendix B. Revision History
Revision Date Editor Changes Made

Standards Track Work Product

cdp-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 04 October 2019 - Page 72 of 72

