
[bookmark: _GoBack][image: oasis]
CybOX™ Version 2.1.1. Part 02: Common
Committee Specification Draft 01 /
Public Review Draft 01
20 June 2016
Specification URIs
This version:
http://docs.oasis-open.org/cti/cybox/v2.1.1/csprd01/part02-common/cybox-v2.1.1-csprd01-part02-common.docx (Authoritative)
http://docs.oasis-open.org/cti/cybox/v2.1.1/csprd01/part02-common/cybox-v2.1.1-csprd01-part02-common.html
http://docs.oasis-open.org/cti/cybox/v2.1.1/csprd01/part02-common/cybox-v2.1.1-csprd01-part02-common.pdf
Previous version:
N/A
Latest version:
http://docs.oasis-open.org/cti/cybox/v2.1.1/part02-common/cybox-v2.1.1-part02-common.docx (Authoritative)
http://docs.oasis-open.org/cti/cybox/v2.1.1/part02-common/cybox-v2.1.1-part02-common.html
http://docs.oasis-open.org/cti/cybox/v2.1.1/part02-common/cybox-v2.1.1-part02-common.pdf
Technical Committee:
OASIS Cyber Threat Intelligence (CTI) TC
Chair:
Richard Struse (Richard.Struse@HQ.DHS.GOV), DHS Office of Cybersecurity and Communications (CS&C)
Editors:
Desiree Beck (dbeck@mitre.org), MITRE Corporation
Trey Darley (trey@kingfisherops.com), Individual member
Ivan Kirillov (ikirillov@mitre.org), MITRE Corporation
Rich Piazza (rpiazza@mitre.org), MITRE Corporation
[bookmark: AdditionalArtifacts]Additional artifacts:
This prose specification is one component of a Work Product whose components are listed in http://docs.oasis-open.org/cti/cybox/v2.1.1/csprd01/cybox-v2.1.1-csprd01-additional-artifacts.html.
[bookmark: RelatedWork]Related work:
This specification is related to:
STIX™ Version 1.2.1. Edited by Sean Barnum, Desiree Beck, Aharon Chernin, and Rich Piazza. 05 May 2016. OASIS Committee Specification 01. http://docs.oasis-open.org/cti/stix/v1.2.1/cs01/part1-overview/stix-v1.2.1-cs01-part1-overview.html.
Abstract:
The Cyber Observable Expression (CybOX) is a standardized language for encoding and communicating high-fidelity information about cyber observables, whether dynamic events or stateful measures that are observable in the operational cyber domain. By specifying a common structured schematic mechanism for these cyber observables, the intent is to enable the potential for detailed automatable sharing, mapping, detection and analysis heuristics. This specification document defines the Common data model, which is one of the fundamental data models for CybOX content.
Status:
This document was last revised or approved by the OASIS Cyber Threat Intelligence (CTI) TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cti#technical.
TC members should send comments on this specification to the TC’s email list. Others should send comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/cti/.
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-open.org/committees/cti/ipr.php).
Citation format:
When referencing this specification the following citation format should be used:
[CybOX-v2.1.1-common]
CybOX™ Version 2.1.1. Part 02: Common. Edited by Desiree Beck, Trey Darley, Ivan Kirillov, and Rich Piazza. 20 June 2016. OASIS Committee Specification Draft 01 / Public Review Draft 01. http://docs.oasis-open.org/cti/cybox/v2.1.1/csprd01/part02-common/cybox-v2.1.1-csprd01-part02-common.html. Latest version: http://docs.oasis-open.org/cti/cybox/v2.1.1/part02-common/cybox-v2.1.1-part02-common.html.
Notices
Copyright © OASIS Open 2016. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.
The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.

Portions copyright © United States Government 2012-2016. All Rights Reserved.

STIX™, TAXII™, AND CybOX™ (STANDARD OR STANDARDS) AND THEIR COMPONENT PARTS ARE PROVIDED “AS IS” WITHOUT ANY WARRANTY OF ANY KIND, EITHER EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY THAT THESE STANDARDS OR ANY OF THEIR COMPONENT PARTS WILL CONFORM TO SPECIFICATIONS, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR FREEDOM FROM INFRINGEMENT, ANY WARRANTY THAT THE STANDARDS OR THEIR COMPONENT PARTS WILL BE ERROR FREE, OR ANY WARRANTY THAT THE DOCUMENTATION, IF PROVIDED, WILL CONFORM TO THE STANDARDS OR THEIR COMPONENT PARTS. IN NO EVENT SHALL THE UNITED STATES GOVERNMENT OR ITS CONTRACTORS OR SUBCONTRACTORS BE LIABLE FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF, RESULTING FROM, OR IN ANY WAY CONNECTED WITH THESE STANDARDS OR THEIR COMPONENT PARTS OR ANY PROVIDED DOCUMENTATION, WHETHER OR NOT BASED UPON WARRANTY, CONTRACT, TORT, OR OTHERWISE, WHETHER OR NOT INJURY WAS SUSTAINED BY PERSONS OR PROPERTY OR OTHERWISE, AND WHETHER OR NOT LOSS WAS SUSTAINED FROM, OR AROSE OUT OF THE RESULTS OF, OR USE OF, THE STANDARDS, THEIR COMPONENT PARTS, AND ANY PROVIDED DOCUMENTATION. THE UNITED STATES GOVERNMENT DISCLAIMS ALL WARRANTIES AND LIABILITIES REGARDING THE STANDARDS OR THEIR COMPONENT PARTS ATTRIBUTABLE TO ANY THIRD PARTY, IF PRESENT IN THE STANDARDS OR THEIR COMPONENT PARTS AND DISTRIBUTES IT OR THEM “AS IS.”

Table of Contents
1	Introduction	8
1.1 CybOXTM Specification Documents	8
1.2 Document Conventions	8
1.2.1 Fonts	8
1.2.2 UML Package References	9
1.2.3 UML Diagrams	9
1.2.4 Property Table Notation	10
1.2.5 Property and Class Descriptions	10
1.3 Terminology	11
1.4 Normative References	11
2	Background Information	13
3	CybOX Common Data Model	14
3.1 ObjectPropertiesType Class	14
3.2 Object Properties Data Types	14
3.2.1 BaseObjectPropertyType Data Type	15
3.2.2 AnyURIObjectPropertyType Data Type	19
3.2.3 Base64BinaryObjectPropertyType Data Type	20
3.2.4 DateObjectPropertyRestrictionType Data Type	20
3.2.5 DateTimeObjectPropertyRestrictionType Data Type	21
3.2.6 DoubleObjectPropertyType Data Type	21
3.2.7 DurationObjectPropertyType Data Type	22
3.2.8 FloatObjectPropertyType Data Type	22
3.2.9 HexBinaryObjectPropertyType Data Type	22
3.2.10 IntegerObjectPropertyType Data Type	22
3.2.11 LongObjectPropertyType Data Type	23
3.2.12 NameObjectPropertyType Data Type	23
3.2.13 NonNegativeIntegerObjectPropertyType Data Type	23
3.2.14 PositiveIntegerObjectPropertyType Data Type	23
3.2.15 StringObjectPropertyType Data Type	23
3.2.16 TimeObjectPropertyRestrictionType Data Type	24
3.2.17 UnsignedIntegerObjectPropertyType Data Type	25
3.2.18 UnsignedLongObjectPropertyType Data Type	25
3.2.19 ObjectPropertyType Data Types Related to Enumerations	26
3.3 General Shared Classes	27
3.3.1 MeasureSourceType Class	27
3.3.2 Build-Related Classes	30
3.3.3 ByteRunsType Class	33
3.3.4 CodeSnippetsType Class	35
3.3.5 Compiler-Related Classes	35
3.3.6 ConfigurationSettingsType Class	37
3.3.7 CustomPropertiesType Class	38
3.3.8 DataSegmentType Class	39
3.3.9 DependenciesType Class	40
3.3.10 DigitalSignaturesType Class	41
3.3.11 EnvironmentVariableListType Class	43
3.3.12 Error-Related Classes	44
3.3.13 ExtractedFeaturesType Class	45
3.3.14 ExtractedStringsType Class	46
3.3.15 FunctionsType Class	47
3.3.16 Hash-Related Classes	48
3.3.17 ImportsType Class	53
3.3.18 InternationalizationSettingsType Class	54
3.3.19 LibrariesType Class	54
3.3.20 MetadataType Class	55
3.3.21 PersonnelType Class	56
3.3.22 PlatformSpecificationType Class	57
3.3.23 Tools-Related Classes	57
3.3.24 UsageContextAssumptionsType Class	62
3.4 Vocabulary Data Types	62
3.4.1 VocabularyStringType Data Type	65
3.4.2 UnenforcedVocabularyStringType Data Type	65
3.4.3 ControlledVocabularyStringType Data Type	65
3.5 General Classes and Data Types	66
3.5.1 DateRangeType Class	66
3.5.2 DateTimeWithPrecisionType Data Type	66
3.5.3 DateWithPrecisionType Data Type	67
3.5.4 LocationType Class	67
3.5.5 StructuredTextType Data Type	68
3.5.6 TimeType Class	68
3.6 Enumerations	70
3.6.1 CipherEnum Enumeration	70
3.6.2 CompensationModelEnum Enumeration	70
3.6.3 ConditionApplicationEnum Enumeration	71
3.6.4 ConditionTypeEnum Enumeration	71
3.6.5 DataFormatEnum Enumeration	73
3.6.6 DataSizeUnitsEnum Enumeration	73
3.6.7 DatatypeEnum Enumeration	73
3.6.8 DatePrecisionEnum Enumeration	77
3.6.9 EndiannessTypeEnum Enumeration	77
3.6.10 Layer4ProtocolEnum Enumeration	78
3.6.11 PatternTypeEnum Enumeration	78
3.6.12 RegionalRegistryTypeEnum Enumeration	79
3.6.13 SIDTypeEnum Enumeration	79
3.6.14 SourceClassTypeEnum Enumeration	80
3.6.15 SourceTypeEnum Enumeration	80
3.6.16 TimePrecisionEnum Enumeration	81
3.6.17 ToolReferenceTypeEnum Enumeration	81
4	Conformance	82
Appendix A. Acknowledgements	83

		
Copyright © OASIS Open 2004.All Rights Reserved. 		Page 5 of 87
cybox-v2.1.1-csprd01-part02-common		20 June 2016
Standards Track Work Product	Copyright © OASIS Open 2016. All Rights Reserved.	Page 1 of 86
1 [bookmark: _Toc287332006][bookmark: _Toc450634540][bookmark: _Toc458094054]Introduction
[All text is normative unless otherwise labeled]
The Cyber Observable Expression (CybOX™) provides a common structure for representing cyber observables across and among the operational areas of enterprise cyber security. CybOX improves the consistency, efficiency, and interoperability of deployed tools and processes, and it increases overall situational awareness by enabling the potential for detailed automatable sharing, mapping, detection, and analysis heuristics.
This document serves as the specification for the CybOX Common Version 2.1.1 data model, which is one of two fundamental data models for CybOX content.
[bookmark: _Toc401131317]In Section 1.1, we discuss additional specification documents, in Section 1.2, we provide document conventions, and in Section 1.3, we provide terminology. References are given in Sections 1.4. In Section 2, we give background information necessary to fully understand the Core data model. We present the Core data model specification details in Section 3 and conformance information in Section 3.6.16.
1.1 [bookmark: _Toc412205405][bookmark: _Ref412300941][bookmark: _Ref412622367][bookmark: _Toc426119867][bookmark: _Toc450634541][bookmark: _Toc458094055]CybOXTM Specification Documents
The CybOX specification consists of a formal UML model and a set of textual specification documents that explain the UML model. Specification documents have been written for each of the individual data models that compose the full CybOX UML model.
CybOX has a modular design comprising two fundamental data models and a collection of Object data models. The fundamental data models – CybOX Core and CybOX Common – provide essential CybOX structure and functionality. The CybOX Objects, defined in individual data models, are precise characterizations of particular types of observable cyber entities (e.g., HTTP session, Windows registry key, DNS query).
Use of the CybOX Core and Common data models is required; however, use of the CybOX Object data models is purely optional: users select and use only those Objects and corresponding data models that are needed. Importing the entire CybOX suite of data models is not necessary.
The CybOX Version 2.1.1 Part 1: Overview document provides a comprehensive overview of the full set of CybOX data models, which in addition to the Core, Common, and numerous Object data models, includes various extension data models and a vocabularies data model, which contains a set of default controlled vocabularies. CybOX Version 2.1.1 Part 1: Overview also summarizes the relationship of CybOX to other externally defined data models, and outlines general CybOX data model conventions.
1.2 [bookmark: _Ref394437867][bookmark: _Toc426119868][bookmark: _Toc450634542][bookmark: _Toc458094056]Document Conventions
The following conventions are used in this document.
1.2.1 [bookmark: _Toc389570603][bookmark: _Toc389581073][bookmark: _Toc426119870][bookmark: _Toc450634543][bookmark: _Toc458094057]Fonts
The following font and font style conventions are used in the document:
· Capitalization is used for CybOX high level concepts, which are defined in CybOX Version 2.1.1 Part 1: Overview.

Examples: Action, Object, Event, Property

· The Courier New font is used for writing UML objects.

Examples: ActionType, cyboxCommon:BaseObjectPropertyType

Note that all high level concepts have a corresponding UML object. For example, the Action high level concept is associated with a UML class named, ActionType.

· The ‘italic’ font (with single quotes) is used for noting actual, explicit values for CybOX Language properties. The italic font (without quotes) is used for noting example values.
	Example: ‘HashNameVocab-1.0,’ high, medium, low
1.2.2 [bookmark: _Ref394486021][bookmark: _Toc426119871][bookmark: _Toc450634544][bookmark: _Toc458094058]UML Package References
[bookmark: _Toc389570605][bookmark: _Toc389581075]Each CybOX data model is captured in a different UML package (e.g., Core package) where the packages together compose the full CybOX UML model. To refer to a particular class of a specific package, we use the format package_prefix:class, where package_prefix corresponds to the appropriate UML package. CybOX Version 2.1.1 Part 1: Overview contains the full list of CybOX packages, along with the associated prefix notations, descriptions, and examples.
Note that in this specification document, we do not explicitly specify the package prefix for any classes that originate from the Common data model.
1.2.3 [bookmark: _Toc426119872][bookmark: _Toc450634545][bookmark: _Ref450642232][bookmark: _Ref450642325][bookmark: _Toc458094059]UML Diagrams
[bookmark: _Toc398719452][bookmark: _Toc389570606][bookmark: _Toc389581076][bookmark: _Ref394436861]This specification makes use of UML diagrams to visually depict relationships between CybOX Language constructs. Note that the diagrams have been extracted directly from the full UML model for CybOX; they have not been constructed purely for inclusion in the specification documents. Typically, diagrams are included for the primary class of a data model, and for any other class where the visualization of its relationships between other classes would be useful. This implies that there will be very few diagrams for classes whose only properties are either a data type or a class from the CybOX Common data model. Other diagrams that are included correspond to classes that specialize a superclass and abstract or generalized classes that are extended by one or more subclasses.
In UML diagrams, classes are often presented with their attributes elided, to avoid clutter. The fully described class can usually be found in a related diagram. A class presented with an empty section at the bottom of the icon indicates that there are no attributes other than those that are visualized using associations.
Certain UML classes are associated with the UML stereotype <<choice>>. The <<choice>> stereotype specifies that only one of the available properties of the class can be populated at any time. The CybOX UML models utilize Has_Choice as the role/property name for associations to <<choice>> stereotyped classes. This property is a modeling convention rather than a native element of the underlying data model and acts as a placeholder for one of the available properties of the <<choice>> stereotyped class.
1.2.3.1 [bookmark: _Toc426119873][bookmark: _Toc450634546]Class Properties
Generally, a class property can be shown in a UML diagram as either an attribute or an association (i.e., the distinction between attributes and associations is somewhat subjective). In order to make the size of UML diagrams in the specifications manageable, we have chosen to capture most properties as attributes and to capture only higher level properties as associations, especially in the main top-level component diagrams. In particular, we will always capture properties of UML data types as attributes. For example, properties of a class that are identifiers, titles, and timestamps will be represented as attributes.
1.2.3.2 [bookmark: _Toc398719453][bookmark: _Toc426119874][bookmark: _Toc450634547]Diagram Icons and Arrow Types
Diagram icons are used in a UML diagram to indicate whether a shape is a class, enumeration, or a data type, and decorative icons are used to indicate whether an element is an attribute of a class or an enumeration literal. In addition, two different arrow styles indicate either a directed association relationship (regular arrowhead) or a generalization relationship (triangle-shaped arrowhead). The icons and arrow styles we use are shown and described in Table 1‑1.
[bookmark: _Ref397637630][bookmark: _Ref397935245][bookmark: _Toc398719454]Table 1‑1. UML diagram icons
	Icon
	Description

	[image:]
	This diagram icon indicates a class. If the name is in italics, it is an abstract class.

	

	This diagram icon indicates an enumeration.

	[image:]
	This diagram icon indicates a data type.

	

	This decorator icon indicates an attribute of a class. The green circle means its visibility is public. If the circle is red or yellow, it means its visibility is private or protected.

	

	This decorator icon indicates an enumeration literal.

	[image:]
	This arrow type indicates a directed association relationship.

	

	This arrow type indicates a generalization relationship.

1.2.4 [bookmark: _Toc426119876][bookmark: _Toc450634548][bookmark: _Toc458094060]Property Table Notation
Throughout Section 3, tables are used to describe the properties of each data model class. Each property table consists of a column of names to identify the property, a type column to reflect the datatype of the property, a multiplicity column to reflect the allowed number of occurrences of the property, and a description column that describes the property. Package prefixes are provided for classes outside of the Core data model (see Section 1.2.2).
Note that if a class is a specialization of a superclass, only the properties that constitute the specialization are shown in the property table (i.e., properties of the superclass will not be shown). However, details of the superclass may be shown in the UML diagram.
1.2.5 [bookmark: _Toc412205415][bookmark: _Toc426119877][bookmark: _Toc450634549][bookmark: _Toc458094061]Property and Class Descriptions
Each class and property defined in CybOX is described using the format, “The X property verb Y.” For example, in the specification for the CybOX Core data model, we write, “The id property specifies a globally unique identifier for the Action.” In fact, the verb “specifies” could have been replaced by any number of alternatives: “defines,” “describes,” “contains,” “references,” etc.
However, we thought that using a wide variety of verb phrases might confuse a reader of a specification document because the meaning of each verb could be interpreted slightly differently. On the other hand, we didn’t want to use a single, generic verb, such as “describes,” because although the different verb choices may or may not be meaningful from an implementation standpoint, a distinction could be useful to those interested in the modeling aspect of CybOX.
Consequently, we have preferred to use the three verbs, defined as follows, in class and property descriptions:
	Verb
	CybOX Definition

	captures
	Used to record and preserve information without implying anything about the structure of a class or property. Often used for properties that encompass general content. This is the least precise of the three verbs.

	
	Examples:
The Observable_Source property characterizes the source of the Observable information. Examples of details captured include identifying characteristics, time-related attributes, and a list of the tools used to collect the information.
The Description property captures a textual description of the Action.

	characterizes
	Describes the distinctive nature or features of a class or property. Often used to describe classes and properties that themselves comprise one or more other properties.

	
	Examples:
The Action property characterizes a cyber observable Action.
The Obfuscation_Technique property characterizes a technique an attacker could potentially leverage to obfuscate the Observable.

	specifies
	Used to clearly and precisely identify particular instances or values associated with a property. Often used for properties that are defined by a controlled vocabulary or enumeration; typically used for properties that take on only a single value.

	
	Example:
The cybox_major_version property specifies the major version of the CybOX language used for the set of Observables.

1.3 [bookmark: _Toc85472893][bookmark: _Toc287332007][bookmark: _Ref428537349][bookmark: _Toc450634550][bookmark: _Toc458094062]Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
1.4 [bookmark: _Ref7502892][bookmark: _Toc12011611][bookmark: _Toc85472894][bookmark: _Toc287332008][bookmark: _Ref428537370][bookmark: _Toc450634551][bookmark: _Toc458094063]Normative References
[bookmark: rfc2119][RFC2119]	Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.	

[RFC3986]	Berners-Lee, T., Fielding, R. and Masinter, L., “Uniform Resource Identifier (URI): Generic Syntax,” STD 66, RFC 3986, January 2005. Available: https://www.ietf.org/rfc/rfc3986.txt.

[bookmark: rfc2045][RFC2045] 	Freed, N., Borenstein, N., “Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies”, RCF 2045, November 1996. Available: https://www.ietf.org/rfc/rfc2045.txt	

[bookmark: iso8601][ISO8601]	Date and time format – ISO 8601 (n.d.). International Organization for Standardization (ISO). [Online]. Available: http://www.iso.org/iso/home/standards/iso8601.htm. Accessed: December 15, 2015.

[bookmark: ieee754][IEEE 754-1985]	IEEE. IEEE Standard for Binary Floating-Point Arithmetic. Available: http://standards.ieee.org/reading/ieee/std_public/description/busarch/754-1985_desc.html

[bookmark: cpe][CPE]	Common Platform Enumeration (CPE). (2014, Nov. 28). The MITRE Corporation. [Online]. Available: http://cpe.mitre.org.
2 [bookmark: _Ref428537380][bookmark: _Toc450634552][bookmark: _Toc458094064]Background Information
In this section, we provide high level information about the Common data model that is necessary to fully understand the specification details given in Section 3.
The CybOX Common data model defines object classes that are shared across the various CybOX data models. There is a wide variety of class types, so to make the specification document content easier to reference and understand, we have organized the data model content into eight categories:
· Object Property Classes and Data Types – capture a property of a CybOX object, with support for metadata and patterning.
· General Shared Classes – serve a variety of purposes and shared across the CybOX data models.
· General Classes and Data Types – support classes and data types defined in the CybOX data models.
· Vocabulary Data Types – provide a content creator with choices for defining content.
· Enumerations – support the classes defined in the CybOX data models.
Each category is contained in a separate subsection in Section 3.
3
cybox-v2.1.1-csprd01-part02-common		20 June 2016
Standards Track Work Product	Copyright © OASIS Open 2016. All Rights Reserved.	Page 13 of 86
4 [bookmark: _Ref428537399][bookmark: _Toc450634553][bookmark: _Toc458094065][bookmark: _Toc287332011]CybOX Common Data Model
[bookmark: _Ref394446305]The CybOX Core data model defines a variety of classes and data types. For discussion purposes, we have separated the classes into five categories (Sections 3.1 through 3.5), and within each category, we primarily define the classes and data types in alphabetical order below, except for the cases when a class or data type is uniquely used in the main class or data type. We list enumerations in Section 3.6.
4.1 [bookmark: _Toc425409645][bookmark: _Toc450634554][bookmark: _Toc458094066][bookmark: _Ref423775370][bookmark: _Toc426119881]ObjectPropertiesType Class
The ObjectPropertiesType class is an abstract class within the CybOX schema enabling the inclusion of contextually varying object properties descriptions. This abstract type is leveraged as the extension base for all predefined CybOX object properties schemas. Through this extension mechanism, any object instance data based on an object properties schema extended from ObjectPropertiesType (e.g. File_Object, Address_Object, etc.) can be directly integrated into any instance document where a property is defined as ObjectPropertiesType. For flexibility and extensibility purposes any user of CybOX can specify their own externally defined object properties schemas (outside of or derived from the set of predefined objects) extended from ObjectPropertiesType class and utilize them as part of their CybOX content.
Table 3‑1. Properties of the ObjectPropertiesType class
	Name
	Type
	Multiplicity
	Description

	object_reference
	basicDataTypes:
QualifiedName
	0..1
	The object_reference property specifies a unique ID reference to an Object defined elsewhere. This property allows for the re-use of the defined Properties of one Object within another, without the need to embed the full Object in the location from which it is being referenced. Thus, this ID reference is intended to resolve to the properties of the Object that it points to.

	Custom_Properties
	CustomPropertiesType
	0..1
	The Custom_Properties property characterizes a set of custom Object Properties that may not be defined in existing properties.

4.2 [bookmark: _Toc450634555][bookmark: _Toc458094067][bookmark: _Toc425409654][bookmark: _Toc426119882]Object Properties Data Types
Objects in CybOX can have properties of various different data types. This section describes the underlying model for all Object properties, such that they support metadata and pattern matching.
4.2.1 [bookmark: _Toc425409648][bookmark: _Toc450634556][bookmark: _Toc458094068]BaseObjectPropertyType Data Type
The BaseObjectPropertyType data type represents a common typing foundation for the specification of a single Object Property. The BaseObjectPropertyType data type is extended from the BaseObjectPropertyGroup data type, which is an abstract data type that contains the auxiliary metadata properties associated with the main property value being represented. In addition, the BaseObjectPropertyType data type also inherits from PatternFieldGroup data type. This data type incorporates pattern matching capabilities to all specializations of BaseObjectPropertyType.
[image:]
Figure 3‑1. UML diagram for BaseObjectPropertyType data type
Object Properties that use the BaseObjectPropertyType data type can express multiple values by providing them using a delimiter-separated list. The default delimiter is '##comma##' (no quotes) but can be overridden through use of the delimiter property. Note that whitespace is preserved and so, when specifying a list of values, do not include a space following the delimiter in a list unless the first character of the next list item should, in fact, be a space.
4.2.1.1 [bookmark: _Toc425409669][bookmark: _Toc450634557][bookmark: _Toc425409664][bookmark: _Toc425409655][bookmark: _Toc425409657][bookmark: _Toc425409656]BaseObjectPropertyGroup Data Type
The BaseObjectPropertyGroup is an abstract data type that aggregates a set of metadata properties associated with an Object instance.
Table 3‑2. Properties of the BaseObjectPropertyGroup class
	Name
	Type
	Multiplicity
	Description

	id
	basicDataTypes:
QualifiedName
	0..1
	The id property specifies a globally unique identifier for the Object Property.

	idref
	basicDataTypes:
QualifiedName
	0..1
	The idref property specifies an identifier reference to an Object Property instance specified elsewhere. When the idref property is used, no other property should be specified.

	datatype
	DatatypeEnum
	0..1
	The datatype property specifies the expected type for the value of the specified property. Data Types that are specializations of this class will usually redefine this property to specify one of the enumeration literals as the default, corresponding to class being modeled.

	appears_random
	basicDataTypes:
Boolean
	0..1
	The appears_random property specifies whether the associated object property value appears to somewhat random in nature. An object property with this property set to TRUE need not provide any further information including a value. If more is known about the particular variation of randomness, a regex value could be provided to outline what is known of the structure.

	is_obfuscated
	basicDataTypes:
Boolean
	0..1
	The is_obfuscated property specifies whether the associated Object property has been obfuscated.

	obfuscation_algorithm_ref
	basicDataTypes:
URI
	0..1
	The obfuscation_algorithm_ref property specifies a reference to a description of the algorithm used to obfuscate this Object property.

	is_defanged
	basicDataTypes:
Boolean
	0..1
	The is_defanged property specifies whether the associated Object property has been defanged (representation changed to prevent malicious effects of handling/processing).

	defanging_algorithm_ref
	basicDataTypes:
URI
	0..1
	The defanging_algorithm_ref property specifies a reference to a description of the algorithm used to defang (representation changed to prevent malicious effects of handling/processing) this Object property.

	refanging_transform_type
	basicDataTypes:
BasicString
	0..1
	The refanging_transform_type property specifies the type (e.g. RegEx) of refanging transform specified in the optional accompanying refanging_transform property.

	refanging_transform
	basicDataTypes:
BasicString
	0..1
	The refanging_transform property captures an automated transform that can be applied to the Object property content in order to refang it to its original format.

	observed_encoding
	basicDataTypes:
BasicString
	0..1
	The observed_encoding property captures the encoding of the string when it is/was observed. This may be different from the encoding used to represent the string within this property. It is strongly recommended that character set names should be taken from the IANA character set registry (https://www.iana.org/assignments/character-sets/character-sets.xhtml). This property is intended to be applicable only to Object properties which contain string values.

4.2.1.2 [bookmark: _Toc425409670][bookmark: _Toc450634558]PatternFieldGroup Data Type
The PatternFieldGroup is an abstract data type that aggregates a set of properties for the application of patterns.
Table 3‑3. Properties of the PatternFieldGroup class
	Name
	Type
	Multiplicity
	Description

	condition
	ConditionTypeEnum
	0..1
	The condition property specifies the relevant condition to apply to the value.

	is_case_sensitive
	basicDataTypes:Boolean
	0..1
	The is_case_sensitive property specifies the case-sensitivity of a pattern which uses an Equals, DoesNotEqual, Contains, DoesNotContain, StartsWith, EndsWith, or FitsPattern condition. The default value for this property is TRUE which indicates that pattern evaluations are to be considered case-sensitive.

	apply_condition
	ConditionApplicationEnum
	0..1
	The apply_condition property specifies how a condition should be applied when the Object property body contains a list of values. (Its value is meaningless if the Object property value contains only a single value as all possible values for this property would have the same behavior.) If this property is set to ANY, then a pattern is considered to be matched if the provided condition successfully evaluates for any of the values in the Object property body. If the property is set to ALL, then the pattern only matches if the provided condition successfully evaluates for every value in the Object property body.

	delimiter
	basicDataTypes: BasicString
	0..1
	The delimiter property captures the delimiter used when defining lists of values. The default value is "##comma##".

	bit_mask
	basicDataTypes:HexBinary
	0..1
	The bit_mask property specifies a bit_mask in conjunction with one of the defined binary conditions (bitwiseAnd, bitwiseOr, and bitwiseXor). This bitmask is then uses as one operand in the indicated bitwise computation.

	pattern_type
	PatternTypeEnum
	0..1
	The pattern_type property specifies the type of pattern used if one is specified for the Object property value. This is applicable only if the Condition property is set to 'FitsPattern'.

	regex_syntax
	basicDataTypes:
BasicString
	0..1
	The regex_syntax property captures the syntax format used for a regular expression, if one is specified for the property value. This is applicable only if the Condition property is set to 'FitsPattern'. Setting this property with an empty value (e.g., "") or omitting it entirely notifies CybOX consumers and pattern evaluators that the corresponding regular expression utilizes capabilities, character classes, escapes, and other lexical tokens defined by the CybOX Language Specification. Setting this attribute with a non-empty value notifies CybOX consumers and pattern evaluators that the corresponding regular expression utilizes capabilities not defined by the CybOX Language Specification. The regular expression must be evaluated through a compatible regular expression engine in this case.

	has_changed
	basicDataTypes:Boolean
	0..1
	The has_changed property specifies whether a targeted observation pattern of the associated Object property value has changed. This property would be leveraged within a pattern observable triggering on whether the value of a single Object property value has changed.

	trend
	basicDataTypes:Boolean
	0..1
	The trend property specifies whether a targeted observation pattern of the nature of any trend in the associated Object property value. This property would be leveraged within a pattern observable triggering on the matching of a specified trend in the value of a single specified Object property.

4.2.2 [bookmark: _Ref438468566][bookmark: _Toc450634559][bookmark: _Toc458094069]AnyURIObjectPropertyType Data Type
The AnyURIObjectPropertyType data type represents the specification of a single Object property whose core value is a BasicString such that it adheres to the standard defined in [RFC3986]. It extends the base data type BaseObjectPropertyType. This type will be assigned to any property of a CybOX object that should contain a URI and enables the use of relevant metadata for the property. This class redefines the property datatype to have a default value of the URI literal from the DatatypeEnum enumeration.
4.2.3 [bookmark: _Toc425409668][bookmark: _Toc450634560][bookmark: _Toc458094070]Base64BinaryObjectPropertyType Data Type
The Base64BinaryObjectPropertyType data type represents the specification of a single Object property whose core value is a BasicString such that it adheres to the standard defined in [RFC2045]. It extends the base data type BaseObjectPropertyType. This class will be assigned to any property of a CybOX object that should contain Base64Binary content and enables the use of relevant metadata for the property. This class redefines the property datatype to have a default value of the base64Binary literal from the DatatypeEnum enumeration.
4.2.4 [bookmark: _Toc450634561][bookmark: _Toc458094071][bookmark: _Toc425409653]DateObjectPropertyRestrictionType Data Type
The DateObjectPropertyRestrictionType data type is a type is an intermediate type to allow for the addition of the precision property to DateObjectPropertyType. It extends the base data type BaseObjectPropertyType. This class redefines the property datatype to have a default value of the date literal from the DatatypeEnum enumeration. It should not be used directly.
4.2.4.1 [bookmark: _Toc450634562]DateObjectPropertyType Data Type
The DateObjectPropertyType data type (extended from the DateObjectPropertyRestrictionType data type) represents the specification of a single Object property whose core value is a BasicString such that it adheres to the standard defined in [ISO8601] for expressing a date. This type will be assigned to any property of a CybOX object that should contain Date content and enables the use of relevant metadata for the property.
For properties of this type using CybOX patterning, it is strongly suggested that the condition (pattern type) is limited to one of Equals, DoesNotEqual, GreaterThan, LessThan, GreaterThanOrEqual, LessThanOrEqual, ExclusiveBetween, or InclusiveBetween. The use of other conditions may lead to ambiguity or unexpected results. When evaluating data against a pattern, the evaluator should take into account the precision of the property (as given by the precision property) and any timezone information that is available to perform a data-aware comparison. The usage of simple string comparisons is discouraged due to ambiguities in how precision and timezone information is processed.
Table 3‑4. Properties of the DateObjectPropertyType class
	Name
	Type
	Multiplicity
	Description

	precision
	DatePrecisionEnum
	0..1
	The precision property specifies the granularity with which the date should be considered. If omitted, the default is "day", meaning the full property value. Digits in a timestamp that are beyond the specified precision should be zeroed out. When used in conjunction with CybOX patterning, the pattern should only be evaluated against the target up to the given precision.

4.2.5 [bookmark: _Toc450634563][bookmark: _Toc458094072]DateTimeObjectPropertyRestrictionType Data Type
The DateTimeObjectPropertyRestrictionType class is data type is an intermediate type to allow for the addition of the precision property to DateTimeObjectPropertyType. It extends the base data type BaseObjectPropertyType. This class redefines the property datatype to have a default value of the dateTime literal from the DatatypeEnum enumeration. It should not be used directly.
4.2.5.1 [bookmark: _Toc450634564]DateTimeObjectPropertyType Data Type
The DateTimeObjectPropertyType data type (extended from the DateTimeObjectPropertyRestrictionType data type) represents the specification of a single Object property whose core value is a BasicString such that it adheres to the standard defined in [ISO8601] for expressing a date and time. This type will be assigned to any property of a CybOX object that should contain DateTime content and enables the use of relevant metadata for the property. In order to avoid ambiguity, it is strongly suggested that any property using this class SHOULD include a timezone.
For properties of this type using CybOX patterning, it is strongly suggested that the condition (pattern type) is limited to one of Equals, DoesNotEqual, GreaterThan, LessThan, GreaterThanOrEqual, LessThanOrEqual, ExclusiveBetween, or InclusiveBetween. The use of other conditions may lead to ambiguity or unexpected results. When evaluating data against a pattern, the evaluator should take into account the precision of the property (as given by the precision attribute) and any timezone information that is available to perform a data-aware comparison. The usage of simple string comparisons is discouraged due to ambiguities in how precision and timezone information is processed.
Table 3‑5. Properties of the DateTimeObjectPropertyType class
	Name
	Type
	Multiplicity
	Description

	Precision
	DateTimePrecisionEnum
	0..1
	The precision property specifies the granularity with which the time should be considered, as specified by the DateTimePrecisionEnum enumeration (e.g., hour, minute). If omitted, the default precision is second. Digits in a timestamp that are beyond the specified precision should be zeroed out. When used in conjunction with CybOX patterning, the pattern should only be evaluated against the target up to the given precision.

4.2.6 [bookmark: _Toc450634565][bookmark: _Toc458094073]DoubleObjectPropertyType Data Type
The DoubleObjectPropertyType data type represents the specification of a single Object property whose core value is a BasicString such that it adheres to the standard defined in [IEEE 754-1985]. It extends the base data type BaseObjectPropertyType. This type will be assigned to any property of a CybOX object that should contain Double content and enables the use of relevant metadata for the property. This class redefines the property datatype to have a default value of the double literal from the DatatypeEnum enumeration.
4.2.7 [bookmark: _Toc425409665][bookmark: _Toc450634566][bookmark: _Toc458094074]DurationObjectPropertyType Data Type
The DurationObjectPropertyType data type represents the specification of a single Object property whose core value is a BasicString such that it adheres to the standard defined in [ISO8601] for expressing date/time duration. It extends the base data type BaseObjectPropertyType. This type will be assigned to any property of a CybOX object that should contain duration content and enables the use of relevant metadata for the property. This class redefines the property datatype to have a default value of the duration literal from the DatatypeEnum enumeration.
4.2.8 [bookmark: _Toc450634567][bookmark: _Toc458094075]FloatObjectPropertyType Data Type
The FloatObjectPropertyType data type represents the specification of a single Object property whose core value is value is a BasicString such that it adheres to the standard defined in [IEEE 754-1985]. It extends the base data type BaseObjectPropertyType. This type will be assigned to any property of a CybOX object that should contain content of type Float and enables the use of relevant metadata for the property. This class redefines the property datatype to have a default value of the float literal from the DatatypeEnum enumeration.
4.2.9 [bookmark: _Toc425409661][bookmark: _Ref439145062][bookmark: _Toc450634568][bookmark: _Toc458094076]HexBinaryObjectPropertyType Data Type
The HexBinaryObjectPropertyType data type represents the specification of a single Object property whose core value is value is a BasicString such that it adheres to the regular expression [0-9A-Fa-f]*. It extends the base data type BaseObjectPropertyType. This type will be assigned to any property of a CybOX object that should contain content of type HexBinary and enables the use of relevant metadata for the property. This class redefines the property datatype to have a default value of the hexBinary literal from the DatatypeEnum enumeration.
4.2.9.1 [bookmark: _Toc425409682][bookmark: _Ref437597941][bookmark: _Toc450634569]SimpleHashValueType Data Type
The SimpleHashValueType data type is used for characterizing the output of basic cryptographic hash functions outputting a single hexbinary hash value. It extends the HexBinaryObjectPropertyType data type.
4.2.9.2 [bookmark: _Toc425409683][bookmark: _Ref437597951][bookmark: _Toc450634570]FuzzyHashValueType Data Type
The FuzzyHashValueType data type is used for characterizing the output of cryptographic fuzzy hash functions outputting a single complex string based hash value. It extends the HexBinaryObjectPropertyType data type.
4.2.10 [bookmark: _Toc425409649][bookmark: _Toc450634571][bookmark: _Toc458094077][bookmark: _Toc425409662][bookmark: _Toc425409658]IntegerObjectPropertyType Data Type
The IntegerObjectPropertyType data type represents the specification of a single Object property whose core value is a BasicString such that it corresponds to a sequence of decimal digits, with perhaps a leading minus or plus sign (“-“ or “+”). It extends the base data type BaseObjectPropertyType. This type will be assigned to any property of a CybOX object that should contain content of type Integer and enables the use of relevant metadata for the property. This data type redefines the property datatype to have a default value of the int literal from the DatatypeEnum enumeration.
4.2.11 [bookmark: _Toc450634572][bookmark: _Toc458094078]LongObjectPropertyType Data Type
The LongObjectPropertyType data type represents the specification of a single Object property whose core value is a BasicString such that it corresponds to a sequence of decimal digits, but limited to the values -9223372036854775808 through 9223372036854775807, inclusive. A leading minus or plus sign (“-“ or “+”) is permitted. It extends the base data type BaseObjectPropertyType. This type will be assigned to any property of a CybOX object that should contain content of type Long and enables the use of relevant metadata for the property. This data type redefines the property datatype to have a default value of the long literal from the DatatypeEnum enumeration.
4.2.12 [bookmark: _Toc425409651][bookmark: _Toc450634573][bookmark: _Toc458094079][bookmark: _Toc425409663][bookmark: _Toc425409660][bookmark: _Toc425409659]NameObjectPropertyType Data Type
The NameObjectPropertyType data type represents the specification of a single Object property whose core value is a BasicString that corresponds to legal XML 1.0 names. It extends the base data type BaseObjectPropertyType. This type will be assigned to any property of a CybOX object that should contain content of type Name and enables the use of relevant metadata for the property. This data type redefines the property datatype to have a default value of the name literal from the DatatypeEnum enumeration.
4.2.13 [bookmark: _Toc450634574][bookmark: _Toc458094080]NonNegativeIntegerObjectPropertyType Data Type
The NonNegativeIntegerObjectPropertyType data type represents the specification of a single Object property whose core value is a BasicString such that it corresponds to a sequence of decimal digits, which may only be proceeded by the plus sign (“+”). It extends the base data type BaseObjectPropertyType. This type will be assigned to any property of a CybOX object that should contain content of type NonNegativeInteger and enables the use of relevant metadata for the property. This data type redefines the property datatype to have a default value of the nonNegativeInteger literal from the DatatypeEnum enumeration.
4.2.14 [bookmark: _Toc450634575][bookmark: _Toc458094081]PositiveIntegerObjectPropertyType Data Type
The PositiveIntegerObjectPropertyType data type represents the specification of a single Object property whose core value is a BasicString that corresponds to a positive integer. The value 0 is not permitted. It extends the base data type BaseObjectPropertyType. This type will be assigned to any property of a CybOX object that should contain content of type PositiveInteger and enables the use of relevant metadata for the property. This data type redefines the property datatype to have a default value of the positiveInteger literal from the DatatypeEnum enumeration.
4.2.15 [bookmark: _Toc425409650][bookmark: _Toc450634576][bookmark: _Toc458094082][bookmark: _Toc425409667]StringObjectPropertyType Data Type
The StringObjectPropertyType data type represents the specification of a single Object property whose core value is a BasicString. It extends the base data type BaseObjectPropertyType. This type will be assigned to any property of a CybOX object that should contain content of type String and enables the use of relevant metadata for the property. This data type redefines the property datatype to have a default value of the string literal from the DatatypeEnum enumeration.
4.2.15.1 [bookmark: _Toc425409691][bookmark: _Toc450634577]DataSizeType Data Type
The DataSizeType data type specifies the size of the data segment. It extends the data type StringObjectPropertyType. In addition to representing the size of the data segment as a BasicString, the units property can be used to specify the units used to express the size.
Table 3‑6. Properties of the DataSizeType data type
	Name
	Type
	Multiplicity
	Description

	units
	DataSizeUnitsEnum
	0..1
	The units property specifies the Units used in the object size element.

4.2.15.2 [bookmark: _Toc425409693][bookmark: _Toc450634578]PlatformIdentifierType Data Type
The PlatformIdentiferType data type is used to specify a name for a platform using a particular naming system and also allowing a reference pointing to more information about that naming scheme. For example, one could provide a CPE (Common Platform Enumeration) [CPE] name using the CPE naming format. In this case, the system value could be "CPE" while the system_ref value could be "http://scap.nist.gov/specifications/cpe/". It extends the data type StringObjectPropertyType.
Table 3‑7. Properties of the PlatformIdentifierType data type
	Name
	Type
	Multiplicity
	Description

	system
	basicDataTypes:
BasicString
	0..1
	The system property captures the naming system from which the indicated name was drawn.

	system-ref
	basicDataTypes:URI
	0..1
	The system-ref property specifies a reference to information about the naming system from which the indicated name was drawn.

4.2.16 [bookmark: _Toc425409666][bookmark: _Toc450634579][bookmark: _Toc458094083]TimeObjectPropertyRestrictionType Data Type
The TimeObjectPropertyRestrictionType data type is a type is an intermediate type to allow for the addition of the precision property to TimeObjectPropertyType. It extends the base data type BaseObjectPropertyType. This data type redefines the property datatype to have a default value of the time literal from the DatatypeEnum enumeration. It should not be used directly.
4.2.16.1 [bookmark: _Toc450634580]TimeObjectPropertyType Data Type
The TimeObjectPropertyType data type (extended from the TimeObjectPropertyRestrictionType data type) represents the specification of a single Object property whose core value is a BasicString such that it adheres to the standard defined in [ISO8601]. This type will be assigned to any property of a CybOX object that should contain content of type Time and enables the use of relevant metadata for the property. In order to avoid ambiguity, it is strongly suggested that any property using this data type SHOULD include a timezone.
For properties of this type using CybOX patterning, it is strongly suggested that the condition (pattern type) is limited to one of Equals, DoesNotEqual, GreaterThan, LessThan, GreaterThanOrEqual, LessThanOrEqual, ExclusiveBetween, or InclusiveBetween. The use of other conditions may lead to ambiguity or unexpected results. When evaluating data against a pattern, the evaluator should take into account the precision of the property (as given by the precision attribute) and any timezone information that is available to perform a data-aware comparison. The usage of simple string comparisons is discouraged due to ambiguities in how precision and timezone information is processed.
Table 3‑8. Properties of the TimeObjectPropertyType data type
	Name
	Type
	Multiplicity
	Description

	precision
	TimePrecisionEnum
	0..1
	The precision property specifies the granularity with which a timestamp should be considered as specified by the TimePrecisionEnum enumeration (e.g., hour, minute). If omitted, the default precision is second. Digits in a timestamp that are beyond a specified precision SHOULD be zeroed out. When used in conjunction with CybOX patterning, the pattern should only be evaluated against the target up to the given precision.

4.2.17 [bookmark: _Toc450634581][bookmark: _Toc458094084]UnsignedIntegerObjectPropertyType Data Type
The UnsignedIntegerObjectPropertyType data type represents the specification of a single Object property whose core value is a BasicString such that it corresponds to a sequence of decimal digits, but limited to the values 0 through 4294967295, inclusive. It extends the base data type BaseObjectPropertyType. This type will be assigned to any property of a CybOX object that should contain content of type an unsigned integer and enables the use of relevant metadata for the property. This data type redefines the property datatype to have a default value of the unsignedInt literal from the DatatypeEnum enumeration.
4.2.18 [bookmark: _Toc450634582][bookmark: _Toc458094085]UnsignedLongObjectPropertyType Data Type
The UnsignedLongObjectPropertyType data type represents the specification of a single Object property whose core value is a BasicString such that it corresponds to a sequence of decimal digits, but limited to the values 0 through 18446744073709551615, inclusive. It extends the base data type BaseObjectPropertyType. This type will be assigned to any property of a CybOX object that should contain content of type unsigned long integer and enables the use of relevant metadata for the property. This data type redefines the property datatype to have a default value of the unsignedLong literal from the DatatypeEnum enumeration.
4.2.19 [bookmark: _Ref438468581][bookmark: _Toc450634583][bookmark: _Toc458094086][bookmark: _Toc425409703][bookmark: _Toc425409704][bookmark: _Toc425409714]ObjectPropertyType Data Types Related to Enumerations
The data types described in this section represent the specification of a single Object property whose core value is a BasicString, which SHOULD be one of the literals found in the corresponding enumeration; however, any free form text string is permitted.
4.2.19.1 [bookmark: _Toc425409706][bookmark: _Toc450634584]CipherType Data Type
The CipherType specifies encryption algorithms. Its core value SHOULD be a literal from the CipherEnum enumeration. It extends the BaseObjectPropertyType data type, for permitting complex (i.e. regular-expression based) specifications.
4.2.19.2 [bookmark: _Toc425409622][bookmark: _Toc450634585]CompensationModelType Data Type
The CompensationModelType data type characterizes the compensation model for a tool. Its core value SHOULD be a literal from the CompensationModelEnum enumeration. It extends the BaseObjectPropertyType data type, in order to permit complex (i.e. regular-expression based) specifications.
4.2.19.3 [bookmark: _Toc425409705][bookmark: _Toc450634586]EndiannessType Data Type
The EndiannessType specifies names for byte ordering methods. Its core value SHOULD be a literal from the EndiannessTypeEnum enumeration. It extends the BaseObjectPropertyType data type, in order to permit complex (i.e. regular-expression based) specifications.
4.2.19.4 [bookmark: _Toc450634587]Layer4ProtocolType Data Type
The Layer4ProtocolType data type specifies Layer 4 protocol types. Its core value SHOULD be a literal from the Layer4ProtocolEnum enumeration. It extends the BaseObjectPropertyType data type, in order to permit complex (i.e. regular-expression based) specifications.
4.2.19.5 [bookmark: _Toc425409707][bookmark: _Toc450634588]RegionalRegistryType Data Type
The RegionalRegistryType data type specifies a Regional Internet Registry (RIR) for a given WHOIS entry. Its core value SHOULD be a literal from the RegionalRegistryTypeEnum enumeration. It extends the BaseObjectPropertyType data type, in order to permit complex (i.e. regular-expression based) specifications.
4.2.19.6 [bookmark: _Toc450634589]SIDType Data Type
The SIDType data type specifies the Windows Security ID (SID) types. Its core values SHOULD be one of the literals from the SIDTypeEnum enumeration. It extends the BaseObjectPropertyType data type, in order to permit complex (i.e. regular-expression based) specifications.
4.3 [bookmark: _Toc450634590][bookmark: _Toc458094087]General Shared Classes
4.3.1 [bookmark: _Toc450634591][bookmark: _Toc458094088][bookmark: _Toc425409621]MeasureSourceType Class
The MeasureSourceType class is a type representing a description of a single cyber observation source.
[image:]
Figure 3‑2. UML diagram for the MeasureSourceType class
Table 3‑9. Properties of the MeasureSourceType class
	Name
	Type
	Multiplicity
	Description

	class
	SourceClassTypeEnum
	0..1
	The class property specifies the identification of the high-level source of this cyber observation source.

	source_type
	SourceTypeEnum
	0..1
	The source_type property specifies the identification of the broad type of this cyber observation source.

	name
	basicDataTypes:
BasicString
	0..1
	The name property specifies the assignment of a relevant name to this Discovery Method.

	sighting_count
	basicDataTypes:
PositiveInteger
	0..1
	The sighting_count property specifies how many different identical instances of a given Observable may have been seen/sighted by the observation source.

	Information_Source_Type
	VocabularyStringType
	0..1
	The Information_Source_Type property specifies the type of information source. Examples of potential types are application logs, help desk and TPM (these specific values are only provided to help explain the property: they are neither recommended values nor necessarily part of any existing vocabulary). The content creator may choose any arbitrary value or may constrain the set of possible values by referencing an externally-defined vocabulary or leveraging a formally defined vocabulary extending from the cyboxCommon:ControlledVocabularyStringType class. The CybOX default vocabulary class for use in the property is ‘InformationSourceTypeVocab-1.0’.

	Tool_Type
	VocabularyStringType
	0..1
	The Tool_Type property specifies the type of the tool. Examples of potential types are NIDS, asset scanner, and malware analysis (these specific values are only provided to help explain the property: they are neither recommended values nor necessarily part of any existing vocabulary). The content creator may choose any arbitrary value or may constrain the set of possible values by referencing an externally-defined vocabulary or leveraging a formally defined vocabulary extending from the cyboxCommon:ControlledVocabularyStringType class. The CybOX default vocabulary class for use in the property is ‘ToolTypeVocab-1.1’.

	Description
	StructuredTextType
	0..1
	The Description property captures a technical description of the measure source. Any length is permitted. Optional formatting is supported via the structuring_format property of the StructuredTextType data type.

	Contributors
	PersonnelType
	0..1
	The Contributors property characterizes the description of the individual contributors involved in this cyber observation source.

	Time
	TimeType
	0..1
	The Time property specifies the various time-related properties for this cyber observation source instance.

	Observation_Location
	LocationType
	0..1
	The Observation_Location property specifies a relevant physical location for the associated Observation. The underlying abstract class MUST be extended. The default and strongly RECOMMENDED subclass is CIQAddressInstanceType, as defined in CybOX Version 2.1.1 Part 4: Default Extensions.

	Tools
	ToolsInformationType
	0..1
	The Tools property characterizes the tools utilized for this cyber observation source.

	Platform
	PlatformSpecificationType
	0..1
	The Platform property characterizes a formal, standardized specification of the platform for this cyber observation source.

	System
	ObjectPropertiesType
	0..1
	The System property characterizes the system on which the mechanism of cyber observation executed. System SHOULD be an object of type SystemObj:SystemObjectType.

	Instance
	ObjectPropertiesType
	0..1
	The Instance property characterizes the process instance in which the mechanism of cyber observation executed. Instance SHOULD be of type ProcessObj:ProcessObjectType.

	Observable_Location
	LocationType
	0..1
	The Observable_Location property specifies a relevant physical location for the associated Observable. The underlying abstract class MUST be extended. The default and strongly RECOMMENDED subclass is CIQAddressInstanceType, as defined in the CybOX Version 2.1.1 Part 4: Default Extensions.

[bookmark: _Toc425409616]
4.3.2 [bookmark: _Toc450634592][bookmark: _Toc458094089][bookmark: _Toc425409633]Build-Related Classes
4.3.2.1 [bookmark: _Toc450634593]BuildInformationType Class
The BuildInformationType class contains information describing how this tool was built.
[image:]
Figure 3‑3. UML diagram for the BuildInformationType class
Table 3‑10. Properties of the BuildInformationType class
	Name
	Type
	Multiplicity
	Description

	Build_ID
	basicDataTypes:
BasicString
	0..1
	The Build_ID property captures an externally defined unique identifier of this build of this application instance.

	Build_Project
	basicDataTypes:
BasicString
	0..1
	The Build_Project property captures the project name of this build of this application instance.

	Build_Utility
	BuildUtilityType
	0..1
	The Build_Utility property characterizes the utility used to build this application.

	Build_Version
	basicDataTypes:
BasicString
	0..1
	The Build_Version property captures the appropriate version descriptor of this build of this application instance.

	Build_Label
	basicDataTypes:
BasicString
	0..1
	The Build_Label property captures any relevant label for this build of this application instance.

	Compilers
	CompilersType
	0..1
	The Compilers property characterizes compilers utilized during this build of this application.

	Compilation_Date
	DateTimeWithPrecisionType
	0..1
	The Completion_Date property specifies the compilation date for the build of the tool. In order to avoid ambiguity, it is strongly suggest that all timestamps in this field include a specification of the timezone if it is known.

	Build_Configuration
	BuildConfigurationType
	0..1
	The Build_Configuration property characterizes how the build utility was configured for this build of this application.

	Build_Script
	basicDataTypes:
BasicString
	0..1
	The Build_Script property captures the actual build script for this build of this application instance.

	Libraries
	LibrariesType
	0..1
	The Libraries property characterizes the libraries incorporated into the build of the tool.

	Build_Output_Log
	basicDataTypes:
BasicString
	0..1
	The Build_Output_Log property captures the output log of the build process.

4.3.2.2 [bookmark: _Toc425409634][bookmark: _Toc450634594]BuildUtilityType Class
The BuildUtilityType class contains information identifying the utility used to build this application.
Table 3‑11. Properties of the BuildUtilityType class
	Name
	Type
	Multiplicity
	Description

	Build_Utility_Name
	basicDataTypes:
BasicString
	1
	The Build_Utility_Name property captures the informally defined name of the utility used to build this application instance.

	Build_Utility_Platform_Specification
	PlatformSpecificationType
	1
	The Build_Utility_Platform_Specification property characterizes the build utility used to build this application.

4.3.2.3 [bookmark: _Toc425409638][bookmark: _Toc450634595]BuildConfigurationType Class
The BuildConfigurationType class describes how the build utility was configured for this build of this application.
Table 3‑12. Properties of the BuildConfigurationType class
	Name
	Type
	Multiplicity
	Description

	Configuration_Setting_Description
	basicDataTypes:
BasicString
	0..1
	The Configuration_Setting_Description property captures the configuration settings for this build of this application instance.

	Configuration_Settings
	ConfigurationSettingsType
	1
	The Configuration_Settings property characterizes the configuration settings for this build of this application instance.

4.3.2.4 [bookmark: _Toc425409641][bookmark: _Toc450634596]ExecutionEnvironmentType Class
The ExecutionEnvironmentType class contains information describing the execution environment of the tool.
Table 3‑13. Properties of the ExecutionEnvironmentType class
	Name
	Type
	Multiplicity
	Description

	System
	ObjectPropertiesType
	0..1
	The System property characterizes the system on which the tool was executed. This property should be of class SystemObj:SystemObjectType.

	User_Account_Info
	ObjectPropertiesType
	0..1
	The User_Account_Info property characterizes the user account that executed the tool. This property should be of class UserAccountObj:UserAccountObjectType.

	Command_Line
	basicDataTypes:
BasicString
	0..1
	The Command_Line property captures the command line string used to run the tool.

	Start_Time
	DateTimeWithPrecisionType
	0..1
	The Start_Time property specifies when the tool was run. In order to avoid ambiguity, it is strongly suggest that all timestamps in this field include a specification of the timezone if it is known.

4.3.3 [bookmark: _Toc425409678][bookmark: _Toc450634597][bookmark: _Toc458094090][bookmark: _Toc425409677][bookmark: _Toc425409635][bookmark: _Toc425409626][bookmark: _Toc425409620]ByteRunsType Class
The ByteRunsType class is used for representing a list of byte runs from within a raw object.
Table 3‑14. Properties of the ByteRunsType class
	Name
	Type
	Multiplicity
	Description

	Byte_Run
	ByteRunType
	1..*
	The Byte_Run property characterizes a single byte run from the raw object.

4.3.3.1 [bookmark: _Toc425409679][bookmark: _Toc450634598]ByteRunType Class
The ByteRunType class is used for representing a single byte run from within a raw object.
Table 3‑15. Properties of the ByteRunType class
	Name
	Type
	Multiplicity
	Description

	Offset
	IntegerObjectPropertyType
	0..1
	The Offset property characterizes the offset of the beginning of the byte run as measured from the beginning of the object.

	Byte_Order
	EndiannessType
	0..1
	The Byte_Order property characterizes the endianness of the unpacked (e.g., unencoded, unencrypted, etc.) data contained within the Byte_Run_Data property.

	File_System_Offset
	IntegerObjectPropertyType
	0..1
	The File_System_Offset property characterizes the offset of the beginning of the byte run as measured from the beginning of the relevant file system. It is relevant only for byte runs of files in forensic analysis.

	Image_Offset
	IntegerObjectPropertyType
	0..1
	The Image_Offset property characterizes the offset of the beginning of the byte run as measured from the beginning of the relevant forensic image. It is provided for forensic analysis purposes.

	Length
	IntegerObjectPropertyType
	0..1
	The Length property characterizes the number of bytes in the byte run.

	Hashes
	HashListType
	0..1
	The Hashes property specifies computed hash values for this the data in this byte run.

	Byte_Run_Data
	HexBinaryObjectPropertyType
	0..1
	The Byte_Run_Data property captures a raw dump of the byte run data.

4.3.4 [bookmark: _Toc450634599][bookmark: _Toc458094091]CodeSnippetsType Class
The CodeSnippetsType class is intended to represent a set of code snippets extracted from within a CybOX object.
Table 3‑16. Properties of the CodeSnippetsType class
	Name
	Type
	Multiplicity
	Description

	Code_Snippet
	ObjectPropertiesType
	1..*
	The Code_Snippet property characterizes a single code snippet extracted from a raw cyber object. This property should be of class CodeObj:CodeObjectType.

4.3.5 [bookmark: _Toc450634600][bookmark: _Toc458094092]Compiler-Related Classes
4.3.5.1 [bookmark: _Toc450634601]CompilersType Class
The CompilersType class describes the compilers utilized during this build of this application.
Table 3‑17. Properties of the CompilersType class
	Name
	Type
	Multiplicity
	Description

	Compiler
	CompilerType
	1..*
	The Compiler property characterizes a single compiler utilized during this build of this application.

4.3.5.2 [bookmark: _Toc425409636][bookmark: _Toc450634602]CompilerType Class
The CompilerType class describes a single compiler utilized during this build of this application.
[image:]
Figure 3‑4. UML diagram for the CompilerType class
Table 3‑18. Properties of the CompilerType class
	Name
	Type
	Multiplicity
	Description

	Compiler_Informal_Description
	CompilerInformalDescriptionType
	0..1
	The Compiler_Informal_Description property characterizes the informal description this compiler instance.

	Compiler_Platform_Specification
	PlatformSpecificationType
	0..1
	The Compiler_Platform_Specification property characterizes this compiler instance.

4.3.5.3 [bookmark: _Toc425409637][bookmark: _Toc450634603]CompilerInformalDescriptionType Class
The CompilerInformalDescriptionType class contains the informal description of this compiler instance.
Table 3‑19. Properties of the CompilerInformalDescriptionType class
	Name
	Type
	Multiplicity
	Description

	Compiler_Name
	basicDataTypes:
BasicString
	1
	The Compiler_Name property captures the name of the compiler.

	Compiler_Version
	basicDataTypes:
BasicString
	0..1
	The Compiler_Version property captures the version of the compiler.

4.3.6 [bookmark: _Toc450634604][bookmark: _Toc458094093]ConfigurationSettingsType Class
The ConfigurationSettingsType class is a modularized data type used to provide a consistent approach to describing configuration settings for a tool, application or other cyber object.
[image:]
Figure 3‑5. UML diagram for the ConfigurationSettingsType class
Table 3‑20. Properties of the ConfigurationSettingsType class
	Name
	Type
	Multiplicity
	Description

	Configuration_Setting
	ConfigurationSettingType
	1..*
	The Configuration_Setting property specifies a single configuration setting instance.

4.3.6.1 [bookmark: _Toc425409627][bookmark: _Toc450634605][bookmark: _Toc425409646][bookmark: _Toc425409628]ConfigurationSettingType Class
The ConfigurationSettingType class is a modularized data type used to provide a consistent approach to describing a particular configuration setting for a tool, application or other cyber object.
Table 3‑21. Properties of the ConfigurationSettingType class
	Name
	Type
	Multiplicity
	Description

	Item_Name
	basicDataTypes:
BasicString
	1
	The Item_Name property captures the name of the configuration item referenced by this configuration setting instance.

	Item_Value
	basicDataTypes:
BasicString
	1
	The Item_Value property captures the value of this configuration setting instance.

	Item_Type
	basicDataTypes:
BasicString
	0..1
	The Item_Type property captures the type of the configuration item referenced in this configuration setting instance.

	Item_Description
	basicDataTypes:
BasicString
	0..1
	The Item_Description property captures a description of the configuration item referenced in this configuration setting instance.

4.3.7 [bookmark: _Toc450634606][bookmark: _Toc458094094]CustomPropertiesType Class
The CustomPropertiesType class enables the specification of a set of custom Object Properties that may not be defined by existing Property data types.
Table 3‑22. Properties of the CustomPropertiesType class
	Name
	Type
	Multiplicity
	Description

	Property
	PropertyType
	1..*
	The Property property characterizes a single custom Object Property.

4.3.7.1 [bookmark: _Toc425409647][bookmark: _Toc450634607]PropertyType Class
The PropertyType class is a type representing the specification of a single Object Property.
Table 3‑23. Properties of the PropertyType class
	Name
	Type
	Multiplicity
	Description

	name
	basicDataTypes:
BasicString
	0..1
	The name property captures the name for this custom property.

	description
	basicDataTypes:
BasicString
	0..1
	The description property captures a description of what this custom property represents.

4.3.8 [bookmark: _Toc425409690][bookmark: _Toc450634608][bookmark: _Toc458094095]DataSegmentType Class
The DataSegmentType is intended to provide a relatively abstract way of characterizing data segments that may be written/read/transmitted or otherwise utilized in actions or behaviors.
Table 3‑24. Properties of the DataSegmentType class
	Name
	Type
	Multiplicity
	Description

	id
	basicDataTypes:
QualifiedName
	0..1
	The id property specifies a globally unique identifier for the Data Segment.

	Data_Format
	DataFormatEnum
	0..1
	The Data_Format property characterizes the type of data contained in the Data_Segment property.

	Data_Size
	DataSizeType
	0..1
	The Data_Size property characterizes the size of the data contained in this element.

	Byte_Order
	EndiannessType
	0..1
	The Byte_Order property characterizes the endianness of the unpacked (e.g., decoded, unencrypted, etc.) data stored within the Data_Segment property.

	Data_Segment
	StringObjectPropertyType
	0..1
	The Data_Segment property characterizes the actual segment of data being characterized.

	Offset
	IntegerObjectPropertyType
	0..1
	The Offset property characterizes where to start searching for the specified data segment in an object, in bytes.

	Search_Distance
	IntegerObjectPropertyType
	0..1
	The Search_Distance property characterizes how far into an object should be ignored, in bytes, before starting to search for the specified data segment relative to the end of the previous data segment.

	Search_Within
	IntegerObjectPropertyType
	0..1
	The Search_Within property characterizes that at most N bytes are between data segments in related objects.

4.3.9 [bookmark: _Toc450634609][bookmark: _Toc458094096]DependenciesType Class
The DependenciesType class contains information describing a set of dependencies for this tool.
[image:]
Figure 3‑6. UML diagram for the DependencyType class
Table 3‑25. Properties of the DependenciesType class
	Name
	Type
	Multiplicity
	Description

	Dependency
	DependencyType
	1..*
	The Dependency property characterizes a single dependency for this tool.

4.3.9.1 [bookmark: _Toc425409629][bookmark: _Toc450634610][bookmark: _Toc425409697][bookmark: _Toc425409695][bookmark: _Toc425409644][bookmark: _Toc425409642][bookmark: _Toc425409673][bookmark: _Toc425409675][bookmark: _Toc425409639]DependencyType Class
The DependencyType class contains information describing a single dependency for this tool.
Table 3‑26. Properties of the DependencyType class
	Name
	Type
	Multiplicity
	Description

	Dependency_Type
	basicDataTypes:
BasicString
	0..1
	The Dependency_Type property captures the type of this dependency instance.

	Dependency_Description
	StructuredTextType
	1
	The Dependency_Description property captures a description of this dependency instance. Any length is permitted. Optional formatting is supported via the structuring_format property of the StructuredTextType data type.

4.3.10 [bookmark: _Toc450634611][bookmark: _Toc458094097]DigitalSignaturesType Class
The DigitalSignaturesType class is used for representing a list of digital signatures.
[image:]
Figure 3‑7. UML diagram for the DigitalSignatureInfoType class
Table 3‑27. Properties of the DigitalSignaturesType class
	Name
	Type
	Multiplicity
	Description

	Digital_Signature
	DigitalSignatureInfoType
	0..*
	The Digital_Signature property characterizes a single digital signature for this Object.

4.3.10.1 [bookmark: _Toc425409698][bookmark: _Toc450634612]DigitalSignatureInfoType Class
The DigitalSignatureInfoType class is used as a way to represent some of the basic information about a digital signature.
Table 3‑28. Properties of the DigitalSignatureInfoType class
	Name
	Type
	Multiplicity
	Description

	signature_exists
	basicDataTypes:Boolean
	0..1
	The signature_exists property specifies whether the digital signature exists.

	signature_verified
	basicDataTypes:Boolean
	0..1
	The signature_verified property specifies if the digital signature is verified.

	Certificate_Issuer
	StringObjectPropertyType
	0..1
	The Certificate_Issuer property characterizes the certificate issuer of the digital signature.

	Certificate_Subject
	StringObjectPropertyType
	0..1
	The Certificate_Subject property characterizes the certificate subject of the digital signature.

	Signature_Description
	StringObjectPropertyType
	0..1
	The Signature_Description property characterizes a description of the digital signature.

4.3.11 [bookmark: _Toc450634613][bookmark: _Toc458094098]EnvironmentVariableListType Class
The EnvironmentVariableListType class is used for representing a list of environment variables.
Table 3‑29. Properties of the EnvironmentVariableListType class
	Name
	Type
	Multiplicity
	Description

	Environment_Variable
	EnvironmentVariableType
	1..*
	The Environment_Variable property is used for capturing environment variables using a name/value pair.

4.3.11.1 [bookmark: _Toc425409696][bookmark: _Toc450634614]EnvironmentVariableType Class
The EnvironmentVariableType class is used for representing environment variables using a name/value pair.
Table 3‑30. Properties of the EnvironmentVariableType class
	Name
	Type
	Multiplicity
	Description

	Name
	StringObjectPropertyType
	1
	The Name property characterizes the name of the environment variable.

	Value
	StringObjectPropertyType
	0..1
	The Value property characterizes the value of the environment variable.

4.3.12 [bookmark: _Toc450634615][bookmark: _Toc458094099]Error-Related Classes
4.3.12.1 [bookmark: _Toc450634616]ErrorsType Class
The ErrorsType class captures any errors generated during the run of the tool.
[image:]
Figure 3‑8. UML diagram for the ErrorType class
Table 3‑31. Properties of the ErrorsType class
	Name
	Type
	Multiplicity
	Description

	Error
	ErrorType
	1..*
	The Error property captures a single type of error generated during the run of the tool.

4.3.12.2 [bookmark: _Toc425409643][bookmark: _Toc450634617]ErrorType Class
The ErrorType class captures a single error generated during the run of the tool.
Table 3‑32. Properties of the ErrorType class
	Name
	Type
	Multiplicity
	Description

	Error_Type
	basicDataTypes:
BasicString
	1
	The Error_Type property captures the type for this tool run error.

	Error_Count
	basicDataTypes:
PositiveInteger
	0..1
	The Error_Count property specifies the count of instances for this error in the tool run.

	Error_Instances
	ErrorInstancesType
	0..1
	The Error_Instances property captures the actual error output for each instance of this type of error.

4.3.12.3 [bookmark: _Toc450634618][bookmark: _Toc425409672]ErrorInstancesType Class
The ErrorInstancesType class captures the actual error output for each instance of this type of error.
Table 3‑33. Properties of the ErrorInstancesType class
	Name
	Type
	Multiplicity
	Description

	Error_Instance
	basicDataTypes:
BasicString
	1..*
	The Error_Instance property captures the actual error output for a single instance of this type of error.

4.3.13 [bookmark: _Toc450634619][bookmark: _Toc458094100]ExtractedFeaturesType Class
The ExtractedFeaturesType class is a type representing a description of features extracted from an object such as a file.
Table 3‑34. Properties of the ExtractedFeaturesType class
	Name
	Type
	Multiplicity
	Description

	Strings
	ExtractedStringsType
	0..1
	The Strings property characterizes a set of static strings extracted from a raw cyber object.

	Imports
	ImportsType
	0..1
	The Imports property characterizes a set of references to external resources imported by a raw cyber object.

	Functions
	FunctionsType
	0..1
	The Functions property characterizes a set of references to functions called by a raw cyber object.

	Code_Snippets
	CodeSnippetsType
	0..1
	The Code_Snippets property characterizes a set of code snippets extracted from a raw cyber object.

4.3.14 [bookmark: _Toc450634620][bookmark: _Toc458094101]ExtractedStringsType Class
The ExtractedStringsType class is intended as a container for strings extracted from CybOX objects.
Table 3‑35. Properties of the ExtractedStringsType class
	Name
	Type
	Multiplicity
	Description

	String
	ExtractedStringType
	1..*
	The String property characterizes a single static string extracted from a raw cyber object.

4.3.14.1 [bookmark: _Toc425409674][bookmark: _Toc450634621][bookmark: _Toc425409676]ExtractedStringType Class
The ExtractedStringType class is intended as a container for a single string extracted from a CybOX object.
Table 3‑36. Properties of the ExtractedStringType class
	Name
	Type
	Multiplicity
	Description

	Encoding
	VocabularyStringType
	0..1
	The Encoding property specifies the character encoding used for the String_Value property. Examples of potential values include ASCII, UTF-8, Windows-1250 (these specific values are only provided to help explain the property: they are neither recommended values nor necessarily part of any existing vocabulary). The content creator may choose any arbitrary value or may constrain the set of possible values by referencing an externally-defined vocabulary or leveraging a formally defined vocabulary extending from the cyboxCommon:ControlledVocabularyStringType class. The CybOX default vocabulary class for use in the property is ‘CharacterEncodingEnum-1.0’.

	String_Value
	StringObjectPropertyType
	0..1
	The String_Value property characterizes the actual value of the string extracted from the CybOX object, if it is capable of being represented in the encoding scheme used in the document (most commonly UTF-8).

	Byte_String_Value
	HexBinaryObjectPropertyType
	0..1
	The Byte_String_Value property characterizes the raw, byte-string representation of the string extracted from the CybOX object, in hexadecimal format.

	Hashes
	HashListType
	0..1
	The Hashes property specifies any hash values computed using the string extracted from the CybOX object as input.

	Address
	HexBinaryObjectPropertyType
	0..1
	The Address property characterizes the location or offset of the specified string in the CybOX objects.

	Length
	PositiveIntegerObjectPropertyType
	0..1
	The Length property characterizes the length, in characters, of the string extracted from the CybOX object.

	Language
	StringObjectPropertyType
	0..1
	The Language property characterizes the language the string is written in, e.g. English. For consistency, we strongly recommend using a ISO 639-2 language code, if available. Please see http://www.loc.gov/standards/iso639-2/php/code_list.php for a list of ISO 639-2 codes.

	English_Translation
	StringObjectPropertyType
	0..1
	The English_Translation property characterizes the English translation of the string, if it is not written in English.

4.3.15 [bookmark: _Toc450634622][bookmark: _Toc458094102]FunctionsType Class
The FunctionsType class is intended to represent an extracted list of functions leveraged within a CybOX object.
Table 3‑37. Properties of the FunctionsType class
	Name
	Type
	Multiplicity
	Description

	Function
	StringObjectPropertyType
	1..*
	The Function property characterizes a single reference to a function called by a raw cyber object.

4.3.16 [bookmark: _Toc450634623][bookmark: _Toc458094103][bookmark: _Toc425409681]Hash-Related Classes
4.3.16.1 [bookmark: _Toc425409680][bookmark: _Toc450634624]HashListType Class
The HashListType class is used for representing a list of hash values.
Table 3‑38. Properties of the HashListType class
	Name
	Type
	Multiplicity
	Description

	Hash
	HashType
	1..*
	The Hash property specifies a single calculated hash value.

4.3.16.2 [bookmark: _Toc425409688][bookmark: _Toc450634625]HashType Class
The HashType class is intended to characterize hash values.
[image:]
Figure 3‑9. UML diagram for the HashType class
Table 3‑39. Properties of the HashType class
	Name
	Type
	Multiplicity
	Description

	Type
	VocabularyStringType
	0..1
	The Type property specifies the type of hash algorithm used to create the hash value. Examples of potential types of hashes are MD5, SHA1 and SHA256 (these specific values are only provided to help explain the property: they are neither recommended values nor necessarily part of any existing vocabulary). The content creator may choose any arbitrary value or may constrain the set of possible values by referencing an externally-defined vocabulary or leveraging a formally defined vocabulary extending from the cyboxCommon:ControlledVocabularyStringType class. The CybOX default vocabulary class for use in the property is ‘HashNameEnum-1.0’.

	Fuzzy_Hash_Structure
	FuzzyHashStructureType
	0..*
	The Fuzzy_Hash_Structure property enables the characterization of the key internal components of a fuzzy hash calculation with a given block size.

	Has_Choice
	HashValueChoiceType
	0..1
	The Has_Choice property is associated with the class HashValueChoiceType. It indicates that there is a choice between the Simple_Hash_Value property or the Fuzzy_Hash_Value property.

Only one of the properties of HashValueChoiceType class can be populated at any time. See Section 1.2.3 for more detail.

4.3.16.3 [bookmark: _Toc450634626]HashValueType Class
The HashValueType class is used for specifying the resulting value from a hash calculation.
Table 3‑40. Properties of the HashType class
	Name
	Type
	Multiplicity
	Description

	Has_Choice
	HashValueChoiceType
	0..1
	The Has_Choice property is associated with the class HashValueChoiceType. It indicates that there is a choice between the Simple_Hash_Value property or the Fuzzy_Hash_Value property.

Only one of the properties of HashValueChoiceType class can be populated at any time. See Section 1.2.3 for more detail.

4.3.16.4 [bookmark: _Toc450634627]HashValueChoiceType Class
The HashValueChoiceType class is used for specifying the choice between different formats of the resulting value from a hash calculation. In the UML model, this class is associated with the <<choice>> UML stereotype, which specifies that only one of the available properties of the HashValueChoiceType class can be populated at any time.
See Section 3.2.9 for details on SimpleHashValueType and FuzzyHashValueType data types.
Table 3‑41. Properties of the HashValueChoiceType class
	Name
	Type
	Multiplicity
	Description

	Simple_Hash_Value
	SimpleHashValueType
	0..1
	The Simple_Hash_Value property characterizes a single result value of a basic cryptographic hash function outputting a single hexbinary hash value.

The Simple_Hash_Value and Fuzzy_Hash_Value properties MUST NOT both have a value.

	Fuzzy_Hash_Value
	FuzzyHashValueType
	0..1
	The Fuzzy_Hash_Value property characterizes a single result value of a cryptographic fuzzy hash function outputting a single complex string based hash value. (e.g., SSDEEP's Block1hash:Block2hash format).

The Simple_Hash_Value and Fuzzy_Hash_Value properties MUST NOT both have a value.

4.3.16.5 [bookmark: _Toc425409684][bookmark: _Toc450634628]FuzzyHashStructureType Class
The FuzzyHashStructureType class is used for characterizing the internal components of a cryptographic fuzzy hash algorithmic calculation.
Table 3‑42. Properties of the FuzzyHashStructureType class
	Name
	Type
	Multiplicity
	Description

	Block_Size
	IntegerObjectPropertyType
	0..1
	The Block_Size property characterizes the calculated block size for this fuzzy hash calculation.

	Block_Hash
	FuzzyHashBlockType
	0..1
	The Block_Hash property characterizes specification of the elemental components utilized for a fuzzy hash calculation on the hashed object utilizing the Block_Size property to calculate trigger points.

4.3.16.6 [bookmark: _Toc425409685][bookmark: _Toc450634629]FuzzyHashBlockType Class
The FuzzyHashBlockType class is used for characterizing the internal components of a single block in a cryptographic fuzzy hash algorithmic calculation.
Table 3‑43. Properties of the FuzzyHashBlockType class
	 Name
	Type
	Multiplicity
	Description

	Block_Hash_Value
	HashValueType
	0..1
	The Block_Hash_Value property characterizes a fuzzy hash calculation result value for this block.

	Segment_Count
	IntegerObjectPropertyType
	0..1
	The Segment_Count property characterizes the number of segments identified and utilized within this fuzzy hash calculation.

	Segments
	HashSegmentsType
	0..1
	The Segments property characterizes the set of segments identified and utilized within this fuzzy hash calculation.

4.3.16.7 [bookmark: _Toc425409686][bookmark: _Toc450634630]HashSegmentsType Class
The HashSegmentsType class is used for characterizing the internal components of a set of trigger point-delimited segments in a cryptographic fuzzy hash algorithmic calculation.
Table 3‑44. Properties of the HashSegmentsType class
	Name
	Type
	Multiplicity
	Description

	Segment
	HashSegmentType
	1..*
	The Segment property characterizes a single segment identified and utilized within this fuzzy hash calculation.

4.3.16.8 [bookmark: _Toc425409687][bookmark: _Toc450634631]HashSegmentType Class
The HashSegmentType class is used for characterizing the internal components of a single trigger point-delimited segment in a cryptographic fuzzy hash algorithmic calculation.
Table 3‑45. Properties of the HashSegmentType class
	Name
	Type
	Multiplicity
	Description

	Trigger_Point
	HexBinaryObjectPropertyType
	0..1
	The Trigger_Point property characterizes the offset within the hashed object of the trigger point for this segment.

	Segment_Hash
	HashValueType
	0..1
	The Segment_Hash property characterizes a calculated hash value for this segment.

	Raw_Segment_Content
	HexBinaryObjectPropertyType
	0..1
	The Raw_Segment_Content property captures the raw content of this segment of the hashed object.

4.3.17 [bookmark: _Toc450634632][bookmark: _Toc458094104]ImportsType Class
The ImportsType class is intended to represent an extracted list of imports specified within a CybOX object.
Table 3‑46. Properties of the ImportsType class
	Name	
	Type
	Multiplicity
	Description

	Import
	StringObjectPropertyType
	1..*
	The Import property characterizes a single reference to an external resource imported by a raw cyber object.

4.3.18 [bookmark: _Toc425409631][bookmark: _Toc450634633][bookmark: _Toc458094105]InternationalizationSettingsType Class
The InternationalizationSettingsType class contains information describing relevant internationalization setting for this tool.
Table 3‑47. Properties of the InternationalizationSettingsType class
	Name
	Type
	Multiplicity
	Description

	Internal_Strings
	InternalStringsType
	1..*
	The Internal_Strings property captures a single internal string instance for this internationalization setting instance.

4.3.18.1 [bookmark: _Toc425409632][bookmark: _Toc450634634]InternalStringsType Class
The InternalStringsType class contains a single internal string instance for this internationalization setting instance.
Table 3‑48. Properties of the InternalStringsType class
	Name
	Type
	Multiplicity
	Description

	Key
	basicDataTypes:
BasicString
	1
	The Key property captures the actual key of this internal string instance.

	Content
	basicDataTypes:
BasicString
	1
	The Content property captures the actual content of this internal string instance.

4.3.19 [bookmark: _Toc450634635][bookmark: _Toc458094106]LibrariesType Class
The LibrariesType class identifies the libraries incorporated into the build of the tool.
Table 3‑49. Properties of the LibrariesType class
	Name
	Type
	Multiplicity
	Description

	Library
	LibraryType
	0..1
	The Library property characterizes a library incorporated into the build of the tool.

4.3.19.1 [bookmark: _Toc425409640][bookmark: _Toc450634636][bookmark: _Toc425409617]LibraryType Class
The LibraryType class identifies a single library incorporated into the build of the tool.
Table 3‑50. Properties of the LibraryType class
	Name
	Type
	Multiplicity
	Description

	name
	basicDataTypes:
BasicString
	0..1
	The name property captures the name of the library.

	version
	basicDataTypes:
BasicString
	0..1
	The version property captures the version of the library.

4.3.20 [bookmark: _Toc425409694][bookmark: _Toc450634637][bookmark: _Toc458094107]MetadataType Class
The MetadataType class is intended as mechanism to capture any non-context-specific metadata.
Table 3‑51. Properties of the MetadataType class
	Name
	Type
	Multiplicity
	Description

	type
	basicDataTypes:
BasicString
	0..1
	The type property captures the type of the name of a single metadata property.

	Value
	basicDataTypes:
BasicString
	0..1
	The Value property captures the value of the name of a single metadata property.

	SubDatum
	MetadataType
	0..*
	The SubDatum property uses recursion of the MetadataType to characterize subdatum structures for this metadata property.

4.3.21 [bookmark: _Toc450634638][bookmark: _Toc458094108]PersonnelType Class
The PersonnelType class is an abstracted data type to standardize the description of sets of personnel.
Table 3‑52. Properties of the PersonnelType class
	Name
	Type
	Multiplicity
	Description

	Contributor
	ContributorType
	1..*
	The Contributor property characterizes the identity, resources and timing of involvement for a single contributor.

4.3.21.1 [bookmark: _Toc425409615][bookmark: _Toc450634639]ContributorType Class
The ContributorType class represents a description of an individual who contributed as a source of cyber observation data.
Table 3‑523. Properties of the ContributorType class
	Name
	Type
	Multiplicity
	Description

	Role
	basicDataTypes:
BasicString
	0..1
	The Role property captures the role played by this contributor.

	Name
	basicDataTypes:
BasicString
	0..1
	The Name property captures the name of this contributor.

	Email
	basicDataTypes:
BasicString
	0..1
	The Email property captures the email of this contributor.

	Phone
	basicDataTypes:
BasicString
	0..1
	The Phone property captures a telephone number of this contributor.

	Organization
	basicDataTypes:
BasicString
	0..1
	The Organization property captures the organization name of this contributor.

	Date
	DateRangeType
	0..1
	The Date property characterizes a description (bounding) of the timing of this contributor's involvement.

	Contribution_Location
	basicDataTypes:
BasicString
	0..1
	The Contribution_Location property captures the location at which the contributory activity occurred.

4.3.22 [bookmark: _Toc425409692][bookmark: _Toc450634640][bookmark: _Toc458094109]PlatformSpecificationType Class
The PlatformSpecificationType class is a modularized data type intended for providing a consistent approach to uniquely specifying the identity of a specific platform. In addition to capturing basic information, this type is intended to be extended to enable the structured description of a platform instance using the XML Schema extension feature. The CybOX default extension uses the Common Platform Enumeration (CPE) Applicability Language to do so.
Table 3‑54. Properties of the PlatformSpecificationType class
	Name
	Type
	Multiplicity
	Description

	Description
	StructuredTextType
	0..1
	The Description property captures a technical description of the Platform Specification. Any length is permitted. Optional formatting is supported via the structuring_format property of the StructuredTextType class.

	Identifier
	PlatformIdentifierType
	0..*
	The Identifier property characterizes a pre-defined name for the given platform using some naming scheme. For example, one could provide a CPE (Common Platform Enumeration) name using the CPE naming format.

4.3.23 [bookmark: _Toc450634641][bookmark: _Toc458094110]Tools-Related Classes
4.3.23.1 [bookmark: _Toc450634642]ToolsInformationType Class
The ToolsInformationType class represents a description of a set of automated tools.
[image:]
Figure 3‑10. UML diagram for ToolsInformationType class
Table 3‑55. Properties of the ToolsInformationType class
	Name
	Type
	Multiplicity
	Description

	Tool
	ToolInformationType
	1..*
	The Tool property characterizes a single tool utilized for this cyber observation source.

4.3.23.2 [bookmark: _Toc450634643][bookmark: _Toc425409623]ToolInformationType Class
The ToolInformationType class is intended to characterize the properties of a hardware or software tool, including those related to instances of its use.

Table 3‑56. Properties of the ToolInformationType class
	Name
	Type
	Multiplicity
	Description

	id
	basicDataTypes:
QualifiedName
	0..1
	The id property specifies a globally unique identifier for the Tool Information.

	idref
	basicDataTypes:
QualifiedName
	0..1
	The idref property specifies an identifier reference to a ToolInformation instance specified elsewhere. When the idref property is used, no other property should be specified.

	Name
	basicDataTypes:
BasicString
	0..1
	The Name property captures the name of the tool leveraged.

	Type
	VocabularyStringType
	0..*
	The Type property specifies the type of the tool. Examples of potential types are NIDS, asset scanner, and malware analysis (these specific values are only provided to help explain the property: they are neither recommended values nor necessarily part of any existing vocabulary). The content creator may choose any arbitrary value or may constrain the set of possible values by referencing an externally-defined vocabulary or leveraging a formally defined vocabulary extending from the cyboxCommon:ControlledVocabularyStringType class. The CybOX default vocabulary class for use in the property is ‘ToolTypeVocab-1.1’.

	Description
	StructuredTextType
	0..1
	The Description property captures a technical description of the Tool Information. Any length is permitted. Optional formatting is supported via the structuring_format property of the StructuredTextType class.

	References
	ToolReferencesType
	0..1
	The References property captures references to instances or additional information for this tool.

	Vendor
	basicDataTypes:
BasicString
	0..1
	The Vendor property captures information identifying the vendor organization for this tool.

	Version
	basicDataTypes:
BasicString
	0..1
	The Version property captures an appropriate version descriptor of this tool.

	Service_Pack
	basicDataTypes:
BasicString
	0..1
	The Service_Pack property captures an appropriate service pack descriptor for this tool.

	Tool_Specific_Data
	ToolSpecificDataType
	0..1
	The Tool_Specific_Data property characterizes tool-specific data to be included.

	Tool_Hashes
	HashListType
	0..1
	The Tool_Hashes property captures a hash value computed on the tool file content in order to verify its integrity.

	Tool_Configuration
	ToolConfigurationType
	0..1
	The Tool_Configuation property characterizes the configuration and usage of the tool.

	Execution_Environment
	ExecutionEnvironmentType
	0..1
	The Execution_Environment property characterizes the execution environment of the tool.

	Errors
	ErrorsType
	0..1
	The Errors property captures any errors generated during the run of the tool.

	Metadata
	MetadataType
	0..*
	The Metadata property captures other relevant metadata including tool-specific properties.

	Compensation_Model
	CompensationModelType
	0..1
	The Compensation_Model property captures the name of the compensation model used for the tool.

4.3.23.3 [bookmark: _Toc425409619][bookmark: _Toc450634644][bookmark: _Toc425409630]ToolSpecificDataType Class
The ToolSpecificDataType class is an abstract class placeholder within the CybOX enabling the inclusion of metadata for a specific type of tool through the use of a custom type defined as an extension of this class.
4.3.23.4 [bookmark: _Toc425409625][bookmark: _Toc450634645]ToolConfigurationType Class
The ToolConfigurationType class characterizes the configuration for a tool used as a cyber observation source.
Table 3‑57. Properties of the ToolConfigurationType class
	Name
	Type
	Multiplicity
	Description

	Configuration_Settings
	ConfigurationSettingsType
	0..1
	The Configuration_Settings property characterizes the configuration settings of this tool instance.

	Dependencies
	DependenciesType
	0..1
	The Dependencies property characterizes the relevant dependencies for this tool.

	Usage_Context_Assumptions
	UsageContextAssumptionsType
	0..1
	The Usage_Context_Assumptions property characterizes the various relevant usage context assumptions for this tool.

	Internationalization_Settings
	Internationalization
SettingsType
	0..1
	The Internationalization_Settings property characterizes the relevant internationalization setting for this tool.

	Build_Information
	BuildInformationType
	0..1
	The Build_Information property characterizes how this tool was built.

4.3.23.5 [bookmark: _Toc450634646]ToolReferencesType Class
The ToolReferencesType class is used to indicate one or more references to tool instances and information.
Table 3‑58. Properties of the ToolReferencesType class
	Name
	Type
	Multiplicity
	Description

	Reference
	ToolReferenceType
	1..*
	The Reference property specifies one reference to information or instances of a given tool.

4.3.23.6 [bookmark: _Toc425409624][bookmark: _Toc450634647]ToolReferenceType Class
Contains one reference to information or instances of a given tool.
Table 3‑59. Properties of the ToolReferenceType class
	Name
	Type
	Multiplicity
	Description

	reference_type
	ToolReferenceTypeEnum
	0..1
	The reference_type property specifies the nature of the referenced material (documentation, source, executable, etc.).

4.3.24 [bookmark: _Toc450634648][bookmark: _Toc458094111]UsageContextAssumptionsType Class
The UsageContextAssumptionsType class contains descriptions of the various relevant usage context assumptions for this tool.
Table 3‑60. Properties of the UsageContextAssumptionsType class
	Name
	Type
	Multiplicity
	Description

	Usage_Context_Assumption
	StructuredTextType
	1..*
	The Usage_Context_Assumption property captures a single usage context assumption for this tool.

4.4 [bookmark: _Toc450634649][bookmark: _Toc458094112]Vocabulary Data Types
There are three vocabulary-related UML data types defined in the Common data model, and together they provide a content creator with four choices for defining content, listed below in order of formality. Please see CybOX Version 2.1.1 Part 5: Vocabularies for further information on CybOX vocabularies.
· Leverage a default vocabulary using the ControlledVocabularyStringType data type. CybOX v2.2.1 defines a collection of default vocabularies and associated enumerations that are based on input from the CybOX community (see CybOX Version 2.1.1 Part 5: Vocabularies); however, not all vocabulary properties have an assigned default vocabulary.
· Formally define a custom vocabulary using the ControlledVocabularyStringType data type. To achieve value enforcement, a custom vocabulary must be formally added to the CybOX Vocabulary data model. Because this is an extension of the CybOX Vocabulary data model, producers and consumers MUST be aware of the addition to the data model for successful sharing of CybOX documents.
· Reference an externally-defined, custom vocabulary using the UnenforcedVocabularyStringType data type to constrain the set of values. Externally-defined vocabularies are publically defined, but have not been included as formally specified vocabularies within the CybOX Vocabulary data model using the ControlledVocabularyStringType data type. In this case, it is sufficient to specify the name of the vocabulary and a URL that defines that vocabulary.
· Choose an arbitrary and unconstrained value using the VocabularyStringType data type.
While not required by the general CybOX language, default vocabularies should be used whenever possible to ensure the greatest level of compatibility between CybOX users. If an appropriate default vocabulary is not available a formally defined custom vocabulary can be specified and leveraged. In addition to compatibility advantages, using formally defined vocabularies (whether default vocabularies or otherwise defined) enables enforced use of valid enumeration values; please see CybOX Version 2.1.1 Part 5: Vocabularies for the associated policy.
If a formally defined vocabulary is not sufficient for a content producer’s purposes, the CybOX Vocabulary data model allows the two alternatives listed above: externally defined custom vocabularies and arbitrary string values, which dispense with enumerated vocabularies altogether. If a custom vocabulary is not formally added to the Vocabulary data model then no enforcement policy of appropriate values is specified.
The UML diagram shown in Figure 3‑11 illustrates the relationships between the three vocabulary data types defined in the CybOX Common data model. As illustrated, all controlled vocabularies formally defined within the CybOX Vocabulary data model are defined using an enumeration derived from the ControlledVocabularyStringType data type.
As shown, the HashNameVocab-1.0 enumeration (used as a defined controlled vocabulary exemplar) is defined as a specialization of the ControlledVocabularyStringType data type, and therefore it is also a specialization of the VocabularyStringType data type.
Further details of each vocabulary class are provided in Subsections 3.4.1 through 3.4.3.
[image:]
[bookmark: _Ref419296006][bookmark: _Ref406675178]Figure 3‑11. UML diagram of the CybOX Vocabulary data model
4.4.1 [bookmark: _Ref418766010][bookmark: _Toc425428471][bookmark: _Toc430248952][bookmark: _Ref438470833][bookmark: _Ref447520533][bookmark: _Toc450634650][bookmark: _Toc458094113]VocabularyStringType Data Type
The VocabularyStringType data type is the basic data type of all vocabularies. Therefore, all properties in the collection of CybOX data models that makes use of the Vocabulary data model must be defined to use the VocabularyStringType data type. Because this data type is a specialization of the basicDataTypes:BasicString data type, it can be used to support the arbitrary string option for vocabularies.
4.4.2 [bookmark: _Ref418766030][bookmark: _Toc425428472][bookmark: _Toc430248953][bookmark: _Toc450634651][bookmark: _Toc458094114]UnenforcedVocabularyStringType Data Type
The UnenforcedVocabularyStringType data type specifies custom vocabulary values via an enumeration defined outside of the CybOX Vocabulary data model. It extends the VocabularyStringType data type. Note that the CybOX vocabulary data model does not define any enforcement policy for this data type.
The property table of the UnenforcedVocabularyStringType data type is given in Table 3‑60.
[bookmark: _Ref419330869]Table 3‑61. Properties of the UnenforcedVocabularyStringType data type
	Name
	Type
	Multiplicity
	Description

	vocab_name
	basicDataTypes:
NoEmbeddedQuoteString
	0..1
	The vocab_name property specifies the name of the externally defined vocabulary.

	vocab_reference
	basicDataTypes:URI
	0..1
	The vocab_reference property specifies the location of the externally defined vocabulary using a Uniform Resource Identifier (URI).

4.4.3 [bookmark: _Ref420936722][bookmark: _Toc425428473][bookmark: _Toc430248954][bookmark: _Toc450634652][bookmark: _Toc458094115]ControlledVocabularyStringType Data Type
The ControlledVocabularyStringType data type specifies a formally defined vocabulary. It is an abstract data type so it MUST be extended via an enumeration from the CybOX Vocabulary data model (descriptions of all default vocabularies defined within the CybOX Vocabulary data model are found in CybOX Version 2.1.1 Part 5: Vocabularies[endnoteRef:1]). Any custom vocabulary must be defined via an enumeration added to the CybOX Vocabulary data model, if appropriate enumeration values are to be enforced. [1: Note that all defined vocabulary enumerations have version numbers in their names to facilitate additions to the enumerations that are backward compatible.]

The ControlledVocabularyStringType class has no properties of its own, so there is no associated property table.

4.5 [bookmark: _General_Classes_and][bookmark: _Ref447088519][bookmark: _Toc450634653][bookmark: _Toc458094116]General Classes and Data Types
4.5.1 [bookmark: _Toc450634654][bookmark: _Toc458094117][bookmark: _Toc425409702][bookmark: _Toc425409701][bookmark: _Toc425409689][bookmark: _Toc425409652]DateRangeType Class
The DateRangeType class specifies a range of dates.

Table 3‑62. Properties of the DateRangeType class
	Name
	Type
	Multiplicity
	Description

	Start_Date
	DateWithPrecisionType
	0..1
	The Start_Date property specifies the start date for this contributor's involvement. To avoid ambiguity, timestamps SHOULD include a specification of the time zone. In addition to capturing a date, the Start property MAY also capture a precision property to specify the granularity with which the time should be considered, as specified by the DateTypePrecisionEnum enumeration (e.g., 'day’).

	End_Date
	DateWithPrecisionType
	0..1
	The End_Date property specifies the end date for this contributor's involvement. To avoid ambiguity, timestamps SHOULD include a specification of the time zone. In addition to capturing a date, the End property MAY also capture a precision property to specify the granularity with which the time should be considered, as specified by the DateTypePrecisionEnum enumeration (e.g., ‘day’).

4.5.2 [bookmark: _Toc450634655][bookmark: _Toc458094118]DateTimeWithPrecisionType Data Type
The DateTimeWithPrecisionType data type specializes the basicDataTypes:DateTime data type by capturing precision information. In order to avoid ambiguity, all uses SHOULD include a specification of the time zone.
If the precision is given, consumers must ignore the portions of this property that is more precise than the given precision. Producers should zero-out (fill with zeros) digits that are beyond the specified precision.
Table 3‑63. Properties of the DateTimeWithPrecisionType class
	Name
	Type
	Multiplicity
	Description

	precision
	DateTimePrecisionEnum
	0..1
	The precision property specifies the granularity with which a timestamp should be considered as specified by the DateTimePrecisionEnum enumeration (e.g., 'hour,' 'minute'). If omitted, the default precision is 'second.' Digits in a timestamp that are beyond the specified precision SHOULD be zeroed out.

4.5.3 [bookmark: _Toc450634656][bookmark: _Toc458094119]DateWithPrecisionType Data Type
The DateWithPrecisionType data type specializes the basicDataTypes:Date data type by capturing precision information.
If the precision is given, consumers must ignore the portions of this property that is more precise than the given precision. Producers should zero-out (fill with zeros) digits in the date that are beyond the specified precision.
Table 3‑64. Properties of the DateWithPrecisionType class
	Name
	Type
	Multiplicity
	Description

	precision
	DatePrecisionEnum
	0..1
	The precision property specifies the granularity with which a date should be considered as specified by the DatePrecisionEnum enumeration (e.g., 'year,' 'month, and ‘day’'). If omitted, the default precision is 'day.' Digits in a timestamp that are beyond the specified precision SHOULD be zeroed out

4.5.4 [bookmark: _Toc425409671][bookmark: _Toc450634657][bookmark: _Toc458094120]LocationType Class
The LocationType class is used to express geographic location information. This class is usually extended to incorporate specific location information. The default extension type is CIQAddress3.0InstanceType (see CybOX Version 2.1.1 Part 4: Default Extensions). Those who wish to express a simple name may also do so by simply using the Name property of this type.
Table 3‑65. Properties of the LocationType class
	Name
	Type
	Multiplicity
	Description

	id
	basicDataTypes:
QualifiedName
	0..1
	The id property specifies a globally unique identifier for the Location.

	idref
	basicDataTypes:
QualifiedName
	0..1
	The idref property specifies an identifier reference to a Location instance specified elsewhere. When the idref property is used, no other property should be specified.

	Name
	basicDataTypes:
BasicString
	0..1
	The Name property captures a location through a simple name.

4.5.5 [bookmark: _Toc450634658][bookmark: _Toc458094121]StructuredTextType Data Type
The StructuredTextType class is a type representing a generalized structure for capturing structured or unstructured textual information such as descriptions of things.
Table 3‑66. Properties of the StructuredTextType class
	Name
	Type
	Multiplicity
	Description

	structuring_format
	basicDataTypes:
BasicString
	0..1
	The structuring_format property specifies a particular structuring format (e.g., HTML5) used within an instance of StructuredTextType. If this property is absent, then markup MUST NOT be used.

4.5.6 [bookmark: _Toc425409618][bookmark: _Toc450634659][bookmark: _Toc458094122]TimeType Class
The TimeType class specifies various time properties for this construct.
Table 3‑67. Properties of the TimeType class
	Name
	Type
	Multiplicity
	Description

	Start_Time
	DateTimeWithPrecisionType
	0..1
	The Start_Time property specifies the starting time for this property. To avoid ambiguity, timestamps SHOULD include a specification of the time zone. In addition to capturing a date and time, the Start_Time property MAY also capture a precision property to specify the granularity with which the time should be considered, as specified by the DateTypePrecisionEnum enumeration (e.g., 'hour,' 'minute').

	End_Time
	DateTimeWithPrecisionType
	0..1
	The End_Time property specifies the ending time for this property. To avoid ambiguity, timestamps SHOULD include a specification of the time zone. In addition to capturing a date and time, the End_Time property MAY also capture a precision property to specify the granularity with which the time should be considered, as specified by the DateTypePrecisionEnum enumeration (e.g., 'hour,' 'minute').

	Produced_Time
	DateTimeWithPrecisionType
	0..1
	The Produced_Time property specifies the time that this property was produced. To avoid ambiguity, timestamps SHOULD include a specification of the time zone. In addition to capturing a date and time, the Produced_Time property MAY also capture a precision property to specify the granularity with which the time should be considered, as specified by the DateTypePrecisionEnum enumeration (e.g., 'hour,' 'minute').

	Received_Time
	DateTimeWithPrecisionType
	0..1
	The Received_Time property specifies the time that this property was received. To avoid ambiguity, timestamps SHOULD include a specification of the time zone. In addition to capturing a date and time, the Received_Time property MAY also capture a precision property to specify the granularity with which the time should be considered, as specified by the DateTypePrecisionEnum enumeration (e.g., 'hour,' 'minute').

4.6
cybox-v2.1.1-csprd01-part02-common		20 June 2016
Standards Track Work Product	Copyright © OASIS Open 2016. All Rights Reserved.	 Page 21 of 86
4.7 [bookmark: _Ref447088691][bookmark: _Toc450634660][bookmark: _Toc458094123]Enumerations
4.7.1 [bookmark: _Toc425409723][bookmark: _Toc450634661][bookmark: _Toc458094124][bookmark: _Toc425409710][bookmark: _Toc425409713]CipherEnum Enumeration
Table 3‑68. Literals of the CipherEnum enumeration
	Enumeration Literal
	Description

	3DES
	Specifies the Triple Data Encryption Standard (DES) algorithm.

	AES
	Specifies the Advanced Encryption Standard (AES) algorithm.

	Blowfish
	Specifies the Blowfish algorithm.

	CAST-128
	Specifies the CAST-128 algorithm.

	CAST-256
	Specifies the CAST-256 algorithm.

	DES
	Specifies the Data Encryption Standard (DES) algorithm.

	IDEA
	Specifies the International Data Encryption Algorithm (IDEA).

	Rijndael
	Specifies the Rijndael algorithm.

	RC5
	Specifies the RC5 algorithm.

	Skipjack
	Specifies the Skipjack algorithm.

4.7.2 [bookmark: _Toc450634662][bookmark: _Toc458094125]CompensationModelEnum Enumeration
Table 3‑69. Literals of the CompensationModelEnum enumeration
	Enumeration Literal
	Description

	Freeware
	Specifies that the tool is available for use at no monetary cost as the compensation model.

	Shareware
	Specifies that the tool is proprietary and offers a limited use license as the compensation model.

	Commercial
	Specifies that the tool was produced for sale or serves commercial purposes as the compensation model.

	Adware
	Specifies that the tool uses automatically rendered advertisements as the compensation model.

4.7.3 [bookmark: _Toc450634663][bookmark: _Toc458094126]ConditionApplicationEnum Enumeration
Table 3‑70. Literals of the ConditionApplicationEnum enumeration
	Enumeration Literal
	Description

	ANY
	Indicates that a pattern holds if the given condition can be successfully applied to any of the field values.

	ALL
	Indicates that a pattern holds only if the given condition can be successfully applied to all of the field values.

	NONE
	Indicates that a pattern holds only if the given condition can be successfully applied to none of the field values.

4.7.4 [bookmark: _Toc425409712][bookmark: _Toc450634664][bookmark: _Toc458094127]ConditionTypeEnum Enumeration
Table 3‑71. Literals of the ConditionTypeEnum enumeration
	Enumeration Literal
	Description

	Equals
	Specifies the equality or = condition.

	DoesNotEqual
	Specifies the "does not equal" or != condition.

	Contains
	Specifies the "contains" condition.

	DoesNotContain
	Specifies the "does not contain" condition.

	StartsWith
	Specifies the "starts with" condition.

	EndsWith
	Specifies the "ends with" condition.

	GreaterThan
	Specifies the "greater than" condition.

	GreaterThanOrEqual
	Specifies the "greater than or equal to" condition.

	LessThan
	Specifies the "less than" condition.

	LessThanOrEqual
	Specifies the "less than or equal" condition.

	InclusiveBetween
	The pattern is met if the given value lies between the values indicated in the field value body, inclusive of the bounding values themselves. The field value body MUST contain at least 2 values to be valid. If the field value body contains more than 2 values, then only the greatest and least values are considered. (I.e., If the body contains "2,4,6", then an InclusiveBetween condition would be satisfied if the observed value fell between 2 and 6, inclusive. Since this is an inclusive range, an observed value of 2 or 6 would fit the pattern in this example.) As such, always treat the InclusiveBetween condition as applying to a single range for the purpose of evaluating the apply_condition attribute.

	ExclusiveBetween
	The pattern is met if the given value lies between the values indicated in the field value body, exclusive of the bounding values themselves. The field value body MUST contain at least 2 values to be valid. If the field value body contains more than 2 values, then only the greatest and least values are considered. (I.e., If the body contains "2,4,6", then an InclusiveBetween condition would be satisfied if the observed value fell between 2 and 6, exclusive. Since this is an exclusive range, an observed value of 2 or 6 would not fit the pattern in this example.) As such, always treat the ExclusiveBetween condition as applying to a single range for the purpose of evaluating the apply_condition attribute.

	FitsPattern
	Specifies the condition that a value fits a given pattern.

	BitwiseAnd
	Specifies the condition of bitwise AND. Specifically, when applying this pattern, a given value is bitwise-ANDed with the bit_mask attribute value (which must be present). If the result is identical to the value provided in the body of this field value, the pattern is considered fulfilled.

	BitwiseOr
	Specifies the condition of bitwise OR. Specifically, when applying this pattern, a given value is bitwise-ORed with the bit_mask attribute value (which must be present). If the result is identical to the value provided in the body of this field value, the pattern is considered fulfilled.

	BitwiseXor
	Specifies the condition of bitwise XOR. Specifically, when applying this pattern, a given value is bitwise-XORed with the bit_mask attribute value (which must be present). If the result is identical to the value provided in the body of this field value, the pattern is considered fulfilled.

4.7.5 [bookmark: _Toc425409716][bookmark: _Toc450634665][bookmark: _Toc458094128]DataFormatEnum Enumeration
Table 3‑72. Literals of the DataFormatEnum enumeration
	Enumeration Literal
	Description

	Binary
	Specifies binary data.

	Hexadecimal
	Specifies hexadecimal data.

	Text
	Specifies text.

	Other
	Specifies any other type of data from the ones listed.

4.7.6 [bookmark: _Toc425409717][bookmark: _Toc450634666][bookmark: _Toc458094129]DataSizeUnitsEnum Enumeration
Table 3‑73. Literals of the DataSizeUnitsEnum enumeration
	Enumeration Literal
	Description

	Bytes
	Specifies an object size in Bytes.

	Kilobytes
	Specifies an object size in Kilobytes.

	Megabytes
	Specifies an object size in Megabytes.

4.7.7 [bookmark: _Toc450634667][bookmark: _Toc458094130]DatatypeEnum Enumeration
Table 3‑74. Literals of the DatatypeEnum enumeration
	Enumeration Literal
	Description

	string
	Specifies the string datatype as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#string for more information.

	int
	Specifies the int datatype as it applies to the W3C standard for int. See http://www.w3.org/TR/xmlschema-2/#int for more information.

	float
	Specifies the float datatype as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#float for more information.

	date
	Specifies a date, which is usually in the form yyyy-mm-dd as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#date for more information.

	positiveInteger
	Specifies a positive integer in the infinite set {1,2,...} as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#positiveInteger for more information.

	unsignedInt
	Specifies an unsigned integer, which is a nonnegative integer in the set {0,1,2,...,4294967295} as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#unsignedInt for more information.

	dateTime
	Specifies a date in full format including both date and time as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#dateTime for more information.

	time
	Specifies a time as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#time for more information.

	boolean
	Specifies a boolean value in the set {true,false,1,0} as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#boolean for more information.

	name
	Specifies a name (which represents XML Names) as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#Name and http://www.w3.org/TR/2000/WD-xml-2e-20000814#dt-name for more information.

	long
	Specifies a long integer, which is an integer whose maximum value is 9223372036854775807 and minimum value is -9223372036854775808 as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#long for more information.

	unsignedLong
	Specifies an unsigned long integer, which is an integer whose maximum value is 18446744073709551615 and minimum value is 0 as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#unsignedLong for more information.

	duration
	Specifies a length of time in the extended format PnYn MnDTnH nMnS, where nY represents the number of years, nM the number of months, nD the number of days, 'T' is the date/time separator, nH the number of hours, nM the number of minutes and nS the number of seconds, as it applies to the W3 standard. See http://www.w3.org/TR/xmlschema-2/#duration for more information.

	double
	Specifies a decimal of datatype double as it is patterned after the IEEE double-precision 64-bit floating point type (IEEE 754-1985) and as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#double for more information.

	nonNegativeInteger
	Specifies a non-negative integer in the infinite set {0,1,2,...} as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#nonNegativeInteger for more information.

	hexBinary
	Specifies arbitrary hex-encoded binary data as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#hexBinary for more information.

	anyURI
	Specifies a Uniform Resource Identifier Reference (URI) as it applies to the W3C standard and to RFC 2396, as amended by RFC 2732. See http://www.w3.org/TR/xmlschema-2/#anyURI for more information.

	base64Binary
	Specifies base64-encoded arbitrary binary data as it applies to the W3C standard. See http://www.w3.org/TR/xmlschema-2/#base64Binary for more information.

	IPv4 Address
	Specifies an IPV4 address in dotted decimal form. CIDR notation is also accepted.

	IPv6 Address
	Specifies an IPV6 address, which is represented by eight groups of 16-bit hexadecimal values separated by colons (:) in the form a:b:c:d:e:f:g:h. CIDR notation is also accepted.

	Host Name
	Specifies a host name. For compatibility reasons, this could be any string. Even so, it is best to use the proper notation for the given host type. For example, web hostnames should be written as fully qualified hostnames in practice.

	MAC Address
	Specifies a MAC address, which is represented by six groups of 2 hexadecimal digits, separated by hyphens (-) or colons (:) in transmission order.

	Domain Name
	Specifies a domain name, which is represented by a series of labels concatenated with dots conforming to the rules in RFC 1035, RFC 1123, and RFC 2181.

	URI
	Specifies a Uniform Resource Identifier, which identifies a name or resource and can act as a URL or URN.

	TimeZone
	Specifies a timezone in UTC notation (UTC+number).

	Octal
	Specifies arbitrary octal (base-8) encoded data.

	Binary
	Specifies arbitrary binary encoded data.

	BinHex
	Specifies arbitrary data encoded in the Mac OS-originated BinHex format.

	Subnet Mask
	Specifies a subnet mask in IPv4 or IPv6 notation.

	UUID/GUID
	Specifies a globally/universally unique ID represented as a 32-character hexadecimal string. See ISO/IEC 11578:1996 Information technology -- Open Systems Interconnection -- Remote Procedure Call - http://www.iso.ch/cate/d2229.html.

	Collection
	Specifies data represented as a container of multiple data of a shared elemental type.

	CVE ID
	Specifies a CVE ID, expressed as CVE- appended by a four-digit integer, a - and another four-digit integer, as in CVE-2012-1234.

	CWE ID
	Specifies a CWE ID, expressed as CWE- appended by an integer.

	CAPEC ID
	Specifies a CAPEC ID, expressed as CAPEC- appended by an integer.

	CCE ID
	Specifies a CCE ID, expressed as CCE- appended by an integer.

	CPE Name
	Specifies a CPE Name. See http://cpe.mitre.org/specification/archive/version2.0/cpe-specification_2.0.pdf for more information.

4.7.8 [bookmark: _Toc425409718][bookmark: _Toc450634668][bookmark: _Toc458094131][bookmark: _Toc425409715]DatePrecisionEnum Enumeration
Table 3‑75. Literals of the DatePrecisionEnum enumeration
	Enumeration Literal
	Description

	year
	Date is precise to the given year.

	month
	Date is precise to the given month.

	day
	Date is precise to the given day.

4.7.9 [bookmark: _Toc425409722][bookmark: _Toc450634669][bookmark: _Toc458094132]EndiannessTypeEnum Enumeration
Table 3‑76. Literals of the EndiannessTypeEnum enumeration
	Enumeration Literal
	Description

	Big-endian
	The Big-endian value specifies a big-endian byte ordering.

	Little-endian
	The Little-endian value specifies a little-endian byte ordering.

	Middle-endian
	The Middle-endian value specifies a middle-endian byte ordering.

4.7.10 [bookmark: _Toc450634670][bookmark: _Toc458094133]Layer4ProtocolEnum Enumeration
Table 3‑77. Literals of the Layer4ProtocolEnum enumeration
	Enumeration Literal
	Description

	TCP
	Specifies the Transmission Control Protocol.

	UDP
	Specifies the User Datagram Protocol.

	AH
	Specifies the Authentication Header protocol.

	ESP
	Specifies the Encapsulating Security Payload protocol.

	GRE
	Specifies the Generic Routing Encapsulation protocol.

	IL
	Specifies the Internet Link protocol.

	SCTP
	Specifies the Stream Control Transmission Protocol.

	Sinec H1
	Specifies the Siemens Sinec H1 protocol.

	SPX
	Specifies the Sequenced Packet Exchange protocol.

	DCCP
	Specifies the Datagram Congestion Control Protocol.

4.7.11 [bookmark: _Toc450634671][bookmark: _Toc458094134]PatternTypeEnum Enumeration
Table 3‑78. Literals of the PatternTypeEnum enumeration
	Enumeration Literal
	Description

	Regex
	Specifies the regular expression pattern type.

	Binary
	Specifies the binary (bit operations) pattern type.

	XPath
	Specifies the XPath 1.0 expression pattern type.

4.7.12 [bookmark: _Toc425409724][bookmark: _Toc450634672][bookmark: _Toc458094135][bookmark: _Toc425409719]RegionalRegistryTypeEnum Enumeration
Table 3‑79. Literals of the RegionalRegistryTypeEnum enumeration
	Enumeration Literal
	Description

	AfriNIC
	AfriNIC stands for African Network Information Centre, and is the RIR for Africa.

	ARIN
	ARIN stands for American Registry for Internet Numbers, and is the RIR for the United States, Canada, several parts of the Caribbean Region, and Antarctica.

	APNIC
	APNIC stands for Asia-Pacific Network Information Centre, and is the RIR for Asia, Australia, New Zealand, and neighboring countries.

	LACNIC
	LACNIC stands for Latin American and Caribbean Network Information Centre, and is the RIR for Latin America and parts of the Caribbean region.

	RIPE NCC
	RIPE NCC stands for Réseaux IP Européens Network Coordination Centre, and is the RIR for Europe, Russia, the Middle East, and Central Asia.

4.7.13 [bookmark: _Toc425409720][bookmark: _Toc450634673][bookmark: _Toc458094136]SIDTypeEnum Enumeration
Table 3‑80. Literals of the SIDTypeEnum enumeration
	Enumeration Literal
	Description

	SidTypeUser
	Indicates a SID of type User.

	SidTypeGroup
	Indicates a SID of type Group.

	SidTypeDomain
	Indicates a SID of type Domain.

	SidTypeAlias
	Indicates a SID of type Alias.

	SidTypeWellKnownGroup
	Indicates a SID for a well-known group.

	SidTypeDeletedAccount
	Indicates a SID for a deleted account.

	SidTypeInvalid
	Indicates an invalid SID.

	SidTypeUnknown
	Indicates a SID of unknown type.

	SidTypeComputer
	Indicates a SID for a computer.

	SidTypeLabel
	Indicates a mandatory integrity label SID.

4.7.14 [bookmark: _Toc425409708][bookmark: _Toc450634674][bookmark: _Toc458094137][bookmark: _Toc425409721]SourceClassTypeEnum Enumeration
Table 3‑81. Literals of the SourceClassTypeEnum enumeration
	Enumeration Literal
	Description

	Network
	Describes a Network-based cyber observation.

	System
	Describes a System-based cyber observation.

	Software
	Describes a Software-based cyber observation.

4.7.15 [bookmark: _Toc425409709][bookmark: _Toc450634675][bookmark: _Toc458094138]SourceTypeEnum Enumeration
Table 3-82. Literals of the SourceTypeEnum enumeration
	Enumeration Literal
	Description

	Tool
	Describes a cyber observation made using various tools, such as scanners, firewalls, gateways, protection systems, and detection systems. See ToolTypeEnum for a more complete list of tools that CybOX supports.

	Analysis
	Describes a cyber observation made from analysis methods, such as Static and Dynamic methods. See AnalysisMethodTypeEnum for a more complete list of methods that CybOX supports.

	Information Source
	Describes a cyber observation made using other information sources, such as logs, Device Driver APIs, and TPM output data. See InformationSourceTypeEnum for a more complete list of information sources that CybOX supports.

4.7.16 [bookmark: _Toc450634676][bookmark: _Toc458094139][bookmark: _Toc425409711][bookmark: _Ref428537416]TimePrecisionEnum Enumeration
Table 3‑83. Literals of the TimePrecisionEnum enumeration
	Enumeration Literal
	Description

	hour
	Time is precise to the given hour.

	minute
	Time is precise to the given minute.

	second
	Time is precise to the given second (including fractional seconds).

4.7.17 [bookmark: _Toc450634677][bookmark: _Toc458094140]ToolReferenceTypeEnum Enumeration
Table 3‑84. Literals of the ToolReferenceTypeEnum enumeration
	Enumeration Literal
	Description

	Documentation
	The reference is to documentation about the identified tool.

	Source
	The reference is to source code for the identified tool.

	Download
	The reference is to where an executable version of the tool can be downloaded.

	Execute
	The reference is to the tool implemented as an online service.

	Other
	The reference is to material about the tool not covered by other values in this enumeration.

5 [bookmark: _Toc450634678][bookmark: _Toc458094141]Conformance
Implementations have discretion over which parts (components, properties, extensions, controlled vocabularies, etc.) of CybOX they implement (e.g., Observable/Object).

[1] Conformant implementations must conform to all normative structural specifications of the UML model or additional normative statements within this document that apply to the portions of CybOX they implement (e.g., implementers of the entire Observable class must conform to all normative structural specifications of the UML model regarding the Observable class or additional normative statements contained in the document that describes the Observable class).

[2] Conformant implementations are free to ignore normative structural specifications of the UML model or additional normative statements within this document that do not apply to the portions of CybOX they implement (e.g., non-implementers of any particular properties of the Observable class are free to ignore all normative structural specifications of the UML model regarding those properties of the Observable class or additional normative statements contained in the document that describes the Observable class).

The conformance section of this document is intentionally broad and attempts to reiterate what already exists in this document.
Appendix A. [bookmark: _Toc450634679][bookmark: _Toc458094142]Acknowledgements
The following individuals have participated in the creation of this specification and are gratefully acknowledged:
	Aetna
 David Crawford
AIT Austrian Institute of Technology
 Roman Fiedler
 Florian Skopik
Australia and New Zealand Banking Group (ANZ Bank)
 Dean Thompson
Blue Coat Systems, Inc.
 Owen Johnson
 Bret Jordan
Century Link
 Cory Kennedy
CIRCL
 Alexandre Dulaunoy
 Andras Iklody
 Raphaël Vinot
Citrix Systems
 Joey Peloquin
Dell
 Will Urbanski
 Jeff Williams
DTCC
 Dan Brown
 Gordon Hundley
 Chris Koutras
EMC
 Robert Griffin
 Jeff Odom
 Ravi Sharda
Financial Services Information Sharing and Analysis Center (FS-ISAC)
 David Eilken
 Chris Ricard
Fortinet Inc.
 Gavin Chow
 Kenichi Terashita
Fujitsu Limited
 Neil Edwards
 Frederick Hirsch
 Ryusuke Masuoka
 Daisuke Murabayashi
Google Inc.
 Mark Risher
Hitachi, Ltd.
 Kazuo Noguchi
 Akihito Sawada
 Masato Terada
iboss, Inc.
 Paul Martini
Individual
 Jerome Athias
 Peter Brown
 Elysa Jones
 Sanjiv Kalkar
 Bar Lockwood
 Terry MacDonald
 Alex Pinto
Intel Corporation
 Tim Casey
 Kent Landfield
JPMorgan Chase Bank, N.A.
 Terrence Driscoll
 David Laurance
LookingGlass
 Allan Thomson
 Lee Vorthman
Mitre Corporation
 Greg Back
 Jonathan Baker
 Sean Barnum
 Desiree Beck
 Nicole Gong
 Jasen Jacobsen
 Ivan Kirillov
 Richard Piazza
 Jon Salwen
 Charles Schmidt
 Emmanuelle Vargas-Gonzalez
 John Wunder
National Council of ISACs (NCI)
 Scott Algeier
 Denise Anderson
 Josh Poster
NEC Corporation
 Takahiro Kakumaru
North American Energy Standards Board
 David Darnell
Object Management Group
 Cory Casanave
Palo Alto Networks
 Vishaal Hariprasad
Queralt, Inc.
 John Tolbert
Resilient Systems, Inc.
 Ted Julian
Securonix
 Igor Baikalov
Siemens AG
 Bernd Grobauer
Soltra
 John Anderson
 Aishwarya Asok Kumar
 Peter Ayasse
 Jeff Beekman
 Michael Butt
 Cynthia Camacho
 Aharon Chernin
 Mark Clancy
 Brady Cotton
 Trey Darley
 Mark Davidson
 Paul Dion
 Daniel Dye
 Robert Hutto
 Raymond Keckler
 Ali Khan
 Chris Kiehl
 Clayton Long
 Michael Pepin
 Natalie Suarez
 David Waters
 Benjamin Yates
Symantec Corp.
 Curtis Kostrosky
The Boeing Company
 Crystal Hayes
ThreatQuotient, Inc.
 Ryan Trost
U.S. Bank
 Mark Angel
 Brad Butts
 Brian Fay
 Mona Magathan
 Yevgen Sautin
US Department of Defense (DoD)
 James Bohling
 Eoghan Casey
 Gary Katz
 Jeffrey Mates
VeriSign
 Robert Coderre
 Kyle Maxwell
 Eric Osterweil
	Airbus Group SAS
 Joerg Eschweiler
 Marcos Orallo
Anomali
 Ryan Clough
 Wei Huang
 Hugh Njemanze
 Katie Pelusi
 Aaron Shelmire
 Jason Trost
Bank of America
 Alexander Foley
Center for Internet Security (CIS)
 Sarah Kelley
Check Point Software Technologies
 Ron Davidson
Cisco Systems
 Syam Appala
 Ted Bedwell
 David McGrew
 Pavan Reddy
 Omar Santos
 Jyoti Verma
Cyber Threat Intelligence Network, Inc. (CTIN)
 Doug DePeppe
 Jane Ginn
 Ben Othman
DHS Office of Cybersecurity and Communications (CS&C)
 Richard Struse
 Marlon Taylor
EclecticIQ
 Marko Dragoljevic
 Joep Gommers
 Sergey Polzunov
 Rutger Prins
 Andrei Sîrghi
 Raymon van der Velde
eSentire, Inc.
 Jacob Gajek
FireEye, Inc.
 Phillip Boles
 Pavan Gorakav
 Anuj Kumar
 Shyamal Pandya
 Paul Patrick
 Scott Shreve
Fox-IT
 Sarah Brown
Georgetown University
 Eric Burger
Hewlett Packard Enterprise (HPE)
 Tomas Sander
IBM
 Peter Allor
 Eldan Ben-Haim
 Sandra Hernandez
 Jason Keirstead
 John Morris
 Laura Rusu
 Ron Williams
IID
 Chris Richardson
Integrated Networking Technologies, Inc.
 Patrick Maroney
Johns Hopkins University Applied Physics Laboratory
 Karin Marr
 Julie Modlin
 Mark Moss
 Pamela Smith
Kaiser Permanente
 Russell Culpepper
 Beth Pumo
Lumeta Corporation
 Brandon Hoffman
MTG Management Consultants, LLC.
 James Cabral
National Security Agency
 Mike Boyle
 Jessica Fitzgerald-McKay
New Context Services, Inc.
 John-Mark Gurney
 Christian Hunt
 James Moler
 Daniel Riedel
 Andrew Storms
OASIS
 James Bryce Clark
 Robin Cover
 Chet Ensign
Open Identity Exchange
 Don Thibeau
PhishMe Inc.
 Josh Larkins
Raytheon Company-SAS
 Daniel Wyschogrod
Retail Cyber Intelligence Sharing Center (R-CISC)
 Brian Engle
Semper Fortis Solutions
 Joseph Brand
Splunk Inc.
 Cedric LeRoux
 Brian Luger
 Kathy Wang
TELUS
 Greg Reaume
 Alan Steer
Threat Intelligence Pty Ltd
 Tyron Miller
 Andrew van der Stock
ThreatConnect, Inc.
 Wade Baker
 Cole Iliff
 Andrew Pendergast
 Ben Schmoker
 Jason Spies
TruSTAR Technology
 Chris Roblee
United Kingdom Cabinet Office
 Iain Brown
 Adam Cooper
 Mike McLellan
 Chris O’Brien
 James Penman
 Howard Staple
 Chris Taylor
 Laurie Thomson
 Alastair Treharne
 Julian White
 Bethany Yates
US Department of Homeland Security
 Evette Maynard-Noel
 Justin Stekervetz
ViaSat, Inc.
 Lee Chieffalo
 Wilson Figueroa
 Andrew May
Yaana Technologies, LLC
 Anthony Rutkowski

The authors would also like to thank the larger CybOX Community for its input and help in reviewing this document.
cybox-v2.1.1-csprd01-part02-common		20 June 2016
Standards Track Work Product	Copyright © OASIS Open 2016. All Rights Reserved.	Page 73 of 86
image2.png

image3.png

image4.png
«datalyper

image5.png

image6.png

image7.png

image8.png

image9.png
<dataTypes

«datalyper
CYBOX:cybox_common::BaseObjectPropertyGroup.

5 1d : BasiclypestbasicDataTypes: Qualifiedame
56 idref : BasiclypestbasicDataTypes: Qualifiedame

5 appears random : BasicTypesibasicDataTypes:Boolean

5 1_obfuscated : Basiclypes:basicDatalypes:Boolean

5 obfuscation_algorithm_ref : Basiclypes:basicDataTypes:URL

5 1 defanged : Basiclypes::basicDataTypes:Boolean

£ defanging_algorithm_ref : BasicTypes:ibasicDataTypes::URI

5 refanging_transform_type : Basiclypes:basicDataTypes:Basicstring
5 refanging_transform : BasiclypeszbasicDataTypes:BasicString

5 observed_encoding : BasiclypesubasicDataTypes:Basicstring

53 datatype : CYBOX:/box_common:DatatypeEnum

1

5 condition : CYBOXibox_common ConditionTypeEnum
(5 1_case_sensitive : Basicypes:ibasicDatalypesiBoolean

(56 apply_Conition : CYBOX: ojoox_commons:ConditionApplicationEnum
(5 delimiter : BasicTypes: basicDatalypes:BasicSring

(55 bit_mask : Basicypes:basicDataTypessHerBinary

5 pattern_type ; CYBOX:ojbox_commons: PatterTypeEnum

(56 regex_syntax: Basiclypes:basicDataTypes: Basictring

(56 has_changed ; BasicTypes: basicDataTypes:Boolean

56 trend : Basicypes:basicDataTypes:Boolean

VBOX:cybox_common:

«dataTypes

seObjectPropertyType.

image10.png
] cYBoxiaybox common:MeasuresourceType

56 class CYBOX:cybox_common:SourceClassTypeEnum
5 source_type : CYBOX:cybox_common:SourceTypeEnum

6 name : Basiclypes::basicDataTypes: Basicstring

56 sighting_count ; Basiclypes:basicDatalypes:Positivelnteger

5 Information_Source_Type : CYBOX:cybox_common:ControlledVocabularystringType
5 TooLType : CYBOX:qrbox_common:ControlledVocabulantringType

56 Description : CYBOX:cybox_common:StructuredTextiype

55 Time ; CYBOX:/box_common:TimeType

56 Obsenvation_Location : CYBOX:g/box_common:LocationType

55 Tools : CYBOX:ybox_common: ToolsInformationType

5 System : CYBOX:c/box_common:ObjectPropertiesType

5 Instance : CYBOX:qybox_common::ObjectPropertiesType

53 Obsenvable_Loaation ; CYBOX:/box_common:LocationType

0.1

+ Conttor, T —— + contbuter] cYBOXzcybox commonsContibutorType
z £ Role BasicypesubasicDataTypesiBasictning

e —] R e oS
6 Email BasicypesibasDspEsBacSting
6 Phone : Basicypes:basicDataTypes: Bsictring
6 Organization : Basicypes:basiDatalypes: Basictring
£ Dite : CBOXigbox_common;DsteRangeType
6 Contribution Locatian: Basicypes:basicDataTypes:asiciting

Slovso atormspecticationtype | """ <aatarypes
8 Description : CYBOX:icbox_common:StructuredTextType. e o Rl tor e TIPS

0.1

+ Platform

image11.png
] CYBOX:«ybox commonBuldinormationType

5 Build_ID : Basiclypes:basicDatalypes:Basicstring
5 Build_Project : BasicTypes: basicDataTypes: Basicstring

56 Build_Version : Basiclypes:basicDatalypes:Basicstring

5 Build_Label : Basiclypes:basicDatalypes:Basicstring

55 Compilation_Date : CYBOX:qybox_common:DateTimeWithPrecisionType
5 Build_Script : BasiclypessbasicDataTypes:Basicstring

5% Build_Output Log : BasiclypesibasicDataTypes:Basicstring

+ Build_Utity

] cYBoKz«ybox commonulautityType

0.1

5 Build_Utilty_Name : BasiclypestbasicDataTypestBasicstring
5 Build_Utilty_Platform_Specification : CYBOX:ybox_common: PlatformSpecificationType

+ Build_Configuration

] cYBoKicybox common:utaconfiguationType

0.1 | 55 Configuration,_Setting_Description : BasicTypes: basicDataTypes: Basicstring
5 Configuration_Settings : CYBOX:iqybox_common:ConfigurationSettingsType

+ Libraries

] cYBoxzaybox common:

0.1

+ Compilers

0.1

+ Library

0.1

Slovso

ybox_common:LibraryType

6 name : Basiclypes:basicDataTypes:Basicstring
55 version : BasicTypes:ibasicDataTypes:Basicstring

image12.png
+ Identifier
+ Compller_Platform_Specification

Seuteyos, commen; Ptioynsios eaionlies 6 e BasCypebAAD S pEs BRACStng

53 Desaription : CYBOX:cybox_common:StructuredTextiype | £ systemret : BasicypessbasicDataTypes URI

)‘] CYBOX:cybox commonPattormidentaierType
0.1

+ Compiler

] cYBoxicybox common:Compiertype

P e ——

+ Compiler_Informal_Description

] CYBOKscybox common:CompieriformaDescrptionType

56 Compiler_Name : BasiclypestbasicDataTypes:Basicstring
5 Compiler_Version : BasicTypes:basicDataTypes:Basicstring

0.1

image13.png
] cYBOxzcybox sommonContigurationsetingype
/box_common::ConfigurationSettingsType |+ Configuration_Setting

5 ltem_Name : Basiclypes:basicDataTypes:Basicstring

1.+ | @ ltem Value : Basiclypes:basicDatalypes:Basicstring
5 ltem_Type : Basiclypes:basicDataTypes:Basicstring
5% ltem_Description : BasicTypes:ibasicDataTypes:Basictring

image14.png
+ Dependengy

56 Dependenay_Type : BasiclypestbasicDataTypes:Basicstring

ybox_common:DependendiesType

1.+ | 53 Dependency_Description : CYBOX:o/box_common:StructuredTextType

image15.png
] cYBOX:cybox common:DigitalsignaturelntoType

5 signature_exists : BasiclypestbasicDataTypestBoolean

+ Digital_Signature

5 signature_verified : Basiclypes:basicDataTypes:Boolean

.+ | 58 Certificate Jssuer : CYBOXs/box_common:StringObjectPropertyType

£ Certificate_Subject: CYBOX:ybox_commons:StringObjectPropertyType
5% Signature_Description : CYBOX:/box_common::StringObjectPropertyType

image16.png
©tror] cYBox=cybox_commonsErrorType
o commonsnorsType 6 Eror Ty Bascypes D atSTypEs BAStNg
1.4 5 Eror_Count: BascypessbsscDataTypesNoegatelnteger

+ Error_Instances

0.1

] cYBoxiaybox commonsEmomnstancesType

5% Error Instance : BasiclypestbasicDataTypes:Basicstring

image17.png
+ Simple_Hash Value 0.1

cdatanpes
01 CYBOX:cybox_common:FuzzyHashValueType

+ Fuzzy_Hash Value 0.1

01
+ Fuzzy_Hash_Structure] cYBOX:cybox_common:FuzzyHashstructureType
(55 Block_Size : CYBOX:oybox_commanintegerObjectPropertype + Has_Choice
+ Blode_Hash
] CYBOX::cybox_common::FuzzyHashBlockType + Block_Hash.Value 0.1
+ Segments
0.1 + Segment Hash 0.1

] cYBoxiaybox commonstiassegmentiype

+ Segment 5 Trigger_Point : CYBOX:o/box_comman:HexBinaryObjectPropertyype
5 Raw_Segment_Content : XSDDataTypes:XSDDataypesianyType | —

1

image18.png
=ToolsnformationType

+ Tool_Configuration

G814 BascypesibasicOstaypes Qualedame Sgentzybos, commorsTonCotunionlies

(cg idref : BasclypessbasicDatalypes:Qualfiediiame £ Usage_Context Assumptions ; CYBOX: /box_common:UsageContextassumptionsType
(cg Name : Basiclypes: basicDatalypes:BasicString 0.1 | £ Interationalization_Settings : CYBOX:cybax_common:InternationalizationsettingsType
56 Type : CYBOX:vbox_common:ControlledVocabulanstringType
56 Description : CYBOX:vbox_common:StructuredTextType + Bxecution_Enviranment

©Toal | B8 References : CIBOXugbox_commonToolReferencesType =] cYBoX:cybox_common:ExecutionEnvironmentType
£ Vendor : Basiclypes:basicDataTypes:Basicstring £ System : CYBOX:vbox_common:ObjectPropertiesType

1+ | 8 Version: BasiclypesibasicOatalypesiBasicstring 0.1 (56 User Account Info : CYBOX: ybox_common: ObjectPropertiesType

55 Service_Pack : Basiclypes:ibasicDataTypes:Basicstring

5 Tool Spedific_Data : CYBOX:ybox_common: ToolSpecificDataType

56 Tool_Hashes : CYBOX:qybox_common: HashlistType

5 Metadata : CYBOX:cybox_common:MetadataType

55 Compensation_ Model : CYBOX:ybox_common::CompensationhodelType

56 Command_Line : Basiclypes:basicDataTypes:Basicstring
5% Start_Time : CYBOX::ybox_comman:DateTimeWithPrecisionType

= cvso

zcybox_common:ErrorsType

image19.png
<dataTypes

«dataTyper
CYBOX:cybox_common::PattemFieldGroup

5 condition : CYBOXibox_common ConditionTypeEnum
(5 1_case_sensitive : Basicypes:ibasicDatalypesiBoolean

(56 apply_Conition : CYBOX: ojoox_commons:ConditionApplicationEnum
(5 delimiter : BasicTypes: basicDatalypes:BasicSring

(55 bit_mask : Basicypes:basicDataTypessHerBinary

5 pattern_type ; CYBOX:ojbox_commons: PatterTypeEnum

(56 regex_syntax: Basiclypes:basicDataTypes: Basictring

(56 has_changed ; BasicTypes: basicDataTypes:Boolean

55 trend : Basicypes:basicDataTypes:Boolean

1

«dataTyper
CYBOX::cybox_common::VocabularyStringType

|

«dataTyper
lbox_common:UnenforcedVocabularyStringType

] CYBOX:cybox_ commen::ControlledVocabularyStringType.

«datalyper

5 vocab_name : Basiclypes:basicDataTypes:NoEmbeddedQuotesstring
56 vocab_eference : BasicTypes:basicDataTypes::URL

(= cYBO)

“enumerations
ybox_default_vocabularies

tashNameVocab-1.0

= oo
= oo
= oo
= oo
= oo
= oo
= crox
= crox

‘@/box_default_vocabularies: HashNameVocab- 10:MD5
‘@/box_default_vocabularies: HashNameVocab-10:MDs

‘@/box_default_vocabularies:HashNameVocab-10:SHAL

‘@/box_default vocabularies:iHashNameVocab- 1.0:5HA224
‘e/box_ default vocabularies:iHashNameVocab-1.0:SHA256
‘/box_default vocabularies:iHashNameVocab- 1.0:SHA34
‘e/box_ default vocabularies:iHashNameVocab-1.0:SHAS12
(@/box_ default vocabularies:HashNameVocab-1.0:SSDEEP.

image1.png
OASIS)

