

Common Security Advisory Framework Version 2.0

Committee Specification 01Draft 02

12 November 2021

30 March 2022

This stage:

https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/csaf-v2.0-csd02.md
(Authoritative)
https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/csaf-v2.0-csd02.html
https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/csaf-v2.0-csd02.pdf

Previous stage:

https://docs.oasis-open.org/csaf/csaf/v2.0/cs01/csaf-v2.0-cs01.md
(Authoritative)
https://docs.oasis-open.org/csaf/csaf/v2.0/cs01/csaf-v2.0-cs01.html
https://docs.oasis-open.org/csaf/csaf/v2.0/cs01/csaf-v2.0-cs01.pdf

Previous stage:

 (Authoritative)
Latest stage:

https://docs.oasis-open.org/csaf/csaf/v2.0/csaf-v2.0.md (Authoritative)
https://docs.oasis-open.org/csaf/csaf/v2.0/csaf-v2.0.html
https://docs.oasis-open.org/csaf/csaf/v2.0/csaf-v2.0.pdf

Technical Committee:

OASIS Common Security Advisory Framework (CSAF) TC

Chair:

Omar Santos (osantos@cisco.com), Cisco Systems

https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/csaf-v2.0-csd02.md
https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/csaf-v2.0-csd02.html
https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/csaf-v2.0-csd02.pdf
https://docs.oasis-open.org/csaf/csaf/v2.0/cs01/csaf-v2.0-cs01.md
https://docs.oasis-open.org/csaf/csaf/v2.0/cs01/csaf-v2.0-cs01.html
https://docs.oasis-open.org/csaf/csaf/v2.0/cs01/csaf-v2.0-cs01.pdf
https://docs.oasis-open.org/csaf/csaf/v2.0/csaf-v2.0.md
https://docs.oasis-open.org/csaf/csaf/v2.0/csaf-v2.0.html
https://docs.oasis-open.org/csaf/csaf/v2.0/csaf-v2.0.pdf
https://www.oasis-open.org/committees/csaf/
mailto:osantos@cisco.com
https://cisco.com/

Editors:

Langley Rock (lrock@redhat.com), Red Hat
Stefan Hagen (stefan@hagen.link), Individual
Thomas Schmidt (thomas.schmidt@bsi.bund.de), Federal Office for
Information Security (BSI) Germany

In Memory of Eric Johnson, TIBCO Software Inc. and Mike Gorski, Cisco
Systems both active members of the OASIS CSAF Committee.

Additional artifacts:

This prose specification is one component of a Work Product that also
includes:

• Aggregator JSON schema: https://docs.oasis-
open.org/csaf/csaf/v2.0/csd02/schemas/aggregator_json_schema.j
son.
Latest stage: https://docs.oasis-
open.org/csaf/csaf/v2.0/aggregator_json_schema.json.

• CSAF JSON schema: https://docs.oasis-
open.org/csaf/csaf/v2.0/csd02/schemas/csaf_json_schema.json.
Latest stage: https://docs.oasis-
open.org/csaf/csaf/v2.0/csaf_json_schema.json.

• Provider JSON schema: https://docs.oasis-
open.org/csaf/csaf/v2.0/csd02/schemas/provider_json_schema.jso
n.
Latest stage: https://docs.oasis-
open.org/csaf/csaf/v2.0/provider_json_schema.json.

Related work:

This specification replaces or supersedes:

• CSAF Common Vulnerability Reporting Framework (CVRF) Version
1.2. Edited by Stefan Hagen. Latest stage: https://docs.oasis-
open.org/csaf/csaf-cvrf/v1.2/csaf-cvrf-v1.2.html

Declared JSON namespaces:

• https://docs.oasis-
open.org/csaf/csaf/v2.0/aggregator_json_schema.json

• https://docs.oasis-open.org/csaf/csaf/v2.0/csaf_json_schema.json

• https://docs.oasis-
open.org/csaf/csaf/v2.0/provider_json_schema.json

mailto:lrock@redhat.com
https://redhat.com/
mailto:stefan@hagen.link
https://stefan-hagen.website/
mailto:thomas.schmidt@bsi.bund.de
https://www.bsi.bund.de/
https://www.bsi.bund.de/
https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/schemas/aggregator_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/schemas/aggregator_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/schemas/aggregator_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/aggregator_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/aggregator_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/schemas/csaf_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/schemas/csaf_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/csaf_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/csaf_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/schemas/provider_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/schemas/provider_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/schemas/provider_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/provider_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/provider_json_schema.json
https://docs.oasis-open.org/csaf/csaf-cvrf/v1.2/csaf-cvrf-v1.2.html
https://docs.oasis-open.org/csaf/csaf-cvrf/v1.2/csaf-cvrf-v1.2.html
https://docs.oasis-open.org/csaf/csaf/v2.0/aggregator_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/aggregator_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/csaf_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/provider_json_schema.json
https://docs.oasis-open.org/csaf/csaf/v2.0/provider_json_schema.json

Abstract:

The Common Security Advisory Framework (CSAF) Version 2.0 is the
definitive reference for the language which supports creation, update, and
interoperable exchange of security advisories as structured information on
products, vulnerabilities and the status of impact and remediation among
interested parties.

Status:

This document was last revised or approved by the OASIS Common
Security Advisory Framework (CSAF) TC on the above date. The level of
approval is also listed above. Check the "Latest stage" location noted
above for possible later revisions of this document. Any other numbered
Versions and other technical work produced by the Technical Committee
(TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=csaf#technical.

TC members should send comments on this specification to the TC's
email list. Others should send comments to the TC's public comment list,
after subscribing to it by following the instructions at the "Send A
Comment" button on the TC's web page at https://www.oasis-
open.org/committees/csaf/.

This specification is provided under the Non-Assertion Mode of the OASIS
IPR PolicyOASIS IPR Policy,, the mode chosen when the Technical
Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification,
and any offers of patent licensing terms, please refer to the Intellectual
Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/csaf/ipr.php).

Note that any machine-readable content (Computer Language Definitions)
declared Normative for this Work Product is provided in separate plain text
files. In the event of a discrepancy between any such plain text file and
display content in the Work Product's prose narrative document(s), the
content in the separate plain text file prevails.

Citation format:

When referencing this specification the following citation format should be
used:

[csaf-v2.0]

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=csaf#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=csaf#technical
https://www.oasis-open.org/committees/csaf/
https://www.oasis-open.org/committees/csaf/
https://www.oasis-open.org/policies-guidelines/ipr/#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/committees/csaf/ipr.php
https://www.oasis-open.org/committees/csaf/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsCompLang

Common Security Advisory Framework Version 2.0. Edited by Langley
Rock, Stefan Hagen, and Thomas Schmidt. 12 November 2021.30 March
2022. OASIS Committee Specification 01Draft 02. https://docs.oasis-
open.org/csaf/csaf/v2.0/csd02/csaf-v2.0-csd02.html. Latest stage:
https://docs.oasis-open.org/csaf/csaf/v2.0/csaf-v2.0.html.

Notices

Copyright © OASIS Open 20212. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to
them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR
Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published, and
distributed, in whole or in part, without restriction of any kind, provided that
the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified
in any way, including by removing the copyright notice or references to
OASIS, except as needed for the purpose of developing any document or
deliverable produced by an OASIS Technical Committee (in which case
the rules applicable to copyrights, as set forth in the OASIS IPR Policy,
must be followed) or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS
IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

As stated in the OASIS IPR Policy, the following three paragraphs in
brackets apply to OASIS Standards Final Deliverable documents
(Committee Specification, Candidate OASIS Standard, OASIS Standard,
or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it
has patent claims that would necessarily be infringed by implementations

https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/csaf-v2.0-csd02.html
https://docs.oasis-open.org/csaf/csaf/v2.0/csd02/csaf-v2.0-csd02.html
https://docs.oasis-open.org/csaf/csaf/v2.0/csaf-v2.0.html
https://www.oasis-open.org/policies-guidelines/ipr/

of this OASIS Standards Final Deliverable, to notify OASIS TC
Administrator and provide an indication of its willingness to grant patent
licenses to such patent claims in a manner consistent with the IPR Mode
of the OASIS Technical Committee that produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is
aware of a claim of ownership of any patent claims that would necessarily
be infringed by implementations of this OASIS Standards Final Deliverable
by a patent holder that is not willing to provide a license to such patent
claims in a manner consistent with the IPR Mode of the OASIS Technical
Committee that produced this OASIS Standards Final Deliverable. OASIS
may include such claims on its website, but disclaims any obligation to do
so.]

[OASIS takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the
implementation or use of the technology described in this OASIS
Standards Final Deliverable or the extent to which any license under such
rights might or might not be available; neither does it represent that it has
made any effort to identify any such rights. Information on OASIS'
procedures with respect to rights in any document or deliverable produced
by an OASIS Technical Committee can be found on the OASIS website.
Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt
made to obtain a general license or permission for the use of such
proprietary rights by implementers or users of this OASIS Standards Final
Deliverable, can be obtained from the OASIS TC Administrator. OASIS
makes no representation that any information or list of intellectual property
rights will at any time be complete, or that any claims in such list are, in
fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of
this specification, and should be used only to refer to the organization and
its official outputs. OASIS welcomes reference to, and implementation and
use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-
guidelines/trademark/ for above guidance.

Table of Contents

• 1 Introduction

o 1.1 IPR Policy

o 1.2 Terminology

https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark/
https://www.oasis-open.org/policies-guidelines/trademark/

o 1.3 Normative References

o 1.4 Informative References

o 1.5 Typographical Conventions

• 2 Design Considerations

o 2.1 Construction Principles

• 3 Schema Elements

o 3.1 Definitions

▪ 3.1.1 Acknowledgments Type

▪ 3.1.1.1 Acknowledgments Type - Names

▪ 3.1.1.2 Acknowledgments Type - Organization

▪ 3.1.1.3 Acknowledgments Type -
Summary

▪ 3.1.1.4 Acknowledgments Type - URLs

▪ 3.1.1.5 Acknowledgments Type -
Example

▪ 3.1.2 Branches Type

▪ 3.1.2.1 Branches Type - Branches

▪ 3.1.2.2 Branches Type - Category

▪ 3.1.2.3 Branches Type - Name

▪ 3.1.2.3.1 Branches Type - Name under
Product Version

▪ 3.1.2.3.2 Branches Type - Name under
Product Version Range

▪ 3.1.2.4 Branches Type - Product

▪ 3.1.3 Full Product Name Type

▪ 3.1.3.1 Full Product Name Type - Name

▪ 3.1.3.2 Full Product Name Type - Product ID

▪ 3.1.3.3 Full Product Name Type - Product
Identification Helper

▪ 3.1.3.3.1 Full Product Name Type -
Product Identification Helper - CPE

▪ 3.1.3.3.2 Full Product Name Type -
Product Identification Helper - Hashes

▪ 3.1.3.3.3 Full Product Name Type -
Product Identification Helper - Model
Numbers

▪ 3.1.3.3.4 Full Product Name Type -
Product Identification Helper - PURL

▪ 3.1.3.3.5 Full Product Name Type -
Product Identification Helper - SBOM
URLs

▪ 3.1.3.3.6 Full Product Name Type -
Product Identification Helper - Serial
Numbers

▪ 3.1.3.3.7 Full Product Name Type -
Product Identification Helper - SKUs

▪ 3.1.3.3.8 Full Product Name Type -
Product Identification Helper - Generic
URIs

▪ 3.1.4 Language Type

▪ 3.1.5 Notes Type

▪ 3.1.6 Product Group ID Type

▪ 3.1.7 Product Groups Type

▪ 3.1.8 Product ID Type

▪ 3.1.9 Products Type

▪ 3.1.10 References Type

▪ 3.1.11 Version Type

▪ 3.1.11.1 Version Type - Integer versioning

▪ 3.1.11.2 Version Type - Semantic versioning

o 3.2 Properties

▪ 3.2.1 Document Property

▪ 3.2.1.1 Document Property - Acknowledgments

▪ 3.2.1.2 Document Property - Aggregate
Severity

▪ 3.2.1.3 Document Property - Category

▪ 3.2.1.4 Document Property - CSAF Version

▪ 3.2.1.5 Document Property - Distribution

▪ 3.2.1.5.1 Document Property -
Distribution - Text

▪ 3.2.1.5.2 Document Property -
Distribution - TLP

▪ 3.2.1.6 Document Property - Language

▪ 3.2.1.7 Document Property - Notes

▪ 3.2.1.8 Document Property - Publisher

▪ 3.2.1.8.1 Document Property - Publisher
- Category

▪ 3.2.1.8.2 Document Property - Publisher
- Contact Details

▪ 3.2.1.8.3 Document Property - Publisher
- Issuing Authority

▪ 3.2.1.8.4 Document Property - Publisher
- Name

▪ 3.2.1.8.5 Document Property - Publisher
- Namespace

▪ 3.2.1.9 Document Property - References

▪ 3.2.1.10 Document Property - Source
Language

▪ 3.2.1.11 Document Property - Title

▪ 3.2.1.12 Document Property - Tracking

▪ 3.2.1.12.1 Document Property -
Tracking - Aliases

▪ 3.2.1.12.2 Document Property -
Tracking - Current Release Date

▪ 3.2.1.12.3 Document Property -
Tracking - Generator

▪ 3.2.1.12.4 Document Property -
Tracking - ID

▪ 3.2.1.12.5 Document Property -
Tracking - Initial Release Date

▪ 3.2.1.12.6 Document Property -
Tracking - Revision History

▪ 3.2.1.12.7 Document Property -
Tracking - Status

▪ 3.2.1.12.8 Document Property -
Tracking - Version

▪ 3.2.2 Product Tree Property

▪ 3.2.2.1 Product Tree Property - Branches

▪ 3.2.2.2 Product Tree Property - Full Product
Names

▪ 3.2.2.3 Product Tree Property - Product
Groups

▪ 3.2.2.4 Product Tree Property - Relationships

▪ 3.2.3 Vulnerabilities Property

▪ 3.2.3.1 Vulnerabilities Property -
Acknowledgments

▪ 3.2.3.2 Vulnerabilities Property - CVE

▪ 3.2.3.3 Vulnerabilities Property - CWE

▪ 3.2.3.4 Vulnerabilities Property - Discovery
Date

▪ 3.2.3.5 Vulnerabilities Property - Flags

▪ 3.2.3.6 Vulnerabilities Property - IDs

▪ 3.2.3.7 Vulnerabilities Property - Involvements

▪ 3.2.3.8 Vulnerabilities Property - Notes

▪ 3.2.3.9 Vulnerabilities Property - Product
Status

▪ 3.2.3.10 Vulnerabilities Property - References

▪ 3.2.3.11 Vulnerabilities Property - Release
Date

▪ 3.2.3.12 Vulnerabilities Property -
Remediations

▪ 3.2.3.12.1 Vulnerabilities Property -
Remediations - Category

▪ 3.2.3.12.2 Vulnerabilities Property -
Remediations - Date

▪ 3.2.3.12.3 Vulnerabilities Property -
Remediations - Details

▪ 3.2.3.12.4 Vulnerabilities Property -
Remediations - Entitlements

▪ 3.2.3.12.5 Vulnerabilities Property -
Remediations - Group IDs

▪ 3.2.3.12.6 Vulnerabilities Property -
Remediations - Product IDs

▪ 3.2.3.12.7 Vulnerabilities Property -
Remediations - Restart Required

▪ 3.2.3.12.8 Vulnerabilities Property -
Remediations - URL

▪ 3.2.3.13 Vulnerabilities Property - Scores

▪ 3.2.3.14 Vulnerabilities Property - Threats

▪ 3.2.3.15 Vulnerabilities Property - Title

• 4 Profiles

o 4.1 Profile 1: CSAF Base

o 4.2 Profile 2: Security incident response

o 4.3 Profile 3: Informational Advisory

o 4.4 Profile 4: Security Advisory

o 4.5 Profile 5: VEX

• 5 Additional Conventions

o 5.1 Filename

o 5.2 Separation in Data Stream

o 5.3 Sorting

• 6 Tests

o 6.1 Mandatory Tests

▪ 6.1.1 Missing Definition of Product ID

▪ 6.1.2 Multiple Definition of Product ID

▪ 6.1.3 Circular Definition of Product ID

▪ 6.1.4 Missing Definition of Product Group ID

▪ 6.1.5 Multiple Definition of Product Group ID

▪ 6.1.6 Contradicting Product Status

▪ 6.1.7 Multiple Scores with same Version per Product

▪ 6.1.8 Invalid CVSS

▪ 6.1.9 Invalid CVSS computation

▪ 6.1.10 Inconsistent CVSS

▪ 6.1.11 CWE

▪ 6.1.12 Language

▪ 6.1.13 PURL

▪ 6.1.14 Sorted Revision History

▪ 6.1.15 Translator

▪ 6.1.16 Latest Document Version

▪ 6.1.17 Document Status Draft

▪ 6.1.18 Released Revision History

▪ 6.1.19 Revision History Entries for Pre-release
Versions

▪ 6.1.20 Non-draft Document Version

▪ 6.1.21 Missing Item in Revision History

▪ 6.1.22 Multiple Definition in Revision History

▪ 6.1.23 Multiple Use of Same CVE

▪ 6.1.24 Multiple Definition in Involvements

▪ 6.1.25 Multiple Use of Same Hash Algorithm

▪ 6.1.26 Prohibited Document Category Name

▪ 6.1.27 Profile Tests

▪ 6.1.27.1 Document Notes

▪ 6.1.27.2 Document References

▪ 6.1.27.3 Vulnerabilities

▪ 6.1.27.4 Product Tree

▪ 6.1.27.5 Vulnerability Notes

▪ 6.1.27.6 Product Status

▪ 6.1.27.7 VEX Product Status

▪ 6.1.27.8 Vulnerability ID

▪ 6.1.27.9 Impact Statement

▪ 6.1.27.10 Action Statement

▪ 6.1.27.11 Vulnerabilities

▪ 6.1.28 Translation

▪ 6.1.29 Remediation without Product Reference

▪ 6.1.30 Integer and Semantic Versioning

▪ 6.1.31 Version Range in Product Version

▪ 6.1.32 Flag without Product Reference

▪ 6.1.33 Multiple Flags with VEX Justification Codes per
Product

o 6.2 Optional Tests

▪ 6.2.1 Unused Definition of Product ID

▪ 6.2.2 Missing Remediation

▪ 6.2.3 Missing Score

▪ 6.2.4 Build Metadata in Revision History

▪ 6.2.5 Older Initial Release Date than Revision History

▪ 6.2.6 Older Current Release Date than Revision
History

▪ 6.2.7 Missing Date in Involvements

▪ 6.2.8 Use of MD5 as the only Hash Algorithm

▪ 6.2.9 Use of SHA-1 as the only Hash Algorithm

▪ 6.2.10 Missing TLP label

▪ 6.2.11 Missing Canonical URL

▪ 6.2.12 Missing Document Language

▪ 6.2.13 Sorting

▪ 6.2.14 Use of Private Language

▪ 6.2.15 Use of Default Language

▪ 6.2.16 Missing Product Identification Helper

▪ 6.2.17 CVE in field IDs

▪ 6.2.18 Product Version Range without vers

▪ 6.2.19 CVSS for Fixed Products

▪ 6.2.20 Additional Properties

o 6.3 Informative Test

▪ 6.3.1 Use of CVSS v2 as the only Scoring System

▪ 6.3.2 Use of CVSS v3.0

▪ 6.3.3 Missing CVE

▪ 6.3.4 Missing CWE

▪ 6.3.5 Use of Short Hash

▪ 6.3.6 Use of non-self referencing URLs Failing to
Resolve

▪ 6.3.7 Use of self referencing URLs Failing to Resolve

▪ 6.3.8 Spell check

▪ 6.3.9 Branch Categories

▪ 6.3.10 Usage of Product Version Range

▪ 6.3.11 Usage of V as Version Indicator

• 7 Distributing CSAF documents

o 7.1 Requirements

▪ 7.1.1 Requirement 1: Valid CSAF document

▪ 7.1.2 Requirement 2: Filename

▪ 7.1.3 Requirement 3: TLS

▪ 7.1.4 Requirement 4: TLP:WHITE

▪ 7.1.5 Requirement 5: TLP:AMBER and TLP:RED

▪ 7.1.6 Requirement 6: No Redirects

▪ 7.1.7 Requirement 7: provider-metadata.json

▪ 7.1.8 Requirement 8: security.txt

▪ 7.1.9 Requirement 9: Well-known URL for provider-
metadata.json

▪ 7.1.10 Requirement 10: DNS path

▪ 7.1.11 Requirement 11: One folder per year

▪ 7.1.12 Requirement 12: index.txt

▪ 7.1.13 Requirement 13: changes.csv

▪ 7.1.14 Requirement 14: Directory listings

▪ 7.1.15 Requirement 15: ROLIE feed

▪ 7.1.16 Requirement 16: ROLIE service document

▪ 7.1.17 Requirement 17: ROLIE category document

▪ 7.1.18 Requirement 18: Integrity

▪ 7.1.19 Requirement 19: Signatures

▪ 7.1.20 Requirement 20: Public OpenPGP Key

▪ 7.1.21 Requirement 21: List of CSAF providers

▪ 7.1.22 Requirement 22: Two disjoint issuing parties

▪ 7.1.23 Requirement 23: Mirror

o 7.2 Roles

▪ 7.2.1 Role: CSAF publisher

▪ 7.2.2 Role: CSAF provider

▪ 7.2.3 Role: CSAF trusted provider

▪ 7.2.4 Role: CSAF lister

▪ 7.2.5 Role: CSAF aggregator

o 7.3 Retrieving rules

▪ 7.3.1 Finding provider-metadata.json

▪ 7.3.2 Retrieving CSAF documents

• 8 Safety, Security, and Data Protection Considerations

• 9 Conformance

o 9.1 Conformance Targets

▪ 9.1.1 Conformance Clause 1: CSAF document

▪ 9.1.2 Conformance Clause 2: CSAF producer

▪ 9.1.3 Conformance Clause 3: CSAF direct producer

▪ 9.1.4 Conformance Clause 4: CSAF converter

▪ 9.1.5 Conformance Clause 5: CVRF CSAF converter

▪ 9.1.6 Conformance Clause 6: CSAF content
management system

▪ 9.1.7 Conformance Clause 7: CSAF post-processor

▪ 9.1.8 Conformance Clause 8: CSAF modifier

▪ 9.1.9 Conformance Clause 9: CSAF translator

▪ 9.1.10 Conformance Clause 10: CSAF consumer

▪ 9.1.11 Conformance Clause 11: CSAF viewer

▪ 9.1.12 Conformance Clause 12: CSAF management
system

▪ 9.1.13 Conformance Clause 13: CSAF asset
matching system

▪ 9.1.14 Conformance Clause 14: CSAF basic validator

▪ 9.1.15 Conformance Clause 15: CSAF extended
validator

▪ 9.1.16 Conformance Clause 16: CSAF full validator

▪ 9.1.17 Conformance Clause 17: CSAF SBOM
matching system

• Appendix A. Acknowledgments

• Appendix B. Revision History

• Appendix C. Guidance on the Size of CSAF Documents

o C.1 File size

o C.2 Array length

o C.3 String length

o C.4 URI length

o C.5 Enum

o C.6 Date

1 Introduction

1.1 IPR Policy

This specification is provided under the Non-Assertion Mode of the OASIS
IPR Policy, the mode chosen when the Technical Committee was
established. For information on whether any patents have been disclosed
that may be essential to implementing this specification, and any offers of
patent licensing terms, please refer to the Intellectual Property Rights
section of the TC's web page (https://www.oasis-
open.org/committees/csaf/ipr.php).

1.2 Terminology

https://www.oasis-open.org/policies-guidelines/ipr/#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/committees/csaf/ipr.php
https://www.oasis-open.org/committees/csaf/ipr.php

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in BCP 14 [RFC2119] and [RFC8174] when, and
only when, they appear in all capitals, as shown here.

For purposes of this document, the following terms and definitions apply:

advisory: reporting item that describes a condition present in an artifact
and that requires action by the consumers

advisory document: artifact in which an analysis tool reports a result

advisory management system: software system that consumes the
documents produced by analysis tools, produces advisories that enable
engineering and operating organizations to assess the quality of these
software artifacts at a point in time, and performs functions such as filing
security advisories and displaying information about individual advisories.
Note: An advisory management system can interact with a document
viewer to display information about individual advisories.

advisory matching: process of determining whether two advisories are
targeting the same products and conditions

artifact: sequence of bytes addressable via a URI. Examples: A physical
file in a file system such as a source file, an object file, a configuration file
or a data file; a specific version of a file in a version control system; a
database table accessed via an HTTP request; an arbitrary stream of
bytes returned from an HTTP request, a product URL, a common product
enumeration value.

CSAF asset matching system: program that connects to or is an asset
database and is able to manage CSAF documents as required by CSAF
management system as well as matching them to assets of the asset
database.

CSAF basic validator: A program that reads a document and checks it
against the JSON schema and performs mandatory tests.

CSAF consumer: program that reads and interprets a CSAF document

CSAF content management system: program that is able to create,
review and manage CSAF documents and is able to preview their details
as required by CSAF viewer.

CSAF converter: CSAF producer that transforms the output of an
analysis tool from its native output format into the CSAF format

CSAF direct producer: analysis tool which acts as a CSAF producer

CSAF document: security advisory text document in the format defined
by this document.

CSAF extended validator: A CSAF basic validator that additionally
performs optional tests.

CSAF full validator: A CSAF extended validator that additionally
performs informative tests.

CSAF management system: program that is able to manage CSAF
documents and is able to display their details as required by CSAF viewer.

CSAF modifier: CSAF post-processor which takes a CSAF document as
input and modifies the structure or values of properties. The output is a
valid CSAF document.

CSAF post-processor: CSAF producer that transforms an existing CSAF
document into a new CSAF document, for example, by removing or
redacting elements according to sharing policies.

CSAF SBOM matching system: A program that connects to or is an
SBOM database and is able to manage CSAF documents as required by
CSAF management system as well as matching them to SBOM
components of the SBOM database.

CSAF producer: program that emits output in the CSAF format

CSAF translator: CSAF post-processor which takes a CSAF document
as input and translates values of properties into another language. The
output is a valid CSAF document.

CSAF viewer: CSAF consumer that reads a CSAF document, displays a
list of the results it contains, and allows an end user to view each result in
the context of the artifact in which it occurs.

CVRF CSAF converter: CSAF producer which takes a CVRF document
as input and converts it into a valid CSAF document.

document: output file produced by an analysis tool, which enumerates the
results produced by the tool

driver: tool component containing an analysis tool’s or converter’s primary
executable, which controls the tool’s or converter’s execution, and which
in the case of an analysis tool typically defines a set of analysis rules

embedded link: syntactic construct which enables a message string to
refer to a location mentioned in the document

empty array: array that contains no elements, and so has a length of 0

empty object: object that contains no properties

empty string: string that contains no characters, and so has a length of 0

(end) user: person who uses the information in a document to investigate,
triage, or resolve results

engineering system: software analysis environment within which analysis
tools execute. Note: An engineering system might include a build system,
a source control system, a result management system, a bug tracking
system, a test execution system, and so on.

extension: tool component other than the driver (for example, a plugin, a
configuration file, or a taxonomy)

external property file: file containing the values of one or more
externalized properties

externalizable property: property that can be contained in an external
property file

externalized property: property stored outside of the CSAF document to
which it logically belongs

false positive: result which an end user decides does not actually
represent a problem

fingerprint: stable value that can be used by a result management
system to uniquely identify a result over time, even if a relevant artifact is
modified

formatted message: message string which contains formatting
information such as Markdown formatting characters

fully qualified logical name: string that fully identifies the programmatic
construct specified by a logical location, typically by means of a
hierarchical identifier.

hierarchical string: string in the format <component>{/<component>}*

line: contiguous sequence of characters, starting either at the beginning of
an artifact or immediately after a newline sequence, and ending at and
including the nearest subsequent newline sequence, if one is present, or
else extending to the end of the artifact

line (number): 1-based index of a line within a file. Note: Abbreviated to
"line" when there is no danger of ambiguity with "line" in the sense of a
sequence of characters.

localizable: subject to being translated from one natural language to
another

message string: human-readable string that conveys information relevant
to an element in a CSAF document

nested artifact: artifact that is contained within another artifact

newline sequence: sequence of one or more characters representing the
end of a line of text. Note: Some systems represent a newline sequence
with a single newline character; others represent it as a carriage return
character followed by a newline character.

notification: reporting item that describes a condition encountered by a
tool during its execution

opaque: neither human-readable nor machine-parsable into constituent
parts

parent (artifact): artifact which contains one or more nested artifacts

plain text message: message string which does not contain any
formatting information

plugin: tool component that defines additional rules

policy: set of rule configurations that specify how results that violate the
rules defined by a particular tool component are to be treated

problem: result which indicates a condition that has the potential to
detract from the quality of the program. Examples: A security vulnerability,
a deviation from contractual or legal requirements.

product: is any deliverable (e.g. software, hardware, specification,...)
which can be referred to with a name. This applies regardless of the
origin, the license model, or the mode of distribution of the deliverable.

property: attribute of an object consisting of a name and a value
associated with the name

redactable property: property that potentially contains sensitive
information that a CSAF direct producer or a CSAF post-processor might
wish to redact

reporting item: unit of output produced by a tool, either a result or a
notification

reporting configuration: the subset of reporting metadata that a tool can
configure at runtime, before performing its scan. Examples: severity level,
rank

repository container for a related set of files in a version control system

taxonomy: classification of analysis results into a set of categories

tag: string that conveys additional information about the CSAF document
element to which it applies

text artifact: artifact considered as a sequence of characters organized
into lines and columns

text region: region representing a contiguous range of zero or more
characters in a text artifact

tool component: component of an analysis tool or converter, either its
driver or an extension, consisting of one or more files

top-level artifact: artifact which is not contained within any other artifact

translation: rendering of a tool component's localizable strings into
another language

triage: decide whether a result indicates a problem that needs to be
corrected

user: see end user.

VCS: version control system

vendor: the community, individual, or organization that created or
maintains a product (including open source software and hardware
providers)

VEX: Vulnerability Exploitability eXchange - enables a supplier or other
party to assert whether or not a particular product is affected by a specific
vulnerability, especially helpful in efficiently consuming SBOM data.

viewer: see CSAF viewer.

vulnerability: functional behavior of a product or service that violates an
implicit or explicit security policy (conforming to ISO/IEC 29147
[ISO29147])

XML: eXtensible Markup Language - the format used by the predecessors
of this standard, namely CVRF 1.1 and CVRF 1.2.

1.3 Normative References

[JSON-Schema-Core]

JSON Schema: A Media Type for Describing JSON Documents, draft-
handrewsbhutton-json-schema-02, September 201900, December 2020,
https://json-schemadatatracker.ietf.org/doc/html/draft/2019-09/-bhutton-
json-schema-core.html00.

[JSON-Schema-Validation]

JSON Schema Validation: A Vocabulary for Structural Validation of JSON,
draft-handrewsbhutton-json-schema-validation-02, September 201900,
December 2020, https://json-
schemadatatracker.ietf.org/doc/html/draft/2019-09/-bhutton-json-schema-
validation.html-00.

[JSON-Hyper-Schema]

JSON Hyper-Schema: A Vocabulary for Hypermedia Annotation of JSON,
draft-handrews-json-schema-hyperschema-02, September 2019,
https://json-schema.org/draft/2019-09/json-schema-hypermedia.html.

[Relative-JSON-Pointers]

Relative JSON Pointers, draft-handrewsbhutton-relative-json-pointer-02,
September 201900, December 2020, https://json-
schemadatatracker.ietf.org/doc/html/draft/2019-09/-bhutton-relative-json-
pointer.html-00.

https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-validation-00
https://json-schema.org/draft/2019-09/json-schema-hypermedia.html
https://datatracker.ietf.org/doc/html/draft-bhutton-relative-json-pointer-00
https://datatracker.ietf.org/doc/html/draft-bhutton-relative-json-pointer-00
https://datatracker.ietf.org/doc/html/draft-bhutton-relative-json-pointer-00

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels",
BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997.,
https://www.ietfrfc-editor.org/rfcinfo/rfc2119.txt.

[RFC7464]

Williams, N., "JavaScript Object Notation (JSON) Text Sequences", RFC
7464, DOI 10.17487/RFC7464, February 2015, https://www.rfc-
editor.org/info/rfc7464.

[RFC8174]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key
Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017,
https://www.rfc-editor.org/info/rfc8174.

[RFC8259]

T. Bray, Ed., "The JavaScript Object Notation (JSON) Data Interchange
Format", RFC 8259, DOI 10.17487/RFC8259, December 2017,
https://www.rfc-editor.org/info/rfc8259.

1.4 Informative References

[CPE23-A]

Common Platform Enumeration: Applicability Language Specification
Version 2.3 (NISTIR 7698), D. Waltermire, P. Cichonski, K. Scarfone,
Editors, NIST Interagency Report 7698, August 2011,
https://dx.doi.org/10.6028/NIST.IR.7698.

[CPE23-D]

Common Platform Enumeration: Dictionary Specification Version 2.3, P.
Cichonski, D. Waltermire, K. Scarfone, Editors, NIST Interagency Report
7697, August 2011, https://dx.doi.org/10.6028/NIST.IR.7697.

[CPE23-M]

Common Platform Enumeration: Naming Matching Specification Version
2.3, M. Parmelee, H. Booth, D. Waltermire, K. Scarfone, Editors, NIST
Interagency Report 7696, August 2011,,
https://dx.doi.org/10.6028/NIST.IR.7696.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7464
https://www.rfc-editor.org/info/rfc7464
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://dx.doi.org/10.6028/NIST.IR.7698
https://dx.doi.org/10.6028/NIST.IR.7697
https://dx.doi.org/10.6028/NIST.IR.7696

[CPE23-N]

Common Platform Enumeration: Naming Specification Version 2.3, B.
Cheikes, D. Waltermire, K. Scarfone, Editors, NIST Interagency Report
7695, August 2011, https://dx.doi.org/10.6028/NIST.IR.7695.

[CVE]

Common Vulnerability and Exposures (CVE) – The Standard for
Information Security Vulnerability Names, MITRE, 1999,
https://cve.mitre.org/about/.

[CVE-NF]

Common Vulnerability and Exposures (CVE) – The Standard for
Information Security Vulnerability Names - CVE ID Syntax Change,
MITRE, January 01, 2014,
https://cve.mitre.org/cve/identifiers/syntaxchange.html.

[CVRF-1-1]

The Common Vulnerability Reporting Framework (CVRF) Version 1.1, M.
Schiffman, Editor, May 2012, Internet Consortium for Advancement of
Security on the Internet (ICASI), https://www.icasi.org/the-common-
vulnerability-reporting-framework-cvrf-v1-1/.

[CVRF-v1.2]

CSAF Common Vulnerability Reporting Framework (CVRF) Version 1.2.
Edited by Stefan Hagen. 13 September 2017. OASIS Committee
Specification 01. https://docs.oasis-open.org/csaf/csaf-cvrf/v1.2/cs01/csaf-
cvrf-v1.2-cs01.html. Latest version: https://docs.oasis-open.org/csaf/csaf-
cvrf/v1.2/csaf-cvrf-v1.2.html.

[CVSS2]

A Complete Guide to the Common Vulnerability Scoring System Version
2.0, P. Mell, K. Scarfone, S. Romanosky, Editors, First.org, Inc., June
2007, https://www.first.org/cvss/cvss-v2-guide.pdf.

[CVSS30]

Common Vulnerability Scoring System v3.0: Specification Document,
FIRST.Org, Inc., June 2019, https://www.first.org/cvss/v3.0/cvss-v30-
specification_v1.9.pdf.

https://dx.doi.org/10.6028/NIST.IR.7695
https://cve.mitre.org/about/
https://cve.mitre.org/cve/identifiers/syntaxchange.html
https://www.icasi.org/the-common-vulnerability-reporting-framework-cvrf-v1-1/
https://www.icasi.org/the-common-vulnerability-reporting-framework-cvrf-v1-1/
https://docs.oasis-open.org/csaf/csaf-cvrf/v1.2/cs01/csaf-cvrf-v1.2-cs01.html
https://docs.oasis-open.org/csaf/csaf-cvrf/v1.2/cs01/csaf-cvrf-v1.2-cs01.html
https://docs.oasis-open.org/csaf/csaf-cvrf/v1.2/csaf-cvrf-v1.2.html
https://docs.oasis-open.org/csaf/csaf-cvrf/v1.2/csaf-cvrf-v1.2.html
https://www.first.org/cvss/cvss-v2-guide.pdf
https://www.first.org/cvss/v3.0/cvss-v30-specification_v1.9.pdf
https://www.first.org/cvss/v3.0/cvss-v30-specification_v1.9.pdf

[CVSS31]

Common Vulnerability Scoring System v3.1: Specification Document,
FIRST.Org, Inc., June 2019, https://www.first.org/cvss/v3-1/cvss-v31-
specification_r1.pdf.

[CWE]

Common Weakness Enumeration (CWE) – A Community-Developed List
of Software Weakness Types, MITRE, 2005, http://cwe.mitre.org/about/.

[CYCLONEDX13]

CycloneDX Software Bill-of-Material Specification JSON schema version
1.3, cyclonedx.org, May 2021,
https://github.com/CycloneDX/specification/blob/1.3/schema/bom-
1.3.schema.json.

[DCMI11]

DCMI Metadata Terms v1.1, Dublin Core Metadata Initiative, DCMI Rec., June 14,
2012, . Latest version available at .

[GFMCMARK]

GitHub's fork of cmark, a CommonMark parsing and rendering library and
program in C, https://github.com/github/cmark.

[GFMENG]

GitHub Engineering: A formal spec for GitHub Flavored Markdown,
https://githubengineering.com/a-formal-spec-for-github-markdown/.

[ISO8601]

Data elements and interchange formats — Information interchange —
Representation of dates and times, International Standard, ISO
8601:2004(E), December 1, 2004,
https://www.iso.org/standard/40874.html.

[ISO19770-2]

Information technology — IT asset management — Part 2: Software
identification tag, International Standard, ISO 19770-2:2015, September
30, 2015, https://www.iso.org/standard/65666.html.

https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
http://cwe.mitre.org/about/
https://github.com/CycloneDX/specification/blob/1.3/schema/bom-1.3.schema.json
https://github.com/CycloneDX/specification/blob/1.3/schema/bom-1.3.schema.json
https://github.com/github/cmark
https://githubengineering.com/a-formal-spec-for-github-markdown/
https://www.iso.org/standard/40874.html
https://www.iso.org/standard/65666.html

[ISO29147]

Information technology — Security techniques — Vulnerability disclosure,
International Standard, ISO/IEC 29147:2014(E), February 15, 20142018,
October, 2018, https://www.iso.org/standard/72311.html.

[OPENSSL]

GTLS/SSL and crypto library, OpenSSL Software Foundation,
https://www.openssl.org/.

[PURL]

Package URL (PURL), GitHub Project, https://github.com/package-
url/purl-spec.

[RFC3339]

Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps",
RFC 3339, DOI 10.17487/RFC3339, July 2002, https://www.rfc-
editor.org/info/rfc3339.

[RFC3552]

Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security
Considerations", BCP 72, RFC 3552, DOI 10.17487/RFC3552, July 2003,
https://www.rfc-editor.org/info/rfc3552.

[RFC3986]

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource
Identifier (URI): Generic Syntax", STD 66, RFC 3986, DOI
10.17487/RFC3986, January 2005, https://www.rfc-editor.org/info/rfc3986.

[RFC4880]

Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R. Thayer,
"OpenPGP Message Format", RFC 4880, DOI 10.17487/RFC4880,
November 2007, https://www.rfc-editor.org/info/rfc4880.

[RFC7231]

Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content", RFC 7231, DOI 10.17487/RFC7231,
June 2014, https://www.rfc-editor.org/info/rfc7231.

https://www.iso.org/standard/72311.html
https://www.openssl.org/
https://github.com/package-url/purl-spec
https://github.com/package-url/purl-spec
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4880
https://www.rfc-editor.org/info/rfc7231

[RFC7464]

N. Williams., "JavaScript Object Notation (JSON) Text Sequences", RFC
7464, DOI 10.17487/RFC7464, February 2015, https://www.rfc-
editor.org/info/rfc7464.

[RFC8615]

Nottingham, M., "Well-Known Uniform Resource Identifiers (URIs)", RFC
8615, DOI 10.17487/RFC8615, May 2019, https://www.rfc-
editor.org/info/rfc8615.

[SCAP12]

The Technical Specification for the Security Content Automation Protocol
(SCAP): SCAP Version 1.2, D. Waltermire, S. Quinn, K. Scarfone, A.
Halbardier, Editors, NIST Spec. Publ. 800-126 rev. 2, September 2011,
https://dx.doi.org/10.6028/NIST.SP.800-126r2.

[SECURITY-TXT]

Foudil, E. and Shafranovich, Y., Security.txt Project,
https://securitytxt.org/.

[SemVer]

Semantic Versioning 2.0.0, T. Preston-Werner, June 2013,
https://semver.org/.

[SPDX22]

The Software Package Data Exchange (SPDX®) Specification Version
2.2, Linux Foundation and its Contributors, 2020,
https://spdx.github.io/spdx-spec/.

[VEX]

Vulnerability-Exploitability eXchange (VEX) - An Overview, VEX sub-group
of the Framing Working Group in the NTIA SBOM initiative, 27 September
2021, https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf

[VEX-Just]

An overview of the VEX flags, TBA

[XML]

https://www.rfc-editor.org/info/rfc7464
https://www.rfc-editor.org/info/rfc7464
https://www.rfc-editor.org/info/rfc8615
https://www.rfc-editor.org/info/rfc8615
https://dx.doi.org/10.6028/NIST.SP.800-126r2
https://securitytxt.org/
https://semver.org/
https://spdx.github.io/spdx-spec/
https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf

Extensible Markup Language (XML) 1.0 (Fifth Edition), T. Bray, J. Paoli,
M. Sperberg-McQueen, E. Maler, F. Yergeau, Editors, W3C
Recommendation, November 26, 2008,
https://www.w3.org/TR/2008/REC-xml-20081126/. Latest version available
at https://www.w3.org/TR/xml.

[XML-Schema-1]

W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures, S.
Gao, M. Sperberg-McQueen, H. Thompson, N. Mendelsohn, D. Beech, M.
Maloney, Editors, W3C Recommendation, April 5, 2012,
https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/. Latest
version available at https://www.w3.org/TR/xmlschema11-1/.

[XML-Schema-2]

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes W3C
XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, D.
Peterson, S. Gao, A. Malhotra, M. Sperberg-McQueen, H. Thompson,
Paul V. Biron, Editors, W3C Recommendation, April 5, 2012,
https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/. Latest
version available at https://www.w3.org/TR/xmlschema11-2/.

1.5 Typographical Conventions

Keywords defined by this specification use this monospaced font.

 Normative source code uses this paragraph style.

Some sections of this specification are illustrated with non-normative
examples introduced with "Example" or "Examples" like so:

Examples 4321:

 Informative examples also use this paragraph style but

preceded by the text "Example(s)".

All examples in this document are informative only.

All other text is normative unless otherwise labeled e.g. likelike the
following informative comment:

Informative Comment:

This is a pure informative comment that may be present,
because the information conveyed is deemed useful advice

https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/xml
https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
https://www.w3.org/TR/xmlschema11-2/

or common pitfalls learned from implementer or operator
experience and often given including the rationale.

2 Design Considerations

The Common Security Advisory Framework (CSAF) is a language to
exchange Security Advisories formulated in JSON.

Informative Comment:

The term Security Advisory as used in this document describes any
notification of security issues in products of and by providers. Anyone
providing a product is considered in this document as a vendor, i.e.
developers or maintainers of information system products or services. This
includes all authoritative product vendors, Product Security Incident
Response Teams (PSIRTs), and product resellers and distributors,
including authoritative vendor partners. A security issue is not necessarily
constrainted to a problem statement, the focus of the term is on the
security aspect impacting (or not impacting) specific product-platform-
version combinations. Information on presence or absence of work-
aroundsworkarounds is also considered part of the security issue. This
document is the definitive reference for the language elements of CSAF
version 2.0. The encompassing JSON schema file noted in the Additional
Artifacts section of the title page shallSHALL be taken as normative in the
case a gap or an inconsistency in this explanatory document becomes
evident. The following presentation in this section is grouped by topical
area, and is not simply derivative documentation from the schema
document itself. The information contained aims to be more descriptive
and complete. Where applicable, common conventions are stated and
known common issues in usage are pointed out informatively to support
implementers of document producers and consumers alike. The section 3
Schema elements derives from the JSON schema itself as a service for
the reader.

This minimal required information set does not provide any useful
information on products, vulnerabilities, or security advisories. Thus, any
real-world Security Advisory will carry additional information as specified in
section 3 Schema elements.

Care has been taken, to design the containers for product and
vulnerability information to support fine-grained mapping of security
advisories onto product and vulnerability and minimize data duplication
through referencing. The display of the elements representing Product

Tree and Vulnerability information has been placed in the sections named
accordingly.

2.1 Construction Principles

A Security Advisory defined as a CSAF document is the result of complex
orchestration of many players and distinct and partially difficult to play
schemas.

The format chosen is [JSONSchema] which allows validation and
delegation to sub schema providers. The latter aligns well with separation
of concerns and shares the format family of information interchange
utilized by the providers of product and vulnerability information which
migrated from XML to JSON since the creation of CSAF CVRF version
1.2, the predecessor of this specification.

The acronym CSAF, “Common Security Advisory Framework”, stands for
the target of concerted mitigation and remediation accomplishment.

Technically, the use of JSON schema allows validation and proof of model
conformance (through established schema based validation) of the
declared information inside CSAF documents.

The CSAF schema structures its derived documents into three main
classes of the information conveyed:

1. The frame, aggregation, and reference information of the document

2. Product information considered relevant by the creator

3. Vulnerability information and its relation to the products declared in
2.

Wherever possible repetition of data has been replaced by linkage through
ID elements. Consistency on the content level thus is in the responsibility
of the producer of such documents, to link e.g. vulnerability information to
the matching product.

A dictionary like presentation of all defined schema elements is given in
the section SCHEMASECTIONNUMBER Schema.3. Any expected
relations to other elements (linkage) is described there. This linking relies
on setting attribute values accordingly (mostly guided by industry best
practice and conventions) and thus implies, that any deep validation on a
semantic level (e.g. does the CWE match the described vulnerability) is to
be ensured by the producer and consumer of CSAF documents. It is out of
scope for this specification.

Proven and intended usage patterns from practice are given where
possible.

Delegation to industry best practices technologies is used in referencing
schemas for:

• Platform Data:

o Common Platform Enumeration (CPE) Version 2.3 [CPE23-
N]

• Vulnerability Scoring:

o Common Vulnerability Scoring System (CVSS) Version 3.1
[CVSS31]

▪ JSON Schema Reference
https://www.first.org/cvss/cvss-v3.1.json

o Common Vulnerability Scoring System (CVSS) Version 3.0
[CVSS30]

▪ JSON Schema Reference
https://www.first.org/cvss/cvss-v3.0.json

o Common Vulnerability Scoring System (CVSS) Version 2.0
[CVSS2]

▪ JSON Schema Reference
https://www.first.org/cvss/cvss-v2.0.json

• Vulnerability Classification

o Common Weakness Enumeration (CWE) [CWE]

▪ CWE List: http://cwe.mitre.org/data/index.html

• Classification for Document Distribution

o Traffic Light Protocol (TLP)

▪ Default Definition: https://www.first.org/tlp/

Even though the JSON schema does not prohibit specifically additional
properties and custom keywords, it is strongly recommended not to use
them. Suggestions for new fields SHOULD be made through issues in the
TC's GitHub.

The standardized fields allow for scalability across different
issuing parties and dramatically reduce the human effort and
need for dedicated parsers as well as other tools on the side
of the consuming parties.

Section 4 defined profiles that are used to ensure a common
understanding of which fields are required in a given use case. Additional
conventions are stated in section 5. The tests given in section 6 support
CSAF producers and consumers to verify rules from the specification
which can not be tested by the schema. Section 7 states how to distribute

https://www.first.org/cvss/cvss-v3.1.json
https://www.first.org/cvss/cvss-v3.0.json
https://www.first.org/cvss/cvss-v2.0.json
http://cwe.mitre.org/data/index.html
https://www.first.org/tlp/

and where to find CSAF documents. Safety, Security and Data Protection
are considered in section 8. Finally, a set of conformance targets
describes tools in the ecosystem.

3 Schema Elements

The CSAF schema describes how to represent security advisory
information as a JSON document.

The CSAF schema Version 2.0 builds on the JSON Schema draft 2020-12
rules.

 "$schema": "https://json-schema.org/draft/2020-12/schema"

The schema identifier is:

 "$id": "https://docs.oasis-

open.org/csaf/csaf/v2.0/csaf_json_schema.json"

The further documentation of the schema is organized via Definitions and
Properties.

• Definitions provide types that extend the JSON schema model

• Properties use these types to support assembling security
advisories

Types and properties together provide the vocabulary for the domain
specific language supporting security advisories.

The single mandatory property is document. The optional two additional

properties are product_tree and vulnerabilities.

3.1 Definitions

The definitions ($defs) introduce the following domain specific types into

the CSAF language: Acknowledgments (acknowledgments_t), Branches

(branches_t), Full Product Name (full_product_name_t), Language

(lang_t), Notes (notes_t), Product Group ID (product_group_id_t),

Product Groups (product_groups_t), Product ID (product_id_t), Products

(products_t), References (references_t), and Version (version_t).

 "$defs": {

 "acknowledgments_t": {

 // ...

 },

 "branches_t": {

 // ...

 },

 "full_product_name_t": {

 // ...

 },

 "lang_t": {

 // ...

 },

 "notes_t": {

 // ...

 },

 "product_group_id_t": {

 // ...

 },

 "product_groups_t": {

 // ...

 },

 "product_id_t": {

 // ...

 },

 "products_t": {

 // ...

 },

 "references_t": {

 // ...

 },

 "version_t": {

 // ...

 }

 },

3.1.1 Acknowledgments Type

List of Acknowledgments (acknowledgments_t) type instances of value

type array with 1 or more elements contain a list of Acknowledgment

elements.

 "acknowledgments_t": {

 // ...

 "items": {

 // ...

 }

 },

The value type of Acknowledgment is object with at least 1 and at most 4

properties. Every such element acknowledges contributions by describing
those that contributed. The properties are: names, organization, summary,

and urls.

 "properties": {

 "names": {

 // ...

 },

 "organization": {

 // ...

 },

 "summary": {

 // ...

 },

 "urls": {

 // ...

 }

 }

3.1.1.1 Acknowledgments Type - Names

List of acknowledged names (names) has value type array with 1 or more

items holds the names of entities being recognized. Every such item of
value type string with 1 or more characters represents the name of entity

being recognized and contains the name of a single person.

Examples 1:

 Albert Einstein

 Johann Sebastian Bach

3.1.1.2 Acknowledgments Type - Organization

The contributing organization (organization) has value type string with 1

or more characters and holds the name of the contributing organization
being recognized.

Examples 2:

 CISA

 Google Project Zero

 Talos

3.1.1.3 Acknowledgments Type - Summary

Summary of the acknowledgment (summary) of value type string with 1 or

more characters SHOULD represent any contextual details the document
producers wish to make known about the acknowledgment or
acknowledged parties.

Example 3:

 First analysis of Coordinated Multi-Stream Attack (CMSA)

3.1.1.4 Acknowledgments Type - URLs

List of URLs (urls) of acknowledgment is a container (value type array)

for 1 or more string of type URL that specifies a list of URLs or location of

the reference to be acknowledged. Any URL of acknowledgment contains
the URL or location of the reference to be acknowledged. Value type is
string with format URI (uri).

3.1.1.5 Acknowledgments Type - Example

Example 4:

"acknowledgments": [

 {

 "names": [

 "Johann Sebastian Bach",

 "Georg Philipp Telemann",

 "Georg Friedrich Händel"

],

 "organization": "Baroque composers",

 "summary": "wonderful music"

 },

 {

 "organization": "CISA"

 "summary": "coordination efforts",

 "urls": [

 "https://cisa.gov"

]

 },

 {

 "organization": "BSI",

 "summary": "assistance in coordination"

 },

 {

 "names": [

 "Antonio Vivaldi"

],

 "summary": "influencing other composers"

 },

]

The example 4 above shouldSHOULD lead to the following outcome in a
human-readable advisory:

We thank the following parties for their efforts:

• Johann Sebastian Bach, Georg Philipp Telemann,
Georg Friedrich Händel from Baroque composers for
wonderful music

• CISA for coordination efforts (see: https://cisa.gov)

• BSI for assistance in coordination

• Antonio Vivaldi for influencing other composers

https://cisa.gov/

3.1.2 Branches Type

List of branches (branches_t) with value type array contains 1 or more

branch elements as children of the current element.

 "branches_t": {

 //...

 "items": {

 // ...

 }

 },

Every Branch holds exactly 3 properties and is a part of the hierarchical
structure of the product tree. The properties name and category are

mandatory. In addition, the object contains either a branches or a product

property.

 "properties": {

 "branches": {

 // ...

 },

 "category": {

 // ...

 },

 "name": {

 // ...

 },

 "product": {

 // ...

 }

 }

branches_t supports building a hierarchical structure of

products that allows to indicate the relationship of products
to each other and enables grouping for simpler referencing.
As an example, the structure MAY use the following levels:
vendor -> product_family -> product_name ->

product_version. It is recommended to use the hierarchical

structure of vendor -> product_name -> product_version

whenever possible to support the identification and matching
of products on the consumer side.

3.1.2.1 Branches Type - Branches

List of branches (branches) has the value type branches_t.

3.1.2.2 Branches Type - Category

Category of the branch (category) of value type string asand enum

describes the characteristics of the labeled branch. Valid enum values are:

 architecture

 host_name

 language

 legacy

 patch_level

 product_family

 product_name

 product_version

 product_version_range

 service_pack

 specification

 vendor

The value architecture indicates the architecture for which the product is

intended.

The value host_name indicates the host name of a system/service.

The value language indicates the language of the product.

The value legacy indicates an entry that has reached its end of life.

The value patch_level indicates the patch level of the product.

The value product_family indicates the product family that the product

falls into.

The value product_name indicates the name of the product.

The value product_version indicates exactly a single version of the

product version,. The value of the adjacent name property can be numeric

or some other descriptor. However, it MUST NOT contain version ranges
of any kind.

It is recommended to enumerate versions wherever
possible. Nevertheless, the TC understands that this is
sometimes impossible. To reflect that in the specification and
aid in automatic processing of CSAF documents the value
product_version_range was introduced. See next section for

details.

The value product_version_range indicates a range of versions for the

product. The value of the adjacent name property SHOULD NOT be used

to convey a single version.

The value service_pack indicates the service pack of the product.

The value specification indicates the specification such as a standard,

best common practice, etc.

The value vendor indicates the name of the vendor or manufacturer that

makes the product.

3.1.2.3 Branches Type - Name

Name of the branch (name) of value type string with 1 character or more

characters contains the canonical descriptor or 'friendly name' of the
branch.

Examples 5:

 10

 365

 Microsoft

 Office

 PCS 7

 SIMATIC

 Siemens

 Windows

A leading v or V in the value of name SHOULD only exist for the categories

product_version or product_version_range if it is part of the product

version as given by the vendor.

3.1.2.3.1 Branches Type - Name under Product Version

If adjacent property category has the value product_version, the value of

name MUST NOT contain version ranges of any kind.

Examples 6 for name when using product_version:

 10

 17.4

 v3

The product_version is the easiest way for users to

determine whether their version is meant (provided that the
given ancestors in the product tree matched): If both version
strings are the same, it is a match - otherwise not. Therefore,
it is always recommended to enumerate product versions
instead of providing version ranges.

Examples 7 for name when using product_version which are invalid:

 8.0.0 - 8.0.1

 8.1.5 and later

 <= 2

 prior to 4.2

 All versions < V3.0.29

 V3.0, V4.0, V4.1, V4.2

All the examples above contain some kind of a version range
and are therefore invalid under the category
product_version.

3.1.2.3.2 Branches Type - Name under Product Version Range

If adjacent property category has the value product_version_range, the

value of name MUST contain version ranges. The value of MUST obey to

exactly one of the following options:

1. Version Range Specifier (vers)

vers is an ongoing community effort to address the
problem of version ranges. Its draft specification is
available at [VERS].

vers MUST be used in its canonical form. To convey the term "all
versions" the special string vers:all/* MUST be used.

Examples 8 for name when using product_version_range with vers:

 vers:gem/>=2.2.0|!= 2.2.1|<2.3.0

 vers:npm/1.2.3|>=2.0.0|<5.0.0

 vers:pypi/0.0.0|0.0.1|0.0.2|0.0.3|1.0|2.0pre1

 vers:tomee/>=8.0.0-M1|<=8.0.1

Through the definitions of the vers specification a user
can compute whether a given version is in a given
range.

2. Vers-like Specifier (vls)

This option uses only the <version-constraint> part from the vers

specification. It MUST not have an URI nor the <versioning-

scheme> part. It is a fallback option and SHOULD NOT be used

unless really necessary.

The reason for that is, that it is nearly impossible for
tools to reliable determine whether a given version is
in the range or not.

Tools MAY support this on best effort basis.

Examples 9 for name when using product_version_range with vls:

 <=2

 <4.2

 <V3.0.29

 >=8.1.5

3.1.2.4 Branches Type - Product

Product (product) has the value type Full Product Name

(full_product_name_t).

3.1.3 Full Product Name Type

Full Product Name (full_product_name_t) with value type object

specifies information about the product and assigns the product ID. The
properties name and product_id are required. The property

product_identification_helper is optional.

 "full_product_name_t": {

 // ...

 "properties": {

 "name": {

 // ...

 },

 "product_id": {

 // ...

 },

 "product_identification_helper": {

 // ...

 }

 }

 },

3.1.3.1 Full Product Name Type - Name

Textual description of the product (name) has value type string with 1 or

more characters. The value shouldSHOULD be the product's full canonical
name, including version number and other attributes, as it would be used
in a human-friendly document.

Examples 610:

 Cisco AnyConnect Secure Mobility Client 2.3.185

 Microsoft Host Integration Server 2006 Service Pack 1

3.1.3.2 Full Product Name Type - Product ID

Product ID (product_id) holds a value of type Product ID (product_id_t).

3.1.3.3 Full Product Name Type - Product Identification Helper

Helper to identify the product (product_identification_helper) of value

type object provides in its properties at least one method which aids in

identifying the product in an asset database. Of the given seveneight
properties cpe, hashes, model_numbers, purl, sbom_urls, serial_numbers,

skus, and x_generic_uris, one is mandatory.

 "product_identification_helper": {

 // ...

 "properties": {

 "cpe": {

 // ...

 },

 "hashes": {

 // ...

 },

 "model_numbers": {

 // ...

 },

 "purl": {

 // ...

 },

 "sbom_urls": {

 // ...

 },

 "serial_numbers": {

 // ...

 },

 "skus": {

 // ...

 },

 "x_generic_uris": {

 // ...

 }

 }

3.1.3.3.1 Full Product Name Type - Product Identification Helper - CPE

Common Platform Enumeration representation (cpe) of value type string

of 5 or more characters with pattern (regular expression):

 ^(cpe:2\\.3:[aho*\\-](:(((\\?*|*?)([a-zA-Z0-9\\-

\\._]|(\\\\[*\\?!\"#\\$%&'\\(\\)\\+,/:;<=>@\\[\\]\\^`\\{\\|

\\}~]))+(\\?*|*?))|[*\\-])){5}(:(([a-zA-Z]{2,3}(-([a-zA-

Z]{2}|[0-9]{3}))?)|[*\\-]))(:(((\\?*|*?)([a-zA-Z0-9\\-

\\._]|(\\\\[*\\?!\"#\\$%&'\\(\\)\\+,/:;<=>@\\[\\]\\^`\\{\\|

\\}~]))+(\\?*|*?))|[*\\-])){4})|([c][pP][eE]:/[AHOaho]?(:[A-

Za-z0-9\\._\\-~%]*){0,6})$

The Common Platform Enumeration (CPE) attribute refers to a method for
naming platforms external to this specification. See [CPE23-N] for details.

3.1.3.3.2 Full Product Name Type - Product Identification Helper - Hashes

List of hashes (hashes) of value type array holding at least one item

contains a list of cryptographic hashes usable to identify files.

 "hashes": {

 // ...

 "items": {

 // ...

 }

 }

Cryptographic hashes of value type object contains all information to

identify a file based on its cryptographic hash values. Any cryptographic
hashes object has the 2 mandatory properties file_hashes and filename.

 "properties": {

 "file_hashes": {

 // ...

 },

 "filename": {

 // ...

 }

 }

List of file hashes (file_hashes) of value type array holding at least one

item contains a list of cryptographic hashes for this file.

 "file_hashes": {

 // ...

 "items": {

 // ...

 }

 }

Each File hash of value type object contains one hash value and

algorithm of the file to be identified. Any File hash object has the 2
mandatory properties algorithm and value.

 "properties": {

 "algorithm": {

 // ...

 },

 "value": {

 // ...

 }

 }

The algorithm of the cryptographic hash representation (algorithm) of

value type string with one or more characters contains the name of the

cryptographic hash algorithm used to calculate the value. The default
value for algorithm is sha256.

Examples 711:

 blake2b512

 sha256

 sha3-512

 sha384

 sha512

These values are derived from the currently supported digests OpenSSL
[OPENSSL]. Leading dashes were removed.

The command openssl dgst -list (Version 1.1.1f from

2020-03-31) outputs the following:

 Supported digests:

 -blake2b512 -blake2s256

-md4

 -md5 -md5-sha1

-ripemd

 -ripemd160 -rmd160

-sha1

 -sha224 -sha256

-sha3-224

 -sha3-256 -sha3-384

-sha3-512

 -sha384 -sha512

-sha512-224

 -sha512-256 -shake128

-shake256

 -sm3 -ssl3-md5

-ssl3-sha1

 -whirlpool

The Value of the cryptographic hash representation (value) of value type

string of 32 or more characters with pattern (regular expression):

 ^[0-9a-fA-F]{32,}$

The Value of the cryptographic hash attribute contains the cryptographic
hash value in hexadecimal representation.

Examples 812:

37df33cb7464da5c7f077f4d56a32bc84987ec1d85b234537c1c1a4d4fc8d09dc

29e2e762cb5203677bf849a2855a0283710f1f5fe1d6ce8d5ac85c645d0fcb3

4775203615d9534a8bfca96a93dc8b461a489f69124a130d786b42204f3341cc

9ea4c8200113d49d26505da0e02e2f49055dc078d1ad7a419b32e291c7afebbb8

4badfbd46dec42883bea0b2a1fa697c

The filename representation (filename) of value type string with one or

more characters contains the name of the file which is identified by the
hash values.

Examples 913:

 WINWORD.EXE

 msotadddin.dll

 sudoers.so

If the value of the hash matches and the filename does not, a user
shouldSHOULD prefer the hash value. In such cases, the filename
shouldSHOULD be used as informational property.

3.1.3.3.3 Full Product Name Type - Product Identification Helper - Model
Numbers

The list of models (model_numbers) of value type array with 1 or more

unique items contains a list of parts, or full model numbers.

A list of models SHOULD only be used if a certain range of model
numbers with its corresponding software version is affected, or the model
numbers change during update.

This can also be used to identify hardware. If necessary, the software, or
any other related part, SHALL be bind to that via a product relationship.

 "model_numbers": {

 //...

 "items": {

 //...

 }

 }

Any given model number of value type string with at least 1 character

represents a part, or a full model number of the component to identify.

The terms "model", "model number" and "model variant" are
mostly used synonymously. Often it is abbreviated as "MN",
M/N" or "model no.".

If a part of a model number of the component to identify is given, it
SHOULD begin with the first character of the model number and stop at

any point. Characters which SHOULD NOT be matched MUST be
replaced by either ? (for a single character) or * (for zero or more

characters).
Two * MUST NOT follow each other.

3.1.3.3.3Examples 14:

 6RA8096-4MV62-0AA0

 6RA801?-??V62-0AA0

 IC25T060ATCS05-0

3.1.3.3.4 Full Product Name Type - Product Identification Helper - PURL

The package URL (PURL) representation (purl) is a string of 7 or more

characters with pattern (regular expression):

 ^pkg:[A-Za-z\\.\\-\\+][A-Za-z0-9\\.\\-\\+]*/.+

The given pattern does not completely evaluate whether a
PURL is valid according to the [PURL] specification. It
provides a more generic approach and general guidance to
enable forward compatibility. CSAF uses only the canonical
form of PURL to conform with section 3.3 of [RFC3986].
Therefore, URLs starting with pkg:// are considered invalid.

This package URL (PURL) attribute refers to a method for reliably
identifying and locating software packages external to this specification.
See [PURL] for details.

3.1.3.3.45 Full Product Name Type - Product Identification Helper - SBOM
URLs

The list of SBOM URLs (sbom_urls) of value type array with 1 or more

items contains a list of URLs where SBOMs for this product can be
retrieved.

The SBOMs might differ in format or depth of detail.
Currently supported formats are SPDX, CycloneDX, and
SWID.

 "sbom_urls": {

 //...

 "items": {

 //...

 }

 }

Any given SBOM URL of value type string andwith format uri contains a

URL of one SBOM for this product.

Examples 15:

 https://raw.githubusercontent.com/CycloneDX/bom-

examples/master/SBOM/keycloak-10.0.2/bom.json

 https://swinslow.net/spdx-examples/example4/main-bin-v2

3.1.3.3.56 Full Product Name Type - Product Identification Helper - Serial
Numbers

The list of serial numbers (serial_numbers) of value type array with 1 or

more unique items contains a list of parts, or full serial numbers.

A list of serial numbers SHOULD only be used if a certain range of serial
numbers with its corresponding software version is affected, or the serial
numbers change during update.

 "serial_numbers": {

 //...

 "items": {

 //...

 }

 }

Any given serial number of value type string with at least 1 character

represents a part, or a full serial number of the component to identify.

If a part of a serial number of the component to identify is given, it
SHOULD begin with the first character of the serial number and stop at
any point. Characters which should notCharacters which SHOULD NOT
be matched MUST be replaced by either ? (for a single character) or * (for

zero or more characters).
Two * MUST NOT follow each other.

3.1.3.3.6 Full Product Name Type - Product Identification Helper - be matched
MUST be replaced by either ? (for a single character) or * (for zero or

more characters).
Two * MUST NOT follow each other.

3.1.3.3.7 Full Product Name Type - Product Identification Helper - SKUs

The list of stock keeping units (skus) of value type array with 1 or more

items contains a list of parts, or full stock keeping units.

A list of stock keeping units SHOULD only be used if the list of
relationships is used to decouple e.g. hardware from the software, or the

stock keeping units change during update. In the latter case the
remediations SHALL include the new stock keeping units is or a
description how it can be obtained.

The use of the list of relationships in the first case is
important. Otherwise, the end user is unable to identify
which version (the affected or the not affected / fixed one) is
used.

 "skus": {

 //...

 "items": {

 //...

 }

 }

Any given stock keeping unit of value type string with at least 1 character

represents a part, or a full stock keeping unit (SKU) of the component to
identify.

Sometimes this is also called "item number", "article number"
or "product number".

If a part of a stock keeping unit of the component to identify is given, it
SHOULD begin with the first character of the stock keeping unit and stop
at any point. Characters which should notCharacters which SHOULD NOT
be matched MUST be replaced by either ? (for a single character) or * (for

zero or more characters).
Two * MUST NOT follow each other.

3.1.3.3.8 Full Product Name Type - Product Identification Helper - be matched
MUST be replaced by either ? (for a single character) or * (for zero or

more characters).
Two * MUST NOT follow each other.

3.1.3.3.7 Full Product Name Type - Product Identification Helper - Generic
URIs

List of generic URIs (x_generic_uris) of value type array with at least 1

item contains a list of identifiers which are either vendor-specific or derived
from a standard not yet supported.

 "x_generic_uris": {

 // ...

 "items": {

 // ...

 }

 }

Any such Generic URI item of value type object provides the two

mandatory properties Namespace (namespace) and URI (uri).

 "properties": {

 "namespace": {

 // ...

 },

 "uri": {

 // ...

 }

 }

The namespace of the generic URI (namespace) of value type string

andwith format uri refers to a URL which provides the name and

knowledge about the specification used or is the namespace in which
these values are valid.

The URI (uri) of value type string andwith format uri contains the

identifier itself.

These elements can be used to reference a specific
component from an SBOM:

Example 16 linking a component from a CycloneDX SBOM using the
bomlink mechanism:

 "x_generic_uris": [

 {

 "namespace":

"https://cyclonedx.org/capabilities/bomlink/",

 "uri": "urn:cdx:411dafd2-c29f-491a-97d7-

e97de5bc2289/1#pkg:maven/org.jboss.logging/jboss-

logging@3.4.1.Final?type=jar"

 }

Example 17 linking a component from an SPDX SBOM:

 "x_generic_uris": [

 {

 "namespace": "https://spdx.github.io/spdx-

spec/document-creation-information/#65-spdx-document-namespace-

field",

 "uri": "https://swinslow.net/spdx-

examples/example4/main-bin-v2#SPDXRef-libc"

 }

]

3.1.4 Language Type

Language type (lang_t) has value type string with pattern (regular

expression):

 ^(([A-Za-z]{2,3}(-[A-Za-z]{3}(-[A-Za-z]{3}){0,2})?|[A-Za-

z]{4,8})(-[A-Za-z]{4})?(-([A-Za-z]{2}|[0-9]{3}))?(-([A-Za-z0-

9]{5,8}|[0-9][A-Za-z0-9]{3}))*(-[A-WY-Za-wy-z0-9](-[A-Za-z0-

9]{2,8})+)*(-[Xx](-[A-Za-z0-9]{1,8})+)?|[Xx](-[A-Za-z0-

9]{1,8})+|[Ii]-[Dd][Ee][Ff][Aa][Uu][Ll][Tt]|[Ii]-

[Mm][Ii][Nn][Gg][Oo])$

The value identifies a language, corresponding to IETF BCP 47 / RFC
5646. See IETF language registry:
https://www.iana.org/assignments/language-subtag-registry/language-
subtag-registry

CSAF skips those grandfathered language tags that are
deprecated at the time of writing the specification. Even
though the private use language tags are supported they
SHOULD not be used to ensure readability across the
ecosystem. It is recommended to follow the conventions for
the capitalization of the subtags even though it is not
mandatory as most users are used to that.

Examples 1018:

 de

 en

 fr

 frc

 jp

3.1.5 Notes Type

List of notes (notes_t) of value type array with 1 or more items of type

Note contains notes which are specific to the current context.

 "notes_t": {

 // ...

 "items": {

 // ...

 }

 },

Value type of every such Note item is object with the mandatory

properties category and text providing a place to put all manner of text

blobs related to the current context. A Note object mayMAY provide the

optional properties audience and title.

 "properties": {

 "audience": {

 // ...

 },

 "category": {

https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry

 // ...

 },

 "text": {

 // ...

 },

 "title": {

 // ...

 }

 }

Audience of note (audience) of value type string with 1 or more

characters indicates who is intended to read it.

Examples 1119:

 all

 executives

 operational management and system administrators

 safety engineers

Note category (category) of value type string asand enum indicates the

choice of what kind of note this is. Valid enum values are:

 description

 details

 faq

 general

 legal_disclaimer

 other

 summary

The value description indicates the note is a description of something.

The optional sibling property title MAY have more information in this

case.

The value details indicates the note is a low-level detailed discussion.

The optional sibling property title MAY have more information in this

case.

The value faq indicates the note is a list of frequently asked questions.

The value general indicates the note is a general, high-level note. The

optional sibling property title MAY have more information in this case.

The value legal_disclaimer indicates the note represents any possible

legal discussion, including constraints, surrounding the document.

The value other indicates the note is something that doesn’t fit the other

categories. The optional sibling attribute title SHOULD have more

information to indicate clearly what kind of note to expect in this case.

The value summary indicates the note is a summary of something. The

optional sibling property title MAY have more information in this case.

Note contents (text) of value type string with 1 or more characters holds

the contents of the note. Content varies depending on type.

Title of note (title) of value type string with 1 or more characters

provides a concise description of what is contained in the text of the note.

Examples 1220:

 Details

 Executive summary

 Technical summary

 Impact on safety systems

3.1.6 Product Group ID Type

The Product Group ID Type (product_group_id_t) of value type string

with 1 or more characters is a reference token for product group
instances. The value is a token required to identify a group of products so
that it can be referred to from other parts in the document. There is no
predefined or required format for the Product Group ID
(product_group_id) as long as it uniquely identifies a product group in the

context of the current document.

 "product_group_id_t": {

 // ...

 },

Examples 1321:

 CSAFGID-0001

 CSAFGID-0002

 CSAFGID-0020

Even though the standard does not require a specific format
it is recommended to use different prefixes for the Product ID
and the Product Group ID to support reading and parsing the
document.

3.1.7 Product Groups Type

List of Product Group ID (product_groups_t) of value type array with 1 or

more unique items (a set) of type Product Group ID (product_group_id_t)

specifies a list of product_group_ids to give context to the parent item.

 "product_groups_t": {

 // ...

 "items": {

 // ...

 }

 },

3.1.8 Product ID Type

The Product ID Type (product_id_t) of value type string with 1 or more

characters is a reference token for product instances. The value is a token
required to identify a full_product_name so that it can be referred to from

other parts in the document. There is no predefined or required format for
the Product ID (product_id) as long as it uniquely identifies a product in

the context of the current document.

 "product_id_t": {

 // ...

 },

Examples 1422:

 CSAFPID-0004

 CSAFPID-0008

Even though the standard does not require a specific format
it is recommended to use different prefixes for the Product ID
and the Product Group ID to support reading and parsing the
document.

3.1.9 Products Type

List of Product IDs (products_t) of value type array with 1 or more unique

items (a set) of type Product ID (product_id_t) specifies a list of

product_ids to give context to the parent item.

 "products_t": {

 // ...

 "items": {

 // ...

 }

 },

3.1.10 References Type

List of references (references_t) of value type array with 1 or more items

of type Reference holds a list of Reference objects.

 "references_t": {

 // ...

 "items": {

 // ...

 }

 }

 },

Value type of every such Reference item is object with the mandatory

properties url and summary holding any reference to conferences, papers,

advisories, and other resources that are related and considered related to
either a surrounding part of or the entire document and to be of value to
the document consumer. A reference object mayMAY provide the

optional property category.

 "properties": {

 "category": {

 // ...

 },

 "summary": {

 // ...

 },

 "url": {

 // ...

 }

 }

Category of reference (category) of value type string asand enum

indicates whether the reference points to the same document or
vulnerability in focus (depending on scope) or to an external resource.
Valid enum values are:

 external

 self

The default value for category is external.

The value external indicates, that this document is an external reference

to a document or vulnerability in focus (depending on scope).

The value self indicates, that this document is a reference to this same

document or vulnerability (also depending on scope).

This includes links to documents with the same content but
different file format (e.g. advisories as PDF or HTML).

Summary of the reference (summary) of value type string with 1 or more

characters indicates what this reference refers to.

URL of reference (url) of value type string andwith format uri provides

the URL for the reference.

3.1.11 Version Type

The Version (version_t) type has value type string with pattern (regular

expression):

 ^(0|[1-9][0-9]*)$|^((0|[1-9]\\d*)\\.(0|[1-9]\\d*)\\.(0|[1-

9]\\d*)(?:-((?:0|[1-9]\\d*|\\d*[a-zA-Z-][0-9a-zA-Z-

]*)(?:\\.(?:0|[1-9]\\d*|\\d*[a-zA-Z-][0-9a-zA-Z-

]*))*))?(?:\\+([0-9a-zA-Z-]+(?:\\.[0-9a-zA-Z-]+)*))?)$

The version specifies a version string to denote clearly the evolution of the
content of the document. There are two options how it can be used:

• semantic versioning (preferred; according to the rules below)

• integer versioning

A CSAF document MUST use only one versioning system.

Examples 1523:

 1

 4

 0.9.0

 1.4.3

 2.40.0+21AF26D3

3.1.11.1 Version Type - Integer versioning

Integer versioning increments for each version where the
/document/tracking/status is final the version number by one. The

regular expression for this type is:

^(0|[1-9][0-9]*)$

The following rules apply:

1. Once a versioned document has been released, the contents of
that version MUST NOT be modified. Any modifications MUST be
released as a new version.

2. Version zero (0) is for initial development before the
initial_release_date. The document status MUST be draft.

Anything MAY change at any time. The document SHOULD NOT
be considered stable.

3. Version 1 defines the initial public release. Each new version where
/document/tracking/status is final has a version number

incremented by one.

4. Pre-release versions (document status draft) MUST carry the new

version number. Sole exception is before the initial release (see
rule 2). The combination of document status draft and version 1

MAY be used to indicate that the content is unlikely to change.

5. Build metadata is never included in the version.

6. Precedence MUST be calculate by integer comparison.

3.1.11.2 Version Type - Semantic versioning

Semantic versioning derived the rules from [SemVer]. The regular
expression for this type is:

^((0|[1-9]\\d*)\\.(0|[1-9]\\d*)\\.(0|[1-9]\\d*)(?:-((?:0|[1-

9]\\d*|\\d*[a-zA-Z-][0-9a-zA-Z-]*)(?:\\.(?:0|[1-9]\\d*|\\d*[a-zA-

Z-][0-9a-zA-Z-]*))*))?(?:\\+([0-9a-zA-Z-]+(?:\\.[0-9a-zA-Z-

]+)*))?)$

The goal of this structure is to provide additional information to the end
user whether a new comparison with the asset database is needed. The
"public API" in regards to CSAF is the CSAF document with its structure
and content. This results in the following rules:

1. A normal version number MUST take the form X.Y.Z where X, Y,
and Z are non-negative integers, and MUST NOT contain leading
zeroes. X is the major version, Y is the minor version, and Z is the
patch version. Each element MUST increase numerically. For
instance: 1.9.0 -> 1.10.0 -> 1.11.0.

2. Once a versioned document has been released, the contents of
that version MUST NOT be modified. Any modifications MUST be
released as a new version.

3. Major version zero (0.y.z) is for initial development before the
initial_release_date. The document status MUST be draft.

Anything MAY change at any time. The document SHOULD NOT
be considered stable. Changes which would increment the major
version according to rule 7 are tracked in this stage with (0.y.z) by
incrementing the minor version y instead. Changes that would
increment the minor or patch version according to rule 6 or 5 are
both tracked in this stage with (0.y.z) by incrementing the patch
version z instead.

4. Version 1.0.0 defines the initial public release. The way in which the
version number is incremented after this release is dependent on
the content and structure of the document and how it changes.

5. Patch version Z (x.y.Z | x > 0) MUST be incremented if only
backwards compatible bug fixes are introduced. A bug fix is defined
as an internal change that fixes incorrect behavior.

In the context of the document this is the case e.g. for
spelling mistakes.

6. Minor version Y (x.Y.z | x > 0) MUST be incremented if the content
of an existing element changes except for those which are covert
through rule 7. It MUST be incremented if substantial new
information are introduced or new elements are provided. It MAY
include patch level changes. Patch version MUST be reset to 0
when minor version is incremented.

7. Major version X (X.y.z | X > 0) MUST be incremented if a new
comparison with the end user's asset database is required. This
includes:

o changes (adding, removing elements or modifying content)
in /product_tree or elements which contain /product_tree

in their path

o adding or removing items of /vulnerabilities

o adding or removing elements in:
▪ /vulnerabilities[]/product_status/first_affecte

d

▪ /vulnerabilities[]/product_status/known_affecte

d

▪ /vulnerabilities[]/product_status/last_affected

o removing elements from:
▪ /vulnerabilities[]/product_status/first_fixed

▪ /vulnerabilities[]/product_status/fixed

▪ /vulnerabilities[]/product_status/known_not_aff

ected

It MAY also include minor and patch level changes. Patch and
minor version MUST be reset to 0 when major version is
incremented.

8. A pre-release version (document status draft) MAY be denoted by

appending a hyphen and a series of dot separated identifiers
immediately following the patch version. Identifiers MUST comprise
only ASCII alphanumerics and hyphens [0-9A-Za-z-]. Identifiers
MUST NOT be empty. Numeric identifiers MUST NOT include
leading zeroes. Pre-release versions have a lower precedence than
the associated normal version. A pre-release version indicates that

the version is unstable and might not satisfy the intended
compatibility requirements as denoted by its associated normal
version.

Examples 1624:

1.0.0-0.3.7

1.0.0-alpha

1.0.0-alpha.1

1.0.0-x-y-z.–

1.0.0-x.7.z.92

9. Pre-release MUST NOT be included if /document/tracking/status

is final.

10. Build metadata MAY be denoted by appending a plus sign and a
series of dot separated identifiers immediately following the patch
or pre-release version. Identifiers MUST comprise only ASCII
alphanumerics and hyphens [0-9A-Za-z-]. Identifiers MUST NOT be
empty. Build metadata MUST be ignored when determining version
precedence. Thus two versions that differ only in the build
metadata, have the same precedence.

Examples 1725:

1.0.0+20130313144700

1.0.0+21AF26D3—-117B344092BD

1.0.0-alpha+001

1.0.0-beta+exp.sha.5114f85

11. Precedence refers to how versions are compared to each other
when ordered.

0. Precedence MUST be calculated by separating the version
into major, minor, patch and pre-release identifiers in that
order (Build metadata does not figure into precedence).

1. Precedence is determined by the first difference when
comparing each of these identifiers from left to right as
follows: Major, minor, and patch versions are always
compared numerically.

Example 1826:

1.0.0 < 2.0.0 < 2.1.0 < 2.1.1

2. When major, minor, and patch are equal, a pre-release
version has lower precedence than a normal version:

Example 1927:

1.0.0-alpha < 1.0.0

3. Precedence for two pre-release versions with the same
major, minor, and patch version MUST be determined by
comparing each dot separated identifier from left to right until
a difference is found as follows:

0. Identifiers consisting of only digits are compared
numerically.

1. Identifiers with letters or hyphens are compared
lexically in ASCII sort order.

2. Numeric identifiers always have lower precedence
than non-numeric identifiers.

3. A larger set of pre-release fields has a higher
precedence than a smaller set, if all of the preceding
identifiers are equal.

Example 2028:

1.0.0-alpha < 1.0.0-alpha.1 < 1.0.0-alpha.beta <

1.0.0-beta < 1.0.0-beta.2 < 1.0.0-beta.11 < 1.0.0-

rc.1 < 1.0.0

3.2 Properties

These final three subsections document the three properties of a CSAF
document. The single mandatory property document, as well as the

optional properties product_tree and vulnerabilities in that order.

3.2.1 Document Property

Document level meta-data (document) of value type object with the 5

mandatory properties Category (category), CSAF Version (csaf_version),

Publisher (publisher), Title (title), and Tracking (tracking) captures the

meta-data about this document describing a particular set of security
advisories. In addition, the document object mayMAY provide the 7

optional properties Acknowledgments (acknowledgments), Aggregate

Severity (aggregate_severity), Distribution (distribution), Language

(lang), Notes (notes), References (references), and Source Language

(source_lang).

 "document": {

 // ...

 "properties": {

 "acknowledgments": {

 // ...

 },

 "aggregate_severity" : {

 // ...

 },

 "category": {

 // ...

 },

 "csaf_version": {

 // ...

 },

 "distribution": {

 // ...

 },

 "lang": {

 // ...

 },

 "notes": {

 // ...

 },

 "publisher": {

 // ...

 },

 "references": {

 // ...

 },

 "source_lang": {

 // ...

 },

 "title": {

 // ...

 },

 "tracking": {

 // ...

 }

 }

 },

3.2.1.1 Document Property - Acknowledgments

Document acknowledgments (acknowledgments) of value type

Acknowledgments Type (acknowledgments_t) contains a list of

acknowledgment elements associated with the whole document.

 "acknowledgments": {

 // ...

 },

3.2.1.2 Document Property - Aggregate Severity

Aggregate severity (aggregate_severity) of value type object with the

mandatory property text and the optional property namespace is a vehicle

that is provided by the document producer to convey the urgency and
criticality with which the one or more vulnerabilities reported should be
addressed. It is a document-level metric and applied to the document as a

whole — not any specific vulnerability. The range of values in this field is
defined according to the document producer's policies and procedures.

 "aggregate_severity": {

 // ...

 "properties": {

 "namespace": {

 // ...

 },

 "text": {

 // ...

 }

 }

 },

The Namespace of aggregate severity (namespace) of value type string

andwith format uri points to the namespace so referenced.

The Text of aggregate severity (text) of value type string with 1 or more

characters provides a severity which is independent of - and in addition to
- any other standard metric for determining the impact or severity of a
given vulnerability (such as CVSS).

Examples 2129:

 Critical

 Important

 Moderate

3.2.1.3 Document Property - Category

Document category (category) with value type string of 1 or more

characters with pattern (regular expression):

 ^[^\\s\\-_\\.](.*[^\\s\\-_\\.])?$

Document category defines a short canonical name, chosen by the
document producer, which will inform the end user as to the category of
document.

It is directly related to the profiles defined in section 4.

 "category": {

 // ...

 }

Examples 2230:

 csaf_base

 csaf_security_advisory

 csaf_vex

 Example Company Security Notice

 generic_csaf

 security_advisory

 vex

3.2.1.4 Document Property - CSAF Version

CSAF version (csaf_version) of value type string and enum gives the

version of the CSAF specification which the document was generated for.
The single valid value for this enum is:

 2.0

3.2.1.5 Document Property - Distribution

Rules for sharing document (distribution) of value type object with at

least 1 of the 2 properties Text (text) and Traffic Light Protocol (TLP)

(tlp) describes any constraints on how this document might be shared.

 "distribution": {

 // ...

 "properties": {

 "text": {

 // ...

 },

 "tlp": {

 // ...

 }

 }

 },

If both values are present, the TLP information SHOULD be preferred as
this aids in automation.

3.2.1.5.1 Document Property - Distribution - Text

The Textual description (text) of value type string with 1 or more

characters provides a textual description of additional constraints.

Examples 2331:

 Copyright 2021, Example Company, All Rights Reserved.

 Distribute freely.

 Share only on a need-to-know-basis only.

3.2.1.5.2 Document Property - Distribution - TLP

Traffic Light Protocol (TLP) (tlp) of value type object with the mandatory

property Label (label) and the optional property URL (url) provides

details about the TLP classification of the document.

 "tlp": {

 // ...

 "properties": {

 "label": {

 // ...

 },

 "url": {

 // ...

 }

 }

 }

The Label of TLP (label) with value type string and enum provides the

TLP label of the document. Valid values of the enum are:

 AMBER

 GREEN

 RED

 WHITE

The URL of TLP version (url) with value type string andwith format uri

provides a URL where to find the textual description of the TLP version
which is used in this document. The default value is the URL to the
definition by FIRST:

 https://www.first.org/tlp/

Examples 2432:

 https://www.us-cert.gov/tlp

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Kritis/Merkbl

att_TLP.pdf

3.2.1.6 Document Property - Language

Document language (lang) of value type Language Type (lang_t)

identifies the language used by this document, corresponding to IETF
BCP 47 / RFC 5646.

3.2.1.7 Document Property - Notes

Document notes (notes) of value type Notes Type (notes_t) holds notes

associated with the whole document.

 "notes": {

 // ...

 },

3.2.1.8 Document Property - Publisher

Publisher (publisher) has value type object with the mandatory

properties Category (category), Name (name) and Namespace (namespace)

and provides information on the publishing entity. The 2 other optional
properties are: contact_details and issuing_authority.

 "publisher": {

 // ...

 "properties": {

 "category": {

 // ...

 },

 "contact_details": {

 // ...

 },

 "issuing_authority": {

 // ...

 },

 "name": {

 // ...

 }

 "namespace": {

 // ...

 }

 }

 },

3.2.1.8.1 Document Property - Publisher - Category

The Category of publisher (category) of value type string and enum

provides information about the category of publisher releasing the
document. The valid values are:

 coordinator

 discoverer

 other

 translator

 user

 vendor

The value coordinator indicates individuals or organizations that manage

a single vendor’s response or multiple vendors’ responses to a
vulnerability, a security flaw, or an incident. This includes all Computer
Emergency/Incident Response Teams (CERTs/CIRTs) or agents acting
on the behalf of a researcher.

The value discoverer indicates individuals or organizations that find

vulnerabilities or security weaknesses. This includes all manner of
researchers.

The value translator indicates individuals or organizations that translate

CSAF documents. This includes all manner of language translators, also
those who work for the party issuing the original advisory.

The value other indicates a catchall for everyone else. Currently this

includes editors, reviewers, forwarders, republishers, and miscellaneous
contributors.

The value user indicates anyone using a vendor’s product.

The value vendor indicates developers or maintainers of information

system products or services. This includes all authoritative product
vendors, Product Security Incident Response Teams (PSIRTs), and
product resellers and distributors, including authoritative vendor partners.

3.2.1.8.2 Document Property - Publisher - Contact Details

Contact details (contact_details) of value type string with 1 or more

characters provides information on how to contact the publisher, possibly
including details such as web sites, email addresses, phone numbers, and
postal mail addresses.

Example 2533:

 Example Company can be reached at contact_us@example.com, or

via our website at https://www.example.com/contact.

3.2.1.8.3 Document Property - Publisher - Issuing Authority

Issuing authority (issuing_authority) of value type string with 1 or more

characters Provides information about the authority of the issuing party to
release the document, in particular, the party's constituency and
responsibilities or other obligations.

3.2.1.8.4 Document Property - Publisher - Name

The Name of publisher (name) of value type string with 1 or more

characters contains the name of the issuing party.

Example 2634:

 BSI

 Cisco PSIRT

 Siemens ProductCERT

3.2.1.8.5 Document Property - Publisher - Namespace

The Namespace of publisher (namespace) of value type string andwith

format uri contains a URL which is under control of the issuing party and

can be used as a globally unique identifier for that issuing party. The URL
SHALL be normalized.

An issuing party can choose any URL which fulfills the requirements state
above. The URL MAY be dereferenceable. If an issuing party has chosen
a URL, it SHOULD NOT change. Tools can make use of the combination
of /document/publisher/namespace and /document/tracking/id as it

identifies a CSAF document globally unique.

If an issuing party decides to change its Namespace it SHOULD reissue
all CSAF documents with an incremented (patch) version which has no
other changes than:

• the new publisher information

• the updated revision history

• the updated item in /document/references[] which points to the

new version of the CSAF document

• an added item in /document/references[] which points to the

previous version of the CSAF document (if the URL changed)

Example 2735:

 https://csaf.io

 https://www.example.com

3.2.1.9 Document Property - References

Document references (references) of value type References Type

(references_t) holds a list of references associated with the whole

document.

 "references": {

 // ...

 },

3.2.1.10 Document Property - Source Language

Source language (source_lang) of value type Language Type (lang_t)

identifies if this copy of the document is a translation then the value of this
property describes from which language this document was translated.

The property MUST be present and set for any CSAF document with the
value translator in /document/publisher/category. The property SHALL

NOT be present if the document was not translated.

If an issuing party publishes a CSAF document with the
same content in more than one language, one of these
documents SHOULD be deemed the "original", the other
ones SHOULD be considered translations from the
"original". The issuing party can retain its original publisher
information including the category. However, other rules

defined in the conformance clause "CSAF translator"
SHOULD be applied.

3.2.1.11 Document Property - Title

Title of this document (title) of value type string with 1 or more

characters SHOULD be a canonical name for the document, and
sufficiently unique to distinguish it from similar documents.

Examples 2836:

 Cisco IPv6 Crafted Packet Denial of Service Vulnerability

 Example Company Cross-Site-Scripting Vulnerability in Example

Generator

3.2.1.12 Document Property - Tracking

Tracking (tracking) of value type object with the six mandatory

properties: Current Release Date (current_release_date), Identifier (id),

Initial Release Date (initial_release_date), Revision History

(revision_history), Status (status), and Version (version) is a container

designated to hold all management attributes necessary to track a CSAF
document as a whole. The two optional additional properties are Aliases
(aliases) and Generator (generator).

 "tracking": {

 // ...

 "properties": {

 "aliases": {

 // ...

 },

 "current_release_date": {

 // ...

 },

 "generator": {

 // ...

 },

 "id": {

 // ...

 },

 "initial_release_date": {

 // ...

 },

 "revision_history": {

 // ...

 },

 "status": {

 // ...

 },

 "version": {

 // ...

 }

 }

 },

3.2.1.12.1 Document Property - Tracking - Aliases

Aliases (aliases) of value type array with 1 or more unique items (a set)

representing Alternate Names contains a list of alternate names for the
same document.

 "aliases": {

 // ...

 "items": {

 // ...

 }

 },

Every such Alternate Name of value type string with 1 or more characters

specifies a non-empty string that represents a distinct optional alternative
ID used to refer to the document.

Example 2937:

 CVE-2019-12345

3.2.1.12.2 Document Property - Tracking - Current Release Date

Current release date (current_release_date) with value type string

andwith format date-time holds the date when the current revision of this

document was released.

3.2.1.12.3 Document Property - Tracking - Generator

Document Generator (generator) of value type object with mandatory

property Engine (engine) and optional property Date (date) is a container

to hold all elements related to the generation of the document. These
items will reference when the document was actually created, including
the date it was generated and the entity that generated it.

 "generator": {

 // ...

 "properties": {

 "date": {

 // ...

 },

 "engine": {

 // ...

 }

 }

 },

Date of document generation (date) of value type string with format

date-time SHOULD be the current date that the document was

generated. Because documents are often generated internally by a
document producer and exist for a nonzero amount of time before being
released, this field MAY be different from the Initial Release Date and
Current Release Date.

Engine of document generation (engine) of value type object with

mandatory property Engine name (name) and optional property Engine

version (version) contains information about the engine that generated

the CSAF document.

 "engine": {

 // ...

 "properties": {

 "name": {

 // ...

 },

 "version": {

 // ...

 }

 }

 },

Engine name (name) of value type string with 1 or more characters

represents the name of the engine that generated the CSAF document.

Examples 3038:

 Red Hat rhsa-to-cvrf

 Secvisogram

 TVCE

Engine version (version) of value type string with 1 or more characters

contains the version of the engine that generated the CSAF document.

Although it is not formally required, the TC suggests to use a
versioning which compatible wth Semantic Versioning as
described in the external specification [SemVer]. This could

help the end user to identify when CSAF consumers have to
be updated.

Examples 3139:

 0.6.0

 1.0.0-beta+exp.sha.a1c44f85

 2

3.2.1.12.4 Document Property - Tracking - ID

Unique identifier for the document (id) of value type string with 1 or more

characters with pattern (regular expression):

 ^[\\S](.*[\\S])?$

Unique identifier for the document holds the Identifier.

It SHALL NOT start or end with a white space and SHALL
NOT contain a line break.

The ID is a simple label that provides for a wide range of numbering
values, types, and schemes. Its value SHOULD be assigned and
maintained by the original document issuing authority. It MUST be unique
for that organiszation.

Examples 3240:

 Example Company - 2019-YH3234

 RHBA-2019:0024

 cisco-sa-20190513-secureboot

The combination of /document/publisher/namespace and

/document/tracking/id identifies a CSAF document globally

unique.

This value is also used to determine the filename for the CSAF document
(cf. section 5.1).

3.2.1.12.5 Document Property - Tracking - Initial Release Date

Initial release date (initial_release_date) with value type string andwith

format date-time holds the date when this document was first published.

3.2.1.12.6 Document Property - Tracking - Revision History

The Revision History (revision_history) with value type array of 1 or

more Revision History Entries holds one revision item for each version of
the CSAF document, including the initial one.

 "revision_history": {

 // ...

 "items": {

 // ...

 }

 },

Each Revision contains all the information elements required to track the
evolution of a CSAF document. Revision History Entry items are of value
type object with the three mandatory properties: Date (date), Number

(number), and Summary (summary). In addition, a Revision MAY expose the

optional property legacy_version.

 "properties": {

 "date": {

 // ...

 },

 "legacy_version": {

 // ...

 },

 "number": {

 // ...

 },

 "summary": {

 // ...

 }

 }

The Number (number) has value type Version (version_t).

The Date of the revision (date) of value type string with format date-time

states the date of the revision entry.

Legacy version of the revision (legacy_version) of value type string with

1 or more characters contains the version string used in an existing
document with the same content.

This SHOULD be used to aid in the mapping between
existing (human-readable) documents which might use a
different version scheme and CSAF documents with the
same content. It is recommended, to use the CSAF revision
number to describe the revision history for any new human-
readable equivalent.

The Number (number) has value type Version (version_t).

The Summary of the revision (summary) of value type string with 1 or

more characters holds a single non-empty string representing a short
description of the changes.

Each Revision item which has a number of 0 or 0.y.z MUST be removed

from the document if the document status is final. Versions of the

document which are pre-release SHALL NOT have its own revision item.
All changes MUST be tracked in the item for the next release version.
Build metadata SHOULD NOT be included in the number of any revision

item.

3.2.1.12.7 Document Property - Tracking - Status

Document status (status) of value type string and enum defines the draft

status of the document. The value MUST be one of the following:

 draft

 final

 interim

The value draft indicates, that this is a pre-release, intended for issuing

party's internal use only, or possibly used externally when the party is
seeking feedback or indicating its intentions regarding a specific issue.

The value final indicates, that the issuing party asserts the content is

unlikely to change. “Final” status is an indication only, and does not
preclude updates. This SHOULD be used if the issuing party expects no,
slow or few changes.

The value interim indicates, that the issuing party expects rapid updates.

This SHOULD be used if the expected rate of release for this document is
significant higher than for other documents. Once the rate slows down it
MUST be changed to final. This mayMAY be done in a patch version.

This is extremely useful for downstream vendors to
constantly inform the end users about ongoing investigation.
It can be used as an indication to pull the CSAF document
more frequently.

3.2.1.12.8 Document Property - Tracking - Version

Version has the value type Version (version_t).

3.2.2 Product Tree Property

Product Tree (product_tree) has value type object with 1 or more

properties is a container for all fully qualified product names that can be

referenced elsewhere in the document. The properties are Branches
(branches), Full Product Names (full_product_names), Product Groups

(product_groups), and Relationships (relationships).

 "product_tree": {

 // ...

 "properties": {

 "branches": {

 // ...

 },

 "full_product_names": {

 // ...

 },

 "product_groups": {

 // ...

 },

 "relationships": {

 // ...

 }

 }

 },

3.2.2.1 Product Tree Property - Branches

List of branches (branches) ofhas the value type branches_t.

3.2.2.2 Product Tree Property - Full Product Names

List of full product names (full_product_names) of value type array with 1

or more items of type full_product_name_t contains a list of full product

names.

3.2.2.3 Product Tree Property - Product Groups

List of product groups (product_groups) of value type array with 1 or more

items of value type object contains a list of product groups.

 "product_groups": {

 // ...

 "items": {

 // ...

 }

 },

The product group items are of value type object with the 2 mandatory

properties Group ID (group_id) and Product IDs (product_ids) and the

optional Summary (summary) property.

 "properties": {

 "group_id": {

 // ...

 },

 "product_ids": {

 // ...

 },

 "summary": {

 // ...

 }

 }

The summary of the product group (summary) of value type string with 1

or more characters gives a short, optional description of the group.

Examples 3341:

 Products supporting Modbus.

 The x64 versions of the operating system.

Group ID (group_id) has value type Product Group ID

(product_group_id_t).

List of Product IDs (product_ids) of value type array with 2 or more

unique items of value type Product ID (product_id_t) lists the product_ids

of those products which known as one group in the document.

3.2.2.4 Product Tree Property - Relationships

List of relationships (relationships) of value type array with 1 or more

items contains a list of relationships.

 "relationships": {

 // ...

 "items": {

 // ...

 }

 }

The Relationship item is of value type object and has four mandatory

properties: Relationship category (category), Full Product Name

(full_product_name), Product Reference (product_reference), and

Relates to Product Reference (relates_to_product_reference). The

Relationship item establishes a link between two existing
full_product_name_t elements, allowing the document producer to define

a combination of two products that form a new full_product_name entry.

 "properties": {

 "category": {

 // ...

 },

 "full_product_name": {

 // ...

 },

 "product_reference": {

 // ...

 },

 "relates_to_product_reference": {

 // ...

 }

 }

The situation where a need for declaring a Relationship
arises, is given when a product is e.g. vulnerable only when
installed together with another, or to describe operating
system components.

Relationship category (category) of value type string and enum defines

the category of relationship for the referenced component. The valid
values are:

 default_component_of

 external_component_of

 installed_on

 installed_with

 optional_component_of

The value default_component_of indicates that the entity labeled with one

Product ID (e.g. CSAFPID-0001) is a default component of an entity with
another Product ID (e.g. CSAFPID-0002). These Product IDs SHOULD
NOT be identical to provide minimal redundancy.

The value external_component_of indicates that the entity labeled with

one Product ID (e.g. CSAFPID-0001) is an external component of an
entity with another Product ID (e.g. CSAFPID-0002). These Product IDs
SHOULD NOT be identical to provide minimal redundancy.

The value installed_on indicates that the entity labeled with one Product

ID (e.g. CSAFPID-0001) is installed on a platform entity with another
Product ID (e.g. CSAFPID-0002). These Product IDs SHOULD NOT be
identical to provide minimal redundancy.

The value installed_with indicates that the entity labeled with one

Product ID (e.g. CSAFPID-0001) is installed alongside an entity with
another Product ID (e.g. CSAFPID-0002). These Product IDs SHOULD
NOT be identical to provide minimal redundancy.

The value optional_component_of indicates that the entity labeled with

one Product ID (e.g. CSAFPID-0001) is an optional component of an
entity with another Product ID (e.g. CSAFPID-0002). These Product IDs
SHOULD NOT be identical to provide minimal redundancy.

Full Product Name (full_product_name) of value type Full Product Name

tType (full_product_name_t).

Product Reference (product_reference) of value type Product ID

(product_id_t) holds a Product ID that refers to the Full Product Name

element, which is referenced as the first element of the relationship.

Relates to Product Reference (relates_to_product_reference) of value

type Product ID (product_id_t) holds a Product ID that refers to the Full

Product Name element, which is referenced as the second element of the
relationship.

Example 3442:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-908070601",

 "name": "Cisco AnyConnect Secure Mobility Client

4.9.04053"

 },

 {

 "product_id": "CSAFPID-908070602",

 "name": "Microsoft Windows"

 }

],

 "relationships": [

 {

 "product_reference": "CSAFPID-908070601",

 "category": "installed_on",

 "relates_to_product_reference": "CSAFPID-908070602",

 "full_product_name": {

 "product_id": "CSAFPID-908070603",

 "name": "Cisco AnyConnect Secure Mobility Client

2.3.185 installed on Microsoft Windows"

 }

 }

]

 }

The product Cisco AnyConnect Secure Mobility Client

4.9.04053" (Product ID: CSAFPID-908070601) and the product

Microsoft Windows (Product ID: CSAFPID-908070602) form

together a new product with the separate Product ID
CSAFPID-908070603. The latter one can be used to refer to

that combination in other parts of the CSAF document. In
example 34, it might be the case that Cisco AnyConnect

Secure Mobility Client 4.9.04053" is only vulnerable

when installed on Microsoft Windows.

3.2.3 Vulnerabilities Property

Vulnerabilities (vulnerabilities) of value type array with 1 or more

objects representing vulnerabilities and providing 1 or more properties
represents a list of all relevant vulnerability information items.

 "vulnerabilities": {

 // ...

 "items": {

 // ...

 }

 }

The Vulnerability item of value type object with 1 or more properties is a

container for the aggregation of all fields that are related to a single
vulnerability in the document. Any vulnerability mayMAY provide the
optional properties Acknowledgments (acknowledgments), Common

Vulnerabilities and Exposures (CVE) (cve), Common Weakness

Enumeration (CWE) (cwe), Discovery Date (discovery_date), ID (idFlags

(flags), IDs (ids), Involvements (involvements), Notes (notes), Product

Status (product_status), References (references), Release Date

(release_date), Remediations (remediations), Scores (scores), Threats

(threats), and Title (title).

 "properties": {

 "acknowledgments": {

 // ...

 },

 "cve": {

 // ...

 },

 "cwe": {

 // ...

 },

 "discovery_date": {

 // ...

 },

 "idflags": {

 // ...

 },

 "ids": {

 // ...

 },

 "involvements": {

 // ...

 },

 "notes": {

 // ...

 },

 "product_status": {

 // ...

 },

 "references": {

 // ...

 },

 "release_date": {

 // ...

 },

 "remediations": {

 // ...

 },

 "scores": {

 // ...

 },

 "threats": {

 // ...

 },

 "title": {

 // ...

 }

 }

3.2.3.1 Vulnerabilities Property - Acknowledgments

Vulnerability acknowledgments (acknowledgments) of value type

Acknowledgments Type (acknowledgments_t) contains a list of

acknowledgment elements associated with this vulnerability item.

 "acknowledgments": {

 // ...

 },

3.2.3.2 Vulnerabilities Property - CVE

CVE (cve) of value type string with pattern (regular expression):

 ^CVE-[0-9]{4}-[0-9]{4,}$

holds the MITRE standard Common Vulnerabilities and Exposures (CVE)
tracking number for the vulnerability.

3.2.3.3 Vulnerabilities Property - CWE

CWE (cwe) of value type object with the 2 mandatory properties

Weakness ID (id) and Weakness Name (name) holds the MITRE standard

Common Weakness Enumeration (CWE) for the weakness associated.
For more information cf. [CWE].

 "cwe": {

 // ...

 "properties": {

 "id": {

 // ...

 },

 "name": {

 // ...

 }

 }

 },

The Weakness ID (id) has value type string with pattern (regular

expression):

 ^CWE-[1-9]\\d{0,5}$

and holds the ID for the weakness associated.

Examples 3543:

 CWE-22

 CWE-352

 CWE-79

The Weakness name (name) has value type string with 1 or more

characters and holds the full name of the weakness as given in the CWE
specification.

Examples 3644:

 Cross-Site Request Forgery (CSRF)

 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')

 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')

3.2.3.4 Vulnerabilities Property - Discovery Date

Discovery date (discovery_date) of value type string with format date-

time holds the date and time the vulnerability was originally discovered.

3.2.3.5 Vulnerabilities Property - IDFlags

ID (idList of flags (flags) of value type array with 1 or more unique items

(a set) of value type object contains a list of machine readable flags.

 "flags": {

 // ...

 "items": {

 // ...

 }

 },

Every Flag item of value type object with the mandatory property Label

(label) contains product specific information in regard to this vulnerability

as a single machine readable flag. For example, this could be a machine
readable justification code why a product is not affected.

These flags enable the receiving party to automate the
selection of actions to take.

In addition, any Flag items MAY provide the three optional properties Date
(date), Group IDs (group_ids) and Product IDs (product_ids).

 "properties": {

 "date": {

 // ...

 },

 "group_ids": {

 // ...

 },

 "label": {

 // ...

 },

 "product_ids": {

 // ...

 }

 }

Date of the flag (date) of value type string with format date-time contains

the date when assessment was done or the flag was assigned.

Group IDs (group_ids) are of value type Product Groups

(product_groups_t).

Label of the flag (label) of value type string and enum specifies the

machine readable label. Valid enum values are:

 component_not_present

 inline_mitigations_already_exist

 vulnerable_code_cannot_be_controlled_by_adversary

 vulnerable_code_not_in_execute_path

 vulnerable_code_not_present

The given values reflect the VEX not affected justifications. See [VEX-
Just] for more details. The values MUST be used as follows:

• component_not_present: The software is not affected because the

vulnerable component is not in the product.

• vulnerable_code_not_present: The product is not affected because

the code underlying the vulnerability is not present in the product.

Unlike component_not_present, the component in

question is present, but for whatever reason (e.g.
compiler options) the specific code causing the
vulnerability is not present in the component.

• vulnerable_code_cannot_be_controlled_by_adversary: The

vulnerable component is present, and the component contains the
vulnerable code. However, vulnerable code is used in such a way
that an attacker cannot mount any anticipated attack.

• vulnerable_code_not_in_execute_path: The affected code is not

reachable through the execution of the code, including non-
anticipated states of the product.

Components that are neither used nor executed by
the product.

• inline_mitigations_already_exist: Built-in inline controls or

mitigations prevent an adversary from leveraging the vulnerability.

Product IDs (product_ids) are of value type Products (products_t).

3.2.3.6 Vulnerabilities Property - IDs

List of IDs (ids) of value type array with one or more unique ID items of

value type object represents a list of unique labels or tracking IDs for the

vulnerability (if such information exists).

 "ids": {

 // ...

 "items": {

 // ...

 }

 },

Every ID item of value type object with the two mandatory properties

System Name (system_name) and Text (text) gives the document

producercontains a place to publish asingle unique label or tracking ID for
the vulnerability (if such information exists)..

 "id": {

 // ...

 "properties": {

 "system_name": {

 // ...

 },

 "text": {

 // ...

 }

 }

 },

System name (system_name) of value type string with 1 or more

characters indicates the name of the vulnerability tracking or numbering
system.

Example 3745:

 Cisco Bug ID

 GitHub Issue

Text (text) of value type string with 1 or more characters is unique label

or tracking ID for the vulnerability (if such information exists).

Example 3846:

 CSCso66472

 oasis-tcs/csaf#210

General examples may include an identifier from a
vulnerability tracking system that is available to customers,
such as:

• a Cisco bug ID,

• a GitHub Issue number,

• an ID from a Bugzilla system, or

• an ID from a public vulnerability database such as the
X-Force Database.

The ID mayMAY be a vendor-specific value but is not to be
used to publish the CVE tracking numbers (MITRE standard
Common Vulnerabilities and Exposures), as these are
specified inside the dedicated CVE element.

3.2.3.67 Vulnerabilities Property - Involvements

List of involvements (involvements) of value type array with 1 or more

items of value type object contains a list of involvements.

 "involvements": {

 // ...

 "items": {

 // ...

 }

 },

Every Involvement item of value type object with the 2 mandatory

properties Party (party), Status (status) and the 2 optional properties

Date of involvement (date) and Summary (summary) is a container that

allows the document producers to comment on the level of involvement (or
engagement) of themselves (or third parties) in the vulnerability
identification, scoping, and remediation process. It can also be used to
convey the disclosure timeline. The ordered tuple of the values of party

and date (if present) SHALL be unique within involvements.

 "properties": {

 "date": {

 // ...

 },

 "party": {

 // ...

 },

 "status": {

 // ...

 },

 "summary": {

 // ...

 },

 }

Date of involvement (date) of value type string with format date-time

holds the date and time of the involvement entry.

Party category (party) of value type string and enum defines the category

of the involved party. Valid values are:

 coordinator

 discoverer

 other

 user

 vendor

These values follow the same definitions as given for the publisher
category (cf. section 3.2.1.8.1).

Party status (status) of value type string and enum defines contact status

of the involved party. Valid values are:

 completed

 contact_attempted

 disputed

 in_progress

 not_contacted

 open

Each status is mutually exclusive - only one status is valid for a particular
vulnerability at a particular time. As the vulnerability ages, a party's
involvement could move from state to state. However, in many cases, a
document producer may choose not to issue CSAF documents at each

state, or simply omit this element altogether. It is recommended, however,
that vendors that issue CSAF documents indicating an open or in-
progress involvement shouldSHOULD eventually expect to issue a
document containing one of the statuses disputed or completed as the

latest one.

The two vulnerability involvement status states,
contact_attempted and not_contacted are intended for use

by document producers other than vendors (such as
research or coordinating entities).

The value completed indicates that the party asserts that investigation of

the vulnerability is complete. No additional information, fixes, or
documentation from the party about the vulnerability should be expected
to be released.

The value contact_attempted indicates that the document producer

attempted to contact the party.

The value disputed indicates that the party disputes the vulnerability

report in its entirety. This status shouldSHOULD be used when the party
believes that a vulnerability report regarding a product is completely
inaccurate (that there is no real underlying security vulnerability) or that
the technical issue being reported has no security implications.

The value in_progress indicates that some hotfixes, permanent fixes,

mitigations, workarounds, or patches may have been made available by
the party, but more information or fixes may be released in the future. The
use of this status by a vendor indicates that future information from the
vendor about the vulnerability is to be expected.

The value not_contacted indicates that the document producer has not

attempted to make contact with the party.

The value open is the default status. It doesn’t indicate anything about the

vulnerability remediation effort other than the fact that the party has
acknowledged awareness of the vulnerability report. The use of this status
by a vendor indicates that future updates from the vendor about the
vulnerability are to be expected.

Summary of involvement (summary) of value type string with 1 or more

characters contains additional context regarding what is going on.

3.2.3.78 Vulnerabilities Property - Notes

Vulnerability notes (notes) of value type Notes Type (notes_t) holds notes

associated with this vulnerability item.

 "notes": {

 // ...

 },

3.2.3.89 Vulnerabilities Property - Product Status

Product status (product_status) of value type object with 1 or more

properties contains different lists of product_ids which provide details on
the status of the referenced product related to the current vulnerability.
The eight defined properties are First affected (first_affected), First

fixed (first_fixed), Fixed (fixed), Known affected (known_affected),

Known not affected (known_not_affected), Last affected (last_affected),

Recommended (recommended), and Under investigation

(under_investigation) are all of value type Products (products_t).

 "product_status": {

 // ...

 "properties": {

 "first_affected": {

 // ...

 },

 "first_fixed": {

 // ...

 },

 "fixed": {

 // ...

 },

 "known_affected": {

 // ...

 },

 "known_not_affected": {

 // ...

 },

 "last_affected": {

 // ...

 },

 "recommended": {

 // ...

 },

 "under_investigation": {

 // ..

 }

 }

 },

First affected (first_affected) of value type Products (products_t)

represents that these are the first versions of the releases known to be
affected by the vulnerability.

First fixed (first_fixed) of value type Products (products_t) represents

that these versions contain the first fix for the vulnerability but may not be
the recommended fixed versions.

Fixed (fixed) of value type Products (products_t) represents that these

versions contain a fix for the vulnerability but may not be the
recommended fixed versions.

Known affected (known_affected) of value type Products (products_t)

represents that these versions are known to be affected by the
vulnerability. Actions are recommended to remediate or address this
vulnerability.

This could include for instance learning more about the
vulnerability and context, and/or making a risk-based
decision to patch or apply defense-in-depth measures. See
/vulnerabilities[]/remediations,

/vulnerabilities[]/notes and

/vulnerabilities[]/threats for more details.

Known not affected (known_not_affected) of value type Products

(products_t) represents that these versions are known not to be affected

by the vulnerability. No remediation is required regarding this vulnerability.

This could for instance be because the code referenced in
the vulnerability is not present, not exposed, compensating
controls exist, or other factors. See
/vulnerabilities[]/threats in category impact for more

details.

Last affected (last_affected) of value type Products (products_t)

represents that these are the last versions in a release train known to be
affected by the vulnerability. Subsequently released versions would
contain a fix for the vulnerability.

Recommended (recommended) of value type Products (products_t)

represents that these versions have a fix for the vulnerability and are the
vendor-recommended versions for fixing the vulnerability.

Under investigation (under_investigation) of value type Products

(products_t) represents that it is not known yet whether these versions

are or are not affected by the vulnerability. However, it is still under
investigation - the result will be provided in a later release of the
document.

3.2.3.910 Vulnerabilities Property - References

Vulnerability references (references) of value type References Type

(references_t) holds a list of references associated with this vulnerability

item.

 "references": {

 // ...

 },

3.2.3.1011 Vulnerabilities Property - Release Date

Release date (release_date) with value type string of format date-time

holds the date and time the vulnerability was originally released into the
wild.

3.2.3.1112 Vulnerabilities Property - Remediations

List of remediations (remediations) of value type array with 1 or more

Remediation items of value type object contains a list of remediations.

 "remediations": {

 // ...

 "items": {

 // ...

 }

 },

Every Remediation item of value type object with the 2 mandatory

properties Category (category) and Details (details) specifies details on

how to handle (and presumably, fix) a vulnerability.

In addition, any Remediation mayMAY expose the six optional properties
Date (date), Entitlements (entitlements), Group IDs (group_ids), Product

IDs (product_ids), Restart required (restart_required), and URL (url).

 "properties": {

 "category": {

 // ...

 },

 "date": {

 // ...

 },

 "details": {

 // ...

 },

 "entitlements": {

 // ...

 },

 "group_ids": {

 // ...

 },

 "product_ids": {

 // ...

 },

 "restart_required": {

 // ...

 },

 "url": {

 // ...

 }

 }

3.2.3.1112.1 Vulnerabilities Property - Remediations - Category

Category of the remediation (category) of value type string and enum

specifies the category which this remediation belongs to. Valid values are:

 mitigation

 no_fix_planned

 none_available

 vendor_fix

 workaround

The value workaround indicates that the remediation contains information

about a configuration or specific deployment scenario that can be used to
avoid exposure to the vulnerability. There mayMAY be none, one, or more
workarounds available. This is typically the “first line of defense” against a
new vulnerability before a mitigation or vendor fix has been issued or even
discovered.

The value mitigation indicates that the remediation contains information

about a configuration or deployment scenario that helps to reduce the risk
of the vulnerability but that does not resolve the vulnerability on the
affected product. Mitigations mayMAY include using devices or access
controls external to the affected product. Mitigations mayMAY or may
notMAY NOT be issued by the original author of the affected product, and
they mayMAY or may notMAY NOT be officially sanctioned by the
document producer.

The value vendor_fix indicates that the remediation contains information

about an official fix that is issued by the original author of the affected
product. Unless otherwise noted, it is assumed that this fix fully resolves
the vulnerability.

The value none_available indicates that there is currently no fix available.

The description shouldSHOULD contain details about why there is no fix.

The value no_fix_planned indicates that there is no fix for the vulnerability

and it is not planned to provide one at any time. This is often the case
when a product has been orphaned, declared end-of-life, or otherwise

deprecated. The description shouldSHOULD contain details about why
there will be no fix issued.

3.2.3.1112.2 Vulnerabilities Property - Remediations - Date

Date of the remediation (date) of value type string with format date-time

contains the date from which the remediation is available.

3.2.3.1112.3 Vulnerabilities Property - Remediations - Details

Details of the remediation (details) of value type string with 1 or more

characters contains a thorough human-readable discussion of the
remediation.

3.2.3.1112.4 Vulnerabilities Property - Remediations - Entitlements

List of entitlements (entitlements) of value type array with 1 or more

items of type Entitlement of the remediation as string with 1 or more

characters contains a list of entitlements.

 "entitlements": {

 //

 "items": {

 // ...

 }

 },

Every Entitlement of the remediation contains any possible vendor-defined
constraints for obtaining fixed software or hardware that fully resolves the
vulnerability.

3.2.3.1112.5 Vulnerabilities Property - Remediations - Group IDs

Group IDs (group_ids) are of value type Product Groups

(product_groups_t).

Group IDs (group_ids) are of value type Product Groups

(product_groups_t).

3.2.3.1112.6 Vulnerabilities Property - Remediations - Product IDs

Product IDs (product_ids) are of value type Products (products_t).

3.2.3.1112.7 Vulnerabilities Property - Remediations - Restart Required

Restart required by remediation (restart_required) of value type object

with the 1 mandatory property Category (category) and the optional

property Details (details) provides information on category of restart is

required by this remediation to become effective.

 "restart_required": {

 // ...

 "properties": {

 "category": {

 // ...

 }

 "details": {

 // ...

 }

 }

 },

Category of restart (category) of value type string and enum specifies

what category of restart is required by this remediation to become
effective. Valid values are:

 connected

 dependencies

 machine

 none

 parent

 service

 system

 vulnerable_component

 zone

The values mustMUST be used as follows:

• none: No restart required.

• vulnerable_component: Only the vulnerable component (as given

by the elements of product_ids or group_ids in the current

remediation item) needs to be restarted.

• service: The vulnerable component and the background service

used by the vulnerable component need to be restarted.

• parent: The vulnerable component and its parent process need to

be restarted. This could be the case if the parent process has no
build-in way to restart the vulnerable component or process values /
context is only given at the start of the parent process.

• dependencies: The vulnerable component and all components

which require the vulnerable component to work need to be
restarted. This could be the case e.g. for a core service of a
software.

• connected: The vulnerable component and all components

connected (via network or any type of inter-process
communication) to the vulnerable component need to be restarted.

• machine: The machine on which the vulnerable component is

installed on needs to be restarted. This is the value which
shouldSHOULD be used if an OS needs to be restarted. It is
typically the case for OS upgrades.

• zone: The security zone in which the machine resides on which the

vulnerable component is installed needs to be restarted. This value
might be useful for a remediation if no patch is available. If the
malware can be wiped out by restarting the infected machines but
the infection spreads fast the controlled shutdown of all machines
at the same time and restart afterwards can leave one with a clean
system.

• system: The whole system which the machine resides on which the

vulnerable component is installed needs to be restarted. This
mayMAY include multiple security zones. This could be the case for
a major system upgrade in an ICS system or a protocol change.

Additional restart information (details) of value type string with 1 or

more characters provides additional information for the restart. This can
include details on procedures, scope or impact.

3.2.3.1112.8 Vulnerabilities Property - Remediations - URL

URL (url) of value type string with format uri contains the URL where to

obtain the remediation.

3.2.3.1213 Vulnerabilities Property - Scores

List of scores (scores) of value type array with 1 or more items of type

score holds a list of score objects for the current vulnerability.

 "scores": {

 // ...

 "items": {

 // ...

 }

 }

 },

Value type of every such Score item is object with the mandatory property

products and the optional properties cvss_v2 and cvss_v3 specifies

information about (at least one) score of the vulnerability and for which
products the given value applies. Each Score item has at least 2
properties.

 "properties": {

 "cvss_v2": {

 // ...

 },

 "cvss_v3": {

 "oneOf": [

 // ...

]

 }

 "products": {

 // ...

 }

 }

The property CVSS v2 (cvss_v2) holding a CVSS v2.0 value abiding by

the schema at https://www.first.org/cvss/cvss-v2.0.json.

The property CVSS v3 (cvss_v3) holding a CVSS v3.x value abiding by

one of the schemas at https://www.first.org/cvss/cvss-v3.0.json or
https://www.first.org/cvss/cvss-v3.1.json.

Product IDs (products) of value type products_t with 1 or more items

indicates for which products the given scores apply. A score object
SHOULD reflect the associated product's status (for example, a fixed
product no longer contains a vulnerability and should have a CVSS score
of 0, or simply no score listed; the known affected versions of that product
can list the vulnerability score as it applies to them).

3.2.3.1314 Vulnerabilities Property - Threats

List of threats (threats) of value type array with 1 or more items of value

type object representing Threats contains information about a

vulnerability that can change with time.

 "threats": {

 // ...

 "items": {

 // ...

 }

 },

AEvery Threat item is of value type object with the two mandatory

properties Category (category) and Details (details) and contains the

vulnerability kinetic information. This information can change as the
vulnerability ages and new information becomes available. In addition,
threat items may provideany Threat item MAY expose the three optional
properties Date (date), Group IDs (group_ids)), and Product IDs

(product_ids).

 "properties": {

 "category": {

 // ...

 }

 "date": {

https://www.first.org/cvss/cvss-v2.0.json
https://www.first.org/cvss/cvss-v3.0.json
https://www.first.org/cvss/cvss-v3.1.json

 // ...

 },

 "details": {

 // ...

 },

 "group_ids": {

 // ...

 },

 "product_ids": {

 // ...

 }

 }

Category of the threat (category) of value type string and enum

categorizes the threat according to the rules of the specification. Valid
values are:

 exploit_status

 impact

 target_set

The value exploit_status indicates that the details field contains a

description of the degree to which an exploit for the vulnerability is known.
This knowledge can range from information privately held among a very
small group to an issue that has been described to the public at a major
conference or is being widely exploited globally. For consistency and
simplicity, this section can be a mirror image of the CVSS "Exploitability"
metric. However, it can also contain a more contextual status, such as
"Weaponized" or "Functioning Code".

The value impact indicates that the details field contains an assessment

of the impact on the user or the target set if the vulnerability is successfully
exploited or a description why it cannot be exploited. If applicable, for
consistency and simplicity, this section can be a textual summary of the
three CVSS impact metrics. These metrics measure how a vulnerability
detracts from the three core security properties of an information system:
Confidentiality, Integrity, and Availability.

The value target_set indicates that the details field contains a

description of the currently known victim population in whatever terms are
appropriate. Such terms mayMAY include: operating system platform,
types of products, user segments, and geographic distribution.

Date of the threat (date) of value type string with format date-time

contains the date when the assessment was done or the threat appeared.

Details of the threat (details) of value type string with 1 or more

characters represents a thorough human-readable discussion of the
threat.

Group IDs (group_ids) are of value type Product Groups

(product_groups_t).

Product IDs (product_ids) are of value type Products (products_t).

3.2.3.1415 Vulnerabilities Property - Title

Title (title) has value type string with 1 or more characters and gives

the document producer the ability to apply a canonical name or title to the
vulnerability.

4 Profiles

CSAF documents do not have many required fields as they can be used
for different purposes. To ensure a common understanding of which fields
are required in a given use case the standard defines profiles. Each
subsection describes such a profile by describing necessary content for
that specific use case and providing insights into its purpose. The value of
/document/category is used to identify a CSAF document's profile. The

following rules apply:

1. Each CSAF document MUST conform the CSAF Base profile.

2. Each profile extends the generic profile Generic CSAFbase profile
"CSAF Base" - directly or indirect through another profile from the
standard - by making additional fields from the standard mandatory.
A profile can always add, but never subtract nor overwrite
requirements defined in the profile it extends.

1.3. Any other optional field from the standard can also be added
to a CSAF document which conforms with a profile without breaking
conformance with the profile. One and only exempt is when the
profile requires not to have a certain set of fields.

4. Values of /document/category starting with csaf_ are reserved for

existing, upcoming and future profiles defined in the CSAF
standard.

5. Values of /document/category that do not match any of the values

defined in section 4 of this standard SHALL be validated against
the "CSAF Base" profile.

6. Local or private profiles MAY exist and tools MAY choose to
support them.

7. If an official profile and a private profile exists, tools MUST validate
against the official one from the standard.

4.1 Profile 1: Generic CSAF Base

This profile defines the default required fields for any CSAF document.
Therefore, it is a "catch all" for CSAF documents that do not satisfy any
other profile. Furthermore, it is the foundation all other profiles are build
on.

A CSAF document SHALL fulfill the following requirements to satisfy the
profile "Generic CSAF Base":

• The following elements mustMUST exist and be valid:
o /document/category
o /document/csaf_version
o /document/publisher/category
o /document/publisher/name
o /document/publisher/namespace
o /document/title
o /document/tracking/current_release_date
o /document/tracking/id
o /document/tracking/initial_release_date
o /document/tracking/revision_history[]/date
o /document/tracking/revision_history[]/number
o /document/tracking/revision_history[]/summary
o /document/tracking/status
o /document/tracking/version

• The value of /document/category SHALL NOT be equal to any

value that is intended to only be used by another profile nor to the
(case insensitive) name of any other profile from the standard. This
does not differentiate between underscore, dash or whitespace. To
explicitly select the use of this profile the value generic_csaf_base

SHOULD be used.

Neither CSAF Security Advisory nor csaf security

advisory are valid values for /document/category.

An issuing party might choose to set /document/publisher/name in front of

a value that is intended to only be used by another profile to state that the
CSAF document does not use the profile associated with this value. In this
case, the (case insensitive) string "CSAF" MUST be removed from the
value. This shouldSHOULD be done if the issuing party is unable or
unwilling to use the value generic_csaf_base, e.g. due to legal or

cooperate identity reasons.

Both values Example Company Security Advisory and

Example Company security_advisory in /document/category

use the profile "Generic CSAF Base". This is important to

prepare forward compatibility as later versions of CSAF
might add new profiles. Therefore, the values which can be
used for the profile "Generic CSAF Base" might change.

4.2 Profile 2: Security incident response

This profile SHOULD be used to provide a response to a security breach
or incident. This MAY also be used to convey information about an
incident that is unrelated to the issuing party's own products or
infrastructure.

Example Company might use a CSAF document satisfying
this profile to respond to a security incident at ACME Inc.
and the implications on its own products and infrastructure.

A CSAF document SHALL fulfill the following requirements to satisfy the
profile "Security incident response":

• The following elements mustMUST exist and be valid:

o all elements required by the profile "Generic CSAF Base".

o /document/notes with at least one item which has a

category of description, details, general or summary

Reasoning: Without at least one note item
which contains information about response to
the event referred to this doesn't provide any
useful information.

o /document/references with at least one item which has a

category of external

This should be usedThe intended use for this
field is to refer to one or more documents or
websites which provides more details about the
incident. The category for such references

SHOULD be external.

• The value of /document/category SHALL be

csaf_security_incident_response.

4.3 Profile 3: Informational Advisory

This profile SHOULD be used to provide information which are not
related to a vulnerability but e.g. a misconfiguration.

A CSAF document SHALL fulfill the following requirements to satisfy the
profile "Informational Advisory":

• The following elements mustMUST exist and be valid:

o all elements required by the profile "Generic CSAF Base".

o /document/notes with at least one item which has a

category of description, details, general or summary

Reasoning: Without at least one note item
which contains information about the "issue"
which is the topic of the advisory it is useless.

o /document/references with at least one item which has a

category of external

This should be usedThe intended use for this
field is to refer to one or more documents or
websites which provide more details about the
issue or its remediation (if possible). This could
be a hardening guide, a manual, best practices
or any other helpful information.

• The value of /document/category SHALL be

csaf_informational_advisory.

• The element /vulnerabilities SHALL NOT exist. If there is any

information that would reside in the element /vulnerabilities the

CSAF document SHOULD use another profile, e.g. "Security
Advisory".

If the element /product_tree exists, a user MUST assume that all

products mentioned are affected.

4.4 Profile 4: Security Advisory

This profile SHOULD be used to provide information which is related to
vulnerabilities and corresponding remediations.

A CSAF document SHALL fulfill the following requirements to satisfy the
profile "Security Advisory":

• The following elements mustMUST exist and be valid:

o all elements required by the profile "Generic CSAF Base".

o /product_tree which lists all products referenced later on in

the CSAF document regardless of their state.

o /vulnerabilities which lists all vulnerabilities.

o /vulnerabilities[]/notes

Provides details about the vulnerability.

o /vulnerabilities[]/product_status

Lists each product's status in regard to the
vulnerability.

• The value of /document/category SHALL be

csaf_security_advisory.

4.5 Profile 5: VEX

This profile SHOULD be used to provide information of the "Vulnerability
Exploitability eXchange". The main purpose of the VEX format is to state
that and why a certain product is, or is not, affected by a vulnerability. See
[VEX] for details.

A CSAF document SHALL fulfill the following requirements to satisfy the
profile "VEX":

• The following elements mustMUST exist and be valid:

o all elements required by the profile "Generic CSAF Base".

o /product_tree which lists all products referenced later on in

the CSAF document regardless of their state.

o /vulnerabilities which lists all vulnerabilities.

o at least one of
▪ /vulnerabilities[]/product_status/fixed

▪ /vulnerabilities[]/product_status/known_affecte

d

▪ /vulnerabilities[]/product_status/known_not_aff

ected

▪ /vulnerabilities[]/product_status/under_investi

gation

o at least one of
▪ /vulnerabilities[]/cve

▪ /vulnerabilities[]/ids
o /vulnerabilities[]/notes

Provides details about the vulnerability.

• For each item in
o /vulnerabilities[]/product_status/known_not_affected

an impact statement SHALL exist as machine readable flag
in /vulnerabilities[]/flags or as human readable

justification in /vulnerabilities[]/threats. TheFor the

latter one, the category value for such a statement MUST be

impact and the details field SHALL contain a a description

why the vulnerability cannot be exploited.
o /vulnerabilities[]/product_status/known_affected

additional product specific information SHALL be provided in
/vulnerabilities[]/remediations as an action statement.

Optional, additional information MAY also be provide through
/vulnerabilities[]/notes and

/vulnerabilities[]/threats.

The use of the categories no_fix_planned and

none_available for an action statement is

permitted.

• Even though Product status lists Product IDs, Product
Group IDs can be used in the remediations and

threats object. However, it MUST be ensured that for

each Product ID the required information according to
its product status as stated in the two points above is
available. This implies that all products with the status
known_not_affected MUST have an impact statement

and all products with the status known_affected

MUST have additional product specific information
regardless of whether that is referenced through the
Product ID or a Product Group ID.

• The value of /document/category SHALL be csaf_vex.

5 Additional Conventions

This section provides additional rules for handling CSAF documents.

5.1 Filename

The following rules MUST be applied to determine the filename for the
CSAF document:

1. The value /document/tracking/id is converted into lower case.

2. EachAny character sequence which is not part of one of the
following groups MUST be replaced by ana single underscore (_):

o Lower case ASCII letters (0x61 - 0x7A)

o digits (0x30 - 0x39)

o special characters: + (0x2B), - (0x2D), _ (0x5F)

The regex [^+\-a-z0-9]+ can be used to find a

character sequence which has to be replaced by an
underscore. However, it SHALL NOT be applied
before completing the first step.

Even though the underscore _ (0x5F) is a valid

character in the filename it is replaced to avoid
situations where the conversion rule might lead to
multiple consecutive underscores. As a result, a
/document/tracking/id with the value 2022_#01-A is

converted into 2022_01-a instead of 2022__01-a.

3. The file extension .json MUST be appended.

Examples 3947:

 cisco-sa-20190513-secureboot.json

 example_company_-_2019-yh3234.json

 rhba-2019_0024.json

It is currently considered best practice to indicate that a
CSAF document is invalid by inserting _invalid into the

filename in front of the file extension.

Examples 48:

 cisco-sa-20190513-secureboot_invalid.json

 example_company_-_2019-yh3234_invalid.json

 rhba-2019_0024_invalid.json

5.2 Separation in Data Streanm

If multiple CSAF documents are transported via a data stream in a
sequence without requests inbetween, they MUST be separated by the
Record Separator in accordance with [RFC7464].

5.3 Sorting

The keys within a CSAF document SHOULD be sorted alphabetically.

6 Tests

The following three subsections list a number of tests which all will have a
short description and an excerpt of an example which fails the test.

6.1 Mandatory Tests

Mandatory tests MUST NOT fail at a valid CSAF document. A program
MUST handle a test failure as an error.

6.1.1 Missing Definition of Product ID

For each element of type /$defs/product_id_t which is not inside a Full

Product Name (type: full_product_name_t) and therefore reference an

element within the product_tree it mustMUST be tested that the Full

Product Name element with the matching product_id exists. The same

applies for all items of elements of type /$defs/products_t.

The relevant paths for this test are:

 /product_tree/product_groups[]/product_ids[]

 /product_tree/relationships[]/product_reference

 /product_tree/relationships[]/relates_to_product_reference

 /vulnerabilities[]/product_status/first_affected[]

 /vulnerabilities[]/product_status/first_fixed[]

 /vulnerabilities[]/product_status/fixed[]

 /vulnerabilities[]/product_status/known_affected[]

 /vulnerabilities[]/product_status/known_not_affected[]

 /vulnerabilities[]/product_status/last_affected[]

 /vulnerabilities[]/product_status/recommended[]

 /vulnerabilities[]/product_status/under_investigation[]

 /vulnerabilities[]/remediations[]/product_ids[]

 /vulnerabilities[]/scores[]/products[]

 /vulnerabilities[]/threats[]/product_ids[]

Example 4049 which fails the test:

 "product_tree": {

 "product_groups": [

 {

 "group_id": "CSAFGID-1020300",

 "product_ids": [

 "CSAFPID-9080700",

 "CSAFPID-9080701"

]

 }

]

 }

Neither CSAFPID-9080700 nor CSAFPID-9080701 were defined

in the product_tree.

6.1.2 Multiple Definition of Product ID

For each Product ID (type /$defs/product_id_t) in Full Product Name

elements (type: /$defs/full_product_name_t) it mustMUST be tested that

the product_id was not already defined within the same document.

The relevant paths for this test are:

 /product_tree/branches[](/branches[])*/product/product_id

 /product_tree/full_product_names[]/product_id

 /product_tree/relationships[]/full_product_name/product_id

Example 4150 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 },

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product B"

 }

]

 }

CSAFPID-9080700 was defined twice.

6.1.3 Circular Definition of Product ID

For each new defined Product ID (type /$defs/product_id_t) in items of

relationships (/product_tree/relationships) it mustMUST be tested that

the product_id does not end up in a circle.

The relevant path for this test is:

 /product_tree/relationships[]/full_product_name/product_id

As this can be quite complex a program for large CSAF
documents, a program could check first whether a Product
ID defined in a relationship item is used as
product_reference or relates_to_product_reference. Only

for those which fulfill this condition it is necessary to run the
full check following the references.

Example 4251 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 }

],

 "relationships": [

 {

 "category": "installed_on",

 "full_product_name": {

 "name": "Product B",

 "product_id": "CSAFPID-9080701"

 },

 "product_reference": "CSAFPID-9080700",

 "relates_to_product_reference": "CSAFPID-9080701"

 }

]

 }

CSAFPID-9080701 refers to itself - this is a circular definition.

6.1.4 Missing Definition of Product Group ID

For each element of type /$defs/product_group_id_t which is not inside

a Product Group (/product_tree/product_groups[]) and therefore

reference an element within the product_tree it mustMUST be tested that

the Product Group element with the matching group_id exists. The same

applies for all items of elements of type /$defs/product_groups_t.

The relevant paths for this test are:

 /vulnerabilities[]/remediations[]/group_ids

 /vulnerabilities[]/threats[]/group_ids

Example 43 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

Example 52 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 }

]

 },

 "vulnerabilities": [

 {

 "threats": [

 {

 "category": "exploit_status",

 "details": "Reliable exploits integrated in

Metasploit.",

 "group_ids": [

 "CSAFGID-1020301"

]

 }

]

 }

]

CSAFGID-1020301 was not defined in the Product Tree.

6.1.5 Multiple Definition of Product Group ID

For each Product Group ID (type /$defs/product_group_id_t) Product

Group elements (/product_tree/product_groups[]) it mustMUST be

tested that the group_id was not already defined within the same

document.

The relevant path for this test is:

 /product_tree/product_groups[]/group_id

Example 4453 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 },

 {

 "product_id": "CSAFPID-9080701",

 "name": "Product B"

 },

 {

 "product_id": "CSAFPID-9080702",

 "name": "Product C"

 }

],

 "product_groups": [

 {

 "group_id": "CSAFGID-1020300",

 "product_ids": [

 "CSAFPID-9080700",

 "CSAFPID-9080701"

]

 },

 {

 "group_id": "CSAFGID-1020300",

 "product_ids": [

 "CSAFPID-9080700",

 "CSAFPID-9080702"

]

 }

]

 }

CSAFGID-1020300 was defined twice.

6.1.6 Contradicting Product Status

For each item in /vulnerabilities it mustMUST be tested that the same

Product ID is not member of contradicting product status groups. The sets
formed by the contradicting groups within one vulnerability item
mustMUST be pairwise disjoint.

Contradiction groups are:

• Affected:
• /vulnerabilities[]/product_status/first_affected[]

• /vulnerabilities[]/product_status/known_affected[]

• /vulnerabilities[]/product_status/last_affected[]

• Not affected:
• /vulnerabilities[]/product_status/known_not_affected[]

• Fixed:
• /vulnerabilities[]/product_status/first_fixed[]

• /vulnerabilities[]/product_status/fixed[]

• Under investigation:
• /vulnerabilities[]/product_status/under_investigation[]

Note: An issuer might recommend
(/vulnerabilities[]/product_status/recommended) a

product version from any group - also from the affected
group, i.e. if it was discoveresd that fixed versions introduce
a more severe vulnerability.

Example 4554 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 }

]

 },

 "vulnerabilities": [

 {

 "product_status": {

 "known_affected": [

 "CSAFPID-9080700"

],

 "known_not_affected": [

 "CSAFPID-9080700"

]

 }

 }

]

CSAFPID-9080700 is a member of the two contradicting

groups "Affected" and "Not affected".

6.1.7 Multiple Scores with same Version per Product

For each item in /vulnerabilities it mustMUST be tested that the same

Product ID is not member of more than one CVSS-Vectors with the same
version.

The relevant path for this test is:

 /vulnerabilities[]/scores[]

Example 4655 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 }

]

 },

 "vulnerabilities": [

 {

 "scores": [

 {

 "products": [

 "CSAFPID-9080700"

],

 "cvss_v3": {

 "version": "3.1",

 "vectorString":

"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H",

 "baseScore": 10,

 "baseSeverity": "CRITICAL"

 }

 },

 {

 "products": [

 "CSAFPID-9080700"

],

 "cvss_v3": {

 "version": "3.1",

 "vectorString":

"CVSS:3.1/AV:L/AC:L/PR:H/UI:R/S:U/C:H/I:H/A:H",

 "baseScore": 6.5,

 "baseSeverity": "MEDIUM"

 }

 }

]

 }

]

Two CVSS v3.1 scores are given for CSAFPID-9080700.

6.1.8 Invalid CVSS

It mustMUST be tested that the given CVSS object is valid according to
the referenced schema.

The relevant paths for this test are:

 /vulnerabilities[]/scores[]/cvss_v2

 /vulnerabilities[]/scores[]/cvss_v3

Example 4756 which fails the test:

 "cvss_v3": {

 "version": "3.1",

 "vectorString":

"CVSS:3.1/AV:L/AC:L/PR:H/UI:R/S:U/C:H/I:H/A:H",

 "baseScore": 6.5

 }

The required element baseSeverity is missing.

A tool MAY add one or more of the missing properties
version, baseScore and baseSeverity based on the values

given in vectorString as quick fix.

6.1.9 Invalid CVSS computation

It mustMUST be tested that the given CVSS object has the values
computed correctly according to the definition.

The vectorString SHOULD take precedence.

The relevant paths for this test are:

 /vulnerabilities[]/scores[]/cvss_v2/baseScore

 /vulnerabilities[]/scores[]/cvss_v2/temporalScore

 /vulnerabilities[]/scores[]/cvss_v2/environmentalScore

 /vulnerabilities[]/scores[]/cvss_v3/baseScore

 /vulnerabilities[]/scores[]/cvss_v3/baseSeverity

 /vulnerabilities[]/scores[]/cvss_v3/temporalScore

 /vulnerabilities[]/scores[]/cvss_v3/temporalSeverity

 /vulnerabilities[]/scores[]/cvss_v3/environmentalScore

 /vulnerabilities[]/scores[]/cvss_v3/environmentalSeverity

Example 4857 which fails the test:

 "cvss_v3": {

 "version": "3.1",

 "vectorString":

"CVSS:3.1/AV:L/AC:L/PR:H/UI:R/S:U/C:H/I:H/A:H",

 "baseScore": 10.0,

 "baseSeverity": "LOW"

 }

Neither baseScore nor baseSeverity has the correct value

according to the specification.

A tool MAY set the correct values as computed according to
the specification as quick fix.

6.1.10 Inconsistent CVSS

It mustMUST be tested that the given CVSS properties do not contradict
the CVSS vector.

The relevant paths for this test are:

 /vulnerabilities[]/scores[]/cvss_v2

 /vulnerabilities[]/scores[]/cvss_v3

Example 4958 which fails the test:

 "cvss_v3": {

 "version": "3.1",

 "vectorString":

"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",

 "baseScore": 9.8,

 "baseSeverity": "CRITICAL",

 "attackVector": "LOCAL",

 "attackComplexity": "LOW",

 "privilegesRequired": "NONE",

 "userInteraction": "NONE",

 "scope": "CHANGED",

 "confidentialityImpact": "HIGH",

 "integrityImpact": "HIGH",

 "availabilityImpact": "LOW"

 }

The values in CVSS vector differs from values of the
properties attackVector, scope and availabilityImpact.

A tool MAY overwrite contradicting values according to the
vectorString as quick fix.

6.1.11 CWE

It mustMUST be tested that given CWE exists and is valid.

The relevant path for this test is:

 /vulnerabilities[]/cwe

Example 50 which fails the test:

Example 59 which fails the test:

 "cwe": {

 "id": "CWE-79",

 "name": "Improper Input Validation"

 }

The CWE-79 exists. However, its name is Improper
Neutralization of Input During Web Page Generation

('Cross-site Scripting').

6.1.12 Language

For each element of type /$defs/language_t it mustMUST be tested that

the language code is valid and exists.

The relevant paths for this test are:

 /document/lang

 /document/source_lang

Example 5160 which fails the test:

 "lang": "EZ"

EZ is not a valid language. It is the subtag for the region

"Eurozone".

For any deprecated subtag, a tool MAY replace it with its
preferred value as a quick fix.

6.1.13 PURL

It mustMUST be tested that given PURL is valid.

The relevant paths for this test are:

/product_tree/branches[](/branches[])*/product/product_identifica

tion_helper/purl

/product_tree/full_product_names[]/product_identification_helper/

purl

/product_tree/relationships[]/full_product_name/product_identific

ation_helper/purl

Example 61 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

Example 52 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "name": "Product A",

 "product_id": "CSAFPID-9080700",

 "product_identification_helper": {

 "purl": "pkg:maven/@1.3.4"

 }

 }

]

 }

Any valid purl has a name component.

6.1.14 Sorted Revision History

It mustMUST be tested that the value of number of items of the revision

history are sorted ascending when the items are sorted ascending by
date.

The relevant path for this test is:

 /document/tracking/revision_history

Example 5362 which fails the test:

 "revision_history": [

 {

 "date": "2021-07-22T10:00:00.000Z",

 "number": "2",

 "summary": "Second version."

 },

 {

 "date": "2021-07-23T10:00:00.000Z",

 "number": "1",

 "summary": "Initial version."

 }

]

The first item has a higher version number than the second.

6.1.15 Translator

It mustMUST be tested that /document/source_lang is present and set if

the value translator is used for /document/publisher/category.

The relevant path for this test is:

 /document/source_lang

Example 5463 which fails the test:

 "document": {

 // ...

 "publisher": {

 "category": "translator",

 "name": "CSAF TC Translator",

 "namespace": "https://csaf.io/translator"

 },

 "title": "Mandatory test: Translator (failing example 1)",

 // ...

 }

The required element source_lang is missing.

6.1.16 Latest Document Version

It mustMUST be tested that document version has the same value as the
the number in the last item of Revision History when it is sorted ascending

by date. Build metadata is ignored in the comparison. Any pre-release part

is also ignored if the document status is draft.

The relevant path for this test is:

 /document/tracking/version

Example 5564 which fails the test:

 "tracking": {

 // ...

 "revision_history": [

 {

 "date": "2021-07-21T09:00:00.000Z",

 "number": "1",

 "summary": "Initial version."

 },

 {

 "date": "2021-07-21T10:00:00.000Z",

 "number": "2",

 "summary": "Second version."

 }

],

 // ...

 "version": "1"

 }

The value of number of the last item after sorting is 2.

However, the document version is 1.

6.1.17 Document Status Draft

It mustMUST be tested that document status is draft if the document

version is 0 or 0.y.z or contains the pre-release part.

The relevant path for this test is:

 /document/tracking/status

Example 5665 which fails the test:

 "tracking": {

 // ...

 "status": "final",

 "version": "0.9.5"

 }

The /document/tracking/version is 0.9.5 but the document

status is final.

6.1.18 Released Revision History

It mustMUST be tested that no item of the revision history has a number of

0 or 0.y.z when the document status is final or interim.

The relevant path for this test is:

 /document/tracking/revision_history[]/number

Example 5766 which fails the test:

 "tracking": {

 // ...

 "revision_history": [

 {

 "date": "2021-05-17T10:00:00.000Z",

 "number": "0",

 "summary": "First draft"

 },

 {

 "date": "2021-07-21T10:00:00.000Z",

 "number": "1",

 "summary": "Initial version."

 }

],

 "status": "final",

 "version": "1"

 }

The document status is final but the revision history

includes an item which has 0 as value for number.

6.1.19 Revision History Entries for Pre-release Versions

It mustMUST be tested that no item of the revision history has a number

which includes pre-release information.

The relevant path for this test is:

 /document/tracking/revision_history[]/number

Example 5867 which fails the test:

 "revision_history": [

 {

 "date": "2021-04-22T10:00:00.000Z",

 "number": "1.0.0-rc",

 "summary": "Release Candidate for initial version."

 },

 {

 "date": "2021-04-23T10:00:00.000Z",

 "number": "1.0.0",

 "summary": "Initial version."

 }

]

The revision history contains an item which has a number

that indicates that this is pre-release.

6.1.20 Non-draft Document Version

It mustMUST be tested that document version does not contain a pre-
release part if the document status is final or interim.

The relevant path for this test is:

 /document/tracking/version

Example 68 which fails the test:

Example 59 which fails the test:

 "tracking": {

 // ...

 "status": "interim",

 "version": "1.0.0-alpha"

 }

The document status is interim but the document version

contains the pre-release part -alpha.

6.1.21 Missing Item in Revision History

It mustMUST be tested that items of the revision history do not omit a
version number when the items are sorted ascending by date. In the case

of semantic versioning, this applies only to the Major version. It MUST
also be tested that the first item in such a sorted list has either the version
number 0 or 1 in the case of integer versioning or a Major version of 0 or 1
in the case of semantic versioning.

The relevant path for this test is:

 /document/tracking/revision_history

Example 6069 which fails the test:

 "revision_history": [

 {

 "date": "2021-04-22T10:00:00.000Z",

 "number": "1",

 "summary": "Initial version."

 },

 {

 "date": "2021-07-21T10:00:00.000Z",

 "number": "3",

 "summary": "Some other changes."

 }

]

The item for version 2 is missing.

6.1.22 Multiple Definition in Revision History

It mustMUST be tested that items of the revision history do not contain the
same version number.

The relevant path for this test is:

 /document/tracking/revision_history

Example 6170 which fails the test:

 "revision_history": [

 {

 "date": "2021-07-20T10:00:00.000Z",

 "number": "1",

 "summary": "Initial version."

 },

 {

 "date": "2021-07-21T10:00:00.000Z",

 "number": "1",

 "summary": "Some other changes."

 }

]

The revision history contains two items with the version
number 1.

6.1.23 Multiple Use of Same CVE

It mustMUST be tested that a CVE is not used in multiple vulnerability
items.

The relevant path for this test is:

 /vulnerabilities[]/cve

Example 62 which fails the test:

 "vulnerabilities": [

 {

Example 71 which fails the test:

 "vulnerabilities": [

 {

 "cve": "CVE-2017-0145"

 },

 {

 "cve": "CVE-2017-0145"

 }

]

The vulnerabilities array contains two items with the same
CVE identifier CVE-2017-0145.

6.1.24 Multiple Definition in Involvements

It mustMUST be tested that items of the list of involvements do not contain
the same party regardless of its status more than once at any date.

The relevant path for this test is:

 /vulnerabilities[]/involvements

Example 63 which fails the test:

 "vulnerabilities": [

 {

Example 72 which fails the test:

 "vulnerabilities": [

 {

 "involvements": [

 {

 "date": "2021-04-23T10:00:00.000Z",

 "party": "vendor",

 "status": "completed"

 },

 {

 "date": "2021-04-23T10:00:00.000Z",

 "party": "vendor",

 "status": "in_progress",

 "summary": "The vendor has released a mitigation and is

working to fully resolve the issue."

 }

]

 }

]

The list of involvements contains two items with the same
tuple party and date.

6.1.25 Multiple Use of Same Hash Algorithm

It mustMUST be tested that the same hash algorithm is not used multiple
times in one item of hashes.

The relevant paths for this test are:

/product_tree/branches[](/branches[])*/product/product_identifica

tion_helper/hashes[]/file_hashes

/product_tree/full_product_names[]/product_identification_helper/

hashes[]/file_hashes

/product_tree/relationships[]/full_product_name/product_identific

ation_helper/hashes[]/file_hashes

Example 6473 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "name": "Product A",

 "product_id": "CSAFPID-9080700",

 "product_identification_helper": {

 "hashes": [

 {

 "file_hashes": [

 {

 "algorithm": "sha256",

 "value":

"026a37919b182ef7c63791e82c9645e2f897a3f0b73c7a6028c7febf62e93838

"

 },

 {

 "algorithm": "sha256",

 "value":

"0a853ce2337f0608489ac596a308dc5b7b19d35a52b10bf31261586ac368b175

"

 }

],

 "filename": "product_a.so"

 }

]

 }

 }

]

 }

The hash algorithm sha256 is used two times in one item of

hashes.

6.1.26 Prohibited Document Category Name

It mustMUST be tested that the document category is not equal to the
(case insensitive) name (without the prefix csaf_) or value of any other

profile than "Generic CSAF". This does not differentiate between
underscore, Base". Any occurrences of dash or, whitespace. , and
underscore characters are removed from the values on both sides before

the match. Also the value MUST NOT start with the reserved prefix csaf_

except if the value is csaf_base.

This test does only apply for CSAF documents with the profile "Generic
CSAF Base". Therefore, it mustMUST be skipped if the document
category matches one of the values defined for the profile other than
"Generic CSAF Base".

For CSAF 2.0, the test must be skipped for the following
values in /document/category:

 csaf_base

 csaf_security_incident_response

 csaf_informational_advisory

 csaf_security_advisory

 csaf_vex

This is the only mandatory test related to the profile "Generic CSAF Base"
as the required fields SHALL be checked by validating the JSON schema.

The relevant path for this test is:

 /document/category

Examples 6574 for currently prohibited values:

 Csaf_a

 Informational Advisory

 security-incident-response

 Security Advisory

 veX

 V_eX

Example 6675 which fails the test:

 "category": "Security_Incident_Response"

The value Security_Incident_Response is the name of a

profile where the space was replaced with underscores.

6.1.27 Profile Tests

This subsubsection structures the tests for the profiles. Not all tests apply
for all profiles. Tests SHOULD be skipped if the document category does
not match the one given in the test. Each of the following tests SHOULD
be treated as they where listed similar to the other tests.

An application MAY group these tests by profiles when
providing the additional function to only run one or more
selected tests. This results in one virtual test per profile.

6.1.27.1 Document Notes

It mustMUST be tested that at least one item in /document/notes exists

which has a category of description, details, general or summary.

The relevant values for /document/category are:

 csaf_informational_advisory

 csaf_security_incident_response

 informational_advisory

The relevant path for this test is:

 /document/notes

Example 6776 which fails the test:

 "notes": [

 {

 "category": "legal_disclaimer",

 "text": "The CSAF document is provided to You \"AS IS\" and

\"AS AVAILABLE\" and with all faults and defects without warranty

of any kind.",

 "title": "Terms of Use"

 }

]

The document notes do not contain an item which has a
category of description, details, general or summary.

6.1.27.2 Document References

It mustMUST be tested that at least one item in /document/references

exists that has links to an external source.

The relevant values for /document/category are:

 csaf_informational_advisory

 csaf_security_incident_response

 informational_advisory

The relevant path for this test is:

 /document/references

Example 6877 which fails the test:

 "references": [

 {

 "category": "self",

 "summary": "The canonical URL.",

 "url":

"https://example.com/security/data/csaf/2021/OASIS_CSAF_TC-

CSAF_2_0-2021-6-1-27-02-01.json"

 }

]

The document references do not contain any item which has
the category external.

6.1.27.3 Vulnerabilities

It mustMUST be tested that the element /vulnerabilities does not exist.

The relevant value for /document/category is:

 csaf_informational_advisory

The relevant path for this test is:

 /vulnerabilities

Example 69 which fails the test:

Example 78 which fails the test:

 "vulnerabilities": [

 {

 "title": "A vulnerability item that SHALL NOT exist"

 }

]

The element /vulnerabilities exists.

A tool MAY change the /document/category to

generic_csaf_base as a quick fix.

6.1.27.4 Product Tree

It mustMUST be tested that the element /product_tree exists.

The relevant values for /document/category are:

 csaf_security_advisory

 csaf_vex

The relevant path for this test is:

 /product_tree

Example 7079 which fails the test:

 {

 "document": {

 // ...

 },

 "vulnerabilities": [

 // ...

]

 }

The element /product_tree does not exist.

6.1.27.5 Vulnerability Notes

For each item in /vulnerabilities it mustMUST be tested that the

element notes exists.

The relevant values for /document/category are:

 csaf_security_advisory

 csaf_vex

The relevant path for this test is:

 /vulnerabilities[]/notes

Example 80 which fails the test:

 "vulnerabilities": [

 {

Example 71 which fails the test:

 "vulnerabilities": [

 {

 "title": "A vulnerability item without a note"

 }

]

The vulnerability item has no notes element.

6.1.27.6 Product Status

For each item in /vulnerabilities it mustMUST be tested that the

element product_status exists.

The relevant value for /document/category is:

 csaf_security_advisory

The relevant path for this test is:

 /vulnerabilities[]/product_status

Example 81 which fails the test:

 "vulnerabilities": [

 {

Example 72 which fails the test:

 "vulnerabilities": [

 {

 "title": "A vulnerability item without a product status"

 }

]

The vulnerability item has no product_status element.

6.1.27.7 VEX Product Status

For each item in /vulnerabilities it mustMUST be tested that at least

one of the elements fixed, known_affected, known_not_affected, or

under_investigation is present in product_status.

The relevant value for /document/category is:

 csaf_vex

The relevant paths for this test are:

 /vulnerabilities[]/product_status/fixed

 /vulnerabilities[]/product_status/known_affected

 /vulnerabilities[]/product_status/known_not_affected

 /vulnerabilities[]/product_status/under_investigation

Example 7382 which fails the test:

 "product_status": {

 "first_fixed": [

 // ...

],

 "recommended": [

 // ...

]

 }

None of the elements fixed, known_affected,

known_not_affected, or under_investigation is present in

product_status.

6.1.27.8 Vulnerability ID

For each item in /vulnerabilities it mustMUST be tested that at least

one of the elements cve or ids is present.

The relevant value for /document/category is:

 csaf_vex

The relevant paths for this test are:

 /vulnerabilities[]/cve

 /vulnerabilities[]/ids

Example 83 which fails the test:

 "vulnerabilities": [

 {

Example 74 which fails the test:

 "vulnerabilities": [

 {

 "title": "A vulnerability item without a CVE or ID"

 }

]

None of the elements cve or ids is present.

6.1.27.9 Impact Statement

For each item in
/vulnerabilities[]/product_status/known_not_affected it mustMUST

be tested that a corresponding impact statement exist in
/vulnerabilities[]/flags or /vulnerabilities[]/threats. TheFor the

latter one, the category value for such a statement MUST be impact.

The relevant value for /document/category is:

 csaf_vex

The relevant path for this test is:

 /vulnerabilities[]/flags

The relevant path for this test is:

 /vulnerabilities[]/threats

Example 7584 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 },

 {

 "product_id": "CSAFPID-9080701",

 "name": "Product B"

 },

 {

 "product_id": "CSAFPID-9080702",

 "name": "Product C"

 }

],

 "product_groups": [

 {

 "group_id": "CSAFGID-0001",

 "product_ids": [

 "CSAFPID-9080700",

 "CSAFPID-9080701"

]

 }

]

 },

 "vulnerabilities": [

 {

 // ...

 "product_status": {

 "known_not_affected": [

 "CSAFPID-9080700",

 "CSAFPID-9080701",

 "CSAFPID-9080702"

]

 },

 "threats": [

 {

 "category": "impact",

 "details": "The vulnerable code is not present in these

products.",

 "group_ids": [

 "CSAFGID-0001"

]

 }

]

 }

]

There is no impact statement for CSAFPID-9080702. Note:

The impact statement for CSAFPID-9080700 and CSAFPID-

9080701 is given through CSAFGID-0001.

6.1.27.10 Action Statement

For each item in /vulnerabilities[]/product_status/known_affected it

mustMUST be tested that a corresponding action statement exist in
/vulnerabilities[]/remediations.

The relevant value for /document/category is:

 csaf_vex

The relevant path for this test is:

 /vulnerabilities[]/remediations

Example 7685 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 },

 {

 "product_id": "CSAFPID-9080701",

 "name": "Product B"

 },

 {

 "product_id": "CSAFPID-9080702",

 "name": "Product C"

 }

],

 "product_groups": [

 {

 "group_id": "CSAFGID-0001",

 "product_ids": [

 "CSAFPID-9080700",

 "CSAFPID-9080701"

],

 "summary": "EOL products"

 }

]

 },

 "vulnerabilities": [

 {

 // ...

 "product_status": {

 "known_affected": [

 "CSAFPID-9080700",

 "CSAFPID-9080701",

 "CSAFPID-9080702"

]

 },

 "remediations": [

 {

 "category": "no_fix_planned",

 "details": "These products are end-of-life. Therefore,

no fix will be provided.",

 "group_ids": [

 "CSAFGID-0001"

]

 }

]

 }

]

There is no action statement for CSAFPID-9080702. Note: The

action statement for CSAFPID-9080700 and CSAFPID-9080701

is given through CSAFGID-0001.

6.1.27.11 Vulnerabilities

It MUST be tested that the element /vulnerabilities exists.

The relevant values for /document/category are:

 csaf_security_advisory

 csaf_vex

The relevant path for this test is:

 /vulnerabilities

Example 86 which fails the test:

 {

 "document": {

 // ...

 },

 "product_tree": [

 // ...

]

 }

The element /vulnerabilities does not exist.

6.1.28 Translation

It MUST be tested that the given source language and document
language are not the same.

The relevant path for this test is:

 /document/lang

 /document/source_lang

Example 87 which fails the test:

 "document": {

 // ...

 "lang": "en-US",

 // ...

 "source_lang": "en-US",

 // ...

 }

The document language and the source language have the
same value en-US. Note: A translation from en-US to en-GB

would pass the test.

A tool MAY remove the source language as quick fix.

6.1.29 Remediation without Product Reference

For each item in /vulnerabilities[]/remediations it MUST be tested

that it includes at least one of the elements group_ids or product_ids.

The relevant path for this test is:

 /vulnerabilities[]/remediations[]

Example 88 which fails the test:

 "remediations": [

 {

 "category": "no_fix_planned",

 "details": "These products are end-of-life. Therefore,

no fix will be provided."

 }

]

The given remediation does not specify to which products it
should be applied.

A tool MAY add all products of the affected group of this
vulnerability to the remediation as quick fix.

6.1.30 Integer and Semantic Versioning

It MUST be tested that all elements of type /$defs/version_t follow either

integer versioning or semantic versioning homogeneously within the same
document.

The relevant paths for this test are:

 /document/tracking/revision_history[]/number

 /document/tracking/version

Example 89 which fails the test:

 "tracking": {

 // ...

 "revision_history": [

 {

 "date": "2021-07-21T09:00:00.000Z",

 "number": "1.0.0",

 "summary": "Initial version."

 },

 {

 "date": "2021-07-21T10:00:00.000Z",

 "number": "2",

 "summary": "Second version."

 }

],

 // ...

 "version": "2"

 }

The document started with semantic versioning (1.0.0) and

switched to integer versioning (2).

A tool MAY assign all items their corresponding value
according to integer versioning as a quick fix. In such case,
the old number SHOULD be stored in legacy_version.

6.1.31 Version Range in Product Version

For each element of type /$defs/branches_t with category of

product_version it MUST be tested that the value of name does not

contain a version range.

To implement this test it is deemed sufficient that the value
of name does not contain any of the following strings:

 <

 <=

 >

 >=

 all versions

 later

 prior

The relevant paths for this test are:

 /product_tree/branches[](/branches[])*/name

Example 90 which fails the test:

 "branches": [

 {

 "category": "product_version",

 "name": "prior to 4.2",

 // ...

 }

]

The version range prior to 4.2 is given for the branch

category product_version.

6.1.32 Flag without Product Reference

For each item in /vulnerabilities[]/flags it MUST be tested that it

includes at least one of the elements group_ids or product_ids.

The relevant path for this test is:

 /vulnerabilities[]/flags[]

Example 91 which fails the test:

 "flags": [

 {

 "label": "component_not_present"

 }

]

The given flag does not specify to which products it should
be applied.

6.1.33 Multiple Flags with VEX Justification Codes per Product

For each item in /vulnerabilities[] it MUST be tested that a Product is

not member of more than one Flag item with a VEX justification code (see
section 3.2.3.5). This takes indirect relations through Product Groups into
account.

Additional flags with a different purpose might be provided in
later versions of CSAF. Through the explicit reference of
VEX justification codes the test is specified to be forward-
compatible.

The relevant path for this test is:

 /vulnerabilities[]/flags

Example 92 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 },

 {

 "product_id": "CSAFPID-9080701",

 "name": "Product B"

 }

],

 "product_groups": [

 {

 "group_id": "CSAFGID-0001",

 "product_ids": [

 "CSAFPID-9080700",

 "CSAFPID-9080701"

]

 }

]

 },

 "vulnerabilities": [

 {

 // ...

 "flags": [

 {

 "label": "component_not_present",

 "group_ids": [

 "CSAFGID-0001"

]

 },

 {

 "label":

"vulnerable_code_cannot_be_controlled_by_adversary",

 "product_ids": [

 "CSAFPID-9080700"

]

 }

],

 // ...

 "product_status": {

 "known_not_affected": [

 "CSAFPID-9080700",

 "CSAFPID-9080701"

]

 }

 }

]

There are two flags given for for CSAFPID-9080700 - one

indirect through CSAFGID-0001 and one direct.

6.2 Optional Tests

Optional tests SHOULD NOT fail at a valid CSAF document without a
good reason. Failing such a test does not make the CSAF document
invalid. These tests may include information about features which are still
supported but expected to be deprecated in a future version of CSAF. A
program MUST handle a test failure as a warning.

6.2.1 Unused Definition of Product ID

For each Product ID (type /$defs/product_id_t) in Full Product Name

elements (type: /$defs/full_product_name_t) it mustMUST be tested that

the product_id is referenced somewhere within the same document.

This test SHALL be skipped for CSAF documents conforming the profile
"Informational Advisory".

The relevant paths for this test are:

 /product_tree/branches[](/branches[])*/product/product_id

 /product_tree/full_product_names[]/product_id

 /product_tree/relationships[]/full_product_name/product_id

Example 7793 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 }

]

 }

CSAFPID-9080700 was defined but never used.

A tool MAY remove the unused definition as quick fix.
However, such quick fix SHALL not be applied if the test was
skipped.

6.2.2 Missing Remediation

For each Product ID (type /$defs/product_id_t) in the Product Status

groups Affected and Under investigation it mustMUST be tested that a
remediation exists.

The remediation might be of the category none_available or

no_fixed_planned.

The relevant paths for this test are:

 /vulnerabilities[]/product_status/first_affected[]

 /vulnerabilities[]/product_status/known_affected[]

 /vulnerabilities[]/product_status/last_affected[]

 /vulnerabilities[]/product_status/under_investigation[]

Example 94 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

Example 78 which fails the test:

"product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 }

]

 },

 "vulnerabilities": [

 {

 "product_status": {

 "last_affected": [

 "CSAFPID-9080700"

]

 }

 }

]

CSAFPID-9080700 has in Product Status last_affected but

there is no remediation object for this Product ID.

6.2.3 Missing Score

For each Product ID (type /$defs/product_id_t) in the Product Status

groups Affected it mustMUST be tested that a score object exists which
covers this product.

The relevant paths for this test are:

 /vulnerabilities[]/product_status/first_affected[]

 /vulnerabilities[]/product_status/known_affected[]

 /vulnerabilities[]/product_status/last_affected[]

Example 7995 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 }

]

 },

 "vulnerabilities": [

 {

 "product_status": {

 "first_affected": [

 "CSAFPID-9080700"

]

 }

 }

]

CSAFPID-9080700 has in Product Status first_affected but

there is no score object which covers this Product ID.

6.2.4 Build Metadata in Revision History

For each item in revision history it mustMUST be tested that number does

not include build metadata.

The relevant path for this test is:

The relevant path for this test is:

 /document/tracking/revision_history[]/number

Example 8096 which fails the test:

 "revision_history": [

 {

 "date": "2021-04-23T10:00:00.000Z",

 "number": "1.0.0+exp.sha.ac00785",

 "summary": "Initial version."

 }

]

The revision history contains an item which has a number

that includes the build metadata +exp.sha.ac00785.

6.2.5 Older Initial Release Date than Revision History

It mustMUST be tested that the Initial Release Date is not older than the
date of the oldest item in Revision History.

The relevant path for this test is:

 /document/tracking/initial_release_date

Example 8197 which fails the test:

 "tracking": {

 // ...

 "initial_release_date": "2021-04-22T10:00:00.000Z",

 "revision_history": [

 {

 "date": "2021-05-06T10:00:00.000Z",

 "number": "1",

 "summary": "Initial version."

 },

 {

 "date": "2021-07-21T11:00:00.000Z",

 "number": "2",

 "summary": "Second version."

 }

],

 // ...

 }

The initial release date 2021-04-22T10:00:00.000Z is older

than 2021-05-06T10:00:00.000Z which is the date of the

oldest item in Revision History.

6.2.6 Older Current Release Date than Revision History

It mustMUST be tested that the Current Release Date is not older than the
date of the newest item in Revision History.

The relevant path for this test is:

 /document/tracking/current_release_date

Example 8298 which fails the test:

 "tracking": {

 "current_release_date": "2021-05-06T10:00:00.000Z",

 // ...

 "revision_history": [

 {

 "date": "2021-05-06T10:00:00.000Z",

 "number": "1",

 "summary": "Initial version."

 },

 {

 "date": "2021-07-21T11:00:00.000Z",

 "number": "2",

 "summary": "Second version."

 }

],

 // ...

 }

The current release date 2021-05-06T10:00:00.000Z is older

than 2021-05-23T1100:00.000Z which is the date of the

newest item in Revision History.

6.2.7 Missing Date in Involvements

For each item in the list of involvements it mustMUST be tested that it
includes the property date.

The relevant path for this test is:

 /vulnerabilities[]/involvements

Example 99 which fails the test:

 "vulnerabilities": [

 {

Example 83 which fails the test:

 "vulnerabilities": [

 {

 "involvements": [

 {

 "party": "vendor",

 "status": "in_progress"

 }

]

 }

]

The list of involvements contains an item which does not
contain the property date.

6.2.8 Use of MD5 as the only Hash Algorithm

It mustMUST be tested that the hash algorithm md5 is not the only one

present.

Since collision attacks exist for MD5 such value should be
accompanied by a second cryptographically stronger hash.
This will allow users to double check the results.

The relevant paths for this test are:

/product_tree/branches[](/branches[])*/product/product_identifica

tion_helper/hashes[]/file_hashes

/product_tree/full_product_names[]/product_identification_helper/

hashes[]/file_hashes

/product_tree/relationships[]/full_product_name/product_identific

ation_helper/hashes[]/file_hashes

Example 84100 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "name": "Product A",

 "product_id": "CSAFPID-9080700",

 "product_identification_helper": {

 "hashes": [

 {

 "file_hashes": [

 {

 "algorithm": "md5",

 "value": "6ae24620ea9656230f49234efd078935"

 }

],

 "filename": "product_a.so"

 }

]

 }

 }

]

 }

The hash algorithm md5 is used in one item of hashes

without being accompanied by a second hash algorithm.

6.2.9 Use of SHA-1 as the only Hash Algorithm

It mustMUST be tested that the hash algorithm sha1 is not the only one

present.

Since collision attacks exist for SHA-1 such value should be
accompanied by a second cryptographically stronger hash.
This will allow users to double check the results.

The relevant paths for this test are:

/product_tree/branches[](/branches[])*/product/product_identifica

tion_helper/hashes[]/file_hashes

/product_tree/full_product_names[]/product_identification_helper/

hashes[]/file_hashes

/product_tree/relationships[]/full_product_name/product_identific

ation_helper/hashes[]/file_hashes

Example 85101 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "name": "Product A",

 "product_id": "CSAFPID-9080700",

 "product_identification_helper": {

 "hashes": [

 {

 "file_hashes": [

 {

 "algorithm": "sha1",

 "value":

"e067035314dd8673fe1c9fc6b01414fe0950fdc4"

 }

],

 "filename": "product_a.so"

 }

]

 }

 }

]

 }

The hash algorithm sha1 is used in one item of hashes

without being accompanied by a second hash algorithm.

6.2.10 Missing TLP label

It mustMUST be tested that /document/distribution/tlp/label is

present and valid.

TLP labels support the machine-readability and automated
distribution.

The relevant path for this test is:

 /document/distribution/tlp/label

Example 102 which fails the test:

Example 86 which fails the test:

 "distribution": {

 "text": "Distribute freely."

 }

The CSAF document has no TLP label.

6.2.11 Missing Canonical URL

It mustMUST be tested that the CSAF document has a canonical URL.

To implement this test it is deemeeded sufficient that one
item in /document/references fulfills all of the following:

• It has the category self.

• The url starts with https://.

• The url ends with the valid filename for the CSAF

document according to the rules in section 5.1.

The relevant path for this test is:

 /document/references

Example 103 which fails the test:

 "document": {

 // ...

Example 87 which fails the test:

 "document": {

 // ...

 "references": [

 {

 "category": "self",

 "summary": "A non-canonical URL.",

 "url":

"https://example.com/security/data/csaf/2021/OASIS_CSAF_TC-

CSAF_2.0-2021-6-2-11-01_1.json"

 }

],

 // ...

 "tracking": {

 // ...

 "id": "OASIS_CSAF_TC-CSAF_2.0-2021-6-2-11-01",

 // ...

 "version": "1"

 },

 // ...

 }

The only element where the category is self has a URL that

does not fulfill the requirement of a valid filename for a CSAF
document.

6.2.12 Missing Document Language

It mustMUST be tested that the document language is present and set.

The relevant path for this test is:

 /document/lang

Example 88 which fails the test:

The relevant path for this test is:

 /document/lang

Example 104 which fails the test:

 "document": {

 "category": "generic_csaf_base",

 "csaf_version": "2.0",

 "publisher": {

 // ...

 },

 // ...

 }

The document languange is not defined.

6.2.13 Sorting

It mustMUST be tested that all keys in a CSAF document are sorted
alphabetically.

The relevant path for this test is:

 /

Example 89 which fails the test:

The relevant path for this test is:

 /

Example 105 which fails the test:

 "document": {

 "csaf_version": "2.0",

 "category": "generic_csaf_base",

 // ...

 }

The key csaf_version is not at the right place.

A tool MAY sort the keys as a quick fix.

6.2.14 Use of Private Language

For each element of type /$defs/language_t it MUST be tested that the

language code does not contain subtags reserved for private use.

The relevant paths for this test are:

 /document/lang

 /document/source_lang

Example 106 which fails the test:

 "lang": "qtx"

The language code qtx is reserved for private use.

A tool MAY remove such subtag as a quick fix.

6.2.15 Use of Default Language

For each element of type /$defs/language_t it MUST be tested that the

language code is not i-default.

The relevant paths for this test are:

 /document/lang

 /document/source_lang

Example 107 which fails the test:

 "lang": "i-default"

The language code i-default is used.

A tool MAY remove such element as a quick fix.

6.2.16 Missing Product Identification Helper

For each element of type /$defs/full_product_name_t it MUST be tested

that it includes the property product_identification_helper.

The relevant paths for this test are:

 /product_tree/branches[](/branches[])*/product

 /product_tree/full_product_names[]

 /product_tree/relationships[]/full_product_name

Example 108 which fails the test:

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 }

]

The product CSAFPID-9080700 does not provide any Product

Identification Helper at all.

6.2.17 CVE in field IDs

For each item in /vulnerabilities[]/ids it MUST be tested that it is not a

CVE ID.

It is sufficient to check, whether the property text matches

the regex ^CVE-[0-9]{4}-[0-9]{4,}$.

The relevant paths for this test are:

 /vulnerabilities[]/ids[]

Example 109 which fails the test:

 "ids": [

 {

 "system_name": "CVE Project",

 "text": "CVE-2021-44228"

 }

]

The CVE-2021-44228 is listed in an item of the ids array

instead under cve.

A tool MAY set such element as value for the cve property

as a quick fix, if that didn't exist before. Alternatively, it MAY
remove such element as a quick fix.

6.2.18 Product Version Range without vers

For each element of type /$defs/branches_t with category of

product_version_range it MUST be tested that the value of name conforms

the vers specification.

To implement this test it is deemed sufficient that the value
of name matches the following regex:

 ^vers:[a-z\\.\\-\\+][a-z0-9\\.\\-\\+]*/.+

The relevant paths for this test are:

 /product_tree/branches[](/branches[])*/name

Example 110 which fails the test:

 "branches": [

 {

 "category": "product_version_range",

 "name": ">4.2",

 // ...

 }

]

The version range >4.2 is a valid vsl but not valid according

to the vers specification.

6.2.19 CVSS for Fixed Products

For each item the fixed products group (first_fixed and fixed) it MUST

be tested that a CVSS applying to this product has an environmental
score of 0. The test SHALL pass if none of the Product IDs listed within

product status fixed or first_fixed is found in products of any item of

the scores element.

The relevant path for this test is:

 /vulnerabilities[]/product_status/first_fixed[]

 /vulnerabilities[]/product_status/fixed[]

Example 111 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 }

]

 },

 "vulnerabilities": [

 {

 "product_status": {

 "fixed": [

 "CSAFPID-9080700"

]

 },

 "scores": [

 {

 "cvss_v3": {

 "baseScore": 6.5,

 "baseSeverity": "MEDIUM",

 "vectorString":

"CVSS:3.1/AV:L/AC:L/PR:H/UI:R/S:U/C:H/I:H/A:H",

 "version": "3.1"

 },

 "products": [

 "CSAFPID-9080700"

]

 }

]

 }

]

Neither the environmentalScore nor the properties

modifiedIntegrityImpact, modifiedAvailabilityImpact,

modifiedConfidentialityImpact nor the corresponding

attributes in the vectorString have been set.

A tool MAY set the properties modifiedIntegrityImpact,

modifiedAvailabilityImpact,

modifiedConfidentialityImpact accordingly and compute

the environmentalScore as quick fix.

6.2.20 Additional Properties

It MUST be tested that there is no additional property in the CSAF
document that was not defined in the CSAF JSON schema.

The relevant path for this test is:

 /

To implement this test it is deemed sufficient to validate the
CSAF document against a "strict" version schema that sets
additionalProperties to false for every key of type object.

Example 112 which fails the test:

 "document": {

 "category": "csaf_base",

 "csaf_version": "2.0",

 "custom_property": "any",

 // ...

 }

The key custom_property is not defined in the JSON

schema.

A tool MAY remove such keys as a quick fix.

6.3 Informative Test

Informative tests provide insights in common mistakes and bad practices.
They MAY fail at a valid CSAF document. It is up to the issuing party to
decide whether this was an intended behavior and can be ignore or should
be treated. These tests mayMAY include information about recommended
usage. A program MUST handle a test failure as a information.

6.3.1 Use of CVSS v2 as the only Scoring System

For each item in the list of scores which contains the cvss_v2 object it

mustMUST be tested that is not the only scoring item present. The test
SHALL pass if a second scoring object is available.

The relevant path for this test is:

 /vulnerabilities[]/scores

Example 90113 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "product_id": "CSAFPID-9080700",

 "name": "Product A"

 }

]

 },

 "vulnerabilities": [

 {

 "scores": [

 {

 "products": [

 "CSAFPID-9080700"

],

 "cvss_v2": {

 "version": "2.0",

 "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C",

 "baseScore": 10

 }

 }

]

 }

]

There is only a CVSS v2 score given for CSAFPID-9080700.

Recommendation:

It is recommended to (also) use the CVSS v3.1.

6.3.2 Use of CVSS v3.0

For each item in the list of scores which contains the cvss_v3 object it

mustMUST be tested that CVSS v3.0 is not used.

The relevant paths for this test are:

 /vulnerabilities[]/scores[]/cvss_v3/version

 /vulnerabilities[]/scores[]/cvss_v3/vectorString

Example 91114 which fails the test:

 "cvss_v3": {

 "version": "3.0",

 "vectorString":

"CVSS:3.0/AV:L/AC:L/PR:H/UI:R/S:U/C:H/I:H/A:H",

 "baseScore": 6.5,

 "baseSeverity": "MEDIUM"

 }

The CVSS v3.0 is used.

Recommendation:

It is recommended to upgrade to CVSS v3.1.

A tool MAY upgrade to CVSS v3.1 as quick fix. However, if
such quick fix is supported the tool SHALL also recompute
the baseScore and baseSeverity. The same applies for

temporalScore and temporalSeverity respectively

environmentalScore and environmentalSeverity if the

necessary fields for computing their value are present and
set.

6.3.3 Missing CVE

It mustMUST be tested that the CVE number is given.

The relevant path for this test is:

 /vulnerabilities[]/cve

Example 92115 which fails the test:

 "vulnerabilities": [

 {

 "title": "BlueKeep"

 }

]

The CVE number is not given.

Recommendation:

It is recommended to provide a CVE number to support the users efforts
to find more details about a vulnerability and potentially track it through
multiple advisories. If no CVE exists for that vulnerability, it is
recommended to get one assigned.

6.3.4 Missing CWE

It mustMUST be tested that the CWE is given.

The relevant path for this test is:

 /vulnerabilities[]/cwe

Example 93116 which fails the test:

 "vulnerabilities": [

 {

 "cve": "CVE-2019-0708",

 "title": "BlueKeep"

 }

]

The CWE number is not given.

6.3.5 Use of Short Hash

It mustMUST be tested that the length of the hash value is not shorter
than 64 characters.

The relevant paths for this test are:

/product_tree/branches[](/branches[])*/product/product_identifica

tion_helper/hashes[]/file_hashes[]/value

/product_tree/full_product_names[]/product_identification_helper/

hashes[]/file_hashes[]/value

/product_tree/relationships[]/full_product_name/product_identific

ation_helper/hashes[]/file_hashes[]/value

Example 117 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

Example 94 which fails the test:

 "product_tree": {

 "full_product_names": [

 {

 "name": "Product A",

 "product_id": "CSAFPID-9080700",

 "product_identification_helper": {

 "hashes": [

 {

 "file_hashes": [

 {

 "algorithm": "md4",

 "value": "3202b50e2e5b2fcd75e284c3d9d5f8d6"

 }

],

 "filename": "product_a.so"

 }

]

 }

 }

]

 }

The length of the hash value is only 32 characters long.

6.3.6 Use of non-self referencing URLs Failing to Resolve

For each URL which is not in the category self it mustMUST be tested

that it resolves with a HTTP status code from the 2xx (Successful) or 3xx
(Redirection) class.

This test does not apply for any item in an array of type
references_t with the category self. For details about the

HTTP status code classes see [RFC7231].

The relevant paths for this test are:

 /document/acknowledgments[]/urls[]

 /document/aggregate_severity/namespace

 /document/distribution/tlp/url

 /document/references[]/url

 /document/publisher/namespace

/product_tree/branches[]/product/product_identification_helper/sb

om_urls[]

/product_tree/branches[]/product/product_identification_helper/x_

generic_uris[]/namespace

/product_tree/branches[]/product/product_identification_helper/x_

generic_uris[]/uri

/product_tree/branches[](/branches[])*/product/product_identifica

tion_helper/sbom_urls[]

/product_tree/branches[](/branches[])*/product/product_identifica

tion_helper/x_generic_uris[]/namespace

/product_tree/branches[](/branches[])*/product/product_identifica

tion_helper/x_generic_uris[]/uri

/product_tree/full_product_names[]/product_identification_helper/

sbom_urls[]

/product_tree/full_product_names[]/product_identification_helper/

x_generic_uris[]/namespace

/product_tree/full_product_names[]/product_identification_helper/

x_generic_uris[]/uri

/product_tree/relationships[]/full_product_name/product_identific

ation_helper/sbom_urls[]

/product_tree/relationships[]/full_product_name/product_identific

ation_helper/x_generic_uris[]/namespace

/product_tree/relationships[]/full_product_name/product_identific

ation_helper/x_generic_uris[]/uri

 /vulnerabilities[]/acknowledgments[]/urls[]

 /vulnerabilities[]/references[]/url

 /vulnerabilities[]/remediations[]/url

Example 95118 which fails the test:

 "references": [

 {

 "summary": "A URL that does not resolve with HTTP status

code in the interval between (including) 200 and (excluding)

400.",

 "url": "https://example.invalid"

 }

]

The category is not set and therefore treated as its default

value external. A request to that URL does not resolve with

a status code from the 2xx (Successful) or 3xx (Redirection)
class.

6.3.7 Use of self referencing URLs Failing to Resolve

For each item in an array of type references_t with the category self it

mustMUST be tested that the URL referenced resolves with a HTTP
status code less than 400.

This test will most likely fail if the CSAF document is in a
status before the initial release. For details about the HTTP
status code classes see [RFC7231].

The relevant paths for this test are:

 /document/references[]/url

 /vulnerabilities[]/references[]/url

Example 96119 which fails the test:

 "references": [

 {

 "category": "self",

 "summary": "A URL that does not resolve with HTTP status

code in the interval between (including) 200 and (excluding)

400.",

 "url": "https://example.invalid"

 }

]

The category is self and a request to that URL does not

resolve with a status code from the 2xx (Successful) or 3xx
(Redirection) class.

6.3.8 Spell check

If the document language is given it mustMUST be tested that a spell
check for the given language does not find any mistakes. The test SHALL
be skipped if not document language is set. It SHALL fail it the given
language is not supported. The value of /document/category

shouldSHOULD not be tested if the CSAF document does not use the
profile "Generic CSAF Base".

The relevant paths for this test are:

 /document/acknowledgments[]/names[]

 /document/acknowledgments[]/organization

 /document/acknowledgments[]/summary

 /document/aggregate_severity/text

 /document/category

 /document/distribution/text

 /document/notes[]/audience

 /document/notes[]/text

 /document/notes[]/title

 /document/publisher/issuing_authority

 /document/publisher/name

 /document/references[]/summary

 /document/title

 /document/tracking/aliases[]

 /document/tracking/generator/engine/name

 /document/tracking/revision_history[]/summary

 /product_tree/branches[](/branches[])*/name

 /product_tree/branches[](/branches[])*/product/name

 /product_tree/branches[]/name

 /product_tree/branches[]/product/name

 /product_tree/full_product_names[]/name

 /product_tree/product_groups[]/summary

 /product_tree/relationships[]/full_product_name/name

 /vulnerabilities[]/acknowledgments[]/names[]

 /vulnerabilities[]/acknowledgments[]/organization

 /vulnerabilities[]/acknowledgments[]/summary

 /vulnerabilities[]/involvements[]/summary

 /vulnerabilities[]/notes[]/audience

 /vulnerabilities[]/notes[]/text

 /vulnerabilities[]/notes[]/title

 /vulnerabilities[]/references[]/summary

 /vulnerabilities[]/remediations[]/details

 /vulnerabilities[]/remediations[]/entitlements[]

 /vulnerabilities[]/remediations[]/restart_required/details

 /vulnerabilities[]/threats[]/details

 /vulnerabilities[]/title

Example 97120 which fails the test:

 "document": {

 // ...

 "lang": "en",

 "notes": [

 {

 "category": "summary",

 "text": "Secruity researchers found multiple

vulnerabilities in XYZ."

 }

],

 // ...

 }

There is a spelling mistake in Secruity.

6.3.9 Branch Categories

For each element of type /$defs/full_product_name_t in

/product_tree/branches it MUST be tested that ancestor nodes along the

path exist which use the following branch categories vendor ->

product_name -> product_version in that order starting with the Product

tree node.

Other branch categories can be used before, after or
between the aforementioned branch categories without
making the test invalid.

The relevant paths for this test are:

 /product_tree/branches

Example 121 which fails the test:

 "branches": [

 {

 "category": "vendor",

 "name": "Example Company",

 "branches": [

 {

 "category": "product_name",

 "name": "Product A",

 "branches": [

 {

 "category": "patch_level",

 "name": "91",

 "product": {

 "product_id": "CSAFPID-0002",

 "name": "Example Company Product A Update 91"

 }

 }

]

 }

]

 }

]

The product CSAFPID-9080700 does not have any ancestor

with the branch category product_version.

6.3.10 Usage of Product Version Range

For each element of type /$defs/branches_t it MUST be tested that the

category is not product_version_range.

It is usually hard decide for machines whether a product
version matches a product version ranges. Therefore, it is
recommended to avoid version ranges and enumerate
versions wherever possible.

The relevant paths for this test are:

 /product_tree/branches[](/branches[])*/category

Example 122 which fails the test:

 "category": "product_version_range",

The category product_version_range was used.

6.3.11 Usage of V as Version Indicator

For each element of type /$defs/branches_t with category of

product_version it MUST be tested that the value of name does not start

with v or V before the version.

To implement this test it is deemed sufficient that the value
of name does not match the following regex:

 ^[vV][0-9].*$

The relevant paths for this test are:

 /product_tree/branches[](/branches[])*/name

Example 123 which fails the test:

 "branches": [

 {

 "category": "product_version",

 "name": "v4.2",

 // ...

 }

]

The product version starts with a v.

7 Distributing CSAF documents

This section lists requirements and roles defined for distributing CSAF
documents. The first subsection provides all requirements - the second
one the roles. It is mandatory to fulfill the basic role "CSAF publisher". The
last section provides specific rules for the process of retrieving CSAF
documents.

7.1 Requirements

The requirements in this subsection are consecutively numbered to be
able to refer to them directly. The order does not give any hint about the
importance. Not all requirements have to be fulfilled to conform to this
specification - the sets of requirements per conformance clause are
defined in section 7.2.

7.1.1 Requirement 1: Valid CSAF document

The document is a valid CSAF document (cf. Conformance clause 1).

7.1.2 Requirement 2: Filename

The CSAF document has a filename according to the rules in section 5.1.

7.1.3 Requirement 3: TLS

The CSAF document is per default retrievable from a website which uses
TLS for encryption and server authenticity. The CSAF document MUST
not be downloadable from a location which does not encrypt the transport
when crossing organizational boundaries to maintain the chain of custody.

7.1.4 Requirement 4: TLP:WHITE

If the CSAF document is labeled TLP:WHITE, it MUST be freely
accessible.

This does not exclude that such a document is also available in an access
protected customer portal. However, there MUST be one copy of the
document available for people without access to the portal.

Reasoning: If an advisory is already in the media, an end
user should not be forced to collect the pieces of information
from a press release but be able to retrieve the CSAF
document.

7.1.5 Requirement 5: TLP:AMBER and TLP:RED

CSAF documents labeled TLP:AMBER or TLP:RED MUST be access
protected. If they are provided via a webserver this SHALL be done under
a different path than for TLP:WHITE, TLP:GREEN and unlabeled CSAF
documents. TLS client authentication, access tokens or any other
automatable authentication method SHALL be used.

An issuing party MAY agree with the recipients to use any kind of secured
drop at the recipients' side to avoid putting them on their own website.
However, it mUST be ensured that the documents are still access
protected.

7.1.6 Requirement 6: No Redirects

Redirects SHOULD NOT be used. If they are inevitable only HTTP Header
redirects are allowed.

Reasoning: Clients should not parse the payload for
navigation and some, as e.g. curl, do not follow any other

kind of redirects.

7.1.7 Requirement 7: provider-metadata.json

The party MUST provide a valid provider-metadata.json according to the

schema CSAF provider metadata for its own metadata. The publisher

object SHOULD match the one used in the CSAF documents of the
issuing party but can be set to whatever value a CSAF aggregator
shouldSHOULD display over any individual publisher values in the CSAF

documents themselves.

This information is used to collect the data for CSAF
aggregators, listers and end users. The CSAF provider
metadata schema ensures the consistency of the metadata
for a CSAF provider across the ecosystem. Other
approaches, like extracting the publisher object from CSAF

documents, are likely to fail if the object differs between
CSAf documents.

It is suggested to put the file provider-metadata.json

adjacent to the ROLIE feed documents (requirement 15) or

https://docs.oasis-open.org/csaf/csaf/v2.0/provider_json_schema.json

in the main directory adjacent to the year folders
(requirement 14), changes.csv (requirement 13) and the

index.txt (requirement 12). Suggested locations to store

the provider-metadata.json are:

• https://www.example.com/.well-known/csaf/provider-
metadata.json

• https://domain.tld/security/data/csaf/provider-
metadata.json

• https://psirt.domain.tld/advisories/csaf/provider-
metadata.json

• https://domain.tld/security/csaf/provider-metadata.json

Examples 98124 Minimal with ROLIE document:

 {

 "canonical_url": "https://www.example.com/.well-

known/csaf/provider-metadata.json",

 "distributions": [

 {

 "rolie":{

 "feeds": [

 {

 "summary":"All TLP:WHITE advisories of Example

Company.",

 "tlp_label": "WHITE",

 "url": "https://www.example.com/.well-

known/csaf/feed-tlp-white.json"

 }

]

 }

 }

],

 "last_updated": "2021-07-12T20:20:56.169Z",

 "list_on_CSAF_aggregators": true,

 "metadata_version": "2.0",

 "mirror_on_CSAF_aggregators": true,

 "pgppublic_openpgp_keys": [

 {

 "fingerprint":

"8F5F267907B2C4559DB360DB2294BA7D2B2298B1",

 "url": "https://keys.example.net/vks/v1/by-

fingerprint/8F5F267907B2C4559DB360DB2294BA7D2B2298B1"

 }

],

 "publisher": {

 "category": "vendor",

 "name": "Example Company ProductCERT",

 "namespace":"https://psirt.example.com"

 },

 "role": "csaf_trusted_provider"

 }

https://www.example.com/.well-known/csaf/provider-metadata.json
https://www.example.com/.well-known/csaf/provider-metadata.json
https://domain.tld/security/data/csaf/provider-metadata.json
https://domain.tld/security/data/csaf/provider-metadata.json
https://psirt.domain.tld/advisories/csaf/provider-metadata.json
https://psirt.domain.tld/advisories/csaf/provider-metadata.json
https://domain.tld/security/csaf/provider-metadata.json

If a CSAF publisher (cf. section 7.2.1) does not provide the provider-

metadata.json, an aggregator SHOULD contact the CSAF publisher in

question to determine the values for list_on_CSAF_aggregators and

mirror_on_CSAF_aggregators. If that is impossible or if the CSAF publisher

is unresponsive the following values MUST be used:

 "list_on_CSAF_aggregators": true,

 "mirror_on_CSAF_aggregators": false

This prevents that CSAF documents of a CSAF publisher
which have been collected by one CSAF aggregator A are
mirrored again on a second CSAF aggregator B. Such
cascades are prone to outdated information. If the first
aggregator A collects the CSAF documents on best effort
and B copies the files from A and announces that this is
done weekly, one might assume that B's CSAF documents
are more recent. However, that is not the case as B's
information depends on A.

7.1.8 Requirement 8: security.txt

In the security.txt there MUST be at least one field CSAF which points to

the provider-metadata.json (requirement 7). If this field indicates a web

URI, then it MUST begin with "https://" (as per section 2.7.2 of
[RFC7230]). See [SECURITY-TXT] for more details.

At the time of this writing, the security.txt is still a proposed
standard. The CSAF field has not been officially added yet.

Example 99125:

CSAF: https://domain.tld/security/data/csaf/provider-

metadata.json

CSAF: https://psirt.domain.tld/advisories/csaf/provider-

metadata.json

CSAF: https://domain.tld/security/csaf/provider-metadata.json

CSAF: https://www.example.com/.well-known/csaf/provider-

metadata.json

It is possible to advertise more than one provider-metadata.json by

adding multiple CSAF fields, e.g. in case of changes to the organizational

structure through merges or acquisitions. However, this SHOULD NOT be
done and removed as soon as possible. If one of the URLs fulfills
requirement 9, this MUST be used as the first CSAF entry in the
security.txt.

7.1.9 Requirement 9: Well-known URL for provider-
metadata.json

The URL path /.well-known/csaf/provider-metadata.json under the

main domain of the issuing authority serves directly the provider-

metadata.json according to requirement 7. The use of the scheme

"HTTPS" is required. See [RFC8615] for more details.

Example 100126:

 https://www.example.com/.well-known/csaf/provider-metadata.json

7.1.10 Requirement 10: DNS path

The DNS record csaf.data.security.domain.tld SHALL resolve as a

webserver which serves directly the provider-metadata.json according to

requirement 7. The use of the scheme "HTTPS" is required.

7.1.11 Requirement 11: One folder per year

The CSAF documents mustMUST be located within folders named <YYYY>

where <YYYY> is the year given in the value of

/document/tracking/initial_release_date.

Examples 101127:

2021

2020

7.1.12 Requirement 12: index.txt

The index.txt file within MUST provide a list of all filenames of CSAF
documents which are located in the sub-directories with their filenames.

Examples 1028:

2020/example_company_-_2020-yh4711.json

2019/example_company_-_2019-yh3234.json

2018/example_company_-_2018-yh2312.json

This can be used to download all CSAF documents.

7.1.13 Requirement 13: changes.csv

The file changes.csv mustMUST contain the filename as well as the value
of /document/tracking/current_release_date for each CSAF document

in the sub-directories without a heading; lines mustMUST be sorted by the
current_release_date timestamp with the latest one first.

Examples 103129:

2020/example_company_-_2020-yh4711.json, "2020-07-01T10:09:07Z"

2018/example_company_-_2018-yh2312.json, "2020-07-01T10:09:01Z"

2019/example_company_-_2019-yh3234.json, "2019-04-17T15:08:41Z"

2018/example_company_-_2018-yh2312.json, "2019-03-01T06:01:00Z"

7.1.14 Requirement 14: Directory listings

Directory listing SHALL be enabled to support manual navigation.

7.1.15 Requirement 15: ROLIE feed

Resource-Oriented Lightweight Information Exchange (ROLIE) is a
standard to ease discovery of security content. ROLIE is built on top of the
Atom Publishing Format and Protocol, with specific requirements that
support publishing security content. All CSAF documents with the same
TLP level MUST be listed in a single ROLIE feed. At least one of the feeds

• TLP:WHITE

• TLP:GREEN

• unlabeled

MUST exist. Each ROLIE feed document MUST be a JSON file that
conforms with [RFC8322].

Example 1304:

 {

 "feed": {

 "id": "example-csaf-feed-tlp-white",

 "title": "Example CSAF feed (TLP:WHITE)",

 "link": [

 {

 "rel": "self",

 "href": "https://psirt.domain.tld/advisories/csaf/feed-

tlp-white.json"

 }

],

 "category": [

 {

 "scheme": "urn:ietf:params:rolie:category:information-

type",

 "term": "csaf"

 }

],

 "updated": "2021-01-01T12:00Z00:00.000Z",

 "entry": [

 {

 "id": "2020-ESA-001",

 "title": "Example Security Advisory 001",

 "link": [

 {

 "rel": "self",

 "href":

"https://psirt.domain.tld/advisories/csaf/2020/2020-ESA-001.json"

 }},

], {

 "rel": "hash",

 "href":

"https://psirt.domain.tld/advisories/csaf/2020/2020-ESA-

001.json.sha512"

 },

 {

 "rel": "signature",

 "href":

"https://psirt.domain.tld/advisories/csaf/2020/2020-ESA-

001.json.asc"

 }

],

 "published": "2021-01-01T11:00Z00:00.000Z",

 "updated": "2021-01-01T12:00Z00:00.000Z",

 "summary": {

 "content": "Vulnerabilities fixed in ABC 0.0.1"

 },

 "content": {

 "type": "application/json",

 "src":

"https://psirt.domain.tld/advisories/csaf/2020/2020-ESA-001.json"

 },

 "format": {

 "schema": "https://docs.oasis-

open.org/csaf/csaf/v2.0/csaf_json_schema.json",

 "version": "2.0"

 }

 }

]

 }

 }

Any existing hash file (requirement 18) MUST be listed in the
corresponding entry of the ROLIE feed as an item of the array link having

the rel value of hash. Any existing signature file (requirement 19) MUST

be listed in the corresponding entry of the ROLIE feed as an item of the
array link having the rel value of signature.

7.1.16 Requirement 16: ROLIE service document

The use and therefore the existence of ROLIE service document is
optional. If it is used, each ROLIE service document MUST be a JSON file
that conforms with [RFC8322] and lists the ROLIE feed documents.

Example 105131:

 {

 "service": {

 "workspace": [

 {

 "title": "Public CSAF feed",

 "collection": [

 {

 "title": "Example CSAF feed (TLP:WHITE)",

 "href":

"https://psirt.domain.tld/advisories/csaf/feed-tlp-white.json",

 "categories": {

 "category": [

 {

 "scheme":

"urn:ietf:params:rolie:category:information-type",

 "term": "csaf"

 }

]

 }

 }

]

 }

]

 }

 }

7.1.17 Requirement 17: ROLIE category document

The use and therefore the existence of ROLIE category document is
optional. If it is used, each ROLIE category document MUST be a JSON
file that conforms with [RFC8322]. It shouldROLIE categories SHOULD be
used for to further dissects CSAF documents by their document
categories.one or more of the following criteria:

• document category
• document language
• values of the branch category within the Product Tree including but

not limited to
o vendor
o product_family
o product_name
o product_version

• type of product

Example 106132:

 CPU

 Firewall

 Monitor

 PLC

 Printer

 Router

 Sensor

 Server

• areas or sectors, the products are used in

Example 133:

 Chemical

 Commercial

 Communication

 Critical Manufacturing

 Dams

 Energy

 Healthcare

 Water

• any other categorization useful to the consumers

Example 134:

 {

 "categories": {

 "category": [

 {

 "term": "Example Company Product A"

 },

 {

 "term": "Example Company Product B"

 }

]

 }

 }

7.1.18 Requirement 18: Integrity

All CSAF documents SHALL have at least one hash file computed with a
secure cryptographic hash algorithm (e.g. SHA-512 or SHA-3) to ensure
their integrity. The filename is constructed by appending the file extension
which is given by the algorithm.

MD5 and SHA1 SHOULD NOT be used.

Example 107135:

File name of CSAF document: example_company_-_2019-yh3234.json

File name of SHA-256 hash file: example_company_-_2019-

yh3234.json.sha256

File name of SHA-512 hash file: example_company_-_2019-

yh3234.json.sha512

The file content SHALL start with the first byte of the hexadecimal hash
value. Any subsequent data (like a filename) which is optional SHALL be
separated by at least one space.

Example 108136:

ea6a209dba30a958a78d82309d6cdcc6929fcb81673b3dc4d6b16fac18b6ff38

example_company_-_2019-yh3234.json

If a ROLIE feed exists, each hash file MUST be listed in it as described in
requirement 15.

7.1.19 Requirement 19: Signatures

All CSAF documents SHALL have at least one OpenPGP signature file
which is provided under the same filename which is extended by the
appropriate extension. See [RFC4880] for more details.

Example 109137:

File name of CSAF document: example_company_-_2019-yh3234.json

File name of signature file: example_company_-_2019-

yh3234.json.asc

If a ROLIE feed exists, each signature file MUST be listed in it as
described in requirement 15.

7.1.20 Requirement 20: Public OpenPGP Key

The public part of the OpenPGP key used to sign the CSAF documents
MUST be available. It SHOULD also be available at a public key server.

For example, the public part of the OpenPGP key could be
placed in a directory openpgp adjacent to the provider-

metadata.json.

The OpenPGP key SHOULD have a strength that is considered secure.

Guidance on OpenPGP key strength can be retrieved from
technical guidelines of competent authorities.

7.1.21 Requirement 21: List of CSAF providers

The file aggregator.json MUST be present and valid according to the

JSON schema CSAF aggregator. It MUST not be stored adjacent to a
provider-metadata.json.

https://docs.oasis-open.org/csaf/csaf/v2.0/aggregator_json_schema.json

Suggested locations to store the aggregator.json are:

• https://www.example.com/.well-known/csaf-
aggregator/aggregator.json

• https://domain.tld/security/data/aggregator/csaf/aggre
gator.json

• https://psirt.domain.tld/advisories/aggregator/csaf/agg
regator.json

• https://domain.tld/security/aggregator/csaf/aggregator.
json

The file aggregator.json SHOULD only list the latest version of the

metadata of a CASAF provider.

Example 110138:

 {

 "aggregator": {

 "category": "lister",

 "contact_details": "Example CSAF Lister can be reached at

contact_us@lister.example, or via our website at

https://lister.example/security/csaf/aggregator/contact.",

 "issuing_authority": "This service is provided as it is. It

is free for everybody.",

 "name": "Example CSAF Lister",

 "namespace": "https://lister.example"

 },

 "aggregator_version": "2.0",

 "canonical_url": "https://aggregator.example/.well-

known/csaf-aggregator/aggregator.json",

 "csaf_providers": [

 {

 "metadata": {

 "last_updated": "2021-07-12T20:20:56.169Z",

 "publisher": {

 "category": "vendor",

 "name": "Example Company ProductCERT",

 "namespace": "https://psirt.example.com"

 },

 "url": "https://www.example.com/.well-

known/csaf/provider-metadata.json"

 }

 },

 {

 "metadata": {

 "last_updated": "2021-07-12T21:35:38.000Z",

 "publisher": {

 "category": "coordinator",

 "name": "Example Coordinator CERT",

 "namespace": "https://cert.example"

 },

https://www.example.com/.well-known/csaf-aggregator/aggregator.json
https://www.example.com/.well-known/csaf-aggregator/aggregator.json
https://domain.tld/security/data/aggregator/csaf/aggregator.json
https://domain.tld/security/data/aggregator/csaf/aggregator.json
https://psirt.domain.tld/advisories/aggregator/csaf/aggregator.json
https://psirt.domain.tld/advisories/aggregator/csaf/aggregator.json
https://domain.tld/security/aggregator/csaf/aggregator.json
https://domain.tld/security/aggregator/csaf/aggregator.json

 "url": "https://cert.example/advisories/csaf/provider-

metadata.json"

 }

 }

],

 "last_updated":"2021-07-12T22:35:38.978Z"

 }

7.1.22 Requirement 22: Two disjoint issuing parties

The file aggregator.json (requirement 21) lists at least two disjoint CSAF

providers (including CSAF trusted providers) or one CSAF publisher and
one CSAF provider (including CSAF trusted provider).

7.1.23 Requirement 23: Mirror

The CSAF documents for each issuing party that is mirrored MUST be in a
different folder. The folder name SHOULD be retrieved from the name of
the issuing authority. This folders MUST be adjacent to the
aggregator.json (requirement 21). Each such folder MUST at least:

• provide a provider-metadata.json for the current issuing party.

• provide the ROLIE feed document according to requirement 15
which links to the local copy of the CSAF document.

Example 111139:

 {

 "aggregator": {

 "category": "aggregator",

 "contact_details": "Example Aggregator can be reached at

contact_us@aggregator.example, or via our website at

https://aggregator.example/security/csaf/aggregator/contact.",

 "issuing_authority": "This service is provided as it is. It

is free for everybody.",

 "name": "Example Aggregator",

 "namespace": "https://aggregator.example"

 },

 "aggregator_version": "2.0",

 "canonical_url": "https://aggregator.example/.well-

known/csaf-aggregator/aggregator.json",

 "csaf_providers": [

 {

 "metadata": {

 "last_updated": "2021-07-12T20:20:56.169Z",

 "publisher": {

 "category": "vendor",

 "name": "Example Company ProductCERT",

 "namespace": "https://psirt.example.com"

 },

 "url": "https://www.example.com/.well-

known/csaf/provider-metadata.json"

 },

 "mirrors": [

 "https://aggregator.example/.well-known/csaf-

aggregator/Example_Company_ProductCERT/provider-metadata.json"

]

 },

 {

 "metadata": {

 "last_updated": "2021-07-12T21:35:38.000Z",

 "publisher": {

 "category": "coordinator",

 "name": "Example Coordinator CERT",

 "namespace": "https://cert.example"

 },

 "url": "https://cert.example/advisories/csaf/provider-

metadata.json"

 },

 "mirrors": [

 "https://aggregator.example/.well-known/csaf-

aggregator/Example_Coordinator_CERT/provider-metadata.json"

]

 }

],

 "last_updated":"2021-07-12T22:35:38.978Z"

 }

7.2 Roles

This subsection groups the requirements from the previous subsection
into named sets which target the roles with the same name. This allows
end users to request their supplieres to fulfill a certain set of requirements.
A supplier can use roles for advertising and marketing.

The roles "CSAF publisher", "CSAF provider", and "CSAF trusted
provider" are intended directly for issuing parties and form the first group.
The second group consists of the roles "CSAF lister" and "CSAF
aggregator". They collect data from the aforementioned issuing parties of
the first group and provide them in a single place to aid in automation.
Parties of the second group can also issue their own advisories. However,
they MUST follow the rules for the first group for that.

Both, a CSAF lister and a CSAF aggregator, decide based on their own
rules which issuing parties to list respectively to mirror. However, an
issuing party mayMAY apply to be listed or mirrored.

Issuing parties MUST indicate through the value false in

list_on_CSAF_aggregators if they do not want to be listed. Issuing parties

MUST indicate through the value false in mirror_on_CSAF_aggregators if

they do not want to be mirrored.

The values are independent. The combination of the value false in

list_on_CSAF_aggregators and true in mirror_on_CSAF_aggregators

implies that the issuing party does not want to be listed without having the
CSAF documents mirrored. Therefore, a CSAF aggregator can list that
issuing party if it mirrors the files.

7.2.1 Role: CSAF publisher

A distributing party satisfies the "CSAF publisher" role if the party:

• satisfies the requirements 1 to 4 in section 7.1.

• distributes only CSAF documents on behalf of its own.

7.2.2 Role: CSAF provider

A CSAF publisher satisfies the "CSAF provider" role if the party fulfills the
following three groups of requirements:

Firstly, the party:

• satisfies the "CSAF publisher" role profile.

• additionally satisfies the requirements 5 to 7 in section 7.1.

Secondly, the party:

• satisfies at least one of the requirements 8 to 10 in section 7.1.

Thirdly, the party:

• satisfies the requirements 11 to 14 in section 7.1 or requirements
15 to 17 in section 7.1.

If the party uses the ROLIE-based distribution, it MUST also
satisfy requirements 15 to 17. If it uses the directory-based
distribution, it MUST also satisfy requirements 11 to 14.

7.2.3 Role: CSAF trusted provider

A CSAF provider satisfies the "CSAF trusted provider" role if the party:

• satisfies the "CSAF provider" role profile.

• additionally satisfies the requirements 18 to 20 in section 7.1.

7.2.4 Role: CSAF lister

A distributing party satisfies the "CSAF lister" role if the party:

• satisfies the requirements 21 and 22 in section 7.1.

• uses the value lister for /aggregator/category.

• does not list any mirror pointing to a domain under its own control.

The purpose of this role is to provide a list of URLs where to
find CSAF documents. It is not assumed that the list will be
complete.

7.2.5 Role: CSAF aggregator

A distributing party satisfies the "CSAF aggregator" role if the party:

• satisfies the requirements 21 to 23 in section 7.1.

• uses the value aggregator for /aggregator/category.

• lists a mirror for at least two disjoint issuing parties pointing to a
domain under its own control.

• links the public part of the OpenPGP key used to sign CSAF
documents for each mirrored issuing party in the corresponding
provider-metadata.json.

• provides for each CSAF document that is mirrored a signature
(requirement 19) and a hash (requirement 18). Both SHALL be
listed in the ROLIE feed. If the issuing party provides those files for
a CSAF document, they SHOULD be copied as well. If the issuing
party does not provide those files, they SHALL be created by the
CSAF aggregator. Such a signature does not imply any liability of
CSAF aggregator for the content of the corresponding CSAF
document. It just confirms that the CSAF document provided has
not been modified after being downloaded from the issuing party. A
CSAF aggregator MAY add additional signatures and hashes for a
CSAF document.

Additionally, a CSAF aggregator MAY list one or more issuing parties that
it does not mirror.

The purpose of this role is to provide a single point where
CSAF documents can be retrieved. Multiple CSAF
aggregators are expected to exist around the world. None of
them is required to mirror all CSAF documents of all issuing
parties. CSAF aggregators can be provided for free or as a
paid service. To aid in automation, CSAF aggregators MAY
mirror CSAF documents from CSAF publishers. Regarding
the terms of use they SHOULD consult with the issuing
party.

7.3 Retrieving rules

The retrieving process executes in two phases: Finding the provider-

metadata.json (requirement 7 in section 7.1) and retrieving CSAF

documents.

A retrieving party SHOULD do the first phase every time.
Based on the setup and use case of the retrieving party it
MAY choose to do it less often, e.g. only when adding new
or updating distributing parties. In that case, it SHOULD to
check regularly whether new information is available.

7.3.1 Finding provider-metadata.json

Direct locating: The following process SHOULD be used to determine the
location of a provider-metadata.json (requirement 7 in section 7.1) based

on the main domain of the issuing party:

1. Checking the Well-known URL (requirement 9 in section 7.1)

2. Checking the security.txt (requirement 8 in section 7.1)

3. Checking the DNS path (requirement 10 in section 7.1)

4. Select one or more provider-metadata.json to use.

The term "checking" used in the listing above SHOULD be
understood as follows: Try to access the resource and test
whether the response provides an expected result as
defined in the requirement in section 7.1. If that is the case,
the step was successful - otherwise not.

The first two steps SHOULD be performed in all cases as the security.txt
MAY advertise additional provider-metadata.json. The third step

SHOULD only be performed if the first two did not result in the location of
at least one provider-metadata.json.

Indirect locating: A retrieving party MAY choose to determine the
location of a provider-metadata.json by retrieving its location from an

aggregator.json (requirement 21 in section 7.1) of a CSAF lister or CSAF

aggregator.

7.3.2 Retrieving CSAF documents

Given a provider-metadata.json, the following process SHOULD be used

to retrieve CSAF documents:

1. Parse the provider-metadata.json to determine whether the

directory-based (requirements 11 to 14 in section 7.1) or ROLIE-
based distribution (requirements 15 to 17 in section 7.1) is used. If
both are present, the ROLIE information SHOULD be preferred.

2. For any CSAF trusted provider, the hash and signature files
(requirements 18 to 19 in section 7.1) SHOULD be retrieved
together with the CSAF document. They MUST be checked before
further processing the CSAF document.

3. Test the CSAF document against the schema.

4. Execute mandatory tests on the CSAF document.

8 Safety, Security, and Data Protection
Considerations

CSAF documents are based on JSON, thus the security considerations of
[RFC8259] apply and are repeated here as service for the reader:

Generally, there are security issues with scripting languages.
JSON is a subset of JavaScript but excludes assignment
and invocation.

Since JSON's syntax is borrowed from JavaScript, it is
possible to use that language's eval() function to parse

most JSON texts (but not all; certain characters such as
U+2028 LINE SEPARATOR and U+2029 PARAGRAPH SEPARATOR

are legal in JSON but not JavaScript). This generally
constitutes an unacceptable security risk, since the text
could contain executable code along with data declarations.
The same consideration applies to the use of eval()-like
functions in any other programming language in which JSON
texts conform to that language's syntax.

In addition, CSAF documents may be rendered by consumers in various
human-readable formats like HTML or PDF. Thus, for security reasons,
CSAF producers and consumers SHALL adhere to the following:

• CSAF producers SHOULD NOT emit messages that contain HTML,
even though all variants of Markdown permit it. To include HTML,
source code, or any other content that may be interpreted or
executed by a CSAF consumer, e.g. to provide a proof-of-concept,
the issuing party SHALL use Markdown's fenced code blocks or
inline code option.

• Deeply nested markup can cause a stack overflow in the Markdown
processor [GFMENG]. To reduce this risk, CSAF consumers
SHALL use a Markdown processor that is hardened against such
attacks. Note: One example is the GitHub fork of the cmark

Markdown processor [GFMCMARK].

• To reduce the risk posed by possibly malicious CSAF files that do
contain arbitrary HTML (including, for example, javascript: links),
CSAF consumers SHALL either disable HTML processing (for
example, by using an option such as the --safe option in the cmark
Markdown processor) or run the resulting HTML through an HTML
sanitizer. CSAF consumers that are not prepared to deal with the
security implications of formatted messages SHALL NOT attempt to
render them and SHALL instead fall back to the corresponding
plain text messages. As also any other programming code can be
contained within a CSAF document, CSAF consumers SHALL
ensure that none of the values of a CSAF document is run as code.
Moreover, it SHALL be treated as unsafe (user) input.

Additional, supporting mitigation measures like
retrieving only CSAF documents from trusted sources
and check their integrity and signature before parsing
the document SHOULD be in place to reduce the risk
further.

9 Conformance

In the only subsection of this section, the conformance targets and
clauses are listed. The clauses, matching the targets one to one, are listed
in separate sub-subsections of the targets listing subsection.

Informative Comments:

The order in which targets, and their corresponding clauses
appear is somewhat arbitrary as there is no natural order on
such diverse roles participating in the document exchanging
ecosystem.

Except for the target CSAF document, all other 1516
targets span a taxonomy of the complex CSAF ecosystems
existing in and between diverse security advisory generating,
sharing, and consuming communities.

In any case, there are no capabilities organized in increasing
quality levels for targets because the security advisory

sharing communities follow the chain link model. Instead, a
single minimum capability level for every target is given to
maintain important goals of providing a common framework
for security advisories:

• Fast production, sharing, and actionable consumption
of security advisories

• Consistent end to end automation through
collaborating actors

• Clear baseline across the communities per this
specification

• Additional per-community cooperative extensions
which may flow back into future updates of this
specification

9.1 Conformance Targets

This document defines requirements for the CSAF file format and for
certain software components that interact with it. The entities
("conformance targets") for which this document defines requirements are:

• CSAF document: A security advisory text document in the format
defined by this document.

• CSAF producer: A program which emits output in the CSAF
format.

• CSAF direct producer: An analysis tool which acts as a CSAF
producer.

• CSAF converter: A CSAF producer that transforms the output of
an analysis tool from its native output format into the CSAF format.

• CVRF CSAF converter: A CSAF producer which takes a CVRF
document as input and converts it into a valid CSAF document.

• CSAF content management system: A program that is able to
create, review and manage CSAF documents and is able to
preview their details as required by CSAF viewer.

• CSAF post-processor: A CSAF producer that transforms an
existing CSAF document into a new CSAF document, for example,
by removing or redacting elements according to sharing policies.

• CSAF modifier: A CSAF post-processor which takes a CSAF
document as input and modifies the structure or values of
properties. The output is a valid CSAF document.

• CSAF translator: A CSAF post-processor which takes a CSAF
document as input and translates values of properties into another
language. The output is a valid CSAF document.

• CSAF consumer: A program that reads and interprets a CSAF
document.

• CSAF viewer: A CSAF consumer that reads a CSAF document,
displays a list of the results it contains, and allows an end user to
view each result in the context of the artifact in which it occurs.

• CSAF management system: A program that is able to manage
CSAF documents and is able to display their details as required by
CSAF viewer.

• CSAF asset matching system: A program that connects to or is
an asset database and is able to manage CSAF documents as
required by CSAF management system as well as matching them
to assets of the asset database.

• CSAF basic validator: A program that reads a document and
checks it against the JSON schema and performs mandatory tests.

• CSAF extended validator: A CSAF basic validator that additionally
performs optional tests.

• CSAF full validator: A CSAF extended validator that additionally
performs informative tests.

• CSAF SBOM matching system: A program that connects to or is
an SBOM database and is able to manage CSAF documents as
required by CSAF management system as well as matching them
to SBOM components of the SBOM database.

9.1.1 Conformance Clause 1: CSAF document

A text file or data stream satisfies the "CSAF document" conformance
profile if it:

• conforms to the syntax and semantics defined in section 3.

• satisfies at least one profile defined in section 4.

• does not fail any mandatory test defined in section 6.1.

9.1.2 Conformance Clause 2: CSAF producer

A program satisfies the "CSAF producer" conformance profile if the
program:

• produces output in the CSAF format, according to the conformance
profile "CSAF document" .

• satisfies those normative requirements in section 3 and 8 that are
designated as applying to CSAF producers.

9.1.3 Conformance Clause 3: CSAF direct producer

An analysis tool satisfies the "CSAF direct producer" conformance profile
if the analysis tool:

• satisfies the "CSAF producer" conformance profile.

• additionally satisfies those normative requirements in section 3 that
are designated as applying to "direct producers" or to "analysis
tools".

• does not emit any objects, properties, or values which, according to
section 3, are intended to be produced only by converters.

9.1.4 Conformance Clause 4: CSAF converter

A converter satisfies the “CSAF converter” conformance profile if the
converter:

• satisfies the "CSAF producer" conformance profile.

• additionally satisfies those normative requirements in section 3 that
are designated as applying to converters.

• does not emit any objects, properties, or values which, according to
section 3, are intended to be produced only by direct producers.

9.1.5 Conformance Clause 5: CVRF CSAF converter

A program satisfies the "CVRF CSAF converter" conformance profile if the
program fulfills the following two groups of requirements:

Firstly, the program:

• satisfies the "CSAF producer" conformance profile.

• takes only CVRF documents as input.

• additionally satisfies the normative requirements given below.

Secondly, the program fulfills the following for all items of:

• type /$defs/branches_t: If any prod:Branch instance has the type

Realm or Resource, the CVRF CSAF converter replaces those with

the category product_name. In addition, the converter outputs a

warning that that those types do not exist in CSAF and have been
replaced with the category product_name.

• type /$defs/version_t: If any element doesn't match the semantic

versioning, replace the all elements of type /$defs/version_t with

the corresponding integer version. For that, CVRF CSAF converter
sorts the items of /document/tracking/revision_history by

number ascending according to the rules of CVRF. Then, it replaces

the value of number with the index number in the array (starting with

1). The value of /document/tracking/version is replaced by value

of number of the corresponding revision item. The match mustMUST

be calculated by the original values used in the CVRF document. If
this conversion was applied, for each Revision the original value of
cvrf:Number MUST be set as legacy_version in the converted

document.

• /document/acknowledgments[]/organization and

/vulnerabilities[]/acknowledgments[]/organization: If more

than one cvrf:Organization instance is given, the CVRF CSAF

converter converts the first one into the organization. In addition,

the converter outputs a warning that information might be lost
during conversion of document or vulnerability acknowledgment.

• /document/lang: If one or more CVRF element containing an

xml:lang attribute exist and contain the exact same value, the

CVRF CSAF converter converts this value into lang. If the values of

xml:lang attributes are not equal, the CVRF CSAF converter

outputs a warning that the language could not be determined and
possibly a document with multiple languages was produced. In
addition, it SHOULD also present all values of xml:lang attributes

as a set in the warning.

• /document/publisher/name and /document/publisher/namespace:

Sets the value as given in the configuration of the program or the
corresponding argument the program was invoked with. If values
from both sources are present, the program should prefer the latter
one. The program SHALL NOT use hard-coded values.

• /document/tracking/id: If the element cvrf:ID contains any line

breaks or leading or trailing white space, the CVRF CSAF converter
removes those characters. In addition, the converter outputs a
warning that the ID was changed.

• /product_tree/relationships[]: If more than one

prod:FullProductName instance is given, the CVRF CSAF

converter converts the first one into the full_product_name. In

addition, the converter outputs a warning that information might be
lost during conversion of product relationships.

• /vulnerabilities[]/scorescwe: If more than one vuln:CWE

instance is given, the CVRF CSAF converter converts the first one
into cwe. In addition, the converter outputs a warning that

information might be lost during conversion of the CWE.

• /vulnerabilities[]/ids: If a vuln:ID element is given, the CVRF

CSAF converter converts it into the first item of the ids array.

• /vulnerabilities[]/remediation[]: If no product_idids or

group_ids is given, the CVRF CSAF converter appends all Product

IDs which are listed under ../product_status in the arrays

known_affected, first_affected and last_affected into

product_ids. If none of these arrays exist, the CVRF CSAF

converter outputs an error that no matching Product ID was found
for this remediation element.

• /vulnerabilities[]/scores[]:

o For any CVSS v3 element, the CVRF CSAF converter
MUST compute the baseSeverity from the baseScore

according to the rules of the applicable CVSS standard.

o If no product_id is given, the CVRF CSAF converter

appends all Product IDs which are listed under
../product_status in the arrays known_affected,

first_affected and last_affected. If none of these arrays

exist, the CVRF CSAF converter outputs an error that no
matching Product ID was found for this score element.

o If a vectorString is missing, the CVRF CSAF converter

outputs an error that the CVSS element could not be
converted as the CVSS vector was missing. A CVRF CSAF
converter MAY offer a configuration option to delete such
elements.

o If there are CVSS v3.0 and CVSS v3.1 Vectors available for
the same product, the CVRF CSAF converter discards the
CVSS v3.0 information and provide in CSAF only the CVSS
v3.1 information.

o To determine, which minor version of CVSS v3 is used, the
CVRF CSAF converter uses the following steps:

0. Retrieve the CVSS version from the CVSS vector, if
present.

Example 140:

 CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

=> 3.1

1. Retrieve the CVSS version from the CVSS element's
namespace, if present. The CVRF CSAF converter
outputs a warning that this value was guessed from
the element's namespace.

Example 141:

xmlns:cvssv31="https://www.first.org/cvss/cvss-

v3.1.xsd"

 <!-- -->

 <cvssv31:ScoreSetV3>

is handled the same as

Example 142:

 <ScoreSetV3

xmlns="https://www.first.org/cvss/cvss-

v3.1.xsd">

2. Retrieve the CVSS version from the CVSS
namespace given in the root element, if present. The
CVRF CSAF converter outputs a warning that this
value was guessed from the global namespace. If
more than one CVSS namespace is present and the
element is not clearly defined via the namespace, this
step MUST be skipped without a decision.

Example 143:

xmlns:cvssv3="https://www.first.org/cvss/cvss-

v3.0.xsd" => 3.0

3. Retrieve the CVSS version from a config value, which
defaults to 3.0. (As CSAF CVRF v1.2 predates CVSS

v3.1.) The CVRF CSAF converter outputs a warning
that this value was taken from the config.

• /product_tree/relationships[]: If more than one

prod:FullProductName instance is given, the CVRF CSAF

converter converts the first one into the full_product_name. In

addition, the converter outputs a warning that information might be
lost during conversion of product relationships.

9.1.6 Conformance Clause 6: CSAF content management
system

A CSAF content management system satisfies the "CSAF content
management system" conformance profile if the content management
system:

• satisfies the "CSAF producer" conformance profile.
• satisfies the "CSAF viewer" conformance profile.
• provides at least the following management functions:

o create new CSAF documents
o prefill CSAF documents based on values given in the

configuration (see below)
o create a new version of an existing CSAF document
o checkout old versions of a CSAF document
o show all differences between versions of a CSAF document
o list all CSAF documents within the system

o delete CSAF documents from the system
o review CSAF documents in the system
o approve CSAF documents
o search for CSAF documents by values of required fields at

document-level or their children within the system

o search for CSAF documents by values of cve within the

system
o search for CSAF documents based on properties of

product_tree

o filter on all properties which it is required to search for
o export of CSAF documents
o show an audit log for each CSAF document
o identify the latest version of CSAF documents with the same

/document/tracking/id

o suggest a /document/tracking/id based on the given

configuration.
o track of the version of CSAF documents automatically and

increment according to the versioning scheme (see also
subsections of 3.1.11) selected in the configuration.

o check that the document version is set correctly based on
the changes in comparison to the previous version (see also
subsections of 3.1.11).

o suggest to use the document status interim if a CSAF

document is updated more frequent than the given threshold
in the configuration (default: 3 weeks)

o suggest to publish a new version of the CSAF document with
the document status final if the document status was

interim and no new release has be done during the the

given threshold in the configuration (default: 6 weeks)
o support the following workflows:

▪ "New Advisory": create a new advisory, request a
review, provide review comments or approve it,
resolve review comments; if the review approved it,
the approval for publication can be requested; if
granted the document status changes to final (or

ìnterim based on the selection in approval or

configuration) and the advisory is provided for
publication (manual or time-based)

▪ "Update Advisory": open an existing advisory, create
new revision & change content, request a review,
provide review comments or approve it, resolve
review comments; if the review approved it, the
approval for publication can be requested; if granted
the document status changes to final (or ìnterim

based on the selection in approval or configuration)

and the advisory is provided for publication (manual
or time-based)

• offers both: publication may be immediately or at a given date/time.
• automates handling of date/time and version is automated.
• provides an API to retrieve all CSAF documents which are currently

in the status published.
• should provideoptionally provides an API to import or create new

advisories from outside systems (e.g. bug tracker, CVD
platform,...).

• provides a user management and support at least the following
roles:

o Registered: Able to see all published CSAF documents (but
only in the published version).

o Author: inherits Registered permissions and also can Create
and Edit Own (mostly used for automated creation, see
above)

o Editor: inherits Author permissions and can Edit (mostly
used in PSIRT)

o Publisher: inherits Editor permissions and can Change state
and Review any (mostly used as HEAD of PSIRT or team
lead)

o Reviewer: inherits Registered permissions and can Review
advisories assigned to him (might be a subject matter expert
or management)

o Manager: inherits Publisher permissions and can Delete;
User management up to Publisher

o Administrator: inherits Manager permissions and can
Change the configuration

• may use groups to support client separation (multitenancy) and
therefore restrict the roles to actions within their group. In this case,
there mustMUST be a Group configurator which is able to change
the values which are used to prefill fields in new advisories for that
group. He might also do the user management for the group up to a
configured level.

• prefills the following fields in new CSAF documents with the values
given below or based on the templates from configuration:

o /document/csaf_version with the value 2.0
o /document/language
o /document/notes

▪ legal_disclaimer (Terms of use from the

configuration)

▪ general (General Security recommendations from the

configuration)

o /document/tracking/current_release_date with the current

date

o /document/tracking/generator and children

o /document/tracking/initial_release_date with the current

date
o /document/tracking/revision_history

▪ date with the current date

▪ number (based on the templates according to the

versioning scheme configured)

▪ summary (based on the templates from configuration;

default: "Initial version.")

o /document/tracking/status with draft

o /document/tracking/version with the value of number the

latest /document/tracking/revision_history[] element

o /document/publisher and children

o /document/category (based on the templates from

configuration)

• When updating an existing CSAF document:

o prefills all fields which have be present in the existing CSAF
document

o adds a new item in
/document/tracking/revision_history[]

o updates the following fields with the values given below or
based on the templates from configuration:

▪ /document/csaf_version with the value 2.0

▪ /document/language

▪ /document/notes

▪ legal_disclaimer (Terms of use from the

configuration)

▪ general (General Security recommendations

from the configuration)

▪ /document/tracking/current_release_date with the

current date

▪ /document/tracking/generator and children

▪ the new item in
/document/tracking/revision_history[]

▪ date with the current date

▪ number (based on the templates according to

the versioning scheme configured)

▪ /document/tracking/status with draft

▪ /document/tracking/version with the value of number

the latest /document/tracking/revision_history[]

element

▪ /document/publisher and children

9.1.7 Conformance Clause 7: CSAF post-processor

A CSAF post-processor satisfies the "CSAF post-processor" conformance
profile if the post-processor:

• satisfies the "CSAF consumer" conformance profile.

• satisfies the "CSAF producer" conformance profile.

• additionally satisfies those normative requirements in section 3 that
are designated as applying to post-processors.

9.1.8 Conformance Clause 8: CSAF modifier

A program satisfies the "CSAF modifier" conformance profile if the
program fulfills the two following groups of requirements:

The program:

• satisfies the "CSAF post-processor" conformance profile.

• adds, deletes or modifies at least one property, array, object or
value of a property or item of an array.

• does not emit any objects, properties, or values which, according to
section 9, are intended to be produced only by CSAF translators.

• satisfies the normative requirements given below.

The resulting modified document:

• does not have the same /document/tracking/id as the original

document. The modified document can use a completely new
/document/tracking/id or compute one by appending the original

/document/tracking/id as a suffix after an ID from the naming

scheme of the issuer of the modified version. It shouldSHOULD not
use the original /document/tracking/id as a prefix.

• includes a reference to the original advisory as first element of the
array /document/references[].

9.1.9 Conformance Clause 9: CSAF translator

A program satisfies the "CSAF translator" conformance profile if the
program fulfills the two following groups of requirements:

The program:

• satisfies the "CSAF post-processor" conformance profile.

• translates at least one value.

• preserves the same semantics and form across translations.

• satisfies the normative requirements given below and does not add
or remove other elements than required below.

The resulting translated document:

• does not use the same /document/tracking/id as the original

document. The translated document can use a completely new
/document/tracking/id or compute one by using the original

/document/tracking/id as a prefix and adding an ID from the

naming scheme of the issuer of the translated version. It
shouldSHOULD not use the original /document/tracking/id as a

suffix. If an issuer uses a CSAF translator to publish his advisories
in multiple languages they mayMAY use the combination of the
original /document/tracking/id and translated /document/lang as

a /document/tracking/id for the translated document.

• provides the /document/lang property with a value matching the

language of the translation.

• provides the /document/source_lang to contain the language of the

original document (and shouldSHOULD only be set by CSAF
translators).

• has the value translator set in /document/publisher/category

• includes a reference to the original advisory as first element of the
array /document/references[].

• mayMAY contain translations for elements in arrays of
references_t after the first element. However, it mustMUST keep

the original URLs as references at the end.

9.1.10 Conformance Clause 10: CSAF consumer

A proccessor satisfies the "CSAF consumer" conformance profile if the
processor:

• reads CSAF documents and interprets them according to the
semantics defined in section 3.

• satisfies those normative requirements in section 3 and 8 that are
designated as applying to CSAF consumers.

9.1.11 Conformance Clause 11: CSAF viewer

A viewer satisfies the "CSAF viewer" conformance profile if the viewer
fulfills the two following groups of requirements:

The viewer:

• satisfies the "CSAF consumer" conformance profile.

• satisfies the normative requirements given below.

For each CVSS-Score in /vulnerabilities[]/scores[] the viewer:

• preferably shows the vector if there is an inconsistency between

the vector and any other sibling attribute.

• shouldSHOULD prefer the item of scores[] for each product_id

which has the highest CVSS Base Score and newest CVSS version
(in that order) if a product_id is listed in more than one item of

scores[].

9.1.12 Conformance Clause 12: CSAF management system

A CSAF management system satisfies the "CSAF management system"
conformance profile if the management system:

• satisfies the "CSAF viewer" conformance profile.

• provides at least the following management functions:

o add new CSAF documents (e.g. from file system or URL) to
the system

o list all CSAF documents within the system

o delete CSAF documents from the system

o comment on CSAF documents in the system

o mark CSAF documents as read in the system

o search for CSAF documents by values of required fields at
document-level or their children within the system

o search for CSAF documents by values of cve within the

system

o search for CSAF documents based on properties of
/product_tree

o filter on all properties which it is required to search for

o sort on all properties which it is required to search for

o sort on CVSS scores and
/document/aggregate_severity/text

• identifies the latest version of CSAF documents with the same
/document/tracking/id.

• is able to show the difference between 2 versions of a CSAF
document with the same /document/tracking/id.

9.1.13 Conformance Clause 13: CSAF asset matching system

A CSAF asset matching system satisfies the "CSAF asset matching
system" conformance profile if the asset matching system:

• satisfies the "CSAF management system" conformance profile.

• is an asset database or connects to one.

• matches the CSAF documents within the system to the respective
assets. This might be done with a probability which gives the end
user the chance to broaden or narrow the results. The process of
matching is also referred to as "run of the asset matching module".

• provides for each product of the asset database a list of matched
advisories.

• provides for each asset of the asset database a list of matched
advisories.

• provides for each CSAF document a list of matched product of the
asset database.

• provides for each CSAF document a list of matched asset of the
asset database.

• provides for each vulnerability within a CSAF document the option
to mark a matched asset in the asset database as "not
remediated", "remediation in progress", or "remediation done". A
switch to mark all assets at once mayMAY be implemented.

• does not bring up a newer revision of a CSAF document as a new
match if the remediation for the matched product or asset has not
changed.

• detects the usage semantic version (as described in section
3.1.11.2).

• is able to trigger a run of the asset matching module:

o manually:

▪ per CSAF document

▪ per list of CSAF documents

▪ per asset

▪ per list of assets

o automatically:

▪ when a new CSAF document is inserted (for this
CSAF document)

▪ when a new asset is inserted (for this asset)

▪ when the Major version in a CSAF document with
semantic versioning changes (for this CSAF
document)

These also apply if more than one CSAF
document or asset was added. To reduce the
computational efforts the runs can be pooled
into one run which fulfills all the tasks at once
(batch mode).

o Manually and automatically triggered runs shouldSHOULD
not be pooled.

• provides at least the following statistics for the count of assets:

o matching that CSAF document at all

o marked with a given status

9.1.14 Conformance Clause 14: CSAF basic validator

A program satisfies the "CSAF basic validator" conformance profile if the
program:

• reads documents and performs a check against the JSON schema.

• performs all mandatory tests as given in section 6.1.

• does not change the CSAF documents.

A CSAF basic validator mayMAY provide one or more additional functions:

• Only run one or more selected mandatory tests.

• Apply quick fixes as specified in the standard.

• Apply additional quick fixes as implemented by the vendor.

9.1.15 Conformance Clause 15: CSAF extended validator

A CSAF basic validator satisfies the "CSAF extended validator"
conformance profile if the CSAF basic validator:

• satisfies the "CSAF basic validator" conformance profile.

• additionally performs all optional tests as given in section 6.2.

A CSAF extended validator mayMAY provide an additional function to only
run one or more selected optional tests.

9.1.16 Conformance Clause 16: CSAF full validator

A CSAF extended validator satisfies the "CSAF full validator" conformance
profile if the CSAF extended validator:

• satisfies the "CSAF extended validator" conformance profile.

• additionally performs all informative tests as given in section 6.3.

A CSAF full validator mayMAY provide an additional function to only run
one or more selected informative tests.

9.1.17 Conformance Clause 17: CSAF SBOM matching system

A CSAF SBOM matching system satisfies the "CSAF SBOM matching
system" conformance profile if the SBOM matching system:

• satisfies the "CSAF management system" conformance profile.

• is an SBOM database or connects to one.

A repository or any other location that can be queried
for SBOMs and their content is also considered an
SBOM database.

• matches the CSAF documents within the system to the respective
SBOM components. This might be done with a probability which
gives the user the chance to broaden or narrow the results. The
process of matching is also referred to as "run of the SBOM
matching module".

• provides for each SBOM of the SBOM database a list of matched
advisories.

• provides for each SBOM component of the SBOM database a list of
matched advisories.

• provides for each CSAF document a list of matched SBOMs of the
SBOM database.

• provides for each CSAF document a list of matched SBOM
components of the SBOM database.

• provides for each vulnerability within a CSAF document the option
to mark a matched SBOM component in the SBOM database as
"not remediated", "remediation in progress", or "remediation done".
A switch to mark all SBOM component at once MAY be
implemented.

• does not bring up a newer revision of a CSAF document as a new
match if the remediation for the matched SBOM or SBOM
component has not changed.

• detects the usage semantic version (as described in section
3.1.11.2).

• is able to trigger a run of the asset matching module:

o manually:

▪ per CSAF document

▪ per list of CSAF documents

▪ per SBOM component

▪ per list of SBOM components

o automatically:

▪ when a new CSAF document is inserted (for this
CSAF document)

▪ when a new SBOM component is inserted (for this
SBOM component)

▪ when the Major version in a CSAF document with
semantic versioning changes (for this CSAF
document)

These also apply if more than one CSAF
document or SBOM component was added. To
reduce the computational efforts the runs can
be pooled into one run which fulfills all the
tasks at once (batch mode).

• Manually and automatically triggered runs should not
be pooled.

• provides at least the following statistics for the count of SBOM
component:

o matching that CSAF document at all

o marked with a given status

Appendix A. Acknowledgments

The following individuals were members of the OASIS CSAF Technical
Committee during the creation of this specification and their contributions
are gratefully acknowledged:

CSAF TC Members:

First
Name

Last Name Company

Alexandre Dulaunoy CIRCL

Anthony Berglas Cryptsoft Pty Ltd.

Art MANION Carnegie Mellon University

Aukjan van Belkum EclecticIQ

First
Name

Last Name Company

Ben Sooter Electric Power Research Institute (EPRI)

Bernd Grobauer Siemens AG

Bruce Rich Cryptsoft Pty Ltd.

Chok Poh Oracle

Dan West Microsoft

David Waltermire NIST

Denny Page TIBCO Software Inc.

Duncan Sparrell sFractal Consulting LLC

Eric Johnson TIBCO Software Inc.

Ethan Rahn Arista Networks

Feng Cao Oracle

Greg Scott Cryptsoft Pty Ltd.

Harold Booth NIST

Jason Masters TELUS

Jennifer Victor Dell

Jessica Fitzgerald-
McKay

National Security Agency

First
Name

Last Name Company

Jonathan Bitle Kaiser Permanente

Justin Corlett Cryptsoft Pty Ltd.

Kazuo Noguchi Hitachi, Ltd.

Kent Landfield McAfee

Langley Rock Red Hat

Martin Prpic Red Hat

Masato Terada Hitachi, Ltd.

Mike Gorski Cisco Systems

Nicole Parrish Mitre Corporation

Omar Santos Cisco Systems

Patrick Maroney AT&T

Rhonda Levy Cisco Systems

Richard Struse Mitre Corporation

Ritwik Ghoshal Oracle

Robert Coderre Accenture

Robert Keith Accenture

First
Name

Last Name Company

Stefan Hagen Individual

Tania Ward Dell

Ted Bedwell Cisco Systems

Thomas Proell Siemens AG

Thomas Schmidt Federal Office for Information Security (BSI)
Germany

Tim Hudson Cryptsoft Pty Ltd.

Tobias Limmer Siemens AG

Tony Cox Cryptsoft Pty Ltd.

Vincent Danen Red Hat

Will Rideout Arista Networks

Xiaoyu Ge Huawei Technologies Co., Ltd.

The following individuals were members of the OASIS CSAF Technical
Committee during the creation of the previous version (CVRF v1.2) of this
specification and their contributions are gratefully acknowledged:

CSAF TC Members:

First
Name

Last Name Company

Adam Montville CIS

First
Name

Last Name Company

Allan Thomson LookingGlass

Anthony Berglas Cryptsoft Pty Ltd.

Art Manion Carnegie Mellon University

Aukjan van Belkum EclecticIQ

Ben Sooter Electric Power Research Institute

Bernd Grobauer Siemens AG

Beth Pumo Kaiser Permanente

Bret Jordan Symantec Corp.

Bruce Rich Cryptsoft Pty Ltd.

Chet Ensign OASIS

Chok Poh Oracle

Chris Rouland Individual

David Waltermire NIST

Denny Page TIBCO Software Inc.

Doron Shiloach IBM

Duncan Sparrell sFractal Consulting LLC

First
Name

Last Name Company

Eric Johnson TIBCO Software Inc.

Feng Cao Oracle

Greg Reaume TELUS

Greg Scott Cryptsoft Pty Ltd.

Harold Booth NIST

Jamison Day LookingGlass

Jared Semrau "FireEye, Inc."

Jason Masters TELUS

Jerome Athias Individual

Jessica Fitzgerald-
McKay

National Security Agency

Jonathan Bitle Kaiser Permanente

Justin Corlett Cryptsoft Pty Ltd.

Karen Scarfone Individual

Kazuo Noguchi "Hitachi, Ltd."

Kent Landfield McAfee

Lothar Braun Siemens AG

First
Name

Last Name Company

Louis Ronnau Cisco Systems

Mark Davidson NC4

Mark-
David

McLaughlin Cisco Systems

Masato Terada "Hitachi, Ltd."

Masood Nasir TELUS

Nicole Gong Mitre Corporation

Omar Santos Cisco Systems

Patrick Maroney Wapack Labs LLC

Paul Patrick "FireEye, Inc."

Peter Allor IBM

Phillip Boles "FireEye, Inc."

Ravi Balupari Netskope

Rich Reybok ServiceNow

Richard Struse DHS Office of Cybersecurity and Communications
(CS&C)

Ritwik Ghoshal Oracle

Robert Coderre VeriSign

First
Name

Last Name Company

Robin Cover OASIS

Rupert Wimmer Siemens AG

Sanjiv Kalkar Individual

Sean Barnum Mitre Corporation

Stefan Hagen Individual

Ted Bedwell Cisco Systems

Thomas Schreck Siemens AG

Tim Hudson Cryptsoft Pty Ltd.

Tony Cox Cryptsoft Pty Ltd.

Trey Darley "Kingfisher Operations, sprl"

Vincent Danen Red Hat

Zach Turk Microsoft

Appendix B. Revision History

Revision Date Editor Changes Made

csaf-v2.0-
wd20210927-dev

2021-
09-27

Stefan Hagen
and Thomas
Schmidt

Preparing next Editor revision for
TC review and submittal as CS
for public review

Revision Date Editor Changes Made

csaf-v2.0-
wd20220329-dev

2022-
03-29

Stefan Hagen
and Thomas
Schmidt

Preparing next Editor revision for
TC review and submittal as
CSD02 for public review

Appendix C. Guidance on the Size of CSAF
Documents

This appendix provides informative guidance on the size of CSAF
documents.

The TC carefully considered all known aspects to provide size limits for
CSAF documents for this version of the specification with the result that
hard limits shouldSHOULD not be enforced. However, since there is the
need for guidance to ensure interoperability in the ecosystem, the TC
provides a set of soft limits. A CSAF document which exceeds those, can
still be valid but it might not be processable for some parties.

All CSAF consumers shouldSHOULD be able to process CSAF
documents which comply with the limits below. All CSAF producers should
notSHOULD NOT produce CSAF documents which exceed those limits.

If you come across a case where these limits are exceeded,
please provide feedback to the TC.

C.1 File size

A CSAF document in the specified JSON format encoded in UTF-8
SHOULD conform to known size limits of current technologies parsing
JSON content, e.g.: 15 MB.

At least one database technology in wide use for storing
CSAF documents rejects insert attempts when the
transformed BSON size exceeds 16 megabytes. The BSON
format optimizes for accessibility and not size. So, small
integers and small strings may incur more overhead in the
BSON format than in JSON. In addition, the BSON format
adds length information for the entries inside the document,
which adds to the size when storing CSAF document content
in a BSON format.

C.2 Array length

An array should notSHOULD NOT have more than:

• 10 000 items for
o /document/acknowledgments
o /document/acknowledgments[]/names
o /document/acknowledgments[]/urls
o /document/tracking/aliases
o /product_tree/branches[]/product/product_identificati

on_helper/hashes
o /product_tree/branches[]/product/product_identificati

on_helper/hashes[]/file_hashes
o /product_tree/branches[]/product/product_identificati

on_helper/sbom_urls
o /product_tree/branches[]/product/product_identificati

on_helper/x_generic_uris
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/hashes
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/hashes[]/file_hashes
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/sbom_urls
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/x_generic_uris
o /product_tree/full_product_names[]/product_identifica

tion_helper/hashes
o /product_tree/full_product_names[]/product_identifica

tion_helper/hashes[]/file_hashes
o /product_tree/full_product_names[]/product_identifica

tion_helper/sbom_urls
o /product_tree/full_product_names[]/product_identifica

tion_helper/x_generic_uris
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/hashes
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/hashes[]/file_hashes
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/sbom_urls
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/x_generic_uris
o /vulnerabilities[]/acknowledgments
o /vulnerabilities[]/acknowledgments[]/names
o /vulnerabilities[]/acknowledgments[]/urls
o /vulnerabilities[]/id/system_nameids

o /vulnerabilities[]/id/text
o /vulnerabilities[]/remediations[]/entitlements

• 40 000 items for
o /document/notes

o /document/references
o /vulnerabilities[]/involvements
o /vulnerabilities[]/notes
o /vulnerabilities[]/references

• 100 000 for
o /document/tracking/revision_history
o /product_tree/branches
o /product_tree(/branches[])*/branches
o /product_tree/branches[]/product/product_identificati

on_helper/model_numbers
o /product_tree/branches[]/product/product_identificati

on_helper/serial_numbers
o /product_tree/branches[]/product/product_identificati

on_helper/skus
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/model_numbers
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/serial_numbers
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/skus
o /product_tree/full_product_names
o /product_tree/full_product_names[]/product_identifica

tion_helper/model_numbers
o /product_tree/full_product_names[]/product_identifica

tion_helper/serial_numbers
o /product_tree/full_product_names[]/product_identifica

tion_helper/skus
o /product_tree/product_groups[]/product_ids
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/model_numbers
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/serial_numbers
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/skus
o /vulnerabilities

• 10 000 000 for
o /product_tree/relationships
o /product_tree/product_groups
o /vulnerabilities[]/remediations[]/group_ids

• 100 000 000 for
o /vulnerabilities[]/flags
o /vulnerabilities[]/flags[]/group_ids
o /vulnerabilities[]/flags[]/product_ids
o /vulnerabilities[]/product_status/first_affected
o /vulnerabilities[]/product_status/first_fixed
o /vulnerabilities[]/product_status/fixed
o /vulnerabilities[]/product_status/known_affected
o /vulnerabilities[]/product_status/known_not_affected
o /vulnerabilities[]/product_status/last_affected

o /vulnerabilities[]/product_status/recommended
o /vulnerabilities[]/product_status/under_investigation
o /vulnerabilities[]/remediations
o /vulnerabilities[]/remediations[]/product_ids
o /vulnerabilities[]/scores
o /vulnerabilities[]/scores[]/products
o /vulnerabilities[]/threats
o /vulnerabilities[]/threats[]/group_ids
o /vulnerabilities[]/threats[]/product_ids

C.3 String length

A string should notSHOULD NOT have a length greater than:

• 1000 for
o /document/acknowledgments[]/names[]
o /document/acknowledgments[]/organization
o /document/aggregate_severity/text
o /document/category
o /document/lang
o /document/notes[]/audience
o /document/notes[]/title
o /document/publisher/name
o /document/source_lang
o /document/title
o /document/tracking/aliases[]
o /document/tracking/generator/engine/name
o /document/tracking/generator/engine/version
o /document/tracking/id
o /document/tracking/revision_history[]/legacy_version
o /document/tracking/revision_history[]/number
o /document/tracking/version
o /product_tree/branches[]/name
o /product_tree/branches[]/product/name
o /product_tree/branches[]/product/product_id
o /product_tree/branches[]/product/product_identificati

on_helper/hashes[]/file_hashes[]/algorithm
o /product_tree/branches[]/product/product_identificati

on_helper/hashes[]/file_hashes[]/value
o /product_tree/branches[]/product/product_identificati

on_helper/hashes[]/filename
o /product_tree/branches[]/product/product_identificati

on_helper/model_numbers[]
o /product_tree/branches[]/product/product_identificati

on_helper/serial_numbers[]
o /product_tree/branches[]/product/product_identificati

on_helper/skus[]
o /product_tree/branches[](/branches[])*/name

o /product_tree/branches[](/branches[])*/product/name
o /product_tree/branches[](/branches[])*/product/produc

t_id
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/hashes[]/file_hashes[]/algori

thm
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/hashes[]/file_hashes[]/value
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/hashes[]/filename
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/model_numbers[]
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/serial_numbers[]
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/skus[]
o /product_tree/full_product_names[]/name
o /product_tree/full_product_names[]/product_id
o /product_tree/full_product_names[]/product_identifica

tion_helper/hashes[]/file_hashes[]/algorithm
o /product_tree/full_product_names[]/product_identifica

tion_helper/hashes[]/file_hashes[]/value
o /product_tree/full_product_names[]/product_identifica

tion_helper/hashes[]/filename
o /product_tree/full_product_names[]/product_identifica

tion_helper/model_numbers[]
o /product_tree/full_product_names[]/product_identifica

tion_helper/serial_numbers[]
o /product_tree/full_product_names[]/product_identifica

tion_helper/skus[]
o /product_tree/product_groups[]/group_id
o /product_tree/product_groups[]/product_ids[]
o /product_tree/relationships[]/full_product_name/name
o /product_tree/relationships[]/full_product_name/produ

ct_id
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/hashes[]/file_hashes[]/algor

ithm
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/hashes[]/file_hashes[]/value
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/hashes[]/filename
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/model_numbers[]
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/serial_numbers[]
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/skus[]
o /product_tree/relationships[]/product_reference
o /product_tree/relationships[]/relates_to_product_refe

rence

o /vulnerabilities[]/acknowledgments[]/names[]
o /vulnerabilities[]/acknowledgments[]/organization
o /vulnerabilities[]/cve
o /vulnerabilities[]/cwe/id
o /vulnerabilities[]/cwe/name
o /vulnerabilities[]/flags[]/group_ids[]
o /vulnerabilities[]/flags[]/product_ids[]
o /vulnerabilities[]/ids[]/system_name
o /vulnerabilities[]/ids[]/text
o /vulnerabilities[]/notes[]/audience
o /vulnerabilities[]/notes[]/title
o /vulnerabilities[]/product_status/first_affected[]
o /vulnerabilities[]/product_status/first_fixed[]
o /vulnerabilities[]/product_status/fixed[]
o /vulnerabilities[]/product_status/known_affected[]
o /vulnerabilities[]/product_status/known_not_affected[

]
o /vulnerabilities[]/product_status/last_affected[]
o /vulnerabilities[]/product_status/recommended[]
o /vulnerabilities[]/product_status/under_investigation

[]
o /vulnerabilities[]/remediations[]/group_ids[]
o /vulnerabilities[]/remediations[]/product_ids[]
o /vulnerabilities[]/scores[]/cvss_v2/vectorString
o /vulnerabilities[]/scores[]/cvss_v3/vectorString
o /vulnerabilities[]/scores[]/products[]
o /vulnerabilities[]/threats[]/group_ids[]
o /vulnerabilities[]/threats[]/product_ids[]
o /vulnerabilities[]/title

• 10 000 for
o /document/acknowledgments[]/summary
o /document/distribution/text
o /document/publisher/contact_details
o /document/publisher/issuing_authority
o /document/references[]/summary
o /document/tracking/revision_history[]/summary
o /product_tree/branches[]/product/product_identificati

on_helper/cpe
o /product_tree/branches[]/product/product_identificati

on_helper/purl
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/cpe
o /product_tree/branches[](/branches[])*/product/produc

t_identification_helper/purl
o /product_tree/full_product_names[]/product_identifica

tion_helper/cpe
o /product_tree/full_product_names[]/product_identifica

tion_helper/purl
o /product_tree/product_groups[]/summary

o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/cpe
o /product_tree/relationships[]/full_product_name/produ

ct_identification_helper/purl
o /vulnerabilities[]/acknowledgments[]/summary
o /vulnerabilities[]/involvements[]/summary
o /vulnerabilities[]/references[]/summary
o /vulnerabilities[]/remediations[]/entitlements[]

• 30 000 for
o /document/notes[]/text
o /vulnerabilities[]/notes[]/text

• 250 000 for
o /vulnerabilities[]/remediations[]/details
o /vulnerabilities[]/remediations[]/restart_required/de

tails
o /vulnerabilities[]/threats[]/details

C.4 URI length

A string with format uri should notSHOULD NOT have a length greater

than 20000. This applies to:

• /document/acknowledgments[]/urls[]

• /document/aggregate_severity/namespace

• /document/distribution/tlp/url

• /document/references[]/url

• /document/publisher/namespace

• /product_tree/branches[]/product/product_identification_hel

per/sbom_urls[]

• /product_tree/branches[]/product/product_identification_hel

per/x_generic_uris[]/namespace

• /product_tree/branches[]/product/product_identification_hel

per/x_generic_uris[]/uri

• /product_tree/branches[](/branches[])*/product/product_iden

tification_helper/sbom_urls[]

• /product_tree/branches[](/branches[])*/product/product_iden

tification_helper/x_generic_uris[]/namespace

• /product_tree/branches[](/branches[])*/product/product_iden

tification_helper/x_generic_uris[]/uri

• /product_tree/full_product_names[]/product_identification_h

elper/sbom_urls[]

• /product_tree/full_product_names[]/product_identification_h

elper/x_generic_uris[]/namespace

• /product_tree/full_product_names[]/product_identification_h

elper/x_generic_uris[]/uri

• /product_tree/relationships[]/full_product_name/product_ide

ntification_helper/sbom_urls[]

• /product_tree/relationships[]/full_product_name/product_ide

ntification_helper/x_generic_uris[]/namespace

• /product_tree/relationships[]/full_product_name/product_ide

ntification_helper/x_generic_uris[]/uri

• /vulnerabilities[]/acknowledgments[]/urls[]

• /vulnerabilities[]/references[]/url

• /vulnerabilities[]/remediations[]/url

C.5 Enum

A string which is an enum has a fixed maximum length given by its longest
value.

Later versions of CSAF might add, modify or delete possible
value which could change the longest value. Therefore, this
sizes should not be implemented as fixed limits if forward
compatibility is desired.

It seems to be safe to assume that the length of each value is not greater
than 50. This applies to:

• /document/csaf_version (3)

• /document/distribution/tlp/label (5)

• /document/notes[]/category (16)

• /document/publisher/category (11)

• /document/references[]/category (8)

• /document/tracking/status (7)

• /product_tree/branches[]/category (15)

• /product_tree/branches[](/branches[])*/category (15)

• /product_tree/relationships[]/category (21)

• /vulnerabilities[]/flags[]/label (49)

• /vulnerabilities[]/involvements[]/party (11)

• /vulnerabilities[]/involvements[]/status (17)

• /vulnerabilities[]/notes[]/category (16)

• /vulnerabilities[]/references[]/category (8)

• /vulnerabilities[]/remediations[]/category (14)

• /vulnerabilities[]/remediations[]/restart_required/category

(20)

• /vulnerabilities[]/scores[]/cvss_v2/version (3)

• /vulnerabilities[]/scores[]/cvss_v2/accessVector (16)

• /vulnerabilities[]/scores[]/cvss_v2/accessComplexity (6)

• /vulnerabilities[]/scores[]/cvss_v2/authentication (8)

• /vulnerabilities[]/scores[]/cvss_v2/confidentialityImpact

(8)

• /vulnerabilities[]/scores[]/cvss_v2/integrityImpact (8)

• /vulnerabilities[]/scores[]/cvss_v2/availabilityImpact (8)

• /vulnerabilities[]/scores[]/cvss_v2/exploitability (16)

• /vulnerabilities[]/scores[]/cvss_v2/remediationLevel (13)

• /vulnerabilities[]/scores[]/cvss_v2/reportConfidence (14)

• /vulnerabilities[]/scores[]/cvss_v2/collateralDamagePotenti

al (11)

• /vulnerabilities[]/scores[]/cvss_v2/targetDistribution (11)

• /vulnerabilities[]/scores[]/cvss_v2/confidentialityRequirem

ent (11)

• /vulnerabilities[]/scores[]/cvss_v2/integrityRequirement

(11)

• /vulnerabilities[]/scores[]/cvss_v2/availabilityRequirement

(11)

• /vulnerabilities[]/scores[]/cvss_v3/version (3)

• /vulnerabilities[]/scores[]/cvss_v3/attackVector (16)

• /vulnerabilities[]/scores[]/cvss_v3/attackComplexity (4)

• /vulnerabilities[]/scores[]/cvss_v3/privilegesRequired (4)

• /vulnerabilities[]/scores[]/cvss_v3/userInteraction (8)

• /vulnerabilities[]/scores[]/cvss_v3/scope (9)

• /vulnerabilities[]/scores[]/cvss_v3/confidentialityImpact

(4)

• /vulnerabilities[]/scores[]/cvss_v3/integrityImpact (4)

• /vulnerabilities[]/scores[]/cvss_v3/availabilityImpact (4)

• /vulnerabilities[]/scores[]/cvss_v3/baseSeverity (8)

• /vulnerabilities[]/scores[]/cvss_v3/exploitCodeMaturity (16)

• /vulnerabilities[]/scores[]/cvss_v3/remediationLevel (13)

• /vulnerabilities[]/scores[]/cvss_v3/reportConfidence (11)

• /vulnerabilities[]/scores[]/cvss_v3/temporalSeverity (8)

• /vulnerabilities[]/scores[]/cvss_v3/confidentialityRequirem

ent (11)

• /vulnerabilities[]/scores[]/cvss_v3/integrityRequirement

(11)

• /vulnerabilities[]/scores[]/cvss_v3/availabilityRequirement

(11)

• /vulnerabilities[]/scores[]/cvss_v3/modifiedAttackVector

(16)

• /vulnerabilities[]/scores[]/cvss_v3/modifiedAttackComplexit

y (11)

• /vulnerabilities[]/scores[]/cvss_v3/modifiedPrivilegesRequi

red (11)

• /vulnerabilities[]/scores[]/cvss_v3/modifiedUserInteraction

(11)

• /vulnerabilities[]/scores[]/cvss_v3/modifiedScope (11)

• /vulnerabilities[]/scores[]/cvss_v3/modifiedConfidentiality

Impact (11)

• /vulnerabilities[]/scores[]/cvss_v3/modifiedIntegrityImpact

(11)

• /vulnerabilities[]/scores[]/cvss_v3/modifiedAvailabilityImp

act (11)

• /vulnerabilities[]/scores[]/cvss_v3/environmentalSeverity

(8)

• /vulnerabilities[]/threats[]/category (14)

C.6 Date

The maximum length of strings representing a temporal value is given by
the format specifier. This applies to:

• /document/tracking/current_release_date

• /document/tracking/generator/date

• /document/tracking/initial_release_date

• /document/tracking/revision_history[]/date

• /vulnerabilities[]/discovery_date

• /vulnerabilities[]/release_flags[]/date

• /vulnerabilities[]/release_date

• /vulnerabilities[]/involvements[]/date

• /vulnerabilities[]/remediations[]/date

• /vulnerabilities[]/threats[]/date

