
COMMITTEE
SPECIFICATION
WORKING DRAFT

ISO/IEC WD
00000

Edition csd04
ccyy-mm-dd

Information Technology — Code List
Representation (genericode) Version 1.0
Technologie d l’information — Représentation de la liste de codes
(genericode) Version 1.0

Reference number
ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021

© ISO/IEC 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Website www.iso.ch

Published in Switzerland

ISO/IEC 00000:ccyy (E)

ii © ISO/IEC 2021 — All rights reserved.

mailto:copyright@iso.ch
http://www.iso.ch

Contents Page

Foreword ... v
0 Introduction .. vi
1 Scope ... 1
2 Normative References ... 1
3 Terminology ... 1

3.1 Terms and Definitions .. 1
4 Genericode Model ... 1

4.1 Tabular Structure .. 1
4.2 Genericode Document Types ... 2

4.2.1 Summary of Document Types .. 2
4.2.2 Column Set Documents ... 2
4.2.3 Code List Documents .. 2
4.2.4 Code List Set Documents .. 2

4.3 Column Sets – Columns and Keys .. 2
4.4 Code lists ... 4
4.5 Code list sets ... 7
4.6 Namespaces ... 8

5 Genericode XML Serialization .. 8
5.1 Schema Version and Namespace .. 8
5.2 Notation .. 8
5.3 Table of Schema Definitions ... 8

5.3.1 Global Elements .. 8
5.3.2 Global Complex Types ... 8
5.3.3 Global Simple Types ... 9
5.3.4 Global Model Groups .. 9
5.3.5 Global Attribute Groups ... 10

5.4 Global Schema Definitions in Alphabetic Order .. 10
5.4.1 Agency (Complex Type) ... 10
5.4.2 Annotation (Complex Type) ... 10
5.4.3 AnyOtherContent (Complex Type) .. 11
5.4.4 AnyOtherLanguageContent (Complex Type) .. 11
5.4.5 CodeList (Element) ... 11
5.4.6 CodeListDocument (Complex Type) ... 11
5.4.7 CodeListRef (Complex Type) ... 12
5.4.8 CodeListSet (Element) .. 14
5.4.9 CodeListSetChoice (Model Group) ... 14
5.4.10 CodeListSetDocument (Complex Type) .. 14
5.4.11 CodeListSetRef (Complex Type) ... 15
5.4.12 Column (Complex Type) .. 17
5.4.13 ColumnChoice (Model Group) ... 18
5.4.14 ColumnRef (Complex Type) ... 18
5.4.15 ColumnReference (Attribute Group) .. 20
5.4.16 ColumnSet (Element) .. 20
5.4.17 ColumnSet (Complex Type) .. 20
5.4.18 ColumnSetChoice (Model Group) ... 21
5.4.19 ColumnSetContent (Model Group) .. 21
5.4.20 ColumnSetDocument (Complex Type) .. 22
5.4.21 ColumnSetRef (Complex Type) ... 23
5.4.22 Data (Complex Type) ... 24
5.4.23 DataRestrictions (Complex Type) .. 25
5.4.24 DatatypeFacet (Complex Type) .. 26
5.4.25 DefaultDatatypeLibrary (Attribute Group) ... 26
5.4.26 DocumentHeader (Model Group) .. 26

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. iii

5.4.27 ExternalReference (Attribute Group) .. 26
5.4.28 GeneralIdentifier (Complex Type) ... 27
5.4.29 IdDefinition (Attribute Group) .. 27
5.4.30 Identification (Complex Type) .. 27
5.4.31 IdentificationRefUriSet (Model Group) ... 28
5.4.32 IdentificationVersionUriSet (Model Group) .. 29
5.4.33 Key (Complex Type) .. 29
5.4.34 KeyChoice (Model Group) ... 31
5.4.35 KeyColumnRef (Complex Type) ... 31
5.4.36 KeyRef (Complex Type) .. 31
5.4.37 Language (Attribute Group) ... 32
5.4.38 LongName (Complex Type) .. 33
5.4.39 MimeTypedUri (Complex Type) ... 33
5.4.40 NameSet (Model Group) .. 33
5.4.41 OptionalUseDefinition (Attribute Group) ... 33
5.4.42 OuterCodeListChoice (Model Group) ... 33
5.4.43 RequiredUseDefinition (Attribute Group) ... 34
5.4.44 Row (Complex Type) ... 34
5.4.45 ShortName (Complex Type) ... 34
5.4.46 SimpleCodeList (Complex Type) .. 34
5.4.47 SimpleCodeListSequence (Model Group) ... 35
5.4.48 SimpleValue (Complex Type) .. 35
5.4.49 UseType (Simple Type) .. 35
5.4.50 Value (Complex Type) ... 35
5.4.51 ValueChoice (Model Group) ... 36
5.4.52 ValueIdentification (Attribute Group) ... 37
5.4.53 VersionLocationUriSet (Model Group) .. 37

6 Conformance .. 38
6.1 Auxiliary Rules .. 38
6.2 Category: document .. 38
6.3 Category: application .. 40

Annex A (informative) Release Notes ... 44
Annex B Sample transformation to JSON ... 46
Annex C Sample instances of genericode ... 47
Annex D Testing select document conformance rules .. 48
Annex E (informative) The Open-edi reference model perspective of code lists 49
Annex F (informative) Acknowledgements .. 50
Annex G (informative) Temporary Annex - Rendering per ISO/IEC Directives, Part 2 51
Bibliography .. 52

ISO/IEC 00000:ccyy (E)

iv © ISO/IEC 2021 — All rights reserved.

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.
In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC
JTC 1.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication
as an International Standard requires approval by at least 75% of the national bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
The first version of ISO/IEC 00000 was prepared by the OASIS Universal Business Language Technical
Committee [as OASIS Universal Business Language Version 2.1] and was adopted, under the PAS
procedure, by Joint Technical Committee ISO/IEC JTC 1, Information technology, in parallel with its
approval by the national bodies of ISO and IEC. The content of ISO/IEC 00000:2021 and OASIS genericode
Version 1.0 is identical.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. v

0 Introduction

0.1 Key/value semantics

The key-value store concept is a long-understood data storage paradigm for managing as associative array
arrangement of information. The keys of the store are unique values expressed either as monolithic values
or the combination of multi-faceted components. The keys are unique to ensure unambiguous association
to them with the information values that belong with a given key value.
The associated information values may be simple values or richly-structured values, or may not exist at
all for a given key value. Simply the enumeration of a set of unique values can be regarded as a useful key-
value association without any values specified. It may be that users of a set of keys implicitly understand
the concept associated with each key value without the need to explicitly reify the concept in any associated
information values.
When moving information between key-value stores, or publishing the information found in a key-value
store, an IT-enabled serialization format needs to accommodate the collection of information as a whole,
the individual key values however composed, and the optional though potentially voluminous information
item values associated with each key.
Supporting multiple ad hoc or colloquial expressions of key-value associations, whether IT-enabled in a
data format or not IT-enabled in arbitrary and opaque publication formats such as PDF and HTML tables,
can be a burden for publishers and consumers alike. Adopting a single standardized IT-enabled key-value
serialization will promote easier publishing and easier ingestion of the pertinent aspects of a set of keys
and their associated information values.
0.2 IT-enabled expression of coded domains

ISO/IEC 14662 Open-edi reference model provides standards for the inter-working of organizations
through interconnected information technology (IT) systems. See Annex E for the relationship between
the semantic and IT-enabling perspectives of business transactions in, respectively, the Business
Operational View (BOV) and the Functional Services View (FSV).
ISO/IEC 15944-10 IT-enabled coded domains as semantic components in business transactions details
important aspects of the BOV of a “set of codes representing X”, where X is a semantic umbrella concept
scope and individual codes are distinct and separate semantic concepts within that scope. Simple umbrella
semantic examples are days of the week, countries of the world, and financial currencies. Individual distinct
semantic concepts are “Tuesday” and “Thursday”, “Australia” and “Tanzania”, and “the US dollar” and “the
Euro”.
Some semantic concepts, such as days of the week, are accepted as given without the need for any governing
Source Authority or coded domain Source Authority. Most other e-business semantic concepts involved
in connecting the IT systems for the inter-working of organizations need such authoritative governance
and managed publication of the semantics to be mutually understood by the expression of a code in a
coded domain. Such code-level metadata could express linguistic or illustrative explication of the
semantics of the given coded value unique key.
Colloquially, such collections of codes of a coded domain are referred to as code lists. The genericode
specification satisfies the FSV perspective of code lists by providing an IT-enabled expression of coded
domains for the direct interchange or open publishing of their content and semantics in a machine-
readable syntax.
0.3 Genericode

Code lists, often regarded simply as enumerated values, have been with us since long before computers.
They should be well understood and easily dealt with by now. Unfortunately, they are not. As is often the
case, if you take a fundamentally simple concept, you find that everyone professes to understand it with
complete clarity. When you look more closely, you find that everybody has their own unique view of what
the problem is and how it should be solved.

ISO/IEC 00000:ccyy (E)

vi © ISO/IEC 2021 — All rights reserved.

If code lists were really so simple and obvious, there would already be a single, well-known and accepted
way of handling them in XML. There is no such agreed solution, though. The problem is that while code
lists are a well understood concept, people don’t actually agree exactly on what code lists are, and how
they should be used.
The OASIS Code List Representation format, “genericode”1, is a single semantic model of code lists and
accompanying XML serialization (supported by a W3C XML Schema) that can encode a broad range of
code list information. The serialization is designed to IT-enable the interchange or distribution of machine-
readable code list information between systems. Note that genericode is not designed as a run-time format
for accessing code list information, and is not optimized for such usage. Rather, it is designed as an
interchange format that can be transformed into formats suitable for run-time usage, or loaded into
systems that perform run-time processing using code list information.
0.4 What is a Code List?

What is a code list, then? Most people would agree that the following is a code list:
{“SUN”, “MON”, “TUE”, “WED”, “THU”, “FRI”, “SAT”}
Example 1: Days of the week: English, uppercase
This is a perfectly reasonable set of alphabetic codes for representing days of the week. However, so is:
{“Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”}
Example 2: Days of the week: English, mixed case
These two code lists are similar, but certainly not identical. That said, they can both be used to represent
the days of the week. Of course, you could also use:
{“Dim”, “Lun”, “Mar”, “Mer”, “Jeu”, “Ven”, “Sam”}
Example 3: Days of the week: French, mixed case
which is created from abbreviations for the days of the week in French. Then again, you could use:
{0, 1, 2, 3, 4, 5, 6}
Example 4: Days of the week: numeric
which is suitable as a computer representation, e.g. for a database column. On the other hand:
{“S”, “M”, “T”, “W”, “T”, “F”, “S”}
Example 5: Days of the week: English, single character
is not suitable as a code list for the days of the week, because the values are not unique.
Now suppose that you are using codes to represent days of the week in an application, and you are
displaying the days of the week using 3-letter abbreviations in English or French. In that context, should
Example 2 and Example 3 be considered to be code lists, or should they be considered to be display values
that would be keyed to either the Example 1 or Example 4 codes? The fact is, they could be either code
lists or display values. A value which is a code in one context might only be an associated value for that
code in another context. Nothing privileges any of these code lists over the others in terms of ability or
suitability to be the code list (except the Example 5 values which are not suitable). There is a choice of
code lists that can be used, and the answer to the question “which choice is the best?” depends on the
needs of each particular situation.

1 Genericode can be written starting either with an upper-case or lower-case “g”. It depends whether genericode
is at the start of the sentence or not.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. vii

What the above examples show is that for each distinct entry in a code list, there are many possible
associated values (we use the term distinct entry to express the idea that we are talking a single item that
needs to be represented in the code list, rather than about the code value(s) that can be used to identify
that item). Some of those associated values are suitable for use in code lists, some are not. This leads to a
tabular model, where each row of the table represents a conceptual code, and each column represents an
associated value (code list metadata), as follows:

Numeric
(key)

English,
uppercase
(key)

English,
mixed
case
(key)

French,
mixed
case
(key)

English,
single
character

0 SUN Sun Dim S
1 MON Mon Lun M
2 TUE Tue Mar T
3 WED Wed Mer W
4 THU Thu Jeu T
5 FRI Fri Ven F
6 SAT Sat Sam S

Table 1: Days of the week
Notice that the first 4 of the 5 columns have been labeled as “key” columns. This means that the values in
those columns can be used to uniquely identify the rows, and hence they can be used as code list values.
The term key is used here similarly to a relational database table.
This is the most common case, where a single column can be used as a key. However, consider the following
modification:

Numeric
(key)

English,
uppercase
(key)

English,
single
character #1

English,
single
character #2

0 SUN S U
1 MON M O
2 TUE T U
3 WED W E
4 THU T H
5 FRI F R
6 SAT S A

Table 2: Days of the week, version 2
Here, the first two columns are each a key column. The last two columns are not individually key columns,
but together they form a compound key, i.e. while the individual columns do not contain unique values, the
pair of values is unique within each row. This is again similar to what happens in some relational databases,
that a key for the rows need not be constructed from a single column, but instead may be constructed by
combining two or more columns.
Finally, there is no reason why a column should only contain simple values like strings or numbers. A
column could also contain a complex compound group of data, such as a fragment of XML:

ISO/IEC 00000:ccyy (E)

viii © ISO/IEC 2021 — All rights reserved.

Numeric
(key)

English,
uppercase
(key)

XHTML

0 SUN <a href="http://days.of.week/
SUN">Sunday

1 MON <a href="http://days.of.week/
MON"><i>Monday</i>

2 TUE <a href="http://days.of.week/
TUE">Tuesday

3 WED <a href="http://days.of.week/
WED"><i>Wednesday</i>

4 THU <a href="http://days.of.week/
THU">Thursday

5 FRI <a href="http://days.of.week/
FRI"><i>Friday</i>

6 SAT <a href="http://days.of.week/
SAT">Saturday

Table 3: Days of the week, version 3
Notice that the final XHTML column is not marked as a key column. The values are unique, so it certainly
could be used as a key column. However, sometimes you may not wish to mark a column as a key column,
even if the values are unique. The values in the column may not make particularly suitable keys. They
might be too long to process quickly and conveniently, or they might not be able to be used in a particular
context, such as for an XML attribute value. Also, it may be that while the values in a particular column are
unique now, there is no guarantee or expectation that they will remain unique as the code list grows or
changes in the future.
Once you see the tabular nature that underlies the information that can be associated with code lists, it
becomes clear why they can be a source of so much debate. Different users need different subsets of the
code list information, and people often assume that the information they need is all the information that
anyone needs.
That kind of thinking doesn’t work well with code lists, because code lists are sufficiently generic a concept
that they are used across messages/documents, applications, and databases. The code list details that you
need for the XML schemas often will not be exactly the same as the details that you need for your database
or your application. If the code list information cannot be shared easily across these different areas, the
result is duplication of effort and potential loss of synchronization between different implementations of
the same code list.
The XML schema may only require a set of 3-letter codes to represent the code list. The database may
require a set of numeric codes, plus display labels (possibly in different languages). The application may
need to know which 3-letter code corresponds to which numeric code, so that it can process the XML and
update the database. Also, some information related to a code list might not be appropriate for the XML
format. For example, if you have a different image file for each code, it isn’t ideal to include this image
inline in the code list XML, since it vastly increases the size of the XML, and makes it more difficult to read.
So in an XML representation, you are more likely to include some reference (e.g. a URL) to the image. For
a database, however, it may be feasible to store the image in a BLOB2 column in a database.
One last piece of experience from databases is that support for undefined values will be required.
Sometimes users will have values that need to be associated with some of the codes in a code list, but won’t
have values to associate with every code. In that case, the concept of a undefined (nil or null) value is
needed.

2 Binary Large OBject.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. ix

COMMITTEE SPECIFICATION WORKING DRAFT ISO/IEC 00000:ccyy (E)

Information Technology — Code List Representation
(genericode) Version 1.0

1 Scope

ISO/IEC 00000 specifies genericode Version 1.0 defining a generic set of semantics for sets of key values.
It includes provision for specifying metadata associated both with the individual values and with the entire
set itself. Also included is a serialization of these semantics in XML syntax for unambiguous publishing
and interchange.
The semantics are labeled in particular for expressing values in keyed coded domains comprising a “set
of codes representing X”, colloquially refereed to as “code lists”. Expressing metadata associated with key
values implements an important use case for documenting the semantics of the codes in the coded domain.
The choice of labels is not intended to limit the scope of genericode only to coded domains, as genericode
can be used for any opportunity to associate rich value metadata with unique key values.

2 Normative References

There are no normative references.

3 Terminology

For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at http://www.electropedia.org/
3.1 Terms and Definitions

3.1.1
coded domain Source Authority (cdSA)
Person, usually an organization, as a Source Authority which sets the rules governing a coded domain
[ISO/IEC 15944-2:2006, 3.14]
3.1.2
Source Authority (SA)
Person recognized by other Persons as the authoritative source for a set of constraints
[ISO/IEC 15944-2:2006, 3.109]

4 Genericode Model

4.1 Tabular Structure

Genericode has a tabular structure for code list information. Each row in the table represents a single
distinct entry in the code list, i.e. each row represents a single uniquely identifiable item in the code list.

© ISO/IEC 2021 — All rights reserved. 1

https://www.iso.org/obp
http://www.electropedia.org/

Each column in the table represents a metadata value that can be defined for each distinct entry in the
code list. Each column is either required or optional. A required column does not allow any row to have an
undefined (nil or null) value. An optional column allows undefined values.
A genericode key is a set of one or more required columns that together uniquely identify each distinct
entry in the code list. Optional columns cannot be used for keys. Each code list must have at least one key.
Genericode keys are equivalent to what people usually mean when they talk about the “codes” in a code
list. However, genericode allows multiple keys for each code list, and there is no single preferred key. For
code lists that have multiple keys, it is assumed that the choice of which key to use is a late binding choice
that is specific to the application, technology and/or context in which the code list is used.
4.2 Genericode Document Types

4.2.1 Summary of Document Types

There are 3 kinds of genericode documents, all supported by the one W3C XML Schema:
— · Column Set documents;
— · Code List documents;
— · Code List Set documents.
4.2.2 Column Set Documents

A column set document has the root element <gc:ColumnSet>. It contain definitions of genericode
columns or keys that can be imported into code list documents or into other column set documents.
4.2.3 Code List Documents

A code list document has the root element <gc:CodeList>. It contains metadata describing the code list
as a whole, as well as explicit code list data – codes and associated values.
4.2.4 Code List Set Documents

A code list set document has the root element <gc:CodeListSet>. It contains references to particular
versions of code lists, and can also contain version-independent references to code lists. A code list set
document can be used to define a particular configuration of versions of code lists that are used by a project,
application, standard, etc.
4.3 Column Sets – Columns and Keys

A column set is a set of definitions of genericode columns and/or keys. A column defines a particular
metadata value that can be defined for each distinct entry in a code list. A key defines a set of one or more
columns.
It is not necessary to use separate column set documents. A genericode code list document can contain all
of the required column and key definitions. Column set documents are provided as a convenience
mechanism for sharing column and/or key definitions between multiple code lists.

ISO/IEC 00000:ccyy (E)

2 © ISO/IEC 2021 — All rights reserved.

Figure 1 — UML relationships of keys and columns

This figure is in UML notation. Each column set must have a unique ID. For a column set defined within a
code list document, the code list document’s unique identifier is used. A column set can define any number
of columns. It can also reference any number of columns from other column sets (in column set documents
or code list documents). A column set can also define any number of keys. Each key is defined by one or
more of the columns in the column set (either defined or imported). Keys are used to uniquely identify
the rows (distinct entries) of code lists. Columns and keys are uniquely named within the column set that
defines them, and each can also be uniquely identified using a specific URI if required additionally.
The matching genericode W3C XML Schema (WXS) representation of column set content is:
This figure is in XML Spy® notation. A default datatype library URI can be provided to identify which
datatype library should be used for columns which do not explicitly specify a datatype library. If this URI
is not provided, the datatype library defaults to the W3C XML Schema (WXS) datatype library.
A column set definition contains optional user annotation information (Annotation), and then
identification and location information (Identification). A column set has a short name, any number of
long names and a version.
A column set is uniquely identified by a canonical URI. Particular versions of the column set are uniquely
identified by a canonical version URI. Location URIs can also be provided to suggest URLs from which an
XML genericode column set instance may be retrieved (at the discretion of an application). Alternative
location URIs can be provided to suggest URLs from which non-genericode representations of the column
set can be retrieved. Canonical URIs and canonical version URIs must not be used as de facto location URIs
for retrieving column set instances (nor anything else). The column set definition can also list the details
of the agency which is responsible for publishing and/or maintaining the column set information.
A column definition (Column) contains a unique ID for the column and its use (required or optional). It
also contains a short name (token) for the column, any number of long names, and optional extra canonical
identification URIs. The datatype information for the column is contained in its Data element.
The Data structure is based on the data element in RELAX NG. The datatype is specified as a Type from a
DatatypeLibrary. If the datatype library is not specified, it is inherited from the DatatypeLibrary attribute
of the enclosing column set definition. It otherwise defaults to the W3C XML Schema (WXS) datatype
library.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 3

If the data is XML (complex valued), the DataTypeLibrary is set to the namespace URI for the XML (or to
“*” if any namespace3 is allowed), and the Type is set to the root element name for the XML data (or to “*”
if any root element is allowed).
Data definitions can contain Parameter elements which define facets that refine the datatype. When using
the WXS datatype library, these are just the usual WXS datatype facets.
If a column is defined in an external column set or code list document, it is referenced using a ColumnRef.
The column reference must have an ID just as a column definition would, but it also has an ExternalRef
which contains the column’s ID in the external document. The external column set or code list is identified
by a CanonicalVersionUri and/or by any LocationUri information that is provided.
A key definition (Key) contains an ID for the key. It also contains a short name (token) for the key, any
number of long names, and optional extra canonical identification URIs. The columns which together form
the key are referenced using one or more ColumnRef elements. The Ref attribute of each contains the ID
of either a Column or ColumnRef in the column set. Only required (not optional) columns may be used
within a key (note that this rule is not able to be enforced using the genericode WXS Schema alone).
If a key is defined in an external column set or code list document, it can be referred to using a KeyRef.
The key reference must have an ID, and also has an ExternalRef which contains the key’s ID in the external
document. The external column set or code list is identified by a CanonicalVersionUri and/or by any
LocationUri information that is provided.
4.4 Code lists

A code list can contain its own embedded column set definition. It can also import columns and keys from
any number of external column sets (in column set documents and/or code list documents). In the simplest
case, what a code list provides is information (metadata) about the code list and (optionally) a set of rows,
where each row defines a distinct entry in the code list.
A code list document that contains only information (metadata) about the code list as a whole is known
as a CodeList Metadata document. If the code list document defines (zero or more) row, it is a Simple
CodeList. These are the only kinds of code list that are supported in this version of the specification.

3 Any namespace except the genericode namespace.

ISO/IEC 00000:ccyy (E)

4 © ISO/IEC 2021 — All rights reserved.

Figure 2 — UML for code lists

There is an important difference between a CodeList Metadata document and Simple CodeList that contains
zero rows (zero distinct entries). The former does not provide information on how many distinct entries
are contained in the code list. The latter explicitly indicates that a particular version of the code list contains
zero distinct entries, i.e. the particular version of the code list is empty. A CodeList Metadata document
does not provide any indication about whether a code list is empty or not.
A CodeList Metadata document is a special case of a Simple CodeList document. The differences will be
discussed explicitly where appropriate.
A Simple CodeList is modeled as follows:

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 5

Figure 3 — UML for simple code lists

A Simple CodeList contains zero or more rows (it is necessary to support empty code lists to allow for code
lists that are empty now, but will be populated in future versions). Each Row defines a single distinct entry
in the code list.
A Row contains one or more Values, where each of those values corresponds to a distinct column in the
code list. At least one value is required, because a code list has to have at least one key, and each key
requires at least one column. As a consequence, a Row must have at least one Value. Additionally, a Row
must contain a defined Value for each of the required columns in the code list, i.e. for those columns for
which a Value must be defined (non-null) for each Row (distinct entry) in the code list.
Each Value is associated with a single distinct column of the code list. For each Key in the code list, the
values associated with the columns for that key must form a unique set, i.e. no two rows are allowed to
have the same set of values for the same key columns. Note that this uniqueness requirement cannot be
enforced using the genericode WXS Schema for code list documents, which is structured as follows:
Many of these elements and types have appeared already in section 4.3 Column Sets – Columns and
Keys, so the explanations will not be repeated here. A code list document can either define its own
embedded ColumnSet, or refer to an externally defined column set using a ColumnSetRef.
A ColumnSetRef contains the canonical version URI which uniquely identifies a referenced column set or
code list document which contains the column set. It can also contain suggested URLs from which to
retrieve the column set or code list. Canonical version URIs must not be used as de facto location URIs for
retrieving column set instances (nor anything else).
A code list document that contains a SimpleCodeList element is a Simple CodeList. If the code list document
does not contain a SimpleCodeList element, then it is a CodeList Metadata document.
The genericode WXS Schema representation of a SimpleCodeList is
A SimpleCodeList contains zero or more Row elements. Each Row contains one or more Value elements.

ISO/IEC 00000:ccyy (E)

6 © ISO/IEC 2021 — All rights reserved.

The Value container element is needed to allow optional user annotations of individual values in the code
list. It has a ColumnRef attribute which contains the unique document ID of the associated column. A Value
element can contains either a SimpleValue containing a textual value, or a ComplexValue containing a
balanced (well-formed) XML fragment from a namespace other than the genericode namespace.
If a Value element does not contain either a SimpleValue element or a ComplexValue element, then the
value is undefined. Only optional columns are allowed to have undefined values. Also, if a Row element does
not contain a Value element corresponding to a particular column, then the row’s value for that column
is undefined.
Note that the ColumnRef attribute of a Value is optional. If it is not provided, it is assumed that the column
is the one which follows the column associated with the previous value in the row. If the first Value in a
Row does not have a ColumnRef, it is assumed to be associated with the first column in the column set. It
is an error if a row contains more than one value for the same column, or if it does not contain a value for
a required column.
The genericode WXS Schema is not able to validate that the contents of a Value match the datatype of the
associated column. Other validation mechanisms should be used to perform datatype validation.
4.5 Code list sets

A CodeList Set lists a configuration of code lists and/or codelist versions. CodeList Sets can be used to
provide lists of the code lists or code list versions that are associated with a particular version of an
application or specification. The genericode WXS Schema structure for CodeList Set documents is:
Many of these elements and types have appeared already in 4.3 Column Sets – Columns and Keys, so the
explanations will not be repeated here. A code list set document contains a series of zero or more
CodeListRef, CodeListSet, or CodeListSetRef elements.
A CodeListRef is a reference to a code list or to a version of a code list. If the CanonicalVersionUri is defined,
then the LocationUri elements (if any) contain retrieval URIs for genericode CodeList documents. If the
CanonicalVersionUri is not defined, then the LocationUri elements (if any) contain retrieval URIs for
genericode CodeList Metadata documents. Note that canonical URIs and canonical version URIs must not
be used as de facto location URIs for retrieving code list instances (nor anything else).
A CodeListSet element is used to define an embedded code list set within a larger code list set document.
It allows a single CodeList Set document to carry information on multiple code list sets. Each embedded
CodeListSet element has the same structure as a CodeListSet document.
A CodeListSetRef is a reference to a code list set or to a version of a code list set. If the CanonicalVersionUri
is defined, then the LocationUri elements (if any) contain retrieval URIs for genericode CodeList Set
documents. If the CanonicalVersionUri is not defined, then the LocationUri elements (if any) contain
retrieval URIs for genericode CodeList Set Metadata documents. Just as for code list references, canonical
URIs and canonical version URIs must not be used as de facto location URIs for retrieving code list instances
(nor anything else).
A CodeList Set does not contain definitions of code lists, it only refers to the code list and code list versions
which are a part of the particular version of the CodeList Set. It should also be noted that a code list set
may contain a reference to a code list or code list set without specifying a particular version of the code
list or code list set, and it may contain a reference to a code list or code list version or code list set or code
list set version without specifying a location for retrieving a genericode definition of that code list
(metadata) or code list version or code list set (metadata) or code list set version. This is to support
situations where
— · the code list definition or code list set definition is known to the users, and no location needs to be

published. This may be because users have an application which maps the canonical URI or canonical
version URI to a local definition;

— · the code list or code list set is sufficiently well-known (e.g. ISO 3-letter country codes) that users
only need to have it uniquely identified, and do not need to have it enumerated or defined for them.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 7

4.6 Namespaces

The genericode Schema makes use of two namespace URIs. The “gc” XML prefix refers to the
namespace URI
http://docs.oasis-open.org/codelist/ns/genericode/1.0/
which is the main genericode namespace URI. The “rule” XML prefix refers to the namespace URI
http://docs.oasis-open.org/codelist/ns/rule/1.0/
which is used in the identification of auxiliary rules in the Schema. These are rules that cannot be enforced
using the XML Schema itself; they appear in the Schema in <rule:text> elements within
<xsd:documentation> elements.

5 Genericode XML Serialization

5.1 Schema Version and Namespace

Schema version: 1.0
Target namespace: http://docs.oasis-open.org/codelist/ns/genericode/1.0/
5.2 Notation

Multiplicity Minimum
Occurrence

Maximum
Occurrence

1 1 1
? 0 1
+ 1 unbounded
* 0 unbounded
{m,n} m n
{m,} m unbounded

ANY – any element in any namespace.
ANY[##other] – any element in any namespace other than the target namespace of the genericode XML
Schema.
(A , B , C , ...) – sequence of items (A, B, C, etc.).
(A | B | C | ...) – choice between items (A, B, C, etc.).
5.3 Table of Schema Definitions

5.3.1 Global Elements

· 5.4.5 CodeList (Element)
· 5.4.8 CodeListSet (Element)
· 5.4.16 ColumnSet (Element)
5.3.2 Global Complex Types

· 5.4.1 Agency (Complex Type)
· 5.4.2 Annotation (Complex Type)

ISO/IEC 00000:ccyy (E)

8 © ISO/IEC 2021 — All rights reserved.

· 5.4.3 AnyOtherContent (Complex Type)
· 5.4.4 AnyOtherLanguageContent (Complex Type)
· 5.4.6 CodeListDocument (Complex Type)
· 5.4.7 CodeListRef (Complex Type)
· 5.4.10 CodeListSetDocument (Complex Type)
· 5.4.11 CodeListSetRef (Complex Type)
· 5.4.12 Column (Complex Type)
· 5.4.14 ColumnRef (Complex Type)
· 5.4.17 ColumnSet (Complex Type)
· 5.4.20 ColumnSetDocument (Complex Type)
· 5.4.21 ColumnSetRef (Complex Type)
· 5.4.22 Data (Complex Type)
· 5.4.23 DataRestrictions (Complex Type)
· 5.4.24 DatatypeFacet (Complex Type)
· 5.4.28 GeneralIdentifier (Complex Type)
· 5.4.30 Identification (Complex Type)
· 5.4.33 Key (Complex Type)
· 5.4.35 KeyColumnRef (Complex Type)
· 5.4.36 KeyRef (Complex Type)
· 5.4.38 LongName (Complex Type)
· 5.4.39 MimeTypedUri (Complex Type)
· 5.4.44 Row (Complex Type)
· 5.4.45 ShortName (Complex Type)
· 5.4.46 SimpleCodeList (Complex Type)
· 5.4.48 SimpleValue (Complex Type)
· 5.4.50 Value (Complex Type)
5.3.3 Global Simple Types

· 5.4.49 UseType (Simple Type)
5.3.4 Global Model Groups

· 5.4.9 CodeListSetChoice (Model Group)
· 5.4.13 ColumnChoice (Model Group)
· 5.4.18 ColumnSetChoice (Model Group)
· 5.4.19 ColumnSetContent (Model Group)

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 9

· 5.4.26 DocumentHeader (Model Group)
· 5.4.31 IdentificationRefUriSet (Model Group)
· 5.4.32 IdentificationVersionUriSet (Model Group)
· 5.4.34 KeyChoice (Model Group)
· 5.4.40 NameSet (Model Group)
· 5.4.42 OuterCodeListChoice (Model Group)
· 5.4.47 SimpleCodeListSequence (Model Group)
· 5.4.51 ValueChoice (Model Group)
· 5.4.53 VersionLocationUriSet (Model Group)
5.3.5 Global Attribute Groups

· 5.4.15 ColumnReference (Attribute Group)
· 5.4.25 DefaultDatatypeLibrary (Attribute Group)
· 5.4.27 ExternalReference (Attribute Group)
· 5.4.29 IdDefinition (Attribute Group)
· 5.4.37 Language (Attribute Group)
· 5.4.41 OptionalUseDefinition (Attribute Group)
· 5.4.43 RequiredUseDefinition (Attribute Group)
· 5.4.52 ValueIdentification (Attribute Group)
5.4 Global Schema Definitions in Alphabetic Order

5.4.1 Agency (Complex Type)

Details of an agency which produces code lists or related artifacts.
Content Model: (ShortName? , LongName* , Identifier*)
Mixed Content: No
Elements:

Element Type Description
ShortName 5.4.45 ShortName (Complex Type) Short name (without whitespace) for the agency.
LongName 5.4.38 LongName (Complex Type) Human-readable name for the agency.
Identifier 5.4.28 GeneralIdentifier (Complex Type) Identifier for the agency.

5.4.2 Annotation (Complex Type)

User annotation information.
Content Model: (Description* , AppInfo?)
Mixed Content: No
Elements:

ISO/IEC 00000:ccyy (E)

10 © ISO/IEC 2021 — All rights reserved.

Element Type Description
Description 5.4.4 AnyOtherLanguageContent (Complex Type) Human-readable information.
AppInfo 5.4.3 AnyOtherContent (Complex Type) Machine-readable information.

5.4.3 AnyOtherContent (Complex Type)

Container for any XML content which is in a different namespace to the Schema’s target namespace.
Content Model: (ANY[##other]*)
Mixed Content: No
5.4.4 AnyOtherLanguageContent (Complex Type)

Container for any human-readable XML content which is in a different namespace to the Schema’s target
namespace.
Extension of: 5.4.3 AnyOtherContent (Complex Type)
Content Model: (ANY[##other]*)
Mixed Content: No
Attributes:

Attribute Usage Type Description
xml:lang optional Language for the human-readable XML content.

5.4.5 CodeList (Element)

Top-level (root) element for a genericode code list definition.
A code list definition defines the details of a particular (version of a) code list.
Complex Type: 5.4.6 CodeListDocument (Complex Type)
5.4.6 CodeListDocument (Complex Type)

Document type for genericode code list definitions.
Rules:

Rule 1 [document] :

A code list must have at least one key, unless it is a metadata-only definition without a 'SimpleCodeList' element.
Content Model: ((Annotation? , Identification) , (ColumnSet | ColumnSetRef) , ((SimpleCodeList))?)
Mixed Content: No
Elements:

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 11

Element Type Description
Annotation (from
5.4.26 DocumentHeader (Model
Group))

5.4.2 Annotation
(Complex Type)

User annotation information.
DocumentHeader:

General information (metadata) for the code list.
Identification (from
5.4.26 DocumentHeader (Model
Group))

5.4.30 Identification
(Complex Type)

Identification and location information (metadata).
DocumentHeader:

General information (metadata) for the code list.
ColumnSet (from
5.4.18 ColumnSetChoice (Model
Group))

5.4.17 ColumnSet
(Complex Type)

Definition of a column set (columns and keys for the
code list).
ColumnSetChoice:

A choice between a column set definition and a
column set reference.

ColumnSetRef (from
5.4.18 ColumnSetChoice (Model
Group))

5.4.21 ColumnSetRef
(Complex Type)

Reference to a column set defined in an external
column set or code list document.
ColumnSetChoice:

A choice between a column set definition and a
column set reference.

SimpleCodeList (from
5.4.47 SimpleCodeListSequence
(Model Group))

5.4.46 SimpleCodeList
(Complex Type)

Simple (explicit) code list definition.
SimpleCodeListSequence:

Details of a simple code list definition.
OuterCodeListChoice:

The only choice is a simple (explicit) code list
definition.
Not used if the code list definition contains code list
metadata only.

Attributes:

Attribute Usage Type Description
xml:base optional Base URL which applies to relative location URIs.

Rules:

Rule 2 [application] :

xml:base does not apply to canonical URIs.

5.4.7 CodeListRef (Complex Type)

Reference to a code list, possibly defined in an external document.
Rules:

ISO/IEC 00000:ccyy (E)

12 © ISO/IEC 2021 — All rights reserved.

Rule 3 [application] :

The code list reference must be valid.
An application may use the CanonicalVersionUri to select a local copy of the code list.
If there is no CanonicalVersionUri, the CanonicalUri may be used to select a local copy of the code list.
Otherwise the LocationUri value(s) may be tried in order, until a valid code list document is retrieved.
An application must signal an error to the user if it is not able to retrieve a code list document to match the code list
reference.
Content Model: (Annotation? , CanonicalUri , CanonicalVersionUri? , LocationUri*)
Mixed Content: No
Elements:

Element Type Description
Annotation 5.4.2 Annotation

(Complex Type)
User annotation for the referenced code list.

CanonicalUri xsd:anyURI Canonical URI which uniquely identifies all versions (collectively) of the
referenced code list.
Rules:

Rule 4 [document] :

Must be an absolute URI, must not be relative.

Rule 5 [application] :

Must not be used as a de facto location URI.
CanonicalVersionUri xsd:anyURI Canonical URI which uniquely identifies a specific version of the

referenced code list.
Rules:

Rule 6 [document] :

Must be an absolute URI, must not be relative.

Rule 7 [application] :

Must not be used as a de facto location URI.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 13

Element Type Description
LocationUri xsd:anyURI Suggested retrieval location for this code list, in genericode format.

Rules:

Rule 8 [application] :

If the CanonicalVersionUri has been defined, the LocationUri must
reference a genericode CodeList document.
If the CanonicalVersionUri is undefined, the LocationUri must reference
a genericode CodeList Metadata document.
An application must signal an error to the user if a LocationUri does not
reference the appropriate type of genericode document.

Rule 9 [application] :

An application must signal an error to the user if a document retrieved
using a LocationUri is not in genericode format.

Attributes:

Attribute Usage Type Description
xml:base optional Base URL which applies to relative location URIs.

Rules:

Rule 10 [application] :

xml:base does not apply to canonical URIs.

5.4.8 CodeListSet (Element)

Top-level element for the definition of a code list set.
Complex Type: 5.4.10 CodeListSetDocument (Complex Type)
5.4.9 CodeListSetChoice (Model Group)

A choice between a code list reference, an inline code list set, or a code list set reference.
Content Model: (CodeListRef | CodeListSet | CodeListSetRef)
Elements:

Element Type Description
CodeListRef 5.4.7 CodeListRef (Complex Type)
CodeListSet 5.4.10 CodeListSetDocument (Complex Type)
CodeListSetRef 5.4.11 CodeListSetRef (Complex Type)

5.4.10 CodeListSetDocument (Complex Type)

Document type for the definition of a set of code lists.
Content Model: ((Annotation? , Identification) , (CodeListRef | CodeListSet | CodeListSetRef)*)
Mixed Content: No
Elements:

ISO/IEC 00000:ccyy (E)

14 © ISO/IEC 2021 — All rights reserved.

Element Type Description
Annotation (from
5.4.26 DocumentHeader
(Model Group))

5.4.2 Annotation (Complex Type) User annotation information.
DocumentHeader:

General document information for the code list
set.

Identification (from
5.4.26 DocumentHeader
(Model Group))

5.4.30 Identification (Complex
Type)

Identification and location information
(metadata).
DocumentHeader:

General document information for the code list
set.

CodeListRef (from
5.4.9 CodeListSetChoice (Model
Group))

5.4.7 CodeListRef (Complex
Type)

CodeListSetChoice:

Contents of the code list set. If the code list set
does not have any contents, it is a CodeListSet
Metadata definition.

CodeListSet (from
5.4.9 CodeListSetChoice (Model
Group))

5.4.10 CodeListSetDocument
(Complex Type)

CodeListSetChoice:

Contents of the code list set. If the code list set
does not have any contents, it is a CodeListSet
Metadata definition.

CodeListSetRef (from
5.4.9 CodeListSetChoice (Model
Group))

5.4.11 CodeListSetRef (Complex
Type)

CodeListSetChoice:

Contents of the code list set. If the code list set
does not have any contents, it is a CodeListSet
Metadata definition.

Attributes:

Attribute Usage Type Description
xml:base optional Base URL which applies to relative location URIs.

Rules:

Rule 11 [application] :

xml:base does not apply to canonical URIs.

5.4.11 CodeListSetRef (Complex Type)

Reference to a code list set, possibly defined in an external document.
Rules:

Rule 47 [application] :

The code list set reference must be valid.
An application may use the CanonicalVersionUri to select a local copy of the code list set.
If there is no CanonicalVersionUri, the CanonicalUri may be used to select a local copy of the code list set.
Otherwise the LocationUri value(s) may be tried in order, until a valid code list set document is retrieved.
An application must signal an error to the user if it is not able to retrieve a code list set document to match the code
list set reference.
Content Model: (Annotation? , CanonicalUri , CanonicalVersionUri? , LocationUri*)
Mixed Content: No

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 15

Elements:

Element Type Description
Annotation 5.4.2 Annotation

(Complex Type)
User annotation for the referenced code list set.

CanonicalUri xsd:anyURI Canonical URI which uniquely identifies all versions (collectively) of the
referenced code list set.
Rules:

Rule 48 [document] :

Must be an absolute URI, must not be relative.

Rule 49 [application] :

Must not be used as a de facto location URI.
CanonicalVersionUri xsd:anyURI Canonical URI which uniquely identifies a specific version of the

referenced code list set.
Rules:

Rule 50 [document] :

Must be an absolute URI, must not be relative.

Rule 51 [application] :

Must not be used as a de facto location URI.
LocationUri xsd:anyURI Suggested retrieval location for this code list set, in genericode format.

Rules:

Rule 52 [application] :

If the CanonicalVersionUri has been defined, the LocationUri must
reference a genericode CodeListSet document.
If the CanonicalVersionUri is undefined, the LocationUri must reference
a genericode CodeListSet Metadata document.
An application must signal an error to the user if a LocationUri does not
reference the appropriate type of genericode document.

Rule 53 [application] :

An application must signal an error to the user if a document retrieved
using a LocationUri is not in genericode format.

Attributes:

Attribute Usage Type Description
xml:base optional Base URL which applies to relative location URIs.

Rules:

Rule 54 [application] :

xml:base does not apply to canonical URIs.

ISO/IEC 00000:ccyy (E)

16 © ISO/IEC 2021 — All rights reserved.

5.4.12 Column (Complex Type)

Definition of a column.
Each column of a code list defines a piece of metadata that can be specified for each item in the code list.
Content Model: (Annotation? , (ShortName , LongName*) , (CanonicalUri , CanonicalVersionUri?)? , Data)
Mixed Content: No
Elements:

Element Type Description
Annotation 5.4.2 Annotation

(Complex Type)
User information about the column.

ShortName (from 5.4.40 NameSet
(Model Group))

5.4.45 ShortName
(Complex Type)

Short name (without whitespace).
NameSet:

Name(s) of the column.
LongName (from 5.4.40 NameSet
(Model Group))

5.4.38 LongName
(Complex Type)

Human-readable name.
NameSet:

Name(s) of the column.
CanonicalUri (from
5.4.32 IdentificationVersionUriSet
(Model Group))

xsd:anyURI Canonical URI which uniquely identifies all versions
collectively.
Rules:

Must be an absolute URI, must not be relative.
Must not be used as a de facto location URI.
IdentificationVersionUriSet:

URIs used to identify the column and/or the version
of the column.

CanonicalVersionUri (from
5.4.32 IdentificationVersionUriSet
(Model Group))

xsd:anyURI Canonical URI which uniquely identifies this version.
Rules:

Must be an absolute URI, must not be relative.
Must not be used as a de facto location URI.
IdentificationVersionUriSet:

URIs used to identify the column and/or the version
of the column.

Data 5.4.22 Data
(Complex Type)

Data type of the column.

Attributes:

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 17

Attribute Usage Type Description
Id (from 5.4.29 IdDefinition
(Attribute Group))

required xsd:ID Unique ID within the document.
IdDefinition:

ID which identifies the column within the
document.

Use (from
5.4.43 RequiredUseDefinition
(Attribute Group))

required 5.4.49 UseType
(Simple Type)

Whether the usage is required or optional.
RequiredUseDefinition:

Whether the column is required or optional.

5.4.13 ColumnChoice (Model Group)

A choice between a column definition and a column reference.
Content Model: (Column | ColumnRef)
Elements:

Element Type Description
Column 5.4.12 Column (Complex Type) Definition of a column.
ColumnRef 5.4.14 ColumnRef (Complex Type) Reference to a column defined in an external column set or code list.

5.4.14 ColumnRef (Complex Type)

Reference to a column defined in an external column set or code list.
Rules:

Rule 12 [application] :

The column reference must be valid.
An application may use the CanonicalVersionUri to select a local copy of the code list or column set which contains
the column definition.
Otherwise the LocationUri value(s) may be tried in order, until a valid code list or column set document (containing
the necessary column definition) is retrieved.
An application must signal an error to the user if it is not able to retrieve a code list or column set document which
contains the necessary column definition.
Content Model: (Annotation? , (CanonicalVersionUri , LocationUri*) , Data?)
Mixed Content: No
Elements:

ISO/IEC 00000:ccyy (E)

18 © ISO/IEC 2021 — All rights reserved.

Element Type Description
Annotation 5.4.2 Annotation

(Complex Type)
User annotation for the referenced column.

CanonicalVersionUri (from
5.4.31 IdentificationRefUriSet
(Model Group))

xsd:anyURI Canonical URI which serves as a unique identifier for
this version.
Rules:

Must be an absolute URI, must not be relative.
Must not be used as a de facto location URI.
IdentificationRefUriSet:

Identification of the external column set or code list
document which contains the column set definition.

LocationUri (from
5.4.31 IdentificationRefUriSet
(Model Group))

xsd:anyURI Suggested retrieval location for this version, in
genericode format.
Rules:

An application must signal an error to the user if a
document retrieved using a LocationUri is not in
genericode format.
IdentificationRefUriSet:

Identification of the external column set or code list
document which contains the column set definition.

Data 5.4.23 DataRestrictions
(Complex Type)

Restrictions to the data type of the referenced column.

Attributes:

Attribute Usage Type Description
Id (from 5.4.29 IdDefinition
(Attribute Group))

required xsd:ID Unique ID within the document.
IdDefinition:

ID which identifies the column within this document.
ExternalRef (from
5.4.27 ExternalReference
(Attribute Group))

required xsd:NCName Unique ID within the external document.
Rules:

The external reference must not be prefixed with a ‘#’
symbol.
ExternalReference:

ID which identifies which identifies the column
within the external column set or code list.

Use (from
5.4.41 OptionalUseDefinition
(Attribute Group))

optional 5.4.49 UseType
(Simple Type)

Whether the usage is required or optional.
OptionalUseDefinition:

Whether the column is required or optional.
Rules:

Rule 13 [application] :

If specified, this overrides the usage specified in the
external column set or code list document.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 19

Attribute Usage Type Description
xml:base optional Base URL which applies to relative location URIs.

Rules:

Rule 14 [application] :

xml:base does not apply to canonical URIs.

5.4.15 ColumnReference (Attribute Group)

Attribute set for referring to a column definition.
Attributes:

Attribute Usage Type Description
ColumnRef optional xsd:IDREF Reference to a column ID in the document.

5.4.16 ColumnSet (Element)

Top-level element for the definition of a column set.
Complex Type: 5.4.20 ColumnSetDocument (Complex Type)
5.4.17 ColumnSet (Complex Type)

Definition of a column set (columns and keys for a code list).
Content Model: ((Column | ColumnRef)* , (Key | KeyRef)*)
Mixed Content: No
Elements:

Element Type Description
Column (from
5.4.13 ColumnChoice (Model
Group))

5.4.12 Column
(Complex Type)

Definition of a column.
ColumnChoice:

A choice between a column definition and a column reference.
ColumnSetContent:

Column set definitions.
ColumnRef (from
5.4.13 ColumnChoice (Model
Group))

5.4.14 ColumnRef
(Complex Type)

Reference to a column defined in an external column set or
code list.
ColumnChoice:

A choice between a column definition and a column reference.
ColumnSetContent:

Column set definitions.
Key (from 5.4.34 KeyChoice
(Model Group))

5.4.33 Key (Complex
Type)

Definition of a key.
KeyChoice:

A choice between a key definition and a key reference.
ColumnSetContent:

Column set definitions.

ISO/IEC 00000:ccyy (E)

20 © ISO/IEC 2021 — All rights reserved.

Element Type Description
KeyRef (from
5.4.34 KeyChoice (Model
Group))

5.4.36 KeyRef
(Complex Type)

Reference to a key defined in an external column set or code
list.
KeyChoice:

A choice between a key definition and a key reference.
ColumnSetContent:

Column set definitions.
Attributes:

Attribute Usage Type Description
DatatypeLibrary (from
5.4.25 DefaultDatatypeLibrary
(Attribute Group))

optional xsd:anyURI URI which uniquely identifies the default datatype library
for the column set. If not provided, defaults to the URI for
W3C XML Schema datatypes.
DefaultDatatypeLibrary:

Identification of the default datatype library for the column
set.

xml:base optional Base URL which applies to relative location URIs.
Rules:

Rule 15 [application] :

xml:base does not apply to canonical URIs.

5.4.18 ColumnSetChoice (Model Group)

A choice between a column set definition and a column set reference.
Content Model: (ColumnSet | ColumnSetRef)
Elements:

Element Type Description
ColumnSet 5.4.17 ColumnSet (Complex Type) Definition of a column set (columns and keys for the code list).
ColumnSetRef 5.4.21 ColumnSetRef (Complex

Type)
Reference to a column set defined in an external column set or
code list document.

5.4.19 ColumnSetContent (Model Group)

Specific details of a column set.
Content Model: ((Column | ColumnRef)* , (Key | KeyRef)*)
Elements:

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 21

Element Type Description
Column (from
5.4.13 ColumnChoice (Model
Group))

5.4.12 Column
(Complex Type)

Definition of a column.
ColumnChoice:

A choice between a column definition and a column
reference.

ColumnRef (from
5.4.13 ColumnChoice (Model
Group))

5.4.14 ColumnRef
(Complex Type)

Reference to a column defined in an external column set
or code list.
ColumnChoice:

A choice between a column definition and a column
reference.

Key (from 5.4.34 KeyChoice
(Model Group))

5.4.33 Key (Complex
Type)

Definition of a key.
KeyChoice:

A choice between a key definition and a key reference.
KeyRef (from 5.4.34 KeyChoice
(Model Group))

5.4.36 KeyRef (Complex
Type)

Reference to a key defined in an external column set or
code list.
KeyChoice:

A choice between a key definition and a key reference.

5.4.20 ColumnSetDocument (Complex Type)

Document type for the definition of a column set, which is a set of code list columns and/or keys.
Content Model: ((Annotation? , Identification) , ((Column | ColumnRef)* , (Key | KeyRef)*))
Mixed Content: No
Elements:

Element Type Description
Annotation (from
5.4.26 DocumentHeader (Model
Group))

5.4.2 Annotation
(Complex Type)

User annotation information.
DocumentHeader:

General document information for the column set.
Identification (from
5.4.26 DocumentHeader (Model
Group))

5.4.30 Identification
(Complex Type)

Identification and location information (metadata).
DocumentHeader:

General document information for the column set.
Column (from
5.4.13 ColumnChoice (Model
Group))

5.4.12 Column (Complex
Type)

Definition of a column.
ColumnChoice:

A choice between a column definition and a column
reference.
ColumnSetContent:

Details of the column set.

ISO/IEC 00000:ccyy (E)

22 © ISO/IEC 2021 — All rights reserved.

Element Type Description
ColumnRef (from
5.4.13 ColumnChoice (Model
Group))

5.4.14 ColumnRef
(Complex Type)

Reference to a column defined in an external column set
or code list.
ColumnChoice:

A choice between a column definition and a column
reference.
ColumnSetContent:

Details of the column set.
Key (from 5.4.34 KeyChoice
(Model Group))

5.4.33 Key (Complex
Type)

Definition of a key.
KeyChoice:

A choice between a key definition and a key reference.
ColumnSetContent:

Details of the column set.
KeyRef (from 5.4.34 KeyChoice
(Model Group))

5.4.36 KeyRef (Complex
Type)

Reference to a key defined in an external column set or
code list.
KeyChoice:

A choice between a key definition and a key reference.
ColumnSetContent:

Details of the column set.
Attributes:

Attribute Usage Type Description
DatatypeLibrary (from
5.4.25 DefaultDatatypeLibrary
(Attribute Group))

optional xsd:anyURI URI which uniquely identifies the default datatype library
for the column set. If not provided, defaults to the URI for
W3C XML Schema datatypes.
DefaultDatatypeLibrary:

Identification of the default datatype library for the column
set.

xml:base optional Base URL which applies to relative location URIs.
Rules:

Rule 16 [application] :

xml:base does not apply to canonical URIs.

5.4.21 ColumnSetRef (Complex Type)

Reference to a column set defined in an external column set or code list document.
Rules:

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 23

Rule 17 [application] :

The column set reference must be valid.
An application may use the CanonicalVersionUri to select a local copy of the column set or code list.
Otherwise the LocationUri value(s) may be tried in order, until a valid column set or code list document is retrieved.
An application must signal an error to the user if it is not able to retrieve a column set or code list document to match
the column set reference.
Content Model: (Annotation? , (CanonicalVersionUri , LocationUri*))
Mixed Content: No
Elements:

Element Type Description
Annotation 5.4.2 Annotation

(Complex Type)
User annotation for the referenced column set.

CanonicalVersionUri (from
5.4.31 IdentificationRefUriSet
(Model Group))

xsd:anyURI Canonical URI which serves as a unique identifier for this
version.
Rules:

Must be an absolute URI, must not be relative.
Must not be used as a de facto location URI.
IdentificationRefUriSet:

Identification of the external column set or code list document
which contains the column set definition.

LocationUri (from
5.4.31 IdentificationRefUriSet
(Model Group))

xsd:anyURI Suggested retrieval location for this version, in genericode
format.
Rules:

An application must signal an error to the user if a document
retrieved using a LocationUri is not in genericode format.
IdentificationRefUriSet:

Identification of the external column set or code list document
which contains the column set definition.

Attributes:

Attribute Usage Type Description
xml:base optional Base URL which applies to relative location URIs.

Rules:

Rule 18 [application] :

xml:base does not apply to canonical URIs.

5.4.22 Data (Complex Type)

Data type definition.
Content Model: (Annotation? , Parameter*)
Mixed Content: No

ISO/IEC 00000:ccyy (E)

24 © ISO/IEC 2021 — All rights reserved.

Elements:

Element Type Description
Annotation 5.4.2 Annotation (Complex Type) User annotation for the datatype.
Parameter 5.4.24 DatatypeFacet (Complex Type) Facet parameter which refines the datatype.
Attributes:

Attribute Usage Type Description
Type required xsd:token Unique ID for the datatype within its datatype library.

Rules:

Rule 19 [document] :

The datatype ID must not include a namespace prefix.
For the W3C XML Schema datatypes, possible datatype IDs are 'string',
'token', 'boolean', 'decimal', etc.

Rule 20 [document] :

If the data is complex (i.e. XML), this value is set to the root element
name for the XML value, or '*' if the root element name is not restricted.

DatatypeLibrary optional xsd:anyURI URI which uniquely identifies the datatype library.
Rules:

Rule 21 [application] :

If this URI not explicitly provided, the datatype library for the enclosing
column set is used.

Rule 22 [document] :

If the data is complex (i.e. XML), this value is set to the namespace URI
for the XML, or '*' if the namespace URI is not restricted.

Lang (from
5.4.37 Language
(Attribute Group))

optional xsd:language Language code which accepts the same values as ‘xml:lang’.
Unlike ‘xml:lang’, the scope of the language definition is not restricted
to the XML content within the element where the ‘lang’ attribute
appears.
Language:

Language from which the data is taken or derived.

5.4.23 DataRestrictions (Complex Type)

Restrictions to a data type.
Rules:

Rule 23 [document] :

The 'gc:lang' attribute may be specified only if no language is already set for the data type that is being restricted.
Content Model: (Parameter*)
Mixed Content: No
Elements:

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 25

Element Type Description
Parameter 5.4.24 DatatypeFacet (Complex Type) Facet parameter which refines the datatype.
Attributes:

Attribute Usage Type Description
Lang (from
5.4.37 Language
(Attribute Group))

optional xsd:language Language code which accepts the same values as ‘xml:lang’.
Unlike ‘xml:lang’, the scope of the language definition is not
restricted to the XML content within the element where the ‘lang’
attribute appears.
Language:

Language from which the data is taken or derived.

5.4.24 DatatypeFacet (Complex Type)

Facet information for refining a datatype.
Extension of: xsd:string
Attributes:

Attribute Usage Type Description
ShortName required xsd:token Short name (token) for the datatype facet.
LongName optional xsd:normalizedString Long name for the datatype facet.

5.4.25 DefaultDatatypeLibrary (Attribute Group)

Identification of the default datatype library for a column set.
Attributes:

Attribute Usage Type Description
DatatypeLibrary optional xsd:anyURI URI which uniquely identifies the default datatype library for the column set.

If not provided, defaults to the URI for W3C XML Schema datatypes.

5.4.26 DocumentHeader (Model Group)

General document information (metadata).
Content Model: (Annotation? , Identification)
Elements:

Element Type Description
Annotation 5.4.2 Annotation (Complex Type) User annotation information.
Identification 5.4.30 Identification (Complex Type) Identification and location information (metadata).

5.4.27 ExternalReference (Attribute Group)

Attribute set used to identify a definition within an external document.
Attributes:

ISO/IEC 00000:ccyy (E)

26 © ISO/IEC 2021 — All rights reserved.

Attribute Usage Type Description
ExternalRef required xsd:NCName Unique ID within the external document.

Rules:

Rule 24 [document] :

The external reference must not be prefixed with a '#' symbol.

5.4.28 GeneralIdentifier (Complex Type)

An identifier value. Typically not a long or short name.
Extension of: xsd:normalizedString
5.4.29 IdDefinition (Attribute Group)

Attribute set used to identify a definition within the document.
Attributes:

Attribute Usage Type Description
Id required xsd:ID Unique ID within the document.

5.4.30 Identification (Complex Type)

Identification and location information (metadata).
Content Model: ((ShortName , LongName*) , Version , CanonicalUri , (CanonicalVersionUri , LocationUri* ,
AlternateFormatLocationUri*) , Agency?)
Mixed Content: No
Elements:

Element Type Description
ShortName (from 5.4.40 NameSet
(Model Group))

5.4.45 ShortName
(Complex Type)

Short name (without whitespace).
NameSet:

Various names.
LongName (from 5.4.40 NameSet
(Model Group))

5.4.38 LongName
(Complex Type)

Human-readable name.
NameSet:

Various names.
Version xsd:token Version identifier.
CanonicalUri xsd:anyURI Canonical URI which uniquely identifies all versions

(collectively).
Rules:

Rule 25 [document] :

Must be an absolute URI, must not be relative.

Rule 26 [application] :

Must not be used as a de facto location URI.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 27

Element Type Description
CanonicalVersionUri (from
5.4.53 VersionLocationUriSet
(Model Group))

xsd:anyURI Canonical URI which uniquely identifies this version.
Rules:

Must be an absolute URI, must not be relative.
Must not be used as a de facto location URI.
VersionLocationUriSet:

Identification and location URIs for the version.
LocationUri (from
5.4.53 VersionLocationUriSet
(Model Group))

xsd:anyURI Suggested retrieval location for this version, in
genericode format.
Rules:

An application must signal an error to the user if a
document retrieved using a LocationUri is not in
genericode format.
VersionLocationUriSet:

Identification and location URIs for the version.
AlternateFormatLocationUri
(from
5.4.53 VersionLocationUriSet
(Model Group))

5.4.39 MimeTypedUri
(Complex Type)

Suggested retrieval location for this version, in a non-
genericode format.
Such alternative formats are intended only as
additional renditions of the code list information, not
as a replacements nor as alternatives for use in
application processing.
VersionLocationUriSet:

Identification and location URIs for the version.
Agency 5.4.1 Agency (Complex

Type)
Agency that is responsible for publication and/or
maintenance of the information.

5.4.31 IdentificationRefUriSet (Model Group)

Identification and location URIs.
Content Model: (CanonicalVersionUri , LocationUri*)
Elements:

ISO/IEC 00000:ccyy (E)

28 © ISO/IEC 2021 — All rights reserved.

Element Type Description
CanonicalVersionUri xsd:anyURI Canonical URI which serves as a unique identifier for this version.

Rules:

Rule 27 [document] :

Must be an absolute URI, must not be relative.

Rule 28 [application] :

Must not be used as a de facto location URI.
LocationUri xsd:anyURI Suggested retrieval location for this version, in genericode format.

Rules:

Rule 29 [application] :

An application must signal an error to the user if a document retrieved using a
LocationUri is not in genericode format.

5.4.32 IdentificationVersionUriSet (Model Group)

URIs used as unique identifiers.
Content Model: (CanonicalUri , CanonicalVersionUri?)
Elements:

Element Type Description
CanonicalUri xsd:anyURI Canonical URI which uniquely identifies all versions collectively.

Rules:

Rule 30 [document] :

Must be an absolute URI, must not be relative.

Rule 31 [application] :

Must not be used as a de facto location URI.
CanonicalVersionUri xsd:anyURI Canonical URI which uniquely identifies this version.

Rules:

Rule 32 [document] :

Must be an absolute URI, must not be relative.

Rule 33 [application] :

Must not be used as a de facto location URI.

5.4.33 Key (Complex Type)

Definition of a key.
A key is a set of one or more columns whose values together provide a unique identification of each item
in a code list.
Rules:

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 29

Rule 34 [document] :

Only required columns can be used for keys.
Content Model: (Annotation? , (ShortName , LongName*) , (CanonicalUri , CanonicalVersionUri?)? ,
ColumnRef+)
Mixed Content: No
Elements:

Element Type Description
Annotation 5.4.2 Annotation

(Complex Type)
User annotation for the key.

ShortName (from 5.4.40 NameSet
(Model Group))

5.4.45 ShortName
(Complex Type)

Short name (without whitespace).
NameSet:

Name(s) of the key.
LongName (from 5.4.40 NameSet
(Model Group))

5.4.38 LongName
(Complex Type)

Human-readable name.
NameSet:

Name(s) of the key.
CanonicalUri (from
5.4.32 IdentificationVersionUriSet
(Model Group))

xsd:anyURI Canonical URI which uniquely identifies all versions
collectively.
Rules:

Must be an absolute URI, must not be relative.
Must not be used as a de facto location URI.
IdentificationVersionUriSet:

URIs used to identify the key and/or the version of
the key.

CanonicalVersionUri (from
5.4.32 IdentificationVersionUriSet
(Model Group))

xsd:anyURI Canonical URI which uniquely identifies this
version.
Rules:

Must be an absolute URI, must not be relative.
Must not be used as a de facto location URI.
IdentificationVersionUriSet:

URIs used to identify the key and/or the version of
the key.

ColumnRef 5.4.35 KeyColumnRef
(Complex Type)

Reference to the document ID of a column in the key.

Attributes:

Attribute Usage Type Description
Id (from 5.4.29 IdDefinition (Attribute Group)) required xsd:ID Unique ID within the document.

IdDefinition:

ID which identifies the key within the document.

ISO/IEC 00000:ccyy (E)

30 © ISO/IEC 2021 — All rights reserved.

5.4.34 KeyChoice (Model Group)

A choice between a key definition and a key reference.
Content Model: (Key | KeyRef)
Elements:

Element Type Description
Key 5.4.33 Key (Complex Type) Definition of a key.
KeyRef 5.4.36 KeyRef (Complex Type) Reference to a key defined in an external column set or code list.

5.4.35 KeyColumnRef (Complex Type)

Reference to a column which forms part of a key.
Content Model: (Annotation?)
Mixed Content: No
Elements:

Element Type Description
Annotation 5.4.2 Annotation (Complex Type) User annotation for the column.
Attributes:

Attribute Usage Type Description
Ref required xsd:IDREF Reference to the ID of the column within the document.

5.4.36 KeyRef (Complex Type)

Reference to a key defined in an external column set or code list.
Rules:

Rule 35 [application] :

The key reference must be valid.
An application may use the CanonicalVersionUri to select a local copy of the code list or column set which contains
the key definition.
Otherwise the LocationUri value(s) may be tried in order, until a valid code list or column set document (containing
the necessary key definition) is retrieved.
An application must signal an error to the user if it is not able to retrieve a code list or column set document which
contains the necessary key definition.
Content Model: (Annotation? , (CanonicalVersionUri , LocationUri*))
Mixed Content: No
Elements:

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 31

Element Type Description
Annotation 5.4.2 Annotation

(Complex Type)
User annotation for the referenced key.

CanonicalVersionUri (from
5.4.31 IdentificationRefUriSet
(Model Group))

xsd:anyURI Canonical URI which serves as a unique identifier for this
version.
Rules:

Must be an absolute URI, must not be relative.
Must not be used as a de facto location URI.
IdentificationRefUriSet:

Identification of the external column set or code list which
contains the key definition.

LocationUri (from
5.4.31 IdentificationRefUriSet
(Model Group))

xsd:anyURI Suggested retrieval location for this version, in genericode
format.
Rules:

An application must signal an error to the user if a document
retrieved using a LocationUri is not in genericode format.
IdentificationRefUriSet:

Identification of the external column set or code list which
contains the key definition.

Attributes:

Attribute Usage Type Description
Id (from 5.4.29 IdDefinition
(Attribute Group))

required xsd:ID Unique ID within the document.
IdDefinition:

ID which identifies the key within this document.
ExternalRef (from
5.4.27 ExternalReference
(Attribute Group))

required xsd:NCName Unique ID within the external document.
Rules:

The external reference must not be prefixed with a ‘#’
symbol.
ExternalReference:

ID which identifies which identifies the key within the
external column set or code list.

xml:base optional Base URL which applies to relative location URIs.
Rules:

Rule 36 [application] :

xml:base does not apply to canonical URIs.

5.4.37 Language (Attribute Group)

Attributes which describe the language of a piece of text.
Attributes:

ISO/IEC 00000:ccyy (E)

32 © ISO/IEC 2021 — All rights reserved.

Attribute Usage Type Description
Lang optional xsd:language Language code which accepts the same values as ‘xml:lang’.

Unlike ‘xml:lang’, the scope of the language definition is not restricted to the XML
content within the element where the ‘lang’ attribute appears.

5.4.38 LongName (Complex Type)

A human-readable name.
Extension of: xsd:normalizedString
5.4.39 MimeTypedUri (Complex Type)

URI for a resource, with support for specifying the MIME type.
Extension of: xsd:anyURI
Attributes:

Attribute Usage Type Description
MimeType optional xsd:normalizedString MIME type of the resource which can be retrieved from the URI.

5.4.40 NameSet (Model Group)

Various names.
Content Model: (ShortName , LongName*)
Elements:

Element Type Description
ShortName 5.4.45 ShortName (Complex Type) Short name (without whitespace).
LongName 5.4.38 LongName (Complex Type) Human-readable name.

5.4.41 OptionalUseDefinition (Attribute Group)

Attribute set which defines the usage (optional attribute).
Attributes:

Attribute Usage Type Description
Use optional 5.4.49 UseType (Simple Type) Whether the usage is required or optional.

5.4.42 OuterCodeListChoice (Model Group)

A choice which currently only allows a simple (explicit) code list definition.
Content Model: ((SimpleCodeList))
Elements:

Element Type Description
SimpleCodeList (from
5.4.47 SimpleCodeListSequence (Model
Group))

5.4.46 SimpleCodeList
(Complex Type)

Simple (explicit) code list definition.
SimpleCodeListSequence:

Details of a simple code list definition.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 33

5.4.43 RequiredUseDefinition (Attribute Group)

Attribute set which defines the usage (required attribute).
Attributes:

Attribute Usage Type Description
Use required 5.4.49 UseType (Simple Type) Whether the usage is required or optional.

5.4.44 Row (Complex Type)

Row which represents an individual item in a code list.
Content Model: (Annotation? , Value+)
Mixed Content: No
Elements:

Element Type Description
Annotation 5.4.2 Annotation

(Complex Type)
User annotation for the row.

Value 5.4.50 Value (Complex
Type)

Column value for the row.
Rules:

Rule 37 [document] :

A value must be provided for each required column.
A value does not need to be provided for a column if the column is optional.

Rule 38 [document] :

If a value does not have an explicit column reference, the column is taken to
be the column following the column of the preceding value in the row, or the
first column if the value is the first value of the row.

5.4.45 ShortName (Complex Type)

A short name without whitespace that is suitable for use in generating names for software artifacts.
Rules:

Rule 39 [document] :

Must not contain whitespace characters.
Extension of: xsd:token
Attributes:

Attribute Usage Type Description
xml:lang optional The language from which the short name is taken or derived.

5.4.46 SimpleCodeList (Complex Type)

Simple (explicit) code list definition.
Rules:

ISO/IEC 00000:ccyy (E)

34 © ISO/IEC 2021 — All rights reserved.

Rule 40 [application] :

Applications must not have any dependency on the ordering of the rows.
Content Model: (Annotation? , Row*)
Mixed Content: No
Elements:

Element Type Description
Annotation 5.4.2 Annotation (Complex Type) User annotation for the code list.
Row 5.4.44 Row (Complex Type) Row which represents an individual item in the code list.

5.4.47 SimpleCodeListSequence (Model Group)

Details of a simple code list definition.
Content Model: (SimpleCodeList)
Elements:

Element Type Description
SimpleCodeList 5.4.46 SimpleCodeList (Complex Type) Simple (explicit) code list definition.

5.4.48 SimpleValue (Complex Type)

Simple textual value.
Extension of: xsd:string
5.4.49 UseType (Simple Type)

Indicates whether the usage is required or optional.
Restriction of: xsd:token
Allowed Values:

· optional
· required
5.4.50 Value (Complex Type)

An individual code list metadata value.
Content Model: (Annotation? , (SimpleValue | ComplexValue)?)
Mixed Content: No
Elements:

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 35

Element Type Description
Annotation 5.4.2 Annotation (Complex

Type)
User annotation for the value.

SimpleValue (from
5.4.51 ValueChoice
(Model Group))

5.4.48 SimpleValue
(Complex Type)

Simple textual value.
Rules:

The value must be valid with respect to the datatype and
restrictions of the matching column.
ValueChoice:

A choice between a simple textual value and a complex
(structured) XML value. If the value is undefined, then neither
choice is used.

ComplexValue (from
5.4.51 ValueChoice
(Model Group))

5.4.3 AnyOtherContent
(Complex Type)

Complex (structured) XML value.
Rules:

The names of all direct child elements of the ‘ComplexValue’
element must match the datatype ID for the matching column,
unless that ID is set to ‘*’.
The namespace URIs of all direct child elements of the
‘ComplexValue’ element must match the datatype library URI for
the matching column, unless that URI is set to ‘*’.
ValueChoice:

A choice between a simple textual value and a complex
(structured) XML value. If the value is undefined, then neither
choice is used.

Attributes:

Attribute Usage Type Description
ColumnRef (from
5.4.15 ColumnReference (Attribute
Group))

optional xsd:IDREF Reference to a column ID in the document.
ColumnReference:

Reference to the column with which this value is associated.

5.4.51 ValueChoice (Model Group)

A choice between a simple textual value and a complex (structured) XML value.
Content Model: (SimpleValue | ComplexValue)
Elements:

ISO/IEC 00000:ccyy (E)

36 © ISO/IEC 2021 — All rights reserved.

Element Type Description
SimpleValue 5.4.48 SimpleValue (Complex

Type)
Simple textual value.
Rules:

Rule 41 [document] :

The value must be valid with respect to the datatype and restrictions
of the matching column.

ComplexValue 5.4.3 AnyOtherContent
(Complex Type)

Complex (structured) XML value.
Rules:

Rule 42 [document] :

The names of all direct child elements of the 'ComplexValue' element
must match the datatype ID for the matching column, unless that ID
is set to '*'.

Rule 43 [document] :

The namespace URIs of all direct child elements of the 'ComplexValue'
element must match the datatype library URI for the matching
column, unless that URI is set to '*'.

5.4.52 ValueIdentification (Attribute Group)

Information which identifies one of a set of alternate values.
Attributes:

Attribute Usage Type Description
Identifier optional xsd:normalizedString A string which identifies one of a set of alternate values.
xml:lang optional The language from which the value is taken or derived.

5.4.53 VersionLocationUriSet (Model Group)

Identification and location URIs for a version.
Content Model: (CanonicalVersionUri , LocationUri* , AlternateFormatLocationUri*)
Elements:

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 37

Element Type Description
CanonicalVersionUri xsd:anyURI Canonical URI which uniquely identifies this version.

Rules:

Rule 44 [document] :

Must be an absolute URI, must not be relative.

Rule 45 [application] :

Must not be used as a de facto location URI.
LocationUri xsd:anyURI Suggested retrieval location for this version, in genericode

format.
Rules:

Rule 46 [application] :

An application must signal an error to the user if a document
retrieved using a LocationUri is not in genericode format.

AlternateFormatLocationUri 5.4.39 MimeTypedUri
(Complex Type)

Suggested retrieval location for this version, in a non-
genericode format.
Such alternative formats are intended only as additional
renditions of the code list information, not as a replacements
nor as alternatives for use in application processing.

6 Conformance

6.1 Auxiliary Rules

An XML instance conforms to the OASIS Code List Representation genericode document model if it does
not violate any constraints expressed in the genericode.xsd schema associated with this version of the
specification, including auxiliary rules marked as “document” rules.
An application conforms to the OASIS Code List Representation genericode processing rules if, in addition,
it does not violate any of auxiliary rules marked as “application” rules.
6.2 Category: document

NOTE Some of these document-related auxiliary rules can be programmatically tested using ISO/IEC 19757-3
Schematron as described in Annex D.
Rule 1 [document:: complexType CodeListDocument]

A code list must have at least one key, unless it is a metadata-only definition without a 'SimpleCodeList' element.
Rule 4 [document:: element CanonicalUri in complexType CodeListRef]

Must be an absolute URI, must not be relative.
Rule 6 [document:: element CanonicalVersionUri in complexType CodeListRef]

Must be an absolute URI, must not be relative.
Rule 19 [document:: attribute Type in complexType Data]

ISO/IEC 00000:ccyy (E)

38 © ISO/IEC 2021 — All rights reserved.

The datatype ID must not include a namespace prefix.
For the W3C XML Schema datatypes, possible datatype IDs are 'string', 'token', 'boolean', 'decimal', etc.
Rule 20 [document:: attribute Type in complexType Data]

If the data is complex (i.e. XML), this value is set to the root element name for the XML value, or '*' if the root element
name is not restricted.
Rule 22 [document:: attribute DatatypeLibrary in complexType Data]

If the data is complex (i.e. XML), this value is set to the namespace URI for the XML, or '*' if the namespace URI is not
restricted.
Rule 23 [document:: complexType DataRestrictions]

The 'gc:lang' attribute may be specified only if no language is already set for the data type that is being restricted.
Rule 24 [document:: attribute ExternalRef in attributeGroup ExternalReference]

The external reference must not be prefixed with a '#' symbol.
Rule 25 [document:: element CanonicalUri in complexType Identification]

Must be an absolute URI, must not be relative.
Rule 27 [document:: element CanonicalVersionUri in modelGroup IdentificationRefUriSet]

Must be an absolute URI, must not be relative.
Rule 30 [document:: element CanonicalUri in modelGroup IdentificationVersionUriSet]

Must be an absolute URI, must not be relative.
Rule 32 [document:: element CanonicalVersionUri in modelGroup IdentificationVersionUriSet]

Must be an absolute URI, must not be relative.
Rule 34 [document:: complexType Key]

Only required columns can be used for keys.
Rule 37 [document:: element Value in complexType Row]

A value must be provided for each required column.
A value does not need to be provided for a column if the column is optional.
Rule 38 [document:: element Value in complexType Row]

If a value does not have an explicit column reference, the column is taken to be the column following the column of
the preceding value in the row, or the first column if the value is the first value of the row.
Rule 39 [document:: complexType ShortName]

Must not contain whitespace characters.
Rule 41 [document:: element SimpleValue in modelGroup ValueChoice]

The value must be valid with respect to the datatype and restrictions of the matching column.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 39

Rule 42 [document:: element ComplexValue in modelGroup ValueChoice]

The names of all direct child elements of the 'ComplexValue' element must match the datatype ID for the matching
column, unless that ID is set to '*'.
Rule 43 [document:: element ComplexValue in modelGroup ValueChoice]

The namespace URIs of all direct child elements of the 'ComplexValue' element must match the datatype library URI
for the matching column, unless that URI is set to '*'.
Rule 44 [document:: element CanonicalVersionUri in modelGroup VersionLocationUriSet]

Must be an absolute URI, must not be relative.
Rule 48 [document:: element CanonicalUri in complexType CodeListSetRef]

Must be an absolute URI, must not be relative.
Rule 50 [document:: element CanonicalVersionUri in complexType CodeListSetRef]

Must be an absolute URI, must not be relative.

6.3 Category: application

Rule 2 [application:: attribute xml:base in complexType CodeListDocument]

xml:base does not apply to canonical URIs.
Rule 3 [application:: complexType CodeListRef]

The code list reference must be valid.
An application may use the CanonicalVersionUri to select a local copy of the code list.
If there is no CanonicalVersionUri, the CanonicalUri may be used to select a local copy of the code list.
Otherwise the LocationUri value(s) may be tried in order, until a valid code list document is retrieved.
An application must signal an error to the user if it is not able to retrieve a code list document to match the code list
reference.
Rule 5 [application:: element CanonicalUri in complexType CodeListRef]

Must not be used as a de facto location URI.
Rule 7 [application:: element CanonicalVersionUri in complexType CodeListRef]

Must not be used as a de facto location URI.
Rule 8 [application:: element LocationUri in complexType CodeListRef]

If the CanonicalVersionUri has been defined, the LocationUri must reference a genericode CodeList document.
If the CanonicalVersionUri is undefined, the LocationUri must reference a genericode CodeList Metadata document.
An application must signal an error to the user if a LocationUri does not reference the appropriate type of genericode
document.
Rule 9 [application:: element LocationUri in complexType CodeListRef]

An application must signal an error to the user if a document retrieved using a LocationUri is not in genericode format.

ISO/IEC 00000:ccyy (E)

40 © ISO/IEC 2021 — All rights reserved.

Rule 10 [application:: attribute xml:base in complexType CodeListRef]

xml:base does not apply to canonical URIs.
Rule 11 [application:: attribute xml:base in complexType CodeListSetDocument]

xml:base does not apply to canonical URIs.
Rule 12 [application:: complexType ColumnRef]

The column reference must be valid.
An application may use the CanonicalVersionUri to select a local copy of the code list or column set which contains
the column definition.
Otherwise the LocationUri value(s) may be tried in order, until a valid code list or column set document (containing
the necessary column definition) is retrieved.
An application must signal an error to the user if it is not able to retrieve a code list or column set document which
contains the necessary column definition.
Rule 13 [application:: attribute Use (from) in complexType ColumnRef]

If specified, this overrides the usage specified in the external column set or code list document.
Rule 14 [application:: attribute xml:base in complexType ColumnRef]

xml:base does not apply to canonical URIs.
Rule 15 [application:: attribute xml:base in complexType ColumnSet]

xml:base does not apply to canonical URIs.
Rule 16 [application:: attribute xml:base in complexType ColumnSetDocument]

xml:base does not apply to canonical URIs.
Rule 17 [application:: complexType ColumnSetRef]

The column set reference must be valid.
An application may use the CanonicalVersionUri to select a local copy of the column set or code list.
Otherwise the LocationUri value(s) may be tried in order, until a valid column set or code list document is retrieved.
An application must signal an error to the user if it is not able to retrieve a column set or code list document to match
the column set reference.
Rule 18 [application:: attribute xml:base in complexType ColumnSetRef]

xml:base does not apply to canonical URIs.
Rule 21 [application:: attribute DatatypeLibrary in complexType Data]

If this URI not explicitly provided, the datatype library for the enclosing column set is used.
Rule 26 [application:: element CanonicalUri in complexType Identification]

Must not be used as a de facto location URI.
Rule 28 [application:: element CanonicalVersionUri in modelGroup IdentificationRefUriSet]

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 41

Must not be used as a de facto location URI.
Rule 29 [application:: element LocationUri in modelGroup IdentificationRefUriSet]

An application must signal an error to the user if a document retrieved using a LocationUri is not in genericode format.
Rule 31 [application:: element CanonicalUri in modelGroup IdentificationVersionUriSet]

Must not be used as a de facto location URI.
Rule 33 [application:: element CanonicalVersionUri in modelGroup IdentificationVersionUriSet]

Must not be used as a de facto location URI.
Rule 35 [application:: complexType KeyRef]

The key reference must be valid.
An application may use the CanonicalVersionUri to select a local copy of the code list or column set which contains
the key definition.
Otherwise the LocationUri value(s) may be tried in order, until a valid code list or column set document (containing
the necessary key definition) is retrieved.
An application must signal an error to the user if it is not able to retrieve a code list or column set document which
contains the necessary key definition.
Rule 36 [application:: attribute xml:base in complexType KeyRef]

xml:base does not apply to canonical URIs.
Rule 40 [application:: complexType SimpleCodeList]

Applications must not have any dependency on the ordering of the rows.
Rule 45 [application:: element CanonicalVersionUri in modelGroup VersionLocationUriSet]

Must not be used as a de facto location URI.
Rule 46 [application:: element LocationUri in modelGroup VersionLocationUriSet]

An application must signal an error to the user if a document retrieved using a LocationUri is not in genericode format.
Rule 47 [application:: complexType CodeListSetRef]

The code list set reference must be valid.
An application may use the CanonicalVersionUri to select a local copy of the code list set.
If there is no CanonicalVersionUri, the CanonicalUri may be used to select a local copy of the code list set.
Otherwise the LocationUri value(s) may be tried in order, until a valid code list set document is retrieved.
An application must signal an error to the user if it is not able to retrieve a code list set document to match the code
list set reference.
Rule 49 [application:: element CanonicalUri in complexType CodeListSetRef]

Must not be used as a de facto location URI.
Rule 51 [application:: element CanonicalVersionUri in complexType CodeListSetRef]

ISO/IEC 00000:ccyy (E)

42 © ISO/IEC 2021 — All rights reserved.

Must not be used as a de facto location URI.
Rule 52 [application:: element LocationUri in complexType CodeListSetRef]

If the CanonicalVersionUri has been defined, the LocationUri must reference a genericode CodeListSet document.
If the CanonicalVersionUri is undefined, the LocationUri must reference a genericode CodeListSet Metadata
document.
An application must signal an error to the user if a LocationUri does not reference the appropriate type of genericode
document.
Rule 53 [application:: element LocationUri in complexType CodeListSetRef]

An application must signal an error to the user if a document retrieved using a LocationUri is not in genericode format.
Rule 54 [application:: attribute xml:base in complexType CodeListSetRef]

xml:base does not apply to canonical URIs.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 43

Annex A
(informative)

Release Notes

A.1 Availability

Online and downloadable versions of the latest OASIS release of this package are available from:
— https://docs.oasis-open.org/codelist/genericode/v1.0/csd04/
Online and downloadable versions of the latest ISO/IEC release of this package are available from:
— http://standards.iso.org/ittf/PubliclyAvailableStandards/

A.2 Package Structure

The genericode specification is published as a zip archive in the release directory. Unzipping this archive
creates a directory named genericode/v1.0/csd04 containing a “doc/” directory with documentation. The
authoritative source of the documentation is a master DocBook XML file (genericode-v1.0-csd04.xml), a
generated hypertext version of this file (genericode-v1.0-csd04.html), and a generated PDF version of this
file (genericode-v1.0-csd04.pdf). The files in other subdirectories, linked to from genericode-v1.0-
csd04.xml, genericode-v1.0-csd04.html, and genericode-v1.0-csd04.pdf, contain the various normative
and informational pieces of the genericode release. A description of each subdirectory is given below. Note
that while the genericode.xml file is the “original” of this specification, it may not be viewable in all currently
available web browsers.

doc/

Documentation sources and published results
doc/art/

HTML presentation artwork
doc/art/pdfart

PDF publishing artwork
doc/db/

DocBook stylesheets for viewing XML and HTML
json-example/

Sample genericode JSON files
sch/

Schematron auxiliary rule constraints
xml/

Sample genericode XML files
xsd/

XML structural constraints

ISO/IEC 00000:ccyy (E)

44 © ISO/IEC 2021 — All rights reserved.

https://docs.oasis-open.org/codelist/genericode/v1.0/csd04/
http://standards.iso.org/ittf/PubliclyAvailableStandards/

xslt/

Sample XSLT transformation (see Annex B)

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 45

Annex B

Sample transformation to JSON

Recognizing the custom use of JSON in a tight binding between user-defined processes, the committee sees
no purpose served by standardizing a JSON syntax for the genericode vocabulary. Genericode is for the
interchange of code list information.
Nevertheless, having the information transformed into JSON may be a convenience to users. Included in
the distribution is a non-normative XSLT 2.0 transformation of genericode XML into a colloquial JSON
syntax. No JSON schema is provided for validating the colloquial syntax, as it is anticipated users will have
the need for their own custom JSON. This transformation may be useful as inspiration for creating one’s
own transformation.
The sample xslt/gc2gcj.xsl stylesheet reads genericode XML and produces well-formed JSON syntax
as its output. The stylesheet imports the xslt/jsonsupport.xsl fragment which is not run standalone.

ISO/IEC 00000:ccyy (E)

46 © ISO/IEC 2021 — All rights reserved.

Annex C

Sample instances of genericode

The distribution directory xml/ includes the following sample instances copied from the indicated
publicly-available sources:
— from https://docs.oasis-open.org/legalxml-courtfiling/ecf/v5.0/cs01/schema/

— CaseTypeCode.gc

— a short list of only codes representing types of cases
— from https://docs.oasis-open.org/ubl/os-UBL-2.3/cl/gc/default/

— ChannelCode-2.3.gc

— a typical list of code, name, and description values representing type available channels
for communication

— CurrencyCode-2.3.gc

— a code list with five columns representing currencies of the world
— UnitOfMeasureCode-2.3.gc

— a sparsely populated list with seven columns representing units of measure for values
The distribution directory json-example/ includes the JSON transformations of the examples found in
the xml/ directory. These are created using the make-sample.sh script that invokes the transformation
described in Annex C.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 47

https://docs.oasis-open.org/legalxml-courtfiling/ecf/v5.0/cs01/schema/
https://docs.oasis-open.org/ubl/os-UBL-2.3/cl/gc/default/

Annex D

Testing select document conformance rules

Some of the document conformance auxiliary rules prescribed in 6.2 Category: document can be tested
using ISO/IEC 19757-3 Schematron.
The sample sch/genericode.sch Schematron assertion schema is provided as a sample set of assertions
to be converted into testable code.

ISO/IEC 00000:ccyy (E)

48 © ISO/IEC 2021 — All rights reserved.

Annex E
(informative)

The Open-edi reference model perspective of code lists

ISO/IEC 14662:2010 Information technology - Open-edi reference model [1] has been developed primarily
in order to provide standards required for the inter-working of organizations through interconnected
information technology systems. Open-edi lowers barriers to electronic data interchange by introducing
standard business scenarios and the necessary services to support them.
The Open-edi Reference Model identifies the required standards for Open-edi and provides a reference
for those standards by defining the basic concepts used to develop them.
Figure E.1 depicts two views to describe the relevant aspects of business transactions:
— the Business Operational View (BOV);
— the Functional Service View (FSV).

Figure E.1 — Open-edi Overview

The BOV addresses the aspects of the semantics of business data in business transactions and associated
data interchanges which apply to the business needs of Open-edi. The BOV-related standards are tools
and rules by which users who understand the operating aspects of a business domain may create
scenarios.
The FSV addresses the supporting services meeting the mechanistic needs of Open-edi, focusing on
information technology aspects of functional capabilities, service interfaces, and protocols.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 49

Annex F
(informative)

Acknowledgements

The following persons and companies participated as members of the OASIS Code List Representation
Technical Committee during the years of its development (2006–2021).

Todd Albers, Federal Reserve Bank of Minneapolis
Kenneth Bengtsson, Individual
Erlend Klakegg Bergheim, The Norwegian Agency for Public and Financial Management (DFO)
Jon Bosak, Individual
James Cabral, Individual
Andrea Caccia, Individual
Ger Clancy, IBM
Anthony Coates, Individual
Ray Denenberg, Library of Congress
Marc Gratacos, Individual
Jim Harris, National Center for State Courts
Philip Helger, Individual
G. Ken Holman, Crane Softwrights Ltd.
Natalie Muric, Publications Office of the European Union
Levine Naidoo, IBM
Paul Spencer, Individual
Dennis Weddig, Federal Reserve Bank of Minneapolis

ISO/IEC 00000:ccyy (E)

50 © ISO/IEC 2021 — All rights reserved.

Annex G
(informative)

Temporary Annex - Rendering per ISO/IEC Directives, Part 2

NOTE This temporary appendix will be removed in the final version of the committee specification.
During the review process of genericode 1.0, the distribution includes the parallel production of the
specification PDF for publishing as a future ISO/IEC 00000 using the page layout prescribed by “ISO/IEC
Directives, Part 2”.
This rendering is found at iso-iec-00000-genericode-v1.0-draft.pdf . This rendering is not
included in the final distribution but its content is submitted directly to ITTF for publishing.

ISO/IEC 00000:ccyy (E)

© ISO/IEC 2021 — All rights reserved. 51

iso-iec-00000-genericode-v1.0-draft.pdf

Bibliography

1 ISO/IEC 14662:2010 Information technology - Open-edi reference model

ISO/IEC 00000:ccyy (E)

52 © ISO/IEC 2021 — All rights reserved.

http://standards.iso.org/ittf/PubliclyAvailableStandards/c055290_ISO_IEC_14662_2010%28E%29.zip

ISO/IEC 00000:ccyy (E)

ICS
Price based on 52 pages

© ISO/IEC 2021 — All rights reserved.

	ISO/IEC 00000:ccyy (E)
	ISO - cover page
	Foreword
	0 Introduction
	1 Scope
	2 Normative References
	3 Terminology
	3.1 Terms and Definitions

	4 Genericode Model
	4.1 Tabular Structure
	4.2 Genericode Document Types
	4.2.1 Summary of Document Types
	4.2.2 Column Set Documents
	4.2.3 Code List Documents
	4.2.4 Code List Set Documents

	4.3 Column Sets – Columns and Keys
	4.4 Code lists
	4.5 Code list sets
	4.6 Namespaces

	5 Genericode XML Serialization
	5.1 Schema Version and Namespace
	5.2 Notation
	5.3 Table of Schema Definitions
	5.3.1 Global Elements
	5.3.2 Global Complex Types
	5.3.3 Global Simple Types
	5.3.4 Global Model Groups
	5.3.5 Global Attribute Groups

	5.4 Global Schema Definitions in Alphabetic Order
	5.4.1 Agency (Complex Type)
	5.4.2 Annotation (Complex Type)
	5.4.3 AnyOtherContent (Complex Type)
	5.4.4 AnyOtherLanguageContent (Complex Type)
	5.4.5 CodeList (Element)
	5.4.6 CodeListDocument (Complex Type)
	5.4.7 CodeListRef (Complex Type)
	5.4.8 CodeListSet (Element)
	5.4.9 CodeListSetChoice (Model Group)
	5.4.10 CodeListSetDocument (Complex Type)
	5.4.11 CodeListSetRef (Complex Type)
	5.4.12 Column (Complex Type)
	5.4.13 ColumnChoice (Model Group)
	5.4.14 ColumnRef (Complex Type)
	5.4.15 ColumnReference (Attribute Group)
	5.4.16 ColumnSet (Element)
	5.4.17 ColumnSet (Complex Type)
	5.4.18 ColumnSetChoice (Model Group)
	5.4.19 ColumnSetContent (Model Group)
	5.4.20 ColumnSetDocument (Complex Type)
	5.4.21 ColumnSetRef (Complex Type)
	5.4.22 Data (Complex Type)
	5.4.23 DataRestrictions (Complex Type)
	5.4.24 DatatypeFacet (Complex Type)
	5.4.25 DefaultDatatypeLibrary (Attribute Group)
	5.4.26 DocumentHeader (Model Group)
	5.4.27 ExternalReference (Attribute Group)
	5.4.28 GeneralIdentifier (Complex Type)
	5.4.29 IdDefinition (Attribute Group)
	5.4.30 Identification (Complex Type)
	5.4.31 IdentificationRefUriSet (Model Group)
	5.4.32 IdentificationVersionUriSet (Model Group)
	5.4.33 Key (Complex Type)
	5.4.34 KeyChoice (Model Group)
	5.4.35 KeyColumnRef (Complex Type)
	5.4.36 KeyRef (Complex Type)
	5.4.37 Language (Attribute Group)
	5.4.38 LongName (Complex Type)
	5.4.39 MimeTypedUri (Complex Type)
	5.4.40 NameSet (Model Group)
	5.4.41 OptionalUseDefinition (Attribute Group)
	5.4.42 OuterCodeListChoice (Model Group)
	5.4.43 RequiredUseDefinition (Attribute Group)
	5.4.44 Row (Complex Type)
	5.4.45 ShortName (Complex Type)
	5.4.46 SimpleCodeList (Complex Type)
	5.4.47 SimpleCodeListSequence (Model Group)
	5.4.48 SimpleValue (Complex Type)
	5.4.49 UseType (Simple Type)
	5.4.50 Value (Complex Type)
	5.4.51 ValueChoice (Model Group)
	5.4.52 ValueIdentification (Attribute Group)
	5.4.53 VersionLocationUriSet (Model Group)

	6 Conformance
	6.1 Auxiliary Rules
	6.2 Category: document
	6.3 Category: application

	Annex A (informative) Release Notes
	Annex B Sample transformation to JSON
	Annex C Sample instances of genericode
	Annex D Testing select document conformance rules
	Annex E (informative) The Open-edi reference model perspective of code lists
	Annex F (informative) Acknowledgements
	Annex G (informative) Temporary Annex - Rendering per ISO/IEC Directives, Part 2
	 Bibliography

