
Code List Representation
(genericode) Version 1.0
OASIS Standard

31 January 2023

This stage:
https://docs.oasis-open.org/codelist/genericode/v1.0/os/genericode-v1.0-os.html
https://docs.oasis-open.org/codelist/genericode/v1.0/os/genericode-v1.0-os.pdf
https://docs.oasis-open.org/codelist/genericode/v1.0/os/genericode-v1.0-os.xml (Authoritative)

Previous stage:
https://docs.oasis-open.org/codelist/genericode/v1.0/cs02/genericode-v1.0-cs02.html
https://docs.oasis-open.org/codelist/genericode/v1.0/cs02/genericode-v1.0-cs02.pdf
https://docs.oasis-open.org/codelist/genericode/v1.0/cs02/genericode-v1.0-cs02.xml (Authoritative)

Latest stage:
https://docs.oasis-open.org/codelist/genericode/v1.0/genericode-v1.0.html
https://docs.oasis-open.org/codelist/genericode/v1.0/genericode-v1.0.pdf

Technical Committee:
OASIS Code List Representation TC

Chair:
Andrea Caccia (andrea.caccia@studiocaccia.com), Individual

Editor:
G. Ken Holman (gkholman@CraneSoftwrights.com), Crane Softwrights Ltd.

Additional artefacts:
This prose specification is one component of a Work Product that also includes:

• Documentation support files:

• https://docs.oasis-open.org/codelist/genericode/v1.0/os/art/

• https://docs.oasis-open.org/codelist/genericode/v1.0/os/db/

• JSON sample instances:

• https://docs.oasis-open.org/codelist/genericode/v1.0/os/json-example/

• Schematron auxiliary rule constraints:

• https://docs.oasis-open.org/codelist/genericode/v1.0/os/sch/

• XML sample instances:

• https://docs.oasis-open.org/codelist/genericode/v1.0/os/xml/

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 1 of 68

https://docs.oasis-open.org/codelist/genericode/v1.0/os/genericode-v1.0-os.html
https://docs.oasis-open.org/codelist/genericode/v1.0/os/genericode-v1.0-os.pdf
https://docs.oasis-open.org/codelist/genericode/v1.0/os/genericode-v1.0-os.xml
https://docs.oasis-open.org/codelist/genericode/v1.0/cs02/genericode-v1.0-cs02.html
https://docs.oasis-open.org/codelist/genericode/v1.0/cs02/genericode-v1.0-cs02.pdf
https://docs.oasis-open.org/codelist/genericode/v1.0/cs02/genericode-v1.0-cs02.xml
https://docs.oasis-open.org/codelist/genericode/v1.0/genericode-v1.0.html
https://docs.oasis-open.org/codelist/genericode/v1.0/genericode-v1.0.pdf
https://www.oasis-open.org/committees/codelist/
mailto:andrea.caccia@studiocaccia.com
mailto:gkholman@CraneSoftwrights.com
http://www.CraneSoftwrights.com/links/info-genericode.htm
https://docs.oasis-open.org/codelist/genericode/v1.0/os/art/
https://docs.oasis-open.org/codelist/genericode/v1.0/os/db/
https://docs.oasis-open.org/codelist/genericode/v1.0/os/json-example/
https://docs.oasis-open.org/codelist/genericode/v1.0/os/sch/
https://docs.oasis-open.org/codelist/genericode/v1.0/os/xml/

• XML structural constraints:

• https://docs.oasis-open.org/codelist/genericode/v1.0/os/xsd/

• Sample JSON translation in XSLT:

• https://docs.oasis-open.org/codelist/genericode/v1.0/os/xslt/

The ZIP containing the complete files of this release is found in the directory:

• https://docs.oasis-open.org/codelist/genericode/v1.0/os/genericode-v1.0-os.zip

Declared XML Namespaces:
http://docs.oasis-open.org/codelist/ns/genericode/1.0/
http://docs.oasis-open.org/codelist/ns/rule/1.0/

Abstract:
This specification defines the genericode v1.0 vocabulary, rules, and serialization.

Status:
This document was last revised or approved by the OASIS Members on the above date. The level
of approval is also listed above. Check the “Latest stage” location noted above for possible later
revisions of this document. Any other numbered Versions and other technical work produced by the
Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_ab­
brev=codelist#technical.

TC members should send comments on this document to the TC’s email list. Others should send
comments to the TC’s public comment list, after subscribing to it by following the instructions at the
“Send A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/codelist/.

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the
mode chosen when the Technical Committee was established. For information on whether any pat­
ents have been disclosed that may be essential to implementing this specification, and any offers
of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical
Committee web page (https://www.oasis-open.org/committees/codelist/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such
plain text file and display content in the Work Product’s prose narrative document(s), the content in
the separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[genericode-1.0] Code List Representation (genericode) Version 1.0. Edited by G. Ken Holman. 31
January 2023. OASIS Standard. https://docs.oasis-open.org/codelist/genericode/v1.0/os/ge­
nericode-v1.0-os.html. Latest stage: https://docs.oasis-open.org/codelist/genericode/v1.0/ge­
nericode-v1.0.html.

Notices:
Copyright © OASIS Open 2001-2023. All Rights Reserved.

Distributed under the terms of the OASIS IPR Policy, [https://www.oasis-open.org/policies-guide­
lines/ipr/]. For complete copyright information please see the full Notices section in Appendix H,
Notices.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 2 of 68

https://docs.oasis-open.org/codelist/genericode/v1.0/os/xsd/
https://docs.oasis-open.org/codelist/genericode/v1.0/os/xslt/
https://docs.oasis-open.org/codelist/genericode/v1.0/os/genericode-v1.0-os.zip
http://docs.oasis-open.org/codelist/ns/genericode/1.0/
http://docs.oasis-open.org/codelist/ns/rule/1.0/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=codelist#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=codelist#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=codelist
https://www.oasis-open.org/committees/codelist/
https://www.oasis-open.org/policies-guidelines/ipr/#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/committees/codelist/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26#wpComponentsCompLang
https://docs.oasis-open.org/codelist/genericode/v1.0/os/genericode-v1.0-os.html
https://docs.oasis-open.org/codelist/genericode/v1.0/os/genericode-v1.0-os.html
https://docs.oasis-open.org/codelist/genericode/v1.0/genericode-v1.0.html
https://docs.oasis-open.org/codelist/genericode/v1.0/genericode-v1.0.html
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/policies-guidelines/ipr/

Table of Contents
1 Introduction ... 5

1.1 Overview .. 5
1.1.1 Key/value semantics ... 5
1.1.2 IT-enabled expression of coded domains ... 5
1.1.3 Genericode .. 6
1.1.4 What is a Code List? (Non-Normative) ... 6

1.2 Terminology .. 9
1.2.1 Terms and Definitions ... 9

1.3 Normative References ... 9
1.4 Non-normative References .. 9

2 Genericode Model ... 10
2.1 Tabular Structure ... 10
2.2 Genericode Document Types ... 10

2.2.1 Summary of Document Types ... 10
2.2.2 Column Set Documents .. 10
2.2.3 Code List Documents ... 10
2.2.4 Code List Set Documents ... 10

2.3 Column Sets – Columns and Keys ... 10
2.4 Code lists ... 12
2.5 Code list sets .. 15
2.6 Namespaces .. 16

3 Genericode XML Serialization ... 17
3.1 Schema Version and Namespace .. 17
3.2 Notation .. 17
3.3 Table of Schema Definitions ... 17

3.3.1 Global Elements ... 17
3.3.2 Global Complex Types .. 17
3.3.3 Global Simple Types ... 18
3.3.4 Global Model Groups .. 18
3.3.5 Global Attribute Groups .. 19

3.4 Global Schema Definitions in Alphabetic Order ... 19
3.4.1 Agency (Complex Type) .. 19
3.4.2 Annotation (Complex Type) ... 19
3.4.3 AnyOtherContent (Complex Type) ... 20
3.4.4 AnyOtherLanguageContent (Complex Type) .. 20
3.4.5 CodeList (Element) ... 20
3.4.6 CodeListDocument (Complex Type) .. 20
3.4.7 CodeListRef (Complex Type) .. 22
3.4.8 CodeListSet (Element) .. 24
3.4.9 CodeListSetChoice (Model Group) .. 24
3.4.10 CodeListSetDocument (Complex Type) .. 24
3.4.11 CodeListSetRef (Complex Type) .. 25
3.4.12 Column (Complex Type) ... 27
3.4.13 ColumnChoice (Model Group) ... 28
3.4.14 ColumnRef (Complex Type) .. 29
3.4.15 ColumnReference (Attribute Group) ... 31
3.4.16 ColumnSet (Element) ... 31
3.4.17 ColumnSet (Complex Type) .. 31
3.4.18 ColumnSetChoice (Model Group) .. 33
3.4.19 ColumnSetContent (Model Group) ... 33
3.4.20 ColumnSetDocument (Complex Type) ... 34
3.4.21 ColumnSetRef (Complex Type) ... 35
3.4.22 Data (Complex Type) .. 37
3.4.23 DataRestrictions (Complex Type) .. 38
3.4.24 DatatypeFacet (Complex Type) ... 39

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 3 of 68

3.4.25 DefaultDatatypeLibrary (Attribute Group) ... 39
3.4.26 DocumentHeader (Model Group) ... 39
3.4.27 ExternalReference (Attribute Group) .. 40
3.4.28 GeneralIdentifier (Complex Type) .. 40
3.4.29 IdDefinition (Attribute Group) ... 40
3.4.30 Identification (Complex Type) .. 40
3.4.31 IdentificationRefUriSet (Model Group) .. 42
3.4.32 IdentificationVersionUriSet (Model Group) .. 43
3.4.33 Key (Complex Type) ... 43
3.4.34 KeyChoice (Model Group) ... 45
3.4.35 KeyColumnRef (Complex Type) .. 45
3.4.36 KeyRef (Complex Type) .. 45
3.4.37 Language (Attribute Group) ... 47
3.4.38 LongName (Complex Type) ... 47
3.4.39 MimeTypedUri (Complex Type) ... 47
3.4.40 NameSet (Model Group) ... 48
3.4.41 OptionalUseDefinition (Attribute Group) ... 48
3.4.42 OuterCodeListChoice (Model Group) ... 48
3.4.43 RequiredUseDefinition (Attribute Group) .. 48
3.4.44 Row (Complex Type) .. 49
3.4.45 ShortName (Complex Type) .. 49
3.4.46 SimpleCodeList (Complex Type) .. 50
3.4.47 SimpleCodeListSequence (Model Group) ... 50
3.4.48 SimpleValue (Complex Type) .. 50
3.4.49 UseType (Simple Type) ... 50
3.4.50 Value (Complex Type) ... 51
3.4.51 ValueChoice (Model Group) .. 52
3.4.52 ValueIdentification (Attribute Group) ... 52
3.4.53 VersionLocationUriSet (Model Group) .. 53

4 Conformance ... 54
4.1 Auxiliary Rules .. 54
4.2 Category: document .. 54
4.3 Category: application ... 56

Appendixes

A Release Notes (Non-Normative) ... 60
A.1 Availability .. 60
A.2 Package Structure (Non-Normative) ... 60

B Sample transformation to JSON (Non-Normative) .. 61
C Sample instances of genericode (Non-Normative) ... 62
D Testing select document conformance rules (Non-Normative) ... 63
E Considerations of life cycle metadata (Non-Normative) .. 64
F The Open-edi reference model perspective of code lists (Non-Normative) 65
G Acknowledgements (Non-Normative) .. 66
H Notices ... 67

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 4 of 68

1 Introduction
1.1 Overview
1.1.1 Key/value semantics
The key-value store concept is a long-understood data storage paradigm for managing as associative
array arrangement of information. The keys of the store are unique values expressed either as
monolithic values or the combination of multi-faceted components. The keys are unique to ensure
unambiguous association to them with the information values that belong with a given key value.

The associated information values may be simple values or richly-structured values, or may not exist
at all for a given key value. Simply the enumeration of a set of unique values can be regarded as
a useful key-value association without any values specified. It may be that users of a set of keys
implicitly understand the concept associated with each key value without the need to explicitly reify
the concept in any associated information values.

When moving information between key-value stores, or publishing the information found in a key-val­
ue store, an IT-enabled serialization format needs to accommodate the collection of information as a
whole, the individual key values however composed, and the optional though potentially voluminous
information item values associated with each key.

Supporting multiple ad hoc or colloquial expressions of key-value associations, whether IT-enabled
in a data format or not IT-enabled in arbitrary and opaque publication formats such as PDF and
HTML tables, can be a burden for publishers and consumers alike. Adopting a single standardized
IT-enabled key-value serialization will promote easier publishing and easier ingestion of the pertinent
aspects of a set of keys and their associated information values.

1.1.2 IT-enabled expression of coded domains
ISO/IEC 14662 Open-edi reference model provides standards for the inter-working of organizations
through interconnected information technology (IT) systems. See Appendix F, The Open-edi reference
model perspective of code lists (Non-Normative) for the relationship between the semantic and IT-en­
abling perspectives of business transactions in, respectively, the Business Operational View (BOV)
and the Functional Services View (FSV).

ISO/IEC 15944-10 IT-enabled coded domains as semantic components in business transactions
details important aspects of the BOV of a “set of codes representing X”, where X is a semantic
umbrella concept scope and individual codes are distinct and separate semantic concepts within
that scope. Simple umbrella semantic examples are days of the week, countries of the world, and
financial currencies. Individual distinct semantic concepts are “Tuesday” and “Thursday”, “Australia”
and “Tanzania”, and “the US dollar” and “the Euro”.

Some semantic concepts, such as days of the week, are accepted as given without the need for
any governing Source Authority or coded domain Source Authority. Most other e-business semantic
concepts involved in connecting the IT systems for the inter-working of organizations need such
authoritative governance and managed publication of the semantics to be mutually understood by
the expression of a code in a coded domain. Such code-level metadata could express linguistic or
illustrative explication of the semantics of the given coded value unique key.

Colloquially, such collections of codes of a coded domain are referred to as code lists. The genericode
specification satisfies the FSV perspective of code lists by providing an IT-enabled expression of
coded domains for the direct interchange or open publishing of their content and semantics in a
machine-readable syntax.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 5 of 68

1.1.3 Genericode
Code lists, often regarded simply as enumerated values, have been with us since long before comput­
ers. They should be well understood and easily dealt with by now. Unfortunately, they are not. As
is often the case, if you take a fundamentally simple concept, you find that everyone professes to
understand it with complete clarity. When you look more closely, you find that everybody has their own
unique view of what the problem is and how it should be solved.

If code lists were really so simple and obvious, there would already be a single, well-known and
accepted way of handling them in XML. There is no such agreed solution, though. The problem is that
while code lists are a well understood concept, people don’t actually agree exactly on what code lists
are, and how they should be used.

The OASIS Code List Representation format, “genericode”1, is a single semantic model of code lists
and accompanying XML serialization (supported by a W3C XML Schema) that can encode a broad
range of code list information. The serialization is designed to IT-enable the interchange or distribution
of machine-readable code list information between systems. Note that genericode is not designed as
a run-time format for accessing code list information, and is not optimized for such usage. Rather, it is
designed as an interchange format that can be transformed into formats suitable for run-time usage,
or loaded into systems that perform run-time processing using code list information.

1.1.4 What is a Code List? (Non-Normative)
What is a code list, then? Most people would agree that the following is a code list:

{“SUN”, “MON”, “TUE”, “WED”, “THU”, “FRI”, “SAT”}

Example 1: Days of the week: English, uppercase

This is a perfectly reasonable set of alphabetic codes for representing days of the week. However, so
is:

{“Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”}

Example 2: Days of the week: English, mixed case

These two code lists are similar, but certainly not identical. That said, they can both be used to
represent the days of the week. Of course, you could also use:

{“Dim”, “Lun”, “Mar”, “Mer”, “Jeu”, “Ven”, “Sam”}

Example 3: Days of the week: French, mixed case

which is created from abbreviations for the days of the week in French. Then again, you could use:

{0, 1, 2, 3, 4, 5, 6}

Example 4: Days of the week: numeric

which is suitable as a computer representation, e.g. for a database column. On the other hand:

{“S”, “M”, “T”, “W”, “T”, “F”, “S”}

Example 5: Days of the week: English, single character

is not suitable as a code list for the days of the week, because the values are not unique.

Now suppose that you are using codes to represent days of the week in an application, and you
are displaying the days of the week using 3-letter abbreviations in English or French. In that context,

1Genericode can be written starting either with an upper-case or lower-case “g”. It depends whether genericode is at the start of
the sentence or not.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 6 of 68

should Example 2 and Example 3 be considered to be code lists, or should they be considered to be
display values that would be keyed to either the Example 1 or Example 4 codes? The fact is, they
could be either code lists or display values. A value which is a code in one context might only be
an associated value for that code in another context. Nothing privileges any of these code lists over
the others in terms of ability or suitability to be the code list (except the Example 5 values which are
not suitable). There is a choice of code lists that can be used, and the answer to the question “which
choice is the best?” depends on the needs of each particular situation.

What the above examples show is that for each distinct entry in a code list, there are many possible
associated values (we use the term distinct entry to express the idea that we are talking a single item
that needs to be represented in the code list, rather than about the code value(s) that can be used to
identify that item). Some of those associated values are suitable for use in code lists, some are not.
This leads to a tabular model, where each row of the table represents a conceptual code, and each
column represents an associated value (code list metadata), as follows:

Numeric (key) English, upper­
case (key)

English, mixed
case (key)

French, mixed
case (key)

English, single
character

0 SUN Sun Dim S
1 MON Mon Lun M
2 TUE Tue Mar T
3 WED Wed Mer W
4 THU Thu Jeu T
5 FRI Fri Ven F
6 SAT Sat Sam S

Table 1: Days of the week

Notice that the first 4 of the 5 columns have been labeled as “key” columns. This means that the
values in those columns can be used to uniquely identify the rows, and hence they can be used as
code list values. The term key is used here similarly to a relational database table.

This is the most common case, where a single column can be used as a key. However, consider the
following modification:

Numeric (key) English, uppercase
(key)

English, single char­
acter #1

English, single char­
acter #2

0 SUN S U
1 MON M O
2 TUE T U
3 WED W E
4 THU T H
5 FRI F R
6 SAT S A

Table 2: Days of the week, version 2

Here, the first two columns are each a key column. The last two columns are not individually key
columns, but together they form a compound key, i.e. while the individual columns do not contain
unique values, the pair of values is unique within each row. This is again similar to what happens in
some relational databases, that a key for the rows need not be constructed from a single column, but
instead may be constructed by combining two or more columns.

Finally, there is no reason why a column should only contain simple values like strings or numbers. A
column could also contain a complex compound group of data, such as a fragment of XML:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 7 of 68

Numeric
(key)

English,
uppercase
(key)

XHTML

0 SUN <a href="http://days.of.week/
SUN">Sunday

1 MON <a href="http://days.of.week/
MON"><i>Monday</i>

2 TUE <a href="http://days.of.week/
TUE">Tuesday

3 WED <a href="http://days.of.week/
WED"><i>Wednesday</i>

4 THU <a href="http://days.of.week/
THU">Thursday

5 FRI <a href="http://days.of.week/
FRI"><i>Friday</i>

6 SAT <a href="http://days.of.week/
SAT">Saturday

Table 3: Days of the week, version 3

Notice that the final XHTML column is not marked as a key column. The values are unique, so it
certainly could be used as a key column. However, sometimes you may not wish to mark a column
as a key column, even if the values are unique. The values in the column may not make particularly
suitable keys. They might be too long to process quickly and conveniently, or they might not be able
to be used in a particular context, such as for an XML attribute value. Also, it may be that while
the values in a particular column are unique now, there is no guarantee or expectation that they will
remain unique as the code list grows or changes in the future.

Once you see the tabular nature that underlies the information that can be associated with code
lists, it becomes clear why they can be a source of so much debate. Different users need different
subsets of the code list information, and people often assume that the information they need is all the
information that anyone needs.

That kind of thinking doesn’t work well with code lists, because code lists are sufficiently generic a
concept that they are used across messages/documents, applications, and databases. The code list
details that you need for the XML schemas often will not be exactly the same as the details that you
need for your database or your application. If the code list information cannot be shared easily across
these different areas, the result is duplication of effort and potential loss of synchronization between
different implementations of the same code list.

The XML schema may only require a set of 3-letter codes to represent the code list. The database
may require a set of numeric codes, plus display labels (possibly in different languages). The appli­
cation may need to know which 3-letter code corresponds to which numeric code, so that it can
process the XML and update the database. Also, some information related to a code list might not be
appropriate for the XML format. For example, if you have a different image file for each code, it isn’t
ideal to include this image inline in the code list XML, since it vastly increases the size of the XML,
and makes it more difficult to read. So in an XML representation, you are more likely to include some
reference (e.g. a URL) to the image. For a database, however, it may be feasible to store the image in
a BLOB2 column in a database.

One last piece of experience from databases is that support for undefined values will be required.
Sometimes users will have values that need to be associated with some of the codes in a code list,
but won’t have values to associate with every code. In that case, the concept of a undefined (nil or
null) value is needed.

2Binary Large OBject.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 8 of 68

1.2 Terminology
1.2.1 Terms and Definitions
coded domain Source Authority (cdSA) , noun

Person, usually an organization, as a Source Authority which sets the rules governing a coded
domain

[ISO/IEC 15944-2:2006, 3.14]

Source Authority (SA) , noun

Person recognized by other Persons as the authoritative source for a set of constraints

[ISO/IEC 15944-2:2006, 3.109]

1.3 Normative References
There are no normative references.

1.4 Non-normative References
[Open-edi] ISO/IEC 14662:2010 Information technology - Open-edi reference model

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 9 of 68

http://standards.iso.org/ittf/PubliclyAvailableStandards/c055290_ISO_IEC_14662_2010%28E%29.zip

2 Genericode Model
2.1 Tabular Structure
Genericode has a tabular structure for code list information. Each row in the table represents a single
distinct entry in the code list, i.e. each row represents a single uniquely identifiable item in the code
list.

Each column in the table represents a metadata value that can be defined for each distinct entry in
the code list. Each column is either required or optional. A required column does not allow any row to
have an undefined (nil or null) value. An optional column allows undefined values.

A genericode key is a set of one or more required columns that together uniquely identify each distinct
entry in the code list. Optional columns cannot be used for keys. Each code list must have at least
one key. Genericode keys are equivalent to what people usually mean when they talk about the
“codes” in a code list. However, genericode allows multiple keys for each code list, and there is no
single preferred key. For code lists that have multiple keys, it is assumed that the choice of which key
to use is a late binding choice that is specific to the application, technology and/or context in which the
code list is used.

2.2 Genericode Document Types
2.2.1 Summary of Document Types
There are 3 kinds of genericode documents, all supported by the one W3C XML Schema:

• · Column Set documents;

• · Code List documents;

• · Code List Set documents.

2.2.2 Column Set Documents
A column set document has the root element <gc:ColumnSet>. It contain definitions of genericode
columns or keys that can be imported into code list documents or into other column set documents.

2.2.3 Code List Documents
A code list document has the root element <gc:CodeList>. It contains metadata describing the
code list as a whole, as well as explicit code list data – codes and associated values.

2.2.4 Code List Set Documents
A code list set document has the root element <gc:CodeListSet>. It contains references to particu­
lar versions of code lists, and can also contain version-independent references to code lists. A code
list set document can be used to define a particular configuration of versions of code lists that are
used by a project, application, standard, etc.

2.3 Column Sets – Columns and Keys
A column set is a set of definitions of genericode columns and/or keys. A column defines a particular
metadata value that can be defined for each distinct entry in a code list. A key defines a set of one or
more columns.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 10 of 68

It is not necessary to use separate column set documents. A genericode code list document can
contain all of the required column and key definitions. Column set documents are provided as a
convenience mechanism for sharing column and/or key definitions between multiple code lists.

Figure 1. UML relationships of keys and columns

This figure is in UML notation. Each column set must have a unique ID. For a column set defined
within a code list document, the code list document’s unique identifier is used. A column set can
define any number of columns. It can also reference any number of columns from other column sets
(in column set documents or code list documents). A column set can also define any number of keys.
Each key is defined by one or more of the columns in the column set (either defined or imported).
Keys are used to uniquely identify the rows (distinct entries) of code lists. Columns and keys are
uniquely named within the column set that defines them, and each can also be uniquely identified
using a specific URI if required additionally.

The matching genericode W3C XML Schema (WXS) representation of column set content is:

This figure is in XML Spy® notation. A default datatype library URI can be provided to identify which
datatype library should be used for columns which do not explicitly specify a datatype library. If this
URI is not provided, the datatype library defaults to the W3C XML Schema (WXS) datatype library.

A column set definition contains optional user annotation information (Annotation), and then identifica­
tion and location information (Identification). A column set has a short name, any number of long
names and a version.

A column set is uniquely identified by a canonical URI. Particular versions of the column set are
uniquely identified by a canonical version URI. Location URIs can also be provided to suggest
URLs from which an XML genericode column set instance may be retrieved (at the discretion of an
application). Alternative location URIs can be provided to suggest URLs from which non-genericode
representations of the column set can be retrieved. Canonical URIs and canonical version URIs must
not be used as de facto location URIs for retrieving column set instances (nor anything else). The
column set definition can also list the details of the agency which is responsible for publishing and/or
maintaining the column set information.

A column definition (Column) contains a unique ID for the column and its use (required or optional).
It also contains a short name (token) for the column, any number of long names, and optional
extra canonical identification URIs. The datatype information for the column is contained in its Data
element.

The Data structure is based on the data element in RELAX NG. The datatype is specified as a Type
from a DatatypeLibrary. If the datatype library is not specified, it is inherited from the DatatypeLibrary

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 11 of 68

attribute of the enclosing column set definition. It otherwise defaults to the W3C XML Schema (WXS)
datatype library.

If the data is XML (complex valued), the DataTypeLibrary is set to the namespace URI for the XML (or
to “*” if any namespace3 is allowed), and the Type is set to the root element name for the XML data
(or to “*” if any root element is allowed).

Data definitions can contain Parameter elements which define facets that refine the datatype. When
using the WXS datatype library, these are just the usual WXS datatype facets.

If a column is defined in an external column set or code list document, it is referenced using a
ColumnRef. The column reference must have an ID just as a column definition would, but it also has
an ExternalRef which contains the column’s ID in the external document. The external column set or
code list is identified by a CanonicalVersionUri and/or by any LocationUri information that is provided.

A key definition (Key) contains an ID for the key. It also contains a short name (token) for the key,
any number of long names, and optional extra canonical identification URIs. The columns which
together form the key are referenced using one or more ColumnRef elements. The Ref attribute of
each contains the ID of either a Column or ColumnRef in the column set. Only required (not optional)
columns may be used within a key (note that this rule is not able to be enforced using the genericode
WXS Schema alone).

If a key is defined in an external column set or code list document, it can be referred to using a
KeyRef. The key reference must have an ID, and also has an ExternalRef which contains the key’s ID
in the external document. The external column set or code list is identified by a CanonicalVersionUri
and/or by any LocationUri information that is provided.

2.4 Code lists
A code list can contain its own embedded column set definition. It can also import columns and keys
from any number of external column sets (in column set documents and/or code list documents).
In the simplest case, what a code list provides is information (metadata) about the code list and
(optionally) a set of rows, where each row defines a distinct entry in the code list.

A code list document that contains only information (metadata) about the code list as a whole is
known as a CodeList Metadata document. If the code list document defines (zero or more) row, it
is a Simple CodeList. These are the only kinds of code list that are supported in this version of the
specification.

3Any namespace except the genericode namespace.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 12 of 68

Figure 2. UML for code lists

There is an important difference between a CodeList Metadata document and Simple CodeList that
contains zero rows (zero distinct entries). The former does not provide information on how many
distinct entries are contained in the code list. The latter explicitly indicates that a particular version
of the code list contains zero distinct entries, i.e. the particular version of the code list is empty. A
CodeList Metadata document does not provide any indication about whether a code list is empty or
not.

A CodeList Metadata document is a special case of a Simple CodeList document. The differences will
be discussed explicitly where appropriate.

A Simple CodeList is modeled as follows:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 13 of 68

Figure 3. UML for simple code lists

A Simple CodeList contains zero or more rows (it is necessary to support empty code lists to allow
for code lists that are empty now, but will be populated in future versions). Each Row defines a single
distinct entry in the code list.

A Row contains one or more Values, where each of those values corresponds to a distinct column
in the code list. At least one value is required, because a code list has to have at least one key, and
each key requires at least one column. As a consequence, a Row must have at least one Value.
Additionally, a Row must contain a defined Value for each of the required columns in the code list, i.e.
for those columns for which a Value must be defined (non-null) for each Row (distinct entry) in the
code list.

Each Value is associated with a single distinct column of the code list. For each Key in the code
list, the values associated with the columns for that key must form a unique set, i.e. no two rows
are allowed to have the same set of values for the same key columns. Note that this uniqueness
requirement cannot be enforced using the genericode WXS Schema for code list documents, which is
structured as follows:

Many of these elements and types have appeared already in section Section 2.3, “Column Sets
– Columns and Keys”, so the explanations will not be repeated here. A code list document can
either define its own embedded ColumnSet, or refer to an externally defined column set using a
ColumnSetRef.

A ColumnSetRef contains the canonical version URI which uniquely identifies a referenced column
set or code list document which contains the column set. It can also contain suggested URLs from
which to retrieve the column set or code list. Canonical version URIs must not be used as de facto
location URIs for retrieving column set instances (nor anything else).

A code list document that contains a SimpleCodeList element is a Simple CodeList. If the code list
document does not contain a SimpleCodeList element, then it is a CodeList Metadata document.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 14 of 68

The genericode WXS Schema representation of a SimpleCodeList is

A SimpleCodeList contains zero or more Row elements. Each Row contains one or more Value
elements.

The Value container element is needed to allow optional user annotations of individual values in
the code list. It has a ColumnRef attribute which contains the unique document ID of the associ­
ated column. A Value element can contains either a SimpleValue containing a textual value, or a
ComplexValue containing a balanced (well-formed) XML fragment from a namespace other than the
genericode namespace.

If a Value element does not contain either a SimpleValue element or a ComplexValue element,
then the value is undefined. Only optional columns are allowed to have undefined values. Also, if a
Row element does not contain a Value element corresponding to a particular column, then the row’s
value for that column is undefined.

Note that the ColumnRef attribute of a Value is optional. If it is not provided, it is assumed that the
column is the one which follows the column associated with the previous value in the row. If the first
Value in a Row does not have a ColumnRef, it is assumed to be associated with the first column in the
column set. It is an error if a row contains more than one value for the same column, or if it does not
contain a value for a required column.

The genericode WXS Schema is not able to validate that the contents of a Value match the datatype
of the associated column. Other validation mechanisms should be used to perform datatype valida­
tion.

2.5 Code list sets
A CodeList Set lists a configuration of code lists and/or codelist versions. CodeList Sets can be used
to provide lists of the code lists or code list versions that are associated with a particular version of an
application or specification. The genericode WXS Schema structure for CodeList Set documents is:

Many of these elements and types have appeared already in Section 2.3, “Column Sets – Columns
and Keys”, so the explanations will not be repeated here. A code list set document contains a series
of zero or more CodeListRef, CodeListSet, or CodeListSetRef elements.

A CodeListRef is a reference to a code list or to a version of a code list. If the CanonicalVersionUri
is defined, then the LocationUri elements (if any) contain retrieval URIs for genericode CodeList
documents. If the CanonicalVersionUri is not defined, then the LocationUri elements (if any) contain
retrieval URIs for genericode CodeList Metadata documents. Note that canonical URIs and canonical
version URIs must not be used as de facto location URIs for retrieving code list instances (nor
anything else).

A CodeListSet element is used to define an embedded code list set within a larger code list set
document. It allows a single CodeList Set document to carry information on multiple code list sets.
Each embedded CodeListSet element has the same structure as a CodeListSet document.

A CodeListSetRef is a reference to a code list set or to a version of a code list set. If the Canonical­
VersionUri is defined, then the LocationUri elements (if any) contain retrieval URIs for genericode
CodeList Set documents. If the CanonicalVersionUri is not defined, then the LocationUri elements (if
any) contain retrieval URIs for genericode CodeList Set Metadata documents. Just as for code list
references, canonical URIs and canonical version URIs must not be used as de facto location URIs
for retrieving code list instances (nor anything else).

A CodeList Set does not contain definitions of code lists, it only refers to the code list and code list
versions which are a part of the particular version of the CodeList Set. It should also be noted that
a code list set may contain a reference to a code list or code list set without specifying a particular
version of the code list or code list set, and it may contain a reference to a code list or code list
version or code list set or code list set version without specifying a location for retrieving a genericode

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 15 of 68

definition of that code list (metadata) or code list version or code list set (metadata) or code list set
version. This is to support situations where

• · the code list definition or code list set definition is known to the users, and no location needs to
be published. This may be because users have an application which maps the canonical URI or
canonical version URI to a local definition;

• · the code list or code list set is sufficiently well-known (e.g. ISO 3-letter country codes) that users
only need to have it uniquely identified, and do not need to have it enumerated or defined for them.

2.6 Namespaces
The genericode Schema makes use of two namespace URIs. The “gc” XML prefix refers to the
namespace URI

http://docs.oasis-open.org/codelist/ns/genericode/1.0/

which is the main genericode namespace URI. The “rule” XML prefix refers to the namespace URI

http://docs.oasis-open.org/codelist/ns/rule/1.0/

which is used in the identification of auxiliary rules in the Schema. These are rules that cannot be
enforced using the XML Schema itself; they appear in the Schema in <rule:text> elements within
<xsd:documentation> elements.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 16 of 68

3 Genericode XML Serialization
3.1 Schema Version and Namespace
Schema version: 1.0

Target namespace: http://docs.oasis-open.org/codelist/ns/genericode/1.0/

3.2 Notation
Multiplicity Minimum Occurrence Maximum Occurrence
1 1 1
? 0 1
+ 1 unbounded
* 0 unbounded
{m,n} m n
{m,} m unbounded

ANY – any element in any namespace.

ANY[##other] – any element in any namespace other than the target namespace of the genericode
XML Schema.

(A , B , C , ...) – sequence of items (A, B, C, etc.).

(A | B | C | ...) – choice between items (A, B, C, etc.).

3.3 Table of Schema Definitions
3.3.1 Global Elements
· Section 3.4.5, “CodeList (Element)”

· Section 3.4.8, “CodeListSet (Element)”

· Section 3.4.16, “ColumnSet (Element)”

3.3.2 Global Complex Types
· Section 3.4.1, “Agency (Complex Type)”

· Section 3.4.2, “Annotation (Complex Type)”

· Section 3.4.3, “AnyOtherContent (Complex Type)”

· Section 3.4.4, “AnyOtherLanguageContent (Complex Type)”

· Section 3.4.6, “CodeListDocument (Complex Type)”

· Section 3.4.7, “CodeListRef (Complex Type)”

· Section 3.4.10, “CodeListSetDocument (Complex Type)”

· Section 3.4.11, “CodeListSetRef (Complex Type)”

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 17 of 68

· Section 3.4.12, “Column (Complex Type)”

· Section 3.4.14, “ColumnRef (Complex Type)”

· Section 3.4.17, “ColumnSet (Complex Type)”

· Section 3.4.20, “ColumnSetDocument (Complex Type)”

· Section 3.4.21, “ColumnSetRef (Complex Type)”

· Section 3.4.22, “Data (Complex Type)”

· Section 3.4.23, “DataRestrictions (Complex Type)”

· Section 3.4.24, “DatatypeFacet (Complex Type)”

· Section 3.4.28, “GeneralIdentifier (Complex Type)”

· Section 3.4.30, “Identification (Complex Type)”

· Section 3.4.33, “Key (Complex Type)”

· Section 3.4.35, “KeyColumnRef (Complex Type)”

· Section 3.4.36, “KeyRef (Complex Type)”

· Section 3.4.38, “LongName (Complex Type)”

· Section 3.4.39, “MimeTypedUri (Complex Type)”

· Section 3.4.44, “Row (Complex Type)”

· Section 3.4.45, “ShortName (Complex Type)”

· Section 3.4.46, “SimpleCodeList (Complex Type)”

· Section 3.4.48, “SimpleValue (Complex Type)”

· Section 3.4.50, “Value (Complex Type)”

3.3.3 Global Simple Types
· Section 3.4.49, “UseType (Simple Type)”

3.3.4 Global Model Groups
· Section 3.4.9, “CodeListSetChoice (Model Group)”

· Section 3.4.13, “ColumnChoice (Model Group)”

· Section 3.4.18, “ColumnSetChoice (Model Group)”

· Section 3.4.19, “ColumnSetContent (Model Group)”

· Section 3.4.26, “DocumentHeader (Model Group)”

· Section 3.4.31, “IdentificationRefUriSet (Model Group)”

· Section 3.4.32, “IdentificationVersionUriSet (Model Group)”

· Section 3.4.34, “KeyChoice (Model Group)”

· Section 3.4.40, “NameSet (Model Group)”

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 18 of 68

· Section 3.4.42, “OuterCodeListChoice (Model Group)”

· Section 3.4.47, “SimpleCodeListSequence (Model Group)”

· Section 3.4.51, “ValueChoice (Model Group)”

· Section 3.4.53, “VersionLocationUriSet (Model Group)”

3.3.5 Global Attribute Groups
· Section 3.4.15, “ColumnReference (Attribute Group)”

· Section 3.4.25, “DefaultDatatypeLibrary (Attribute Group)”

· Section 3.4.27, “ExternalReference (Attribute Group)”

· Section 3.4.29, “IdDefinition (Attribute Group)”

· Section 3.4.37, “Language (Attribute Group)”

· Section 3.4.41, “OptionalUseDefinition (Attribute Group)”

· Section 3.4.43, “RequiredUseDefinition (Attribute Group)”

· Section 3.4.52, “ValueIdentification (Attribute Group)”

3.4 Global Schema Definitions in Alphabetic Order
3.4.1 Agency (Complex Type)
Details of an agency which produces code lists or related artifacts.

Content Model: (ShortName? , LongName* , Identifier*)

Mixed Content: No

Elements:

Element Type Description
ShortName Section 3.4.45, “ShortName

(Complex Type)”
Short name (without whitespace)
for the agency.

LongName Section 3.4.38, “LongName
(Complex Type)”

Human-readable name for the
agency.

Identifier Section 3.4.28, “GeneralIdentifi­
er (Complex Type)”

Identifier for the agency.

3.4.2 Annotation (Complex Type)
User annotation information.

Content Model: (Description* , AppInfo?)

Mixed Content: No

Elements:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 19 of 68

Element Type Description
Description Section 3.4.4, “AnyOtherLan­

guageContent (Complex Type)”
Human-readable information.

AppInfo Section 3.4.3, “AnyOtherContent
(Complex Type)”

Machine-readable information.

3.4.3 AnyOtherContent (Complex Type)
Container for any XML content which is in a different namespace to the Schema’s target namespace.

Content Model: (ANY[##other]*)

Mixed Content: No

3.4.4 AnyOtherLanguageContent (Complex Type)
Container for any human-readable XML content which is in a different namespace to the Schema’s
target namespace.

Extension of: Section 3.4.3, “AnyOtherContent (Complex Type)”

Content Model: (ANY[##other]*)

Mixed Content: No

Attributes:

Attribute Usage Type Description
xml:lang optional Language for the hu­

man-readable XML con­
tent.

3.4.5 CodeList (Element)
Top-level (root) element for a genericode code list definition.

A code list definition defines the details of a particular (version of a) code list.

Complex Type: Section 3.4.6, “CodeListDocument (Complex Type)”

3.4.6 CodeListDocument (Complex Type)
Document type for genericode code list definitions.

Rules:

Rule 1 [document] :

A code list must have at least one key, unless it is a metadata-only definition without a 'SimpleCode­
List' element.

Content Model: ((Annotation? , Identification) , (ColumnSet | ColumnSetRef) , ((SimpleCodeList))?)

Mixed Content: No

Elements:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 20 of 68

Element Type Description
Annotation (from Section 3.4.26,
“DocumentHeader (Model
Group)”)

Section 3.4.2, “Annotation (Com­
plex Type)”

User annotation information.

DocumentHeader:

General information (metadata)
for the code list.

Identification (from Sec­
tion 3.4.26, “DocumentHeader
(Model Group)”)

Section 3.4.30, “Identification
(Complex Type)”

Identification and location infor­
mation (metadata).

DocumentHeader:

General information (metadata)
for the code list.

ColumnSet (from Section 3.4.18,
“ColumnSetChoice (Model
Group)”)

Section 3.4.17, “ColumnSet
(Complex Type)”

Definition of a column set (col­
umns and keys for the code list).

ColumnSetChoice:

A choice between a column set
definition and a column set refer­
ence.

ColumnSetRef (from Sec­
tion 3.4.18, “ColumnSetChoice
(Model Group)”)

Section 3.4.21, “ColumnSetRef
(Complex Type)”

Reference to a column set de­
fined in an external column set
or code list document.

ColumnSetChoice:

A choice between a column set
definition and a column set refer­
ence.

SimpleCodeList (from Sec­
tion 3.4.47, “SimpleCodeListSe­
quence (Model Group)”)

Section 3.4.46, “SimpleCodeList
(Complex Type)”

Simple (explicit) code list defini­
tion.

SimpleCodeListSequence:

Details of a simple code list defi­
nition.

OuterCodeListChoice:

The only choice is a simple (ex­
plicit) code list definition.

Not used if the code list defini­
tion contains code list metadata
only.

Attributes:

Attribute Usage Type Description
xml:base optional Base URL which ap­

plies to relative location
URIs.

Rules:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 21 of 68

Attribute Usage Type Description
Rule 2 [application] :

xml:base does not ap­
ply to canonical URIs.

3.4.7 CodeListRef (Complex Type)
Reference to a code list, possibly defined in an external document.

Rules:

Rule 3 [application] :

The code list reference must be valid.

An application may use the CanonicalVersionUri to select a local copy of the code list.

If there is no CanonicalVersionUri, the CanonicalUri may be used to select a local copy of the code
list.

Otherwise the LocationUri value(s) may be tried in order, until a valid code list document is retrieved.

An application must signal an error to the user if it is not able to retrieve a code list document to
match the code list reference.

Content Model: (Annotation? , CanonicalUri , CanonicalVersionUri? , LocationUri*)

Mixed Content: No

Elements:

Element Type Description
Annotation Section 3.4.2, “Annotation (Com­

plex Type)”
User annotation for the refer­
enced code list.

CanonicalUri xsd:anyURI Canonical URI which uniquely
identifies all versions (collective­
ly) of the referenced code list.

Rules:

Rule 4 [document] :

Must be an absolute URI, must
not be relative.

Rule 5 [application] :

Must not be used as a de facto
location URI.

CanonicalVersionUri xsd:anyURI Canonical URI which uniquely
identifies a specific version of
the referenced code list.

Rules:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 22 of 68

Element Type Description
Rule 6 [document] :

Must be an absolute URI, must
not be relative.

Rule 7 [application] :

Must not be used as a de facto
location URI.

LocationUri xsd:anyURI Suggested retrieval location for
this code list, in genericode for­
mat.

Rules:

Rule 8 [application] :

If the CanonicalVersionUri has
been defined, the LocationUri
must reference a genericode
CodeList document.

If the CanonicalVersionUri is
undefined, the LocationUri must
reference a genericode CodeL­
ist Metadata document.

An application must signal an
error to the user if a LocationUri
does not reference the appro­
priate type of genericode docu­
ment.

Rule 9 [application] :

An application must signal an
error to the user if a document
retrieved using a LocationUri is
not in genericode format.

Attributes:

Attribute Usage Type Description
xml:base optional Base URL which ap­

plies to relative location
URIs.

Rules:

Rule 10 [applica­
tion] :

xml:base does not ap­
ply to canonical URIs.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 23 of 68

3.4.8 CodeListSet (Element)
Top-level element for the definition of a code list set.

Complex Type: Section 3.4.10, “CodeListSetDocument (Complex Type)”

3.4.9 CodeListSetChoice (Model Group)
A choice between a code list reference, an inline code list set, or a code list set reference.

Content Model: (CodeListRef | CodeListSet | CodeListSetRef)

Elements:

Element Type Description
CodeListRef Section 3.4.7, “CodeListRef

(Complex Type)”
CodeListSet Section 3.4.10, “CodeListSetDo­

cument (Complex Type)”
CodeListSetRef Section 3.4.11, “CodeListSetRef

(Complex Type)”

3.4.10 CodeListSetDocument (Complex Type)
Document type for the definition of a set of code lists.

Content Model: ((Annotation? , Identification) , (CodeListRef | CodeListSet | CodeListSetRef)*)

Mixed Content: No

Elements:

Element Type Description
Annotation (from Section 3.4.26,
“DocumentHeader (Model
Group)”)

Section 3.4.2, “Annotation (Com­
plex Type)”

User annotation information.

DocumentHeader:

General document information
for the code list set.

Identification (from Sec­
tion 3.4.26, “DocumentHeader
(Model Group)”)

Section 3.4.30, “Identification
(Complex Type)”

Identification and location infor­
mation (metadata).

DocumentHeader:

General document information
for the code list set.

CodeListRef (from Section 3.4.9,
“CodeListSetChoice (Model
Group)”)

Section 3.4.7, “CodeListRef
(Complex Type)”

CodeListSetChoice:

Contents of the code list set. If
the code list set does not have
any contents, it is a CodeListSet
Metadata definition.

CodeListSet (from Section 3.4.9,
“CodeListSetChoice (Model
Group)”)

Section 3.4.10, “CodeListSetDo­
cument (Complex Type)”

CodeListSetChoice:

Contents of the code list set. If
the code list set does not have

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 24 of 68

Element Type Description
any contents, it is a CodeListSet
Metadata definition.

CodeListSetRef (from Sec­
tion 3.4.9, “CodeListSetChoice
(Model Group)”)

Section 3.4.11, “CodeListSetRef
(Complex Type)”

CodeListSetChoice:

Contents of the code list set. If
the code list set does not have
any contents, it is a CodeListSet
Metadata definition.

Attributes:

Attribute Usage Type Description
xml:base optional Base URL which ap­

plies to relative location
URIs.

Rules:

Rule 11 [application] :

xml:base does not ap­
ply to canonical URIs.

3.4.11 CodeListSetRef (Complex Type)
Reference to a code list set, possibly defined in an external document.

Rules:

Rule 47 [application] :

The code list set reference must be valid.

An application may use the CanonicalVersionUri to select a local copy of the code list set.

If there is no CanonicalVersionUri, the CanonicalUri may be used to select a local copy of the code
list set.

Otherwise the LocationUri value(s) may be tried in order, until a valid code list set document is
retrieved.

An application must signal an error to the user if it is not able to retrieve a code list set document to
match the code list set reference.

Content Model: (Annotation? , CanonicalUri , CanonicalVersionUri? , LocationUri*)

Mixed Content: No

Elements:

Element Type Description
Annotation Section 3.4.2, “Annotation (Com­

plex Type)”
User annotation for the refer­
enced code list set.

CanonicalUri xsd:anyURI Canonical URI which uniquely
identifies all versions (collective­

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 25 of 68

Element Type Description
ly) of the referenced code list
set.

Rules:

Rule 48 [document] :

Must be an absolute URI, must
not be relative.

Rule 49 [application] :

Must not be used as a de facto
location URI.

CanonicalVersionUri xsd:anyURI Canonical URI which uniquely
identifies a specific version of
the referenced code list set.

Rules:

Rule 50 [document] :

Must be an absolute URI, must
not be relative.

Rule 51 [application] :

Must not be used as a de facto
location URI.

LocationUri xsd:anyURI Suggested retrieval location for
this code list set, in genericode
format.

Rules:

Rule 52 [application] :

If the CanonicalVersionUri has
been defined, the LocationUri
must reference a genericode
CodeListSet document.

If the CanonicalVersionUri is
undefined, the LocationUri must
reference a genericode Code­
ListSet Metadata document.

An application must signal an
error to the user if a LocationUri
does not reference the appro­
priate type of genericode docu­
ment.

Rule 53 [application] :

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 26 of 68

Element Type Description
An application must signal an
error to the user if a document
retrieved using a LocationUri is
not in genericode format.

Attributes:

Attribute Usage Type Description
xml:base optional Base URL which ap­

plies to relative location
URIs.

Rules:

Rule 54 [applica­
tion] :

xml:base does not ap­
ply to canonical URIs.

3.4.12 Column (Complex Type)
Definition of a column.

Each column of a code list defines a piece of metadata that can be specified for each item in the code
list.

Content Model: (Annotation? , (ShortName , LongName*) , (CanonicalUri , CanonicalVersionUri?)? ,
Data)

Mixed Content: No

Elements:

Element Type Description
Annotation Section 3.4.2, “Annotation (Com­

plex Type)”
User information about the col­
umn.

ShortName (from Sec­
tion 3.4.40, “NameSet (Model
Group)”)

Section 3.4.45, “ShortName
(Complex Type)”

Short name (without white­
space).

NameSet:

Name(s) of the column.
LongName (from Section 3.4.40,
“NameSet (Model Group)”)

Section 3.4.38, “LongName
(Complex Type)”

Human-readable name.

NameSet:

Name(s) of the column.
CanonicalUri (from Sec­
tion 3.4.32, “IdentificationVersio­
nUriSet (Model Group)”)

xsd:anyURI Canonical URI which uniquely
identifies all versions collectively.

Rules:

Must be an absolute URI, must
not be relative.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 27 of 68

Element Type Description
Must not be used as a de facto
location URI.

IdentificationVersionUriSet:

URIs used to identify the column
and/or the version of the column.

CanonicalVersionUri (from Sec­
tion 3.4.32, “IdentificationVersio­
nUriSet (Model Group)”)

xsd:anyURI Canonical URI which uniquely
identifies this version.

Rules:

Must be an absolute URI, must
not be relative.

Must not be used as a de facto
location URI.

IdentificationVersionUriSet:

URIs used to identify the column
and/or the version of the column.

Data Section 3.4.22, “Data (Complex
Type)”

Data type of the column.

Attributes:

Attribute Usage Type Description
Id (from Section 3.4.29,
“IdDefinition (Attribute
Group)”)

required xsd:ID Unique ID within the
document.

IdDefinition:

ID which identifies the
column within the docu­
ment.

Use (from Sec­
tion 3.4.43, “RequiredU­
seDefinition (Attribute
Group)”)

required Section 3.4.49, “Use­
Type (Simple Type)”

Whether the usage is
required or optional.

RequiredUseDefini­
tion:

Whether the column is
required or optional.

3.4.13 ColumnChoice (Model Group)
A choice between a column definition and a column reference.

Content Model: (Column | ColumnRef)

Elements:

Element Type Description
Column Section 3.4.12, “Column (Com­

plex Type)”
Definition of a column.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 28 of 68

Element Type Description
ColumnRef Section 3.4.14, “ColumnRef

(Complex Type)”
Reference to a column defined
in an external column set or
code list.

3.4.14 ColumnRef (Complex Type)
Reference to a column defined in an external column set or code list.

Rules:

Rule 12 [application] :

The column reference must be valid.

An application may use the CanonicalVersionUri to select a local copy of the code list or column set
which contains the column definition.

Otherwise the LocationUri value(s) may be tried in order, until a valid code list or column set
document (containing the necessary column definition) is retrieved.

An application must signal an error to the user if it is not able to retrieve a code list or column set
document which contains the necessary column definition.

Content Model: (Annotation? , (CanonicalVersionUri , LocationUri*) , Data?)

Mixed Content: No

Elements:

Element Type Description
Annotation Section 3.4.2, “Annotation (Com­

plex Type)”
User annotation for the refer­
enced column.

CanonicalVersionUri (from Sec­
tion 3.4.31, “IdentificationRefUri­
Set (Model Group)”)

xsd:anyURI Canonical URI which serves as
a unique identifier for this ver­
sion.

Rules:

Must be an absolute URI, must
not be relative.

Must not be used as a de facto
location URI.

IdentificationRefUriSet:

Identification of the external col­
umn set or code list document
which contains the column set
definition.

LocationUri (from Sec­
tion 3.4.31, “IdentificationRefUri­
Set (Model Group)”)

xsd:anyURI Suggested retrieval location for
this version, in genericode for­
mat.

Rules:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 29 of 68

Element Type Description
An application must signal an er­
ror to the user if a document re­
trieved using a LocationUri is not
in genericode format.

IdentificationRefUriSet:

Identification of the external col­
umn set or code list document
which contains the column set
definition.

Data Section 3.4.23, “DataRestric­
tions (Complex Type)”

Restrictions to the data type of
the referenced column.

Attributes:

Attribute Usage Type Description
Id (from Section 3.4.29,
“IdDefinition (Attribute
Group)”)

required xsd:ID Unique ID within the
document.

IdDefinition:

ID which identifies the
column within this docu­
ment.

ExternalRef (from Sec­
tion 3.4.27, “External­
Reference (Attribute
Group)”)

required xsd:NCName Unique ID within the ex­
ternal document.

Rules:

The external reference
must not be prefixed
with a ‘#’ symbol.

ExternalReference:

ID which identifies
which identifies the col­
umn within the external
column set or code list.

Use (from Sec­
tion 3.4.41, “OptionalU­
seDefinition (Attribute
Group)”)

optional Section 3.4.49, “Use­
Type (Simple Type)”

Whether the usage is
required or optional.

OptionalUseDefinition:

Whether the column is
required or optional.

Rules:

Rule 13 [applica­
tion] :

If specified, this over­
rides the usage speci­
fied in the external col­

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 30 of 68

Attribute Usage Type Description
umn set or code list
document.

xml:base optional Base URL which ap­
plies to relative location
URIs.

Rules:

Rule 14 [applica­
tion] :

xml:base does not ap­
ply to canonical URIs.

3.4.15 ColumnReference (Attribute Group)
Attribute set for referring to a column definition.

Attributes:

Attribute Usage Type Description
ColumnRef optional xsd:IDREF Reference to a column

ID in the document.

3.4.16 ColumnSet (Element)
Top-level element for the definition of a column set.

Complex Type: Section 3.4.20, “ColumnSetDocument (Complex Type)”

3.4.17 ColumnSet (Complex Type)
Definition of a column set (columns and keys for a code list).

Content Model: ((Column | ColumnRef)* , (Key | KeyRef)*)

Mixed Content: No

Elements:

Element Type Description
Column (from Section 3.4.13,
“ColumnChoice (Model Group)”)

Section 3.4.12, “Column (Com­
plex Type)”

Definition of a column.

ColumnChoice:

A choice between a column defi­
nition and a column reference.

ColumnSetContent:

Column set definitions.
ColumnRef (from Section 3.4.13,
“ColumnChoice (Model Group)”)

Section 3.4.14, “ColumnRef
(Complex Type)”

Reference to a column defined
in an external column set or
code list.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 31 of 68

Element Type Description
ColumnChoice:

A choice between a column defi­
nition and a column reference.

ColumnSetContent:

Column set definitions.
Key (from Section 3.4.34, “Key­
Choice (Model Group)”)

Section 3.4.33, “Key (Complex
Type)”

Definition of a key.

KeyChoice:

A choice between a key defini­
tion and a key reference.

ColumnSetContent:

Column set definitions.
KeyRef (from Section 3.4.34,
“KeyChoice (Model Group)”)

Section 3.4.36, “KeyRef (Com­
plex Type)”

Reference to a key defined in an
external column set or code list.

KeyChoice:

A choice between a key defini­
tion and a key reference.

ColumnSetContent:

Column set definitions.

Attributes:

Attribute Usage Type Description
DatatypeLibrary (from
Section 3.4.25, “Default­
DatatypeLibrary (Attrib­
ute Group)”)

optional xsd:anyURI URI which uniquely
identifies the default da­
tatype library for the col­
umn set. If not provided,
defaults to the URI for
W3C XML Schema da­
tatypes.

DefaultDatatypeLi­
brary:

Identification of the de­
fault datatype library for
the column set.

xml:base optional Base URL which ap­
plies to relative location
URIs.

Rules:

Rule 15 [applica­
tion] :

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 32 of 68

Attribute Usage Type Description
xml:base does not ap­
ply to canonical URIs.

3.4.18 ColumnSetChoice (Model Group)
A choice between a column set definition and a column set reference.

Content Model: (ColumnSet | ColumnSetRef)

Elements:

Element Type Description
ColumnSet Section 3.4.17, “ColumnSet

(Complex Type)”
Definition of a column set (col­
umns and keys for the code list).

ColumnSetRef Section 3.4.21, “ColumnSetRef
(Complex Type)”

Reference to a column set de­
fined in an external column set
or code list document.

3.4.19 ColumnSetContent (Model Group)
Specific details of a column set.

Content Model: ((Column | ColumnRef)* , (Key | KeyRef)*)

Elements:

Element Type Description
Column (from Section 3.4.13,
“ColumnChoice (Model Group)”)

Section 3.4.12, “Column (Com­
plex Type)”

Definition of a column.

ColumnChoice:

A choice between a column defi­
nition and a column reference.

ColumnRef (from Section 3.4.13,
“ColumnChoice (Model Group)”)

Section 3.4.14, “ColumnRef
(Complex Type)”

Reference to a column defined
in an external column set or
code list.

ColumnChoice:

A choice between a column defi­
nition and a column reference.

Key (from Section 3.4.34, “Key­
Choice (Model Group)”)

Section 3.4.33, “Key (Complex
Type)”

Definition of a key.

KeyChoice:

A choice between a key defini­
tion and a key reference.

KeyRef (from Section 3.4.34,
“KeyChoice (Model Group)”)

Section 3.4.36, “KeyRef (Com­
plex Type)”

Reference to a key defined in an
external column set or code list.

KeyChoice:

A choice between a key defini­
tion and a key reference.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 33 of 68

3.4.20 ColumnSetDocument (Complex Type)
Document type for the definition of a column set, which is a set of code list columns and/or keys.

Content Model: ((Annotation? , Identification) , ((Column | ColumnRef)* , (Key | KeyRef)*))

Mixed Content: No

Elements:

Element Type Description
Annotation (from Section 3.4.26,
“DocumentHeader (Model
Group)”)

Section 3.4.2, “Annotation (Com­
plex Type)”

User annotation information.

DocumentHeader:

General document information
for the column set.

Identification (from Sec­
tion 3.4.26, “DocumentHeader
(Model Group)”)

Section 3.4.30, “Identification
(Complex Type)”

Identification and location infor­
mation (metadata).

DocumentHeader:

General document information
for the column set.

Column (from Section 3.4.13,
“ColumnChoice (Model Group)”)

Section 3.4.12, “Column (Com­
plex Type)”

Definition of a column.

ColumnChoice:

A choice between a column defi­
nition and a column reference.

ColumnSetContent:

Details of the column set.
ColumnRef (from Section 3.4.13,
“ColumnChoice (Model Group)”)

Section 3.4.14, “ColumnRef
(Complex Type)”

Reference to a column defined
in an external column set or
code list.

ColumnChoice:

A choice between a column defi­
nition and a column reference.

ColumnSetContent:

Details of the column set.
Key (from Section 3.4.34, “Key­
Choice (Model Group)”)

Section 3.4.33, “Key (Complex
Type)”

Definition of a key.

KeyChoice:

A choice between a key defini­
tion and a key reference.

ColumnSetContent:

Details of the column set.
KeyRef (from Section 3.4.34,
“KeyChoice (Model Group)”)

Section 3.4.36, “KeyRef (Com­
plex Type)”

Reference to a key defined in an
external column set or code list.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 34 of 68

Element Type Description
KeyChoice:

A choice between a key defini­
tion and a key reference.

ColumnSetContent:

Details of the column set.

Attributes:

Attribute Usage Type Description
DatatypeLibrary (from
Section 3.4.25, “Default­
DatatypeLibrary (Attrib­
ute Group)”)

optional xsd:anyURI URI which uniquely
identifies the default da­
tatype library for the col­
umn set. If not provided,
defaults to the URI for
W3C XML Schema da­
tatypes.

DefaultDatatypeLi­
brary:

Identification of the de­
fault datatype library for
the column set.

xml:base optional Base URL which ap­
plies to relative location
URIs.

Rules:

Rule 16 [applica­
tion] :

xml:base does not ap­
ply to canonical URIs.

3.4.21 ColumnSetRef (Complex Type)
Reference to a column set defined in an external column set or code list document.

Rules:

Rule 17 [application] :

The column set reference must be valid.

An application may use the CanonicalVersionUri to select a local copy of the column set or code list.

Otherwise the LocationUri value(s) may be tried in order, until a valid column set or code list
document is retrieved.

An application must signal an error to the user if it is not able to retrieve a column set or code list
document to match the column set reference.

Content Model: (Annotation? , (CanonicalVersionUri , LocationUri*))

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 35 of 68

Mixed Content: No

Elements:

Element Type Description
Annotation Section 3.4.2, “Annotation (Com­

plex Type)”
User annotation for the refer­
enced column set.

CanonicalVersionUri (from Sec­
tion 3.4.31, “IdentificationRefUri­
Set (Model Group)”)

xsd:anyURI Canonical URI which serves as
a unique identifier for this ver­
sion.

Rules:

Must be an absolute URI, must
not be relative.

Must not be used as a de facto
location URI.

IdentificationRefUriSet:

Identification of the external col­
umn set or code list document
which contains the column set
definition.

LocationUri (from Sec­
tion 3.4.31, “IdentificationRefUri­
Set (Model Group)”)

xsd:anyURI Suggested retrieval location for
this version, in genericode for­
mat.

Rules:

An application must signal an er­
ror to the user if a document re­
trieved using a LocationUri is not
in genericode format.

IdentificationRefUriSet:

Identification of the external col­
umn set or code list document
which contains the column set
definition.

Attributes:

Attribute Usage Type Description
xml:base optional Base URL which ap­

plies to relative location
URIs.

Rules:

Rule 18 [applica­
tion] :

xml:base does not ap­
ply to canonical URIs.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 36 of 68

3.4.22 Data (Complex Type)
Data type definition.

Content Model: (Annotation? , Parameter*)

Mixed Content: No

Elements:

Element Type Description
Annotation Section 3.4.2, “Annotation (Com­

plex Type)”
User annotation for the datatype.

Parameter Section 3.4.24, “DatatypeFacet
(Complex Type)”

Facet parameter which refines
the datatype.

Attributes:

Attribute Usage Type Description
Type required xsd:token Unique ID for the data­

type within its datatype
library.

Rules:

Rule 19 [document] :

The datatype ID must
not include a name­
space prefix.

For the W3C XML
Schema datatypes,
possible datatype IDs
are 'string', 'token',
'boolean', 'decimal',
etc.

Rule 20 [document] :

If the data is complex
(i.e. XML), this value is
set to the root element
name for the XML val­
ue, or '*' if the root el­
ement name is not re­
stricted.

DatatypeLibrary optional xsd:anyURI URI which uniquely
identifies the datatype li­
brary.

Rules:

Rule 21 [applica­
tion] :

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 37 of 68

Attribute Usage Type Description
If this URI not explicitly
provided, the datatype
library for the enclosing
column set is used.

Rule 22 [document] :

If the data is complex
(i.e. XML), this value is
set to the namespace
URI for the XML, or '*'
if the namespace URI
is not restricted.

Lang (from Sec­
tion 3.4.37, “Language
(Attribute Group)”)

optional xsd:language Language code which
accepts the same val­
ues as ‘xml:lang’.

Unlike ‘xml:lang’, the
scope of the language
definition is not restric­
ted to the XML con­
tent within the element
where the ‘lang’ attrib­
ute appears.

Language:

Language from which
the data is taken or de­
rived.

3.4.23 DataRestrictions (Complex Type)
Restrictions to a data type.

Rules:

Rule 23 [document] :

The 'gc:lang' attribute may be specified only if no language is already set for the data type that is
being restricted.

Content Model: (Parameter*)

Mixed Content: No

Elements:

Element Type Description
Parameter Section 3.4.24, “DatatypeFacet

(Complex Type)”
Facet parameter which refines
the datatype.

Attributes:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 38 of 68

Attribute Usage Type Description
Lang (from Sec­
tion 3.4.37, “Language
(Attribute Group)”)

optional xsd:language Language code which
accepts the same val­
ues as ‘xml:lang’.

Unlike ‘xml:lang’, the
scope of the language
definition is not restric­
ted to the XML con­
tent within the element
where the ‘lang’ attrib­
ute appears.

Language:

Language from which
the data is taken or de­
rived.

3.4.24 DatatypeFacet (Complex Type)
Facet information for refining a datatype.

Extension of: xsd:string

Attributes:

Attribute Usage Type Description
ShortName required xsd:token Short name (token) for

the datatype facet.
LongName optional xsd:normalizedString Long name for the data­

type facet.

3.4.25 DefaultDatatypeLibrary (Attribute Group)
Identification of the default datatype library for a column set.

Attributes:

Attribute Usage Type Description
DatatypeLibrary optional xsd:anyURI URI which uniquely

identifies the default da­
tatype library for the col­
umn set. If not provided,
defaults to the URI for
W3C XML Schema da­
tatypes.

3.4.26 DocumentHeader (Model Group)
General document information (metadata).

Content Model: (Annotation? , Identification)

Elements:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 39 of 68

Element Type Description
Annotation Section 3.4.2, “Annotation (Com­

plex Type)”
User annotation information.

Identification Section 3.4.30, “Identification
(Complex Type)”

Identification and location infor­
mation (metadata).

3.4.27 ExternalReference (Attribute Group)
Attribute set used to identify a definition within an external document.

Attributes:

Attribute Usage Type Description
ExternalRef required xsd:NCName Unique ID within the ex­

ternal document.

Rules:

Rule 24 [document] :

The external reference
must not be prefixed
with a '#' symbol.

3.4.28 GeneralIdentifier (Complex Type)
An identifier value. Typically not a long or short name.

Extension of: xsd:normalizedString

3.4.29 IdDefinition (Attribute Group)
Attribute set used to identify a definition within the document.

Attributes:

Attribute Usage Type Description
Id required xsd:ID Unique ID within the

document.

3.4.30 Identification (Complex Type)
Identification and location information (metadata).

Content Model: ((ShortName , LongName*) , Version , CanonicalUri , (CanonicalVersionUri , Locatio­
nUri* , AlternateFormatLocationUri*) , Agency?)

Mixed Content: No

Elements:

Element Type Description
ShortName (from Sec­
tion 3.4.40, “NameSet (Model
Group)”)

Section 3.4.45, “ShortName
(Complex Type)”

Short name (without white­
space).

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 40 of 68

Element Type Description
NameSet:

Various names.
LongName (from Section 3.4.40,
“NameSet (Model Group)”)

Section 3.4.38, “LongName
(Complex Type)”

Human-readable name.

NameSet:

Various names.
Version xsd:token Version identifier.
CanonicalUri xsd:anyURI Canonical URI which uniquely

identifies all versions (collective­
ly).

Rules:

Rule 25 [document] :

Must be an absolute URI, must
not be relative.

Rule 26 [application] :

Must not be used as a de facto
location URI.

CanonicalVersionUri (from Sec­
tion 3.4.53, “VersionLocationUri­
Set (Model Group)”)

xsd:anyURI Canonical URI which uniquely
identifies this version.

Rules:

Must be an absolute URI, must
not be relative.

Must not be used as a de facto
location URI.

VersionLocationUriSet:

Identification and location URIs
for the version.

LocationUri (from Sec­
tion 3.4.53, “VersionLocationUri­
Set (Model Group)”)

xsd:anyURI Suggested retrieval location for
this version, in genericode for­
mat.

Rules:

An application must signal an er­
ror to the user if a document re­
trieved using a LocationUri is not
in genericode format.

VersionLocationUriSet:

Identification and location URIs
for the version.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 41 of 68

Element Type Description
AlternateFormatLocationUri
(from Section 3.4.53, “Version­
LocationUriSet (Model Group)”)

Section 3.4.39, “MimeTypedUri
(Complex Type)”

Suggested retrieval location for
this version, in a non-genericode
format.

Such alternative formats are in­
tended only as additional rendi­
tions of the code list information,
not as a replacements nor as al­
ternatives for use in application
processing.

VersionLocationUriSet:

Identification and location URIs
for the version.

Agency Section 3.4.1, “Agency (Com­
plex Type)”

Agency that is responsible for
publication and/or maintenance
of the information.

3.4.31 IdentificationRefUriSet (Model Group)
Identification and location URIs.

Content Model: (CanonicalVersionUri , LocationUri*)

Elements:

Element Type Description
CanonicalVersionUri xsd:anyURI Canonical URI which serves as

a unique identifier for this ver­
sion.

Rules:

Rule 27 [document] :

Must be an absolute URI, must
not be relative.

Rule 28 [application] :

Must not be used as a de facto
location URI.

LocationUri xsd:anyURI Suggested retrieval location for
this version, in genericode for­
mat.

Rules:

Rule 29 [application] :

An application must signal an
error to the user if a document
retrieved using a LocationUri is
not in genericode format.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 42 of 68

3.4.32 IdentificationVersionUriSet (Model Group)
URIs used as unique identifiers.

Content Model: (CanonicalUri , CanonicalVersionUri?)

Elements:

Element Type Description
CanonicalUri xsd:anyURI Canonical URI which uniquely

identifies all versions collectively.

Rules:

Rule 30 [document] :

Must be an absolute URI, must
not be relative.

Rule 31 [application] :

Must not be used as a de facto
location URI.

CanonicalVersionUri xsd:anyURI Canonical URI which uniquely
identifies this version.

Rules:

Rule 32 [document] :

Must be an absolute URI, must
not be relative.

Rule 33 [application] :

Must not be used as a de facto
location URI.

3.4.33 Key (Complex Type)
Definition of a key.

A key is a set of one or more columns whose values together provide a unique identification of each
item in a code list.

Rules:

Rule 34 [document] :

Only required columns can be used for keys.

Content Model: (Annotation? , (ShortName , LongName*) , (CanonicalUri , CanonicalVersionUri?)? ,
ColumnRef+)

Mixed Content: No

Elements:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 43 of 68

Element Type Description
Annotation Section 3.4.2, “Annotation (Com­

plex Type)”
User annotation for the key.

ShortName (from Sec­
tion 3.4.40, “NameSet (Model
Group)”)

Section 3.4.45, “ShortName
(Complex Type)”

Short name (without white­
space).

NameSet:

Name(s) of the key.
LongName (from Section 3.4.40,
“NameSet (Model Group)”)

Section 3.4.38, “LongName
(Complex Type)”

Human-readable name.

NameSet:

Name(s) of the key.
CanonicalUri (from Sec­
tion 3.4.32, “IdentificationVersio­
nUriSet (Model Group)”)

xsd:anyURI Canonical URI which uniquely
identifies all versions collectively.

Rules:

Must be an absolute URI, must
not be relative.

Must not be used as a de facto
location URI.

IdentificationVersionUriSet:

URIs used to identify the key
and/or the version of the key.

CanonicalVersionUri (from Sec­
tion 3.4.32, “IdentificationVersio­
nUriSet (Model Group)”)

xsd:anyURI Canonical URI which uniquely
identifies this version.

Rules:

Must be an absolute URI, must
not be relative.

Must not be used as a de facto
location URI.

IdentificationVersionUriSet:

URIs used to identify the key
and/or the version of the key.

ColumnRef Section 3.4.35, “KeyColumnRef
(Complex Type)”

Reference to the document ID of
a column in the key.

Attributes:

Attribute Usage Type Description
Id (from Section 3.4.29,
“IdDefinition (Attribute
Group)”)

required xsd:ID Unique ID within the
document.

IdDefinition:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 44 of 68

Attribute Usage Type Description
ID which identifies the
key within the docu­
ment.

3.4.34 KeyChoice (Model Group)
A choice between a key definition and a key reference.

Content Model: (Key | KeyRef)

Elements:

Element Type Description
Key Section 3.4.33, “Key (Complex

Type)”
Definition of a key.

KeyRef Section 3.4.36, “KeyRef (Com­
plex Type)”

Reference to a key defined in an
external column set or code list.

3.4.35 KeyColumnRef (Complex Type)
Reference to a column which forms part of a key.

Content Model: (Annotation?)

Mixed Content: No

Elements:

Element Type Description
Annotation Section 3.4.2, “Annotation (Com­

plex Type)”
User annotation for the column.

Attributes:

Attribute Usage Type Description
Ref required xsd:IDREF Reference to the ID of

the column within the
document.

3.4.36 KeyRef (Complex Type)
Reference to a key defined in an external column set or code list.

Rules:

Rule 35 [application] :

The key reference must be valid.

An application may use the CanonicalVersionUri to select a local copy of the code list or column set
which contains the key definition.

Otherwise the LocationUri value(s) may be tried in order, until a valid code list or column set
document (containing the necessary key definition) is retrieved.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 45 of 68

An application must signal an error to the user if it is not able to retrieve a code list or column set
document which contains the necessary key definition.

Content Model: (Annotation? , (CanonicalVersionUri , LocationUri*))

Mixed Content: No

Elements:

Element Type Description
Annotation Section 3.4.2, “Annotation (Com­

plex Type)”
User annotation for the refer­
enced key.

CanonicalVersionUri (from Sec­
tion 3.4.31, “IdentificationRefUri­
Set (Model Group)”)

xsd:anyURI Canonical URI which serves as
a unique identifier for this ver­
sion.

Rules:

Must be an absolute URI, must
not be relative.

Must not be used as a de facto
location URI.

IdentificationRefUriSet:

Identification of the external col­
umn set or code list which con­
tains the key definition.

LocationUri (from Sec­
tion 3.4.31, “IdentificationRefUri­
Set (Model Group)”)

xsd:anyURI Suggested retrieval location for
this version, in genericode for­
mat.

Rules:

An application must signal an er­
ror to the user if a document re­
trieved using a LocationUri is not
in genericode format.

IdentificationRefUriSet:

Identification of the external col­
umn set or code list which con­
tains the key definition.

Attributes:

Attribute Usage Type Description
Id (from Section 3.4.29,
“IdDefinition (Attribute
Group)”)

required xsd:ID Unique ID within the
document.

IdDefinition:

ID which identifies the
key within this docu­
ment.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 46 of 68

Attribute Usage Type Description
ExternalRef (from Sec­
tion 3.4.27, “External­
Reference (Attribute
Group)”)

required xsd:NCName Unique ID within the ex­
ternal document.

Rules:

The external reference
must not be prefixed
with a ‘#’ symbol.

ExternalReference:

ID which identifies
which identifies the key
within the external col­
umn set or code list.

xml:base optional Base URL which ap­
plies to relative location
URIs.

Rules:

Rule 36 [applica­
tion] :

xml:base does not ap­
ply to canonical URIs.

3.4.37 Language (Attribute Group)
Attributes which describe the language of a piece of text.

Attributes:

Attribute Usage Type Description
Lang optional xsd:language Language code which

accepts the same val­
ues as ‘xml:lang’.

Unlike ‘xml:lang’, the
scope of the language
definition is not restric­
ted to the XML con­
tent within the element
where the ‘lang’ attrib­
ute appears.

3.4.38 LongName (Complex Type)
A human-readable name.

Extension of: xsd:normalizedString

3.4.39 MimeTypedUri (Complex Type)
URI for a resource, with support for specifying the MIME type.

Extension of: xsd:anyURI

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 47 of 68

Attributes:

Attribute Usage Type Description
MimeType optional xsd:normalizedString MIME type of the re­

source which can be re­
trieved from the URI.

3.4.40 NameSet (Model Group)
Various names.

Content Model: (ShortName , LongName*)

Elements:

Element Type Description
ShortName Section 3.4.45, “ShortName

(Complex Type)”
Short name (without white­
space).

LongName Section 3.4.38, “LongName
(Complex Type)”

Human-readable name.

3.4.41 OptionalUseDefinition (Attribute Group)
Attribute set which defines the usage (optional attribute).

Attributes:

Attribute Usage Type Description
Use optional Section 3.4.49, “Use­

Type (Simple Type)”
Whether the usage is
required or optional.

3.4.42 OuterCodeListChoice (Model Group)
A choice which currently only allows a simple (explicit) code list definition.

Content Model: ((SimpleCodeList))

Elements:

Element Type Description
SimpleCodeList (from Sec­
tion 3.4.47, “SimpleCodeListSe­
quence (Model Group)”)

Section 3.4.46, “SimpleCodeList
(Complex Type)”

Simple (explicit) code list defini­
tion.

SimpleCodeListSequence:

Details of a simple code list defi­
nition.

3.4.43 RequiredUseDefinition (Attribute Group)
Attribute set which defines the usage (required attribute).

Attributes:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 48 of 68

Attribute Usage Type Description
Use required Section 3.4.49, “Use­

Type (Simple Type)”
Whether the usage is
required or optional.

3.4.44 Row (Complex Type)
Row which represents an individual item in a code list.

Content Model: (Annotation? , Value+)

Mixed Content: No

Elements:

Element Type Description
Annotation Section 3.4.2, “Annotation (Com­

plex Type)”
User annotation for the row.

Value Section 3.4.50, “Value (Complex
Type)”

Column value for the row.

Rules:

Rule 37 [document] :

A value must be provided for
each required column.

A value does not need to be
provided for a column if the col­
umn is optional.

Rule 38 [document] :

If a value does not have an ex­
plicit column reference, the col­
umn is taken to be the column
following the column of the pre­
ceding value in the row, or the
first column if the value is the
first value of the row.

3.4.45 ShortName (Complex Type)
A short name without whitespace that is suitable for use in generating names for software artifacts.

Rules:

Rule 39 [document] :

Must not contain whitespace characters.

Extension of: xsd:token

Attributes:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 49 of 68

Attribute Usage Type Description
xml:lang optional The language from

which the short name is
taken or derived.

3.4.46 SimpleCodeList (Complex Type)
Simple (explicit) code list definition.

Rules:

Rule 40 [application] :

Applications must not have any dependency on the ordering of the rows.

Content Model: (Annotation? , Row*)

Mixed Content: No

Elements:

Element Type Description
Annotation Section 3.4.2, “Annotation (Com­

plex Type)”
User annotation for the code list.

Row Section 3.4.44, “Row (Complex
Type)”

Row which represents an indi­
vidual item in the code list.

3.4.47 SimpleCodeListSequence (Model Group)
Details of a simple code list definition.

Content Model: (SimpleCodeList)

Elements:

Element Type Description
SimpleCodeList Section 3.4.46, “SimpleCodeList

(Complex Type)”
Simple (explicit) code list defini­
tion.

3.4.48 SimpleValue (Complex Type)
Simple textual value.

Extension of: xsd:string

3.4.49 UseType (Simple Type)
Indicates whether the usage is required or optional.

Restriction of: xsd:token

Allowed Values:

· optional

· required

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 50 of 68

3.4.50 Value (Complex Type)
An individual code list metadata value.

Content Model: (Annotation? , (SimpleValue | ComplexValue)?)

Mixed Content: No

Elements:

Element Type Description
Annotation Section 3.4.2, “Annotation (Com­

plex Type)”
User annotation for the value.

SimpleValue (from Sec­
tion 3.4.51, “ValueChoice (Model
Group)”)

Section 3.4.48, “SimpleValue
(Complex Type)”

Simple textual value.

Rules:

The value must be valid with re­
spect to the datatype and restric­
tions of the matching column.

ValueChoice:

A choice between a simple tex­
tual value and a complex (struc­
tured) XML value. If the value is
undefined, then neither choice is
used.

ComplexValue (from Sec­
tion 3.4.51, “ValueChoice (Model
Group)”)

Section 3.4.3, “AnyOtherContent
(Complex Type)”

Complex (structured) XML val­
ue.

Rules:

The names of all direct child ele­
ments of the ‘ComplexValue’ el­
ement must match the datatype
ID for the matching column, un­
less that ID is set to ‘*’.

The namespace URIs of all di­
rect child elements of the ‘Com­
plexValue’ element must match
the datatype library URI for the
matching column, unless that
URI is set to ‘*’.

ValueChoice:

A choice between a simple tex­
tual value and a complex (struc­
tured) XML value. If the value is
undefined, then neither choice is
used.

Attributes:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 51 of 68

Attribute Usage Type Description
ColumnRef (from Sec­
tion 3.4.15, “Colum­
nReference (Attribute
Group)”)

optional xsd:IDREF Reference to a column
ID in the document.

ColumnReference:

Reference to the col­
umn with which this val­
ue is associated.

3.4.51 ValueChoice (Model Group)
A choice between a simple textual value and a complex (structured) XML value.

Content Model: (SimpleValue | ComplexValue)

Elements:

Element Type Description
SimpleValue Section 3.4.48, “SimpleValue

(Complex Type)”
Simple textual value.

Rules:

Rule 41 [document] :

The value must be valid with
respect to the datatype and re­
strictions of the matching col­
umn.

ComplexValue Section 3.4.3, “AnyOtherContent
(Complex Type)”

Complex (structured) XML val­
ue.

Rules:

Rule 42 [document] :

The names of all direct child el­
ements of the 'ComplexValue'
element must match the data­
type ID for the matching col­
umn, unless that ID is set to '*'.

Rule 43 [document] :

The namespace URIs of all di­
rect child elements of the 'Com­
plexValue' element must match
the datatype library URI for the
matching column, unless that
URI is set to '*'.

3.4.52 ValueIdentification (Attribute Group)
Information which identifies one of a set of alternate values.

Attributes:

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 52 of 68

Attribute Usage Type Description
Identifier optional xsd:normalizedString A string which identifies

one of a set of alternate
values.

xml:lang optional The language from
which the value is taken
or derived.

3.4.53 VersionLocationUriSet (Model Group)
Identification and location URIs for a version.

Content Model: (CanonicalVersionUri , LocationUri* , AlternateFormatLocationUri*)

Elements:

Element Type Description
CanonicalVersionUri xsd:anyURI Canonical URI which uniquely

identifies this version.

Rules:

Rule 44 [document] :

Must be an absolute URI, must
not be relative.

Rule 45 [application] :

Must not be used as a de facto
location URI.

LocationUri xsd:anyURI Suggested retrieval location for
this version, in genericode for­
mat.

Rules:

Rule 46 [application] :

An application must signal an
error to the user if a document
retrieved using a LocationUri is
not in genericode format.

AlternateFormatLocationUri Section 3.4.39, “MimeTypedUri
(Complex Type)”

Suggested retrieval location for
this version, in a non-genericode
format.

Such alternative formats are in­
tended only as additional rendi­
tions of the code list information,
not as a replacements nor as al­
ternatives for use in application
processing.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 53 of 68

4 Conformance
4.1 Auxiliary Rules
An XML instance conforms to the OASIS Code List Representation genericode document model if it
does not violate any constraints expressed in the genericode.xsd schema associated with this version
of the specification, including auxiliary rules marked as “document” rules.

An application conforms to the OASIS Code List Representation genericode processing rules if, in
addition, it does not violate any of auxiliary rules marked as “application” rules.

4.2 Category: document
Note
Some of these document-related auxiliary rules can be programmatically tested using
ISO/IEC 19757-3 Schematron as described in Appendix D, Testing select document conform­
ance rules (Non-Normative).

Rule 1 [document:: complexType CodeListDocument]

A code list must have at least one key, unless it is a metadata-only definition without a 'SimpleCode­
List' element.

Rule 4 [document:: element CanonicalUri in complexType CodeListRef]

Must be an absolute URI, must not be relative.

Rule 6 [document:: element CanonicalVersionUri in complexType CodeListRef]

Must be an absolute URI, must not be relative.

Rule 19 [document:: attribute Type in complexType Data]

The datatype ID must not include a namespace prefix.

For the W3C XML Schema datatypes, possible datatype IDs are 'string', 'token', 'boolean', 'decimal',
etc.

Rule 20 [document:: attribute Type in complexType Data]

If the data is complex (i.e. XML), this value is set to the root element name for the XML value, or '*' if
the root element name is not restricted.

Rule 22 [document:: attribute DatatypeLibrary in complexType Data]

If the data is complex (i.e. XML), this value is set to the namespace URI for the XML, or '*' if the
namespace URI is not restricted.

Rule 23 [document:: complexType DataRestrictions]

The 'gc:lang' attribute may be specified only if no language is already set for the data type that is
being restricted.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 54 of 68

Rule 24 [document:: attribute ExternalRef in attributeGroup ExternalReference]

The external reference must not be prefixed with a '#' symbol.

Rule 25 [document:: element CanonicalUri in complexType Identification]

Must be an absolute URI, must not be relative.

Rule 27 [document:: element CanonicalVersionUri in modelGroup IdentificationRefUriSet]

Must be an absolute URI, must not be relative.

Rule 30 [document:: element CanonicalUri in modelGroup IdentificationVersionUriSet]

Must be an absolute URI, must not be relative.

Rule 32 [document:: element CanonicalVersionUri in modelGroup IdentificationVersionUriSet]

Must be an absolute URI, must not be relative.

Rule 34 [document:: complexType Key]

Only required columns can be used for keys.

Rule 37 [document:: element Value in complexType Row]

A value must be provided for each required column.

A value does not need to be provided for a column if the column is optional.

Rule 38 [document:: element Value in complexType Row]

If a value does not have an explicit column reference, the column is taken to be the column following
the column of the preceding value in the row, or the first column if the value is the first value of the
row.

Rule 39 [document:: complexType ShortName]

Must not contain whitespace characters.

Rule 41 [document:: element SimpleValue in modelGroup ValueChoice]

The value must be valid with respect to the datatype and restrictions of the matching column.

Rule 42 [document:: element ComplexValue in modelGroup ValueChoice]

The names of all direct child elements of the 'ComplexValue' element must match the datatype ID for
the matching column, unless that ID is set to '*'.

Rule 43 [document:: element ComplexValue in modelGroup ValueChoice]

The namespace URIs of all direct child elements of the 'ComplexValue' element must match the
datatype library URI for the matching column, unless that URI is set to '*'.

Rule 44 [document:: element CanonicalVersionUri in modelGroup VersionLocationUriSet]

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 55 of 68

Must be an absolute URI, must not be relative.

Rule 48 [document:: element CanonicalUri in complexType CodeListSetRef]

Must be an absolute URI, must not be relative.

Rule 50 [document:: element CanonicalVersionUri in complexType CodeListSetRef]

Must be an absolute URI, must not be relative.

4.3 Category: application
Rule 2 [application:: attribute xml:base in complexType CodeListDocument]

xml:base does not apply to canonical URIs.

Rule 3 [application:: complexType CodeListRef]

The code list reference must be valid.

An application may use the CanonicalVersionUri to select a local copy of the code list.

If there is no CanonicalVersionUri, the CanonicalUri may be used to select a local copy of the code
list.

Otherwise the LocationUri value(s) may be tried in order, until a valid code list document is retrieved.

An application must signal an error to the user if it is not able to retrieve a code list document to
match the code list reference.

Rule 5 [application:: element CanonicalUri in complexType CodeListRef]

Must not be used as a de facto location URI.

Rule 7 [application:: element CanonicalVersionUri in complexType CodeListRef]

Must not be used as a de facto location URI.

Rule 8 [application:: element LocationUri in complexType CodeListRef]

If the CanonicalVersionUri has been defined, the LocationUri must reference a genericode CodeList
document.

If the CanonicalVersionUri is undefined, the LocationUri must reference a genericode CodeList
Metadata document.

An application must signal an error to the user if a LocationUri does not reference the appropriate
type of genericode document.

Rule 9 [application:: element LocationUri in complexType CodeListRef]

An application must signal an error to the user if a document retrieved using a LocationUri is not in
genericode format.

Rule 10 [application:: attribute xml:base in complexType CodeListRef]

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 56 of 68

xml:base does not apply to canonical URIs.

Rule 11 [application:: attribute xml:base in complexType CodeListSetDocument]

xml:base does not apply to canonical URIs.

Rule 12 [application:: complexType ColumnRef]

The column reference must be valid.

An application may use the CanonicalVersionUri to select a local copy of the code list or column set
which contains the column definition.

Otherwise the LocationUri value(s) may be tried in order, until a valid code list or column set
document (containing the necessary column definition) is retrieved.

An application must signal an error to the user if it is not able to retrieve a code list or column set
document which contains the necessary column definition.

Rule 13 [application:: attribute Use (from) in complexType ColumnRef]

If specified, this overrides the usage specified in the external column set or code list document.

Rule 14 [application:: attribute xml:base in complexType ColumnRef]

xml:base does not apply to canonical URIs.

Rule 15 [application:: attribute xml:base in complexType ColumnSet]

xml:base does not apply to canonical URIs.

Rule 16 [application:: attribute xml:base in complexType ColumnSetDocument]

xml:base does not apply to canonical URIs.

Rule 17 [application:: complexType ColumnSetRef]

The column set reference must be valid.

An application may use the CanonicalVersionUri to select a local copy of the column set or code list.

Otherwise the LocationUri value(s) may be tried in order, until a valid column set or code list
document is retrieved.

An application must signal an error to the user if it is not able to retrieve a column set or code list
document to match the column set reference.

Rule 18 [application:: attribute xml:base in complexType ColumnSetRef]

xml:base does not apply to canonical URIs.

Rule 21 [application:: attribute DatatypeLibrary in complexType Data]

If this URI not explicitly provided, the datatype library for the enclosing column set is used.

Rule 26 [application:: element CanonicalUri in complexType Identification]

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 57 of 68

Must not be used as a de facto location URI.

Rule 28 [application:: element CanonicalVersionUri in modelGroup IdentificationRefUriSet]

Must not be used as a de facto location URI.

Rule 29 [application:: element LocationUri in modelGroup IdentificationRefUriSet]

An application must signal an error to the user if a document retrieved using a LocationUri is not in
genericode format.

Rule 31 [application:: element CanonicalUri in modelGroup IdentificationVersionUriSet]

Must not be used as a de facto location URI.

Rule 33 [application:: element CanonicalVersionUri in modelGroup IdentificationVersionUriSet]

Must not be used as a de facto location URI.

Rule 35 [application:: complexType KeyRef]

The key reference must be valid.

An application may use the CanonicalVersionUri to select a local copy of the code list or column set
which contains the key definition.

Otherwise the LocationUri value(s) may be tried in order, until a valid code list or column set
document (containing the necessary key definition) is retrieved.

An application must signal an error to the user if it is not able to retrieve a code list or column set
document which contains the necessary key definition.

Rule 36 [application:: attribute xml:base in complexType KeyRef]

xml:base does not apply to canonical URIs.

Rule 40 [application:: complexType SimpleCodeList]

Applications must not have any dependency on the ordering of the rows.

Rule 45 [application:: element CanonicalVersionUri in modelGroup VersionLocationUriSet]

Must not be used as a de facto location URI.

Rule 46 [application:: element LocationUri in modelGroup VersionLocationUriSet]

An application must signal an error to the user if a document retrieved using a LocationUri is not in
genericode format.

Rule 47 [application:: complexType CodeListSetRef]

The code list set reference must be valid.

An application may use the CanonicalVersionUri to select a local copy of the code list set.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 58 of 68

If there is no CanonicalVersionUri, the CanonicalUri may be used to select a local copy of the code
list set.

Otherwise the LocationUri value(s) may be tried in order, until a valid code list set document is
retrieved.

An application must signal an error to the user if it is not able to retrieve a code list set document to
match the code list set reference.

Rule 49 [application:: element CanonicalUri in complexType CodeListSetRef]

Must not be used as a de facto location URI.

Rule 51 [application:: element CanonicalVersionUri in complexType CodeListSetRef]

Must not be used as a de facto location URI.

Rule 52 [application:: element LocationUri in complexType CodeListSetRef]

If the CanonicalVersionUri has been defined, the LocationUri must reference a genericode CodeList­
Set document.

If the CanonicalVersionUri is undefined, the LocationUri must reference a genericode CodeListSet
Metadata document.

An application must signal an error to the user if a LocationUri does not reference the appropriate
type of genericode document.

Rule 53 [application:: element LocationUri in complexType CodeListSetRef]

An application must signal an error to the user if a document retrieved using a LocationUri is not in
genericode format.

Rule 54 [application:: attribute xml:base in complexType CodeListSetRef]

xml:base does not apply to canonical URIs.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 59 of 68

Appendix A Release Notes (Non-Normative)
A.1 Availability
Online and downloadable versions of the latest OASIS release of this package are available from:

• https://docs.oasis-open.org/codelist/genericode/v1.0/os/

A.2 Package Structure (Non-Normative)
The genericode specification is published as a zip archive in the release directory. Unzipping this
archive creates a directory named genericode/v1.0/os containing a “doc/” directory with documen­
tation. The authoritative source of the documentation is a master DocBook XML file (genericode-
v1.0-os.xml), a generated hypertext version of this file (genericode-v1.0-os.html), and a generated
PDF version of this file (genericode-v1.0-os.pdf). The files in other subdirectories, linked to from
genericode-v1.0-os.xml, genericode-v1.0-os.html, and genericode-v1.0-os.pdf, contain the various
normative and informational pieces of the genericode release. A description of each subdirectory
is given below. Note that while the genericode.xml file is the “original” of this specification, it may not
be viewable in all currently available web browsers.

doc/

Documentation sources and published results

doc/art/

HTML presentation artwork

doc/art/pdfart

PDF publishing artwork

doc/db/

DocBook stylesheets for viewing XML and HTML

json-example/

Sample genericode JSON files

sch/

Schematron auxiliary rule constraints

xml/

Sample genericode XML files

xsd/

XML structural constraints

xslt/

Sample XSLT transformation (see Appendix B, Sample transforma­
tion to JSON (Non-Normative))

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 60 of 68

https://docs.oasis-open.org/codelist/genericode/v1.0/os/

Appendix B Sample transformation to JSON
(Non-Normative)
Recognizing the custom use of JSON in a tight binding between user-defined processes, the com­
mittee sees no purpose served by standardizing a JSON syntax for the genericode vocabulary.
Genericode is for the interchange of code list information.

Nevertheless, having the information transformed into JSON may be a convenience to users. Inclu­
ded in the distribution is a non-normative XSLT 2.0 transformation of genericode XML into a colloquial
JSON syntax. No JSON schema is provided for validating the colloquial syntax, as it is anticipated
users will have the need for their own custom JSON. This transformation may be useful as inspiration
for creating one’s own transformation.

The sample xslt/gc2gcj.xsl stylesheet reads genericode XML and produces well-formed JSON
syntax as its output. The stylesheet imports the xslt/jsonsupport.xsl fragment which is not run
standalone.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 61 of 68

Appendix C Sample instances of genericode
(Non-Normative)
The distribution directory xml/ includes the following sample instances copied from the indicated
publicly-available sources:

• from https://docs.oasis-open.org/legalxml-courtfiling/ecf/v5.0/cs01/
schema/

• CaseTypeCode.gc

• a short list of only codes representing types of cases

• from https://docs.oasis-open.org/ubl/os-UBL-2.3/cl/gc/default/

• ChannelCode-2.3.gc

• a typical list of code, name, and description values representing type available channels for
communication

• CurrencyCode-2.3.gc

• a code list with five columns representing currencies of the world

• UnitOfMeasureCode-2.3.gc

• a sparsely populated list with seven columns representing units of measure for values

The distribution directory json-example/ includes the JSON transformations of the examples found
in the xml/ directory. These are created using the make-sample.sh script that invokes the transfor­
mation described in Appendix C, Sample instances of genericode (Non-Normative).

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 62 of 68

https://docs.oasis-open.org/legalxml-courtfiling/ecf/v5.0/cs01/schema/
https://docs.oasis-open.org/legalxml-courtfiling/ecf/v5.0/cs01/schema/
https://docs.oasis-open.org/ubl/os-UBL-2.3/cl/gc/default/

Appendix D Testing select document con­
formance rules (Non-Normative)
Some of the document conformance auxiliary rules prescribed in Section 4.2, “Category: document”
can be tested using ISO/IEC 19757-3 Schematron.

The sample sch/genericode.sch Schematron assertion schema is provided as a sample set of
assertions to be converted into testable code.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 63 of 68

Appendix E Considerations of life cycle meta­
data (Non-Normative)
Data life cycle management relies on having useful life cycle metadata with which to record properties
of data and histories of changes in that data. Such life-cycle concepts readily apply to code list values.
A few example concepts include but are not limited to dates and times indicating when a value in a
coded domain is accepted to be used by users or is considered a valid value, a signal of deprecation
indicating when a value may still be valid but is recommended not to be used, and jurisdictional
constraints within which a value may be used to the exclusion of other jurisdictional boundaries.

Custodians of code lists should consider all such metadata issues from the beginning of planning and
creating a new list of values in a coded domain.

The flexibility of genericode to declare columns of value-level metadata supports describing life-cycle
metadata in addition to any other kind of metadata or other information that may be associated with
values in a coded domain.

Per the semantics of genericode, all of the information associated with an individual coded value or
part thereof is captured in the <Row> element. Human-oriented information about the coded value
or part in general that is not intended to be processed by a computer is put into the <Annotation>
child of <Row>. Computer-processable information is put into a set of <Value> elements as metadata.
Human-oriented information about a particular metadata value is put into the <Annotation> child of
<Value>. Computer-processable information is put into either a <SimpleValue> child of <Value> for a
monolithic string value, or into a <ComplexValue> child of <Value> for a value that, itself, is allowed to
be described richly using markup.

The semantics and constraints of each metadata <Value> are described to an arbitrary extent in
the <ColumnKey> element identified with the <Value> element’s columnRef= attribute. Custodians
of code lists should consider how richly described each of the metadata columns serves the reader
or user of the code list when they inspect the content of <ColumnKey>. It is entirely up to the list’s
custodian to establish and to document the semantics and constraints of code-level metadata values
in <ColumnKey>.

Accordingly, it is not part of genericode to standardize any semantics beyond the semantics of the
genericode specification itself of how genericode markup is used to represent values in a coded do­
main. There are no standardized value-level metadata semantics, and so, there are no standardized
life-cycle metadata semantics to be leveraged by genericode users.

While some life-cycle metadata semantics are considered somewhat universal, each custodian may
have a different perspective of such semantics that impacts on their decisions regarding how each
semantic is to be expressed, constrained, and documented. Therefore, this specification does not
attempt to define any standardized code-level metadata of any kind, including data life cycle manage­
ment metadata.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 64 of 68

Appendix F The Open-edi reference model
perspective of code lists (Non-Normative)
ISO/IEC 14662:2010 Information technology - Open-edi reference model [Open-edi] has been devel­
oped primarily in order to provide standards required for the inter-working of organizations through in­
terconnected information technology systems. Open-edi lowers barriers to electronic data interchange
by introducing standard business scenarios and the necessary services to support them.

The Open-edi Reference Model identifies the required standards for Open-edi and provides a refer­
ence for those standards by defining the basic concepts used to develop them.

Figure F.1, “Open-edi Overview” depicts two views to describe the relevant aspects of business
transactions:

• the Business Operational View (BOV);

• the Functional Service View (FSV).

Figure F.1. Open-edi Overview

The BOV addresses the aspects of the semantics of business data in business transactions and
associated data interchanges which apply to the business needs of Open-edi. The BOV-related
standards are tools and rules by which users who understand the operating aspects of a business
domain may create scenarios.

The FSV addresses the supporting services meeting the mechanistic needs of Open-edi, focusing on
information technology aspects of functional capabilities, service interfaces, and protocols.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 65 of 68

Appendix G Acknowledgements (Non-Norma­
tive)
The following persons and companies participated as members of the OASIS Code List Representa­
tion Technical Committee during the years of its development (2006–2023).

Todd Albers, Federal Reserve Bank of Minneapolis
Kenneth Bengtsson, Individual
Erlend Klakegg Bergheim, The Norwegian Agency for Public and Financial Management (DFO)
Jon Bosak, Individual
James Cabral, Individual
Andrea Caccia, Individual
Ger Clancy, IBM
Anthony Coates, Individual
Ray Denenberg, Library of Congress
Marc Gratacos, Individual
Jim Harris, National Center for State Courts
Philip Helger, Individual
G. Ken Holman, Crane Softwrights Ltd.
Natalie Muric, Publications Office of the European Union
Levine Naidoo, IBM
Paul Spencer, Individual
Pim van der Eijk, Sonnenglanz Consulting
Dennis Weddig, Federal Reserve Bank of Minneapolis

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 66 of 68

Appendix H Notices
Copyright © OASIS Open 2001-2023. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellec­
tual Property Rights Policy (the “OASIS IPR Policy”). The full Policy may be found at the OASIS
website: [https://www.oasis-open.org/policies-guidelines/ipr/].

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published, and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this section are included on all such copies and derivative works. However,
this document itself may not be modified in any way, including by removing the copyright notice or
references to OASIS, except as needed for the purpose of developing any document or deliverable
produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set
forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its succes­
sors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWN­
ERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. OASIS AND ITS MEMBERS WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THIS
DOCUMENT OR ANY PART THEREOF.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS
Standards Final Deliverable documents (Committee Specifications, OASIS Standards, or Approved
Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that
would necessarily be infringed by implementations of this OASIS Standards Final Deliverable, to
notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership
of any patent claims that would necessarily be infringed by implementations of this OASIS Standards
Final Deliverable by a patent holder that is not willing to provide a license to such patent claims
in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this
OASIS Standards Final Deliverable. OASIS may include such claims on its website, but disclaims any
obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this OASIS
Standards Final Deliverable or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Information
on OASIS’ procedures with respect to rights in any document or deliverable produced by an OASIS
Technical Committee can be found on the OASIS website. Copies of claims of rights made available
for publication and any assurances of licenses to be made available, or the result of an attempt made
to obtain a general license or permission for the use of such proprietary rights by implementers or
users of this OASIS Standards Final Deliverable, can be obtained from the OASIS TC Administrator.
OASIS makes no representation that any information or list of intellectual property rights will at any
time be complete, or that any claims in such list are, in fact, Essential Claims.]

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 67 of 68

https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/policies-guidelines/ipr/

The name “OASIS” is a trademark of OASIS, the owner and developer of this document, and should
be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, documents, while reserving the right to enforce its marks against mislead­
ing uses. Please see https://www.oasis-open.org/policies-guidelines/trademark/ for above guidance.

genericode-v1.0-os 31 January 2023
Standards Track Work Product Copyright © OASIS Open 2023. All rights reserved. Page 68 of 68

https://www.oasis-open.org
https://www.oasis-open.org/policies-guidelines/trademark/

	Code List Representation (genericode) Version 1.0
	Table of Contents
	1 Introduction
	1.1 Overview
	1.1.1 Key/value semantics
	1.1.2 IT-enabled expression of coded domains
	1.1.3 Genericode
	1.1.4 What is a Code List? (Non-Normative)

	1.2 Terminology
	1.2.1 Terms and Definitions

	1.3 Normative References
	1.4 Non-normative References

	2 Genericode Model
	2.1 Tabular Structure
	2.2 Genericode Document Types
	2.2.1 Summary of Document Types
	2.2.2 Column Set Documents
	2.2.3 Code List Documents
	2.2.4 Code List Set Documents

	2.3 Column Sets – Columns and Keys
	2.4 Code lists
	2.5 Code list sets
	2.6 Namespaces

	3 Genericode XML Serialization
	3.1 Schema Version and Namespace
	3.2 Notation
	3.3 Table of Schema Definitions
	3.3.1 Global Elements
	3.3.2 Global Complex Types
	3.3.3 Global Simple Types
	3.3.4 Global Model Groups
	3.3.5 Global Attribute Groups

	3.4 Global Schema Definitions in Alphabetic Order
	3.4.1 Agency (Complex Type)
	3.4.2 Annotation (Complex Type)
	3.4.3 AnyOtherContent (Complex Type)
	3.4.4 AnyOtherLanguageContent (Complex Type)
	3.4.5 CodeList (Element)
	3.4.6 CodeListDocument (Complex Type)
	3.4.7 CodeListRef (Complex Type)
	3.4.8 CodeListSet (Element)
	3.4.9 CodeListSetChoice (Model Group)
	3.4.10 CodeListSetDocument (Complex Type)
	3.4.11 CodeListSetRef (Complex Type)
	3.4.12 Column (Complex Type)
	3.4.13 ColumnChoice (Model Group)
	3.4.14 ColumnRef (Complex Type)
	3.4.15 ColumnReference (Attribute Group)
	3.4.16 ColumnSet (Element)
	3.4.17 ColumnSet (Complex Type)
	3.4.18 ColumnSetChoice (Model Group)
	3.4.19 ColumnSetContent (Model Group)
	3.4.20 ColumnSetDocument (Complex Type)
	3.4.21 ColumnSetRef (Complex Type)
	3.4.22 Data (Complex Type)
	3.4.23 DataRestrictions (Complex Type)
	3.4.24 DatatypeFacet (Complex Type)
	3.4.25 DefaultDatatypeLibrary (Attribute Group)
	3.4.26 DocumentHeader (Model Group)
	3.4.27 ExternalReference (Attribute Group)
	3.4.28 GeneralIdentifier (Complex Type)
	3.4.29 IdDefinition (Attribute Group)
	3.4.30 Identification (Complex Type)
	3.4.31 IdentificationRefUriSet (Model Group)
	3.4.32 IdentificationVersionUriSet (Model Group)
	3.4.33 Key (Complex Type)
	3.4.34 KeyChoice (Model Group)
	3.4.35 KeyColumnRef (Complex Type)
	3.4.36 KeyRef (Complex Type)
	3.4.37 Language (Attribute Group)
	3.4.38 LongName (Complex Type)
	3.4.39 MimeTypedUri (Complex Type)
	3.4.40 NameSet (Model Group)
	3.4.41 OptionalUseDefinition (Attribute Group)
	3.4.42 OuterCodeListChoice (Model Group)
	3.4.43 RequiredUseDefinition (Attribute Group)
	3.4.44 Row (Complex Type)
	3.4.45 ShortName (Complex Type)
	3.4.46 SimpleCodeList (Complex Type)
	3.4.47 SimpleCodeListSequence (Model Group)
	3.4.48 SimpleValue (Complex Type)
	3.4.49 UseType (Simple Type)
	3.4.50 Value (Complex Type)
	3.4.51 ValueChoice (Model Group)
	3.4.52 ValueIdentification (Attribute Group)
	3.4.53 VersionLocationUriSet (Model Group)

	4 Conformance
	4.1 Auxiliary Rules
	4.2 Category: document
	4.3 Category: application

	Appendix A Release Notes (Non-Normative)
	A.1 Availability
	A.2 Package Structure (Non-Normative)

	Appendix B Sample transformation to JSON (Non-Normative)
	Appendix C Sample instances of genericode (Non-Normative)
	Appendix D Testing select document conformance rules (Non-Normative)
	Appendix E Considerations of life cycle metadata (Non-Normative)
	Appendix F The Open-edi reference model perspective of code lists (Non-Normative)
	Appendix G Acknowledgements (Non-Normative)
	Appendix H Notices

