
[image:]

[bookmark: _wynksj8s07so]CACAO Security Playbooks Version 2.0
[bookmark: _ehzdxcsjrzgp]Committee Specification Draft 01
[bookmark: _alhuw2ux8ur0]21 February 2023
This version:
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/csd01/security-playbooks-v2.0-csd01.docx (Authoritative)
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/csd01/security-playbooks-v2.0-csd01.html
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/csd01/security-playbooks-v2.0-csd01.pdf
Previous version:
https://docs.oasis-open.org/cacao/security-playbooks/v1.1/csd02/security-playbooks-v1.1-csd02.docx (Authoritative)
https://docs.oasis-open.org/cacao/security-playbooks/v1.1/csd02/security-playbooks-v1.1-csd02.html
https://docs.oasis-open.org/cacao/security-playbooks/v1.1/csd02/security-playbooks-v1.1-csd02.pdf
Latest version:
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/security-playbooks-v2.0.docx (Authoritative)
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/security-playbooks-v2.0.html
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/security-playbooks-v2.0.pdf
Technical Committee:
OASIS Collaborative Automated Course of Action Operations (CACAO) for Cyber Security TC
Chairs:
Bret Jordan (jordan.oasisopen@gmail.com), Individual
Allan Thomson (atcyber1000@gmail.com), Individual
Editors:
Bret Jordan (jordan.oasisopen@gmail.com), Individual
Allan Thomson (atcyber1000@gmail.com), Individual
[bookmark: kix.8vnbtqzel4j7]Related Work:
This specification replaces or supersedes:
· CACAO Security Playbooks Version 1.0. Edited by Bret Jordan and Allan Thomson. 08 June 2021. OASIS Committee Specification 02. Latest version: https://docs.oasis-open.org/cacao/security-playbooks/v1.0/security-playbooks-v1.0.html.
This document is related to:
· Playbook Requirements Version 1.0. Edited by Bret Jordan and Allan Thomson. 01 April 2020. Latest version: https://docs.oasis-open.org/cacao/playbook-requirements/v1.0/playbook-requirements-v1.0.html.
· CACAO Introduction Version 01. Edited by Bret Jordan, Allan Thomson, and Jyoti Verma. Latest version: https://tools.ietf.org/html/draft-jordan-cacao-introduction-01.
Abstract:
To defend against threat actors and their tactics, techniques, and procedures organizations need to detect, investigate, prevent, mitigate, and remediate threats in cyber relevant time. To do this, organizations need to identify, create, document, and test the orchestration steps needed to achieve these outcomes. These steps, when grouped together, form a cyber security playbook that can be used to protect organizational systems, networks, data, and users.

This specification defines the schema and taxonomy for collaborative automated course of action operations (CACAO) for cyber security playbooks and describes how these playbooks can be created, documented, and shared in a structured and standardized way across organizational boundaries and technological solutions.
Status:
This document was last revised or approved by the OASIS Collaborative Automated Course of Action Operations (CACAO) for Cyber Security TC on the above date. The level of approval is also listed above. Check the "Latest version" location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cacao#technical.

TC members should send comments on this document to the TC's email list. Others should send comments to the TC's public comment list, after subscribing to it by following the instructions at the "Send A Comment" button on the TC's web page at https://www.oasis-open.org/committees/cacao/.

This document is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established. For information on whether any patents have been disclosed that may be essential to implementing this document, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-open.org/committees/cacao/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this Work Product is provided in separate plain text files. In the event of a discrepancy between any such plain text file and display content in the Work Product's prose narrative document(s), the content in the separate plain text file prevails.
Key words:
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
Citation format:
When referencing this document, the following citation format should be used:
[CACAO-Security-Playbooks-v2.0]
CACAO Security Playbooks Version 2.0. Edited by Bret Jordan and Allan Thomson. 21 February 2023. OASIS Committee Specification Draft 01. https://docs.oasis-open.org/cacao/security-playbooks/v2.0/csd01/security-playbooks-v2.0-csd01.html. Latest version: https://docs.oasis-open.org/cacao/security-playbooks/v2.0/security-playbooks-v2.0.html.
Notices:
Copyright © OASIS Open 2023. All Rights Reserved.
Distributed under the terms of the OASIS IPR Policy, [https://www.oasis-open.org/policies-guidelines/ipr/], AS-IS, WITHOUT ANY IMPLIED OR EXPRESS WARRANTY; there is no warranty of MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE or NONINFRINGEMENT of the rights of others. For complete copyright information please see the Notices section in the appendix.

Table of Contents

1 Introduction	7
1.1 Overview of CACAO Playbook Structure and Object Types	7
1.2 Playbook	7
1.2.1 Referencing Other Playbooks	8
1.3 Playbook Types	8
1.4 Integrations	10
1.5 Related Standards	10
1.6 Document Conventions	10
1.7 Changes From Earlier Versions	11
1.8 Glossary	11
2 Key Concepts and Features	12
2.1 Vocabularies	12
2.2 Playbook Creator	12
2.3 Versioning	12
2.3.1 Versioning Timestamps	13
2.3.2 New Version or New Object?	13
2.4 Data Markings	14
2.5 Signing Playbooks	14
2.5.1 Signing Steps	14
2.5.2 Verify Signing Steps	14
3 Playbooks	16
3.1 Playbook Properties	16
3.1.1 Playbook Type Enumeration	23
3.1.2 Playbook Activity Type Vocabulary	24
3.2 Playbook Activity Metadata	26
3.2.1 playbook_types Property	26
3.2.2 playbook_activities Property	26
3.2.3 playbook_complexity Property	27
3.3 Playbook Constants & Variables	28
4 Workflows	29
4.1 Workflow Step Common Properties	29
4.2 Workflow Step Type Enumeration	31
4.3 Start Step	32
4.4 End Step	32
4.5 Action Step	33
4.6 Playbook Action Step	34
4.7 Parallel Step	35
4.8 If Condition Step	37
4.9 While Condition Step	38
4.10 Switch Condition Step	39
5 Commands	41
5.1 Command Data	41
5.2 Command Type Vocabulary	42
6 Agents and Targets	45
6.1 Agent and Target Common Properties	45
6.2 Agent Type Vocabulary	46
6.3 Group	47
6.4 Individual	47
6.5 Location	48
6.6 Organization	49
6.7 Sector	50
6.7.1 Industry Sector Vocabulary	50
6.8 HTTP API	57
6.9 Linux System	58
6.10 Network Address	59
6.11 Security Category	60
6.11.1 Security Category Type Vocabulary	61
6.12 SSH CLI	62
7 Extension Definition	64
7.1 Extension Definition Properties	64
8 Data Marking Definitions	67
8.1 Data Marking Common Properties	67
8.2 Data Marking Type Enumeration	69
8.3 Statement Marking	69
8.4 TLP Marking	69
8.5 IEP Marking	71
9 Data Types	73
9.1 Agent and Target	73
9.2 Boolean	73
9.3 Civic Location	73
9.3.1 Region Enumeration	75
9.4 Command Data	76
9.5 Complexity	76
9.6 Contact Information	77
9.7 Dictionary	78
9.8 Enum	78
9.9 External Reference	78
9.10 Identifier	79
9.11 Integer	80
9.12 Open Vocabularies	80
9.13 Signature	80
9.13.1 Signature Algorithm Type Enumeration	83
9.14 String	84
9.15 Timestamp	84
9.16 Variables	84
9.16.1 Variable Scope	85
9.16.2 Using Variables	85
9.16.3 Variable	85
9.16.4 Variable Type Vocabulary	86
10 Conformance	88
10.1 CACAO Playbook Producers and Consumers	88
10.1.1 CACAO 2.0 to 1.1 Version Compatibility	88
10.2 CACAO Mandatory Features	89
10.2.1 Versioning	89
10.2.2 Variables	89
10.2.3 Playbooks	89
10.2.4 Workflow Steps	89
10.2.5 Commands	89
10.2.6 Agents	89
10.2.7 Targets	89
10.3 CACAO Optional Features	89
10.3.1 Data Markings	89
10.3.2 Extensions	89
10.3.3 Digital Signatures	90
Appendix A. Examples	91
A.1 Playbook Example 1	91
A.2 Action Step Examples	91
A.3 Playbook Signature	91
A.3.1 Signing a Playbook	92
A.3.2 Verifying a Playbook	95
Appendix B. Security and Privacy Considerations	98
B.1 Security Considerations	98
B.2 Privacy Considerations	98
Appendix C. IANA Considerations	100
Appendix D. References	103
D.1 Normative References	103
D.2 Informative References	105
Appendix E. Acknowledgments	108
Appendix F. Revision History	110
Appendix G. Notices	111

[bookmark: _tdrzas9lmkf1]1 Introduction
To defend against threat actors and their tactics, techniques, and procedures organizations need to detect, investigate, prevent, mitigate, and remediate threats in cyber relevant time. To do this, organizations need to identify, create, document, and test the orchestration steps needed to achieve these outcomes. These steps, when grouped together, form a cyber security playbook that can be used to protect organizational systems, networks, data, and users.

This specification defines the schema and taxonomy for Collaborative Automated Course of Action Operations (CACAO) for cyber security playbooks and describes how these playbooks can be created, documented, and shared in a structured and standardized way across organizational boundaries and technological solutions.
[bookmark: _klv9fmnhjhrc]1.1 Overview of CACAO Playbook Structure and Object Types
This specification defines the following classes of objects: playbooks (section 3), workflow steps (section 4), commands (section 5), agents (section 6), targets (section 6), extensions (section 7), data markings (sections 2.4, 8), and digital signatures (sections 2.5, 9.13). Within a playbook, these objects are grouped and organized as shown in Figure 1.

[image:]
Figure 1 - CACAO Playbook Structure
[bookmark: _dv8z62zhr1ap]1.2 Playbook
CACAO standardizes the definition and use of two important concepts often used by organizations to protect themselves or the broader ecosystem they connect with: actions and playbooks.

An action represents every security activity or operation (referred to as a security action, or just action) that an organization may take to detect, investigate, prevent, mitigate or remediate a specific security state that has either occurred or may occur.

A playbook is a workflow for security orchestration containing a set of steps (security actions) to be performed based on a logical process and may be executed ad-hoc, periodically, or triggered by an automated or manual event or an observation. A playbook provides guidance on how to address a certain security event, incident, problem, attack, or compromise. Playbooks can be written by the organization, an entity external to the organization, by a sharing community, or even by a vendor.

A playbook may be defined in one system by one or more authors, but then executed in a different operational environment where the systems and users may have different authentication and authorization requirements.

Some playbooks may be immediately actionable in an organization’s security infrastructure without requiring modification or updates to the workflow and commands. However, others will not be immediately usable or supported in the recipient's organization due to environmental differences and will require some amount of modification to make them operational. In addition, some playbooks may be purposefully written at a higher level of abstraction in order to describe key concepts and tactics that should be used in a sequence to address a security event, incident, problem, attack, or compromise.
[bookmark: _ezlvt84y7l0s]1.2.1 Referencing Other Playbooks
A playbook may reference or include other playbooks in such a manner that allows composition from smaller, more specific functional playbooks similar to how software application development leverages modular libraries of common functions shared across different applications.
[bookmark: _asp71chqx017]1.3 Playbook Types
This section defines the playbook types that are used in this specification.

	Playbook Type
	Description

	Attack Playbook
	A playbook that is primarily focused on the orchestration steps required to execute a penetration test or perform adversarial emulation. These playbooks can help an organization test and verify the security controls in a specific environment and potentially identify vulnerabilities or other changes necessary to improve defensive posture within that environment. For example, an attack playbook can contain the specific actions that a red-team should perform that are within the scope and rules of engagement for a specific penetration test. An attack playbook may also be used to capture, in a structured way, the sequence of an adversary's behaviors as described in a text-based CTI report.

	Detection Playbook
	A playbook that is primarily focused on the orchestration steps required to detect a known security event, known or expected security-relevant activity, or for threat hunting. For example, a detection playbook can contain the actions needed to help organizations detect a specific attack or campaign.

	Engagement Playbook
	A playbook that is primarily focused on the orchestration steps required to engage in denial, deception, strategic planning, and analysis activity to support adversary engagement. Whereas attack playbooks leverage actions against known defenders to test an environment, engagement playbooks define actions and counter measures against adversaries to increase their cost to operate and decrease the value of their operations. For example, an engagement playbook can contain the actions needed to provide misinformation about data or systems to decrease the value an adversary places on the assets, or it can contain the actions needed to disrupt network access to increase the adversary’s operational costs. See [Engage].

	Investigation Playbook
	A playbook that is primarily focused on the orchestration steps required to investigate what affects a security event, incident, or other security-relevant activity has caused. Investigation playbooks will likely inform other subsequent actions upon completion of the investigation. For example, an investigation playbook can contain the actions needed to check various systems for suspicious activity.

	Mitigation Playbook
	A playbook that is primarily focused on the orchestration steps required to mitigate a security event or incident that has occurred when remediation is not initially possible. Organizations often choose to mitigate a security event or incident until they can actually remediate it. Mitigation playbooks are designed to reduce or limit the impact of suspicious or confirmed malicious activity. For example, a mitigation playbook can contain the specific actions to be used to quarantine affected users/devices/applications from the network temporarily to prevent additional problems. Mitigation usually precedes remediation, after which the mitigation actions are reversed.

	Notification Playbook
	A playbook that is primarily focused on the orchestration steps required to notify and disseminate information and other playbooks about a security event, incident, or threat. For example, a notification playbook can be used to notify multiple entities about a new attack or campaign and disseminate information or playbooks to deal with it as quickly as possible.

	Prevention Playbook
	A playbook that is primarily focused on the orchestration steps required to prevent a known or expected security event, incident, or threat from occurring. Prevention playbooks are often designed and deployed as part of best practices to safeguard organizations from known and perceived threats and behaviors associated with suspicious activity. For example, a prevention playbook can contain the specific actions that need to be deployed on certain systems to prevent a new attack or campaign.

	Remediation Playbook
	A playbook that is primarily focused on the orchestration steps required to remediate, resolve, or fix the resultant state of a security event or incident, and return the system, device, or network back to a nominal operating state. Remediation playbooks can fix affected assets by selectively correcting problems due to malicious activity by reverting the system or network to a known good state. For example, a remediation playbook can contain the specific actions that need to be deployed to ensure that a system or device is no longer infected with some malware. If mitigation steps were previously applied they may need to be undone during remediation, however, this is all implementation specific and dependent on how the playbooks were created and executed.

[bookmark: _2qhr5skyzt7d]1.4 Integrations
To enable integration within existing tools, CACAO security playbooks can reference and be referenced by other cybersecurity operational tools, including systems that may support cyber threat intelligence (CTI). This enables organizations to not only know and understand threats, behaviors, and associated intelligence, but also know what they could potentially do in response to a threat or behavior.
[bookmark: _stjl41gitsd0]1.5 Related Standards
In some cases this specification may define references to schemas or constructs from other standards. This allows CACAO to use other standards without having to redefine those schemas or constructs within CACAO itself. This version of the specification uses the following concepts from other standards:
· STIX Identity object from STIX 2.1 [STIX-v2.1]
· STIX Relationship object from STIX 2.1 [STIX-v2.1]
[bookmark: _27gpqrxo0m8a]1.6 Document Conventions
The following color, font and font style conventions are used in this document:
· The Consolas font is used for all type names, property names and literals.
· type names are in red with a light red background – string
· property names are in bold style – description
· literals (values) are in blue with a blue background – investigation
· In a property table, if a common property is being redefined in some way, then the background is dark grey.
· All examples in this document are expressed in JSON. They are in Consolas 9-point font, with straight quotes, black text and a light grey background, and using 2-space indentation. JSON examples in this document are representations of JSON objects [RFC8259]. They should not be interpreted as string literals. The ordering of keys is insignificant. Whitespace before or after JSON structural characters in the examples are insignificant [RFC8259].
· Parts of the example may be omitted for conciseness and clarity. These omitted parts are denoted with the ellipses (...).
· The term "hyphen" is used throughout this document to refer to the ASCII hyphen or minus character (45dec or 2Dhex), which in Unicode is "hyphen-minus", U+002D.
· The IDs used in examples are notional and for illustrative purposes, they do not represent real objects.
· Some URLs have been defanged. This specification gives no guidance on how to defang or re-fang content. It is done to help ensure that the example URLs cannot be used directly.
[bookmark: _l9e46zz5u4r0]1.7 Changes From Earlier Versions
· Added three command types, added industry sector to the playbook metadata
· Made many improvements based on public review
· Made improvements and simplifications to the signing process
· Made a lot of editorial changes
· Ensured IDs are consistently represented
· Made changes to the UUIDv5 aspects
· Changed all logic actions to only allow a single action not a list of actions so we consistently use the parallel action
· Added playbook activities, removed playbook-templates
· Changed the TLP data markings to support TLPv2.
· Variables now use two underscores instead of two dollar signs, this is to make it work with the STIX Patterning Grammar
· Playbook Features was renamed to Playbook Complexity
· Renamed targets to agents
· Renamed Security Infrastructure Category to just Security Category
[bookmark: _ct2yy95xayj4]1.8 Glossary
CACAO - Collaborative Automated Course of Action Operations
CTI - Cyber Threat Intelligence
JSON - JavaScript Object Notation as defined in [RFC7493] and [RFC8259]
MTI - Mandatory To Implement
STIX - Structured Threat Information Expression
TLP - Traffic Light Protocol

[bookmark: _8pmr72kfkpzs]2 Key Concepts and Features
This section explains some of the key concepts and features used in CACAO.
[bookmark: _5j63l2tmo0g2]2.1 Vocabularies
Some properties in this specification use defined vocabularies. These vocabularies can be either open or closed. An open vocabulary (see section 9.12) allows implementers to use additional values beyond what is currently defined in the specification. However, if a similar value is already in the vocabulary, that value MUST be used. Open vocabulary types have an -ov suffix. A closed vocabulary is effectively an enumeration and MUST be used as defined. Enumeration types have an -enum suffix.

Vocabularies defined in this specification enhance interoperability by increasing the likelihood that different entities use the exact same string to represent the same concept, thereby making comparison and correlation easier.
[bookmark: _pgpzdfl3pyhd]2.2 Playbook Creator
The playbook creator is the entity (e.g., person, system, organization, or instance of a tool) that generates the identifier for the id property of the playbook. Playbook creators are represented as STIX 2.1 [STIX-v2.1] Identity objects. The creator's ID is captured in the created_by property. If that property is omitted, the creator is either unknown or wishes to remain anonymous.

Entities that re-publish an object from another entity without making any changes to the object, and thus maintaining the original value in the id property, are not considered the object creator and MUST NOT change the created_by property. An entity that accepts objects and republishes them with modifications, additions, or omissions MUST create a new id for the object as they are now considered the object creator of the new object for purposes of versioning (see section 2.3 versioning for more information).
[bookmark: _7jx371t3wm65]2.3 Versioning
Versioning is the mechanism that playbook creators use to manage a playbook’s lifecycle, including when it is created, updated, or revoked. This section describes the versioning process and normative rules for performing versioning and revocation. Playbooks are versioned using the created, modified, and revoked properties (see section 3.1).

Playbooks MAY be versioned in order to update, add, or remove information. A version of a playbook is identified uniquely by the combination of its id and modified properties. The first version of a playbook MUST have the same timestamp for both the created and modified properties. More recent values of the modified property indicate later versions of the playbook. Implementations MUST consider the version of the playbook with the most recent modified value to be the most recent version of the playbook. For every new version of a playbook, the modified property MUST be updated to represent the time that the new version was created. This specification does not define how to handle a consumer receiving two objects that are different, but have the same id and modified timestamp. This specification does not address how implementations should handle versions of the object that are not current.

Playbooks have a single object creator, the entity that generates the id for the object and creates the first version. The object creator SHOULD (but not necessarily will) be identified in the created_by property of the object. Only the object creator is permitted to create new versions of a playbook. Producers other than the object creator MUST NOT create new versions of that object using the same id. If a producer other than the object creator wishes to create a new version, they MUST instead create a new playbook with a new id. They SHOULD additionally populate the derived_from property to relate their new playbook to the original playbook that it was derived from.

Every representation (each time the object version is serialized and shared) of a version of a playbook (identified by the playbook's id and modified properties) MUST always have the same set of properties and the same values for each property. If a property has the same value as the default, it MAY be omitted from a representation, and this does not represent a change to the object. In order to change the value of any property, or to add or remove properties, the modified property MUST be updated with the time of the change to indicate a new version.

Playbooks can also be revoked, which means that they are no longer considered valid by the object creator. As with issuing a new version, only the object creator is permitted to revoke a playbook. A value of true in the revoked property indicates that a playbook (including the current version and all past versions) has been revoked. Revocation is permanent. Once an object is marked as revoked, later versions of that object MUST NOT be created. Changing the revoked property to indicate that an object is revoked is an update to the object, and therefore its modified property MUST be updated at the same time. This specification does not address how implementations should handle revoked data.
[bookmark: _71mgkmo7ig4t]2.3.1 Versioning Timestamps
There are two timestamp properties used to indicate when playbooks were created and modified: created and modified. The created property indicates the time the first version of the playbook was created. The modified property indicates the time the specific version of the playbook was updated. The modified time MUST NOT be earlier than the created time. This specification does not address the specifics of how implementations should determine the value of the creation and modification times for use in the created and modified properties (e.g., one system might use when the playbook is first added to the local database as the creation time, while another might use the time when the playbook is first distributed).
[bookmark: _9ph9u1tebe0u]2.3.2 New Version or New Object?
Eventually an implementation will encounter a case where a decision must be made regarding whether a change is a new version of an existing playbook or is different enough that it is a new playbook. This is generally considered a data quality problem and therefore this specification does not provide any normative text.

However, to assist implementers and promote consistency across implementations, some general rules are provided. Any time a change indicates a material change to the meaning of the playbook, a new playbook with a different id SHOULD be used. A material change is any change that the playbook creator believes substantively changes the meaning or functionality of the playbook. These decisions are always made by the playbook creator. The playbook creator should also think about any relationships (e.g., STIX 2.1 relationship objects) to the playbook from other data when deciding if a change is material. If the change would invalidate the usefulness of relationships to the playbook, then the change is considered material and a new playbook id SHOULD be used.
[bookmark: _sxo5iytewmwz]2.4 Data Markings
Data markings represent restrictions, permissions, and other guidance for how playbooks can be used and shared. For example, playbooks may be shared with the restriction that it must not be re-shared, or that it must be encrypted at rest. In CACAO, data markings are specified using the data marking object and are applied via the markings property on the playbook object. These markings apply to all objects and elements included in the playbook.

Any change to the markings property (e.g., adding or removing a marking) is treated the same as a change to any other property on the object, and thus follows the same rules for versioning. It is important to note that data markings themselves MUST NOT be versioned.

Multiple markings can be added to the same playbook. Some data markings or trust groups have rules about which markings override other markings or which markings can be additive to other markings. This specification does not define rules for how multiple markings applied to the same playbook should be interpreted.
[bookmark: _bweas66qn4pi]2.5 Signing Playbooks
The process of digitally signing CACAO playbooks is conformant with the JSON Signature Scheme (x.jss) and allows digitally signed playbooks to remain in JSON format. CACAO playbooks can be signed and or countersigned depending on the needs of the ecosystem, trust group, or organization. The CACAO signature design supports both including the signature in the playbook itself and storing or sharing the signature separately as a detached signature. When signing a CACAO playbook, the signer MUST NOT include any existing signatures in the playbook data, unless they are specifically countersigning. Adding a signature to a playbook does not constitute a revision or change to the playbook and as such, the modified timestamp MUST NOT be updated. See section A.3 in the appendix for a detailed example.
[bookmark: _4kodrff31ul3]2.5.1 Signing Steps
The steps involved in signing a CACAO playbook are as follows (see Appendix A.3 for more details):
Step 1: Create or parse the playbook to be signed
Step 2: Temporarily remove existing signature from the playbook
Step 3: Create and add signature object to the playbook from step 2
Step 4: Create a JCS [RFC8785] canonical version of entire playbook from step 3
Step 5: Create hash based on the hash algorithm defined in the signature object (e.g., SHA256 in hex) of the JCS version of the entire playbook from step 4
Step 6: Sign the hash from step 5 using the algorithm (e.g., RS256) defined in the signature object and base64URL.encode it
Step 7: Append the new b64 digital signature from step 6 to the signatures value property (also include any existing signatures, that were removed in step 2)
[bookmark: _ure499pv857h]2.5.2 Verify Signing Steps
The steps involved in verifying a signed CACAO playbook are as follows (see Appendix A.3 for more details):
Step 1: Parse the signed playbook to verify
Step 2: Capture and remove the digital signature from the value property of the signature you want to verify (also remove any other signatures that may be included in the playbook)
Step 3: Parse or fetch the public key from step 2
Step 4: Create a JCS [RFC8785] canonical version of entire playbook from step 3
Step 5: Create hash based on the hash algorithm defined in the signature object (e.g., SHA256 in hex) of the JCS version of the entire playbook from step 4
Step 6: Verify the signature received using the public key and algorithm (RS256) from the signature object

[bookmark: _d48qyqawlk8s]3 Playbooks
CACAO playbooks are made up of five parts; playbook metadata, the workflow logic, a list of agents, a list of extensions, and a list of data markings. Playbooks MAY refer to other playbooks in the workflow, similar to how programs refer to function calls or modules that comprise the program. The definition and normative requirements for all data types listed in the property table below and other property tables in this document can be found in Section 9.
[bookmark: _28n7liccql2x]3.1 Playbook Properties
	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be playbook. See section 1.2 and section 1.3 for more information.

	spec_version (required)
	string
	The version of the specification used to represent this playbook. The value of this property MUST be cacao-1.1 to represent the version of this specification.

	id (required)
	identifier
	A value that uniquely identifies the playbook. All playbooks with the same id are considered different versions of the same playbook and the version of the playbook is identified by its modified property.

	name (required)
	string
	A simple name for this playbook. Playbook names often follow a naming convention that is unique within an organization, community, or trust group and as such this name SHOULD be unique.

	description (optional)
	string
	More details, context, and possibly an explanation about what this playbook does and tries to accomplish. Producers SHOULD populate this property.

	playbook_types (optional)
	list of enum
	A list of playbook types that specifies the operational roles that this playbook addresses. This property SHOULD be populated.

The values for this property MUST come from the playbook-type-enum enumeration (see section 3.1.1).

	playbook_activities (optional)
	list of open-vocab
	A list of activities pertaining to the playbook. This property SHOULD be populated. If the playbook_types property is populated then this property MUST have at least one assigned activity.

This property allows an author to define more detailed descriptions for the various activities that playbook performs. This property provides a much richer and verbose method to describe all aspects of a playbook than just the playbook_types property.

The values for this property SHOULD come from the playbook-activity-type-ov vocabulary (see section 3.1.2).

Each listed activity MUST be reflected in a CACAO workflow step object and that object MUST be included in the workflow property.

	playbook_complexity (optional)
	playbook-complexity
	This property contains a summarized list of features that are defined within this playbook. This property enables the content of a playbook to be assessed without requiring the entire content to be parsed or understood. See section 9.5.

	created_by (required)
	identifier
	An ID that represents the entity that created this playbook. The ID MUST represent a STIX 2.1+ identity object.

	created (required)
	timestamp
	The time at which this playbook was originally created. The creator can use any time it deems most appropriate as the time the playbook was created, but it MUST be given to the nearest millisecond (exactly three digits after the decimal place in seconds). The created property MUST NOT be changed when creating a new version of the object.

	modified (required)
	timestamp
	The time that this particular version of the playbook was last modified. The creator can use any time it deems most appropriate as the time that this version of the playbook was modified, but it MUST be given to the nearest millisecond (exactly three digits after the decimal place in seconds). The modified property MUST be later than or equal to the value of the created property. If created and modified properties are the same, then this is the first version of the playbook.

	revoked (optional)
	boolean
	A boolean that identifies if the playbook creator deems that this playbook is no longer valid. The default value is false.

	valid_from (optional)
	timestamp
	The time from which this playbook is considered valid and the workflow steps that it contains can be executed. More detailed information about time frames MAY be applied in the workflow.

If omitted, the playbook is valid at all times or until the timestamp defined by valid_until.

If the revoked property is true then this property MUST be ignored.

	valid_until (optional)
	timestamp
	The time at which this playbook should no longer be considered a valid playbook to be executed.

If the valid_until property is omitted, then there is no constraint on the latest time for which the playbook is valid.

This property MUST be greater than the timestamp in the valid_from property if the valid_from property is defined.

If the revoked property is true then this property MUST be ignored.

	derived_from (optional)
	list of identifier
	The ID of one or more playbooks that this playbook was derived from.

The ID MUST represent a CACAO playbook object.

	priority (optional)
	integer
	A number (𝕎 - whole number) that represents the priority of this playbook relative to other defined playbooks.

Priority in the context of CACAO is a subjective assessment; thus, producers of playbooks, sharing organizations, and marketplaces MAY define rules on how priority should be assessed and assigned. This specification does not address how this assessment is determined. This property is primarily to allow such usage without requiring the addition of a custom property for such practices.

If specified, the value of this property MUST be between 0 and 100.

When left blank this means unspecified. A value of 0 means specifically undefined. Values range from 1, the highest priority, to a value of 100, the lowest.

The values of 1-100 in this property are inverted from severity and impact based on how the concept of priority is used today. For example, in a SOC a P1 ticket is higher priority than a P4 ticket.

	severity (optional)
	integer
	A number (𝕎 - whole number) that represents the seriousness of the conditions that this playbook addresses. This is highly dependent on whether the playbook is a response to an incident (in which case the severity could be mapped to an incident category defined in some solution), a response to a threat (in which case the severity would likely be mapped to the severity of the threat faced or captured by threat intelligence), or a response to something else.

Marketplaces and sharing organizations MAY define additional rules for how this property should be assigned. This specification does not address how this assessment is determined.

If specified, the value of this property MUST be between 0 and 100.

When left blank this means unspecified. A value of 0 means specifically undefined. Values range from 1, the lowest severity, to a value of 100, the highest.

	impact (optional)
	integer
	A number (𝕎 - whole number) from 0 to 100 that represents the potential impact (as determined subjectively by the producer) of the playbook's execution on the organization.

If specified, the value of this property MUST be between 0 and 100. When left blank this means unspecified. A value of 0 means specifically undefined or benign. Impact values range from 1, the lowest impact, to a value of 100, the highest.

Marketplaces and sharing organizations MAY define additional rules for how this property should be assigned. This specification does not address how this assessment is determined.

NOTE: The value of this property is not related to what triggered the playbook in the first place, such as a threat or an incident.

Executing a playbook with a higher impact score may increase the likelihood of an effect on the organization. For example, a purely investigative playbook that is non-invasive could have a low impact value of 1. In contrast, a playbook that performs firewall changes, IPS changes, moves laptops to a quarantine VLAN etc., would have a higher impact value.

	industry_sectors (optional)
	list of open-vocab
	A list of industry sectors that this playbook is applied to.

Any industry sectors that are used in other parts of this playbook MUST also be included in this property. Any industry sectors that are used in other referenced playbooks MAY also be included in this property.

The values for this property SHOULD come from the industry-sector-ov vocabulary.

	labels (optional)
	list of string
	An optional set of terms, labels, or tags associated with this playbook. The values may be user, organization, or trust-group defined and their meaning is outside the scope of this specification.

	external_references (optional)
	list of external-reference
	An optional list of external references for this playbook or content found in this playbook.

Any external references that are used in other parts of this playbook MUST also be included in this property. Any external references that are used in other referenced playbooks MAY also be included in this property.

	markings (optional)
	list of identifier
	An optional list of data marking objects that apply to this playbook. In some cases, though uncommon, data markings themselves may be marked with sharing or handling guidance. In this case, this property MUST NOT contain any references to the same data marking object (i.e., it cannot contain any circular references).

Each ID MUST represent a CACAO data marking object.

	playbook_variables (optional)
	dictionary
	This property contains the global variables (see section 9.16.1 for information about variable scope) that can be used within this playbook or within workflow steps, commands, and agents defined within this playbook. See section 9.16 for information about referencing variables.

The key for each entry in the dictionary MUST be a string that uniquely identifies the variable. The value for each key MUST be a CACAO variable data type (see section 9.16).

	workflow_start (required)
	identifier
	The first workflow step included in the workflow property that MUST be executed when starting the workflow.

The ID MUST represent a CACAO workflow start step object and that object MUST be included in the workflow property. This property is an implementation helper, so that the entire workflow does not need to be parsed to find the start step.

	workflow_exception (optional)
	identifier
	The workflow step invoked whenever a playbook exception condition occurs.

If defined, the ID MUST represent a CACAO workflow step object and that object MUST be included in the workflow property.

	workflow (required)
	dictionary
	The workflow property contains the processing logic for the playbook as workflow steps. All playbooks MUST contain at least the following three steps: a start step, an action/playbook-action step, and an end step.

The key for each entry in the dictionary MUST be an identifier that uniquely identifies the workflow step (see section 9.10 for more information on identifiers). The value for each key MUST be a CACAO workflow step object (see section 4).

	agents (optional)
	dictionary
	A dictionary of agents that can be referenced from workflow steps found in the workflow property.

The key for each entry in the dictionary MUST be an identifier that uniquely identifies the agent (see section 9.10 for more information on identifiers). The value for each key MUST be a CACAO agent-target object (see section 6).

Any agents that are used in other parts of this playbook MUST also be included in this property. Any agents that are used in other referenced playbooks MAY also be included in this property.

	targets (optional)
	dictionary
	A dictionary of targets that can be referenced from workflow steps found in the workflow property.

The key for each entry in the dictionary MUST be an identifier that uniquely identifies the target (see section 9.10 for more information on identifiers). The value for each key MUST be a CACAO agent-target object (see section 6).

Any targets that are used in other parts of this playbook MUST also be included in this property. Any agents that are used in other referenced playbooks MAY also be included in this property.

	extension_definitions (optional)
	dictionary
	A dictionary of extension definitions that are referenced from workflow steps found in the workflow property.

The key for each entry in the dictionary MUST be an identifier that uniquely identifies the extension (see section 9.10 for more information on identifiers). The value for each key MUST be a CACAO extension object (see section 7).

Any extensions that are used in other parts of this playbook MUST also be included in this property. Any extensions that are used in other referenced playbooks MAY also be included in this property.

	data_marking_definitions (optional)
	dictionary
	A dictionary of data marking definitions that can be referenced from the playbook found in the markings property.

The key for each entry in the dictionary MUST be an identifier that uniquely identifies the data marking (see section 9.10 for more information on identifiers). The value for each key MUST be a CACAO data marking object (see section 8).

Any data markings that are used in other parts of this playbook MUST also be included in this property. Any data markings that are used in other referenced playbooks MAY also be included in this property.

	signatures (optional)
	list of signature
	An optional list of digital signatures for this playbook. Adding a signature to a playbook does not represent a version change of the playbook. See sections 2.5, 9.13, and A.3 in the appendix for more information and a detailed example.

Example 3.1
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
{
 "type": "playbook",
 "spec_version": "1.1",
 "id": "playbook--2a56e22e-625f-4134-8939-6f32b0b53175",
 "name": "Find Malware FuzzyPanda",
 "description": "This playbook will look for FuzzyPanda on the network and in a SIEM",
 "playbook_types": ["investigation"],
 "playbook_activities": ["analyze-collected-data", "identify-indicators"],
 "playbook_complexity": {
 "if_logic": true,
 "data_markings": true
 },
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2023-01-11T05:11:36.152Z",
 "modified": "2023-01-11T05:11:36.152Z",
 "revoked": false,
 "valid_from": "2023-01-11T05:11:36.152Z",
 "valid_until": "2023-12-31T23:59:59.999Z",
 "derived_from": ["playbook--00ee41a2-c2ca-41da-8ea9-681344eb3926"],
 "priority": 3,
 "severity": 70,
 "impact": 5,
 "industry_sectors": ["aerospace", "defense"],
 "labels": ["malware", "fuzzypanda", "apt"],
 "external_references": [
 {
 "name": "ACME Security FuzzyPanda Report",
 "description": "ACME security review of FuzzyPanda 2021",
 "source": "ACME Security Company, Solutions for FuzzyPanda 2021, January 2021.
 Available online: hxxp://www[.]example[.]com/info/fuzzypanda2021.html",
 "url": "hxxp://www[.]example[.]com/info/fuzzypanda2021.html",
 "external_id": "fuzzypanda 2023.01",
 "reference_id": "malware--2008c526-508f-4ad4-a565-b84a4949b2af"
 }
],
 "markings": [
 "marking-statement--bf6e3276-7587-460a-a800-0c4baa0234ce",
 "marking-tlp--bab4a63c-aed9-4cf5-a766-dfca5abac2bb"
],
 "playbook_variables": {
 "__data_exfil_site__": {
 "type": "ipv4-addr",
 "description": "The IP address for the data exfiltration site",
 "value": "1.2.3.4"
 }
 },
 "workflow_start": "start--04a75e82-0eb0-4c1c-8f03-fbb7d7266a11",
 "workflow_exception": " ... ",
 "workflow": {
 "start--04a75e82-0eb0-4c1c-8f03-fbb7d7266a11": {
 "type": "start",
 "name": "Start Playbook Example 1",
 "on_completion": "action--87432e75-708b-4a1d-b1d7-227289663afd"
 },
 "action--87432e75-708b-4a1d-b1d7-227289663afd": {
 "type": "action",
 "name": "IP Lookup",
 "description": "Lookup the IP address in the SIEM",
 "on_completion": "end--ac2fb0c7-5cc8-48ab-acd9-b87f88c886b5",
 "commands": [
 {
 "type": "manual",
 "command": "Look up IP __data_exfil_site__:value in SIEM",
 "playbook_activity": "identify-indicators"
 }
]
 },
 "end--ac2fb0c7-5cc8-48ab-acd9-b87f88c886b5": {
 "type": "end",
 "name": "End Playbook Example 1"
 }
 },
 "agents": { ... },
 "targets": { ... },
 "extension_definitions": { ... },
 "data_marking_definitions": {
 "marking-statement--bf6e3276-7587-460a-a800-0c4baa0234ce": {
 "type": "marking-statement",
 "id": "marking-statement--bf6e3276-7587-460a-a800-0c4baa0234ce",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2023-01-11T05:11:36.152Z",
 "modified": "2023-01-11T05:11:36.152Z",
 "statement": "Copyright 2023 ACME Security Company"
 },
 "marking-tlp--bab4a63c-aed9-4cf5-a766-dfca5abac2bb": {
 "type": "marking-tlp",
 "id": "marking-tlp--bab4a63c-aed9-4cf5-a766-dfca5abac2bb",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2022-10-01T00:00:00.000Z",
 "modified": "2022-10-01T00:00:00.000Z",
 "tlpv2_level": "TLP-GREEN"
 }
 },
 "signatures": [...]
}
[bookmark: _afpsdqvk8p9n]3.1.1 Playbook Type Enumeration
A playbook may be categorized as having multiple types defined from this vocabulary.

Vocabulary Name: playbook-type-enum

	Vocabulary Value
	Description

	attack
	See section 1.3 for an explanation.

	detection
	See section 1.3 for an explanation.

	engagement
	See section 1.3 for an explanation.

	investigation
	See section 1.3 for an explanation.

	mitigation
	See section 1.3 for an explanation.

	notification
	See section 1.3 for an explanation

	prevention
	See section 1.3 for an explanation.

	remediation
	See section 1.3 for an explanation.

[bookmark: _z0we01ty42bq]3.1.2 Playbook Activity Type Vocabulary
Playbook activity differs according to playbook type. Activity type values and descriptions are given below, organized by playbook type: Notification (N), Detection (D), Investigation (I), Prevention (P), Mitigation (M), Remediation (R), Attack (A), Engagement (E). Required activities (indicated by X’s in bold face font) uniquely identify a playbook type and MUST be defined; optional activities SHOULD or MAY be associated with one or more playbook types.

Enumeration Name: playbook-activity-type-ov

	ActivityType / Description
	N
	D
	I
	P
	M
	R
	A
	E

	compose-content - This activity composes the notification text that will be distributed. This activity MUST be used with notification playbooks.
	M
	
	
	
	
	
	
	

	deliver-content - This activity delivers notification content to the intended audience. This activity SHOULD be used with notification playbooks.
	
S
	
	
	
	
	
	
	

	identify-audience - This activity identifies the audience of a notification. This activity SHOULD be used with notification playbooks.
	S
	
	
	
	
	
	
	

	identify-channel - This activity identifies the method by which notification content will be sent. This activity SHOULD be used with notification playbooks.
	S
	
	
	
	
	
	
	

	scan-system - This activity scans a system (workstation, server, network device) to identify potential compromises. This activity SHOULD be used with detection, investigation, and mitigation playbooks.
	
	S
	S
	
	S
	
	
	

	match-indicator - This activity matches on an indicator through traffic monitoring, system scans, and log analysis. This activity MUST be used with detection playbooks.
	
	M
	
	
	
	
	
	

	analyze-collected-data - This activity analyzes historical output from security devices (e.g., logs and network traffic capture). This activity SHOULD be used with investigation playbooks.
	
	
	S
	
	
	
	
	

	identify-indicators - This activity identifies one or more indicators that can be used to detect a security event. This activity MUST be used with investigation playbooks.
	
	
	M
	
	
	
	
	

	scan-vulnerabilities - This activity identifies vulnerabilities of a system. This activity SHOULD be used with prevention playbooks and MAY be used with attack playbooks.
	
	
	
	S
	
	
	O
	

	configure-systems - This activity confirms secure configuration and if necessary, updates or configures systems or security devices to be resistant to a security event. This activity MUST be used with prevention playbooks.
	
	
	
	M
	
	
	
	

	restrict-access - This activity blocks applications and network traffic (ports/IP addresses/URLs) to mitigate a security event. This activity SHOULD be used with mitigation playbooks.
	
	
	
	
	S
	
	
	

	disconnect-system - This activity disconnects a compromised system from the network. This activity MAY be used with mitigation playbooks.
	
	
	
	
	O
	
	
	

	eliminate-risk - This activity eliminates the risk that a threat will affect a network by restricting capabilities. This activity MUST be used with mitigation playbooks.
	
	
	
	
	M
	
	
	

	revert-system - This activity reimages a system returning it to a known-good state. This activity MAY be used with remediation playbooks.
	
	
	
	
	
	O
	
	

	restore-data - This activity restores data after a compromise (e.g., ransomware). This activity MAY be used with remediation playbooks.
	
	
	
	
	
	O
	
	

	restore-capabilities - This activity restarts services and opens network access. This activity MUST be used with remediation playbooks.
	
	
	
	
	
	M
	
	

	map-network - This activity maps a network to identify components that may be subject to compromise and to ensure the environment meets requirements for subsequent actions, such as a penetration test or attack simulation. This activity MAY be used with attack playbooks.
	
	
	
	
	
	
	O
	

	identify-steps - This activity identifies steps (tactics, techniques, and protocols) for use in a penetration test, attack simulation, or adversary emulation plan. These steps will become the step sequence. This activity MAY be used with attack playbooks (alternatively, an attack playbook may comprise only the steps pertaining to the operation).
	
	
	
	
	
	
	O
	

	step-sequence - This activity is a sequence of TTPs or steps that represents an adversary emulation plan, penetration test, or attack simulation. This activity MUST be used with attack playbooks.
	
	
	
	
	
	
	M
	

	prepare-engagement - This activity identifies what the defender wants to accomplish with respect to engaging (and misleading) an adversary and determines and aligns an operation with a desired end-state. This activity MUST be used with engagement playbooks.
	
	
	
	
	
	
	
	M

	execute-operation - This activity implements and deploys denial and deception activities designed for adversary engagement. This activity MUST be used with engagement playbooks.
	
	
	
	
	
	
	
	M

	analyze-engagement-results - This activity turns operational engagement outputs into actionable intelligence. Assessment of the intelligence enables capture of lessons learned and refinement of future adversary engagements. This activity MUST be used with engagement playbooks.
	
	
	
	
	
	
	
	M

[bookmark: _n0chs6rsaumx]3.2 Playbook Activity Metadata
The following three playbook-level properties provide specific metadata about a playbook; these properties facilitate and support the searching and indexing of playbooks. Below, we describe the metadata purpose of each property and give search examples that a search engine might support.
[bookmark: _q2qjoca51b2d]3.2.1 playbook_types Property
	playbook_types
	See actual property definition in section 3.1.

Metadata Purpose
The playbook_types property allows an author to define what operational roles the playbook supports. In many cases, a single playbook may support multiple roles or phases of a response and as such can combine multiple operational roles.

This property is considered very important and SHOULD be defined by authors.

A typical search engine might support (using pseudo-SQL):

· To find all playbooks that are investigative in nature
· Select * playbooks where playbook_types contains “investigation”
· To find all playbooks that include both mitigation and remediation
· Select * playbooks where playbook_types contains “mitigation” && playbook_types contains “remediation”
· To find all playbooks that either include prevention or mitigation
· Select * playbooks where (playbook_types contains “mitigation” || playbook_types contains “prevention”)
· To find all playbooks that are mitigation playbooks
· Select * playbooks where playbook_types contains “mitigation”

[bookmark: _sjg8flkbescq]3.2.2 playbook_activities Property
	playbook_activities
	See actual property definition in section 3.1.

Metadata Purpose
The playbook_activities property allows an author to define more detailed descriptions for the various activities that the playbook performs. This property provides a much richer and verbose method to describe all aspects of a playbook including parts that are particularly focused on kill-chain activities.

This property is considered important for systems that require a detailed description of a playbook’s activities and SHOULD be defined by authors. This property MUST be defined if the playbook_types property is populated.

A typical search engine might support:

· To find all playbooks that are are investigative, and include scan systems activities
· Select * playbooks where playbook_types contains “investigation” && playbook_activities contains “scan-system”
· To find all playbooks that include both mitigation and remediation, and include activities configure systems and restrict access.
· Select * playbooks where playbook_types contains “mitigation” && playbook_activities contains “configure-systems” && playbook_activities contains “restrict-access”
· To find all playbooks that are either mitigation or prevention playbook types, and include identifying indicators activities
· Select * playbooks where (playbook_types contains “mitigation” || playbook_types contains “prevention”) && playbook_activities contains “identify-indicators”
· To find all playbooks that include identifying indicators activities
· Select * playbooks where playbook_activities contains “identify-indicators”

[bookmark: _pnemngqhlzrx]3.2.3 playbook_complexity Property
	playbook_complexity
	See actual property definition in section 3.1.

Metadata Purpose
The playbook_complexity property allows an author to define what specific types of logical constructs are used within a playbook. Typically this property can help determine whether a playbook system has the capability to support the logical constructs defined within the playbook.

This property is considered important for systems that require an understanding of the logical constructs (see section 9.5) used in the playbook to determine whether they support the playbook, and SHOULD be defined by authors.

A typical search engine might support:

· To find all playbooks that are investigative, and contain while logic and temporal logic.
· Select * playbooks where playbook_types contains “investigation” && playbook_complexity contains “while_logic” && playbook_complexity contains “temporal_logic”
· To find all playbooks that are mitigative that includes activity for configure systems and restrict access, including programming logic using while logic and temporal logic.
· Select * playbooks where playbook_types contains “mitigation” && playbook_activities contains “configure-systems” && playbook_activities contains “restrict-access” && playbook_complexity contains “while_logic” && playbook_complexity contains “temporal_logic”
· To find all playbooks that include activities for configure systems regardless of purpose (i.e. no need to choose the playbook_types inclusion), using while logic.
· Select * playbooks where playbook.type eq “playbook-template” playbook_activities contains “configure-systems” playbook_complexity contains “while_logic”
[bookmark: _vxmiqikhdyoa]3.3 Playbook Constants & Variables
Each playbook has a set of constants and variables that MAY be used throughout the execution of a playbook and its associated workflow (see section 9.16).

	Name
	Description
	Mutable
	Type
	Default Value

	__LOCAL_AGENT__
	A constant that defines a agent is local to the machine instance executing the current playbook.
	No
	string
	"local_agent"

	__ACTION_TIMEOUT__
	A timeout variable in milliseconds that may be used to assign to a specific step timeout. Each specific step timeout may be assigned this value or a distinct value. The step’s timeout is evaluated when it is executed and the timeout is used to determine when a step is no longer responsive. When a step is determined to no longer respond, the calling context should call the step identified in the on_failure property of that step.
	Yes
	integer
	60000 milliseconds

	__RETURN_CALLER__

	This constant tells the executing program to return to the step that started the current branch.

NOTE: this is similar to rolling back the stack in a computer program.

	No
	string
	"return_caller"

	__RETURN_CALLER_ID__
	This constant defines a step to call upon completion or failure of a sub-step. This is typically used with parallel steps that define a tree of sub-steps to execute. This constant tells the executing program exactly which step ID it MUST return to.
	yes
	identifier
	n/a

[bookmark: _owty84ir52p8]4 Workflows
Workflows contain a series of steps that are stored in a dictionary (see the workflow property in section 3.1), where the key is the step ID and the value is a workflow step. These workflow steps along with the associated commands form the building blocks for playbooks and are used to control the commands that need to be executed. Workflows steps are processed either sequentially, in parallel, or both depending on the type of steps required by the playbook. In addition to simple processing, workflow steps MAY also contain conditional and/or temporal operations to control the execution of the playbook.

Conditional processing means executing steps or commands after some sort of condition is met. Temporal processing means executing steps or commands either during a certain time window or after some period of time has passed.

This section defines the various workflow steps and how they may be used to define a playbook.
[bookmark: _bj5zek3hk759]4.1 Workflow Step Common Properties
Each workflow step contains some base properties that are common across all steps. These common properties are defined in the following table.

	Property Name
	Data Type
	Details

	type (required)
	enum
	The type of workflow step being used.

The value for this property MUST come from the workflow-step-type-enum enumeration.

	name (optional)
	string
	A name for this step that is meant to be displayed in a user interface or captured in a log message.

	description (optional)
	string
	More details, context, and possibly an explanation about what this step does and tries to accomplish.

	external_references (optional)
	list of external-reference
	An optional list of external references for this step.

	delay (optional)
	integer
	A number (𝕎 - whole number) that represents the amount of time in milliseconds that this step SHOULD wait before it starts processing.

If specified, the value for this property MUST be greater than or equal to 0.

If this property is omitted, then the workflow step executes immediately without delay.

	timeout (optional)
	integer
	A number (𝕎 - whole number) that represents the amount of time in milliseconds that this step MUST wait before considering the step has failed.

When a timeout has occurred for a step, the on_failure step pointer is invoked (if defined) and the information included in that call states that an ACTION_TIMEOUT occurred including the id of the step that timed out.

If specified, the value of this property MUST be greater than or equal to 0.

If this property is omitted, the system executing this workflow step SHOULD consider implementing a maximum allowed timeout to ensure that no individual workflow step can block a playbook execution indefinitely.

	step_variables (optional)
	dictionary
	This property contains the variables that can be used within this workflow step or within commands and agents referenced by this workflow step. See section 9.16.2 for information about referencing variables.

The key for each entry in the dictionary MUST be a string that uniquely identifies the variable. The value for each key MUST be a CACAO variable data type (see section 9.16.3).

	owner (optional)
	identifier
	An ID that represents the entity that is assigned as the owner or responsible party for this step.

The value of this property MUST represent a STIX 2.1+ Identity object.

	on_completion (optional)
	identifier
	The ID of the next step to be processed upon completion of the defined commands.

The value of this property MUST represent a CACAO workflow step object.

If this property is defined, then on_success and on_failure MUST NOT be defined.

	on_success (optional)
	identifier
	The ID of the next step to be processed if this step completes successfully.

The value of this property MUST represent a CACAO workflow step object.

If this property is defined, then on_completion MUST NOT be defined. This property MUST NOT be used on an end step.

	on_failure (optional)
	identifier
	The ID of the next step to be processed if this step fails to complete successfully.

The value of this property MUST represent a CACAO workflow step object.

If omitted and a failure occurs, then the playbook’s exception handler found in the workflow_exception property at the Playbook level will be invoked.

If this property is defined, then on_completion MUST NOT be defined. This property MUST NOT be used on an end step.

	step_extensions (optional)
	dictionary
	This property defines the extensions that are in use on this step.

The key for each entry in the dictionary MUST be an identifier that uniquely identifies the extension (see section 9.10 for more information on identifiers). The value for each key is a JSON object that can contain the structure as defined in the extension definition's schema property. Step extensions SHOULD be located in the extension_definitions property found at the Playbook level.

[bookmark: _7h8rkxmhcbmo]4.2 Workflow Step Type Enumeration
Enumeration Name: workflow-step-type-enum

This section defines the following types of workflow steps.

	Workflow Step Type
	Description

	start
	This workflow step is the start of a playbook. See section 4.3.

	end
	This workflow step is the end of a playbook or branch of workflow steps. See section 4.4.

	action
	This workflow step contains the actual commands to be executed. See section 4.5.

	playbook-action
	This workflow step executes a named playbook from within the current playbook. See section 4.6.

	parallel
	This workflow step contains a list of one or more steps that execute in parallel. See section 4.7.

	if-condition
	This workflow step contains an if-then-else statement. See section 4.8.

	while-condition
	This workflow step contains a while loop. See section 4.9.

	switch-condition
	This workflow step contains a switch statement. See section 4.10.

[bookmark: _3xi132gd6ogy]4.3 Start Step
The Start Step workflow step is the starting point of a playbook and represents an explicit entry in the workflow to signify the start of a playbook. While this type inherits all of the common properties of a workflow step it does not define any additional properties. This workflow step MUST NOT use the on_success or on_failure properties.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be start.

Example 4.1
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
{
 "workflow": {
 "start--27e1d0c1-2e08-4aa1-a062-176879a533e7": {
 "type": "start",
 "name": "Start Playbook Example 1",
 "on_completion": "action--ff537b6b-eca7-4137-aed5-331a750b7cbc"
 }
 }
}
[bookmark: _d31cf4i6ap58]4.4 End Step
The End Step workflow step is the ending point of a playbook or branch of step (e.g., a list of steps that are part of a parallel processing branch) and represents an explicit point in the workflow to signify the end of a playbook or branch of steps. While this type inherits all of the common properties of a workflow step it does not define any additional properties. When a playbook or branch of a playbook terminates it MUST call an End Step. This workflow step MUST NOT use the on_completion, on_success, or on_failure properties.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be end.

Example 4.2
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
{
 "workflow": {
 "end--09a02ab7-5e77-408b-a3e2-b468524329ac": {
 "type": "end",
 "name": "End Playbook Example 1"
 }
 }
}
[bookmark: _aq9kems115ut]4.5 Action Step
The Action Step workflow step contains the actual commands to be executed on one or more agents. These commands are intended to be processed sequentially. In addition to the inherited properties, this section defines five more specific properties that are valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be action.

	commands (required)
	list of command-data
	A list of commands that are to be executed as part of this step. If more than one command is listed, the commands MUST be processed in the order in which they are listed (see section 5). All commands in a given step MUST be applicable to all the agents and all the targets defined in that step.

	agent (required)
	identifier
	An agent ID reference that MUST execute the commands defined in this step.

Each ID MUST reference a CACAO agent-target object (see section 6). This list MUST have at least one identifier.

	targets (optional)
	list of identifier
	A list of target ID references that are affected by the commands defined in this step that are executed by the agent.

Each ID MUST reference a CACAO agent-target object (see section 6). This list MUST have at least one identifier.

	in_args (optional)
	list of string
	The list of variable names from the local step_variables dictionary (see section 4.1) or passed into this step from the global playbook_variables dictionary (see section 3.1) that are used in either an agent or one of the target(s) associated with this step. See section 9.16 for more information about variables.

	out_args (optional)
	list of string
	The optional list of variable names from the local step_variables dictionary (see section 4.1) or global playbook_variables dictionary (see section 3.1) that are to be returned from this step after execution of the commands by the agent(s) and stored in the same variable dictionary. See section 9.16 for more information about variables.

Example 4.3
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
{
 "workflow": {
 "action--ba23c1b3-fdd2-4264-bc5b-c056c6862ba2": {
 "type": "action",
 "commands": [
 {
 "type": "manual",
 "command": "Disconnect the machines from the network",
 }
],
 "agent": "individual--328a89ab-3b8f-40c4-a491-24a40bcd3cd4",
 "delay": 5000,
 "timeout": 60000,
 "on_success": "action--e5f0d00d-3047-4432-8964-cc0c56e5ab12",
 "on_failure": "action--e7e93280-ab26-45aa-baa8-423c44f917a6"
 }
 }
}

This workflow step has a user block a machine (192.168.0.100) at the firewall using the firewall's HTTP API interface.
{
 "workflow": {
 "action--ba23c1b3-fdd2-4264-bc5b-c056c6862ba2": {
 "type": "action",
 "commands": [
 {
 "type": "http-api",
 "command": "hxxps://www[.]firewall-example[.]com/v1/blockSystem?id=192.168.0.100",
 }
],
 "agent": "individual--328a89ab-3b8f-40c4-a491-24a40bcd3cd4",
 "delay": 5000,
 "timeout": 60000,
 "on_success": "action--e5f0d00d-3047-4432-8964-cc0c56e5ab12",
 "on_failure": "action--e7e93280-ab26-45aa-baa8-423c44f917a6"
 }
 }
}

[bookmark: _r9fvzmctbwit]4.6 Playbook Action Step
The Playbook Action Step workflow step executes a referenced playbook. In addition to the inherited properties, this section defines four more specific properties that are valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be playbook-action.

	playbook_id (required)
	identifier
	The referenced playbook to execute at the defined agent(s).

The playbook ID SHOULD be defined such that it is locally relevant to each agent that will execute the playbook.

	playbook_version (optional)
	timestamp
	The version of the CACAO playbook that this step references.

The value of this property MUST be the modified timestamp from the CACAO playbook that this step references. If this property is not defined then the latest version that is known or available is considered valid.

	in_args (optional)
	list of string
	The list of variable names from the local step_variables dictionary (see section 4.1) or passed into this step from the global playbook_variables dictionary (see section 3.1) that are used in this playbook. See section 9.16 for more information about variables.

	out_args (optional)
	list of string
	The optional list of variable names from the local step_variables dictionary (see section 4.1) or global playbook_variables dictionary (see section 3.1) that are to be returned from this playbook after execution and stored in the same variable dictionary. See section 9.16 for more information about variables.

Example 4.4
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
{
 "workflow": {
 "playbook-action--ba23c1b3-fdd2-4264-bc5b-c056c6862ba2": {
 "type": "playbook-action",
 "playbook_id": "playbook--b71ac91e-fa00-40e8-bd1b-d863c89e6b6b",
 "playbook_version": "2023-01-11T05:11:36.152Z",
 "delay": 5000,
 "timeout": 60000,
 "on_completion": "action--c28b1bfa-5d0e-45ac-98b7-342a7fd8ae7d",
 "in_args": [__vuln_sys_id_1__, __vuln_sys_id_2__],
 "out_args": [__result_1__, __result_2__]
 }
 }
}
[bookmark: _t17ssmzfqqtg]4.7 Parallel Step
The Parallel Step workflow step defines how to create steps that are processed in parallel. This workflow step allows playbook authors to define two or more steps that can be executed at the same time. For example, a playbook that responds to an incident may require both the network team and the desktop team to investigate and respond to a threat at the same time. Another example is a response to a cyber attack on an operational technology (OT) environment that requires releasing air / steam / water pressure simultaneously. In addition to the inherited properties, this section defines one additional specific property that is valid for this type. Implementations MUST wait for all steps referenced in the next_steps property to complete before moving on.

The steps referenced from this object are intended to be processed in parallel, however, if an implementation cannot support executing steps in parallel, then the steps MAY be executed in sequential order if the desired outcome is the same.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be parallel.

	next_steps (required)
	list of identifier
	A list of two or more workflow steps to be processed in parallel. The next_steps MUST contain at least two values. If there is only one value, then the Parallel Step MUST NOT be used.

Each entry in the next_steps property forms a branch of steps that are to be executed, even if there is only one workflow step in the branch. Each branch MUST reference a unique End Step when that branch has completed processing. This allows implementations to know when to return to the original Parallel Step that started that branch to look for any on_completion, on_success, or on_failure actions.

The definition of parallel execution and how many parallel steps that are possible to execute is implementation dependent and is not part of this specification.

If any of the steps referenced in next_steps generate an error of any kind (exception or timeout) then implementers SHOULD consider defining rollback error handling for the playbook and include those steps in the playbook itself.

Each ID MUST represent a CACAO workflow step object.

Example 4.5
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
{
 "workflow": {
 "parallel--cd0da652-c34e-4f8c-89a3-d90b97385988": {
 "type": "parallel",
 "name": "Parallel Step Example 1",
 "on_completion": "action--0f376d66-1241-4de3-b3c6-1b2566959bee",
 "next_steps": [
 "action--7877447e-6533-4c08-a5cc-0c4ac3258476",
 "action--58e8e332-64c8-4c60-95f9-f8760724e853"
]
 },
 "action--0f376d66-1241-4de3-b3c6-1b2566959bee": {
 "type": "action"
 },
 "action--7877447e-6533-4c08-a5cc-0c4ac3258476": {
 "type": "action",
 "on_completion": "end--a854cc82-bb3b-4aca-904c-4e8895c37838"
 },
 "end--a854cc82-bb3b-4aca-904c-4e8895c37838": {
 "type": "end",
 "name": "End of this branch in this example"
 },
 "action--58e8e332-64c8-4c60-95f9-f8760724e853": {
 "type": "action",
 "on_completion": "end--4a10a184-5b91-4645-8bd2-34e1cf3f0e44"
 },
 "end--4a10a184-5b91-4645-8bd2-34e1cf3f0e44": {
 "type": "end",
 "name": "End of this other branch in this example"
 }
 }
}
[bookmark: _d1xvw1o7pzm7]4.8 If Condition Step
The If Condition Step workflow step defines the 'if-then-else' conditional logic that can be used within the workflow of the playbook. In addition to the inherited properties, this section defines three additional specific properties that are valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be if-condition.

	condition (required)
	string
	A boolean expression as defined in the STIX Patterning Grammar that when it evaluates as true executes the workflow step identified by the on_true property, otherwise it executes the on_false workflow step

	on_true (required)
	identifier
	The step ID to be processed if the condition evaluates as true.

The entry in the on_true property forms a branch of steps that are to be executed, even if there is only one workflow step in the branch. Each branch MUST reference a unique End Step when that branch has completed processing. This allows implementations to know when to return to the original If Condition Step that started that branch to look for any on_completion, on_success, or on_failure actions.

The ID MUST represent a CACAO workflow step object.

	on_false (optional)
	identifier
	The step ID to be processed if the condition evaluates as false.

The entry in the on_false property forms a branch of steps that are to be executed, even if there is only one workflow step in the branch. Each branch MUST reference a unique End Step when that branch has completed processing. This allows implementations to know when to return to the original If Condition Step that started that branch to look for any on_completion, on_success, or on_failure actions.

The ID MUST represent a CACAO workflow Step object.

Example 4.6
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
{
 "workflow": {
 "if-condition--f00f0acb-a2ad-4832-b7c2-27d12506c6d7": {
 "type": "if-condition",
 "delay": "5000",
 "timeout": "60000",
 "condition": "__variable__:value == '10.0.0.0/8'",
 "on_true": "action--7feadae2-2863-442b-a366-e5f2fd3c9b3b",
 "on_false": "action--5c31ba4d-f1d8-4bf7-a118-1a9c43cc7650"
 }
 }
}

[bookmark: _cnkqevu4tebb]4.9 While Condition Step
The While Condition Step workflow step defines the 'while' conditional logic that can be used within the workflow of the playbook. In addition to the inherited properties, this section defines three additional specific properties that are valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be while-condition.

	condition (required)
	string
	A boolean expression as defined in the STIX Patterning Grammar that while it is true executes the workflow step identified by on_true otherwise it exits the while conditional workflow step and executes the on_false workflow step

	on_true (required)
	identifier
	The step ID to be processed every time the loop condition evaluates as true.

The entry in the on_true property forms a branch of steps that are to be executed, even if there is only one workflow step in the branch. Each branch MUST reference a unique End Step when that branch has completed processing. This allows implementations to know when to return to the original While Step that started that branch to look for any on_completion, on_success, or on_failure actions.

The ID MUST represent a CACAO workflow step object.

Example 4.7
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
{
 "workflow": {
 "while-condition--8c0872af-a071-48af-9bf9-a8ad7e137289": {
 "type": "while-condition",
 "delay": "5000",
 "timeout": "60000",
 "condition": "__variable__:value == '10.0.0.0/8'",
 "on_true": "action--75c25526-f00e-4cec-9fcc-ea1c996ef384"
 }
 }
}

[bookmark: _jnn1akvb5cgj]4.10 Switch Condition Step
The Switch Condition Step workflow step defines the 'switch' condition logic that can be used within the workflow of the playbook. In addition to the inherited properties, this section defines two additional specific properties that are valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be switch-condition.

	switch (required)
	string
	A variable that is evaluated to determine which key in the cases dictionary is matched against to execute the associated step.

	cases (required)
	dictionary
	This property is a dictionary that defines one or more case values (as dictionary keys) and a step ID (as a key value) to be processed when the case value is matched against the switch value.

The value for each entry in the dictionary MUST be an identifier and it MUST represent a CACAO workflow step object. This value uniquely identifies the steps to be processed when that key/value is chosen (see section 9.10 for more information on identifiers).

Each entry in the cases property forms a branch of steps that are to be executed, even if there is only one workflow step in the branch. Each branch MUST reference a unique End Step when that branch has completed processing. This allows implementations to know when to return to the original Switch Condition Step that started that branch to look for any on_completion, on_success, or on_failure actions.

This dictionary MAY have a "default" case value.

Example 4.8
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
{
 "workflow": {
 "switch-condition--33ba061e-193d-41db-b40b-0e8373997dc9": {
 "type": "switch-condition",
 "delay": "5000",
 "timeout": "60000",
 "switch": "__variable__:value",
 "cases": {
 "1": "action--fc7bda8b-c2d8-4533-b022-19a68e150e5b",
 "2": "action--c4f77ed2-b82d-4285-ae04-541366b1cfc8",
 "default": "action--cf5f14bd-c84f-4016-89ce-f1539a34c76d"
 }
 }
 }
}

[bookmark: _1copvgv0jqlo]5 Commands
The CACAO command object (command-data) contains detailed information about the commands that are to be executed or processed automatically or manually as part of an action step (see section 4.5). Each command listed in an action step may be of a different command type, however, all commands listed in a single step MUST be processed or executed by all of the agents defined in that step.

Commands can use and refer to variables just like other parts of the playbook. For each command either the command property or the command_b64 property MUST be present.

The individual commands MAY be defined in other specifications, and when possible will be mapped to the JSON structure of this specification. When that is not possible, they will be base64 encoded.
[bookmark: _3nzzbmit66ya]5.1 Command Data
	Property Name
	Data Type
	Details

	type (required)
	open-vocab
	The type of command being used. The value of this property SHOULD come from the command-type-ov vocabulary.

	description (optional)
	string
	An optional description about this command.

	command (optional)
	string
	A string-based command as defined by the type. Commands can be simple strings, JSON blobs (normal plain/text JSON data), or type specific command IDs (see example 5.5).

The command MUST be valid for the defined type and version.

	command_b64 (optional)
	string
	A base64 encoded (see section 4 of [RFC 4648]) command as defined by the type. This property is used for structured commands that are not simple strings or native JSON.

The command MUST be valid for the defined type and version.

	version (optional)
	string
	The version of the command language being used. If no version is specified then the most current version of the command language SHOULD be used.

	playbook_activity (optional)
	open-vocab
	A meta data description of the playbook activity that the command provides that enables summarization at the playbook level of all activities defined within the playbook. This property SHOULD be populated.

The value for this property SHOULD come from the playbook-activity-type-ov vocabulary.

[bookmark: _whl8smqutr9u]5.2 Command Type Vocabulary
Vocabulary Name: command-type-ov

This section defines the following types of commands that can be used within a CACAO workflow step.

	Command Type
	Description

	manual
	This type represents a command that is intended to be processed by a human or a system that acts on behalf of a human.

	bash
	A Bash command. Bash is just a shell without a login/remote connection. Therefore, if someone wants to define shell commands as part of a playbook but the login process is performed using some other mechanism then bash would be the way to do this.

An example might be using a remote terminal emulator (RDP) that supports login to a shell and then the commands are defined in bash.

	http-api
	An HTTP API command.

	ssh
	An SSH command. SSH combines both the login aspect (i.e. the agent part) and the command part (the shell commands to execute via ssh) once logged in. It would be unnatural to define the agent as ssh and then define the shell/command as bash. One would SSH to a agent and then execute shell commands in SSH or they would remote login to a agent (ie. telnet or otherwise) and then execute shell commands in bash.

	caldera-cmd
	A caldera command that is used by an attack orchestration system to attack or simulate an attack against an agent. These can include attacks from vulnerability assessment or penetration systems.

An example would be a Caldera ability included in the command when the agent specifies a Caldera agent or group. (See [CalderaAbility]).

If the command property is used, then that property SHOULD only contain the ID of the Caldera ability that is to be executed. However, if the entire Caldera ability is to be shared, implementers SHOULD use the command_b64 property to contain the base64 encoded version of the ability itself.

	elastic
	An Elasticsearch query, such as Query DSL (Domain Specific Language) [QDSL: https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html] or EQL (Event Query Language) [EQL: https://www.elastic.co/guide/en/elasticsearch/reference/current/eql.html].

	jupyter
	A Jupyter notebook (expressed in JSON).

	kestrel
	A Kestrel command (expressed in THL) describes a threat hunt step [KESTREL].

Kestrel commands are defined in the Kestrel Threat Hunting Language (THL). THL is a whitespace-indented language and SHOULD use the command_b64 property to contain the base64 encoded version of the Kestrel command or threat hunt step.

	openc2-json
	An OpenC2 command (expressed in JSON).

	sigma
	A Sigma rule (expressed in YAML) [SIGMA].

Sigma rules are defined in YAML. YAML is a whitespace-indented language, meaning that indentation is used to denote structure. Due to this requirement, implementers SHOULD use the command_b64 property to contain the base64 encoded version of the Sigma rule.

	yara
	A YARA rule [YARA: https://yara.readthedocs.io/en/stable/writingrules.html].

Example 5.1 (HTTP API Command)
{
 "type": "http-api",
 "command": "hxxps://www[.]example[.]com/v1/getData?id=1234"
}

Example 5.2 (Manual Command)
{
 "type": "manual",
 "command": "Disconnect the machine from the network and call the SOC on-call person"
}

Example 5.3 (SSH Command)
{
 "type": "ssh",
 "command": "last; netstat -n; ls -l -a /root"
}

Example 5.4 (Attack Command Caldera Ability as specified in the command_b64 property)
{
 "type": "attack-cmd",
 "description": "A Caldera Ability that scans wifi",
 "command_b64": "aWQ6IDlhMzA3NDBkLTNhYTgtNGMyMy04ZWZhLWQ1MTIxNWU4YTViOQ0KbmFtZTogU2NhbiBXSUZJIG5ldHdvcmtzDQpkZXNjcmlwdGlvbjogVmlldyBhbGwgcG90ZW50aWFsIFdJRkkgbmV0d29ya3Mgb24gaG9zdA0KdGFjdGljOiBkaXNjb3ZlcnkNCnRlY2huaXF1ZToNCiAgYXR0YWNrX2lkOiBUMTAxNg0KICBuYW1lOiBTeXN0ZW0gTmV0d29yayBDb25maWd1cmF0aW9uIERpc2NvdmVyeQ0KcGxhdGZvcm1zOg0KICBkYXJ3aW46DQogICAgc2g6DQogICAgICBjb21tYW5kOiB8DQogICAgICAgIC4vd2lmaS5zaCBzY2FuDQogICAgICBwYXlsb2FkOiB3aWZpLnNoDQogIGxpbnV4Og0KICAgIHNoOg0KICAgICAgY29tbWFuZDogfA0KICAgICAgICAuL3dpZmkuc2ggc2Nhbg0KICAgICAgcGF5bG9hZDogd2lmaS5zaA0KICB3aW5kb3dzOg0KICAgIHBzaCxwd3NoOg0KICAgICAgY29tbWFuZDogfA0KICAgICAgICAuXHdpZmkucHMxIC1TY2FuDQogICAgICBwYXlsb2FkOiB3aWZpLnBzMQ=="
}

The content of the above base64 command (command_b64) is the encoded version of the caldera ability that is shown below (decoded version). The content of the command is shown as text for illustration purposes only.

id: 9a30740d-3aa8-4c23-8efa-d51215e8a5b9
name: Scan WIFI networks
description: View all potential WIFI networks on host
tactic: discovery
technique:
 attack_id: T1016
 name: System Network Configuration Discovery
platforms:
 darwin:
 sh:
 command: |
 ./wifi.sh scan
 payload: wifi.sh
 linux:
 sh:
 command: |
 ./wifi.sh scan
 payload: wifi.sh
 windows:
 psh,pwsh:
 command: |
 .\wifi.ps1 -Scan
 payload: wifi.ps1

Example 5.5 (Attack Command Caldera Ability as specified in the command property)
This is used when combined with a caldera agent. Highlights that the playbook only needs to pass the ID of the ability to execute in the caldera environment and does not require to send the entire ability.
{
 "type": "attack-cmd",
 "command": "id: 9a30740d-3aa8-4c23-8efa-d51215e8a5b9"
}

[bookmark: _6e9y6r6sgwwd]6 Agents and Targets
In a CACAO playbook, agents are the entities that execute commands (see section 5) on or against targets. Agents are stored in a dictionary where the ID is the key and the value is an agent-target object (see section 9.1). Targets are stored in a dictionary where the ID is the key and the value is an agent-target object (see section 9.1). Common properties for agents and targets are defined in section 6.1.

Agents can involve either manual or automated processing. For example, an individual may process a command manually, while a firewall may process a command automatically. An agent type vocabulary is defined in section 6.2, and each agent type is further defined in the rest of the sections. Types include security infrastructure such as firewalls, routers, and threat intelligence platforms, as well as specific network addressable agents like URLs and IPv4/IPv6/MAC addresses.

Agents can use and refer to variables just like other parts of the playbook. For any agent property value, the producer may define a variable substitution such that the actual property value is determined at runtime based on the variable assigned to the agent. In Example 6.1,an agent is referenced within a workflow step, but the agent's actual values are based on variables (e.g., name, email, phone, location) instead of being hard-coded by the agent itself.

Example 6.1
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"agents": {
 "individual--4486f3d9-e5c3-43e8-9019-ae48899679a4": {
 "type": "individual",
 "name": "__INDIVIDUALS_NAME__:value",
 "contact": {
 "email": {
 "work": "__INDIVIDUALS_EMAIL__:value"
 },
 "phone": {
 "work": "__INDIVIDUALS_PHONE__:value"
 }
 }
 }
}

[bookmark: _kuu61g8rjg7i]6.1 Agent and Target Common Properties
Each object (agent or target) contains some base properties that are common across all objects. These properties are defined in the following table. The ID for each object is stored as the key in the agents dictionary or the targets dictionary.

	Property Name
	Data Type
	Details

	type (required)
	open-vocab
	The type of object being used. The value of this property SHOULD come from the agent-target-type-ov vocabulary.

	name (required)
	string
	The name that represents this object that is meant to be displayed in a user interface or captured in a log message. This property MUST be populated

	description (optional)
	string
	More details, context, and possibly an explanation about this object. This property SHOULD be populated.

	location (optional)
	civic-location
	Physical address information for this object.

	agent_extensions (optional)
	dictionary
	This property defines the extensions that are in use on this object.

The key for each entry in the dictionary MUST be an identifier that uniquely identifies the extension (see section 9.10 for more information on identifiers). The value for each key is a JSON object that can contain the structure as defined in the extension definition's schema property.

[bookmark: _7qkdi2xmagut]6.2 Agent Type Vocabulary
Vocabulary Name: agent-target-type-ov

This section defines the following types of objects.

	Type
	Description

	People and Places

	group
	A group typically associated with a team or organizational group

	individual
	An individual human-being

	location
	An identified location (either physical or logical)

	organization
	A named organization or business entity

	sector
	A business or government sector, includes industrial categories

	Devices and Equipment

	http-api
	An HTTP API interface.

	linux
	A generic Linux system

	net-address
	A general identified network addressable entity

	security-category
	A named security infrastructure category such as Firewall, IPS, TIP, etc

	ssh
	An SSH service running on some device

[bookmark: _hk4z6dgd9aw3]6.3 Group
This type defines a group object and is used for commands that need to be processed or executed by a group. This object inherits the common agent properties. In addition to the inherited properties, this section defines one additional specific property that is valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be group.

	contact (optional)
	contact
	Contact information for this agent.

Example 6.2 (Group Agent)
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"agents": {
 "group--edec4af0-0657-4f76-9f5b-b2b980e5698b": {
 "type": "group",
 "name": "SOC",
 "description": "The SOC for company example dot com",
 "location": {
 "name": "ACME Company HQ"
 },
 "contact": {
 "email": {
 "work": "soc@example.com"
 }
 }
 }
}

[bookmark: _265w2vvrobz5]6.4 Individual
This type defines an individual object and is used for commands that need to be processed or executed by an individual. This object inherits the common agent properties. In addition to the inherited properties, this section defines one additional specific property that is valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be individual.

	contact (optional)
	contact
	Contact information for this agent.

Example 6.3 (Individual Agent)
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"agents": {
 "individual--8380aa57-6920-4beb-8abf-a32eea918823": {
 "type": "individual",
 "name": "John Doe",
 "description": "John Does is the CISO of Example dot com",
 "location": {
 "name": "ACME Company",
 "description": "ACME campus located next to airport",
 "building_details": "Building H, First floor, Suite 110, Room 110-4",
 "network_details": "Network closet 201, rack location:38U",
 "region": "northern-america",
 "country": "US",
 "administrative_area": "California",
 "city": "San Francisco",
 "street_address": "123 Main Street",
 "postal_code": "90123"
 },
 "contact": {
 "email": {
 "work": "doej@example.com",
 "home": "john@examplehome.com"
 },
 "phone": {
 "work": "+1-123-123-1234"
 },
 "contact_details": "John works remotely most days"
 }
 }
}

[bookmark: _yw5jrjmloe8y]6.5 Location
This type defines a location object and is used for commands that need to be processed or executed by or at a location. This object inherits the common agent properties. In addition to the inherited properties, this section defines one additional specific property that is valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be location.

	logical (optional)
	list of string
	An optional list of logical location names as defined by the playbook creator (e.g., wiring closet, network segment, room number, etc)

Example 6.4 (Location Agent)
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"agents": {
 "location--9b8e6304-670c-4e87-84ce-b37a9afe887c": {
 "type": "location",
 "name": "Example.com HQ",
 "description": "The HQ site for company example dot com",
 "location": {
 "name": "ACME Company",
 "description": "ACME campus located next to airport",
 "building_details": "Building H, First floor, Suite 110, Room 110-4",
 "network_details": "Network closet 201, rack location:38U",
 "region": "northern-america",
 "country": "US",
 "administrative_area": "California",
 "city": "San Francisco",
 "street_address": "123 Main Street",
 "postal_code": "90123"
 },
 "logical": ["room 213"]
 }
}

[bookmark: _nbrfjvw5etty]6.6 Organization
This type defines an organization object and is used for commands that need to be processed or executed by an organization. This object inherits the common agent properties. In addition to the inherited properties, this section defines one additional specific property that is valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be organization.

	contact (optional)
	contact
	Contact information for this agent.

Example 6.5 (Organization Agent)
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"agents": {
 "organization--0416efe1-6427-4153-844e-8a1b08921ec6": {
 "type": "organization",
 "name": "ACME Company",
 "location": {
 "name": "ACME Company",
 "description": "ACME campus located next to airport",
 "building_details": "Building H, First floor, Suite 110, Room 110-4",
 "network_details": "Network closet 201, rack location:38U",
 "region": "northern-america",
 "country": "US",
 "administrative_area": "California",
 "city": "San Francisco",
 "street_address": "123 Main Street",
 "postal_code": "90123"
 },
 "contact": {
 "email": {
 "work": "doej@example.com",
 "home": "john@examplehome.com"
 },
 "phone": {
 "work": "+1-123-123-1234"
 },
 "contact_details": "John works remotely most days"
 }
 }
}

[bookmark: _f9xcdrl6vqp3]6.7 Sector
This type defines a sector object and is used for commands that need to be processed or executed by a sector. This object inherits the common agent properties. In addition to the inherited properties, this section defines one additional specific property that is valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be sector.

	sector (required)
	string
	The values this property SHOULD come from the industry-sector-ov vocabulary, see section 6.7.1.

Example 6.6 (Sector Agent)
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"agents": {
 "sector--5aa10ecd-c367-4157-82b1-2b4891d4ae3e": {
 "type": "sector",
 "name": "Healthcare Sector",
 "sector": "healthcare"
 }
}

[bookmark: _oogrswk3onck]6.7.1 Industry Sector Vocabulary
Vocabulary Name: industry-sector-ov

This section defines the industrial and commercial sectors sectors

	Sector Type
	Description

	aerospace
	The aerospace sector/industry comprises entities that research, design, manufacture, operate, and maintain aircraft and spacecraft technology. Aerospace activity is very diverse, with a plethora of commercial, industrial, and military applications.

Subclasses (sector/industry): aviation

	 aviation
	The aviation sector/industry is similar to the aerospace sector/industry, but its applications are focused within the earth's atmosphere.

	agriculture
	The agriculture sector/industry comprises entities primarily engaged in farming animals (animal husbandry) and plants (agronomy, horticulture, and forestry in part).

	automotive
	The automotive sector/industry comprises entities involved in the manufacture of motor vehicles, including most components, such as engines and bodies, but excluding tires, batteries, and fuel [VocabAuto].

	biotechnology
	The biotechnology sector/industry comprises entities involved in utilizing biotechnology to develop products. Biotechnology is known to highly overlap with the pharmaceutical sector/industry, but generally, it has a plethora of use cases like in agriculture, food, and chemical sectors/industries.

	chemical
	The chemical sector/industry comprises entities producing petrochemicals, polymers, basic inorganics, specialties, and consumer chemicals [VocabChem]. The products (chemicals) produced by the chemical sector/industry have a broad range of uses, such as in the food industry, pharmaceutical, agriculture, manufacturing, and industries involved in consumer goods.

	commercial
	The commercial sector/industry comprises entities involved in wholesale and retail trade, generally without making any changes to the goods. The commercial sector, in this case, does not include professional services.

	consulting
	The consulting sector/industry comprises entities that provide expert advice and possibly implementation services in exchange for a fee.

	construction
	The construction sector/industry comprises entities involved in building construction (residential and non-residential) , infrastructure construction (e.g., large public works, dams, bridges, roads, airports, railways, and tramlines), and industrial construction (e.g., energy installations, manufacturing plants).

	cosmetics
	The cosmetics sector/industry comprises entities that manufacture and distribute cosmetic products (e.g., hygiene products such as soap, shampoo, deodorant, and toothpaste to luxury beauty items including perfumes and makeup).

	critical-infrastructure
	Critical infrastructure comprises sectors with assets or systems that are essential for maintaining vital societal functions. It is the case that different nations may define more or fewer assets as critical infrastructures. For example, the U.S.A defines sixteen sectors as critical infrastructures, whereas Norway defines six, namely, communication networks, energy, water and wastewater, transportation, oil and gas, and satellite communications.

	dams
	The dams sector/industry comprises entities involved in operating and maintaining dams. Based on its purpose, a dam can be considered critical infrastructure for a nation. Dams provide a wide range of economic, environmental, and social benefits, including hydroelectric power, river navigation, water supply, wildlife habitat, waste management, flood control, and recreation [VocabDams].

	defense
	The defense sector comprises government and commercial entities involved in research and development, design, production, delivery, and maintenance of weapons, weapon systems, subsystems, and components or parts, to meet military requirements. The defense sector covers everything from land, sea, and air defense capabilities and cybersecurity.

	education
	The education sector/industry comprises entities that facilitate learning, such as schools, colleges, and universities.

	emergency-services
	The emergency services sector/industry provides a wide range of prevention, preparedness, response, and recovery services during both day-to-day operations and incident response. The emergency services sector includes geographically distributed facilities and equipment in both paid and volunteer capacities organized primarily at the federal, state, local, tribal, and territorial levels of government, such as city police departments and fire stations, county sheriff’s offices, Department of Defense police and fire departments, and town public works departments. The emergency services sector also includes private sector resources, such as industrial fire departments, private security organizations, and private emergency medical services providers [VocabEmSrv].

	energy
	The energy sector/industry comprises entities involved in electricity generation and distribution, such as energy generation infrastructure (e.g., power plants), operators (e.g., grid operators), transmission and distribution lines, and utility providers. Electricity can be generated from renewable resources (e.g., hydro, wind, solar, biomass, geothermal), fossil fuels (such as coal and gas), or nuclear power. The energy sector/industry overlaps with the utilities sector/industry.

Subclasses (sector/industry): non-renewable-energy, renewable-energy.

	 non-renewable-energy
	The non-renewable energy sector/industry comprises entities involved in electricity generation and distribution from non-renewable resources such as oil and petroleum products, gasoline, natural gas, diesel fuel, and nuclear.

	 renewable-energy
	The renewable energy sector/industry comprises entities involved in electricity generation and distribution from renewable resources such as hydro, wind, solar, biomass, and geothermal.

	media
	The media sector/industry consists of film, print, radio, and television, also when provided in electronic form via the Internet.

	financial
	The financial sector/industry is a broad term used to describe a range of activities that manage money, encompassing everything from insurance companies and stock brokerages to investment funds and banking.

	food
	The food sector/industry comprises entities involved in the processing, preparation, preservation, and packaging of food and beverages. The raw materials used are generally of vegetable or animal origin and produced by agriculture like farming, breeding, and fishing. Foodservice is also included and comprises entities that serve food to people, such as restaurants.

	gambling
	The gambling or betting sector/industry includes online or offline gambling entities like casinos and other online betting games.

	government
	The government sector includes a wide variety of entities involved in governmental nature activities. It includes facilities owned or leased by federal, state, local, and tribal governments. Many government facilities are open to the public for business activities, commercial transactions, or recreational activities. In contrast, others that are not open to the public contain highly sensitive information, materials, processes, and equipment. These facilities include general-use office buildings and special-use military installations, embassies, courthouses, national laboratories, and structures that may house critical equipment, systems, networks, and functions. In addition to physical structures, the sector includes cyber elements that contribute to the protection of sector assets (e.g., access control systems and closed-circuit television systems) as well as individuals who perform essential functions or possess tactical, operational, or strategic knowledge [VocabGov]. The government sector overlaps with multiple other sectors/industries like the defense sector/industry that comprises government entities that support a nation's national security capability, and the emergency services sector that provides a wide range of prevention, preparedness, response, and recovery services during both day-to-day operations and incident response.

Subclasses (sector/industry): local-government, national-government, regional-government, public-services.

	 local-government
	A city or municipality level of government. See government above for more details.

	 national-government
	A national level of government. See government above for more details.

	 regional-government
	A regional, state, or area level of government. See government above for more details.

	 public-services
	The public services sector/industry includes services provided by a government to people living within its jurisdiction, either directly through public sector agencies or by financing provision of services by private businesses or voluntary organizations [VocabPServ]. The public services sector may overlap with other sectors like healthcare, education, transportation, and utilities. See government above for more details.

	healthcare
	The healthcare sector/industry comprises entities that provide healthcare, meaning services to assess, maintain or restore a patient's state of health, including the prescription, dispensation, and provision of medicinal products and medical devices [VocabHealth].

	information-communications-technology
	The information and communications technology (ICT) sector/industry, also known as the information technology sector or just technology sector, comprises entities that produce and provide information technology services and products such as software, hardware, electronics, and telecommunications.

Subclasses (sector/industry): electronics-hardware, software, telecommunications

	 electronics-hardware
	The electronics and hardware sector/industry comprises entities that produce electronic equipment and components and computer hardware.

	 software
	The software sector/industry comprises entities dedicated to producing software.

	 telecommunications
	The telecommunications industry within the ICT sector comprises entities that produce and provide telecommunications equipment and services. Examples are Internet Service Providers (ISPs), wired and mobile telephony providers, and satellite communications operators. A satellite research and production facility would fall optimally under the aerospace sector/industry.

	legal-services
	The legal services sector/industry, otherwise known as the legal industry, comprises entities that provide services of lawyers and other legal practitioners to individuals, businesses, government agencies, and nonprofits.

	lodging
	The lodging sector/industry is a segment of the hospitality sector/industry specializing in providing customers with accommodation services (e.g., hotels, motels, resorts, and bed and breakfasts).

	manufacturing
	The manufacturing sector/industry comprises entities involved in the creation of products from raw materials and commodities. It includes all foods, chemicals, textiles, machines, and equipment, it includes all refined metals and minerals derived from extracted ores, and it includes all lumber, wood, and pulp products. As a best practice, the manufacturing sector/industry element SHOULD be used when none of the taxonomy elements is adequate for tagging or classifying a case. In addition, like the rest of the elements, manufacturing can be used in combination with another element to provide extra precision in classification/tagging. For example, an incident that affects a company in the automotive sector/industry can be tagged as both automotive and manufacturing to indicate that the manufacturing process or a manufacturing plant was targeted.

	maritime
	The maritime sector/industry involves a plethora of organizations and activities related to the ocean and ships and other floating entities. Examples are maritime transportation, shipyards, maritime equipment manufacturers, and commercial fishing. The maritime sector/industry highly overlaps with the transportation sector/industry.

	metals
	The metals sector/industry comprises entities involved in the processing of non-ferrous metals such as aluminum, copper, zinc, and ferrous materials such as steel [VocabMetals].

	mining
	The mining sector/industry comprises entities dedicated to locating and extracting metal and mineral reserves. Oil and natural gas extraction are not included in this industry, but they can be referenced using the Petroleum sector/industry.

	non-profit
	The nonprofit sector/industry comprises entities organized and operated for a collective, public, or social benefit compared to for-profit organizations that aim to generate a profit. The nonprofit sector/industry may overlap with other sectors/industries that also accommodate nonprofit entities, like public universities that are part of the education sector/industry, but they have a nonprofit cause. Further, non-governmental organizations (NGOs) are not distinguished and thus are included in the nonprofit sector/industry.

Subclasses (sector/industry): humanitarian-aid, human-rights.

	 humanitarian-aid
	The humanitarian aid industry or humanitarian aid organizations provide material and logistic assistance to people who need help (e.g., homeless, refugees, and victims of natural disasters, wars, and famines).

	 human-rights
	The human rights industry comprises establishments primarily engaged in promoting causes associated with human rights either for a broad or specific constituency. Establishments in this industry address issues, such as protecting and promoting the broad constitutional rights and civil liberties of individuals and those suffering from neglect, abuse, or exploitation; promoting the interests of specific groups, such as children, women, senior citizens, or persons with disabilities; improving relations between racial, ethnic, and cultural groups; and promoting voter education and registration [VocabHumanRights].

	nuclear
	The nuclear sector/industry includes nuclear infrastructure, and in this taxonomy, it is unrelated to how the nuclear power is used, such as for energy generation, radioactive materials for healthcare, or for developing nuclear weapons.

	petroleum
	The petroleum sector/industry, also known as the oil sector/industry or the oil and gas sector/industry, comprises entities involved in the global processes of exploration, extraction, refining, and transporting (often by oil tankers and pipelines) petroleum. The petroleum industry overlaps with the chemical sector/industry in the sense that many finished products derived from petrochemical processing.

	pharmaceuticals
	The pharmaceutical sector/industry comprises entities that research, develop, produce, and distribute pharmaceutical products like medications.

	research
	The research industry comprises entities that solely specialize in research like research institutions, think tanks, and research groups/divisions within organizations.

	transportation
	The transportation sector/industry comprises entities that provide services to move people or goods, including transportation infrastructure. The transportation sector consists of several industries that focus on transportation, including air freight and logistics, airlines, marine, road and rail, and transportation infrastructures like railroads and marine ports.

Subclasses (sector/industry): logistics-shipping

	 logistics-shipping
	The logistics and shipping sector/industry comprise entities responsible for planning, implementing, and controlling procedures for the efficient and effective transportation and storage of goods.

	utilities
	The utilities sector comprises entities that provide basic amenities, such as water, sewage services, electricity, dams, and natural gas [VocabUtils].

	video-game
	The video game industry comprises entities involved in the development, marketing, and monetization of video games. The video game industry overlaps with other sectors/industries like the ICT and, in particular, the software sector/industry.

	water
	The water sector/industry comprises entities that provide water and wastewater services, including sewage treatment. The water sector/industry does not include manufacturers and suppliers of bottled water, which is part of the beverage production and belongs to the food sector/industry [VocabWater].

[bookmark: _lzonmc14ppik]6.8 HTTP API
This type defines an HTTP API object and is used for commands that need to be processed or executed by an HTTP API. In addition to the inherited properties, this section defines six additional specific properties that are valid for this type. In addition to the inherited properties, this section defines seven additional specific properties that are valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be http-api.

	http_url (required)
	string
	A full URL of the HTTP API service that should be called.

	http_auth_type (optional)
	string
	The authentication type required to access this HTTP API (e.g., "basic", "oauth2", etc.)

	user_id (optional)
	string
	The user_id property used in HTTP Basic authentication as defined by [RFC7617].

	password (optional)
	string
	The password property used in HTTP Basic authentication as defined by [RFC7617].

	token (optional)
	string
	The bearer token used in HTTP Bearer Token authentication as defined by [RFC6750].

	oauth_header (optional)
	string
	The OAuth header used in OAuth authentication as defined in section 3.5.1 of [RFC5849].

	category (optional)
	list of open-vocab
	One or more identified categories of security infrastructure types that this agent represents (see section 6.11.1).

The value for this property SHOULD come from the security-category-type-ov vocabulary.

Example 6.7 (HTTP-API Agent)
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"agents": {
 "http-api--7e9174ec-a293-43df-a72d-471c79e276bf": {
 "type": "http-api",
 "http_url": "hxxp://example.com/v1/",
 "http_auth_type": "basic",
 "user_id": "__username__:value",
 "password": "__password__:value",
 "category": ["firewall"],
 "location": { ... }
 }
}

[bookmark: _ac58ndclxj08]6.9 Linux System
This type defines a Linux system object and is used for commands that need to be processed or executed by a Linux system. In addition to the inherited properties, this section defines five additional specific properties that are valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be linux.

	address (required)
	dictionary
	The key for each entry in the dictionary MUST be a string that uniquely identifies the address type. The key MUST be one of ipv4, ipv6, l2mac, vlan, or url.

	port (optional)
	string
	The TCP port number for the Linux system. The default value is 22 based on standard port number services [PortNumbers].

	username (optional)
	string
	The username to access this system.

	password (optional)
	string
	The password associated with the username to access this system. This value will most often be passed in via a variable.

	private_key (optional)
	string
	The private key associated with the username to access this system. This value will most often be passed in via a variable.

	category (optional)
	list of open-vocab
	One or more identified categories of security infrastructure types that this agent represents (see section 6.11.1).

The value for this property SHOULD come from the security-category-type-ov vocabulary.

Example 6.8 (Linux Agent)
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"agents": {
 "linux--075c6ab4-c8ff-4fe6-8569-44894e5a52a9": {
 "type": "linux",
 "address": {
 "ipv4": "10.1.2.3"
 },
 "user_id": "__username__:value",
 "password": "__password__:value",
 "category": ["kali"],
 "location": { ... }
 }
}
[bookmark: _80vletbhxdwl]6.10 Network Address
This type defines a network address object and is used for commands that need to be processed or executed by a device at a network address. In addition to the inherited properties, this section defines five additional specific properties that are valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be net-address.

	address (required)
	dictionary
	The key for each entry in the dictionary MUST be a string that uniquely identifies the address type. The key MUST be one of ipv4, ipv6, l2mac, vlan, or url.

	username (optional)
	string
	The username to access this agent.

	password (optional)
	string
	The password associated with the username to access this agent. This value SHOULD be passed in via a variable.

	private_key (optional)
	string
	The private key associated with the username to access this agent. This value SHOULD be passed in via a variable.

	category (optional)
	list of open-vocab
	One or more identified categories of security infrastructure types that this agent represents (see section 6.11.1).

The value for this property SHOULD come from the security-category-type-ov vocabulary.

Example 6.9 (General Network Agent)
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"agents": {
 "net-address--6f6f9814-5982-4322-9a9c-0ef25d33ef2a": {
 "type": "net-address",
 "address": {
 "url": "hxxps://someorg[.]com/tellmetoorchestratewhat/amethod"
 },
 "username": "someusername",
 "password": "__password__:value",
 "category": ["firewall"],
 "location": { ... }
 }
}

[bookmark: _kkit6ommdi2l]6.11 Security Category
This type defines a security (infrastructure) category object and is used for commands that need to be processed or executed by a piece of security infrastructure. In addition to the inherited properties, this section defines one additional specific property that is valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be security-category.

	category (required)
	list of
open-vocab
	One or more identified categories of security infrastructure types that this agent represents. A product instantiation may include one or more security infrastructure types as hints to assist in describing the agent features most likely required by a playbook step or playbook.

The values for this property SHOULD come from the security-category-type-ov vocabulary.

Example 6.10 (Security Infrastructure Agent)
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"agents": {
 "security-category--f81aa730-2c59-4190-b8d5-3f2b4beecd95": {
 "type": "security-category",
 "category": ["ips"]
 }
}
[bookmark: _p9xli2nz5tzg]6.11.1 Security Category Type Vocabulary
Vocabulary Name: security-category-type-ov

This section defines the infrastructure types that an agent may relate to. These infrastructure types capture the key characteristics of the infrastructure and it includes values from the very general to the more specific. It is not intended to be exhaustive nor binary.

	Infrastructure Type
	Description

	aaa
	An authentication, authorization and accounting services system

	analytics
	An analytical processing system such as flow processing, anomaly detection, machine-learning, behavioral detection, etc

	caldera
	Caldera allows organizations to test endpoint security solutions and assess a network's security posture against the common post-compromise adversarial techniques contained in the MITRE ATT&CK model.

	content-gateway
	A gateway inspection and mitigation system

	desktop
	A desktop system

	endpoint
	A general computer device with no specific constraints or requirements

	firewall
	A L3, L4 or above firewall

	handset
	A handset device

	ids
	An intrusion detection system

	ips
	An intrusion prevention system

	kali
	Kali Linux is an open-source, Debian-based Linux distribution geared towards various information security tasks, such as Penetration Testing, Security Research, Computer Forensics and Reverse Engineering.

	manx
	The Manx plugin supplies shell access into Caldera, along with reverse-shell payloads for entering/exiting agents manually.

	orchestrator
	An orchestration system

	os-linux
	A Linux operating system

	os-mac
	A Mac-OS operating system

	os-windows
	A Windows operating system

	redcanary-atomicred
	Atomic Red Team is a collection of small, highly portable detection tests mapped to MITRE ATT&CK. This gives defenders a highly actionable way to immediately start testing their defenses against a broad spectrum of attacks.

	ragdoll
	The Ragdoll plugin gets instructions by scraping the decoy web page, it then sends results through GET URL parameters (encoded).

	router
	A L3 or above routering system

	sandcat
	The Sandcat plugin is the default agent used in a Caldera operation.

	server
	A generic server system common in deployments such as the cloud or services supporting multiple client devices and applications

	siem
	A SIEM

	switch
	A L2, L3, or above switching system

	ticketing
	A trouble-ticketing system, workload processing system, etc

	tip
	A threat intelligence platform

	wireless
	A wireless communications system typically associated with 802.11 radio communications

[bookmark: _aa519mkn8z4o]6.12 SSH CLI
This type defines a SSH CLI object and is used for commands that need to be processed or executed by an SSH CLI. In addition to the inherited properties, this section defines six additional specific properties that are valid for this type.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be ssh.

	address (required)
	dictionary
	The key for each entry in the dictionary MUST be a string that uniquely identifies the address type. The key MUST be one of ipv4, ipv6, l2mac, vlan, or url.

	port (optional)
	string
	The TCP port number for the SSH service. The default value is 22 based on standard port number services [PortNumbers].

	username (optional)
	string
	The username to access this system.

	password (optional)
	string
	The password associated with the username to access this system. This value will most often be passed in via a variable.

	private_key (optional)
	string
	The private key associated with the username to access this system. This value will most often be passed in via a variable.

	category (optional)
	list of open-vocab
	One or more identified categories of security infrastructure types that this agent represents (see section 6.11.1).

The value for this property SHOULD come from the security-category-type-ov vocabulary.

Example 6.11 (SSH CLI Agent)
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"agents": {
 "ssh--e75ad630-ac34-4e90-9dab-406c378cfb98": {
 "type": "ssh",
 "address": {
 "ipv4": "192.168.1.100"
 },
 "username": "someusername",
 "password": "__password__:value",
 "category": ["router"],
 "location": { ... }
 }
}

[bookmark: _bxukzgb1wjyq]7 Extension Definition
The CACAO extension object allows a playbook producer to define detailed information about the extensions that are in use in a playbook that they created. In a playbook, extensions are stored in a dictionary where the ID is the key and the extension definition object is the value. Workflow steps, agents, data markings and playbooks themselves can use extensions by referencing their IDs.

Extensions can use and refer to all objects that may be used in other parts of a playbook including variables and constants just like other parts of the playbook. While the extension's name and description are optional, they are encouraged and producers SHOULD populate them.

Requirements for Extension Properties
· A CACAO playbook MAY have any number of Extensions containing one or more properties.
· Extension property names MUST be in ASCII and MUST only contain the characters a–z (lowercase ASCII), 0–9, and underscore (_).
· Extension property names MUST have a minimum length of 3 ASCII characters.
· Extension property names MUST be no longer than 250 ASCII characters in length.
· Extension properties SHOULD only be used when there are no existing properties defined by the CACAO playbook specification that fulfills that need.
[bookmark: _3h8n9e6zoeu7]7.1 Extension Definition Properties
	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be extension-definition.

	name (required)
	string
	A name used to identify this extension for display purposes during execution, development or troubleshooting.

	description (optional)
	string
	More details, context, and possibly an explanation about what this extension does and accomplishes.

While the extension's description is optional, it is encouraged that producers SHOULD populate the property.

Note that the schema property is the normative definition of the extension, and this property, if present, is for documentation purposes only.

	created_by (required)
	identifier
	An ID that represents the entity that created this extension. The ID MUST represent a STIX 2.1+ identity object.

	schema (required)
	string
	The normative definition of the extension, either as a URL or as text explaining the definition.

A URL SHOULD point to a JSON schema or a location that contains information about the schema.

	version (required)
	string
	The version of this extension. Producers of playbook extensions are encouraged to follow standard semantic versioning procedures where the version number follows the pattern, MAJOR.MINOR.PATCH [SemVer]. This will allow consumers to distinguish between the three different levels of compatibility typically identified by such versioning strings.

Example 7.1
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"extension-definition--0a727eb7-f699-4e20-a182-2db4b18b084a": {
 "type": "extension-definition",
 "name": "Extension Foo",
 "description": "This schema adds foo to bar for steps",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "schema": "hxxps://www[.]example[.]com/schema-foo/v1/",
 "version": "1.2.1"
}

Example 7.2
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
{
 "type": "playbook",
 ...
 "workflow": {
 "action--ba6c42d2-8563-4a0a-ba2c-af1764808513": {
 "type": "action",
 "delay": 5000,
 "timeout": 60000,
 "on_success": "action--91ed4639-cfa5-401d-a55a-6428afc90f98",
 "on_failure": "action--259b0dac-4b3b-4e1b-8686-950ecc7a3b17",
 "step_extensions": {
 "extension-definition--45c72acc-d124-481e-8b12-57ab1fd4c136": {
 "dosome-custom-command": {
 "command_uuid" : "command-uuud1",
 "command_value" : "1.0.1.1"
 },
 "dosome-custom-command2": "command-uuid2"
 }
 }
 }
 },
 "extension-definitions": {
 "extension-definition--45c72acc-d124-481e-8b12-57ab1fd4c136": {
 "type": "extension-definition",
 "name": "Some cool schema",
 "description": "This schema adds foo to bar",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "schema": "hxxps://www[.]example[.]com/schema-bar/v3/",
 "version": "3.2.3"
 }
 }
}

Example 7.3
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
{
 "type": "playbook",
 ...
 "agents": {
 "net-address--bd546f32-637f-4b69-8161-ade5b5b53cbc": {
 "type": "net-address",
 "address": {
 "url": "hxxps://someorg[.]com/tellmetoorchestratewhat/amethod",
 "vlan": "vlan1"
 },
 "username": "someusername",
 "password": "apassword",
 "agent_extensions": {
 "extension-definition--45c72acc-d124-481e-8b12-57ab1fd4c144": {
 "l2_address": "010203040506"
 }
 }
 }
 },
 "extension-definitions": {
 "extension-definition--45c72acc-d124-481e-8b12-57ab1fd4c144": {
 "type": "extension-definition",
 "name": "Network Agent with Mac",
 "description": "This schema adds L2 mac address to network agents",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "schema": "hxxps://www[.]example[.]com/schema-something/v2/",
 "version": "2.1.2"
 }
 }
}

[bookmark: _xr4c65z6mv6]8 Data Marking Definitions
CACAO data marking definition objects contain detailed information about a specific data marking. Data markings typically represent handling or sharing requirements and are applied via the markings property in a playbook.

Data marking objects MUST NOT be versioned because it would allow for indirect changes to the markings on a playbook. For example, if a statement marking definition is changed from "Reuse Allowed" to "Reuse Prohibited", all playbooks marked with that statement marking definition would effectively have an updated marking without being updated themselves. Instead, in this example a new statement marking definition with the new text should be created and the marked objects updated to point to the new data marking object.

Playbooks may be marked with multiple marking statements. In other words, the same playbook can be marked with both a statement saying "Copyright 2020" and a statement saying, "Terms of use are ..." and both statements apply. This specification does not define rules for how multiple markings applied to the same object should be interpreted.
[bookmark: _d7xnn8pzzieg]8.1 Data Marking Common Properties
Each data marking object contains some base properties that are common across all data markings. These common properties are defined in the following table.

	Property Name
	Data Type
	Details

	type (required)
	enum
	The type of data marking being used.

The value for this property MUST come from the data-marking-type-enum enumeration.

	id (required)
	identifier
	A value that uniquely identifies the data marking definition.

	name (optional)
	string
	A name used to identify this data marking.

	description (optional)
	string
	More details, context, and possibly an explanation about what this data marking does and tries to accomplish.

	created_by (required)
	identifier
	An ID that represents the entity that created this data marking. The ID MUST represent a STIX 2.1+ identity object.

	created (required)
	timestamp
	The time at which this data marking was originally created. The creator can use any time it deems most appropriate as the time the data marking was created, but it MUST be precise to the nearest millisecond (exactly three digits after the decimal place in seconds). The created property MUST NOT be changed.

	modified (required)
	timestamp
	Data markings MUST NOT be versioned. This property MUST always equal the timestamp of the created property.

	revoked (optional)
	boolean
	A boolean that identifies if the creator deems that this data marking is no longer valid. The default value is false. Processing of data that has been previously shared with an associated data marking that is subsequently revoked is unspecified and dependent on the implementation of the consuming software.

	valid_from (optional)
	timestamp
	The time from which this data marking is considered valid.

If omitted, the data marking is valid at all times or until the timestamp defined by valid_until.

If the revoked property is true then this property MUST be ignored.

	valid_until (optional)
	timestamp
	The time at which this data marking SHOULD no longer be considered a valid marking definition.

If the valid_until property is omitted, then there is no constraint on the latest time for which the data marking is valid.

This property MUST be greater than the timestamp in the valid_from property if the valid_from property is defined.

If the revoked property is true then this property MUST be ignored.

	labels (optional)
	list of string
	An optional set of terms, labels, or tags associated with this data marking. The values may be user, organization, or trust-group defined and their meaning is outside the scope of this specification.

	external_references (optional)
	list of external-reference
	An optional list of external references for this data marking.

	marking_extensions (optional)
	dictionary
	This property defines the extensions that are in use on this data marking.

The key for each entry in the dictionary MUST be an identifier that uniquely identifies the extension (see section 9.10 for more information on identifiers). The value for each key is a JSON object that can contain the structure as defined in the extension definition's schema property.

[bookmark: _ktr5td2z1hcf]8.2 Data Marking Type Enumeration
Enumeration Name: data-marking-type-enum

This section defines the following types of data markings.

	Data Marking Type
	Description

	marking-statement
	The statement marking definition defines the representation of a textual marking statement (e.g., copyright, terms of use). See section 8.3.

	marking-tlp
	The TLP marking definition. See section 8.4.

	marking-iep
	The IEP marking definition. See section 8.5.

[bookmark: _3ru8r05saera]8.3 Statement Marking
The statement marking object defines the representation of a textual marking statement (e.g., copyright, terms of use, etc.). Statement markings are generally not machine-readable, and this specification does not define any behavior or actions based on their values.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be marking-statement.

	statement (required)
	string
	A statement (e.g., copyright, terms of use) applied to the content marked by this marking definition.

Example 8.1
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"data_marking_definitions": {
 "marking-statement--6372bbfe-5aa1-4225-b866-846265cc8689": {
 "type": "marking-statement",
 "id": "marking-statement--6372bbfe-5aa1-4225-b866-846265cc8689",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2020-04-01T00:00:00.000Z",
 "modified": "2020-04-01T00:00:00.000Z",
 "statement": "Copyright 2020, Example Corp"
 }
}
[bookmark: _q2x0j32gznvs]8.4 TLP Marking
The TLP marking object defines the representation of a FIRST TLP V2 marking statement.

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be marking-tlp.

	tlpv2_level (required)
	enum
	The value of this property is the name of the TLP V2 level as defined by FIRST [TLP]. The value MUST be one of the following:

TLP:RED, TLP:AMBER, TLP:AMBER+STRICT, TLP:GREEN, TLP:CLEAR

The following standard data marking definitions MUST be used to represent TLP:RED, TLP:AMBER, TLP:AMBER+STRICT, TLP:GREEN, TLP:CLEAR TLP markings.

	TLP:CLEAR
	"data_marking_definitions": {
 "marking-tlp--94868c89-83c2-464b-929b-a1a8aa3c8487": {
 "type": "marking-tlp",
 "id": "marking-tlp--94868c89-83c2-464b-929b-a1a8aa3c8487",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2022-10-01T00:00:00.000Z",
 "modified": "2022-10-01T00:00:00.000Z",
 "tlpv2_level": "TLP:CLEAR"
 }
}

	TLP:GREEN
	"data_marking_definitions": {
 "marking-tlp--bab4a63c-aed9-4cf5-a766-dfca5abac2bb": {
 "type": "marking-tlp",
 "id": "marking-tlp--bab4a63c-aed9-4cf5-a766-dfca5abac2bb",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2022-10-01T00:00:00.000Z",
 "modified": "2022-10-01T00:00:00.000Z",
 "tlpv2_level": "TLP:GREEN"
 }
}

	TLP:AMBER
	"data_marking_definitions": {
 "marking-tlp--55d920b0-5e8b-4f79-9ee9-91f868d9b421": {
 "type": "marking-tlp",
 "id": "marking-tlp--55d920b0-5e8b-4f79-9ee9-91f868d9b421".
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2022-10-01T00:00:00.000Z",
 "modified": "2022-10-01T00:00:00.000Z",
 "tlpv2_level": "TLP:AMBER"
 }
}

	TLP:AMBER+STRICT
	"data_marking_definitions": {
 "marking-tlp--939a9414-2ddd-4d32-a0cd-375ea402b003": {
 "type": "marking-tlp",
 "id": "marking-tlp--939a9414-2ddd-4d32-a0cd-375ea402b003",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2022-10-01T00:00:00.000Z",
 "modified": "2022-10-01T00:00:00.000Z",
 "tlpv2_level": "TLP:AMBER+STRICT"
 }
}

	TLP:RED
	"data_marking_definitions": {
 "marking-tlp--e828b379-4e03-4974-9ac4-e53a884c97c1": {
 "type": "marking-tlp",
 "id": "marking-tlp--e828b379-4e03-4974-9ac4-e53a884c97c1",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2022-10-01T00:00:00.000Z",
 "modified": "2022-10-01T00:00:00.000Z",
 "tlpv2_level": "TLP:RED"
 }
}

[bookmark: _lk1d8ejyjead]8.5 IEP Marking
The IEP marking object defines the representation of a FIRST IEP marking statement. For more information about the properties from the IEP specification, please refer to that document [IEP].

	Property Name
	Data Type
	Details

	type (required)
	string
	The value of this property MUST be marking-iep.

	name (required)
	string
	The name of the IEP policy.

	tlp_level (optional)
	string
	See IEP Specification [IEP].

	description (optional)
	string
	See IEP Specification [IEP].

	iep_version (optional)
	string
	See IEP Specification [IEP].

	start_date (optional)
	timestamp
	See IEP Specification [IEP].

	end_date (optional)
	timestamp
	See IEP Specification [IEP].

	encrypt_in_transit (optional)
	string
	See IEP Specification [IEP].

	permitted_actions (optional)
	string
	See IEP Specification [IEP].

	attribution (optional)
	string
	See IEP Specification [IEP].

	unmodified_resale (optional)
	string
	See IEP Specification [IEP].

Example 8.3
"data_marking_definitions": {
 "marking-iep--1eb9a8a4-e35a-4b8d-8f13-f27a4bced5aa": {
 "type": "marking-iep",
 "id": "marking-iep--1eb9a8a4-e35a-4b8d-8f13-f27a4bced5aa",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2020-04-01T00:00:00.000Z",
 "modified": "2020-04-01T00:00:00.000Z",
 "name": "FIRST IEP TLP-AMBER",
 "tlp_level": "TLP:AMBER"
 }
}

[bookmark: _gv21fm9t1qgx]9 Data Types
This section defines the common data types and objects used throughout this specification, their permitted values including vocabularies, and how they map to the MTI JSON serialization. It does not, however, define the meaning of any properties using these types. These types MAY be further restricted elsewhere in the specification.
[bookmark: _oumi6i8u2hvb]9.1 Agent and Target
The agent-target data type captures detailed information about the entities or devices that accept, receive, process, or execute one or more commands as defined in a workflow step and uses the JSON object type [RFC8259] for serialization (see section 6).
[bookmark: _gyg8m5eah2fb]9.2 Boolean
The boolean data type is a literal unquoted value of either true or false and uses the JSON true and false values [RFC8259] for serialization.
[bookmark: _fn6wbjgcb25p]9.3 Civic Location
The civic-location data type captures civic location information and uses the JSON object type [RFC8259] for serialization. Implementations need to be mindful when including physical address information and GPS information into the same civic location to ensure that they reference the same actual physical location. However, in the event that the physical address information and the GPS information do not match, then the physical address information SHOULD be considered correct.

	Property Name
	Data Type
	Details

	name (optional)
	string
	A name for this location.

	description (optional)
	string
	A detailed description about this location.

	building_details (optional)
	string
	Additional details about the location within a building including things like floor, room, etc.

	network_details (optional)
	string
	Additional details about this network location including things like wiring closet, rack number, rack location, and VLANs.

	region (optional)
	enum
	The geographical region for this location.

The value for this property MUST come from the region-enum enumeration (see section 9.3.1).

	country (optional)
	string
	The country for this location. This property MUST contain a valid ISO 3166-1 ALPHA-2 Code [ISO3166-1].

	administrative_area (optional)
	string
	The state, province, or other sub-national administrative area for this location.

This property SHOULD contain a valid ISO 3166-2 Code [ISO3166-2].

	city (optional)
	string
	The city for this location.

	street_address (optional)
	string
	The street address for this location. This property includes all aspects or parts of the street address. For example, some addresses may have multiple lines including a mailstop or apartment number.

	postal_code (optional)
	string
	The postal code for this location.

	latitude (required)
	string
	The GPS latitude of the location in decimal degrees. Positive numbers describe latitudes north of the equator, and negative numbers describe latitudes south of the equator. The value of this property MUST be less than or equal to 90.0 and greater than -90.0 (i.e., 90.0 >= x > -90.0).

If the longitude property is present, this property MUST be present.

NOTE: Some systems like Google Maps have the following rules. "Latitude ranges between -90 and 90 degrees, inclusive. Values above or below this range will be clamped to the range [-90, 90]. This means that if the value specified is less than -90, it will be set to -90. And if the value is greater than 90, it will be set to 90." [Google Maps]

	longitude (required)
	string
	The GPS longitude of the location in decimal degrees. Positive numbers describe longitudes east of the prime meridian and negative numbers describe longitudes west of the prime meridian. The value of this property MUST be less than or equal to 180.0 and a value that is greater than -180.0 (i.e., 180.0 >= x > -180.0).

If the latitude property is present, this property MUST be present.

NOTE: Some systems like Google Maps have the following rules. "Longitude ranges between -180 and 180 degrees, inclusive. Values above or below this range will be wrapped so that they fall within the range. For example, a value of -190 will be converted to 170. A value of 190 will be converted to -170. This reflects the fact that longitudes wrap around the globe." [Google Maps]

	precision (optional)
	string
	Defines the precision of the coordinates specified by the latitude and longitude properties. This is measured in meters. The actual agent may be anywhere up to precision meters from the defined point.

If this property is not present, then the precision is unspecified.

If this property is present, the latitude and longitude properties MUST be present.

Example 9.1
{
 "name": "ACME Company",
 "description": "ACME campus located next to airport",
 "building_details": "Building H, First floor, Suite 110, Room 110-4",
 "network_details": "Network closet 201, rack location:38U",
 "region": "northern-america",
 "country": "US",
 "administrative_area": "California",
 "city": "San Francisco",
 "street_address": "123 Main Street",
 "postal_code": "90123"
}
[bookmark: _i1sw27qw1v0s]9.3.1 Region Enumeration
A list of world regions based on the United Nations geoscheme [UNSD M49].

Enumeration Name: region-enum

	Vocabulary Value

	africa

	 eastern-africa

	 middle-africa

	 northern-africa

	 southern-africa

	 western-africa

	americas

	 caribbean

	 central-america

	 latin-america-caribbean

	 northern-america

	 south-america

	asia

	 central-asia

	 eastern-asia

	 southern-asia

	 south-eastern-asia

	 western-asia

	europe

	 eastern-europe

	 northern-europe

	 southern-europe

	 western-europe

	oceania

	 antarctica

	 australia-new-zealand

	 melanesia

	 micronesia

	 polynesia

[bookmark: _neawmuqwftft]9.4 Command Data
The command-data data type contains detailed information about the commands that are to be executed or processed automatically or manually as part of an action step (see section 4.5) and uses the JSON object type [RFC8259] for serialization (see section 5).
[bookmark: _qsmfvlm7wfvh]9.5 Complexity
The playbook-complexity data type represents the major features and functionality of a playbook. This data type contains a summarized list of features that can be implemented for a specific playbook and is used at playbook metadata level. This is done to help implementations understand the concepts and features used within a specific playbook without having to parse the entire playbook.

	Property Name
	Data Type
	Details

	manual_playbook (optional)
	boolean
	This type of playbook contains only manual commands and simple text based descriptions or tasks.

	external_playbooks (optional)
	boolean
	See section 4.6.

	parallel_processing (optional)
	boolean
	See section 4.7.

	if_logic (optional)
	boolean
	See section 4.8.

	while_logic (optional)
	boolean
	See section 4.9.

	switch_logic (optional)
	boolean
	See section 4.10.

	temporal_logic (optional)
	boolean
	See section 4.1 delay and timeout properties.

	data_markings (optional)
	boolean
	See section 2.4 and section 8.

	extensions (optional)
	boolean
	See section 7.

[bookmark: _y94ffgxgcoj3]9.6 Contact Information
The contact information data type captures general contact information and uses the JSON object type [RFC8259] for serialization.

	Property Name
	Data Type
	Details

	email (optional)
	dictionary
	An email address for this contact.

The key for each entry in the dictionary MUST be a string that uniquely identifies the contact type (e.g., the keys could be things like "work", "home", "personal", etc). The value for each key MUST be a string.

	phone (optional)
	dictionary
	A phone number for this contact.

The key for each entry in the dictionary MUST be a string that uniquely identifies the type (e.g., the keys could be things like "work", "home", "personal", etc). The value for each key MUST be a string.

	contact_details (optional)
	string
	Additional contact information.

Example 9.2
{
 "email": {
 "work": "person1@example.com",
 "home": "home@example.com"
 },
 "phone": {
 "work": "+1-123-123-1234"
 },
 "contact_details": "Some details about this contact"
}
[bookmark: _fnjczwylpsan]9.7 Dictionary
The dictionary data type captures an arbitrary set of key/value pairs and uses the JSON object type [RFC8259] for serialization.

Dictionary keys:
· MUST be unique in each dictionary
· MUST be an ASCII string
· MUST only contain the characters: a-z (lowercase ASCII), A-Z (uppercase ASCII), 0-9, a hyphen (-) (see section 1.6), and an underscore (_)
· MUST be no longer than 250 ASCII characters in length and SHOULD be lowercase
· MUST start with a letter, number, or the underscore character

The values for all keys in a dictionary MUST be valid property types as defined where the dictionary is used.
[bookmark: _m351hp3m7q2b]9.8 Enum
The enum data type represents a defined hardcoded list of string values and uses the JSON string type [RFC8259] for serialization.

An enum contains a list of known values that apply to a specific property. Any normative rules for the use of that enum with a given property are defined in the definition of that property. When an enum is defined for a property the value or values for that property MUST come from the enum. Additional values MUST NOT be added to an enum by an implementation.
[bookmark: _72bcfr3t79jx]9.9 External Reference
The external-reference data type captures the location of information represented outside of a CACAO playbook and uses the JSON object type [RFC8259] for serialization. For example, a playbook could reference external documentation about a specific piece of malware that the playbook is trying to address. In addition to the name properties at least one of the following properties MUST be present: description, source, url, external_id, or reference_id.

	Property Name
	Data Type
	Description

	name (required)
	string
	The name of the author or title of the source of this external reference.

	description (optional)
	string
	A detailed description of this external reference.

	source (optional)
	string
	A textual citation of this source. The citation source MAY use a standard citation format like Chicago, MLA, APA, or similar style.

	url (optional)
	string
	A URL [RFC3986] for this external reference.

	external_id (optional)
	string
	An identifier used by the source to reference this content. Some organizations give names or numbers to content that they publish. This property would capture that information to help ensure that a consumer is being referred to the correct content.

	reference_id (optional)
	string
	An identifier that represents the data that this content is referring to. This property is especially useful when referencing content that already exists in a graph dataset or can be referenced via some ID. When referencing STIX content, this would be the STIX based UUID.

Example 9.1
The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.
"external_references": [
 {
 "name": "ACME Security FuzzyPanda Report",
 "description": "ACME security review of FuzzyPanda 2021",
 "source": "ACME Security Company, Solutions for FuzzyPanda 2021, January 2021.
 Available online: hxxp://www[.]example[.]com/info/fuzzypanda2021.html",
 "url": "hxxp://www[.]example[.]com/info/fuzzypanda2021.html",
 "external_id": "fuzzypanda 2023.01",
 "reference_id": "malware--2008c526-508f-4ad4-a565-b84a4949b2af"
 }
]
[bookmark: _axdyyokzl05k]9.10 Identifier
The identifier data type represents an RFC 4122-compliant UUID [RFC4122] and uses the JSON string type [RFC8259] for serialization.

An identifier uniquely identifies a CACAO object. All identifiers MUST follow the form object-type--UUID, where object-type is the exact value (all type names are lowercase strings by definition) from the type property of the object being identified and where the UUID MUST be an RFC 4122-compliant UUID [RFC4122].

The UUID part of the identifier MUST be unique across all objects regardless of the type identified by the object-type prefix. Meaning, a producer MUST NOT reuse the UUID portion of the identifier for objects of different types.

All CACAO objects SHOULD use UUIDv4 for the UUID portion of the identifier. A CACAO playbook object MAY use UUIDv5 for the UUID portion of the identifier. All CACAO step objects MUST use UUIDv4.

Using a UUIDv5 for the playbook MAY allow producers and consumers using the same namespace and contributing properties to generate the same identifier for that playbook. When using UUIDv5 the UUID portion of the UUIDv5-based identifier SHOULD be generated according to the following rules:
· The namespace SHOULD be aa7caf3a-d55a-4e9a-b34e-056215fba56a
· The value of the name portion SHOULD be a series of properties from the object that will ensure a globally unique identifier and those properties SHOULD be stringified according to the JSON Canonicalization Scheme [RFC8785] to ensure a canonical representation of the JSON data
· The contributing properties to the playbook object's UUIDv5 name portion SHOULD be the name and playbook_types properties.
· Producers not following these rules MUST NOT use a namespace of aa7caf3a-d55a-4e9a-b34e-056215fba56a
[bookmark: _2ffpu8tf9b6w]9.11 Integer
The integer data type represents an ℤ integer number and uses the JSON number type [RFC7493] for serialization. Unless otherwise specified, all integers MUST be capable of being represented as a signed 54-bit value ([-(2**53)+1, (2**53)-1]), not a 64-bit value, as defined in [RFC7493]. When a 64-bit integer is needed in this specification, it will be encoded using the string data type.
[bookmark: _a5yetnwhl19u]9.12 Open Vocabularies
The open-vocab data type represents a defined list of suggested string values and uses the JSON string type [RFC8259] for serialization.

An open vocabulary contains a list of known values that apply to a specific property. Any normative rules for the use of that vocabulary with a given property are defined in the definition of that property. When an open vocabulary is defined for a property the value or values for that property SHOULD come from the suggested vocabulary, but MAY be any other string value. Values that are not from the suggested vocabulary SHOULD be all lowercase and SHOULD use hyphens instead of spaces or underscores as word separators.
[bookmark: _5cpweie60zsg]9.13 Signature
The signature data type captures the actual digital signature and meta-data about the signature and uses the JSON object type [RFC8259] for serialization. See section A.3 in the appendix for a detailed example.

* One of the following properties MUST be populated, public_key (preferred), public_cert_chain, cert_url, or thumbprint.

	Property Name
	Data Type
	Description

	type (required)
	string
	The value of this property MUST be jss.

	id (required)
	identifier
	A value that uniquely identifies the signature. All signatures with the same ID are considered different versions of the same signature and the version of the signature is identified by its modified property.

	created_by (optional)
	identifier
	An ID that represents the entity that created this signature. The ID MUST represent a STIX 2.1+ identity object.

	created (required)
	timestamp
	The time at which this signature was originally created. The creator can use any time it deems most appropriate as the time the signature was created, but it MUST be precise to the nearest millisecond (exactly three digits after the decimal place in seconds). The created property MUST NOT be changed when creating a new version of the object.

	modified (required)
	timestamp
	The time that this particular version of the signature was last modified. The creator can use any time it deems most appropriate as the time that this version of the signature was modified, but it MUST be precise to the nearest millisecond (exactly three digits after the decimal place in seconds). The modified property MUST be later than or equal to the value of the created property. If the created and modified properties are the same, then this is the first version of the signature.

	revoked (optional)
	boolean
	A boolean that identifies if the signature creator deems that this signature is no longer valid. The default value is false.

	signee (required)
	string
	The name of the entity or organization that produced this signature. This property is similar to the X.509 fields.

	valid_from (optional)
	timestamp
	The time from which this signature is considered valid.

If omitted, the signature is valid at all times or until the timestamp defined by valid_until. If the revoked property is true then this property MUST be ignored.

	valid_until (optional)
	timestamp
	The time at which this signature should no longer be considered valid.

If the valid_until property is omitted, then there is no constraint on the latest time for which the signature is valid.

This property MUST be greater than the timestamp in the valid_from property if the valid_from property is defined. If the revoked property is true then this property MUST be ignored.

	related_to (required)
	identifier
	The CACAO playbook that this signature is for. The value of this property MUST be a CACAO playbook id. If the signature is detached from the original playbook then this property MUST be populated.

	related_version (required)
	timestamp
	The version of the CACAO playbook that this signature is for.

The value of this property MUST be the modified timestamp from the CACAO playbook that this signature is for.

	hash_algorithm (required)
	string
	The hashing algorithm used on the JCS version of the full playbook with the signature object as defined by IANA <TODO REF> and is a case-sensitive ASCII string. As of this writing, implementations SHOULD use "sha-256" but MAY use any current and widely accepted algorithm that is defined in the IANA registry. The actual signing process uses an algorithm, defined in the algorithm property, that may define an internal hashing function, this property MAY use the same hashing algorithm as the signing process or MAY use something else.

	algorithm (required)
	enum
	This property identifies the algorithm that was used to sign the playbook and is a case-sensitive ASCII string.

The value for this property MUST come from the signature-algorithm-type-enum enumeration.

	public_key (optional*)
	string
	This property contains a PEM encoded PKCS#1 public key without the header and footer.

	public_cert_chain (optional*)
	list of string
	This property contains a public key certificate and MUST follow the requirements defined in section 4.7 of [RFC7517] as quoted here. This property "contains a chain (X.509 certificate chain) of one or more PKIX certificates [RFC5280]. The certificate chain is represented as a JSON array of certificate value strings. Each string in the array is a base64-encoded (Section 4 of [RFC4648] -- not base64URL.encoded) DER [ITU.X690.1994] PKIX certificate value. The PKIX certificate containing the key value MUST be the first certificate. This MAY be followed by additional certificates, with each subsequent certificate being the one used to certify the previous one. The key in the first certificate MUST match the public key." This property is called "x5c" in section 4.7 of [RFC7517].

	cert_url (optional*)
	string
	This property contains a URI [RFC3986] that refers to a resource for an X.509 public key certificate or certificate chain [RFC5280] and MUST follow the requirements defined in section 4.6 of [RFC7517] as quoted here. "The identified resource MUST provide a representation of the certificate or certificate chain that conforms to RFC 5280 [RFC5280] in PEM-encoded form, with each certificate delimited as specified in section 6.1 of RFC 4945 [RFC4945]. The key in the first certificate MUST match the public key. The protocol used to acquire the resource MUST provide integrity protection; an HTTP GET request to retrieve the certificate MUST use TLS [RFC2818] [RFC5246]; the identity of the server MUST be validated, as per section 6 of RFC 6125 [RFC6125]." This property is called "x5u" in section 4.6 of [RFC7517].

	thumbprint (optional*)
	string
	This property contains a fingerprint of a public key or public key certificate and SHOULD follow the requirements defined in section 4.9 of [RFC7517] as quoted here. This property "is a base64URL.encoded SHA-256 thumbprint (a.k.a. digest, X.509 certificate SHA-256 thumbprint) of the DER encoding of an X.509 certificate [RFC5280]. Note that certificate thumbprints are also sometimes known as certificate fingerprints. The key in the certificate MUST match the public key." This property is called "x5t#S256" in section 4.9 of [RFC7517].

	value (required)
	string
	A base64URL.encoded signature that was created using the signature algorithm defined in the algorithm property and a key. In pseudo code it is defined as: base64URL.encode(sign(algorithm, key, hash(jcs(<JSONObject with Signature Object>))))

	signature (optional)
	signature
	This property enables a signature chain, meaning a signature can be signed by another signature.

[bookmark: _7hy3y9kqje8l]9.13.1 Signature Algorithm Type Enumeration
Enumeration Name: signature-algorithm-type-enum

The algorithm used for creating CACAO digital signatures MUST come from one of the following options that are defined in JWA [RFC7518] section 3.1 and [RFC8037] section 3.1 and SHOULD be either ES256 or RS256 as defined in JWA.

While JWA [RFC7518] section 3.1 defines the following symmetric algorithms: HS256, HS384, HS512, these algorithms MUST NOT be used, as CACAO playbooks are intended to be shared across system and organizational boundaries that would not allow the sharing of symmetric keys.

	Vocabulary Value
	Description

	RS256
	RSASSA-PKCS1-v1_5 using SHA-256. See section 3.3 of JWA [RFC 7518] for more information. This method is recommended per JWA [RFC7518].

	RS384
	RSASSA-PKCS1-v1_5 using SHA-384. See section 3.3 of JWA [RFC 7518] for more information.

	RS512
	RSASSA-PKCS1-v1_5 using SHA-512. See section 3.3 of JWA [RFC 7518] for more information.

	ES256
	ECDSA using P-256 and SHA-256. See section 3.4 of JWA [RFC 7518] for more information. This method is recommended per JWA [RFC7518].

	ES384
	ECDSA using P-384 and SHA-384. See section 3.4 of JWA [RFC 7518] for more information.

	ES512
	ECDSA using P-521 and SHA-512. See section 3.4 of JWA [RFC 7518] for more information.

	PS256
	RSASSA-PSS using SHA-256 and MGF1 with SHA-256. See section 3.5 of JWA [RFC 7518] for more information.

	PS384
	RSASSA-PSS using SHA-384 and MGF1 with SHA-384. See section 3.5 of JWA [RFC 7518] for more information.

	PS512
	RSASSA-PSS using SHA-512 and MGF1 with SHA-512. See section 3.5 of JWA [RFC 7518] for more information.

	Ed25519
	See [RFC 8037] and [RFC 8032] for more information.

NOTE: Unlike RFC8037 [RFC8037] this specification requires explicit Ed* algorithm names (e.g. Ed25519) instead of generic versions like "EdDSA".

	Ed448
	See [RFC 8037] and [RFC 8032] for more information.

NOTE: Unlike RFC8037 [RFC8037] this specification requires explicit Ed* algorithm names (e.g. Ed448) instead of generic versions like "EdDSA".

[bookmark: _esr0iti56k51]9.14 String
The string data type represents a finite-length string of valid characters from the Unicode coded character set [ISO10646] and uses the JSON string type [RFC8259] for serialization.
[bookmark: _5d2leijrnj1w]9.15 Timestamp
The timestamp data type represents dates and times and uses the JSON string type [RFC8259] for serialization. The timestamp data MUST be a valid RFC 3339-formatted timestamp [RFC3339] using the format yyyy-mm-ddThh:mm:ss[.s+]Z where the "s+" represents 1 or more sub-second values. The brackets denote that sub-second precision is optional, and that if no digits are provided, the decimal place MUST NOT be present. The timestamp MUST be represented in the UTC+0 timezone and MUST use the "Z" designation to indicate this.
[bookmark: _qpgyfq9tx3g4]9.16 Variables
Variables can be defined and then used as the playbook is executed. Variables are stored in a dictionary where the key is the name of the variable and the value is a variable data type. Variables can represent stateful elements that may need to be captured to allow for the successful execution of the playbook. All playbook variables are mutable unless identified as a constant.

In addition to the rules for all dictionary keys, variable names:
· MUST be unique within the contextual scope they are declared
· MUST be prefixed and suffixed with __ (two underscore characters) for both declaration and use
· MUST contain the keyword ":value" when using the variable (e.g., __ipaddress__:value)
· MUST be no longer than 200 ASCII characters in length, excluding the variable prefix and suffix __
· MUST start with a letter after the variable prefix __
· Are case-sensitive (age, Age and AGE are three different variables) but SHOULD be lowercase
[bookmark: _zh9krbb0qh98]9.16.1 Variable Scope
The scope of a variable is determined by where the variable is declared. A variable may be defined globally for the entire playbook or locally within a workflow step. Variables are scoped to the object they are defined in, and any object that is used or referenced by that object. A specific variable can only be defined once, however, a variable can be assigned and used in the object where it is defined or in any object used or referenced by that object (e.g., a playbook variable can be assigned at the playbook level but also reassigned a different value within a workflow step).
[bookmark: _d4ruh7wty3xb]9.16.2 Using Variables
Variables are referenced by using the key name from the dictionary with a suffix (keyword) of ":value". For example, if you had a variable in the dictionary called "__ip_addresses__", one could reference this and use it in a playbook by using "__ip_addresses__:value". Variables MAY be passed to and from external playbooks provided that system supports passing of arguments when the system function is invoked or returns its results.
[bookmark: _gim26rw0cz4e]9.16.3 Variable
The variable data type captures variable information and uses the JSON object type [RFC8259] for serialization.

	Property Name
	Data Type
	Details

	type (required)
	open-vocab

	The type of variable being used. The value for this property SHOULD come from the variable-type-ov vocabulary.

	description (optional)
	string
	An optional detailed description of this variable.

	value (optional)
	string
	The value of the variable represented by a JSON string. The value MAY be populated with a string value (or number encoded as a string), an empty string "", or with the special JSON NULL value.

NOTE: An empty string is NOT equivalent to a JSON NULL value. An empty string means the value is known to be empty. A value of NULL means the value is unknown or undefined.

	constant (optional)
	boolean
	Is this variable immutable or mutable? If true, the variable is immutable and MUST NOT be changed. If false, the variable is mutable and can be updated later on in the playbook. The default value is false. If this property is not present then the value is false.

	external (optional)
	boolean
	This property only applies to playbook scoped variables.

When set to true the variable declaration defines that the variable’s initial value is passed into the playbook from a calling context.

When set to false or omitted, the variable is defined within the playbook.

Example 9.2
{
 "type": "playbook",
 …,
 "playbook_variables": {
 "__variable name__": {
 "type": "<variable_type>",
 "description": "<details about variable>",
 "value": "<variable_value>",
 "constant": false,
 "external": false
 }
 }
}

Example 9.3
{
 "type": "playbook",
 …,
 "playbook_variables": {
 "__data_exfil_si__": {
 "type": "ipv4-addr",
 "description": "The IP address for the data exfiltration site",
 "value": "1.2.3.4",
 "constant": false,
 "external": false
 }
 }
}
[bookmark: _k5zgocwqb1uf]9.16.4 Variable Type Vocabulary
Vocabulary Name: variable-type-ov

	Vocabulary Value
	Description

	bool
	The value is a true or false value encoded as a string

	dictionary
	The value contains a dictionary of values.

	float
	A floating point number encoded as a string

	hexstring
	Some string encoded in hexadecimal

	integer
	An integer encoded as a string

	ipv4-addr
	An IPv4 network address (e.g., 127.0.0.1)

	ipv6-addr
	An IPv6 network address (e.g, fe80::8785:b894:75aa:c16f)

	long
	A long number value encoded as a string

	mac-addr
	A layer 2 network MAC address (e.g., bc:d0:74:7a:3a:31)

	hash
	A hash encoded as a string

	md5-hash
	An MD5 hash encoded as a string

	sha256-hash
	A SHA 256 hash encoded as a string

	string
	A normal string value

	uri
	A URI address

	uuid
	An RFC 4122-compliant UUID [RFC4122].

[bookmark: _difggtnnudht]10 Conformance
[bookmark: _llxw5pwau9qy]10.1 CACAO Playbook Producers and Consumers
A "CACAO 2.0 Producer" is any software that can create CACAO 2.0 content and conforms to the following normative requirements:

· It MUST be able to create content encoded as JSON.
· All properties marked required in the property table for the CACAO object or type MUST be present in the created content.
· All properties MUST conform to the data type and normative requirements for that property.
· It MUST support all features listed in section 10.2, Mandatory Features.
· It MAY support any features listed in section 10.3, Optional Features. Software supporting an optional feature MUST comply with the normative requirements of that feature.
· It MUST support JSON as a serialization format and MAY support serializations other than JSON.
· It MAY produce content in an earlier CACAO version if it determines no loss of semantic functionality.

A "CACAO 2.0 Consumer" is any software that can consume CACAO content and conforms to the following normative requirements:

· It MUST support parsing of all required properties for the content that it consumes from this version of the Specification.
· It MUST support all features listed in section 10.2, Mandatory Features.
· It MAY support any features listed in section 10.3, Optional Features. Software supporting an optional feature MUST comply with the normative requirements of that feature.
· It MUST support JSON as a serialization format and MAY support serializations other than JSON.
· It MUST support parsing of all required properties and mandatory to implement features as defined in previous minor versions of this version of the CACAO Specification.
· It MAY support parsing of optional properties and optional to implement features as defined in previous minor versions of this version of the CACAO Specification.
· It MAY support parsing of required and optional properties and mandatory and optional to implement features as defined in newer versions of the CACAO Specification.
[bookmark: _oemzuj90nej9]10.1.1 CACAO 2.0 to 1.1 Version Compatibility
Prior to exchanging CACAO playbook content between a CACAO Producer and a CACAO Consumer it is recommended to verify version compatibility between the various systems involved to ensure improved interoperability.

· CACAO Consumers and Producers SHOULD verify version compatibility prior to exchanging content.

[bookmark: _eom46aqismah]10.2 CACAO Mandatory Features
[bookmark: _er0x5vqyyszi]10.2.1 Versioning
CACAO 2.0 Producers and CACAO 2.0 Consumers MUST support versioning by following the normative requirements listed in section 2.3.
[bookmark: _ob0x9civ8hld]10.2.2 Variables
CACAO 2.0 Producers and CACAO 2.0 Consumers MUST support variables by following the normative requirements listed in sections 3.3 and 9.16.
[bookmark: _4r0frug545kw]10.2.3 Playbooks
CACAO 2.0 Producers and CACAO 2.0 Consumers MUST support the playbook object defined in this specification by following the normative requirements listed in section 3
[bookmark: _dpf6zfdfc1n2]10.2.4 Workflow Steps
CACAO 2.0 Producers and CACAO 2.0 Consumers MUST support the workflow steps defined in this specification by following the normative requirements listed in sections 3.1 and 4.
[bookmark: _3ctutp28w5qz]10.2.5 Commands
CACAO 2.0 Producers and CACAO 2.0 Consumers MUST support the command object as defined in this specification by following the normative requirements listed in sections 3.1 and 5. However, a CACAO 2.0 Producer or CACAO 2.0 Consumer MAY support only a subset of command object types.
[bookmark: _poitzlh2bgzh]10.2.6 Agents
CACAO 2.0 Producers and CACAO 2.0 Consumers MUST support the agents defined in this specification by following the normative requirements listed in sections 3.1 and 6.
[bookmark: _4c9jz8fmd14n]10.2.7 Targets
CACAO 2.0 Producers and CACAO 2.0 Consumers MUST support the targets defined in this specification by following the normative requirements listed in sections 3.1 and 6.
[bookmark: _o30bcodpz36u]10.3 CACAO Optional Features
[bookmark: _w5axfdnppx79]10.3.1 Data Markings
CACAO 2.0 Producers and CACAO 2.0 Consumers MAY support Data Markings. Software that supports Data Markings MUST follow the normative requirements listed in sections 2.4, 3.1, and 8.
[bookmark: _vd7evgq6wg6w]10.3.2 Extensions
CACAO 2.0 Producers and CACAO 2.0 Consumers MAY support Extensions. Software that supports Extensions MUST follow the normative requirements listed in sections 3.1 and 7.
[bookmark: _yodvyz714ftw]10.3.3 Digital Signatures
CACAO 2.0 Producers and CACAO 2.0 Consumers MAY support Digital Signatures. Software that supports Digital Signatures MUST follow the normative requirements listed in sections 2.5, 3.1 and 9.13.

[bookmark: _epbeqiiioilx]Appendix A. Examples
The examples in this section are based on various scenarios and are included to help readers understand how CACAO playbooks can be developed. In these examples it is common to not actually use UUIDs, but rather simple IDs to make it easier for visual human inspection. These simple IDs will have a form of "<object-type>--uuid1". In some of these examples we have elected to show all optional properties and all properties that have defaults. This is done to help implementers fully understand the schema.
[bookmark: _23udxpm74cd0]A.1 Playbook Example 1
This will be added after the next public review.
[bookmark: _21roykg710gp]A.2 Action Step Examples
This will be added after the next public review.
[bookmark: _970s0di1oedt]A.3 Playbook Signature
--
Step 0: Given the following public and private keys
--
-----BEGIN PRIVATE KEY-----
MIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQCm0pnIU9K2+Y6VvRaKE4GGUdSv
rAUMcL61buEkC519NDmYdlCkHw+gzPTu51kD50bx2FQg+SZeWnVOBER5hMd2HGG5/TL8aFulm/kk
9gfHfBq074dY7apiSNEwRytaE8x1pWRL9d7+WJoxyjDiNihZoWbxWht5izJUPZtZZ3KXiOhMQROb
VnjtGed9HXmRWFW51WsPMQWYziddX/p2YiDXzhEkTiG23AEXFHypkJALBOImayjInF9RHQazh48p
zmwHQ1OSYVlzmSVBKK13rtEmfaV2FuoTsSkOXheUi35TIsmbWC4IGW2JrwCCR7t1e6GkHuFDosnB
jgSPO2GQnwg/AgMBAAECggEAKT6KTNAEmb5rdTPxvaOC832J0wD5opDBZcQLH8lLX6go0Tv3Rgxz
5bKmn+ZMyL1GegadDiXrSYqd0/MUJuMgGWB8/OnP0D3Q4soEOBIn7DcPt0o9MUxZQsF0DraZzkR0
2WVRvcIFJucrAEJYAaWYJkjUVbmMb2ltwQwWO21rFHGbpE73nsfr/oAWsZEvKsQZoYm4fh5jVI5+
wKyRnKaN1uqAcNgj75cdywCHBVwgEefEgOPM77CDMH0+JumSirQiBfR35+HWRwHwpm09wI6Aqtvg
y5bzxvLDDRgrhX4LCPtUHGrUXNJHRKYiHQX6P6bIVuBrHV6VFpyS+5weu0w6kQKBgQDQo4QeLtO7
S3KH8UL3lX4lhH1K7/Q99uBHmvLXdiDkHjLbBbh0JfrHgHtnK9bvJ2GvVcwhI9fTiO1p1o5RM5jb
iVUSCS91sLcTPFv8X83sExBZnrvlSlb/va+4yW+Lzvr6ZiDlZYsVRNvNAHUTojHRCOH2P4eX1+ql
5P4FMdfvSQKBgQDMsQ4LBpxjD9KdDzJzw9a0xbL47QdCeZBqNUy6MvwLE0+KsF+prvoigNZCaTcJ
2FfoPxpE3/o0A/byCTuDkfddrd/hcAO0gd1R9CYJDXJfnIbZfheUmHW7ShbXyqhpqQKVjzH+jnLq
VjbGD6tz3dN+AwNgULD/vvwXM2TWpu9TRwKBgGkPPdMZD2NLzaNouKkFbR0lRxY6GEovi6Zi/w/C
GzPjhQZHLifGjC5zozBDohqRQR5SXNT/QInzdGGMOePn0HwT/nNzjqN71eRoy4UdFQtgWiZWyRTf
x0lGUjsBrBrBoh3+2WfKJywRnYDwTwQQ83boOyiNuxCaGD1rPwKMo8iJAoGAPIePE4uc615edbts
u/cJouNjjWDqaKnyHrYsPlOdXNkVCHonj9ICffmDYpgignLLbA5dAkkJgCA8Ak7gnoOnlrg4ID4z
mklc3UNJjBvB2qw65E35QyPijMPYBXAUZUppTTjPG+ub59ge0msH1Hegdv8FHJJABSDBA0tbYm5z
DzkCgYA9/0KtWKFMhF3v01L54AXF5b15RroBhZAfzI1U0wPO4J6Tz+1KqmtrwHTBPI36nzITIhlM
hcoTsMRMgnv0NHzxlcQQmAy3foFBFOyHXql3hPtWbEViB5jQs4cP5ts1oivVhrEtrrE51TG4V/Ef
fD1JKiHl7MECYEMyBz31PsRCuw==
-----END PRIVATE KEY-----

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAptKZyFPStvmOlb0WihOBhlHUr6wFDHC+
tW7hJAudfTQ5mHZQpB8PoMz07udZA+dG8dhUIPkmXlp1TgREeYTHdhxhuf0y/GhbpZv5JPYHx3wa
tO+HWO2qYkjRMEcrWhPMdaVkS/Xe/liaMcow4jYoWaFm8VobeYsyVD2bWWdyl4joTEETm1Z47Rnn
fR15kVhVudVrDzEFmM4nXV/6dmIg184RJE4httwBFxR8qZCQCwTiJmsoyJxfUR0Gs4ePKc5sB0NT
kmFZc5klQSitd67RJn2ldhbqE7EpDl4XlIt+UyLJm1guCBltia8Agke7dXuhpB7hQ6LJwY4Ejzth
kJ8IPwIDAQAB
-----END PUBLIC KEY-----
[bookmark: _ekz8bbegl6hu]A.3.1 Signing a Playbook
--
Step 1: Create or parse a JSON playbook object to sign
--
{
 "type": "playbook",
 "spec_version": "1.1",
 "id": "playbook--a0777575-5c4c-4710-9f01-15776103837f",
 "name": "Playbook 1",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2022-05-18T11:31:31.319Z",
 "modified": "2022-05-18T11:31:31.319Z",
 "signatures": [
 {
 "type": "jss",
 "id": "jss--af4b4bf3-677a-411d-887a-1f6fa5090c05",
 "created_by": "identity--be59c641-b2d5-4930-94fc-6fd583524fc6",
 "created": "2023-02-02T14:31:31.319Z",
 "modified": "2023-02-02T14:31:31.319Z",
 "signee": "Existing Example Company",
 "valid_from": "2023-02-02T14:31:31.319Z",
 "valid_until": "2023-06-18T11:31:31.319Z",
 "related_to": "playbook--a0777575-5c4c-4710-9f01-15776103837f",
 "related_version": "2022-05-18T11:31:31.319Z",
 "hash_algorithm": "sha-256",
 "algorithm": "RS256",
 "public_key": "some public key",
 "value": "some signature"
 }
]
}

--
Step 2: Temporarily remove any existing signature objects contained in the playbook's signatures property
--
{
 "type": "playbook",
 "spec_version": "1.1",
 "id": "playbook--a0777575-5c4c-4710-9f01-15776103837f",
 "name": "Playbook 1",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2022-05-18T11:31:31.319Z",
 "modified": "2022-05-18T11:31:31.319Z"
}

--
Step 3: Create and add signature to playbook
--
{
 "type": "playbook",
 "spec_version": "1.1",
 "id": "playbook--a0777575-5c4c-4710-9f01-15776103837f",
 "name": "Playbook 1",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2022-05-18T11:31:31.319Z",
 "modified": "2022-05-18T11:31:31.319Z",
 "signatures": [
 {
 "type": "jss",
 "id": "jss--af892292-c4b4-47eb-9be6-4897ff4b9388",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2023-01-10T17:39:31.319Z",
 "modified": "2023-01-10T17:39:31.319Z",
 "signee": "ACME Cyber Company",
 "valid_from": "2023-01-10T17:39:31.319Z",
 "valid_until": "2023-06-10T17:39:31.319Z",
 "related_to": "playbook--a0777575-5c4c-4710-9f01-15776103837f",
 "related_version": "2022-05-18T11:31:31.319Z",
 "hash_algorithm": "sha-256",
 "algorithm": "RS256",
 "public_key": "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAptKZyFPStvmOlb0WihOBhlHUr6wFDHC+tW7hJAudfTQ5mHZQpB8PoMz07udZA+dG8dhUIPkmXlp1TgREeYTHdhxhuf0y/GhbpZv5JPYHx3watO+HWO2qYkjRMEcrWhPMdaVkS/Xe/liaMcow4jYoWaFm8VobeYsyVD2bWWdyl4joTEETm1Z47RnnfR15kVhVudVrDzEFmM4nXV/6dmIg184RJE4httwBFxR8qZCQCwTiJmsoyJxfUR0Gs4ePKc5sB0NTkmFZc5klQSitd67RJn2ldhbqE7EpDl4XlIt+UyLJm1guCBltia8Agke7dXuhpB7hQ6LJwY4EjzthkJ8IPwIDAQAB"
 }
]
}

--
Step 4: Create a JCS [RFC8785] canonical version of the playbook from step 3
--
{"created":"2022-05-18T11:31:31.319Z","created_by":"identity--5abe695c-7bd5-4c31-8824-2528696cdbf1","id":"playbook--a0777575-5c4c-4710-9f01-15776103837f","modified":"2022-05-18T11:31:31.319Z","name":"Playbook 1","signatures":[{"algorithm":"RS256","created":"2023-01-10T17:39:31.319Z","created_by":"identity--5abe695c-7bd5-4c31-8824-2528696cdbf1","hash_algorithm":"sha-256","id":"jss--af892292-c4b4-47eb-9be6-4897ff4b9388","modified":"2023-01-10T17:39:31.319Z","public_key":"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAptKZyFPStvmOlb0WihOBhlHUr6wFDHC+tW7hJAudfTQ5mHZQpB8PoMz07udZA+dG8dhUIPkmXlp1TgREeYTHdhxhuf0y/GhbpZv5JPYHx3watO+HWO2qYkjRMEcrWhPMdaVkS/Xe/liaMcow4jYoWaFm8VobeYsyVD2bWWdyl4joTEETm1Z47RnnfR15kVhVudVrDzEFmM4nXV/6dmIg184RJE4httwBFxR8qZCQCwTiJmsoyJxfUR0Gs4ePKc5sB0NTkmFZc5klQSitd67RJn2ldhbqE7EpDl4XlIt+UyLJm1guCBltia8Agke7dXuhpB7hQ6LJwY4EjzthkJ8IPwIDAQAB","related_to":"playbook--a0777575-5c4c-4710-9f01-15776103837f","related_version":"2022-05-18T11:31:31.319Z","signee":"ACME Cyber Company","type":"jss","valid_from":"2023-01-10T17:39:31.319Z","valid_until":"2023-06-10T17:39:31.319Z"}],"spec_version":"1.1","type":"playbook"}

--
Step 5: Create a hash (SHA256 in hex) of the canonical version of playbook from step 4
--
45c1f40b222ab549dca5f8c51d3e45b8b6845b9416508c3d42a1067a0dffbad6

--
Step 6: Sign the hash from step 5 using the algorithm defined in the signature object and base64URL.encode it (RS256)
--
Signature:
QrVp0g3kJ8x6OssFnRCu8nkkK9l8gjhQZhbbvRRufAgyeHXJQymjlaZZ01lUnMIcRd22gYMPhsJ3EpsjAsFVj8DjO3BcNKzVZ_i2w4fH9O3hXKfAOSr0rX0eFlHdAPmdfCmNAOWMwubLP_J3k9duwrxWZf6EH3pn1bfi2nU6AGpfn3Ur8dn8G5qh4Hsso5FPmgf7LE8pcEHYU2IClkvRSu6fQfmZJp52jNU3uSZLR4K2PMHzzDAtGtzijzYLxm5MiHNwb-26_Rhb8Zr31aUtisY3gnYpRadsR6KjseMOtlOzJutbXpzKQF-0lMzSz79Q81lniQFmLn1xh1fuYFUskA

--
Step 7: Add the new digital signature from step 6 to the signature value property (with existing signatures, if any)
--
{
 "type": "playbook",
 "spec_version": "1.1",
 "id": "playbook--a0777575-5c4c-4710-9f01-15776103837f",
 "name": "Playbook 1",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2022-05-18T11:31:31.319Z",
 "modified": "2022-05-18T11:31:31.319Z",
 "signatures": [
 {
 "type": "jss",
 "id": "jss--af4b4bf3-677a-411d-887a-1f6fa5090c05",
 "created_by": "identity--be59c641-b2d5-4930-94fc-6fd583524fc6",
 "created": "2023-02-02T14:31:31.319Z",
 "modified": "2023-02-02T14:31:31.319Z",
 "signee": "Existing Example Company",
 "valid_from": "2023-02-02T14:31:31.319Z",
 "valid_until": "2023-06-18T11:31:31.319Z",
 "related_to": "playbook--a0777575-5c4c-4710-9f01-15776103837f",
 "related_version": "2022-05-18T11:31:31.319Z",
 "hash_algorithm": "sha-256",
 "algorithm": "RS256",
 "public_key": "some public key",
 "value": "some signature"
 },
 {
 "type": "jss",
 "id": "jss--af892292-c4b4-47eb-9be6-4897ff4b9388",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2023-01-10T17:39:31.319Z",
 "modified": "2023-01-10T17:39:31.319Z",
 "signee": "ACME Cyber Company",
 "valid_from": "2023-01-10T17:39:31.319Z",
 "valid_until": "2023-06-10T17:39:31.319Z",
 "related_to": "playbook--a0777575-5c4c-4710-9f01-15776103837f",
 "related_version": "2022-05-18T11:31:31.319Z",
 "hash_algorithm": "sha-256",
 "algorithm": "RS256",
 "public_key": "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAptKZyFPStvmOlb0WihOBhlHUr6wFDHC+tW7hJAudfTQ5mHZQpB8PoMz07udZA+dG8dhUIPkmXlp1TgREeYTHdhxhuf0y/GhbpZv5JPYHx3watO+HWO2qYkjRMEcrWhPMdaVkS/Xe/liaMcow4jYoWaFm8VobeYsyVD2bWWdyl4joTEETm1Z47RnnfR15kVhVudVrDzEFmM4nXV/6dmIg184RJE4httwBFxR8qZCQCwTiJmsoyJxfUR0Gs4ePKc5sB0NTkmFZc5klQSitd67RJn2ldhbqE7EpDl4XlIt+UyLJm1guCBltia8Agke7dXuhpB7hQ6LJwY4EjzthkJ8IPwIDAQAB",
 "value": "QrVp0g3kJ8x6OssFnRCu8nkkK9l8gjhQZhbbvRRufAgyeHXJQymjlaZZ01lUnMIcRd22gYMPhsJ3EpsjAsFVj8DjO3BcNKzVZ_i2w4fH9O3hXKfAOSr0rX0eFlHdAPmdfCmNAOWMwubLP_J3k9duwrxWZf6EH3pn1bfi2nU6AGpfn3Ur8dn8G5qh4Hsso5FPmgf7LE8pcEHYU2IClkvRSu6fQfmZJp52jNU3uSZLR4K2PMHzzDAtGtzijzYLxm5MiHNwb-26_Rhb8Zr31aUtisY3gnYpRadsR6KjseMOtlOzJutbXpzKQF-0lMzSz79Q81lniQFmLn1xh1fuYFUskA"
 }
]
}
[bookmark: _3tcqsoqqi59u]A.3.2 Verifying a Playbook
--
Step 1: Receive and parse the JSON playbook object to verify
--
{
 "type": "playbook",
 "spec_version": "1.1",
 "id": "playbook--a0777575-5c4c-4710-9f01-15776103837f",
 "name": "Playbook 1",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2022-05-18T11:31:31.319Z",
 "modified": "2022-05-18T11:31:31.319Z",
 "signatures": [
 {
 "type": "jss",
 "id": "jss--af892292-c4b4-47eb-9be6-4897ff4b9388",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2023-01-10T17:39:31.319Z",
 "modified": "2023-01-10T17:39:31.319Z",
 "signee": "ACME Cyber Company",
 "valid_from": "2023-01-10T17:39:31.319Z",
 "valid_until": "2023-06-10T17:39:31.319Z",
 "related_to": "playbook--a0777575-5c4c-4710-9f01-15776103837f",
 "related_version": "2022-05-18T11:31:31.319Z",
 "hash_algorithm": "sha-256",
 "algorithm": "RS256",
 "public_key": "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAptKZyFPStvmOlb0WihOBhlHUr6wFDHC+tW7hJAudfTQ5mHZQpB8PoMz07udZA+dG8dhUIPkmXlp1TgREeYTHdhxhuf0y/GhbpZv5JPYHx3watO+HWO2qYkjRMEcrWhPMdaVkS/Xe/liaMcow4jYoWaFm8VobeYsyVD2bWWdyl4joTEETm1Z47RnnfR15kVhVudVrDzEFmM4nXV/6dmIg184RJE4httwBFxR8qZCQCwTiJmsoyJxfUR0Gs4ePKc5sB0NTkmFZc5klQSitd67RJn2ldhbqE7EpDl4XlIt+UyLJm1guCBltia8Agke7dXuhpB7hQ6LJwY4EjzthkJ8IPwIDAQAB",
 "value": "QrVp0g3kJ8x6OssFnRCu8nkkK9l8gjhQZhbbvRRufAgyeHXJQymjlaZZ01lUnMIcRd22gYMPhsJ3EpsjAsFVj8DjO3BcNKzVZ_i2w4fH9O3hXKfAOSr0rX0eFlHdAPmdfCmNAOWMwubLP_J3k9duwrxWZf6EH3pn1bfi2nU6AGpfn3Ur8dn8G5qh4Hsso5FPmgf7LE8pcEHYU2IClkvRSu6fQfmZJp52jNU3uSZLR4K2PMHzzDAtGtzijzYLxm5MiHNwb-26_Rhb8Zr31aUtisY3gnYpRadsR6KjseMOtlOzJutbXpzKQF-0lMzSz79Q81lniQFmLn1xh1fuYFUskA"
 }
]
}

--
Step 2: Capture and remove the digital signature from step 1
--
Digital Signature:
QrVp0g3kJ8x6OssFnRCu8nkkK9l8gjhQZhbbvRRufAgyeHXJQymjlaZZ01lUnMIcRd22gYMPhsJ3EpsjAsFVj8DjO3BcNKzVZ_i2w4fH9O3hXKfAOSr0rX0eFlHdAPmdfCmNAOWMwubLP_J3k9duwrxWZf6EH3pn1bfi2nU6AGpfn3Ur8dn8G5qh4Hsso5FPmgf7LE8pcEHYU2IClkvRSu6fQfmZJp52jNU3uSZLR4K2PMHzzDAtGtzijzYLxm5MiHNwb-26_Rhb8Zr31aUtisY3gnYpRadsR6KjseMOtlOzJutbXpzKQF-0lMzSz79Q81lniQFmLn1xh1fuYFUskA

Remaining Object:
{
 "type": "playbook",
 "spec_version": "1.1",
 "id": "playbook--a0777575-5c4c-4710-9f01-15776103837f",
 "name": "Playbook 1",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2022-05-18T11:31:31.319Z",
 "modified": "2022-05-18T11:31:31.319Z",
 "signatures": [
 {
 "type": "jss",
 "id": "jss--af892292-c4b4-47eb-9be6-4897ff4b9388",
 "created_by": "identity--5abe695c-7bd5-4c31-8824-2528696cdbf1",
 "created": "2023-01-10T17:39:31.319Z",
 "modified": "2023-01-10T17:39:31.319Z",
 "signee": "ACME Cyber Company",
 "valid_from": "2023-01-10T17:39:31.319Z",
 "valid_until": "2023-06-10T17:39:31.319Z",
 "related_to": "playbook--a0777575-5c4c-4710-9f01-15776103837f",
 "related_version": "2022-05-18T11:31:31.319Z",
 "hash_algorithm": "sha-256",
 "algorithm": "RS256",
 "public_key": "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAptKZyFPStvmOlb0WihOBhlHUr6wFDHC+tW7hJAudfTQ5mHZQpB8PoMz07udZA+dG8dhUIPkmXlp1TgREeYTHdhxhuf0y/GhbpZv5JPYHx3watO+HWO2qYkjRMEcrWhPMdaVkS/Xe/liaMcow4jYoWaFm8VobeYsyVD2bWWdyl4joTEETm1Z47RnnfR15kVhVudVrDzEFmM4nXV/6dmIg184RJE4httwBFxR8qZCQCwTiJmsoyJxfUR0Gs4ePKc5sB0NTkmFZc5klQSitd67RJn2ldhbqE7EpDl4XlIt+UyLJm1guCBltia8Agke7dXuhpB7hQ6LJwY4EjzthkJ8IPwIDAQAB"
 }
]
}

--
Step 3: Parse or fetch the public key from step 2
--
Public RSA Key E: 65537
Public RSA Key N:
21059409706530871027159923152575226016100491304035079351263921833442741931451740146712071913128794323145066705509880772966898802951179542662416048514009100169204319582186431003855440031712504682027007873576875878900968461609481876517068958782007364480404972357715060302084902771376501469371170875499194864831981063610546010391567296668298595547190243490360742271883347302484090862191539604535968402460061731217265463678666809460993311474732287058055878491599597361095237978376986522365495265225580650629373211602244516038322865322531398087185749308509197225776569239178517866302894223184683331023672630700008907147327

--
Step 4: Create canonical version of signature object from step 2
--
{"created":"2022-05-18T11:31:31.319Z","created_by":"identity--5abe695c-7bd5-4c31-8824-2528696cdbf1","id":"playbook--a0777575-5c4c-4710-9f01-15776103837f","modified":"2022-05-18T11:31:31.319Z","name":"Playbook 1","signatures":[{"algorithm":"RS256","created":"2023-01-10T17:39:31.319Z","created_by":"identity--5abe695c-7bd5-4c31-8824-2528696cdbf1","hash_algorithm":"sha-256","id":"jss--af892292-c4b4-47eb-9be6-4897ff4b9388","modified":"2023-01-10T17:39:31.319Z","public_key":"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAptKZyFPStvmOlb0WihOBhlHUr6wFDHC+tW7hJAudfTQ5mHZQpB8PoMz07udZA+dG8dhUIPkmXlp1TgREeYTHdhxhuf0y/GhbpZv5JPYHx3watO+HWO2qYkjRMEcrWhPMdaVkS/Xe/liaMcow4jYoWaFm8VobeYsyVD2bWWdyl4joTEETm1Z47RnnfR15kVhVudVrDzEFmM4nXV/6dmIg184RJE4httwBFxR8qZCQCwTiJmsoyJxfUR0Gs4ePKc5sB0NTkmFZc5klQSitd67RJn2ldhbqE7EpDl4XlIt+UyLJm1guCBltia8Agke7dXuhpB7hQ6LJwY4EjzthkJ8IPwIDAQAB","related_to":"playbook--a0777575-5c4c-4710-9f01-15776103837f","related_version":"2022-05-18T11:31:31.319Z","signee":"ACME Cyber Company","type":"jss","valid_from":"2023-01-10T17:39:31.319Z","valid_until":"2023-06-10T17:39:31.319Z"}],"spec_version":"1.1","type":"playbook"}

--
Step 5: Create a hash (SHA256 in hex) of the canonical version of playbook from step 4
--
45c1f40b222ab549dca5f8c51d3e45b8b6845b9416508c3d42a1067a0dffbad6

--
Step 6: Verify the signature received using the public key and algorithm (RS256) from the signature object
--
Signature is valid

[bookmark: _6aygoa1w5oc6]Appendix B. Security and Privacy Considerations
The following two sections are copied verbatim into the IANA Considerations Appendix.
[bookmark: _ihcid8yx9fcb]B.1 Security Considerations
Security considerations relating to the generation and consumption of CACAO messages are similar to application/json and are discussed in section 12 of [RFC8259].

Unicode is used to represent text such as descriptions in the format. The considerations documented by Unicode Technical Report #36: Unicode Security Considerations [UnicodeTR#36] should be taken into account.

The CACAO standard does not itself specify a transport mechanism for CACAO documents. As there is no transport mechanism specified, it is up to the users of this specification to use an appropriately secured transport method, for example TLS.

Documents of "application/cacao+json" are CACAO based Cybersecurity Playbook documents. The documents may contain active or executable content as well as URLs, IP addresses, and domain names that are known or suspected to be malicious. Systems should thus take appropriate precautions before decoding any of this content, either for persistent storage or execution purposes. Such precautions may include measures such as de-fanging, sandboxing, or other measures. The samples included in CACAO documents are reference samples only, and there is no provision or expectation in the specification that they will be loaded and/or executed. There are provisions in the specification to encrypt these samples so that even if a tool decodes the data, a further active step must be done before the payload will be "live". It is highly recommended that all active code be armored in this manner.

CACAO specifies the use of hashing and encryption mechanisms for some data types. A cryptography expert should be consulted when choosing which hashing or encryption algorithms to use to ensure that they do not have any security issues.

CACAO specifies the use of digital signature technology that is based on concepts from JWS [RFC7515], JWK [RFC7517], and relies on JCS [RFC8785]. In addition to the security considerations defined in section 10 of JWS, section 9 of JWK, and section 5 of JCS, implementers should carefully consider and verify any digital certificate that is delivered via the CACAO playbook itself to ensure that it is coming from the identity that it claims to come from.

CACAO provides a graph-based object model. As such, CACAO implementations should implement protections against graph queries that can potentially consume a significant amount of resources and prevent the implementation from functioning in a normal way.
[bookmark: _j4lkks750g9q]B.2 Privacy Considerations
These considerations are, in part, derived from section 10 of the Resource-Oriented Lightweight Information Exchange [RFC8322].

Documents may include highly confidential, personally identifiable (PII), and classified information. There are methods in the standard for marking elements of the document such that the consumer knows of these limitations. These markings may not always be used. For example, an out-of-band agreement may cover and restrict sharing. Just because a document is not marked as containing information that should not be shared does not mean that a document is free for sharing. It may be the case that a legal agreement has been entered into between the parties sharing documents, and that each party understands and follows their obligations under that agreement as well as any applicable laws or regulations.

Further, a client may succeed in assembling a data set that would not have been permitted within the context of the authorization policies of either provider when considered individually. Thus, providers may face a risk of an attacker obtaining an access that constitutes an undetected separation of duties (SOD) violation. It is important to note that this risk is not unique to this specification, and a similar potential for abuse exists with any other cybersecurity information-sharing protocol.

[bookmark: _fvjqqw2w83ul]Appendix C. IANA Considerations
This appendix contains the required information to register the CACAO media type with IANA. While some of the information here is only for IANA, implementers of CACAO should pay close attention to the security considerations and privacy considerations outlined in this appendix.

This document defines the "application/cacao+json" media type

Media type name: application

Media subtype name: cacao+json

Required parameters: None

Optional parameters: version
This parameter is used to designate the specification version of CACAO that is being used during HTTP content negotiation. Example: "application/cacao+json;version=1.1". The parameter value is of the form 'n.m', where n is the major version and m the minor version, both unsigned integer values.

Encoding considerations: binary
Encoding considerations are identical to those specified for the "application/json" media type. See [RFC8259].

Security considerations:
Security considerations relating to the generation and consumption of CACAO messages are similar to application/json and are discussed in section 12 of [RFC8259].

Unicode is used to represent text such as descriptions in the format. The considerations documented by Unicode Technical Report #36: Unicode Security Considerations [UnicodeTR#36] should be taken into account.

The CACAO standard does not itself specify a transport mechanism for CACAO documents. As there is no transport mechanism specified, it is up to the users of this specification to use an appropriately secured transport method, for example TLS.

Documents of "application/cacao+json" are CACAO based Cybersecurity Playbook documents. The documents may contain active or executable content as well as URLs, IP addresses, and domain names that are known or suspected to be malicious. Systems should thus take appropriate precautions before decoding any of this content, either for persistent storage or execution purposes. Such precautions may include measures such as de-fanging, sandboxing, or other measures. The samples included in CACAO documents are reference samples only, and there is no provision or expectation in the specification that they will be loaded and/or executed. There are provisions in the specification to encrypt these samples so that even if a tool decodes the data, a further active step must be done before the payload will be "live". It is highly recommended that all active code be armored in this manner.

CACAO specifies the use of hashing and encryption mechanisms for some data types. A cryptography expert should be consulted when choosing which hashing or encryption algorithms to use to ensure that they do not have any security issues.

CACAO specifies the use of digital signature technology that is based on concepts from JWS [RFC7515], JWK [RFC7517], and relies on JCS [RFC8785]. In addition to the security considerations defined in section 10 of JWS, section 9 of JWK, and section 5 of JCS, implementers should carefully consider and verify any digital certificate that is delivered via the CACAO playbook itself to ensure that it is coming from the identity that it claims to come from.

CACAO provides a graph-based data model. As such, CACAO implementations should implement protections against graph queries that can potentially consume a significant amount of resources and prevent the implementation from functioning in a normal way.

Privacy considerations:
These considerations are, in part, derived from section 10 of the Resource-Oriented Lightweight Information Exchange [RFC8322].

Documents may include highly confidential, personally identifiable (PII), and classified information. There are methods in the standard for marking elements of the document such that the consumer knows of these limitations. These markings may not always be used. For example, an out-of-band agreement may cover and restrict sharing. Just because a document is not marked as containing information that should not be shared does not mean that a document is free for sharing. It may be the case that a legal agreement has been entered into between the parties sharing documents, and that each party understands and follows their obligations under that agreement as well as any applicable laws or regulations.

Further, a client may succeed in assembling a data set that would not have been permitted within the context of the authorization policies of either provider when considered individually. Thus, providers may face a risk of an attacker obtaining an access that constitutes an undetected separation of duties (SOD) violation. It is important to note that this risk is not unique to this specification, and a similar potential for abuse exists with any other cybersecurity information-sharing protocol.

Interoperability considerations:
The CACAO specification specifies the format of conforming messages and the interpretation thereof. In addition, the OASIS Collaborative Automated Course of Action Operations (CACAO) Technical Committee has defined interoperability tests to ensure conforming products and solutions can exchange CACAO documents.

Published specification:
CACAO Version 2.0 OASIS Committee Specification 01

https://docs.oasis-open.org/cacao/security-playbooks/v2.0/cs01/security-playbooks-v2.0-cs01.html

Cited in the "OASIS Standards" document:

https://www.oasis-open.org/standards#oasiscommiteespecs, from

https://www.oasis-open.org/standards#security-playbooks2.0

Applications which use this media:
Collaborative Automated Course of Action Operations (CACAO) defines a language and serialization format used to exchange cybersecurity playbooks. CACAO enables organizations to share playbooks with one another in a consistent and machine-readable manner, allowing security communities to better understand how to respond to computer-based attacks and to anticipate and/or respond to those attacks faster and more effectively. CACAO is designed to improve many different capabilities, such as collaborative threat analysis, automated threat exchange, automated detection and response, and more.

Fragment identifier considerations: None

Restrictions on usage: None

Additional information:
1. Deprecated alias names for this type: None

2. Magic number(s): n/a [RFC8259]

3. File extension(s): cacao

4. Macintosh file type code: TEXT [RFC8259]

5. Object Identifiers: None

Person and email to contact for further information: Chet Ensign (chet.ensign@oasis-open.org)

Intended usage: COMMON

Author:
OASIS Collaborative Automated Course of Action Operations (CACAO) Technical Committee;

URI reference: https://www.oasis-open.org/committees/cacao/.

Change controller: OASIS

Provisional registration: No

[bookmark: _r7a6x51lqjtn]Appendix D. References
This appendix contains the normative and informative references that are used in this document. Normative references are specific (identified by date of publication and/or edition number or version number) and Informative references are either specific or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies. While any hyperlinks included in this appendix were valid at the time of publication, OASIS cannot guarantee their long term validity.
[bookmark: _yb2a7ng0lljy]D.1 Normative References
The following documents are referenced in such a way that some or all of their content constitutes requirements of this document.

[bookmark: s2hnrpg5cxcq][IEP]
FIRST Information Exchange Policy 2.0, FIRST IEP 2.0, 2019. [Online]. Available: https://www.first.org/iep/FIRST_IEP_Framework_v2.0.pdf

[bookmark: k2w3kh6t1jr5][ISO3166-1]
ISO 3166-1:2013 Codes for the Representation of Names of Countries and their Subdivisions — Part 1: Country Codes, ISO 3166-1:2013, 2013. [Online]. Available: https://www.iso.org/standard/63545.html

[bookmark: kix.i7tm7mtttp84][ISO3166-2]
ISO 3166-2:2020 Codes for the Representation of Names of Countries and their Subdivisions — Part 2: Country Subdivision Code, ISO 3166-2:2020, 2020. [Online]. Available: https://www.iso.org/standard/72483.html

[bookmark: kix.57lown28cu92][ISO10646]
ISO/IEC 10646:2014 Information Technology -- Universal Coded Character Set (UCS), ISO/IEC 10646:2014, 2014. [Online]. Available: https://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip

[bookmark: 9fx5qg53dcj][KESTREL]
Kestrel Threat Hunting Language. [Online]. Available: https://github.com/opencybersecurityalliance/kestrel-lang

[bookmark: kix.sbpigu2t16ez][RFC2119]
Key Words for Use in RFCs to Indicate Requirement Levels, BCP 14, RFC 2119, March 1997. [Online]. Available: https://www.rfc-editor.org/info/rfc2119

[bookmark: kix.bpbx36ufelcg][RFC3339]
Date and Time on the Internet: Timestamps, RFC 3339, July 2002. [Online]. Available: https://www.rfc-editor.org/info/rfc3339

[bookmark: kix.z27s7hf6lned][RFC3986]
Uniform Resource Identifier (URI): Generic Syntax, STD 66, RFC 3986, January 2005. [Online]. Available: https://www.rfc-editor.org/info/rfc3986

[bookmark: kix.okg89qjddtbc][RFC4122]
A Universally Unique IDentifier (UUID) URN Namespace, RFC 4122, July 2005. [Online]. Available: https://www.rfc-editor.org/info/rfc4122

[bookmark: kix.86rreywiycix][RFC4648]
The Base16, Base32, and Base64 Data Encodings, RFC 4648, October 2006. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc4648#section-4

[bookmark: kix.vkklc8u6wf5e][RFC5849]
The OAuth 1.0 Protocol, RFC 5849, April 2010. [Online]. Available: https://www.rfc-editor.org/info/rfc5849

[bookmark: kix.o7jcgbiss689][RFC6750]
The OAuth 2.0 Authorization Framework: Bearer Token Usage, RFC 6750, October 2012. [Online]. Available: https://www.rfc-editor.org/info/rfc6750

[bookmark: kix.zb4v22kwe2os][RFC7493]
The I-JSON Message Format, RFC 7493, March 2015. [Online]. Available: https://www.rfc-editor.org/info/rfc7493

[bookmark: ijvsy7tvq0po][RFC7515]
JSON Web Signature (JWS), RFC 7515, May 2015. [Online]. Available: https://www.rfc-editor.org/info/rfc7515

[bookmark: wggt1warj7ku][RFC7517]
JSON Web Key (JWK), RFC 7517, May 2015. [Online]. Available: https://www.rfc-editor.org/info/rfc7517

[bookmark: llesoh49te4j][RFC7518]
JSON Web Algorithms (JWA), RFC 7518, May 2015. [Online]. Available: https://www.rfc-editor.org/info/rfc7518

[bookmark: kix.n0spdtwk3gb3][RFC7617]
The 'Basic' HTTP Authentication Scheme, RFC 7617, September 2015. [Online]. Available: https://www.rfc-editor.org/info/rfc7617

[bookmark: vtuynz1nr5ha][RFC8032]
Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/RFC8032, January 2017, https://www.rfc-editor.org/info/rfc8032.

[bookmark: irh6p64kn4nm][RFC8037]
CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures in JSON Object Signing and Encryption (JOSE), RFC 8037, January 2017. [Online]. Available: https://www.rfc-editor.org/info/rfc8037

[bookmark: kix.mqepf9w9dc82][RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words, BCP 14, RFC 8174, May 2017. [Online]. Available: https://www.rfc-editor.org/info/rfc8174

[bookmark: kix.2vfr8hv22ggs][RFC8259]
The JavaScript Object Notation (JSON) Data Interchange Format, RFC 8259, December 2017. [Online]. Available: https://www.rfc-editor.org/info/rfc8259.txt

[bookmark: aygmx78rgx2g][RFC8785]
JSON Canonicalization Scheme (JCS), RFC 8785, June 2020. [Online]. Available: https://www.rfc-editor.org/info/rfc8785

[bookmark: xn5g8i2gydf4][SIGMA]
SIGMA - Generic Signature Format for SIEM Systems. [Online]. Available: https://github.com/SigmaHQ/sigma

[bookmark: ld5sv67ydehf][STIX-v2.1]
STIX™ Version 2.1. Edited by Bret Jordan, Rich Piazza, and Trey Darley. 10 June 2021. OASIS Standard. https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html. Latest stage: https://docs.oasis-open.org/cti/stix/v2.1/stix-v2.1.html

[bookmark: oxiwoxj4nv0c][TLP]
FIRST. "Traffic Light Protocol, Version 2.0 (TLP)". 2022, Aug. 5. [Online]. Available: https://first.org/tlp/

[bookmark: xqxmh9khi0ry][UNSD M49]
Standard Country or Area Codes for Statistical Use (M49), M49 Standard. [Online]. Available: https://unstats.un.org/unsd/methodology/m49/
[bookmark: _s1675p2tmyur]D.2 Informative References
The following referenced documents are not required for the application of this document but may assist the reader with regard to a particular subject area.

[bookmark: avken97gfr9x][CalderaAbility]
Caldera™. "What is an Ability?." Accessed: April 2021. [Online]. Available: https://caldera.readthedocs.io/en/latest/Learning-the-terminology.html#what-is-an-ability

[bookmark: dj7bbugz789j][CalderaAgent]
Caldera™. "What is an Agent?." Accessed: April 2021. [Online]. Available: https://caldera.readthedocs.io/en/latest/Learning-the-terminology.html#what-is-an-agent

[bookmark: m8dzmnernkf4][CalderaGroup]
Caldera™. "What is a Group?." Accessed: April 2021. [Online]. Available: https://caldera.readthedocs.io/en/latest/Learning-the-terminology.html#what-is-a-group

[bookmark: uc2ghbcrjoj7][Engage]
MITRE Engage™. Accessed: September 2022. [Online]. Available: https://engage.mitre.org/starter-kit/

[bookmark: ivxsipaf8lne][Google Maps]
Google Maps Platform. "Coordinates". Accessed: January 12, 2023. Available: https://developers.google.com/maps/documentation/javascript/reference/coordinates#:~:text=Latitude%20is%20specified%20in%20degrees,range%20%5B%2D180%2C%20180).

[bookmark: ky6r3ukuyuzg][PortNumbers]
IANA. "Service Name and Transport Protocol Port Number Registry." Accessed: April 2021. [Online]. Available: https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

[bookmark: kix.7rz4mresx50f][RFC8322]
Resource-Oriented Lightweight Information Exchange (ROLIE), RFC 8322, February 2018. [Online]. Available: https://www.rfc-editor.org/info/rfc8322

[bookmark: cuo8rxs8b9l5][SemVer]
T. Preston-Werner. "Semantic Versioning." Accessed: April 2021. [Online]. Available: https://semver.org/

[bookmark: va08wzvxmgzt][VocabAuto]
J. B. Rae. "Automotive Industry." Britannica.com. Accessed: December 2020. [Online]. Available: https://www.britannica.com/technology/automotive-industry

[bookmark: j5j4stbj08hx][VocabChem]
European Commission. "Sectors: Chemicals." Accessed: December 2020.[Online]. Available: https://ec.europa.eu/growth/sectors/chemicals_en

[bookmark: k22x0iehhmdf][VocabDams]
United States Department of Homeland Security. "National Infrastructure Protection Plan: Dams Sector." Accessed: December 2020. [Online]. Available: https://www.dhs.gov/xlibrary/assets/nppd/nppd-dams-sector-snapshot-508.pdf

[bookmark: 4pj8zbij5ss2][VocabEmSrv]
Cybersecurity and Infrastructure Security Agency (CISA). "Critical Infrastructure Sectors: Emergency Services Sector." Accessed: December 2020. [Online]. Available: https://www.cisa.gov/emergency-services-sector

[bookmark: l85sknmncswp][VocabGov]
Cybersecurity and Infrastructure Security Agency (CISA). "Critical Infrastructure Sectors: Government Facilities Sector." Accessed: December 2020. [Online]. Available: https://www.cisa.gov/government-facilities-sector

[bookmark: a5o0bh2mgpqw][VocabHealth]
European Commission. "DIRECTIVE (EU) 2016/1148 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 6 July 2016 concerning measures for a high common level of security of network and information systems across the Union." in Official Journal of the European Union, 2016. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016L1148&from=EN#d1e836-1-1

[bookmark: kix.gdjiju75tl56][VocabHumanRights]
North American Industry Classification System: 813311 Human Rights Organizations, NAICS, 2017. [Online]. Available: https://www.census.gov/naics/?input=813311&year=2017&details=813311

[bookmark: upqyx4nat3jc][VocabMetals]
European Commission. "Sectors: Raw Materials: Industries: Metals." Accessed: December 2020. [Online]. Available: https://ec.europa.eu/growth/sectors/raw-materials/industries/metals_en

[bookmark: jje15gg0a76l][VocabPServ]
Wikipedia. "Public Service." Wikipedia.org. Accessed: April 2021. [Online]. Available: https://en.wikipedia.org/wiki/Public_service

[bookmark: quimbaz1c9ox][VocabUtils]
C. Murphy. "Utilities Sector." Investopedia. Accessed: March 2021. [Online]. Available: https://www.investopedia.com/terms/u/utilities_sector.asp

[bookmark: 9qesr0tluevk][VocabWater]
Wikipedia. "Water industry." Wikipedia.org. Accessed: December 2020. [Online]. Available: https://en.wikipedia.org/wiki/Water_industry

[bookmark: _rruar05mnuwn]Appendix E. Acknowledgments

Special Thanks:
Substantial contributions to this specification from the following individuals are gratefully acknowledged:

Bret Jordan, Individual
Allan Thomson, Individual
Marlon Taylor, DHS Office of Cybersecurity and Communications (CS&C)
Stephanie Hazlewood, IBM
Emily Ratliff, IBM
Desiree Beck, MITRE Corporation
Richard Piazza, MITRE Corporation
Andrew Storms, New Context Services, Inc.
Lior Kolnik, Palo Alto Networks
Marco Caselli, Siemens AG
Mateusz Zych, University of Oslo
Vasileios Mavroeidis, University of Oslo

Participants:
The following individuals were members of this Technical Committee during the creation of this specification and their contributions are gratefully acknowledged:

Curtis Kostrosky, Accenture
Anup Ghosh, Accenture
Patrick Maroney, AT&T
Dean Thompson, Australia and New Zealand Banking Group (ANZ Bank)
Arnaud Taddei, Broadcom
Naasief Edross, Cisco Systems
Omar Santos, Cisco Systems
Jyoti Verma, Cisco Systems
Andrew Storms, Copado
Jane Ginn, CTIN
Ryan Hohimer, CTIN
Christian Hunt, CTIN
Ben Ottoman, CTIN
Christopher Robinson, CTIN
Arsalan Iqbal, CTM360
Avkash Kathiriya, Cyware Labs
Ryan Joyce, DarkLight, Inc.
Paul Patrick, DarkLight, Inc.
Michael Rosa, DHS Office of Cybersecurity and Communications (CS&C)
Marlon Taylor, DHS Office of Cybersecurity and Communications (CS&C)
Aukjan van Belkum, EclecticIQ
Gerald Stueve, Fornetix
Chris O'Brien, Google Inc.
Stephanie Hazlewood, IBM
Jason Keirstead, IBM
Emily Ratliff, IBM
John Morris, IBM
Mahbod Tavallaee, IBM
Srinivas Tummalapenta, IBM
Francisco de AndrÈs PÈrez, Individual
Joerg Eschweiler, Individual
Bret Jordan, Individual
Terry MacDonald, Individual
Anil Saldanha, Individual
Frans Schippers, Individual
Allan Thomson, Individual
Rodger Frank, Johns Hopkins University Applied Physics Laboratory
Karin Marr, Johns Hopkins University Applied Physics Laboratory
Chris Dahlheimer, LookingGlass
Jason Webb, LookingGlass
Desiree Beck, MITRE Corporation
Richard Piazza, MITRE Corporation
David Kemp, National Security Agency
Christian Hunt, New Context Services, Inc.
Andrew Storms, New Context Services, Inc.
Kaleb Wade, New Context Services, Inc.
Stephen Banghart, NIST
David Darnell, North American Energy Standards Board
Lior Kolnik, Palo Alto Networks
David Bizeul, SEKOIA
Duncan Sparrell, sFractal Consulting LLC
Marco Caselli, Siemens AG
Alexandre Cabrol Perales, Sopra Steria Group
Baptiste Decrand, Sopra Steria group
Manos Athanatos, Telecommunication Systems Institute
Greg Reaume, TELUS
Ryan Trost, ThreatQuotient, Inc.
Franck Quinard, TIBCO Software Inc.
Sebastiaan Tesink, TNO	
Toby Considine, University of North Carolina at Chapel Hill
Vasileios Mavroeidis, University of Oslo
Mateusz Zych, University of Oslo

[bookmark: _hfy40z48wjpi]Appendix F. Revision History

	Revision
	Date
	Editor(s)
	Changes Made

	01
	2023-02-13
	Bret Jordan,
Allan Thomson
	Initial 2.0 Version.

Minor editorial changes found during publishing of CACAO v1.1 CSD02. These consisted of URL changes to OASIS boilerplate text. Significant changes per public review, please see the change log. Removed some of the b64 encoding that was used during the signing process and added a hash_algorithm property. Added playbook activities, removed playbook-templates, changed to TLPv2. Removed the spec_version property from data-markings and signatures. Changed targets to agents and targets. Refactored the attack agent/target. Made lots of other small changes. Changed version to 2.0.

This version is going to ballot and 30-day public review to become CSD01.

[bookmark: _wiykm1h7tujy]Appendix G. Notices

Copyright © OASIS Open 2023. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website: [https://www.oasis-open.org/policies-guidelines/ipr/]

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OASIS AND ITS MEMBERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THIS DOCUMENT OR ANY PART THEREOF.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards Final Deliverable documents (Committee Specifications, OASIS Standards, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Standards Final Deliverable, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this OASIS Standards Final Deliverable by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this OASIS Standards Final Deliverable. OASIS may include such claims on its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this OASIS Standards Final Deliverable or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Standards Final Deliverable, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of this document, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, documents, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark/ for above guidance.

security-playbooks-v2.0-csd01		21 February 2023
Standards Track Work Product	Copyright © OASIS Open 2023. All Rights Reserved.	Page 1 of 2
image2.png
CACAO Playbook

Metadata

Workflow

Steps (control logic)

Commands

Targets via reference

Targets

Digital Signatures

image1.png
2 OASISOPEN

