
ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 1 of 215

Web Services ï Human Task
(WS-HumanTask) Specification Version
1.1

Committee Draft 09 / Public Review Draft
03

12 May 2010

Specification URIs:

This Version:

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-09.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-09.doc (Authoritative format)
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-09.pdf

Previous Version:

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-07.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-07.doc
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-07.pdf

Latest Version:

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.doc
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.pdf

Technical Committee:

OASIS BPEL4People TC

Chair:

Dave Ings, IBM

Editors:

Luc Clément, Active Endpoints, Inc.
Dieter König, IBM
Vinkesh Mehta, Deloitte Consulting LLP
Ralf Mueller, Oracle Corporation
Ravi Rangaswamy, Oracle Corporation
Michael Rowley, Active Endpoints, Inc.
Ivana Trickovic, SAP

Related work:

This specification is related to:

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-09.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-09.doc
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-09.pdf
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-07.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-07.doc
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-07.pdf
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.doc
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=bpel4people

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 2 of 215

¶ WS-BPEL Extension for People (BPEL4People) Specification ï Version 1.1 -
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html

Declared XML Namespaces:

htd ï http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803

hta ï http://docs.oasis-open.org/ns/bpel4people/ws-humantask/api/200803

htlt - http://docs.oasis-open.org/ns/bpel4people/ws-humantask/leantask/api/200803

htt ï http://docs.oasis-open.org/ns/bpel4people/ws-humantask/types/200803

htc - http://docs.oasis-open.org/ns/bpel4people/ws-humantask/context/200803

htcp- http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/200803

htp - http://docs.oasis-open.org/ns/bpel4people/ws-humantask/policy/200803

Abstract:

The concept of human tasks is used to specify work which has to be accomplished by people.
Typically, human tasks are considered to be part of business processes. However, they can also
be used to design human interactions which are invoked as services, whether as part of a
process or otherwise.

This specification introduces the definition of human tasks, including their properties, behavior
and a set of operations used to manipulate human tasks. A coordination protocol is introduced in
order to control autonomy and life cycle of service-enabled human tasks in an interoperable
manner.

Status:

This document was last revised or approved by the OASIS WS-BPEL Extension for People
Technical Committee on the above date. The level of approval is also listed above. Check the
ñLatest Versionò or ñLatest Approved Versionò location noted above for possible later revisions of
this document.

Technical Committee members should send comments on this specification to the Technical
Committeeôs email list. Others should send comments to the Technical Committee by using the
ñSend A Commentò button on the Technical Committeeôs web page at http://www.oasis-
open.org/committees/bpel4people/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/bpel4people/ipr.php).

The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/bpel4people/.

http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/api/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/leantask/api/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/types/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/context/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/policy/200803
http://www.oasis-open.org/committees/bpel4people/
http://www.oasis-open.org/committees/bpel4people/
http://www.oasis-open.org/committees/bpel4people/ipr.php
http://www.oasis-open.org/committees/bpel4people/ipr.php
http://www.oasis-open.org/committees/bpel4people/
http://www.oasis-open.org/committees/bpel4people/

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 3 of 215

Notices

Copyright © OASIS® 2010. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/
http://www.oasis-open.org/who/trademark.php

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 4 of 215

Table of Contents

1 Introduction .. 7

1.1 Terminology ... 7

1.2 Normative References ... 8

1.3 Non-Normative References ... 9

1.4 Conformance Targets .. 9

1.5 Overall Architecture ... 10

2 Language Design ... 15

2.1 Dependencies on Other Specifications ... 15

2.1.1 Namespaces Referenced ... 15

2.2 Language Extensibility... 15

2.3 Overall Language Structure .. 16

2.3.1 Syntax ... 16

2.3.2 Properties .. 16

2.4 Default use of XPath 1.0 as an Expression Language .. 18

3 Concepts .. 19

3.1 Generic Human Roles ... 19

3.2 Composite Tasks and Sub Tasks .. 20

3.2.1 Composite Tasks by Definition ... 20

3.2.2 Composite Tasks Created Adhoc at Runtime .. 20

3.3 Routing Patterns .. 20

3.4 Relationship of Composite Tasks and Routing Patterns ... 21

3.5 Assigning People ... 21

3.5.1 Using Logical People Groups ... 22

3.5.2 Using Literals .. 23

3.5.3 Using Expressions .. 24

3.5.4 Data Type for Organizational Entities ... 25

3.5.5 Subtasks ... 25

3.6 Task Rendering ... 26

3.7 Lean Tasks .. 26

3.8 Task Instance Data .. 27

3.8.1 Presentation Data ... 27

3.8.2 Context Data ... 27

3.8.3 Operational Data ... 27

3.8.4 Data Types for Task Instance Data .. 29

3.8.5 Sub Tasks ... 33

4 Human Tasks ... 34

4.1 Overall Syntax ... 34

4.2 Properties .. 35

4.3 Presentation Elements .. 36

4.4 Task Possible Outcomes ... 39

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 5 of 215

4.5 Elements for Rendering Tasks .. 39

4.6 Elements for Composite Tasks ... 40

4.7 Elements for People Assignment .. 41

4.7.1 Routing Patterns ... 42

4.8 Completion Behavior ... 44

4.8.1 Completion Conditions .. 45

4.8.2 Result Construction from Parallel Subtasks ... 47

4.9 Elements for Handling Timeouts and Escalations ... 51

4.10 Human Task Behavior and State Transitions .. 58

4.10.1 Normal processing of a Human Task ... 58

4.10.2 Releasing a Human Task ... 59

4.10.3 Delegating or Forwarding a Human Task ... 59

4.10.4 Sub Task Event Propagation .. 59

4.11 History of a Human Task ... 60

4.11.1 Task Event Types and Data ... 61

4.11.2 Retrieving the History ... 63

5 Lean Tasks .. 66

5.1 Overall Syntax ... 66

5.2 Properties .. 66

5.3 Message Schema .. 66

5.4 Example: ToDoTask .. 68

6 Notifications ... 69

6.1 Overall Syntax ... 69

6.2 Properties .. 70

6.3 Notification Behavior and State Transitions .. 70

7 Programming Interfaces... 71

7.1 Operations for Client Applications ... 71

7.1.1 Participant Operations .. 71

7.1.2 Simple Query Operations ... 83

7.1.3 Advanced Query Operation .. 86

7.1.4 Administrative Operations ... 89

7.1.5 Operation Authorizations .. 90

7.2 XPath Extension Functions ... 92

8 Interoperable Protocol for Advanced Interaction with Human Tasks .. 99

8.1 Human Task Coordination Protocol Messages ... 101

8.2 Protocol Messages .. 102

8.2.1 Protocol Messages Received by a Task Parent ... 102

8.2.2 Protocol Messages Received by a Task .. 102

8.3 WSDL of the Protocol Endpoints ... 102

8.3.1 Protocol Endpoint of the Task Parent ... 102

8.3.2 Protocol Endpoint of the Task ... 103

8.4 Providing Human Task Context ... 103

8.4.1 SOAP Binding of Human Task Context .. 103

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 6 of 215

8.4.2 Overriding Task Definition People Assignments .. 104

8.5 Human Task Policy Assertion ... 105

9 Task Parent Interactions with Lean Tasks ... 106

9.1 Operations for Task Parent Applications ... 106

9.2 Lean Task Interactions .. 106

9.2.1 Register a Lean Task Definition.. 106

9.2.2 Unregister a Lean Task Definition .. 107

9.2.3 List Lean Task Definitions ... 107

9.2.4 Create a Lean Task .. 108

9.2.5 Endpoints for Lean Task Operations .. 109

10 Providing Callback Information for Human Tasks .. 111

10.1 EPR Information Model Extension .. 111

10.2 XML Infoset Representation .. 111

10.3 Message Addressing Properties ... 113

10.4 SOAP Binding .. 114

11 Security Considerations ... 117

12 Conformance .. 118

A. Portability and Interoperability Considerations .. 119

B. WS-HumanTask Language Schema ... 120

C. WS-HumanTask Data Types Schema ... 135

D. WS-HumanTask Client API Port Type ... 144

E. WS-HumanTask Parent API Port Type .. 188

F. WS-HumanTask Protocol Handler Port Types .. 194

G. WS-HumanTask Context Schema ... 196

H. WS-HumanTask Policy Assertion Schema .. 199

I. Sample ... 200

J. Acknowledgements .. 210

K. Revision History ... 212

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 7 of 215

1 Introduction 1

Human tasks, or briefly tasks enable the integration of human beings in service-oriented applications. 2
This document provides a notation, state diagram and API for human tasks, as well as a coordination 3
protocol that allows interaction with human tasks in a more service-oriented fashion and at the same time 4
controls tasksô autonomy. The document is called Web Services Human Task (abbreviated to WS-5
HumanTask for the rest of this document). 6

Human tasks are services ñimplementedò by people. They allow the integration of humans in service-7
oriented applications. A human task has two interfaces. One interface exposes the service offered by the 8
task, like a translation service or an approval service. The second interface allows people to deal with 9
tasks, for example to query for human tasks waiting for them, and to work on these tasks. 10

A human task has people assigned to it. These assignments define who should be allowed to play a 11
certain role on that task. Human tasks might be assigned to people in a well-defined order. This includes 12
assignments in a specific sequence and or parallel assignment to a set of people or any combination of 13
both. Human tasks may also specify how task metadata should be rendered on different devices or 14
applications making them portable and interoperable with different types of software. Human tasks can be 15
defined to react to timeouts, triggering an appropriate escalation action. 16

This also holds true for notifications. A notification is a special type of human task that allows the sending 17
of information about noteworthy business events to people. Notifications are always one-way, i.e., they 18
are delivered in a fire-and-forget manner: The sender pushes out notifications to people without waiting 19
for these people to acknowledge their receipt. 20

Let us take a look at an example, an approval task. Such a human task could be involved in a mortgage 21
business process. After the data of the mortgage has been collected, and, if the value exceeds some 22
amount, a manual approval step is required. This can be implemented by invoking an approval service 23
implemented by the approval task. The invocation of the service by the business process creates an 24
instance of the approval task. As a consequence this task pops up on the task list of the approvers. One 25
of the approvers will claim the task, evaluate the mortgage data, and eventually complete the task by 26
either approving or rejecting it. The output message of the task indicates whether the mortgage has been 27
approved or not. All of the above is transparent to the caller of the task (a business process in this 28
example). 29

The goal of this specification is to enable portability and interoperability: 30

¶ Portability - The ability to take human tasks and notifications created in one vendor's environment 31

and use them in another vendor's environment. 32

¶ Interoperability - The capability for multiple components (task infrastructure, task list clients and 33

applications or processes with human interactions) to interact using well-defined messages and 34

protocols. This enables combining components from different vendors allowing seamless 35

execution. 36

Out of scope of this specification is how human tasks and notifications are deployed or monitored. Usually 37
people assignment is accomplished by performing queries on a people directory which has a certain 38
organizational model. The mechanism determining how an implementation evaluates people 39
assignments, as well as the structure of the data in the people directory is out of scope. 40

1.1 Terminology 41

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD 42
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described 43
in RFC 2119 [RFC 2119]. 44

 45

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 8 of 215

1.2 Normative References 46

 [RFC 1766] 47

Tags for the Identification of Languages, RFC 1766, available via 48
http://www.ietf.org/rfc/rfc1766.txt 49

[RFC 2046] 50

Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, RFC 2046, available via 51
http://www.ietf.org/rfc/rfc2046.txt (or http://www.iana.org/assignments/media-types/) 52

[RFC 2119] 53

Key words for use in RFCs to Indicate Requirement Levels, RFC 2119, available via 54
http://www.ietf.org/rfc/rfc2119.txt 55

[RFC 2396] 56

Uniform Resource Identifiers (URI): Generic Syntax, RFC 2396, available via 57
http://www.ietf.org/rfc/rfc2396.txt 58

[RFC 3066] 59

Tags for the Identification of Languages, H. Alvestrand, IETF, January 2001, available via 60
http://www.ietf.org/rfc/rfc3066.txt 61

[WSDL 1.1] 62

Web Services Description Language (WSDL) Version 1.1, W3C Note, available via 63
http://www.w3.org/TR/2001/NOTE-wsdl-20010315 64

[WS-Addr-Core] 65

Web Services Addressing 1.0 - Core, W3C Recommendation, May 2006, available via 66
http://www.w3.org/TR/ws-addr-core 67

[WS-Addr-SOAP] 68

Web Services Addressing 1.0 ï SOAP Binding, W3C Recommendation, May 2006, available via 69
http://www.w3.org/TR/ws-addr-soap 70

[WS-Addr-WSDL] 71

Web Services Addressing 1.0 ï WSDL Binding, W3C Working Draft, February 2006, available via 72
http://www.w3.org/TR/ws-addr-wsdl 73

[WS-C] 74

OASIS Standard, ñWeb Services Coordination (WS-Coordination) Version 1.1ò, 16 April 2007, 75
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec/wstx-wscoor-1.1-spec.html 76

[WS-Policy] 77

Web Services Policy 1.5 - Framework, W3C Recommendation 04 September 2007, available via 78
http://www.w3.org/TR/ws-policy/ 79

[WS-PolAtt] 80

Web Services Policy 1.5 - Attachment, W3C Recommendation 04 September 2007, available via 81
http://www.w3.org/TR/ws-policy-attach/ 82

[XML Infoset] 83

XML Information Set, W3C Recommendation, available via http://www.w3.org/TR/2001/REC-xml-84
infoset-20011024/ 85

[XML Namespaces] 86

Namespaces in XML 1.0 (Second Edition), W3C Recommendation, available via 87
http://www.w3.org/TR/REC-xml-names/ 88

[XML Schema Part 1] 89

XML Schema Part 1: Structures, W3C Recommendation, October 2004, available via 90
http://www.w3.org/TR/xmlschema-1/ 91

http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.iana.org/assignments/media-types/
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
RFC%202396
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc3066.txt
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/ws-addr-core
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/ws-addr-soap
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/ws-addr-wsdl
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec/wstx-wscoor-1.1-spec.html
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-1/

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 9 of 215

[XML Schema Part 2] 92

XML Schema Part 2: Datatypes, W3C Recommendation, October 2004, available via 93
http://www.w3.org/TR/xmlschema-2/ 94

[XMLSpec] 95

XML Specification, W3C Recommendation, February 1998, available via 96
http://www.w3.org/TR/1998/REC-xml-19980210 97

[XPATH 1.0] 98

XML Path Language (XPath) Version 1.0, W3C Recommendation, November 1999, available via 99
http://www.w3.org/TR/1999/REC-xpath-19991116 100

1.3 Non-Normative References 101

There are no non-normative references made by this specification. 102

1.4 Conformance Targets 103

The following conformance targets are defined as part of this specification 104

¶ WS-HumanTask Definition 105
A WS-HumanTask Definition is any artifact that complies with the human interaction schema and 106
additional constraints defined in this document. 107

¶ WS-HumanTask Processor 108
A WS-HumanTask Processor is any implementation that accepts a WS-HumanTask definition 109
and executes the semantics as defined in this document. 110

¶ WS-HumanTask Parent 111
A WS-HumanTask Parent is any implementation that supports the Interoperable Protocol for 112
Advanced Interactions with Human Tasks as defined in this document. 113

¶ WS-HumanTask Client 114
A WS-HumanTask Client is any implementation that uses the Programming Interfaces of the 115
WS-HumanTask Processor. 116

117

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1999/REC-xpath-19991116

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 10 of 215

 118

1.5 Overall Architecture 119

One of the motivations of WS-HumanTask was an increasingly important need to support the ability to 120
allow any application to create human tasks in a service-oriented manner. Human tasks had traditionally 121
been created by tightly-coupled workflow management systems (WFMS). In such environments the 122
workflow management system managed the entirety of a taskôs lifecycle, an approach that did not allow 123
the means to directly affect a taskôs lifecycle outside of the workflow management environment (other 124
than for a human to actually carry out the task). Particularly significant was an inability to allow 125
applications to create a human task in such tightly coupled environments. 126

 127

 128

Figure 1- Architectural Impact of WS-HumanTask on Workflow Management Systems 129

The component within a WFMS typically responsible for managing a taskôs lifecycle (aka workitem) is 130
called a Workitem Manager. An example of such an environment is depicted on the left portion of Figure 131
1. The right portion of the figure depicts how significant a change of architecture WS-HumanTask 132
represents. Using this approach, the WFMS no longer incorporates a workitem manager but rather 133
interacts with a Task Processor. In this architecture the Task Processor is a separate, standalone 134
component exposed as a service, allowing any requestor to create tasks and interact with tasks. It is the 135
Task Processorôs role to manage its tasksô lifecycle and to provide the means to ñworkò on tasks. 136

Conversely, by separating the Task Processor from the WFMS tasks can be used in the context of a 137
WFMS or any other WS-HumanTask application (also referred to as the Task Parent). A (special) case of 138
a business process acting as a Task Parent of a human task is described by the BPEL4People 139
specification. 140

WS-HumanTask tasks are assumed to have an interface. The interface of a task is represented as an 141
application-dependent port type referred to as its Task Definition specific interface (or interface for short ï 142
see section 4.2). In order to create task instances (or tasks for short) managed by a particular Task 143
Processor, a port implementing the port type corresponding to a task needs to be deployed into the Task 144
Processor before it can be invoked. See Figure 2 depicting a Task Definition associated with a port type 145
pT). 146

 147

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 11 of 215

 148

Figure 2 - Task Definitions Deployed in Task Processor 149

Once a task is available on the task processor any requestor can create task instances and interact with 150
them. The requestor that creates a task is referred to as the Task Parent. A task instance is created by 151
invoking an operation of the port type representing the interface of the task to be created. Typically port 152
types expose a single operation. Where more than one operation is defined, which operation of the port 153
type to be used to create a task is outside the scope of WS-HumanTask. 154

 155

 156

Figure 3 - Instantiating Tasks 157

In workflow environments the lifecycle of a task is typically dependent on the workflow system - i.e. tasks 158
have to give up some of their autonomy. For example when a workflow is terminated prematurely, task 159
initiated by that workflow should not be allowed to continue - the corresponding efforts to continue the 160
work of the task would otherwise be wasted. To automate the corresponding behavior ensuring that the 161
lifecycle of a Task Parent and the lifecycles of its initiated tasks are tightly coupled, WS-HumanTask uses 162
the WS-Coordination specification as its coordination framework. This requires the definition of a 163
coordination protocol following a particular behavior (see section 8). This is depicted by Figure 4. 164

When the Task Parent creates a task using the specific operation op() of a port of port type pT, 165
coordination context information is passed by the Task Parent to the environment hosting that port. Like 166
any other WS-Coordination compliant coordination context, it contains the endpoint reference of (i.e. a 167
ñpointerò to) the coordinator to be used by the recipient of the context to register the corresponding 168
coordination type. Note that for simplicity we assume in Figure 4 that the Task Processor itself is this 169
recipient of the context information. Upon reception of the coordination context the Task Processor will 170
register with the coordinator, implying that it passes the endpoint reference of its protocol handler to the 171
coordinator (see section 8). In turn it will receive the endpoint reference of the protocol handler of the 172
Task Parent. Similarly, for simplicity we assume in Figure 4 that the task parent provides its protocol 173
handler. From that point on a coordination channel is established between the Task Parent and the Task 174
Processor to exchange protocol messages allowing the coupling of the lifecycles of a task with its Task 175
Parent. Section 4.10 describes the lifecycle of a task in more detail. 176

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 12 of 215

 177

Figure 4 - Establishing a Protocol Channel 178

Most often tasks are long running in nature and will be invoked in an asynchronous manner. Thus, the 179
Task Parent will kick-off the task and expects the result of the task to be returned at a later point in time. 180
In order to allow the ability to pass the results back, the Task Processor needs to know where to send 181
these results. For this purpose the context is extended with additional metadata that specifies the 182
endpoint reference to be used to pass the result to, as well as the operation of the endpoint to be used by 183
the Task Processor. Figure 5 depicts this by showing that the context contains information pointing to a 184
port of port type ptô and specifying the name of the operation opô to be used on that port for returning 185
results. Note that this behavior is compliant to WS-Addressing. 186

 187

Figure 5 - Passing Callback Information for Long Running Tasks 188

Finally, a Task Parent application invoking an operation implemented by a task is allowed to pass 189
additional data along with the request message. This data is called the human task context and allows the 190
ability to override some of the Task Definitionôs elements. Conversely, a human task context is also 191
passed back with the response message, propagating information from the completed task to the Task 192
Parent application, such as the task outcome or the taskôs actual people assignments. 193

Once a task is created it can be presented to its (potential) owners to be claimed and worked on. For that 194
purpose another type of application called a Task Client is typically used. A Task Client presents to each 195
of its users the tasks available to them. Users can then decide to claim the task to carry out the work 196
associated with it. Other functions typically offered by a Task Client include the ability to skip a task, to 197
add comments or attachments to a task, to nominate other users to perform the task and that like. In 198
order to enable a Task Client to perform such functions on tasks, WS-HumanTask specifies the task client 199
interface required to be implemented by Task Processor to support Task Clients (see section 7.1). Figure 200

6 depicts the resultant architecture stemming from the introduction of Task Clients. 201

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 13 of 215

 202

Figure 6 - Task List Client and Corresponding Interface 203

Once a user selects a task using his or her Task Client the user interface associated with the task is 204
rendered allowing the user to view application-specific information pertaining to the task. WS-HumanTask 205
does not specify such rendering but provides the means using a container to provide rendering hints to 206
Task Clients. A Task Client in turn uses this information to construct or initiate the construction of the user 207
interface of the task - the details how this is achieved are out of scope of WS-HumanTask. In the case of 208
Lean Tasks, that rendering may be generated by the Task Processor. From the perspective of the Task 209
Client, the fact the task is a Lean Task need not be apparent. Furthermore, the task may require the use 210
of business applications to complete the task. Again the use of such business applications is out of scope 211
of WS-HumanTask but such applications and their use are nonetheless important to the overall 212
architecture depicted in Figure 7. 213

 214

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 14 of 215

Figure 7 - Overall Architecture of a Human Task Infrastructure 215

The container referred to above for rendering a taskôs information is a taskôs <rendering> element (see 216

section 4.4). A rendering element specifies its type, expressed as a QName that denotes the kind of 217
rendering mechanism to use to generate the user interface for the task. All information actually needed to 218
create the user interface of the task is provided by the elements nested within the taskôs rendering 219
element (see Figure 8). The nested elements may also provide information about a business application 220
required to complete the task and other corresponding parameters. 221

 222

Figure 8 - Potential Renderings of a Task 223

For example Figure 9 depicts a rendering of type my:HTMLform. Its QName denotes that HTML forms 224
processing capabilities is needed to render the corresponding user interface of the task enclosing this 225
rendering. The nested element of the my:HTMLform rendering contains the actual HTML form to be 226
rendered. The example further assumes that the forms processor understands the {$...} notation (see 227
section 4.3) to provide values from the task input as data presented in the form. 228

 229

Figure 9 - Sample Rendering of a Task 230

A task may have different renderings associated with it. This allows the ability for a task to be rendered by 231
different access mechanisms or adapt to user preferences for example. How information is rendered is 232
out of scope of the WS-HumanTask specification. 233

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 15 of 215

2 Language Design 234

The language introduces a grammar for describing human tasks and notifications. Both design time 235
aspects, such as task properties and notification properties, and runtime aspects, such as task states and 236
events triggering transitions between states are covered by the language. Finally, it introduces a 237
programming interface which can be used by applications involved in the life cycle of a task to query task 238
properties, execute the task, or complete the task. This interface helps to achieve interoperability between 239
these applications and the task infrastructure when they come from different vendors. 240

The language provides an extension mechanism that can be used to extend the definitions with additional 241
vendor-specific or domain-specific information. 242

Throughout this specification, WSDL and schema elements may be used for illustrative or convenience 243
purposes. However, in a situation where those elements or other text within this document contradict the 244
separate WS-HumanTask, WSDL or schema files, it is those files that have precedence and not this 245
document. 246

2.1 Dependencies on Other Specifications 247

WS-HumanTask utilizes the following specifications: 248

¶ WSDL 1.1 249

¶ XML Schema 1.0 250

¶ XPath 1.0 251

¶ WS-Addressing 1.0 252

¶ WS-Coordination 1.1 253

¶ WS-Policy 1.5 254

2.1.1 Namespaces Referenced 255

WS-HumanTask references these namespaces: 256

¶ wsa ï http://www.w3.org/2005/08/addressing 257

¶ wsdl ï http://schemas.xmlsoap.org/wsdl/ 258

¶ wsp ï http://www.w3.org/ns/ws-policy 259

¶ xsd ï http://www.w3.org/2001/XMLSchema 260

2.2 Language Extensibility 261

The WS-HumanTask extensibility mechanism allows: 262

¶ Attributes from other namespaces to appear on any WS-HumanTask element 263

¶ Elements from other namespaces to appear within WS-HumanTask elements 264

Extension attributes and extension elements MUST NOT contradict the semantics of any attribute or 265
element from the WS-HumanTask namespace. For example, an extension element could be used to 266
introduce a new task type. 267

The specification differentiates between mandatory and optional extensions (the section below explains 268
the syntax used to declare extensions). If a mandatory extension is used, a compliant implementation has 269
to understand the extension. If an optional extension is used, a compliant implementation can ignore the 270
extension. 271

http://www.w3.org/2005/08/addressing
http://schemas.xmlsoap.org/wsdl/
http://www.w3.org/ns/ws-policy
http://www.w3.org/2001/XMLSchema

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 16 of 215

2.3 Overall Language Structure 272

Human interactions subsume both human tasks and notifications. While human tasks and notifications 273
are described in subsequent sections, this section explains the overall structure of human interactions 274
definition. 275

2.3.1 Syntax 276

<htd:humanInteractions 277
 xmlns:htd ="http://docs.oasis - open.org/ns/bpel4people/ws - humantask/200803" 278
 xmlns:xsd ="http://www.w3.org/2001/XMLSchema" 279
 xmlns:tns ="anyURI" 280
 targetNamespace ="anyURI" 281
 expressionLanguage ="anyURI" ? 282
 queryLanguage ="anyURI" ?> 283
 284
 <htd:extensions >? 285
 <htd:extension namespace ="anyURI" mustUnderstand ="yes|no" /> + 286
 </ htd:extens ions > 287
 288
 <htd:import namespace ="anyURI" ? 289
 location ="anyURI" ? 290
 importType ="anyURI" /> * 291
 292
 <htd:logicalPeopleGroups >? 293
 <htd:logicalPeopleGroup name="NCName" reference ="QName"?>+ 294
 <htd:parameter name="NCName" type ="QName" /> * 295
 </ htd:logicalPeop leGroup > 296
 </ htd:logicalPeopleGroups > 297
 298
 <htd:tasks >? 299
 <htd:task name="NCName">+ 300
 ... 301
 </ htd:task > 302
 </ htd:tasks > 303
 304
 <htd:notifications >? 305
 <htd:notification name="NCName">+ 306
 ... 307
 </ htd:notification > 308
 </ htd:notifications > 309
</ htd: humanInteractions > 310

2.3.2 Properties 311

The <humanInteractions> element has the following properties: 312

¶ expressionLanguage : This attribute specifies the expression language used in the enclosing 313

elements. The default value for this attribute is urn:ws - ht:sublang: xpath 1.0 which 314

represents the usage of XPath 1.0 within human interactions definition. A WS-HumanTask 315

Definition that uses expressions MAY override the default expression language for individual 316

expressions. A WS-HumanTask Processor MUST support the use of XPath 1.0 as the expression 317

language. 318

¶ queryLanguage : This attribute specifies the query language used in the enclosing elements. 319

The default value for this attribute is urn:ws - ht:sublang:xpath1.0 which represents the 320

usage of XPath 1.0 within human interactions definition. A WS-HumanTask Definition that use 321

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 17 of 215

query expressions MAY override the default query language for individual query expressions. A 322
WS-HumanTask Processor MUST support the use of XPath 1.0 as the query language. 323

¶ extensions : This element is used to specify namespaces of WS-HumanTask extension 324

attributes and extension elements. The element is optional. If present, it MUST include at least 325

one extension element. The <extension> element is used to specify a namespace of WS-326

HumanTask extension attributes and extension elements, and indicate whether they are 327

mandatory or optional. Attribute mustUnderstand is used to specify whether the extension must 328

be understood by a compliant implementation. If the attribute has value ñyesò the extension is 329
mandatory. Otherwise, the extension is optional. If a WS-HumanTask Processor does not support 330

one or more of the extensions with mustUnderstand="yes", then the human interactions definition 331

MUST be rejected. A WS-HumanTask Processor MAY ignore optional extensions. A WS-332
HumanTask Definition MAY declare optional extensions. The same extension URI MAY be 333

declared multiple times in the <extensions> element. If an extension URI is identified as 334

mandatory in one <extension> element and optional in another, then the mandatory semantics 335

have precedence and MUST be enforced by a WS-HumanTask Processor. The extension 336

declarations in an <extensions> element MUST be treated as an unordered set. 337

¶ import : This element is used to declare a dependency on external WS-HumanTask and WSDL 338

definitions. Zero or more <import> elements MAY appear as children of the 339

<humanInteractions> element. 340

The namespace attribute specifies an absolute URI that identifies the imported definitions. This 341

attribute is optional. An <import> element without a namespace attribute indicates that external 342

definitions are in use which are not namespace-qualified. If a namespace is specified then the 343
imported definitions MUST be in that namespace. If no namespace is specified then the imported 344
definitions MUST NOT contain a targetNamespace specification. The namespace 345

http://www.w3.org/2001/XMLSchema is imported implicitly. Note, however, that there is no 346

implicit XML Namespace prefix defined for http://www.w3.org/2001/XMLSchema . 347

The location attribute contains a URI indicating the location of a document that contains 348

relevant definitions. The location URI MAY be a relative URI, following the usual rules for 349

resolution of the URI base [XML Base, RFC 2396]. The location attribute is optional. An 350

<import> element without a location attribute indicates that external definitions are used by 351

the human interactions definition but makes no statement about where those definitions can be 352

found. The location attribute is a hint and a WS-HumanTask Processor is not required to 353

retrieve the document being imported from the specified location. 354

The mandatory importType attribute identifies the type of document being imported by 355

providing an absolute URI that identifies the encoding language used in the document. The value 356

of the i mportType attribute MUST be set to http://docs.oasis -357

open.org/ns/bpel4people/ws - humantask/200803 when importing human interactions 358

definitions, to http://schemas.xmlsoap.org/wsdl/ when importing WSDL 1.1 documents 359

or to http://www.w3.org/2001/XMLSchema when importing XML Schema documents. 360

According to these rules, it is permissible to have an <import> element without namespace and 361

location attributes, and only containing an importType attribute. Such an <im port> element 362

indicates that external definitions of the indicated type are in use that are not namespace-363
qualified, and makes no statement about where those definitions can be found. 364

A WS-HumanTask Definition MUST import all other WS-HumanTask definitions, WSDL 365
definitions, and XML Schema definitions it uses. In order to support the use of definitions from 366
namespaces spanning multiple documents, a WS-HumanTask Definition MAY include more than 367

one import declaration for the same namespace and importType , provided that those 368

declarations include different location values. <import> elements are conceptually unordered. A 369

WS-HumanTask Processor MUST reject the imported documents if they contain conflicting 370
definitions of a component used by the imported WS-HumanTask Definition. 371

http://www.w3.org/2001/XMLSchema

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 18 of 215

Documents (or namespaces) imported by an imported document (or namespace) MUST NOT be 372
transitively imported by a WS-HumanTask Processor. In particular, this means that if an external 373
item is used by a task enclosed in the WS-HumanTask Definition, then a document (or 374
namespace) that defines that item MUST be directly imported by the WS-HumanTask Definition. 375
This requirement does not limit the ability of the imported document itself to import other 376
documents or namespaces. 377

¶ logicalPeopleGroup s : This element specifies a set of logical people groups. The element is 378

optional. If present, it MUST include at least one logicalPeopleGroup element. The set of logical 379

people groups MUST contain only those logical people groups that are used in the 380

humanInteractions element, and enclosed human tasks and notifications. The 381

logicalPeopleGroup element has the following attributes. The name attribute specifies the name 382

of the logical people group. The name MUST be unique among the names of all 383

logicalPeopleGroups defined within the humanInteractions element. The reference attribute is 384

optional. In case a logical people group used in the humanInteractions element is defined in an 385

imported WS-HumanTask definition, the reference attribute MUST be used to specify the logical 386

people group. The parameter element is used to pass data needed for people query evaluation. 387

¶ tasks : This element specifies a set of human tasks. The element is optional. If present, it MUST 388

include at least one <task> element. The syntax and semantics of the <task> element are 389

introduced in section 4 ñHuman Tasksò. 390

¶ notifications : This element specifies a set of notifications. The element is optional. If 391

present, it MUST include at least one <notification> element. The syntax and semantics of the 392

<notification> element are introduced in section 6 ñNotificationsò. 393

¶ Element humanInteractions MUST NOT be empty, that is it MUST include at least one element. 394

All elements in WS-HumanTask Definition MAY use the element <documentation> to provide annotation 395
for users. The content could be a plain text, HTML, and so on. The <documentation> element is optional 396

and has the following syntax: 397

<htd:do cumentation xml:lang ="xsd:language" > 398
 ... 399
</ htd:documentation > 400

2.4 Default use of XPath 1.0 as an Expression Language 401

The XPath 1.0 specification [XPATH 1.0] defines the context in which an XPath expression is evaluated. 402
When XPath 1.0 is used as an Expression Language in WS-HumanTask language elements then the 403
XPath context is initialized as follows: 404

¶ Context node: none 405

¶ Context position: none 406

¶ Context size: none 407

¶ Variable bindings: none 408

¶ Function library: Core XPath 1.0 and WS-HumanTask functions MUST be available and 409
processor-specific functions MAY be available 410

¶ Namespace declaration: all in-scope namespace declarations from the enclosing element 411

Note that XPath 1.0 explicitly requires that any element or attribute used in an XPath expression that 412
does not have a namespace prefix must be treated as being namespace unqualified. As a result, even if 413
there is a default namespace defined on the enclosing element, the default namespace will not be 414
applied. 415

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 19 of 215

3 Concepts 416

3.1 Generic Human Roles 417

Generic human roles define what a person or a group of people resulting from a people query can do with 418
tasks and notifications. The following generic human roles are taken into account in this specification: 419

¶ Task initiator 420

¶ Task stakeholders 421

¶ Potential owners 422

¶ Actual owner 423

¶ Excluded owners 424

¶ Business administrators 425

¶ Notification recipients 426

 427

A task initiator is the person who creates the task instance. A WS-HumanTask Definition MAY define 428
assignment for this generic human role. Depending on how the task has been instantiated the task 429
initiator can be defined. 430

The task stakeholders are the people ultimately responsible for the oversight and outcome of the task 431
instance. A task stakeholder can influence the progress of a task, for example, by adding ad-hoc 432
attachments, forwarding the task, or simply observing the state changes of the task. It is also allowed to 433
perform administrative actions on the task instance and associated notification(s), such as resolving 434
missed deadlines. A WS-HumanTask Definition MAY define assignment for this generic human role. WS-435
HumanTask Processors MUST ensure that at least one person is associated with this role at runtime. 436

Potential owners of a task are persons who receive the task so that they can claim and complete it. A 437
potential owner becomes the actual owner of a task by explicitly claiming it. Before the task has been 438
claimed, potential owners can influence the progress of the task, for example by changing the priority of 439
the task, adding ad-hoc attachments or comments. All excluded owners are implicitly removed from the 440
set of potential owners. A WS-HumanTask Definition MAY define assignment for this generic human role. 441

Excluded owners are are people who cannot become an actual or potential owner and thus they cannot 442
reserve or start the task. A WS-HumanTask Definition MAY define assignment for this generic human 443
role. 444

An actual owner of a task is the person actually performing the task. When task is performed, the actual 445
owner can execute actions, such as revoking the claim, forwarding the task, suspending and resuming 446
the task execution or changing the priority of the task. A WS-HumanTask Definition MUST NOT define 447
assignment for this generic human role. 448

Business administrators play the same role as task stakeholders but at task definition level. Therefore, 449
business administrators can perform the exact same operations as task stakeholders. Business 450
administrators can also observe the progress of notifications. A WS-HumanTask Definition MAY define 451
assignment for this generic human role. WS-HumanTask Processors MUST ensure that at runtime at 452
least one person is associated with this role. 453

Notification recipients are persons who receive the notification, such as happens when a deadline is 454
missed or when a milestone is reached. This role is similar to the roles potential owners and actual owner 455
but has different repercussions because a notification recipient does not have to perform any action and 456
hence it is more of informational nature than participation. A notification has one or more recipients. A 457
WS-HumanTask Definition MAY define assignment for this generic human role. 458

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 20 of 215

3.2 Composite Tasks and Sub Tasks 459

A human task may describe complex work that can be divided into a substructure of related, but 460

independent operations with potential work being carried out by different parties. 461

Complex tasks with substructures are called composite tasks; they can be considered as a composition of 462

multiple (sub) tasks. 463

A sub task describes an act that may or must be completed as part of completing a larger and more 464

complex task. The enclosing composite task may share data with embedded sub tasks, e.g. map data 465

into the input structure of sub tasks or share attachments between composite and sub task. 466

Composite tasks follow the design principle that they are managed by a single task processor. 467

In general sub tasks are regular human tasks, inheriting all attributes that a human task has, and each 468

behaving the way that a human task does. Some specialties in the area of people assignment and state 469

transitions apply in case a task is a sub task, to align with the behavior of the superior composite task. 470

Tasks can be composite tasks by definition (sub tasks are already defined in the task model) or turn into 471

composite tasks at runtime when a task processor creates in an ad-hoc manner one or more sub tasks to 472

structure work. 473

3.2.1 Composite Tasks by Definition 474

In case a composite task is pre-defined as such, the task model contains the definition of one or more sub 475

tasks. Composite tasks come with the following additional attributes: 476

¶ Composition Type (parallel | sequential) 477

Composite tasks with composition type ñparallelò allow multiple active sub tasks at the same 478

time; sub tasks are not in any order; composite tasks with composition type ñsequentialò only 479

allow sequential creation of sub tasks in the pre-defined order (a second listed sub task must not 480

be created before a first listed sub task has been terminated). 481

¶ Creation Pattern (manual | automatic) 482

Composite tasks with activation pattern ñmanualò expect the òactual ownerò to trigger creation of 483

pre-defined sub tasks; composite tasks with activation pattern ñautomaticò are automatically 484

created at the time the composite taskôs status becomes ñin progressò (where composition type 485

is ñparallelò all pre-defined sub tasks are created at the time the composite taskôs status 486

becomes ñin progressò; where composition type is ñsequentialò at the time the composite taskôs 487

status becomes ñin progressò the first defined sub task will be created; the next sub task in a 488

sequence is automatically created when its predecessor is terminated). 489

3.2.2 Composite Tasks Created Adhoc at Runtime 490

An ordinary task may turn into a composite task when the actual owner of a task decides to substructure 491

his work and create sub tasks ad-hoc at runtime. 492

These sub tasks created at runtime behave and are treated as though they are of type ñparallelò (a user 493
may create multiple sub tasks at a time) and have an activation pattern of ñmanualò (creation of ad-hoc 494
sub tasks is always triggered by a user). 495

3.3 Routing Patterns 496

A Routing Pattern is a special form of potential owner assignment in which a Task is assigned to people 497
in a well-defined order. Routing patterns allow the assignment of a Task in sequence or parallel. The 498
htd:parallel element defines a parallel routing pattern and the htd:sequence element defines a sequential 499
routing pattern. Those patterns MAY be used in any combination to create complex task routing to 500
people. Routing patterns can be used in both tasks and sub tasks. 501

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 21 of 215

3.4 Relationship of Composite Tasks and Routing Patterns 502

The complex people assignment used to describe Routing Patterns is a specific syntatic version of 503
Composite Tasks. It is a convenient syntax to decribe the "who" in a composite task scenario. The 504
composite task syntax is more expressive to describe the "what" in the sense of which different subtasks 505
are executed. 506

A composite task, including subtasks of different task types, can be described only using the composite 507
task syntax. A routing task containing a dynamic number of subtasks derived from the cardinality of the 508
set of assigned people can be described only using the routing task syntax. 509

Both syntatic flavors may be used in combination which means that a composite task type may include a 510
complex people assignment and that any task defining a complex people assignment may become a 511
composite task at runtime when creating adhoc subtasks. 512

The runtime instantiation model and observable behavior for task instances is identical when using one or 513
the other syntatic flavor. 514

3.5 Assigning People 515

To determine who is responsible for acting on a human task in a certain generic human role or who will 516
receive a notification, people need to be assigned. People assignment can be achieved in different ways: 517

¶ Via logical people groups (see 3.5.1 ñUsing Logical People Groupsò) 518

¶ Via literals (see 3.5.2 ñUsing Literalsò) 519

¶ Via expressions e.g., by retrieving data from the input message of the human task (see 3.5.3 520

ñUsing Expressionsò). 521

¶ In a well-defined order using Routing Patterns (see 4.7.1 ñRouting Patternsò) 522

When specifying people assignments then the data type htt:tOrganizationalEntity is used. The 523

htt:tOrganizationalEntity element specifies the people assignments associated with generic 524

human roles used. 525

Human tasks might be assigned to people in a well-defined order. This includes assignments in a specific 526
sequence and or parallel assignment to a set of people or any combination of both. 527

Syntax: 528
<htd:peopleAssignments > 529
 530
 <htd:genericHumanRole >+ 531
 <htd:from >... </ htd:from > 532
 </ htd:genericHumanRole > 533
 534
 <htd:potentialOwners >+ 535
 fromPattern + 536
 </ htd: potentialOwners > 537
 538
</ htd:peopleAssignments > 539

The following syntactical elements for generic human roles are introduced. They can be used wherever 540

the abstract element genericHumanRole is allowed by the WS-HumanTask XML Schema. 541

<htd:excludedOwners > 542
 <htd:from >... </ htd:from > 543
</ htd:excludedOwners > 544
 545
<htd:ta skInitiator > 546
 <htd:from >... </ htd:from > 547
</ htd:taskInitiator > 548

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 22 of 215

 549
<htd:taskStakeholders > 550
 <htd:from >... </ htd:from > 551
</ htd:taskStakeholders > 552
 553
<htd:businessAdministrators > 554
 <htd:from >... </ htd:from > 555
</ htd:businessAdministrators > 556
 557
<htd:recipients > 558
 <htd:from >... </ htd:from > 559
</ htd:recipients > 560

For the potentialOwner generic human role the syntax is as following 561

<htd:potentialOwner > 562
 fromPattern + 563
</ htd:potentialOwner > 564
 565
where fromPattern is one of: 566
 567
<htd:from> ... </htd:from> 568
 569
<htd:sequence type ="all|single" ?> 570
 from Pattern * 571
</htd:sequence> 572
 573
<htd:parallel type ="all|single" ?> 574
 fromPattern * 575
</htd:parallel> 576

Element <htd:from> is used to specify the value to be assigned to a role. The element has different 577

forms as described below. 578

3.5.1 Using Logical People Groups 579

A logical people group represents one or more people, one or more unresolved groups of people (i.e., 580
group names), or a combination of both. A logical people group is bound to a people query against a 581
people directory at deployment time. Though the term query is used, the exact discovery and invocation 582
mechanism of this query is not defined by this specification. There are no limitations as to how the logical 583
people group is evaluated. At runtime, this people query is evaluated to retrieve the actual people 584
assigned to the task or notification. Logical people groups MUST support query parameters which are 585
passed to the people query at runtime. Parameters MAY refer to task instance data (see section 3.8 for 586
more details). During people query execution a WS-HumanTask Processor can decide which of the 587
parameters defined by the logical people group are used. A WS-HumanTask Processor MAY use zero or 588
more of the parameters specified. It MAY also override certain parameters with values defined during 589
logical people group deployment. The deployment mechanism for tasks and logical people groups is out 590
of scope for this specification. 591

A logical people group has one instance per set of unique arguments. Whenever a logical people group is 592
referenced for the first time with a given set of unique arguments, a new instance MUST be created by 593
the WS-HumanTask Processor. To achieve that, the logical people group MUST be evaluated / resolved 594
for this set of arguments. Whenever a logical people group is referenced for which an instance already 595
exists (i.e., it has already been referenced with the same set of arguments), the logical people group MAY 596
be re-evaluated/re-resolved. 597

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 23 of 215

In particular, for a logical people group with no parameters, there is a single instance, which MUST be 598
evaluated / resolved when the logical people group is first referenced, and which MAY be re-evaluated / 599
re-resolved when referenced again. 600

People queries are evaluated during the creation of a human task or a notification. If a people query fails 601
a WS-HumanTask Processor MUST create the human task or notification anyway. Failed people queries 602
MUST be treated like people queries that return an empty result set. If the potential owner people query 603
returns an empty set of people a WS-HumanTask Processor MUST perform nomination (see section 604
4.10.1 ñNormal processing of a Human Taskò). In case of notifications a WS-HumanTask Processor 605
MUST apply the same to notification recipients. 606

People queries return one person, a set of people, or the name of one or many groups of people. The use 607
of a group enables the ability to create a human "work queue" where members are provided access to 608
work items assigned to them as a result of their membership of a group. The ability to defer group 609
membership is beneficial when group membership changes frequently. 610

Logical people groups are global elements enclosed in a human interactions definition document. Multiple 611
human tasks in the same document can utilize the same logical people group definition. During 612
deployment each logical people group is bound to a people query. If two human tasks reference the same 613
logical people group, they are bound to the same people query. However, this does not guarantee that 614
the tasks are actually assigned to the same set of people. The people query is performed for each logical 615
people group reference of a task and can return different results, for example if the content of the people 616
directory has been changed between two queries. Binding of logical people groups to actual people query 617
implementations is out of scope for this specification. 618

Syntax: 619
<htd:from logicalPeopleGroup ="NCName"> 620
 <htd:argument name="NCName" expressionLanguage ="anyURI" ? >* 621
 expression 622
 </ htd:argument > 623
</ htd:from > 624
 625

The logicalPeopleGroup attribute refers to a logicalPeopleGroup definition. The element 626

<argument> is used to pass values used in the people query. The expressionLanguage attribute 627

specifies the language used in the expression. The attribute is optional. If not specified, the default 628
language as inherited from the closest enclosing element that specifies the attribute MUST be used by 629
WS-HumanTask Processor. 630

Example: 631
<htd:potentialOwners > 632
 <htd:from logicalPeopleGroup ="region alClerks" > 633
 <htd:argument name="region" > 634
 htd:getInput("part1")/region 635
 </ htd:argument > 636
 </ htd:from > 637
</ htd:potentialOwners > 638

3.5.2 Using Literals 639

People assignments can be defined literally by directly specifying the user identifier(s) or the name(s) of 640

groups using either the htt:tOrganizationalEntity or htt:tUser data type introduced below 641

(see 3.5.4 ñData Type for Organizational Entitiesò). 642

643

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 24 of 215

 644

Syntax: 645

<htd:from > 646
 <htd:literal > 647
 ... literal value ... 648
 </ htd:literal > 649
</ htd:from > 650

Example specifying user identifiers: 651

<htd:potentialOwners > 652
 <htd:from > 653
 <htd:literal > 654
 <htt:organizationalEntity > 655
 <htt:user >Alan </ htt:user > 656
 <htt:user >Dieter </ htt:user > 657
 <htt:user >Frank </ htt:user > 658
 <htt:user >Gerhard </ htt:user > 659
 <htt:user >Ivana </ htt:user > 660
 <htt:user >Karsten </ htt:user > 661
 <htt:user >Matthias </ htt:user > 662
 <htt:user >Patrick </ htt:user > 663
 </ htt:organizationalEntity > 664
 </ htd:literal > 665
 </ htd: from > 666
</ htd:potentialOwners > 667

Example specifying group names: 668
<htd:potentialOwners > 669
 <htd:from > 670
 <htd:literal > 671
 <htt:organizationalEntity > 672
 <htt:group >bpel4people_authors </ htt:group > 673
 </ htt:organizationalEntity > 674
 </ htd:literal > 675
 </ htd:from > 676
</ htd:potentialOwners > 677

3.5.3 Using Expressions 678

Alternatively people can be assigned using expressions returning either an instance of the 679

htt:tOrganizationalEntity data type or the htt:tUser data type introduced below (see 3.5.4 680

ñData Type for Organizational Entitiesò). 681

Syntax: 682
<htd:from expressionLanguage ="anyURI" ?> 683
 expression 684
</ htd:from > 685

 686

The expressionLanguage attribute specifies the language used in the expression. The attribute is 687

optional. If not specified, the default language as inherited from the closest enclosing element that 688
specifies the attribute MUST be used by WS-HumanTask Processor. 689

690

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 25 of 215

 691

Example: 692
<htd:potentialOwners > 693
 <htd:from >htd:getInput("part1")/approvers </ htd:from > 694
</ htd:pot entialOwners > 695
 696
<htd:businessAdministrators > 697
 <htd:from > 698
 htd:except(htd:getInput("part1")/admins, 699
 htd:getInput("part1")/globaladmins[0]) 700
 </ htd:from > 701
</ htd:businessAdministrators > 702

3.5.4 Data Type for Organizational Entities 703

The following XML schema definition describes the format of the data that is returned at runtime when 704
evaluating a logical people group. The result can contain a list of one or more users, groups, or a 705
combination of both. The latter is used to defer the resolution of one or more groups of people to a later 706
point, such as when the user accesses a task list. 707

<xsd:element name="organizationalEntity" type ="tOrganizationalEntity" /> 708
<xsd:complexType name="tOrganizationalEntity" > 709
 <xsd:choice maxOccurs ="unbounded" > 710
 <xsd: element name="user" type ="tUser" /> 711
 <xsd:element name="group" type ="tGroup" /> 712
 </ xsd:choice > 713
</ xsd:complexType > 714
 715
<xsd:element name="user" type ="tUser" /> 716
<xsd:simpleType name="tUser" > 717
 <xsd:restriction base ="xsd:string" /> 718
</ xsd:simpleType > 719
 720
<xsd:el ement name="group" type ="tGroup" /> 721
<xsd:simpleType name="tGroup" > 722
 <xsd:restriction base ="xsd:string" /> 723
</ xsd:simpleType > 724

3.5.5 Subtasks 725

Like a task, a sub task has a set of generic human roles. In case people assignment to a sub taskôs roles 726

is not defined (neither in the sub taskôs task definition nor on composite task level (using overwrite 727

mechanisms)) the following default assignments apply (especially valid for ad-hoc scenarios): 728

¶ Task initiator 729

a) Activation pattern ñmanualò Ą WS-HumanTask Processor MAY assign the actual owner 730

of the composite task 731

b) Activation pattern ñautomaticò Ą WS-HumanTask Processor MAY assign the initiator of 732

the composite task 733

¶ Task stakeholders 734

o A WS-HumanTask Processor MAY assign the actual owner of the composite task 735

¶ Potential owners 736

o No default assignment (usually potential owners will explicitly be defined) 737

¶ Excluded owners 738

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 26 of 215

o A WS-HumanTask Processor MUST assign the excluded owners of the composite task 739

(This rule applies always, even though the excluded owners of a sub task may be 740

enhanced by additional people) 741

¶ Business administrators 742

o A WS-HumanTask Processor MAY assign the business administrators of the composite 743
task 744

3.6 Task Rendering 745

Humans require a presentation interface to interact with a machine. This specification covers the service 746
interfaces that enable this to be accomplished, and enables this in different constellations of software 747
from different parties. The key elements are the task list client, the task processor and the applications 748
invoked when a task is executed. 749

It is assumed that a single task instance can be rendered by different task list clients so the task engine 750
does not depend on a single dedicated task list client. Similarly it is assumed that one task list client can 751
present tasks from several task engines in one homogenous list and can handle the tasks in a consistent 752
manner. The same is assumed for notifications. 753

A distinction is made between the rendering of the meta-information associated with the task or 754
notification (task-description UI and task list UI) (see section 4.3 for more details on presentation 755
elements) and the rendering of the task or notification itself (task-UI) used for task execution (see section 756
4.4 for more details on task rendering). For example, the task-description UI includes the rendering of a 757
summary list of pending or completed tasks and detailed meta-information such as a deadlines, priority 758
and description about how to perform the task. It is the task list client that deals with this. 759

The task-UI can be rendered by the task list client or delegated to a rendering application invoked by the 760
task list client. The task definition and notification definition can define different rendering information for 761
the task-UI using different rendering methodologies. 762

Versatility of deployment determines which software within a particular constellation performs the 763
presentation rendering. 764

The task-UI can be specified by a rendering method within the task definition or notification definition. The 765
rendering method is identified by a unique name attribute and specifies the type of rendering technology 766
being used. A task or a notification can have more than one such rendering method, e.g. one method for 767
each environment the task or notification is accessed from (e.g. workstation, mobile device). 768

The task-list UI encompasses all information crucial for understanding the importance of and details about 769
a given task or notification (e.g. task priority, subject and description) - typically in a table-like layout. 770
Upon selecting a task, i.e. an entry in case of a table-like layout, the user is given the opportunity to 771
launch the corresponding task-UI. The task-UI has access to the task instance data, and can comprise 772
and manipulate documents other than the task instance. It can be specified by a rendering method within 773
the task description. 774

3.7 Lean Tasks 775

WS-HumanTask enables the creation of task applications with rich renderings, separate input and output 776
messages, and custom business logic in the portType implementation. However, in the spectrum of 777
possible tasks, from enterprise-wide formal processes to department-wide processes to team specific 778
processes to individual, ad-hoc assignments of work, there are scenarios where the task can be defined 779
simply with metadata and the rendering can be left to the WS-HumanTask Processor. An example of this 780
is a simple to-do task, where no form is required beyond the acknowledgement by the actual owner that 781
the work stated in the name, subject, and description of the task is done. A notification doesnôt work in 782
this case since it lacks the ability to track whether the work is done or not, and defining a task with a 783
WSDL and portType is beyond the capabilities of those requiring the work done, such as in a team or 784
individual scenario. Therefore, having a way to define the work required of the task in a simpler way 785
enables a greater breadth of scenarios for these smaller scoped types. 786

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 27 of 215

A Lean Task is a task that has a reduced set of vendor-specific capabilities which results in increased 787
portability and simplicity. The two pieces of the task XML definition that Lean Tasks lack are the ability to 788
define renderings and custom port types. Throughout the specification uses of the word task refers to 789
both types of tasks unless otherwise noted. 790

When used in constellation 4 of WS-BPEL4People, a Lean Task MUST be started through pre-existing 791
interfaces that do not vary in portType or operation per task. The port and operation MUST instead be 792
shipped as part of the installation of the WS-HumanTask Processor (see section 1.4). Therefore, they 793
also lack the ability to define which portType and operation are used to start the task as part of its XML 794
definition. Instead, a Lean Task uses a sub-element that describes the input message (and a symmetrical 795
output message). 796

While a lean task can have one or more renderings explicitly defined, if it defines zero renderings, the 797
schema of the input message and its contained hints for rendering MUST instead be used. 798

All other WS-HumanTask Client to WS-HumanTask Processor interactions behave exactly as before, 799
implying that the processing of a task on a WS-HumanTask Processor for a Lean Task and for a non-800
Lean Task MUST be indistinguishable from the perspective of a WS-HumanTask Client. 801

3.8 Task Instance Data 802

Task instance data falls into three categories: 803

¶ Presentation data ï The data is derived from the task definition or the notification definition such 804

as the name, subject or description. 805

¶ Context data - A set of dynamic properties, such as priority, task state, time stamps and values 806

for all generic human roles. 807

¶ Operational data ï The data includes the input message, output message, attachments and 808

comments. 809

3.8.1 Presentation Data 810

The presentation data is used, for example, when displaying a task or a notification in the task list client. 811
The presentation data has been prepared for display such as by substituting variables. See section 4.3 812
ñPresentation Elementsò for more details. 813

3.8.2 Context Data 814

The task context includes the following: 815

¶ Task state 816

¶ Priority 817

¶ Values for all generic human roles, i.e. potential owners, actual owner and business 818

administrators 819

¶ Time stamps such as start time, completion time, defer expiration time, and expiration time 820

¶ Skipable indicator 821

A WS-HumanTask Processor MAY extend this set of properties available in the task context. For 822
example, the actual owner might start the execution of a task but does not complete it immediately, in 823
which case ann intermediate state could be saved in the task context. 824

3.8.3 Operational Data 825

The operational data of a task consists of its input data and output data or fault data, as well as any ad-826
hoc attachments and comments. The operational data of a notification is restricted to its input data. 827
Operational data is accessed using the XPath extension functions and programming interface. 828

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 28 of 215

3.8.3.1 Ad-hoc Attachments 829

A WS-HumanTask Processor MAY allow arbitrary additional data to be attached to a task. This additional 830
data is referred to as task ad-hoc attachments. An ad-hoc attachment is specified by its name, its type 831

and its content and a system-generated attachment identifier. 832

The contentType of an attachment can be any valid XML schema type, including xsd:any, or any MIME 833

type. The attachment data is assumed to be of that specified content type. 834

The contentCategory of an attachment is a URI used to qualify the contentType. While contentType 835

contains the type of the attachment, the contentCategory specifies the type system used when defining 836
the contentType. Predefined values for contentCategory are 837

¶ "http://www.w3.org/2001/XMLSchema" ; if XML Schema types are used for the 838

contentType 839

¶ "http://www.iana.org/assignments/media - types/" ; if MIME types are used for the 840

contentType 841

The set of values is extensible. A WS-HumanTask Processor MUST support the use of XML Schema 842
types and MIME types as content categories, indicated by the predefined URI values shown above. 843

The accessType element indicates if the attachment is specified inline or by reference. In the inline case 844

it MUST contain the string constant ñinlineò. In this case the value of the attachment data type 845

contains the base64 encoded attachment. In case the attachment is referenced it MUST contain the 846

string ñURLò, indicating that the value of the attachment data type contains a URL from where the 847

attachment can be retrieved. Other values of the accessType element are allowed for extensibility 848

reasons, for example to enable inclusion of attachment content from content management systems. 849

The atta chedTime element indicates when the attachment is added. 850

The attachedBy element indicates who added the attachment. It is a single user (type htt:tUser) . 851

When an ad-hoc attachment is added to a task, the system returns an identifier that is unique among any 852
attachment for the task. It is then possible to retrieve or delete the attachment by the attachment 853
identifier. 854

Attachment Info Data Type 855

The following data type is used to return attachment information on ad-hoc attachments. 856

<xsd:element name="at tachmentInfo" type ="tAttachmentInfo" /> 857
<xsd:complexType name="tAttachmentInfo" > 858
 <xsd:sequence > 859
 <xsd:element name="identifier" type ="xsd:anyURI" /> 860
 <xsd:element name="name" type ="xsd:string" /> 861
 <xsd:element name="accessType" type ="xsd:string" /> 862
 <xsd:element name="contentType" type ="xsd:string" /> 863
 <xsd:element name="contentCategory" type ="xsd:anyURI" /> 864
 <xsd:element name="attachedTime" type ="xsd:dateTime" /> 865
 <xsd:element name="attachedBy" type ="htt:tUser" /> 866
 <xsd:any namespace ="##other" processContents ="lax" 867
 minOccurs ="0" maxOccurs ="unbounded" /> 868
 </ xsd:sequence > 869
</ xsd:complexType > 870

Attachment Data Type 871

The following data type is used to return ad-hoc attachments. 872

<xsd:element name="attachment" type ="tAttachmen t" /> 873
<xsd:complexType name="tAttachment" > 874
 <xsd:sequence > 875
 <xsd:element ref ="attachmentInfo" /> 876
 <xsd:element name="value" type ="xsd:anyType" /> 877

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 29 of 215

 </ xsd:sequence > 878
</ xsd:complexType > 879

3.8.3.2 Comments 880

A WS-HumanTask Processor MAY allow tasks to have associated textual notes added by participants of 881
the task. These notes are collectively referred to as task comments. Comments are essentially a 882
chronologically ordered list of notes added by various users who worked on the task. A comment has an 883
ID, comment text, the user and timestamp for creation and the user and timestamp of the last 884
modification. Comments are added, modified or deleted individually, but are retrieved as one group. 885
Comments usage is optional in a task. 886

The addedTime element indicates when the comment is added. 887

The addedBy element indicates who added the comment. It is a single user (type htt:tUser). 888

The lastModifiedTime element indicates when the comment was last modified. 889

The lastModifiedBy element indicates who last modified the comment. It is a single user (type 890

htt:tUser). 891

Comment Data Type 892

The following data type is used to return comments. 893

<xsd:element name="comment" type ="tComment" /> 894
<xsd:complexType name="tComment" > 895
 <xsd:sequence > 896
 <xsd:element name="id" type ="xsd: anyURI " /> 897
 <xsd:element name="addedTime" type ="xsd:dateTime" /> 898
 <xsd:element name="addedBy" type ="htt:tUser" /> 899
 <xsd:element name="lastModifiedTime" type ="xsd:dateTime" /> 900
 <xsd:element name="lastModifiedBy" type ="ht t :tUser" /> 901
 <xsd:element name="text " type ="xsd:string" /> 902
 <xsd:any namespace ="##other" processContents ="lax" 903
 minOccurs ="0" maxOccurs ="unbounded" /> 904
 </ xsd:sequence > 905
</ xsd:complexType > 906

Comments can be added to a task and retrieved from a task. 907

3.8.4 Data Types for Task Instance Data 908

The following data types are used to represent instance data of a task or a notification. The data type 909

htt:tTaskAbstract is used to provide the summary data of a task or a notification that is displayed 910

on a task list. The data type htt:tTaskDetails contains the data of a task or a notification, except ad-911

hoc attachments, comments and presentation description. The data that is not contained in 912

htt:tTaskDetails can be retrieved separately using the task API. 913

Contained presentation elements are in a single language (the context determines that language, e.g., 914
when a task abstract is returned in response to a simple query, the language from the locale of the 915
requestor is used). 916

The elements startByExists and completeByExists have a value of ñtrueò if the task has at least 917

one start deadline or at least one completion deadline respectively. The actual times (startByTime and 918

completeByTime) of the individual deadlines can be retrieved using the query operation (see section 919

7.1.3 ñAdvanced Query Operationò). 920

Note that elements that do not apply to notifications are defined as optional. 921

 922

 923

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 30 of 215

TaskAbstract Data Type 924
<xsd:element name="taskAbstract" type ="tTaskAbstract" /> 925
<xsd:complexType name="tTaskAbstract" > 926
 <xsd:sequence > 927
 <xsd:element name="id" 928
 type ="xsd: anyURI " /> 929
 <xsd:element name="taskType" 930
 type ="xsd:string" /> 931
 <xsd:element name="name" 932
 type ="xsd:QName" /> 933
 <xsd:element name="status" 934
 type ="tStatus" /> 935
 <xsd:element name="priority" 936
 type ="tPriority" minOccurs ="0" /> 937
 <xsd:element name="createdTime" 938
 type ="xsd:dateTime" /> 939
 <xsd:element name="activationTime" 940
 ty pe="xsd:dateTime" minOccurs ="0" /> 941
 <xsd:element name="expirationTime" 942
 type ="xsd:dateTime" minOccurs ="0" /> 943
 <xsd:element name="isSkipable" 944
 type ="xsd:boolean" minOccurs ="0" /> 945
 <xsd:element name="hasPotentialOwn ers" 946
 type ="xsd:boolean" minOccurs ="0" /> 947
 <xsd:element name="startByTimeExists" 948
 type ="xsd:boolean" minOccurs ="0" /> 949
 <xsd:element name="completeByTimeExists" 950
 type ="xsd:boolean" minOccurs ="0" /> 951
 <xsd:element name="presentationName" 952
 type ="tPresentationName" minOccurs ="0" /> 953
 <xsd:element name="presentationSubject" 954
 type ="tPresentationSubject" minOccurs ="0" /> 955
 <xsd:element name="renderingMethodExists" 956
 type ="xsd:boolean" /> 957
 <xsd:element name="hasOutput" 958
 type ="xsd:boolean" minOccurs ="0" /> 959
 <xsd:element name="hasFault" 960
 type ="xsd:boolean" minOccurs ="0" /> 961
 <xsd:element name="hasAttachments" 962
 type ="xsd:boolean" minOccurs ="0" /> 963
 <xsd:element name="hasComments" 964
 type ="xsd:boolean" minOccurs ="0" /> 965
 <xsd:element name="escalated" 966
 type ="xsd:boolean" minOccurs ="0" /> 967
 <xsd:element name="outcome" 968
 type ="xsd:string" minOccurs ="0" /> 969
 <xsd:element name="parentTaskId" 970
 type ="xsd: anyURI " minOccurs ="0" /> 971
 <xsd:element name="hasSubTasks" 972
 type ="xsd:boolean" minOccurs ="0" /> 973
 <xsd:any namespace ="# #other" processContents ="lax" 974
 minOccurs ="0" maxOccurs ="unbounded" /> 975
 </ xsd:sequence > 976
</ xsd:complexType > 977

 978

 979

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 31 of 215

TaskDetails Data Type 980
<xsd:element name="taskDetails" type ="tTaskDetails" /> 981
<xsd:complexType name="tTaskDetails" > 982
 <xsd:sequence > 983
 <xsd:element name="id" 984
 type ="xsd: anyURI " /> 985
 <xsd:element name="taskType" 986
 type ="xsd:string" /> 987
 <xsd:element name="name" 988
 type ="xsd:QName" /> 989
 <xsd:element name="status" 990
 type ="t Status" /> 991
 <xsd:element name="priority" 992
 type ="tPriority" minOccurs ="0" /> 993
 <xsd:element name="taskInitiator" 994
 type ="tUser" minOccurs ="0" /> 995
 <xsd:element name="taskStakeholders" 996
 type =" tOrganizatio nalEntity" minOccurs ="0" /> 997
 <xsd:element name="potentialOwners" 998
 type =" tOrganizationalEntity" minOccurs ="0" /> 999
 <xsd:element name="businessAdministrators" 1000
 type =" tOrganizationalEntity" minOccurs ="0" /> 1001
 <xsd:element name="actualOwner" 1002
 type ="tUser" minOccurs ="0" /> 1003
 <xsd:element name="notificationRecipients" 1004
 type ="tOrganizationalEntity" minOccurs ="0" /> 1005
 <xsd:element name="createdTime" 1006
 type ="xsd:dateTime" /> 1007
 <xsd:element name="createdBy" 1008
 type =" tUser " minOccurs ="0" /> 1009
 <xsd:element name="lastModifiedTime" 1010
 type ="xsd:dateTime" /> 1011
 <xsd:element name="lastModifiedBy" 1012
 type ="tUser " minOccurs ="0" /> 1013
 <xsd:el ement name="activationTime" 1014
 type ="xsd:dateTime" minOccurs ="0" /> 1015
 <xsd:element name="expirationTime" 1016
 type ="xsd:dateTime" minOccurs ="0" /> 1017
 <xsd:element name="isSkipable" 1018
 type ="xsd:boolean" minOccurs ="0" /> 1019
 <xsd:element name="hasPotentialOwners" 1020
 type ="xsd:boolean" minOccurs ="0" /> 1021
 <xsd:element name="startByTimeExists" 1022
 type ="xsd:boolean" minOccurs ="0" /> 1023
 <xsd:element name="completeByTimeExists" 1024
 type ="xsd:boolean" minOccurs ="0" /> 1025
 <xsd:element name="presentationName" 1026
 type ="tPresentationName" minOccurs ="0" /> 1027
 <xsd:element name="presentationSubject" 1028
 type ="tPresentationSubject" minOccurs ="0" /> 1029
 <xsd: element name="renderingMethodExists" 1030
 type ="xsd:boolean" /> 1031
 <xsd:element name="hasOutput" 1032
 type ="xsd:boolean" minOccurs ="0" /> 1033
 <xsd:element name="hasFault" 1034
 type ="xsd:boolean" minOccurs ="0" /> 1035
 <xs d:element name="hasAttachments" 1036
 type ="xsd:boolean" minOccurs ="0" /> 1037

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 32 of 215

 <xsd:element name="hasComments" 1038
 type ="xsd:boolean" minOccurs ="0" /> 1039
 <xsd:element name="escalated" 1040
 type ="xsd:boolean" minOccurs =" 0" /> 1041
 <xsd:element name="searchBy" 1042
 type ="xsd:string" minOccurs ="0" /> 1043
 <xsd:element name="outcome" 1044
 type ="xsd:string" minOccurs ="0" /> 1045
 <xsd:element name="parentTaskId" 1046
 type ="xsd: anyURI " minOccur s="0" /> 1047
 <xsd:element name="hasSubTasks" 1048
 type ="xsd:boolean" minOccurs ="0ò/> 1049
 <xsd:any namespace ="##other" processContents ="lax" 1050
 minOccurs ="0" maxOccurs ="unbounded" /> 1051
 </ xsd:sequence > 1052
</ xsd:complexType > 1053

Common Data Types 1054
<xsd:simpleType name="tPresentationName" > 1055
 <xsd:annotation > 1056
 <xsd:documentation >length - restricted string </ xsd:documentation > 1057
 </ xsd:annotation > 1058
 <xsd:restriction base ="xsd:string" > 1059
 <xsd:maxLength value ="64" /> 1060
 <xsd:whiteSpace value ="prese rve" /> 1061
 </ xsd:restriction > 1062
</ xsd:simpleType > 1063
 1064
<xsd:simpleType name="tPresentationSubject" > 1065
 <xsd:annotation > 1066
 <xsd:documentation >length - restricted string </ xsd:documentation > 1067
 </ xsd:annotation > 1068
 <xsd:restriction base ="xsd:string" > 1069
 <xsd:maxLength value ="254" /> 1070
 <xsd:whiteSpace value ="preserve" /> 1071
 </ xsd:restriction > 1072
</ xsd:simpleType > 1073
 1074
<xsd:simpleType name="tStatus" > 1075
 <xsd:restriction base ="xsd:string" / > 1076
</ xsd:simpleType > 1077
 1078
<xsd:simpleType name="tPredefinedStatus" > 1079
 <xsd:annotation> 1080
 <xsd :documentation> for documentation only </xsd:documentation> 1081
 </xsd:annotation> 1082
 <xsd:restriction base ="xsd:string" > 1083
 <xsd:enumeration value ="CREATED" /> 1084
 <xsd:enumeration value ="READY" /> 1085
 <xsd:enumeration value ="RESERVED" /> 1086
 <xsd:enumeration value ="IN_PROGRESS" /> 1087
 <xsd:enumeration value ="SUSPENDED" /> 1088
 <xsd:enumeration value ="COMPLETED" /> 1089
 <xsd:enumeration value ="FAILED" /> 1090
 <xsd:enumeration value ="ERROR" /> 1091
 <xsd:enumeration value ="EXITED" /> 1092
 <xsd:enumeration value ="OBSOLETE" /> 1093
 </ xsd:restriction > 1094

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 33 of 215

</ xsd:simpleType > 1095

3.8.5 Sub Tasks 1096

To support sub tasks the task instance data gets enhanced by the following (optional) parameters: 1097

¶ sub tasks Ą A list of task identifiers for each already-created subtask of the task, including 1098

both non-terminated and terminated instances 1099

Ą A list of the names of the sub tasks available for creation in the definition of the 1100

task, based on the composition type, instantiation pattern, and already created tasks 1101

¶ parent task Ą The identifier of the superior composite task of this task if it is a sub task 1102

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 34 of 215

4 Human Tasks 1103

The <task> element is used to specify human tasks. This section introduces the syntax for the element, 1104

and individual properties are explained in subsequent sections. 1105

4.1 Overall Syntax 1106

Definition of human tasks: 1107

<htd:task name="NCName" actualOwnerRequired ="yes | no" ?> 1108
 1109
 <htd:interface portType ="QName" operation ="NCName" 1110
 responsePortType ="QName"? responseOperation ="NCName"? /> 1111
 1112
 <htd:priority expressionLanguage ="anyURI" ? >? 1113
 integer - expression 1114
 </ htd:priority > 1115
 1116
 <htd:peopleAssignments >? 1117
 ... 1118
 </ htd:peopleAssignments > 1119
 1120
 <htd:completionBehavior> ? 1121
 ... 1122
 </htd: completionBehavior > 1123
 1124
 <htd:delegation 1125
 potentialDelegatees ="anybody|nobody|potentialOwners|other" >? 1126
 <htd:from >? 1127
 ... 1128
 </ htd:from > 1129
 </ htd:delegation > 1130
 1131
 <htd:presentationElements >? 1132
 ... 1133
 </ htd:presentationElements > 1134
 1135
 <htd:possibleOutcomes> ? 1136
 ... 1137
 </htd:possibleOutcomes> 1138
 1139
 <htd:outcome part ="NCName" queryLanguage ="anyURI" >? 1140
 queryContent 1141
 </ htd:outcome > 1142
 1143
 <htd:searchBy expressionLanguage ="anyURI" ? >? 1144
 expression 1145
 </ htd:searchBy > 1146
 1147
 <htd:renderings >? 1148
 <htd:rendering type ="QName">+ 1149
 ... 1150
 </ htd:rendering > 1151
 </ htd:renderings > 1152
 1153
 <htd:deadlines >? 1154

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 35 of 215

 1155
 <htd:startDeadline name="NCName">* 1156
 . .. 1157
 </ htd:startDeadline > 1158
 1159
 <htd:completionDeadline name="NCName">* 1160
 ... 1161
 </ htd:completionDeadline > 1162
 1163
 </ htd:deadlines > 1164
 1165
 <htd:composition >? 1166
 ... 1167
 </ htd:composition > 1168
 1169
</ htd:task > 1170

4.2 Properties 1171

The following attributes and elements are defined for tasks: 1172

¶ name: This attribute is used to specify the name of the task. The name combined with the target 1173

namespace MUST uniquely identify a task element enclosed in the task definition. This attribute 1174

is mandatory. It is not used for task rendering. 1175

¶ ac tualOwner Required : This optional attribute specifies if an actual owner is required for the 1176

task. Setting the value to "no " is used for composite tasks where subtasks should be activated 1177

automatically without user interaction. For routing tasks this attribute MUST be set to "no " . 1178

Tasks that have been defined to not have subtasks MUST have exactly one actual owner after 1179

they have been claimed. For these tasks the value of the attribute value MUST be "yes " . The 1180

default value for the attribute is "yes " . 1181

¶ inter face : This element is used to specify the operation used to invoke the task. The operation 1182

is specified using WSDL, that is, a WSDL port type and WSDL operation are defined. The 1183

element and its portType and operation attributes MUST be present for normal tasks. The 1184

schema only marks it optional so that Lean Tasks can make it prohibited. The interface is 1185

specified in one of the following forms: 1186

Á The WSDL operation is a one-way operation and the task asynchronously 1187

returns output data. In this case, a WS-HumanTask Definition MUST specify a 1188

callback one-way operation, using the responsePortType and 1189

responseOperation attributes. This callback operation is invoked when the 1190

task has finished. The Web service endpoint address of the callback operation is 1191

provided at runtime when the taskôs one-way operation is invoked (for details, 1192

see section 10 òProviding Callback Information for Human Tasksò). 1193

Á The WSDL operation is a request-response operation. In this case, the 1194

responsePortType and responseOperation attributes MUST NOT be 1195

specified. 1196

¶ priority : This element is used to specify the priority of the task. It is an optional element which 1197

value is an integer expression. If present, the WS-HumanTask Definition MUST specify a value 1198

between 0 and 10, where 0 is the highest priority and 10 is the lowest. If not present, the priority 1199

of the task is considered as 5. The result of the expression evaluation is of type 1200

htt:tPriority . The expressionLanguage attribute specifies the language used in the 1201

expression. The attribute is optional. If not specified, the default language as inherited from the 1202

closest enclosing element that specifies the attribute is used. 1203

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 36 of 215

¶ peopleAssignments : This element is used to specify people assigned to different generic 1204

human roles, i.e. potential owners, and business administrator. The element is optional. See 1205

section 3.5 for more details on people assignments. 1206

¶ completionBehavior : This element is used to specify completion conditions of the task. It is 1207

optional. See section 4.8 for more details on completion behavior. 1208

¶ delegation : This element is used to specify constraints concerning delegation of the task. 1209

Attribute potentialDelegatees defines to whom the task can be delegated. One of the 1210

following values MUST be specified: 1211

Á anybody : It is allowed to delegate the task to anybody 1212

Á potentialOwners : It is allowed to delegate the task to potential owners 1213

previously selected 1214

Á other : It is allowed to delegate the task to other people, e.g. authorized owners. 1215

The element <from> is used to determine the people to whom the task can be 1216

delegated. 1217

Á nobody : It is not allowed to delegate the task. 1218

The delegation element is optional. If this element is not present the task is allowed to be 1219
delegated to anybody. 1220

¶ presentationElements : This element is used to specify different information used to display 1221

the task in a task list, such as name, subject and description. See section 4.3 for more details on 1222

presentation elements. The element is optional. 1223

¶ outcome : This optional element identifies the field (of an xsd simple type) in the output message 1224

which reflects the business result of the task. A conversion takes place to yield an outcome of 1225

type xsd:string . The optional attribute queryLanguage specifies the language used for 1226

selection. If not specified, the default language as inherited from the closest enclosing element 1227

that specifies the attribute is used. 1228

¶ searchBy : This optional element is used to search for task instances based on a custom search 1229

criterion. The result of the expression evaluation is of type xsd:string . The 1230

expressionLanguage attribute specifies the language used in the expression. The attribute is 1231

optional. If not specified, the default language as inherited from the closest enclosing element that 1232

specifies the attribute is used. 1233

¶ rendering : This element is used to specify the rendering method. It is optional. If not present, 1234

task rendering is implementation dependent. See section 4.4 for more details on rendering tasks. 1235

¶ deadlines : This element specifies different deadlines. It is optional. See section 4.9 for more 1236

details on timeouts and escalations. 1237

¶ composition : This element is used to specify subtasks of a composite task. It is optional. See 1238

section 4.6 for more details on composite tasks. 1239

4.3 Presentation Elements 1240

Information about human tasks or notifications needs to be made available in a human-readable way to 1241
allow users dealing with their tasks and notifications via a user interface, which could be based on various 1242
technologies, such as Web browsers, Java clients, Flex-based clients or .NET clients. For example, a 1243
user queries for her tasks, getting a list of tasks she could work on, displaying a short description of each 1244
task. Upon selection of one of the tasks, more complete information about the task is displayed by the 1245
user interface. 1246

Alternatively, a task or notification could be sent directly to a userôs inbox, in which case the same 1247
information would be used to provide a human readable rendering there. 1248

The same human readable information could also be used in reports on all the human tasks executed by 1249
a particular human task management system. 1250

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 37 of 215

Human readable information can be specified in multiple languages. 1251

Syntax: 1252
<htd:presentationElements > 1253
 1254
 <htd:name xml:lang ="xsd:language" ? >* 1255
 Text 1256
 </ htd:name > 1257
 1258
 <! -- For the subject and description only, 1259
 replacement variables can be used. -- > 1260
 <htd:presentationParameters expressionLanguage ="anyURI" ? >? 1261
 <htd:presentationParameter name="NCName" type ="QName">+ 1262
 expression 1263
 </ htd:presentationParameter > 1264
 </ htd:presentationParameters > 1265
 1266
 <htd:subject xml:lang ="xsd:lang uage" ? >* 1267
 Text 1268
 </ htd:subject > 1269
 1270

<htd:description xml:lang ="xsd:language" ? 1271
 contentType ="mimeTypeString" ? >* 1272

 <xsd:any minOccurs ="0" maxOccurs ="unbounded" /> 1273
 </ htd:description > 1274
 1275
</ htd:presentationElements > 1276

Properties 1277

The following attributes and elements are defined for the htd:presentationElements element. 1278

¶ name: This element is the short title of a task. It uses xml:lang , a standard XML attribute, to 1279

define the language of the enclosed information. This attribute uses tags according to RFC 1766 1280

(see [RFC1766]). There could be zero or more name elements. A WS-HumanTask Definition 1281

MUST NOT specify multiple name elements having the same value for attribute xml:lang . 1282

¶ presentationParameters : This element specifies parameters used in presentation elements 1283

subject and description. Attribute expressionLanguage identifies the expression 1284

language used to define parameters. This attribute is optional. If not specified, the default 1285

language as inherited from the closest enclosing element that specifies the attribute is used. 1286

Element presentationParameters is optional and if present then the WS-HumanTask 1287

Definition MUST specify at least one element presentationParameter. Element 1288

presentationParameter has attribute name, which uniquely identifies the parameter 1289

definition within the presentationParameters element, and attribute type which defines its 1290

type. A WS-HumanTask Definition MUST specify parameters of XSD simple types. When a 1291

presentationParameter is used within subject and description , the syntax is 1292

{$ parameterName } . The pair "{{" represents the character "{" and the pair "}}" represents 1293

the character "}" . Only the defined presentation parameters are allowed, that is, a WS-1294

HumanTask Definition MUST NOT specify arbitrary expressions embedded in this syntax. 1295

¶ subject : This element is a longer text that describes the task. It uses xml:lang to define the 1296

language of the enclosed information. There could be zero or more subject elements. A WS-1297

HumanTask Definition MUST NOT specify multiple subject elements having the same value for 1298

attribute xml:lang . 1299

¶ description : This element is a long description of the task. It uses xml:lang to define the 1300

language of the enclosed information. The optional attribute contentType uses content types 1301

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 38 of 215

according to RFC 2046 (see [RFC 2046]). The default value for this attribute is ñtext/plainò. A WS-1302

HumanTask Processor MUST support the content type ñtext/plainò. The WS-HumanTask 1303

Processor SHOULD support HTML (such as ñtext/htmlò or ñapplication/xml+xhtmlò). There could 1304

be zero or more description elements. As descriptions can exist with different content types, it 1305

is allowed to specify multiple description elements having the same value for attribute 1306

xml:lang , but the WS-HumanTask Definition MUST specify different content types. 1307

Example: 1308
<htd:presentationElements > 1309
 1310
 <htd:name xml:lang ="en - US">Approve Claim </ htd:name > 1311
 <htd:name xml:lang ="de - DE"> 1312
 Genehmigung der Schadensforderung 1313
 </ htd:name > 1314
 1315
 <htd:presentationParameters > 1316
 <htd:presentationParameter name="first name" type ="xsd:string" > 1317
 htd:getInput("ClaimApprovalRequest")/cust/firstname 1318
 </ htd:presentationParameter > 1319
 <htd:presentationParameter name="lastname" type ="xsd:string" > 1320
 htd:getInput("ClaimApprovalRequest")/cust/lastname 1321
 </ htd:present ationParameter > 1322
 <htd:presentationParameter name="euroAmount" type ="xsd:double" > 1323
 htd:getInput("ClaimApprovalRequest")/amount 1324
 </ htd:presentationParameter > 1325
 </ htd:presentationParameters > 1326
 1327
 <htd:subject xml:lang ="en - US"> 1328
 Approve the insuran ce claim for ú{$euroAmount} on behalf of 1329
 {$firstname} {$lastname} 1330
 </ htd:subject > 1331
 <htd:subject xml:lang ="de - DE"> 1332
 Genehmigung der Schadensforderung ¿ber ú{$euroAmount} f¿r 1333
 {$firstname} {$lastname} 1334
 </ htd:subject > 1335
 1336
 <htd:description xml:lang ="en - US" contentType ="text/plain" > 1337
 Approve this claim following corporate guideline #4711.0815/7 ... 1338
 </ htd:description > 1339
 <htd:description xml:lang ="en - US" contentType ="text/html" > 1340
 <p> 1341
 Approve this claim following corporate guideline 1342
 #4711.0815/7 </ b> 1343
 ... 1344
 </ p> 1345
 </ htd:description > 1346
 <htd:description xml:lang ="de - DE" contentType ="text/plain" > 1347
 Genehmigen Sie diese Schadensforderung entsprechend Richtlinie Nr. 1348
 4711.0815/7 ... 1349
 </ htd:description > 1350
 <htd:description xml :lang ="de - DE" contentType ="text/html" > 1351
 <p> 1352
 Genehmigen Sie diese Schadensforderung entsprechend Richtlinie 1353
 Nr. 4711.0815/7 </ b> 1354
 ... 1355
 </ p> 1356
 </ htd:description > 1357

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 39 of 215

 1358
</ htd:presentationElements > 1359

4.4 Task Possible Outcomes 1360

The <possibleOutcom es> element provides a way for a task to define which values are usable for the 1361

outcome value of a task. Having a separate definition allows a tool for building tasks to provide support 1362
that understands exactly which outcomes are possible for a particular task. 1363

<htd:possibleOutcomes> 1364
 <htd:possibleOutcome name="NCName">+ 1365
 <htd:outcomeName xml:lang ="xsd:language" ?>+ 1366
 Language specific display 1367
 </htd:outcomeName> 1368
 </htd:possibleOutcome> 1369
</htd:possibleOutcomes> 1370

Each <possibleOutcome> element represents one possible outcome. For the typical example of an 1371

expense report approval, the two outcomes might be óApproveô and óRejectô. In addition to the other data 1372
being collected by the rendering in the WS-HumanTask Client, this represents the most important 1373
information about how to proceed in a process that contains multiple tasks. Therefore, a rendering and 1374
client using HTML might choose to show this as a dropdown list, list box with single selection, a set of 1375
submit buttons, or a radio button group. 1376

For each <possibleOutcome> , it is possible to have an <outcomeName> element to specify a per-1377

language display name. It uses xml:lang , a standard XML attribute, to define the language of the 1378

enclosed information. This attribute uses tags according to RFC 1766 (see [RFC1766]). There could be 1379

zero or more <outcomeName> elements. A <possibleOutcome> MUST NOT specify multiple 1380

<outcomeName> elements having the same value for attribute xml:lang . 1381

4.5 Elements for Rendering Tasks 1382

Human tasks and notifications need to be rendered on user interfaces like forms clients, portlets, e-mail 1383
clients, etc. The rendering element provides an extensible mechanism for specifying UI renderings for 1384
human tasks and notifications (task-UI). The element is optional. One or more rendering methods can be 1385
provided in a task definition or a notification definition. A task or notification can be deployed on any WS-1386
HumanTask Processor, irrespective of the fact whether the implementation supports specified rendering 1387
methods or not. The rendering method is identified using a QName. 1388

Unlike for presentation elements, language considerations are opaque for the rendering element because 1389
the rendering applications typically provide multi-language support. Where this is not the case, providers 1390
of certain rendering types can decide to extend the rendering method in order to provide language 1391
information for a given rendering. 1392

The content of the rendering element is not defined by this specification. For example, when used in the 1393
rendering element, XPath extension functions as defined in section 7.2 MAY be evaluated by a WS-1394
HumanTask Processor. 1395

1396

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 40 of 215

 1397

Syntax: 1398
<htd:renderings > 1399
 <htd:rendering type ="QName">+ 1400
 <xsd:any minOccurs ="1" maxOccurs ="1" /> 1401
 </ htd:rendering > 1402
</ htd:renderings > 1403

4.6 Elements for Composite Tasks 1404

A composite task is defined as a <htd:task> element with the <htd:composition> element enclosed 1405

in it. The following are attributes and elements defined for the composition element. 1406

¶ type : This optional attribute specifies the order in which enclosed sub-tasks are executed. If the 1407

value is set to ñsequentialò the sub-tasks MUST be executed in lexical order. Otherwise they 1408
MUST be executed in parallel. The default value for this attribute is ñsequentialò. 1409

¶ instantiation Pattern : This optional attribute specifies the way sub-tasks are instantiated. If 1410

the value is set to ñmanualò the task client triggers instantiation of enclosed sub-tasks. 1411
Otherwise, they are automatically instantiated at the time the composite task itself turns into 1412
status ñinProgressò. The default value for this attribute is ñmanualò. 1413

¶ subtask : This element specifies a task that will be executed as part of the composite task 1414

execution. The composition element MUST enclose at least one subtask element. The 1415

subtask element has the following attributes and elements. The name attribute specifies the 1416

name of the sub-task. The name MUST be unique among the names of all sub-tasks within the 1417

composition element. The htd:task element is used to define the task inline. The 1418

ht d:localTask element is used to reference a task that will be executed as a sub-task. The 1419

htd:localTask element MAY define values for standard overriding attributes: priority and 1420

people assignments. The to Parts element is used to assign values to input message of the 1421

sub-task. The enclosed XPath expression MAY refer to the input message of the composite task 1422

or the output message of other sub-task enclosed in the same composition element. The 1423

part attribute refers to a part of the WSDL message type of the message used in the XPath. 1424

The expressionLanguage attribute specifies the expression language used in the enclosing 1425

elements. The default value for this attribute is urn:ws - ht:sublang: xpath1.0 which 1426

represents the usage of XPath 1.0 within human interactions definition. A WS-HumanTask 1427
Definition that uses expressions MAY override the default expression language for individual 1428
expressions. 1429

When composition is defined on a task, the composition MUST be applied for each of the potential 1430
owners defined in the task's people assignment. 1431

Syntax: 1432
<htd:task> 1433
 ... 1434
 <htd:composition type ="sequential|parallel" 1435
 instantiationPattern ="manual|automatic" > 1436
 <htd:subtask name="NCName">+ 1437
 (<htd:task> 1438
 ... 1439
 </htd:task> 1440
 | <htd:localTas k reference ="QName"> 1441
 s tandard - overriding - elements 1442
 ... 1443
 </htd:localTask> 1444
) 1445
 <htd:toParts> ? 1446

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 41 of 215

 <htd:toPart part ="NCName" expressionLanguage ="anyURI" >+ 1447
 XPath expression 1448
 </htd:toPart> 1449
 </htd:toParts > 1450
 </htd:subtask> 1451
 </htd:composition> 1452
 ... 1453
</htd:task> 1454

Standard-overriding-elements is used in the syntax above as a shortened form of the following list of 1455
elements: 1456

<htd:priority expressionLanguage ="anyURI" ? > 1457
 integer - expression 1458
</ htd:priority > 1459
 1460
<htd:peopleAssignments >? 1461
 <htd:genericHumanRole > 1462
 <htd:from >... </ htd:from > 1463
 </ htd:genericHumanRole > 1464
</ htd:peopleAssignments > 1465

4.7 Elements for People Assignment 1466

The <peopleAssignments> element is used to assign people to a task. For each generic human role, a 1467

people assignment element can be specified. A WS-HumanTask Definition MUST specify a people 1468

assignment for potential owners of a human task. An empty <potentialOwners> element is used to 1469

specify that no potential owner is assigned by the human task's definition but another means is used e.g. 1470
nomination. Specifying people assignments for task stakeholders, task initiators, excluded owners and 1471
business administrators is optional. Human tasks never specify recipients. A WS-HumanTask Definition 1472
MUST NOT specify people assignments for actual owners. 1473

Syntax: 1474
<htd:peopleAssignments > 1475
 <htd:potentialOwners > 1476
 ... 1477
 </ htd:potentialOwners > 1478
 <htd:excludedOwners >? 1479
 ... 1480
 </ htd:excludedOwners > 1481
 <htd:taskInitiator >? 1482
 ... 1483
 </ htd:taskInitiator > 1484
 <htd:taskSta keholders >? 1485
 ... 1486
 </ htd:taskStakeholders > 1487
 <htd:businessAdministrators >? 1488
 ... 1489
 </ htd:businessAdministrators > 1490
</ htd:peopleAssignments > 1491

People assignments can result in a set of values or an empty set. In case people assignment results in an 1492
empty set then the task potentially requires administrative attention. This is out of scope of the 1493
specification, except for people assignments for potential owners (see section 4.10.1 ñNormal processing 1494
of a Human Taskò for more details). 1495

 1496

 1497

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 42 of 215

Example: 1498
<htd:peopleAssignments > 1499
 <htd:potentialOwners > 1500
 <htd:from logicalPeopleGroup ="regionalClerks" > 1501
 <htd:argument name="region" > 1502
 htd:getInput("ClaimApprovalRequest")/region 1503
 </ htd:argument > 1504
 </ htd:from > 1505
 </ htd:potentialOwners > 1506
 1507
 <htd:businessAdministrators > 1508
 <htd:from logicalPeopleGroup ="regionalManager" > 1509
 <htd:argument name="region" > 1510
 htd:getInput("ClaimApprovalRequest")/region 1511
 </ htd:argument > 1512
 </ htd:from > 1513
 </ htd:bu sinessAdministrators > 1514
</ htd:peopleAssignments > 1515

4.7.1 Routing Patterns 1516

Tasks can be assigned to people in sequence and parallel. Elements htd:sequence and 1517

htd:parallel elements in htd:potentialOwners are used to represent such assignments. 1518

4.7.1.1 Parallel Pattern 1519

A task can be assigned to people in parallel using the htd:parallel element. The htd:parallel 1520

element is defined as follows: 1521

¶ The htd:from element defines the parallel potential owners. This can evaluate to multiple 1522

users/groups. 1523

¶ The attribute ótypeô in htd:para llel identifies how parallel assignments are created for the 1524

multiple users/groups returned from htd:from . If type is óallô then an assignment MUST be 1525

created for each user returned by htd:from . If type is ósingleô then an assignment MUST be 1526

created for each htd:from clause (this assignment could have n potential owners). The default 1527

value of type is óallô. 1528

¶ The htd:parallel and htd:sequence elements define nested routing patterns within the 1529

parallel routing pattern. 1530

¶ The htd:completionBehavior defines when the routing pattern completes. The completion 1531

criteria also define how the result is constructed for the parent task when a parallel routing 1532
pattern is complete. 1533

Each parallel assignment MUST result in a separate sub task. Sub tasks created for each parallel 1534

assignment MUST identify the parent task using the htd:parentTaskId . 1535

1536

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 43 of 215

 1537

Syntax: 1538
<htd:potentialOwners > 1539
 <htd:parallel type ="all|single" ?> 1540
 <htd:completionBehavior> ? 1541
 ... 1542
 </htd:completionBehavior> 1543
 <htd:from >* 1544
 ... 1545
 </ htd:from > 1546
 pattern* 1547
 </htd:parallel> 1548
</htd:potentialOwners> 1549

Example: 1550
<htd:peopleAssignments > 1551
 <htd:potentialOwners > 1552
 <htd:parallel type =" all " > 1553
 <htd:from> 1554
 htd:getInput("ClaimApprovalRequest")/claimAgent 1555
 </htd:from> 1556
 </htd:parallel> 1557
 </ htd: potentialOwners > 1558
</htd:peopleAssignments > 1559

4.7.1.2 Sequential Pattern 1560

A task can be assigned to people in sequence using the htd:sequence element. The htd:sequence 1561

is defined as follows: 1562

¶ The htd:from element can evaluate to multiple users/groups. 1563

¶ The attribute ótypeô in htd:sequence identifies how sequential assignments are created for the 1564

multiple users/groups returned from htd:from . If type is óallô an assignment MUST be created 1565

for each user returned by htd:from . If type is ósingleô, an assignment MUST be created for each 1566

htd:from clause (this assignment could have with n potential owners). The default value of type 1567

is óallô. 1568

¶ The htd:parallel and htd:sequence elements define nested routing patterns within the 1569

sequential routing pattern. 1570

¶ The htd:completionBehavior defines when the routing pattern completes. The completion 1571

criteria also define how the result is constructed for the parent task when a sequential routing 1572
pattern is complete. 1573

Sequential routing patterns MUST use a separate sub task for each step in a sequential pattern. Sub 1574
tasks created for each sequential assignment MUST identify the parent task using the 1575

htd:parentTaskId . 1576

1577

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 44 of 215

 1578

Syntax: 1579
<htd:potentialOwners > 1580
 <htd:sequence type ="all|single" ?> 1581
 <htd:completionBehavior> ? 1582
 ... 1583
 </htd:completionBeh avior> 1584
 <htd:from >* 1585
 ... 1586
 </ htd:from > 1587
 pattern* 1588
 </htd:sequence> 1589
</ htd:potentialOwners > 1590

Example: 1591
<htd:peopleAssignments > 1592
 <htd:potentialOwners > 1593
 <htd:sequence type ="all" > 1594
 <htd:from logicalPeopleGroup ="regionalClerks" > 1595
 <htd: argument name="region" > 1596
 htd:getInput("ClaimApprovalRequest")/region 1597
 </ htd:argument > 1598
 </ htd:from > 1599
 <htd:from logicalPeopleGroup ="regionalManager" > 1600
 <htd:argument name="region" > 1601
 htd:getInput("ClaimApprovalRequest")/region 1602
 </ htd:argument > 1603
 </ htd:from > 1604
 </htd:sequence> 1605
 </ htd:potentialOwners > 1606
</htd:peopleAssignments/> 1607

4.8 Completion Behavior 1608

The completion behavior of a task, routing pattern or composite task can be influenced by a specification 1609
of completion conditions and the result construction for tasks, routing patterns, or composite tasks. For 1610

this purpose, the task, routing pattern or composite task contains a htd:completionBehavior 1611

element. 1612

Multiple completion conditions can be specified as nested htd:completion elements. They are 1613

evaluated in lexical order. When one of the specified completion conditions is met then the task is 1614
considered to be completed; in case of routing patterns and composite tasks all remaining running sub 1615
tasks MUST be skipped (i.e., set to the "Obsolete" state) and the associated result construction MUST be 1616
applied. 1617

In case of composite tasks and routing patterns the following applies: At most one default completion 1618
MUST be specified with no completion condition in order to specify the result construction after regular 1619
completion of all sub tasks. If no result construction is applied, e.g. because no ñdefaultò result 1620
construction is specified and none of the specified completion conditions is met, then the parent taskôs 1621
output is not created, i.e., it remains uninitialized. Moreover, note that a completion condition can be 1622
specified without referencing sub task output data, which allows the parent task to be considered 1623
completed even without creating any sub tasks. When output data from sub tasks is referenced by 1624
completion conditions or result constructions, only output data of already finished sub tasks MUST be 1625
considered. 1626

If none of the specified completion conditions is met then the state of the task or the parent task remains 1627
unchanged. 1628

 1629

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 45 of 215

<htd:completionBehavior completionAction ="manual|automatic" ?>? 1630
 <htd:completion name="NCName">* 1631
 <htd:condition ... > 1632
 ... 1633
 </htd:condition> 1634
 <htd:result> ? 1635
 ... 1636
 <htd:result> 1637
 </htd:completion> 1638
 <htd:defaultCompl etion> ? 1639
 <htd:result> 1640
 ... 1641
 <htd:result> 1642
 </htd:defaultCompletion> 1643
</htd:completionBehavior> 1644

The completionBehavior element has optional attribute completionAction . This optional 1645

attribute specifies how the task, routing pattern, or composite task is completed. If the value is set to 1646
"manual" the task or parent task MUST be completed explicitly by the actual owner as soon as the 1647
completion conditions evaluate to true. If the value is set to "automatic" the task or parent task MUST be 1648
set to complete as soon as the completion conditions evaluate to true. For routing patterns, the 1649

completionAction attribute MUST have value "automatic". The default value for this attribute is 1650

ñautomaticò. 1651

If completionBehavior is not specified, the default behavior is that of a completionBehavior with 1652

completionCondition is "true" and a completionA ction of "manual" for simple and composite 1653

tasks, and "automatic" for routing patterns. 1654

4.8.1 Completion Conditions 1655

A completion condition defines when a task or a set of sub tasks associated with the parent task is 1656
considered completed. It is specified Boolean expression which can refer to input data of the task, the 1657
parent task or its sub tasks, output data produced by already finished sub tasks, or other data obtained 1658
from WS-HumanTask API calls (e.g. the number of sub tasks), or functions that test that some designated 1659
amount of time has passed. 1660

The completion condition MUST be defined using an htd:condition element. 1661

<htd:condition expressionLanguage ="anyURI" ?> 1662
 boolean expre ssion 1663
</htd:condition> 1664

Within the Boolean expression of a completion condition, aggregation functions can be used to evaluate 1665
output data produced by the already finished sub tasks of the parent task. 1666

If an error (e.g. division by zero) occurs during the condition evaluation then the condition MUST be 1667
considered to have evaluated to ñfalseò. 1668

The time functions that are available are defined as follows: 1669

¶ boolean htd:waitFor(string) 1670

o The parameter is an XPath expression evaluating to a string conforming to the definition 1671

of the XML Schema type duration 1672

o The return value is true after the specified duration has elapsed, otherwise false 1673

¶ boolean htd:waitUntil(string) 1674

o The parameter is an XPath expression evaluating to a string conforming to the definition 1675

of the XML Schema type dateTime 1676

o The return value is true after the specified absolute time has passed, otherwise false . 1677

Completion conditions of a task without subtasks MUST use only time functions. 1678

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 46 of 215

4.8.1.1 Evaluating the Completion Condition 1679

The time functions in the completion condition are be evaluated with respect to the beginning of execution 1680
of the task or parent task on which the completion is defined. To achieve this, the evaluation of the 1681

htd:waitFor and htd:waitUntil calls within the condition are treated differently from the rest of the 1682

expression. When the containing task or parent task is created, the actual parameter expression for any 1683

htd:waitFor and htd:waitUntil calls MUST be evaluated and the completion condition should be 1684

rewritten to replace these calls with only htd:waitUntil calls with constant parameters. The durations 1685

calculated for any htd:waitFor calls MUST be converted into absolute times and rewritten as 1686

htd:waitUntil calls. The result of these replacements is called the preprocessed completion 1687

condition. 1688

 1689

For the parent task, the preprocessed completion condition MUST be evaluated at the following times: 1690

¶ Before starting the first subtask (it may be complete before it starts) 1691

¶ Whenever a subtask completes 1692

¶ Whenever a duration specified in a htd:waitF or call has elapsed 1693

¶ Whenever an absolute time specified in a htd:waitUntil call is passed. 1694

For tasks, the preprocessed completion condition MUST be evaluated at the following times: 1695

¶ Before starting the task (it may be complete before it starts) 1696

¶ Whenever a duration specified in a htd:waitFor call has elapsed 1697

¶ Whenever an absolute time specified in a htd:waitUntil call is passed. 1698

Example: 1699

The first completion condition may be met even without starting sub tasks. When both parts of the second 1700
completion condition are met, that is, 7 days have expired and more than half of the finished sub tasks 1701
have an outcome of ñRejectedò, then the parallel routing pattern is considered completed. 1702

<htd:parallel > 1703
 ... 1704
 <htd:completionBehavior> 1705
 <htd:completion> 1706
 <ht d:condition> 1707
 htd:getInput("ClaimApprovalRequest")/amount < 1000 1708
 </htd:condition> 1709
 <htd:result > ... </ htd:result > 1710
 </htd:completion> 1711
 <htd:completion> 1712
 <htd:condition> 1713
 (htd:getCountOfSubtasksWithOutcome("Rejected") / 1714
 htd:getCountOfSubtasks() > 0.5) 1715
 and htd:waitFor("P7D") 1716
 </htd:condition> 1717
 <htd:result > ... </ htd:result > 1718
 </htd:completion> 1719
 </htd:completionBehavior> 1720
 ... 1721
</htd:parallel> 1722

 1723

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 47 of 215

4.8.2 Result Construction from Parallel Subtasks 1724

When multiple sub tasks are created in order let several people work on their own sub task in parallel 1725
then the outputs of these sub tasks sometimes need to be combined for the creation of the parent taskôs 1726
output. 1727

If all sub tasks have the same interface definition (as in routing patterns) then the result construction can 1728
be defined in a declarative way using aggregation functions. Alternatively, the result may be created using 1729
explicit assignments. 1730

The result construction MUST be defined as htd:result element, containing one or more 1731

htd:aggregate or htd:copy elements, executed in the order in which they appear in the task 1732

definition. 1733

<htd:result > 1734
 (1735
 <htd:aggregate ... /> 1736
 | 1737
 <htd:copy> ... </htd:copy> 1738
)+ 1739
</ htd:result > 1740

4.8.2.1 Declarative Result Aggregation 1741

An htd:aggregate element describes the result aggregation for a leaf element of the parent taskôs 1742

output document. In most cases, this approach is only meaningful for routing patterns with identical sub 1743
task interfaces. Note that the construction of (complex-typed) non-leaf elements is out of scope of the 1744
declarative result aggregation. 1745

<htd:aggregate part ="NCName"? 1746
 location ="query" ? 1747
 condition ="bool - expr" ? 1748
 function ="function - call" /> + 1749

The htd:aggregate element is defined as follows: 1750

¶ The optional part attribute MUST contain the name of a WSDL part. The part attribute MUST be 1751

specified when the task interface is defined using a WSDL message with more than one WSDL 1752
part. 1753

¶ The optional location attribute MUST contain a query pointing to the location of a leaf element 1754

of the tasksô output documents: 1755

o For each parallel sub task, this is the location of exactly one element of the sub taskôs 1756
output document that is processed by the aggregation function. Each sub tasksô output 1757
element is (conditionally) added to a node-set passed as parameter to the aggregation 1758
function. 1759

o For the parent task, this is the element created in the taskôs output document that is the 1760
computed return value of the aggregation function. 1761

¶ The optional co ndition attribute MUST contain a Boolean expression evaluated on each sub 1762

taskôs output document. If the expression evaluates to true then the sub taskôs output element 1763

identified by location is added to the node-set passed to the aggregation function. 1764

¶ The mandatory function attribute contains the name of the aggregation function (QName; see 1765

a list of supported aggregation functions in section 7.2) and optional arguments, in the following 1766
form: 1767
 FunctionName '(' (Argument (',' Argument)*)? ')' 1768

Important: 1769

o The first parameter of each aggregation function is the node-set of sub taskôs output 1770
elements to be aggregated. This parameter is inserted implicitly and MUST NOT be 1771

specified within the function attribute. 1772

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 48 of 215

o Within the function attribute, function arguments MUST be specified only for additional 1773

parameters defined for an aggregation function. 1774

If a declarative result aggregation is applied, it is still possible that no values can be provided for the 1775
aggregation of a particular output field, for example, if no subtask has set a value to an optional field (by 1776

omission or by an explicit nil value). 1777

In this case, the following rules determine how the aggregated output field of the parent task is set. 1778

¶ Rule (1): If the result value is optional (element defined with minOccurs="0" or attribute defined 1779

with use="optional") then the corresponding element or attribute in the parent task output 1780

MUST be omitted. 1781

¶ Rule (2): If rule (1) does not apply and a default value is provided (element or attribute defined 1782

with default="{value}") then the parent task output element or attribute MUST be explicitly 1783

set to this default value. 1784

¶ Rule (3): If rules (1)-(2) do not apply and the result value is a nillable element (element defined 1785

with nil lable="true") then the parent task output element MUST be set to a nil value (<a 1786

xsi:nil="true"/>). 1787

¶ Rule (4): If rules (1)-(3) do not apply, that is, the result is mandatory (element defined with 1788

minOccurs="1" or attribute defined with use="required") but a value cannot be supplied, 1789

then a standard fault htd:aggregationFailure MUST be thrown to indicate a non-1790

recoverable error. 1791

Example: 1792

Consider the following output document used in a parallel routing pattern: 1793

<element name="Award" type ="tns:tAward" /> 1794
<complexType name="tAward" > 1795
 <sequence> 1796
 <element name="AwardRecommended" type ="xsd:string" /> 1797
 <element name="AwardDetails" type ="tns:tAwardDetails" /> 1798
 </sequence> 1799
</complexType> 1800
<complexType name="tAwardDetails" > 1801
 <sequence> 1802
 <element name="A mount" type ="xsd:integer" /> 1803
 <element name="Appraisal" type ="xsd:string" /> 1804
 </sequence> 1805
</complexType> 1806

A possible result aggregation could then look like this. The first aggregation determines the most frequent 1807
occurrence of an award recommendation. The second aggregation calculates the average award amount 1808
for sub tasks with an award recommendation of óyesô. The third aggregation creates a comma-separated 1809
concatenation of all sub taskôs appraisals. 1810

<htd:parallel ... > 1811
 ... 1812
 <htd:completionBehavior> 1813
 <htd:completion> 1814
 <htd:condition> ... </htd:condition> 1815
 <htd:result > 1816
 <htd:aggregate location ="/Award/AwardRecommended" 1817
 function ="htd:mostFrequentOccurence()" /> 1818
 <htd:aggregate location ="/Award/AwardDetai ls/Amount" 1819
 condition ="/Award/AwardRecommended='yes'" 1820
 function ="htd:avg()" /> 1821
 <htd:aggregate location ="/Award/AwardDetails/Appraisal" 1822
 function ="htd:concatWithDelimiter(',')" /> 1823
 </ htd:result > 1824

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 49 of 215

 </htd:completion> 1825
 </htd:completionBehavior> 1826
</ htd:parallel > 1827

4.8.2.2 Explicit Result Assignment 1828

An htd:copy element describes the explicit assignment to an element of the parent taskôs output 1829

document. 1830

<htd:copy >+ 1831
 <htd:from expressionLanguag e="anyURI" ?> 1832
 expression 1833
 </ htd:from > 1834
 <htd:to part ="NCName"? queryLanguage ="anyURI" ?> 1835
 query 1836
 </htd:to> 1837
</ htd:copy > 1838

The htd:copy element is defined as follows: 1839

¶ The mandatory htd:from element MUST contain an expression used to calculate the result 1840

value. The expression can make use of WS-HumanTask aggregation functions. 1841

¶ The mandatory htd:to element MUST contain a query pointing to the location of an element of 1842

the tasksô output documents. This is the element created in the taskôs output document. 1843

Example 1: 1844

Consider the following output document used in a parallel routing pattern: 1845

<element name="Order" type ="tns:tOrder" /> 1846
<complexType name="tOrder" > 1847
 <sequence> 1848
 <element name="Item" type ="tns:tItem" maxOccurs ="unbounded" /> 1849
 <element name=" TotalPrice" type ="xsd:integer" /> 1850
 </sequence> 1851
</complexType> 1852
<complexType name="tItem" > 1853
 <sequence> 1854
 ... 1855
 </sequence> 1856
</complexType> 1857

A possible result aggregation could then look like this. All sub task order item lists are concatenated to 1858
one parent task order item list. The total price is calculated using an aggregation function. 1859

<htd:parallel > 1860
 ... 1861
 <htd:completionBehavior> 1862
 <htd:completion> 1863
 <htd:condition> ... </htd:condition> 1864
 <htd:result> 1865
 <htd:copy > 1866
 <htd:from > 1867
 htd:getSubtaskOutputs("orderResponse", "/Order/Item") 1868
 </ htd:from > 1869
 <htd:to >/Order/Item </ htd:to > 1870
 </ htd:copy > 1871
 <htd:copy > 1872
 <htd:from > 1873
 htd:sum(htd:getSubtaskOutputs("orderResponse", 1874
 "/Order/TotalPrice")) 1875
 </ htd:from > 1876

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 50 of 215

 <htd:to >/Order/TotalPrice </ htd:to > 1877
 </ htd:copy > 1878
 </ htd:result > 1879
 </htd:completion> 1880
 </htd:completionBehavior> 1881
</ htd:parallel > 1882

Example 2: 1883

Output data from heterogeneous sub tasks is assigned into the parent taskôs output. The complete 1884
complex-typed sub task output documents are copied into child elements of the parent task output 1885
document. 1886

<htd:task name="bookTrip" > 1887
 ... produces itinerary ... 1888
 1889
 <htd:com position type ="parallel" ...> 1890
 <htd:subtask name="bookHotel" > 1891
 <htd:task> 1892
 ... produces hotelReservation ... 1893
 </htd:task> 1894
 </htd:subtask> 1895
 <htd:subtask name="bookFlight" > 1896
 <htd:task> 1897
 ... produces flightReservation ... 1898
 </htd:task> 1899
 </htd:subtask> 1900
 </htd:composition> 1901
 ... 1902
 <htd:completionBehavior> 1903
 <htd:defaultCompletion> 1904
 <htd:result > 1905
 <htd:copy > 1906
 <htd:from > 1907
 htd:getSubtaskOutput("bookHotel", 1908
 "bookHotelResponse", 1909
 "/hotelReservation") 1910
 </ htd:from > 1911
 <htd:to >/itinerary/hotelReservation </ htd:to > 1912
 </ htd:copy > 1913
 <htd:copy > 1914
 <htd:from > 1915
 htd:getSubtaskOutput("bookFl ight", 1916
 "bookFlightResponse", 1917
 "/flightReservation") 1918
 </ htd:from > 1919
 <htd:to >/itinerary/flightReservation </ htd:to > 1920
 </ htd:copy> 1921
 </htd:result> 1922
 </htd:defaultCo mpletion> 1923
 </htd:completionBehavior> 1924
</htd:task> 1925

 1926

 1927

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 51 of 215

4.9 Elements for Handling Timeouts and Escalations 1928

Timeouts and escalations allow the specification of a date or time before which the task or sub task has to 1929
reach a specific state. If the timeout occurs a set of actions is performed as the response. The state of the 1930
task is not changed. Several deadlines are specified which differ in the point when the timer clock starts 1931
and the state which has to be reached with the given duration or by the given date. They are: 1932

¶ Start deadline: Specifies the time until the task has to start, i.e. it has to reach state InProgress. It 1933

is defined as either the period of time or the point in time until the task has to reach state 1934

InProgress. Since expressions are allowed, durations and deadlines can be calculated at runtime, 1935

which for example enables custom calendar integration. The time starts to be measured from the 1936

time at which the task enters the state Created. If the task does not reach state InProgress by the 1937

deadline an escalation action or a set of escalation actions is performed. Once the task is started, 1938

the timer becomes obsolete. 1939

¶ Completion deadline: Specifies the due time of the task. It is defined as either the period of time 1940

until the task gets due or the point in time when the task gets due. The time starts to be measured 1941

from the time at which the task enters the state Created. If the task does not reach one of the final 1942

states (Completed, Failed, Error, Exited, Obsolete) by the deadline an escalation action or a set 1943

of escalation actions is performed. 1944

The element <deadlines> is used to include the definition of all deadlines within the task definition. It is 1945

optional. If present then the WS-HumanTask Definition MUST specify at least one deadline. Deadlines 1946
defined in ad-hoc sub tasks created at runtime MUST NOT contradict the deadlines of their parent task. 1947
The value of the name attribute MUST be unique for all deadline specifications within a task definition. 1948

Syntax: 1949
<htd:deadlines > 1950
 1951
 <htd:startDeadline name="NCName">* 1952
 1953
 <htd:documentation xml:lang ="xsd:language" ? >* 1954
 t ext 1955
 </ htd:documentation > 1956
 1957
 (<htd:for expressionLanguage ="anyURI" ? > 1958
 duration - expression 1959
 </ htd:for > 1960
 | <htd:until expressionLanguage ="anyURI" ? > 1961
 deadline - ex pression 1962
 </ htd:until > 1963
) 1964
 1965
 <htd:escalation name="NCName">* 1966
 ... 1967
 </ htd:escalation > 1968
 1969
 </ htd:startDeadline > 1970
 1971
 <htd:completionDeadline name="NCName">* 1972
 ... 1973
 </ htd:completionDeadline > 1974
 1975
</ htd:deadlines > 1976

The language used in expressions is specified using the expressionLanguage attribute. This attribute 1977

is optional. If not specified, the default language as inherited from the closest enclosing element that 1978
specifies the attribute is used. 1979

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 52 of 215

For all deadlines if a status is not reached within a certain time then an escalation action, specified using 1980

element <escalation> , can be triggered. The <escalation> element is defined in the section below. 1981

When the task reaches a final state (Completed, Failed, Error, Exited, Obsolete) all deadlines are deleted. 1982

Escalations are triggered if 1983

1. The associated point in time is reached, or duration has elapsed, and 1984

2. The associated condition (if any) evaluates to true 1985

Escalations use notifications to inform people about the status of the task. Optionally, a task might be 1986
reassigned to some other person or group as part of the escalation. Notifications are explained in more 1987
detail in section 6 ñNotificationsò. For an escalation, a WS-HumanTask Definition MUST specify exactly 1988
one escalation action. 1989

When defining escalations, a notification can be either referred to, or defined inline. 1990

¶ A notification defined in the <humanInteractions> root element or imported from a different 1991

namespace can be referenced by specifying its QName in the reference attribute of a 1992

<localNotification> element. When referring to a notification, the priority and the people 1993

assignments of the original notification definition MAY be overridden using the elements 1994

<priority> and <peopleA ssignments> contained in the <localNotification> element. 1995

¶ An inlined notification is defined by a <notification> element. 1996

Notifications used in escalations can use the same type of input data as the surrounding task or sub task, 1997
or different type of data. If the same type of data is used then the input message of the task or sub task is 1998

passed to the notification implicitly. If not, then the <toPart> elements are used to assign appropriate 1999

data to the notification, i.e. to explicitly create a multi-part WSDL message from the data. The part 2000

attribute refers to a part of the WSDL message. The expressionLanguage attribute specifies the 2001

language used in the expression. The attribute is optional. If not specified, the default language as 2002
inherited from the closest enclosing element that specifies the attribute is used. 2003

A WS-HumanTask Definition MUST specify a <toPart> element for every part in the WSDL message 2004

definition because parts not explicitly represented by <toPart> elements would result in uninitialized parts 2005

in the target WSDL message. The order in which parts are specified is not relevant. If multiple <toPart> 2006

elements are present, a WS-HumanTask Processor MUST execute them in an ñall or nothingò manner. If 2007
any of the <toPart>s fails, the escalation action will not be performed and the execution of the task is not 2008
affected. 2009

Reassignments are used to replace the potential owners of a task when an escalation is triggered. The 2010

<reassignment> element is used to specify reassignment. If present then a WS-HumanTask Definition 2011

MUST specify potential owners. A reassignment triggered by a sub task escalation MUST apply to the 2012
sub task only. A reassignment MAY comprise of a complex people assignment using Routing Patterns. 2013

In the case where several reassignment escalations are triggered, the first reassignment (lexical order) 2014
MUST be considered for execution by the WS-HumanTask Processor. The task is set to state Ready after 2015
reassignment. Reassignments and notifications are performed in the lexical order. 2016

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 53 of 215

 2017

A task MAY have multiple start deadlines and completion deadlines associated with it. Each such 2018
deadline encompasses escalation actions each of which MAY send notifications to certain people. The 2019
corresponding set of people MAY overlap. 2020

As an example, the figure depicts a task that has been created at time T1. Its two start deadlines would 2021
be missed at time T2 and T3, respectively. The associated escalations whose conditions evaluate to 2022
ñtrueò are triggered. Both, the escalations Esc-1 to Esc-n as well as escalations Esc-a to Esc-z can 2023
involve an overlapping set of people. The completion deadline would be missed at time T4. 2024

Syntax: 2025
<htd:deadlines > 2026
 2027
 <htd:startDeadline name="NCName">* 2028
 ... 2029
 <htd:escalation name="NCName">* 2030
 2031
 <htd:conditi on expressionLanguage ="anyURI" ?>? 2032
 boolean - expression 2033
 </ htd:condition > 2034
 2035
 <htd:toParts >? 2036
 <htd:toPart part ="NCName" 2037
 expressionLanguage ="anyURI" ?>+ 2038
 expression 2039
 </ htd:toPa rt > 2040
 </ htd:toParts > 2041
 2042
 <! -- notification specified by reference -- > 2043
 <htd:localNotification reference ="QName">? 2044
 <htd:priority expressionLanguage ="anyURI" ?>? 2045
 integer - expression 2046
 </ htd:priority > 2047
 <htd:peop leAssignments >? 2048
 <htd:recipients > 2049
 ... 2050
 </ htd:recipients > 2051
 </ htd:peopleAssignments > 2052

Esc-1

Esc-n

é

Esc-a

Esc-z

é

Esc-a

Esc-z

é

é

Start

Deadline 1

Start

Deadline 2

Completion

Deadline

T1 T2 T3 T4

Con-1

Con-n

Con-a

Con-z

Con-a

Con-z

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 54 of 215

 2053
 </ htd:localNotification > 2054
 2055
 <! -- notification specified inline -- > 2056
 <htd:notification name="NCName">? 2057
 ... 2058
 </ htd:notification > 2059
 2060
 <htd:reassignment >? 2061
 2062
 <htd:potentialOwners > 2063
 ... 2064
 </ htd:potentialOwners > 2065
 2066
 </ htd:reassignment > 2067
 2068
 </ htd:escalation > 2069
 2070
 </ htd:startDeadline > 2071
 2072
 <htd:completionDea dline name="NCName">* 2073
 ... 2074
 </ htd:completionDeadline > 2075
 2076
</ htd:deadlines > 2077

2078

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 55 of 215

Example: 2079

The following example shows the specification of a start deadline with escalations. At runtime, the 2080
following picture depicts the result of what is specified in the example: 2081

The human task is created at T1. If it has not been started, i.e., no person is working on it until T2, then 2082
the escalation ñreminderò is triggered that notifies the potential owners of the task that work is waiting for 2083
them. In case the task has high priority then at the same time the regional manager is informed. If the 2084
task amount is greater than or equal 10000 the task is reassigned to Alan. 2085

In case that task has been started before T2 was reached, then the start deadline is deactivated, no 2086
escalation occurs. 2087

<htd:startDeadline name="sendNotifications" > 2088
 <htd:documentation xml:lang ="en - US"> 2089
 If not started within 3 days, - escalation notifications are sent 2090
 if the claimed amount is less than 10000 - to the task's potential 2091
 owners t o remind them or their todo - to the regional manager, if 2092
 this approval is of high priority (0,1, or 2) - the task is 2093
 reassigned to Alan if the claimed amount is greater than or equal 2094
 10000 2095
 </ htd:documentation > 2096
 <htd:for >P3D</ htd:for > 2097
 <htd :escalation name="reminder" > 2098
 2099
 <htd:condition > 2100
 <![CDATA[2101
 htd:getInput("ClaimApprovalRequest")/amount < 10000 2102
]]> 2103
 </ htd:condition > 2104
 2105
 <htd:toParts > 2106
 <htd:toPart name="firstname" > 2107
 htd:getInput("ClaimA pprovalRequest","ApproveClaim") /firstname 2108
 </ htd:toPart > 2109
 <htd:toPart name="lastname" > 2110
 htd:getInput("ClaimA pprovalRequest","ApproveClaim") /lastname 2111
 </ htd:toPart > 2112
 </ htd:toParts > 2113
 2114

Escalation:

ñreminderò

Escalation:

ñhighPrioò

Start Deadline

T1 T2

prio <= 2

3 Days

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 56 of 215

 <htd:localNotification reference ="tns:Cl aimApprovalReminder" > 2115
 2116
 <htd:documentation xml:lang ="en - US"> 2117
 Reuse the predefined notification "ClaimApprovalReminder". 2118
 Overwrite the recipients with the task's potential owners. 2119
 </ htd:documentation > 2120
 2121
 <htd:peopleAssignments > 2122
 <htd:recipients > 2123
 <htd:from >htd:getPotentialOwners("ApproveClaim") </ htd:from > 2124
 </ htd:recipients > 2125
 </ htd:peopleAssignments > 2126
 2127
 </ htd:localNotification > 2128
 2129
 </ htd:escalation > 2130
 2131
 <htd:escalation name="highPrio" > 2132
 2133
 <htd:condi tion > 2134
 <![CDATA[2135
 (htd:getInput("ClaimApprovalRequest")/amount < 10000 2136
 && htd:getInput("ClaimApprovalRequest")/prio <= 2) 2137
]]> 2138
 </ htd:condition > 2139
 2140
 <! -- task input implicitly passed to the notification -- > 2141
 2142
 <htd:notification name="ClaimApprovalOverdue" > 2143
 <htd:documentation xml:lang ="en - US"> 2144
 An inline defined notification using the approval data as its 2145
 input. 2146
 </ htd:documentation > 2147
 2148
 <htd:interface portType ="tns:ClaimsHandl ingPT" 2149
 operation ="escalate" /> 2150
 2151
 <htd:peopleAssignments > 2152
 <htd:recipients > 2153
 <htd:from logicalPeopleGroup ="regionalManager" > 2154
 <htd:argument name="region" > 2155
 htd:getInput("ClaimApprovalRequest")/region 2156
 </ htd:argument > 2157
 </ htd:from > 2158
 </ htd:recipients > 2159
 </ htd:peopleAssignments > 2160
 2161
 <htd:presentationElements > 2162
 <htd:name xml:lang ="en - US">Claim approval overdue </ htd:name > 2163
 <htd:name xml:lang ="de - DE"> 2164
 Über fällige Schadensforderungsgenehmigung 2165
 </ htd:name > 2166
 </ htd:presentationElements > 2167
 2168
 </ htd:notification > 2169
 2170
 </ htd:escalation > 2171
 2172

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 57 of 215

 <htd:escalation name="highAmountReassign" > 2173
 2174
 <htd:condition > 2175
 <![CDATA[2176
 htd:getInput("Claim ApprovalRequest")/amount >= 10000 2177
]]> 2178
 </ htd:condition > 2179
 2180
 <htd:reassignment > 2181
 <htd:documentation > 2182
 Reassign task to Alan if amount is greater than or equal 2183
 10000. 2184
 </ htd:documentation > 2185
 2186
 <htd:potentialOwner s> 2187
 <htd:from > 2188
 <htd:literal > 2189
 <htt:organizationalEntity > 2190
 <htt:user >Alan </ htt:user > 2191
 </ htt:organizationalEntity > 2192
 </ htd:literal > 2193
 </ htd:from > 2194
 </ htd:potentialOwners > 2195
 2196
 </ htd:reassi gnment > 2197
 2198
 </ htd:escalation > 2199
 2200
</ htd:startDeadline > 2201

All timeouts and escalations apply to sub tasks also. If htd:escalation is triggered for a sub task, then any 2202
htd:reassignment MUST be applied only to that. 2203

2204

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 58 of 215

 2205

4.10 Human Task Behavior and State Transitions 2206

Human tasks can have a number of different states and substates. The state diagram for human tasks 2207
below shows the different states and the transitions between them. 2208

Created

Inactive

Closed

Reserved

Ready

InProgress

Completed Failed Error Exited Obsolete

Suspended

Ready

Reserved

InProgress

(activation ||

nomination performed) &&

single potential owner

[Task created, coord context obtained]

Register task with coordinator

(activation || nomination performed) &&

(multiple potential owners || work queue)

claim || delegate

startstart

release || forward

stop || delegate

release || forward

delegate

[Completion with response]

Send result

[Completion with fault response]

Send application fault

forward

[Non-recoverable error]

Send "WS-HT fault"

[WS-HT exit]

Exit task

[Skip && isSkippable]

Send ĂWS-HT skippedñ

suspend

suspend

suspend

resume

resume

resume

No actual owner required

 2209

4.10.1 Normal processing of a Human Task 2210

Upon creation, a task goes into its initial state Created. Task creation starts with the initialization of its 2211
properties in the following order: 2212

1. Input message 2213

2. Priority 2214

3. Generic human roles (such as excluded owners, potential owners and business administrators) 2215

are made available in the lexical order of their definition in the people assignment definition with 2216

the constraint that excluded owners are taken into account when evaluating the potential owners. 2217

4. All other properties are evaluated after these properties in an implementation dependent order. 2218

Task creation succeeds irrespective of whether the people assignment returns a set of values or an 2219
empty set. People queries that cannot be executed successfully are treated as if they were returning an 2220
empty set. 2221

If potential owners were not assigned automatically during task creation then they MUST be assigned 2222
explicitly using nomination, which is performed by the taskôs business administrator. The result of 2223
evaluating potential owners removes the excluded owners from results. The task remains in the state 2224
Created until it is activated (i.e., an activation timer has been specified) and has potential owners. 2225

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 59 of 215

When the task has a single potential owner, it transitions into the Reserved state, indicating that it is 2226
assigned to a single actual owner. Otherwise (i.e., when it has multiple potential owners or is assigned to 2227
a work queue), it transitions into the Ready state, indicating that it can be claimed by one of its potential 2228
owners. Once a potential owner claims the task, it transitions into the Reserved state, making that 2229

potential owner the actual owner. 2230

Once work is started on a task that is in state Ready or Reserved, it goes into the InProgress state, 2231
indicating that it is being worked on ï if the transition is from Ready, the user starting the work becomes 2232

its actual owner. 2233

On successful completion of the work, the task transitions into the Completed final state. On unsuccessful 2234
completion of the work (i.e., with an exception), the task transitions into the Failed final state. 2235

The lifecycle of sub tasks is the same as that of the main task. 2236

For human tasks that have subtasks two different cases exist, with different implications: 2237

1. Tasks with subtasks where an actual owner is required 2238

2. Tasks with subtasks where no actual owner is required 2239

The first case has the sub-case where a potential owner has been modeled on the primary task and 2240
subtasks have been modeled that are activated either manually or automatically. Another sub-case of the 2241
first case is the one where no potential owner has been modeled and thus nomination has to occur. In all 2242
cases there is an actual owner eventually and the primary task goes through the state transitions from 2243
Created to Ready to Reserved to InProgress, etc. 2244

In the second case where no actual owner is desired the human task (the primary task) directly transitions 2245
from state Created to InProgress. Subtasks are always instantiated automatically. 2246

4.10.2 Releasing a Human Task 2247

The current actual owner of a human task can release a task to again make it available for all potential 2248
owners. A task can be released from active states that have an actual owner (Reserved, InProgress), 2249
transitioning it into the Ready state. Business data associated with the task (intermediate result data, ad-2250

hoc attachments and comments) is kept. 2251

A task that is currently InProgress can be stopped by the actual owner, transitioning it into state 2252
Reserved. Business data associated with the task as well as its actual owner is kept. 2253

4.10.3 Delegating or Forwarding a Human Task 2254

Taskôs potential owners, actual owner or business administrator can delegate a task to another user, 2255
making that user the actual owner of the task, and also adding her to the list of potential owners in case 2256
she is not, yet. A task can be delegated when it is in an active state (Ready, Reserved, InProgress), and 2257
transitions the task into the Reserved state. Business data associated with the task is kept. 2258

Similarly, taskôs potential owners, actual owner or business administrator can forward an active task to 2259
another person or a set of people, replacing himself by those people in the list of potential owners. 2260
Potential owners can only forward tasks that are in the Ready state. Forwarding is possible if the task has 2261
a set of individually assigned potential owners, not if its potential owners are assigned using one or many 2262
groups. If the task is in the Reserved or InProgress state then the task is implicitly released first, that is, 2263
the task is transitioned into the Ready state. Business data associated with the task is kept. The user 2264
performing the forward is removed from the set of potential owners of the task, and the forwardee is 2265
added to the set of potential owners. 2266

4.10.4 Sub Task Event Propagation 2267

Task state transitions may be caused by the invocation of API operations (see section 7 ñProgramming 2268
Interfacesò) or by events (see section 8 ñInteroperable Protocol for Advanced Interaction with Human 2269
Tasksò). 2270

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 60 of 215

If a task has sub tasks then some state transitions are propagated to these sub tasks. Conversely, if a 2271
task has a parent task then some state transitions are propagated to that parent task. 2272

The following table defines how task state transitions MUST be propagated to sub tasks and to parent 2273
tasks. 2274

Task Event Effect on Sub Tasks
(downward propagation)

Effect on Parent Task
(upward propagation)

suspend operation invoked suspend (ignored if not
applicable, e.g., if the sub task is
already suspended or in a final
state) ï a suspend event is
propagated recursively if the sub
task is not in a final state

none

suspend event received (from a
parent task)

resume operation invoked resume (ignored if not applicable,
e.g., if the sub task is not
suspended or in a final state) ï a
resume event is propagated
recursively if the sub task is not
in a final state

none

resume event received (from a
parent task)

complete operation invoked exit (ignored if the sub task is in a
final state)

completion may be initiated (see
section 4.7 ñCompletion
Behaviorò)

complete event received

fail operation invoked exit (ignored if the sub task is in a
final state)

none (if ñmanualò activation
pattern), otherwise fail fail event received

non-recoverable error event
received

exit event received exit (ignored if the sub task is in a
final state)

none

skip operation invoked (and the
task is ñskipableò)

skip completion may be initiated (see
section 4.7 ñCompletion
Behaviorò)

All other task state transitions MUST NOT affect sub tasks or a parent task. 2275

4.11 History of a Human Task 2276

Task lifecycle state changes and data changes are maintained as a history of task events. Task events 2277
contain the following data: 2278

Task Event 2279

¶ event id 2280

¶ event time 2281

¶ task id 2282

¶ user (principal) that caused the state change 2283

¶ event type (e.g. claim task). 2284

¶ event data (e.g. data used in setOutput) and fault name (event was setFault) 2285

¶ startOwner - the actual owner before the event. 2286

¶ endOwner - the actual owner after the event. 2287

¶ task status at the end of the event 2288

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 61 of 215

For example, if the User1 delegated a task to User2, then the user and startOwner would be User1, 2289
endOwner would be User2. The event data would be the <htt:organizationalEntity/> element used in the 2290
WSHT delegate operation. 2291

The system generated attribute 'event id' MUST be unique on a per task basis. 2292

4.11.1 Task Event Types and Data 2293

Some task events (e.g. setOutput) may have data associated with event and others may not (e.g. claim). 2294
The following table lists the event types and the data. 2295

Actions/Operations resulting in task events

Event Type Owner
Change

State
Change

Data Value

created maybe yes

claim yes yes

start maybe yes

stop yes

release yes yes

suspend yes

suspendUntil yes <htt:pointOfTime>2020 - 12- 12T12:12:12Z

</htt:pointOfTime>

or

<htt:timePeriod>PT1H</htt:timePeriod>

resume yes

complete yes <htt:taskData>

 <ns:someData xmlns:ns="urn:foo"/>

</htt:taskData>

remove

fail yes <htt:fail>

 <htt:identifier>urn:b4p:1</htt:identifier>

 <htt:faultName>fault1</htt:faultName>

 <htt:faultData>

 <someFaultData xmlns="urn:foo"/>

 </htt:faultData>

</htt:fail>

setPriority
<htt:priority>500000</htt:priority>

addAttachment
<htt:addAttachment>

 <htt:identifier>urn:b4p:1</htt:identifier>

 <htt:name>myAttachment</htt:name>

 <htt:accessType>MIME</htt:accessType>

<htt:contentType>text/plain</htt:contentType>

 <htt:attachment/>

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 62 of 215

Actions/Operations resulting in task events

Event Type Owner
Change

State
Change

Data Value

</htt:addAttachment>

deleteAttachme
nt

<htt:identifier> urn:b4p:1</htt:identifier>

addComment
<htt:text>text for comment</htt:text>

updateComme
nt

<htt:text>new text for comment</htt:text>

deleteComment
<htt:text>deleted comment text</htt:text>

skip yes

forward maybe maybe <htt:organizationalEntity>

 <htt:user>user5</htt:user>

 <htt:user>user6</htt:user>

</htt:organizationalEntity>

delegate yes maybe <htt:organizationalEntity>

 <htt:user>user5</htt:user>

</htt:organizationalEntity>

setOutput
<htt:setOutput>

 <htt:identifier>urn:b4p:1</htt:identifier>

 <htt:part>outputPart1</htt:part>

 <htt:taskData>

 <ns:someData xmlns:ns="urn:foo" />

 </htt:taskData>

</htt:setOutput>

deleteOutput

setFault
<htt:setFault>

 <htt:identifier>urn:b4p:1</htt: identifier>

 <htt:faultName>fault1</htt:faultName>

 <htt:faultData><someFault

xmlns="urn:fault"/></htt:faultData>

</htt:setFault>

deleteFault

activate maybe yes

nominate maybe maybe <htt:organizationalEntity>

 <htt:user>user1</htt:user>

 <htt:user>user2</htt:user>

</htt:organizationalEntity>

setGenericHum
anRole

<htt:setGenericHumanRole>

 <htt:identifier>urn:b4p:1</htt:identifier>

<htt:genericHumanRole>businessAdministrators</

htt:genericHumanRole>

 <htt:organizationalEntity>

 <htt:user>user7</htt:user>

 <htt:user>user8</htt:user>

 </htt:organizationalEntity>

</htt:setGenericHumanRole>

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 63 of 215

Actions/Operations resulting in task events

Event Type Owner
Change

State
Change

Data Value

expire yes

escalated

cancel

4.11.2 Retrieving the History 2296

There is a getTaskHistory operation that allows a client to query the system and retrieve a list of task 2297
events that represent the history of the task. This operation can: 2298

¶ Return a list of task events with optional data 2299

¶ Return a list of task events without optional event data 2300

¶ Return a subset of the events based on a range (for paging) 2301

¶ Return a filtered list of events. 2302

The option to whether or not to include event data is useful since in some cases the event data content 2303
(e.g. setOutput) may be large. In a typical case, an API client should be able to query the system to get a 2304
"light weight" response of events (e.g. with out event data) and then when necessary, make an additional 2305
API call to get a specific event details with data. The latter can be accomplished by specifying the event id 2306
when invoking the getTaskHistory operation. 2307

The XML Schema definition of the filter is the following: 2308

 <xsd:complexType name="tTaskHistoryFilter" > 2309
 <xsd:choice > 2310
 <xsd:element name="eventId" type ="xsd:integer" /> 2311
 <! -- Filter to allow narrow down query by status, principal, 2312
 event Type. -- > 2313
 <xsd:sequence > 2314
 <xsd:element name="status" type ="tStatus" minOccurs ="0" 2315
 maxOccurs ="unbounded" /> 2316
 <xsd:element name="eventType" type ="tTaskEventType" minOccurs ="0" 2317
 maxOccurs ="unbounded" /> 2318
 <xsd:element name="principal" type ="xsd:string" minOccurs ="0" /> 2319
 <xsd:element name="afterEventTime" type ="xsd:dateTime" 2320
 minOccurs ="0" /> 2321
 <xsd:element name="beforeEventT ime" type ="xsd:dateTime" 2322
 minOccurs ="0" /> 2323
 </ xsd:sequence > 2324
 </ xsd:choice > 2325
 </ xsd:complexType > 2326
 2327
 <xsd:simpleType name="tTaskEventType" > 2328
 <xsd:restriction base ="xsd:string" > 2329
 <xsd:enumeration value ="create" /> 2330
 <xsd:enumeration value ="claim" /> 2331
 <xsd:enumeration value ="start" /> 2332
 <xsd:enumeration value ="stop" /> 2333
 <xsd:enumeration value ="release" /> 2334
 <xsd:enumeration value ="suspend" /> 2335

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 64 of 215

 <xsd:enumeration value ="suspend Until" /> 2336
 <xsd:enumeration value ="resume" /> 2337
 <xsd:enumeration value ="complete" /> 2338
 <xsd:enumeration value ="remove" /> 2339
 <xsd:enumeration value ="fail" /> 2340
 <xsd:enumeration value ="setPriority" /> 2341
 <xsd:enumera tion value ="addAttachment" /> 2342
 <xsd:enumeration value ="deleteAttachment" /> 2343
 <xsd:enumeration value ="addComment" /> 2344
 <xsd:enumeration value ="updateComment" /> 2345
 <xsd:enumeration value ="deleteComment" /> 2346
 <xsd:enumerat ion value ="skip" /> 2347
 <xsd:enumeration value ="forward" /> 2348
 <xsd:enumeration value ="delegate" /> 2349
 <xsd:enumeration value ="setOutput" /> 2350
 <xsd:enumeration value ="deleteOutput" /> 2351
 <xsd:enumeration value ="setFault" /> 2352
 <xsd:enumeration value ="deleteFault" /> 2353
 <xsd:enumeration value ="activate" /> 2354
 <xsd:enumeration value ="nominate" /> 2355
 <xsd:enumeration value ="setGenericHumanRole" /> 2356
 <xsd:enumeration value ="expire" /> 2357
 <xsd:en umeration value ="escalated" /> 2358
 </ xsd:restriction > 2359
 </ xsd:simpleType > 2360

The XML Schema definition of events returned for the history is the following: 2361

 <xsd:element name="taskEvent" > 2362
 <xsd:complexType > 2363
 <xsd:annotation > 2364
 <xsd: documentation > 2365
 A detailed event that represents a change in the task's state. 2366
 </ xsd:documentation > 2367
 </ xsd:annotation > 2368
 <xsd:sequence > 2369
 <! -- event id - unique per task -- > 2370
 <xsd:element name="id" type ="xsd:integer" /> 2371
 <! -- event date time -- > 2372
 <xsd:element name="eventTime" type ="xsd:dateTime" /> 2373
 <! -- task ID -- > 2374
 <xsd:element name="identifier" type ="xsd:anyURI" /> 2375
 <xsd:element name="principal" type ="xsd:string" minOccurs ="0" 2376
 nillable ="true" /> 2377
 <! -- Event type. Note - using a restricted type limits 2378
 extensibility to add custom event types. -- > 2379
 <xsd:element name="eventType" type ="tTaskEventType" /> 2380
 <! -- actual owner of the task before the event -- > 2381
 <xsd:element name="startOwner" type ="xsd:string" minOccurs ="0" 2382
 nillable ="true" /> 2383
 <! -- actual owner of the task after the event -- > 2384
 <xsd:element name="endOwner" type ="xsd:string" minOccurs ="0" 2385
 nillable ="true" /> 2386
 <! -- WSHT task status -- > 2387
 <xsd:element name="status" type ="tStatus" /> 2388
 <! -- boolean to indicate this event has op tional data -- > 2389
 <xsd:element name="hasData" type ="xsd:boolean" minOccurs ="0" /> 2390
 <xsd:element name="eventData" type ="xsd:anyType" minOccurs ="0" 2391

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 65 of 215

 nillable ="true" /> 2392
 <xsd:element name="faultName" type ="xsd:stri ng" minOccurs ="0" 2393
 nillable ="true" /> 2394
 <! -- extensibility -- > 2395
 <xsd:any namespace ="##other" processContents ="lax" minOccurs ="0" 2396
 maxOccurs ="unbounded" /> 2397
 </ xsd:sequence > 2398
 </ xsd:complexType > 2399
 </ xsd:element > 2400

 2401

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 66 of 215

5 Lean Tasks 2402

The <leanTask> element is used to specify human tasks. This section introduces the syntax for the 2403

element, and individual properties are explained in subsequent sections. 2404

5.1 Overall Syntax 2405

The element <leanTask> derives from the type htd:tTask , with the following augmentations: 2406

 <htd:leanTask> 2407
 <htd:interface>é.</htd:interface> 2408
 <htd:messageSchema>...</htd:messageSchema> 2409
 ... All elements from htd:task except <interface> and <composition> ... 2410
 <htd:composition>é.</htd:composition> 2411
</htd:leanTask> 2412

5.2 Properties 2413

The following attributes and elements are defined for lean tasks and are different from the definition of 2414

htd:task : 2415

¶ interface ï Lean tasks are created through the CreateLeanTask operation (section 7.3.4), and 2416

their input message is derived from the messageSchema element. Therefore, an interface 2417
element might contradict that information, and to prevent that, interface is banned. 2418

¶ messageSchema ï Identifies the schema of the inputMessage and outputMessage for the lean 2419

task, and if the renderings element is not defined, the WS-HumanTask Processor can use this to 2420
generate a rendering or pass this data directly to a WS-HumanTask Client such that the 2421
rendering is generated from the messageSchema. 2422

¶ composition ï Lean tasks cannot have explicitly declared subtasks as defined for composite 2423

tasks (section 4.6), consequently, this element is banned. 2424

5.3 Message Schema 2425

This element references the schema of the data that is used for both the input and output messages of 2426
the lean task. 2427

<messageSchema> 2428
 <messageField name="xsd:NCName" type= "xsd:QName" >* 2429
 <messageDisplay xml:lang= "xsd:language" ?>+ 2430
 Language specific display 2431
 </messageDisplay> 2432
 <messageChoice value ="xsd: anySimpleType " >* 2433
 <messageDisplay xml:lang= "xsd:language" ?>+ 2434
 Language specific display 2435
 </messageDisplay> 2436
 </messageChoice> 2437
 </messageField> 2438
</messageSchema> 2439

The <messageSchema> element specifies the data that a Lean Task accepts. As it is currently defined, a 2440

WS-HumanTask Processor could render the following form elements in a way that only requires vendor-2441
specific knowledge between the WS-HumanTask Processor and the WS-HumanTask Client and no 2442
vender-specific knowledge between the WS-HumanTask Processor and the WS-HumanTask Parent: 2443

· String 2444

· Integer 2445

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 67 of 215

· Float 2446

· Date Time 2447

· Bool 2448

· Enumeration (Choice) 2449

Each of these is accomplished by using an instance of a <messageField> . For string, integer, float, 2450

datetime, and boolean fields, this is accomplished by using the type attribute of the <messageField> . 2451

The supported set of values are: xsd:string , xsd:integer , xsd:float , xsd:datetime , and 2452

xsd:boolean , all respectively matching the list above. If a simple rendering language like HTML were 2453

used, this could be accomplished by using a textbox control that simply had special rules about the format 2454
of its input. 2455

The enumeration field uses a combination of one <messageField> element and possibly many child 2456

<messageChoice> elements. Each child <messageChoice> represents one possible option that could 2457

be selected from the enumeration. If a simple rendering language like HTML were used, this could be 2458
shown using radio buttons, a dropdown list, or a listbox that only supports single selection. 2459

For all <messageField> and <messageChoice> elements, it is possible to specify a per-lanugage 2460

<messageDisplay> element. It uses xml:lang , a standard XML attribute, to define the language of the 2461

enclosed information. This attribute uses tags according to RFC 1766 (see [RFC1766]). There could be 2462

zero or more <message Display> elements. A <messageField> or <messageChoice> MUST NOT 2463

specify multiple <messageDisplay> elements having the same value for the attribute xml:lang . 2464

The combination of <messageSchema> and <possibleOutcomes> can be used to generate a form of 2465

sufficient functionality for many simple tasks, precluding the need for a renderings element. 2466

Example: 2467

<messageSchema> 2468

 <messageField name="amount" type= "xsd:float" > 2469

 <messageDisplay xml:lang= "en - us" >Amount </messageDisplay> 2470

 <messageDisplay xml:lang= "fr - fr ò>Quantit é</messageDisplay> 2471

 </messageField> 2472

 <messageField name="currencyUnit" type= "xsd:string" > 2473

 <messageDisplay xml:lang= "en - us"> Currency </ messageDisplay> 2474

 <messageDisplay xml:lang= "fr - fr"> Devise </messageDisplay> 2475

 <messageChoice value ="USD"> 2476

 <messageDisplay xml:lang= "en - us" >US Dollars </messageDisplay> 2477

 <messageDisplay xml:lang= "fr - fr" >US Dollars </messageDisplay> 2478

 </messageChoice> 2479

 <messageChoice value ="EURO"> 2480

 <messageDisplay xml:lang= "en - us" >Euro Dollars </messageDisplay > 2481

 <messageDisplay xml:lang= "fr - fr" >Euros </messageDisplay> 2482

 </messageChoice> 2483

 </messageField> 2484

</messageSchema> 2485

2486

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 68 of 215

 2487

5.4 Example: ToDoTask 2488

The following XML could be used for a simple óToDoTaskô: 2489

<htd:task name="ToDoTask" > 2490
 <htd:messageSchema /> 2491
 <htd:p ossibleOutcomes > 2492
 <htd:possibleOutcome name="Completed" /> 2493
 ... language specific translations ... 2494
 </ htd:possibleOutcomes > 2495
 <htd:delegation potentialDelegates ="anybody" /> 2496
 <htd:presentationElements > 2497
 <htd:name >ToDo Task</ htd:name > 2498
 ... language specific translations ... 2499
 <htd:subject >Please complete the described work</ htd:subject > 2500
 ... language specific translations ... 2501
 <htd:description contentType ="mimeTypeString" /> 2502
 ... language specific translations ... 2503
 </ htd:pre sentationElements > 2504
</ htd:task > 2505

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 69 of 215

6 Notifications 2506

Notifications are used to notify a person or a group of people of a noteworthy business event, such as 2507
that a particular order has been approved, or a particular product is about to be shipped. They are also 2508
used in escalation actions to notify a user that a task is overdue or a task has not been started yet. The 2509
person or people to whom the notification will be assigned to could be provided, for example, as result of 2510
a people query to organizational model. 2511

Notifications are simple human interactions that do not block the progress of the caller, that is, the caller 2512
does not wait for the notification to be completed. Moreover, the caller cannot influence the execution of 2513
notifications, e.g. notifications are not terminated if the caller terminates. The caller, i.e. an application, a 2514
business process or an escalation action, initiates a notification passing the required notification data. The 2515
notification appears on the task list of all notification recipients. After a notification recipient removes it, 2516
the notification disappears from the recipientôs task list. 2517

A notification MAY have multiple recipients and optionally one or many business administrators. The 2518
generic human roles task initiator, task stakeholders, potential owners, actual owner and excluded 2519
owners play no role. 2520

Presentation elements and task rendering, as described in sections 4.3 and 4.4 respectively, are used for 2521
notifications also. In most cases the subject line and description are sufficient information for the 2522
recipients, especially if the notifications are received in an e-mail client or mobile device. But in some 2523
cases the notifications can be received in a proprietary client so the notification can support a proprietary 2524
rendering format to enable this to be utilized to the full, such as for rendering data associated with the 2525
caller invoking the notification. For example, the description could include a link to the process audit trail 2526
or a button to navigate to business transactions involved in the underlying process. 2527

Notifications do not have ad-hoc attachments, comments or deadlines. 2528

6.1 Overall Syntax 2529

Definition of notifications 2530

<htd:notification name="NCName"> 2531
 2532
 <htd:interface portType =" QName" operation ="NCName"/> 2533
 2534
 <htd:priority expressionLanguage ="anyURI" ?>? 2535
 integer - expression 2536
 </ htd:priority > 2537
 2538
 <htd:peopleAssignments > 2539
 2540
 <htd:recipients > 2541
 ... 2542
 </ htd:recipients > 2543
 2544
 <htd:businessAdministrators >? 2545
 ... 2546
 </ htd:bus inessAdministrators > 2547
 2548
 </ htd:peopleAssignments > 2549
 2550
 <htd:presentationElements > 2551
 ... 2552
 </ htd:presentationElements > 2553
 2554
 <htd:renderings >? 2555

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 70 of 215

 ... 2556
 </ htd:renderings > 2557
 2558
</ htd:notification > 2559

6.2 Properties 2560

The following attributes and elements are defined for notifications: 2561

¶ name: This attribute is used to specify the name of the notification. The name combined with the 2562

target namespace MUST uniquely identify a notification in the notification definition. The attribute 2563

is mandatory. It is not used for notification rendering. 2564

¶ interface : This element is used to specify the operation used to invoke the notification. The 2565

operation is specified using WSDL, that is a WSDL port type and WSDL operation are defined. 2566

The element and its portType and operation attributes are mandatory. In the operation 2567

attribute, a WS-HumanTask Definition MUST reference a one-way WSDL operation. 2568

¶ priority : This element is used to specify the priority of the notification. It is an optional 2569

element which value is an integer expression. If present then the WS-HumanTask Definition 2570

MUST specify a value between 0 and 10, where 0 is the highest priority and 10 is the lowest. If 2571

not present, the priority of the notification is considered as 5. The result of the expression 2572

evaluation is of type htt:tPriority . The expressionLanguage attribute specifies the 2573

language used in the expression. The attribute is optional. If not specified, the default language 2574

as inherited from the closest enclosing element that specifies the attribute is used. 2575

¶ peopleAssignments : This element is used to specify people assigned to the notification. The 2576

element is mandatory. A WS-HumanTask Definition MUST include a people assignment for 2577

recipients and MAY include a people assignment for business administrators. 2578

¶ pres entationElements : The element is used to specify different information used to display 2579

the notification, such as name, subject and description, in a task list. The element is mandatory. 2580

See section 4.3 for more information on presentation elements. 2581

¶ rendering : The element is used to specify rendering method. It is optional. If not present, 2582

notification rendering is implementation dependent. See section 4.4 for more information on 2583

rendering. 2584

6.3 Notification Behavior and State Transitions 2585

Same as human tasks, notifications are in pseudo-state Inactive before they are activated. Once they are 2586
activated they move to the Ready state. This state is observable, that is, when querying for notifications 2587
then all notifications in state Ready are returned. When a notification is removed then it moves into the 2588
final pseudo-state Removed. 2589

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 71 of 215

7 Programming Interfaces 2590

7.1 Operations for Client Applications 2591

A number of applications are involved in the life cycle of a task. These comprise: 2592

¶ The task list client, i.e. a client capable of displaying information about the task under 2593

consideration 2594

¶ The requesting application, i.e. any partner that has initiated the task 2595

¶ The supporting application, i.e. an application launched by the task list client to support 2596

processing of the task. 2597

The task infrastructure provides access to a given task. It is important to understand that what is meant 2598
by task list client is the software that presents a UI to one authenticated user, irrespective of whether this 2599
UI is rendered by software running on server hardware (such as in a portals environment) or client 2600
software (such as a client program running on a users workstation or PC). 2601

A given task exposes a set of operations to this end. A WS-HumanTask Processor MUST provide the 2602
operations listed below and an application (such as a task list client) can use these operations to 2603
manipulate the task. All operations MUST be executed in a synchronous fashion and MUST return a fault 2604
if certain preconditions do not hold. For operations that are not expected to return a response they MAY 2605
return a void message. The above applies to notifications also. 2606

An operation takes a well-defined set of parameters as its input. Passing an illegal parameter or an illegal 2607

number of parameters MUST result in the hta:illegalArgumentFault being returned. Invoking an 2608

operation that is not allowed in the current state of the task MUST result in an 2609

hta:illegalStateFault . 2610

By default, the identity of the person on behalf of which the operation is invoked is passed to the task. 2611

When the person is not authorized to perform the operation the hta:illegalAccessFault and 2612

hta:recipientNotAllowed MUST be returned in the case of tasks and notifications respectively. 2613

Invoking an operation that does not apply to the task type (e.g., invoking claim on a notification) MUST 2614

result in an hta:illegalOperationFault . 2615

The language of the person on behalf of which the operation is invoked is assumed to be available to 2616
operations requiring that information, e.g., when accessing presentation elements. 2617

For an overview of which operations are allowed in what state, refer to section 4.10 ñHuman Task 2618
Behavior and State Transitionsò. For a formal definition of the allowed operations, see Appendix D ñWS-2619
HumanTask Client API Port Type". 2620

For information which generic human roles are authorized to perform which operations, refer to section 2621
7.1.4 ñOperation Authorizationsò. 2622

This specification does not stipulate the authentication, language passing, addressing, and binding 2623
scheme employed when calling an operation. This can be achieved using different mechanisms (e.g. WS-2624
Security, WS-Addressing). 2625

7.1.1 Participant Operations 2626

Operations are executed by end users, i.e. actual or potential owners. The identity of the user is implicitly 2627
passed when invoking any of the operations listed in the table below. 2628

If the task is in a predefined state listed as valid pre-state before the operation is invoked then, upon 2629
successful completion, the task MUST be in the post state defined for the operation. If the task is in a 2630
predefined state that is not listed as valid pre-state before the operation is invoked then the operation 2631
MUST be rejected and MUST NOT cause a task state transition. 2632

All of the operations below apply to tasks and sub tasks only unless specifically noted below. 2633

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 72 of 215

The column ñSupports Batch Processingò below indicates if an operation can be used to process 2634
multiple human tasks at the same time. One or more operations on individual tasks may fail without 2635
causing the overall batch operation to fail. 2636

 2637

Operation Name Description Parameters Supports
Batch
Processing

Pre-State Post-State

addAttachment Add attachment to a
task. Returns an
identifier for the
attachment.

In

¶ task identifier

¶ attachment

name

¶ access type

¶ content type

¶ attachment

Out

¶ attachment

identifier

No (any state) (no state
transition)

addComment Add a comment to a
task. Returns an
identifier that can be
used to later update
or delete the
comment.

In

¶ task identifier

¶ plain text

Out

¶ comment

identifier

No (any state) (no state
transition)

claim Claim responsibility
for a task, i.e. set the
task to status
Reserved

In

¶ task identifier

Out

¶ void

Yes Ready Reserved

complete Execution of the task
finished successfully.
The fault
hta:illegalState

Fault MUST be

returned if the task
interface defines non-
empty task output but
no output data is
provided as the input
parameter and the
task output data has
not been set
previously, e.g. using
operation setOutput.

In

¶ task identifier

¶ output data of

task (optional)

Out

¶ void

Yes

InProgress Completed

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 73 of 215

Operation Name Description Parameters Supports
Batch
Processing

Pre-State Post-State

delegate Assign the task to
one user and set the
task to state
Reserved. If the
recipient was not a
potential owner then
this person MUST be
added to the set of
potential owners.

For details on
delegating human
tasks refer to section
4.10.3.

In

¶ task identifier

¶ organizational

entity

(htt:tOrgani

zationalEnti

ty)

Out

¶ void

Yes Ready

Reserved

InProgress

Reserved

deleteAttachment Delete the
attachment with the
specified identifier
from the task.

Attachments provided
by the enclosing
context MUST NOT
be affected by this
operation.

In

¶ task identifier

¶ attachment

identifier

Out

¶ void

No (any state) (no state
transition)

deleteComment Deletes the identified
comment.

In

¶ task identifier

¶ comment

identifier

Out

¶ void

No

(any state) (no state
transition)

deleteFault Deletes the fault
name and fault data
of the task.

In

¶ task identifier

Out

¶ void

No InProgress (no state
transition)

deleteOutput Deletes the output
data of the task.

In

¶ task identifier

Out

¶ void

No

InProgress (no state
transition)

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 74 of 215

Operation Name Description Parameters Supports
Batch
Processing

Pre-State Post-State

fail Execution of the task
fails and a fault is
returned.

The fault
hta:illegalOpera

tionFault MUST

be returned if the task
interface defines no
faults.

The fault
hta:illegalState

Fault MUST be

returned if the task
interface defines at
least one faults but
either fault name or
fault data is not
provided and it has
not been set
previously, e.g. using
operation setFault.

In

¶ task identifier

¶ fault (optional) ï

contains the

fault name and

fault data

Out

¶ void

Yes

InProgress Failed

forward Forward the task to
another organization
entity. The WS-
HumanTask Client
MUST specify the
receiving
organizational entity.

Potential owners
MAY forward a task
while the task is in
the Ready state.

For details on
forwarding human
tasks refer to section
4.10.3.

In

¶ task identifier

¶ organizational

entity

(htt:tOrgani

zationalEnti

ty)

Out

¶ void

Yes Ready

Reserved

InProgress

Ready

getAttachment Get the task
attachment with the
given identifier.

In

¶ task identifier

¶ attachment

identifier

Out

¶ htt:attachme

nt

No (any state) (no state
transition)

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 75 of 215

Operation Name Description Parameters Supports
Batch
Processing

Pre-State Post-State

getAttachmentInf
os

Get attachment
information for all
attachments
associated with the
task.

In

¶ task identifier

Out

¶ list of

attachment data

(list of

htt:attachme

ntInfo)

No (any state) (no state
transition)

getComments Get all comments of
a task

In

¶ task identifier

Out

¶ list of comments

(list of

htt:comment)

No

(any state) (no state
transition)

getFault Get the fault data of
the task.

In

¶ task identifier

Out

¶ fault ï contains

the fault name

and fault data

No (any state) (no state
transition)

getInput Get the data for the
part of the task's
input message.

In

¶ task identifier

¶ part name

(optional for

single part

messages)

Out

¶ any type

No (any state) (no state
transition)

getOutcome Get the outcome of
the task

In

¶ task identifier

Out

¶ string

No (any state) (no state
transition)

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 76 of 215

Operation Name Description Parameters Supports
Batch
Processing

Pre-State Post-State

getOutput Get the data for the
part of the task's
output message.

In

¶ task identifier

¶ part name

(optional for

single part

messages)

Out

¶ any type

No (any state) (no state
transition)

getParentTask Returns the superior
composite task of a
sub task

In

¶ task identifier

Out

¶ htt:tTask

No (any state) (no state
transition)

getParentTaskIde
ntifier

Returns the task
identifier of the
superior composite
task of a sub task

In

¶ task identifier

Out

¶ task identifier

No (any state) (no state
transition)

getRendering Applies to both tasks
and notifications.

Returns the rendering
specified by the type
parameter.

In

¶ task identifier

¶ rendering type

Out

¶ any type

No (any state) (no state
transition)

getRenderingTyp
es

Applies to both tasks
and notifications.

Returns the rendering
types available for
the task or
notification.

In

¶ task identifier

Out

¶ list of QNames

No (any state) (no state
transition)

getSubtaskIdentif
iers

Returns the
identifiers of all
already created sub
tasks of a task

In

¶ task identifier

Out

¶ list of task

identifiers

No (any state) (no state
transition)

getSubtasks Returns all sub tasks
of a task (created
instances + not yet
created sub task
definitions)

In

¶ task identifier

Out

¶ list of tasks (list of

htt:tTask)

No (any state) (no state
transition)

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 77 of 215

Operation Name Description Parameters Supports
Batch
Processing

Pre-State Post-State

getTaskDescripti
on

Applies to both tasks
and notifications.
Returns the
presentation
description in the
specified mime type.

In

¶ task identifier

¶ content type ï

optional, default

is text/plain

Out

¶ string

No (any state) (no state
transition)

getTaskDetails Applies to both tasks
and notifications.

Returns a data object
of type
htt:tTaskDetails

In

¶ task identifier

Out

¶ task

(htt:tTaskDe

tails)

No (any state) (no state
transition)

getTaskHistory Get a list of events
representing the
history of the task.

Filter allows
narrowing the results
by status, principal,
event Type.

startIndex and
maxTasks are
integers that allow
paging of the results.

includeData is a
Boolean. Data is
included with the
returned events only
if this is true.

In

¶ task identifier

¶ filter

(htt:tTaskHi

storyFilter)

¶ startIndex

¶ maxTasks

¶ includeData

Out

¶ list of
htt:taskEvent

No (any state) (no state
transition)

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 78 of 215

Operation Name Description Parameters Supports
Batch
Processing

Pre-State Post-State

getTaskInstance
Data

Get any or all details
of a task, except the
contents of the
attachments. This
duplicates
functionality provided
by the get()
operations above, but
provides all the data
in a single round trip.

Properties is an
optional space
separated list of
properties of the task
that should be
provided. Properties
are named by the
local part of the
QName of the
element returned for
task details.

If it is not specified,
then all properties are
returned.

If it is specified, then
only the properties
specified are
returned. In the case
that multiple
elements have the
same local part
(which can happen
for extensions from
two different
namespaces) then all
of the matching
properties are
returned.

Some properties of a
task may have
multiple values (i.e.,
taskDescription, input
and ouput). When
such a property is
requested, all valid
values for the
property are returned.
There is an exception
for the ñrenderingsò
property, which is
controlled by the
ñrenderingPreference
sò parameter..

renderingPreference
is an optional list of
rendering types, in
order of preference. If

In

¶ task identifier

¶ properties

¶ rendering
preferences

Out

¶ task

(htt:tTaskIn

stanceData)

No (any state) (no state
transition)

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 79 of 215

Operation Name Description Parameters Supports
Batch
Processing

Pre-State Post-State

getTaskOperatio
ns

Applies to tasks.
Returns list of
operations that are
available to the
authorized user given
the user's role and
the state of the task.

In

¶ task identifier

Out

¶ List of available

operation.

No

(any state) (no state
transition)

hasSubtasks Returns true if a task
has at least one
(already created or
not yet created, but
specified) sub task

In

¶ task identifier

Out

¶ boolean

No (any state) (no state
transition)

instantiateSubTa
sk

Creates an
instantiateable
subtask for the task
from the definition of
the task.

The fault
hta:illegalArgumentF
ault MUST be
returned if the task
does not have an
instantiateable
subtask of the given
name.

Returns the identifier
for the created
subtask.

In

¶ task identifier

¶ subtask name

Out

¶ task identifier

No Reserved

In Progress

(no state
transition)

isSubtask Returns true if a task
is a sub task of a
superior composite
task

In

¶ task identifier

Out

¶ boolean

No (any state) (no state
transition)

release Release the task, i.e.
set the task back to
status Ready.

In

¶ task identifier

Out

¶ void

Yes InProgress

Reserved

Ready

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 80 of 215

Operation Name Description Parameters Supports
Batch
Processing

Pre-State Post-State

remove Applies to
notifications only.

Used by notification
recipients to remove
the notification
permanently from
their task list client. It
will not be returned
on any subsequent
retrieval operation
invoked by the same
user.

In

¶ task identifier

Out

¶ void

Yes Ready
(Notification
state)

Removed
(Notification
state)

resume Resume a
suspended task.

In

¶ task identifier

Out

¶ void

Yes Suspended/
Ready

Suspended/
Reserved

Suspended/I
nProgress

Ready (from
Suspended/
Ready)

Reserved
(from
Suspended/
Reserved)

InProgress
(from
Suspended/I
nProgress)

setFault Set the fault data of
the task.

The fault
hta:illegalOpera

tionFault MUST

be returned if the task
interface defines no
faults.

In

¶ task identifier

¶ fault ï contains

the fault name

and fault data

Out

¶ void

No InProgress (no state
transition)

setOutput Set the data for the
part of the task's
output message.

In

¶ task identifier

¶ part name

(optional for

single part

messages)

¶ output data of

task

Out

¶ void

No InProgress (no state
transition)

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 81 of 215

Operation Name Description Parameters Supports
Batch
Processing

Pre-State Post-State

setPriority Change the priority of
the task. The WS-
HumanTask Client
MUST specify the
integer value of the
new priority.

In

¶ task identifier

¶ priority

(htt:tPriori

ty)

Out

¶ void

Yes

(any state) (no state
transition)

setTaskCompleti
onDeadlineExpre
ssion

Sets a deadline
expression for the
named completion
deadline of the task

In

¶ task identifier

¶ deadline name

¶ deadline
expression

Out

void

Yes Created

Ready

Reserved

In Progress

(no state
transition)

setTaskCompleti
onDurationExpre
ssion

Sets a duration
expression for the
named completion
deadline of the task

In

¶ task identifier

¶ deadline name

¶ duration
expression

Out

void

Yes Created

Ready

Reserved

In Progress

(no state
transition)

setTaskStartDea
dlineExpression

Sets a deadline
expression for the
named start deadline
of the task

In

¶ task identifier

¶ deadline name

¶ deadline
expression

Out

¶ void

Yes Created

Ready

Reserved

In Progress

(no state
transition)

setTaskStartDura
tionExpression

Sets a duration
expression for the
named start deadline
of the task

In

¶ task identifier

¶ deadline name

¶ duration
expression

Out

void

Yes Created

Ready

Reserved

In Progress

(no state
transition)

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 82 of 215

Operation Name Description Parameters Supports
Batch
Processing

Pre-State Post-State

skip Skip the task.

If the task is not
skipable then the
fault
hta:illegalOpera

tionFault MUST

be returned.

In

¶ task identifier

Out

¶ void

Yes

Created

Ready

Reserved

InProgress

Obsolete

start Start the execution of
the task, i.e. set the
task to status
InProgress.

In

¶ task identifier

Out

¶ void

Yes Ready

Reserved

InProgress

stop Cancel/stop the
processing of the
task. The task returns
to the Reserved

state.

In

¶ task identifier

Out

¶ void

Yes InProgress Reserved

suspend Suspend the task. In

¶ task identifier

Out

¶ void

Yes Ready

Reserved

InProgress

Suspended/
Ready (from
Ready)

Suspended/
Reserved
(from
Reserved)

Suspended/I
nProgress
(from
InProgress)

suspendUntil Suspend the task for
a given period of time
or until a fixed point
in time. The WS-
HumanTask Client
MUST specify either
a period of time or a
fixed point in time.

In

¶ task identifier

¶ time period

¶ point of time

Out

¶ void

Yes

Ready

Reserved

InProgress

Suspended/
Ready (from
Ready)

Suspended/
Reserved
(from
Reserved)

Suspended/I
nProgress
(from
InProgress)

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 83 of 215

Operation Name Description Parameters Supports
Batch
Processing

Pre-State Post-State

updateComment Updates the identified
comment with the
supplied new text.

In

¶ task identifier

¶ comment

identifier

¶ plain text

Out

¶ void

No (any state) (no state
transition)

 2638

7.1.2 Simple Query Operations 2639

Simple query operations allow retrieving task data. These operations MUST be supported by a WS-2640
HumanTask Processor. The identity of the user is implicitly passed when invoking any of the following 2641
operations. 2642

The following operations will return both matching tasks and sub tasks. 2643

 2644

Operation Name Description Parameters Authorization

getMyTaskAbstracts Retrieve the task abstracts. This
operation is used to obtain the data
required to display a task list.

If no task type has been specified
then the default value ñALLò MUST
be used.

If no generic human role has been
specified then the default value
ñactualOwnerò MUST be used.

If no work queue has been specified
then only personal tasks MUST be
returned. If the work queue is
specified then only tasks of that work
queue MUST be returned.

If no status list has been specified
then tasks in all valid states are
returned.

The where clause is optional. If
specified, it MUST reference exactly
one column using the following
operators: equals (ñ=ò), not equals
(ñ<>ò), less than (ñ<ò), greater than
(ñ>ò), less than or equals (ñ<=ò),
greater than or equals (ñ>=ò), and the
IN operator for multi-valued
user/group elements of generic
human roles. An example of a where
clause is ñtask.priority = 1ò. A value
of type xsd:QName MUST be

In

¶ task type (ñALLò | ñTASKSò

| ñNOTIFICATIONSò)

¶ generic human role

¶ work queue

¶ status list

¶ where clause

¶ order-by clause

¶ created-on clause

¶ maxTasks

¶ taskIndexOffset

Out

¶ list of tasks (list of

htt:tTaskAbstract)

Any

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 84 of 215

Operation Name Description Parameters Authorization

specified as string in the format
"{namespaceURI}localName", where
the {namespace} part is optional and
treated as wildcard if not specified.
An example using a QName is
"task.name =
'{http://example.com}ApproveClaim'".
A comparison with a value of type
htt:tOrganizationalEntity MUST be
performed using its user/group child
elements. An example is
"task.potentialOwner.user IN ('Joe',
'Fred') OR
task.potentialOwner.group =
'approvers'".

The created-on clause is optional.
The where clause is logically ANDed
with the created-on clause, which
MUST reference the column
Task.CreatedTime with operators as
described above.
The combination of the two clauses
enables simple but restricted paging
in a task list client.

If maxTasks is specified, then the
number of task abstracts returned for
this query MUST NOT exceed this
limit. The taskIndexOffset can be
used to perform multiple identical
queries and iterate over result sets
where the maxTasks size exceeds
the query limit. If maxTasks has not
been specified then all tasks fulfilling
the query are returned.

getMyTaskDetails Retrieve the task details. This
operation is used to obtain the data
required to display a task list, as well
as the details for the individual tasks.

If no task type has been specified
then the default value ñALLò MUST
be used.

If no generic human role has been
specified then the default value
ñactualOwnerò MUST be used.

If no work queue has been specified
then only personal tasks MUST be
returned. If the work queue is
specified then only tasks of that work
queue MUST be returned.

If no status list has been specified
then tasks in all valid states are
returned.

In

¶ task type (ñALLò | ñTASKSò

| ñNOTIFICATIONSò)

¶ generic human role

¶ work queue

¶ status list

¶ where clause

¶ created-on clause

¶ maxTasks

Out

¶ list of tasks (list of

htt:tTaskDetails)

Any

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 85 of 215

Operation Name Description Parameters Authorization

The where clause is optional. If
specified, it MUST follow the same
rules described for the
getMyTaskAbstracts operation.

The created-on clause is optional.
The where clause is logically ANDed
with the created-on clause, which
MUST reference the column
Task.CreatedTime with operators as
described above.
The combination of the two clauses
enables simple but restricted paging
in the task list client.

If maxTasks is specified, then the
number of task details returned for
this query MUST NOT exceed this
limit. If maxTasks has not been
specified then all tasks fulfilling the
query are returned.

 2645

The return types tTaskAbstract and tTaskDetails are defined in section 3.8.4 ñData Types for Task 2646

Instance Dataò. 2647

Simple Task View 2648

The table below lists the task attributes available to the simple query operations. This view is used when 2649
defining the where clause of any of the above query operations. 2650

 2651

Column Name Type

ID xsd: anyURI

TaskType Enumeration

Name xsd:QName

Status Enumeration (for values see 4.10 ñHuman Task Behavior and
State Transitionsò)

Priority htt:tPriority

CreatedTime xsd:dateTime

ActivationTime xsd:dateTime

ExpirationTime xsd:dateTime

HasPotentialOwners xsd:boolean

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 86 of 215

Column Name Type

StartByTimeExists xsd:boolean

CompleteByTimeExists xsd:boolean

RenderingMethodExists xsd:boolean

Escalated xsd:boolean

ParentTaskId xsd: anyURI

HasSubTasks xsd:boolean

SearchBy xsd:string

Outcome xsd:string

 2652

7.1.3 Advanced Query Operation 2653

The advanced query operation is used by the task list client to perform queries not covered by the simple 2654
query operations defined in 7.1.2. A WS-HumanTask Processor MAY support this operation. An 2655
implementation MAY restrict the results according to authorization of the invoking user. 2656

 2657

The following operations will return both matching tasks and sub tasks. 2658

 2659

Operation Name Description Parameters

query Retrieve task data. All clauses assume
a (pseudo-) SQL syntax. If maxTasks is
specified, then the number of task
returned by the query MUST NOT
exceed this limit. The taskIndexOffset
can be used to perform multiple
identical queries and iterate over result
sets where the maxTasks size exceeds
the query limit.

For data of type xsd:QName or

htt:tOrganizationalEntity in a

where clause, see the description of the
getMyTaskAbstracts operation in
section 7.1.2.

In

¶ select clause

¶ where clause

¶ order-by clause

¶ maxTasks

¶ taskIndexOffset

Out

¶ task query result set

(htt:tTaskQueryResultS

et)

 2660

ResultSet Data Type 2661

This is the result set element that is returned by the query operation. 2662

<xsd:element name="taskQueryResultSet" ty pe="tTaskQueryResultSet" /> 2663
<xsd:complexType name="tTaskQueryResultSet" > 2664
 <xsd:sequence > 2665

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 87 of 215

 <xsd:element name="row" type ="tTaskQueryResultRow" 2666
 minOccurs ="0" maxOccurs ="unbounded" /> 2667
 </ xsd:sequence > 2668
</ xsd:complexType > 2669
 2670

The following is the type of the row element contained in the result set. The value in the row are returned 2671
in the same order as specified in the select clause of the query. 2672

<xsd:complexType name="tTaskQueryResultRow" > 2673
 <xsd:choice minOccurs ="0" maxOccurs ="unbounded" > 2674
 <xsd:element name="id" type ="xsd: anyURI " /> 2675
 <xsd:element name="taskType" type ="xsd:string" /> 2676
 <xsd:element name="name" type ="xsd:QName" /> 2677
 <xsd:element name="status" type ="tStatus" /> 2678
 <xsd:element name="priority" type =" tPriority" /> 2679
 <xsd :element name="taskInitiator" 2680
 type =" tUser" /> 2681
 <xsd:element name="taskStakeholders" 2682
 type ="tOrganizationalEntity" /> 2683
 <xsd:element name="potentialOwners" 2684
 type ="tOrganizationalEntity" /> 2685
 <xsd:eleme nt name="businessAdministrators" 2686
 type ="tOrganizationalEntity" /> 2687
 <xsd:element name="actualOwner" type ="tUser" /> 2688
 <xsd:element name="notificationRecipients" 2689
 type ="tOrganizationalEntity" /> 2690
 <xsd:element name="crea tedTime" type ="xsd:dateTime" /> 2691
 <xsd:element name="createdBy" type =" tUser " /> 2692
 <xsd:element name="lastModifiedTime" type ="xsd:dateTime" /> 2693
 <xsd:element name="lastModifiedBy" type =" tUser" /> 2694
 <xsd:element name="activationTime" type ="xsd:dateTime" / > 2695
 <xsd:element name="expirationTime" type ="xsd:dateTime" /> 2696
 <xsd:element name="isSkipable" type ="xsd:boolean" /> 2697
 <xsd:element name="hasPotentialOwners" type ="xsd:boolean" /> 2698
 <xsd:element name="startByTime" type ="xsd:dateTime" /> 2699
 <xsd:elemen t name="completeByTime" type ="xsd:dateTime" /> 2700
 <xsd:element name="presentationName" type ="tPresentationName" /> 2701
 <xsd:element name="presentationSubject" 2702
 type ="tPresentationSubject" /> 2703
 <xsd:element name="renderingMethodName" type =" xsd:QName" /> 2704
 <xsd:element name="hasOutput" type ="xsd:boolean" /> 2705
 <xsd:element name="hasFault" type ="xsd:boolean" /> 2706
 <xsd:element name="hasAttachments" type ="xsd:boolean" /> 2707
 <xsd:element name="hasComments" type ="xsd:boolean" /> 2708
 <xsd:element name="escalated" type ="xsd:boolean" /> 2709
 <xsd:element name="parentTaskId" type ="xsd: anyURI " /> 2710
 <xsd:element name="hasSubTasks" type ="xsd:boolean" /> 2711
 <xsd:element name="searchBy" type ="xsd:string" /> 2712
 <xsd:element name="outcome" type ="xsd:string" /> 2713
 <xsd:element name="taskOperations" type ="tTaskOperations" /> 2714
 <xsd:any namespace ="##other" processContents ="lax" /> 2715
 </ xsd:choice > 2716
</ xsd:complexType > 2717

 2718

 2719

Complete Task View 2720

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 88 of 215

The table below is the set of columns used when defining select clause, where clause, and order-by 2721
clause of query operations. Conceptually, this set of columns defines a universal relation. As a result the 2722
query can be formulated without specifying a from clause. A WS-HumanTask Processor MAY extend this 2723
view by adding columns. 2724

 2725

Column Name Type Constraints

ID xsd: anyURI

TaskType Enumeration Identifies the task type. The
following values are allowed:

¶ ñTASKò for a human

task

¶ ñNOTIFICATIONò for

notifications

Note that notifications are
simple tasks that do not block
the progress of the caller,

Name xsd:QName

Status Enumeration For values see section 4.10
ñHuman Task Behavior and
State Transitionsò

Priority htt:tPriority

(GenericHumanRole) htt :tUser or

htt:tOrganizationalE ntity

CreatedTime xsd:dateTime The time in UTC when the
task has been created.

CreatedBy htt:tUser

LastModifiedTime xsd:dateTime The time in UTC when the
task has been last modified.

LastModifiedBy htt:tUser

ActivationTime xsd:dateTime The time in UTC when the
task has been activated.

ExpirationTime xsd:dateTime The time in UTC when the
task will expire.

IsSkipable xsd:boolean

StartByTime xsd:dateTime The time in UTC when the
task needs to be started. This
time corresponds to the
respective start deadline.

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 89 of 215

Column Name Type Constraints

CompleteByTime xsd:dateTime The time in UTC when the
task needs to be completed.
This time corresponds to the
respective end deadline.

PresentationName xsd:string The taskôs presentation
name.

PresentationSubject xsd:string The taskôs presentation
subject.

RenderingMethodName xsd:QName The taskôs rendering method
name.

HasOutput xsd:boolean

HasFault xsd:boolean

HasAttachments xsd:boolean

HasComments xsd:boolean

Escalated xsd:boolean

ParentTaskId xsd: anyURI

HasSubTasks xsd :boolean

SearchBy xsd:string

Outcome xsd:string

TaskOperations htt:tTaskOperations

 2726

7.1.4 Administrative Operations 2727

The following operations are executed for administrative purposes. 2728

Operation
Name

Description Parameters Supports
Batch
Processing

Pre-State Post-
State

activate Activate the task,
i.e. set the task to
status Ready.

In

¶ task identifier

Out

¶ void

Yes Created Ready

nominate Nominate an
organization entity
to process the
task. If it is
nominated to one
person then the
new state of the

In

¶ task identifier

¶ organizational entity

(htt:tOrganizationalEn

tity)

Yes Created Ready

Reserved

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 90 of 215

Operation
Name

Description Parameters Supports
Batch
Processing

Pre-State Post-
State

task is Reserved.
If it is nominated
to several people
then the new state
of the task is
Ready.

Out

¶ void

setGeneric
HumanRole

Replace the
organizational
assignment to the
task in one
generic human
role.

In

¶ task identifier

¶ generic human role

¶ organizational entity

(htt:tOrganizationalEn

tity)

Out

¶ void

Yes Created

Ready

Reserved

InProgress

Suspended/Read
y (from Ready)

Suspended/Rese
rved (from
Reserved)

Suspended/InPro
gress (from
InProgress)

(no state
transition)

 2729

 2730

7.1.5 Operation Authorizations 2731

The table below summarizes the required authorizations in terms of generic human roles to execute 2732
participant, query and administrative operations. Thus, it is a precise definition of the generic human roles 2733
as well. The sign plus (ó+ô) means that the operation MUST be available for the generic human role. The 2734
sign minus (ó-ô) means that the operation MUST NOT be available for the generic human role. ón/aô 2735
indicates that the operation is not applicable and thus MUST NOT be available for the generic human 2736
role. óMAYô defines that vendor MAY chose to support the operation for the generic human role. 2737

If a person has multiple generic human roles on a human task or notification and she is allowed to 2738
perform an operation in any of the roles then the invocation of the operation will not fail, otherwise 2739

hta:illegalAccessFault and hta:recipientNotAllowed MUST be returned in the case of tasks 2740

and notifications respectively. If a person is included in the list of excluded owners of a task then she 2741
MUST NOT perform any of the operations. 2742

All batch operations (operations with a name prefix "batch") may be invoked by any caller; no specific 2743
authorization is required. Missing authorizations for operations on individual tasks result in a report entry 2744
in the batch operation's response message. 2745

2746

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 91 of 215

 2747

 Role

Operation

Task
Initia
tor

Task
Stakeh
olders

Potential
Owners

Actual
Owner

Busine
ss

Admini
strator

Notific
ation

Recipie
nts

activate + + n/a n/a + -

addAttachment MAY + + + + n/a

addComment MAY + + + + n/a

batch* + + + + + +

claim - MAY + n/a MAY n/a

complete - MAY n/a + MAY n/a

delegate MAY + MAY + + n/a

deleteAttachment MAY + + + + n/a

deleteComment MAY + + + + n/a

deleteFault - MAY n/a + MAY n/a

deleteOutput - MAY n/a + MAY n/a

fail - MAY n/a + MAY n/a

forward MAY + MAY + + n/a

getAttachment MAY + + + + n/a

getAttachmentInfos MAY + + + + n/a

getComments MAY + + + + n/a

getFault + + MAY + + n/a

getInput + + + + + n/a

getMyTaskAbstracts + + + + + +

getMyTaskDetails + + + + + +

getOutcome + + MAY + + n/a

getOutput + + MAY + + n/a

getParentTask + + MAY + + n/a

getParentTaskIdentifier + + MAY + + n/a

getRendering + + + + + +

getRenderingTypes + + + + + +

getSubtaskIdentifiers + + + + + n/a

getSubtasks + + + + + n/a

getTaskDescription + + + + + +

getTaskDetails MAY + + + + +

getTaskHistory + + MAY + + n/a

getTaskInstanceData + + + + + n/a

getTaskOperations + + + + + +

hasSubtasks + + + + + n/a

instantiateSubTask - - - + n/a n/a

isSubtask + + + + + n/a

nominate MAY - - - + -

release - MAY n/a + MAY n/a

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 92 of 215

 Role

Operation

Task
Initia
tor

Task
Stakeh
olders

Potential
Owners

Actual
Owner

Busine
ss

Admini
strator

Notific
ation

Recipie
nts

remove - n/a n/a n/a + +

resume MAY + MAY MAY + n/a

setFault - MAY n/a + MAY n/a

setGenericHumanRole - - - - + -

setOutput - MAY n/a + MAY n/a

setPriority MAY + MAY MAY + n/a
setTaskCompletionDeadlineExpression MAY + - - + n/a
setTaskCompletionDurationExpression MAY + - - + n/a
setTaskStartDeadlineExpression MAY + - - + n/a
setTaskStartDurationExpression MAY + - - + n/a

skip + + MAY MAY + n/a

start - MAY + + MAY n/a

stop - MAY n/a + MAY n/a

suspend MAY + MAY MAY + n/a

suspendUntil MAY + MAY MAY + n/a

updateComment MAY + + + + n/a

 2748

7.2 XPath Extension Functions 2749

This section introduces XPath extension functions that are provided to be used within the definition of a 2750
human task or notification. A WS-HumanTask Processor MUST support the XPath Functions listed below. 2751
When defining properties using these XPath functions, note the initialization order in section 4.10.1. 2752

Definition of these XPath extension functions is provided in the table below. Input parameters that specify 2753
task name, message part name or logicalPeopleGroup name MUST be literal strings. This restriction 2754
does not apply to other parameters. Because XPath 1.0 functions do not support returning faults, an 2755
empty node set is returned in the event of an error. 2756

XPath functions used for notifications in an escalation can access context from the enclosing task by 2757
specifying that taskôs name. 2758

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 93 of 215

 2759

Operation Name Description Parameters

getActualOwner Returns the actual owner of
the task. It MUST evaluate to

an empty htt:user in case

there is no actual owner.

If the task name is not
present the current task
MUST be considered.

In

¶ task name (optional)

Out

¶ the actual owner

(user id as htt:user)

getBusinessAdministrators Returns the business
administrators of the task.

It MUST evaluate to an empty
htt:organizationalEnti

ty in case of an error.

If the task name is not
present the current task
MUST be considered.

In

¶ task name (optional)

Out

¶ business administrators

(htt:organizationalEnti

ty)

getCountOfFinishedSubTasks Returns the number of
finished sub tasks of a task

If the task name is not
present the current task
MUST be considered

In

¶ task name (optional)

Out

¶ Number of the finished task
sub-tasks. If the task doesn't
have sub tasks then 0 is
returned

getCountOfSubTasks Returns the number of sub
tasks of a task

If the task name is not
present the current task
MUST be considered

In

¶ task name (optional)

Out

¶ Number of the task sub-tasks.
If the task doesn't have sub
tasks then 0 is returned

getCountOfSubTasksInState Returns the number of a task
suubtasks that are in the
specified state

If the task name is not
present the current task
MUST be considered

In

¶ state

¶ task name (optional)

Out

¶ Number of the task sub tasks

in the specified state. If the

task doesn't have sub tasks

then 0 is returned

getCountOfSubTasksWithOutc
ome

Returns the number of a task
sub tasks that match the
given outcome

If the task name is not
present the current task

In

¶ outcome

¶ task name (optional)

Out

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 94 of 215

Operation Name Description Parameters

MUST be considered ¶ Number of the task sub tasks

that match the specified

outcome. If the task doesn't

have sub tasks then 0 is

returned

getExcludedOwners Returns the excluded owners.
It MUST evaluate to an empty
htt:organizationalEnti

ty in case of an error.

If the task name is not
present the current task
MUST be considered.

In

¶ task name (optional)

Out

¶ excluded owners

(htt:organizationalEnti

ty)

getInput Returns the part of the taskôs
input message.

If the task name is not
present the current task
MUST be considered.

In

¶ part name

¶ task name (optional)

Out

¶ input message part

getLogicalPeopleGroup Returns the value of a logical
people group. In case of an
error (e.g., when referencing
a non existing logical people
group) the
htt:organizationalEnti

ty MUST contain an empty

user list.

If the task name is not
present the current task
MUST be considered.

In

¶ name of the logical people

group

¶ The optional parameters that

follow MUST appear in pairs.

Each pair is defined as:

o the qualified name of a

logical people group

parameter

o the value for the

named logical people

group parameter; it can

be an XPath

expression

Out

¶ the value of the logical people

group

(htt:organizationalEnti

ty)

getOutcome Returns the outcome of the
task. It MUST evaluate to an
empty string in case there is
no outcome specified for the
task.

If the task name is not
present the current task
MUST be considered.

In

¶ task name (optional)

Out

¶ the task outcome

(xsd:string)

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 95 of 215

Operation Name Description Parameters

getOutput Returns the part of the task's
output message.

If the task name is not
present the current task
MUST be considered

In

¶ part name

¶ task name (optional)

Out

¶ output message part

getPotentialOwners Returns the potential owners
of the task. It MUST evaluate
to an empty
htt:organizationalEnti

ty in case of an error.

If the task name is not
present the current task
MUST be considered.

In

¶ task name (optional)

Out

¶ potential owners

(htt:organizationalEnti

ty)

getSubtaskOutput Returns a node-set
representing the specified
part or contained elements of
a sub taskôs output message.
Only completed sub tasks of
the current task MUST be
considered

In

¶ sub task name

¶ part name

¶ location path

Out

¶ node-set of output message

element(s)

getSubtaskOutputs Returns a node-set of simple-
typed or complex-typed
elements, constructed from
the sub tasksô output
documents in a routing
pattern. The string parameter
contains a location path
evaluated on each sub taskôs
output document. The
individual node-sets are
combined into the returned
node-set. Only completed sub
tasks of the current task
MUST be considered

In

¶ part name

¶ location path

Out

¶ node-set of output message

elements from sub tasks

getTaskInitiator Returns the initiator of the
task. It MUST evaluate to an

empty htt:user in case

there is no initiator.

If the task name is not
present the current task
MUST be considered.

In

¶ task name (optional)

Out

¶ the task initiator

(user id as htt:user)

getTaskPriority Returns the priority of the
task.

It MUST evaluate to ñ5ò in
case the priority is not
explicitly set.

In

¶ task name (optional)

Out

¶ priority (htt:tPriority)

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 96 of 215

Operation Name Description Parameters

If the task name is not
present the current task
MUST be considered.

getTaskStakeholders Returns the stakeholders of
the task.

It MUST evaluate to an empty
htt:organiza tionalEnti

ty in case of an error.

If the task name is not
present the current task
MUST be considered.

In

¶ task name (optional)

Out

¶ task stakeholders

(htt:organizationalEnti

ty)

 2760

Generic set functions: 2761

Operation Name Description Parameters

except Constructs an
organizationalEntity
containing every user that
occurs in set1 but not in
set2.

Note: This function is
required to allow enforcing
the separation of duties (ñ4-
eyes principleò).

In

¶ set1

(htt:organizationalEnti

ty

|htt:user)

¶ set2

(htt:organizationalEnt i

ty

|htt:user)

Out

¶ result

(htt:organizationalEnti

ty)

intersect Constructs an
organizationalEntity
containing every user that
occurs in both set1 and
set2, eliminating duplicate

users.

In

¶ set1

(htt:organizationalEnti

ty

|htt:user)

¶ set2

(htt:organizationalEn ti

ty

|htt:user)

Out

¶ result

(htt:organizationalEnti

ty)

union Constructs an
organizationalEntity
containing every user that

In

¶ set1

(htt:organizationalEnti

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 97 of 215

occurs in either set1 or
set2, eliminating duplicate

users.

ty

|htt:user)

¶ set2

(htt:organizationalEnti

ty

|htt:user)

Out

¶ result

(htt:organizationalEnti

ty)

 2762

In addition to the general-purpose functions listed above, the following aggregation functions MUST be 2763
supported by a WS-HumanTask Processor. All aggregation functions take a node-set of strings, 2764
booleans, or numbers as the first input parameter, and produce a result of the same type. 2765

String-valued aggregation functions: 2766

Operation Name Description Parameters

concat Returns the concatenation of
all string nodes - returns an
empty string for an empty
node-set

In

¶ node-set of string nodes

concatWithDelimiter Returns the concatenation of
all string nodes, separated
by the specified delimiter
string - returns an empty
string for an empty node-set

In

¶ node-set of string nodes

¶ delimiter string

leastFrequentOccurence Returns the least frequently
occurring string value within
all string nodes, or an empty
string in case of a tie or for
an empty node-set

In

¶ node-set of string nodes

mostFrequentOccurence Returns the most frequently
occurring string value within
all string nodes, or an empty
string in case of a tie or for
an empty node-set

In

¶ node-set of string nodes

voteOnString Returns the most frequently
occurring string value if its
occurrence is above the
specified percentage and
there is no tie, or an empty
string otherwise (including
an empty node-set)

In

¶ node-set of string nodes

¶ percentage

 2767

 2768

 2769

 2770

 2771

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 98 of 215

Boolean-valued aggregation functions: 2772

Operation Name Description Parameters

and Returns the conjunction of
all boolean nodes - returns
false for an empty node-set

In

¶ node-set of boolean nodes

or Returns the disjunction of all
boolean nodes - returns
false for an empty node-set

In

¶ node-set of boolean nodes

vote Returns the most frequently
occurring boolean value if its
occurrence is above the
specified percentage, or
false otherwise (including an
empty node-set)

In

¶ node-set of boolean nodes

¶ percentage

 2773

Number-valued aggregation functions: 2774

Operation Name Description Parameters

avg Returns the average value of
all number nodes - returns
NaN for an empty node-set

In

¶ node-set of number nodes

max Returns the maximum value
of all number nodes - returns
NaN for an empty node-set

In

¶ node-set of number nodes

min Returns the minimum value
of all number nodes - returns
NaN for an empty node-set

In

¶ node-set of number nodes

sum Returns the sum value of all
number nodes - returns NaN
for an empty node-set

In

¶ node-set of number nodes

 2775

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 99 of 215

8 Interoperable Protocol for Advanced Interaction 2776

with Human Tasks 2777

Previous sections describe how to define standard invokable Web services that happen to be 2778
implemented by human tasks or notifications. Additional capability results from an application that is 2779
human task aware, and can control the autonomy and life cycle of the human tasks. To address this in an 2780
interoperable manner, a coordination protocol, namely the WS-HumanTask coordination protocol, is 2781
introduced to exchange life-cycle command messages between an application and an invoked human 2782
task. A simplified protocol applies to notifications. 2783

 2784

 2785

While we do not make any assumptions about the nature of the application in the following scenarios, in 2786
practice it would be hosted by an infrastructure that actually deals with the WS-HumanTask coordination 2787
protocol on the applicationôs behalf. 2788

In case of human tasks the following message exchanges are possible. 2789

Scenario 1: At some point in time, the application invokes the human task through its service interface. In 2790
order to signal to the WS-HumanTask Processor that an instance of the human task can be created 2791
which is actually coordinated by the parent application, this request message contains certain control 2792
information. This control information consists of a coordination context of the WS-HumanTask 2793
coordination protocol, and optional human task attributes that are used to override aspects of the human 2794
task definition. 2795

¶ The coordination context (see [WS-C] for more details on Web services coordination framework 2796

used here) contains the element CoordinationType that MUST specify the WS-HumanTask 2797

coordination type http://docs.oasis - open.org/ns/bpel 4people/ws -2798

humantask/protocol/200803 . The inclusion of a coordination context within the request 2799

Figure 10: Message Exchange between Application and WS-HumanTask Processor

Request ing

Applicat ion

(Task Parent)

(1) requestMessage

(HT coordination context,

overriding task attributes,

attachments, callback EPR)

(2) Coor Register

(EPR of task

protocol handler)

(3) Coor RegisterResponse

(EPR of requesting application

protocol handler)

(4a) responseMessage

(attachments)

(4b) Skipped

Task

×

Credit Requestor: Joe Rich

Credit Amount : 1Mú

Risk Rat ing: ____

Submit Skip. . .

Risk Assessment

Coordinator

Applicat ion

Logic

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 100 of 215

message indicates that the life cycle of the human tasks is managed via corresponding protocol 2800
messages from outside the WS-HumanTask Processor. The coordination context further contains 2801

in its RegistrationService element an endpoint reference that the WS-HumanTask 2802

Processor MUST use to register the task as a participant of that coordination type. 2803
Note: In a typical implementation, the parent application or its environment will create that 2804
coordination context by issuing an appropriate request against the WS-Coordination (WS-C) 2805

activation service, followed by registering the parent application as a TaskParent participant in 2806

that protocol. 2807

¶ The optional human task attributes allow overriding aspects of the definition of the human task 2808
from the calling application. The WS-HumanTask Parent MAY set values of the following 2809
attributes of the task definition: 2810

o Priority of the task 2811

o Actual people assignments for each of the generic human roles of the human task 2812

o The skipable indicator which determines whether a task can actually be skipped at 2813
runtime. 2814

o The amount of time by which the task activation is deferred. 2815

o The expiration time for the human task after which the calling application is no longer 2816
interested in its result. 2817

After having created this request message, it is sent to the WS-HumanTask Processor (step (1) in Figure 2818
10). The WS-HumanTask Processor receiving that message MUST extract the coordination context and 2819
callback information, the human task attributes (if present) and the application payload. Before applying 2820
this application payload to the new human task, the WS-HumanTask Processor MUST register the human 2821
task to be created with the registration service passed as part of the coordination context (step (2) in 2822

Figure 10). The corresponding WS-C Register message MUST include the endpoint reference (EPR) of 2823

the protocol handler of the WS-HumanTask Processor that the WS-HumanTask Parent MUST use to 2824
send all protocol messages to WS-HumanTask Processor. This EPR is the value contained in the 2825

Participant Protocol Service element of the Register message. Furthermore, the registration 2826

MUST be as a HumanTask participant by specifying the corresponding value in the 2827

ProtocolId entifier element of the Register message. The WS-HumanTask Parent reacts to that 2828

message by sending back a Register Response message. This message MUST contain in its 2829

Coordinator ProtocolService element the EPR of the protocol handler of the parent application, 2830

which MUST be used by the WS-HumanTask Processor for sending protocol messages to the parent 2831
application (step (3) in Figure 10). 2832

Now the instance of the human task is activated by the WS-HumanTask Processor, so the assigned 2833
person can perform the task (e.g. the risk assessment). Once the human task is successfully completed, 2834
a response message MUST be passed back to the parent application (step (4a) in Figure 10) by WS-2835
HumanTask Processor. 2836

Scenario 2: If the human task is not completed with a result, but the assigned person determines that the 2837

task can be skipped (and hence reaches its Obsolete final state), then a ñskipped ò coordination protocol 2838

message MUST be sent from the WS-HumanTask Processor to its parent application (step (4b) in Figure 2839
10). No response message is passed back. 2840

Scenario 3: If the WS-HumanTask Parent needs to end prematurely before the invoked human task has 2841

been completed, it MUST send an exit coordination protocol message to the WS-HumanTask 2842

Processor causing the WS-HumanTask Processor to end its processing. A response message SHOULD 2843
NOT be passed back by WS-HumanTask Processor. 2844

In case of notifications to WS-HumanTask Processor, only some of the overriding attributes are 2845
propagated with the request message. Only priority and people assignments MAY be overridden for a 2846
notification, and the elements isSkipable, expirationTime and attachments MUST be ignored if present by 2847
WS-HumanTask Processor. Likewise, the WS-HumanTask coordination context, attachments and the 2848
callback EPR do not apply to notifications and MUST be ignored as well by WS-HumanTask Processor. 2849
Finally, a notification SHOULD NOT return WS-HumanTask coordination protocol messages. There 2850
SHOULD NOT be a message exchange beyond the initiating request message between the WS-2851
HumanTask Processor and WS-HumanTask Parent. 2852

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 101 of 215

8.1 Human Task Coordination Protocol Messages 2853

The following section describes the behavior of the human task with respect to the protocol messages 2854
exchanged with its requesting application which is human task aware. In particular, we describe which 2855
state transitions trigger which protocol message and vice versa. WS-HumanTask Parent MUST support 2856
WS-HumanTask Coordination protocol messages in addition to application requesting, responding and 2857
fault messages. 2858

See diagram in section 4.10 ñHuman Task Behavior and State Transitionsò. 2859

1. The initiating message containing a WS-HumanTask coordination context is received by the WS-2860
HumanTask Processor. This message MAY include ad hoc attachments that are to be made 2861
available to the WS-HumanTask Processor. A new task is created. As part of the context, an EPR 2862
of the registration service MUST be passed by WS-HumanTask Parent. This registration service 2863
MUST be used by the hosting WS-HumanTask Processor to register the protocol handler 2864
receiving the WS-HumanTask protocol messages sent by the requesting Application. If an error 2865

occurs during the task instantiation the final state Error is reached and protocol message fault 2866

MUST be sent to the requesting application by WS-HumanTask Processor. 2867

2. On successful completion of the task an application level response message MUST be sent and 2868
the task moved to state Completed. When this happens, attachments created during the 2869
processing of the task MAY be added to the response message. Attachments that had been 2870
passed in the initiating message MUST NOT be returned. The response message outcome 2871
MUST be set to the outcome of the task. 2872

3. On unsuccessful completion (completion with a fault message), an application level fault 2873
message MUST be sent and the task moved to state Failed. When this happens, attachments 2874
created during the processing of the task MAY be added to the response message. Attachments 2875
that had been passed in the initiating message MUST NOT be returned. 2876

4. If the task experiences a non-recoverable error protocol message fault MUST be sent and 2877

the task moved to state Error. Attachments MUST NOT be returned. 2878

5. If the task is skipable and is skipped then the WS-HumanTask Processor MUST send the 2879

protocol message skipped and task MUST be moved to state Obsolete. Attachments MUST 2880

NOT be returned. 2881

6. On receipt of protocol message exit the task MUST be moved to state Exited. This indicates 2882

that the requesting application is no longer interested in any result produced by the task. 2883

The following table summarizes this behavior, the messages sent, and their direction, i.e., whether a 2884
message is sent from the requesting application to the task (ñoutò in the column titled Direction) or vice 2885
versa (ñinò). 2886

 2887

Message Direction
Human Task Behavior (and
Protocol messages)

application request with WS-HT
coordination context

in Create task (Register)

application response out Successful completion with response

application fault response out Completion with fault response

htcp:Fault out Non-recoverable error

htcp:Exit in
Requesting application is no longer
interested in the task output

htcp:Skipped out Task moves to state Obsolete

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 102 of 215

8.2 Protocol Messages 2888

All WS-HumanTask protocol messages have the following type: 2889

<xsd:complexType name="tProtocolMsgType" > 2890
 <xsd:sequence > 2891
 <xsd:any namespace ="##other" processContents ="lax" 2892
 minOccurs ="0" maxOccurs ="unbounded" /> 2893
 </ xsd:sequence > 2894
 <xsd:anyAttribute namespace ="##other" processContents ="lax" /> 2895
</ xsd:complexType > 2896

This message type is extensible and any implementation MAY use this extension mechanism to define 2897
proprietary attributes and content which are out of the scope of this specification. 2898

8.2.1 Protocol Messages Received by a Task Parent 2899

The following is the definition of the htcp:skipped message. 2900

<xsd:element name="skipped" type ="htcp:tProtocolMsgType" /> 2901
<wsdl:message name="skipped" > 2902
 <wsdl:part name="parameters" element ="htcp:skipped" /> 2903
</ wsdl:message > 2904

The htcp:skipped message is used to inform the task parent (i.e. the requesting application) that the 2905

invoked task has been skipped. The task does not return any result. 2906

The following is the definition of the htcp:fault message. 2907

<xsd:element name="fault" type ="htcp:tProtocolMsgType" /> 2908
<wsdl:me ssage name="fault" > 2909
 <wsdl:part name="parameters" element ="htcp:fault" /> 2910
</ wsdl:message > 2911

The htcp:fault message is used to inform the task parent that the task has ended abnormally. The 2912

task does not return any result. 2913

8.2.2 Protocol Messages Received by a Task 2914

Upon receipt of the following htcp:exit message the task parent informs the task that it is no longer 2915

interested in its results. 2916

<xsd:element name="exit" type ="htcp:tProtocolMsgType" /> 2917
<wsdl:message name="exit" > 2918
 <wsdl:part name="parameters" element ="h tcp:exit" /> 2919
</ wsdl:message > 2920

8.3 WSDL of the Protocol Endpoints 2921

Protocol messages are received by protocol participants via operations of dedicated ports called protocol 2922
endpoints. In this section we specify the WSDL port types of the protocol endpoints needed to run the 2923
WS-HumanTask coordination protocol. 2924

8.3.1 Protocol Endpoint of the Task Parent 2925

An application that wants to create a task and wants to become a task parent MUST provide an endpoint 2926
implementing the following port type. This endpoint is the protocol endpoint of the task parent receiving 2927
protocol messages of the WS-HumanTask coordination protocol from a task. The operation used by the 2928
task to send a certain protocol message to the task parent is named by the message name of the protocol 2929

message concatenated by the string Operation . For example, the skipped message MUST be passed 2930

to the task parent by using the operation named skippedOperation . 2931

<wsdl:portType name="clientParticipantPortType" > 2932

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 103 of 215

 <wsdl:operation name="skippedOperation" > 2933
 <wsdl:input message ="htcp:skipped" /> 2934
 </ wsdl:operation > 2935
 <wsdl:operation name="faultOperation" > 2936
 <wsdl:input message ="htcp:fault" /> 2937
 </ wsdl:operation > 2938
</ wsdl:portType > 2939

8.3.2 Protocol Endpoint of the Task 2940

For a WS-HumanTask Definition a task MUST provide an endpoint implementing the following port type. 2941
This endpoint is the protocol endpoint of the task receiving protocol messages of the WS-HumanTask 2942
coordination protocol from a task parent. The operation used by the task parent to send a certain protocol 2943
message to a task is named by the message name of the protocol message concatenated by the string 2944

Operation . For example, the exit protocol message MUST be passed to the task by using the 2945

operation named exitOperation . 2946

<wsdl:portType name="humanTaskParticipantPortType" > 2947
 <wsdl:operation name="exitOperation" > 2948
 <wsdl:input message ="htcp:exit" /> 2949
 </ wsdl:operation > 2950
</ wsdl:portType > 2951

8.4 Providing Human Task Context 2952

The task context information is exchanged between the requesting application and a task or a notification. 2953
In case of tasks, this information is passed as header fields of the request and response messages of the 2954
taskôs operation. In case of notifications, this information is passed as header fields of the request 2955
message of the notificationôs operation. 2956

8.4.1 SOAP Binding of Human Task Context 2957

In general, a SOAP binding specifies for message header fields how they are bound to SOAP headers. In 2958

case of WS-HumanTask, the humanTaskRequestContext and humanTaskResponseContext 2959

elements are simply mapped to SOAP header as a whole. The following listings show the SOAP binding 2960
of the human task request context and human task response context in an infoset representation. 2961

<S:Envelope xmlns:S ="http://www.w3.org/2003/05/soap - envelope" 2962
 xmlns:htc ="http://docs.oasis - open .org/ns/bpel4people/ws -2963
humantask/context/200803" > 2964
 <S:Header > 2965
 <htc:humanTaskRequestContext > 2966
 <htc:priority >... </ htc:priority >? 2967
 <htc:attachments >... </ htc:attachments >? 2968
 <htc:peopleAssignments >... </ htc:peopleAssignments >? 2969
 <htc:isSkipa ble >... </ htc:isSkipable >? 2970
 <htc:activationDeferralTime> ... </htc:activationDeferralTime> ? 2971
 <htc:expirationTime >... </ htc:expirationTime >? 2972
 ... extension elements ... 2973
 </ htc:humanTaskRequestContext > 2974
 </ S:Header > 2975
 <S:Body > 2976
 ... 2977
 </ S:Body > 2978
</ S:Envelope > 2979

 2980

<S:Envelope xmlns:S ="http://www.w3.org/2003/05/soap - envelope" 2981

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 104 of 215

 xmlns:htc ="http://docs.oasis - open.org/ns/bpel4people/ws -2982
humantask/context/200803" > 2983
 <S:Header > 2984
 <htc:humanTaskResponseContext > 2985
 <htc:priority >... </ htc:priority >? 2986
 <htc:attachments >... </ htc:attachments >? 2987
 <htc:actualOwner >... </ htc:actualOwner >? 2988
 <htc:actualPeopleAssignments >... </ htc:actualPeopleAssignments >? 2989
 <htc:outcome >... </ htc:outcome >? 2990
 ... extension elements ... 2991
 </ htc:hu manTaskResponseContext > 2992
 </ S:Header > 2993
 <S:Body > 2994
 ... 2995
 </ S:Body > 2996
</ S:Envelope > 2997

The following listing is an example of a SOAP message containing a human task request context. 2998

<S:Envelope xmlns:S ="http://www.w3.org/2003/05/soap - envelope" 2999
 xmln s:htc ="http://docs.oasis - open.org/ns/bpel4people/ws -3000
humantask/context/200803" > 3001
 <S:Header > 3002
 <htc:humanTaskRequestContext > 3003
 <htc:priority >0</ htc:priority > 3004
 <htc:peopleAssignments > 3005
 <htc:potentialOwners > 3006
 <htt:organizationalEnti ty > 3007
 <htt:user >Alan </ htt:user > 3008
 <htt:user >Dieter </ htt:user > 3009
 <htt:user >Frank </ htt:user > 3010
 <htt:user >Gerhard </ htt:user > 3011
 <htt:user >Ivana </ htt:user > 3012
 <htt:user >Karsten </ htt:user > 3013
 <htt:user >Matthias </ htt:user > 3014
 <htt:user >Patrick </ htt:user > 3015
 </ htt:organizationalEntity > 3016
 </ htc:potentialOwners > 3017
 </ htc:peopleAssignments > 3018
 </ htc:humanTaskRequestContext > 3019
 </ S:Header > 3020
 <S:Body >... </ S:Body > 3021
</ S:Envelope > 3022

8.4.2 Overriding Task Definition People Assignments 3023

The task context information exchanged contains a potentialOwners element, which can be used at 3024

task creation time to override the set of task assignments that we defined in the original task definition. 3025
Compliant implementations MUST allow overriding of simple tasks and routing patterns that are a single-3026
level deep, i.e. routing patterns that donôt have nested routing patterns. If the task context 3027

potentialOwners contains a list of htt:user and htt:group , and the task definition contains a 3028

routing pattern element htt:parallel or htt:sequence that has as its only children htt:user and 3029

htt:group elements, the WS-HumanTask Processor MUST replace the list in the task definition with the 3030

list in the task context. If the task definition contains only a list of htt:user and htt:group , then the 3031

WS-HumanTask Processor MUST replace the list of users from the task definition with the list of users in 3032
the task context. 3033

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 105 of 215

8.5 Human Task Policy Assertion 3034

In order to support discovery of Web services that support the human task contract that are available for 3035
coordination by another service, a human task policy assertion is defined by WS-HumanTask. This policy 3036
assertion can be associated with the business operation used by the invoking component (recall that the 3037
human task is restricted to have exactly one business operation). In doing so, the provider of a human 3038
task can signal whether or not the corresponding task can communicate with an invoking component via 3039
the WS-HumanTask coordination protocol. 3040

The following describes the policy assertion used to specify that an operation can be used to instantiate a 3041
human task with the proper protocol in place: 3042

<htp:HumanTaskAssertion wsp:Optional ="true" ? ... > 3043
 ... 3044
</ htp:HumanTaskAssertion > 3045

/htp:HumanTaskAssertion 3046

This policy assertion specifies that the WS-HumanTask Parent, in this case the sender, MUST 3047
include context information for a human task coordination type passed with the message. The 3048
receiving human task MUST be instantiated with the WS-Human Task protocol in place by the 3049
WS-HumanTask Processor. 3050

/htp:HumanTaskAssertion/@wsp:Optional="true" 3051

As defined in WS-Policy [WS-Policy], this is the compact notation for two policy alternatives, one 3052
with and one without the assertion. Presence of both policy alternatives indicates that the 3053
behavior indicated by the assertion is optional, such that a WS-HumanTask coordination context 3054
MAY be passed with an input message. If the context is passed the receiving human task MUST 3055
be instantiated with the WS-HumanTask protocol in place. The absence of the assertion is 3056
interpreted to mean that a WS-HumanTask coordination context SHOULD NOT be passed with 3057
an input message. 3058

The human task policy assertion indicates behavior for a single operation, thus the assertion has an 3059
Operation Policy Subject. WS-PolicyAttachment [WS-PolAtt] defines two policy attachment points with 3060
Operation Policy Subject, namely wsdl:portType/wsdl:operation and wsdl:binding/wsdl:operation. 3061

The <htp:HumanTaskAssertion> policy assertion can also be used for notifications. In that case it 3062

means that the WS-HumanTask Parent, in this case the sender, MAY pass the human task context 3063
information with the message. Other headers, including headers with the coordination context are 3064
ignored. 3065

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 106 of 215

9 Task Parent Interactions with Lean Tasks 3066

9.1 Operations for Task Parent Applications 3067

A number of operations are involved in the life cycle of a lean task definition. These comprise: 3068

¶ Registering a lean task definition, such that it is available for later use 3069

¶ Unregistering a lean task definition, such that it is no longer available for later use 3070

¶ Listing lean task definitions, to determine what is available for use 3071

¶ Creating a lean task from a lean task definition 3072

An operation takes a well-defined set of parameters as its input. Passing an illegal parameter or an illegal 3073

number of parameters MUST result in the htlt:illegalArgumentFault being returned. Invoking an 3074

operation that is not allowed in the current state of the lean task definition MUST result in an 3075

htlt:ille galStateFault . 3076

By default, the identity of the person on behalf of which the operation is invoked is passed to the WS-3077
HumanTask Processor. When the person is not authorized to perform the operation the 3078

htlt:illegalAccessFault MUST be returned. 3079

This specification does not stipulate the authentication, addressing, and binding scheme employed when 3080
calling an operation. This can be achieved using different mechanisms (e.g. WS-Security, WS-3081
Addressing). 3082

9.2 Lean Task Interactions 3083

To enable lightweight task definition and creation by a WS-HumanTask Parent, a conformant WS-3084
HumanTask Processor MUST provide the following operations: 3085

· registerLeanTaskDefinition API for registration 3086

· unregisterLeanTaskDefinition API for retraction 3087

· listLeanTaskDefinitions API for enumeration 3088

· createLeanTask and createLeanTaskAsync APIs for creation 3089

and invoke the following callback operation in response to createLeanTaskAsync : 3090

¶ createLeanTaskAsync Callback 3091

9.2.1 Register a Lean Task Definition 3092

 <xsd:element name=" r egisterLeanTask Definition " > 3093
 <xs d:complexType> 3094
 <xsd:sequence> 3095
 <xsd:element name="taskDefinition" type ="htd:t Lean Task" /> 3096
 </xsd:sequence> 3097
 </xsd:complexType> 3098
 </xsd:element> 3099
 <xsd:element name=" r egisterLeanTask Definition Response" > 3100
 <xsd:complexType> 3101
 <xsd: sequence> 3102
 <xsd:element name="taskName" type ="xsd:NCName" /> 3103
 </xsd:sequence> 3104
 </xsd:complexType> 3105
 </xsd:element> 3106

ws-humantask-1.1-spec-cd-09 12 May 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 107 of 215

The htlt: r egisterLeanTaskDefinition operation is used to create a new Lean Task definition that 3107

is available for future listing and consumption by the htlt:l istLeanTaskDefinitions and 3108

htlt:c reateLeanTask / htlt:c reateLeanTask Async operations. If an existing Lean Task exists at 3109

the same name as the htd:tLeanTask/@Name , the WSHumanTask Processor SHOULD return an 3110

htlt:illegalStateFa ult . 3111

9.2.2 Unregister a Lean Task Definition 3112

 <xsd:element name=" unr egisterLeanTask Definition " > 3113
 <xsd:complexType> 3114
 <xsd:sequence> 3115
 <xsd:element name=" taskName " type ="xsd:NCName" /> 3116
 </xsd:sequence> 3117
 </xsd:complexType> 3118
 </xsd:element> 3119
 <xsd:element name=" unr egisterLeanTask Definition Response" > 3120
 <xsd:complexType> 3121
 <xsd:sequence> 3122
 <xsd:element name="taskName" type ="xsd:NCName" /> 3123
 </xsd:sequence> 3124
 </xsd:complexType> 3125
 </xsd:element> 3126

The htlt: unregisterLeanTaskDefiniti on operation is used to remove a Lean Task available for 3127

future listing and consumption by the htlt:l istLeanTaskDefinitions and 3128

htlt:c reateLeanTask / htlt:c reateLeanTask Async operations. The WS-HumanTask Processor 3129

SHOULD also move any instances of lean tasks of this task definition to ñErrorò state. If the Lean Task 3130
does not already exist as a registered element, the WS-HumanTask Processor MUST return an 3131

htlt:illegalArgumentFault . 3132

9.2.3 List Lean Task Definitions 3133

 <xsd:element name=" l istLeanTask Definition s" > 3134
 <xsd:complexType> 3135
 <xsd:sequence > 3136
 <xsd:annotation> 3137
 <xsd:documentation> Empty message </xsd:documentation> 3138
 </xsd:annotation> 3139
 </xsd:sequence> 3140
 </xsd:complexType> 3141
 </xsd:element> 3142
 <xsd:element name=" l istLeanTask Definit ion sResponse" > 3143
 <xsd:complexType> 3144
 <xsd:sequence> 3145
 <xsd:element name="leanTaskDefinitions " > 3146
 <xsd:complexType> 3147
 <xsd:sequence> 3148
 <xsd:element name=" lean Task Definition " type ="htd:t Lean Task" 3149
minOccurs ="0" maxOccurs ="unbounded" /> 3150
 </xsd:sequence> 3151
 </xsd:complexType> 3152
 </xsd:element> 3153
 </xsd:sequence> 3154
 </xsd:complexType> 3155
 </xsd:element> 3156

