
filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 1 of 28

AMQP Filter Expressions Version 1.0

Committee Specification Draft 01

17 March 2021

This stage:
https://docs.oasis-open.org/amqp/filtex/v1.0/csd01/filtex-v1.0-csd01.docx (Authoritative)
https://docs.oasis-open.org/amqp/filtex/v1.0/csd01/filtex-v1.0-csd01.html
https://docs.oasis-open.org/amqp/filtex/v1.0/csd01/filtex-v1.0-csd01.pdf

Previous stage of Version 1.0:
N/A

Latest stage of Version 1.0:
https://docs.oasis-open.org/amqp/filtex/v1.0/filtex-v1.0.docx (Authoritative)
https://docs.oasis-open.org/amqp/filtex/v1.0/filtex-v1.0.html
https://docs.oasis-open.org/amqp/filtex/v1.0/filtex-v1.0.pdf

Technical Committee:
OASIS Advanced Message Queuing Protocol (AMQP) TC

Chairs:
Rob Godfrey (rgodfrey@redhat.com), Red Hat
Clemens Vasters (clemensv@microsoft.com), Microsoft

Editor:
Clemens Vasters (clemensv@microsoft.com), Microsoft

Related work:
This document is related to:

• OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0 Part 0: Overview. Edited by
Robert Godfrey, David Ingham, and Rafael Schloming. 29 October 2012. OASIS Standard.
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html.

Abstract:

The AMQP Filter Expressions specification describes a syntax for expressions consisting of property
selectors, functions, and operators that can be used for conditional transfer operations and for
configuring a messaging infrastructure to conditionally distribute, route, or retain messages.

Status:
This document was last revised or approved by the OASIS Advanced Message Queuing Protocol
(AMQP) TC on the above date. The level of approval is also listed above. Check the "Latest stage"
location noted above for possible later revisions of this document. Any other numbered Versions and
other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=amqp#technical.

TC members should send comments on this document to the TC's email list. Others should send
comments to the TC's public comment list, after subscribing to it by following the instructions at the "Send
A Comment" button on the TC's web page at https://www.oasis-open.org/committees/amqp/.

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing

https://docs.oasis-open.org/amqp/filtex/v1.0/csd01/filtex-v1.0-csd01.docx
https://docs.oasis-open.org/amqp/filtex/v1.0/csd01/filtex-v1.0-csd01.html
https://docs.oasis-open.org/amqp/filtex/v1.0/csd01/filtex-v1.0-csd01.pdf
https://docs.oasis-open.org/amqp/filtex/v1.0/filtex-v1.0.docx
https://docs.oasis-open.org/amqp/filtex/v1.0/filtex-v1.0.html
https://docs.oasis-open.org/amqp/filtex/v1.0/filtex-v1.0.pdf
https://www.oasis-open.org/committees/amqp/
mailto:rgodfrey@redhat.com
http://www.redhat.com/
mailto:clemensv@microsoft.com
http://www.microsoft.com/
mailto:clemensv@microsoft.com
http://www.microsoft.com/
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=amqp
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=amqp
https://www.oasis-open.org/committees/amqp/
https://www.oasis-open.org/policies-guidelines/ipr#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 2 of 28

terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/amqp/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such
plain text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Citation format:
When referencing this document, the following citation format should be used:

[Filter-Expressions-v1.0]

AMQP Filter Expressions Version 1.0. Edited by Clemens Vasters. 17 March 2021. OASIS Committee
Specification Draft 01. https://docs.oasis-open.org/amqp/filtex/v1.0/csd01/filtex-v1.0-csd01.html. Latest
stage: https://docs.oasis-open.org/amqp/filtex/v1.0/filtex-v1.0.html.

Notices:
Copyright © OASIS Open 2021. All Rights Reserved.

Distributed under the terms of the OASIS IPR Policy, [https://www.oasis-open.org/policies-guidelines/ipr].
For complete copyright information please see the Notices section in the Appendix.

https://www.oasis-open.org/committees/amqp/ipr.php
https://www.oasis-open.org/committees/amqp/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/amqp/filtex/v1.0/csd01/filtex-v1.0-csd01.html
https://docs.oasis-open.org/amqp/filtex/v1.0/filtex-v1.0.html
https://www.oasis-open.org/policies-guidelines/ipr

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 3 of 28

Table of Contents

1 Introduction ... 5

1.1 Terminology .. 5

1.2 Normative References .. 5

2 Filter Expressions ... 6

2.1 Overview ... 6

2.2 Connection and Link Capabilities ... 6

2.3 Error Handling ... 6

3 Grouping filter expressions ... 8

3.1 all filter ... 8

3.2 any filter .. 8

3.3 not filter ... 8

4 Property Filter Expressions .. 9

4.1 Value matching rules .. 9

4.1.1 Simple type matching .. 9

4.1.2 Map-type matching .. 10

4.1.3 List-type matching ... 10

4.1.4 Array-type matching .. 10

4.1.5 Described type matching ... 10

4.2 Filter definitions ... 11

4.2.1 header filter.. 11

4.2.2 delivery-annotations filter .. 11

4.2.3 message-annotations filter .. 11

4.2.4 properties filters ... 11

4.2.5 application-properties filter .. 12

4.3 footer filter ... 12

5 Constant filter expressions ... 13

5.1 True Filter.. 13

5.2 False Filter .. 13

6 SQL Filter Expressions ... 14

6.1 Overview ... 14

6.2 Data types in SQL expressions .. 14

6.3 Implicit Conversions and Expansions ... 15

6.3.1 Numeric Conversions and Expansions ... 15

6.3.2 Timestamp conversions .. 16

6.4 Grammar Elements ... 16

6.4.1 Predicates .. 16

6.4.2 Logical operators ... 17
6.4.2.1 Unary logical operators .. 17
6.4.2.2 Binary logical operators ... 17
6.4.2.3 Comparison operators ... 17

6.4.3 Other logical predicates ... 18
6.4.3.1 IS NULL and IS NOT NULL predicate .. 18
6.4.3.2 LIKE predicate ... 18
6.4.3.3 IN predicate ... 19

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 4 of 28

6.4.3.4 EXISTS predicate .. 19

6.4.4 Expressions ... 19
6.4.4.1 Expression operators ... 19

6.4.4.1.1 Unary expression operators ... 19
6.4.4.1.2 Binary expression operators ... 19

6.4.4.2 Constant Expressions .. 20
6.4.4.2.1 Integer constants .. 20
6.4.4.2.2 Decimal constants .. 20
6.4.4.2.3 Approximate number constants .. 20
6.4.4.2.4 Boolean constants .. 21
6.4.4.2.5 String constants ... 21
6.4.4.2.6 Binary constants ... 21

6.4.4.3 Functions ... 21
6.4.4.3.1 LOWER function .. 21
6.4.4.3.2 UPPER function ... 21
6.4.4.3.3 LEFT function ... 21
6.4.4.3.4 RIGHT function .. 22
6.4.4.3.5 SUBSTRING function ... 22
6.4.4.3.6 UTC function .. 22
6.4.4.3.7 DATE function .. 22

6.4.4.4 Field References and Values ... 22
6.4.4.5 Composite Type and Array Value References ... 23
6.4.4.6 Identifier Syntax ... 23

7 Security Considerations ... 24

7.1 Complex expressions ... 24

7.2 Inducing errors .. 24

7.3 Injection ... 24

8 Conformance .. 25

Appendix A. Acknowledgments .. 26

Appendix B. Revision History .. 27

Appendix C. Notices .. 28

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 5 of 28

1 Introduction
This specification introduces AMQP type definitions for message filter expressions. Filter expressions are
logical statements, implemented as AMQP “filter” archetypes, that can be evaluated against the contents
of an AMQP message or against the result of other AMQP filters, and yield a Boolean “true” or “false”
result.

Filter expressions are designed for use in other specifications or by AMQP applications that require
durable or ephemeral configuration of message filters.

An example for such a configuration is the creation of a durable subscription on a message topic similar
to the equivalent Java Message Service (JMS) construct.

This specification only defines the data types and related syntax definitions for filters and does not
prescribe specific application scenarios.

• Property filter expressions allow for simple matching of metadata carried in a message against
reference data held in the filter expression, and is specifically optimized for high-performance
scenarios, because it does not require text parsing.

• SQL filter expressions allow for complex filter conditions. Their definition leans on the SQL-92
standard just as the familiar SQL selector syntax used by Java Message Service (JMS)
specification does.

• Group filter expressions allow grouping AMQP filters logically, allowing composite expressions
where the result is “true” when all, any, or none of the grouped expressions match. Group filter
expressions apply to instances of any AMQP “filter” archetype, not just instances of the filter
expression types defined here.

1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in [RFC2119] and [RFC8174] when, and only when, they appear in all capitals, as shown here.

When used in this specification and unless explicitly stated otherwise, the term “message” always refers
to an AMQP message using the default message format of [AMQP 1.0, 3.2.16]

1.2 Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.

[RFC5646] Phillips, A., Ed., and M. Davis, Ed., "Tags for Identifying Languages", BCP 47, RFC 5646,
DOI 10.17487/RFC5646, September 2009, <https://www.rfc-editor.org/info/rfc5646>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14,
RFC 8174, DOI 10.17487/RFC8174, May 2017, <http://www.rfc-editor.org/info/rfc8174>.

[AMQP 1.0] OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0 Part 0: Overview.
Edited by Robert Godfrey, David Ingham, and Rafael Schloming. 29 October 2012. OASIS Standard.
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html.

http://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5646
http://www.rfc-editor.org/info/rfc8174
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 6 of 28

2 Filter Expressions
Filter expressions are logical statements that refer to elements of an AMQP 1.0 message using the
default AMQP message format as defined in AMQP 1.0, Section 3.2.16.

Implementers of alternate message formats might reuse these filter expressions, but the behavior with
other message formats is formally undefined.

2.1 Overview

Filter expressions are evaluated by an AMQP container against messages flowing out of the AMQP
container. Successful evaluation of a filter expression against a message will result in a boolean result:

true or false. Where expression evaluation fails (for instance through an attempt to compare between

values of types which cannot be compared), the evaluation is neither true nor false but instead can be

considered to be unknowable - that is null.

Property filter expressions and SQL filter expressions are evaluated referring to the fields contained within
the “header”, “delivery-annotations”, “message-annotations”, “properties”, “application-properties”, and
“footer” [AMQP 1.0] sections of a message.

The body (data, amqp-value, or amqp-sequence sections) may be large, unstructured and intentionally
opaque to intermediary containers. For these reasons, filters against the body sections are intentionally
out of scope for this specification.

2.2 Connection and Link Capabilities

On connection establishment, a partner MUST indicate whether and which filter expressions it supports
through the exchange of connection capabilities (see Section 2.7.1 [AMQP 1.0]).

The capabilities allow for the partner to detect whether filter expressions as defined in this specification
have been implemented and can be used with the partner container, at all. A partner MAY indicate
support and yet it MAY still refuse to accept certain filters or combination of filters for some scenarios.

Each type-group of filters MUST be negotiated separately.

Capability Name Definition

AMQP_FILTEX_SQL_V1_0 If present in the offered-capabilities field of the open or the

attach frame, the sender of the open or attach supports the use of

SQL filter expressions as defined in this specification.

AMQP_FILTEX_PROP_V1_0 If present in the offered-capabilities field of the open or the

attach frame, the sender of the open or attach supports the use of

property filter expressions as defined in this specification.

AMQP_FILTEX_GROUP_V1_0 If present in the offered-capabilities field of the open or the

attach frame, the sender of the open or attach supports the use of

group filter expressions as defined in this specification.

2.3 Error Handling

There are two kinds of errors that may occur when filters are being handled: Definitional errors and
evaluation errors.

Definitional errors occur when the filter is defined, for instance when it is applied as a source filter in an
attach frame, and the filter validation encounters a syntax error.

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-header
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-delivery-annotations
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-message-annotations
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-application-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-footer

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 7 of 28

If a container establishes sending link on receipt of an unsolicited attach by its partner, and the
attach from its partner contains a filter on the source, the container SHOULD validate the filter before
sending its own attach with the same filter defined at its source.

When validation is performed, and the validation yields an error, or if the indicated filter is not supported,
the source-side MUST detach the link with an appropriate error code, typically with the invalid-field code.

Evaluation errors occur when the filter is used at runtime and the evaluation cannot be completed, for
instance by an arithmetic division by zero where the divisor stems from a message property. In this case,
the message causing the error shall not be eligible for delivery. The implementation MAY choose to move
the message to a different node for diagnostic purposes.

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-transport-v1.0-os.html#choice-amqp-error-invalid-field

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 8 of 28

3 Grouping filter expressions
Grouping filter expressions allows logical combinations of instances of any AMQP “filter” archetype as
filters.

A grouping filter expression is of the AMQP archetype “filter” as a restriction of the “list” base type and
enumerates one or more objects of archetype “filter”.

Because grouping filters are filters they can themselves be grouped. Implementations supporting
grouping expressions MAY restrict the depth of nesting permitted.

If any of the filter expressions contained by a grouping filter expression contains evaluates to NULL due
to a failure, the entire grouping expression evaluates to NULL and the error condition of the first failing
filter is propagated as the error code and reason.

3.1 all filter

This filter type groups one of multiple filters and evaluates to true if all filters it contains evaluate to true
when matched against the candidate message. This is a logical “and” operation.

<type name="all-filter" class="restricted" source="list" provides="filter">

 <descriptor name="amqp:all-filter " code="0x00000000:0x00000100"/>

</type>

The filter-type is “amqp:all-filter”, with type-code 0x00000000:0x00000100

3.2 any filter

This filter type groups one of multiple filters and evaluates to true if any of the filters it contains evaluate to
true when matched against the candidate message. This is a logical “or” operation.

<type name="any-filter" class="restricted" source="list" provides="filter">

 <descriptor name="amqp:any-filter" code="0x00000000:0x00000101"/>

</type>

The filter-type is “amqp:any-filter”, with type-code 0x00000000:0x00000101

3.3 not filter

This filter type groups one of multiple filters and evaluates to true if none of the filters it contains evaluate
to true when matched against the candidate message.

<type name="not-filter" class="restricted" source="list" provides="filter">

 <descriptor name="amqp:not-filter" code="0x00000000:0x00000102"/>

</type>

The filter-type is “amqp:not-filter”, with type-code 0x00000000:0x00000102

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 9 of 28

4 Property Filter Expressions
Property filters expressions allow matching of message metadata against reference metadata.

A property filter expression is of the AMQP archetype “filter”. This section defines property filter types for
each of these AMQP message sections: “header”, “message-annotations”, “properties”, “application-
properties”, and “footer”.

Each of the property filter expression types is a map.

For the “header” and “properties” message sections that are made up of well-known fields, the map
MUST correspond (name, type, and any further restrictions) to the respective message metadata section
type’s field definitions.

If invalid entries are present for these expressions, validation and evaluation MUST fail.

For instance, the “properties-filter” reference expression type is a map, whereby the permissible entries of
the map correspond to the fields of the AMQP “properties” type and all respective type and value
restrictions apply.

Any entry referenced by the filter expression that is not present in the section is treated as if the entry was
present and its value were either the defined default value for the corresponding well-known field, if
applicable, or NULL otherwise. That is the case both for well-known fields as well as for references to
application-defined fields.

A property filter matches the corresponding AMQP message section and is evaluated as “true” if each
element of the reference data in the property filter matches the corresponding element in the AMQP
message section (logical “AND”). For logical “OR” operations, combine multiple property filter expressions
with an “any” grouping filter expression.

4.1 Value matching rules

The following rules apply for matching the contents of the message sections.

The term “field value” refers to the value of an entry in a message metadata section. A “reference field
value” is the value in the filter expression whose key matches the name of the message metadata field.

4.1.1 Simple type matching

A reference field value in a property filter expression matches its corresponding message metadata field
value if:

The reference field value is NULL, or

the reference field value is of the same type and value as the corresponding message metadata
field, or

the reference field value is of the same type and value as the corresponding message metadata
field when applying the [[simplified interpretation of AMQP types]], or

the reference field value is of an integer number type and the message metadata field is of a
different integer number type, the reference value and the metadata field value are within the
value range of both types, and the values are equal,

at least one field is a floating point value, and the reference field value is of a floating-point or
integer number type and the message metadata field is of a different floating-point or integer
number type, the reference value and the metadata field value are within the value range of both
types, and the values are equal when treated as a floating-point,

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 10 of 28

the reference field and message metadata field values are of type string or of type symbol (any
combination is permitted) and the reference field value’s and the message metadata field length
is identical and ordinal values of the characters in the sequence match exactly (case sensitive), or

the reference field value is of type string and that string is prefixed with a modifier
(‘&’+{operator}+’:’), and the message metadata field satisfies the modifier’s matching rule:

Modifier Prefix Description

&s:suffix Suffix. The message metadata field matches the expression if the ordinal
values of the characters of the suffix expression equal the ordinal values of
the same number of characters trailing the message metadata field value.

&p:prefix Prefix. The message metadata field matches the expression if the ordinal
values of the characters of the prefix expression equal the ordinal values of
the same number of characters leading the message metadata field value.

&&remaining-string Escape prefix for case-sensitive matching of a string starting with ‘&’

All text comparisons in filter expressions are case-sensitive.

4.1.2 Map-type matching

A map in a property filter expression matches its message metadata counterpart if:

every entry in the reference map that is not NULL-valued is present (key lookup match) in the
message metadata map, AND

the value of the reference map entry matches the corresponding message metadata map value
following the field matching rules defined above.

The order of map entries is not significant.

4.1.3 List-type matching

A list in a property filter matches its message metadata counterpart if:

every entry in the reference list is present (positional match) in the message metadata list, AND

the value of the reference list entry matches the corresponding message metadata list value
following the field matching rules defined above.

4.1.4 Array-type matching

An array in a property filter matches its message metadata counterpart if:

the reference array and the message metadata array have the same size, AND

the value of each reference array entry matches the corresponding (same position) message
metadata array value following the field matching rules defined above.

4.1.5 Described type matching

AMQP described types (AMQP 1.1.2) are either restrictions or compositions of native AMQP types.
Composite types are generally represented as AMQP lists (AMQP 1.3.2).

For restricted or composite types, the matching rules for the base type as described above apply. Any
restriction rules defined in the described type MAY be ignored, because they are generally not available
for evaluation at runtime.

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 11 of 28

4.2 Filter definitions

4.2.1 header filter

This filter type applies to the AMQP header section (AMQP 3.2.1).

The filter evaluates to true if all header fields enclosed in the filter expression map match the respective
header field values in the message. Absent or NULL-valued header fields match the default values of the
corresponding header fields for which default values are defined.

<type name="header-filter" class="restricted" source="map" provides="filter">

<descriptor name="amqp:header-filter" code="0x00000000:0x00000170"/>

</type>

The filter-type is “amqp:header-filter”, with type-code 0x00000000:0x00000170.

4.2.2 delivery-annotations filter

This filter type applies to the AMQP delivery-annotations section (AMQP 3.2.2).

The filter evaluates to true if all annotations enclosed in the filter expression match the respective
delivery-annotation map entries in the message.

<type name="delivery-annotations-filter" class="restricted" source="map"

provides="filter">

<descriptor name="amqp:delivery-annotations-filter"

code="0x00000000:0x00000171"/>

</type>

The filter-type is “amqp:delivery-annotations-filter”, with type-code 0x00000000:0x00000171

4.2.3 message-annotations filter

This filter type applies to the AMQP message-annotations section (AMQP 3.2.3).

The filter evaluates to true if all annotations enclosed in the filter expression match the respective
message-annotation map entries in the message.

<type name="message-annotations-filter" class="restricted" source="map"

provides="filter">

<descriptor name="amqp:message-annotations-filter"

code="0x00000000:0x00000172"/>

</type>

The filter-type is “amqp:message-annotations-filter”, with type-code 0x00000000:0x00000172

4.2.4 properties filters

This filter type applies to the immutable AMQP properties of the message (AMQP 3.2.4).

The filter evaluates to true if all properties enclosed in the filter expression match the respective
properties in the message.

<type name="properties-filter" class="restricted" source="map"

provides="filter">

<descriptor name="amqp:properties-filter" code="0x00000000:0x00000173"/>

</type>

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 12 of 28

The filter-type is “amqp:properties-filter”, with type-code 0x00000000:0x00000173.

4.2.5 application-properties filter

This filter type applies to the AMQP application-properties section (AMQP 3.2.5).

The filter evaluates to true if all properties enclosed in the filter expression match the respective entries in
the application-properties section in the message.

<type name="application-properties-filter" class="restricted" source="map"

provides="filter">

<descriptor name="amqp:application-properties-filter"

code="0x00000000:0x00000174"/>

</type>

The filter-type is “amqp:application-properties-filter”, with type-code 0x00000000:0x00000174.

4.3 footer filter

This filter type applies to the AMQP footer section (AMQP 3.2.9).

The filter evaluates to true if all footer fields enclosed in the filter expression match the respective footer
section map entries in the message.

<type name="footer-filter" class="restricted" source="footer"

provides="filter">

<descriptor name="amqp:footer-filter" code="0x00000000:0x00000178"/>

</type>

 The filter-type is “amqp:footer-filter”, with type-code 0x00000000:0x00000178.

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 13 of 28

5 Constant filter expressions
Constant filter expressions are provided for cases where a filter is expected, but where the evaluation
shall always return true or false.

5.1 True Filter

The true filter is a constant filter that always returns evaluates to true.

<type name="true-filter" class="restricted" source="boolean"

provides="filter">

 <descriptor name="amqp:true-filter" code="0x00000000:0x00000110"/>

</type>

The filter-type is “amqp:true-filter”, with type-code 0x00000000:0x00000110

5.2 False Filter

The false filter is a constant filter that always returns false.

<type name="false-filter" class="restricted" source="boolean"

provides="filter">

 <descriptor name="amqp:false-filter" code="0x00000000:0x00000111"/>

</type>

The filter-type is “amqp:false-filter”, with type-code 0x00000000:0x00000111

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 14 of 28

6 SQL Filter Expressions
SQL filter expressions allow matching of message metadata against complex expressions that lean on
the syntax of Structured Query Language (SQL) WHERE clauses.

Using SQL-derived expressions for message filtering is in widespread implementation use because the
Java Message Service (JMS) message selector syntax also leans on SQL. Neither the SQL standard
(ISO 9075) nor the JMS standard are used as a normative foundation or constrain the expression syntax
defined in this specification, but the syntax is informed by them.

A SQL filter is of the AMQP archetype “filter” and restricts the string type to holding a text expression that
follows the grammar rules described in this section. The grammar allows access to all metadata sections
of any candidate message. SQL filters cannot access any of the body sections.

<type name="sql-filter" class="restricted" source="string" provides="filter">

<descriptor name="amqp:sql-filter" code="0x00000000:0x00000120"/>

</type>

 The filter-type is “amqp:sql-filter”, with type-code 0x00000000:0x00000120

6.1 Overview

The filter grammar defined below allows to evaluate all metadata aspects of an AMQP message.

In one of the simplest cases, a filter can check whether the ‘application-properties’ section contains a field
‘color’ with the value ‘blue’ like this:

color = 'blue'

because the application-properties section does not require qualification of its fields by default. Using the
qualified notation for the application-properties section, the expression text would look like this:

application-properties.color = 'blue'

and with the shorthand notation like this:

a.color = 'blue'

The content of all other AMQP section is accessed using the qualified notation.

Probing whether the ‘to’ field from the ‘properties’ section contains a particular value is expressed like
this:

p.to = 'test' (or: properties.to = 'test')

If the developer also wants to check whether the ‘content-type’ field is of a particular media type class,
you can combine two conditions:

p.to = 'test'

 AND (p.contentType LIKE ‘application/json%' OR
 p.contentType LIKE ‘%+json%')

References from multiple section can also be combined:

p.to = 'test'

 AND (p.contentType LIKE ‘application/json%' OR
 p.contentType LIKE ‘%+json%')
 AND (a.color = 'blue' OR a.color = 'red')

6.2 Data types in SQL expressions

The base type system for all filter expressions is the AMQP type system.

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 15 of 28

SQL expressions are formulated as strings, and therefore all constant values are expressed as strings.
The grammar defines how integer, decimal, floating point (approximate number), string, and boolean
constants are expressed, and provides a helper function DATE() to turn a properly formatted ISO8601
string constant into a timestamp value.

Constant values in SQL expressions map to the smallest corresponding AMQP type whose value space
fits the constant expression’s value:

SQL constant inferred type AMQP type

Integer Best-fit signed integer

Approximate Number Float or double

Decimal Decimal32, Decimal64, Decimal128

String String

Binary Binary

DATE() Timestamp

6.3 Implicit Conversions and Expansions

There are no explicit type-casts or conversions in AMQP SQL expressions except for the DATE()
function.

All other type conversions are implicit. A type conversion is required, for instance, when two operands of
an arithmetic operation are of different types. In that case, the type of the left operand is converted into
the type of the right operand if that conversion is supported, otherwise the conversion is attempted the
other way around. If no implicit conversion is supported in either direction, the expression evaluation
MUST fail.

An implicit expansion is required if an arithmetic operation yields a value outside of the value space of the
operand(s) type(s) and a type with value space is available that can accurately represent the result.

6.3.1 Numeric Conversions and Expansions

The following implicit conversions MUST be supported for numerical types:

• All AMQP integer types (ubyte, ushort, uint, ulong, byte, short, int, long) MAY be implicitly
converted to other integer types with a greater value space. An AMQP integer type MUST NOT
be converted to an integer type with a smaller value space.

• All AMQP integer types MAY be implicitly converted to floating-point types with the same or
greater value space for the integral portion of the floating-point number.

• All AMQP integer types MAY be implicitly converted to decimal types with the same or greater
value space for the integral portion of the decimal number.

• All AMQP floating-point types (float, double) MAY be implicitly converted to other floating-point
types with a greater value space. An AMQP floating-point type MUST NOT be converted to a
floating-point type with a smaller value space.

• All AMQP floating-point types MAY be implicitly converted to decimal types with the same or
greater value space.

• All AMQP decimal types (decimal32, decimal64, decimal128) MAY be implicitly converted to
other decimal types with a greater value space. An AMQP integer type MUST NOT be converted
to a decimal type with a smaller value space.

Expansions yield the next largest type that can provides a value space large enough to fit the result of an
arithmetic operation. When an unsigned integer is negated using the unary ‘-‘ operator, the result is
stored in a signed integer type whose value space can fit the result of the operation. When two values are

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 16 of 28

multiplied and the result exceeds the value space of the operation type, the result type is expanded to fit
the result of the operation.

Values that are the result of arithmetic operations and that exceed the value space of long, double, and
decimal128 and therefore do not permit any further expansion cannot be handled. Such overflows are
handled as the result being treated as “not a number”. Overflows MUST NOT fail the filter evaluation.

6.3.2 Timestamp conversions

AMQP defines the timestamp type as a 64-bit wide signed-integer UNIX epoch (IEEE1003). The following
implicit conversions MUST be supported for all comparison operations where one of the operands is of
type timestamp:

• Any AMQP integer types (ubyte, ushort, uint, ulong, byte, short, int, long) MAY be implicitly
converted to a timestamp value.

• A timestamp type value MAY be implicitly converted to a long value.

• An AMQP string type MAY be implicitly converted IF its content is a valid ISO8601 date-
expression.

o An ISO8601 date-time expression is converted into a timestamp value
o An ISO8601 duration expression is converted into a long value representing the

milliseconds of the given duration.

The DATE() function (see 6.4.4.3.7) exists to allow for timestamp values to be defined as literals without
being able to rely on an implicit conversion, for instance when a expression wants to force a date
comparison operation against a property that might contain an ISO8601 string, but the operation shall be
performed using date arithmetic rather than a string comparison.

6.4 Grammar Elements

This section defines the grammar elements for the text of SQL filter expressions. The notation is EBNF,
interspersed with definitions.

6.4.1 Predicates

A predicate is a logical condition evaluating to Boolean “true” or “false” that is applied to expressions or
other predicates. A predicate can be

• a Boolean-valued expression

• formed from the comparison of two expressions using a comparison-operator

• formed from testing for whether an AMQP field value is null-valued

• formed from testing whether an expression matches another expression inside a given set

• formed from a string pattern match

• formed from a testing whether an AMQP map entry exists

• modified using a unary logical operator

• composed with another predicate using a binary operator

predicate ::=
 <boolean_constant>

 | <expression> <comparison-operator> <expression>
 | <is-predicate>

 | <in-predicate>
 | <like-predicate>

 | <exists-predicate>

 | <unary-logical-operator> <predicate>
 | <predicate> <binary-logical-operator> <predicate>
 | ‘(‘ <predicate> ‘)’

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-timestamp

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 17 of 28

6.4.2 Logical operators

Operators evaluate a combination of predicates with a rule.

6.4.2.1 Unary logical operators

Unary logical operators are applied as prefix to another predicate:

• the ‘NOT’ operator logically negates the predicate it prefixes

unary-logical-operator ::= ‘NOT’

6.4.2.2 Binary logical operators

Binary logical operators compose two predicates:

• The ‘AND’ operator combines the left and the right operand such that the result is ‘true’ if and only
if both operands are ‘true’.

• The ‘OR’ operator combines the left and the right operand such that the result is ‘true’ if either of
both operands is ‘true’.

binary-logical-operator ::= ‘AND’ | ‘OR’

6.4.2.3 Comparison operators

Comparison operators compare expressions

• The ‘=’ operator evaluates to ‘true’ if the left and the right operand expressions are of equal value.

• The ‘!=’ operator evaluates to ‘true’ if the left and the right operand expressions are not of equal
value.

• The ‘<>’ operator is synonymous to the ‘!=’ operator.

• The ‘>’ operator evaluates to ‘true’ if the left operand is of greater value than the right operand.

• The ‘>=’ operator evaluates to ‘true’ if the left operand is of greater value than or of equal value to
the right operand.

• The ‘<’ operator evaluates to ‘true’ if the left operand is of lesser value than the right operand.

• The ‘<=’ operator evaluates to ‘true’ if the left operand is of lesser value than or of equal value to
the right operand.

Two operands are of equal value, if:

• neither operand is NULL or “not a number”

• the left operand is of the same type and value as the right operand, or

• the left operand is of an integer number type and the right operand is of a different integer
number type, both operands are within the value range of both types, and the values are equal,

• if at least one of the operands is a floating point type, and the left operand is of a floating-point
type or integer number type and the right operand is of a different floating-point or integer number
type, and the values are equal after being both have been converted to a double floating point
value,

• if at least one of the operands is a decimal point type, the left operand is of a decimal type or
floating-point type or integer number type and the right operand is of a different decimal type or
floating-point or integer number type, and the values are equal after being both have been
converted to a decimal value,

• both operands are of type string or of type symbol (any combination is permitted) and the length
is identical and ordinal values of the characters in the sequence match exactly (case sensitive).

The left operand is of greater value than the right operand if:

• neither operand is NULL or “not a number”

• the left operand is of the same type as the right operand and the value is greater, or

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 18 of 28

• the left operand is of an integer number type and the right operand is of a different integer
number type, both operands are within the value range of both types, and the value of the left
operand is greater than that of the right operand,

• if at least one of the operands is a floating point type, and the left operand is of a floating-point
type or integer number type and the right operand is of a different floating-point or integer number
type, and the value of the left operand is greater than that of the right operand after being both
have been converted to a double floating point value,

• if at least one of the operands is a decimal point type, the left operand is of a decimal type or
floating-point type or integer number type and the right operand is of a different decimal type or
floating-point or integer number type, and the value of the left operand is greater than that of the
right operand after being both have been converted to a decimal value,

• both operands are of type string or of type symbol (any combination is permitted) and the
lexicographical rank of the left operand is greater than the lexicographical rank of the right
operand.

The left operand is of lesser value than the right operand if:

• neither operand is NULL or “not a number”

• the left operand is neither equal to nor greater than the right operand

comparison-operator ::= ‘=’ | ‘<>’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’

6.4.3 Other logical predicates

6.4.3.1 IS NULL and IS NOT NULL predicate

The ‘IS NULL’ operator tests whether an expression is null-valued. The ‘IS NOT NULL’ operator tests
whether an expression is null-valued.

Expressions cannot be tested for equality with NULL.

is_predicate ::= <expression> ‘IS’ [‘NOT’] ‘NULL’

6.4.3.2 LIKE predicate

The LIKE operator tests whether the left operand string expression is matches the pattern expression on
the right.

The pattern expression is evaluated as a string. It can contain the following wildcard characters:

• %: Any string of zero or more characters.

• _: Any single character.

in order to allow for literal comparisons with the two wildcard characters, an escape character can be
defined for the expression. The escape_char expression must be a string of length 1. There is no default
escape character.

For example,

expression LIKE 'ABC\%' ESCAPE '\'

matches ABC% literally, rather than a string that starts with ABC.

The strings match if the either the left operand and the right operand are equal under the comparison
rules, or

• if the pattern expression contains the ’_’ character and that character is not prefixed by the
<escape_char> value, the pattern expression matches any character in the left operand at the
current character position.

• if the pattern expression contains the ’%’ character and that character is not prefixed by the
<escape_char> value, the pattern expression matches any sequence of characters in the left

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 19 of 28

operand starting at the current character position. The wildcard matching MUST consume as few
characters as possible. If the pattern expression extends past the ‘%’ wildcard, the wildcard
matching must stop once the remaining string at the current position of the left operand
expression matches the remaining pattern expression or matches a prefix of the remaining
pattern expression up to a subsequent wildcard character.

like_predicate ::= <expression> [‘NOT’] ‘LIKE’ <pattern> [‘ESCAPE’ <escape_char>]
pattern ::= <expression>
escape_char ::= <expression>

6.4.3.3 IN predicate

The ‘IN’ operator tests whether the left operand is equal to at least one of the expressions in the right
operand, which MUST be a set expression. Set expressions are only defined for use with the ‘IN’
operator.

in-predicate ::= <expression> [‘NOT’] ‘IN’ <set-expression>
set-expression ::= (<expression> {‘,’ <expression>})

6.4.3.4 EXISTS predicate

The unary ‘EXISTS’ operator tests whether the referenced field exists in the probed message. For
message sections that are composite types, the operator evaluates to true if and only if there is a value at
the field position. For message sections that maps, the operator evaluates to true if and only if a map
entry with the respective key exists. The general rule that an omitted field is treated as if present and
NULL-itvalued does not apply for the EXISTS operator. The value of the field or map entry is irrelevant.

exists-predicate ::= ‘EXISTS’ ‘(‘ <field> ‘)’

6.4.4 Expressions

Expressions are either constants, functions, references to values of elements of a message, or results of
operations over other expressions.

<expression> ::=
 <constant>
 | <function>
 | <field_value>
 | <expression> ‘+’ | ‘-‘| ‘*’ | ‘/’ | ‘%’ <expression>
 | ‘+’ | ‘-‘ <expression>
 | ‘(‘ <expression> ‘)’

6.4.4.1 Expression operators

6.4.4.1.1 Unary expression operators

The following unary expression operators are defined for numerical values:

• The ‘-’ operator negates the sign of the numerical expression

• The ‘+’ operator has no effect and exists for consistency.

6.4.4.1.2 Binary expression operators

The following binary expression operators are defined for cases where the left and right operand are both
numerical values (timestamps, integers, or floating point). With exception of with the ‘%’ operator, If either
of the operands is a floating point expression, the result is a floating point expression.

• The ‘+’ operator adds the values of the left and the right operand expression.

• The ‘-’ operator subtracts the value of the right operand from that of the left operand expression.

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 20 of 28

• The ‘*’ operator multiplies the values of the left operand by the right operand expression.

• The ‘/‘ operator divides the value of the left operand by that of the right operand expression. If the
right operand is zero, the result MUST be “not a number”.

• The ‘%’ operator yields the integer division remainder of dividing the value of the left operand by
that of the right operand expression. The right operand MUST be an integer expression and the
result is an integer expression.

Some numerical operations are invalid. Any numerical overflow and any division by zero (‘/’ and ‘%’
operators) MUST yield a float-typed not-a-number value, independent of the input types.

The following binary expression operators are defined for string and symbol values.

• The ‘+’ operator concatenates the left and right operand

6.4.4.2 Constant Expressions

The following expressions are available for constants. Timestamps are expressed as string constants and
can be explicitly converted into timestamp with the DATE() function.

<constant> ::=
 <integer_constant> |
 <decimal_constant> |
 <approximate_number_constant> |
 <boolean_constant> |
 <string_constant> |
 <binary_constant> |
 NULL

6.4.4.2.1 Integer constants

An integer constant is a string of numbers that are not enclosed in quotation marks and do not contain
decimal points. Negative integer constants are formally an application of the unary ‘-‘ operator to an
integer constant expression. The maximum value range from zero to 264-1.

integer_constant ::= <digit> {<digit>}

6.4.4.2.2 Decimal constants

A decimal constant is a string of numbers that are not enclosed in quotation marks, and contain a decimal
point. Negative decimal constants are formally an application of the unary ‘-‘ operator to a decimal
constant expression. The maximum value range is equivalent to IEEE 754, ± 2-1022 to (2-2-52)×21023.

decimal_constant ::= <digit> {<digit>} ‘.’ <digit> {<digit>}

6.4.4.2.3 Approximate number constants

An approximate constant is a string of numbers that are not enclosed in quotation marks, and use
scientific notation, with the coefficient being a decimal constant and the exponent being a integer
constant, separated by the literal ‘E’. Negative constants are formally an application of the unary ‘-‘
operator to a constant expression. The maximum value range is equivalent to IEEE 754, ± 2-1022 to (2-2-

52)×21023.

The literal ‘INF’ represents the IEEE 754 infinity value. The literal ‘NAN’ expression represents the IEEE
754 not-a-number value.

approximate_number_constant ::= <digit> {<digit>} ‘.’ <digit> {<digit>} ‘E‘ <digit>
{<digit>} | INF | NAN

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 21 of 28

6.4.4.2.4 Boolean constants

A Boolean constant is a string of letters that are not enclosed in quotation marks and either spell out
TRUE or FALSE.

boolean_constant := TRUE | FALSE

6.4.4.2.5 String constants

A string constant is a string of arbitrary text consisting of any valid printable Unicode characters
surrounded by single or double quotation marks. A quotation mark inside the string is represented by two
consecutive quotation marks.

string_constant ::= { ‘ | “ } <any> [<any>] { ‘ | “ }

6.4.4.2.6 Binary constants

A binary constant is a string of pairs of hexadecimal digits prefixed by ‘0x’ that are not enclosed in
quotation marks.

decimal_constant ::= ‘0x’ <hex-digit><hex-digit> {<hex-digit><hex-digit>}

6.4.4.3 Functions

A function is an operation that cannot be expressed with the operators defined herein. A function accepts
a comma-separated list of expressions as arguments and yields an expression as a return value.

Implementers MAY define their own functions; such functions MUST be prefixed with a vendor prefix.
Functions defined herein do not carry a prefix.

If a function is not understood by an implementation, it MUST be evaluated as NULL.

function ::= <function_name> ‘(‘ <expression’> [‘,’ <expression>] ‘)’

function_name ::= <vendor_prefix> ‘:’ <identifier> | UPPER | LOWER | UTC | DATE

vendor_prefix ::= <identifier>

6.4.4.3.1 LOWER function

The LOWER(string [,lang_tag]) function converts a string into its corresponding lowercase representation,
following Unicode case folding rules. The function exists to facilitate case-insensitive comparison of
strings.

It accepts a string and an optional language tag identifier, compliant with [RFC5646]. if the language tag
identifier is omitted, the system default locale language is used for the case folding operation.

6.4.4.3.2 UPPER function

The UPPER(string [,lang_tag]) function converts a string into its corresponding uppercase representation,
following Unicode case folding rules. The function exists to facilitate case-insensitive comparison of
strings.

It accepts a string and an optional language tag identifier, compliant with [RFC5646]. if the language tag
identifier is omitted, the system default locale language is used for the case folding operation.

6.4.4.3.3 LEFT function

The LEFT(string, count) function yields the left-side prefix of the given string, up to count characters.
Count MUST be a positive integer; a negative value MUST cause an error. The function succeeds if the
input string has fewer than count characters and then just returns the input string.

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 22 of 28

6.4.4.3.4 RIGHT function

The RIGHT(string, count) function yields the right-side suffix of the given string, up to count characters.
Count MUST be a positive integer; a negative value MUST cause an error. The function succeeds if the
input string has fewer than count characters and then just returns the input string.

6.4.4.3.5 SUBSTRING function

The SUBSTRING(string, start, count) function yields the substring of the given string that starts at start
(counting starts at 1) with up to count characters. Start and count MUST be positive integers; a negative
value MUST cause an error. The function succeeds if the input string has fewer than count characters
and then just returns the input string from the start index onwards. If the start index points past the end of
the string, the function returns an empty string.

6.4.4.3.6 UTC function

The UTC function yields the current UTC time as a timestamp value. The function has no parameters.
The function exists to, for instance, facilitate filtering of messages based on expiration times contained in
nonstandard locations.

The UTC function is OPTIONAL for AMQP source filter expressions as an implementation might require
filters to always yield the same result for each message, and comparing a time value inside the message
against the ‘current’ time might run afoul of this requirement.

6.4.4.3.7 DATE function

The DATE function accepts an ISO 8601 string expression and yields the corresponding timestamp
value. Any unqualified time expressions MUST assume UTC as the local time zone.

6.4.4.4 Field References and Values

All values in the sections of a message MUST be referenced using field_value expressions.

The field_value expression yields the value of the referenced field or a referenced element of said value.

Since operators can only work with simple types and strings, field_value expressions not only allow
referring to a field by section and name, but also allow directly referencing a particular element of an array
held by the field or a particular sub-field or map entry held by the field. This is detailed in the next section.

The evaluation result of a field_value expression MUST be a simple type, string, symbol, or NULL.

field_value :=
 <field>
 | <field>‘.’<composite_type_reference>
 | <field><array_element_reference>

The field element refers to a field inside a message section. When the section is omitted, the assumed
section is ‘application-properties’.

field ::= [<section> ’.’]<field_name>
field_name ::= <identifier> | <section_field_name>

The section is a qualifier for the section to which the field reference applies. The section qualifier ‘header’,
with shorthand ‘h’, refers to the respective section in the AMQP message, and the other qualifiers refer to
the same-named sections equivalently.

section ::=

 {‘header’ | ‘h’ } |
 { ‘footer’ | ‘f’ } |
 { ‘properties’ | ‘p’ } |

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 23 of 28

 { ‘application_properties’ | ‘a’ } |
 { ‘delivery_annotations’ | ‘d’ } |
 { ‘message_annotations’ | ‘m’ }

The header and properties section of the AMQP message are described types, with the respective field
names known only at compilation time. “section_field_name” refers to the well-known names in the
respective sections, e.g. to “reply-to” in “properties”.

section_field_name ::= <identifier>

For section field names it is a syntax error if the name is not a well-known field name in the respective
section, and both validation and evaluation of the SQ filter expression MUST fail.

6.4.4.5 Composite Type and Array Value References

Values inside fields that are map-typed can be referenced with a map_reference. The entry_name refers
to an entry in the map. If respective entry is not present, the expression MUST yield NULL. Named
references to fields of described types cannot be expressed.

map_reference :=
 <entry_name>
 | <entry_name> ’.’ <map_reference>

 | <entry_name> <array_reference>

<entry_name> ::= <identifier>

Values inside fields that are list- or array-typed can be referenced with a positional_reference
subexpression. The expression inside the square brackets MUST be an integer number and SHOULD be
within the range of the list or array. Access outside the array or list range MUST yield NULL.

<positional_reference> := ‘[‘ <expression> ‘]’

6.4.4.6 Identifier Syntax

The following syntax applies to identifiers.

‘Delimited identifiers’ allow using identifiers with special characters, including whitespace and reserved
words, inside of SQL expressions that would otherwise cause parsing errors. Control characters are not
permitted. If needed, the ‘[‘ and ‘]’ characters are used as their own escape character, meaning ‘]]’
represents a literal ‘]’ and ‘[[‘ represents a literal ‘[‘.

identifier ::= <regular_identifier> | <delimited_identifier>

regular_identifier ::= <letter> {<letter> | <underscore> | <digit> }
delimited_identifier ::= ‘[‘ {<letter> | <symbol> | <digit> } ‘]’

letter ::= Unicode Letter

symbol ::= Unicode Symbol | Unicode Punctuation | Unicode Separator

digit ::= Unicode Numeric Decimal

hex-digit ::= Unicode Numeric Decimal | ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 24 of 28

7 Security Considerations

7.1 Complex expressions

Very complex expressions might consume significant compute resources, especially when an attacker
sets them as a source filter and then crafts messages such that the messages exercise the full complexity
of the expression.

Also consider that source filters are configured as filter sets, meaning multiple filters might be evaluated
for every message.

An implementation SHOULD guard against excessive filter expression complexity. This might be
accomplished by a combination of the following and further measures:

• Impose a limit on elements permissible in a filter set

• Impose a limit on the complexity of each filter expression. This might limit the count of filters in a
grouping filter expression, the depth of nesting of grouping filter expressions, the text length of a
SQL filter expression, or the number of conditions in a SQL filter expression,

• Impose a limit on the execution time of a filter expression.

When such security-motivated limits are hit, the error condition SHOULD be logged in the administrator’s
log and SHOULD be masked as a generic server error in response to the remote client.

7.2 Inducing errors

Messages might be sent with knowledge of an existing filter and with the intent to cause evaluation errors
or exploit known evaluation defects and therefore flood log files. An implementation SHOULD guard
against induced errors by a combination of the following and further measures:

• Keep track of the source of messages to determine which sender causes excessive error rates
during filter evaluation. The sender might be brought to the attention of an operator, or
disconnected, or even banned.

• Keep logging information terse.

7.3 Injection

SQL filter expression strings SHOULD NOT be formed whole or in part from raw end-user input strings. A
raw user input expression might for instance use alter the shape of a predefined SQL filter expression
when the user input is applied to a string:

color=‘%s’

If the inserted string contains a closing quote character, the input could expand the expression to

color=‘’ or 1=1/0 or other=’’

Applications SHOULD therefore always sanitize user input that needs to be included into SQL
expressions.

References to AMQP message properties cannot cause this issue.

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 25 of 28

8 Conformance
All filter expressions defined in this specification MAY be implemented singly, meaning that a complete
implementation of all expression types is not required for conformance. It is RECOMMENDED to
implement all filter expression types.

To ensure interoperability, each filter expression type that is selected for implementation MUST be
implemented completely and as specified here for the implementation to be conformant.

None of the filter expression types defined herein has optional features that can be omitted.

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 26 of 28

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:

Participants:

Alan Conway, Red Hat
Rob Godfrey, Red Hat
Keith Wall, Red Hat
Robbie Gemmell, Red Hat
Justin Ross, Red Hat
Ted Ross, Red Hat
Oleksandr Rudyy, JP Morgan
Xin Chen, Microsoft

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 27 of 28

Appendix B. Revision History

Revision Date Editor Changes Made

[Rev number] [Rev Date] [Modified By] [Summary of Changes]

filtex-v1.0-csd01 17 March 2021
Standards Track Work Product Copyright © OASIS Open 2021. All Rights Reserved. Page 28 of 28

Appendix C. Notices

Copyright © OASIS Open 2021. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website:
[https://www.oasis-open.org/policies-guidelines/ipr].

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. OASIS AND ITS MEMBERS WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THIS
DOCUMENT OR ANY PART THEREOF.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards
Final Deliverable documents (Committee Specifications, OASIS Standards, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Standards Final Deliverable, to notify OASIS
TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims
in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this
deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this OASIS Standards Final
Deliverable by a patent holder that is not willing to provide a license to such patent claims in a manner
consistent with the IPR Mode of the OASIS Technical Committee that produced this OASIS Standards
Final Deliverable. OASIS may include such claims on its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this OASIS
Standards Final Deliverable or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Information on
OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS
Technical Committee can be found on the OASIS website. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such proprietary rights by implementers or users of
this OASIS Standards Final Deliverable, can be obtained from the OASIS TC Administrator. OASIS
makes no representation that any information or list of intellectual property rights will at any time be
complete, or that any claims in such list are, in fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of this document, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, documents, while reserving the right to enforce its marks against misleading
uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

