
xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 1 of 94

XML Interchange Language for System
Dynamics (XMILE) Version 1.0

Committee Specification Draft 01 /
Public Review Draft 01

26 August29 October 2014

Specification URIs
This version:

http://docs.oasis-open.org/xmile/xmile/v1.0/cs01/xmile-v1.0-cs01.doc (Authoritative)
http://docs.oasis-open.org/xmile/xmile/v1.0/cs01/xmile-v1.0-cs01.html
http://docs.oasis-open.org/xmile/xmile/v1.0/cs01/xmile-v1.0-cs01.pdf

Previous version:
http://docs.oasis-open.org/xmile/xmile/v1.0/csprd01/xmile-v1.0-csprd01.doc (Authoritative)
http://docs.oasis-open.org/xmile/xmile/v1.0/csprd01/xmile-v1.0-csprd01.html
http://docs.oasis-open.org/xmile/xmile/v1.0/csprd01/xmile-v1.0-csprd01.pdf

Previous version:

N/A

Latest version:
http://docs.oasis-open.org/xmile/xmile/v1.0/xmile-v1.0.doc (Authoritative)
http://docs.oasis-open.org/xmile/xmile/v1.0/xmile-v1.0.html
http://docs.oasis-open.org/xmile/xmile/v1.0/xmile-v1.0.pdf

Technical Committee:
OASIS XML Interchange Language (XMILE) for System Dynamics TC

Chairs:
Karim Chichakly (kchichakly@iseesystems.com), isee systems inc.
Steven Adler (adler1@us.ibm.com), IBM

Editors:
Karim Chichakly (kchichakly@iseesystems.com), isee systems inc.
Gary Baxter (garyrbaxter@yahoo.com), Individual
Robert Eberlein (bob@astutesd.com), System Dynamics Society, Inc.
Will Glass-Husain (wglass@forio.com), Individual
Robert Powers (bobbypowers@gmail.com), Individual
William Schoenberg (bschoenberg@iseesystems.com), isee systems inc.

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

 XML schemas: http://docs.oasis-open.org/xmile/xmile/v1.0/cs01/schemas/

 Examples: http://docs.oasis-open.org/xmile/xmile/v1.0/cs01/examples/

Related work:

This specification replaces or supersedes:

 XMILE: An XML Interchange Language for System Dynamics. 7 June 2013. Karim Chichakly.

http://www.iseesystems.com/community/support/XMILEv4.pdf.

This specification is related to:

http://docs.oasis-open.org/xmile/xmile/v1.0/cs01/xmile-v1.0-cs01.doc
http://docs.oasis-open.org/xmile/xmile/v1.0/cs01/xmile-v1.0-cs01.html
http://docs.oasis-open.org/xmile/xmile/v1.0/cs01/xmile-v1.0-cs01.pdf
http://docs.oasis-open.org/xmile/xmile/v1.0/csprd01/xmile-v1.0-csprd01.doc
http://docs.oasis-open.org/xmile/xmile/v1.0/csprd01/xmile-v1.0-csprd01.html
http://docs.oasis-open.org/xmile/xmile/v1.0/csprd01/xmile-v1.0-csprd01.pdf
http://docs.oasis-open.org/xmile/xmile/v1.0/xmile-v1.0.doc
http://docs.oasis-open.org/xmile/xmile/v1.0/xmile-v1.0.html
http://docs.oasis-open.org/xmile/xmile/v1.0/xmile-v1.0.pdf
https://www.oasis-open.org/committees/xmile/
mailto:kchichakly@iseesystems.com
http://www.iseesystems.com/
mailto:adler1@us.ibm.com
http://www.ibm.com/
mailto:kchichakly@iseesystems.com
http://www.iseesystems.com/
mailto:garyrbaxter@yahoo.com
mailto:bob@astutesd.com
http://www.systemdynamics.org/
mailto:wglass@forio.com
mailto:bobbypowers@gmail.com
mailto:bschoenberg@iseesystems.com
http://www.iseesystems.com/
http://docs.oasis-open.org/xmile/xmile/v1.0/cs01/schemas/
http://docs.oasis-open.org/xmile/xmile/v1.0/cs01/examples/
http://www.iseesystems.com/community/support/XMILEv4.pdf

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 2 of 94

 SMILE: A Common Language for System Dynamics. 7 June 2013. Karim Chichakly.
http://www.iseesystems.com/community/support/SMILEv4.pdf.

Declared XML namespace:

 http://docs.oasis-open.org/xmile/ns/XMILE/v1.0

Abstract:
The XML Interchange Language (XMILE) for System Dynamics (SD) defines an open XML
protocol for the sharing, interoperability, and reuse of SD models and simulations. This document
describes the XMILE language and format anyone who wishes to use SD models or embed them
in their applications, such as vendors of SD software, Big Data, cloud, mobile, and social media
solutions, as well as end users and consultants in the SD field.

Status:
This document was last revised or approved by the OASIS XML Interchange Language (XMILE)
for System Dynamics TC on the above date. The level of approval is also listed above. Check the
“Latest version” location noted above for possible later revisions of this document. Any other
numbered Versions and other technical work produced by the Technical Committee (TC) are
listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xmile #technical.

TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/xmile/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/xmile/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[xmile-v1.0]

XML Interchange Language for System Dynamics (XMILE) Version 1.0. Edited by Karim
Chichakly, Gary Baxter, Robert Eberlein, Will Glass-Husain, Robert Powers, and William
Schoenberg. 26 August29 October 2014. OASIS Committee Specification Draft 01 / Public
Review Draft 01.. http://docs.oasis-open.org/xmile/xmile/v1.0/cs01/xmile-v1.0-cs01.html. Latest
version: http://docs.oasis-open.org/xmile/xmile/v1.0/xmile-v1.0.html.

http://www.iseesystems.com/community/support/SMILEv4.pdf
http://docs.oasis-open.org/xmile/ns/XMILE/v1.0
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xmile%20#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=xmile
https://www.oasis-open.org/committees/xmile/
https://www.oasis-open.org/committees/xmile/
https://www.oasis-open.org/committees/xmile/ipr.php
https://www.oasis-open.org/committees/xmile/ipr.php
http://docs.oasis-open.org/xmile/xmile/v1.0/cs01/xmile-v1.0-cs01.html
http://docs.oasis-open.org/xmile/xmile/v1.0/xmile-v1.0.html

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 3 of 94

Notices

Copyright © OASIS Open 2014. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 4 of 94

Table of Contents

1 Introduction ... 8

1.1 Terminology .. 8

1.1.1 Definitions .. 8

1.2 Normative References .. 9

2 Overall Structure ... 10

2.1 Namespaces ... 10

2.2 Header Section ... 11

2.2.1 XMILE Options .. 12

2.3 Model Simulation Specification Section .. 13

2.4 Model Units Section .. 14

2.5 Dimensions Section .. 14

2.6 Behavior Section ... 15

2.7 Style Section ... 15

2.8 Data Section ... 16

2.9 Model Section ... 16

2.10 Macro Section ... 16

2.11 Includes... 17

2.11.1 Versioning.. 17

2.11.2 Format of Included Files .. 18

2.11.3 Merging Included Files .. 18

3 Model Equation Structure ... 20

3.1 Basic Functionality .. 20

3.1.1 Stocks .. 20

3.1.2 Flows ... 20

3.1.3 Auxiliaries .. 21

3.1.4 Graphical Functions .. 21

3.1.5 Model Decomposition .. 22

3.2 General Conventions .. 22

3.2.1 Numeric Constants .. 22

3.2.2 Identifiers ... 23

3.2.3 Data Types .. 25

3.2.4 Containers ... 25

3.3 Expressions .. 26

3.3.1 Operators ... 26

3.3.2 Function Calls .. 26

3.3.3 Structured Statements ... 27

3.3.4 In-line Comments .. 27

3.3.5 Documentation .. 27

3.3.6 Units .. 27

3.4 Simulation Specifications .. 29

3.4.1 Integration Methods ... 29

3.4.2 Simulation Events .. 29

3.5 Built-in Functions .. 30

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 5 of 94

3.5.1 Mathematical Functions .. 30

3.5.2 Statistical Functions .. 31

3.5.3 Delay Functions ... 32

3.5.4 Test Input Functions .. 33

3.5.5 Time Functions .. 33

3.5.6 Miscellaneous Functions ... 33

3.6 Extending the Standard Language ... 34

3.6.1 Macros Implementing Functions ... 34

3.6.2 Macros Extending Building Block Behavior ... 35

3.7 Optional Language Extensions ... 35

3.7.1 Arrays .. 36

3.7.2 Conveyors ... 39

3.7.3 Queues .. 40

3.7.4 Submodels ... 40

4 Model Equation XML Encoding .. 42

4.1 Common Variable Properties.. 43

4.1.1 Ranges, Scales, Number Formats .. 44

4.1.2 Event Posters .. 45

4.1.3 Graphical Functions .. 46

4.1.4 Arrays .. 48

4.2 Stocks ... 49

4.2.1 Conveyor Options .. 50

4.3 Flows ... 51

4.4 Auxiliaries.. 52

4.5 Arrays .. 52

4.5.1 Apply-to-All Array .. 52

4.5.2 Non-Apply-to-All Array ... 53

4.5.3 Apply-to-All Arrays with Non-Apply-to-All Graphical Functions ... 53

4.6 Groups .. 54

4.7 Submodels .. 54

4.7.1 Modules ... 55

4.7.2 Submodel Inputs ... 57

4.7.3 Submodel Outputs ... 57

4.8 Macros .. 58

4.8.1 Macros without Variables .. 59

4.8.2 Macros with Variables ... 60

4.8.3 Macros with Variables and Simulation Specs ... 61

4.8.4 Modifying Stock and Flow Behavior .. 63

5 Diagram and visual components structure ... 66

5.1 Introduction to the XMILE view ... 66

5.1.1 Referencing variable objects in an XMILE view .. 67

5.1.2 XMILE view assumptions and attributes ... 68

5.1.3 Referring to specific XMILE display objects .. 69

5.2 Common styles associated with all XMILE display objects .. 69

5.2.1 Specifications of padding .. 70

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 6 of 94

5.2.2 Specification of color ... 70

5.3 The cascading style system.. 71

6 Display and Interface XML Encoding ... 72

6.1 Stock and flow diagram objects .. 72

6.1.1 Stock .. 73

6.1.2 Flow ... 73

6.1.3 Aux .. 73

6.1.4 Module ... 74

6.1.5 Group ... 74

6.1.6 Connector .. 74

6.1.7 Alias ... 75

6.2 Containers... 76

6.2.1 Stacked Containers ... 76

6.3 Input Objects ... 76

6.3.1 Sliders and Knobs ... 76

6.3.2 Switches and Radio Buttons (Option Groups) .. 77

6.3.3 Numeric Inputs and List Input Devices .. 78

6.3.4 Graphical Inputs .. 79

6.4 Output Objects .. 79

6.4.1 Numeric Displays .. 79

6.4.2 Lamps and Gauges ... 80

6.4.3 Graphs ... 80

6.4.4 Tables .. 82

6.5 Annotations ... 83

6.5.1 Text Boxes ... 83

6.5.2 Graphics Frames ... 83

6.5.3 Buttons .. 84

7 XMILE Implementation Conformance .. 87

7.1 ConformanceTargets .. 87

7.2 Conformance Clause 1: XMILE File .. 87

7.2.1 Base-Level Conformance .. 87

7.2.2 Optional Conveyor Conformance .. 87

7.2.3 Optional Queue Conformance ... 88

7.2.4 Optional Array Conformance ... 88

7.2.5 Optional Submodel Conformance ... 88

7.2.6 Optional Macro Conformance ... 88

7.2.7 Optional Event-Poster Conformance .. 89

7.2.8 Optional Model-View Conformance .. 89

7.2.9 Optional Outputs Conformance ... 90

7.2.10 Optional Inputs Conformance.. 90

7.2.11 Optional Annotations Conformance .. 91

7.3 Conformance Clause 2: XMILE Simulator ... 91

7.3.1 Base-Level Conformance .. 91

7.3.2 Optional Conveyor Conformance .. 91

7.3.3 Optional Queue Conformance ... 91

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 7 of 94

7.3.4 Optional Array Conformance ... 92

7.3.5 Optional Submodel Conformance ... 92

7.3.6 Optional Macro Conformance ... 92

7.3.7 Optional Event-Poster Conformance .. 92

7.3.8 Optional Inputs Conformance.. 92

Appendix A. Acknowledgments ... 93

Appendix B. Revision History .. 94

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 8 of 94

1 Introduction
This document defines a specification for both a core system dynamics (SD) language and its
representation in XML and thus provides a common structure for describing SD models.

In the Spring 2003 System Dynamics Society newsletter, Jim Hines proposed that there be a common
interchange format for system dynamics models. Magne Myrtveit originally proposed such an idea at the
1995 International System Dynamics Conference (ISDC), but Jim hoped to revive interest in the idea and
chose the name SMILE (Simulation Model Interchange LanguagE) to keep people lighthearted. The
benefits Jim proposed at the time were:

 Sharing of models can lead to greater increases of knowledge and sharing of ideas.

 On-line repositories could be built to facilitate learning.

 Open standards lead to better acceptance in larger corporations as it minimizes their risk with
specific vendors.

 It spurs innovation by allowing non-vendors to develop add-ons.

To this formidable list, the following can be added:

 It allows the creation of a historical record of important works that everyone has access to.

 It allows vendors to expand their market base because suddenly their unique features (and let’s
be honest – each of the three major players has unique competencies) are available to all system
dynamics modelers.

Vedat Diker and Robert Allen later presented a poster at the 2005 ISDC that proposed a working group
be formed and that XML be the working language for the standard, leading to the name XMILE (XML
Modeling Interchange LanguagE). During the first meeting of the Information Systems Special Interest
Group (SIG) at the 2006 ISDC, Karim Chichakly volunteered to develop the draft XMILE specification,
which he presented at the 2007 ISDC. Several drafts later, the OASIS XMILE Technical Committee (TC)
was formed in June 2013 to standardize the specification across all industries. This document is the
result of that TC’s work.

This specification defines the XMILE specification version 1.0.

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.1.1 Definitions

File or XMILE File

An XML file that is conforms to this specification.

Model or XMILE Model

The model section of a XMILE file.

Root Model

The top-level model of a whole-model. This is the unnamed model within the XMILE file.

Simulator or XMILE Simulator

An implementation that simulates XMILE whole-models per this specification.

Whole-model or XMILE Whole-model

An XML file that conforms to this specification plus all XMILE files included through either the includes
section of the header or through the resource attribute of a XMILE model or a module.

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 9 of 94

1.2 Normative References

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.

[Reference] [Full reference citation]

1.3 Non-Normative References

[Reference] [Full reference citation]

NOTE: The proper format for citation of technical work produced by an OASIS TC
(whether Standards Track or Non-Standards Track) is:

[Citation Label]

Work Product title (italicized). Approval date (DD Month YYYY). OASIS Stage Identifier and Revision
Number (e.g., OASIS Committee Specification Draft 01). Principal URI (version-specific URI, e.g., with

filename component: somespec-v1.0-csd01.html).

For example:

[OpenDoc-1.2] Open Document Format for Office Applications (OpenDocument) Version 1.2. 19
January 2011. OASIS Committee Specification Draft 07. http://docs.oasis-
open.org/office/v1.2/csd07/OpenDocument-v1.2-csd07.html.

[CAP-1.2] Common Alerting Protocol Version 1.2. 01 July 2010. OASIS Standard.
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html.

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 10 of 94

2 Overall Structure
A XMILE document is a container forfile contains information about a modeling projectwhole-model, with
a well-specified structure. The document mustfile MUST be encoded in UTF-8. The entire XMILE

documentfile is enclosed within a <xmile> tag as follows:

<xmile version="1.0"

 xmlns="http://docs.oasis-open.org/xmile/ns/XMILE/v1.0">

 ...

</xmile>

The version number MUST refer to the version of XMILE used (presently 1.0). The XML namespace
refers to tags and attributes used in this specification. Both of these attributes are requiredREQUIRED.
Inside of the <xmile> tag are a number of top-level tags, listed below. These tags are marked req (a
single instance is REQUIRED), opt (a single instance is OPTIONAL), * (zero or more tags MAY occur)
and + (one or more tags MAY occur). Top level tags MAY occur in any order, but are RECOMMENDED
to occur in the following order:

 <header> (req) - information about the origin of the modelfile and required capabilities.

 <sim_specs> (opt) - default simulation specifications for this modelfile.

 <model_units> (opt) - definitions of model units used in this modelfile.

 <dimensions> (opt) - definitions of array dimensions specific to this modelfile.

 <behavior> (opt) - simulation style definitions that are inherited/cascaded through all models

defined in this XMILE documentfile.

 <style> (opt) - display style definitions that are inherited/cascaded through all modelsviews

defined in this XMILE documentfile.

 <data> (opt) - definitions of persistent data import/export connections..

 <model>+ - definition of model equations and (optionally) diagrams.

 <macro>* - definition of macros that can be used in model equations.

These tags/document sections are specified in the subsequent sections of this chapter, after XMILE
namespaces are discussed.

When an XMILE file includes references to models contained in separate files or at a specific URL, each
such file may contain overlapping information, most commonly in sim_specs, model_units and
dimensions. When such overlap is consistent, combining parts is done by taking the union of the different
component files. When an inconsistency is found, (for example, a dimension with two distinct definitions)
software reading the files MUST resolve the inconsistency and SHOULD provide user feedback in doing
so. Some inconsistencies, such as conflicting Macro or Model names MUST be resolved as detailed in
section 12.11.3.

2.1 Namespaces

There are four categories of namespaces in play in a XMILE documentwhole-model - XML tag
namespaces, Variable namespace, Function namespace and Unit namespaces. XML tag namespaces
and Unit namespaces are independent, but Variable and Function namespaces interact.

XML tag namespaces are global. Unadorned tags are described in detail in the various sections of this
document and provision for vendor specific additions are also detailed.

Each XMILE projectwhole-model has a single Unit namespace against which all Unit Definitions and
Equation Units are resolved. The Unit namespace is separate from any other namespaces and this
means that the variables of units and variable or function names can overlap (for example someone might

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 11 of 94

use Ounce/Min and define Min as an alias of Minute even though MIN is a reserved function name).
Because this namespace crosses models Unit Definitions contained in separate files must be combined
into this namespace.

The Function namespace combines global definitions (all functions defined here along with vendor
specified functions) with projectwhole-model specific definitions through Macros. In every case, however,
the names MUST be uniquely resolvable within a projectwhole-file independent of the modelfile in which
they appear. It is not possible, for example, to give the same macro name two different definitions in
separate modelsfiles. Dimension names, though conceptually part of the Variable namespace, behave
the same way and MUST be unique across a projectwhole-model.

Variable names are resolved within models, but in the same context as functions and therefore can't
overlap. It is not, for example, possible to have a variable named MIN as this is a reserved function name.
Similarly, if the macro BIGGEST has been defined, no variable may be given the name BIGGEST. It is,
however, possible, to have the same variable name appear in different models. For example if you have
a project with one model MyCompany and another model Competitors, both could contain the variable
profit (with MyCompany.profit and Competitors.profit the way to refer to that variable from different
models).

One final subtlety in namespaces is that Dimension names, in turn, define their own Element namespace.
Thus, even through Array Dimension names must be unique, they can have overlapping Element names
and the Element names can be the same as Variable names. Element names are resolved by context
when they appear inside square brackets of a variable and can be used in context by prefixing them with
the array dimension name (as in Location.Boston, where Location is a Dimension name with element
Boston).

2.2 Header Section

The XML tag for the file header is <header>. The REQUIRED sub-tags are:

 XMILE options: <options> (defined below)

 Vendor name: <vendor> w/company name

 Product name: <product version="…" lang="…"> w/product name – the product

version number is requiredREQUIRED. The language code is optional (default: English) and
describes the language used for variable names and comments. Language codes are described
by ISO 639-1 unless the language is not there, in which case the ISO 639-2 code should be used
(e.g., for Hawaiian).

OPTIONAL sub-tags include:

 XMILE options: <options> (defined below)

 Model name: <name> w/name

 Model version: <version> w/version information

 Model caption: <caption> w/caption

 Picture of the model in JPG, GIF, TIF, or PNG format: <image resource=””>. The

resource attribute is optional and may specify a relative file path, an absolute file path, or an

URL. The picture data may also be embedded inside the 

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 84 of 94

<video size_to_parent="true" width="2509" height="1932">

file://C:/Users/xmile/Downloads/Archive/home-screen.png

</video>

When an image is embedded directly within the XMILE file, the data is started by using with ‘data:’ then
its MIME type (’image/png’), then a semi-colon (‘;’) then the type of encoding (‘base64’) (base64 is the
only REQUIRED option for this version of the spec) a comma (‘,’) and finally the data

(data:image/png;base64,). An example tag is shown below:

<image size_to_parent="true" width="2509" height="1932">

data:image/png;base64,*

</image>

6.5.3 Buttons

Buttons are used to control the program, navigate to a hyperlinked location, or to display an information

window ((<popup> containing text, an image, or a video). Support for this tag is OPTIONAL. All buttons

appear within the <button> tag, which includes the standard display properties (section 5.2), as well as

the following properties:

 Transparency: OPTIONAL appearance="…" with either opaque or transparent (default:

opaque)

 Button corner style: OPTIONAL style="…" with square, rounded, or capsule (default:

square)

 Label OPTIONAL: label="…" with text of label to appear on button; when there is a label, the

default text alignment is center (rather than left)

 Image on button (overrides label) OPTIONAL: Image in JPG, GIF, TIF, or PNG format: <image

resource=””>. The resource attribute is OPTIONAL and may specify a relative file path,

an absolute file path, or an URL. The picture data may also be embedded inside the 

 <sound>bicycle_bell.wav</sound>

 <link target="next_page" to_black="true" effect="iris_in"/>

 <menu_action>restore_graphs_tables</menu_action>

 <switch_action>

 <group name="Bicycle Policy">

 <value>1</value>

 </group>

 </switch_action>

</button>

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 87 of 94

7 XMILE Implementation Conformance

7.1 ConformanceTargets

XMILE has two conformance targets:

1. XMILE file

2. XMILE simulator

Within each of these targets, XMILE has a base level of conformance with several optional features that
create higher levels of conformance in different combinations. In addition, within each conformance level,
some features are optional.

7.2 Conformance Clause 1: XMILE File

A conformantfile conforms to this specification as an XMILE file if it meets the requirements in the
following subsections.

7.2.1 Base-Level Conformance

To conform to the XMILE base level, an implementation:

1. MUST satisfy all the include an <xmile> tag that contains both the version of XMILE used and the

XMILE XML namespace (Section 2)

2. MUST or include a <header> tag (Section 2) with sub-tags <vendor> and <product> with its

version number (Section 2.2)

3. MUST include at least one <model> tag (Section 2)

4. MUST name models beyond the root model (Section 4)

5. MUST, on read, resolve inconsistencies between multiple files (Section 2)

6. MUST obey the namespace rules (Section 2.1 and 2.2.1)

7. MUST include, when using optional features, the <options> tag with those features specified (Section
2.2.1)

8. MUST contain at least one set of simulation specifications (Section 2.3)

9. MUST support model behaviors (Section 2.6)

10. MUST support include files (Section 2.11)

11. MUST support all base functionality objects (Section 3.1 and all subsections)

12. MUST obey the grammar for numbers, variables, and expressions (Sections 3.2 and 3.3, and all
subsections except Sections 3.3.5 and 3.3.6)

13. MUST support the REQUIRED level requirements common variable properties, specifically the name
and for arrays, dimensions and, when not apply-to-all, elements (Section 4.1)

7.2.2 Optional Conveyor Conformance

To support the optional conveyor features of XMILE, an implementation:

1. MUST include the <uses_conveyor> tag in the <options> block (Section 2.2.1)

2. MUST support the <conveyor> block with all of its options (Sections 4.2 and 4.2.1)

3. MUST support conveyor leakage and its properties (Section 4.3)

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 88 of 94

7.2.3 Optional Queue Conformance

To support the optional queue features of XMILE, an implementation:

1. MUST include the <uses_queue> tag in the <options> block (Section 2.2.1)

2. MUST support the <queue/> tag in the stock (Section 1.2)

3. MUST support the queue overflow (Section 4.3)

7.2.4 Optional Array Conformance

To support the optional array features of XMILE, an implementation:

1. MUST include the <uses_array> tag in the <options> block with the correct number of

dimensions (Section 2.2.1)

2. MUST include a <dimensions> tag (Section 2.5)

3. MUST support arrays and their syntax (Sections 3.7.1 and all subsections)

4. MUST support the three different types of arrays (Sections 4.1.4 and 4.5)

7.2.5 Optional Submodel Conformance

To support the optional submodel features of XMILE, an implementation:

1. MUST include the <uses_submodels> tag in the <options> block (Section 2.2.1)

2. MUST support features of modules, including submodel inputs, submodel outputs, and qualified entity
names (Section 3.7.4)

3. MUST support module entities (Section 4.7.1)

4. MUST include all connections between modules within the proper module entity (Section 4.7.1)

5. MUST properly mark module inputs and outputs and obey access rules (Sections 4.7.2 and 4.7.3)

7.2.6 Optional Macro Conformance

Macros include a base level, a recursive level, and an options filter level.

7.2.6.1 Base Macro Conformance

To support the optional macro features of XMILE, an implementation:

1. MUST include the <uses_macros> tag in the <options> block and MUST specify whether

recursive macros and/or option filters are also supported (Section 2.2.1)

2. MUST support the <macro> tag (Section 4.8)

7.2.6.2 Recursive Macro Conformance

To support the optional recursive macro features of XMILE, an implementation:

1. MUST, in the <uses_macros> tag of the <options> block, specify that recursive macros are

supported (Section 2.2.1)

7.2.6.3 Option Filter Macro Conformance

To support the optional option-filter macro features of XMILE, an implementation:

1. MUST, the <uses_macros> tag of the <options> block, specify that option filters are supported

(Section 2.2.1)

2. MUST support option filter macros (Section 3.6.2 and 4.8.4)

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 89 of 94

7.2.7 Optional Event-Poster Conformance

To support the optional event poster features of XMILE, an implementation:

1. MUST include the <uses_event_posters> tag in the <options> block (Section 2.2.1)

2. MUST support simulation events and their options (Sections 3.4.2 and 4.1.2)

7.2.8 Optional Model-View Conformance

To support the optional features of XMILE to represent a model view, an implementation:

1. MUST include the <has_model_view> tag in the <options> block (Section 2.2.1)

2. MUST support styles (Section 2.7)

3. MUST have one <views> tag and at least one <view> tag (Sections 5, 5.1, and subsections of 5.1)

4. MUST support the <stock> tag (Section 6.1.1)

5. MUST support the <flow> tag. Anchor points for the flow MUST be specified (Section 6.1.2)

6. MUST support the <aux> tag (Section 6.1.3)

7. MUST support the <connector> tag. <from>, <to>, <pts>, and <angle> attributes for the

connector tag MUST be specified (Section 6.1.6)

8. MUST support the <alias> tag. If they exist, alias objects MUST represent only stock, flow, and aux

objects. Alias objects MUST NOT have connectors pointing to them. <uid>, <x>, <y>, and <of>

attributes for each alias MUST be specified for an alias object (Section 6.1.7)

9. MUST support the <graph> tag. <type> and <comparative> attributes MUST be specified for

each graph .One <plot> tag MUST appear for each variable being plotted. Each <plot> tag MUST

specify a value for the <index>, <title>, and <entity> attributes (Section 6.4.3)

10. MUST support a <table> tag. <orientation>, <column_width>, <interval>, and

<comparative> attributes for the table MUST be specified .One <item> tag MUST appear for

each variable being displayed. Each <item> tag MUST specify a value for the <type> and

<entity> attributes (Section 6.4.4)

Additionally,

11. Each <stock|flow|aux|module|group> tag in a view MUST specify a <name> attribute

(Section 5.1.1)

12. A model variable object MUST be defined herein.somewhere other than in a view of type “interface”,
i.e., a view of type “interface” may not contain the canonical representation of a model variable object
(Section 5.1)

13. All views MUST be rectangular and MUST specify a <width> and a <height> (Section 5.1)

14. To print a view, the view MUST specify its paging as described in Section 5.1

15. All views MUST specify a <home_page> and a <home_view> attribute. There MUST be only one

<home_view> specified (Section 5.1)

16. A <stock|flow|aux|module> (note: not <group>) tag representing a model variable MUST

NOT appear more than once in a single <view> tag (Section 5.1.1)

17. All display objects contained within an XMILE model MUST specify the <x> and <y> position

attributes (Section 5.1.2)

18. All display objects contained within an XMILE model MUST specify the <width> and <height>

attributes EXCEPT when the following objects contain a <shape> tag: <stock>, <aux>, <module>,

or <alias> (Section 5.1.2)

19. A stock MUST NOT be represented using a circle (Section 5.1.2)

20. An auxiliary or a flow MUST NOT be represented using a rectangle except if the equation contains a
function or macro which contains a stock (Section 5.1.2)

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 90 of 94

21. Display objects containing a <shape> tag MUST specify a <type> attribute with one of the following

values: “rectangle”, “circle”, or “name_only” (Section 5.1.2)

22. Display objects of type rectangle MUST specify a <width> and a <height> (Section 5.1.2)

23. Display objects of type circle MUST specify a <radius> (Section 5.1.2)

24. All values for <x>, <y>, <width>, and <height> MUST be double precision numbers (Section

5.1.2)

25. All display objects that are referred to anywhere other than a display view MUST provide a <uid>

attribute and the value of each <uid> MUST be unique within the model (Section 5.1.3)

26. When a color is specified for a display object using a CSS style hex code, it MUST be prefixed by a #
followed by up to 6 hexadecimal digits from 0 to F (Section 5.2.2)

27. Stacked containers, if supported, MUST have values for <x>, <y>, <height>, <width>, <uid>,

and <visible_index> (and only those) attributes specified (Section 6.2.1)

7.2.9 Optional Outputs Conformance

To support the optional simulation output features of XMILE, an implementation:

1. MUST include the <uses_outputs> tag in the <options> block (Section 2.2.1)

2. MUST support the <graph> tag. <type> and <comparative> attributes MUST be specified for

each graph .One <plot> tag MUST appear for each variable being plotted. Each <plot> tag MUST

specify a value for the <index>, <title>, and <entity> attributes (Section 6.4.3)

3. MUST support the <table> tag. <orientation>, <column_width>, <interval>, and

<comparative> attributes for the table MUST be specified .One <item> tag MUST appear for

each variable being displayed. Each <item> tag MUST specify a value for the <type> and

<entity> attributes (Section 6.4.4)

4. If numeric_display is true in the <uses_outputs> tag, MUST support numeric displays

(Section 6.4.1)

5. If lamp is true in the <uses_outputs> tag, MUST support lamps and a list of zones with non-

overlapping value ranges for the variable MUST be specified within the <zones> tag (Section 6.4.2)

6. If gauge is true in the <uses_outputs> tag, MUST support gauges and a list of zones with non-

overlapping value ranges for the variable MUST be specified within the <zones> tag (Section 6.4.2)

Additionally,

7. Each zone for a lamp or a gauge (in a <zone> tag) MUST specify values for <type>, <color>,

<min>, and <max> (Section 6.4.2)

7.2.10 Optional Inputs Conformance

To support the optional user input features of XMILE, an implementation:

1. MUST include the <uses_inputs> tag in the <options> block (Section 2.2.1)

2. MUST support the <slider> and <knob> tags (Section 6.3.1)

3. MUST support the <switch> and <options> tags (Section 6.3.2)

4. If numeric_input is true in the <uses_inputs> tag, MUST support numeric inputs (Section

6.3.3)

5. If list is true in the <uses_inputs> tag, MUST support list inputs (Section 6.3.3)

6. If graphical_input is true in the <uses_inputs> tag, MUST support graphical inputs. If the

graphical input contains a different graphical function than the controlled variable, the <entity> tag

MUST include a <gf> tag to describe that graphical function (Section 6.3.4)

Additionally,

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 91 of 94

7. The input range tags <min> and <max> MUST be specified for sliders and knobs (Section 6.3.1)

8. A switch’s <group> or <module> tag MUST specify a <name> and a <value> (Section 6.3.2)

9. Option groups MUST specify values for <layout>, <horizontal_spacing>, and

<vertical_spacing> (Section 6.3.2)

10. A list input MUST specify a <name> and <column_width> (Section 6.3.3)

11. A graphical input MUST specify an <entity> tag (Section 6.3.4)

7.2.11 Optional Annotations Conformance

To support the optional model annotation features of XMILE, an implementation:

1. MUST include the <uses_annotations> tag in the <options> block (Section 2.2.1)

2. MUST support the <text_box> tag (Section 6.5.1)

3. MUST support the <graphics_frame> tag (Section 6.5.2)

4. MUST support the <button> tag (Section 6.5.3)

Additionally,

5. When an image is embedded directly within the XMILE file, the type of encoding MUST be “base64”

(Section 6.5.2)

6. Buttons that control the program MUST contain a <menu_action> tag

7. Menu actions <import_now>, <export_now>, and <save_data_now> MUST have the required

attributes specified (Section 6.5.3)

7.3 Conformance Clause 2: XMILE Simulator

An implementation conforms to this specification as an XMILE simulator if it meets the requirements in the
following subsections.

7.3.1 Base-Level Conformance

To conform to the XMILE base level, an implementation:

1. MUST adhere to the model assumptions (Section 3)

2. MUST support the simulation rules of each base functionality object (Section 3.1 and all subsections)

3. MUST support Euler’s method and Runge-Kutta 4 (Section 3.4.1)

4. MUST support the full range of built-in functions (Section 3.5 and all subsections)

7.3.2 Optional Conveyor Conformance

To support the optional conveyor features of XMILE, an implementation:

1. MUST implement conveyors as described (Section 3.7.2)

2. MUST support the full list of array built-in functions for conveyors, including the [] operator to access
conveyor elements (Section 3.7.1.3)

3. MUST implement all conveyor and leakage properties (Sections 4.2, 4.2.1, and 4.3)

7.3.3 Optional Queue Conformance

To support the optional queue features of XMILE, an implementation:

1. MUST implement queues as described (Section 3.7.3)

2. MUST support the full list of array built-in functions for queues, including the [] operator to access
queue elements (Section 3.7.1.3)

3. MUST implement the queue overflow (Section 4.3)

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 92 of 94

7.3.4 Optional Array Conformance

To support the optional array features of XMILE, an implementation:

1. MUST support dimensions (Section 2.5)

2. MUST generate one value for each array element (Section 3.7.1)

3. MUST support subscripts and subscript expressions (Section 3.7.1)

4. MUST support array operators (Section 3.7.1.1)

5. MUST support array slicing (Section 3.7.1.2)

6. MUST support the full list of array built-in functions (Section 3.7.1.3)

7.3.5 Optional Submodel Conformance

To support the optional submodel features of XMILE, an implementation:

1. MUST support the basic run behavior, i.e., use the same simulation specifications as the whole-
model (Section 3.7.4).

7.3.6 Optional Macro Conformance

Macros include three levels: a base level, a recursive level, and an options-filter level.

7.3.6.1 Base Macro Conformance

To support the optional macro features of XMILE, an implementation:

1. MUST support all macro features but recursive macros and option filters (Section 3.6.1 and Sections
4.8.1-4.8.3)

7.3.6.2 Recursive Macro Conformance

To support the optional recursive macro features of XMILE, an implementation:

1. MUST implement recursive macros (Section 3.6.1 and Sections 4.8.1-4.8.3)

7.3.6.3 Option-Filter Macro Conformance

To support the optional option-filter macro features of XMILE, an implementation:

1. MUST implement option filter macros (Section 3.6.2 and 4.8.4)

7.3.7 Optional Event-Poster Conformance

To support the optional event poster features of XMILE, an implementation:

1. MUST implement simulation events and their options (Sections 3.4.2 and 4.1.2)

7.3.8 Optional Inputs Conformance

To support the optional user input features of XMILE, an implementation:

1. Knobs attached to stocks MUST only adjust the stock’s initial value (Section 6.3.1)

2. Option groups MUST NOT support reset_to (Section 6.3.2)

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 93 of 94

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:

Original Author of the initial contribution:
Karim J. Chichakly, isee systems, inc.

Participants:
Steven Adler, IBM
Gary Baxter, independent member
Robert Brown, Mitre Corporation
Karim Chichakly, isee systems, inc.
Timothy Clancy, IBM
Jim Duggan, System Dynamics Society
Robert Eberlein, System Dynamics Society
Will Glass-Husain, Forio Corporation
Nelson Borges, Jr., IBM
Anthony Kennedy, Ventana Systems UK Limited
Gregory Love, Mitre Corporation
Leonard Malczynski, System Dynamics Society
Robert Powers, independent member
William Schoenberg, isee systems, inc.
Jerry Smith, US Department of Defense
Ddembe Williams, KCA University

xmile-v1.0-cs01 29 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 94 of 94

Appendix B. Revision History

Revision Date Editor Changes Made

[Rev
number]1.0wd01

[Rev
Date]9/23/13

[Modified By]Karim
Chichakly

[Summary of Changes]Created from input
documents

1.0wd02 8/26/14 Karim Chichakly Combined edits from TC editors

1.0wd03 10/21/14 Karim Chichakly and
Gary Baxter

Edited in response to public comments by
Karim Chichakly, Gary Baxter, and William
Schoenberg

