

XLIFF 1.2 Representation Guide for
Gettext PO

Public Review Draft 02, 16 Oct 2006
This version:

http://www.oasis-open.org/committees/xliff/documents/xliff-profile-po-
1.2-pr-02-20061016.htm

Latest version:
http://www.oasis-open.org/committees/xliff/documents/xliff-profile-po-
1.2-pr-02-20061016.htm

Previous version:
<not applicable yet>

Technical Committee :
OASIS XML Localisation Interchange File Format (XLIFF) TC

Chairs:
Bryan Schnabel < bryan.s.schnabel@exgate.tek.com >
Tony Jewtushenko <tony.jewtushenko@productinnovator.com>

Editor:

Asgeir Frimannsson <asgeirf@redhat.com>

Tony
Jewtushenko <tony.jewtushenko@productinnovator.com>

Rodolfo M. Raya <rmraya@heartsome.net>

Abstract
This document defines a guide for mapping the GNU Gettext PO (Portable
Object) file format to XLIFF (XML Localisation Interchange File Format).

Status

Field Code Changed

Field Code Changed

Field Code Changed

Deleted: Committee

Deleted: May

Deleted: cd-

Deleted: 20060516

Deleted: cd-

Deleted: 20060516

http://www.oasis-open.org/committees/xliff/documents/cd-xliff-profile-po-1.2-20060516pr-02-20061016.htm
http://www.oasis-open.org/committees/xliff/documents/cd-xliff-profile-po-1.2-20060516pr-02-20061016.htm
http://www.oasis-open.org/committees/xliff/documents/cd-xliff-profile-po-1.2-2006051620061016.htm
http://www.oasis-open.org/committees/xliff/documents/cd-xliff-profile-po-1.2-2006051620061016.htm
mailto:bryan.s.schnabel@exgate.tek.com
mailto:tony.jewtushenko@productinnovator.com
mailto:asgeirf@redhat.com
mailto:tony.jewushenko@productinnovator.com
mailto:tony.jewushenko@productinnovator.comrmraya@heartsome.net

This document was last revised or approved by the XLIFF TC on the above
date. The level of approval is also listed above. Check the current location noted
above for possible later revisions of this document. This document is updated
periodically on no particular schedule.

Technical Committee members should send comments on this specification to
the Technical Committee’s email list. Others should send comments to the
Technical Committee by using the “Send A Comment” button on the Technical
Committee’s web page at www.oasis-open.org/committees/xliff

For information on whether any patents have been disclosed that may be
essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the Technical
Committee web page (http://www.oasis-open.org/committees/xliff/ipr.php)..

The non-normative errata page for this specification is located at
www.oasisopen.org/committees/xliff/documents/xliff-profile-po-1.2-errata.htm.

Notices
OASIS takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which any
license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on
OASIS's procedures with respect to rights in OASIS specifications can be found
at the OASIS website. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt
made to obtain a general license or permission for the use of such proprietary
rights by implementors or users of this specification, can be obtained from the
OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover
technology that may be required to implement this specification. Please address
the information to the OASIS Executive Director.

Copyright © OASIS Open 2006. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or
in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by

Field Code Changed

Field Code Changed

Deleted: .

Deleted: -

Deleted: ¶

Deleted:

Deleted:

Deleted: 2005.

http://www.oasis-open.org/committees/xliff.
http://www.oasis-open.org/committees/xliff/ipr.php
http://www.oasis-open.org/committees/xliff/documents/xliff-profile-po-1.2-errata.htm

removing the copyright notice or references to OASIS, except as needed for the
purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be
followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by
OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS"
basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents
1. Introduction

1.1. Purpose
1.2. Transitional and Strict

2. Overview of the PO file format
2.1. PO and POT
2.2. General Structure
2.3. Header
2.4. Translation Units
2.5. Domains

3. General Considerations
3.1. PO flavours
3.2. Source and Target Languages
3.3. Translation Unit Ids
3.4. Handling of Escape Sequences in Software Messages
3.5. Character Set Conversion
3.6. Extracting from POT files

4. General Structure
5. Detailed Mapping

5.1. Header
5.2. Translation Units
5.3. Translator Comments
5.4. Extracted Comments
5.5. References
5.6. Flags
5.7. Domains

Deleted:

Deleted:

Appendixes

A. Contributions
B. Examples of converted PO files
References

1. Introduction
As different tools may provide different filters to extract the content of Gettext
Portable Object (PO) documents it is important for interoperability that they
represent the extracted data in identical manner in the XLIFF document.

1.1. Purpose

The intent of this document is to provide a set of guidelines to represent PO data
in XLIFF. It offers a collection of recommended mappings of all features of PO
that developers of XLIFF filters can implement, and users of XLIFF utilities can
rely on to insure a better interoperability between tools.

1.2 Transitional and Strict

XLIFF is specified in two "flavors". Indicate which of these variants you are
using by selecting the appropriate schema. The schema may be specified in the
XLIFF document itself or in an OASIS catalog. The namespace is the same for
both variants. Thus, if you want to validate the document, the tool used knows
which variant you are using. Each variant has its own schema that defines which
elements and attributes are allowed in certain circumstances.

As newer versions of XLIFF are approved, sometimes changes are made that
render some elements, attributes or constructs in older versions obsolete.
Obsolete items are deprecated and should not be used even though they are
allowed. The XLIFF specification details which items are deprecated and what
new constructs to use.

• Transitional - Applications that produce older versions of XLIFF may
still use deprecated items. Use this variant to validate XLIFF documents
that you read. Deprecated elements and attributes are allowed.

xsi:schemaLocation='urn:oasis:names:tc:xliff:doc
ument:1.2 xliff-core-1.2-transitional.xsd'

• Strict - All deprecated elements and attributes are not allowed. Obsolete
items from previous versions of XLIFF are deprecated and should not be

used when writing new XLIFF documents. Use this to validate XLIFF
documents that you create.

xsi:schemaLocation='urn:oasis:names:tc:xliff:doc
ument:1.2 xliff-core-1.2-strict.xsd'

2. Overview of the PO file format
Because the Gettext PO format is not a defined standard - nor is the format well
documented, we will in this section present an overview of the features and
design of the PO file format.

2.1. PO and POT

There are two types of PO files: PO Template files (POTs) and Language
specific PO files (POs). POTs contains a skeleton header, followed by the
extracted translation units. POTs are generated by the xgettext extraction tool
and are not meant to be edited by humans. POTs are converted into Language
Specific POs by the msginit tool, and these files are then edited by translators.

When source code is updated, a new POT is generated for the project, and the
changes from previous versions are incorporated into the existing translations
by using the msgmerge tool. This tool inserts new translation units into the
existing PO files, marks translation units no longer in use as obsolete, and
updates any references and extracted comments.

Translated PO files are converted to binary resource files, known as MO
(Machine Object) files, by the msgfmt tool. The Gettext library use MO files at
run time; hence PO files are only used in the development and localisation
process.

2.2. General Structure

A PO file starts with a header, followed by a number of translation units.

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE
package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

#, fuzzy
msgid ""
msgstr ""

"Project-Id-Version: PACKAGE-NAME VERSION\n"
"Report-Msgid-Bugs-To: BUG-EMAIL-ADDR <EMAIL@ADDRESS>\n"
"POT-Creation-Date: YEAR-MO-DA HO:MI+ZONE\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <EMAIL@ADDRESS>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=2; plural=n!=1;\n"
"X-User-Defined-Var: VALUE\n"

Translator Comment
#. Extracted Comment
#: myfile.c:12
#, flag
msgid "Original String 1"
msgstr "Translated String 1"

Translator Comment
#. Extracted Comment
#: myfile.c:23
#, flag
msgid "Original String 2"
msgstr "Translated String 2"

2.3. Header

French Translation for MyApplication.
Copyright (C) 2005 John Developer
This file is distributed under the same license as the MyApp
package.
John Developer <john@example.com>, 2005.
Joe Translator <joe@example.com>, 2005.

msgid ""
msgstr ""
"Project-Id-Version: MyApp 1.0\n"
"Report-Msgid-Bugs-To: MyApp List <myapp-list@example.com>\n"
"POT-Creation-Date: 2005-04-27 13:15+0900\n"
"PO-Revision-Date: 2005-04-27 13:45+0900\n"
"Last-Translator: Joe Translator <joe@example.com>\n"
"Language-Team: French Team <fr-list@example.com>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=2; plural=(n!=1);\n"
"X-Generator: KBabel 1.9\n"

The PO header follows a similar structure to PO translation units, but is
distinguished by its empty source element (msgid). The header variables are

contained in the headers' target (msgstr) element, with newline character
representations ('\n') separating each variable.

The initial comment lines (comments are lines starting with "# ") usually
contains a copyright notice as well as licensing information, followed by a list
of all translators that has been involved in translating the specific PO file.

The header skeleton in a POT file is initially marked with the fuzzy flag (flags
are comma separated entries on lines starting with "#, "). This flag is
removed when the header variables are filled in and the POT file is initialized to
a language-specific PO file.

Table 1. Predefined PO Header variables

Variable Name Description
Project-Id-
Version Application name and version

Report-Msgid-
Bugs-To

Mailing list or contact person for reporting errors in translation
units.

POT-Creation-Date Date POT file was generated. Automatically filled in by
Gettext

PO-Revision-Date Time stamp when PO file was last edited by a translator
Last-Translator Contact information for last translator editing the file.
Language-Team Name of language team that translated this file
MIME-Version MIME version used for specifying Content-Type
Content-Type MIME content type and character set for this file
Content-Transfer-
Encoding MIME transfer encoding

Plural-Forms Number of plural forms in target language, and c-expression
for evaluating which plural form to use for a parameter.

In addition to these predefined variables, the PO header can contain custom
user-defined variables of the same format.

2.4. Translation Units

Translator Comment
#. Extracted Comment
#: myfile.c:12 myfile.c:32
#, flag
msgid "Original String"
msgstr "Translated String"

PO translation units use the source string (msgid) as primary id, and contain
the translation in the msgstr field. In addition to this, PO translation units
contain other meta-data, explained in further detail in the following sections.

2.4.1. Source and Target

The msgid and msgstr contains the source and target string of a translation
unit.

The actual content of msgid and msgstr is a concatenation of the strings
enclosed by quotes (U+0022 characters) on each line. For example:

msgid ""
"My name is "
""
"%s. \n"
"What is"
" "
"your name?"

is exactly the same as:

msgid "My name is %s. \nWhat is your name?"

2.4.2. Translator Comments

This is a comment line
This is another comment line

Translator comments are lines starting with "# " (U+0023 + U+0020). These
comments are added by translators, and are not present in POT files.

2.4.3. Extracted Comments

#. This is an extracted comment
#. This is another extracted comment

Extracted comments are lines starting with "#." (U+0023 + U+002E). These
comments are extracted from the source code. Source-code comments are
normally extracted if they are on the same line as the source string, or on the
line immediately preceding it, as in the following c-example:

/* This comment will be extracted */
gettext("Hello World");

This would become:

#. This comment will be extracted
msgid "Hello World"
msgstr ""

When updating a PO file from a new POT file, existing extracted comments in
the language specific PO file are discarded, and the extracted comments present
in the POT file are inserted in the existing PO file.

2.4.4. References

#: myfile.c:1 myfile.c:23 otherfile.c:1
#: otherfile.c:34

References are identified by lines starting with "#:" (U+0023 + U+003A).
References are space separated lists of locations
(sourcefile:linenumber) specifying where the translation unit is found
in a source file.

As each msgid has to be unique within a PO domain, a single translation unit
can contain multiple references; one for each location where the string is found
in the source code.

Similar to extracted comments, when updating a PO file from a new POT file,
existing references in the language specific PO file are discarded, and the
references present in the POT file are inserted in the existing PO file.

2.4.5. Flags

Flags are identified by lines starting with "#," (U+0023 + U+002C). Multiple
flags are separated by commas.

Flags are used both as processing instructions by the Gettext tools, and by
translators to indicate that a translation unit is unfinished or "fuzzy".

Table 2. Flag values and descriptions

Flag Name Description
fuzzy Indicates that a translation units needs review by a

Flag Name Description
translator.

This flag is inserted by the gettext tools when a translation
unit changes, or when the translation unit does not pass the
format check.

The flag is also commonly used by translators to mark a
translation unit as unfinished.

Note that entries marked as fuzzy are not included when
PO files are compiled to binary MO files.

no-wrap

Indicates that the text in the msgid field is not to be
wrapped at page with (usually 80 characters) which it
usually is. Note that this does not affect the wrapping of
the actual source string, only the representation of it in the
PO file.

This flag is set by developers in the source code, or by
adding a command-line flag when invoking the Gettext
tools.

X-format, where X is any
of the following:

• awk
• c
• csharp
• elips
• gcc-internal
• java
• librep
• lisp
• objc
• object-pascal
• perl
• perl-brace
• php
• python
• qt
• scheme
• sh
• smalltalk
• tcl
• ycp

Indicates that Gettext is to do a format check on the
translation unit to validate that both msgid and msgstr
contains valid parameter values according to the source
format.

This flag is automatically inserted by the Gettext extraction
tool.

no-X-format, where X is
any of the items in the list Indicates that Gettext is to skip the format check for this

Flag Name Description
above. translation unit.

This flag has to be set by developers in the source code.

Flags (except fuzzy) are inserted and overridden by developers in source code,
by adding them to a comment immediately preceding the call to gettext, as in
the following example:

/* xgettext:no-c-format */
printf(_("Hello World"));

Since the Gettext call here is inside a printf function call, the gettext tools
will automatically assume this is a c-format string. But in this example the
developer overrides that, and specifies it is not so, which would generate the
following PO translation unit:

#, no-c-format
msgid "Hello World"
msgstr ""

2.4.6. Plural Forms

Gettext, in addition to supporting normal translation units with a single msgid
and msgstr, support plural form translation units. These translation units
contain the singular English form in the msgid field, and the plural form in the
msgid_plural. As the target, these translation units have an array of
msgstr, representing the number of forms in the target language:

msgid "You have %d file"
msgid_plural "You have %d files"
msgstr[0] "Du har %d fil"
msgstr[1] "Du har %d filer"

The target language may have one or more forms (Japanese has one form, while
Polish has 3 forms), and the logic for selecting which form to use for a
parameter is defined in a PO header field, where nplurals defines the
number of forms and plural contains a c-expression for evaluating which
item in the msgstr array to use at run time:

"Plural-Forms: nplurals=2; plural=(n != 1);\n"

This is a typical example for a Germanic language, which has a special case
when n is 1. A more complex example is Polish, which has special cases for
when n is 1, and in addition some numbers ending in 2, 3 or 4:

"Plural-Forms: nplurals=3; "
"plural=n==1 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20)
? 1 : 2;"

C-expressions are defined as condition ? true_value :
false_value where condition is an expression evaluating to true/false.
In the above example, the first condition is n==1 which if true gives the result
0, and if false gives the result of a second c-expression. For the second
expression, the condition is n%10>=2 && n%10<=4 && (n%100<10 ||
n%100>=20), which if true gives the result 1, and if false gives the result 2.
At run time, Gettext will use the msgstr with the index returned from this
expression.

2.4.7. Obsolete Translation Units

Obsolete entries are translation units that are no longer present in the source-
files, and are therefore commented out when a PO file is updated. These entries
are re-used by Gettext only if the translation-unit re-appears in the project, and
are also used for fuzzy matching by the 'msgmerge' tool. Obsolete entries are
marked with "#~" (U+0023 + U+007E), as in the following example:

This is a translator comment
#~ msgid ""
#~ "Please enter the following details:\n"
#~ " - First Name\n"
#~ " - Last Name\n"
#~ msgstr ""
#~ "Venligst fyll inn følgende data:\n"
#~ " - Fornavn\n"
#~ " - Etternavn\n"

2.5. Domains

One single PO file normally represents one MO file, known as a Gettext
domain, but the PO format also allows for representing multiple domains in a
single PO file. This is done by adding the domain keyword followed by the
domain name, as in the following example:

domain "domain_1"
msgid "hello world"

msgstr "hei verden"
domain "domain_2"
msgid "hello world"
msgstr "hei verden"

The above example would produce two MO files, domain_1.mo and
domain_2.mo. If no domain is specified, translation units belong to the
default domain messages.

A PO header is bound to a domain, so each domain has its own header.

Having multiple domains in a single PO file is very rare; in fact, the authors
have never seen this in use.

3. General Considerations
This section discusses the general considerations to take in account when
extracting data from PO files.

3.1. PO flavours

Because of good open source tool support, the PO file format has been used as a
common file format for the extraction of localisable data from a number of
different source formats, including XML-based document-formats such as
Docbook. This guide mainly covers representation of PO files generated from
the GNU Gettext toolkit - targeting only localisation of software messages.

It is fully possible to apply this guide to PO files extracted from XML formats.
However, it is highly recommended to use native XLIFF filters wherever
possible, and not use PO as a middle-format in these processes.

3.2. Source and Target Languages

The PO file format does not provide a way of identifying the source and target
language within a file. By GNU standards, GNU software is written in
American English (en-US), and this is reflected in Gettext by only having
support for Germanic plural forms in the source language. It is therefore
recommended to set the source-language attribute to en-US by default.

POSIX locale names typically use the form
language[_territory][.codeset][@modifier], where
language is an ISO 639 language code, territory is an ISO 3166 country
code, and codeset is a character set or encoding identifier like ISO-8859-1
or UTF-8.

Locale names (through use of the source-language, target-language
and xml:lang attributes), should, - as specified in the XLIFF specification,
use [RFC 3066], and not variants of the POSIX form.

3.3. Translation Unit Ids

The PO file format is different from most other software localisation resource
formats in that it does not use ID based translation units. Gettext use the source
string as the primary id, meaning that within a Gettext domain, a source string
must be unique.

When representing a PO translation unit in XLIFF we cannot use the source
string as the value for the id or resname attribute because of the limitations
of XML attribute values. Many localisation tools rely on these attributes for
leveraging, updates and alignment, hence not providing a solution for this may
cause interoperability problems.

We suggest the following approach for providing unique resname attribute
values for translation units:

• For non-plural Translation Units, use a string hash of domain_name
+ "::" + msgid. If the Translation Unit is in the default domain,
use "messages" as the domain name.

• For plural Translation Units, use a string hash of domain_name +
"::" + msgid + "::plural[" + n + "]", where n is the
plural index of msgstr.

It is however possible to use the PO format with logical ids, though this
approach is not much used. To support this, filters may add an optional function
(specified by a command-line flag or similar) to use msgid as the logical id,
and then put the value of msgstr in the <source> element.

For example:

msgid "HELLO_WORLD"
msgstr "Hello World!"

would be mapped to:

<trans-unit id="1" resname="HELLO_WORLD" xml:space="preserve">
 <source>Hello World!</source>
</trans-unit>

After translation, the translated entry would be inserted as msgstr. For
example:

<trans-unit id="1" resname="HELLO_WORLD" xml:space="preserve">
 <source>Hello World!</source>
 <target>Hei verden!</target>
</trans-unit>

would be back-converted to PO as:

msgid "HELLO_WORLD"
msgstr "Hei Verden!"

3.4. Handling of Escape Sequences in Software Messages

Software messages commonly use escape sequences for representing common
control characters like newline ('\n'), horizontal tabs ('\t'), and others.
When converting to XLIFF, these sequences can either be preserved, or filters
may choose to replace escape sequences with the intended character
representation.

For example, the following C source code fragment:

printf("Please Enter the following Data:\n\
\t- First Name\n\
\t- Last Name\n");

would be represented in PO as:

msgid ""
"Please Enter the following Data:\n"
"\t- First Name\n"
"\t- Last Name\n"
msgstr ""

This fragment could be presented in XLIFF by preserving the escape sequences:

<source>Please Enter the following Data:\n\t- First Name\n\
\t- First Name\n\t- Last Name\n</source>

which could be further enhanced by encapsulating escape characters in XLIFF
<ph> or <x/> elements:

<source>Please Enter the following Data:<x id='1' ctype='lb'/>\
<x id='2' ctype='x-ht'/>- First Name<x id='3' ctype='lb'/>\
<x id='4' ctype='x-ht'/>- First Name<x id='5' ctype='lb'/>\
</source>

Or, the filters could replace escape sequences with the intended characters:

<source>Please Enter the following Data:
 - First Name
 - Last Name
</source>

The recommended approach, as also depicted in the table below, is as follows:

• Escape Sequences representing ASCI Control Characters, except '\n'
(Linefeed LF - U+000A), '\r' (Carriage Return CR - U+000D) and
'\t' (Horizontal Tabulator HT - U+0009), should remain as escaped
sequences in XLIFF. The escape sequences should be abstracted in
<ph> or <x/> elements, with the c-type attribute set to x-ch-NN
where NN is the name of the ASCI control character.

• The Control Character '\t' (Horizontal Tabulator HT - U+0009)
should be converted to the intended Unicode representation (U+0009).

• The Control Character '\n' (Linefeed LF - U+000A) should be
converted to the intended Unicode representation (U+000A).

• The Gettext tools discourages use of the '\r' (Carriage Return CR -
U+000D) escape sequence. Filters may choose to implement support for
Mac and DOS/Windows style line endings by replacing DOS/Windows
('\r\n') and Older Mac ('\r') line endings with Unix ('\n') line
endings. Filters could store information about the original line endings
encoding, and use this information to insert the correct line endings on
back-conversion.

• All other escaped characters should be converted to the intended
Unicode representation.

In addition, characters in a PO file that are not supported by the XML
specification (For example Vertical Tabulator VT - U+000B) should be
abstracted in a similar way to control characters.

Table 3. Handling of Common Escape Sequences

Escape
Sequence

Intended
Character

PO
representation XLIFF representation

\? ? (U+003F) ? ?
\' ' (U+0027) ' '
\" " (U+0022) \" "
\\ \ (U+005C) \\ \

\a BEL
(U+0007) [a] \a

<ph ctype="x-ch-
bel">\a</ph> or <x ctype="x-
ch-bel"/>

Escape
Sequence

Intended
Character

PO
representation XLIFF representation

\b BS (U+0008)
[a] \b [b]

<ph ctype="x-ch-
bs">\b</ph> or <x ctype="x-
ch-bs"/>

\f FF (U+000C)
[a] \f [b]

<ph ctype="x-ch-
ff">\f</ph> or <x ctype="x-
ch-ff"/>

\n LF (U+000A) \n LF [c]
\r CR (U+000D) \r [b] LF [c]
\t HT (U+0009) \t HT

\v VT (U+000B)
[a] VT[d]

<ph ctype="x-ch-
vt">\v</ph> or <x ctype="x-
ch-vt"/>

[a] These characters cannot be used in XML. For more information, see Section 2.2 in the
XML Specification [XML 1.0].

[b] Throws a Gettext Warning when used: "xgettext: internationalized
messages should not contain the `X' escape sequence" where X is
'\b', '\f' or '\r'.

[c] See bullet point above on handling Windows and Mac line endings.

[d] Is in later versions of Gettext handled similar to '\b', '\f' and '\r' escape sequences.

Although most of the XLIFF inline tags are represented in the TMX standard,
the <x/> tag is not. TMX is a standard to exchange Translation Memory (TM)
data created by Computer Aided Translation (CAT) and localization tools. If
you plan to store or deliver XLIFF text content using TMX, you may wish to
use the <ph> approach for encapsulating escape sequences or you will need to
represent <x/> tags in some alternate way in TMX.

3.5. Character Set Conversion

The Content-Type PO header field specifies the character encoding used in
the PO file. This field is used at run time by Gettext to provide character set
conversion to the character set used by the application.

When extracting data from PO files, filters should use the Content-Type
information to provide conversion to UTF-8 for storing data in XLIFF. On
back-conversion, filters should also honour this field when re-creating the PO
file.

http://www.lisa.org/standards/tmx/

3.6. Extracting from POT files

POT files are automatically generated by the Gettext tools, and is nothing but a
simple string table containing the extracted translation units. POTs are much
simpler than POs, which are modified by humans and contain additional meta-
data (Translator comments, Header information).

If PO is not used in the localisation process, it would in many situations be more
feasible to convert directly from POT to XLIFF, and not use language-specific
PO files at all in the localisation process.

When converting from POT, the header can be ignored, as the header stored in
POT is simply a skeleton header. When back-converting to PO, the filter can
insert the necessary PO header elements (MIME elements and optionally plural
forms definitions), providing all data needed to produce the language specific
MO files.

When plural translation units exist in the POT file, it is important to note that it
is impossible to send off a language neutral XLIFF file to translators. Filters
need to insert the correct number of <trans-unit> elements for a plural
group, and hence, filters need information on how many plural forms there are
in a target language.

4. General Structure

<?xml version="1.0" ?>
<xliff version="1.2"
xmlns="urn:oasis:names:tc:xliff:document:1.">
 <file original="filename.po" source-language="en-US"
datatype="po">
 <body>

 <trans-unit>
 ... PO header for default domain...
</trans-unit>
... translation units for default domain...
<group restype="x-gettext-domain" resname="domain-name">
... header and translation units for domain 'domain-
name'...
</group>
</body>
</file>
</xliff>

Each PO file maps to one XLIFF <file> element. XLIFF representations of
PO files should have the datatype attribute set to po, and the original
attribute set to the name of the PO file.

The XLIFF may encapsulate the meta-data from the PO header in a <trans-
unit> element, or store the header in a skeleton file.

The XLIFF <body> element contains translation units, which may be grouped
by PO domains using hierarchical <group> elements.

5. Detailed Mapping

5.1. Header

There are two recommended approaches to handling the PO header in XLIFF:
Leaving the header out of the XLIFF file, or treating the header as a translation
unit. Both approaches are described below.

5.1.1. Approach 1: Leave header out

The information contained in the PO header is not needed in the localisation
process, and can be left out of the XLIFF file.

When converting POT files, it is possible to completely ignore the PO header,
as described in Section 3.6, “Extracting from POT files”.

5.1.2. Approach 2: Use a <trans-unit> element

This approach involves storing the whole PO header as a XLIFF <trans-
unit> element; with the restype attribute set to x-gettext-domain-
header. In PO the header is identified by a empty source field (msgid), and
the header is stored in the target field (msgstr). In converting to XLIFF, we
copy the value of msgstr to both <source> and <target>, ensuring that
translators can modify the header without loosing track of the original content.
Translator comments and the fuzzy flag is handled the same way as other
translation units.

For example:

French Translation for MyApplication.
Copyright (C) 2005 John Developer
This file is distributed under the same license as the MyApp
package.
John Developer <john@example.com>, 2005.
Joe Translator <joe@example.com>, 2005.
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: MyApp 1.0\n"

"Report-Msgid-Bugs-To: MyApp List <myapp-list@example.com>\n"
"POT-Creation-Date: 2005-04-27 13:15+0900\n"
"PO-Revision-Date: 2005-04-27 13:45+0900\n"
"Last-Translator: Joe Translator <joe@example.com>\n"
"Language-Team: French Team <fr-list@example.com>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=2; plural=(n!=1);\n"
"X-Generator: KBabel 1.9\n"

would be mapped to:

<trans-unit id="1" restype="x-gettext-domain-header"
approved="no" xml:space="preserve">
 <source>Project-Id-Version: MyApp 1.0
Report-Msgid-Bugs-To: MyApp List <myapp-list@example.com>
POT-Creation-Date: 2005-04-27 13:15+0900
PO-Revision-Date: 2005-04-27 13:45+0900
Last-Translator: Joe Translator <joe@example.com>
Language-Team: French Team <fr-list@example.com>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Plural-Forms: nplurals=2; plural=(n!=1)
X-Generator: KBabel 1.9
</source>
 <target>Project-Id-Version: MyApp 1.0
Report-Msgid-Bugs-To: MyApp List <myapp-list@example.com>
POT-Creation-Date: 2005-04-27 13:15+0900
PO-Revision-Date: 2005-04-27 13:45+0900
Last-Translator: Joe Translator <joe@example.com>
Language-Team: French Team <fr-list@example.com>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Plural-Forms: nplurals=2; plural=(n!=1)
X-Generator: KBabel 1.9
</target>
 <note from="po-translator">Copyright (C) 2005 John Developer
This file is distributed under the same license as the MyApp
package.
John Developer <john@example.com>, 2005.
Joe Translator <joe@example.com>, 2005.</note>
</trans-unit>

The content of the PO header can hardly be seen as translatable data, hence this
approach is not fully faithful to the XLIFF specification. However, this
approach is recommended as a "lesser-of-evils" approach in that it allows
translators to modify PO header information - which is necessary in many
Gettext based localisation processes.

5.2. Translation Units

5.2.1. Non-Plurals

Each PO entry maps to a XLIFF <trans-unit> element, and contains the
source string (msgid) in the <source> element, and the translation
(msgstr) in the <target> element. White space and formatting should be
preserved by setting the xml:space attribute to preserve.

For example:

msgid "hello world"
msgstr "hei verden"

would be mapped to:

<trans-unit id="1" xml:space="preserve">
 <source>hello world</source>
 <target>hei verden</target>
</trans-unit>

5.2.2. Plurals

Each plural PO entry maps to a XLIFF <group> element with the restype
attribute set to x-gettext-plurals, and contains one <trans-unit>
element for each plural form in the target language.

For example:

msgid "%d file deleted"
msgid_plural "%d files deleted"
msgstr[0] "%d fil slettet"
msgstr[1] "%d filer slettet"

would be mapped to:

<group restype="x-gettext-plurals">
 <trans-unit id="1[0]" xml:space="preserve">
 <source>%d file deleted</source>
 <target>%d fil slettet</target>
 </trans-unit>
 <trans-unit id="1[1]" xml:space="preserve">
 <source>%d files deleted</source>
 <target>%d filer slettet</target>

 </trans-unit>
</group>

When the target language has more than two plural forms, the plural source
(msgid_plural) should be used in the <source> element for all translation
units except the first.

For example:

msgid "untranslated-singular"
msgid_plural "untranslated-plural"
msgstr[0] "translated-form-0"
msgstr[1] "translated-form-0"
...
msgstr[n] "translated-form-n"

would be mapped to:

<group restype="x-gettext-plurals">
 <trans-unit id="1[0]" xml:space="preserve">
 <source>untranslated-singular</source>
 <target>translated-form-0</target>
 </trans-unit>
 <trans-unit id="1[1]" xml:space="preserve">
 <source>untranslated-plural</source>
 <target>translated-form-1</target>
 </trans-unit>
...
 <trans-unit id="1[n]" xml:space="preserve">
 <source>untranslated-plural</source>
 <target>translated-form-n</target>
 </trans-unit>
</group>

When only one form exists for the target language (For example Japanese,
Chinese, Korean), the plural group should include a second <trans-unit>
element with the translate attribute set to no. This element should contain
the original plural source (msgid_plural) in the <source> element, and is
needed when back-converting to PO to create the msgid_plural field.

For example:

msgid "untranslated-singular"
msgid_plural "untranslated-plural"
msgstr[0] "translated-form-0"

would be mapped to:

<group restype="x-gettext-plurals">
 <trans-unit id="1[0]" xml:space="preserve">
 <source>untranslated-singular</source>
 <target>translated-form-0</target>
 </trans-unit>
 <trans-unit id="1[1]" xml:space="preserve" translate="no">
 <source>untranslated-plural</source>
 </trans-unit>
</group>

It is important to be aware of the implications of plural forms when extracting
data from language neutral POT files, as described in Section 3.6, “Extracting
from POT files”.

5.2.3. Obsolete Entries

Obsolete entries should not be included in the XLIFF file, and can be stored in a
skeleton or ignored.

5.3. Translator Comments

Translator comments in PO have the same function as <note> elements in
XLIFF - providing a way for people involved in the localisation process to
include comments relating to a translation unit.

It is possible to map each translator comment to a <note> element, specifying
that the comment is extracted from the PO file using the from attribute. Multi-
line comments are concatenated, each line separated by a newline character.

For example:

This is a comment that
goes over multiple lines
msgid "hello world"
msgstr ""

could be mapped to:

<trans-unit id="1">
 <source>hello world</source>
 <note from="po-translator">This is comment that
goes over multiple lines</note>
</trans-unit>

Optionally, translator comments can be mapped to <context> elements with
the context-type attribute set to x-po-transcomment. For example:

This is a comment that
goes over multiple lines
msgid "hello world"
msgstr ""

could be mapped to:

<trans-unit id="1">
 <source>hello world</source>
 <context-group name="po-entry-1" purpose="information">
 <context context-type="x-po-trancomment">This is comment that
goes over multiple lines</context>
 </context-group>
</trans-unit>

It is up to the individual filter implementer to decide which approach (if not
both) to use.

5.4. Extracted Comments

Extracted comments in PO are comments extracted from source code, and
provide a way for developers to add comments relating to a translation unit.
They can be mapped to XLIFF in a similar fashion to Translator Comments.

It is possible to map each extracted comment to a <note> element, specifying
that the comment is extracted from the PO file, - representing a developer
comment, using the from attribute. Multi-line comments are concatenated,
each line separated by a newline character.

For example:

#. This is a comment that
#. goes over multiple lines
msgid "hello world"
msgstr ""

could be mapped to:

<trans-unit id="1">
 <source>hello world</source>
 <note from="developer">This is comment that

goes over multiple lines</note>
</trans-unit>

Optionally, extracted comments can be mapped to <context> elements with
the context-type attribute set to x-po-autocomment. The surrounding
<context-group>element (same context group as the Translator Comment
as described above) would have the name attribute set to a value that must be
unique within the enclosing <file> element and the purpose attribute set to
information.

For example:

#. This is a comment that
#. goes over multiple lines
msgid "hello world"
msgstr ""

could be mapped to:

<trans-unit id="1">
 <source>hello world</source>
 <context-group name="po-entry-1" purpose="information">
 <context context-type="x-po-autocomment">This is comment that
goes over multiple lines</context>
 </context-group>
</trans-unit>

As with Translator Comments, it is up to the individual filter implementer to
decide which approach (if not both) to use.

5.5. References

Each reference is mapped to two <context> elements, one specifying the
source file (context-type attribute set to sourcefile) and the other
representing the location in the source file (context-type attribute set to
linenumber).

Each reference is in addition grouped in a <context-group> element, with
the name attribute set to a value that must be unique within the enclosing
<file> element and the purpose attribute set to location.

For example:

Deleted: po-entry

Deleted: po-reference,

#: example.c:34 otherfile.c:233
msgid "hello world"
msgstr ""

would be mapped to:

<trans-unit id="1">
 <source>hello world</source>
 <context-group name="po-reference-1" purpose="location">
 <context context-type="sourcefile">example.c</context>
 <context context-type="linenumber">34</context>
 </context-group>
 <context-group name="po-reference-2" purpose="location">
 <context context-type="sourcefile">otherfile.c</context>
 <context context-type="linenumber">233</context>
 </context-group>
</trans-unit>

5.6. Flags

5.6.1. fuzzy

The fuzzy flag in PO maps to the approved attribute of a <trans-unit>
element in XLIFF. The approved attribute is set to no if the fuzzy flag is
present, and is set to yes if the flag is absent.

For example:

#, fuzzy
msgid "Hello world"
msgstr ""

msgid "Hello world!"
msgstr "Hei verden!"

should be mapped to:

<trans-unit id="1" approved="no">
 <source>hello world</source>
</trans-unit>
<trans-unit id="2" approved="yes">
 <source>Hello world!</source>
 <target>Hei Verden!</target>
</trans-unit>

If the msgstr field is empty and the fuzzy flag is absent, the translation unit
is still marked as not approved. When the msgstr field contains data and the
fuzzy flag is set, the state attribute of the <target> element is set to
needs-review-translation.

For example:

msgid "Hello world"
msgstr ""

#, fuzzy
msgid "Hello world!"
msgstr "Hei verden!"

should be mapped to:

<trans-unit id="1" approved="no">
 <source>hello world</source>
</trans-unit>
<trans-unit id="2" approved="no">
 <source>Hello world!</source>
 <target state="needs-review-translation">Hei Verden!</target>
</trans-unit>

When back-converting to PO, the fuzzy flag is set unless the approved
attribute of the translation unit is set to yes.

5.6.2. no-wrap

The no-wrap flag only controls the visual layout of a translation unit in the
PO file, and not the actual content. Hence, this flag has no meaning in an XLIFF
file and can be ignored by filters.

Note that it is possible, when back-converting to PO, to honour the no-wrap
flag. This can be done by implementing the same formatting rules as the Gettext
tools:

• Leave the first line (same line as the msgid/msgstr keyword) blank.
• Only split lines when encountering the newline character ("\n"); Do not

word-wrap long lines.

For example:

<trans-unit id="1" approved="yes">
 <source>As prompted on the following screen, please enter the

following details:
 - First Name
 - Last Name
</source>
 <target>Venligst fyll inn følgende data når du kommer til neste
skjermbilde:
 - Fornavn
 - Etternavn
</target>
</trans-unit>

would when back-converted be formatted as:

msgid ""
"As prompted on the following screen, please enter the following
details:\n"
" - First Name\n"
" - Last Name\n"
msgstr ""
"Venligst fyll inn følgende data når du kommer til neste
skjermbilde:\n"
" - Fornavn\n"
" - Etternavn\n"

in favour of word-wrapping similar to this:

msgid "As prompted on the following screen, please enter "
"the following details:\n"
" - First Name\n"
" - Last Name\n"
msgstr "Venligst fyll inn følgende data når du kommer til "
"neste skjermbilde:\n"
" - Fornavn\n"
" - Etternavn\n"

How the no-wrap flag is stored (if it is honoured) in the localisation process,
is up to the individual filter implementers.

5.6.3. X-format

The X-format flag (For example: c-format, java-format, php-
format) specifies that the Gettext is to do some format checks before
accepting the translation, ensuring that the parameters present in the source
string (msgid) is there in the translated entry (msgstr). This format check is
done by the Gettext tools after translation, when generating MO files, or when
merging a PO file with a newly extracted POT file.

This flag can be honoured by extracting parameters to <ph> or <x/> elements
with the c-type attribute set to the value mapping to the format flag (see the
table below). For example:

#, c-format
msgid "Hello %s, your score is %d."
msgstr "Hei %s, du har %d poeng."

Here the parameters %s and %d can be extracted:

<trans-unit id="1" approved="yes">
 <source>Hello <ph id="1" ctype="x-c-param">%s</ph>, your score
is <ph id="2" ctype="x-c-param">%d</ph>.</source>
 <target>Hei <ph id="1" ctype="x-c-param">%s</ph>, du har <ph
id="2" ctype="x-c-param">%d</ph> poeng.</target>
</trans-unit>

Table 4. Recommended c-type attribute values

Flag Name c-type value
awk-format x-awk-param
c-format x-c-param
csharp-format x-csharp-param
elisp-format x-elisp-param
gcc-internal-format x-gcc-internal-param
java-format x-java-param
librep-format x-librep-param
lisp-format x-lisp-param
objc-format x-objc-param
object-pascal-format x-object-pascal-param
perl-format x-perl-param
perl-brace-format x-perl-brace-param
php-format x-php-param
python-format x-python-param
qt-format x-qt-param
scheme-format x-scheme-param
sh-format x-sh-param
smalltalk-format x-smalltalk-param
tcl-format x-tcl-param
ycp-format x-ycp-param

For some source formats special consideration is needed when reordering
parameters. For example:

Hello %s, your score is %d.

If we here in the target language wanted to write:

Score: %d. Name: %s

we would have to specify the position of the parameters:

Score is %2$d for %1$s

Most XLIFF editors do not provide a way for translators to edit the content of
<ph> elements, and with <x/> elements the content is fully abstracted,
meaning this logic would have to be implemented in the filters.

For example, in the following PO fragment:

#, c-format
msgid "Hello %s, your score is %d."
msgstr ""

the extraction filter could insert necessary ordering-tags when converting to
XLIFF:

<trans-unit id="1" approved="no">
 <source>Hello <ph id="1" ctype="x-c-param">%1$s</ph>, your
score is <ph id="2" ctype="x-c-param">%2$d</ph>.</source>
</trans-unit>

The translator could then safely re-order the parameters:

<trans-unit id="1" approved="yes">
 <source>Hello <ph id="1" ctype="x-c-param">%1$s</ph>, your
score is <ph id="2" ctype="x-c-param">%2$d</ph>.</source>
 <target>Score is <ph id="2" ctype="x-c-param">%2$d</ph> for <ph
id="1" ctype="x-c-param">%1$s</ph>.</target>
</trans-unit>

and the back converted PO file would then become:

Deleted: es

#, c-format
msgid "Hello %s, your score is %d."
msgstr "Score is %2$d for %1$s"

Take note that the the parameters in msgid are replaced with the original
parameters on back-conversion.

It is recommended to implement support for extracting parameters only if
support for parameter re-ordering is also implemented.

5.6.4. no-X-format

no-X-format (For example: no-c-format, no-php-format) flags can
be ignored as they have no functional use and are ignored by the Gettext tools.
These flags are added by developers in source code to override the automatic
insertion of x-format flags.

5.7. Domains

If multiple domains are present in a PO file, it is recommended to group each
domain in a <group> element with the restype attribute set to x-
gettext-domain and the resname attribute set to the name of the domain.
For Example:

domain "domain_1"
msgid "hello world"
msgstr "hei verden"
domain "domain_2"
msgid "hello world"
msgstr "hei verden"

should be mapped to:

<group restype="x-gettext-domain" resname="domain_1">
 <trans-unit id="1">
 <source>hello world</source>
 <target>hei verden</target>
 </trans-unit>
</group>
<group restype="x-gettext-domain" resname="domain_2">
 <trans-unit id="2">
 <source>hello world</source>
 <target>hei verden</target>
 </trans-unit>
</group>

In many cases a domain is not specified for the first translation units of a PO file
(They are said to belong to the default domain 'messages'). It is recommended to
not group these translation units, but rather have them as children of the
<body> element, only grouping domains when the domain keyword is found.
For Example:

msgid "hello world"
msgstr "hei verden"

domain "domain_2"

msgid "hello world"
msgstr "hei verden"

should be mapped to:

<trans-unit id="1">
 <source>hello world</source>
 <target>hei verden</target>
</trans-unit>
<group restype="x-gettext-domain" resname="domain_2">
 <trans-unit id="2">
 <source>hello world</source>
 <target>hei verden</target>
 </trans-unit>
</group>

A. Contributions
The following people have contributed to this document:

• Josep Condal
• Fredrik Corneliusson
• Doug Domeny
• Karl Eichwalder
• Asgeir Frimannsson
• Tim Foster
• David Fraser
• Paul Gampe
• Bruno Haible
• James M. Hogan
• Rodolfo M. Raya
• Peter Reynolds
• Yves Savourel
• Bryan Schnabel

• Tony Jewtushenko

B. Examples of converted PO files
We have provided the following two examples of PO files converted to XLIFF:

• A simple PO Template file [example.pot] converted to XLIFF
[example.xlf].

• A partially translated PO file [example_nb_NO.po] converted to XLIFF
[example_nb-NO.xlf].

References
[GNU Gettext] The GNU Gettext Manual
http://www.gnu.org/software/gettext/manual

[OASIS] Organization for the Advancement of Structured Information
Standards Web site.

[RFC 3066] RFC 3066 Tags for the Identification of Languages . IETF (Internet
Engineering Task Force), Jan 2001.

[XML 1.0] Extensible Markup Language (XML) 1.0 (Third Edition) . W3C
(World Wide Web Consortium), Feb 2004

[XLIFF 1.1] XLIFF 1.1 Specification . OASIS XLIFF Technical Committee,
October 2003.

[XLIFF 1.2] XLIFF 1.2 Specification . OASIS XLIFF Technical Committee,
May 2006.

[XLIFF Tools] The XLIFF Tools Project http://xliff-tools.freedesktop.org/

http://www.gnu.org/software/gettext/manual
http://www.oasis-open.org/
http://www.oasis-open.org/
http://www.ietf.org/rfc/rfc3066.txt
http://www.w3.org/TR/REC-xml/
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-1.2-specification.htm
http://xliff-tools.freedesktop.org/

	XLIFF 1.2 Representation Guide for Gettext PO
	Public Review Draft 02, 16 Oct 2006
	Abstract
	Status
	Notices
	Table of Contents
	Appendixes

	1. Introduction
	1.1. Purpose
	1.2 Transitional and Strict

	2. Overview of the PO file format
	2.1. PO and POT
	2.2. General Structure
	2.3. Header
	2.4. Translation Units
	2.4.1. Source and Target
	2.4.2. Translator Comments
	2.4.3. Extracted Comments
	2.4.4. References
	2.4.5. Flags
	2.4.6. Plural Forms
	2.4.7. Obsolete Translation Units

	2.5. Domains

	3. General Considerations
	3.1. PO flavours
	3.2. Source and Target Languages
	3.3. Translation Unit Ids
	3.4. Handling of Escape Sequences in Software Me�
	3.5. Character Set Conversion
	3.6. Extracting from POT files

	4. General Structure
	5. Detailed Mapping
	5.1. Header
	5.1.1. Approach 1: Leave header out
	5.1.2. Approach 2: Use a <trans-unit> element

	5.2. Translation Units
	5.2.1. Non-Plurals
	5.2.2. Plurals
	5.2.3. Obsolete Entries

	5.3. Translator Comments
	5.4. Extracted Comments
	5.5. References
	5.6. Flags
	5.6.1. fuzzy
	5.6.2. no-wrap
	5.6.3. X-format
	5.6.4. no-X-format

	5.7. Domains

	A. Contributions
	B. Examples of converted PO files
	References

