

XLIFF 1.2 Representation Guide for
HTML

Public Review Draft 02, 16 Oct 2006
This version:

http://www.oasis-open.org/committees/xliff/documents/xliff-profile-
html-1.2-pr-02-20061016.htm

Latest version:

http://www.oasis-open.org/committees/xliff/documents/xliff-profile-
html-1.2-pr-02-20061016.htm

Previous version:
<not applicable yet>

Technical Committee :
OASIS XML Localisation Interchange File Format (XLIFF) TC

Chairs:
Bryan Schnabel < bryan.s.schnabel@exgate.tek.com >
Tony Jewtushenko <tony.jewtushenko@productinnovator.com>

Editors:
Yves Savourel <ysavourel@translate.com>
Bryan Schnabel <bryan.s.schnabel@exgate.tek.com>
Tony Jewtushenko <tony.jewtushenko@productinnovator.com>
Doug Domeny <doug.domeny@ektron.com>

Abstract
This document describes how HTML (in its different flavors), should be coded
when extracted to an XLIFF document.

Notices

Field Code Changed

Field Code Changed

Deleted: Committee

Deleted: May

Deleted: cd-

Deleted: 20060516

Deleted: cd-

Deleted: 20060516

http://www.oasis-open.org/committees/xliff/documents/cd-xliff-profile-html-1.2-20060516pr-02-20061016.htm
http://www.oasis-open.org/committees/xliff/documents/cd-xliff-profile-html-1.2-20060516pr-02-20061016.htm
http://www.oasis-open.org/committees/xliff/documents/cd-xliff-profile-html-1.2-20060516pr-02-20061016.htm
http://www.oasis-open.org/committees/xliff/documents/cd-xliff-profile-html-1.2-20060516pr-02-20061016.htm
mailto:bryan.s.schnabel@exgate.tek.com
mailto:tony.jewtushenko@productinnovator.com
mailto:ysavourel@translate.com
mailto:bryan.s.schnabel@exgate.tek.com
mailto:tony.jewtushenko@productinnovator.com
mailto:doug.domeny@ektron.com

OASIS takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which any
license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on
OASIS's procedures with respect to rights in OASIS specifications can be found
at the OASIS website. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt
made to obtain a general license or permission for the use of such proprietary
rights by implementors or users of this specification, can be obtained from the
OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover
technology that may be required to implement this specification. Please address
the information to the OASIS Executive Director.

Copyright © OASIS Open 2006. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or
in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to OASIS, except as needed for the
purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be
followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by
OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS"
basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Status
This document was last revised or approved by the XLIFF TC on the above
date. The level of approval is also listed above. Check the current location noted

Deleted: 2005.

Deleted:
Abstract¶
This document describes how
HTML (in its different flavors),
should be coded when extracted to
an XLIFF document.¶

above for possible later revisions of this document. This document is updated
periodically on no particular schedule.

Technical Committee members should send comments on this specification to
the Technical Committee’s email list. Others should send comments to the
Technical Committee by using the “Send A Comment” button on the Technical
Committee’s web page at www.oasis-open.org/committees/xliff.

For information on whether any patents have been disclosed that may be
essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the Technical
Committee web page (http://www.oasis-open.org/committees/xliff/ipr.php)..

The non-normative errata page for this specification is located at www.oasis-
open.org/committees/xliff/documents/xliff-profile-html-1.2-errata.htm

Table of Contents
1. Introduction
 1.1. Purpose
 1.2. Transitional and Strict
2. General Considerations
 2.1. HTML Flavors
 2.2. Server-Side Files
 2.3. Extraction Techniques
 2.4. Including Escaped Markup
 2.5. Scope of Extraction
 2.6. Order of Extraction
 2.7. Identifiers
 2.8. Preserving Attribute Values
 2.9. Non-HTML Content
 2.10. CDATA Sections
 2.11. Multilingual Documents
 2.12. Entity References
 2.13. Numeric Character References
 2.14. Comments
 2.15. Processing Instructions
 2.16. White Spaces
3. General Structure
 3.1. Mapping HTML Elements
 3.2. Mapping HTML Attributes
4. Details by Element and Attribute
 4.1. Inline Elements
 4.2. <meta> Element
 4.3. Element

Field Code Changed

http://www.oasis-open.org/committees/xliff.
http://www.oasis-open.org/committees/xliff/ipr.php
http://www.oasis-open.org/committees/xliff/documents/xliff-profile-html-1.2-errata.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-profile-html-1.2-errata.htm

 4.4. SVG Images
 4.5. <object> and <param> Elements
 4.6. HTML Forms
 4.7. XForms Forms
 4.8. Bidirectional Markers
 4.9.
 Element
 4.10. Languages Switch
 4.11. Pre-formatted Content
 4.12. Script Content
 4.13. Style Content

Appendices

A. Contributions
B. Example of XSLT Use to Process HTML
C. Pre-Processing HTML Files
D. References

1. Introduction
As different tools may provide different filters to extract the content of HTML
documents it is important for interoperability that they represent the extracted
data in identical manner in the XLIFF document.

1.1. Purpose

The intent of this document is to provide a set of guidelines to represent HTML
data in XLIFF. It offers a collection of recommended mapping of the HTML
elements and attributes developers of XLIFF filters can implement, and users of
XLIFF utilities can rely on to insure a better interoperability between tools.

1.2 Transitional and Strict

XLIFF is specified in two "flavors". Indicate which of these variants you are
using by selecting the appropriate schema. The schema may be specified in the
XLIFF document itself or in an OASIS catalog. The namespace is the same for
both variants. Thus, if you want to validate the document, the tool used knows
which variant you are using. Each variant has its own schema that defines which
elements and attributes are allowed in certain circumstances.

As newer versions of XLIFF are approved, sometimes changes are made that
render some elements, attributes or constructs in older versions obsolete.

Obsolete items are deprecated and should not be used even though they are
allowed. The XLIFF specification details which items are deprecated and what
new constructs to use.

• Transitional - Applications that produce older versions of XLIFF may
still use deprecated items. Use this variant to validate XLIFF documents
that you read. Deprecated elements and attributes are allowed.

xsi:schemaLocation='urn:oasis:names:tc:xliff:doc
ument:1.2 xliff-core-1.2-transitional.xsd'

• Strict - All deprecated elements and attributes are not allowed. Obsolete
items from previous versions of XLIFF are deprecated and should not be
used when writing new XLIFF documents. Use this to validate XLIFF
documents that you create.

xsi:schemaLocation='urn:oasis:names:tc:xliff:doc
ument:1.2 xliff-core-1.2-strict.xsd'

2. General Considerations
This section discusses the general considerations to take in account when
extracting HTML data.

2.1. HTML Flavors

There are many flavors of HTML that are used. HTML 4.01, XHTML, etc.
There are also, probably in even greater quantity, many pages that are
considered HTML but are not valid HTML. This document tries to address all
these different flavors. Therefore, some of the examples may contain HTML
elements that have been deprecated in the latest version of HTML.

In this document the term "HTML" is used generically, to designate any of the
flavors. If the text refers to a specific flavor, it uses the more complete name for
that flavor: for example "HTML 4.01", "XHTML", "XHTML 1.0", etc.

2.2. Server-Side Files

Many HTML documents are generated dynamically, in some cases using server-
side script files which are often made of a mixture of HTML constructs and
server-side instructions written in one of the server-side languages such as PHP,
JSP, ASP, or many others.

While such source documents are generally outside of the scope of this
document, an effort is made to try to address some of the issues you may run
into when extracting such source documents.

2.3. Extraction Techniques

There are many ways to process a source HTML document and create its
corresponding XLIFF output.

2.3.1. Using XSLT

One interesting method is to make use of XML standards, such as XSLT,
XPath, or XSL-FO. Of these, XSLT is a particularly good tool for transforming
HTML to XLIFF, and XLIFF back to HTML. See the Appendix "Example of
XSLT Use to Process HTML" for a concrete example of how go back and forth
between HTML and XLIFF.

XSLT works on any well-formed XML documents. So the input HTML
document has to be a valid XHTML document or a well-formed HTML
document.

If the input file is not at that stage, it can be pre-processed first, using tools such
as Perl [Perl], HTML Tidy [HTMLTidy], or other utilities. They all can provide
a good way to streamline the pre-processing task. See the Appendix "Pre-
Processing HTML Files" for an example of how to use Perl to pre-process an
HTML document not well-formed into a well-formed XML document.

2.3.2. Using Filters

Another method to extract HTML files to XLIFF is to use custom filter
applications. Such tools can be written in a variety of programming and
scripting languages such as Perl, Python, C, C++, C#, Java, and so forth.

This document makes no assumption on the type of language used to process
the HTML input documents. It also makes no assumptions whether or not the
tool creates a Skeleton file along with the XLIFF document generated, or if it
creates one, how data are represented in the Skeleton.

2.4. Including Escaped Markup

The XLIFF specification allows for marking "beginning tags" and "ending tags"
(<bpt, <ept) in a way that the markup may be escaped and preserved. This is
generally seen as a way for non-XSLT based tools to abstract the markup.
However, XSLT does not parse escaped code efficiently. Since there are

efficient alternate ways to preserve the HTML code, it is not recommended to
use the <bpt and <ept tags.

While the following HTML could be expressed using the <bpt and <ept tags,
along with escaped HTML code:

 <i>picabo, big-air</i>,
 and <i> yard-sale</i>

like this:

 <bpt id='1-2'><i></bpt>picabo,
 big-air<ept id='1-2'></i></ept>, and
 <bpt id='1-3'><i></bpt> yard-sale<ept id='1-
3'></i></ept>

It is recommended to use the cleaner, more XSLT-friendly approach, like this:

 <g id='n1' ctype='italic'>picabo, big-air</g>,
 and <g id='n2' ctype='italic'> yard-sale</g>

Although most of the XLIFF inline tags are represented in the TMX standard,
the 'g' and 'x' tags are not. TMX is a standard to exchange Translation Memory
(TM) data created by Computer Aided Translation (CAT) and localization tools.
If you plan to store or deliver XLIFF text content using TMX, you may wish to
use the 'bpt'/'ept' approach or you'll need to represent 'g' and 'x' tags in some
alternate way in TMX.

2.5. Scope of Extraction

Representing an HTML document in XLIFF could be done in sundry ways.
Those different representations however, can be grouped in two main categories
one could simplistically label the "maximalist" and the "minimalist" approaches.

In the maximalist approach the XLIFF document tries to include as much
original information as possible. In fact, an ideal XLIFF representation in this
view is to be able to re-create the original HTML file completely from the
XLIFF document. Such approach could be useful, for example, for tools that
want to display the final HTML from the XLIFF data, using only XSL
transformations.

http://www.lisa.org/standards/tmx/

In the minimalist approach, the XLIFF document contains strictly the parts
needed for the translation, while most of the non-localizable parts are stored in
the Skeleton file.

It is recommended to use a maximalist approach as often as possible, to
insure a better interoperability between XLIFF documents generated with
different filters. This document provides a framework for both approaches.

As an example, consider the following HTML file:

<html>
 <body>
 <h1 class="title">Report</h1>
 <table border="1" width="100%">
 <tr>
 <td valign="top">Text in cell r1-c1</td>
 <td valign="top">Text in cell r1-c2</td>
 </tr>
 <tr>
 <td bgcolor="#C0C0C0">Text in cell r2-c1</td>
 <td>Text in cell r2-c2</td>
 </tr>
 </table>
 <p>All rights reserved (c) Gandalf Inc.</p>
 </body>
</html>

This file can be completely mapped to XLIFF if so desired. In the following
XLIFF document, the parts that need to have a "maximal" representation are in
blue. Those would be omitted for a "minimal" representation, as shown in the
next XLIFF output. In this latter case the parts not in the XLIFF document must
be preserved in the Skeleton file, or inferred at merge time, to re-create a
translated file with all the information in the original HTML file.

Example of a "maximalist" representation (all the original HTML data are
mapped):

<xliff xmlns='urn:oasis:names:tc:xliff:document:1.2'
 xmlns:html='http://www.w3.org/1999/xhtml'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xsi:schemaLocation='urn:oasis:names:tc:xliff:document:1.2
xliff-core-1.2-transitional.xsd'
 version='1.2'>
 <file original='sample.htm' source-language='en'
datatype='html'>
 <body>
 <group restype='x-html-html'>
 <group restype='x-html-body'>
 <trans-unit id='1' restype='x-html-h1' html:class="title">

 <source xml:lang='en'>Report</source>
 </trans-unit>
 <group restype='table' html:border="1" html:width="100%">
 <group restype='row'>
 <trans-unit id='2' restype='cell' html:valign="top">
 <source xml:lang='en'>Text in cell r1-c1</source>
 </trans-unit>
 <trans-unit id='3' restype='cell' html:valign="top">
 <source xml:lang='en'>Text in cell r1-c2</source>
 </trans-unit>
 </group>
 <group restype='row' html:bgcolor="#C0C0C0">
 <trans-unit id='4' restype='cell'>
 <source xml:lang='en'>Text in cell r2-c1</source>
 </trans-unit>
 <trans-unit id='5' restype='cell'>
 <source xml:lang='en'>Text in cell r2-c2</source>
 </trans-unit>
 </group>
 </group>
 <trans-unit id='6' restype='x-html-p'>
 <source xml:lang='en'>All rights reserved (c) Gandalf
Inc.</source>
 </trans-unit>
 </group>
 </group>
 </body>
 </file>
</xliff>

Example of a "minimalist" representation (un-mapped parts are stored in the
Skeleton file):

<xliff xmlns='urn:oasis:names:tc:xliff:document:1.2'
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance'
 xsi:schemaLocation='urn:oasis:names:tc:xliff:document:1.2
xliff-core-1.2-transitional.xsd'
 version='1.2'>
 <file original='sample.htm' source-language='en'
datatype='html'>
 <header><skl><external-file href='the_skeleton_file.skl'
/></skl></header>
 <body>
 <trans-unit id='1' restype='x-html-h1'>
 <source xml:lang='en'>Report</source>
 </trans-unit>
 <trans-unit id='2' restype='cell'>
 <source xml:lang='en'>Text in cell r1-c1</source>
 </trans-unit>
 <trans-unit id='3' restype='cell'>
 <source xml:lang='en'>Text in cell r1-c2</source>
 </trans-unit>
 <trans-unit id='4' restype='cell'>

 <source xml:lang='en'>Text in cell r2-c1</source>
 </trans-unit>
 <trans-unit id='5' restype='cell'>
 <source xml:lang='en'>Text in cell r2-c2</source>
 </trans-unit>
 <trans-unit id='6' restype='x-html-p'>
 <source xml:lang='en'>All rights reserved (c) Gandalf
Inc.</source>
 </trans-unit>
 </body>
 </file>
</xliff>

Any representation between these two extremes would be also acceptable. For
instance, one could choose to have <group> elements for the table but not for
each row.

2.6. Order of Extraction

The flow of the extracted data in the XLIFF document should be in the same
order as the flow of data in the original HTML document, regardless of any
layout placement. In other words, how the text is stored in the source document
and how it is processed (most of the time displayed) by the user agent are two
different things. The extraction order should reflect the order of the data in the
source document, and the author is responsible to group logical parts of the text
together as much as possible.

2.7. Identifiers

The identifier used for matching, leveraging, and other ID-related functions is
stored in the resname attribute. That means the ID-related attributes of an
HTML document, such name or id, when appropriate, should be stored in the
XLIFF attribute resname.

The required attribute id of the XLIFF <trans-unit> and <bin-unit>
elements is an identifier allowing extraction tools to merge back the data. Its
value is completely determined by the filter. It may or may not correspond to an
HTML identifier; it may or may not be unique within the document, but it must
be unique within the enclosing <file> element.

2.8. Preserving Attribute Values

The XLIFF standard, in some cases, provides specific placeholders for semantic
HTML attributes. In some cases it does not. A very efficient way to capture
these attributes is to make use of the extension points the XLIFF standard
provides. Consider this example:

<p>Questions will appear in Green
 face, while answers will appear in <font
color="#333399">Indigo
 face.</p>

Since XLIFF does not provide an attribute specifically for color, one way of
preserving it is by making use of the extension point for attributes, in the <g
element, like this:

<trans-unit id="c0" resname="p">
 <source>Questions will appear in <g id="c1" ctype="x-font"
xhtml:color="#339966">Green
 face</g>, while answers will appear in <g id="c2" ctype="x-
font"
 xhtml:color="#333399">Indigo face</g>.</source>
 </trans-unit>

More information about HTML attributes, pertaining to translatable vs. non
translatable attribute values, along with recommendations about declaring the
XHTML namespace, is given in the next section.

2.9. Non-HTML Content

The content of some elements and attributes may be something else than normal
HTML text. Special care needs to be used in order to map such content in
XLIFF.

2.9.1. Styles

XLIFF provides an attribute css-style that allows you carry directly any
CSS style information applied to a specific item through the use of the HTML
style attribute.

When processing for XLIFF, style content should be parsed with a filter
appropriate to CSS, and the translatable parts should be extracted.

2.9.2. Scripts

Script content can be found in different places in an HTML file: the <script>
elements and the various event-related attributes such as onclick, onfocus,
etc.

When processing for XLIFF, script content should be parsed with a filter
appropriate to the scripting language used (e.g. JavaScript, VBScript, Perl, TCL,
etc,) and the translatable parts should be extracted.

2.10. CDATA Sections

The CDATA section permits the special characters such as '&', '<', '>', etc. to be
included in the text without being escaped. This can be useful when a paragraph
contains a lot of such characters.

The use of CDATA blocks is not recommended from the localization viewpoint:

• Numeric character references (NCRs) cannot be used in CDATA
sections. This can potentially lead to the loss of data if the document is
converted from one encoding to another (and the CDATA is to be
preserved), an operation not uncommon during the localization process.

• Keeping track of CDATA markers in a translation memory segment
implies the use of inline codes that have no use beyond allowing the un-
escaped syntax, and possibly causing loss of matches.

From XML's point of view, CDATA is processed as if it were text. For
example:

<p>This is an example <![CDATA[of <sgml> markup that is not
<painful> to write with < and such]]>.</p>

is exactly the same as:

<p>This is an example of <sgml> markup that is not
<painful> to write with < and such.</p>

When extracting a CDATA section into XLIFF it is recommended to not use
the CDATA notation in the XLIFF file. For example, the following fragment
of HTML code:

<p>The characters<![CDATA['<', '&', and '>' are special]]>.</p>

should be represented as follow in XLIFF:

<source>The characters '<', '&' and '>' are
special.</source>

2.11. Multilingual Documents

There are two kinds of multilingual files:

• The ones that are written in a main language with block of content in
other languages (citation for example). Such files are meant to be
processed with all languages.

• The ones that have the same content in two or more languages and use
some kind of filtering mechanism at runtime to display the content in
one given language.

Multilingual HTML documents belong to the first category: There is a main
language and the parts in other languages belong to the same content flow.
Therefore, an XLIFF filter should extract all the text of an original HTML
document, while, if possible, keeping track of the language switches when they
occur.

The xml:lang attribute is available for that purpose. Here is an example of a
HTML paragraph with

<P>The words <Q lang="fr">Je me souviens</Q> are the motto of
Québec.</P>

This could be represented in XLIFF as:

<source xml:lang="en">The words <g ctype="x-html-Q"
xml:lang="fr" id="b1">Je me souviens</g> are the motto of
Québec.</source>

2.12. Entity References

HTML uses several types of entity references.

2.12.1. Character Entity References

As a general rule, when extracted to XLIFF, the filter should make all effort to
resolve any character entity references to their corresponding Unicode
characters. As a last resort, and only if there is no way for the filter to convert
the character entity reference, the construct should be treated as an inline code.
For example, the following original element:

<p>á=a-acute, &mychar;=W-circumflex</p>

Should be represented this way:

<source>á=a-acute, Ŵ=W-circonflex</source>

Or, at the last resort (this is not the preferred solution) unresolved character
entity references could be represented this way:

<source>á=a-acute, <ph id='1'>&mychar;</ph>=W-
circonflex</source>

2.12.2. Other Entity References

HTML documents can also contain various other entity references, which do not
represent a single character. Such entity references should be treated like
variables and must be preserved as inline codes, using the <ph> or <x/>
element.

For example, the following HTML document:

<h1>Online Help for &ProductName;</h1>

should be represented in XLIFF as:

<source>Online Help for <ph
id='1'>&ProductName;</ph>.</source>

2.13. Numeric Character References

Also known as NCR, the numeric character references are the decimal or
hexadecimal notation of characters. When extracted to XLIFF, numeric
character references should never be set as inline codes. Obviously, if the
XLIFF document is in an encoding that does not support the character, the
character can be represented as an NCR.

For example, the following paragraph:

<p>à=a-grave</p>

Should be represented as a normal character, that is as in one of the following
notations:

<source>à=a-grave</source>
<source>à=a-grave</source>
<source>à=a-grave</source>

But never as:

<source><ph id='1'><#x00e0;</ph>=a-grave</source>

Note that because XLIFF files may—for various reasons—have to be handled
by non-XML tools or non-XML editors, it is always better to use normal raw
characters than NCRs.

2.14. Comments

As a general rule from the localization viewpoint it is recommended to not have
HTML comments inside text content (for example within a <p> element). They
create potential problems for translation memory matching. Comments outside
text content are not an issue since they usually do not affect the markup of any
translatable entries.

If an XLIFF filter tool finds comments inside a run of text, the comment should
be preserved by being treated as inline code. For example, the following HTML
paragraph:

<p>The team members had colorful nicknames, like
<!-- use volume 2 here -->
<i>picabo, big-air</i>, and <i>yard-sale </i>
<!-- back to volume 1 here -->
which the media had difficulty understanding.
</p>

should be mapped to a <trans-unit> where the comments are preserved
inside a <ph> or an <x/> element. The XLIFF output would look something
like this:

<trans-unit id='1' restype='x-html-p'>
 <source xml:lang='en'>The team members had colorful nicknames,
like
 <ph id='1-1' ctype="x-html-comment"> use volume 2 here </ph>
 <g id="a" ctype='italic'>picabo, big-air</g>,
 and <g id="b" ctype='italic'> yard-sale</g>
 <ph id='1-4' ctype="x-html-comment"> back to volume 1 here
</ph>
 which the media had difficulty understanding.
 </source>
 </trans-unit>

2.15. Processing Instructions

As a general rule from the localization viewpoint it is recommended to not have
processing instruction inside text content (for example a <p> element). They
create potential problems for translation memory matching. Processing
instructions outside text content are not an issue since they do not affect the
markup of any translatable segments.

If an XLIFF filter tool finds a processing instruction inside a run of text, it must
be preserved by being treated as inline code. For example, the following HTML
paragraph:

<p>The team members had colorful nicknames, like
<?Trans-instruct use volume 2 here ?>
<i>picabo, big-air</i>, and <i>yard-sale </i>
<?Trans-instruct back to volume 1 here ?>
which the media had difficulty understanding.
</p>

should be mapped to a <trans-unit> where the processing instructions
must be preserved inside <ph> or <x/> elements. The XLIFF output would
look something like this:

<trans-unit id='1' restype='x-html-p'>
 <source xml:lang='en'>The team members had colorful nicknames,
like
 <ph id="b" ctype="x-html-pi">Trans-instruct use volume 2 here
</ph>
 <g id='1-2' ctype="italic">picabo, big-air</g>, and <g id='1-
3' ctype="italic">yard-sale </g>
 <ph id="a" ctype="x-html-pi">Trans-instruct back to volume 1
here </ph>
which the media had difficulty understanding.</source>
</trans-unit>

Note that some processing instructions may be specific to a server-side scripting
language (e.g. PHP). In this case they would need to be processed with an
appropriate filter and their translatable content handled the same way any inline
code with translatable content would be handled.

For example the following PHP instructions:

<p>Your account has
<?php if ($Quotas>100) echo "exceeded"; else echo "not
exceeded"; ?>
its allocated quotas.</p>

would be mapped to XLIFF as follow:

<trans-unit id='1' restype='x-html-p'>
 <source xml:lang='en'>Your account has
<ph id='1-1' ctype='x-html-pi'><?php if ($Quotas>100) echo
"_{exceeded}"; else echo "_{not exceeded}";
?></ph>
its allocated quotas.</source>
</trans-unit>

2.16 White Spaces

In HTML the following characters are considered white spaces:

• ASCII Space (U+0020)
• ASCII Tab (U+0009)
• Zero-width space (U+200B)
• Carriage-return (U+000D)
• Line-feed (U+000A)
• Thin space (U+2009)
• en-space (U+2002)
• em-space (U+2003)
• ideographic space (U+3000)

More information about white space characters is available at the Unicode site

When extracting to XLIFF, whitespace characters must be preserved for the
content of the <pre> and <textarea> elements.

In XHTML the content of any element for which the attribute xml:space is
set to preserve must also be extracted with the white spaces preserved.
Another way, in HTML, of indicating the white spaces should be preserved is to
use a CSS style. If possible, that information should be carried into the extracted
file as well.

3. General Structure
While there are some elements and attributes in HTML that will require unique
consideration, many can be mapped to XLIFF according to their characteristics.
Elements that are wrappers, for example that contain no text, should generally
be mapped differently than elements that contain just text. Elements that have
mixed content should generally be mapped differently than inline elements.
Attributes that contain no translatable text should be mapped differently than
attributes with text that needs to be translated.

http://www.unicode.org/

3.1. Mapping HTML Elements

In general, HTML elements can be classified in a few distinct ways:

• Wrappers with no text (like <html>, <head>, <table>, <body>,
and so on)

• Elements that can contain mixed content (like <p>, <h1>, <h2>,
, and so on)

• Elements that contain just text, and no child elements (like <title>)
• Elements specifically meant to be inline (like , <i>, <sub>,

<sup>, <a>, and so on)
• Elements that are empty, with no text, no child elements, but can contain

attributes (like <col>,
, <hr>, , and so on) some of these
elements may be also inline elements (like
 or).

Filter tools should create a new <trans-unit> element each time a new non-
inline element is found and some meaningful text (i.e. meaningful white-spaces
or non-white-space characters) was processed before. This is the only
segmentation discussed here. The segmentation of sentences is not in the scope
of this document.

3.1.1. Wrappers

Wrapper elements should generally be mapped as group elements. The value of
their restype attribute should be one of the pre-defined values. If no pre-
defined value corresponding exists, it should be the concatenation of 'x-
html-' and the name of the element (in lowercase). For example: <body>
would be mapped to <group restype='x-html-body'>.

3.1.2. Mixed Content

In some (but not all) circumstances, mixed content can go into <trans-
unit>:

<p>In Portland, Oregon one may <i>ski</i> on the mountain,
wind surf in the gorge, and <i>surf</i> in the ocean, all
on the same day.</p>

should be mapped to:

<trans-unit id='1' restype='x-html-p'>
 <source xml:lang='en'>In Portland, Oregon one may <g id='c'
ctype='italic'>ski</g> on the mountain, <g id='d'
ctype='bold'>wind surf</g> in the gorge, and <g id='e'
ctype='italic'>surf</g> in the ocean, all on the same

day.</source>
</trans-unit>

3.1.3. Simple Text

In cases where the element is the child of a wrapper element, and its contents
consist only of text, a simple <trans-unit> usually works best:

<td>silver</td>

should be mapped to:

<trans-unit id='1' restype='cell'>
 <source xml:lang='en'>silver</source>
</trans-unit>

3.1.4. Inline Elements

In most cases, inline elements are very well suited to be mapped to <g>. The
value of their ctype attribute should be a concatenation of 'x-html-' and the
name of the element (in lowercase). For example: would be mapped to <g
ctype='bold'>.

Example:

<p>In Portland, Oregon one may <i>ski</i> on the mountain,
wind surf in the gorge, and <i>surf</i> in the ocean, all
on the same day.</p>

should be mapped to:

<trans-unit id='1' restype='x-html-p'>
 <source xml:lang='en'>In Portland, Oregon one may <g id='i1'
ctype='italic'>ski</g> on the mountain, <g id='i1'
ctype='bold'>wind surf</g> in the gorge, and <g id='i1'
ctype='italic'>surf</g> in the ocean, all on the same
day.</source>
</trans-unit>

3.1.5. Empty Elements

Empty elements have no text in the element content, and therefore do not need
to be translated. In most cases they have attributes. It is important to include

references to the empty elements in the XLIFF file for purposes of preserving
them during the reconstruction of the translated document. Cases for handling
attributes that need to be translated vs. attributes that do not need translation are
documented below.

Empty elements are mapped to <x/>. For example:

<p>This is Mount Hood: </p>

should be mapped to:

<trans-unit id='1' restype='x-html-p'>
 <source xml:lang='en'>This is Mount Hood: <x id='1-1'
ctype="image" xhtml:src="mthood.jpg" /></source>
</trans-unit>

3.1.6. Introducing New Elements

Some non-valid, but well-formed HTML files make use of non HTML
elements. If a new element is introduced, the same rules that apply to HTML
elements are useful for the new element. Determine if the new element is a
wrapper, text, inline, empty, or mixed content model, and apply the rules
outlined earlier in this section.

Example:

<p>In Portland, <index primary="yes">Oregon</index> one may
<i>ski</i> on the mountain, wind surf in the gorge, and
<i>surf</i> in the ocean, all on the same day.</p>

should be mapped to:

<trans-unit id='1' restype='x-html-p'>
 <source xml:lang='en'>In Portland, <g id='i0' ctype='x-
index'>Oregon</g> one may <g id='i1' ctype='italic'>ski</g> on
the mountain, <g id='i1' ctype='bold'>wind surf</g> in the
gorge, and <g id='i2' ctype='italic'>surf</g> in the ocean, all
on the same day.</source>
</trans-unit>

3.2. Mapping HTML Attributes

There are generally two scenarios for HTML attributes:

• In most cases they are not to be translated, but must be preserved for the
reconstruction of the translated file.

• In less frequent cases, they might contain text that needs to be translated.

3.2.1. Non-translatable Attributes

Each XLIFF element recommended for mapping has points of extensibility for
attributes. This provides a very good way to preserve attributes that do not need
to be translated, but do need to be preserved for the reconstruction of the
translated document, or for other purposes (like rendering) during the translation
phase.

Since XHTML has a namespace, it is recommended that this be used. For
example it can be declared at the beginning of the XLIFF document:

<xliff xmlns="urn:oasis:names:tc:xliff:document:1.2"
 xmlns:xhtml="http://www.w3.org/1999/xhtml"
 version="1.2">
...

So the following HTML entry:

<h2 class="article-title">Life and Habitat of the Marmot</h2>

can be mapped to:

<trans-unit id='1' restype='x-html-h2' xhtml:class='article-
title'>
 <source xml:lang='en'>Life and Habitat of the Marmot</source>
</trans-unit>

You can use a namespace even if the original input HTML is not XHTML. In
this case, you may want to us your own namespace to avoid any conflict with
the real XHTML namespace.

For instance, in the following HTML entry, two attributes
bordercolorlight and bordercolordark are not part of HTML 4.01
or XHTML 1.0:

<td valign="top"
 bordercolorlight="#008000" bordercolordark="#800000">Text in
cell</td>

They can be represented using your own namespace, as follow:

<xliff xmlns="urn:oasis:names:tc:xliff:document:1.2"
 xmlns:htm="urn:myHTMLInfo"
 version="1.2">
...
 <trans-unit id='1' restype='cell' htm:valign="top"
 htm:bordercolorlight="#008000" htm:bordercolordark="#800000">
 <source xml:lang='en'>Text in cell</source>
 </trans-unit>
...
</xliff>

3.2.2. Translatable Attributes

Depending on to what type of HTML element a translatable attribute belongs to,
it can be mapped either as a separate <trans-unit> or as the content of a
<sub> element inside an XLIFF inline code.

The restype value corresponding to the extracted attribute value should be
one of the pre-defined values. In the cases where a corresponding pre-defined
value does not exist it should be the concatenation of 'x-html-', the name of
the element (in lowercase), '-', and the name of the attribute (in lowercase). For
example: <isindex prompt="Enter your search phrase: ">
would correspond to: restype='x-html-isindex-prompt'.

Note that <ph> is required instead of <g> when <sub> elements are used.

Here are some examples. The following HTML code:

<p title='Information about Mount Hood'>This is Mount Hood: <img
src="mthood.jpg" alt="Mount Hood with its snow-covered top"></p>

should appear like this:

 <trans-unit resname="x-html-p" id="a_1">
 <source xml:lang="EN">
 <ph id="a_2"><sub ctype="x-html-p-title">Information about
Mount Hood</sub>
 </ph>This is Mount Hood:
 <ph id="a_3" ctype="x-html-img" xhtml:src="mthood.jpg">
 <sub ctype="x-html-img-alt">Mount Hood with its snow-covered
top
 </sub>
 </ph>
 </source>
 </trans-unit>

3.2.3. Irregular Attributes

Some non-valid, but well-formed HTML files make use of non HTML
attributes. If a new attribute is introduced, the same rules that apply to HTML
attributes are useful for the new attribute. Determine if the new attribute is
translatable, or non-translatable, and apply the rules outlined earlier in this
section.

4. Details by Element and Attribute
The following table list all the elements used in the various flavors of HTML
and their properties.

Legend --

• Element: name of the element;
note: element names in XHTML are all lower case

• Inline: indicates if the element can be extracted as inline code;
• Empty: indicates if the element is empty;
• PCDATA: indicates if the element can contain only PCDATA;
• Mixed: indicates if the element can contain text and other elements;
• Wrapper: indicates a group;
• Status: Indicates the current status of the element;
• Type value: value to use for ctype or restype.

Element Inline
?

Empty
?

PCDATA
?

Mixed
?

Wrapper
?

Status Type Value
(ctype if
inline,
restype
otherwise)

A inline wrapper x-html-a

ABBR inline mixed x-html-
abbr

ACRONYM inline mixed x-html-
acronym

ADDRESS mixed x-html-
address

APPLET inline mixed wrapper deprecate
d

x-html-
applet

AREA empty x-html-
area

B inline mixed bold

BASE empty x-html-
base

BASEFONT empty deprecate
d

x-html-
basefont

BDO inline mixed x-html-
bdo

BGSOUND empty not 4.01 x-html-
bgsound

BIG inline mixed x-html-
big

BLOCKQUO
TE

 wrapper x-html-
blockquot
e

BLINK inline mixed not 4.01 x-html-
blink

BODY wrapper x-html-
body

BR inline empty lb

BUTTON inline mixed x-html-
button

CAPTION mixed caption

CENTER deprecate
d

x-html-
center

CITE inline mixed x-html-
cite

CODE inline mixed x-html-
code

COL empty x-html-
col

COLGROUP wrapper x-html-
colgroup

DD mixed x-html-dd

DEL inline mixed x-html-
del

DFN inline mixed x-html-
dfn

DIR wrapper deprecate
d

x-html-
dir

DIV mixed x-html-
div

DL wrapper x-html-dl

DT mixed x-html-dt

EM inline mixed x-html-em

EMBED inline not 4.01 x-html-
embed

FACE inline mixed RobotHel
p

x-html-
face

FIELDSET mixed wrapper groupbox

FONT inline mixed deprecate
d

x-html-
font

FORM wrapper dialog

FRAME empty frame

FRAMESET x-html-
frameset

H1 mixed x-html-h1

H2 mixed x-html-h2

H3 mixed x-html-h3

H4 mixed x-html-h4

H5 mixed x-html-h5

H6 mixed x-html-h6

HEAD wrapper header

HR empty x-html-hr

HTML wrapper x-html-
html

I inline mixed italic

IA not 4.01 x-html-ia

IFRAME inline mixed x-html-
iframe

IMG inline empty image

INPUT inline empty x-html-
input

INS inline mixed x-html-
ins

ISINDEX empty deprecate
d

x-html-
isindex

KBD inline mixed x-html-
kbd

LABEL inline mixed x-html-
label

LEGEND mixed x-html-
legend

LI mixed listitem

LINK empty x-html-
link

LISTING mixed not 4.01 x-html-
listing

MAP inline x-html-
map

MARQUEE mixed not 4.01 x-html-
marquee

MENU wrapper deprecate
d

menu

META empty x-html-
meta

NOBR inline empty not 4.01 x-html-
nobr

NOEMBED wrapper not 4.01 x-html-
noembed

NOFRAMES wrapper x-html-
noframes

NOSCRIPT wrapper x-html-
noscript

OBJECT inline mixed wrapper x-html-
object

OL wrapper x-html-ol

OPTGROUP wrapper x-html-
optgroup

OPTION PCDATA x-html-
option

P mixed x-html-p

PARAM inline empty x-html-
param

PLAINTEXT PCDATA obsolete x-html-
plaintext

PRE mixed x-html-
pre

Q inline mixed x-html-q

RB inline mixed ruby x-html-rb

RBC inline mixed ruby x-html-
rbc

RP inline mixed ruby x-html-rp

RT inline mixed ruby x-html-rt

RTC inline mixed ruby x-html-
rtc

RUBY inline mixed ruby x-html-
ruby

S inline mixed deprecate
d

x-html-s

SAMP inline mixed x-html-
samp

SCRIPT PCDATA x-html-
script

SELECT inline wrapper x-html-
select

SMALL inline mixed x-html-
small

SPAN inline mixed x-html-
span

SPACER inline empty not 4.01 x-html-
spacer

STRIKE inline mixed deprecate
d

x-html-
strike

STRONG inline mixed x-html-
strong

STYLE PCDATA x-html-
style

SUB inline mixed x-html-
sub

SUP inline mixed x-html-
sup

SYMBOL inline mixed RobotHel
p

x-html-
symbol

TABLE wrapper table

TBODY wrapper x-html-
tbody

TD mixed cell

TEXTAREA inline PCDATA x-html-
textarea

TFOOT wrapper footer

TH mixed x-html-th

THEAD wrapper x-html-
thead

TITLE PCDATA x-html-
title

TR wrapper row

TT inline mixed x-html-tt

U inline mixed deprecate
d

underline
d

UL wrapper x-html-ul

VAR inline mixed x-html-
var

WBR inline empty not 4.01 x-html-
wbr

XML mixed wrapper not 4.01 x-html-
xml

XMP PCDATA not 4.01 x-html-
xmp

<any other> not
inline

 possibl
y
mixed

 x-html-
<any
other>

The following table lists the attributes used in the various flavors of HTML and
their properties. If an attribute is not listed in this table, it is not translatable.

Attribute Element(s) where it is
used Type Value Notes

abbr <td> and <th> x-html-
<elem>-
abbr

accesskey <a>, <area>,
<button>, <input>,
<label>, <legend>,
and <textarea>

x-html-
<elem>-
accesskey

size-unit='char'
maxwidth='1'

alt <applet>, <area>,
, and <input>

x-html-
<elem>-alt

content <meta> x-html-
<elem>-

content
label <option> and

<optgroup>
label

prompt <isindex> x-html-
isindex-
prompt

standby <object> x-html-
<elem>-
standby

summary <table> x-html-
<elem>-
summary

title All elements except
<base>, <basefont>,
<head>, <html>,
<meta>, <param>,
<script>, and
<title>

x-html-
<elem>-
title

value <input> x-html-
<elem>-
value

value <option> NONE Not translatable
value <param> x-html-

<elem>-
value

The value attribute in a
<param> element is
translatable only in some
cases depending on what the
parameter is.

value <button> x-html-
button-
value

value NONE Not translatable

4.1. Inline Elements

Inline elements are HTML elements that should be treated as codes embedded
within a run of text, for example , , etc.

The following HTML elements should be treated as inline codes:

<a>, <abbr>, <acronym>, <applet>, , <bdo>, <big>, <blink>,

, <button>, <cite>, <code>, , <dfn>, , <embed>,
<face>, , <i>, <iframe>, , <input>, <ins>, <kbd>,
<label>, <map>, <nobr>, <object>, <param>, <q>, <rb>, <rbc>,

<rp>, <rt>, <rtc>, <ruby>, <s>, <samp>, <select>, <small>,
, <spacer>, <strike>, , <sub>, <sup>, <symbol>,
<textarea>, <tt>, <u>, <var>, and <wbr>.

4.2. <meta> Elements

The <meta> element can be used to carry many types of information. During
localization some need to remain untouched, some need to be translated.

Often, the value of the attribute value for name or http-equiv determines
whether the value of the content attribute needs translation. The following
table lists some of the more common occurrences:

Value of name Value of http-
equiv

Value of content

 keywords To extract

 content-
language

Not to extract, but the filter should modify it
if necessary

 content-type Not to extract, but the filter should modify it
if necessary

 <other value> Not to extract
generator Not to extract
author Not to extract
progid Not to extract
date Not to extract
<other
values>

 To extract

For example:

<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta http-equiv="keywords" content="localization tool,
translation tool">
<meta name="test" content="meta data for test">

The HTML fragment above should be represented as:

<trans-unit id="1" restype="x-meta-content">
 <source xml:lang="en">localization tool, translation
tool</source>
</trans-unit>
<trans-unit id="2" restype="x-meta-content">
 <source xml:lang="en">meta data for test</source>
</trans-unit>

4.3. Elements

The element is used to hold a reference to an image. The image itself is
not stored in the XLIFF document, but its metadata, and translatable text should
be. Here’s an example. The following paragraph contains an image with
attributes that describe the image source, and an alternate text. In this case, the
source should not be translated but the alternate text might (many browsers
display the alternate text on a mouse-over. A case could be made that this is
eligible for translation). Consider this example:

<p>My picture,

and there you have it.</p>

A good way to handle this is to start a new <ph> element for the
element, put the non-translatable attributes in namespace attributes, and put the
alternate text in a <sub> element, like this:

<trans-unit resname="p" id="d0e1">
<source xml:lang="EN">My picture,
<ph id="d0e3" ctype="image" xhtml:src="mthood.jpg"><sub
ctype="x-img-alt">This is a shot of Mount Hood</sub></ph>
and there you have it.</source>

This is a good approach because the XLIFF schema allows for extensible
attributes for the <ph> element.

4.4. SVG Images

Historically, images in HTML have been one of two raster formats, JPEG and
GIF. This meant that the task of localizing text within images could prove
complex. This was done:

• By modifying the source file used to produced the image (e.g. the
Photoshop file).

• By re-creating the image from scratch.

• By modifying the raster image in a raster graphic editor.

All of those solutions usually meant additional overhead and the need for
graphic artists to work on the images in addition to translators.

It is now possible to display Scalable Vector Graphics (.svg) images in browsers
via HTML. SVG files are XML documents and have editable (therefore
translatable) text. They can be used through an <object> element, or with
XHTML, directly embedded in HTML using the XML namespace mechanism.

Such SVG data could be processed with via XML standards such as XSLT. The
representation of extracted SVG in XLIFF is outside of the scope of this
document, but a short example can show how easily SVG simplify the
translation tasks.

For instance, in this SVG image (you need to have an SVG rendering engine to
see the image properly):

Note: Sometimes browser security settings prohibit SVG rendering engines to
display the SVG image. In Internet Explorer, for example, you may see a note
that says: "To help protect your security, Internet Explorer has restricted this
file from showing active content that could access your computer. Click here for
options..." Consult the browser support page for more information.

The translatable strings are represented like this one:

<text id="XMLID_1_" transform="matrix(1 0 0 1 0 32.0503)">
 <tspan x="0" y="0" fill-rule="evenodd"
clip-rule="evenodd" font-family="'TimesNewRomanPSMT'"
font-size="9.25">TDR on indicator (80E04)</tspan></text>

They are easily mapped to <trans-units> elements like this:

<trans-unit id="A001-d0e499" resname="tspan">
<source>TDR on indicator (80E04)</source>
<target state="needs-translation">TDR on indicator
(80E04)</target>
</trans-unit>

After the <target> is localized, it can be transformed back into SVG:

<text id="A001-XMLID_1_" transform="matrix(1 0 0 1 0 32.0503)">
<tspan id="A001-d0e499" x="0" y="0" fill-rule="evenodd"
clip-rule="evenodd" font-family="Arial Unicode MS"
font-size="9.25">表示器(80E04 は) のTDR</tspan></text>

http://support.microsoft.com/kb/843017

This gives you the following image (you need to have an SVG rendering engine
to see the image properly):

4.5. <object> and <param> Elements

Sometimes the value attribute needs to be translated. Sometimes it must not
be translated. This is often indicated by the content of the name attribute.
Consider this example regarding the HTML code used to generate the Index tab
of an HTMLHelp System:

 <OBJECT type="text/sitemap">
 <param name="Name" value="Product Identification">
 <param name="Local" value="ProductIdentification.htm">
 </OBJECT>

 <OBJECT type="text/sitemap">
 <param name="Name" value="Features">
 <param name="Local" value="Features.htm">
 </OBJECT>

In this example, each <param has a name attribute. In cases where the value of
name is set to "Name," the value attribute is to be translated. In cases where
the name attribute is set to "Local," the value attribute is not to be translated
(in this example because the <param element refers to an external file).

4.6. HTML Forms

An HTML form can be assimilated to a dialog box. However, there is generally
no coordinates associated with the controls. When extracted to XLIFF, each
form should be mapped to a <group> element with its restype attribute set
to dialog.

The <fieldset> element allows the HTML controls to be grouped together,
using the content of the <legend> element to store the caption for the given
group.

The <input> element can be used for different types of controls depending on
its type attribute: text, password, checkbox, radio, submit, reset,
file, hidden, image, and button. Translatable text can be found in the
alt attribute. The label corresponding to the input control is in the same flow
that contains the control.

The <button> element acts almost like the <input> element, but the
caption text is the content of the element.

The <select> element represents a scrolling list, which can be rendered as a
listbox, a drop-down menu, etc. It contains <optgroup> and <option>
elements. In XLIFF, <select> is represented by a <group>, <optgroup>
is also mapped to a <group>, and each <option> element has its
corresponding <trans-unit>.

The <textarea> element allows the user to input a block of text. A default
text can be set in the content of the element.

The element <isindex> is deprecated. XLIFF filter should treat it as inline
code. the prompt attribute of <isindex> is translatable.

The <label> element is used to associate a label with a control that does not
have an implicit label. The attribute title is translatable. The attribute
accesskey should also be localized.

Summary of the Form-related elements and attributes:

HTML Elements XLIFF Mapping
<form> <group restype='dialog'>
<fieldset> <group restype='groupbox'>
<legend> <trans-unit restype='caption'>
<input type="text"> <ph> or <x/>
<input
type="password">

<ph> or <x/>

<input
type="checkbox">

<ph> or <x/>

<input type="radio"> <ph> or <x/>
<input
type="submit">

<ph> or <x/>

<input type="reset"> <ph> or <x/>
<input type="file"> <ph> or <x/>
<input
type="hidden">

<ph> or <x/>

<input type="image"> <ph ctype='image'> or <x ctype='image'/>
<input
type="button">

<ph> or <x/>

<button> <ph> or <x/>

<select> <group restype='listbox'> or <g
ctype='x-'>

<optgroup> <group restype='heading'>
<option> <trans-unit restype='listitem'>
<textarea cols='20'
rows='2'>

<trans-unit restype='textbox'
xml:space='preserve'
 html:cols='20' html:rows='2'>

<isindex> <ph> or <x/>
<label> <trans-unit restype='label'>
HTML Attributes XLIFF Mapping
prompt <trans-unit> or <sub> or use namespaced attribute

(xhtml:prompt)
label <trans-unit> or <sub> or use namespaced attribute

(xhtml:label)
title <trans-unit> or <sub> or use namespaced attribute

(xhtml:title)
accesskey <trans-unit> or <sub> or use namespaced attribute

(xhtml:accesskey)
standby <trans-unit> or <sub> or use namespaced attribute

(xhtml:standby)

value for <option> Not translatable

value for <input
type='text'>

<trans-unit> or <sub> or use namespaced attribute
(xhtml:type)

value for <input
type='password'>

Not translatable

value for <input
type='checkbox'>

Not translatable

value for <input
type='radio'>

Not translatable

value for <input
type='submit'>

<trans-unit> or <sub> or use namespaced attribute
(xhtml:type)

value for <input
type='reset'>

<trans-unit> or <sub> or use namespaced attribute
(xhtml:type)

value for <input
type='file'>

Not translatable

value for <input
type='hidden'>

<trans-unit> or <sub> (In this case, value may or
may not be translatable, depending on the intended use of
<input>)

value for <input
type='image'>

Not translatable

value for <input
type='button'>

<trans-unit> or <sub>

size (<input>) in pixel except when type=text or password then in chars

maxlength (<input>) in pixel except when type=text or password then in chars

Here are some examples of forms and their representation in XLIFF. In the
HTML code the extractable content is underlined, and its translatable parts are
in black and bold. The translatable attributes are in blue and bold.

Example:

<form method="post">
 <fieldset>
 <legend accesskey='U'>Required Information</legend>
 <label for='gname' accesskey='G'>Given Name: </label>
 <input type='text' id='gname' name='gname' value='--given
name--'>

 <label for='fname' accesskey='F'>Family Name: </label>
 <input type='text' id='fname' name='fname' value='--family
name--'>
 </fieldset>
 <fieldset>
 <legend>Optional Information</legend>
 Job Title: <select name="prof" >
 <option selected label="Profession" value="none">--Please
select a job title--</option>
 <optgroup label="Engineering">
 <option label="1.1. Engineer"
value="it_eng">Engineer</option>
 <option label="1.2. Technician"
value="it_tech">Technician</option>
 </optgroup>
 <optgroup label="Translation">
 <option label="2.1. Translator"
value="tr_translator">Translator</option>
 <option label="2.2. Editor"
value="tr_editor">Editor</option>
 <option label="2.3. Proofer"
value="tr_proofer">Proofer</option>
 </optgroup>
 <optgroup label="Management">
 <option label="3.1. Project Manager" value="mg_pm">Project
Manager</option>
 <option label="3.2. Translation Coordinator"
value="mg_coord">Translation Coordinator</option>
 <option label="3.3. Project Assistant" value="tr_pa">Project
Assistant</option>
 </optgroup>

 </select>
 </fieldset>
 <p><input type="submit" value="Submit" name="B1"> <input
type="reset" value="Reset" name="B2"></p>
</form>

Actual rendering of the form in your browser:

 Required Information Given Name: --given name-

Family Name: --family name- Optional Information Job Title:
--Please select a job title--

Submit Reset

Corresponding XLIFF representation:

 <group resname="dialog" xhtml:method="post">
 <group resname="dialog" id=" N10003" xhtml:method="post">
 <group resname="groupbox">
 <group resname="groupbox" id=" N10005">
 <trans-unit id="caption-x-mch1-N10006" resname="caption"
xhtml:accesskey="U">
 <source>Required Information</source>
 </trans-unit>
 <trans-unit id="label-x-mch1-N10009" resname="label"
xhtml:for="gname" xhtml:accesskey="G">
 <source>Given Name: </source>
 </trans-unit>
 <group id="slllp2">
 <trans-unit id="N1000D">
 <source>
 <x id="input-x-mch2-N1000D" xhtml:type="text"
xhtml:id="gname" xhtml:name="gname" xhtml:value="--given name--
"/>
 </source>
 </trans-unit>
 </group>
 <group id="slllp2">
 <trans-unit id="N10011">
 <source>
 <x id="br-x-mch2-N10011"/>
 </source>
 </trans-unit>
 </group>
 <trans-unit id="label-x-mch1-N10012" resname="label"
xhtml:for="fname" xhtml:accesskey="F">

 <source>Family Name: </source>
 </trans-unit>
 <group id="slllp2">
 <trans-unit id="N10016">
 <source>
 <x id="input-x-mch2-N10016" xhtml:type="text"
xhtml:id="fname" xhtml:name="fname" xhtml:value="--family name--
"/>
 </source>
 </trans-unit>
 </group>
 </group>
 </group>
 <group resname="groupbox">
 <trans-unit id="groupbox-x-N1001A" resname="groupbox">
 <source>
 <g ctype="x-caption" id="caption-x-N1001B">Optional
Information</g>
 Job Title: <g ctype="x-select" id=" N1001E" xhtml:name="prof">
 <g id="option-x-mch1-N10020" ctype="x-option"
xhtml:label="Profession" xhtml:value="none">--Please select a
job title--</g>
 <g ctype="x-optgroup" id=" N10024"
xhtml:label="Engineering">
 <g id="option-x-mch1-N10026" ctype="x-option"
xhtml:label="1.1. Engineer" xhtml:value="it_eng">Engineer</g>
 <g id="option-x-mch1-N1002A" ctype="x-option"
xhtml:label="1.2. Technician"
xhtml:value="it_tech">Technician</g>
 </g>
 <g ctype="x-optgroup" id=" N1002E"
xhtml:label="Translation">
 <g id="option-x-mch1-N10030" ctype="x-option"
xhtml:label="2.1. Translator"
xhtml:value="tr_translator">Translator</g>
 <g id="option-x-mch1-N10034" ctype="x-option"
xhtml:label="2.2. Editor" xhtml:value="tr_editor">Editor</g>
 <g id="option-x-mch1-N10038" ctype="x-option"
xhtml:label="2.3. Proofer" xhtml:value="tr_proofer">Proofer</g>
 </g>
 <g ctype="x-optgroup" id=" N1003C"
xhtml:label="Management">
 <g id="option-x-mch1-N1003E" ctype="x-option"
xhtml:label="3.1. Project Manager" xhtml:value="mg_pm">Project
Manager</g>
 <g id="option-x-mch1-N10042" ctype="x-option"
xhtml:label="3.2. Translation Coordinator"
xhtml:value="mg_coord">Translation Coordinator</g>
 <g id="option-x-mch1-N10046" ctype="x-option"
xhtml:label="3.3. Project Assistant" xhtml:value="tr_pa">Project
Assistant</g>
 </g>
 </g>
 </source>
 </trans-unit>
 </group>

 <group resname="p">
 <group resname="p" id="N1004A">
 <group id="slllp2">
 <trans-unit id="N1004B">
 <source>
 <x id="input-x-mch2-N1004B" xhtml:type="submit"
xhtml:value="Submit" xhtml:name="B1"/>
 </source>
 </trans-unit>
 </group>
 <group id="slllp2">
 <trans-unit id="N1004F">
 <source>
 <x id="input-x-mch2-N1004F" xhtml:type="reset"
xhtml:value="Reset" xhtml:name="B2"/>
 </source>
 </trans-unit>
 </group>
 </group>
 </group>
 </group>
 </group>

4.7. XForms Forms

With the advent of XHTML the concept of forms has been extended and
generalized through the creation of XForms [XForms].

XForms was designed to make the coding of HTML/XHTML forms easier and
to be output independent. A well designed XForms is capable of being rendered
in VoiceXML as well as HTML, XHTML or as a valid/well formed XML
document. In addition validating constraints can be specified for input values —
something which requires extensive scripting in HTML.

The goal of XForms is to provide the 20% of necessary functionality in order to
eliminate 80% of the need for scripting. An XForms processor is needed to
render an XForms form into an instance.

XForms offers several controls:

Element HTML Equivalent Description
<input> <input type="text"> For entry of small

amounts of text
<textarea> <textarea> For entry of large

amounts of text
<secret> <input type="password"> For entry of sensitive

information

Deleted: —

<output> none For inline display of
any instance data

<range> none For smooth "volume
control" selection of a
value

<upload> <input type="file"> For upload of file or
device data

<trigger> <button> For activation of form
events

<submit> <input type="submit"> For submission of form
data

<select> <select multiple="multiple"> or
multiple <input type="checkbox">

For selection of zero,
one, or many options

<select1> <select> or multiple <input
type="radio">

For selection of just
one option among
several

The content of the following XForms elements are translatable:

• The content of the <label> element.
• The content of the <message> element.
• The content of the <help> element.
• The content of the <hint> element.
• The content of the <alert> element.

And the following items may be translatable depending on the context:

• The value of the value attribute of the <setValue> element.

Example of XForms entries:

 <xforms:select1 ref="where">
 <xforms:label>Select Ski Resort:</xforms:label>
 <xforms:item>
 <xforms:label>Park City</xforms:label>
 <xforms:value>West</xforms:value>
 </xforms:item>
 <xforms:item>
 <xforms:label>Mont Tremblant</xforms:label>
 <xforms:value>East</xforms:value>
 </xforms:item>
 </xforms:select1>
 <xforms:input ref="season">
 <xforms:label>Fall/Winter/Spring:</xforms:label>

 </xforms:input>
 <xforms:input ref="duration">
 <xforms:label>Number of Days:</xforms:label>
 </xforms:input>
 <xforms:submit submission="submit">
 <xforms:label>Submit</xforms:label>
 </xforms:submit>

Corresponding XLIFF extraction for example 1:

 <body>
 <group resname="xforms:select1" xmrk:ref="where">
 <group resname="xforms:select1" id="N10007" xmrk:ref="where">
 <trans-unit id="xforms:label-x-mch1-N10009"
resname="xforms:label">
 <source>Select Ski Resort:</source>
 </trans-unit>
 <group resname="xforms:item">
 <group resname="xforms:item" id="N1000B">
 <trans-unit id="xforms:label-x-mch1-N1000C"
resname="xforms:label">
 <source>Park City</source>
 </trans-unit>
 <trans-unit id="xforms:value-x-mch1-N1000E"
resname="xforms:value">
 <source>West</source>
 </trans-unit>
 </group>
 </group>
 <group resname="xforms:item">
 <group resname="xforms:item" id="N10010">
 <trans-unit id="xforms:label-x-mch1-N10011"
resname="xforms:label">
 <source>Mont Tremblant</source>
 </trans-unit>
 <trans-unit id="xforms:value-x-mch1-N10013"
resname="xforms:value">
 <source>East</source>
 </trans-unit>
 </group>
 </group>
 </group>
 </group>
 <group resname="xforms:input" xmrk:ref="season">
 <group resname="xforms:input" id="N10015" xmrk:ref="season">
 <trans-unit id="xforms:label-x-mch1-N10017"
resname="xforms:label">
 <source>Fall/Winter/Spring:</source>
 </trans-unit>
 </group>
 </group>
 <group resname="xforms:input" xmrk:ref="duration">
 <group resname="xforms:input" id="N10019"
xmrk:ref="duration">

 <trans-unit id="xforms:label-x-mch1-N1001B"
resname="xforms:label">
 <source>Number of Days:</source>
 </trans-unit>
 </group>
 </group>
 <group resname="xforms:submit" xmrk:submission="submit">
 <group resname="xforms:submit" id="N1001D"
xmrk:submission="submit">
 <trans-unit id="xforms:label-x-mch1-N1001F"
resname="xforms:label">
 <source>Submit</source>
 </trans-unit>
 </group>
 </group>
 </body>

4.8. Bidirectional Markers

Some languages, such as Arabic and Hebrew may require the use of
bidirectional ("bidi") markers to help user agents to display the text correctly.
Unicode defines five markers for this:

RLE Right-to-Left Embedding

LRE Left-to-Right Embedding

RLO Right-to-Left Override

LRO Left-to-Right Override

PDF Pop Display Formatting

While bidi functions can be done by using the Unicode special characters.
However, when the text is stored in a marked up document, it is strongly
recommended to use markup rather than characters.

HTML provides the <bdo> element and the dir attribute for these functions:

dir="rtl" Right-To-Left
dir="ltr" Left-To-Right
<bdo dir="rtl"> Right-to-Left Override
<bdo dir="ltr"> Left-to-Right Override

In order to carry the correct presentation information, XLIFF must provide a
way to specify these bidi marks.

For example:

<p>The title says " W ,3Cפעילות הבינאום "
in Hebrew.</p>

The HTML fragment above could be represented as follow:

<trans-unit id="1">
 <source xml:lang="en">The title says "<g ctype='phrase' id='b1'
html:dir='rtl'><bpt id="1"></bpt>text...<ept
id="1"></ept></g>" in Hebrew.</source>
</trans-unit>

4.9.
 Element

The
 element is used to mark a line break. It could be mapped to an <ph>
or <x/> element with the ctype attribute set to "lb".

For example:

<p>First line
second line</p>

The HTML fragment above could be represented as follows:

<source>First line<x id="1" ctype="lb"/>second line.</source>

Note that
 is not processed as an isolated tag (<it>, a beginning or end
tag without its ending or beginning counterpart tag). The element
 is
defined as empty (
 in XHTML).

4.10. Languages Switch

Element content can have runs of text in different languages. Each run of text
can be marked up so authoring tools can process the text accordingly, for
example, switching dictionaries when checking spelling.

For example:

<p>She added that "je ne sais quoi" that
made her casserole absolutely delicious.</p>

Corresponding XLIFF:

<source xml:lang='en'>She added that "<g id='1' ctype='x-html-
span' xml:lang='fr'>je ne sais quoi</g>" that made her casserole
absolutely delicious.</source>

4.11. Pre-formatted Content

The <pre> element must be marked with the xml:space="preserve"
attribute.

For example, the following HTML fragment:

<pre>First line
and second line</pre>

Should be represented as:

<trans-unit id="1" xml:space="preserve">
 <source xml:lang="en">First line
and second line</source>
</trans-unit>

4.12. Script Content

Script content can be found in the <script> element as well as in the
following attributes: onblur, onchange, onclick, ondblclick,
onfocus, onkeydown, onkeypress, onkeyup, onload,
onmousedown, onmousemove, onmouseout, onmouseover,
onmouseup, onreset, onselect, onsubmit, and onunload.

Such content should be processed with the relevant parser (JavaScript, PHP,
Perl, etc.) and the translatable parts extracted. It is recommended to regroup all
the strings of each <script> element in a <group>.

For example, the following HTML <script> element:

<SCRIPT type="text/javascript">
<!-- to hide script contents from old browsers
function square(i) { return i * i }
document.write("The function returned: ",square(5))
// end hiding contents from old browsers -->
</SCRIPT>

Could be represented as the following XLIFF code:

<group restype="x-html-script">
 <trans-unit id="1">
 <source xml:lang="en-US">The function returned: </source>
 <target xml:lang="fr-FR">The function returned: </target>
 </trans-unit>
</group>

4.13. Style Content

Style content can be found in the <style> element as well as in the style
attribute. Such content should be processed with the relevant parser and
translatable parts extracted.

A. Contributions
The following people have contributed to this document:

• Eiju Akahane, IBM
• Gérard Cattin des Bois, Microsoft (until Nov-21-04)
• Doug Domeny
• Paul Gampe
• Tony Jewtushenko, Product Innovator Ltd
• Milan Karásek, Moravia-IT
• Christian Lieske, SAP
• Mat Lovatt, Oracle
• Magnus Martikainen, SDL
• Enda McDonnell
• David Pooley, SDL
• John Reid, Novell
• Peter Reynolds, Idiom Technologies, Inc
• Florian Sachse
• Yves Savourel
• Reinhard Schäler, LRC
• Bryan Schnabel
• Shigemichi Yazawa
• Andrzej Zydron

B. Example of XSLT Use to Process HTML
XSLT can be used to convert an HTML document into XLIFF and back.

1. HTML source document:
ExampleXSLTUse_1_Source.htm

2. XSL Transformation template to convert the HTML document into
XLIFF:
ExampleXSLTUse_2_xhtml2xliff.xsl

3. XML language configuration file (called by the XSLT file):
tlang.xml

4. Result of the transformation: the XLIFF document before translation:
ExampleXSLTUse_3_BeforeTrans.xlf

5. XLIFF document after the translation:
ExampleXSLTUse_4_AfterTrans.xlf

6. XSL Transformation template to convert the XLIFF document back into
HTML:
ExampleXSLTUse_5_xliff2xhtml.xsl

7. Final result, the translated HTML document:
ExampleXSLTUse_6_Translated.htm

C. Pre-Processing HTML Files
Perl is a powerful cross-platform programming language that can be used to
convert an HTML document not well-formed. For example by adding quotes to
any unquoted attribute values, etc.

1. Original HTML document (invalid):
ExamplePerlUse_1_Before.htm

2. Perl script to fix up some of the issues:
ExamplePerlUse_2_PerlFixer.htm

3. Output file after being processed by the Perl script:
ExamplePerlUse_3_After.htm

D. References
[HTMLTidy]

HTML Tidy, HTML Clean-up Open source Utility
http://www.w3.org/People/Raggett/tidy/

[ITS]
W3C Internationalization Tag Set (ITS)
http://www.w3.org/International/its/

[ISO]
International Organization for Standardization Web site.

[OASIS]

http://www.w3.org/People/Raggett/tidy/
http://www.w3.org/International/its/
http://www.iso.org/

Organization for the Advancement of Structured Information Standards
Web site.

[Perl]
The Perl Programming Language
http://www.perl.org/

[RFC 3066]
RFC 3066 Tags for the Identification of Languages. IETF (Internet
Engineering Task Force), Jan 2001.

[Unicode]
Unicode Consortium Web site.

[W3CQA-bidi]
Q&A: (X)HTML and bidi formatting codes versus mark-up.

[XForms]
XForms, the Next Generation of Web Forms
http://www.w3.org/MarkUp/Forms/

http://www.oasis-open.org/
http://www.perl.org/
http://www.ietf.org/rfc/rfc3066.txt
http://www.unicode.org/
http://www.w3.org/International/questions/qa-bidi-controls.html
http://www.w3.org/MarkUp/Forms/

	XLIFF 1.2 Representation Guide for HTML
	Public Review Draft 02, 16 Oct 2006
	Abstract
	Notices
	Table of Contents
	Appendices

	1. Introduction
	1.1. Purpose
	1.2 Transitional and Strict

	2. General Considerations
	2.1. HTML Flavors
	2.2. Server-Side Files
	2.3. Extraction Techniques
	2.3.1. Using XSLT
	2.3.2. Using Filters

	2.4. Including Escaped Markup
	2.5. Scope of Extraction
	2.6. Order of Extraction
	2.7. Identifiers
	2.8. Preserving Attribute Values
	2.9. Non-HTML Content
	2.9.1. Styles
	2.9.2. Scripts

	2.10. CDATA Sections
	2.11. Multilingual Documents
	2.12. Entity References
	2.12.1. Character Entity References
	2.12.2. Other Entity References

	2.13. Numeric Character References
	2.14. Comments
	2.15. Processing Instructions
	2.16 White Spaces

	3. General Structure
	3.1. Mapping HTML Elements
	3.1.1. Wrappers
	3.1.2. Mixed Content
	3.1.3. Simple Text
	3.1.4. Inline Elements
	3.1.5. Empty Elements
	3.1.6. Introducing New Elements

	3.2. Mapping HTML Attributes
	3.2.1. Non-translatable Attributes
	3.2.2. Translatable Attributes
	3.2.3. Irregular Attributes

	4. Details by Element and Attribute
	4.1. Inline Elements
	4.2. <meta> Elements
	4.3. Elements
	4.4. SVG Images
	4.5. <object> and <param> Elements
	4.6. HTML Forms
	4.7. XForms Forms
	4.8. Bidirectional Markers
	4.9.
 Element
	4.10. Languages Switch
	4.11. Pre-formatted Content
	4.12. Script Content
	4.13. Style Content

	A. Contributions
	B. Example of XSLT Use to Process HTML
	C. Pre-Processing HTML Files
	D. References

