OASIS 13

XDI Core Version 1.0

Committee Specification Draft 01
29 October 2015

Specification URIs

This version:
http://docs.oasis-open.org/xdi/xdi-core/v1.0/csd01/xdi-core-v1.0-csd01.xml (Authoritative)
http://docs.oasis-open.org/xdi/xdi-core/v1.0/csd01/xdi-core-v1.0-csd01.pdf
http://docs.oasis-open.org/xdi/xdi-core/v1.0/csd01/xdi-core-v1.0-csd01.html

Previous version:
N/A

Latest version:
http://docs.oasis-open.org/xdi/xdi-core/v1.0/xdi-core-v1.0.xml (Authoritative)
http://docs.oasis-open.org/xdi/xdi-core/v1.0/xdi-core-v1.0.pdf
http://docs.oasis-open.org/xdi/xdi-core/v1.0/xdi-core-v1.0.html

Technical Committee:
OASIS XRI Data Interchange (XDI) TC

Chairs:
Drummond Reed (drummond@respect.network), Respect Network
Markus Sabadello (markus.sabadello@xdi.org), XDl.org

Editors:
Joseph Boyle (joseph@xdi.org), XDl.org
Drummond Reed (drummond@respect.network), Respect Network
Markus Sabadello (markus.sabadello@xdi.org), XDl.org

Additional artifacts:
This prose specification is one component of a Work Product which also includes:

» ABNF file: http://docs.oasis-open.org/xdi/xdi-core/v1.0/csd01/abnf/xdi-core-abnf-v1.0.txt
Abstract:
This is the core specification for XDI (Extensible Data Interchange). It defines the XDl semantic graph

model, ABNF, JSON serialization, and addressing rules.

Citation format:
When referencing this specification the following citation format should be used:

[XDI Core V1.0]

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 1 of 100

http://docs.oasis-open.org/xdi/xdi-core/v1.0/csd01/xdi-core-v1.0-csd01.xml
http://docs.oasis-open.org/xdi/xdi-core/v1.0/csd01/xdi-core-v1.0-csd01.pdf
http://docs.oasis-open.org/xdi/xdi-core/v1.0/csd01/xdi-core-v1.0-csd01.html
http://docs.oasis-open.org/xdi/xdi-core/v1.0/xdi-core-v1.0.xml
http://docs.oasis-open.org/xdi/xdi-core/v1.0/xdi-core-v1.0.pdf
http://docs.oasis-open.org/xdi/xdi-core/v1.0/xdi-core-v1.0.html
https://www.oasis-open.org/committees/xdi/
mailto:drummond@respect.network
mailto:drummond@respect.network
http://respect.network
mailto:markus.sabadello@xdi.org
mailto:markus.sabadello@xdi.org
http://xdi.org
mailto:joseph@xdi.org
mailto:joseph@xdi.org
http://xdi.org
mailto:drummond@respect.network
mailto:drummond@respect.network
http://respect.network
mailto:markus.sabadello@xdi.org
mailto:markus.sabadello@xdi.org
http://xdi.org
http://docs.oasis-open.org/xdi/xdi-core/v1.0/csd01/abnf/xdi-core-abnf-v1.0.txt

XDI Core Version 1.0. Edited by Joseph Boyle, Drummond Reed, and Markus Sabadello. 29 Oc-
tober 2015. OASIS Committee Specification Draft 01. http://docs.oasis-open.org/xdi/xdi-core/
v1.0/csd01/xdi-core-v1.0-csd01.html. Latest version: http://docs.oasis-open.org/xdi/xdi-core/
v1.0/xdi-core-v1.0.html.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 2 of 100

http://docs.oasis-open.org/xdi/xdi-core/v1.0/csd01/xdi-core-v1.0-csd01.html
http://docs.oasis-open.org/xdi/xdi-core/v1.0/csd01/xdi-core-v1.0-csd01.html
http://docs.oasis-open.org/xdi/xdi-core/v1.0/xdi-core-v1.0.html
http://docs.oasis-open.org/xdi/xdi-core/v1.0/xdi-core-v1.0.html

Notices

Copyright © OASIS Open 2015. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright no-
tice and this section are included on all such copies and derivative works. However, this document itself
may not be modified in any way, including by removing the copyright notice or references to OASIS, ex-
cept as needed for the purpose of developing any document or deliverable produced by an OASIS Tech-
nical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy,
must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DIS-
CLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WAR-
RANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it represent
that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to
rights in any document or deliverable produced by an OASIS Technical Committee can be found on the
OASIS website. Copies of claims of rights made available for publication and any assurances of licens-
es to be made available, or the result of an attempt made to obtain a general license or permission for the
use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS
Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any
information or list of intellectual property rights will at any time be complete, or that any claims in such list
are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should
be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and imple-
mentation and use of, specifications, while reserving the right to enforce its marks against misleading us-
es. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 3 of 100

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

Table of Contents

I 111 o T T2 4 o 7
1.1 How XDI Builds On RDF ... e e e e e e e e e eeeennnns 7

1.2 EXample XDI Graphs ...ttt 8

1.3 The XDI 1.0 SPeCIfiCatioNSccuuuiiiiiiieee e 10

R YA A o] o £ S U 11

1.5 Normative REfErENCESiiiiiei e e 11

1.6 Non-Normative REfErENCESooiiiiiiiii e e 12

2 DESIGN GOQIS ...euieieiit et et et e e e et e et aa e e enaans 14
2.1 100% Addressability of All Graph NOAESc.uuiiiiiiiiiii e 14

2.2 Heterarchical — No Central AUThOTItYoooiiiiii e 14

2.3 Contextual [dentificationo 14

2.4 Persistent 1dentification ... 15

2.5 Serialization INdEPENAENCEcoouuiiiii e 15

2.6 Portability and Location INdependence ... 15

2.7 Protocol Expression and Transport Independencecoooiiiiiiiiiiiiiiiii e 16

2.8 Authorization and Policy EXPreSSionc...iiiiiiiiiiiiii e 16

2.9 Schema and Ontology EXPreSSIONc..uiiiiiiiiiiiiii e e e e eaaans 16

B 4 (=Y 0 1] o1 16

3 The XDI Graph MOGEIo e e et e et ettt e e e eeb e e e eab e eeees 17
B Tt O 1YY T 17

K 02 N\ o T [T N o= PP 17
020t B I (= = | [T [T 17

B I @70 1 (= Bl 1 o o = 18

3.2.3 Context Types and SYMDOIScoooiiiiii e 18

3.2.4 Context Roles and Bracketsoooouuiiiiiiiiii 19

3.3 Arc Types and Statement TYPESccooiiiiiiiiii e 19

3.3.1 Literal Arcs and Literal Statements ..., 20

3.3.2 Contextual Arcs and Contextual Statementsccoooiiiiiiiii 21

3.3.3 Relational Arcs and Relational Statementsccoooiiiii 22

3.4 Visual Graph Diagramming NOtationooiiiiiiiiiii e 23

e 0 1= 26
g O = T T 26
4.1.1 Reserved ($ SYMDOI) oo 26

4.1.2 Unreserved (B SYMDOI) ... e 26

A [13 = Lo - 27
4.2.1 Personal (5 SYMDOI) ... e 28

4.2.2 Group (F SYMDOI) ...euieiee e 28

e T I o 11 T T (S 1Y/ 41 o T IS 29

4.2.4 Ordinal (@ SYMDOI) ... 30

LI N] o UL =TSP 32
I oo - T (O T TUPPPTPPN 34
0t N I 0 T T o 9 3T T o T) P 34

T2 =T = o o 34

6.3 Inner Roots and ReifiCation ... e 37

A8 7e 1= 1o o =T I U 40
LS 1= 1 T 1T 1= PSP 44
S =T F=][PP 47
9.1 The CommON Variableccoouiiiiei et e e e e e e e e e eens 47

9.2 Typed VariabIes ... et 47

9.3 Defined Vari@bIesoiiiiiiiiieeie e 48

9.4 ReSErved VariablESo.uiiiiiiiii e 49
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 4 of 100

L I\, = 2= 1YZ= L =1 o] [50

9.6 The Literal Variable ... et eas 50
O O] (T 2= F= 110] o PP 51
10.1 Equivalence RelatioNSoouiiiiiii e 51
10.1.1 Equivalent Identifierscccoouiiiiiiii e 52
10.1.2 Identity Relations ($iS)uuuiiiiiiiiiiiie e 53
10.1.3 Equivalence and Directed Graph CycClesccoiiiiiiiiiiiiiiie e, 54
10.1.4 Equivalence of Context Types and ROIESccooeviiiiiiiiiiiiii e, 55
10.1.5 Reference Relations ($ref)ooovveeiiiiiiiieee e 55
10.1.6 Rules for Processing Equivalence Relationscccoooiiiiiiiiiiiiii i, 55

10.2 InVErse REIALIONS ... e ea s 56
10.3 TYPE REIAONS () ..niiriiiiii e e e e e e e e eaas 57
10.4 Aggregation Relations ($has)ouueeiiiiiiiiiee e 58
10.5 Boolean REIALONS ... ittt 61
10.6 XDI OPEIAtIONScevniiiiiiii ettt e e e e e e et e e e et e e et e e e e e et e e et e anaaaaes 61
T0.7 NOMINAHNZAtION ... ettt e e et e e e eaa e eees 61
1 2=)L 63
1 O 0 1] =T o P 63
11.1.1 Contextual Statementsooiiiiiii e 63
11.1.2 Literal State@meNntsccoovuiiii e 63
11.1.3 Relational StatemeNntso.uiiiiiiiiii e 64
11.1.4 Relation Definition Statements ..o 64

L T o o [=TT 64
LI B] B O o] o1 1= 65
B T I (o To 00] 0] (= (£ SPP 65
11.3.2 Entity ConteXIS .ovniiii e 65
11.3.3 ALDULE CONEEXES ..vuieiiii e 65

L B T B o oY o oY USRI 66
11.4.1 XDI Names and NUMDEIS ... oo e 66
T1.4.2 XDI SCREMES ...ttt e et e e et e e et e e e e et e e e e et s 66
11.4.3 Encapsulated IRIScooiiiii e 66

11.5 Rules Inherited from JSON ...t e et eeere e aaes 67
11.6 Rules Inherited from ABNF (RFC 2234)couiiiiiiii et 68
LA =TT 4= 1o) o PP 69
12.1 XDI JSON Format Serialization RUIESuiiiiiiiiiiii e 69
12.1.1 Rules When Implied Contextual Statements are Excluded (Implied=0) 70
12.1.2 Rules When Implied Contextual Statements are Included (Implied=1) 71

12.2 Readability RUIES ... et e e e e e e e e 71
12.3 JSON Display Format RUIESoiiiiiiiii e 72
B S b e o] o[PPN 72
12.4.1 Example Where Implied Contextual Statements are Excluded (Implied=0) 72
12.4.2 Example Where Implied Contextual Statements are Included (Implied=1) 74

12.5 Special Case EXAMPIEScoiuiiiiiiiiiie e 77
12.5.1 Solitary Context NOGESccouiiiiiiiii e e 77
12.5.2 Object-Only Context NOGESociiiiiiiiiiii e 77
12.5.3 Both Solitary and Object-Only Context NOdESccviiiiiiiiiiiiiiiicieee e 78
12.5.4 NoNn-Empty INNer ROOL ..o 79
12.5.5 EMpty INNEr ROOL ... e 80

B I T o [[(=== T Pt 82
13.1 Semantic Tree ArChitECIUrei i e 82
13.1.1 REAL SEQUENCESiiieiiiiieiii ettt ettt et e e e e e e e et e e e e eaeen 82
13.1.2 Peer Roots and XDI DiSCOVEIYcouiiniiiiiieiee e 84
13.1.3 Inner Roots and XDI Reificationcoiiiiiiiiiiiii e 85

13.2 Namespace ArChItECIUIEoouii e e e eans 86
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 5 of 100

13.2.1 Mutable and Immutable Identifiers (XDl Names and XDI Numbers) 87

13.2.2 Absolute and Relative Identifierso.cooiviiiiiiiii e 88

13.2.3 Rooted and Nested [dentifiersoooeieiiiiiiiii e 89

13.2.4 Public and Private 1dentifierscooiiiiiiii e 90

13.3 InternatioNaliZation ... e 90

13.4 Normalization and COMPAISONuiiiiiiiiii e e e e e e 91
13.4.1 Upper and LOWET CaSEiiiiiiiiiieiiie ettt e e e e 91

13.4.2 Unicode Normalization FOrMS ..o 91

RS 26T 1 =T 91
13.5.1 Describing IRIS in XDI AdAreSSEScvvniiiiiiiii e 91

13.5.2 Transforming XDI Addresses into IRISccouiiiiiiiiiiiiiie e 92

L TG] IS o7 o 1= T 93
13.6.1 UUID (Universally Unique Identifier)ccoooiiiiiiiiiiii e 94

13.6.2 CID (Cryptographic Identifier)cociiiiiiiiii e 94

B V=Y 7T o 11 o RN 95
15 Appendix A: Collected ABNF ...t 96
16 Appendix B: ACKNOWIEAGMENTSoouiiiii e e e e 99
17 Appendix C: ReVISION HISIOIYiiiiiii e 100

"l would not give a fig for the simplicity this side of complexity, but | would give my life for the simplicity on
the other side of complexity." —Oliver Wendell Holmes, Jr.

"Everything should be made as simple as possible, but no simpler." —Albert Einstein

"It's turtles all the way down!" —Dr. Seuss

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 6 of 100

1 Introduction

This is the core specification for XDI (Extensible Data Interchange). It defines the XDI semantic graph model,
ABNF, JSON serialization, and addressing rules.

1.1 How XDI Builds On RDF

RDF (Resource Description Framework) [rdf-concepts] is the W3C standard for the foundation of the Se-
mantic Web. It defines a core semantic graph model based on subject-predicate-object triples for describing
data. The W3C has also defined JSON-LD [json-Id] and the W3C Linked Data Platform 1.0 [Idplatform]
as W3C Recommendations.

XDI builds on the RDF graph model, adding several key features and constraints in order to optimize it for
semantic data interchange. The most important of these are:

1.

Context. XDI makes context another dimension of the graph model—to the point where contextual
statements are the third fundamental type of XDI statement along with literal and relational statements.

Addressability. The XDI graph model does not allow RDF blank nodes. It also imposes the constraint
that the XDl identifier of every XDI contextual arc must be unique in the scope of its parent node. The
result is that every node of every XDI graph has a unique global address—and the address itself is a
semantic description of that node.

Simplified reification. The XDI graph model has a standard mechanism for reification of any XDI
statement, and reified statements are also uniquely addressable.

Immutability. Persistent identity is so important in distributed data sharing that XDl addressing includes
special syntax for immutable identifiers of XDI graph nodes.

Relativity. Identifier scope is also critical to interoperable semantics, so XDI addressing supports ex-
plicit syntax for both absolute and relative identifiers of XDI graph nodes.

Authority. Establishing a clear chain of authority and accountability for shared data is also a key re-
quirement of semantic data interchange. XDI contexts and classes enable directly modeling of re-
al-world legal relationships and responsibilities.

The result is an addressable semantic tree model that brings together the benefits of Semantic Web tech-
nology with the benefits of well-established directory tree technologies, as shown in the following diagram.

Figure 1.

Semantic Tree:

Semantic Web:

Directory Tree:

Description Logic Identity Management

Knowledge Representation Discovery, Access Control
Machine Learning Authentication, Authorization

RDF, OWL, JSON-LD

X.500, LDAF, DNS
XACML. OAuth

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 7 of 100

Additional comparisons with specific features of the RDF family of specifications will be covered throughout
this specification.

1.2 Example XDI Graphs

This is an example XDI graph shown in XDI JSON serialization format. It is a relatively simple graph showing
some typical profile data for a person (Alice). Alice’s graph also includes a reference to the peer graph for
another person (Bob).

Note

In the examples used in this specification: a) mutable XDl identifiers (XDl names) will often use the
"x-" prefix reserved for examples, and 2) immutable XDl identifiers that use XDI UUID scheme will
often use truncated placeholders in the form of ":uuid:x-" for readability.

"<$iri>": {
"&': "https://xdi.exanmple.conf=!:uuid:x-alicel"
} 1
"=l:uuid:x-alice": {
"[#friend": [
"=1:uui d: x- bob"

]

#home><#emai | >": {
"&': "alice@xanpl e.cont
}

#wor k><#emai | >": {
"&': "asmth@xanpl e.net"
}

#per sonal ><#emai | >": {
“fSreft: |
"=1:uuid: x-al i ce<#hone><#emai | >"
]
}

=l :uui d: x-al i ce#passport”: {
"<#country>": {
"&': "Canada"
}
"<#name>": {
"&': "Alice Smith"
}
"<#nump": |
"&': "1234567"
}

"(=!:uuid: x-bob)": {
"<$iri>": {
"&': "https://xdi.exanple.conl =!:uuid:x-bob/"
}

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 8 of 100

This second example adds some additional XDI statements. It also adds a simple XDI link contract—a data

sharing agreement expressed in XDI—between Alice and Bob.

"/ isref": [
"(=x-alice)",
"(=!:uuid:x-alice)"

"<S$iri>": {
"&': "https://xdi.exanple.conf=!:uuid:x-alicel"

=l:uuid:x-alice": {
"[#friend": [
"=1:uuid: x- bob",
"(=!:uuid:x-alicel/#friend)"
]l
"/ #spouse": [
"=1:uuid: x-davi d"
]l
“[<#enmi | >] <@0>": {
"&': "alice@xanpl e.cont
}l
“[<#enmi | >] <@1>": {
"&': "asmth@xanpl e.net"
}l
"<#email >": {
“fSreft: |
"=1:uuid: x-alice[<#emai |l >] <@-0>"

]

#home><#emai | >": {
“fSreft: |
"=1:uuid: x-alice[<#emil >] <@1>"

}

]
},
" <#wor k><#temai | >": {
“fSreft: |
"=1:uuid: x-alice[<#emil >] <@1>"
]
}

=l :uui d: x-al i ce#passport”: {
"<#country>": {
"&': "Canada"
}l
"<#name>": {
"&': "Alice Smth"
}l
"<#nunber >": {
"&': "1234567"

}
}

"(=!':uuid:x-alice)": {

xdi-core-v1.0-csd01
Standards Track Work Product Copyright © OASIS 2015. All rights reserved.

29 October 2015
Page 9 of 100

“[$reft: [

]
}.
"(=!l:uuid:x-alice/#friend)": {
"+ :uui d: x- or g#car d$do": {
"/ $get": [
"=1l:uui d: x-al i ce<#hone><#emai | >"

]
}
}.
"(=!:uuid:x-alicel/#friend)(+!':uuid:x-org#carddoSi f/Strue)": {
"{$fronm": {
"/ $is#riend": [
"=I:uuid: x-alice"
]
}
}.

"(=!:uuid: x-bob)": {
"<S$iri>": {
"&': "https://xdi.exanple.conl =!:uuid:x-bob/"
}

}
1.3 The XDI 1.0 Specifications

XDI Core is the first of a series of specifications that will define XDI 1.0. The following table lists the other
planned specifications.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 10 of 100

Table 1. Specifications in the XDI 1.0 Suite

Specification Description

XDI Messaging 1.0 Defines the XDI protocol as an abstract pattern for
performing XDI operations using XDl messages

XDI Bindings 1.0 Defines the concrete binding of XDI messaging to specif-
ic transport protocols, beginning with the HTTP(S) protocol

XDI Link Contracts 1.0 Defines the standard structure and vocabulary of XDl au-
thorization statements, including XDI link contracts and poli-
cy expressions, so they are portable across all XDI endpoints

XDI Discovery 1.0 Defines peer-to-peer discovery of XDl endpoint
IRI(s) given an XDI address (or a discoverable iden-
tifier that can be transformed into an XDI address)

XDl Dictionary 1.0 Defines the semantic rules for XDl dictio-
nary definitions, including a type dictionary

XDI Versioning 1.0 Defines the semantics for standardized versioning of any
XDI graph or subgraph using the $v versioning context

XDI Cryptography 1.0 Defines the standards for digitally signing
and encrypting XDl messages and graphs

XDI Security 1.0 Describes the mechanisms for implementing secu-
rity in XDI, including transport-level security, mes-
sage-level security, encryption, token formats, etc.

XDI Privacy 1.0 Describes the mechanisms for implementing privacy in XDlI,
including privacy-respecting identifiers (e.g., pseudonyms),
privacy-respecting link contracts, data usage controls, etc.

1.4 Key Words

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, REC-
OMMENDED, MAY, and OPTIONAL are to be interpreted as described in [RFC 2119].

1.5 Normative References

[XDI-Messaging-V1.0] XDI 1.0 Messaging Specification.TC work in progress. Not yet published.
[XDI-Binding-V1.0] XDI 1.0 Bindings Specification. TC work in progress. Not yet published.
[XDI-Discovery-V1.0] XDI 1.0 Discovery Specification. TC work in progress. Not yet published.
[XDI-Dictionary-V1.0] XDI 1.0 Dictionary Specification. TC work in progress. Not yet published.
[XDI-Link-Contracts-V1.0] XDI 1.0 Link Contracts Specification. TC work in progress. Not yet published.
[XDI-Security-V1.0] XDI 1.0 Security Specification. TC work in progress. Not yet published.
[XDI-Privacy-V1.0] XDI 1.0 Privacy Specification. TC work in progress. Not yet published.
[XDI-Cryptography-Vv1.0] XDI 1.0 Cryptography Specification. TC work in progress. Not yet published.

[rdf-concepts] RDF 1.1 Concepts and Abstract Syntax Richard Cyganiak, David Wood, Markus Lanthaler.
W3C Recommendation 25 February 2014 http://www.w3.0org/TR/rdf11-concepts

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 11 of 100

http://www.w3.org/TR/rdf11-concepts

[rdf-datasets] RDF 1.1: On Semantics of RDF Datasets Antoine Zimmerman. W3C Working Group Note
25 February 2014 http://www.w3.org/TR/rdf11-datasets

[rdf-schema] RDF 1.1 Schema Dan Brickley, R.V. Guha. W3C Recommendation 25 February 2014 http://
www.w3.org/TR/rdf-schema

[owl] OWL 2 Web Ontology Language Document Overview W3C Recommendation 11 December 2012
http://www.w3.org/TR/owl2-overview/

[RFC 2119] Key words for use in RFCs to Indicate Requirement Levels S. Bradner. BCP 14, RFC 2119, DOI
10.17487/RFC2119; IETF (Internet Engineering Task Force) March 1997 http://www.rfc-editor.org/
rfc/rfc2119.txt

[RFC 2234] Augmented BNF for Syntax Specifications: ABNF D. Crocker, P. Overell. RFC 2234,
DOI 10.17487/RFC2234; IETF (Internet Engineering Task Force) November 1997 http://www.rfc-
editor.org/rfc/rfc2234.txt

[RFC 3987] Internationalized Resource Identifiers (IRIs) M. Duerst, M. Suignard. RFC 3987, DOI 10.17487/
RFC3987; IETF (Internet Engineering Task Force) January 2005 http://www.rfc-editor.org/rfc/
rfc3987.txt

[RFC 4122] A Universally Unique IDentifier (UUID) URN Namespace P. Leach M. Mealling R. Salz RFC
4122, DOI 10.17487/RFC4122; IETF (Internet Engineering Task Force) July 2005 http://www.rfc-
editor.org/rfc/rfc4122.txt

[RFC 7159] The JavaScript Object Notation (JSON) Data Interchange Format T. Bray. RFC 7159, DOI
10.17487/RFC7159; IETF (Internet Engineering Task Force) March 2014 http://www.rfc-editor.org/
rfc/rfc7159.txt

[ECMA-404] The JSON Data Interchange Format S. Kawamura, M. Kawashima. IETF (Internet Engi-
neering Task Force) October 2013 http://www.ecma-international.org/publications/files/ECMA-ST/
ECMA-404.pdf

[UAX15] Unicode Normalization Forms Mark Davis, Ken Whistler. Unicode Consortium June 2015 http://
unicode.org/reports/tr15/ [http://unicode.org/reports/tr31/]

[UAX31] Unicode ldentifier and Pattern Syntax Mark Davis. Unicode Consortium June 2015 http://
unicode.org/reports/tr31/

1.6 Non-Normative References

[erm] The Entity-Relationship Model: Toward a Unified View of Data Peter Chen. ACM Transactions
on Database Systems 1(1): 9-36. doi:10.1145/320434.320440 1976 https://en.wikiversity.org/wi-
ki/1976/Chen

[uml] UML 2.5 Specifications ttp://www.omg.org/spec/UML/2.5/ [http://www.omg.org/spec/UML/2.5/] 1
March 2015

[webarch] Architecture of the World Wide Web, Volume One http://www.w3.org/TR/webarch/#id-resources
lan Jacobs, Norman Walsh. W3C Recommendation 15 December 2004

[httprangel4] HTTPRange-14 http://en.wikipedia.org/wiki/HTTPRange-14
[reification] Reification (computer science) http://en.wikipedia.org/wiki/Reification_(computer_science)

[zooko] Zooko's triangle http://en.wikipedia.org/wiki/Zooko's_triangle

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 12 of 100

http://www.w3.org/TR/rdf11-datasets
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/owl2-overview/
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2234.txt
http://www.rfc-editor.org/rfc/rfc2234.txt
http://www.rfc-editor.org/rfc/rfc3987.txt
http://www.rfc-editor.org/rfc/rfc3987.txt
http://www.rfc-editor.org/rfc/rfc4122.txt
http://www.rfc-editor.org/rfc/rfc4122.txt
http://www.rfc-editor.org/rfc/rfc7159.txt
http://www.rfc-editor.org/rfc/rfc7159.txt
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://unicode.org/reports/tr31/
http://unicode.org/reports/tr31/
http://unicode.org/reports/tr31/
http://unicode.org/reports/tr31/
https://en.wikiversity.org/wiki/1976/Chen
https://en.wikiversity.org/wiki/1976/Chen
http://www.omg.org/spec/UML/2.5/
http://www.w3.org/TR/webarch/#id-resources
http://en.wikipedia.org/wiki/HTTPRange-14
http://en.wikipedia.org/wiki/Reification_(computer_science)
http://en.wikipedia.org/wiki/Zooko's_triangle

[sovereign-identity] Sovereign Identity in the Great Silo Forest Doc Searls Weblog http:/
blogs.law.harvard.edu/doc/2013/10/14/iiw-challenge-1-sovereign-identity-in-the-great-silo-forest/

[pbd] Privacy by Design https://www.privacybydesign.ca

[[son-ld] JSON-LD 1.0: A JSON-based Serialization for Linked Data Manu Sporny, Dave Longley, Gregg
Kellogg, Markus Lanthaler, Niklas Lindstrém. W3C Recommendation 16 January 2014 http://
www.w3.org/TR/json-ld/

[[dplatform] Linked Data Platform 1.0 Steve Speicher, John Arwe, Ashok Malhotra. W3C Recommendation
26 February 2015 http://www.w3.org/TR/Idp/

[[sonpath] JSON Path http://goessner.net/articles/JsonPath/

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 13 of 100

http://blogs.law.harvard.edu/doc/2013/10/14/iiw-challenge-1-sovereign-identity-in-the-great-silo-forest/
http://blogs.law.harvard.edu/doc/2013/10/14/iiw-challenge-1-sovereign-identity-in-the-great-silo-forest/
https://www.privacybydesign.ca
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/ldp/
http://goessner.net/articles/JsonPath/

2 Design Goals

This section communicates the design goals that have guided the development of XDI.

2.1 100% Addressability of All Graph Nodes

To perform semantic data interchange with precise control over every data element, the first requirement of
the XDI TC was that every node of every XDI graph be uniquely addressable. This architecture essentially
mirrors that of the W3C in the Architecture of the World Wide Web, where it states: ""To benefit from and
increase the value of the World Wide Web, agents should provide URIs as identifiers for resources.™

This requirement is one reason the XDl TC does not use the term “XDI document” or compare XDI graphs
to documents. A document metaphor suggests a natural division between addressing of the document and
addressing of nodes inside the document. In Web URI architecture, this is reflected by the # fragment, which
represents an address local to the current resource, vs. an address outside this resource.

The XDI graph model does not have this distinction because every node of every XDI graph is equally
addressable. (Or, as members of the XDI TC have put it, “It's turtles all the way down.”)

Note that XDI addressing stops once you reach an XDl literal node—the ultimate leaf nodes of an XDI graph
which contain the literal data values. If a client needs to address within a literal data value, it must switch
from an XDl address to an address in the native addressing syntax of the literal data (e.g., a JSON path
for a JSON document, an XML path for an XML document, a fragment for an HTML document, etc.) Such
addresses are out of scope for XDI.

This requirement is perhaps the most significant difference between XDI and RDF, because unique ad-
dressability of RDF graph nodes was not part of the RDF problem domain. This is explained in more detailed
in the paper How XDI Builds on RDF cited in the Introduction.

2.2 Heterarchical — No Central Authority

A second core design goal of XDl architecture is to support heterarchy, i.e., to not assume or rely on a
central authority. This requires designing a peer-to-peer model in which any group of peers may cooperate
to create an addressing and interchange space for its community. This addressing space may make use
of existing resolvable identifiers for those peers, or it may extend those existing addresses, or it may be an
entirely new addressing space. In all cases XDI can standardize discovery of peers and peer addresses, in-
cluding both public and private discovery. This “radically P2P” architecture supports any deployment topol-
ogy, from highly centralized to highly decentralized, and imposes the fewest pre-existing policy assumptions
or restrictions on communities of XDl users.

Note: for more about this aspect of XDI, see the XDI Discovery specification. [XDI-Discovery-V1.0]

2.3 Contextual Identification

It is a mantra in digital identity that “identity is contextual”, i.e., that both the requirements for identification
and the uniqueness of identifiers is relative to the context in which identification is required. Even “global”
or “absolute” identifiers like telephone numbers, email addresses, or URIs are still relative to a particular
addressing context.

It is also a maxim in the privacy community that “privacy is contextual”’, and thus a data authority must be
able to control the data being shared and permissions being granted in any identification context.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 14 of 100

This primacy of context means that a third core XDI design goal is that it support the ability to model context
at any degree of granularity and to enable XDI authorities to control the sharing of identity and data by
context.

Again, we note that modeling of context was not a requirement of the RDF problem domain, so this has not
been an aspect of digital identity or data sharing addressed by the RDF graph model. This topic is discussed
in greater depth in the How XDI Builds on RDF paper.

2.4 Persistent Identification

A second core quality of identification is whether it is persistent (immutable) or reassignable (mutable). In
the former case, an identifier (or other means of identification) is bound to the resource being identified in
such a way that this association will not change over time—ideally forever. In the latter case, an identifier
bound to one resource at one point in time (such as an IP address assigned to one computer, or a domain
name registered to one owner) may subsequently be bound to a different resource at another point in time
(such as when an IP address is reassigned to a new computer, or when a domain name is transferred to
a new owner).

In the context of digital identity and secure data sharing, persistent identification is a requirement for one
core reason: if an XDI authority with a particular identifier has been granted a specific set of permissions,
and the XDI authority identified by that identifier changes, then those permissions now belong to (and can
be exercised by) a different authority.

Persistent identification is also important for identity and data portability (see below), because if an identifier
(or other means of identification) needs to change when the location of an XDI graph changes, the XDI
relationships described in that XDI graph will break. For these reasons, it is critical that XDl syntactically
distinguish a class of identifiers that XDI authorities can agree will be assigned once to a resource and
never be reassigned to another resource.

At the same time, it is widely acknowledged that persistent identification is a usability nightmare. The human
brain is wired to use simple, memorable natural language identifiers for our cognition and communication,
and we subconsciously adjust the mappings of those identifiers over time as we learn, grow, and evolve.
For example, the person you first think of by the name “Mary” today may be different from the person you
first thought of by that name when you were a child.

So a key design goal of XDl is to support the requirements of both persistent and reassignable forms of
identification; to provide precise means to map between them; and to make it syntactically unambiguous
which form is being used in which context.

2.5 Serialization Independence

Another goal is for the XDI graph model to be a precise logical abstract model that is independent of any
specified serialization format. For example, the XDI 1.0 specifications specify two display formats and one
JSON serialization format. In addition the XDI TC plans to specify at least one XML serialization format.
All these formats transmit 100% of the information in an XDI graph, and all must be losslessly convertible
into the others.

2.6 Portability and Location Independence

Since XDI graphs may be used to describe any data associated with any entity, including people and busi-
nesses that are constantly changing contexts, attributes, service providers, and endpoints on the network,
another design goal is for the semantics expressed in an XDI graph to be portable, i.e., location-indepen-
dent. This means an XDI graph may be moved to any location (endpoint) on a network without breaking
any of the descriptions or relations described in the graph.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 15 of 100

This design goal is particularly important for XDI graphs representing individuals, as it supports the ability
for an individual to maintain ongoing, sustainable control of his/her personal digital identity, data and rela-
tionships, independent of any particular service provider or network location.

Note: the specialized use of the XDI protocol to provide wide-area location independence is defined in the
XDI Discovery specification. [XDI-Discovery-V1.0]

2.7 Protocol Expression and Transport Independence

To make semantic data interchange as simple and extensible as possible, another design goal is to define
the XDl semantic data interchange protocol in XDl itself. This means all XDl messages are valid XDI graphs,
and all XDl data sharing operations are valid XDI graph merge operations.

This design goal also achieves transport independence, i.e., as a logical protocol for the exchange of data
between any two systems, the XDI protocol can be independent of any specific transport protocol (e.g.,
TCP/IP, HTTP(S), XMPP, SMTP, etc.), with bindings defined to such transport protocols as needed.

Note: The logical XDI protocol is defined in the XDl Messaging specification [XDI-Messaging-V1.0] and
bindings to specific transport protocols are defined in the XDI Bindings specification. [XDI-Binding-V1.0]

2.8 Authorization and Policy Expression

To meet the security and privacy requirements of XDI authorities, the XDI protocol must enable them to
precisely describe the rights pertaining to any shared data. Furthermore, in order for these rights to be
enforced uniformly by the all XDl authorities to which they are granted, and also to be portable if an XDI
graph is moved to a different location or service provider, XDI authorization must be able to be fully described
in XDl itself. This includes the ability to express any policy governing authorization as well as the ability for
such policies to reference data, variables, relations, and other statements in the relevant XDI graphs.

Note: the primary XDI data structure that fulfills this design goal is called a link contract and is defined in
the XDI Link Contracts specification. [XDI-Link-Contracts-V1.0]

2.9 Schema and Ontology Expression

A key difference between markup languages and semantic data interchange is that the latter is expressly
intended to solve the problem of interoperable data semantics, i.e., to provide the infrastructure necessary
to map semantics between widely disparate systems with the precision necessary for digital data to auto-
matically flow between them. To do that, it is a design goal of XDI to enable definition of schemas and
ontologies for XDl data in XDI.

Note: XDl schema and ontology definition is defined in the XDI Dictionary specification. [XDI-Dictio-
nary-v1.0]

2.10 Extensibility

A final design goal (and the reason for the “X” in “XDI”) is for any XDI authority to be able to extend XDI
semantics without permission from any other XDI authority. This includes the ability to establish new XDI
addressing spaces, to define new XDI dictionary vocabulary, and to create specializations of the XDI protocol
for specific types of semantic data interchange.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 16 of 100

3 The XDI Graph Model

To meet the design goals in the preceding section, the XDI TC developed the semantic graph model defined
in this and the following sections.

3.1 Overview

The XDI graph model builds on the RDF subject-predicate-object triples model [rdf-concepts]. This model
in turn builds on the Entity-Attribute-Value (EAV) data model that dates back over 40 years. Note that in
RDF, a graph node containing a data value is called a literal. So the RDF data model could also be termed
an Entity-Attribute-Literal (EAL) model.

With RDF 1.1 datasets [rdf-datasets], the model was expanded to context-subject-predicate-object quads.
The fourth component—context—represents a named RDF graph. The XDI graph model has an analogous
fourth component representing the root of an XDI graph. Thus it is called the Root-Entity-Attribute-Literal
(REAL) model.

3.2 Node Types

The figure below shows a simple UML class diagram (not an XDI graph) of the highest level node types
in the XDI REAL graph model.

Figure 2.

Node

Context Literal

Root Entity Attribute

All graph nodes are one of two fundamental types: literal nodes or context nodes.

3.2.1 Literal Nodes

As in RDF, XDI literal nodes are the terminal leaf nodes of the graph. They contain the raw data values
described by all the other metadata in the graph. XDI natively supports the six data types defined by JSON
[RFC 71591

1. Number (double-precision floating-point format in JavaScript)
2. String (double-quoted Unicode, with backslash escaping)

3. Boolean (true orfal se)
4

Array (an ordered, comma-separated sequence of values enclosed in square brackets; the values do
not need to be of the same type)

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 17 of 100

5. Object (an unordered, comma-separated collection of key:value pairs enclosed in curly braces, with
the ": ' character separating the key and the value)

6. null (empty—note that this is not the equivalent of undefined, which is when an XDl attribute has no
literal node at all)

In addition to the basic data type semantics provided by JSON, the type of a literal MAY be further described
using one or more XDI type statements (see Type Relations section).

3.2.2 Context Nodes

All non-literal nodes in the XDI graph model are called context nodes. In RDF the term “context” is only
used to describe the top level of semantic context available in the RDF 1.1 graph model, i.e., a named RDF
graph [rdf-concepts]. In addition, RDF blank nodes may be used to add a type of context to the relationship
between other nodes. However, RDF does not use the term “context” for this purpose.

In XDI the term “context” is used uniformly across all levels of the REAL model to describe all forms of
semantic context, including when:

» A graph root node provides context for another graph root node, an entity node, or an attribute node.
* An entity node provides context for another entity node or an attribute node.

* An attribute node provides context for another attribute node.

See Contextual Arcs and Contextual Statements, below.

All context nodes MUST have:

1. Exactly one context type identitied in XDl syntax by a single context symbol.

2. One or more context roles identitied in XDI syntax by zero or more pairs of context brackets.

3.2.3 Context Types and Symbols

The XDI REAL model defines six global context types in two groups:
1. Classes represent entity and attribute types.

2. Instances represent entity and attribute individuals.

The context symbols for each type are shown in the table below:

Table 2. Context Symbols

Group Con- Symbol Words With This Symbol Also Known As
text type
Classes| Reserved $ keyword, dollar word
Unreserved # hashtag, dictionary word
In- Person = equals name / number, person name/number
stances Group + plus name / number, group name / number
Thing * star name /number, thing name / number
Ordinal @ at number, order number
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 18 of 100

A definition of each context type is provided in the Entity section below.
Note that XDI syntax also uses four other single-character symbols:

Table 3. Other XDI Symbols

Symbol name | Sym- Purpose See section:
bol
Literal symbol & Identify a literal arc Literal Arcs and
Statements
Immutabil- ! Express an immutable identifier Mutable and Im-
ity symbol mutable Identifiers
Relativi- ~ Express a relative identifier Absolute and Rel-
ty symbol ative Identifiers
Triple separator / Separate subject, predicate, ob- Statement Format
ject in XDI statement formats

3.2.4 Context Roles and Brackets

The XDI REAL model defines six context roles in two groups:

1. Primary roles: every context node MUST have exactly one primary role.

2. Secondary roles: depending on the context, a context node MAY have one or more secondary roles.
The context brackets for each role are shown in the table below:

Table 4. Context Brackets

Group Context role Brackets Also Known As
Primary Root () parentheses, parens
Entity none plain, naked
Attribute < > chevrons, angle brackets
Se- Collection [] square brackets, brackets
condary Definition || pipes, vertical bars
Variable {1} braces, curly brackets

Each context role is defined in its own section below.

3.3 Arc Types and Statement Types

An RDF graph is a labeled directed graph in which every predicate represents a directed arc from a subject
node to an object node. Each RDF subject/predicate/object statement represents exactly one such arc.

The same is true of the XDI graph model, however in XDI, an arc MUST be one of three types:
1. Aliteral arc describes the relationship between a context node and a literal node.

2. Acontextual arc defines the identity, type, and role of one context node in the context of another context
node.

3. Arelational arc describes any other relationship between two context nodes.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 19 of 100

Each type of arc is expressed using a specific type of XDI statement as defined in this section.

3.3.1 Literal Arcs and Literal Statements

In the XDI REAL model, a literal node MUST be the object of exactly one literal arc expressed by exactly
one literal statement. The subject of a literal arc MUST be an XDI attribute node. An XDI attribute node
MUST have no more than one literal arc.

There are two key differences between XDl literal arcs and RDF predicates whose object is a literal node:

1. InRDF, the semantic meaning of a literal is expressed by its predicate arc. In XDlI, the semantic meaning
of a literal is expressed by the sequence of XDI attribute node(s) that precede the literal arc.

2. In RDF, a literal may have its own datatype and language attributes. In XDI, a literal node is always an
atomic leaf node. Any other semantic description of a literal node MUST be expressed using one or
more XDI type statements about the parent attribute node (see Relational Arcs and Relational State-
ments section).

Because of the first difference above, an XDl literal arc is the semantic equivalent of the r df : val ue property
in RDF [rdf-schema]. Thus in XDlI, all literal arcs MUST have the same XDI identifier: the ampersand
character & This is called the literal symbol. All XDl literal statements MUST use the literal symbol as the
predicate. Examples:

Table 5. Examples of Literal Statements

Subject Predicate Object
=exanpl e<#emai | > & "f oo@xanpl e. cont
+exanpl e<#mai n><#phone> & "+44-2222-888888"
*11234[<#event >] <@ 78><$t > & "2010-09- 20T10: 11: 122"

In XDI JSON serialization format:

{
"=exanpl e<#temai | >": {
"&": "foo@xanpl e. cont
} L
"+exanpl e<#mai n><#phone>": {
"&': "+44-2222-888888"
} L
"*11234[<#event >] <@8><$t >": {
"&': "2010- 09-20T10: 11: 127"
}
}

Because an XDI attribute node may only contain one literal node, that literal node may be uniquely ad-
dressed by appending the literal symbol & to the XDI address of the attribute node. Examples:

Table 6. Addressing a Literal Node

XDI Address of Attribute Node XDI Address of Literal Node
=exanpl e<#enai | > =exanpl e<#enai | >&
+exanpl e<#mai n><#t el > +exanpl e<#mai n><#t el >&
*1 1234[<#event >] <@-78><$t > *11234[<#tevent >] <@-78><$t >&
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 20 of 100

3.3.2 Contextual Arcs and Contextual Statements

In the RDF graph model, a blank node exists to provide context for other nodes. A blank node does not
have a URI. It can only be identified relative to the RDF graph in which it exists. [rdf-concepts]

In the XDI graph model, all context nodes can provide context for other context nodes, and all context nodes
are uniquely addressable. With the exception of the common root node, a context node MUST be the object
of exactly one contextual arc expressed by exactly one contextual statement. The subject of a contextual
statement MUST be another context node, called the parent node or supercontext. Only the common root
node has no parent. The predicate of a contextual statement MUST be empty. The object of a contextual
statement MUST be another context node, called the child node or subcontext. The object of a contextual
statement MUST have an XDI identifier that is unique in the parent context.

The result of these requirements is that XDI context nodes form a rooted directed acyclic graph, called a
semantic tree, in which every node is uniquely addressable and every node has a semantic meaning. The
absolute XDl address of a context node is the sequence of XDI identifiers for each contextual arc that must
be traversed from the common root node to the target context node.

If the common root node of an XDI graph is itself assigned a URI, all nodes in the graph become globally
addressabile in the universal URI addressing space as recommended by [webarch]. See the XDI Addressing
section for details.

Following is an example of three contextual statements (each with the empty predicate) that establish the
context for the final literal statement. In this example, =example and #car are XDl entities; <#i nt eri or >
and <#col or > are XDI attributes.

Table 7. Contextual Statements Defining A Context Path

Subject Predicate Object
=exanpl e #car
=exanpl e#car <#interior>
=exanpl e#car <#i nteri or > <#col or >
=exanpl e#car <#i nt eri or ><#col or > & “bl ack”

Below is the same set of statements in XDI JSON serialization format. Note that when serialized the empty
predicate in a contextual statement is represented by two forward slashes:

{
"=exampl e": {
N
"#car"
]
},
"=exanpl e#car": {
N
"<#interior>"
],
"<#interior>": {
N
" <#col or >"
]
},
"<#i nterior><#col or>": {
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 21 of 100

"&": "black"

}

Contextual statements are inherent in the XDI addresses of the subjects and objects of literal or relational
statements. Therefore contextual statements are not included in the JSON serialization by default and are
only added if they are explicitly requested using the i npl i ed parameter (see the Serialization section for
details). Below is the same example graph without the contextual statements:

{
"=exanpl e#car": {
"<#interior><#col or>": {
"&': "black"
}
}
}

3.3.3 Relational Arcs and Relational Statements

Any relationship between two XDI graph nodes that is not described by a literal or contextual arc is described
by a relational arc expressed by a relational statement. The predicate of a relational statement MUST be
a sequence of one or more XDI entities.

XDI relational arcs are the equivalent of RDF properties that describe the relationship between two RDF
resources. Examples:

Table 8. Examples of Relational Statements

Subject Predicate Object
=person-1 #friend =per son-2
=person-1 #friend =per son-3
=person-1 #best #fri end =per son-3
=person-1 #enpl oyer +exanpl e. conpany

[#device] *!:uuid:... #owner =person-1

In the XDI JSON serialization, a predicate expressing a relational arc is prefixed with a forward slash char-

acter:

{
"=person-1": {
"[#friend": [
"=person-2",
" =person- 3"
1,
"/ #best#friend": [
" =person- 3"

]

'#enpl oyer": [

"+exanpl e. conpany”

}

xdi-core-v1.0-csd01
Standards Track Work Product

Copyright © OASIS 2015. All rights reserved.

29 October 2015
Page 22 of 100

"[#device]*!:uuid:...": {
"[#owner": |
"=person- 1"

]
}

Relational statements may also be used to assert type or subclass relationships. See Type Relations.

3.4 Visual Graph Diagramming Notation

For consistency across implementations, the XDI Technical Committee RECOMMENDS the notation shown
in the figure below for visual diagramming of XDI graphs.

Figure 3. Visual Graph Symbols

Nodes Arcs
O Rootnode \ Contextual arc
[Entity node -
. 1 Relational arc
4 Attribute node
Literal arc
“value” Literal node >

The root node symbol (a circle) is suggestive of the parentheses () used in XDI syntax, and the attribute
node symbol (a diamond) is suggestive of the chevron brackets < >. The root node symbol is open to
represent that an XDI graph is only a container of XDI statements. The entity and attribute node symbols
are solids to represent concrete identities and properties.

For diagrams that support color, it is RECOMMENDED to use:

* Ared outlined circle for the common root node.

* A blue outlined circle for a peer root node.

» A green outlined circle for an inner root node.

Literal nodes are a direct representation of the JSON value. If the value is truncated to save space, it is
RECOMMENDED that the portion shown end in ellipses.

All contextual and relational arcs MUST be labeled. A literal arc MAY be labeled with the ampersand symbol,
but it is not recommended. For a contextual arc, the label MUST be the unique XDI identifier of the object
context node. For a relational arc, the label MUST be the predicate of the relational statement it represents.

Since there are many ways to organize an XDI graph diagram that uses this notation, the following two
forms are RECOMMENDED:

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 23 of 100

1. Freeform. In this organization, the common root appears roughly in the center of the diagram, and arcs
are arranged radiating outward from it so as to best communicate the semantic information in the graph.

Tree form. This organization mimics a typical file or directory tree layout. The common root node

appears in the upper-left-hand corner, contextual and literal arcs follow a grid, and only relational arcs

are curved.

The choice of form depends on the particular XDI graph being shown. It is RECOMMENDED that view-
ing/editing tools support both forms and enable viewers to switch between them dynamically.

This figure shows the example XDI graph from the Introduction section in free form:

Figure 4. Graph in free form

=ffcountrys

.y

"Canada®

<Ename:

. "A z#personal= <femail=
Anum= “Alice Roth’
*'.i 15ref
#passpor) 1234567 <#home= <femail- W
: =
= "alice@example.com”
| zfwork> =femail=
1 =1:uuid: Taljce %
: 4
#friend | “alice.roth@example.net
| < >
[=uuid: B
|
‘F a '+a

{=!:uuid:x-bob)

This figure shows the same graph in tree form:

xdi-core-v1.0-csd01
Standards Track Work Product

Copyright © OASIS 2015. All rights reserved.

"https: ! Sxdi.example.com/=!uuid:x-
alice/"

“A
"hittps: / /xdi.example.net/=!uuid:x-
bob/”

29 October 2015
Page 24 of 100

Figure 5. Graph in tree form

Q

<Siri=
}*r---@-} “https:/fxdi.example.com/=1:uuid: x-
alice/"

=lpuid:x-alice .

<fpersonal> <femail-
>
>® T

<fhome:= <gemail=
5 o }xw-}- “alice@example.com”

]
I

I

I

|

|
I e : 5 1.
I ik = izt > D> “alice.roth@example. net
I

|

|

]

|

1

Hpassport
>
#count
_r:f}*-----}- "Canada”
Tfrfriend ¥
| #ome o el "lice Rt

Frum

: S @D 1234567

(=l:uuid:x-bob =5iri=
}>D }"--} "https:/ /xdi.example.net/=!;uuid;x-
bab/"

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 25 of 100

4 Entities

In the XDI REAL model (and the Entity-Attribute-Value model upon which it is based), an entity is anything
(except an XDI graph itself) that can be independently identified and described, whether tangible or intan-
gible. An entity may represent a person, group/organization, physical or digital object, concept, definition,
or even a variable that may itself represent any set of these things.

From a linguistic perspective, entities are the “nouns” of XDI. However, this does not mean an entity is the
only type of node that can serve as the subject of an XDI statement. In the XDI REAL model, both a root
node (representing an entire XDI graph) and an attribute node may also serve as an XDI subject (and both
are disjoint from entities). Thus an XDI entity is not exactly the same thing as an RDF resource—the latter
may be anything with a URI (which would include XDI root and attribute nodes).

XDl entities fall into two groups: classes and instances.

4.1 Classes

A class, also known as a concept in description logic, is a set of entities that have some attribute(s) or
propert(ies) in common. The set of entities belonging to the class are its members. In XDI, the instances
of a class share the same definition.

XDl classes fall into two groups: reserved and unreserved.

4.1.1 Reserved ($ Symbol)

A reserved class is a class defined by the XDI Technical Committee to establish the universal grammar
of XDI. The goal of the XDI TC is to define the smallest set of reserved classes that produce the greatest
degree of semantic interoperability across XDI graphs.

The XDI identifier of a reserved class MUST begin with the $ context symbol. The $ context symbol by
itself represents the class of all reserved classes. Reserved class names are also known as dollar words
or keywords. Examples:

Siri
$do
$and
$or
$not
$public

A reserved class name MUST be immutable and MUST NOT use the XDI immutability symbol. A reserved
class name MUST be defined in a specification from either: 1) the OASIS XDI Technical Committee (in-
cluding this specification), 2) another OASIS Technical Committee specified by the OASIS XDI Technical
Committee, or 3) another standards body specified by the OASIS XDI Technical Committee.

4.1.2 Unreserved (# Symbol)

An unreserved class is a class defined by any XDI authority other than the OASIS XDI Technical Committee
or its specified delegate. The XDI identifier of an unreserved class MUST begin with the # context symbol.
The # context symbol by itself represents the class of all unreserved classes. Unreserved class names are
also known as tags, hashtags, or dictionary words. Examples:

#emai |
#passport
#home

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 26 of 100

#wor k
#friend
#eneny

An unreserved class name MUST be immutable and MUST NOT use the XDI immutability symbol.

In a dictionary context, unreserved class names are called dictionary words. Dictionary words MAY be
defined by any XDI authority in any XDI context. Dictionary words whose semantics are intended to be
confined to a specific set of XDI contexts SHOULD be defined in the context of the XDI authority (person
or group) responsible for those contexts. Dictionary words that are intended to be generic, i.e., to share the
same semantics in all XDI graphs, SHOULD be defined directly in the common root context. See Roots,
below.

This begs the question of authority for generic XDI dictionary words. Like the nouns in a human language,
such words represent a community consensus about shared semantics. Thus it is RECOMMENDED that
generic XDI dictionary words be specified in an XDI community dictionary cooperatively maintained by the
XDI authorities contributing to that community.

This is the model popularized (and proven to scale) by Wikipedia for human-readable concept definitions,
and also being followed by machine-readable community ontologies such as schema.org.

4.2 Instances

An instance, also known as an individual in description logic, is a member of a class. The four XDI context
symbols for instances are based on the fundamental nature of the context being identified:

Table 9. Instance Types

Instance type Symbol Personal Legal authority? Ordered
authority?
Person = Yes Yes No
Group + No Yes No
Thing * No No No
Ordinal @ No No Yes

The first three instance types are based on authority and accountability.

1. A person is the only entity instance that can be held personally accountable for actions taken using
the XDI protocol.

2. A group of people (in any form) is the only entity instance that may be held legally but not personally
accountable for actions taken using the XDI protocol.

3. Athing is an entity instance that may initiate an XDI action but cannot be held legally accountable it,
such as a physical device or a software program that cannot act “of its own accord”.

Since legal accountability plays a significant role in XDI policies and link contracts, the table below defines
terms for referring to precise subsets of these three types of entity instances:

Table 10. Terminology for Instance Types

XDI term Includes Person? Includes Group? Includes Thing?
XDI person Yes No No
XDI authority Yes Yes No

XDl actor Yes Yes Yes

xdi-core-v1.0-csd01
Standards Track Work Product

Copyright © OASIS 2015. All rights reserved.

29 October 2015
Page 27 of 100

The legal implications of each of these terms with regard to XDI link contracts and policies is further dis-
cussed in the XDI Link Contracts 1.0 specification [XDI-Link-Contracts-V1.0].

Figure 6.

Authority

Actor

The final type of instance identifiers are used to specify logical order. Since XDI graphs, like RDF graphs,
are unordered by default, a special class of instance identifiers called ordinal identifiers is needed to define
explicit ordering within an XDI context.

4.2.1 Personal (= Symbol)

The XDI identifier of a natural person is called a personal authority. A personal authority MUST begin with
the = context symbol (selected to suggest equality among peers). The = context symbol by itself represents
the class of all personal authorities. Personal authority identifiers are also known as equal names (mutable)
or equal numbers (immutable).

As explained in the XDI Addressing section, the XDI identifier for a person may be either an XDI name, an
XDI number, or an encapsulated IRl. Examples of personal XDl names:

=exanpl e
=exanpl e- nane
=exanpl e. nane

Example of a personal XDI number (in this case, using the XDI UUID scheme):

=l : uui d: 33ad7beb- 1abc- 4a26- b892- 466df 4379a51

Examples of personal encapsulated IRlIs:

=(https://exanpl e. name/)
=(mai | t o: f oo@xanpl e. com

A personal XDI identifier represents a new form of digital identity for individuals. This can be referred to
as sovereign identity because XDI’s heterarchical and contextual graph model enables an individual to in-
teract with other XDI authorities (both persons and groups) as an independent autonomous peer. [sover-
eign-identity].

4.2.2 Group (+ Symbol)

The second class of actor that may be held legally responsible for XDI interactions is a group — a set of
people whose existence is independent of any one person. The XDl identifier of any group MUST begin with

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 28 of 100

the + context symbol. The + context symbol by itself represents the class of all groups. Group identifiers
are also known as plus names (mutable) or plus numbers (immutable). Examples:

+exanpl e

+exanpl e- conmpany

+exanpl e. org

+!:uui d: f 336a645- f 5a9- 41b7- ab80- ace41a8f 69c2
+(https://exanpl e. conl)

+(mai | t o: di vi si on@xanpl e. con)

An XDI group identifier may represent any type of “legal person” that is not a natural person, including a
group, an association, sole proprietorship, partnership, corporation, or any type of governing, political, or
social body.

4.2.3 Thing (* Symbol)

Any unordered XDI instance that does not represent a person or a group represents an XDI thing. This
includes any device, sensor, or other object that when connected to a network are commonly referred to
as the Internet of Things. However it also includes any other logical “thing” such as a software program, a
database, a data structure, a concept, or a unique member of a set.

Note: an XDI thing is not the same as an owl:Thing, which is the root class of all classes in OWL [owl].

The XDI identifier of an thing MUST begin with the * context symbol. The * context symbol by itself repre-
sents the class of all things. XDI thing identifiers are also known as star names (mutable) or star numbers
(immutable).

A set of unordered instance nodes in a context MUST NOT be interpreted as having any logical order
regardless of their XDl identifiers or their document order in a serialized XDI JSON document.

By itself, an XDI thing identifier does not convey any semantics about its type. The relationship of an XDI
thing to a class of which it is an instance MAY be asserted in two ways:

1. By making the thing a member of a collection. By definition a member of a collection is an instance
of the collection class. See Collections.

2. By describing a thing instance with one or more XDI type statements. See Type Relations.

Following is an example of XDI things serving as entity instances (in thsi case identified using immutable
UUIDs):

{
"+exanpl e[#i tem *! : uui d: 33ad7beb- 1labc- 4a26- b892- 466df 4379a51": {
"<#price>": {
"&': "24,995"
}
},
"+exanpl e[#i tem *! : uui d: f 336a645- f 5a9- 41b7- ab80- ace41a8f 69c2": {
"<#price>": {
"&": "36, 995"
}
},
"+exanpl e[#i tem *!: uui d: 1c958708- d5aa- 4213- a6a9- 73dd423502b3": {
"<#price>": {
"&": "18, 495"
}
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 29 of 100

}

Following is an example of XDl things serving as attribute instances. This example also uses immutable
identifiers with the XDI UUID scheme (see XDI Schemes). Note that these instance identifiers will not change
even if the literal value changes.

{
"=exanpl e": {
"[<#emai | >] <*!: uui d: 35bcc3c0- da48- df 9b- al6b- 0002a5d557¢c4>": {
"&": "alice#exanpl e. cont
}
"[<#emai | >] <*!:uuid: fbc71e40-dad7- 47a6- a00e- 0002a5d577b5>": {
"&': "alice.roth@xanpl e. net"
}
"[<#emai | >] <*!:uui d: 62079220- da48- 21cc- aca9- 0002a5d51f e6>": {
"&": "stillalice@xanple.org"
}
}
}

4.2.4 Ordinal (@ Symbol)

In the absence of ordinal identifiers, the set of nodes in an XDI context or the document order of XDI
statements in a serialized XDl JSON document MUST NOT be interpreted as having any logical order.

Since the order of a set of subcontexts is always relative to the parent context, to express logical order within
an XDI context, the ordered subcontexts MUST use a relative ordinal identifier. A relative ordinal identifier:

1. MUST begin with the @context symbol.

2. MUST include the ~ relativity symbol.

3. MUST be a nested identifier.

See Absolute and Relative Identifiers and Rooted and Nested Identifiers.
The @ context symbol by itself represents the class of all ordered instances.

An absolute ordinal identifier (one that does not use the ~ relativity symbol) represents the concept of a
particular order position (e.g., the concept of the number “3”) and not the actual relative position in an ordered
sequence. Absolute ordinal identifiers MUST NOT be interpreted as being members of an ordered set.

By default, ordinal identifiers are non-negative integers, called order numbers. The logical order of a set of
order numbers MUST begin with the number zero if present. The document order of the ordered instances
in a serialized XDI JSON document MUST be ignored. An example of ordered entity instances (in this case
inside a collection):

{
"=exanpl e#f avori te[#car] @0": {
“fSreft: |
"=exanpl e[#car] *! : uui d: 33ad7beb- 1abc- 4a26- b892- 466df 4379a51"
]
} 1
"=exanpl e#f avorite[#car] @1": {
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 30 of 100

“[$reft: [

"=exanpl e[#car] *! : uui d: f 336a645-f 5a9- 41b7- ab80- ace41a8f 69c2"
]

},
"=exanpl e#f avori t e[#car] @2": {
“fSreft: |
"=exanpl e[#car] *! : uui d: 1c958708- d5aa- 4213- a6a9- 73dd423502b3"
]
}
}
Order numbers also apply to attribute instances as shown in this example:
{
"=exanmpl e": {
" <#tpref >[<#emai | >] <@-0>": {
"&': "alice#exanpl e. cont
}
" <#tpref >[<#emai | >] <@1>": {
"&': "alice.roth@xanpl e. net"
}
" <#tpref >[<#emui | >] <@2>": {
"&": "stillalice@xanple.org"
}
}
}

Although order numbers are the default type of ordinal identifier, they are not the only ordering algorithm.

By appending an XDI scheme, ordinal identifiers may use other ordering algorithms, such as alphabetic,
alphanumeric, or byte order. See XDI Schemes.

Note: Explicit ordering of XDI graph nodes within a context using ordinal identifiers is different than canonical
ordering of XDI statements for purposes of digital signatures. Canonical ordering is specified in the XDI
Cryptography 1.0 specification. [XDI-Cryptography-V1.0]

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 31 of 100

5 Attributes < >

In the Entity-Attribute-Value (EAV) model, an attribute is a property of an entity that does not exist indepen-
dently of the entity it describes. An attribute (and only an attribute) may have a literal value; an entity by
itself cannot have a literal value.

In the RDF subject-predicate-object graph model, an attribute of a resource node is described by a predicate
whose object is a literal node. In RDF, an attribute is not required to be unique; a resource may have multiple
predicates with the same URI describing multiple literal values for the same attribute (e.g., multiple email
addresses for a person).

In the XDI REAL model, all attributes are uniquely addressable because they are modeled as context nodes
in an attribute role. The XDl identifier of an attribute context node MUST be an entity class or entity instance
enclosed in chevron brackets < >. Examples:

=exanpl e<#emai | >

+exanpl e- conmpany<#suppor t ><#t el >
+(https://exanpl e. conl) #shi ppi ng#addr ess<#ci t y>

*1: uuid: 9ce739f 0- 7665- 11e2- bcf d- 0800200c 18f 2<#pri ce>

Any type of XDI context node in any role (root, entity, attribute, collection, definition, variable) MAY have
an attribute node. Note that attributes of a root node are attributes of that XDI graph as a whole and not
attributes of any entity within that graph.

There are three reasons to model attributes as context nodes. First, it means all XDI attributes, like all
XDI contexts, are uniquely addressable. This applies even if an entity has multiple values of the same
attribute, e.g. a person with multiple email address attributes. This can be modeled as a collection where
each instance is uniquely identified, as shown below.

{
"=exanmpl e": {
“[<#enmi | >] <*!: uui d: 35bcc3c0- da48- df 9b- al6b- 0002a5d557c4>": {
"&": "alice#exanpl e. cont
I
"[<#emmi | >] <*!: uui d: f bc71e40-da47-47a6- a00e- 0002a5d577b5>": {
"&": "alice.roth@xanpl e. net"
I
“[<#enmmi | >] <*!: uui d: 62079220- da48- 21cc- aca9- 0002a5d51f e6>": {
"&': "stillalice@xanple.org"
}
}
}

Secondly, attributes can specialize other attributes (see Specialization and Generalization section). For
example, <#hone> and <#wor k> can be used to to specialize <#emai | >.

=exanpl e<#hone><#emi | >
=exanpl e<#wor k><#emai | >

Thirdly, an attribute may itself have attributes. For example, to express the timestamp when the literal value
of an attribute was assigned, add the <$t > (timestamp) attribute. =exanpl e<#wor k><#enmai | ><$t >

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 32 of 100

"=exanmpl e": {
" <#wor k><#emai | >": {
"&': "alice.roth@xanpl e. net"
}l

" <#wor k><#emai | ><$t >": {
"&": "2010-09-20T10: 11: 122"
}

}
Standard XDI attributes like $t are defined in the XDI Dictionary specification [XDI-Dictionary-V1.0].

As defined in Literal Arcs and Literal Statements, only an attribute node may have a literal node, and it may
have exactly zero or one literal node. The semantics of the relationship between an attribute node, its literal
node, and the value of that literal node are very precise:

1. If an attribute node does not have a literal node, then the value of that attribute is undefined.

2. Ifanattribute node has a literal node, then its value is the literal JSON value of the literal node, including:
a. null fora null value.
b. "" for an empty string.

The following example in JSON illustrates these rules.

1. =exanpl e<#honme><#emai | > is undefined. Note that in this case, the attribute node must be defined
with an explicit contextual statement because no statement with the literal symbol will exist.

2. =exanpl e<#wor k><#emai | > has the literal JSON value of null.
3. =exanpl e<#st udent ><#emai | > has the literal JSON value of the empty string.

4. =exanpl e<#enpl oyed> has the literal JSON value false.

"=exampl e": {
"<#home>": {
N |
"<#emai | >"
]
}

" <#wor k><#emai | >": {
"&": null

}1

"<#student ><#emai | >": {
g mw

?.

#enmpl oyed>": {
"&': false

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 33 of 100

6 Roots ()

After entities and attributes, the third primary role for a context node in the XDI REAL model is to represent
the root of an XDI graph. While there is exactly one ultimate root node for all XDI graphs—the common
root node—the heterarchical design of XDI means that it also has two other types of root nodes: peer roots
and inner roots.

6.1 The Common Root

Every XDI graph MUST have exactly one common root node. It is so named because it the one logical node
shared by all XDI graphs. To use the analogy of trees in a forest, if every tree represents an XDI graph,
the common root node is the earth.

The XDI address of the common root node is the empty address. Thus any XDI statement that does not
begin with a peer root address or an inner root address is by definition relative to the common root node.
The set of all XDI context nodes that are relative only to the common root node and not to a peer root node
is called the common graph.

The common root node MUST NOT be the object of a direct contextual statement. It MAY be the object of
an inverse contextual statement. See Inverse Relations.

The common root node of any XDI graph MAY describe the location of its own XDI endpoint using the <
$i ri > attribute as defined in the XDI Discovery specification [XDI-Discovery-V1.0]. Note that all attributes
of a root node are attributes of an XDI graph as a whole and not attributes of any entity within that graph.

6.2 Peer Roots

A peer root node is a context node in one XDI graph that represents the common root node of another
independent XDI graph. This concept is fundamental to XDl architecture—peer root nodes are how the XDI
graph model is able to represent peer-to-peer relationships between independent XDI graphs where each
graph is its own rooted tree. A node that serves as a peer root node in one XDI graph MUST serve as the
common root node of its own XDI graph.

Peer root nodes may be nested to any depth within a single XDI graph. The set of contextual arcs describing
these peer root nodes forms a hierarchical rooted tree. However each peer root node can be envisioned
as a point on a global circle representing the logical common root node of all XDI graphs. Pick any specific
starting point on this circle, and the references to the other starting points (peer roots) may be arranged
hierarchically. However if you move to a different starting point, you will discover a different hierarchy. Each
hierarchy represents the set of XDI peer root nodes known to a particular peer.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 34 of 100

Peer Root Nodes

common root node

peer root

n-:-d/e
/

xdi-core-v1.0-csd01
Standards Track Work Product

common graph

[peer graph ,-"

Copyright © OASIS 2015. All rights reserved.

29 October 2015
Page 35 of 100

The graph contained by a peer root node is called a peer graph. A peer graph MUST be a subset of the
independent XDI graph which the peer root node represents. Every peer graph is a subset of the logical
XDI common graph. Thus the XDI statements in every peer graph MUST be logically consistent. (The same
is not true for Inner Graphs, below).

The XDI identifier of a peer root node MUST be enclosed in parentheses () and MUST NOT be preceded
by an XDI context symbol. The identifier contained within the parentheses MUST be either an XDI entity
identifier or an absolute URI. Examples:

(=exanpl e)

(+exanpl e- conpany)

(*!: uuid:9ce739f 0- 7665- 11e2- bcf d- 0800200c 18f 2)
(https://exanple.con)

Like other context nodes, peer root nodes may be nested to any depth. This enables XDI authorities to
create different XDI graphs at different XDI endpoints for different purposes and link them for the purpose
of discovery. Examples:

(=exanpl e) (#househol d)
(+exanpl e- company) (#l egal) (#nexi co)

In keeping with the XDI REAL model, peer root and inner root nodes MUST precede entity or attribute nodes
in the context tree. Like the common root node, a peer root node MAY use the <$i r i > attribute to describe
the network location of its XDI endpoint. Using the XDI protocol to discover the IRI for XDI peer root nodes is
defined in the XDI Discovery specification [XDI-Discovery-V1.0]. Following is an example XDI graph from
which the IRI of two peer roots can be discovered:

{
"(=exanple)": {
"<#iri>": {
"&': "https://xdi.exanple.conm"”
}
}
" (=exanpl e) (#househol d) ": {
"<#iri>": {
"&': "https://xdi.exanpl e.con househol d/ "
}
}
}

The common root node of an XDI graph may also describe its own XDI address using a direct or inverse
XDI equivalence statement to a peer root node (see Equivalence Relations). This is called the graph self-
description pattern and illustrated in the two example statements below.

1. Direct equivalence statement: the peer root is the subject and the common root is the object; the address
of the common root is the empty string.

2. Inverse equivalence statement: the common root is the subject and the peer root is the object; the
common root is represented by the outermost JSON object enclosing the entire JSON document.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 36 of 100

"(=example)": {
"l$reft |

]

}

"/ $isSref": |
"(=exanple)"

}

Note: in the XDI Messaging specification, the term “peer” is used for an XDI agent or endpoint that sends
and receives XDl messages between XDI graphs.

6.3 Inner Roots and Reification

The third type of root node plays a special role in XDI architecture. An inner root node represents the root
of an XDI graph that is itself the object of an XDI relational statement. The graph contained by an inner
root node is called an inner graph.

The XDl identifier of an inner root node MUST be enclosed in parentheses () and MUST NOT be preceded
by an XDI context symbol. The identifier contained within the parentheses MUST include the subject and
predicate of the XDI relational statement whose object is the root node of the inner graph. The subject
comes first and is separated from the predicate by a forward slash:

(=exanpl e/ #nomni nat ed)
(+exanpl e- conpany/ #hi r ed)
(*!: wuuid: 9ce739f 0- 7665- 11e2- bcf d- 0800200c 18f 2/ #buyer)

In RDF terms, each context node in an inner graph represents a reification of an XDl statement. [reification]
The subject and predicate of the reified statement are expressed by the XDl identifier of the inner root node.
The object of the statement is a context node below the inner graph. Examples:

Table 11. Reifying XDI Statements with Inner Roots

XDI Statement XDI Address of Reified Statement
=al #b/ =c (=al #b) =c
=al i ce/ #buddy/ =charli e (=al i cel/ #buddy) =charli e

As in RDF, once a statement has been reified, it is now a new XDl statement that can serve as subject for
other statements that describe the reified statement. This inner graph pattern is very common in XDI graphs
since reification can be used to describe any relationship between two entities. Examples:

(=al #b) =c/ #d/ =e

(=al i ce/ #buddy) =char | i e/ #denti st/ =edith

(=exanpl e/ #hi r ed) =abc/ #enpl oyer / +exanpl e- conpany
(+exanpl e- company/ +acqui r ed) +ot her - co<$year >/ & " 2014"

The inner graph pattern is fundamental to the structure of link contracts, the primary control structure in the
XDI protocol. Link contracts are defined in the XDI Link Contracts specification [XDI-Link-Contracts-V1.0].

An inner root node or a context node within it can also serve as the object of an XDI statement:

=al #b/ (=c/ #d) =e

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 37 of 100

=al i ce/ #buddy/ (=char | i e/ #denti st) =edith

Like other context nodes, peer root nodes MAY be nested to any depth. This enables “statements about
statements about statements”. Examples:

(=al #b) (=c/ #d) =e/ #f | =g
(=al i ce/ #buddy) (=charl i e/ #denti st) =edi t h/ #f ri end/ =gr eg

In the JSON serialization, when a sequence of peer roots and/or inner roots serves as an XDI subject, they
are serialized as first level nested JSON objects. See Serialization.

{
"(=al i ce/ #buddy)": {

"=charlie": {
"[#dentist": |
"=edith"
]
}
}
"(=exanpl e/ #hired)": {
"=abc": {
"[#enpl oyer": |
"+exanpl e- conpany”
]
}

+exanpl e- conpany/ +acquired)": {
"+ot her-co": {
"<$year>": {
"&': "2014"

}

}
}
}

"=alice": {
"/ #buddy": [
"(=charli e/ #dentist)=edith"

]
}

There is an important distinction between peer graphs and inner graphs. Peer graphs are independent
graphs that each contain a subset of the logical XDI common graph. By contrast, an inner graph can only
be understood in the context of the unique XDI subject/predicate relationship that defines it. Therefore XDI
statements in inner graphs are not required to be logically consistent with statements in the logical XDl
common graph. XDI statements contained by an inner graph are relative to its specific inner root node and
can only be merged with another XDI graph by also merging the containing inner root node.

Therefore inner graphs are part of the XDI common graph and can be visualized as wholly contained “graphs
within graphs”.

Because peer graphs are all subsets of the logical XDI common graph, peer graphs may also contain inner
graphs.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 38 of 100

Inner Root Nodes

common root node

\ inner root node

X
AN
|. inner graph ". ‘-l_

/)

peer root \
node %\
P
4

"'.\ {inner graph | /
/
Nep, oty /

e — _-.,-l-"’

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 39 of 100

7 Collections []

In the XDI REAL model, a context node whose role is to define a set of other context nodes of the same type
is called a collection. The XDI identifier of an collection node MUST be enclosed with square brackets [].

A collection is either an entity collection or an attribute collection. In either case the XDI identifier of the
collection node MUST be a class (i.e must start with the $ or # context symbol), called the collection class.

The set of context nodes that belong to the collection are called its members. To be a member of a collection,
a context node MUST be: a) a child subcontext of the collection node, and b) a valid instance of the collection
class.

A collection MAY be any class in a primary role, e.g., a root collection, an entity collection, or an attribute
collection. Member instances of a collection MUST be of the same type as the collection, e.g., members of
a [#passport] entity collection must represent instances of a passport, and members of a [<#col or >]

attribute collection must represent instances of a color.

A collection MAY contain other child nodes, however any child node that is not an ordered or unordered
instance of the collection class is hot a member of the collection, but a descriptor of the collection. The
following example shows a collection of email address attributes with three thing instances as members,
plus a timestamp attribute not a member of the collection but that describes the collection.

{
"=exanmpl e": {
"[<#emmi | >] <*! : uui d: 35bcc3c0- da48- df 9b- al6b- 0002a5d557c4>": {
"&': "alice@xanple.cont
} y
"[<#emmi | >] <*!: uui d: f bc71e40- da47- 47a6- a00e- 0002a5d577b5>": {
"&": "alice.roth@xanpl e. net"
} y
"[<#emmi | >] <*!: uui d: 62079220- da48- 21cc- aca9- 0002a5d51f e6>": {
"&": "stillalice@xanple.org"
} y
"[<#emmi | >] <$t>": {
"&': "2010-09-20T10: 11: 127"
}
}
}

A collection may also consist of ordered member instances, for example to indicate the priority or preference
of those instances. Here is the same example showing ordered member instances:

{
"=exampl e": {
"[<#emui | >] <@>": {
"&': "alice@xanpl e.cont

} 1
"[<#emui | >] <@>": {
"&': "alice.roth@xanpl e. net"
} 1
"[<#emui | >] <@>": {
"&': "stillalice@xanple.org"
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 40 of 100

}

<#emai | >] <$t >": {
"&": "2010-09-20T10: 11: 122"

}

Note that in this example the order in the collection is mutable because the addresses of the ordered member
instances do not include the immutability symbol. Ordering may be made immutable by adding the symbol,
as shown below.

{
"=exanmpl e": {
"[<#emai | >3] <@ ~0>": {
"&': "alice@xanpl e.cont
}l
"[<#emai | 3] <@ ~1>": {
"&': "alice.roth@xanpl e. net"
}l
"[<#emui | >] <@ ~2>": {
"&': "stillalice@xanple.org"
}l
"[<#emai | >] <$t>": {
"&': "2010- 09- 20T10: 11: 127"
}
}
}

In some cases, an XDl authority may wish to combine both mutable ordering and immutable addressing
within the same collection—for example, where the order of preference is mutable but a reference to a
specific unordered member of the collection will be immutable. In the XDI REAL model, the advantages of
both can be combined in the same collection using $ref relations (see Equivalence Relations). This is called
the ordered/unordered reference pattern. An example using email address attributes is shown below (with
UUIDs shortened for readability):

{
"=exampl e": {
"[<#emui | >] <@-0>": ({
“fSreft: |
"=exanpl e[<#emai | >] <*!: uui d: x- 1>"
]
H
"[<#emui | >] <@1>": {
“fSreft: [
"=exanpl e[<#emai | >] <*!: uui d: x- 2>"
]
H
"[<#emui | >] <@2>": {
“fSreft: [
"=exanpl e[<#emai | >] <*!: uui d: x- 3>"
]
H
"[<#emai | >] <*!:uuid: x-1>": {
"&': "alice@xanpl e.cont
H
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 41 of 100

"[<#emai | >] <*!:uuid: x-2>": {
"&': "alice.roth@xanpl e. net"
}l
"[<#emai | >] <*!:uuid: x-3>": {
"&': "stillalice@xanple.org"
}

<#emai | >] <$t >": {
"&": "2010-09-20T10: 11: 122"

}

A context node that is not explicitly a collection is a singleton, i.e., a single instance of that context node type.
Singletons and collections in XDl are analogous to singular and plural nouns in English, e.g., “passport” and
“passports”. The following example shows the same three email address attribute values as in the previous
example, only each one is expressed as an <#email> singleton in a different context:

{
"=exanmpl e": {
"<#email >": {
"&': "alice#exanpl e. cont
}l
"<#home><#emai | >": {
"&': "alice.roth@xanpl e. net"
}l
" <#wor k><#temai | >": {
"&': "stillalice@xanple.org"
}

}

By definition an attribute singleton may have only one literal value, whereas an attribute collection may
contain multiple values. Again, the advantages of both can be combined in the same context using $ref
relations. This is called the singleton/collection reference pattern. An example using email address attributes
is shown below (with UUIDs shortened for readability):

{
"=exampl e": {
"<#email >": {
“fSreft: |
"=exanpl e[<#emai | >] <*!: uui d: x- 1>"
]
},
"<#home><#emai | >": {
“fSreft: [
"=exanpl e[<#emai | >] <*!: uui d: x- 2>"
]
},
" <#wor k><#temai | >": {
“fSreft: [
"=exanpl e[<#emai | >] <*!: uui d: x- 3>"
]
H
"[<#emai | >] <*!:uuid: x-1>": {
"&': "alice@xanpl e.cont
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 42 of 100

}

<#temai | >] <*!:uui d: x-2>": {
"&': "alice.roth@xanpl e. net"

}l
"[<#emai | >] <*!:uuid: x-3>": {
"&': "stillalice@xanple.org"
}l
"[<#emai | >] <$t>": {
"&': "2010- 09- 20T10: 11: 127"
}

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 43 of 100

8 Definitions | |

XML has schemas; RDF has ontologies; XDl has dictionaries. XDI uses the term “dictionary” for XDI ontology
definitions because an XDI ontology term may be reused in many different XDI contexts just like a natural
language word may be reused in many different linguistic contexts.

As with a natural language dictionary, a subject node in an XDI dictionary is called a definition. Each XDI
definition is the subject of one or more definition statements. The XDI identifier of a definition context node
MUST be enclosed with pipe symbols | | .

Definitions only apply to XDI entities or attributes. Certain definition statement types apply to each. For
example, only an attribute definition may define the datatype of a literal value.

The standard attributes and relations for XDI definition statements are defined in the XDI Dictionary 1.0
specification. These include the same basic ontological building blocks as in RDFS [rdf-schema] and OWL
[owl], e.g.:

* types

* subtypes

* supertypes

» entities (for roots)

» subentities (for entities)

» superentities (for entities and attributes)
+ attributes (for roots and entities)
» subattributes (for attributes)

» superattributes (for attributes)

» datatypes (for literals)

* incoming relations (range)

+ outgoing relations (domain)

+ cardinality

Following is an example generic dictionary definition illustrating a number of common dictionary statement
types (in order: entity type, outgoing relations, subentities and attributes, cardinality, and attribute types).

{

"| #car|": {

S s# |
"| #vehicl e| "

],

()"0
"| #owner | ",
"| #driver| ",
"| #i nsurer|"

xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 44 of 100

]

It
"| #engi ne| ",
"| #door | ",
"| <#nodel >| ",
"| <$year>| "
]
s
"| #car | | #engi ne| ": {
"<Bn>": |
A
}
s
"| #car | | #door | ": {
"<Bn>": |
"&': "2-4"
}
s
"| #car | | <#nmodel >| ": {
"Sis#" |
"| <$string>|"
]
s
"| #car | | <#tyear>|": {
"Sis#" |
"| <$nunber >| "
]
}

}

Using contextual statements, XDl dictionaries can also define superentities and superattributes. Following
is an example of defining superentities for a #car :

{
"| #car|": {
"ISis()":
"| #sports| ",
"| #race| ",
"| #economny| ",
"| #l uxury| "

}

These dictionary statements define the following specializations of the entity #car :
#sport s#car #race#car #econony#car #l uxury#car

The same can be done for attributes:

{
"| <#emai |l >| " {
n/ $| S() n [
" | <#home>| ",
" | <#wor k>| ",
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 45 of 100

"| <#school >| ",
"| <#priority>|"

}
These dictionary statements define the following specializations of the attribute <#enai | >:
#home#enai | #wor k#emai | #school #emai | #pri orit y#emai |

Not all XDl dictionary definitions are generic, i.e., at the top level. The reason for the “X” in XDI (“extensibility”)
is that any XDI authority may define its own XDI vocabulary in its own XDI namespace. To do this, the
enclosing pipe | | syntaxis used with an XDI authority (personal or grooup) identifier to define a dictionary
space. Following is an example of the <#enai | > attribute being specialized by the group +(htt ps://
xdi . org/) inits own dictionary space:

{
"| <+(https://xdi.org/)>|| <#email >|": {
" S s# |
"| <$string>|"
]
)
"| <+(https://xdi.org/)>|| <#email >| <$xbnf>": {
"&: "1*(ALPHA / DIG T) 9®2@di .orgw2"
}
}

Note that $xbnf is an XDl-addressable variant of BNF that will be defined in the XDI Dictionary 1.0 specifi-
cation. This specialized dictionary definition may now be used in XDl statements by prefixing the <#emai | >
attribute with the | +(ht t ps: // xdi . org/)| attribute dictionary space. For example:

{
"=exampl e": {
"| <+(https://xdi.orgl/)>| <#email >": {
"&': "exanpl e@di.org"
}

}

In English the same type of specialization would be expressed by prefixing an entity or attribute name with
a proper noun. For example, the generic concept of an “email address” could be specialized by calling it
an “XDl.org email address”.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 46 of 100

9 Variables { }

A variable is an XDI context node that represents a set of XDI context nodes that will replace the variable
context node when it is instantiated. Variables are needed in XDI policies, queries, and other expressions
that need to reference a set of XDI nodes that meet specified parameters. The XDI identifier of a variable
context node MUST be enclosed with curly brackets { }.

When instantiated, a variable is matched against a target graph. The matching rules depend on the type

of variable. All variables except the common variable MUST match at least one arc to have a match. The
common variable always has a match because it can also match zero arcs.

9.1 The Common Variable

The common variable is the simplest of all XDl variables. Like the common root node, it is empty, con-
sisting of only a pair of curly brackets. By definition, the common variable matches any subgraph rooted
in the context node where the common variable appears. The common variable MAY match any number
of arcs, including zero. For example, the following XDI operation will return the entire subgraph rooted in
=exanpl e<#hone>:

... 1 $get/ =exanpl e<#home>{}

9.2 Typed Variables

A typed variable is a variable containing an XDI class identifier. The matching rules for typed variables are:
1. A matching instance of a typed variable MUST be a member of the XDI class identified by the variable.

2. By default, a matching instance MAY be at any depth in the subgraph rooted on the typed variable. (To
constrain the depth of matching requires using a defined variable—see Defined Variables).

3. Atyped variable containing a singleton class identifier MUST match either a singleton instance of that
class or a member instance of a collection of that class.

4. Atyped variable containing a collection class identifier MUST match an instance of that collection class.

Examples:

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 47 of 100

Table 12. Typed Variables

Variable Matches an instance of
{0} A peer root node
{1} An inner root node
{=} A person
{+} A group
{*} A thing
{@ An ordinal
{[]1} An entity collection
{<>} An attribute
{[<>]} An attribute collection
{<*>} An attribute instance
{<@} An attribute ordinal
{$} A reserved class
{#} An unreserved class

{#vehicl e} |A specific unreserved class—#vehi cl e

{[$]} A reserved entity collection
{[$to]} A specific reserved entity collection—$t o
{[#]} An unreserved entity collection

{[#vehi cl e]} |A specific unreserved entity collection—$vehi cl e

{<$>} A reserved attribute
{<$iri>} A specific reserved attribute—$i r i
{<#>} An unreserved attribute

{<#emni | >} |A specific unreserved attribute—#emai |

{[<%$>]} A reserved attribute collection

{[<S%iri>]} |A specific reserved attribute collection—S$i ri

{[<#>]} An unreserved attribute collection

{[<#emai | >]} |A specific unreserved attribute collection—$enmi |

9.3 Defined Variables

A defined variable is a variable that has additional constraints defined by a set of XDl statements using XDI
dictionary vocabulary. The syntax for defined variables is the same as for typed variables except the class
identifier uses XDI definition syntax, i.e., is enclosed in pipe characters. Examples:

vehi cl e| }
<$iri>|}
{| <#emai | >| }

{I=
{I+
{11}
{|#
{l

Note that the common variable may also serve as a defined variable by including a pair of pipe characters
inside the curly brackets, i.e.:

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 48 of 100

{11}

In this case the defined variable itself imposes no type constraint on the instance; all constraints will be
defined by the variable definition.

The location of the definition of a defined variable depends on the location of the defined variable.

1. If the defined variable appears in an XDI subject, the definition MUST appear in the same context as
the defined variable.

2. If the defined variable appears in an XDI object, the definition MUST appear in the same context as
the defined variable within an inner graph of that XDl statement.

The defined variable definition MUST be expressed using additional XDI statements as defined in the XDI
Dictionary specification. For example, in the following XDI statement, the typed variable { <#phone>} will
match any instances of a phone number to any depth below =exanpl e.

.../ $get / =exanpl e{ <#phone>}

To constrain: a) the match to only one instance, and b) the maximum depth of matching nodes to three, use
the defined variable { | <#phone>| } with two definition statements in an inner graph:

1. The first definition statement constrains the number of matches using the XDI dictionary cardinality
attribute <$n>.

2. The second definition statement constrains the depth of matches using the XDI dictionary attribute <
$dept h>.

Example:
{
B
"/ $get": |
"=exanpl e{| <#phone>| }"
]
s
“(.../%get)": {
"=exanpl e": {
"| <#phone>| <$n>": {
A
s
"| <#phone>| <$dept h>": {
&' "1-3"
}
}
}
}

Note: when there are more matches for a variable than a definition constraint allows, it is up to the XDI
endpoint (or the XDI authority for queried graph) to select the matches.

9.4 Reserved Variables

Reserved variables are typed variables that use an XDl reserved class name (keyword) and have a specified
function in the XDI protocol. Examples:

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 49 of 100

{ $t o}

{$front
{ $do}

Reserved variables are not defined variables because their definitions are not expressed as a set of XDI
statements. Instead their function is specified in one or more XDI specifications, e.g., XDl Messaging, XDI
Link Contracts, XDI Discovery, etc. [XDI-Messaging-V1.0]

9.5 Metavariables

Variables are commonly used in XDI templates— XDI subgraphs used as the model for creating other XDI
subgraphs. When an XDl template is instantiated, the variables it contains are replaced with a valid instance
of each variable.

In some cases, an XDI template must contain a variable whose instantiation will be another variable. To
enable this, XDl supports metavariables—one variable that contains another. Metavariables are expressed
with a double pair of curly brackets. The outer pair represents the containing variable; the inner pair repre-
sents the metavariable. Following is an example of a reserved metavariable:

{{$front}

To avoid recursion, variables may only be nested one level deep.

9.6 The Literal Variable

XDI templates may need a variable to be instantiated with a literal value. This is called a literal variable and
is expressed using the XDl literal symbol: { &} .

The literal variable MUST only be used as an XDI predicate. The XDI object of this predicate MUST be an
attribute variable. When instantiated, the attribute variable MUST be instantiated with a valid attribute value.

Following is an example of an XDI template that uses a literal variable to specify that a minimum age value
is required when the template is instantiated.

{{$to}}": {
" <#m ni nunp<#age>": {
{8 |
"{<#age>}"
]
}
}
}
Following is an example instantiation of this template.
{
"{$to}": {
" <#m ni nunp<#age>": {
"&": 13
}
}
}
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 50 of 100

10 Core Relations

This section defines the set of XDI relations that express standard relationship types in a semantic graph.
These together with the XDI ABNF rules define the universal grammar of XDI. As shown in thetable below,
many of the core relations correspond to the basic types of relationships defined in UML [uml] and other
object modeling languages.

Table 13. Summary of Core Relations

Category Relationship Expresses Relation name | Pred- | In-
icate |verse
Equivalence Transitive Logical union of sub- Identity relation | /$is/ | /$is/
equivalence ject and object nodes
Visible canoni- Transpose subject Reference /$ref/ | /$is
cal equivalence node onto object node relation $ref/
Hidden canoni- Transpose object node Replace- [$rep/ | /$is
cal equivalence onto subject node ment relation $rep/
Hypernym-hy- Subsumption; Taxonomic hierarchy; inheritance Type rela- # | I$is#/
ponym; su- is-a, type-of tion (between
pertype-sub- classes)
type; super-
class-subclass
Class-in- Instantiation; Instance belongs to a class Type relation
stance; con- instance-of (between class
cept-object; and instance)
type-token
Holonym- Aggregation; has-a| Possession without ownership Aggrega- /$has/ | /$is
meronym tion relation $has/
Composi- Possession with ownership Contextu- I |1$is()/
tion; part-of al relation
Containment; Set membership Collection
member-of relation

10.1 Equivalence Relations

The same resource may be represented by multiple context nodes within an XDI graph. The XDI graph
model provides two ways such equivalence may be asserted:

1. Equivalent identifiers may be used in different XDl contexts.
2. Equivalence statements may be made between different XDI contexts.
Equivalence statements are made using using three types of equivalence relations:

1. An identity relation asserts that two context nodes represent the same logical resource and that nei-
ther context is canonical. In this case a complete description of the resource requires a union of both
subgraphs.

2. Areference relation asserts that two context nodes represent the same logical resource and the object
node is canonical. In this case only the object node may contain a subgraph describing the resource.

xdi-core-v1.0-csd01
Standards Track Work Product

29 October 2015

Copyright © OASIS 2015. All rights reserved. Page 51 of 100

A replacement relation is the same as a reference relation except that XDI address of the object node
is replaced by the XDI address of the subject node. In this case it will appear as if the subject node is
canonical, i.e., the object subgraph will appear as if it was the subject subgraph, and the replacement
relation will be invisible to a requestor.

10.1.1 Equivalent Identifiers

The first way equivalence may be established between two context nodes is by using the same absolute
XDl identifier to identify the final arc in the context path. If two XDI context node addresses terminate in the
same absolute XDl identifier, those XDI addresses MUST represent the same logical resource in different
contexts. The two nodes MAY also have an explicit equivalence relation, but such a relation is not required
to establish equivalence.

Absolute XDI identifiers are defined in Absolute and Relative Identifiers section.

Following is an example of the same natural person represented by the same absolute XDl name =al i ce
in three different contexts (the common root context and two group contexts).

{

}

"=alice": {
"<#email >": {
"&": "alice@xanpl e. nane"
}
)
"+exanpl e- conpany=al i ce": {
"<#emai |l >": {
"&": "asm t h@xanpl e- conpany. cont
}
)
"+exanpl e- cl ub=al i ce": ({
"<#email >": {
"&': "alice.snith@xanpl e-cl ub. cont
}
}

Since XDl names are mutable (reassignable), immutable references require XDI numbers. Here is the same
example using XDI numbers in the form of UUIDs.

{
"=1:uui d: 33ad7beb- 1labc- 4a26- b892- 466df 4379a51": {
"<#email >": {
"&': "alice@xanpl e. nane"
}
¥
"+!: uui d: f 336a645-f 5a9- 41b7- ab80- ace41a8f 69c2=! : uui d: 33ad7beb- 1labc- 4a26- b892- 466df 4379
"<#email >": {
"&': "asm th@xanpl e- conpany. cont
}
¥
"+l uui d: 1c958708- d5aa- 4213- a6a9- 73dd423502b3=! : uui d: 33ad7beb- 1abc- 4a26- b892- 466df 4379a
"<#email >": {
"&': "alice.smth@xanpl e-cl ub. cont
}
}
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 52 of 100

}
10.1.2 Identity Relations ($is)

It may not be possible or desirable to use the same absolute XDl identifier for the same resource in different
XDI contexts. In this case the same type of equivalence MAY be established using an identity relation. An
identity relation MUST be expressed using the XDl predicate $i s.

Unlike all other XDI predicates, there is no inverse form—$i s is its own inverse. See Inverse Relations.

A $i s assertion of equivalence is reflexive, symmetric and transitive. It is not canonical, meaning that both
the subject node and object node MAY have their own subgraphs without restriction. This means a full
description of the described resource requires a union of both subgraphs.

A $i s statement does not have any special XDI processing rules. Therefore if an XDI endpoint returns a
$i s statement, it is the requestor’s responsibility to determine if it needs to request the subgraph identified
by the object of that statement.

Following are two examples of $i s identity relations. The first asserts equivalence between two XDI names
—a rooted absolute person name and a nested relative personal name (in the context of a rooted absolute
group name).

{
"=alice": {
ISt |
"+exanpl e. cl ub=~al i ce. smth"
]

}

The second asserts equivalence between two XDI numbers (in the form of UUIDs)—a rooted absolute
person number and a nested absolute person number (in the context of a rooted absolute group number).

{
"=I:uui d: 33ad7beb- 1abc- 4a26- b892- 466df 4379a51": ({

"I$ist |
"+1: uui d: 1c958708- d5aa- 4213- a6a9- 73dd423502b3=! : uui d: 8ded2f 7e- af b4- 4494- 9918- 0
]

}
10.1.2.1 Replacement Relations ($rep)

A replacement relation is identical to a reference relation except for the XDI addressing rules. With a ref-
erence relation, the XDI address of the object node is canonical—the $r ef relation on the subject node
“redirects” to the object node. With a replacement relation, the XDI address of the subject node is canonical,
and the subgraph of the object node is logically transposed onto the subject node. The XDI address of the
object node is never revealed—nor is the replacement relation. It is only visible to the XDI authority for the
graph. A replacement relation MUST be expressed using the XDI predicate $r ep. An inverse replacement
relation MUST be expressed with the XDI predicate $i s$r ep. See Inverse Relations.

A $r ep assertion of equivalence is irreflexive, asymmetric and transitive. Because it is canonical, a context
node described by a $r ep relation MUST be the subject of exactly one $r ep statement and MUST NOT
be the subject of any other XDI statements.

An inverse replacement relation is not canonical, so a context node described by an $i s$r ep relation MAY
be the subject of more than one $i s$r ep statement and MAY contain its own subgraph.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 53 of 100

When a $r ep relation is reached while traversing an XDI address, the $r ep relation MUST be followed
to the object node, and traversal of the XDI address MUST continue from the object node. When an XDI
operation requests a subgraph containing a $r ep relation, the $rep relation MUST NOT be included in the
returned subgraph. Instead the object’s subgraph MUST be transposed to become the subject’s subgraph.

Replacement relations are fundamental to Privacy by Design [pbd] [http://privacybydesign.ca/]. In particular,
$r ep relations enable XDI authorities to publish pseudonyms in order to control correlation between different
XDI contexts. Following is an example of a private XDI number used as a pseudonym to share a person’s age
using a $rep relation without revealing the individual’s public XDI number. See Public and Private Identifiers.

{
"=!:uui d: 33ad7beb- 1abc- 4a26- b892- 466df 4379a51": {

"<#age>": {
"/ Srep": |
"+ : uui d: 1c958708- d5aa- 4213- a6a9- 73dd423502b3<#age>"
]

}
},
"+!: uui d: 1c958708- d5aa- 4213- a6a9- 73dd423502b3": {

"<#name>": {

"&': "Alice Snmth"
},
"<#email >": {
"&': "alice@xanple.cont

}

#age>": {
"&': 33

}

If the following XDI $get request was performed on the graph above:
.../ $get/=!:uui d: 33ad7beb- labc- 4a26- b892- 466df 4379a51<#age>

Then the following XDI graph would be returned:

{
"=I:uui d: 33ad7beb- 1labc- 4a26- b892- 466df 4379a51": {
"<#age>": {
"&': 33
}
}
}

10.1.3 Equivalence and Directed Graph Cycles

The contextual arcs in an XDI graph form a rooted tree. To ensure deterministic traversal, this rooted tree
must be acyclic—it cannot allow a chain of contextual arcs to loop around in a circle, i.e., that start at one
node and end up back at that same node. In graph theory, such a loop is called a cycle.

Cycles would not be a problem if an XDI rooted tree consisted of only contextual arcs where all the labels
were relative (like DNS). However if either: a) equivalent identifiers are used for nodes within the rooted
tree, or b) equivalence relations are added between nodes in the rooted tree, then it becomes possible to
form a cycle. Therefore, if an XDI agent or an XDl endpoint adds an equivalent identifier or an equivalence
statement to an XDI graph, it MUST NOT create a cycle.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 54 of 100

10.1.4 Equivalence of Context Types and Roles

For two context nodes to be equivalent, they MUST have the same context type and role. For example, if
two context nodes represent different XDI names for the same person, both must be person entity nodes.
If two context nodes represent the same email address in different contexts, both must be attributes. If two
context nodes represent synonyms in a dictionary, both must be definitions.

10.1.5 Reference Relations ($ref)

In contrast to identity relations, which establish the equivalence of two context nodes where neither is canon-
ical, a reference relation establishes the equivalence of two context nodes where the XDI address for the
object node is canonical. In this case only the object node may contain a subgraph—the subject node may
only contain a reference to the object node.

A reference relation MUST be expressed using the XDl predicate $r ef . Aninverse reference relation MUST
be expressed with the XDI predicate $i s$r ef . See Inverse Relations.

A $r ef assertion of equivalence is irreflexive, asymmetric and transitive. Because it is canonical, a context
node described by a $ref relation MUST be the subject of exactly one $ref statement and MUST NOT be
the subject of any other XDI statements.

An inverse reference relation is not canonical, so a context node described by an $i s$r ef relation MAY
be the subject of more than one $i s$r ef statement and MAY contain its own subgraph. When a $r ef
relation is reached while traversing an XDI address, the $r ef relation MUST be followed to the object node,
and traversal of the XDI address MUST continue from the object node. By default, when an XDI operation
requests a subgraph containing a $r ef relation, both the $r ef relation and the object subgraph will be
included in the returned subgraph.

Note: this behavior can be modified by an XDl messaging parameter as defined in the XDl Messaging
specification.

Reference relations are needed for one of the most common patterns in XDI graphs: mapping a hu-
man-friendly mutable (reassignable) identifier (an XDl name) to a machine-friendly immutable (persistent)
identifier (an XDI number). This is called the name/number reference pattern. The following example shows
a name/number $r ef relation for both a person and a group:

{
"=alice": {
“fSreft: |
"=!: uui d: 33ad7beb- 1abc- 4a26- b892- 466df 4379a51"
]
}
"+exanpl e. cl ub”: {
“fSreft: |
"+!: uui d: 1c958708- d5aa- 4213- a6a9- 73dd423502h3"
]
}
}

10.1.6 Rules for Processing Equivalence Relations

Rules for processing of operations on XDI graphs are defined in the XDI Messaging specification [XDI-
Messaging-V1.0]. This includes rules for processing of equivalence relations. For informative purposes,
here is a summary:

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 55 of 100

1. A standard XDl / $get / operation must return all reference relations but must not return any replace-
ment relations.

2. Ifan XDI/ $get/ message specifies a <$der ef > parameter, the operation must process all reference
relations as if they were replacement relations. This means: a) each $r ef predicate in the result graph
must be replaced with a $r ep predicate, and b) the resulting statement must be processed as a re-
placement relation. Therefore the XDI graph returned by this / $get / operation will not contain any
reference or replacement relations—they will all have been dereferenced.

3. If a reference relation or replacement relation is included in the processing of an XDI $add, $set or
$del operation, it must be processed according to the standard rules for equivalence relations, and
processing of the operation must continue at the object of the statement. The final target statement(s)
to be added or deleted must be determined only after all reference or replacement relations have been
processed.

4. |If the target of an XDl operation is itself a reference relation or replacement relation, that relation must
not be processed. Instead, the operation must apply directly to the $r ef or $r ep statement.

10.2 Inverse Relations

Due to its semantic tree architecture, the inverse of any XDI predicate may be expressed algorithmically
by prefixing it with the $i s identity equivalence relation. If an XDI predicate is prefixed by $is, it MUST be
interpreted as expressing the inverse relation of the same XDI predicate without the prefix. Examples:

Table 14. Inverting relations with $is

Subject Predicate Object
=l uke. skywal ker #f at her =dart h. vader
=dart h. vader $i s#f at her =l uke. skywal ker
[#vehicle] *!:uuid:x-1 #owner =exanpl e
=exanpl e $i s#owner [#vehicle]*!:uuid:x-1
=exanpl e. cl ub $r ef +!uuid: x-2
+!:uuid:x-2 $i s$ref =exanpl e. cl ub

In semantic terms, the $i s prefix expresses that the subject of a statement whose predicate includes the
$i s prefix is equivalent to the object of the same statement made without the $i s prefix.

A predicate that uses the $i s prefix is called an inverse predicate. A statement that uses an inverse relation
is called an inverse statement. A predicate that does not use the $i s prefix is called a direct predicate.
A statement that does not use an inverse relation is called a direct statement. An inverse relation may be
used to express the inverse of any XDl statement except the $i s identity equivalence relation itself (which
is its own inverse). This includes XDI contextual statements. However, because the predicate of an XDI
contextual statement is empty, an inverse contextual statement MUST use the predicate $i s() . The empty
parentheses encapsulate the empty predicate.

Inverse contextual statements are particularly useful in XDI graphs because they provide a mechanism for
discovering other contexts for a resource. For example, a requestor who only has knowledge of =al i ce
could query the following XDI graph (assuming the requestor has permission) to discover that =al i ce also
exists in the +exanpl e. conpany and +exanpl e. cl ub contexts.

{

"=alice": {

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 56 of 100

“ISis()":
"+exanpl e- conpany”,
"+exanpl e-cl ub”
],
"<#email >": {
"&": "alice@xanpl e. nane"
}
}
"+exanpl e- conpany=al i ce": {
"<#email >": {
"&': "asmth@xanpl e- conpany. cont
}
}
"+exanpl e-cl ub=al i ce": {
"<#email >": {
"&': "alice.smth@xanpl e-cl ub. cont
}

}
10.3 Type Relations (#)

The heart of ontologies is type relationships, i.e., defining subtypes (subclasses) and supertypes (super-
classes). In XDlI, these relationships are expressed using XDI type statements. Since the concept of “type”
is already represented in XDl as # (the context symbol for unreserved classes), an XDl type relation MUST
be expressed using the XDI predicate #. An inverse type relation MUST be expressed with the XDI pred-
icate $i s#.

XDI type statements fall into two categories:

1. Relationships between subclasses and superclasses. These correspond to r df : subCl assOf re-
lations.

2. Relationships between instances and classes. These correspond to r df : t ype relations.

Since the context symbol for an XDl context already indicates whether it is a class or an instance, the same
XDI type relations can express either category of type statement.

Examples of superclass-subclass relations:

Table 15. Superclass-subclass relations

Subject Predicate Object
#f ood # #ruit
#fruit # #appl e
#fruit # #banana
#fruit # #pear
<$string> # <#name>
<$string> # <#enmi | >

Examples of subclass-superclass relations:

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 57 of 100

Table 16. Subclass-superclass relations

Object Predicate Object
#fruit $i s# #f ood
#appl e $i s# #fruit
#banana $i s# #fruit

#pear $i s# #fruit
<#nane> $i s# <$string>
<#emi | > $i s# <$string>

Examples of class-instance relations:

Table 17. Class-instance relations

Subject Predicate Object
#car pent er # =luuid: ...
#chur ch # +liuuid: ..
#car # *1ruuid: ...

Examples of instance-class relations:

Table 18. Instance-class relations

Object Predicate Object
=l uuid: ... $i s# #car pent er
+uuid: ... $i s# #chur ch
*1ouuid: ... $i s# #car

10.4 Aggregation Relations ($has)

From an object modeling standpoint, XDI contextual relations are analogous to UML composition (whole/
part) relationships, where a composite object both possesses and owns a set of component objects. The
defining feature of composition is ownership, i.e., when a composite object is destroyed, so are its compo-
nent objects. This is true of XDI contexts—if a context node is deleted, so are all the context nodes in its
subgraph.

UML also defines aggregation relationships, where an aggregate object possesses but does not own a set of
aggregated objects. The defining feature of aggregation is lack of ownership, i.e., when an aggregate object
is destroyed, its aggregated objects are not. They continue to live independently of the aggregate object.

This is often called a “has-a” relationship. For this reason, aggregation relations in XDl are expressed using
the XDI predicate $has. An inverse aggregation relation MUST be expressed with the XDI predicate $i s
$has.

Compared to contextual relations, the defining feature of $has relations in XDl is the same as in UML.: if the
subject of a $has relation is deleted, the object of the relation is not affected (unless the object happens
to be in the subgraph of the subject).

A classic example is a university department: it has a set of professors, but if the university department is
closed, the professors still exist. The following example shows both the university group entity and each of
the professors’ person entities as independent root-level entities aggregated via a $has relation:

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 58 of 100

"+exanpl e- uni ver si t y#magi c#department ": {
"/ $has": [
"=exanpl e- prof-1",
"=exanpl e- pr of - 2",
"=exanpl e- pr of - 3"
]
}
"=exanpl e-prof-1": {
"<#name>": {
"&": "Al bus Dunbl edore”

}
}
"=exanpl e-prof-2": {
"<#name>": {
"&": "M nerva McGonagal | "
}
}
"=exanpl e-prof-3": {
"<#name>": {
"&": "Severus Snape"
}
}

}

Because the aggregated entities in this example are root-level, their attributes (such as the <#nane> at-
tribute shown above) describe them independently of any other context. XDI's semantic tree architecture
also enables the aggregated entities to be described in the context of the aggregating entity. This is called
the contextual description pattern. The advantage of contextual descriptions is that the attributes and rela-
tions of the aggregated entity can be specific to the aggregating context.

For example, in the university professor scenario above, contextual descriptions may be used to express the
names and email addresses of the university professors in the context of a specific university department.

{
"+exanpl e- uni ver si t y#magi c#depar t nent =exanpl e- prof - 1": {
"<#name>": {
"&": "Headnaster Dunbl edore"
}
"<#email >": {
"&': "adunbl edor e@mgi c. exanpl e. edu”
}
}
"+exanpl e- uni ver si t y#magi c#depar t nent =exanpl e- prof -2": {
"<#name>": {
"&': "Professor McGonagal | "
}
"<#email >": {
"&": "mmrtgonagal | @mgi c. exanpl e. edu”
}
b
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 59 of 100

"+exanpl e- uni ver si t y#magi c#depar t nent =exanpl e- prof - 3": {
"<#name>": {
"&': "Professor Shape"
}l
"<#emai | >": {
"&": "ssnape@mgi c. exanpl e. edu”
}

}

Contextual description of the members of a group is optional because it is only needed when a group
member has context-specific attributes or relations. When it is required to express group membership in
XDI, it MUST be expressed using a $has relation between the group entity and each group member entity.
A group member entity MAY be either a person entity or another group entity, i.e., groups may contain
other groups.

In general, as with UML aggregation relationships, an XDI $has aggregation relation does not constrain
the type of entity that may be aggregated. There is one exception. If the subject of a $has relation is a
collection, the object of this relation MUST be a member of the collection class. This is called the virtual
collection pattern. It applies whenever members of a collection are independent entities that do not have
contextual descriptions. A typical example is a person’s music album collection.

{
"=exanpl e- per son[#al bun] ": {
"/ $has": [
"+nmoody- bl ues[#al bum *~ever y- good- boy- deser ves-f avour ",
"+rol | i ng- st ones[#al bum *~sti cky-fi ngers"”,
"+der ek- and- t he- dom nos[#al bum *~| ayl a"
]
}
"+nmoody- bl ues[#al bum *~ever y- good- boy- deser ves-favour": {
" <#r el ease><#year >": {
"&': "1971"
}
}
"+rol | i ng- st ones[#al bum] *~sti cky-fi ngers": {
" <#r el ease><#year >": {
"&': "1971"
}
}
"+der ek- and- t he- dom nos|[#al bum *~l ayl a": {
" <#r el ease><#year >": {
"&': "1971"
}
}
}

Virtual collections are another example of how traditional database indexes may be modeled in an XDI
graph.

$has aggregation relations are as useful in XDl as they are in UML. They can model many forms of resource
ownership and control. A specific application is digital signatures: an XDI signature attribute can use a $has
relation to specify the set of XDI subgraphs included in the signature’s scope. The use of $has relations
with XDI digital signatures is specified in the XDI Cryptography specification [XDI-Cryptography-V1.0].

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 60 of 100

10.5 Boolean Relations

To meet the design goal of describing authorization, policy, and rights expression, XDI must be able to
describe Boolean logic trees. These relations are formally defined in the XDI Link Contracts specification
but are summarized below for reference:

Table 19. Boolean Relations

Relation Definition
$true Logical true statement
$false Logical false statement
$and Logical conjunction
$or Logical disjunction
$not Logical negation
$if Logical branching

10.6 XDI Operations

The final category of core relations is the set of XDI predicates representing the standard XDI protocol
operations on XDI graphs. These are formally defined in the XDI Messaging specification [XDI-Messag-
ing-V1.0], but are summarized below for reference:

Table 20. Boolean Relations

Relation Operation in Target Graph
$get Read statement
$set Write statements
$add Add new statements
$mod Update value
$del Delete statements
$connect Instantiate a new XDI connection
$send Send an XDI message
$push Publish an XDI message to subscribers
$do Authorize other operations

10.7 Nominalization

In linguistics, nominalization is the use of a verb as a noun. In XDI, nominalization is the use of an XDl
relation as an XDI context. The nominalization pattern is needed in XDl for the same reason as in human
language: to embody relations so they may have their own descriptions, attributes, and ordering.

A common case is when an XDI protocol operation needs a parameter. For example, in the following XDI
message, the XDI $get request in the first statement is nominalized in order to add the <$der ef > para-
meter in the second statement.

"=1:uuid: x-1[$nsg] *!: uui d: x- 28do": {

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 61 of 100

"/ $get": |
"=!:uui d: x- 3<#enni | >"
]

},
"=1:uui d: x-1[$nsg] *! : uui d: x- 2$doBget ": {
"<$deref>": {
"&': true
}
}

}

Another common example involves the name/number reference pattern, where a mutable human-friendly
XDI name for an entity has a $r ef equivalence relation to an immutable XDI number for the entity. With
this pattern it is easy to start with the XDI name to look up the XDI number. However a relying party such as
an online merchant may frequently need to do the opposite, i.e., look up a human-friendly XDI name from
a persisted XDI number (e.g., to greet a returning customer).

This is not as simple as following an inverse reference relation ($i s$r ef) from the XDI number to the XDI
name because the person may have more than one XDI name that references his/her XDI number.

As shown below, the solution is to nominalize the $i s$r ef relation so it may be treated as a subcontext
in the person’s XDI graph. This new subcontext can now express a canonical r ef relation to the person’s
preferred XDI name. (Note that this preference is stored inside an inner graph describing the merchant’s
unique relationship with that particular customer.)

{
"=l:uuid:x-1": {
"/ $issref": [
"=alice",
"=al i son",
"=alice.smth"
]
s
"+l uuid: x-2": {
"/ $issref": [
"+exanpl e. mer chant "
]
s
"(+!':uuidix-2/ = uuid: x-1)": {
“=l:uuid: x-1$i s$ref": {
“[$ref": |
"=alice.smth"
]
}
}
}
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 62 of 100

11 ABNF

An XDI graph in statement format, where there is one XDI statement for each arc in the graph, MUST be
valid according to the ABNF rules in this section. The Serialization section specifies the rules for serializing
a valid XDI graph in JSON.

Note that the ABNF rules alone do not express all requirements for an XDI graph to be semantically valid.
Additional rules for semantic validity are stated in text both within this section and in other sections.

11.1 XDI Graph

xdi - graph
xdi - st at ement

*(xdi-statement / CRLF)
contextual -statenent / literal -statenment / rel ational -statenent

In statement format, an XDI graph is a set of XDI statements consisting of a sequence of Unicode charac-
ters. It is intended only for encoding in Unicode encodings such as UTF-8 and UTF-16. Encoding in other
encodings may result in character corruption and unpredictable results.

All statements are one of three types: contexual, literal, or relational.

11.1.1 Contextual Statements

di rect-contextual / inverse-contextual

cont ext ual - st at enent

di r ect - cont ext ual
peer-root-direct
i nner-root-direct
entity-direct
attr-direct

peer-root-direct / inner-root-direct / entity-direct / attr-dire
*peer-root "//" peer-root

root - address "//" inner-root

entity-address "//" entity

attr-address "//" attr

i nver se- cont ext ual peer-root-inverse / inner-root-inverse / entity-inverse / attr-i

peer-root-inverse = peer-r oot "/ $is()/" *peer-root

i nner-root-inverse = i nner-root "/ $is()/" root-address
entity-inverse = entity "/$is()/" entity-address
attr-inverse = attr "/$is()/" attr-address

Contextual statements define the branch nodes of a semantic tree. See Contextual Arcs and Contextual
Statements. A direct contextual statement MAY have an inverse contextual statement. An inverse contextual
statement MUST have an direct contextual statement. Note that a direct contextual statement MUST have
exactly one XDI context node as an object, and an inverse contextual statement MUST have exactly one
XDI context node as a subject.

11.1.2 Literal Statements

literal -statenment = entity-address l1*attr "/ & " val ue
literal -var-stat ement = entity-address 1*attr "/{&} /" val ue-variabl e
val ue-vari abl e = "{" attr-class "}"

Literal statements define the leaf nodes of a semantic tree. See Literal Arcs and Literal Statements. An
additional rule applies to literal statements: the final node sequence before a literal predicate MUST be one
of two options:

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 63 of 100

1. An attribute class (attr - cl ass).

2. An attribute collection (at t r - col | ect i on) followed by an attribute instance (att r - i nst ance).

11.1.3 Relational Statements

direct-relational / inverse-relational / relation-definition
xdi -address "/" 1*entity "/" xdi-address
xdi -address "/$is" 1*entity "/" xdi-address

rel ati onal - st at enent
direct-rel ati onal
i nverse-rel ati onal

Relational statements define relationships between context nodes in a semantic tree. See Relational Arcs
and Relational Statements. A direct relational statement MAY have an inverse relational statement. An
inverse relational statement MAY have a direct relational statement. The existence of a direct relational
statement does not require the existence of its inverse, and vice versa.

11.1.4 Relation Definition Statements

rel ation-definition direct-domain / inverse-domain / direct-range / inverse-range
di rect - domai n
direct-entity-domain
direct-attr-donain

direct-entity-domain / direct-attr-domain
root - address 1*definition "/(/)/" root-address 1*definition
root - address *definition 1*attr-definition "/(/)/" root-address

i nverse-entity-domain / inverse-attr-donain
root - address 1*definition "/$is(/)/" root-address 1*definition
root-address 1*definition "/$is(/)/" root-address *definition 1*

i nver se-donai n
i nverse-entity-domain
i nverse-attr-domai n

direct-entity-range / direct-attr-range
root - address 1*definition "/(/)#/ " root-address 1*definition
root - address 1*definition "/(/)#/ " root-address *definition 1*at

di rect -range
direct-entity-range
direct-attr-range

i nverse-entity-range / inverse-attr-range
root-address 1*definition "/$is(/)#/ " root-address 1*definition
root-address *definition 1*attr-definition "/$is(/)#/ " root-addr

i nver se-range
i nverse-entity-range
i nverse-attr-range

In XDI dictionaries, relational statements are used to define the domain and range of XDI predicates. The
empty inner graph (/) is the relation definition predicate.

11.2 XDI Address

The arcs of an XDl address must follow this order: first any peer roots, then any inner roots, then any entity
arcs, then any attribute arcs, then the literal symbol & (if the address identifies a literal node). If the address
terminates in the literal symbol, it MUST be preceded by either an attribute class or the combination of an
attribute collection and attribute instance as stated in the Literal Statements section above. The required
sequence is summarized in the following ABNF rule, which however is not suitable for deterministic parsing
because of the preceding restriction, so we do not list it as normative.

xdi - address = *peer-root *inner-root *entity *attr [attr "&"]

XDI addresses are categorized for use in Contextual Statements:

xdi - addr ess = root-address / entity-address / attr-address / literal-address

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 64 of 100

r oot - addr ess
entity-address
attr-address
literal -address

11.3 XDI Contexts

The rules in this section define the valid syntax for the three different primary roles for XDI context nodes.

11.3.1 Root Contexts

*peer-root *inner-root
root - address *entity
entity-address *attr
entity-address l1*attr "&"

peer - r oot = peer-root-instance / peer-root-variable
peer -root-instance ="(" entity ")"
peer-root-vari abl e "{" peer-root-instance "}"

i nner - r oot = inner-root-instance / inner-root-variable
i nner-root-instance = i nner-root-peer-root / inner-root-entity
i nner -r oot - peer - r oot ="(" *peer-root "/" *entity ")"

i nner-root-entity ="(" *entity "/" *entity ")"

i nner-root-variabl e = "{" inner-root-instance "}"

Both peer root context nodes and inner root context nodes are syntactically distinguished by enclosing
parentheses. Inner root context nodes contain the subject and predicate of the XDl relational statement that
defines the inner root graph.

11.3.2 Entity Contexts

entity

si ngl et on

col | ection
definition
vari abl e

net a- vari abl e

singleton / collection / definition / variable / nmeta-variable
i nstance / cl ass

“[" class "]"

“I|" (singleton / collection) "|"

“{" (singleton / collection / definition) "}"

"“{" variable "}"

i nstance = person / group / thing / ordina

per son ="="[™"][""" 1] id-string

group ="+ [™"]["""] id-string

t hi ng =" [™"][""" 1] id-string

or di nal ="@ ["!'"]["~"] ordinal-string

cl ass = reserved-class / unreserved-class / "$" ["#" ["=" ["+" ["*"
reserved-cl ass = "$" xdi-name

unr eserved- cl ass ="#" ["~"] id-string

Entity context nodes are either classes or instances. Class node identifiers are always immutable, so they
do not use the immutability symbol ! . Instance node identifiers may use both the immutability symbol and
the relativity symbol ~.

11.3.3 Attribute Contexts

attr = attr-singleton / attr-collection / attr-definition / attr-variab

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 65 of 100

attr-class / attr-instance

"[" attr-class "]"

"|" (attr-singleton / attr-collection) "|"

{" (attr-singleton / attr-collection / attr-definition) "}"
"{" attr-variable "}"
<
<

attr-singl eton
attr-coll ection
attr-definition
attr-vari abl e
attr-neta-variabl e
attr-cl ass
attr-instance

n CI aSS n >ll
i nst ance ">"

The rules for attribute context nodes are very similar to the rules for entity context nodes, with the addition
of chevron brackets < and > to indicate the attribute role.

11.4 XDI Identifiers

id-string
ordi nal -string

xdi - name / xdi-scheme / encap-iri
int / other-schene

For all XDI identifiers except ordinals, there are three basic identifier types: names/numbers, schemes,
and encapsulated IRIs. Ordinals are restricted to either integers or another scheme with an associated
specification for defining the order of identifiers under that scheme. See XDI Schemes.

11.4.1 XDl Names and Numbers

xdi - nane
pct - encoded

ID Start *(ID Continue / " " ["-" [".")
"6 HEXDH G HEXDI G

Note that the ABNF rule xdi - name covers both XDl names and XDI| numbers as defined in XDl Names
and Numbers.

An XDI identifier MUST start with a character with the ID_START property defined by the Unicode Iden-
tifier and Pattern Syntax [UAX31]. The characters following the ID_START character MUST have the
ID_CONTINUE property or be underscore _, hyphen -, or period . .

For compatibility, users SHOULD define and enter XDl nhames and numbers using lower case as a nor-
malization to avoid interoperability problems with other case-insensitive systems. See Normalization and
Comparison.

11.4.2 XDl Schemes

xdi - schene uui d-schene / cid-schene / ot her-schene

uui d- schene = ":uuid:" 8HEXDIG "-" 4HEXDIG "-" 4HEXDI G "-" 2HEXDI G 2HEXDI G "-"
ci d-scheme =":cid-" 1*DIA T ":" xdi-name
ot her - schene =":" (lower-alpha / DAT) *(lower-alpha / DIG@T/ " " ["-"]

See XDI Schemes.

11.4.3 Encapsulated IRIs

The rules in this section have been simplified from [RFC 3987] as sufficient for XDI processors to recognize
IRI syntax without intensive verification.

encap-iri = "(" absolute-iri ")"

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 66 of 100

absolute-iri
iri-scheme
iri-char
saf e- char

unr eserved
reserved
gen-del i s

saf e- sub-del i s

i ri-schene 1*iri-char

ALPHA *(ALPHA / DIAT / "+" ["-" [".")

saf e-char / 9%AO0- EFFFD / pct-encoded

unreserved / reserved / gen-delinms / safe-sub-delins
ALPHA / DT /["-" ["." [" " ["~"

gen-delinms / safe-sub-delins

R e B e e A Y A I AN G)

S A A A B L A Y S

Note that, in comparison to the sub- del i s rule in RFC 3987, the saf e- sub- del i ns rule has removed:

1. The right parentheses character) in order to prevent it from being interpreted as terminating the en-

capsulated IRI.

2. The single quote character' in order to prevent it from being interpreted as terminating a JSON string.

Additional rules for this section:

1. XDl processors are NOT REQUIRED to check URIs for valid URI syntax.

2. XDl parsers reading an URI (i.e. having found an open parenthesis followed by a string matching uri-
scheme followed by a colon) MAY simply consider following characters part of the URI up to the close

parenthesis) .

11.5 Rules Inherited from JSON

The rules in this section covering JSON primitives are adapted from and equivalent to those in [RFC 7159].

val ue
obj ect
nmenmber
array

begi n-array
begi n- obj ect
end- arr ay
end- obj ect
name- separ at or
val ue- separ at or

nunber
exp

frac

i nt
string
char
backsl ash

qguot at i on- mar k

unescaped

xdi-core-v1.0-csd01

Standards Track Work Product

"false" / "null™ / "true" / object / array / nunmber / string
begi n-obj ect [nenmber *(val ue-separator nenber)] end-object
string nane-separator val ue

begi n-array [value *(val ue-separator value)] end-array

ws %5B ws ; [left square bracket

ws %7B ws ; { left curly bracket

ws %5D ws ;] right square bracket

ws %7D ws ; } right curly bracket

ws %3A ws ; : colon

ws %2C ws ; , comm

["-"] int [frac] [exp]

["e*/ "E"] ["-" [/ "+"] 1*DIGT

" 1*DAT

"0" / (%&31-39 *DIAT) ; no | eadi ng zeros

guot ati on-mar k *char quot ati on- mar k

unescaped / backslash (quotation-mark / backsl ash /
o/ tbt f MfT L "n" f tr™ [Mt" [/ "u" 4HEXDI G)

% 5C : \ reverse solidus U+005C
9x22 ; " quotation mark W0022

% 20-21 /| 9%23-5B /| %5D- 10FFFF

29 October 2015

Copyright © OASIS 2015. All rights reserved. Page 67 of 100

WS = *(%20 / 909 / 9%O0A / 9%OD)
Additional rules for this section:

1. The ABNF in RFC 7159 MUST be authoritative. The JSON ABNF given here is just a readable equiv-
alent given for the reader's convenience.

2. While RFC 7159 allows whitespace between JSON tokens to be space, tab, CR, or LF, an XDl literal
statement MUST be a single line, so CR or LF are not allowed as whitespace in JSON values in XDI
literal statements.

3. XDl generators SHOULD produce JSON values without optional whitespace between tokens.

4. For historical reasons, the \ uxxxx escape sequence expresses an UTF-16 code unit, implying a non-
BMP character must be escaped as two code units, and allowing illegal escape sequences such as
unpaired surrogates. This is not ideal, but following RFC 7159, these rules are carried forward for
backward compatibility. XDI processors MAY reject input with invalid UTF-16 code sequences but are
NOT REQUIRED to check.

11.6 Rules Inherited from ABNF (RFC 2234)

These standard ASCII character classes are inherited from [RFC 2234].

ALPHA = %41-5A /| %61-7A . A Z,
DAT = 9%30- 39 ; 0-9
HEXDI G = o%30-39 / %%41-46 /| %x61-66 ; 0-9,
CRLF = %O0D / %O0A / (9%O0D %O0A)

xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 68 of 100

12 Serialization

In keeping with the design goal of serialization independence, an XDI graph may be serialized in any spec-
ified format. JSON was selected as the first format due to its compact structure and minimal overhead.
The XDI TC may specify additional serialization formats in the future, including XML (and potentially binary
formats).

The JSON serialization format specified in this section was developed to strike a balance between a com-
pletely flat serialization model—where every XDl address in a graph has its own unique key in a single top-
level JSON object—and a completely nested serialization model—where every single node in an XDI graph
is represented by its own nested JSON object regardless of depth.

The XDI Technical Committee chose a mid-point of four levels of nested JSON objects for the following
reasons:

» ltdirectly reflects the four-level XDl root-entity-attribute-literal (REAL) graph model, which in turn reflects
the RDF 1.1 quad model.

» ltalso directly emulates the four components of the RDF 1.1 quad model: graph name, subject, predicate,
object.

* This format is easy to navigate and search with tools that support JSON Path [jsonpath].

» If you know (or discover) the address of a specific XDI graph, you can easily discover the associated
XDI graph relations and XDI entities (assuming you have permission).

» If you know (or discover) the address of specific XDI entity within a graph, you can easily discover the
associated XDI entity relations and XDI attributes (assuming you have permission).

» If you know (or discover) the address of specific XDl attribute within a graph, you can easily discover the
associated XDI attribute relations and, if present, the literal value of the attribute (assuming you have
permission).

12.1 XDI JSON Format Serialization Rules

A valid XDI JSON document MUST be a valid JSON document according to [RFC 7159]". Prior to JSON
serialization, an XDI graph MUST be valid according to the rules in the ABNF section.

There are two sets of JSON serialization rules depending on whether an XDI agent requests implied con-
textual statements (i npl i ed=1) or does not request these statements (i npl i ed=0, which is the default).
See Contextual Arcs and Contextual Statements in The XDI Graph Model section. The i npl i ed=1 rules
build on the i npl i ed=0 rules.

Definitions:
1. Solitary context node is a context node that is only the object of a single contextual statement in the
graph, and not the subject or object of any other statements in the graph. Note that an inner root node

is never a solitary context node because it is always be the object of a relational statement.

2. Object-only node is a context node that is the object of one or more relational statements in the graph,
but not the subject of any statements in the graph.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 69 of 100

12.1.1 Rules When Implied Contextual Statements are Excluded
(Implied=0)

12.1.1.1 Root Node Serialization Rules

1. The XDl common graph root MUST be serialized as the top-level JSON object ("common graph object").

2. To serialize a peer or inner graph root node in the common graph, the XDI address of the graph root
node MUST be a key string in the common graph object ("graph root key").

3. The JSON value of a graph root key MUST be a second-level nested JSON object ("graph object").
4. If a graph root node is a solitary context node, the graph object MUST be empty.

5. To serialize an XDI graph root relation, the XDI address of the relation MUST be a key string in the
graph object ("root relation key") prefixed with a forward slash / .

6. The JSON value of a root relation key MUST be an array of the XDI addresses of the XDl object(s)
of the relation.

12.1.1.2 Entity Node Serialization Rules

1. To serialize an XDI entity node inside a graph object (i.e., a common graph object, peer graph object,
or inner graph object), the XDI address of the entity node MUST be a key string in the graph object
("entity key").

2. The JSON value of an entity key MUST be a nested JSON object ("entity object").
3. If an entity node is a solitary context node, the entity object MUST be empty.

4. To serialize an XDI entity relation, the XDI address of the relation MUST be a key string in the entity
object ("entity relation key") prefixed with a forward slash / .

5. The JSON value of an entity relation key MUST be an array of the XDI addresses of the XDI object(s)
of the relation.

12.1.1.3 Attribute Node Serialization Rules

1. To serialize an XDI attribute node inside a graph object or entity object, the XDI address of the attribute
node MUST be a key string in the graph object or entity object ("attribute key").

2. The JSON value of an attribute key MUST be a nested JSON object ("attribute object").
3. Ifan an attribute node is a solitary context node, the attribute object MUST be empty.

4. To serialize an XDI attribute relation, the XDI address of the relation MUST be a key string in the
attribute object ("attribute relation key") prefixed with a forward slash / .

5. The JSON value of an attribute relation key MUST be an array of the XDl addresses of the XDl object(s)
of the relation.

12.1.1.4 Literal Node Serialization Rules

1. To serialize an XDI literal node containing the value of an XDI attribute, the key string in the attribute
object MUST be & (the "literal key").

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 70 of 100

2. The JSON value of the literal key MUST be the JSON value of the XDl literal.
12.1.1.5 Common Variable Node Serialization Rule

1. If an XDl address includes a common variable, that variable MUST be appended to the graph root key,
entity key, or attribute key that precedes it.

12.1.2 Rules When Implied Contextual Statements are Included (Im-
plied=1)
These rules MUST be applied in addition to the rules in the previous section.

1. The first-level subcontexts of every graph root node MUST be serialized using the graph root relation
/1.

2. The first-level subcontexts of every entity node MUST be serialized using the entity relation / / .
3. The first-level subcontexts of every attribute node MUST be serialized using the attribute relation / /.

4. Every object-only context node MUST be serialized following the same rules as for a solitary context
nodes in the previous section.

Note that while the i npl i ed=0 serialization is more verbose, it has two properties that may be useful to
thin clients who wish do navigation directly on the returned JSON document.

1. There will be exactly one serialized XDl subject/predicate/object triple (in the common graph) or con-
text/subject/predicate/object quad (in a peer or inner graph) for every arc in the XDI graph. This is the
serialization most directly comparable to an [rdf-datasets].

a. Every contextual statement will have the predicate / / .
b. Every relational statement will have a predicate that begins with / .
c. Every literal statement will have the JSON object key string &.

2. There will be exactly one JSON object for every XDI context node in the graph, including the outermost
JSON object which represents the common root context.

12.2 Readability Rules

For consistent readability, the following rules are RECOMMENDED.

1. At all context levels of an XDI graph, starting with the common root level, XDI statements that are
applicable in that context SHOULD appear in the following order:

a. Implied contextual statements (when i npl i ed=1).
b. Relational statements.

c. Literal statements.

d. Attribute statements.

e. Entity statements.

f. Graph root statements.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 71 of 100

2. For a set of XDI statements of the same type at the same level, the JSON objects SHOULD appear in
alphabetical order according to the JSON object key string.

3. Ina JSON array of XDl addresses, the XDI address values SHOULD appear in alphabetical order.

12.3 JSON Display Format Rules

JSON XDI format is easy enough to read that in most cases there is no need for a separate display format.
However there may be cases where either: a) the JSON delimiters may be confusing to a non-technical
audience, or b) vertical line space is at a premium. For these situations, we define a simple display version
of the JSON XDI format.

1. First, serialize the graph in JSON XDI format as specified above using the conventional JSON display
formatting rules where each JSON object and array appears on a new line and is indented one level.

2. Remove all JSON delimiters except those delimiting XDI literal values.
3. Remove all blank lines.
4. Remove one level of indenting.

5. If a line needs to wrap, the wrapped line(s) MUST be indented to the same number of tab stops as
the starting line.

6. Any instance of the common root node (which is serialized in the JSON format as the empty string " ")
MUST be replaced by a double forward slash / /.

Note about this format:

1. The left margin represents the common root node; all subroots, entities, attributes, and relations of the
common root node will be aligned with the left margin.

2. All entities, attributes, and relations of a subroot node will be indented one tab stop.
3. All attributes and relations of an entity will be indented one tab stop more than the entity.
4. All relations of an attribute will be indented one tab stop more than the attribute.

5. The ampersand & representing the literal value of an attribute will be indented one tab stop more than
the attribute.

6. The JSON value of the attribute will follow the ampersand on the same line, indented one tab stop
more than the ampersand.

12.4 Examples

Note: in these examples, UUIDs are shown in a truncated format for readability.

12.4.1 Example Where Implied Contextual Statements are Excluded
(Implied=0)

{
"/ $issref": |
"(=!:uuid:x-alice)"
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 72 of 100

],
"<$uri>": {
"&': "https://xdi.exanple.conl=!:uuid:x-alice"
}
"=l:uuid:x-alice": {
"[#friend": [
"=1:uuid: x- bob",
"=I:uuid: x-carol"
"(=!:uuid:x-alicel/#friend)"

]

#spouse": |
"=I:uui d: x-davi d"
]l
"[<#emui | >] <@-0>": {
"&': "alice@xanpl e.cont
}l
"[<#emui | >] <@1>": {
"&': "asmth@xanpl e.net"
}l
"<#email >": {
“I$ref": |
"=1:uuid: x-alice[<#emai |l >] <@-0>"

]
},
"<#home><#emai | >": {
“fSreft: |
"=1:uuid: x-alice[<#emil >] <@1>"

]
}
" <#wor k><#temai | >": {
“fSreft: |
"=1:uuid: x-alice[<#emil >] <@1>"
]
}

=l :uui d: x-al i ce#passport”: {
"<#country>": {
"&': "USA"
}l
"<#name>": {
"&': "Alice Smth"
}l
"<#nunber >": {
"&': "1234567"

}

"(=!:uuid:x-alice)": {
"I Sreft: |

"(=!l:uuid:x-alice/#friend)": {
"+ :uui d: x- or g#car d$do": {
“/$get": [

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 73 of 100

"=1:uui d: x-al i ce<#hone><#enni | >"

]
}
}
"(=!:uuid:x-alicel/#friend)(+!':uuid:x-org#carddoSi f/Strue)": {
"{$fronm": {
"/ $is#riend": [
"=I:uuid: x-alice"
]
}
}
"(=!:uuid: x-bob)": {
"<$uri>": {
"&': "https://xdi.exanple.conl =!:uuid:x-bob/"
}
}
"(=!:uuid:x-carol)": {
"<$uri>": {
"&': "https://xdi.exanple.conf=!:uuid:x-carol/"
}
}

}

12.4.2 Example Where Implied Contextual Statements are Included
(Implied=1)

{
|
" <$uri>",
"=l:uuid: x-alice",
"=1:uuid: x- bob",
"=!l:uuid: x-carol"
"=!:uuid: x-davi d",
"(=!:uuid:x-alice)",
"(=!:uuid:x-alice/#friend)",
"(=!:uuid: x-bob)",
"(=!:uuid:x-carol)"
],
"/ $isSref": |
"(=!:uuid:x-alice)"
],
"<$uri>": {
"&': "https://xdi.exanple.conl=!:uuid:x-alice"
},
"=l:uuid:x-alice": {
|
"[<#emai |l >] ",
"<#emai | >",
" <#home>",
" <#wor k>",
"#passport"
1,
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 74 of 100

“I#friend": |
"=I:uui d: x- bob",
"=I:uuid: x-carol"
"(=!:uuid:x-alicel/#friend)"
1.
"/ #spouse": [
"=I:uui d: x-davi d"

])
"[<#emai |l >]": {
N
" <@O>'l)
"<@1>"
]
}

"[<#emui | >] <@-0>": {

"&': "alice@xanpl e.cont
} 1
"[<#emui | >] <@1>": {
"&': "asmth@xanpl e.net"

}
"<#email >": {
“fSreft: |
"=1:uuid: x-alice[<#emai |l >] <@-0>"
]
}
" <#home>": {
N
"<#email >] "
]
}
"<#thome><#emai | >": {
“fSreft: |
"=1:uuid: x-alice[<#emil >] <@1>"
]
}
" <#wor k>": {
N
"<#emil >]"
]
}
" <#wor k><#temai | >": {
“fSreft: [
"=l:uuid: x-alice[<#emil >] <@1>"
]
}
}
"=1:uuid: x-alice#passport": {
N
" <#country>",
" <#name>",
" <#number >"
]

#country>": {
"&': "USA"

xdi-core-v1.0-csd01

Standards Track Work Product Copyright © OASIS 2015. All rights reserved.

29 October 2015
Page 75 of 100

}l
"<#name>": {
"&': "Alice Smth"
}l
"<#nunmber >": {
"&': "1234567"

}
}
"=1:uuid: x-bob": {},
"=l:uuid: x-carol": {},
"=l:uuid:x-david": {},
"(=!:uuid:x-alice)": {
“fSreft: |

]
},
"(=!l:uuid:x-alice/#friend)": {
|
"+!: uui d: x- or g#car d$do",
"+ :uui d: x- or g#car ddoi f ",
"(+!:uui d: x- or g#car ddoi f/ $true) "
],
"+ :uui d: x- or g#car d$do": {
"/$get": |
"=I:uui d: x-al i ce<#honme><#emai | >"
]
},

"+ :uui d: x- or g#car ddoSi f": {
"/ $true": [
"(=!:uuid:x-alicel/#friend)(+!':uuid:x-org#carddoSi f/ $true)"
]

}
}l
"(=!:uuid:x-alicel/#friend)(+!:uuid:x-org#carddoif/$true)": {
N
“{$fronm"
]l
“{$fronm": {
“[$is#friend": [
"=!:uuid:x-alice"

]

}
}l
"(=!:uuid: x-bob)": {
N |
"<$uri >"
]l
"<$uri>": {
"&': "https://xdi.exanple.conl =!:uuid:x-bob/"

}
} 1
"(=!:uuid:x-carol)": {
N |
"<$uri >"

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 76 of 100

]l
"<$uri>": {

"&': "https://xdi.exanple.conl =!:uuid:x-bob/"
}

}
12.5 Special Case Examples

This section provides examples of how to serialize the special cases involving solitary context nodes, ob-
ject-only context nodes, and inner roots. Each is shown both with and without implied contextual statements.

12.5.1 Solitary Context Nodes
12.5.1.1 Implied=0

Statement format:
//=a
/1 =b

JSON format:

12.5.1.2 Implied=1

Statement format:

[/ =a
=b

JSON format:

{
WV |
=a",
'=p"
]
"san: (),
=b": {}
}

12.5.2 Object-Only Context Nodes
12.5.2.1 Implied=0

Statement format:

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 77 of 100

=al/ #fri end/ =b

JSON format:

"=at: |
"[#friend": [
" p
]

}

12.5.2.2 Implied=1
Statement format:
//=a

[/ =b

=al/ #fri end/ =b

JSON format:

{
|
—
" —p
1.
"=at: |
“[#friend": [
" —p
]
i
"=b": ()
}

12.5.3 Both Solitary and Object-Only Context Nodes

12.5.3.1 Implied=0

Statement format:

=al/ #fri end/ =b
/] =c

JSON format:

"za": {

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 78 of 100

"[#friend": [
n :bll

]
}
"=c": {}
}
12.5.3.2 Implied=1

Statement format:

[/ =a
//=b
/l=c
=a/ #fri end/ =b
JSON format:
{
It
=a"
=c"
1.
"=a" {
"[#friend": [
" —pn
]
}
= {}
=c": {}
}

12.5.4 Non-Empty Inner Root

12.5.4.1 Implied=0

Statement format:

(=al #b) =x/ #y/l =z

JSON format:
{
"(=al #b)": {
"=x":
Tyl
nogn
]
}
}
xdi-core-v1.0-csd01
Standards Track Work Product Copyright © OASIS 2015. All rights reserved.

29 October 2015
Page 79 of 100

}
12.5.4.2 Implied=1

Statement format:

/] =a

/=2

/I (=al #b)

=a/ #b/ (=al #b)
(=al #b) /| =x
(=al #b) =x/ #y/ =z

JSON format:

{
WV |
=a"
=z",
" (=al #b) "
Il
"_g" {
|
" (=al #b) "
]
(¥
"=2' (),
"(=al#b)": {
|
=x"
Il
s {
ENEN
"o
]
}
}
}

12.5.5 Empty Inner Root

12.5.5.1 Implied=0

Statement format:
=al #b/ (=al #b)

JSON format:

"za": {

xdi-core-v1.0-csd01

Standards Track Work Product Copyright © OASIS 2015. All rights reserved.

29 October 2015
Page 80 of 100

"I #b" [

" (=al #b) "

}
12.5.5.2 Implied=1

Statement format:

" (=al #b)"

//=a
/| (=al #b)
=a/ #b/ (=al #b)
JSON format:
{
"It
—
"(=al #b) "
1.
"=at: |
"I #b" |
]
i
"(=al#b)": {}
}

xdi-core-v1.0-csd01

Standards Track Work Product

Copyright © OASIS 2015. All rights reserved.

29 October 2015
Page 81 of 100

13 XDI Addressing

The first design goal of XDI architecture is 100% addressability of all graph nodes. This is accomplished via
XDI’'s semantic tree structure and formally defined in the ABNF rules. The patterns and rules for addressing
and traversing nodes within this semantic tree structure are summarized in this section.

13.1 Semantic Tree Architecture

As summarized in the figure below from the Introduction, a semantic tree is a hybrid between a semantic
graph and a conventional directory tree.
<svg>

<ellipse></ellipse>

<g>

<circle></circle>

<text>Semantic Web:</text>
<text>Description Logic</text>
<text>Knowledge Representation</text>
<text>Machine Learning</text>
<text>RDF, OWL, JSON-LD</text>
</g>

<g>

<circle></circle>

<text>Directory Tree:</text>
<text>ldentity Management</text>
<text>Discovery, Access Control</text>
<text>Authentication, Authorization</text>
<text>X.500, LDAP, DNS</text>
<text>XACML, OAuth</text>

</g>

<text>Semantic Tree:</text>
<text>XDlI</text>

</svg>

Like an RDF semantic graph, all arcs in an XDI graph are represented with subject/predicate/object triples.
Like a conventional X.500 directory tree, hierarchical relationships in an XDI graph may be represented
using contextual arcs that form a rooted tree structure. This combination yields the identifier and addressing
features described in this section.

13.1.1 REAL Sequences

The first rule of XDI addressing within a semantic tree, enforced in the ABNF, is that the sequence of XDI
identifiers composing an XDI address MUST follow the XDI REAL (Root-Entity-Attribute-Literal) sequence
order. The following table lists the sequence patterns that are valid per the ABNF.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 82 of 100

Table 21. Valid REAL Sequences

Pat- | Root | Entity | Attribute | Literal Example
tern #
1 X X X X (+exanpl e- cor p/ #enpl oyee) =al i ce<#enni | >&
2 X X X (+exanpl e- cor p/ #enpl oyee) =al i ce<#emi | >
3 X X (+exanpl e- cor p/ #enpl oyee) =al i ce
4 X (+exanpl e- cor p/ #enpl oyee)
5 X X X =al i ce<#emui | >&
6 X X =al i ce<#emi | >
7 X =al i ce
8 X X $uri &
9 X <$uri >
10 X X X (+exanpl e-cor p) <$uri >&
11 X X (+exanpl e- cor p) <$uri >

Note that in patterns 8, 9, 10, and 11, the attribute describes the root node, i.e., the graph itself, and not any
entity in the graph. In patterns 8 and 9, the attribute describes the common root node of the current graph.
In patterns 10 and 11, the attribute describes a peer root or inner root node.

Note also that a peer root node MUST appear before an inner root node in a sequence that includes both
root node types.

13.1.1.1 Specialization and Generalization

Within a semantic tree, there is a standard pattern called the specialization/ generalization pattern for spe-
cializing the semantic meaning of an entity or attribute. This pattern is based entirely on the order of the
XDl identifiers representing each arc in an XDI address. The rule is: each identifier in a sequence of entity
identifiers specializes the final entity in the sequence, and each attribute in a sequence of attribute identifiers
specializes the final attribute in the sequence.

This rule applies no matter how deep the sequence. For example, each of the following XDl addresses
further specializes the final entity—in this case a bolt.

#bol t

#1 ocki ng#bol t

#engi ne#l ocki ng#bol t

#ai r pl ane#engi ne#l ocki ng#bol t

#j et #ai r pl ane#engi ne#l ocki ng#bol t

+exanpl e- cor p#j et #ai r pl ane#engi ne#l ocki ng#bol t

Note: although the specialization/generalization pattern happens to align with how a noun is specialized by
a series of adjectives or adverbs in English, the pattern is not derived from English (or any other human
language). It is a natural property of semantic trees.

In the first five cases in the example above, the specialization is one of type; each preceding entity class
further specializes the type of bolt. Such type specializations may be one of two kinds:

1. Defined specializations are formally defined in an XDI dictionary so there are machine-understand-
able rules describing how the specialization either categorizes or modifies the attributes and/or rela-
tions of the specialized entity.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 83 of 100

2. Ad hoc specializations do not change the semantic definition of an entity but serve only to categorize
it.

In the final case in the example above, where the class sequence is put in the context of the +exam
pl e- cor p group instance, the specialization is only one of possession and does not affect the semantic
definition of the entity.

The specialization/generalization pattern also applies to attributes. The following examples shows how a
phone number attribute can be specialized:

<#phone>

<#honme><#phone>

<#wor k><#phone>

<#f ax><#phone>

<#home><#f ax><#phone>

<#wor k><#f ax><#phone>

In this example, none of the specializations changes the semantics of the phone number being described;
they only serve to categorize it.

Note that the specialization/generalization pattern cannot be applied to peer root nodes—because they all
represent peer XDI graphs—or to literal nodes—because they cannot be nested.

13.1.2 Peer Roots and XDI Discovery

Conventional directory tree architectures such as X.500, LDAP, and DNS assume a single rooted directory
information tree (DIT). XDl semantic tree architecture assumes there may be any number of parallel rooted
trees (peer graphs), each with its own peer root node. As discussed in the Peer Roots section, while all peer
graphs have a single logical root (the XDI common root node), none of them are assumed to be authoritative
for a particular branch of the graph. Authority may only be determined by consensus among a set of peers.

The process of determining this consensus is called XDI discovery and is defined by the XDI Discovery
specification [XDI-Discovery-V1.0]. XDl discovery begins with the assumption that any peer root node may
contain its own subgraph of other peer root nodes, including attributes such as the authoritative IRIs for their
XDI endpoints. Each of these subgraphs is itself a branch of the semantic tree. An XDl discovery agent may
“‘walk the tree” of the peer root nodes it trusts to discover the location of other peer graphs. In this process
it may also determines their consensus about the authority for a particular branch of the XDl semantic tree.

The sequence of peer root nodes that need to be traversed to determine the location and authority of another
peer root node is called the peer root address. Each peer root node in the address includes the XDl identifier
for the entity authoritative for that peer root relative to the previous peer root. This discovery process can
be applied to all XDl entities, including persons, groups, and things. Examples of peer root addresses:

(=exanpl e- per son)

(+exanpl e- cor p) (=exanpl e- per son)

(+exanpl e-consorti a) (+exanpl e- cor p) (=exanpl e- per son)

(=exanpl e- per son) (*exanpl e-t hi ng)

(=exanpl e- cor p) (*exanpl e-t hi ng)

Each peer graph for (=exanpl e- per son) in the above examples represents the same natural person
(because it has the same absolute XDI identifier). However each is a different peer graph because of its
position in the peer root address. In the first example, the peer graph is at the common root level. This
means the authority is the natural person with the following XDI entity address:

=exanpl e- per son

In the second example, the peer root (=example-person) is relative to the peer root(+example-corp). This
means it is authoritative for the following XDI address:

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 84 of 100

+exanpl e- cor p=exanpl e- per son

This is a contextual description of =exanpl e- per son in the context of +exanpl e- cor p, for which +ex-
anpl e- cor p is authoritative.

In the third example, the peer root (+exanpl e- cor p) is itself relative to the peer root (+exanpl e- con-
sorti a). This means it is authoritative for the following XDI address:

+exanpl e- consort i atexanpl e- cor p=exanpl e- per son

This is a contextual description of =exanpl e- per son in the context of +exanpl e- cor p, whichinturnis a
contextual description in the context of +exanpl e- consorti a. The first entity in this sequence, +exam
pl e- consorti a, is ultimately authoritative for this entire address.

This pattern may be nested as deeply as needed in order to delegate authority for XDI peer graphs the
same way authority may be delegated in DNS or other hierarchical naming and directory tree systems.

Note that because any number of peer graphs may describe the same peer root address, in XDI there is no
single authoritative peer root node at which to begin discovery of that address. Instead, an XDI discovery
agent may choose a specific peer root node to trust as the starting point, or it may query multiple peer root
nodes and compare their answers to determine a consensus.

For more details on XDI discovery, see the XDI Discovery specification [XDI-Discovery-V1.0].

13.1.3 Inner Roots and XDI Reification

As described in Inner Roots in the Roots section, semantic tree architecture uses the inner graph pattern
to reify a relationship so it can be further described. This pattern is fundamental to many aspects of XDI
architecture including XDI messaging, XDI connections, and XDI policies.

From an XDI addressing standpoint, the inner graph pattern enables context nodes to be described and
addressed in the context of either a generic or a specific relationship. For a generic relationship, the predicate
of the inner graph is an XDI class, and all the root-level subjects of the inner graph are members of that
class, as shown in the following example.

{
“(=alicel/#friend)": {
"=bob": {
"/ #introducer": [
"=bet h"
1,
" <#i ntroducti on><$dat e>": {
"&": "2010-11-12"
}
I
"=edith": {
"/ #introducer": [
"=bet h"
1,
" <#i ntroduct i on><$dat e>": {
"&": "2010-11-13"
}
I
"=frank": {
xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 85 of 100

"/ #introducer": [
"=edith"

] 1

" <#i ntroducti on><$dat e>": {
"&': "2010-11- 14"

}

For a specific relationship, the predicate of the inner graph is an XDI instance, and the root-level subjects
of the inner graph are either attributes of that specific relationship, or entities describing the relationship,
as shown in the following example.

{
"(=alicel/=bob)": {
"#marriage": {
"[#mnister": |
" =par son- br own"
1
"<$date>": {
"&': "2010- 08- 22"
}
}
}
}

From the standpoint of XDI addressing, it does not matter if an inner graph is generic or specific. It both
cases, the inner graph serves as the root of another complete XDI graph, and addressing within this graph
works the same way as inside any XDl common graph, with one exception: an inner graph MUST NOT
contain a peer root node. Only the common root node or another peer root node may contain a peer root
node. However an inner root node MAY contain another inner root node.

Both generic and specific relationships described by inner graphs are the starting point for XDl link contracts.
A link contract is an entity that describes the rights and permissions over one or more XDI subgraphs that
an authorizing XDI authority extends to a requesting authority. Each link contract includes a policy branch
that uses nested inner graphs to express the policies that must be satisfied in order to grant authorization.
XDI link contracts and policy expressions are defined in the XDI Link Contracts specification [XDI-Link-
Contracts-V1.0].

13.2 Namespace Architecture

The ABNF defines six native namespaces for XDI identifiers. Namespaces may be used with properties
except in the cases in the table below, as defined in the following sections.

Dollar words are inherently immutable and absolute, and do not contain encapsulated IRIs.

Ordinals, on the other hand, are inherently relative.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 86 of 100

Table 22. Namespace and Property Compatibility

Name- Mutable | Immutable | Absolute Relative Rooted Nested IRI

space
$ No Yes* Yes No Yes Yes No
No Yes* Yes Yes Yes Yes Yes
= Yes Yes Yes Yes Yes Yes Yes
+ Yes Yes Yes Yes Yes Yes Yes
* Yes Yes Yes Yes Yes Yes Yes
@ Yes Yes Yes™* Yes Yes** Yes No

* Classes identifiers are immutable by definition, so they do not use the immutability symbol. See Classes.

** Absolute ordinal identifiers are not ordered, and only absolute ordinal identifiers may be rooted. See
Ordinals.

Four of the namespaces also allow the use of IRIs as XDl identifiers. This allows any resource with an IRI
to be described by an XDI graph. In addition, any XDl address may be transformed into a valid IRI, so all
XDI graph nodes may be treated as Web resources. See the IRIs section..

13.2.1 Mutable and Immutable Identifiers (XDI Names and XDl Num-
bers)

To meet the Persistent Identification design goal, XDl namespace architecture requires the ability for XDI
authorities to assign identifiers that are immutable, i.e., assigned once to identify a resource and never
reassigned to identify a different resource. Immutable XDI identifiers are also called XDl numbers. The
requirements for immutable identifiers are defined by the IETF URN (Uniform Resource Name) specification
[RFC 4122].

At the same time, to meet human usability requirements, XDl namespace architecture requires the ability
for XDI authorities to assign identifiers that are mutable, i.e., that may be assigned to identify one resource
at one point in time and a different resource at a different point in time. Mutable XDI identifiers are also
called XDI names. Examples of mutable identifiers are dynamic IP addresses, domain names that may be
bought and sold by different owners, and email addresses that may be recycled to different users.

Because XDI names are typically more human-friendly than XDI numbers, they are the default form of XDI
identifier. XDI addressing only requires explicit syntax to express an XDI number. All XDl identifiers except
those in the class namespaces ($ and #) MUST use the ! immutability symbol if and only if the XDI authority
for that identifier asserts that the identifier is immutable.

All identifiers in the XDI class namespaces are immutable by definition and MUST NOT use the immutability
symbol. While an XDI class identifier MUST NOT be reassigned, its definition MAY evolve. An evolved
definition SHOULD be identified with an XDI version number. See Versioning.

The XDI & literal symbol is immutable by definition and MUST NOT use the immutability symbol.

An XDl address consisting of a sequence of XDl identifiers is immutable if and only if all of the XDl identifiers
in the sequence are immutable.

The name/number reference pattern defined in the Reference Relations section demonstrates how XDI
graphs may use equivalence relations to map human-friendly mutable identifiers to machine-friendly im-
mutable identifiers. Such mappings may also be cryptographically signed. Thus, while neither an XDI name

xdi-core-v1.0-csd01
Standards Track Work Product

29 October 2015

Copyright © OASIS 2015. All rights reserved. Page 87 of 100

nor an XDI number by itself can solve the namespace design problem known as Zooko’s Triangle [zooko]
https://en.wikipedia.org/wiki/Zooko%27s_triangle], the combination of an XDl name/number mapping can
effectively “square Zooko’s triangle”.

13.2.2 Absolute and Relative Identifiers

Absolute and relative identifiers play a very different role in semantic tree architecture than in conventional
directory tree or federated namespace architectures. In the latter, absolute identifiers only exist at the top
level of the tree, i.e., they identify first level of nodes under the root. All other identifiers for nodes below the
first level are relative to the nodes above them.

In XDI, an absolute identifier is one that identifies the same logical resource regardless of its parent context.
A relative identifier is one whose scope of identification of a resource is relative to its parent context.

For example, in each of the following three XDI addresses, the identifier =! ; uui d: x- 1 identifies the same
natural person.

=l :uuid: x-1
+! :uui d: x-2=!:uuid: x-1
+! :uui d; x-3+! ; uui d: x-2=!: uui d: x-1

In the second address, the person is represented in the context of a group that also has an absolute address.
In the third address, both the person and the first group are represented in the context of a second group
that also has an absolute address.

Because absolute identifiers may exist at any level of the XDI graph and provide so much semantic value,
they are the default form of XDI identifier. XDI addressing only requires explicit syntax to express when an
XDl identifier is relative. All XDl identifiers except those in the $ reserved class namespace MUST use the
~ relativity symbol if and only if the XDI authority for that namespace asserts that the identifier is relative.

All identifiers in the $ reserved class namespace are absolute by definition and MUST NOT use the relativity
symbol. The following two XDl addresses are an example of a relative identifier for a person in the context
of absolute identifiers for two different groups.

+!: uui d: x-4=~al i ce
+!: uui d: x-5=~al i ce

Unlike the previous example, no inference can be made that the person identified by =~al i ce relative to the
first group has any relationship to the person identified by =~al i ce relative the second group. The equiv-
alence of the two relative identifiers has no semantic meaning in an XDI graph. An XDI address consisting
of a sequence of XDl identifiers is absolute if and only if it begins with an absolute identifier. Because of this
rule, when a relative identifier is placed in the context of an absolute identifier, the combination becomes
absolute. For example, in the three XDl addresses below, the combination of

+!: uui d: x- 4=~al i ce represents the same unique person in all three.

+! :uui d: x-4=~al i ce
+!: uui d: x-5+! : uui d: x-4=~al i ce
+! :uui d: x- 64! : uui d: x-5+! : uui d: x-4=~al i ce

This rule holds true even for multiple relative identifiers. For example, in the three XDI addresses below,
the combination of
+!: uui d: x- 4=~al i ce* ~phone represents the same unique device in all three.

+!: uui d: x-4=~al i ce*~phone

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 88 of 100

+!:uui d: x- 5+! : uui d: x- 4=~al i ce* ~phone
+!:uui d: x- 6+! : uui d: x- 5+! : uui d: x- 4=~al i ce*~phone

An XDI address consisting of a sequence of XDl identifiers that begins with a relative identifier is always
relative, even if other identifiers in the sequence are absolute.

To summarize the rules, an XDI absolute identifier:

1. MUST be globally unique in the XDI logical graph.

2. MUST NOT include the relativity symbol.

3. MAY appear at any level of an XDI graph.

4. MUST be inferred as identifying the same logical resource regardless of the context in which it appears.
An XDl relative identifier:

1. MUST be unique within the scope of its parent context node.

2. MUST include the relativity symbol.

3. MUST NOT appear at the root level of an XDI graph.

4. MUST NOT be inferred as identifying the same resource relative to any other XDI context node.

For absolute identifiers, the XDI name prefix "x-" is reserved for examples and testing and SHOULD NOT
be assigned for any other purpose.

13.2.3 Rooted and Nested ldentifiers

For the same reason a semantic tree has different definitions of absolute and relative identifiers, it needs
different terms for describing the relative position of an identifier in an XDl address.

In conventional directory tree or federated namespace architectures, an absolute identifier must be the first
identifier in an address sequence because its parent is the root node. All other identifiers in the address
sequence are relative.

In a semantic tree, an absolute identifier may exist at any level of the tree. So XDI uses the term rooted
identifier for an identifier whose parent is a root node, and rooted address for an XDI address that begins
with a rooted identifier. It uses the term nested identifier for an identifier that whose parent is not a root
node, and nested address for an XDl address that begins with a nested identifier.

Per the rules in the previous section, it follows that:

1. An XDI rooted identifier MUST be an absolute identifier, and a rooted address MUST be an absolute
address.

2. An XDI nested identifier MAY be either an absolute or a relative identifier, and a nested address MAY
be either an absolute or a relative address.

An XDl rooted address is the equivalent of a fully-qualified address in conventional directory tree or federated
namespace architectures. Those architectures assume only a single root node so there is only a single
form of a rooted address. In XDI semantic tree architecture there are four forms of rooted addresses as
shown in he table below.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 89 of 100

Table 23. Rooted Address Forms

Rooted ad- Example
dress type
Common rooted =al i ce<#temai | >
Peer rooted (+exanpl e- cor p) =al i ce<#emai | >
Inner rooted (+exanpl e- cor p/ #enpl oyee) =al i ce<#eni | >
Peer and in- (+exanpl e-di r) (+exanpl e- cor p/ #enpl oyee) =al i ce<#enai | >
ner rooted

In all four examples, the rooted address is =al i ce<#enmi | >. In the first example, the root is the common
root. In the second, the root is a peer root; in the third, an inner root; and in the fourth, both a peer root
and an inner root.

Note that when an XDI address begins with a peer or inner root node, that peer or inner root node is itself
still rooted in the common root node. The common root node is the logical parent node of all absolute XDI
addresses.

13.2.4 Public and Private Identifiers

Most directory tree and federated namespace architectures are designed for either public or private access,
but not both. XDI semantic tree namespaces are equally suited for both public and private access.

Unlike the distinctions between mutable and immutable identifiers and between absolute and relative iden-
tifiers, the distinction between public and private identifiers is not syntactic, but rather one of access policy.

A public identifier is an XDI identifier whose XDI discovery information is available at an XDI endpoint
accessible via a public link contract, i.e., a link contract that grants any requesting authority permission
to access the subgraph without authentication. Public link contracts are defined in the XDI Link Contracts
specification [XDI-Link-Contracts-V1.0].

A private identifier is an XDI identifier that requires a non-public link contract in order to access its XDI
discovery information.

Note that the distinction between public and private identifiers in XDI does not depend on the visibility of
the identifier itself. A public identifier may be kept hidden or a private identifier may be publicly known. The
distinction is based on access control.

A special XDI context, $anon, is reserved for private identifiers whose subgraphs are intended for sharing
XDI data while preserving anonymity, such as might be required for aggregated health records or quantified
self data. The $anon context is defined in the XDI Privacy specification [XDI-Privacy-V1.0].

The ability to support both public and private identifiers—and for private identifiers to use $r ep replacement
relations (as described in Replacement Relations in the Equivalence Relations section) to protect pseudo-
nymity is a key component of how XDI semantic tree architecture supports Privacy By Design [pbd].

13.3 Internationalization

To enable XDl to describe any resource that humans are able to identify in natural language, XDl identifiers
are defined by the Unicode Identifier and Pattern Syntax [UAX31] with the addition of underscore, hyphen,
and period as allowable non-initial charactes.

To enable XDI to describe any resource on the World Wide Web, XDI identifiers support the encapsulation
of any IRI (Internationalized Resource Identifier) as covered in the IRI section.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 90 of 100

13.4 Normalization and Comparison

Consistent identification of resources both within and across contexts is vital to interoperability of XDI. There-
fore XDl requires users to perform any normalization of identifiers before using them as XDI identifiers. The
XDI endpoint itself MUST NOT attempt to perform any normalization or folding. We cover some specific
cases below.

The following normalization rules apply to all XDl identifiers except encapsulated IRIs, which are covered
in the following section.

These normalization rules do not by themselves prevent homographic attacks (spoofing of an XDI identifier
by using look-alike characters from a different script). XDI authorities—and in particular those who act as
XDl registries—SHOULD impose identifier registration policies that prevent homographic attacks.

13.4.1 Upper and Lower Case

XDl processors MUST NOT do case folding or case-insensitive comparison of XDl identifiers. Client systems
which internally use case-insensitive identifiers (e.g. URNs; Macintosh filenames; SQL) are expected to
case-fold names to a consistent normalized format (which SHOULD be all lower case, for compatibility
between XDI applications) before introducing it to an XDI graph.

However, for percent-encoded bytes in XX format, the two hex digits SHOULD be upper case ABCDEF,
not lower case abcdef .

13.4.2 Unicode Normalization Forms

XDI identifiers SHOULD be in Unicode Normalization Form NFKC. [UAX15] Most existing Unicode text
meets this criterion.

13.5IRIs

To be fully compliant with W3C World Wide Web architecture, XDl addressing incorporates IRIs in two ways:

1. Any World Wide Web resource identified by an IRl MAY be described in an XDI graph by encapsulating
the IRI as an XDl identifier.

2. Any XDI graph node identified by an XDl address MAY be expressed as a World Wide Web resource
by appending the XDI address to an IRI that identifies the host XDI graph.

This section defines the rules in both directions.

13.5.1 Describing IRIs in XDI Addresses

Describing an IRI-identified resource in XDI requires two steps: Normalize the IRI (to prevent misinterpre-
tation of where the IRI terminates when encapsulated within an XDI identifier). Encapsulate the IRI within
an XDl identifier by enclosing it in parentheses as required by the XDI ABNF. Examples:

Table 24. IRl Encapsulation

IRI XDl address encapsulating IRI
http://exanpl e. com +(http://exanpl e. com)
mai | t o: al i ce@xanpl e. com =(mailto:alice@xanple.con
https://exanple.confitentid *1 (https://exanpl e.comitent#id)

To normalize an IRI prior to encapsulation, the following steps MUST be performed in order and exactly
once (since they are not idempotent).

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 91 of 100

1. Put the IRI into its absolute normalized form, including any required percent-encoding, as required by
the specification for the applicable IRl scheme and by RFC 3987 [RFC 3987].

2. Percent-encode all percent %characters as %25.
3. Percent-encode all right parentheses) characters as %29.

Ifitis later necessary to extract the original IRI, the following steps MUST be performed on the encapsulated
IRI'in order and exactly once (since they are not idempotent).

1. Decode all %29 percent-encoding as right parentheses) characters.
2. Decode all %25 percent-encoding as percent %characters.

Note that when the IRl is encapsulated as an XDl identifier, semantic meaning is added—at a minimum, a
prefixed XDl context symbol (and potentially an immutability symbol and/or a relativity symbol). So there is
always a difference between the semantic meaning of the XDl identifier and the original IRI.

In addition, although the resource identified by the XDI identifier MUST be the same resource identified by
the IRI on the World Wide Web, the XDI graph node representing the resource in the logical XDl graph
MUST NOT be the same resource identified by the IRl on the World Wide Web. This separation between the
Web resource and the XDI description of the Web resource avoids the HTTPRange-14 issue [httprangel4].

13.5.2 Transforming XDI Addresses into IRIs

Transforming an XDl address identifying an XDI graph node into a valid IRI identifying a World Wide Web
resource address requires two steps:

1. Normalize the XDI address (to turn it into a valid relative IRl and prevent misinterpretation by an IRI
parser).

2. Append the XDI address as a relative IRI to a base IRI identifying the host XDI endpoint.

To normalize the XDI address, the following steps MUST be performed in order and exactly once (since
they are not idempotent).

1. Percent-encode all percent %characters as %25.
2. Percent-encode each of the characters in the table below.

Table 25. Percent-encoding required

Character name Character Encoded

Dollar $ w4

Hash # %3

Equals = 9%8D

Plus + %B

Star, asterisk * %10

At sign @ %26

Ampersand & %C

Pipe, vertical bar | %3C
Chevrons, angle brackets < > %8C YBE
[Square] brackets [] %B %D
Braces, curly brackets {1} %’B %D

xdi-core-v1.0-csd01 29 October 2015

Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 92 of 100

If it is later necessary to restore the original XDl address, the following steps MUST be performed on the
normalized XDI address in order and exactly once (since they are not idempotent).

1. Decode all the percent-encoded characters in the table above.
2. Decode all %25 percent-encoding as percent %characters.

Once the XDI address is transformed into a relative IRI, it may be appended to a base URI that identifies
the host XDI endpoint as defined in section 6.5 of RFC 3987 [RFC 3987]. It is RECOMMENDED that the
base URI end with a forward slash. To the extent that the XDI authority is also the authority for the DNS
name, itis RECOMMENDED that DNS host name of the IRI for an XDI endpoint begin with xdi .

If an XDI address does not contain percent-encoding, the resulting IRl will only reflect percent-encoding of
the XDI syntax characters. For example, start with the following XDI address:

=al i ce<#temai | >

If the base IRI for the XDI endpoint hosting this XDI address is:
http://xdi . exanpl e. cont

Then the resulting fully qualified IRI would be:

http://xdi . exanpl e. conl ¥8Dal i ce¥8CY¥%23emai | ¥BE

If the XDl address contains percent-encoding, the resulting IRI will have percent-encoding of both the orig-
inal percent-encoding as well of the XDl syntax characters. For example, take this XDI address:

=al i ce*sone%0pet ¥20nane
When normalized and appended to the same base URI above, the fully qualified IRI would be:

http://xdi . exanpl e. coml ¥8Dal i ce¥2Asone%@2520pet %2520nane

13.6 XDI Schemes

In addition to context, immutability, and relativity symbols, in some cases XDI identifiers require additional
syntactic structure in order to express identifiers with specific properties. To meet this requirement, XDI
addressing syntax uses a mechanism analogous to URIs and IRIs, xalled XDl schemes.

With URIs and IRIs, an absolute identifier must begin with a scheme name followed by a colon (e.g., “ht t p: ”,
“ftp:”, “mail to:”). Scheme names must also use a limited character set.

With XDl identifiers, a scheme is an optional syntactic feature. If an XDI identifier includes an XDI scheme,
the following rules apply:

1. An XDI scheme name MUST begin and end with a colon character and include a sequence of one or
more characters as allowed by the xdi - schene rule in the XDI ABNF.

2. The scheme name MUST follow the XDI context symbol and, if present, the immutability symbol and/
or relativity symbol.

3. The identifier following the scheme name MUST be valid according to the scheme specification.

As with URIs and IRIs, XDI schemes are extensible. However unlike XDI dictionary spaces, which may be
specialized by any XDI authority in its own namespace, the XDI scheme namespace is shared across all
XDI authorities. To prevent collisions, it is RECOMMENDED that:

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 93 of 100

1. Members of an XDI community requiring a new XDI scheme collaborate to develop a scheme that does
not conflict with existing XDI schemes.

2. A new scheme be documented in a public specification that includes the scheme name, the purpose of
the scheme, ABNF rules for validating identifiers conformant to the scheme, and any security, privacy,
or other special considerations for using the scheme.

3. New scheme specifications be registered with the OASIS XDI Technical Committee.

Note that use of an XDI scheme does not alter the requirement for the XDI identifier to be unique in the
scope of its parent context—and for all XDI absolute identifiers to be globally unique. Indeed, the motivation
for the two XDI schemes defined in the following sections is to establish interoperable standards for how
XDI identifiers can meet this global uniqueness requirement.

13.6.1 UUID (Universally Unique ldentifier)

UUIDs as defined by RFC 4122 [RFC 4122] are widely used in distributed computing as globally unique
identifiers that do not require a central registration authority. When an XDI authority needs to generate an
absolute XDl identifier that does not have any other specific properties (such as a cryptographic identifier—
see the next section), the use of the XDI UUID scheme is RECOMMENDED.

As defined in the XDI ABNF, the XDI UUID scheme name is : uui d: . An XDI UUID MUST be a valid
UUID conforming to RFC 4122. It SHOULD be a Version 4 UUID as specified in sections 4.1.3 and 4.4 of
RFC 4122. Implementers SHOULD follow the recommendations in RFC 4122 and RFC 1750 for generating
random numbers with sufficient entropy.

Although the probability of collision of two UUIDs is extremely small, XDl authorities SHOULD always check
to ensure the uniqueness of an XDI identifier within its parent context. This is particular important for XDI
authorities who offer XDI registry and discovery services to other XDI authorities.

13.6.2 CID (Cryptographic Identifier)

The XDI CID scheme family is reserved for identifiers with cryptographic properties. As defined in the XDI
ABNF, the XDI CID scheme prefix is : ci d-: . The hyphen MUST be followed by one or more digits iden-
tifying a specific XDI CID scheme. Specific XDI CID schemes will be defined in either the XDI Scheme
specification or the XDI Cryptography specification.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 94 of 100

14 Versioning

Using semantic tree architecture, XDI graphs can model versioning uniformly and interoperably at all levels
of the tree. The overall rules for XDI versioning are defined in the XDI Versioning specification. The minimal
rules for expressing the version of an XDI graph conformant with this specification are defined here.

The XDl reserved class name for versions is $v. Since a version tree is by definition an ordered collection
of version instances, a version class will always appears as a collection:

1. ([$v]) for a graph root version collection.

2. [$v] for an entity version collection.

3. [<$v>] for an attribute version collection.

The members of the collection must be ordinal identifiers expressing a ordered set of version instances.

To express that it conforms to a specific version of this specification, an XDI graph MAY include an XDI
version statement. An XDI version statement is an XDl type statement that uses an XDI version collection
to describe the common root node of the XDI graph.

The current specification is the first version of the XDI Core specification, so its version instance identifier
is (@-0) . Therefore if an XDI graph needs to assert conformance with this version of this specification, it
MUST include the following XDI version statement:

{
" $isH |

"($xdi) ([$v]) (@0)"
]

}
Itis NOT REQUIRED for an XDI graph to contain an XDI version statement.

xdi-core-v1.0-csd01 29 October 2015
Standards Track Work Product Copyright © OASIS 2015. All rights reserved. Page 95 of 100

15 Appendix A: Collected ABNF

xdi - graph
xdi - st at enent

cont ext ual - st at enent

di r ect - cont ext ual
peer -root - di r ect
i nner-root-direct
entity-direct
attr-direct

i nver se- cont ext ual
peer-root-inverse
i nner-root-inverse
entity-inverse
attr-inverse

literal -statenent
literal -var-stat enent
val ue-vari abl e

rel ati onal - st at ement
direct-rel ati onal
i nverse-rel ati onal

rel ati on-definition

di rect - donmi n
direct-entity-domain
direct-attr-donmain

i nver se-domai n
i nverse-entity-domain
i nverse-attr-domain

di rect -range
direct-entity-range
direct-attr-range

i nver se-range
i nverse-entity-range
i nverse-attr-range

xdi - addr ess
r oot - addr ess
entity-address
attr-address
literal - address

xdi-core-v1.0-csd01
Standards Track Work Product

*(xdi-statement / CRLF)
contextual -statenent / literal -statenent / rel ati onal -st at enent

di rect-contextual / inverse-contextua

peer-root-direct / inner-root-direct / entity-direct / attr-dire
*peer-root "//" peer-root

root - address "//" inner-root

entity-address "//" entity

attr-address "//" attr

peer-root-inverse / inner-root-inverse / entity-inverse / attr-
peer - r oot “/$is()/" *peer-root

i nner - r oot "/ $is()/" root-address

entity "/$is()/" entity-address

attr "/$is()/" attr-address

entity-address l1*attr "/ & " val ue
entity-address 1*attr "/{& /" val ue-vari able
"{" attr-class "}"

direct-relational / inverse-relational / relation-definition
xdi - address "/" 1*entity "/" xdi-address

xdi - address "/$is" l1l*entity "/" xdi-address

direct-domain / inverse-domain / direct-range / inverse-range
direct-entity-domain / direct-attr-domain

root - address 1*definition "/(/)/" root-address 1*definition
root - address *definition 1*attr-definition "/(/)/" root-address

i nverse-entity-domain / inverse-attr-domain
root - address 1*definition "/$is(/)/" root-address 1*definition
root - address 1*definition "/$is(/)/" root-address *definition 1*

direct-entity-range / direct-attr-range
root - address 1*definition "/(/)#/ " root-address 1*definition
root - address 1*definition "/(/)#/ " root-address *definition 1*at

i nverse-entity-range / inverse-attr-range

root - address 1*definition "/$is(/)#/ " root-address 1*definition
root-address *definition 1*attr-definition "/$is(/)# " root-addr
root-address / entity-address / attr-address / literal -address
*peer-root *inner-root

root - address *entity

entity-address *attr

entity-address 1*attr "&"

29 October 2015

Copyright © OASIS 2015. All rights reserved. Page 96 of 100

peer - r oot
peer-root-instance
peer -root-vari abl e

i nner - r oot

i nner-root-instance
i nner - r oot - peer - r oot
i nner-root-entity

i nner-root-vari abl e

entity

si ngl et on

col l ection
definition
vari abl e

met a- vari abl e

i nst ance
per son
group

t hi ng

or di nal

cl ass
reserved- cl ass
unr eser ved- cl ass

attr

attr-singl eton
attr-coll ection
attr-definition
attr-vari abl e
attr-neta-variabl e
attr-cl ass
attr-instance

id-string
ordi nal -string

xdi - nane
pct - encoded

xdi - schene
uui d- schene
ci d- schene
ot her - schene

encap-iri
absolute-iri
iri-scheme
iri-char
saf e- char
unr eserved
reserved

xdi-core-v1.0-csd01
Standards Track Work Product

peer-root-instance / peer-root-variable
ll(ll ent i ty ll)ll
"{" peer-root-instance "}"

i nner-root-instance / inner-root-variable
i nner-root-peer-root / inner-root-entity
"(" *peer-root "/" *entity ")"

“(" *entity "/" *entity ")"

"“{" inner-root-instance "}"

singleton / collection / definition / variable / meta-variable
i nstance / cl ass

"[" class "]"
"“|" (singleton / collection) "|"
"{" (singleton / collection / definition) "}"
"{" variable "}"
person / group / thing / ordina
=t "It] ["~] id-string
["I] ["~] id-string
eIt] ["~] id-string
"@ ["']["~"] ordinal-string
reserved-class / unreserved-class / "$" ["#" ["=" ["+" ["*"
"$" xdi - name
"# ["~"] id-string

attr-singleton / attr-collection / attr-definition / attr-variab

attr-class / attr-instance

"[" attr-class "]"

"|" (attr-singleton / attr-collection) "|"

"{" (attr-singleton / attr-collection / attr-definition) "}"
"{" attr-variable "}"

"<" class ">"

"<" jnstance ">"

xdi -nane / xdi-schene / encap-iri
int / other-schene

ID Start *(ID Continue / " " ["-" [".")

"9 HEXDI G HEXDI G

uui d-schene / cid-schenme / ot her-schene

"ruuid:" 8HEXDIG "-" 4HEXDIG "-" 4HEXDI G "-" 2HEXDI G 2HEXDI G " -
":cid-" 1*DIAT ":" xdi-nane

"“:" (lower-alpha / DAT) *(|lower-alpha/ DAET/ " " ["-"
"(" absolute-iri ")"

iri-schene ":" 1*iri-char

ALPHA *(ALPHA / DIAT / "+" ["-" [".")

saf e-char / 9%AO0- EFFFD / pct-encoded

unreserved / reserved / gen-delinms / safe-sub-delins
ALPHA / DT /["-" ["." [" ["~"

gen-delinms / safe-sub-delins

29 October 2015

Copyright © OASIS 2015. All rights reserved. Page 97 of 100

/

gen-del i s
saf e- sub-del i ns

val ue
obj ect
nmemnber
array

begi n-array
begi n- obj ect
end- arr ay
end- obj ect
name- separ at or
val ue- separ at or

nunber
exp

frac

i nt
string
char
backsl ash
qguot at i on- mar k
unescaped
ws

ALPHA
DAT

HEXDI G
CRLF

xdi-core-v1.0-csd01

Standards Track Work Product

R e B e e A Y A I AN G)
S A A A B L A Y S
"false" / "null™ / "true" / object / array / nunmber / string

begi n-obj ect [nenber *(val ue-separator nenber)] end-object
string nane-separator val ue
begi n-array [value *(val ue-separator value)] end-array

ws %5B ws ; [left square bracket

ws %7B ws ; { left curly bracket

ws %5D ws ;] right square bracket

ws %7D ws ; } right curly bracket

ws %3A ws ; : colon

ws %2C ws ; , comm

["-"] int [frac] [exp]

["e* "/ "E"] ["-" [/ "+"] 1*DIGT

" 1*DAT

"0" / (%&31-39 *DIAT) ; no | eadi ng zeros

guot ati on-mar k *char quot ati on- mar k

unescaped / backslash (quotation-mark / backsl ash /
o/ tbt f MfTf "n" f tr™ [Mt" [/ "u" 4HEXDI G)

% 5C : \ reverse solidus U+005C
9x22 ; " quotation mark W0022

% 20-21 /| 9%23-5B /| %%5D- 10FFFF

*(%20 / 909 / 9%&OA / 90D)

9%x41-5A /| 9%61-T7A ; A-Z, a-z

%% 30- 39 ; 0-9

x - X - (18 - : R a-] -
9%x30-39 / 9%41-46 /| Yx61-66 0-9 f, AAF

90D / 9O0A / (%OD 9%OA)

29 October 2015

Copyright © OASIS 2015. All rights reserved. Page 98 of 100

16 Appendix B: Acknowledgments

In addition to the Editors, the XDI Technical Committee gratefully acknoledges the contributions of its active
members:

The Committee would also like to thank previous members:

Christopher Allen
Daniel Blum

Les Chasen

Peter Davis

Dr. Phillip Windley
Dr. Lionel Wolberger

Ning Zhang

Geoffrey Strongin (Past Co-Chair)
Bill Barnhill (Past Co-Chair)

Andy Dale

Victor Grey

Jim Fournier

Mike Schwartz

John Bradley

Aldo Castaneda

Kaliya (IdentityWWoman)

William Dyson

Finaly, the Committee would like to thank OASIS staff members for their ongoing support: Chet Ensign,

Paul Knight, Jamie Clark, Dee Schur, Robin Cover, and Scott McGrath.

xdi-core-v1.0-csd01

Standards Track Work Product

Copyright © OASIS 2015. All rights reserved.

29 October 2015
Page 99 of 100

17 Appendix C: Revision History

Table 26. Table

Revi- |Date| Changes Made
sion
CSD | 29 First Version
01 Oc-

tober

2015

xdi-core-v1.0-csd01

Standards Track Work Product

Copyright © OASIS 2015. All rights reserved.

29 October 2015
Page 100 of 100

