
[image: image1.jpg]

JSON Profile of XACML 3.0 Version 1.1
Committee Specification 01
05 December 2018
Specification URIs

This version:

https://docs.oasis-open.org/xacml/xacml-json-http/v1.1/cs01/xacml-json-http-v1.1-cs01.doc (Authoritative)
https://docs.oasis-open.org/xacml/xacml-json-http/v1.1/cs01/xacml-json-http-v1.1-cs01.html
https://docs.oasis-open.org/xacml/xacml-json-http/v1.1/cs01/xacml-json-http-v1.1-cs01.pdf
Previous version:

N/A
Latest version:

https://docs.oasis-open.org/xacml/xacml-json-http/v1.1/xacml-json-http-v1.1.doc (Authoritative)
https://docs.oasis-open.org/xacml/xacml-json-http/v1.1/xacml-json-http-v1.1.html
https://docs.oasis-open.org/xacml/xacml-json-http/v1.1/xacml-json-http-v1.1.pdf
Technical Committee:

OASIS eXtensible Access Control Markup Language (XACML) TC
Chairs:

Hal Lockhart (hal.lockhart@oracle.com), Oracle
Bill Parducci (bill@parducci.net), Individual

Editors:

David Brossard (david.brossard@axiomatics.com), Axiomatics AB
Steven Legg (steven.legg@viewds.com), Individual
Related work:

This specification replaces or supersedes:
· JSON Profile of XACML 3.0 Version 1.0. Edited by David Brossard. Latest version: http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/xacml-json-http-v1.0.html.
This specification is related to:

· eXtensible Access Control Markup Language (XACML) Version 3.0 Plus Errata 01. Edited by Erik Rissanen. 12 July 2017. OASIS Standard incorporating Approved Errata. http://docs.oasis-open.org/xacml/3.0/errata01/os/xacml-3.0-core-spec-errata01-os-complete.html. Latest version: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html.
Abstract:

The aim of this profile is to define a standardized interface between a policy enforcement point and a policy decision point using JSON. The decision request and response structure is specified in the core XACML specification. This profile leverages it.

Status:

This document was last revised or approved by the OASIS eXtensible Access Control Markup Language (XACML) TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#technical.

TC members should send comments on this specification to the TC’s email list. Others should send comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/xacml/.
This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established. For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-open.org/committees/xacml/ipr.php).
Note that any machine-readable content (Computer Language Definitions) declared Normative for this Work Product is provided in separate plain text files. In the event of a discrepancy between any such plain text file and display content in the Work Product's prose narrative document(s), the content in the separate plain text file prevails.

Citation format:

When referencing this specification the following citation format should be used:
[xacml-json-v1.1]
JSON Profile of XACML 3.0 Version 1.1. Edited by David Brossard and Steven Legg. 05 December 2018. OASIS Committee Specification 01. https://docs.oasis-open.org/xacml/xacml-json-http/v1.1/cs01/xacml-json-http-v1.1-cs01.html. Latest version: https://docs.oasis-open.org/xacml/xacml-json-http/v1.1/xacml-json-http-v1.1.html.
Notices
Copyright © OASIS Open 2018. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.
Table of Contents
61
Introduction

61.1 IPR Policy

61.2 Glossary

71.3 Terminology

71.4 Normative References

71.5 Non-Normative References

82
Vocabulary

93
Overview of the translation mechanisms

93.1 Assumed default values

93.2 Objects

93.2.1 Member names

93.2.2 Object order

93.2.3 Object cardinality

93.2.4 Null values

103.3 Data Types

103.3.1 Supported Data Types

113.3.2 Multiple values

113.3.3 The xpathExpression Datatype

123.3.3.1 Example

123.3.4 Special numeric values

133.4 Example

144
The XACML request

144.1 Class Diagram

144.2 Representation of the XACML request in JSON

144.2.1 The Request object representation

154.2.1.1 Example

164.2.2 The Category object representation

164.2.2.1 Shorthand notation for standard XACML categories

164.2.2.2 Default Category objects

174.2.2.3 Example

174.2.3 The Content object representation

174.2.3.1 XML Escaping

174.2.3.2 Base64 Encoding

184.2.3.3 Example

184.2.4 The Attribute object representation

194.2.4.1 Example

194.2.5 The MultiRequests object representation

194.2.6 The RequestReference object representation

194.2.6.1 Non-normative example

215
The XACML response

215.1 Class Diagram

215.2 Representation of the XACML response in JSON

215.2.1 The Result object representation

225.2.2 The Status object representation

225.2.3 The MissingAttributeDetail object

235.2.4 The StatusCode object representation

235.2.4.1 Example

245.2.5 The ObligationOrAdvice object representation

245.2.6 The AttributeAssignment object representation

255.2.7 The PolicyIdentifierList object representation

255.2.8 The IdReference object representation

266
Transport

266.1 Transport Security

277
IANA Registration

277.1 Media Type Name

277.2 Subtype Name

277.3 Required Parameters

277.4 Optional Parameters

277.5 Encoding Considerations

277.6 Security Considerations

277.7 Interoperability Considerations

277.8 Applications which use this media type

277.9 Magic number(s)

277.10 File extension(s)

287.11 Macintosh File Type Code(s)

287.12 Intended Usage

298
Examples

298.1 Request Example

298.2 Response Example

308.3 Request for Multiple Decisions Example

318.4 Multiple Decisions Response Example

339
Conformance

34Appendix A.
Acknowledgments

35Appendix B.
Revision History

1 Introduction

 MACROBUTTON NoMacro [All text is normative unless otherwise labeled]
{Non-normative}

The XACML architecture promotes a loose coupling between the component that enforces decisions, the policy enforcement point (PEP), and the component that decides based on XACML policies, the policy decision point (PDP).

The XACML standard defines the format of the request and the response between the PEP and the PDP. As the default representation of XACML is XML and is backed by a schema, the request and response are typically expressed as XML elements or documents. Depending on the PDP implementation, the request and response could be embedded inside a SOAP message or even a SAML assertion as described in the SAML profile of XACML.

With the rise in popularity of APIs and its consumerization, it becomes important for XACML to be easily understood in order to increase the likelihood it will be adopted.

This profile aims at defining a JSON format for the XACML request and response. It also defines the transport between client (PEP) and service (PDP).

In writing this document, the authors have kept three items in mind:

1. Equivalence: a XACML request and response expressed in XML need not be strictly equivalent in structure to a XACML request expressed in JSON so long as the meaning remains the same and so long as the JSON and XML requests would lead to the same response (decision, obligation, and advice).

2. Lossless behavior: it MUST be possible to translate XACML requests and responses between XML and JSON representations in either direction at any time without semantic loss.

3. Transport-agnostic nature: the JSON representation MUST contain all the information the XACML request and/or response contains: this means the transport layer cannot convert XACML decisions into HTTP codes, e.g. HTTP 401 for a Deny decision.
IPR Policy

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established. For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-open.org/committees/xacml/ipr.php).
1.1 Glossary

Array

An ordered sequence of zero or more JSON elements.

Element

In JSON, a value; either a JSON primitive type, an object or an array.

Member

A name/value pair in a JSON object.

Object

In JSON, an unordered collection of zero or more members.

1.2 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

1.3 Normative References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[RFC4627]
D. Crockford, The application/json Media Type for JavaScript Object Notation (JSON), http://tools.ietf.org/html/rfc4627, IETF RFC 4627, July 2006.

[XACMLMDP]
XACML v3.0 Multiple Decision Profile Version 1.0. http://docs.oasis-open.org/xacml/3.0/multiple/v1.0/xacml-3.0-multiple-v1.0.html
[RFC8259]
T.Bray, Ed., The JavaScript Object Notation (JSON) Data Interchange Format, https://tools.ietf.org/html/rfc8259, IETF RFC 8259, December 2017.
[NAMESPACES]
Bray, Tim, et.al. eds, Namespaces in XML 1.0 (Third Edition), W3C Recommendation 8 December 2009, available at http://www.w3.org/TR/2009/REC-xml-names-20091208/
[XACML30]
eXtensible Access Control Markup Language (XACML) Version 3.0 Plus Errata 01. Edited by Erik Rissanen. 12 July 2018. OASIS Standard incorporating Approved Errata. http://docs.oasis-open.org/xacml/3.0/errata01/os/xacml-3.0-core-spec-errata01-os-complete.html. Latest version: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html.

[XML]
Bray, Tim, et.al. eds, Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation 26 November 2008, available at http://www.w3.org/TR/2008/REC-xml-20081126/
[XMLDatatypes]
Biron, Paul et al. Eds, XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004, available at http://www.w3.org/TR/xmlschema-2/
[XPATH]
James Clark and Steve DeRose, XML Path Language (XPath), Version 1.0, W3C Recommendation 16 November 1999. Available at: http://www.w3.org/TR/xpath
[IEEE754]
Institute of Electrical and Electronics Engineers, "Standard for Floating-Point Arithmetic", IEEE Standard 754, August 2008.
1.4 Non-Normative References

[XACMLREST]
REST Profile of XACML v3.0 Version 1.0. Edited by Rémon Sinnema. Latest version: http://docs.oasis-open.org/xacml/xacml-rest/v1.0/xacml-rest-v1.0.doc.

[HTTP]
Hypertext Transfer Protocol. June 1999. IETF RFC 2616. http://tools.ietf.org/html/rfc2616
[HTTPS]
HTTP over TLS. May 2000. IETF RFC 2818. http://tools.ietf.org/html/rfc2818
[BASE64]
The Base16, Base32, and Base64 Data Encodings. October 2006. IETF RFC 4648. http://tools.ietf.org/html/rfc4648

2 Vocabulary

{Non-normative}

XML introduces the notion of elements. The equivalent notion in JSON is an object. XML introduces the notion of attributes. The equivalent notion in JSON is a member.

3 Overview of the translation mechanisms

3.1 Assumed default values

To avoid bloating the JSON request and response, certain parts of a request and response have default values which can then be omitted. As an example, the default value for the data-type of an attribute value is String (http://www.w3.org/2001/XMLSchema#string).

The user should refer to the XACML 3.0 specification document [XACML30] for a normative definition of the request and response elements.

3.2 Objects

3.2.1 Member names

Unless otherwise stated, JSON member names MUST match the XACML XML element and/or attribute names exactly, including case.

The following XML elements and attributes have been renamed:

· The name of the XACML XML <Attributes> element has been changed in JSON to the member name "Category". It makes more sense to call the parent element that way since it represents an instance of a category from a XACML sense.

· The <AttributeValue> element in the XML representation does not have an object counterpart in the JSON representation. The information it bears in XML is moved to the parent Attribute object in the JSON representation. A "Value" member has been introduced in the Attribute object to bear the information contained in the XML <AttributeValue> element as specified in section 4. The XACML request.

· The AdviceId and the ObligationId attributes of the <Advice> and the <Obligation> XML elements respectively have been renamed to "Id" in JSON.

3.2.2 Object order

The order of the objects and values in XACML does not matter. Therefore, the order of objects and values in the serialized form (JSON) does not matter.

3.2.3 Object cardinality

When in the XACML specification an XML element occurs zero or more times, the JSON equivalent is an optional member with an array for the value. The array MAY be empty and this case is semantically equivalent to the member being omitted from the containing object.

When in the XACML specification an XML element occurs one or more times, the JSON equivalent is a mandatory member with an array for the value. The array MUST have at least one element.
The class diagram in section 4.1. Class Diagram states the cardinality and relationship between kinds of objects.
3.2.4 Null values

The JSON null value is not permitted, including as an element in an array. If an optional, non-array member has no value then it MUST be omitted from the containing object. A mandatory, non-array member MUST have a non-null value.
3.3 Data Types

This section defines how data-types are represented and handled in the JSON representation. Chapter 10, section 10.2.7 in the XACML 3.0 specification as well as section A.2 list the data-types that are defined in XACML. These are listed in the table below in section 3.3.1. It lists the shorthand value that MAY be used when creating a XACML attribute in the JSON representation.

3.3.1 Supported Data Types

The full XACML data type URI can also be used in JSON as the JSON shorthand type codes are a convenience, not a replacement.

It is also possible to omit the JSON "DataType" member for certain XACML data types when it can safely be inferred from the value of the attribute as shown in Table 1.

Table 1. JSON shorthand and rules of inference for XACML data types.

	XACML data type identifier
	JSON shorthand type code
	Mapping / Inference Rule

	http://www.w3.org/2001/XMLSchema#string
	string
	JSON string

	http://www.w3.org/2001/XMLSchema#boolean
	boolean
	JSON boolean

	http://www.w3.org/2001/XMLSchema#integer
	integer
	JSON number with no fractional portion and within the integer range defined by the XML schema in [XMLDatatypes].

	http://www.w3.org/2001/XMLSchema#double
	double
	JSON number with fractional portion or out of integer range as defined in [XMLDatatypes].

	http://www.w3.org/2001/XMLSchema#time
	time
	None – inference must fail.

	http://www.w3.org/2001/XMLSchema#date
	date
	None – inference must fail.

	http://www.w3.org/2001/XMLSchema#dateTime
	dateTime
	None – inference must fail.

	http://www.w3.org/2001/XMLSchema#dayTimeDuration
	dayTimeDuration
	None – inference must fail.

	http://www.w3.org/2001/XMLSchema#yearMonthDuration
	yearMonthDuration
	None – inference must fail.

	http://www.w3.org/2001/XMLSchema#anyURI
	anyURI
	None – inference must fail.

	http://www.w3.org/2001/XMLSchema#hexBinary
	hexBinary
	None – inference must fail.

	http://www.w3.org/2001/XMLSchema#base64Binary
	base64Binary
	None – inference must fail.

	urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name
	rfc822Name
	None – inference must fail.

	urn:oasis:names:tc:xacml:1.0:data-type:x500Name
	x500Name
	None – inference must fail.

	urn:oasis:names:tc:xacml:2.0:data-type:ipAddress
	ipAddress
	None – inference must fail.

	urn:oasis:names:tc:xacml:2.0:data-type:dnsName
	dnsName
	None – inference must fail.

	urn:oasis:names:tc:xacml:3.0:data-type:xpathExpression
	xpathExpression
	None – inference must fail

For all of the XACML data types that cannot be inferred from the value, the following MUST be observed:

· The JSON "DataType" member MUST be specified and the attribute value expressed in the XACML string representation of the value.

· Implementation-specific (e.g. Javascript) code may choose to parse the XACML string values into internal numeric representations for internal use, such as for dateTime or duration (dayTimeDuration, yearMonthDuration) values, but the JSON transport representation must always express the attribute value in the serialized XACML string representation of the XACML data type.

3.3.2 Multiple values

In the case of an array of two or more values, and if the "DataType" member is not specified, it may not be possible to infer the "DataType" until all the values have been inspected.

Inference for multiple values works according to the inference rules as set in section 3.3.1. If a given data type cannot be inferred and there is no "DataType" member specified then the array of values will be considered as an array of string.

If an array of values contains integers and doubles only (excluding non-numerical values), then the inference will make the array an array of double.

Any other combination of values will make the inference fail and the array will be considered as an array of string.

3.3.3 The xpathExpression Datatype

Values of the xpathExpression data-type are represented as JSON objects. Each such object contains the following members:

Table 2 - Members of the xPathExpression Datatype

	Member name
	Type
	Mandatory/Optional
	Default value

	"XPathCategory"
	A string containing a URI or the shorthand notation defined in section 4.2.2.1
	Mandatory
	None

	"Namespaces"
	An array of NamespaceDeclaration objects
	Optional
	None

	"XPath"
	String
	Mandatory
	None

The "XPath" member contains the XPath expression [XPATH] from the XACML value. The "Namespaces" member contains namespace declarations for interpreting qualified names [NAMESPACES]

 in the XPath expression.

A NamespaceDeclaration object contains the following members:

Table 3 - Members of the NamespaceDeclaration Datatype

	Member name
	Type
	Mandatory/Optional
	Default value

	"Prefix"
	String
	Optional
	None

	"Namespace"
	A string containing a URI
	Mandatory
	None

Each NamespaceDeclaration object describes a single XML namespace declaration [NAMESPACES]. The "Prefix" member contains the namespace prefix and the "Namespace" member contains the namespace name. In the case of a namespace declaration for the default namespace the "Prefix" member SHALL be absent.

The "Namespaces" array MUST contain a NamespaceDeclaration object for each of the namespace prefixes used by the XPath expression. The "Namespaces" array MAY contain additional NamespaceDeclaration objects for namespace prefixes that are not used by the XPath expression. There SHALL NOT be more than one NamespaceDeclaration object for the same namespace prefix.

3.3.3.1 Example

{Non-normative}

This example shows the XML representation of an XACML attribute with a value of the xpathExpression data-type and its corresponding representation in JSON.
As XML:
<Attribute xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
 AttributeId="urn:oasis:names:tc:xacml:3.0:content-selector">
 <AttributeValue xmlns:md="urn:example:med:schemas:record"
 XPathCategory="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
 DataType="urn:oasis:names:tc:xacml:3.0:data-type:xpathExpression"
 >md:record/md:patient/md:patientDoB</AttributeValue>
</Attribute>
As JSON:
{

"Attribute":{

"AttributeId":"urn:oasis:names:tc:xacml:3.0:content-selector",

"DataType":"xpathExpression",

"Value":{

"XPathCategory":

"urn:oasis:names:tc:xacml:3.0:attribute-category:resource",

"Namespaces":[{

"Namespace": "urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"

},{

"Prefix":"md",

"Namespace":"urn:example:med:schemas:record"

}],

"XPath":"md:record/md:patient/md:patientDoB"

}

}
}
3.3.4 Special numeric values

The following special numeric values are not supported by the profile. Should the request contain such values, the Policy Decision Point MUST reply with an Indeterminate result and a status value of urn:oasis:names:tc:xacml:1.0:status:syntax-error as defined in Appendix B, section 8 of [XACML30]

.

Additional behavior of the PDP when returning urn:oasis:names:tc:xacml:1.0:status:syntax-error is specified in sections 5.57 and B.8 of [XACML30]

.
· IEEE 754-2008 NaN ("NaN")

· IEEE 754-2008 positive infinity ("INF")

· IEEE 754-2008 negative infinity ("-INF")

· IEEE 754-2008 negative zero (-0)

3.4 Example

{Non-normative}

The example below illustrates equivalent possible notations:

Table 4 - Equivalent examples

	Representation explicitly stating the data-type
	Representation omitting the data-type

	{
 "Attribute":[{

 "AttributeId":"document-id"

 "DataType":"integer"
 "Value"
: 123
 }]

}
	{
 "Attribute":[{

 "AttributeId":"document-id"
 "Value":123
 }]

}

4 The XACML request

4.1 Class Diagram

The following class diagram represents the XACML request structure for the JSON representation. It is not a representation of the XACML request as expressed in XML.

The key differences are:

· The <AttributeValue> element in the XML representation does not have a counterpart in the JSON representation. The information it bears in XML is moved to the parent Attribute object in the JSON representation.

· There are 4 new objects for attributes belonging to the most commonly used categories.
[image: image2.emf]
4.2 Representation of the XACML request in JSON

An XACML request is represented as an object with a single member named "Request". The value of the "Request" member is a Request object.
4.2.1 The Request object representation

The Request object contains the following members:

Table 5 - Members of the Request object

	Member name
	Type
	Mandatory/Optional
	Default value

	"ReturnPolicyIdList"
	Boolean
	Optional
	false

	"CombinedDecision"
	Boolean
	Optional
	false

	"XPathVersion"
	String
	Mandatory if the XACML request contains XPath expressions; otherwise, optional.
	None

	"Category"
	An array of Category objects
	Optional, but see section 4.2.2.2.
	None

	"Resource"
	An array of Category objects
	Optional, but see section 4.2.2.2.
	None

	"Action"
	An array of Category objects
	Optional, but see section 4.2.2.2.
	None

	"Environment"
	An array of Category objects
	Optional, but see section 4.2.2.2.
	None

	"AccessSubject"
	An array of Category objects
	Optional, but see section 4.2.2.2.
	None

	"RecipientSubject"
	An array of Category objects
	Optional, but see section 4.2.2.2.
	None

	"IntermediarySubject"
	An array of Category objects
	Optional, but see section 4.2.2.2.
	None

	"CodeBase"
	An array of Category objects
	Optional, but see section 4.2.2.2.
	None

	"RequestingMachine"
	An array of Category objects
	Optional, but see section 4.2.2.2.
	None

	"MultiRequests"
	A MultiRequests object
	Optional
	None

The Category object corresponds to the XML <Attributes> element. Just like the <Attributes> element is specific to a given XACML attribute category, the Category object in JSON is specific to a given XACML attribute category.

The MultiRequests object serves to support the Multiple Decision Profile [XACMLMDP]

.

The representation of these objects is elicited in the following relevant sections.

Note that, in the XACML XML schema, the XML Request element contains a <RequestDefaults> element. To simplify things and since the <RequestDefaults> element contains a single <XPathVersion> element with a single value, the <RequestDefaults> element was flattened into a single member called "XPathVersion" as mentioned in the above table.

4.2.1.1 Example

{Non-normative}

{

"Request":{

"Category":[…],

"XPathVersion":"http://www.w3.org/TR/1999/REC-xpath-19991116"

}

}
4.2.2 The Category object representation

The Category object contains the following members:

Table 6 - Members of the Category object

	Member name
	Type
	Mandatory/Optional
	Default value

	"CategoryId"
	A string containing a XACML category URI or the shorthand notation defined in section 4.2.2.1
	Mandatory for a Category object in the "Category" member array; otherwise, optional. See section 4.2.2.2.
	None

	"Id"
	String
	Optional
	None

	"Content"
	String. The value must be escaped or encoded as explained in section 4.2.3.
	Optional
	None

	"Attribute"
	An array of Attribute objects
	Optional
	None

The Attribute object is defined in section 4.2.4, The Attribute Object representation.

The Category object is the equivalent of the <Attributes> element in the XACML XML representation.

The structure and default values for the aforementioned are elicited in the following relevant sections.

4.2.2.1 Shorthand notation for standard XACML categories

The following table defines a shorthand notation for the standard categories defined in [XACML30]

.

Table 7 - Shorthand notation for standard XACML categories

	Identifier
	Short name

	urn:oasis:names:tc:xacml:3.0:attribute-category:resource
	Resource

	urn:oasis:names:tc:xacml:3.0:attribute-category:action
	Action

	urn:oasis:names:tc:xacml:3.0:attribute-category:environment
	Environment

	urn:oasis:names:tc:xacml:1.0:subject-category:access-subject
	AccessSubject

	urn:oasis:names:tc:xacml:1.0:subject-category:recipient-subject
	RecipientSubject

	urn:oasis:names:tc:xacml:1.0:subject-category:intermediary-subject
	IntermediarySubject

	urn:oasis:names:tc:xacml:1.0:subject-category:codebase
	Codebase

	urn:oasis:names:tc:xacml:1.0:subject-category:requesting-machine
	RequestingMachine

The shorthand notation MAY be used as described in sections 4.2.2.2 and 4.2.2.

4.2.2.2 Default Category objects

Category objects in the "Category" member array relate to various XACML attribute categories as indicated by their individual "CategoryId" member, which is a mandatory member only for these Category objects. To simplify the JSON representation, this profile also defines other members (of the Request object) with an array of Category objects for the value where the member names correspond to the short names defined in section 4.2.2.1. The Category objects in these arrays assume a default value for their "CategoryId" member, i.e., the short name of the containing member, so that it need not be explicitly written. The "CategoryId" member is optional for these Category objects, but if it is provided the value MUST be the same as the short name of the containing member.

The members with the short names have array values in order to cater for multiple decision requests as defined in [XACMLMDP]

.
The Request object MUST contain at least one Category object in one of its members.
4.2.2.3 Example

{Non-normative}

{

"Request":{

"Category":[{

"CategoryId":"custom-category",

"Attribute":[…]

},{

"CategoryId":"another-custom-cat",

"Attribute":[…]

}],

"AccessSubject":[{

"Attribute":[…]

}],

"Action":[{

"Attribute":[…]

},{

"Attribute":[…]

}]

}
}

4.2.3 The Content object representation

There are two possible ways to represent the XML content of a XACML request in the JSON representation: XML escaping or Base64 encoding. The request parser must determine whether XML escaping or Base 64 encoding is used. There are no members in the JSON request to indicate which is used.

In both cases, any XML content sent in a JSON request MUST include all namespace definitions needed to parse that content.

4.2.3.1 XML Escaping

The value of the "Content" member is a string which MUST contain an XML payload per the XACML specification.

XML content must be escaped before being inserted into the JSON request. JSON dictates double quotes (") be escaped using a backslash (\). This profile therefore follows this behavior.

In addition, since the XML content could itself contain backslashes and possibly the sequence \", it is important to also escape backslashes.

4.2.3.2 Base64 Encoding

In the case of Base64 encoding, the XML content shall be converted to its Base64 representation as per [BASE64]

.
4.2.3.3 Example

{Non-normative}

The following is an example using XML escaping as defined in 4.2.3.1.

{

"Request":{

"AccessSubject":[{

"Content": "<?xml version=\"1.0\"?><catalog><book id=\"bk101\"><author>Gambardella, Matthew</author><title>XML Developer's Guide</title><genre>Computer</genre><price>44.95</price><publish_date>2000-10-01</publish_date><description>An in-depth look at creating applications with XML.</description></book></catalog>"

}]

}
}

The following is an example using Base64 encoding as defined in 4.2.3.2.

{

"Request":{

"AccessSubject":[{

"Content": "PD94bWwgdmVyc2lvbj0iMS4wIj8+DQo8Y2F0YWxvZz48Ym9vayBpZD0iYmsxMDEiPjxhdXRob3I+R2FtYmFyZGVsbGEsIE1hdHRoZXc8L2F1dGhvcj48dGl0bGU+WE1MIERldmVsb3BlcidzIEd1aWRlPC90aXRsZT48Z2VucmU+Q29tcHV0ZXI8L2dlbnJlPjxwcmljZT40NC45NTwvcHJpY2U+PHB1Ymxpc2hfZGF0ZT4yMDAwLTEwLTAxPC9wdWJsaXNoX2RhdGU+PGRlc2NyaXB0aW9uPkFuIGluLWRlcHRoIGxvb2sgYXQgY3JlYXRpbmcgYXBwbGljYXRpb25zIHdpdGggWE1MLjwvZGVzY3JpcHRpb24+PC9ib29rPjwvY2F0YWxvZz4="

}]

}
}

4.2.4 The Attribute object representation

The Attribute object contains the following members:

Table 8 - Members of the Attribute Object

	Member name
	Type
	Mandatory/

Optional
	Default value

	"AttributeId"
	A string containing a XACML attribute URI
	Mandatory
	None

	"Value"
	An array of elements of the same type; either string, boolean, number (which maps to either a XACML integer or double as defined in Supported Data Types) or object.
	Mandatory
	None

	"Issuer"
	String
	Optional
	None

	"DataType"
	A string containing a XACML data type URI or the shorthand notation defined in section 3.3.1
	Optional
	The default value will be http://www.w3.org/2001/XMLSchema#string unless the data type can be safely assumed to be otherwise according to the rules set in sections 3.3.1 and 3.3.2.

	"IncludeInResult"
	Boolean
	Optional
	false

4.2.4.1 Example

{Non-normative}

{
"Attribute":[{

"AttributeId":"urn:oasis:names:tc:xacml:2.0:subject:role",

"Value":["manager","administrator"]

}]
}

4.2.5 The MultiRequests object representation

The MultiRequests object is optional in the JSON representation of XACML. Its purpose is to support the Multiple Decision Profile [XACMLMDP]

. The MultiRequests object contains the following members:

Table 9 - Members of the MultiRequests object
	Member name
	Type
	Mandatory/Optional
	Default value

	"RequestReference"
	An array of one or more RequestReference objects
	Mandatory
	None

4.2.6 The RequestReference object representation

The RequestReference object contains the following members:

Table 10 - Members of the RequestReference object
	Member name
	Type
	Mandatory/Optional
	Default value

	"ReferenceId"
	An array of one or more strings. Each string MUST be the value of a Category object’s "Id" member.
	Mandatory
	None

4.2.6.1 Non-normative example

{

"MultiRequests":{

"RequestReference":[{

"ReferenceId":["foo1","bar1"]
},{

"ReferenceId":["foo2","bar1"]
},{

"ReferenceId":["foo3","bar1"]

}]

}

}

5 The XACML response

5.1 Class Diagram
[image: image3.emf]
5.2 Representation of the XACML response in JSON

An XACML response is represented as an object with a single, mandatory member named "Response". The value of the "Response" member is an array of one or more Result objects. There is no Response object as such. Instead it is replaced by the value of what would otherwise be its only member, an array of Result objects. This eliminates the nesting of <Result> elements in the <Response> element introduced in XACML’s XML schema.

The Result object representation is detailed hereafter.

5.2.1 The Result object representation

The Result object contains the following members:

Table 12 - Members of the Result object

	Member name
	Type
	Mandatory/Optional
	Default value

	"Decision"
	String.

There are only 4 valid values: "Permit", "Deny", "NotApplicable", and "Indeterminate". The values are case-sensitive.
	Mandatory
	None

	"Status"
	A Status object
	Optional
	None

	"Obligations"
	An array of ObligationOrAdvice objects
	Optional
	None

	"AssociatedAdvice"
	An array of ObligationOrAdvice objects
	Optional
	None

	"Category"
	An array of Category objects
	Optional
	None

	"PolicyIdentifierList"
	A PolicyIdentifierList object
	Optional
	None

The JSON representation of the <Attributes> element in a XACML response is identical to the representation defined in section 4.2.2 The Category object representation.
5.2.2 The Status object representation

The Status object contains the following members:

Table 13 - Members of the Status object

	Member name
	Type
	Mandatory/Optional
	Default value

	"StatusMessage"
	String
	Optional
	None

	"StatusDetail"
	An array of JSON values
	Optional
	None

	"StatusCode"
	A StatusCode object
	Optional
	None

The StatusDetail array MAY contain arbitrary XML within strings, in which case the XML content must be escaped using the same technique as specified in section 4.2.3, The Content Object representation.

The StatusDetail array MAY contain MissingAttributeDetail objects.

5.2.3 The MissingAttributeDetail object

The MissingAttributeDetail object in JSON contains the following members:

Table 14 - Members of the MissingAttributeDetail object

	Member name
	Type
	Mandatory / Optional
	Default value

	"AttributeId"
	A string containing a XACML attribute URI
	Mandatory
	None

	"Value"
	An array of elements of the same type; either string, boolean, number (which maps to either a XACML integer or double as defined in Supported Data Types) or object.
	Optional
	None

	"Issuer"
	String
	Optional
	None

	"DataType"
	A string containing a XACML data type URI or the shorthand notation defined in section 3.3.1
	Optional
	The default value will be http://www.w3.org/2001/XMLSchema#string unless the data type can be safely assumed to be otherwise according to the rules set in sections 3.3.1 and 3.3.2.

	"Category"
	A string containing a XACML category URI or the shorthand notation defined in section 4.2.2.1
	Mandatory
	None

5.2.4 The StatusCode object representation

The StatusCode object in JSON contains the following members:

Table 15 - Members of the StatusCode object

	Member name
	Type
	Mandatory/Optional
	Default value

	"Value"
	A string containing a XACML status code URI
	Optional
	"urn:oasis:names:tc:xacml:1.0:status:ok"

	"StatusCode"
	A StatusCode object
	Optional
	None

Note that the StatusCode object may contain a "StatusCode" member – hence potentially creating a recursive nesting of StatusCode objects.

5.2.4.1 Example

{Non-normative}

{

"Response":[{

"Decision": "Permit"

"Status":{

"StatusCode":{

"Value": "http://example.com"

}

}

}]
}

5.2.5 The ObligationOrAdvice object representation

The ObligationOrAdvice object contains the following members:

Table 16 - Members of the ObligationOrAdvice object

	Member name
	Type
	Mandatory/Optional
	Default value

	"Id"
	A string containing a XACML obligation or advice URI
	Mandatory
	None

	"AttributeAssignment"
	An array of AttributeAssignment objects
	Optional
	None

Note that the ObligationOrAdvice object maps to either an <Advice> or an <Obligation> element in the XACML XML representation. While in the XML representation, each element has an attribute called AdviceId or ObligationId respectively, in the JSON representation, the naming has been harmonized to "Id".

5.2.6 The AttributeAssignment object representation

The AttributeAssignment object contains the following members:

Table 17 - Members of the AttributeAssignment object

	Member name
	Type
	Mandatory/Optional
	Default value

	"AttributeId"
	A string containing a XACML attribute URI
	Mandatory
	None

	"Value"
	Variable
	Mandatory
	None

	"Category"
	A string containing a XACML category URI or the shorthand notation defined in section 4.2.2.1
	Optional
	None

	"DataType"
	A string containing a XACML data type URI or the shorthand notation defined in section 3.3.1
	Optional
	The default value depends on the inference rules defined in Supported Data Types.

	"Issuer"
	String
	Optional
	None

5.2.7 The PolicyIdentifierList object representation

The PolicyIdentifierList object contains the following members:

Table 18 - Members of the PolicyIdentifierList object

	Member name
	Type
	Mandatory/Optional
	Default value

	"PolicyIdReference"
	An array of IdReference objects
	Optional
	None

	"PolicySetIdReference"
	An array of IdReference objects
	Optional
	None

5.2.8 The IdReference object representation

The IdReference object representation contains the following members:

Table 19 - Members of the IdReference object

	Member name
	Type
	Mandatory/Optional
	Default value

	"Id"
	A string containing a XACML policy or policy set URI.

Represents the value stored inside the XACML XML <PolicyIdReference> or <PolicySetIdReference> element.
	Mandatory
	None

	"Version"
	String
	Optional
	None

6 Transport

The XACML request represented in its JSON format MAY be carried from a PEP to a PDP via an HTTP [XACMLREST][HTTP]

 request as defined in the REST profile of XACML .

HTTP Headers which may be used are:

· Content-Type: application/xacml+json

· Accept: application/xacml+json

6.1 Transport Security

{Non-normative}

The use of SSL/TLS [HTTPS]

 is RECOMMENDED to protect requests and responses as they are transferred across the network.

7 IANA Registration

The following section defines the information required by IANA when applying for a new media type.

7.1 Media Type Name

application

7.2 Subtype Name

xacml+json

7.3 Required Parameters

None.

7.4 Optional Parameters

version: The version parameter indicates the version of the XACML specification. Its range is the range of published XACML versions. As of this writing that is: 1.0, 1.1, 2.0, and 3.0. These and future version identifiers are of the form x.y, where x and y are decimal numbers with no leading zeros, with x being positive and y being non-negative.

7.5 Encoding Considerations

Same as for application/xml [RFC4627].
7.6 Security Considerations

Per their specification, application/xacml+json typed objects do not contain executable content.

XACML requests and responses contain information for which integrity and authenticity are important.

To counter potential issues, the publisher may use the transport layer’s security mechanisms to secure

xacml+json typed objects when they are in transit. For instance HTTPS, offers means to ensure the confidentiality and authenticity of the publishing party and the protection of the request/response in transit.

7.7 Interoperability Considerations

XACML 3.0 uses the urn:oasis:names:tc:xacml:3.0:core:schema:wd-17 XML namespace URI. XACML 2.0 uses the urn:oasis:names:tc:xacml:2.0:policy XML namespace URI.

7.8 Applications which use this media type

Potentially any application implementing XACML, as well as those applications implementing specifications based on XACML or those applications requesting an authorization decision from a XACML implementation.

7.9 Magic number(s)

Per [RFC4627]

, this section is not applicable.

7.10 File extension(s)

Per [RFC4627]

, .json.

7.11 Macintosh File Type Code(s)

Text

7.12 Intended Usage

Common

8 Examples

{Non-normative}

8.1 Request Example

{Non-normative}

The following is a sample XACML request expressed in JSON.

{

"Request":{

"AccessSubject":[{

"Attribute":[{

"AttributeId":"subject-id",

"Value":"Andreas"

},{

"AttributeId":"location",

"Value":"Gamla Stan"

}]

}],

"Action":[{

"Attribute":[{

"AttributeId":"action-id",

"Value":"http://example.com/buy",

"DataType":"anyURI"

}]

}],

"Resource":[{

"Attribute":[{

"AttributeId":"book-title",

"Value":"Learn German in 90 days"

},{

"AttributeId":"currency",

"Value": "SEK"

},{

"AttributeId":"price",

"Value": 123.34

}]

}]

}
}
8.2 Response Example

{Non-normative}

The following is a sample XACML response expressed in JSON.

{

"Response":[{

"Decision":"Permit"

}]
}
8.3 Request for Multiple Decisions Example
{Non-normative}

The following is a sample XACML request for multiple decisions expressed in JSON.

{

"Request":{

"AccessSubject":[{

"Id":"s1",

"Attribute":[{

"AttributeId":"com.acme.user.employeeId",

"Value":"Alice"

}]

}],

"Resource":[{

"Id":"r1",

"Attribute":[{

"AttributeId":"com.acme.object.objectType",

"Value":"record"

},{

"AttributeId":"com.acme.record.recordId",

"Value":"126",

"IncludeInResult":true

}]

},{

"Id":"r2",

"Attribute":[{

"AttributeId":"com.acme.object.objectType",

"Value":"record"

},{

"AttributeId":"com.acme.record.recordId",

"Value":"125",

"IncludeInResult":true

}]

}],

"Action":[{

"Id":"a1",

"Attribute":[{

"AttributeId":"com.acme.action.actionId",

"Value":"view",

"IncludeInResult":true

}]

},{

"Id":"a2",

"Attribute":[{

"AttributeId":"com.acme.action.actionId",

"Value":"edit",

"IncludeInResult":true

}]

},{

"Id":"a3",

"Attribute":[{

"AttributeId":"com.acme.action.actionId",

"Value":"delete",

"IncludeInResult":true

}]

}],

"MultiRequests":{

"RequestReference":[{

"ReferenceId":[

"s1",

"a1",

"r1"

]

},{

"ReferenceId":[

"s1",

"a2",

"r1"

]

}]

}

}

}

8.4 Multiple Decisions Response Example

{Non-normative}

The following is a sample XACML response to a request for multiple decisions expressed in JSON.

{

"Response":[{

"Decision":"Deny",

"Status":{

"StatusCode":{

"Value":"urn:oasis:names:tc:xacml:1.0:status:ok",

"StatusCode":{

"Value":"urn:oasis:names:tc:xacml:1.0:status:ok"

}

}

},

"Category":[{

"CategoryId":

"urn:oasis:names:tc:xacml:3.0:attribute-category:resource",

"Attribute":[{

"AttributeId":"com.acme.record.recordId",

"Value":"126",

"DataType":"http://www.w3.org/2001/XMLSchema#string"

}]

},{

"CategoryId":

"urn:oasis:names:tc:xacml:3.0:attribute-category:action",

"Attribute":[{

"AttributeId":"com.acme.action.actionId",

"Value":"view",

"DataType":"http://www.w3.org/2001/XMLSchema#string"

}]

}]

},{

"Decision":"Deny",

"Status":{

"StatusCode":{

"Value":"urn:oasis:names:tc:xacml:1.0:status:ok",

"StatusCode":{

"Value":"urn:oasis:names:tc:xacml:1.0:status:ok"

}

},

"Category":[{

"CategoryId":

"urn:oasis:names:tc:xacml:3.0:attribute-category:resource",

"Attribute":[{

"AttributeId":"com.acme.record.recordId",

"Value":"126",

"DataType":"http://www.w3.org/2001/XMLSchema#string"

}]

},{

"CategoryId":

"urn:oasis:names:tc:xacml:3.0:attribute-category:action",

"Attribute":[{

"AttributeId":"com.acme.action.actionId",

"Value":"edit",

"DataType":"http://www.w3.org/2001/XMLSchema#string"

}]

}]

}]

}

9 Conformance

An implementation may conform to this profile if and only if both the XACML request and the response are correctly encoded into JSON as previously described in sections 3 through 5 and follows the transport requirements as specified in section 6.

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
· Cyril Dangerville, Thales Group

· Rich Levinson, Oracle

· Hal Lockhart, Oracle

· Bill Parducci,

· Erik Rissanen, Axiomatics

· Anil Saldhana, Red Hat

· Remon Sinnema, EMC

· Danny Thorpe, Dell

· Paul Tyson, Bell Helicopters

Appendix B. Revision History

	Revision
	Date
	Editor
	Changes Made

	WD 01
	2 Jul 2012
	David Brossard
	Initial working draft

	WD 02
	9 Jul 2012
	David Brossard
	Integrated comments from XACML list. Enhanced the section on data-types. Added a class diagram for clarity. Changed tense to present. Removed overly explicit comparisons with XML representation.

	WD 03
	19 Jul 2012
	David Brossard
	Started work on the XACML response

	WD 04
	20 Aug 2012
	David Brossard
	Finalized work on the XACML response, added a note on HTTPS. Restructured the document to extract paragraphs common to the Request and Response section.

	WD 05
	20 Sep 2012
	David Brossard
	Took in comments from the XACML TC list (technical comments and typographical corrections)

	WD 06
	29 Oct 2012
	David Brossard
	Removed the Non-normative section in the appendix. Completed the conformance section. Added non-normative tags where needed. Also added a sample response example. Added the section on IANA registration.

	WD07
	15 Nov 2012
	David Brossard
	Removed the XPathExpression from the supported DataTypes. Fixed the examples as per Steven Legg’s email. Fixed the XML encoding of XML content as per conversations on the XACML TC list.

	WD08
	27 Nov 2012
	David Brossard
	Fixed the Base64 encoding section as per Erik Rissanen’s comments

	WD09
	24 Dec 2012
	David Brossard
	Addressed comments and fixed errors as per emails sent on the XACML TC list in December.

	WD10
	4 Feb 2013
	David Brossard
	Fixed the IANA registration section.

Fixed inconsistent DataType spelling. DataType is always the XACML attribute and JSON property name. Data type refers to the English notion.

Fixed the status XML content encoding to be consistent with the Request XML encoding technique.

Fixed a non-normative section label.

Fixed the formatting of JSON property names.

Fixed the XACML to JSON data type inference by adding references to the relevant XML data types.

	WD11
	5 Feb 2013
	David Brossard
	Fixed the AttributeAssignment section

	WD12
	10 May 2013
	David Brossard
	Reinserted a section on the xpathExpression data type.

Fixed the PolicyIdReference section (missing value).

Fixed the Response example.

Simplified the XPathVersion / RequestDefaults

Removed unnecessary nesting in Response / Result

Renamed Attributes to Category

	WD13
	14 June 2013
	David Brossard
	Fixed the final issue re. Category vs. Attributes.

	WD14
	12 July 2013
	David Brossard
	Cleaned up the documents and comments.

	WD15
	02 September 2013
	David Brossard
	Fixed document based on feedback from Steven Legg:

· The naming of Attributes vs. Category in section 5.2.2

· Fixed the name of ObligationOrAdvice in section 5.2.6

Also fixed subjective line in introduction based on email xacml-comment from David Webber.

	WD16
	17 March 2014
	David Brossard
	· Fixed issues with special numerical values: based on input from the XACML TC, special values (NaN, Inf, -0) are now excluded

· Rewrote section 3.4.2 and added reference to 3.4.1

· Added a section defining the shorthand notation for standard XACML categories

· Added normative reference to XACML 3.0 standard

· Added optional category objects for all default categories in XACML 3.0 instead of the 4 most common ones only.

· Updated example in 4.2.4.1

· Fixed the Transport section to reference the REST profile.

· Fixed broken samples

· Added references to IEEE 754-2008 rather than Javascript for the special numerical values

· Fixed the Content section to include the namespaces requirement

· Fixed the default value for XPathVersion to be in accordance with [XACML30]

.

· Added the MissingAttributeValue object definition.

	WD17
	14 April 2014
	David Brossard
	· Updated the profile title per conversation on the XACML TC list

· Updated section 3.2.1 on object names in JSON

· Fixed broken reference to 3.3.1 in 3.3.2

· Updated the inference rule for double and integers to remove any doubt as to the potential datatypes

· Fixed wording in section 4.2.1 (much like vs. just like)

· Simplified the wording of section 4.2.2.2

· Updated the example in section 4.2.2.3

· Changed the shorthand name subject to access-subject to be consistent

· Added the Indeterminate behavior for invalid numerical values

· Fixed the base 64 encoding example in section 4.2.3.3.

· Fixed the examples (wrong attribute names, missing parents, missing curly braces)

· Changed the MS Word quotes into proper quotes

	WD18
	22 April 2014
	David Brossard
	· Changed the shorthand names to use Title Case instead. resource becomes Resource, access-subject becomes AccessSubject, and so on.

· Updated the XPathCategory so that one can use the category shorthand notation as a valid value instead.

	WD19
	23 October 2014
	David Brossard
	· Introduced formatting changes based on feedback received on xacml-comment

· Fixed section 6 content-type and accept

· Fixed the wording on StatusCode

· Added captions to tables

	WD20
	26 April 2018
	Hal Lockhart
	· Merge in changes to references previously inserted in COS1

· Correct Typos noted in Public Review

· Add Cyril Dangerville to Acknowledgements

	WD21
	24 May 2018
	Steven Legg
	· Updated the XACML 3.0 reference.
· Changed JSON reference to RFC 8259. Dropped the reference to ECMA 262.

· Added a glossary for JSON syntax and used the terminology from RFC 8259 throughout the profile.

· Moved all the prose descriptions of object and array members into the tables.

· Removed all the choices between a single object and an array of objects. Now only arrays are allowed. Updated the examples to reflect the change.

· Removed null as an allowed value for the Content member. Disallowed the use of null anywhere.

· Clarified that empty arrays are allowed.

	WD22
	18 July 2018
	
	· Added Steven Legg as an editor.

· Changed the "Response" member to be mandatory.

· Added an example request and response for a request for multiple decisions.

· Fixed the cross-references.

· Reformatted the examples.

· Made numerous formatting corrections.

	WD23
	15 August 2018
	
	· Imported the class diagrams in Enhanced MetaFile format (a vector art format) to improve the document display in HTML.

· Removed hyperlinks and used consistent font size in JSON examples.

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 5 of 5
xacml-json-http-v1.1-cs01

05 December 2018

Standards Track Work Product
Copyright © OASIS Open 2018. All Rights Reserved.
Page 6 of 7

