
xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 1 of 23

XACML v3.0 Hierarchical Resource
Profile Version 1.0

Committee Draft 03

11 March 2010

Specification URIs:
This Version:

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-03-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-03-en.doc (Authoritative)
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-03-en.html

Previous Version:
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-1-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-1-en.doc (Authoritative)
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-1-en.html

Latest Version:
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-en.doc (Authoritative)
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-en.html

Technical Committee:

OASIS eXtensible Access Control Markup Language (XACML) TC

Chair(s):
Bill Parducci, <bill@parducci.net>
Hal Lockhart, Oracle <hal.lockhart@oracle.com>

Editor(s):
Erik Rissanen, Axiomatics AB <erik@axiomatics.com>
Rich Levinson, Oracle <rich.levinson@oracle.com>
Hal Lockhart, Oracle <hal.lockhart@oracle.com>

Related work:

This specification replaces or supercedes:

 Hierarchical resource profile of XACML v2.0

This specification is related to:

 eXtensible Access Control Markup Language (XACML) Version 3.0, CD 03

Declared XML Namespace(s):

None

Abstract:
This document provides a profile for the use XACML with resources that are structured as
hierarchies. The profile addresses resources represented as nodes in XML documents or
represented in some non-XML way. The profile covers identifying nodes in a hierarchy,
requesting access to nodes in a hierarchy, and specifying policies that apply to nodes in a
hierarchy.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-03-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-03-en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-03-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-1-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-1-en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-1-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-en.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
mailto:bill@parducci.net
mailto:hlockhar@bea.com
mailto:erik@axiomatics.com
mailto:rich.levinson@oracle.com
mailto:hlockhar@bea.com
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-hier-profile-spec-os.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.doc

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 2 of 23

Status:
This document was last revised or approved by the OASIS eXtensible Access Control Markup
Language (XACML) TC on the above date. The level of approval is also listed above. Check the
“Latest Version” or “Latest Approved Version” location noted above for possible later revisions of
this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/xacml/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page http://www.oasis-
open.org/committees/xacml/ipr.php.

The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/xacml/.

http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/ipr.php
http://www.oasis-open.org/committees/xacml/ipr.php
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 3 of 23

Notices

Copyright © OASIS® 2010. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The names "OASIS" and “XACML” are trademarks of OASIS, the owner and developer of this
specification, and should be used only to refer to the organization and its official outputs. OASIS
welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce
its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above
guidance.

http://www.oasis-open.org/who/trademark.php

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 4 of 23

Table of Contents

1 Introduction ... 5

1.1 Glossary .. 6

1.1.1 Comparison of hierarchical structures ... 8

1.2 Terminology .. 8

1.3 Normative References .. 9

1.4 Non-Normative References .. 9

2 Representing the identity of a node.. 10

2.1 Nodes in XML documents ... 10

2.2 Nodes in hierarchical resources identified by URIs .. 10

2.2.1 Alternative URI-reference representation for XML documents ... 11

2.3 Nodes in hierarchical resources identified by ancestor attributes .. 12

3 Requesting access to a node ... 13

3.1 Nodes in an XML document ... 13

3.2 Nodes in hierarchical resources identified by URIs .. 13

3.3 Nodes in hierarchical resources identified by ancestor attributes .. 14

3.3.1 Pseudo-code for Nodes in hierarchical resources identified by ancestor attributes (non-
normative) ... 15

4 Stating policies that apply to nodes .. 17

4.1 Policies applying to nodes with ancestor attributes .. 17

4.2 Policies applying only to nodes in XML documents ... 17

4.3 Policies applying only to nodes identified with URIs .. 17

5 New attribute identifiers .. 19

5.1 content-selector .. 19

5.2 document-id .. 19

5.3 resource-parent .. 19

5.4 resource-ancestor ... 19

5.5 resource-ancestor-or-self .. 19

6 New profile identifiers ... 20

7 Conformance .. 21

7.1 Nodes in XML documents ... 21

7.2 Nodes in hierarchical resources identified by URIs .. 21

7.3 Nodes in hierarchical resources identified by ancestor attributes .. 21

A. Acknowledgements .. 22

B. Revision History .. 23

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 5 of 23

1 Introduction 1

{Non-normative} 2

It is often the case that a resource is organized as a hierarchy. Examples include file systems, XML 3
documents, and organizations. This Profile specifies how XACML can provide access control for a 4
resource that is organized as a hierarchy. 5

Why are resources organized as hierarchies special? First of all, policies over hierarchies frequently 6
apply the same access controls to entire sub-trees of the hierarchy. Being able to express a single policy 7
constraint that will apply to an entire sub-tree of nodes in the hierarchy, rather than having to specify a 8
separate constraint for each node, increases both ease of use and the likelihood that the policy will 9
correctly reflect the desired access controls. Another special characteristic of hierarchical resources is 10
that access to one node may depend on the value of another node. For example, a medical patient 11
might be granted access to the “diagnosis” node in a XML document medical record only if the patient's 12
name matches the value in the “patient name” node. Where this is the case, the requested node can not 13
be processed in isolation from the rest of the nodes in the hierarchy, and the PDP must have access to 14
the values of other nodes. Finally, the identity of nodes in a hierarchy often depends on the position of 15
the node in the hierarchy; there also may be multiple ways to describe the identity of a single node. In 16
this Profile, a resource organized as a hierarchy may be 17

 a “(rooted) tree” (a hierarchy with a single root), 18

 a “Directed Acyclic Graph” or “DAG” (a hierarchy with multiple roots, but a DAG may not have 19
cycles; (also, a DAG may be expanded to an equivalent set of disjoint hierarchies, a fact, which 20
is useful to know when conceptualizing the hierarchical properties of the DAG)), 21

 or a “polyarchy” (a “forest”, which is a disjoint set of trees, which when applied to a collection of 22
resources may be designed to become a polyarchy, because each disjoint tree is layed on the 23
same collection of resources, and nodes from disjoint trees, in general, may refer to the same 24
resource, and as a result, with respect to the resource, merge to become a single node, which 25
organizes the resources as a polyarchy; note also, that by jumping from one disjoint tree to 26
another while on an intersecting node, that the polyarchy may contain cycles, which are not 27
possible with the DAG). 28

All such resources are called hierarchical resources in this Profile. An XML document is always 29
structured as a “tree”. Other types of hierarchical resources, such as files in a file system that supports 30
links, may be structured as a “forest”. 31

In this Profile, the nodes in a hierarchical resource are treated as individual resources. An 32
authorization decision that permits access to an interior node does not imply that access to its 33
descendant nodes is permitted. An authorization decision that denies access to an interior node does 34
not imply that access to its descendant nodes is denied. 35

There are three types of facilities specified in this Profile for dealing with hierarchical resources: 36

 Representing the identity of a node. 37

 Requesting access to a node. 38

 Stating policies that apply to one or more nodes. 39

Support for each of these facilities is optional. 40

This Profile addresses three ways of representing a hierarchical resource. 41

 In the first way, the hierarchy of which the node is a part is represented as an XML document that 42
is included in the Request, and the requested resource is represented as a node in that 43
document. 44

 In the second way, the resource must be a part of one or more singly rooted hierarchies. The 45
resource is identified using a hierarchical URI which reflects the resource’s place in these 46
hierarchies. 47

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 6 of 23

 In the third way, the resource may be a part of one or more singly or multiply rooted hierarchies. 48
The parent and other ancestor nodes of the resource are identified as attributes in the request. 49
The naming of the resource (or its ancestors) has no significance in terms of describing the 50
structure of the hierarchy. 51

Note that the actual target resource in the first case need not be part of an XML document - it is merely 52
represented that way in the Request. Likewise, the target resource in the second case might actually be 53
part of an XML document, but is being represented in some other way in the Request. 54

Facilities for dealing with resources represented as nodes in XML documents can make use of the fact 55
that the XML document itself is included in the decision request. [XPath] expressions can be used to 56
reference nodes in this document in a standard way, and can provide unique representations for a given 57
node in the document. These facilities are not available for hierarchical resources that are not 58
represented as XML documents. Other means must be provided in the case of such non-XML resources 59
for determining the location of the requested node in the hierarchy. In some cases this can be done by 60
including the node's position in the hierarchy as part of the node's identifier. In other cases, a node may 61
have more than one normative identity, such as when the pathname of a file in a file system can include 62
hard links. In such cases, the XACML PDP's Context Handler may need to supply the identities of all the 63
node's ancestors. For all these reasons, the facilities for dealing with nodes in XML documents differ 64
from the facilities for dealing with nodes in other hierarchical resources. 65

In dealing with a hierarchical resource, it may be useful to request authorization decisions for multiple 66
nodes in the resource in a single decision request. Ways to make such requests are specified in another 67
Profile – the Multiple resource profile of XACML v3.0 [MULTIPLE]. That Profile also provides a way to 68
return a single authorization decision when access to multiple nodes in a hierarchy is requested. 69
Readers of this Profile are encouraged to become familiar with the Multiple resource profile of XACML. 70
This Profile may be considered to be layered on top of the multiple resource profile, which in turn is 71
layered on top of the behavior specified in the core XACML specification [XACML]. The functionality in 72

this Profile MAY, however, be layered directly on the functionality in the core XACML specification. 73

This Profile for hierarchical resources assumes that all requests for access to multiple nodes in a 74
hierarchical resource [MULTIPLE] have been resolved to individual requests for access to a single 75

node. 76

1.1 Glossary 77

DAG 78

A Directed Acyclic Graph (DAG), which may also be characterized as a multi-rooted hierarchy. 79

Hierarchical resource 80

A resource that is organized as a tree or (Directed Acyclic Graph (DAG) of individual resources 81
called nodes. 82

Hierarchy 83

A general term that applies to all the types of hierarchical representations that are used in this 84
specification to represent the organization of a collection of resource. This includes a single-85
rooted hierarchy, a multi-rooted hierarchy, and a multi-rooted disjoint hierarchy. 86

Multi-rooted disjoint hierarchy 87

A “hierarchy” that has multiple top level “root” nodes, each of which is top node of a single-88
rooted hierarchy, which in general, contains subtrees that overlap with subtrees of the other 89
single-rooted hierarchies, that are topped by the other top level root nodes, where all the 90
nodes that were in each original single-rooted hierarchy retain their identity as having been and 91
remaining as a member of that original hierarchy. Because of this retention of identity within 92
original single-rooted hierarchy, there are no restrictions with respect to cycles or otherwise as 93
to the layout of the single-rooted hierarchies with respect to each other. This structure is also 94
know as a “polyarchy”. It is also known as a “forest”, or “disjoint set of trees”, with the logical to 95
physical characteristic that each “set of overlapping nodes” from multiple hierarchies that 96
identifies a specific single resource, actually contains a “set of individual distinct identifiers” any of 97
which can be used to identify that single resource within the multi-rooted disjoint hierarchy. 98

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 7 of 23

 99
A specific example of this type of structure may begin with a set of resources that have been 100
identified and organized within a single-rooted hierarchy by having one of a set of hierarchical 101
URIs (considered to be a distinct hierarchical namespace) assigned to each resource as 102
described in section 2.2. One may then for a totally independent purpose apply another set of 103
hierarchical URIs (section 2.2) to a set of resources that may include part or all of the first set, 104
and may include new members that were not included in the first set. Note that any multi-rooted 105
hierarchy (DAG) may be represented in this manner. 106
However, the multi-rooted disjoint hierarchy (polyarchy) has no constraints on the additional 107
single-rooted hierarchies that are laid down, and therefore, can be used to create more 108
complex structures that may include cycles that cannot be represented by a DAG. Note also, that 109
the use of URIs is a convenience and not a necessity for implementation of this structure. 110

Multi-rooted hierarchy 111

A “hierarchy” that has multiple top level “root” nodes, each of which is top node of a single-112
rooted hierarchy, which in general, contains subtrees that overlap with subtrees of the other 113
single-rooted hierarchies, that are topped by the other top level root nodes. This type of 114
“hierarchy” is also know as a Directed Acyclic Graph (DAG). In general, multiple single-rooted 115
hierarchies may be laid across a set of resources for organization purposes. The DAG 116
properties constrain the layout options somewhat, in that within the layout of the multiple 117
overlapping hierarchies, there may not be contained any cycles, i.e. where one could follow a 118
path from any particular node that eventually returns to that same particular node. 119
 120
A specific example of this type of structure may begin with a set of resources that have been 121
identified and organized within a single-rooted hierarchy by having one of a set of hierarchical 122
URIs (considered to be a distinct hierarchical namespace) assigned to each resource as 123
described in section 2.2. One may then for a totally independent purpose apply another set of 124
hierarchical URIs (section 2.2) to a set of resources that may include part or all of the first set, 125
and may include new members that were not included in the first set. Note that any multi-rooted 126
hierarchy (DAG) may be represented in this manner. 127
However, there are constraints on the 2

nd
 and additional single-rooted hierarchies that are laid 128

down, specifically, that no cycles are allowed to be produced when the new edges are added to 129
the DAG for the additional hierarchies. 130

Node 131

An individual resource that is part of a hierarchical resource. 132

Single-rooted hierarchy 133

A “hierarchy” that has one top level “root” node and each member of the hierarchy can have only 134
one parent node. Examples of resources that fit this model include a single XML document, and 135
any hierarchical resource that is organized as a single hierarchy, such as typical organization 136
charts, or the individual components within an overall assembly, where the finished assembled 137
entity represents the top root node. 138

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 8 of 23

1.1.1 Comparison of hierarchical structures 139

The following table is intended to capture the salient features of the hierarchical structures used in this 140
document: 141

 Single-Rooted
Hierarchy

(XML document)

Multi-Rooted
Hierarchy

(DAG)

Multi-Rooted
Disjoint Hierarchy

(polyarchy)

Number of root nodes 1 n>=1 n>=1

Maximum number of
parent nodes

1 m>=1 m>=1

Is original hierarchical
membership retained

Yes No Yes

Are navigation cycles
allowed

No No Yes, by shifting to at
least one different
original hierarchy

along cyclic path, if
such paths exist.

Are there restrictions
whether a specific
existing node is allowed
to be made a child of
current node

Yes Yes, if adding the new
node will create a

cycle.

No, however, each
new connection made

must identify a
specific hierarchy
included in current

node, or begin a new
hierarchy.

The situation with “cycles” is that there seems, in general, little point to purposely trying to create such a 142
cycle, however, if such a cycle should happen to occur as a result of the difference in semantics of two 143
single-rooted hierarchies that are being applied to the set of resources, whereby, for example, if in one 144
hierarchy node “a” is the parent of node “b”, while in a 2

nd
 hierarchy node “b” was the parent of node “a” 145

then such a construct would not be allowed by the DAG, but would be allowed by the polyarchy. As a 146
result, the polyarchy may be regarded as more general than the DAG, because the layouts possible with 147
a polyarchy are a superset of those possible with a DAG on the same set of resources. 148

 149

1.2 Terminology 150

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 151
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 152
in [RFC2119]. 153

The phrase {Optional} means that the described functionality is optional for compliant XACML 154
implementations, but, if the functionality is claimed as being supported according to this Profile, then it 155
SHALL be supported in the way described. 156

Example code listings appear like this. 157

In descriptions of syntax, elements in angle brackets (“<”, “>”) are to be replaced by appropriate values, 158
square brackets (“[“, “]”) enclose optional elements (but are taken as literal when within quotes), elements 159
in quotes are literal components, backslash-quote (“\””) is a literal quote character within a literal 160
component, and an unquoted asterisk, (*), indicates that the preceding element may occur zero or more 161
times, whereas an asterisk in quotes, (“*”), is a literal asterisk. 162

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 9 of 23

1.3 Normative References 163

[ISO10181-3] ISO/IEC JTC 1, Information technology -- Open Systems Interconnection -- 164
Security frameworks for open systems: Access control framework, ISO/IEC 165
10181-3:1996, 1996. 166

[RFC1034] P. Mockapetris, DOMAIN NAMES – CONCEPTS AND FACILITIES, IETF RFC 167
1034, November 1987, http://www.ietf.org/rfc/rfc1034.txt 168

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 169
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 170

[RFC3986] T. Berners-Lee, et al., Uniform Resource Identifiers (URI): Generic Syntax, 171
http://www.ietf.org/rfc/rfc3986.txt, IETF RFC 3986, January 2005. 172

[RFC3198] A. Westerinen, et al., Terminology for Policy-Based Management, 173
http://www.ietf.org/rfc/rfc3198.txt, IETF RFC 3198, November 2001. 174

[MULTIPLE] OASIS Committee Draft 03, XACML v3.0 Multiple Decision Profile Version 1.0, 175
11 March 2010, http://docs.oasis-open.org/xacml/3.0/xacml-3.0-multiple-v1-spec-176
cd-03-en.doc 177

[XACML] OASIS Committee Draft 03, eXtensible Access Control Markup Language 178
(XACML) Version 3.0, 11 March 2010, http://docs.oasis-179
open.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.doc 180

[XPath] XML Path Language (XPath), Version 1.0, W3C Recommendation 16, November 181
1999. Available at http://www.w3.org/TR/xpath 182

1.4 Non-Normative References 183

[URIOpacity] Ian Jacobs,, et al., Architecture of the World Wide Web, Volume One, section 184
2.5, W3C Recommendation 15 December 2004, 185
http://www.w3.org/TR/webarch/#uri-opacity 186

http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3198.txt
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-multiple-v1-spec-cd-03-en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-multiple-v1-spec-cd-03-en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.doc
http://www.w3.org/TR/xpath
http://www.w3.org/People/Jacobs
http://www.w3.org/TR/webarch/#uri-opacity

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 10 of 23

2 Representing the identity of a node 187

In order for XACML policies to apply consistently to nodes in a hierarchical resource, it is necessary for 188
the nodes in that resource to be represented in a consistent way. If a policy refers to a node using one 189
representation, but a request refers to the node using a different representation, then the policy will not 190
apply, and security may be compromised. 191

The following sections describe RECOMMENDED representations for nodes in hierarchical resources. 192
Alternative representations of nodes in a given resource are permitted so long as all Policy 193
Administration Points and all Policy Enforcement Points that deal with that resource have contracted to 194
use the alternative representation. 195

2.1 Nodes in XML documents 196

{Optional} 197

The following URI SHALL be used as the identifier for the functionality specified in this Section of this 198
Profile. This identifier represents metadata about this specification and implementations implementing this 199
specification. This identifier MAY be used to describe capabilities of an implementation or to make other 200
references to this specification 201

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:xml-node-id 202

The identity of a node in a resource that is represented as an XML document instance SHALL be an 203
XPath expression that evaluates to exactly that one node in the copy of the resource that is contained in 204

the <Content> element of the <Attributes> element with the resource category of the <Request>. 205

Note: one possible XPath expression template for representation of node identifiers in an XML document 206
or as part or a URI-reference is described in section 2.2.1. 207

2.2 Nodes in hierarchical resources identified by URIs 208

{Optional} 209

The following URI SHALL be used as the identifier for the functionality specified in this Section of this 210
Profile. This identifier represents metadata about this specification and implementations implementing this 211
specification. This identifier MAY be used to describe capabilities of an implementation or to make other 212
references to this specification 213

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:URI-node-id. 214

The identity of a node in a hierarchical resource that is not represented as an XML document instance 215
MAY be represented as a URI that conforms to [RFC3986] and which has a hierarchical structure where 216
the ancestors are delimited by slashes. (According to [RFC2396] URI schemes may be non-hierarchical, 217
e.g. mailto:, hierarchical without slashes, e.g. urn: or hierarchical using slashes, e.g. http:.). Hierarchical 218
URIs with slashes are of the following generic form. 219

 <scheme> “:” [“//” <authority>] [“/” <pathname>] 220

File system resources SHALL use the “file:” scheme. If the resource is identified with a standard 221
<scheme> specified in [RFC3986] or in a related standard for a registered URI scheme which is 222
hierarchical with slashes, then that scheme SHALL be used. Otherwise the URI SHALL use the “file:” 223
scheme. 224

The <pathname> portion of the URI SHALL be of the form 225

 <root name> [“/” <node name>] * 226

 The sequence of <root name> and <node name> values SHALL correspond to the individual 227
hierarchical component names of ancestors of the represented node along the path from a <root> 228
node to the represented node. 229

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 11 of 23

 The components of the <pathname> portion of the URI SHALL be specified using the canonical form 230
for such path components at the <authority>. 231

 In accordance with [RFC3986], the separator character between hierarchical components of the 232
<pathname> portion of the URI SHALL be the character “/“. Sequences of the “/“ character SHALL 233
be resolved to a single “/“. Node identities SHALL NOT terminate with the “/“ character. 234

 All <pathname> values SHALL be absolute. 235

 If there is more than one fully resolved, absolute path from a <root> at the <authority> to the 236

represented node, then a separate resource attribute with AttributeId 237

“urn:oasis:names:tc:xacml:1.0:resource:resource-id” and DataType 238

http://urn:oasis:names:tc:xacml:1.0:data-type:anyURI SHALL be present in the Request Context for 239
each such path. 240

Implementation note: the scheme name of the URI should be checked to determine it is an expected 241
scheme before parsing the URI into its hierarchical components. 242

Also note that the notion of parsing the syntax of a URI is controversial, see for example [URIOpacity]. 243

2.2.1 Alternative URI-reference representation for XML documents 244

{Optional} 245

The following URI SHALL be used as the identifier for the functionality specified in this Section of this 246
Profile: 247

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:URI-reference-node-id. 248

The identity of a node in a hierarchical resource that is represented as an XML document instance 249
MAY be represented as a URI-reference that conforms to [RFC3986] and which has a hierarchical 250
structure where the ancestors are delimited by slashes. Hierarchical “URI-references” with slashes 251
conform to the following five component generic form (where the “URI portion” is the first four 252
components): 253

 <scheme> “:” [“//” <authority>] [“/” <pathname>] [“?” <query>] [“#” <fragment>] 254

The query portion of the URI is not used in this profile. 255

The <fragment> portion of the URI-reference MAY be used to identify explicit element, attribute, text, and 256
other nodes in an XML document when constructed as an XPath path expression using the following 257
form: 258

 <fragment> = “xpointer(/” <fragment-id> “)” 259

 <fragment-id> = [<doc-node-xsegment> [“/” <elem-node-xsegment>] * [“/” <end-node-xsegment>]] 260

where 261

<end-node-xsegment> = <attr-node-xsegment > | 262

 <text-node-xsegment> | 263

 <other-node-xsegment> 264

and 265

<doc-node-xsegment> = “*:” <doc-node-local-name> [<namespace-uri>] 266

<elem-node-xsegment> = = “*:” <elem-node-local-name> [<namespace-uri>] [<position>] 267

<attr-node-xsegment> = “@” “*:” <attr-node-local-name> [<namespace-uri>] 268

<text-node-xsegment> = “text()” 269

<other-node-xsegment> = (literal xpath syntax for other node types) 270

 271

<position> = “[“ <integer> “]” 272

<integer> = (same as result of xpath fcn: position(), i.e. integer >= 1) 273

 274

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 12 of 23

<namespace-uri> = “[namespace-uri()=\”” <literal-namespace> “\”]” 275

<literal-namespace> = (same as result of xpath fcn: namespace-uri()) 276

Notes: 277

 When expressions using the above syntax are used within an actual URI-Reference, the literal forms 278
of <*-node-xsegment> items MUST be percent-encoded as described in [RFC2396]. However, the 279
decoded form is an executable XPath path expression. 280

 The <*-node-xsegment> items are all have a leading “*:” which selects all nodes in any namespace 281
with the <*-node-local -name> that follows. The following <namespace-uri> item is then used to 282
specify the namespace. 283

 When the following literal <namespace-uri> predicate appears in an expression it may be ignored or 284
removed by the policies without changing the meaning of the expression: 285
 [namespace-uri()=””] 286
because when the namespace-uri() XPath function evaluates to the empty string as shown, this 287
means there is “no namespace” defined for the element, which is equivalent to an unprefixed local-288
name QName. Also the “*:” may also be ignored or removed. (Ignoring or removing is meant within 289
the context of regular expression (regexp) processing.) 290
For example the XPath segment “*:abc[namespace-uri()=””]” may be regarded as equal to “abc”. 291

 Policies may, in general, ignore <position> predicates for matching purposes (i.e. allow “any” position 292
value), because they usually do not represent a specific property of the node, but only provide a 293
discriminator for otherwise equal node locations within the hierarchy. For example, a list of line items 294
in a purchase order, usually does not attach any specific significance to the order in which the line 295
items appear. 296

2.3 Nodes in hierarchical resources identified by ancestor attributes 297

{Optional} 298

The following URI SHALL be used as the identifier for the functionality specified in this Section of this 299
Profile. This identifier represents metadata about this specification and implementations implementing this 300
specification. This identifier MAY be used to describe capabilities of an implementation or to make other 301
references to this specification 302

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:attribute-node-id. 303

The identity of a node in a hierarchical resource that is not represented as an XML document instance 304
MAY be represented by specifying its ancestors as XACML attributes in the request. In this case the node 305
and its ancestors may be identified using identifiers of any XACML datatype. There is no requirement that 306
different nodes use the same XACML datatype or that nodes in the same hierarchy use the same 307
datatype. 308

In this mode of operation, any number of hierarchies with any number of roots may be represented, 309
however, only hierarchies of which the resource is a member will be included. Hierarchies which include 310
the ancestors or descendants of the resource, but do not contain the resource are not included. 311

In this approach, considerable information is discarded. It is not possible to determine how many 312
hierarchies there are or which ancestors are in which hierarchies or the relative position of ancestors 313
other than immediate parents. 314

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 13 of 23

3 Requesting access to a node 315

In order for XACML policies to apply consistently to nodes in a hierarchical resource, it is necessary for 316
each request context that represents a request for access to a node in that resource to use a consistent 317
description of that node access. If a policy refers to certain expected attributes of a node, but the request 318
context does not contain those attributes, or if the attributes are not expressed in the expected way, then 319
the policy may not apply, and security may be compromised. 320

The following sections describe RECOMMENDED request context descriptions of access to nodes in 321
hierarchical resources. Alternative representations of such requests are permitted so long as all Policy 322
Administration Points and all Policy Enforcement Points that deal with that resource have contracted to 323
use the alternative representation. 324

3.1 Nodes in an XML document 325

{Optional} 326

The following URI SHALL be used as the identifier for the functionality specified in this Section of this 327
Profile. This identifier represents metadata about this specification and implementations implementing this 328
specification. This identifier MAY be used to describe capabilities of an implementation or to make other 329
references to this specification 330

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:xml-node-req 331

In order to request access to a resource represented as a node in an XML document, the request context 332

<Attributes> element in the resource category SHALL contain the following elements and XML 333

attributes: 334

 A <Content> element that contains the entire XML document instance of which the requested node 335

is a part. 336

 An <Attribute> element with an AttributeId of “urn:oasis:names:tc:xacml:3.0:content-selector” 337

and a DataType of “urn:oasis:names:tc:xacml:3.0:data-type:xpathExpression”. The 338

<AttributeValue> of this <Attribute> SHALL be an XPath expression whose context node 339

SHALL be the <Content> element in the “urn:oasis:names:tc:xacml:3.0:attribute-category:resource” 340

attribute category. This XPath expression SHALL evaluate to a nodeset containing the single node 341

in the <Content> element that is the node to which access is requested. This <Attribute> MAY 342

specify an Issuer. 343

Additional attributes MAY be included in the <Resource> element. In particular, the following attribute 344

MAY be included. 345

 An <Attribute> element with an AttributeId of 346

“urn:oasis::names:tc:xacml:2.0:resource:document-id” and a DataType of 347

“urn:oasis:names:tc:xacml:1.0:data-type:anyURI”. The <AttributeValue> of this <Attribute> 348

SHALL be a URI that identifies the XML document of which the requested resource is a part, and of 349

which a copy is present in the <Content> element. This <Attribute> MAY specify an Issuer. 350

3.2 Nodes in hierarchical resources identified by URIs 351

{Optional} 352

The following URI SHALL be used as the identifier for the functionality specified in this Section of this 353
Profile: 354

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:URI-node-id. 355

 356

The resource SHALL be identified by means of a hierarchical URI (or URIs) as described in section 2.2. 357
Parent and Ancestor attributes SHALL NOT be provided. 358

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 14 of 23

3.3 Nodes in hierarchical resources identified by ancestor attributes 359

{Optional} 360

The following URI SHALL be used as the identifier for the functionality specified in this Section of this 361
Profile 362

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:attribute-node-id. 363

The attributes with AttributeIds of “urn:oasis::names:tc:xacml:2.0:resource:resource-parent”, 364
“urn:oasis::names:tc:xacml:2.0:resource:resource-ancestor”, and 365
“urn:oasis::names:tc:xacml:2.0:resource:resource-ancestor-or-self” are optional to implement. If this 366
section of the specification is supported, the following URIs SHALL be used as identifiers for the 367
functionality they represent: 368

 urn:oasis:names:tc:xacml:2.0:profile:hierarchical:non-xml-node-req:resource-parent 369

 urn:oasis:names:tc:xacml:2.0:profile:hierarchical:non-xml-node-req:resource-ancestor 370

 urn:oasis:names:tc:xacml:2.0:profile:hierarchical:non-xml-node-req:resource-ancestor-or-self 371

In order to request access to a node in a hierarchical resource in this mode of operation, the request 372

context <Attributes> element SHALL NOT contain a <Content> element. The request context 373

<Attributes> element in the resource category SHALL contain the following elements and XML 374

attributes. Note that in this case, a node MAY have multiple parents. For example, in a file system that 375
supports hard links, there may be multiple normative paths to a single file. Each such path MAY contain 376
different sets of parents and ancestors. 377

The following discussion assumes that the Context Handler knows what hierarchies exist, how they are 378
represented and how the nodes in them are named. There may be any number of distinct hierarchies 379
which may be singly or multiply rooted. Individual nodes may belong to any number of hierarchies. Nodes 380
in the hierarchies may be of a single type or multiple types. The resource-id of nodes may be of the same 381
XACML datatype or different ones. Where they use the same datatype, say string, the naming scheme 382
may be a single scheme or multiple schemes. A node may have a different name in every hierarchy it is in 383
or one name in all hierarchies. A node may have multiple names in a single hierarchy of which it is a 384
member. In general the naming scheme is not constrained to relate to the hiearchy in any way. 385

All that is required is that the Context Handler be able to determine what hierarchies exist, what are the 386
recource-ids of the members and what are their relationships. Starting from this information the Context 387
Handler SHALL perform the following steps or some process which gives equivalent results. 388

 389

1. Identify all the hierarchies associated with the resources in question. 390

2. Drop from further consideration any hierarchies of which the node in question is not actually a 391
members. 392

3. Drop from further consideration any descendants of the node. 393

4. In each hierarchy in turn, collect all of the identifiers for all of the nodes in each hierarchy for each of 394
the node types described below. 395

5. Discard any duplicates. 396

 397

 For each representation of the requested node, an <Attribute> element with AttributeId of 398

“urn:oasis::names:tc:xacml:1.0:resource:resource-id”. The <AttributeValue> of this 399

<Attribute> SHALL be an identifier of the node to which access is requested. The DataType of 400

the <AttributeValue> of this <Attribute> MAY be of any XACML datatype. This 401

<Attribute> MAY specify an Issuer. 402

 For each immediate parent of the node specified in the “resource-id” attribute or attributes, and for 403

each representation of that parent node, an <Attribute> element with AttributeId 404

“urn:oasis:names:tc:xacml:2.0:resource:resource-parent”. The <AttributeValue> of this 405

<Attribute> SHALL be an identifier of the parent node. The DataType of the 406

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 15 of 23

<AttributeValue> of this <Attribute> MAY be of any XACML datatype This <Attribute> 407

MAY specify an Issuer. 408

 For each ancestor of the node specified in the “resource-id” attribute or attributes, and for each 409

representation of that ancestor node, an <Attribute> element with AttributeId 410

“urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor”. The <AttributeValue> of this 411

<Attribute> SHALL be an identifier of the ancestor node. The DataType of the 412

<AttributeValue> of this <Attribute> MAY be of any XACML datatype This <Attribute> 413

MAY specify an Issuer. 414

 For each ancestor of the node specified in the “resource-id” attribute or attributes, and for each 415
representation of that ancestor node, and for each representation of the “resource-id” node itself, an 416

<Attribute> element with AttributeId “urn:oasis:names:tc:xacml:2.0:resource:resource-417

ancestor-or-self”. The <AttributeValue> of this <Attribute> SHALL be an identifier of the 418

ancestor node or of the “resource-id” node itself. The DataType of the <AttributeValue> of this 419

<Attribute MAY be of any XACML datatype. This <Attribute> MAY specify an Issuer. 420

Additional attributes MAY be included in the <Attributes> element. 421

3.3.1 Pseudo-code for Nodes in hierarchical resources identified by 422

ancestor attributes (non-normative) 423

This section contains pseudo-code which may be considered to represent a model by which one can 424
represent any collection of resources that are each individually identified as belonging to one or more 425
hierarchies and/or DAGs. An algorithm is then defined to process the collection according to the rules of 426
section 3.3. 427

// Define a class for "Resource Hierarchy identifier" node 428
public class ResHierId(int res, int hier) 429
 430
// Define Sets to collect nodes in: 431
selfNodes = new HashSet<ResHierId>(); 432
parentNodes = new HashSet<ResHierId>(); 433
ancestorNodes = new HashSet<ResHierId>(); 434
ancestorOrSelfNodes = new HashSet<ResHierId>(); 435
 436
// Define number of resources, hierarchies and 1-based 2-d array 437
int nRes=4, mHier=5; // example hierarchy dims 438
int[][] ijResource = new int[nRes+1][mHier+1]; 439
 440
// Define method to collect nodes 441
collectAncestorNodes(int iRes) { 442
 for (int j = 1; j<mHier+1; j++){ 443
 int mDag = 1; m=j; iDepth = 0; 444
 if (ijResource[0][j] != 0){ 445
 while ((m<mHier) && (ijResource[0][m+1] == ijResource[0][j])){ 446
 mDag++; m++; 447
 } } 448
 walkUpHierarchyDag(iRes, j, mDag, iDepth); 449
 j=j+mDag-1; // skip columns handled by mDag 450
} } 451
 452
walkUpHierarchyDag(int iRes, int j, int mDag, int iDepth){ 453
 // for each instance of self in Dag subrow 454
 for (int k=1; k<mDag+1; k++){ 455
 int m = j+k-1; // m is column in big matrix 456
 int iResCurrent = iRes; // iResCurrent is 1-based row-id 457
 if (ijResource[iResCurrent][m] != 0){ 458
 ResHierId rhId = new ResHierId(iResCurrent,m); 459
 if (iDepth == 0){ 460
 selfNodes.add(rhId); 461
 ancestorOrSelfNodes.add(rhId); 462
 } 463
 else if (iDepth == 1){ 464
 parentNodes.add(rhId); 465
 ancestorNodes.add(rhId); 466
 ancestorOrSelfNodes.add(rhId); 467
 } 468

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 16 of 23

 else { 469
 ancestorNodes.add(rhId); 470
 ancestorOrSelfNodes.add(rhId); 471
 } 472
 if (iResCurrent != ijResource[iResCurrent][m]) { 473
 // Set the new current node as parent of current node 474
 iResCurrent = ijResource[iResCurrent][m]; 475
 iDepth++; 476
 walkUpHierarchyDag(iResCurrent, j, mDag, iDepth); 477
 } 478
 else { } // found root on this path - done 479
 } 480
 else { } // zero means node not used - done 481
} } 482

Note the following: 483

 The matrix, ijResource[nRes+1][mHier+1] represents a collection of nRes resources, each of 484
which may belong to any of mHier single-parent hierarchies, or a mix of hierarchies and DAGS. 485

 DAGs are represented by multiple columns, where the width of the DAG is mDag, which is equal 486
to the maximum number of parents that a single node in the DAG currently has. It is assumed 487
that the matrix has been prepared such that all columns within a single DAG are adjacent. Each 488
DAG has a unique “DAG-id”, which is present in row 0 of each column of the DAG. By contrast, 489
single-parent hierarchies (single column) have a zero in row 0. 490

 The matrix is generally sparse, is initialized to all zeroes, and single-parent hierarchies and 491
DAGs are built by assigning the row number (effectively resource-id) of the parent of the 492
resource to the cell in resource’s row, effectively making the row a collection of potential 493
hierarchies and DAGs that the resource can belong to. The root of a hierarchy is indicated by the 494
row element pointing to the current row, a self-reference. 495

 The 2-d array is “one-based” in that column 0 and row 0 are not used so that resources and 496
hierarchies may be identified as running from 1->nRes and 1->mHier. 497

 Once the matrix is built, the ancestors for a resource may be collected by passing the row 498
number of the resource to the collectAncestorNodes(iRes) method. For each hierarchy and DAG 499
in the matrix, the recursive walkUpHierarchyOrDag(res-id, hier-id, dag-width, depth) method is 500
called, which will collect all the ancestors of either a hierarchy or DAG. 501

 The collected ancestors are stored in 4 sets: one each for self, parent, ancestor, and ancestor-502
or-self. 503

 This algorithm is intended to be a model only and does not represent any specific 504
implementation strategy, except to clearly identify a concrete framework for identifying all the 505
resources and hierarchies and DAGs that are potentially covered by this profile. 506

 507

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 17 of 23

4 Stating policies that apply to nodes 508

{Non-normative} 509

This Section describes various ways to specify a policy predicate that can apply to multiple nodes in a 510
hierarchical resource. This is not intended to be an exhaustive list. 511

4.1 Policies applying to nodes with ancestor attributes 512

{Non-normative} 513

Resource attributes with the following AttributeId values, described in Section 5: New attribute 514

identifiers for hierarchical resources of this Profile, MAY be used to state policies that apply to one or 515
more nodes in any hierarchical resource. 516

urn:oasis:names:tc:xacml:2.0:resource:resource-parent 517

urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor 518

urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor-or-self 519

Note that a <AttributeDesignator> that refers to the “resource-parent”, “resource-ancestor”, or 520

“resource-ancestor-or-self” attribute will return a bag of values representing all normative identities of all 521
parents, ancestors, or ancestors plus the resource itself, respectively, of the resource to which access is 522
being requested. The representations of the identities of these parents, ancestors, or self will not 523
necessarily indicate the path from the root of the hierarchy to the respective parent, ancestor, or self 524
unless the representation recommended in Section 3.2: Nodes in a resource that is not an XML document 525
is used. 526

The standard XACML [XACML] bag and higher-order bag functions MAY be used to state policies that 527
apply to one or more nodes in any hierarchical resource. The nodes used as arguments to these 528

functions MAY be specified using a <AttributeDesignator> with the “resource-parent”, “resource-529

ancestor”, or “resource-ancestor-or-self” AttributeId value. 530

4.2 Policies applying only to nodes in XML documents 531

{Non-normative} 532

For hierarchical resources that are represented as XML document instances, the following function, 533
described in the XACML 3.0 Specification [XACML] MAY be used to state policy predicates that apply to 534

one or more nodes in that resource. 535

 urn:oasis:names:tc:xacml:3.0:function:xpath-node-match 536

The standard XACML <AttributeSelector> element MAY be used in policies to refer to all or 537

portions of a resource represented as an XML document and contained in the <Content> element of a 538

request context. 539

The standard XACML [XACML] bag and higher-order bag functions MAY be used to state policies that 540
apply to one or more nodes in a resource represented as an XML document. The nodes used as 541

arguments to these functions MAY be specified using an <AttributeSelector> that selects a portion 542

of the <Content> element of the <Attributes> element with the resource category. 543

4.3 Policies applying only to nodes identified with URIs 544

{Non-normative} 545

For hierarchical resources that are not represented as XML document instances, and where the URI 546
representation of nodes specified in Section 2.2 of this Profile is used, the following functions described 547
in the XACML 3.0 Specification [XACML] MAY be used to state policies that apply to one or more nodes 548

in that resource. 549

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 18 of 23

 urn:oasis:names:tc:xacml:1.0:function:anyURI-equal 550

 urn:oasis:names:tc:xacml:2.0:function:regexp-uri-match 551

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 19 of 23

5 New attribute identifiers 552

{Optional} 553

5.1 content-selector 554

The following identifier locates with an XPath expression the resource in the XML document that 555
represents the hierarchy in which the requested resource is a part. The DataType of this attribute MUST 556
be “urn:oasis:names:tc:xacml:3.0:data-type:xpathExpression”. 557

urn:oasis:names:tc:xacml:3.0:content-selector 558

5.2 document-id 559

The following identifier indicates the identity of the XML document that represents the hierarchy of which 560

the requested resource is a part, and of which a copy is present in the <Content> element. Whenever 561

access to a node in a resource represented as an XML document is requested, one or more instances of 562

an attribute with this AttributeId MAY be provided in the <Attributes> element of the request 563

context. The DataType of these attributes SHALL be “urn:oasis:names:tc:xacml:1.0:data-type:anyURI”. 564

 urn:oasis:names:tc:xacml:2.0:resource:document-id 565

5.3 resource-parent 566

The following identifier indicates one normative identity of one parent node in the tree or forest of which 567
the requested node is a part. Whenever access to a node in a hierarchical resource is requested, one 568

instance of an attribute with this AttributeId SHALL be provided in the <Attributes> element of the 569

request context for each normative representation of each node that is a parent of the requested node. 570

 urn:oasis:names:tc:xacml:2.0:resource:resource-parent 571

5.4 resource-ancestor 572

The following identifier indicates one normative identity of one ancestor node in the tree or forest of which 573
the requested node is a part. Whenever access to a node in a hierarchical resource is requested, one 574

instance of an attribute with this AttributeId SHALL be provided in the <Attributes> element of the 575

request context for each normative representation of each node that is an ancestor of the requested 576
node. 577

 urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor 578

5.5 resource-ancestor-or-self 579

The following identifier indicates one normative identity of one ancestor node in the tree or forest of which 580
the requested node is a part, or one normative identity of the requested node itself. Whenever access to 581

a node in a hierarchical resource is requested, one instance of an attribute with this AttributeId 582

SHALL be provided in the <Attributes> element of the request context for each normative 583

representation of each node that is an ancestor of the requested node, and for each normative 584
representation of the requested node itself. 585

 urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor-or-self 586

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 20 of 23

6 New profile identifiers 587

The following URI values SHALL be used as identifiers for the functionality specified in various Sections 588
of this Profile: 589

Section 2.1: Nodes in XML documents 590

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:xml-node-id 591

 Section 2.2: Nodes in resources that are not XML documents 592

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:non-xml-node-id 593

Section 3.1: Nodes in an XML document 594

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:xml-node-req 595

Section 3.2: Nodes in a resource that is not an XML document 596

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:non-xml-node-req 597

Support for the “resource-parent”, “resource-ancestor”, and “resource-ancestor-or-self” attributes is 598
optional within this Section, so these have separate identifiers: 599

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:non-xml-node-req:resource-parent 600

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:non-xml-node-req:resource-ancestor 601

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:non-xml-node-req:resource-ancestor-or-self 602

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 21 of 23

7 Conformance 603

Implementations of this profile MAY conform to any or all of the following conformance clauses. 604

7.1 Nodes in XML documents 605

Implementations supporting hierarchical resources as nodes in an xml document SHALL conform to 606
sections 2.1 and 3.1. The following URI identifies this functionality. 607

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:xml-node-id 608

 609

7.2 Nodes in hierarchical resources identified by URIs 610

Implementations supporting hierarchical resources by means of URIs SHALL conform to sections 2.2 and 611
3.2. The following URI identifies this functionality. 612

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:URI-node-id 613

 614

7.3 Nodes in hierarchical resources identified by ancestor attributes 615

Implementations supporting hierarchical resources by means of ancestor attributes SHALL conform to 616
sections 2.3 and 3.3. The following URI identifies this functionality. 617

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:attribute-node-id. 618

 619

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 22 of 23

A. Acknowledgements 620

The following individuals have participated in the creation of this specification and are gratefully 621
acknowledged: 622

 623

Anil Saldhana 624

Anil Tappetla 625

Anne Anderson 626

Anthony Nadalin 627

Bill Parducci 628

Craig Forster 629

David Chadwick 630

David Staggs 631

Dilli Arumugam 632

Duane DeCouteau 633

Erik Rissanen 634

Gareth Richards 635

Hal Lockhart 636

Jan Herrmann 637

John Tolbert 638

Ludwig Seitz 639

Michiharu Kudo 640

Naomaru Itoi 641

Paul Tyson 642

Prateek Mishra 643

Rich Levinson 644

Ronald Jacobson 645

Seth Proctor 646

Sridhar Muppidi 647

Tim Moses 648

Vernon Murdoch 649

 650
 651

xacml-3.0-hierarchical-v1-spec-cd-03-en 11 March 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 23 of 23

B. Revision History 652

[optional; should not be included in OASIS Standards] 653

 654

Revision Date Editor Changes Made

WD 1 Erik Rissanen Initial conversion to XACML 3.0.

WD 2 28 Dec 2007 Erik Rissanen Conversion to the current OASIS template.

WD 3 4 Nov 2008 Erik Rissanen Update to XACML core working draft 7.

WD 6 24 March 2009 Hal Lockhart Added definitions provided by Rich Levinson

Separated Attribute and URI modes

Added conformance section

WD 8 5 April 2009 Erik Rissanen Editorial cleanups.

WD 9 Erik Rissanen Added non-normative pseudo-code (by Rich)
for how one can collect the required attributes
from a hierarchy.

WD 10 14 Dec 2009 Erik Rissanen

Rich Levinson

Fixed typos.

Updated URI scheme with XML node pointers.

Remove ancestor attributes from XML scheme.

Clarified meaning of metadata identifiers.

Use the content-selector attribute instead of the
resource-id in the XML scheme.

Fixed 2.0 -> 3.0 typos in some identifiers.

WD 11 17 Dec 2009 Erik Rissanen

Rich Levinson

Fixed typos

Fixed OASIS references

Updated acknowledgments

WD 12 12 Jan 2010 Erik Rissanen Updated cross references

Updated acknowledgments

WD 13 8 Mar 2010 Erik Rissanen Updated cross references

Fixed OASIS formatting issues

 655

 656

	Introduction
	Glossary
	Comparison of hierarchical structures

	Terminology
	Normative References
	Non-Normative References

	Representing the identity of a node
	Nodes in XML documents
	Nodes in hierarchical resources identified by URIs
	Alternative URI-reference representation for XML documents

	Nodes in hierarchical resources identified by ancestor attributes

	Requesting access to a node
	Nodes in an XML document
	Nodes in hierarchical resources identified by URIs
	Nodes in hierarchical resources identified by ancestor attributes
	Pseudo-code for Nodes in hierarchical resources identified by ancestor attributes (non-normative)

	Stating policies that apply to nodes
	Policies applying to nodes with ancestor attributes
	Policies applying only to nodes in XML documents
	Policies applying only to nodes identified with URIs

	New attribute identifiers
	content-selector
	document-id
	resource-parent
	resource-ancestor
	resource-ancestor-or-self

	New profile identifiers
	Conformance
	Nodes in XML documents
	Nodes in hierarchical resources identified by URIs
	Nodes in hierarchical resources identified by ancestor attributes

	Acknowledgements
	Revision History

