
xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 1 of 33

XACML v3.0 Administration and
Delegation Profile Version 1.0

Committee Specification 01

10 August 2010

Specification URIs:
This Version:

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cs-01-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cs-01-en.doc
(Authoritative)
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cs-01-en.pdf

Previous Version:

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cd-03-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cd-03-en.doc
(Authoritative)
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cd-03-en.pdf

Latest Version:
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-en.doc (Authoritative)
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-en.pdf

Technical Committee:
OASIS eXtensible Access Control Markup Language (XACML) TC

Chair(s):
Bill Parducci, <bill@parducci.net>
Hal Lockhart, Oracle <hal.lockhart@oracle.com>

Editor(s):

Erik Rissanen, Axiomatics AB <erik@axiomatics.com>

Related work:
This specification is related to:

 eXtensible Access Control Markup Language (XACML) Version 3.0 Committee Draft 03

Declared XML Namespace(s):
None

Abstract:
This specification describes a profile for XACML 3.0 to enable it to express administration and
delegation policies.

Status:

This document was last revised or approved by the eXtensible Access Control Markup Language
(XACML) TC on the above date. The level of approval is also listed above. Check the “Latest
Version” or “Latest Approved Version” location noted above for possible later revisions of this
document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cs-01-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cs-01-en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cd-03-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cd-03-en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-cd-03-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-en.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
mailto:bill@parducci.net
mailto:hal.lockhart@oracle.com
mailto:erik@axiomatics.com
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.doc

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 2 of 33

“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/xacml/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/xacml/ipr.php).

The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/xacml/.

http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/ipr.php
http://www.oasis-open.org/committees/xacml/ipr.php
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 3 of 33

Notices

Copyright © OASIS® 2010. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The names "OASIS" and “XACML” are trademarks of OASIS, the owner and developer of this
specification, and should be used only to refer to the organization and its official outputs. OASIS
welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce
its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above
guidance.

http://www.oasis-open.org/who/trademark.php

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 4 of 33

Table of Contents

1 Introduction ... 6

1.1 Terminology .. 6

1.2 Glossary ... 6

1.3 Normative References .. 6

1.4 Non-Normative References .. 7

2 Use Cases (non-normative) .. 8

2.1 Administration/Delegation ... 8

2.1.1 Use case 1: Policy Administration ... 8

2.1.2 Use case 2: Dynamic Delegation... 8

2.1.3 Discussion ... 8

2.2 Only if X is permitted to do it ... 8

3 Solution Overview and Semantics (non-normative) .. 10

4 Processing Model ... 11

4.1 URIs .. 11

4.2 Reserved Attribute Categories .. 11

4.3 Trusted policies... 11

4.4 The context handler .. 11

4.5 Administrative request generation during reduction .. 12

4.6 Policy set evaluation ... 12

4.7 Forming the reduction graph ... 13

4.8 Reduction of “Permit” .. 13

4.9 Reduction of “Deny” .. 13

4.10 Reduction of “Indeterminate” .. 14

4.11 Maximum delegation depth ... 14

4.12 Obligations .. 14

5 Example (non-normative) ... 15

6 Optimization (non-normative) ... 25

6.1 Optimization of Reduction ... 25

6.2 Alternative forms of delegation ... 25

7 Actions Other Than Create ... 26

7.1 Revocation by the issuer .. 26

7.2 Revocation by super administrators .. 26

7.3 Revocation as an action under access control.. 26

8 Security and Privacy Considerations (non-normative) .. 27

8.1 Dynamic Issuer Attributes ... 27

8.2 Enforcing Constraints on Delegation .. 27

8.3 Issuer and delegate attributes... 28

8.4 Denial of Service ... 28

8.5 Obligations .. 28

9 Conformance .. 29

9.1 Delegation by reduction .. 29

A. Acknowledgements .. 30

B. Revision History ... 31

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 5 of 33

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 6 of 33

1 Introduction 1

1.1 Terminology 2

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 3
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 4
in [RFC2119]. 5

1.2 Glossary 6

For simplicity, this document uses the term policy to include the XACML definitions for both policy and 7
policy set. 8

The following terms are defined. 9

Access policy 10

A policy that governs access. 11

Access request 12

A request to determine whether access to a resource should be granted. 13

Administrative policy 14

A policy that authorizes a delegate to issue policies about constrained situations. 15

Administrative request 16

A request to determine whether a policy was issued by an authorized source. 17

Backward Chaining 18

Finding a chain of administrative and access policies beginning with an access policy, such 19
that each policy is authorized by the next one. 20

Delegate 21

Someone authorized by an administrative policy to issue policies. 22

Forward Chaining 23

Finding a chain of administrative and access policies beginning at a trusted policy, such that 24
each policy authorizes the next one. 25

Issuer 26

A set of attributes describing the source of a policy. 27

Reduction 28

the process by which the authority of a policy associated with an issuer is verified or discarded. 29

Situation 30

A set of properties delineated by the <Attributes> elements of an access request context. 31

Trusted policy 32

A policy without a <PolicyIssuer> element. 33

1.3 Normative References 34

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 35

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 36

http://www.ietf.org/rfc/rfc2119.txt

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 7 of 33

[XACML] OASIS Committee Specification 01, eXtensible access control markup language 37
(XACML) Version 3.0. August 2010. http://docs.oasis-open.org/xacml/3.0/xacml-38
3.0-core-spec-cs-01-en.doc 39

1.4 Non-Normative References 40

None 41

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.doc

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 8 of 33

2 Use Cases (non-normative) 42

This specification is intended to support the following use cases. 43

2.1 Administration/Delegation 44

2.1.1 Use case 1: Policy Administration 45

Policy administration controls the types of policies that individuals can create and modify. Typically, 46
different individuals would be allowed to create policies about certain sets of resources. Alternatively, 47
administration might be divided up by action type, subject or some other properties. 48

In XACML 2.0 the question of the circumstances under which policies can be created is out of scope. It 49
essentially says that some policies exist which the PDP will use. 50

2.1.2 Use case 2: Dynamic Delegation 51

Dynamic delegation permits some users to create policies of limited duration to delegate certain 52
capabilities to others. XACML 2.0 allows policies that say, "Mary can do something on behalf of Jack" by 53
means of different subject-categories. But, it would be useful to allow people to generate policies on the 54
fly that say such things as "while I am on vacation, Mary can approve requests." This requires the ability 55
to create policies that control the policies that can be created. 56

2.1.3 Discussion 57

In meeting these two use cases, it is NOT desirable to require either of the following to always be true: 58

1. Anything you can do, you can delegate to someone else to do. 59

2. If you can delegate something, you can always do it yourself by generating the necessary policy 60
that applies to you. 61

It should be possible to create policies that enable #1 and/or #2, but they should not be "wired in." 62

The main difference between use cases #1 and #2 is how policies are accessed. In #1, most likely 63
policies will be found in some repository or set of repositories. There will be some simple enforcement 64
mechanism that says that the issuer of one policy must correspond to the person who created or 65
modified the other policy. In #2, policies might need to be carried in application requests or accessed 66
dynamically via some back channel. In this case, signatures, or some other such mechanism, would be 67
used to verify the issuer's identity. 68

Note that in both cases, having a policy from Fred, signed by Fred does not mean the policy will be 69
enforced. It merely means that it will be considered as a candidate. It is still necessary to authorize 70
Fred's policy for it to be enforced. 71

It is also desirable to arrange for policy evaluation to be optimized by doing as much work prior to access 72
time as possible. It should be possible to "flatten" policy chains to an equivalent form using whatever 73
policies are at hand. 74

Support for administration/delegation should not reduce the existing functionality of XACML 2.0 75

2.2 Only if X is permitted to do it 76

Consider the common use case: Mary is the manager and approves expense reports for her department. 77
When she is on vacation, Jack can approve expense reports. 78

We need a convenient way to say "Jack is allowed to do such and such, but only if Mary is allowed to do 79
it". Mary might or might not be the issuer of this policy. In plain XACML, there is no way to do this 80
except by duplicating the rules that apply to Mary. 81

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 9 of 33

In other words, we need a way to replace the access-subject in the request context with a specified 82
subject, call the entire policy evaluation process and if the result is “Permit”, then return a value of “True.” 83

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 10 of 33

3 Solution Overview and Semantics (non-normative) 84

The purpose of the delegation model is to make it possible to express permissions about the right to issue 85
policies and to verify issued policies against these permissions. 86

A policy may contain a <PolicyIssuer> element that describes the source of the policy. A missing 87

<PolicyIssuer> element means that the policy is trusted. 88

A trusted policy is considered valid and its origin is not verified by the PDP. 89

Policies which have an issuer need to have their authority verified. The essence of the verification is that 90
the issuer of the policy is checked against the trusted policies, directly or through other policies with 91
issuers. During this check the right of the issuer to issue a policy about the current access request is 92
verified. 93

If the authority of the policy issuer can be traced back to the trusted policies, the policy is used by the 94
PDP, otherwise it is discarded as an unauthorized policy. The authority of the issuer depends on which 95
access situation the current access request applies to, so a policy can be both valid and invalid 96
depending on the access request. 97

Steps in the validation process are performed using a special case XACML requests, called 98
administrative requests, which contain information about the policy issuers and the access situation. 99

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 11 of 33

4 Processing Model 100

4.1 URIs 101

urn:oasis:names:tc:xacml:3.0:delegation:decision 102

The identifier which MUST be used for the attribute indicating which type of decision is being 103
reduced. 104

4.2 Reserved Attribute Categories 105

urn:oasis:names:tc:xacml:3.0:attribute-category:delegate 106

This attribute category MUST be used in administrative requests to carry the attributes of the 107
issuer of the policy which is being reduced. 108

urn:oasis:names:tc:xacml:3.0:attribute-category:delegation-info 109

This attribute category MUST be used in administrative requests to carry information about the 110
reduction in progress, such as the decision being reduced. 111

urn:oasis:names:tc:xacml:3.0:attribute-category:delegated:<anyURI> 112

Categories starting with this and ending with any URI MUST be used to carry information about 113
the situation which is being reduced. 114

4.3 Trusted policies 115

In case there is no <PolicyIssuer> element in the policy or policy set, the policy or policy set 116

MUST be trusted and no reduction of the policy will be performed. 117

4.4 The context handler 118

The attributes contained in an explicit <Attributes> element with Category 119

“urn:oasis:names:tc:xacml:3.0:attribute-category:delegate” MAY be complemented with additional 120
attributes by the context handler, as is the case with the other elements in the request context. 121

A dynamic issuer attribute is an attribute of an issuer/delegate such that the attribute value may have 122
changed since the policy was issued. The time at which attributes are resolved is important for dynamic 123
delegate attributes. The PDP and context handler MUST operate in either “current issuer/delegate 124
attribute mode” or “historic issuer/delegate attribute mode” but not in both. 125

 Current attributes mode 126

In current attribute mode, when a delegate attribute is dynamic, the value of the attribute MUST 127
be used as it is at the time of the access request being processed. 128

 Historic attributes mode 129

In historic attribute mode, when a delegate attribute is dynamic, the value of the attribute MUST 130
be used as it was at the time when the policy, from which the delegate was derived, was issued. 131

These rules MUST apply to both attributes that appear in the <PolicyIssuer> element and the 132

attributes that are retrieved by the context handler, which means that in case of the current attribute mode 133
dynamic issuer attributes MUST NOT be present in the <PolicyIssuer> element. 134

See also the security considerations discussion related to this in section 8.1. 135

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 12 of 33

4.5 Administrative request generation during reduction 136

Reduction is the process by which the authority of policies is established. Reduction is performed as a 137
search in a graph. This section explains how a single administrative request is created to determine an 138
edge in the reduction graph. Reduction is always performed in the context of a request R, which is 139
being evaluated against a policy set. 140

Given a potentially supported policy, P, and the request R, an administrative request, A, is generated 141
based on R by the following steps: 142

1. The <Attributes> elements of R are mapped to <Attributes> elements in A according to 143

the following: 144

a. An <Attributes> element with Category equal to 145

”urn:oasis:names:tc:xacml:3.0:attribute-category:delegate” in R has no corresponding 146
part in A. 147

b. An <Attributes> element with Category which starts with the prefix 148

”urn:oasis:names:tc:xacml:3.0:attribute-category:delegated:” maps to an identical 149
<Attributes> element. 150

c. An <Attributes> element with Category equal to 151

“urn:oasis:names:tc:xacml:3.0:attribute-category:delegation-info” in R has no 152
corresponding part in A. (Note, a new delegation-info category is created, see point 3 153
below.) 154

d. An <Attributes> element with any other Category maps to an <Attributes> 155

element with the Category prefixed with ”urn:oasis:names:tc:xacml:3.0:attribute-156

category:delegated:” and identical contents. 157

2. A contains an <Attributes> element with Category equal to 158

“urn:oasis:names:tc:xacml:3.0:attribute-category:delegate” and contents identical to the 159
<PolicyIssuer> element from P. 160

3. A contains an <Attributes> element with Category equal to 161

“urn:oasis:names:tc:xacml:3.0:attribute-category:delegation-info” and the following contents: 162

a. An <Attribute> element with AttributeId equal to 163

“urn:oasis:names:tc:xacml:3.0:delegation:decision”, DataType equal to 164

“http://www.w3.org/2001/XMLSchema#string”, and the value equal to the decision which 165
is being reduced, that is either “Permit” or “Deny”. (See section 4.7 for explanation on 166
how this value is set.) 167

4.6 Policy set evaluation 168

This delegation profile defines how policy sets are evaluated in the presence of policies with issuers. A 169
PDP implementing this profile MUST perform policy set evaluation according the following process or a 170
process that produces an identical result in all cases. Note that the regular policy set evaluation 171
according to [XACML] is a special case of this process as long as no policy has an issuer. 172

The evaluation of a policy set is done as in [XACML], with the exception that the contained policies are 173

possibly reduced and/or discarded, before combination, as defined by the following table. 174

 175

Value of evaluated policy Policy Issuer Action

Don’t care Absent The value is combined as it is.

“Permit”, “Deny” or
“Indeterminate”

Present The value is reduced as defined
in sections 4.8, 4.9 and 4.10
respectively and possibly
discarded before combination.

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 13 of 33

“Not applicable” Present The value is discarded.

 176

After the above actions have been performed, the remaining trusted policy values determine the value 177
of the policy set as defined in [XACML]. 178

4.7 Forming the reduction graph 179

The reduction process is a graph search where the nodes of the graph are the policies in a policy set 180
and the edges represent how the policies authorize each other. 181

The nodes of the reduction graph are the policies of the policy set. 182

There are four kinds of directed edges in the graph: Types PP, PI, DP and DI. 183

Note (non-normative): Informally, the PP and DP edges are used to indicate whether a 184
policy authorizes delegation of “Permit” and “Deny” respectively. The PI and DI edges 185
are used to propagate “Indeterminate” results from administrative policies into the final 186
result. It is important to propagate “Indeterminate” results since failing to detect an error 187
can result in the wrong decision being implemented by the PEP. 188

To generate the edges of the reduction graph 189

1. For each ordered pair of policies in the policy set (P1, P2), generate an administrative request 190
A reducing “Permit” based on P1 and the request being evaluated against the policy set. 191

a. Evaluate A against P2. 192

b. If and only if the result is “Permit”, there is a PP edge from P1 to P2. 193

c. If and only if the result is “Indeterminate”, there is a PI edge from P1 to P2. 194

2. For each ordered pair of policies in the policy set (P1, P2), generate an administrative request 195
A reducing “Deny” based on P1 and the request being evaluated against the policy set. 196

a. Evaluate A against P2. 197

b. If and only if the result is “Permit”, there is a DP edge from P1 to P2. 198

c. If and only if the result is “Indeterminate”, there is a DI edge from P1 to P2. 199

4.8 Reduction of “Permit” 200

A policy, P, which evaluated to “Permit” in the policy set, MUST be reduced as follows in this section. 201

Form a reduction graph as described in section 4.7. 202

Start a graph search from the node corresponding to the policy to be reduced. Follow only PP edges. If it 203
is possible to reach a node which corresponds to a trusted policy, the policy P is treated as “Permit” in 204
combination of the policy set. 205

If it was not possible to reach a trusted policy, do a second graph search, following PP and PI edges. If 206
it possible to reach a trusted policy in this manner, the policy P is treated as “Indeterminate” in 207
combination of the policy set. 208

If it was not possible to reach a trusted policy with either search, the policy P is discarded and not 209
combined in the policy set. 210

In all graph searches, the maximum delegation depth limit MUST be checked as described in section 211
4.11. 212

In all graph searches obligations must be collected as described in section 4.12. 213

4.9 Reduction of “Deny” 214

A policy, P, which evaluated to “Deny” in the policy set, MUST be reduced as follows in this section. 215

Form a reduction graph as described in section 4.7. 216

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 14 of 33

Start a graph search from the node corresponding to the policy to be reduced. Follow only DP edges. If it 217
is possible to reach a node which corresponds to a trusted policy, the policy P is treated as “Deny” in 218
combination of the policy set. 219

If it was not possible to reach a trusted policy, do a second graph search, following DP and DI edges. If 220
it possible to reach a trusted policy in this manner, the policy P is treated as “Indeterminate” in 221
combination of the policy set. 222

If it was not possible to reach a trusted policy with either search, the policy P is discarded and not 223
combined in the policy set. 224

In all graph searches, the maximum delegation depth limit MUST be checked as described in section 225
4.11. 226

In all graph searches obligations must be collected as described in section 4.12. 227

4.10 Reduction of “Indeterminate” 228

A policy, P, which evaluated to “Indeterminate” in the policy set, MUST be reduced as follows in this 229
section. 230

Form a reduction graph as described in section 4.7. 231

Start a graph search from the node corresponding to the policy to be reduced. Follow PP and PI edges. 232
If it is possible to reach a node which corresponds to a trusted policy, the policy P is treated as 233
“Indeterminate” in combination of the policy set. 234

If it was not possible to reach a trusted policy, do a second graph search, following DP and DI edges. If 235
it possible to reach a trusted policy in this manner, the policy P is treated as “Indeterminate” in 236
combination of the policy set. 237

If it was not possible to reach a trusted policy with either search, the policy P is discarded and not 238
combined in the policy set. 239

In all graph searches, the maximum delegation depth limit MUST be checked as described in section 240
4.11. 241

In all graph searches obligations must be collected as described in section 4.12. 242

Note (non-normative): This process is designed in this way because it is important to 243
reduce “Indeterminate” results before combining them. An unauthorized “Indeterminate” 244
can be used as an attack by forcing the PEP into error handling, and possibly denying or 245
allowing access depending on the bias of the PEP. Intuitively we test if the policy would 246
be authorized if it would have been “Permit” or “Deny”. If neither a “Permit” nor a “Deny” 247
would have been authorized, the policy is not authorized, so the “Indeterminate” is 248
discarded. 249

4.11 Maximum delegation depth 250

A policy or policy set MAY contain an XML attribute called MaxDelegationDepth, which limits the 251

depth of delegation which is authorized by the policy. During the searches in the reduction graph, a path 252
MUST be aborted if the number of nodes on the path exceeds the integer value of this attribute. The node 253
count on the path includes the initial node which is being reduced, but does not include the node 254
corresponding to the policy with the MaxDelegationDepth attribute being checked. 255

4.12 Obligations 256

Obligations in the access policies that have been reduced and are being combined are treated exactly 257
as in [XACML]. Administrative policies may contain obligations but the obligations apply to the access 258

decision, not the administrative decisions. All obligations that are found in policies that are used to 259
reduce an access policy are treated as if they would have appeared in the access policy. 260

Due to security concerns with obligations, a PDP MAY refuse to load a policy with an obligation it does 261
not recognize. Also, see Section 8.5 for security considerations concerning obligations. 262

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 15 of 33

5 Example (non-normative) 263

The following example policy set is used for illustrating the processing model. 264

 265

<PolicySet PolicySetId="PolicySet1" 266
 Version="1.0" 267
 PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit-268
overrides" 269
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 270
 xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" 271
 xsi:schemaLocation="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17 xacml-core-v3-272
schema-wd-17.xsd"> 273
 <Target/> 274
 <Policy PolicyId="Policy1" 275
 Version="1.0" 276
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-277
overrides"> 278
 <Target> 279
 <AnyOf> 280
 <AllOf> 281
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 282
 <AttributeValue 283
 DataType="http://www.w3.org/2001/XMLSchema#string" 284
 >employee</AttributeValue> 285
 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-286
category:delegated:urn:oasis:names:tc:xacml:1.0:subject-category:access-subject " 287
 AttributeId="group" 288
 MustBePresent="false" 289
 DataType="http://www.w3.org/2001/XMLSchema#string"/> 290
 </Match> 291
 </AllOf> 292
 </AnyOf> 293
 <AnyOf> 294
 <AllOf> 295
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 296
 <AttributeValue 297
 DataType="http://www.w3.org/2001/XMLSchema#string">printer</AttributeValue> 298
 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-299
category:delegated:urn:oasis:names:tc:xacml:3.0:attribute-category:resource" 300
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 301
 MustBePresent="false" 302
 DataType="http://www.w3.org/2001/XMLSchema#string"/> 303
 </Match> 304
 </AllOf> 305
 </AnyOf> 306
 <AnyOf> 307
 <AllOf> 308
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 309
 <AttributeValue 310
 DataType="http://www.w3.org/2001/XMLSchema#string">print</AttributeValue> 311
 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-312
category:delegated:urn:oasis:names:tc:xacml:3.0:attribute-category:action" 313
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id" 314
 MustBePresent="false" 315
 DataType="http://www.w3.org/2001/XMLSchema#string"/> 316
 </Match> 317
 </AllOf> 318
 </AnyOf> 319
 <AnyOf> 320
 <AllOf> 321
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 322
 <AttributeValue 323
 DataType="http://www.w3.org/2001/XMLSchema#string">Carol</AttributeValue> 324
 <AttributeDesignator 325
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:delegate" 326
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" 327
 MustBePresent="false" 328

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 16 of 33

 DataType="http://www.w3.org/2001/XMLSchema#string"/> 329
 </Match> 330
 </AllOf> 331
 </AnyOf> 332
 </Target> 333
 <Rule RuleId="Rule1" Effect="Permit"> 334
 <Target/> 335
 </Rule> 336
 </Policy> 337
 338
 <Policy PolicyId="Policy2" 339
 Version="1.0" 340
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-341
overrides"> 342
 <PolicyIssuer> 343
 <Attribute 344
 IncludeInResult="false" 345
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"> 346
 <AttributeValue 347
DataType="http://www.w3.org/2001/XMLSchema#string">Carol</AttributeValue> 348
 </Attribute> 349
 </PolicyIssuer> 350
 <Target> 351
 <AnyOf> 352
 <AllOf> 353
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 354
 <AttributeValue 355
 DataType="http://www.w3.org/2001/XMLSchema#string" 356
 >employee</AttributeValue> 357
 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-358
category:delegated:urn:oasis:names:tc:xacml:1.0:subject-category:access-subject" 359
 AttributeId="group" 360
 MustBePresent="false" 361
 DataType="http://www.w3.org/2001/XMLSchema#string"/> 362
 </Match> 363
 </AllOf> 364
 </AnyOf> 365
 <AnyOf> 366
 <AllOf> 367
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 368
 <AttributeValue 369
 DataType="http://www.w3.org/2001/XMLSchema#string">printer</AttributeValue> 370
 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-371
category:delegated:urn:oasis:names:tc:xacml:3.0:attribute-category:resource" 372
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 373
 MustBePresent="false" 374
 DataType="http://www.w3.org/2001/XMLSchema#string"/> 375
 </Match> 376
 </AllOf> 377
 </AnyOf> 378
 <AnyOf> 379
 <AllOf> 380
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 381
 <AttributeValue 382
 DataType="http://www.w3.org/2001/XMLSchema#string">print</AttributeValue> 383
 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-384
category:delegated:urn:oasis:names:tc:xacml:3.0:attribute-category:action" 385
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id" 386
 MustBePresent="false" 387
 DataType="http://www.w3.org/2001/XMLSchema#string"/> 388
 </Match> 389
 </AllOf> 390
 </AnyOf> 391
 <AnyOf> 392
 <AllOf> 393
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 394
 <AttributeValue 395
 DataType="http://www.w3.org/2001/XMLSchema#string">Bob</AttributeValue> 396
 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-397
category:delegate" 398
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" 399
 MustBePresent="false" 400
 DataType="http://www.w3.org/2001/XMLSchema#string"/> 401

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 17 of 33

 </Match> 402
 </AllOf> 403
 </AnyOf> 404
 </Target> 405
 <Rule RuleId="Rule2" Effect="Permit"> 406
 <Target/> 407
 </Rule> 408
 </Policy> 409
 410
 <Policy PolicyId="Policy3" 411
 Version="1.0" 412
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-413
overrides"> 414
 <PolicyIssuer> 415
 <Attribute 416
 IncludeInResult="false" 417
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"> 418
 <AttributeValue 419
DataType="http://www.w3.org/2001/XMLSchema#string">Mallory</AttributeValue> 420
 </Attribute> 421
 </PolicyIssuer> 422
 <Target> 423
 <AnyOf> 424
 <AllOf> 425
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 426
 <AttributeValue 427
 DataType="http://www.w3.org/2001/XMLSchema#string">Alice</AttributeValue> 428
 <AttributeDesignator Category="urn:oasis:names:tc:xacml:1.0:subject-429
category:access-subject" 430
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" 431
 MustBePresent="false" 432
 DataType="http://www.w3.org/2001/XMLSchema#string"/> 433
 </Match> 434
 </AllOf> 435
 </AnyOf> 436
 <AnyOf> 437
 <AllOf> 438
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 439
 <AttributeValue 440
 DataType="http://www.w3.org/2001/XMLSchema#string">printer</AttributeValue> 441
 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-442
category:resource" 443
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 444
 MustBePresent="false" 445
 DataType="http://www.w3.org/2001/XMLSchema#string"/> 446
 </Match> 447
 </AllOf> 448
 </AnyOf> 449
 <AnyOf> 450
 <AllOf> 451
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 452
 <AttributeValue 453
 DataType="http://www.w3.org/2001/XMLSchema#string">print</AttributeValue> 454
 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-455
category:action" 456
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id" 457
 MustBePresent="false" 458
 DataType="http://www.w3.org/2001/XMLSchema#string"/> 459
 </Match> 460
 </AllOf> 461
 </AnyOf> 462
 </Target> 463
 <Rule RuleId="Rule3" Effect="Permit"> 464
 <Target/> 465
 </Rule> 466
 </Policy> 467
 468
 <Policy PolicyId="Policy4" 469
 Version="1.0" 470
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-471
overrides"> 472
 <PolicyIssuer> 473
 <Attribute 474

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 18 of 33

 IncludeInResult="false" 475
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"> 476
 <AttributeValue 477
DataType="http://www.w3.org/2001/XMLSchema#string">Bob</AttributeValue> 478
 </Attribute> 479
 </PolicyIssuer> 480
 <Target> 481
 <AnyOf> 482
 <AllOf> 483
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 484
 <AttributeValue 485
 DataType="http://www.w3.org/2001/XMLSchema#string">Alice</AttributeValue> 486
 <AttributeDesignator Category="urn:oasis:names:tc:xacml:1.0:subject-487
category:access-subject" 488
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" 489
 MustBePresent="false" 490
 DataType="http://www.w3.org/2001/XMLSchema#string"/> 491
 </Match> 492
 </AllOf> 493
 </AnyOf> 494
 <AnyOf> 495
 <AllOf> 496
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 497
 <AttributeValue 498
 DataType="http://www.w3.org/2001/XMLSchema#string">printer</AttributeValue> 499
 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-500
category:resource" 501
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 502
 MustBePresent="false" 503
 DataType="http://www.w3.org/2001/XMLSchema#string"/> 504
 </Match> 505
 </AllOf> 506
 </AnyOf> 507
 <AnyOf> 508
 <AllOf> 509
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 510
 <AttributeValue 511
 DataType="http://www.w3.org/2001/XMLSchema#string">print</AttributeValue> 512
 <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attribute-513
category:action" 514
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id" 515
 MustBePresent="false" 516
 DataType="http://www.w3.org/2001/XMLSchema#string"/> 517
 </Match> 518
 </AllOf> 519
 </AnyOf> 520
 </Target> 521
 <Rule RuleId="Rule4" Effect="Permit"> 522
 <Target/> 523
 </Rule> 524
 </Policy> 525
</PolicySet> 526

Listing 1 The sample policy set. 527

 528

The policy set contains four policies. Policy 1 is a trusted policy since it has no issuer. The target with 529
the standard attribute categories for the subject, resource and action constrain the situation that the 530
policy applies to. The policy could have defined additional constraints on the situation by an 531
environment target or by conditions or by rule targets. In this case the policy allows granting policies 532
about any situation which is an employee who prints on the printer. Since there are <Match> elements 533

with delegated categories in the policy target, Policy 1 is an administrative policy. In this case the 534
policy allows for Carol to create any policy which allows a situation that is also allowed by Policy 1, that 535
is, Carol can give access to the printer to any employee. Since there is no limit on the delegation depth, 536
Carol can also create an administrative policy over these situations. 537

Policy 2 is issued by Carol as is indicated by the <PolicyIssuer> element. The allowed situations are 538

again that an employee prints on the printer. Again, since there are <Match> elements with delegated 539

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 19 of 33

categories, Policy 2 is an administrative policy. In this case Bob is granted the right to issue policies 540
granting access to situations that are allowed by Policy 2. 541

Policy 3 is issued by Mallory, as is indicated by the <PolicyIssuer> element. The <Match> elements 542

are on non-delegated categories, so it is an access policy. It grants access to the printer for Alice. As we 543
will see later on, this policy is unauthorized since Mallory has not been authorized to allow access for this 544
situation (Alice accessing the printer). 545

Policy 4 is issued by Bob as is indicated by the <PolicyIssuer> element. There are no delegated 546

categories, so it is an access policy. It grants access to the printer for Alice. 547

We start with the following example access request. The request indicates that Alice is trying to access 548
the printer. In this case Alice is also associated with the employee group attribute. 549

 550

<Request 551
 xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" 552
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 553
 xsi:schemaLocation="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17 xacml-core-v3-554
schema-wd-17.xsd" 555
 CombinedDecision="false" 556
 ReturnPolicyIdList="false"> 557
 <Attributes Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"> 558
 <Attribute 559
 IncludeInResult="false" 560
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"> 561
 <AttributeValue 562
DataType="http://www.w3.org/2001/XMLSchema#string">Alice</AttributeValue> 563
 </Attribute> 564
 <Attribute 565
 IncludeInResult="false" 566
 AttributeId="group"> 567
 <AttributeValue 568
DataType="http://www.w3.org/2001/XMLSchema#string">employee</AttributeValue> 569
 </Attribute> 570
 </Attributes> 571
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"> 572
 <Attribute 573
 IncludeInResult="false" 574
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"> 575
 <AttributeValue 576
DataType="http://www.w3.org/2001/XMLSchema#string">printer</AttributeValue> 577
 </Attribute> 578
 </Attributes> 579
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"> 580
 <Attribute 581
 IncludeInResult="false" 582
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"> 583
 <AttributeValue 584
DataType="http://www.w3.org/2001/XMLSchema#string">print</AttributeValue> 585
 </Attribute> 586
 </Attributes> 587
</Request> 588

Listing 2 The access request. 589

 590

The request is evaluated against the policies in the policy set. The request will not match the targets in 591
Policy 1 or Policy 2 since there are no delegated categories in the request. Both Policy 3 and Policy 4 will 592
evaluate to “Permit” since the targets match directly. This is illustrated in the following figure. 593

 594

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 20 of 33

Policy 1

Trusted, N/A

Policy 2

By Carol, N/A

Policy 3

By Mallory, Permit

Policy 4

By Bob, Permit

PolicySet

Access Request

 595

 596

Policy 3 and Policy 4 need to be reduced since they are not trusted. 597

As specified in the processing model, reduction consists of two steps. First a reduction graph is built, 598
and then the PDP searches the graph for a path to the trusted policies for each policy with an issuer. 599
Note that this example follows the definition of the processing model and does not attempt to be efficient. 600
An efficient PDP can mix edge creation and path searching so that only those edges which are actually 601
needed are created. This example does not do so for simplicity and we create a full graph before we do a 602
search. 603

So, we begin by creating the reduction graph. Creating the reduction graph means finding any edges 604
between the policies in the policy set. We need to check each pair of policies for an edge (although in 605
practice a PDP may optimize the search to find a minimum set of edges as needed to determine the 606
result). First, consider the question whether there is any edge between Policy 4 and Policy 2: 607

 608

Policy 1

Trusted

Policy 2

Policy 3 Policy 4

???

 609

 610

As defined by the processing model, there is an edge if and only if the administrative request generated 611
from policy 4 evaluates to Permit (or Indeterminate) for policy 2. So to test for an edge, we create the 612
following administrative request, and evaluate it against Policy 2: 613

 614

<Request 615
 xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" 616
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 617
 xsi:schemaLocation="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17 xacml-core-v3-618
schema-wd-17.xsd" 619
 CombinedDecision="false" 620
 ReturnPolicyIdList="false"> 621
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-622
category:delegated:urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"> 623
 <Attribute 624
 IncludeInResult="false" 625
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"> 626
 <AttributeValue 627
DataType="http://www.w3.org/2001/XMLSchema#string">Alice</AttributeValue> 628
 </Attribute> 629
 <Attribute 630

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 21 of 33

 IncludeInResult="false" 631
 AttributeId="group"> 632
 <AttributeValue 633
DataType="http://www.w3.org/2001/XMLSchema#string">employee</AttributeValue> 634
 </Attribute> 635
 </Attributes> 636
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:delegated: 637
urn:oasis:names:tc:xacml:3.0:attribute-category:resource"> 638
 <Attribute 639
 IncludeInResult="false" 640
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"> 641
 <AttributeValue 642
DataType="http://www.w3.org/2001/XMLSchema#string">printer</AttributeValue> 643
 </Attribute> 644
 </Attributes> 645
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:delegated: 646
urn:oasis:names:tc:xacml:3.0:attribute-category:action"> 647
 <Attribute 648
 IncludeInResult="false" 649
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"> 650
 <AttributeValue 651
DataType="http://www.w3.org/2001/XMLSchema#string">print</AttributeValue> 652
 </Attribute> 653
 </Attributes> 654
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:delegate"> 655
 <Attribute 656
 IncludeInResult="false" 657
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"> 658
 <AttributeValue 659
DataType="http://www.w3.org/2001/XMLSchema#string">Bob</AttributeValue> 660
 </Attribute> 661
 <Attribute 662
 IncludeInResult="false" 663
 AttributeId="group"> 664
 <AttributeValue 665
DataType="http://www.w3.org/2001/XMLSchema#string">administrator</AttributeValue> 666
 </Attribute> 667
 </Attributes> 668
 <Attributes 669
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:delegation-info"> 670
 <Attribute 671
 IncludeInResult="false" 672
 AttributeId="urn:oasis:names:tc:xacml:3.0:delegation:decision"> 673
 <AttributeValue 674
DataType="http://www.w3.org/2001/XMLSchema#string">Permit</AttributeValue> 675
 </Attribute> 676
 </Attributes> 677
</Request> 678

Listing 3 The administrative request for detecting edges from policy 4 to policy 2. 679

 680

The administrative request is created based on the request being evaluated against the whole policy 681
set and the issuer of Policy 4, that is, Bob. The subject, resource and action from the access request in 682
Listing 2 are transformed into delegated subject, resource and action in the administrative request in 683
Listing 3 and the issuer of Policy 4 becomes the delegate of the administrative request. We perform 684
the request with a permit decision initially. 685

The interpretation of the administrative request is “Is Bob allowed to create a policy that concerns 686
access to the printer for Alice?” In this case we also filled in the attribute representing membership in the 687
administrators group for Bob in the request context. This represents the fact that the context handler can 688
fill in attributes in the request context. (The details of how the context handler found the administrator 689
attribute depend on the PDP implementation and the available attribute sources in the particular 690
implementation.) 691

The request will evaluate to “Permit” on Policy 2. This means that there is a PP edge from Policy 4 to 692
Policy 2, which represents that Policy 2 authorizes Policy 4 for a “Permit” decision on the particular 693
situation. To test for a DP edge, another administrative request is created and evaluated. This request 694
will have the same contents as the first one, except for a “Deny” decision in the delegation-info category. 695

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 22 of 33

(The request is not shown here. Also note that since policy 4 evaluated to “Permit”, the DP edge is not 696
really needed, although it is specified in the definition of the graph, so this request could be skipped by an 697
optimizing PDP.) This will also evaluate to “Permit”, so there is a DP edge as well. (It would have been 698
possible for Policy 2 to include a condition so it would only allow a “Permit” decision, but this is not the 699
case here.) 700

We have now established the edges going from Policy 4 to Policy 2. Next, we test for edges from Policy 2 701
to Policy 1. 702

 703

Policy 1

Trusted

Policy 2

Policy 3 Policy 4

PP, DP

???

 704

 705

To test for PP and PI edges from Policy 2 to Policy 1, the following administrative request is generated: 706

 707

<Request 708
 xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" 709
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 710
 xsi:schemaLocation="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17 xacml-core-v3-711
schema-wd-17.xsd" 712
 CombinedDecision="false" 713
 ReturnPolicyIdList="false"> 714
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-715
category:delegated:urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"> 716
 <Attribute 717
 IncludeInResult="false" 718
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"> 719
 <AttributeValue 720
DataType="http://www.w3.org/2001/XMLSchema#string">Alice</AttributeValue> 721
 </Attribute> 722
 <Attribute 723
 IncludeInResult="false" 724
 AttributeId="group"> 725
 <AttributeValue 726
DataType="http://www.w3.org/2001/XMLSchema#string">employee</AttributeValue> 727
 </Attribute> 728
 </Attributes> 729
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:delegated: 730
urn:oasis:names:tc:xacml:3.0:attribute-category:resource"> 731
 <Attribute 732
 IncludeInResult="false" 733
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"> 734
 <AttributeValue 735
DataType="http://www.w3.org/2001/XMLSchema#string">printer</AttributeValue> 736
 </Attribute> 737
 </Attributes> 738
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:delegated: 739
urn:oasis:names:tc:xacml:3.0:attribute-category:action"> 740
 <Attribute 741
 IncludeInResult="false" 742
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"> 743

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 23 of 33

 <AttributeValue 744
DataType="http://www.w3.org/2001/XMLSchema#string">print</AttributeValue> 745
 </Attribute> 746
 </Attributes> 747
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:delegate"> 748
 <Attribute 749
 IncludeInResult="false" 750
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"> 751
 <AttributeValue 752
DataType="http://www.w3.org/2001/XMLSchema#string">Carol</AttributeValue> 753
 </Attribute> 754
 </Attributes> 755
 <Attributes 756
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:delegation-info"> 757
 <Attribute 758
 IncludeInResult="false" 759
 AttributeId="urn:oasis:names:tc:xacml:3.0:delegation:decision"> 760
 <AttributeValue 761
DataType="http://www.w3.org/2001/XMLSchema#string">Permit</AttributeValue> 762
 </Attribute> 763
 </Attributes> 764
</Request> 765

Listing 4 The administrative request for detecting edges from policy 2 to policy 1. 766

 767

Again, the subject, resource and action are copied from Listing 2 in to Listing 4 as delegated subject, 768
resource and action and the issuer of policy 2, Carol, becomes the delegate of Listing 4. (In this case 769
Carol is not a member of the administrator group so the context handler has not added such an attribute 770
to Carol in this request.) This request and a corresponding request with a “Deny” decision evaluate to 771
“Permit”, so we have found PP and DP edges. It remains to test the remaining combinations of nodes. 772
These tests are not shown here to conserve space, but the end result will be a graph like this: 773

 774

Policy 1

Trusted

Policy 2

Policy 3 Policy 4

PP, DP

PP, DP

 775

 776

This is the full reduction graph for the example. 777

The second step of the PDP is now to find paths to the trusted policies from policies 3 and 4, which 778
were the applicable policies to the original access request. In the graph we can see that there is a PP 779
edged path to a trusted policy for Policy 4, so the Permit from Policy 4 is combined. There is no path for 780
Policy 3, so policy 3 is disregarded. Policy 2 is not applicable and is not trusted, so it is also discarded. 781
Policy 1 remains since it is trusted, although it is not applicable. We have the following: 782

 783

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 24 of 33

Policy 1

N/A

Policy 4

Permit

PolicySet

Access Request

 784

 785

These policies are combined as usual, which in this case leads to a “Permit” for the policy set in whole. 786

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 25 of 33

6 Optimization (non-normative) 787

6.1 Optimization of Reduction 788

When administrative policies are simple and few in number, the previous process can be executed as 789
written. However, when policies are numerous, preprocessing will help improve performance at access 790
time. The following strategies may be employed. 791

 Eliminate unauthorized polices 792

Eliminating administrative policies for which there is no chain back to the trusted policies will 793
greatly reduce the processing required at access time by eliminating backtracking. This works when 794
policies are drawn exclusively from a repository. When policies may be presented dynamically at 795
access time, it will be useful to limit what policies can be presented. For example, dynamic policies 796
might be restricted to being only access policies or either access or leaf administrative policies. If 797
root policies can be presented dynamically, then it will not be possible to perform this processing in 798
advance. 799

 Flatten delegation chains 800

When a chain can be found from the trusted policies to a particular access policy, then a derived 801
trusted policy, with the same allowed situations and effect value can be substituted for the original 802
access policy. 803

 Split policies 804

It may be possible to split a policy into two (or more) simpler ones. For example, when a policy 805
contains a disjunctive condition, it will be equivalent to two distinct policies each containing one of 806
the alternatives, with the same effect value. The benefit of doing this is that it may then be possible to 807
eliminate or flatten one of the derived policies. 808

 Creating graph edges only as needed 809

Typical reduction graphs are likely sparse, so rather than testing each pair of nodes, it may be more 810
efficient to test for new edges as new nodes are reached with existing edges. 811

These optimizations may be done by backward chaining, forward chaining or both. 812

One of the main obstacles to performing these optimizations will be the lack of information about 813
situation attributes in advance of access time so it will be possible to tell which situation constraint 814
subsumes another. In particular implementations or applications the policies may have restricted forms, 815
so the situation constraints are directly comparable or extra knowledge of attributes is available, such 816
that comparisons between situation constraints can be made. 817

Since the delegate plays a particularly crucial role, and since the number of parties who are allowed to be 818
policy issuers will typically be small compared to the total user population, it may be worthwhile to 819
arrange that the authoritative source of these attributes be made available when doing optimizations. 820

6.2 Alternative forms of delegation 821

XACML policies are written in terms of attributes. This means that another way to achieve delegation, is 822
to delegate attribute assignment, rather than XACML policies. Which is more efficient depends on the 823
particular use case requirements. 824

For instance, if relatively few general rules can be used to express policies, and the requirement of 825
delegation is to assign to whom these rules apply, delegation of attribute assignment may be more 826
appropriate. 827

In contrast, for instance, if there are no general rules, and access permissions need to combine resources 828
from many different authorities, the delegation model described in this profile may be ideal. 829

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 26 of 33

7 Actions Other Than Create 830

An administrative policy allows policies to be created by delegates. What about other operations on 831
policies, such as Update and Delete? 832

Update (modify) can be treated as a Delete followed by a Create. In the case where policies are signed 833
by the policy issuer, this is literally true 834

This profile does not specify a particular model for policy deletion (revocation of policies). An 835
implementation MAY specify a model for policy deletion and may therefore disregard policies during 836
processing. Revoked policies MAY also be removed from the policy repository, in which case they will not 837
be seen by the PDP. 838

The following sections suggest some models for revocation which MAY be used. They are all optional 839
and other models MAY be used as well. 840

7.1 Revocation by the issuer 841

One possible revocation model which may be implemented is that the issuer of a policy is the one who 842
is authorized to remove it. How the issuer of the revocation is authenticated and how the effect of 843
revocation is implemented is not specified by this profile. 844

7.2 Revocation by super administrators 845

One possible revocation model which may be implemented is that super administrators of the PDP (or 846
policy repository) may remove any policy at their discretion. 847

7.3 Revocation as an action under access control 848

One possible revocation model is that access to the policy repository is controlled by XACML (or some 849
other policy language) and removal of a policy is an action which can be performed. In this case the 850
policy or the policy repository is modeled as a resource and the revocation as an action. 851

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 27 of 33

8 Security and Privacy Considerations (non-852

normative) 853

8.1 Dynamic Issuer Attributes 854

In case the attributes of an issuer may change with time, the choice of the point in time used for resolving 855
them may affect the outcome of administrative requests. The PDP MUST treat this consistently and 856
choose to operate in either historic or current issuer attribute mode. Policy writers need to be aware of 857
the mode in which the PDP will operate. 858

Also in some environments it may be problematic to resolve old attributes and/or to reliably know at which 859
time a policy was issued without special measures such as trusted time stamp authorities. 860

8.2 Enforcing Constraints on Delegation 861

This profile allows for defining a maximum depth for delegation. Implementers and users should be aware 862
that this constraint cannot be enforced in the strict sense. It may be possible for someone with access 863
rights to “delegate” that access right to anyone else “off-line” by just performing any operation himself on 864
the behalf of the other person. However, in many applications these kinds of constraints can still be useful 865
since they limit how the policies may evolve and indicate to users what policy is, and thus probably 866
limiting casual policy violations. 867

Implementers should also be aware of that if there are nested issuers in a policy set, then the 868
delegation that goes inside the outermost issuer is not visible to the outermost level of reduction. This 869
means that constraints on delegation depth have no effect on the nested issuers. See the following figure 870
for an example: 871

 872

Access Request

Subject: Alice

Resource: Printer

Policy B

Issuer: trusted

Target:

 Delegate: Bob

 DelegetedSubject: Alice

 DelegetedResource: Printer

 Maxdepth: 2

PolicySet C

Issuer: Bob

Target:

 Subject: Alice

 Resource: Printer

PolicySet A

Issuer: Trusted

Target: Any

Policy D

Issuer: trusted

Target:

 Delegate: Carol

 DelegetedSubject: Alice

 DelegetedResource: Printer

Policy E

Issuer: Carol

Target:

 Subject: Alice

 Resource: Printer

 873

 874

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 28 of 33

During evaluation, reduction will be performed inside policy set C, where policy D will support policy E. 875
This reduction is not visible outside policy set C. The maximum depth condition in policy B has no effect 876
on the reduction which goes on inside policy set C. If you wish to use a maximum depth constraint, you 877
must collect delegated policies at a single level of nesting in a policy set. 878

8.3 Issuer and delegate attributes 879

An implementation must take care to authenticate the contents of <PolicyIssuer> elements before the 880

policies are included in the PDP. It is the responsibility of the entity issuing a policy set to verify that the 881
attributes of all issuers of the immediately contained policies are correct. As a special case, it is the 882
responsibility of the PDP owner to verify all issuers of the policies in the PDP at the PDP policy set 883
level. 884

If the context handler provides additional attributes of delegates, naturally, the context handler must have 885
verified their correctness. 886

A special case of issuer attribute verification is when the <PolicyIssuer> element is dynamically 887

created when the policy is loaded from storage into the PDP. In this case the <PolicyIssuer> element 888

could for instance be based on a digital signature on the policy in the storage. 889

8.4 Denial of Service 890

If an attacker can insert policies into the repository, even if the issuers of the policies would not be 891
trusted and the policy could not be traced to a trusted source, it may be possible, depending on the 892
implementation, for the attacker to draft policies such that there will be a lot of computation during 893
request evaluation. This could degrade performance and result in denied or reduced service. An 894
implementation must take this in consideration. 895

On case of such intensive computation is if the attacker is able to draft policies which contain complex 896
conditional expressions. 897

Another identified attack is to create nested policy sets which contain policies which need to be 898
reduced. Since creation of the reduction graph in worst case means that every policy will be evaluated 899
twice, bu nesting reduction in policy sets, the number of times the deepest policies will be evaluated 900
will increase exponentially with the depth of the policy set nesting. Possible protections against this 901
attack include dynamic detection of it, not accepting policies with nested policy sets which need 902
reduction and doing reduction graph generation by forward chaining, and not evaluate those policies 903
which are not reached from the trusted policies. 904

8.5 Obligations 905

When access policies containing obligations are combined, an obligation from a policy will be included 906
in the result, even if there is a policy evaluating to the same result but which does not contain the 907
obligation. In a setting with decentralized administration where policies are issued by multiple issuers, 908
this may in some cases be undesirable behavior. Depending on the nature of the obligation an obligation 909
could be seen as an additional restriction to the access right. By adding an obligation to a policy, one 910
issuer can in effect restrict the authority of another issuer. In particular, by including an obligation that is 911
intentionally unrecognizable by the PEP, one issuer can completely deny the access that another issuer 912
has granted. 913

When delegated XACML is used in an application, these issues must be considered. One possible 914
solution is to allow only certain kinds of obligations. Another solution is to allow use of obligations only in 915
the trusted policies. 916

 917

 918

 919

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 29 of 33

9 Conformance 920

9.1 Delegation by reduction 921

An implementation conforms to this specification if it performs evaluation of XACML as specified in 922
sections 4 and 7 of this document. The following URI identifies this functionality: 923

urn:oasis:names:tc:xacml:3.0:profile:administration:reduction 924

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 30 of 33

A. Acknowledgements 925

The following individuals have participated in the creation of this specification and are gratefully 926
acknowledged: 927

 928

Anil Saldhana 929

Anil Tappetla 930

Anne Anderson 931

Anthony Nadalin 932

Bill Parducci 933

Craig Forster 934

David Chadwick 935

David Staggs 936

Dilli Arumugam 937

Duane DeCouteau 938

Erik Rissanen 939

Gareth Richards 940

Hal Lockhart 941

Jan Herrmann 942

John Tolbert 943

Ludwig Seitz 944

Michiharu Kudo 945

Naomaru Itoi 946

Paul Tyson 947

Prateek Mishra 948

Rich Levinson 949

Ronald Jacobson 950

Seth Proctor 951

Sridhar Muppidi 952

Tim Moses 953

Vernon Murdoch 954

 955

 956

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 31 of 33

B. Revision History 957

[optional; should not be included in OASIS Standards] 958

 959

Revision Date Editor Changes Made

WD 01 22 Mar 2005 Hal Lockhart Initial working draft.

WD 02 8 Apr 2005 Tim Moses Added PolicyIssuerMatch to <Target> element.
Added delegation depth control.

WD 03 20 Apr 2005 Tim Moses Added a pseudo-code description of the
processing model

Added schema for the request context.

WD 04 22 Apr 2005 Tim Moses Added a plain-language description of the
processing model.

Modified <PolicyIssuerMatch> syntax and
changed name to “delegates”.

Made <PolicyIssuer> mandatory and included
a URI for “root”.

WD 05

WD 06

WD 07 5 Jul 2005 Erik Rissanen Added missing parts and corrected incorrect
parts of the schema fragments. Clarified
descriptive text. Added some new definitions in
the terminology list. Fixed formatting.

WD 08 15 Aug 2005 Erik Rissanen Improvements of the text, figures and
formatting.

Improved consistency and terminology.

Fill in details, simplify and improve the
processing model.

WD 09 13 Sep 2005 Erik Rissanen Changed the definition of “situation”.

Added max delegation depth to the processing
model.

Added obligations to the processing model.

Added some security considerations.

Changed IndirectDelegateDesignator to
IndirectDelegatesCondtion.

Added the possibility for a target to match both
access and administrative requests.

Other improvements and corrections.

WD 10 Erik Rissanen Removed the term untrusted issuer. It was
confusing since it really meant “issuer not
trusted yet”.

Fixed some errors in the schema fragments

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 32 of 33

and the example.

Removed the <Policies> element from the
request. It will be placed in the SAML profile
instead.

Added historic/current attribute modes to the
normative text.

Made the effect part of the situation in order to
support deny at the access level.

Misc editing and fixing.

WD 11 18 Jun 2006 Erik Rissanen Misc editing and corrections.

Added description for the context <Decision>
element.

Added updated description of the access
permitted function.

Disallow even the trusted issuer to issue
negative administrative decisions.

WD 12 25 Jul 2006 Erik Rissanen Corrected typos.

Added section with additions to the SAML
profile of XACML.

WD 13 4 Oct 2006 Erik Rissanen Updated to new OASIS document template.

WD 14 5 Oct 2006 Erik Rissanen Fixed typos, formatting and clarified the text in
multiple places.

Removed statement in solution overview which
stated that the policy which the PDP starts with
by definition is issued by the trusted issuer.
See issue #27 in the issues list.

Major rewrite to make use of attribute
categories.

WD 15 4 Jan 2007 Erik Rissanen Clarified some of the text.

WD 16 Erik Rissanen Removed indirect delegates.

Updated XML based on new core schema.

Removed section about SAML profile (moved
into an updated SAML profile document).

Removed sections about schema (moved to
the core specification draft).

Improved text and presentation.

Updated processing model.

WD 17 Erik Rissanen Changed to a reduction algorithm which
handles indeterminate.

Changed maximum depth to use a special XML
attribute, rather being part of the request
XACML attributes.

Removed the non-normative overview of the
processing model. It was not up to date and
didn’t really contribute anything beyond the
examples.

xacml-3.0-administration-v1-spec-cs-01-en 10 August 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 33 of 33

WD 18 24 Aug 2007 Erik Rissanen Change disjunctive/conjunctive match to
AnyOf/AllOf

WD 19 10 Oct 2007 Erik Rissanen Fixed typos and improved descriptive text.

Removed the trusted issuer.

Rewrote the confusing section 4.

WD 20 28 Dec 2007 Erik Rissanen Converted to current OASIS template.

WD 21 24 Feb 2008 Erik Rissanen Added normative statement which for security
reasons allows the PDP refuse policies which
contain unknown obligations.

Rewrote section on actions other than create
and included some revocation models there.

Updated the access-permitted function to the
new generalized attribute categories.

WD 22 4 Nov 2008 Erik Rissanen Moved the “access permitted” feature to the
core specification.

WD 23 18 Mar 2009 Erik Rissanen Fix error on treatment of delegation-info in
section 4.5.

WD 24 4 Apr 2009 Erik Rissanen Editorial cleanups

Clarification of normative statements.

WD 25 Erik Rissanen Fixed typos.

WD 26 17 Dec 2009 Erik Rissanen Fixed formatting of OASIS references

Updated acknowledgments

WD 27 12 Jan 2010 Erik Rissanen Updated cross references

Fixed the examples so the XML is valid against
the XACML schema.

Update acknowledgments

WD 28 8 Mar 2010 Erik Rissanen Update cross references

Fix OASIS style issues

 960

