
xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 1 of 23

XACML v3.0 Hierarchical Resource
Profile Version 1.0

Committee Specification 02

18 May 2014

Specification URIs
This version:

http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/cs02/xacml-3.0-hierarchical-v1.0-cs02.doc
(Authoritative)
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/cs02/xacml-3.0-hierarchical-v1.0-cs02.html
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/cs02/xacml-3.0-hierarchical-v1.0-cs02.pdf

Previous version:
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cs-01-en.doc (Authoritative)
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cs-01-en.html

Latest version:
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/xacml-3.0-hierarchical-v1.0.doc
(Authoritative)
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/xacml-3.0-hierarchical-v1.0.html
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/xacml-3.0-hierarchical-v1.0.pdf

Technical Committee:

OASIS eXtensible Access Control Markup Language (XACML) TC

Chairs:
Bill Parducci (bill@parducci.net), Individual
Hal Lockhart (hal.lockhart@oracle.com), Oracle

Editors:
Erik Rissanen (erik@axiomatics.com), Axiomatics
Rich Levinson (rich.levinson@oracle.com), Oracle

Related work:

This specification replaces or supersedes:

 Hierarchical resource profile of XACML v2.0. Edited by Anne Anderson. 1 February 2005.
OASIS Standard. http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-hier-profile-
spec-os.pdf.

This specification is related to:

 eXtensible Access Control Markup Language (XACML) Version 3.0. Edited by Erik Rissanen.
22 January 2013. OASIS Standard. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-
spec-os-en.html.

Abstract:
This document provides a profile for the use of XACML with resources that are structured as
hierarchies. The profile addresses resources represented as nodes in XML documents or
represented in some non-XML way. The profile covers identifying nodes in a hierarchy,

http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/cs02/xacml-3.0-hierarchical-v1.0-cs02.doc
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/cs02/xacml-3.0-hierarchical-v1.0-cs02.html
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/cs02/xacml-3.0-hierarchical-v1.0-cs02.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cs-01-en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cs-01-en.html
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/xacml-3.0-hierarchical-v1.0.doc
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/xacml-3.0-hierarchical-v1.0.html
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/xacml-3.0-hierarchical-v1.0.pdf
https://www.oasis-open.org/committees/xacml/
mailto:bill@parducci.net
mailto:hal.lockhart@oracle.com
http://www.oracle.com/
mailto:erik@axiomatics.com
http://www.axiomatics.com/
mailto:rich.levinson@oracle.com
http://www.oracle.com/
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-hier-profile-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-hier-profile-spec-os.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 2 of 23

requesting access to nodes in a hierarchy, and specifying policies that apply to nodes in a
hierarchy.

Status:
This document was last revised or approved by the OASIS eXtensible Access Control Markup
Language (XACML) TC on the above date. The level of approval is also listed above. Check the
“Latest version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at https://www.oasis-
open.org/committees/xacml/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/xacml/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[xacml-3.0-hierarchical-v1.0]

XACML v3.0 Hierarchical Resource Profile Version 1.0. Edited by Erik Rissanen and Rich
Levinson. 18 May 2014. OASIS Committee Specification 02. http://docs.oasis-
open.org/xacml/3.0/hierarchical/v1.0/cs02/xacml-3.0-hierarchical-v1.0-cs02.html. Latest version:
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/xacml-3.0-hierarchical-v1.0.html.

https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/xacml/
https://www.oasis-open.org/committees/xacml/
https://www.oasis-open.org/committees/xacml/ipr.php
https://www.oasis-open.org/committees/xacml/ipr.php
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/cs02/xacml-3.0-hierarchical-v1.0-cs02.html
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/cs02/xacml-3.0-hierarchical-v1.0-cs02.html
http://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/xacml-3.0-hierarchical-v1.0.html

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 3 of 23

Notices

Copyright © OASIS Open 2014. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 4 of 23

Table of Contents

1 Introduction ... 5

1.1 Background ... 5

1.2 Glossary .. 6

1.2.1 Comparison of hierarchical structures ... 7

1.3 Terminology .. 8

1.4 Normative References .. 8

1.5 Non-Normative References .. 9

2 Representing the identity of a node.. 10

2.1 Nodes in XML documents ... 10

2.2 Nodes in hierarchical resources identified by URIs .. 10

2.2.1 Alternative URI-reference representation for XML documents ... 11

2.3 Nodes in hierarchical resources identified by ancestor attributes .. 12

3 Requesting access to a node ... 13

3.1 Nodes in an XML document ... 13

3.2 Nodes in hierarchical resources identified by URIs .. 13

3.3 Nodes in hierarchical resources identified by ancestor attributes .. 14

3.3.1 Pseudo-code for Nodes in hierarchical resources identified by ancestor attributes (non-
normative) ... 15

4 Stating policies that apply to nodes .. 17

4.1 Policies applying to nodes with ancestor attributes .. 17

4.2 Policies applying only to nodes in XML documents ... 17

4.3 Policies applying only to nodes identified with URIs .. 17

5 New attribute identifiers .. 19

5.1 content-selector .. 19

5.2 document-id .. 19

5.3 resource-parent .. 19

5.4 resource-ancestor ... 19

5.5 resource-ancestor-or-self .. 19

6 New profile identifiers ... 20

7 Conformance .. 21

7.1 Nodes in XML documents ... 21

7.2 Nodes in hierarchical resources identified by URIs .. 21

7.3 Nodes in hierarchical resources identified by ancestor attributes .. 21

Appendix A. Acknowledgments ... 22

Appendix B. Revision History .. 23

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 5 of 23

1 Introduction

1.1 Background

{Non-normative}

It is often the case that a resource is organized as a hierarchy. Examples include file systems, XML
documents, and organizations. This Profile specifies how XACML can provide access control for a
resource that is organized as a hierarchy.

Why are resources organized as hierarchies special? First of all, policies over hierarchies frequently
apply the same access controls to entire sub-trees of the hierarchy. Being able to express a single
policy constraint that will apply to an entire sub-tree of nodes in the hierarchy, rather than having to
specify a separate constraint for each node, increases both ease of use and the likelihood that the policy
will correctly reflect the desired access controls. Another special characteristic of hierarchical resources
is that access to one node may depend on the value of another node. For example, a medical patient
might be granted access to the “diagnosis” node in a XML document medical record only if the patient's
name matches the value in the “patient name” node. Where this is the case, the requested node can not
be processed in isolation from the rest of the nodes in the hierarchy, and the PDP must have access to
the values of other nodes. Finally, the identity of nodes in a hierarchy often depends on the position of
the node in the hierarchy; there also may be multiple ways to describe the identity of a single node. In
this Profile, a resource organized as a hierarchy may be

 a “(rooted) tree” (a hierarchy with a single root),

 a “Directed Acyclic Graph” or “DAG” (a hierarchy with multiple roots, but a DAG may not have
cycles; (also, a DAG may be expanded to an equivalent set of disjoint hierarchies, a fact, which
is useful to know when conceptualizing the hierarchical properties of the DAG)),

 or a “polyarchy” (a “forest”, which is a disjoint set of trees, which when applied to a collection of
resources may be designed to become a polyarchy, because each disjoint tree is layed on the
same collection of resources, and nodes from disjoint trees, in general, may refer to the same
resource, and as a result, with respect to the resource, merge to become a single node, which
organizes the resources as a polyarchy; note also, that by jumping from one disjoint tree to
another while on an intersecting node, that the polyarchy may contain cycles, which are not
possible with the DAG).

All such resources are called hierarchical resources in this Profile. An XML document is always
structured as a “tree”. Other types of hierarchical resources, such as files in a file system that supports
links, may be structured as a “forest”.

In this Profile, the nodes in a hierarchical resource are treated as individual resources. An
authorization decision that permits access to an interior node does not imply that access to its
descendant nodes is permitted. An authorization decision that denies access to an interior node does
not imply that access to its descendant nodes is denied.

There are three types of facilities specified in this Profile for dealing with hierarchical resources:

 Representing the identity of a node.

 Requesting access to a node.

 Stating policies that apply to one or more nodes.

Support for each of these facilities is optional.

This Profile addresses three ways of representing a hierarchical resource.

 In the first way, the hierarchy of which the node is a part is represented as an XML document
that is included in the Request, and the requested resource is represented as a node in that
document.

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 6 of 23

 In the second way, the resource must be a part of one or more singly rooted hierarchies. The
resource is identified using a hierarchical URI which reflects the resource’s place in these
hierarchies.

 In the third way, the resource may be a part of one or more singly or multiply rooted hierarchies.
The parent and other ancestor nodes of the resource are identified as attributes in the request.
The naming of the resource (or its ancestors) has no significance in terms of describing the
structure of the hierarchy.

Note that the actual target resource in the first case need not be part of an XML document - it is merely
represented that way in the Request. Likewise, the target resource in the second case might actually be
part of an XML document, but is being represented in some other way in the Request.

Facilities for dealing with resources represented as nodes in XML documents can make use of the fact
that the XML document itself is included in the decision request. [XPath] expressions can be used to
reference nodes in this document in a standard way, and can provide unique representations for a given
node in the document. These facilities are not available for hierarchical resources that are not
represented as XML documents. Other means must be provided in the case of such non-XML resources
for determining the location of the requested node in the hierarchy. In some cases this can be done by
including the node's position in the hierarchy as part of the node's identifier. In other cases, a node may
have more than one normative identity, such as when the pathname of a file in a file system can include
hard links. In such cases, the XACML PDP's Context Handler may need to supply the identities of all the
node's ancestors. For all these reasons, the facilities for dealing with nodes in XML documents differ
from the facilities for dealing with nodes in other hierarchical resources.

In dealing with a hierarchical resource, it may be useful to request authorization decisions for multiple
nodes in the resource in a single decision request. Ways to make such requests are specified in another
Profile – the Multiple resource profile of XACML v3.0 [MULTIPLE]. That Profile also provides a way to
return a single authorization decision when access to multiple nodes in a hierarchy is requested.
Readers of this Profile are encouraged to become familiar with the Multiple resource profile of XACML.
This Profile may be considered to be layered on top of the multiple resource profile, which in turn is
layered on top of the behavior specified in the core XACML specification [XACML]. The functionality in

this Profile MAY, however, be layered directly on the functionality in the core XACML specification.

This Profile for hierarchical resources assumes that all requests for access to multiple nodes in a
hierarchical resource [MULTIPLE] have been resolved to individual requests for access to a single
node.

1.2 Glossary

DAG

A Directed Acyclic Graph (DAG), which may also be characterized as a multi-rooted hierarchy.

Hierarchical resource

A resource that is organized as a tree or (Directed Acyclic Graph (DAG) of individual resources
called nodes.

Hierarchy

A general term that applies to all the types of hierarchical representations that are used in this
specification to represent the organization of a collection of resource. This includes a single-
rooted hierarchy, a multi-rooted hierarchy, and a multi-rooted disjoint hierarchy.

Multi-rooted disjoint hierarchy

A “hierarchy” that has multiple top level “root” nodes, each of which is top node of a single-
rooted hierarchy, which in general, contains subtrees that overlap with subtrees of the other
single-rooted hierarchies, that are topped by the other top level root nodes, where all the
nodes that were in each original single-rooted hierarchy retain their identity as having been and
remaining as a member of that original hierarchy. Because of this retention of identity within
original single-rooted hierarchy, there are no restrictions with respect to cycles or otherwise as
to the layout of the single-rooted hierarchies with respect to each other. This structure is also

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 7 of 23

know as a “polyarchy”. It is also known as a “forest”, or “disjoint set of trees”, with the logical to
physical characteristic that each “set of overlapping nodes” from multiple hierarchies that
identifies a specific single resource, actually contains a “set of individual distinct identifiers” any of
which can be used to identify that single resource within the multi-rooted disjoint hierarchy.

A specific example of this type of structure may begin with a set of resources that have been
identified and organized within a single-rooted hierarchy by having one of a set of hierarchical
URIs (considered to be a distinct hierarchical namespace) assigned to each resource as
described in section 2.2. One may then for a totally independent purpose apply another set of
hierarchical URIs (section 2.2) to a set of resources that may include part or all of the first set,
and may include new members that were not included in the first set. Note that any multi-rooted
hierarchy (DAG) may be represented in this manner.
However, the multi-rooted disjoint hierarchy (polyarchy) has no constraints on the additional
single-rooted hierarchies that are laid down, and therefore, can be used to create more
complex structures that may include cycles that cannot be represented by a DAG. Note also, that
the use of URIs is a convenience and not a necessity for implementation of this structure.

Multi-rooted hierarchy

A “hierarchy” that has multiple top level “root” nodes, each of which is top node of a single-
rooted hierarchy, which in general, contains subtrees that overlap with subtrees of the other
single-rooted hierarchies, that are topped by the other top level root nodes. This type of
“hierarchy” is also know as a Directed Acyclic Graph (DAG). In general, multiple single-rooted
hierarchies may be laid across a set of resources for organization purposes. The DAG
properties constrain the layout options somewhat, in that within the layout of the multiple
overlapping hierarchies, there may not be contained any cycles, i.e. where one could follow a
path from any particular node that eventually returns to that same particular node.

A specific example of this type of structure may begin with a set of resources that have been
identified and organized within a single-rooted hierarchy by having one of a set of hierarchical
URIs (considered to be a distinct hierarchical namespace) assigned to each resource as
described in section 2.2. One may then for a totally independent purpose apply another set of
hierarchical URIs (section 2.2) to a set of resources that may include part or all of the first set,
and may include new members that were not included in the first set. Note that any multi-rooted
hierarchy (DAG) may be represented in this manner.
However, there are constraints on the 2

nd
 and additional single-rooted hierarchies that are laid

down, specifically, that no cycles are allowed to be produced when the new edges are added to
the DAG for the additional hierarchies.

Node

An individual resource that is part of a hierarchical resource.

Single-rooted hierarchy

A “hierarchy” that has one top level “root” node and each member of the hierarchy can have only
one parent node. Examples of resources that fit this model include a single XML document, and
any hierarchical resource that is organized as a single hierarchy, such as typical organization
charts, or the individual components within an overall assembly, where the finished assembled
entity represents the top root node.

1.2.1 Comparison of hierarchical structures

The following table is intended to capture the salient features of the hierarchical structures used in this
document:

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 8 of 23

 Single-Rooted
Hierarchy

(XML document)

Multi-Rooted
Hierarchy

(DAG)

Multi-Rooted
Disjoint Hierarchy

(polyarchy)

Number of root nodes 1 n>=1 n>=1

Maximum number of
parent nodes

1 m>=1 m>=1

Is original hierarchical
membership retained

Yes No Yes

Are navigation cycles
allowed

No No Yes, by shifting to at
least one different
original hierarchy

along cyclic path, if
such paths exist.

Are there restrictions
whether a specific
existing node is allowed
to be made a child of
current node

Yes Yes, if adding the new
node will create a

cycle.

No, however, each
new connection made

must identify a
specific hierarchy
included in current

node, or begin a new
hierarchy.

The situation with “cycles” is that there seems, in general, little point to purposely trying to create such a
cycle, however, if such a cycle should happen to occur as a result of the difference in semantics of two
single-rooted hierarchies that are being applied to the set of resources, whereby, for example, if in one
hierarchy node “a” is the parent of node “b”, while in a 2nd hierarchy node “b” was the parent of node
“a” then such a construct would not be allowed by the DAG, but would be allowed by the polyarchy. As a
result, the polyarchy may be regarded as more general than the DAG, because the layouts possible with
a polyarchy are a superset of those possible with a DAG on the same set of resources.

1.3 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

The phrase {Optional} means that the described functionality is optional for compliant XACML
implementations, but, if the functionality is claimed as being supported according to this Profile, then it
SHALL be supported in the way described.

Example code listings appear like this.

In descriptions of syntax, elements in angle brackets (“<”, “>”) are to be replaced by appropriate values,
square brackets (“[“, “]”) enclose optional elements (but are taken as literal when within quotes), elements
in quotes are literal components, backslash-quote (“\””) is a literal quote character within a literal
component, and an unquoted asterisk, (*), indicates that the preceding element may occur zero or more
times, whereas an asterisk in quotes, (“*”), is a literal asterisk.

1.4 Normative References

[ISO10181-3] ISO/IEC JTC 1, Information technology -- Open Systems Interconnection --
Security frameworks for open systems: Access control framework, ISO/IEC
10181-3:1996, 1996.

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 9 of 23

[RFC1034] Mockapetris, P., “DOMAIN NAMES – CONCEPTS AND FACILITIES”, IETF RFC
1034, November 1987, http://www.ietf.org/rfc/rfc1034.txt

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.

[RFC3986] Berners-Lee, T., et al., “Uniform Resource Identifiers (URI): Generic Syntax”,
IETF RFC 3986, January 2005, http://www.ietf.org/rfc/rfc3986.txt.

[RFC3198] Westerinen, A., et al., “Terminology for Policy-Based Management”, IETF RFC
3198, November 2001, http://www.ietf.org/rfc/rfc3198.txt.

[MULTIPLE] XACML v3.0 Multiple Decision Profile Version 1.0. 10 August 2010. OASIS
Committee Specification 01. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-176
multiple-v1-spec-cs-01-en.doc

[XACML] eXtensible Access Control Markup Language (XACML) Version 3.0. 22 January
2013. OASIS Standard. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-
spec-os-en.html

[XPath] “XML Path Language (XPath), Version 1.0”, W3C Recommendation 16,
November 1999. Available at http://www.w3.org/TR/xpath

1.5 Non-Normative References

[URIOpacity] Ian Jacobs, et al., “Architecture of the World Wide Web”, Volume One, section
2.5, W3C Recommendation 15 December 2004,
http://www.w3.org/TR/webarch/#uri-opacity

http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3198.txt
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-176%20multiple-v1-spec-cs-01-en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-176%20multiple-v1-spec-cs-01-en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://www.w3.org/TR/xpath
http://www.w3.org/TR/webarch/%23uri-opacity

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 10 of 23

2 Representing the identity of a node
In order for XACML policies to apply consistently to nodes in a hierarchical resource, it is necessary for
the nodes in that resource to be represented in a consistent way. If a policy refers to a node using one
representation, but a request refers to the node using a different representation, then the policy will not
apply, and security may be compromised.

The following sections describe RECOMMENDED representations for nodes in hierarchical resources.
Alternative representations of nodes in a given resource are permitted so long as all Policy
Administration Points and all Policy Enforcement Points that deal with that resource have contracted to
use the alternative representation.

2.1 Nodes in XML documents

{Optional}

The following URI SHALL be used as the identifier for the functionality specified in this Section of this
Profile. This identifier represents metadata about this specification and implementations implementing this
specification. This identifier MAY be used to describe capabilities of an implementation or to make other
references to this specification

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:xml-node-id

The identity of a node in a resource that is represented as an XML document instance SHALL be an
XPath expression that evaluates to exactly that one node in the copy of the resource that is contained in

the <Content> element of the <Attributes> element with the resource category of the <Request>.

Note: one possible XPath expression template for representation of node identifiers in an XML document
or as part or a URI-reference is described in section 2.2.1.

2.2 Nodes in hierarchical resources identified by URIs

{Optional}

The following URI SHALL be used as the identifier for the functionality specified in this Section of this
Profile. This identifier represents metadata about this specification and implementations implementing this
specification. This identifier MAY be used to describe capabilities of an implementation or to make other
references to this specification

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:URI-node-id.

The identity of a node in a hierarchical resource that is not represented as an XML document instance
MAY be represented as a URI that conforms to [RFC3986] and which has a hierarchical structure where
the ancestors are delimited by slashes. (According to [RFC3986] URI schemes may be non-hierarchical,
e.g. mailto:, hierarchical without slashes, e.g. urn: or hierarchical using slashes, e.g. http:.). Hierarchical
URIs with slashes are of the following generic form.

 <scheme> “:” [“//” <authority>] [“/” <pathname>]

File system resources SHALL use the “file:” scheme. If the resource is identified with a standard
<scheme> specified in [RFC3986] or in a related standard for a registered URI scheme which is
hierarchical with slashes, then that scheme SHALL be used. Otherwise the URI SHALL use the “file:”
scheme.

The <pathname> portion of the URI SHALL be of the form

 <root name> [“/” <node name>] *

 The sequence of <root name> and <node name> values SHALL correspond to the individual
hierarchical component names of ancestors of the represented node along the path from a
<root> node to the represented node.

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 11 of 23

 The components of the <pathname> portion of the URI SHALL be specified using the canonical
form for such path components at the <authority>.

 In accordance with [RFC3986], the separator character between hierarchical components of the
<pathname> portion of the URI SHALL be the character “/“. Sequences of the “/“ character
SHALL be resolved to a single “/“. Node identities SHALL NOT terminate with the “/“ character.

 All <pathname> values SHALL be absolute.

 If there is more than one fully resolved, absolute path from a <root> at the <authority> to the

represented node, then a separate resource attribute with AttributeId

“urn:oasis:names:tc:xacml:1.0:resource:resource-id” and DataType

http://urn:oasis:names:tc:xacml:1.0:data-type:anyURI SHALL be present in the Request Context
for each such path.

Implementation note: the scheme name of the URI should be checked to determine it is an expected
scheme before parsing the URI into its hierarchical components.

Also note that the notion of parsing the syntax of a URI is controversial, see for example [URIOpacity].

2.2.1 Alternative URI-reference representation for XML documents

{Optional}

The following URI SHALL be used as the identifier for the functionality specified in this Section of this
Profile:

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:URI-reference-node-id.

The identity of a node in a hierarchical resource that is represented as an XML document instance
MAY be represented as a URI-reference that conforms to [RFC3986] and which has a hierarchical
structure where the ancestors are delimited by slashes. Hierarchical “URI-references” with slashes
conform to the following five component generic form (where the “URI portion” is the first four
components):

 <scheme> “:” [“//” <authority>] [“/” <pathname>] [“?” <query>] [“#” <fragment>]

The query portion of the URI is not used in this profile.

The <fragment> portion of the URI-reference MAY be used to identify explicit element, attribute, text, and
other nodes in an XML document when constructed as an XPath path expression using the following
form:

 <fragment> = “xpointer(/” <fragment-id> “)”

 <fragment-id> = [<doc-node-xsegment> [“/” <elem-node-xsegment>] * [“/” <end-node-xsegment>]]

where

<end-node-xsegment> = <attr-node-xsegment > |

 <text-node-xsegment> |

 <other-node-xsegment>

and

<doc-node-xsegment> = “*:” <doc-node-local-name> [<namespace-uri>]

<elem-node-xsegment> = = “*:” <elem-node-local-name> [<namespace-uri>] [<position>]

<attr-node-xsegment> = “@” “*:” <attr-node-local-name> [<namespace-uri>]

<text-node-xsegment> = “text()”

<other-node-xsegment> = (literal xpath syntax for other node types)

<position> = “[“ <integer> “]”

<integer> = (same as result of xpath fcn: position(), i.e. integer >= 1)

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 12 of 23

<namespace-uri> = “[namespace-uri()=\”” <literal-namespace> “\”]”

<literal-namespace> = (same as result of xpath fcn: namespace-uri())

Notes:

 When expressions using the above syntax are used within an actual URI-Reference, the literal
forms of <*-node-xsegment> items MUST be percent-encoded as described in [RFC3986].

However, the decoded form is an executable XPath path expression.

 The <*-node-xsegment> items are all have a leading “*:” which selects all nodes in any
namespace with the <*-node-local -name> that follows. The following <namespace-uri> item is
then used to specify the namespace.

 When the following literal <namespace-uri> predicate appears in an expression it may be ignored
or removed by the policies without changing the meaning of the expression:

 [namespace-uri()=””]

because when the namespace-uri() XPath function evaluates to the empty string as shown, this
means there is “no namespace” defined for the element, which is equivalent to an unprefixed
local-name QName. Also the “*:” may also be ignored or removed. (Ignoring or removing is meant
within the context of regular expression (regexp) processing.)

For example the XPath segment “*:abc[namespace-uri()=””]” may be regarded as equal to “abc”.

 Policies may, in general, ignore <position> predicates for matching purposes (i.e. allow “any”
position value), because they usually do not represent a specific property of the node, but only
provide a discriminator for otherwise equal node locations within the hierarchy. For example, a
list of line items in a purchase order, usually does not attach any specific significance to the order
in which the line items appear.

2.3 Nodes in hierarchical resources identified by ancestor attributes

{Optional}

The following URI SHALL be used as the identifier for the functionality specified in this Section of this
Profile. This identifier represents metadata about this specification and implementations implementing this
specification. This identifier MAY be used to describe capabilities of an implementation or to make other
references to this specification

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:attribute-node-id.

The identity of a node in a hierarchical resource that is not represented as an XML document instance
MAY be represented by specifying its ancestors as XACML attributes in the request. In this case the
node and its ancestors may be identified using identifiers of any XACML datatype. There is no
requirement that different nodes use the same XACML datatype or that nodes in the same hierarchy
use the same datatype.

In this mode of operation, any number of hierarchies with any number of roots may be represented,
however, only hierarchies of which the resource is a member will be included. Hierarchies which include
the ancestors or descendants of the resource, but do not contain the resource are not included.

In this approach, considerable information is discarded. It is not possible to determine how many
hierarchies there are or which ancestors are in which hierarchies or the relative position of ancestors
other than immediate parents.

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 13 of 23

3 Requesting access to a node
In order for XACML policies to apply consistently to nodes in a hierarchical resource, it is necessary for
each request context that represents a request for access to a node in that resource to use a consistent
description of that node access. If a policy refers to certain expected attributes of a node, but the request
context does not contain those attributes, or if the attributes are not expressed in the expected way, then
the policy may not apply, and security may be compromised.

The following sections describe RECOMMENDED request context descriptions of access to nodes in
hierarchical resources. Alternative representations of such requests are permitted so long as all Policy
Administration Points and all Policy Enforcement Points that deal with that resource have contracted to
use the alternative representation.

3.1 Nodes in an XML document

{Optional}

The following URI SHALL be used as the identifier for the functionality specified in this Section of this
Profile. This identifier represents metadata about this specification and implementations implementing this
specification. This identifier MAY be used to describe capabilities of an implementation or to make other
references to this specification

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:xml-node-req

In order to request access to a resource represented as a node in an XML document, the request context

<Attributes> element in the resource category SHALL contain the following elements and XML

attributes:

 A <Content> element that contains the entire XML document instance of which the requested

node is a part.

 An <Attribute> element with an AttributeId of “urn:oasis:names:tc:xacml:3.0:content-

selector” and a DataType of “urn:oasis:names:tc:xacml:3.0:data-type:xpathExpression”. The

<AttributeValue> of this <Attribute> SHALL be an XPath expression whose context node

SHALL be the <Content> element in the “urn:oasis:names:tc:xacml:3.0:attribute-

category:resource” attribute category. This XPath expression SHALL evaluate to a nodeset

containing the single node in the <Content> element that is the node to which access is

requested. This <Attribute> MAY specify an Issuer.

Additional attributes MAY be included in the <Resource> element. In particular, the following attribute

MAY be included.

 An <Attribute> element with an AttributeId of

“urn:oasis::names:tc:xacml:2.0:resource:document-id” and a DataType of

“urn:oasis:names:tc:xacml:1.0:data-type:anyURI”. The <AttributeValue> of this

<Attribute> SHALL be a URI that identifies the XML document of which the requested

resource is a part, and of which a copy is present in the <Content> element. This

<Attribute> MAY specify an Issuer.

3.2 Nodes in hierarchical resources identified by URIs

{Optional}

The following URI SHALL be used as the identifier for the functionality specified in this Section of this
Profile:

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:URI-node-id.

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 14 of 23

The resource SHALL be identified by means of a hierarchical URI (or URIs) as described in section 2.2.
Parent and Ancestor attributes SHALL NOT be provided.

3.3 Nodes in hierarchical resources identified by ancestor attributes

{Optional}

The following URI SHALL be used as the identifier for the functionality specified in this Section of this
Profile

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:attribute-node-id.

The attributes with AttributeId of “urn:oasis::names:tc:xacml:2.0:resource:resource-parent”,

“urn:oasis::names:tc:xacml:2.0:resource:resource-ancestor”, and
“urn:oasis::names:tc:xacml:2.0:resource:resource-ancestor-or-self” are optional to implement. If this
section of the specification is supported, the following URIs SHALL be used as identifiers for the
functionality they represent:

 urn:oasis:names:tc:xacml:2.0:profile:hierarchical:non-xml-node-req:resource-parent

 urn:oasis:names:tc:xacml:2.0:profile:hierarchical:non-xml-node-req:resource-ancestor

 urn:oasis:names:tc:xacml:2.0:profile:hierarchical:non-xml-node-req:resource-ancestor-or-self

In order to request access to a node in a hierarchical resource in this mode of operation, the request

context <Attributes> element SHALL NOT contain a <Content> element. The request context

<Attributes> element in the resource category SHALL contain the following elements and XML

attributes. Note that in this case, a node MAY have multiple parents. For example, in a file system that
supports hard links, there may be multiple normative paths to a single file. Each such path MAY contain
different sets of parents and ancestors.

The following discussion assumes that the Context Handler knows what hierarchies exist, how they are
represented and how the nodes in them are named. There may be any number of distinct hierarchies
which may be singly or multiply rooted. Individual nodes may belong to any number of hierarchies.
Nodes in the hierarchies may be of a single type or multiple types. The resource-id of nodes may be of
the same XACML datatype or different ones. Where they use the same datatype, say string, the naming
scheme may be a single scheme or multiple schemes. A node may have a different name in every
hierarchy it is in or one name in all hierarchies. A node may have multiple names in a single hierarchy
of which it is a member. In general the naming scheme is not constrained to relate to the hierarchy in any
way.

All that is required is that the Context Handler be able to determine what hierarchies exist, what are the
recource-ids of the members and what are their relationships. Starting from this information the Context
Handler SHALL perform the following steps or some process which gives equivalent results.

1. Identify all the hierarchies associated with the resources in question.

2. Drop from further consideration any hierarchies of which the node in question is not actually a
members.

3. Drop from further consideration any descendants of the node.

4. In each hierarchy in turn, collect all of the identifiers for all of the nodes in each hierarchy for
each of the node types described below.

5. Discard any duplicates.

 For each representation of the requested node, an <Attribute> element with AttributeId

of “urn:oasis::names:tc:xacml:1.0:resource:resource-id”. The <AttributeValue> of this

<Attribute> SHALL be an identifier of the node to which access is requested. The DataType

of the <AttributeValue> of this <Attribute> MAY be of any XACML datatype. This

<Attribute> MAY specify an Issuer.

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 15 of 23

 For each immediate parent of the node specified in the “resource-id” attribute or attributes, and

for each representation of that parent node, an <Attribute> element with AttributeId

“urn:oasis:names:tc:xacml:2.0:resource:resource-parent”. The <AttributeValue> of this

<Attribute> SHALL be an identifier of the parent node. The DataType of the

<AttributeValue> of this <Attribute> MAY be of any XACML datatype This

<Attribute> MAY specify an Issuer.

 For each ancestor of the node specified in the “resource-id” attribute or attributes, and for each

representation of that ancestor node, an <Attribute> element with AttributeId

“urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor”. The <AttributeValue> of this

<Attribute> SHALL be an identifier of the ancestor node. The DataType of the

<AttributeValue> of this <Attribute> MAY be of any XACML datatype This

<Attribute> MAY specify an Issuer.

 For each ancestor of the node specified in the “resource-id” attribute or attributes, and for each
representation of that ancestor node, and for each representation of the “resource-id” node itself,

an <Attribute> element with AttributeId

“urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor-or-self”. The <AttributeValue> of

this <Attribute> SHALL be an identifier of the ancestor node or of the “resource-id” node

itself. The DataType of the <AttributeValue> of this <Attribute> MAY be of any XACML

datatype. This <Attribute> MAY specify an Issuer. Additional attributes MAY be included in

the <Attributes> element.

3.3.1 Pseudo-code for Nodes in hierarchical resources identified by
ancestor attributes (non-normative)

This section contains pseudo-code which may be considered to represent a model by which one can
represent any collection of resources that are each individually identified as belonging to one or more
hierarchies and/or DAGs. An algorithm is then defined to process the collection according to the rules of
section 3.3.

// Define a class for "Resource Hierarchy identifier" node

public class ResHierId(int res, int hier)

// Define Sets to collect nodes in:

selfNodes = new HashSet<ResHierId>();

parentNodes = new HashSet<ResHierId>();

ancestorNodes = new HashSet<ResHierId>();

ancestorOrSelfNodes = new HashSet<ResHierId>();

// Define number of resources, hierarchies and 1-based 2-d array

int nRes=4, mHier=5; // example hierarchy dims

int[][] ijResource = new int[nRes+1][mHier+1];

// Define method to collect nodes

collectAncestorNodes(int iRes) {

 for (int j = 1; j<mHier+1; j++){

 int mDag = 1; m=j; iDepth = 0;

 if (ijResource[0][j] != 0){

 while ((m<mHier) && (ijResource[0][m+1] == ijResource[0][j])){

 mDag++; m++;

 } }

 walkUpHierarchyDag(iRes, j, mDag, iDepth);

 j=j+mDag-1; // skip columns handled by mDag

} }

walkUpHierarchyDag(int iRes, int j, int mDag, int iDepth){

 // for each instance of self in Dag subrow

 for (int k=1; k<mDag+1; k++){

 int m = j+k-1; // m is column in big matrix

 int iResCurrent = iRes; // iResCurrent is 1-based row-id

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 16 of 23

 if (ijResource[iResCurrent][m] != 0){

 ResHierId rhId = new ResHierId(iResCurrent,m);

 if (iDepth == 0){

 selfNodes.add(rhId);

 ancestorOrSelfNodes.add(rhId);

 }

 else if (iDepth == 1){

 parentNodes.add(rhId);

 ancestorNodes.add(rhId);

 ancestorOrSelfNodes.add(rhId);

 }

 else {

 ancestorNodes.add(rhId);

 ancestorOrSelfNodes.add(rhId);

 }

 if (iResCurrent != ijResource[iResCurrent][m]) {

 // Set the new current node as parent of current node

 iResCurrent = ijResource[iResCurrent][m];

 iDepth++;

 walkUpHierarchyDag(iResCurrent, j, mDag, iDepth);

 }

 else { } // found root on this path - done

 }

 else { } // zero means node not used - done

} }

Note the following:

 The matrix, ijResource[nRes+1][mHier+1] represents a collection of nRes resources, each of
which may belong to any of mHier single-parent hierarchies, or a mix of hierarchies and DAGs.

 DAGs are represented by multiple columns, where the width of the DAG is mDag, which is equal
to the maximum number of parents that a single node in the DAG currently has. It is assumed
that the matrix has been prepared such that all columns within a single DAG are adjacent. Each
DAG has a unique “DAG-id”, which is present in row 0 of each column of the DAG. By contrast,
single-parent hierarchies (single column) have a zero in row 0.

 The matrix is generally sparse, is initialized to all zeroes, and single-parent hierarchies and
DAGs are built by assigning the row number (effectively resource-id) of the parent of the resource
to the cell in resource’s row, effectively making the row a collection of potential hierarchies and
DAGs that the resource can belong to. The root of a hierarchy is indicated by the row element
pointing to the current row, a self-reference.

 The 2-d array is “one-based” in that column 0 and row 0 are not used so that resources and
hierarchies may be identified as running from 1->nRes and 1->mHier.

 Once the matrix is built, the ancestors for a resource may be collected by passing the row
number of the resource to the collectAncestorNodes(iRes) method. For each hierarchy and DAG
in the matrix, the recursive walkUpHierarchyOrDag(res-id, hier-id, dag-width, depth) method is
called, which will collect all the ancestors of either a hierarchy or DAG.

 The collected ancestors are stored in 4 sets: one each for self, parent, ancestor, and ancestor-or-
self.

 This algorithm is intended to be a model only and does not represent any specific implementation
strategy, except to clearly identify a concrete framework for identifying all the resources and
hierarchies and DAGs that are potentially covered by this profile.

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 17 of 23

4 Stating policies that apply to nodes
{Non-normative}

This Section describes various ways to specify a policy predicate that can apply to multiple nodes in a
hierarchical resource. This is not intended to be an exhaustive list.

4.1 Policies applying to nodes with ancestor attributes

{Non-normative}

Resource attributes with the following AttributeId values, described in Section 5: New attribute

identifiers for hierarchical resources of this Profile, MAY be used to state policies that apply to one or
more nodes in any hierarchical resource.

urn:oasis:names:tc:xacml:2.0:resource:resource-parent

urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor

urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor-or-self

Note that a <AttributeDesignator> that refers to the “resource-parent”, “resource-ancestor”, or

“resource-ancestor-or-self” attribute will return a bag of values representing all normative identities of all
parents, ancestors, or ancestors plus the resource itself, respectively, of the resource to which access is
being requested. The representations of the identities of these parents, ancestors, or self will not
necessarily indicate the path from the root of the hierarchy to the respective parent, ancestor, or self
unless the representation recommended in Section 3.2: Nodes in a resource that is not an XML document
is used.

The standard XACML [XACML] bag and higher-order bag functions MAY be used to state policies that
apply to one or more nodes in any hierarchical resource. The nodes used as arguments to these

functions MAY be specified using a <AttributeDesignator> with the “resource-parent”, “resource-

ancestor”, or “resource-ancestor-or-self” AttributeId value.

4.2 Policies applying only to nodes in XML documents

{Non-normative}

For hierarchical resources that are represented as XML document instances, the following function,
described in the XACML 3.0 Specification [XACML] MAY be used to state policy predicates that apply to

one or more nodes in that resource.

 urn:oasis:names:tc:xacml:3.0:function:xpath-node-match

The standard XACML <AttributeSelector> element MAY be used in policies to refer to all or

portions of a resource represented as an XML document and contained in the <Content> element of a

request context.

The standard XACML [XACML] bag and higher-order bag functions MAY be used to state policies that
apply to one or more nodes in a resource represented as an XML document. The nodes used as

arguments to these functions MAY be specified using an <AttributeSelector> that selects a portion

of the <Content> element of the <Attributes> element with the resource category.

4.3 Policies applying only to nodes identified with URIs

{Non-normative}

For hierarchical resources that are not represented as XML document instances, and where the URI
representation of nodes specified in Section 2.2 of this Profile is used, the following functions described
in the XACML 3.0 Specification [XACML] MAY be used to state policies that apply to one or more nodes

in that resource.

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 18 of 23

 urn:oasis:names:tc:xacml:1.0:function:anyURI-equal

 urn:oasis:names:tc:xacml:2.0:function:regexp-uri-match

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 19 of 23

5 New attribute identifiers
{Optional}

5.1 content-selector

The following identifier locates with an XPath expression the resource in the XML document that

represents the hierarchy in which the requested resource is a part. The DataType of this attribute MUST

be “urn:oasis:names:tc:xacml:3.0:data-type:xpathExpression”.

urn:oasis:names:tc:xacml:3.0:content-selector

5.2 document-id

The following identifier indicates the identity of the XML document that represents the hierarchy of which

the requested resource is a part, and of which a copy is present in the <Content> element. Whenever

access to a node in a resource represented as an XML document is requested, one or more instances of

an attribute with this AttributeId MAY be provided in the <Attributes> element of the request

context. The DataType of these attributes SHALL be “urn:oasis:names:tc:xacml:1.0:data-type:anyURI”.

 urn:oasis:names:tc:xacml:2.0:resource:document-id

5.3 resource-parent

The following identifier indicates one normative identity of one parent node in the tree or forest of which
the requested node is a part. Whenever access to a node in a hierarchical resource is requested, one

instance of an attribute with this AttributeId SHALL be provided in the <Attributes> element of the

request context for each normative representation of each node that is a parent of the requested node.

 urn:oasis:names:tc:xacml:2.0:resource:resource-parent

5.4 resource-ancestor

The following identifier indicates one normative identity of one ancestor node in the tree or forest of which
the requested node is a part. Whenever access to a node in a hierarchical resource is requested, one

instance of an attribute with this AttributeId SHALL be provided in the <Attributes> element of the

request context for each normative representation of each node that is an ancestor of the requested
node.

 urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor

5.5 resource-ancestor-or-self

The following identifier indicates one normative identity of one ancestor node in the tree or forest of which
the requested node is a part, or one normative identity of the requested node itself. Whenever access to

a node in a hierarchical resource is requested, one instance of an attribute with this AttributeId

SHALL be provided in the <Attributes> element of the request context for each normative

representation of each node that is an ancestor of the requested node, and for each normative
representation of the requested node itself.

 urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor-or-self

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 20 of 23

6 New profile identifiers
The following URI values SHALL be used as identifiers for the functionality specified in various Sections
of this Profile:

Section 2.1: Nodes in XML documents

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:xml-node-id

 Section 2.2: Nodes in resources that are not XML documents

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:non-xml-node-id

Section 3.1: Nodes in an XML document

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:xml-node-req

Section 3.2: Nodes in a resource that is not an XML document

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:non-xml-node-req

Support for the “resource-parent”, “resource-ancestor”, and “resource-ancestor-or-self” attributes is
optional within this Section, so these have separate identifiers:

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:non-xml-node-req:resource-parent

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:non-xml-node-req:resource-ancestor

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:non-xml-node-req:resource-ancestor-or-self

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 21 of 23

7 Conformance
Implementations of this profile MAY conform to any or all of the following conformance clauses.

7.1 Nodes in XML documents

Implementations supporting hierarchical resources as nodes in an xml document SHALL conform to
sections 2.1 and 3.1. The following URI identifies this functionality.

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:xml-node-id

7.2 Nodes in hierarchical resources identified by URIs

Implementations supporting hierarchical resources by means of URIs SHALL conform to sections 2.2
and 3.2. The following URI identifies this functionality.

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:URI-node-id

7.3 Nodes in hierarchical resources identified by ancestor attributes

Implementations supporting hierarchical resources by means of ancestor attributes SHALL conform to
sections 2.3 and 3.3. The following URI identifies this functionality.

 urn:oasis:names:tc:xacml:3.0:profile:hierarchical:attribute-node-id.

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 22 of 23

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:

Anil Saldhana

Anil Tappetla

Anne Anderson

Anthony Nadalin

Bill Parducci

Craig Forster

David Chadwick

David Staggs

Dilli Arumugam

Duane DeCouteau

Erik Rissanen

Gareth Richards

Hal Lockhart

Jan Herrmann

John Tolbert

Ludwig Seitz

Michiharu Kudo

Naomaru Itoi

Paul Tyson

Prateek Mishra

Rich Levinson

Ronald Jacobson

Seth Proctor

Sridhar Muppidi

Tim Moses

Vernon Murdoch

xacml-3.0-hierarchical-v1.0-cs02 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 23 of 23

Appendix B. Revision History

Revision Date Editor Changes Made

WD 1 Erik Rissanen Initial conversion to XACML 3.0.

WD 2 28 Dec 2007 Erik Rissanen Conversion to the current OASIS template.

WD 3 4 Nov 2008 Erik Rissanen Update to XACML core working draft 7.

WD 6 24 March 2009 Hal Lockhart Added definitions provided by Rich Levinson

Separated Attribute and URI modes

Added conformance section

WD 8 5 April 2009 Erik Rissanen Editorial cleanups.

WD 9 Erik Rissanen Added non-normative pseudo-code (by Rich)
for how one can collect the required attributes
from a hierarchy.

WD 10 14 Dec 2009 Erik Rissanen

Rich Levinson

Fixed typos.

Updated URI scheme with XML node pointers.

Remove ancestor attributes from XML scheme.

Clarified meaning of metadata identifiers.

Use the content-selector attribute instead of the
resource-id in the XML scheme.

Fixed 2.0 -> 3.0 typos in some identifiers.

WD 11 17 Dec 2009 Erik Rissanen

Rich Levinson

Fixed typos

Fixed OASIS references

Updated acknowledgments

WD 12 12 Jan 2010 Erik Rissanen Updated cross references

Updated acknowledgments

WD 13 8 Mar 2010 Erik Rissanen Updated cross references

Fixed OASIS formatting issues

WD 14 21 Jan 2014 Erik Rissanen Migrated to current OASIS document template
and fixed a few small typos.

WD 15 11 Mar 2014 Erik Rissanen Fixed references.

