Web Services Security SAML Token Profile Version 1.1.1
Working Draft 03
16-March-2011
Abstract:

This document describes how to use Security Assertion Markup Language (SAML) V1.1 and V2.0 assertions with the Web Services Security (WSS): SOAP Message Security V1.1.1 specification.

With respect to the description of the use of SAML V1.1, this document subsumes and is totally consistent with the Web Services Security: SAML Token Profile 1.0 and includes all corrections identified in the 1.0 errata.
Related work:

This specification replaces or supercedes:

· Web Services Security SAML Token Profile 1.1 OASIS Standard incorporating Approved Errata, 01 November 2006

This specification is related to:

· Web Services Security: SOAP Message Security 1.1 .1
Status:

This document is a Working Draft and as such has no official standing with regard to the OASIS Technical Committee Process.
This document integrates specific error corrections or editorial changes to the preceding specification, within the scope of the Web Services Security and this TC.

This document introduces a third digit in the numbering convention where the third digit represents a consolidation of error corrections, bug fixes or editorial formatting changes (e.g., 1.1.1); it does not add any new features beyond those of the base specifications (e.g., 1.1).

Copyright © OASIS® 2010. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

Introduction
The WSS: SOAP Message Security specification defines a standard set of SOAP extensions that implement SOAP message authentication and encryption. This specification defines the use of Security Assertion Markup Language (SAML) assertions as security tokens from the <wsse:Security> header block defined by the WSS: SOAP Message Security specification.
1.1 Goals

The goal of this specification is to define the use of SAML V1.1 and V2.0 assertions in the context of WSS: SOAP Message Security including for the purpose of securing SOAP messages and SOAP message exchanges. To achieve this goal, this profile describes how:

1. SAML assertions are carried in and referenced from <wsse:Security> Headers.

2. SAML assertions are used with XML signature to bind the subjects and statements of the assertions (i.e., the claims) to a SOAP message.

1.1.1 Non-Goals

The following topics are outside the scope of this document:

1. Defining SAML statement syntax or semantics.

2. Describing the use of SAML assertions other than for SOAP Message Security.

3. Describing the use of SAML V1.0 assertions with the Web Services Security (WSS): SOAP Message Security specification.

2 Notations and Terminology
This section specifies the notations, namespaces, and terminology used in this specification.
2.1 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119.

This document uses the notational conventions defined in the WS-Security SOAP Message Security document.

Namespace URIs (of the general form "some-URI") represent some application-dependent or context-dependent URI as defined in RFC2396.

This specification is designed to work with the general SOAP message structure and message processing model, and should be applicable to any version of SOAP. The current SOAP 1.2 namespace URI is used herein to provide detailed examples, but there is no intention to limit the applicability of this specification to a single version of SOAP.

Readers are presumed to be familiar with the terms in the Internet Security Glossary.

2.2 Namespaces

The appearance of the following [XML-ns] namespace prefixes in the examples within this specification should be understood to refer to the corresponding namespaces (from the following table) whether or not an XML namespace declaration appears in the example:

	Prefix
	Namespace

	S11
	http://schemas.xmlsoap.org/soap/envelope/

	S12
	http://www.w3.org/2003/05/soap-envelope

	ds
	http://www.w3.org/2000/09/xmldsig#

	xenc
	http://www.w3.org/2001/04/xmlenc#

	wsse
	http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd

	wsse11
	http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd

	wsu
	http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

	saml
	urn:oasis:names:tc:SAML:1.0:assertion

	saml2
	urn:oasis:names:tc:SAML:2.0:assertion

	samlp
	urn:oasis:names:tc:SAML:1.0:protocol

	xsi
	http://www.w3.org/2001/XMLSchema-instance

Table-1 Namespace Prefixes

2.3 Terminology

This specification employs the terminology defined in the WSS: SOAP Message Security specification. The definitions for additional terminology used in this specification appear below.

Attesting Entity – the entity that provides the confirmation evidence that will be used to establish the correspondence between the subjects and claims of SAML statements (in SAML assertions) and SOAP message content.

Confirmation Method Identifier – the value within a SAML SubjectConfirmation element that identifies the subject confirmation process to be used with the corresponding statements.

Subject Confirmation – the process of establishing the correspondence between the subject and claims of SAML statements (in SAML assertions) and SOAP message content by verifying the confirmation evidence provided by an attesting entity.

SAML Assertion Authority - A system entity that issues assertions.

Subject – A representation of the entity to which the claims in one or more SAML statements apply.
3 Usage
This section defines the specific mechanisms and procedures for using SAML assertions as security tokens.

3.1 Processing Model

This specification extends the token-independent processing model defined by the WSS: SOAP Message Security specification.

When a receiver processes a <wsse:Security> header containing or referencing SAML assertions, it selects, based on its policy, the signatures and assertions that it will process. It is assumed that a receiver’s signature selection policy MAY rely on semantic labeling
 of <wsse:SecurityTokenReference> elements occurring in the <ds:KeyInfo> elements within the signatures. It is also assumed that the assertions selected for validation and processing will include those referenced from the <ds:KeyInfo> and <ds:SignedInfo> elements of the selected signatures.

As part of its validation and processing of the selected assertions, the receiver MUST
 establish the relationship between the subject and claims of the SAML statements (of the referenced SAML assertions) and the entity providing the evidence to satisfy the confirmation method defined for the statements (i.e., the attesting entity). Two methods for establishing this correspondence, holder-of-key and sender-vouches are described below. Systems implementing this specification MUST implement the processing necessary to support both of these subject confirmation methods.

3.2 SAML Version Differences

The following sub-sections describe the differences between SAML V1.1 and V2.0 that apply to this specification.

3.2.1 Assertion Identifier

In SAML V1.1 the name of the assertion identifier attribute is “AssertionID”. In SAML v2.0 the name of the assertion identifier attribute is “ID”. In both versions the type of the identifier attribute is xs:ID.

3.2.2 Relationship of Subjects to Statements

A SAML assertion contains a collection of 0 or more statements. In SAML V1.1, a separate subject with separate subject confirmation methods may be specified for each statement of an assertion. In SAML V2.0, at most one subject and at most one set of subject confirmation methods may be specified for all the statements of the assertion. These distinctions are described in more detail by the following paragraphs.

A SAML V1.1 statement that contains a <saml:Subject> element (i.e., a subject statement) may contain a <saml:SubjectConfirmation> element that defines the rules for confirming the subject and claims of the statement. If present, the <saml:SubjectConfirmation> element occurs within the subject element, and defines one or more methods (i.e., <saml:ConfirmationMethod> elements) by which the statement may be confirmed and will include a <ds:KeyInfo>
 element when any of the specified methods are based on demonstration of a confirmation key. The <saml:SubjectConfirmation> element also provides for the inclusion of additional information to be applied in the confirmation method processing via the optional <saml:SubjectConfirmationData> element. The following example depicts a SAML V1.1 assertion containing two subject statements with different subjects and different subject confirmation elements.

<saml:Assertion xmlns:saml="..." xmlns:ds="..."

MajorVersion="1" MinorVersion="1" >

...
<saml:SubjectStatement>
 <saml:Subject>
 <saml:NameIdentifier>

...
 </saml:NameIdentifier>
 <saml:SubjectConfirmation>
 <saml:ConfirmationMethod>
 urn:oasis:names:tc:SAML:1.0:cm:sender-vouches
 </saml:ConfirmationMethod>
 <saml:ConfirmationMethod>
 urn:oasis:names:tc:SAML:1.0:cm:holder-of-key
 </saml:ConfirmationMethod>
 <ds:KeyInfo>
 <ds:KeyValue>…</ds:KeyValue>
 </ds:KeyInfo>
 </saml:SubjectConfirmation>
 </saml:Subject>

 </saml:SubjectStatement>
<saml:SubjectStatement>
 <saml:Subject>
 <saml:NameIdentifier>

...
 </saml:NameIdentifier>
 <saml:SubjectConfirmation>
 <saml:ConfirmationMethod>
 urn:oasis:names:tc:SAML:1.0:cm:sender-vouches
 </saml:ConfirmationMethod>
 </saml:SubjectConfirmation>
 </saml:Subject>

 </saml:SubjectStatement>

…
</saml:Assertion>
A SAML V2.0 assertion may contain a single <saml2:Subject> that applies to all the statements of the assertion. When a subject is included in A SAML V2.0 assertion, it may contain any number of <saml2:SubjectConfimation> elements, satisfying any of which is sufficient to confirm the subject and all the statements of the assertion. Each <saml2:SubjectConfirmation> element identifies a single confirmation method (by attribute value) and may include an optional <saml2:SubjectConfirmationData> element that is used to specify optional confirmation method independent condition attributes and to define additional method specific confirmation data. In the case of a key dependent confirmation method, a complex schema type, saml2:KeyInfoConfirmationDataType, that includes 1 or more <ds:KeyInfo> elements, can be specified as the xsi:type of the <saml2:SubjectConfirmationData> element. In this case, each <ds:KeyInfo> element identifies a key that may be demonstrated to confirm the assertion. The following example depicts a SAML V2.0 assertion containing a subject with multiple confirmation elements that apply to all the statements of the assertion.

 <saml2:Assertion xmlns:saml2="..." xmlns:ds="..." xmlns:xsi="...">
 <saml2:Subject>

 <saml2:NameID>

…
 </saml2:NameID>
 <saml2:SubjectConfirmation
 Method=”urn:oasis:names:tc:SAML:2.0:cm:sender-vouches”>
 <saml2:SubjectConfirmationData>

 Address=”129.148.9.42”
 </saml2:SubjectConfirmationData>
 </saml2:SubjectConfirmation>
 <saml2:SubjectConfirmation
 Method=”urn:oasis:names:tc:SAML:2.0:cm:holder-of-key”>
 <saml2:SubjectConfirmationData

 xsi:type="saml2:KeyInfoConfirmationDataType">
 <ds:KeyInfo>
 <ds:KeyValue>…</ds:KeyValue>
 </ds:KeyInfo>
 </saml2:SubjectConfirmationData>
 </saml2:SubjectConfirmation>
 </saml2:Subject>
 ….
<saml2:Statement>

…
 </saml2:Statement>
<saml2:Statement>

…
 </saml2:Statement>

…
</saml2:Assertion>
3.2.3 Assertion URI Reference Replaces AuthorityBinding

SAML V1.1 defines the (deprecated) <saml:AuthorityBinding> element so that a relying party can locate and communicate with an assertion authority to acquire a referenced assertion.

The <saml:AuthorityBinding> element was removed from SAML V2.0. [SAMLBindV2] requires that an assertion authority support a URL endpoint at which an assertion will be returned in response to an HTTP request with a single query string parameter named ID.

For example, if the documented endpoint at an assertion authority is:

https://saml.example.edu/assertion-authority
then the following request will cause the assertion with ID “abcde” to be returned:

https://saml.example.edu/assertion-authority?ID=abcde
3.2.4 Attesting Entity Identifier

The <saml2:SubjectConfirmation> element of SAML V2.0 provides for the optional inclusion of an element (i.e., NameID) to identify the expected attesting entity as distinct from the subject of the assertion.

<saml2:SubjectConfirmation xmlns:saml2="..."
 Method=”urn:oasis:names:tc:SAML:2.0:cm:sender-vouches”>

<NameID>

gateway

</NameID>
 <saml2:SubjectConfirmationData>

 Address=”129.148.9.42”
 </saml2:SubjectConfirmationData>
</saml2:SubjectConfirmation>
3.3 Attaching Security Tokens

SAML assertions are attached to SOAP messages using WSS: SOAP Message Security by placing assertion elements or references to assertions inside a <wsse:Security> header. The following example illustrates a SOAP message containing a bearer confirmed SAML V1.1 assertion in a <wsse:Security> header.

<S12:Envelope xmlns:S12="...">
 <S12:Header>
 <wsse:Security xmlns:wsse="...">
 <saml:Assertion xmlns:saml="..."
 AssertionID="_a75adf55-01d7-40cc-929f-dbd8372ebdfc"
 IssueInstant="2003-04-17T00:46:02Z"
 Issuer=”www.opensaml.org”
 MajorVersion="1"
 MinorVersion="1">
 <saml:AuthenticationStatement>
 <saml:Subject>
 <saml:NameIdentifier
 NameQualifier="www.example.com"
 Format=“urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName”>
 uid=joe,ou=people,ou=saml-demo,o=baltimore.com
 </saml:NameIdentifier>
 <saml:SubjectConfirmation>
 <saml:ConfirmationMethod>
 urn:oasis:names:tc:SAML:1.0:cm:bearer
 </saml:ConfirmationMethod>
 </saml:SubjectConfirmation>
 </saml:Subject>
 </saml:AuthenticationStatement>
 </saml:Assertion>
 </wsse:Security>
 </S12:Header>
 <S12:Body>
 . . .
 </S12:Body>
</S12:Envelope>
3.4 Identifying and Referencing Security Tokens

The WSS: SOAP Message Security specification defines the <wsse:SecurityTokenReference> element for referencing security tokens. Three forms of token references are defined by this element and the element schema includes provision for defining additional reference forms should they be necessary. The three forms of token references defined by the <wsse:SecurityTokenReference> element are defined as follows:

A key identifier reference – a generic element (i.e., <wsse:KeyIdentifier>) that conveys a security token identifier as an wsse:EncodedString and indicates in its attributes (as necessary) the key identifier type (i.e., the ValueType), the identifier encoding type (i.e., the EncodingType), and perhaps other parameters used to reference the security token.

When a key identifier is used to reference a SAML assertion, it MUST contain as its element value the corresponding SAML assertion identifier. The key identifier MUST also contain a ValueType attribute and the value of this attribute MUST be the value from Table 2 corresponding to the version of the referenced assertion. The key identifier MUST NOT include an EncodingType
 attribute and the element content of the key identifier MUST be encoded as xs:string.

When a key identifier is used to reference a V1.1 SAML assertion that is not contained in the same message as the key identifier, a <saml:AuthorityBinding> element MUST be contained in the <wsse:SecurityTokenReference> element containing the key identifier. The contents of the <saml:AuthorityBinding> element MUST contain values sufficient for the intended recipients of the <wsse:SecurityTokenReference> to acquire the identified assertion from the intended Authority. To this end, the value of the AuthorityKind attribute of the <saml:AuthorityBinding> element MUST be “samlp:AssertionIdReference”.
When a key Identifier is used to reference a SAML assertion contained in the same message as the key identifier, a <saml:AuthorityBinding> element MUST NOT be included in the <wsse:SecurityTokenReference> containing the key identifier.

A key identifier MUST NOT be used to reference a SAML V2.0 assertion if the assertion is NOT contained in the same message as the key identifier.

A Direct or URI reference – a generic element (i.e., <wsse:Reference>) that identifies a security token by URI. If only a fragment identifier is specified, then the reference is to the security token within the document whose local identifier (e.g., wsu:Id attribute) matches the fragment identifier. Otherwise, the reference is to the (potentially external) security token identified by the URI.

A reference to a SAML V2.0 assertion that is NOT contained in the same message MUST be a Direct or URI reference. In this case, the value of the URI attribute must conform to the URI syntax defined in section 3.7.5.1 of [SAMLBindV2]. That is, an HTTP or HTTPS request with a single query string parameter named ID. The reference MUST also contain a wsse11:TokenType attribute and the value of this attribute MUST be the value from Table 3 identifying the assertion as a SAML V2.0 security token. When a Direct reference is made to a SAML V2.0 Assertion, the Direct reference SHOULD NOT contain a ValueType attribute.

This profile does not describe the use of Direct or URI references to reference V1.1 SAML assertions.

An Embedded reference – a reference that encapsulates a security token.

When an Embedded reference is used to encapsulate a SAML assertion, the SAML assertion MUST be included as a contained element within a <wsse:Embedded> element within a <wsse:SecurityTokenReference>.
This specification describes how SAML assertions may be referenced in four contexts:

A SAML assertion may be referenced directly from a <wsse:Security> header element. In this case, the assertion is being conveyed by reference in the message.

A SAML assertion may be referenced from a <ds:KeyInfo> element of a <ds:Signature> element in a <wsse:Security> header. In this case, the assertion contains a SubjectConfirmation element that identifies the key used in the signature calculation.

A SAML assertion reference may be referenced from a <ds:Reference> element within the <ds:SignedInfo> element of a <ds:Signature> element in a <wsse:Security> header. In this case, the doubly-referenced assertion is signed by the containing signature.

A SAML assertion reference may occur as encrypted content within an <xenc:EncryptedData> element referenced from a <xenc:DataReference> element within an <xenc:ReferenceList> element. In this case, the assertion reference (which may contain an embedded assertion) is encrypted.

In each of these contexts, the referenced assertion may be:

local – in which case, it is included in the <wsse:Security> header containing the reference.

remote – in which case it is not included in the <wsse:Security> header containing the reference, but may occur in another part of the SOAP message or may be available at the location identified by the reference which may be an assertion authority.

A SAML key identifier reference MUST be used for all (local and remote) references to SAML 1.1 assertions. All (local and remote) references to SAML V2.0 assertions SHOULD be by Direct reference and all remote references to V2.0 assertions MUST be by Direct reference URI. A key identifier reference MAY be used to reference a local V2.0 assertion. To maintain compatibility with Web Services Security: SOAP Message Security 1.0, the practice of referencing local SAML 1.1 assertions by Direct <wsse:SecurityTokenReference> reference is not defined by this profile.

Every key identifier, direct, or embedded reference to a SAML assertion SHOULD contain a wsse11:TokenType attribute and the value of this attribute MUST be the value from Table 3 that identifies the type and version of the referenced security token. When the referenced assertion is a SAML V2.0 Assertion the reference MUST contain a wsse11:TokenType attribute (as described above).

	Assertion Version
	Value

	V1.1
	http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0#SAMLAssertionID

	V2.0
	http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID

Table-2 Key Identifier ValueType Attribute Values

	Assertion Version
	Value

	V1.1
	http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1

	V2.0
	http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0

Table-3 TokenType Attribute Values

The following subsections define the SAML assertion references that MUST be supported by conformant implementations of this profile. A conformant implementation may choose to support the reference forms corresponding to either or both V1.1 or V2.0 SAML assertions.

3.4.1 SAML Assertion Referenced from Header or Element

All conformant implementations MUST be able to process SAML assertion references occurring in a <wsse:Security> header or in a header element other than a signature to acquire the corresponding assertion. A conformant implementation MUST be able to process any such reference independent of the confirmation method of the referenced assertion.

A SAML assertion may be referenced from a <wsse:Security> header or from an element (other than a signature) in the header. The following example demonstrates the use of a key identifier in a <wsse:Security> header to reference a local SAML V1.1 assertion.

<S12:Envelope xmlns:S12="...">
 <S12:Header>
 <wsse:Security xmlns:wsse="..." xmlns:wsu="..." xmlns:wsse11="...">
 <saml:Assertion xmlns:saml="..."
 AssertionID="_a75adf55-01d7-40cc-929f-dbd8372ebdfc"
 IssueInstant="2003-04-17T00:46:02Z"
 Issuer=”www.opensaml.org”
 MajorVersion="1"
 MinorVersion="1">
 </saml:Assertion>
 <wsse:SecurityTokenReference wsu:Id=”STR1”
 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1”>
 <wsse:KeyIdentifier wsu:Id=”…”
 ValueType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0#SAMLAssertionID”>

 _a75adf55-01d7-40cc-929f-dbd8372ebdfc
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>

 </wsse:Security>
 </S12:Header>
 <S12:Body>
 . . .
 </S12:Body>
</S12:Envelope>
The following example depicts the use of a key identifier reference to reference a local SAML V2.0 assertion.

<wsse:SecurityTokenReference

xmlns:wsse="..." xmlns:wsu="..." xmlns:wsse11="..."
 wsu:Id=”STR1”

wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0”>
 <wsse:KeyIdentifier wsu:Id=”…”
 ValueType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID”>

 _a75adf55-01d7-40cc-929f-dbd8372ebdfc
 </wsse:KeyIdentifier>
</wsse:SecurityTokenReference>

A SAML V1.1 assertion that exists outside of a <wsse:Security> header may be referenced from the <wsse:Security> header element by including (in the <wsse:SecurityTokenReference>) a <saml:AuthorityBinding> element that defines the location, binding, and query that may be used to acquire the identified assertion at a SAML assertion authority or responder.

<wsse:SecurityTokenReference

xmlns:wsse="..." xmlns:wsu="..." xmlns:wsse11="..."

wsu:Id=”STR1”
 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1”>
 <saml:AuthorityBinding xmlns:saml="..."
 Binding=”urn:oasis:names:tc:SAML:1.0:bindings:SOAP-binding”
 Location=”http://www.opensaml.org/SAML-Authority”
 AuthorityKind= “samlp:AssertionIdReference”/>
 <wsse:KeyIdentifier
 wsu:Id=”…”
 ValueType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0#SAMLAssertionID”>
 _a75adf55-01d7-40cc-929f-dbd8372ebdfc
 </wsse:KeyIdentifier>
</wsse:SecurityTokenReference>
The following example depicts the use of a Direct or URI reference to reference a SAML V2.0 assertion that exists outside of a <wsse:Security> header.

<wsse:SecurityTokenReference

 xmlns:wsse="..." xmlns:wsu="..." xmlns:wsse11="..."
 wsu:Id=”…”
 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0”>
 <wsse:Reference
 wsu:Id=”…”
 URI=”https://saml.example.edu/assertion-authority?ID=abcde”>
 </wsse:Reference>
</wsse:SecurityTokenReference>
3.4.2 SAML Assertion Referenced from KeyInfo

All conformant implementations MUST be able to process SAML assertion references occurring in the <ds:KeyInfo> element of a <ds:Signature> element in a <wsse:Security> header as defined by the holder-of-key confirmation method.

The following example depicts the use of a key identifier to reference a local V1.1 assertion from <ds:KeyInfo>.
<ds:KeyInfo xmlns:ds="...">
 <wsse:SecurityTokenReference

 xmlns:wsse="..." xmlns:wsu="..." xmlns:wsse11="..."

 wsu:Id=”STR1”
 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1”>
 <wsse:KeyIdentifier wsu:Id=”…”
 ValueType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0#SAMLAssertionID”>
 _a75adf55-01d7-40cc-929f-dbd8372ebdfc
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
</ds:KeyInfo>
A local, V2.0 assertion may be referenced by replacing the values of the Key Identifier ValueType and reference TokenType attributes with the values defined in tables 2 and 3 (respectively) for SAML V2.0 as follows:

<ds:KeyInfo xmlns:ds="...">
 <wsse:SecurityTokenReference

 xmlns:wsse="..." xmlns:wsu="..." xmlns:wsse11="..."

 wsu:Id=”STR1”
 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0”>
 <wsse:KeyIdentifier wsu:Id=”…”
 ValueType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID”>
 _a75adf55-01d7-40cc-929f-dbd8372ebdfc
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
</ds:KeyInfo>
The following example demonstrates the use of a <wsse:SecurityTokenReference> containing a key identifier and a <saml:AuthorityBinding> to communicate information (location, binding, and query) sufficient to acquire the identified V1.1 assertion at an identified SAML assertion authority or responder.

<ds:KeyInfo xmlns:ds="...">
 <wsse:SecurityTokenReference

 xmlns:wsse="..." xmlns:wsu="..." xmlns:wsse11="..."

 wsu:Id=”STR1”
 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1”>
 <saml:AuthorityBinding xmlns:saml="..."
 Binding=”urn:oasis:names:tc:SAML:1.0:bindings:SOAP-binding”
 Location=”http://www.opensaml.org/SAML-Authority”
 AuthorityKind= “samlp:AssertionIdReference”/>
 <wsse:KeyIdentifier wsu:Id=”…”
 ValueType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0#SAMLAssertionID”>
_a75adf55-01d7-40cc-929f-dbd8372ebdfc
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
</ds:KeyInfo>
Remote references to V2.0 assertions are made by Direct reference URI. The following example depicts the use of a Direct reference URI to reference a remote V2.0 assertion from <ds:KeyInfo>.

<ds:KeyInfo xmlns:ds="...">
 <wsse:SecurityTokenReference

xmlns:wsse="..." xmlns:wsu="..." xmlns:wsse11="..."

 wsu:id=”STR1”

 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0”>
 <wsse:Reference

 wsu:id=”…”
 URI=”https://saml.example.edu/assertion-authority?ID=abcde”>

 </wsse:Reference>
 </wsse:SecurityTokenReference>
</ds:KeyInfo>
<ds:KeyInfo> elements may also occur in <xenc:EncryptedData> and <xenc:EncryptedKey> elements where they serve to identify the encryption key. <ds:KeyInfo> elements may also occur in SAML SubjectConfirmation elements where they identify a key that MUST be demonstrated to confirm the subject of the corresponding statement(s).

Conformant implementations of this profile are NOT required to process SAML assertion references occurring within the <ds:KeyInfo> elements within <xenc:EncryptedData>, <xenc:EncryptedKey>, or SAML SubjectConfirmation elements.

3.4.3 SAML Assertion Referenced from SignedInfo

Independent of the confirmation method of the referenced assertion, all conformant implementations MUST be able to process SAML assertions referenced by <wsse:SecurityTokenReference> from <ds:Reference> elements within the <ds:SignedInfo> element of a <ds:Signature> element in a <wsse:Security> header. Embedded references may be digested directly, thus effectively digesting the encapsulated assertion. Other <wsse:SecurityTokenReference> forms must be dereferenced for the referenced assertion to be digested.

The core specification, WSS: SOAP Message Security, defines the STR Dereference transform to cause the replacement (in the digest stream) of a <wsse:SecurityTokenReference> with the contents of the referenced token. To digest any SAML assertion that is referenced by a non-embedded <wsse:SecurityTokenReference>, the STR Dereference transform MUST be specified and applied in the processing of the <ds:Reference>. Conversly, the STR Dereference transform MUST NOT be specified or applied when the <wsse:SecurityTokenReference>, not the referenced assertion, is to be digested.

The following example demonstrates the use of the STR Dereference transform to dereference a reference to a SAML V1.1 Assertion (i.e., Security Token) such that the digest operation is performed on the security token not its reference.

<wsse:SecurityTokenReference

xmlns:wsse="..." xmlns:wsu="..." xmlns:wsse11="..." wsu:Id=”STR1”
 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1”>
 <saml:AuthorityBinding xmlns:saml="..."
 Binding=”urn:oasis:names:tc:SAML:1.0:bindings:SOAP-binding”
 Location=”http://www.opensaml.org/SAML-Authority”
 AuthorityKind= “samlp:AssertionIdReference”/>
 <wsse:KeyIdentifier wsu:Id=”…”
 ValueType=”http://docs.oasis-open.org/wss/oasis-2004XX-wss-saml-token-profile-1.0#SAMLAssertionID”>
 _a75adf55-01d7-40cc-929f-dbd8372ebdfc
 </wsse:KeyIdentifier>
</wsse:SecurityTokenReference
<ds:SignedInfo xmlns:ds="..." xmlns:wsse="...">
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#STR1">
 <Transforms>
 <ds:Transform
 Algorithm="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform”>
 <wsse:TransformationParameters>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </wsse:TransformationParameters>
 </ds:Transform>
 </Transforms>
 <ds:DigestMethod
 Algorithm= "http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>...</ds:DigestValue>
 </ds:Reference>
</ds:SignedInfo>
Note that the URI appearing in the <ds:Reference> element identifies the <wsse:SecurityTokenReference> element by its wsu:Id value. Also note that the STR Dereference transform MUST contain (in <wsse:TransformationParameters>) a <ds:CanonicalizationMethod> that defines the algorithm to be used to serialize the input node set (of the referenced assertion).

As depicted in the other examples of this section, this profile establishes <wsse:SecurityTokenReference> forms for referencing V1.1, local V2.0, and remote V2.0 assertions.

3.4.4 SAML Assertion Referenced from Encrypted Data Reference

Independent of the confirmation method of the referenced assertion, all conformant implementations MUST be able to process SAML assertion references occurring as encrypted content within the <xenc:EncryptedData> elements referenced by Id from the <xenc:DataReference> elements of <xenc:ReferenceList> elements. An <xenc:ReferenceList> element may occur either as a top-level element in a <wsse:Security> header, or embedded within an <xenc:EncryptedKey> element. In either case, the <xenc:ReferenceList> identifies the encrypted content.

Such references are similar in format to the references that MAY appear in the <ds:Reference> element within <ds:SignedInfo>, except the STR Dereference transform does not apply. As shown in the following example, an encrypted <wsse:SecurityTokenReference> (which may contain an embedded assertion) is referenced from an <xenc:DataReference> by including the identifier of the <xenc:EncryptedData> element that contains the encrypted <wsse:SecurityTokenReference> in the <xenc:DataReference>.

<xenc:EncryptedData xmlns:xenc="..." xmlns:ds="..." Id=”EncryptedSTR1”>
 <ds:KeyInfo>
 . . .
 </ds:KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue>...</xenc:CipherValue>
 </xenc:CipherData>
</xenc:EncryptedData>
<xenc:ReferenceList xmlns:xenc="...">
 <xenc:DataReference URI="#EncryptedSTR1"/>
</xenc:ReferenceList>
3.4.5 SAML Version Support and Backward Compatibility

An implementation of this profile MUST satisfy all of its requirements with respect to either or both SAML V1.1 or SAML V2.0 Assertions. An implementation that satisfies the requirements of this profile with respect to SAML V1.1 assertions MUST be able to fully interoperate with any fully compatible implementation of version 1.0 of this profile.

An implementation that does not satisfy the requirements of this profile with respect to SAML V1.1 or SAML V2.0 assertions MUST reject a message containing a <wsse:Security> header that references or conveys an assertion of the unsupported version. When a message containing an unsupported assertion version is detected, the receiver MAY choose to respond with an appropriate fault as defined in Section 3.6, “Error Codes”.

3.5 Subject Confirmation of SAML Assertions

The SAML profile of WSS: SOAP Message Security requires that systems support the holder-of-key and sender-vouches methods of subject confirmation. It is strongly RECOMMENDED that an XML signature be used to establish the relationship between the message and the statements of the attached assertions. This is especially RECOMMENDED whenever the SOAP message exchange is conducted over an unprotected transport.

Any processor of SAML assertions MUST conform to the required validation and processing rules defined in the corresponding SAML specification including the validation of assertion signatures, the processing of <saml:Condition> elements within assertions, and the processing of <saml2:SubjectConfirmationData> attributes. [SAMLCoreV1] defines the validation and processing rules for V1.1 assertions, while [SAMLCoreV2] is authoritative for V2.0 assertions.

The following table enumerates the mandatory subject confirmation methods and summarizes their associated processing models:

	Mechanism
	RECOMMENDED Processing Rules

	urn:oasis:names:tc:SAML:1.0:cm:holder-of-key
Or
urn:oasis:names:tc:SAML:2.0:cm:holder-of-key

	The attesting entity demonstrates knowledge of a confirmation key identified in a holder-of-key SubjectConfirmation element within the assertion.

	urn:oasis:names:tc:SAML:1.0:cm:sender-vouches
Or
urn:oasis:names:tc:SAML:2.0:cm:sender-vouches

	The attesting entity, (presumed to be) different from the subject, vouches for the verification of the subject. The receiver MUST have an existing trust relationship with the attesting entity. The attesting entity MUST protect the assertion in combination with the message content against modification by another party. See also section 4.

Note that the high level processing model described in the following sections does not differentiate between the attesting entity and the message sender as would be necessary to guard against replay attacks. The high-level processing model also does not take into account requirements for authentication of receiver by sender, or for message or assertion confidentiality. These concerns must be addressed by means other than those described in the high-level processing model (i.e., section 3.1).

3.5.1 Holder-of-key Subject Confirmation Method

The following sections describe the holder-of-key method of establishing the correspondence between a SOAP message and the subject and claims of SAML assertions added to the SOAP message according to this specification.

3.5.1.1 Attesting Entity

An attesting entity demonstrates that it is authorized to act as the subject of a holder-of-key confirmed SAML statement by demonstrating knowledge of any key identified in a holder-of-key SubjectConfirmation element associated with the statement by the assertion containing the statement. Statements attested for by the holder-of-key method MUST be associated, within their containing assertion, with one or more holder-of-key SubjectConfirmation elements.

The SubjectConfirmation elements MUST include a <ds:KeyInfo> element that identifies a public or secret key
 that can be used to confirm the identity of the subject.

To satisfy the associated confirmation method processing to be performed by the message receiver, the attesting entity MUST demonstrate knowledge of the confirmation key. The attesting entity MAY accomplish this by using the confirmation key to sign content within the message and by including the resulting <ds:Signature> element in the <wsse:Security> header. <ds:Signature> elements produced for this purpose MUST conform to the canonicalization and token pre-pending rules defined in the WSS: SOAP Message Security specification.The attesting entity MAY protect against substitution of a different but equivalently confirmed
 assertion by including, as described in section 3.4.3 "SAML Assertion Referenced from SignedInfo", the SAML assertion (or an unambiguous reference to it) in the content signed to demonstrate knowledge of the confirmation key.

SAML assertions that contain a holder-of-key SubjectConfirmation element SHOULD contain a <ds:Signature> element that protects the integrity of the confirmation <ds:KeyInfo> established by the assertion authority.

The canonicalization method used to produce the <ds:Signature> elements used to protect the integrity of SAML assertions MUST support the validation of these <ds:Signature> elements in contexts (such as <wsse:Security> header elements) other than those in which the signatures were calculated.

3.5.1.2 Receiver

Of the SAML assertions it selects for processing, a message receiver MUST NOT accept statements of these assertions based on a holder-of-key SubjectConfirmation element defined for the statements (within the assertion) unless the receiver has validated the integrity of the assertion and the attesting entity has demonstrated knowledge of a key identified within the confirmation element.

If the receiver determines that the attesting entity has demonstrated knowledge of a subject confirmation key, then the subjects and claims of the SAML statements confirmed by the key MAY be attributed to the attesting entity and any content of the message (including any SAML statements) whose integrity is protected by the key MAY be considered to have been provided by the attesting entity.

3.5.1.3 Example V1.1

The following example illustrates the use of the holder-of-key subject confirmation method to establish the correspondence between the SOAP message and the subject of statements of the SAML V1.1 assertions in the <wsse:Security> header:

<?xml version="1.0" encoding="UTF-8"?>
<S12:Envelope xmlns:S12="..." xmlns:wsu="...">
 <S12:Header>
 <wsse:Security xmlns:wsse="..." xmlns:wsse11="..." xmlns:ds="...">
 <saml:Assertion xmlns:saml="..."
 AssertionID="_a75adf55-01d7-40cc-929f-dbd8372ebdfc"
 IssueInstant="2005-05-27T16:53:33.173Z"
 Issuer=”www.opensaml.org”
 MajorVersion="1"
 MinorVersion="1">
 <saml:Conditions
 NotBefore="2005-05-27T16:53:33.173Z"
 NotOnOrAfter="2005-05-27T16:58:33.17302Z"/>
 <saml:AttributeStatement>
 <saml:Subject>
 <saml:NameIdentifier
 NameQualifier="www.example.com"
 Format=“urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName”>
 uid=joe,ou=people,ou=saml-demo,o=baltimore.com
 </saml:NameIdentifier>
 <saml:SubjectConfirmation>
 <saml:ConfirmationMethod>
 urn:oasis:names:tc:SAML:1.0:cm:holder-of-key
 </saml:ConfirmationMethod>
 <ds:KeyInfo>
 <ds:KeyValue>…</ds:KeyValue>
 </ds:KeyInfo>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Attribute
 AttributeName="MemberLevel"
 AttributeNamespace="http://www.oasis-open.org/Catalyst2002/attributes">
 <saml:AttributeValue>gold</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute
 AttributeName="E-mail"
 AttributeNamespace="http://www.oasis-open.org/Catalyst2002/attributes">
 <saml:AttributeValue>joe@yahoo.com</saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 <ds:Signature>…</ds:Signature>
 </saml:Assertion>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference
 URI="#MsgBody">
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>GyGsF0Pi4xPU...</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>HJJWbvqW9E84vJVQk…</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference wsu:Id=”STR1”
 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1”>
 <wsse:KeyIdentifier wsu:Id=”…”
 ValueType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0#SAMLAssertionID”>
 _a75adf55-01d7-40cc-929f-dbd8372ebdfc
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </S12:Header>
 <S12:Body wsu:Id="MsgBody">
 <ReportRequest>
 <TickerSymbol>SUNW</TickerSymbol>
 </ReportRequest>
 </S12:Body>
</S12:Envelope>
3.5.1.4 Example V2.0

The following example illustrates the use of the holder-of-key subject confirmation method to establish the correspondence between the SOAP message and the subject of the SAML V2.0 assertion in the <wsse:Security> header:

<?xml version="1.0" encoding="UTF-8"?>
<S12:Envelope xmlns:S12="..." xmlns:wsu="...">
 <S12:Header>
 <wsse:Security xmlns:wsse="..." xmlns:wsse11="..." xmlns:ds="...">
 <saml2:Assertion xmlns:saml2="..." xmlns:xsi="..."

 ID=”_a75adf55-01d7-40cc-929f-dbd8372ebdfc”>
 <saml2:Subject>

<saml2:NameID>

…

</saml2:NameID>

<saml2:SubjectConfirmation
 Method=”urn:oasis:names:tc:SAML:2.0:cm:holder-of-key”>
 <saml2:SubjectConfirmationData

 xsi:type="saml2:KeyInfoConfirmationDataType">
 <ds:KeyInfo>
 <ds:KeyValue>…</ds:KeyValue>
 </ds:KeyInfo>
 </saml2:SubjectConfirmationData>
 </saml2:SubjectConfirmation>
 </saml2:Subject>
 <saml2:Statement>

…
 </saml2:Statement>
 <ds:Signature>…</ds:Signature>
 </saml2:Assertion>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference
 URI="#MsgBody">
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>GyGsF0Pi4xPU...</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>HJJWbvqW9E84vJVQk…</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference wsu:Id=”STR1”
 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0”>
 <wsse:KeyIdentifier wsu:Id=”…”
 ValueType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID”>
 _a75adf55-01d7-40cc-929f-dbd8372ebdfc
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </S12:Header>
 <S12:Body wsu:Id="MsgBody">
 <ReportRequest>
 <TickerSymbol>SUNW</TickerSymbol>
 </ReportRequest>
 </S12:Body>
</S12:Envelope>
3.5.2 Sender-vouches Subject Confirmation Method

The following sections describe the sender-vouches method of establishing the correspondence between a SOAP message and the SAML assertions added to the SOAP message according to the SAML profile of WSS: SOAP Message Security.

3.5.2.1 Attesting Entity

An attesting entity uses the sender-vouches confirmation method to assert that it is acting on behalf of the subject of SAML statements attributed with a sender-vouches SubjectConfirmation element. Statements attested for by the sender-vouches method MUST be associated, within their containing assertion, with one or more sender-vouches SubjectConfirmation elements.

To satisfy the associated confirmation method processing of the receiver, the attesting entity MUST protect the vouched for SOAP message content such that the receiver can determine when it has been altered by another party. The attesting entity MUST also cause the vouched for statements (as necessary) and their binding to the message contents to be protected such that unauthorized modification can be detected. The attesting entity MAY satisfy these requirements by including in the corresponding <wsse:Security> header a <ds:Signature> element that it prepares by using its key to sign the relevant message content and assertions. As defined by the XML Signature specification, the attesting entity MAY identify its key by including a <ds:KeyInfo> element within the <ds:Signature> element.

A <ds:Signature> element produced for this purpose MUST conform to the canonicalization and token pre-pending rules defined in the WSS: SOAP Message Security specification.

3.5.2.2 Receiver

Of the SAML assertions it selects for processing, a message receiver MUST NOT accept statements of these assertions based on a sender-vouches SubjectConfirmation element defined for the statements (within the assertion) unless the assertions and SOAP message content being vouched for are protected (as described above) by an attesting entity who is trusted by the receiver to act as the subjects and with the claims of the statements.

3.5.2.3 Example V1.1

The following example illustrates an attesting entity’s use of the sender-vouches subject confirmation method with an associated <ds:Signature> element to establish its identity and to assert that it has sent the message body on behalf of the subject(s) of the V1.1 assertion referenced by “STR1”.

The assertion referenced by “STR1” is not included in the message. “STR1” is referenced by <ds:Reference> from <ds:SignedInfo>. The ds:Reference> includes the STR-transform to cause the assertion, not the <SecurityTokenReference> to be included in the digest calculation. “STR1” includes a <saml:AuthorityBinding> element that utilizes the remote assertion referencing technique depicted in the example of section 3.3.3.

The SAML V1.1 assertion embedded in the header and referenced by “STR2” from <ds:KeyInfo> corresponds to the attesting entity. The private key corresponding to the public confirmation key occurring in the assertion is used to sign together the message body and assertion referenced by “STRI”.

<?xml version="1.0" encoding="UTF-8"?>
<S12:Envelope xmlns:S12="..." xmlns:wsu="...">

 <S12:Header>
 <wsse:Security xmlns:wsse="..." xmlns:wsse11="..." xmlns:ds="...">
 <saml:Assertion xmlns:saml="..."
 AssertionID="_a75adf55-01d7-40cc-929f-dbd8372ebdfc"
 IssueInstant="2005-05-27T16:53:33.173Z"
 Issuer=”www.opensaml.org”
 MajorVersion="1"
 MinorVersion="1">
 <saml:Conditions
 NotBefore="2005-05-27T16:53:33.173Z"
 NotOnOrAfter="2005-05-27T16:58:33.173Z"/>
 <saml:AttributeStatement>
 <saml:Subject>
 <saml:NameIdentifier
 NameQualifier="www.example.com"
 Format=“urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName”>
 uid=proxy,ou=system,ou=saml-demo,o=baltimore.com
 </saml:NameIdentifier>
 <saml:SubjectConfirmation>
 <saml:ConfirmationMethod>
 urn:oasis:names:tc:SAML:1.0:cm:holder-of-key
 </saml:ConfirmationMethod>
 <ds:KeyInfo>
 <ds:KeyValue>…</ds:KeyValue>
 </ds:KeyInfo>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Attribute>

 . . .
 </saml:Attribute>

 . . .
 </saml:AttributeStatement>
 </saml:Assertion>
 <wsse:SecurityTokenReference wsu:Id=”STR1”>
 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1”>

 <saml:AuthorityBinding xmlns:saml="..."

 Binding=”urn:oasis:names:tc:SAML:1.0:bindings:SOAP-binding”

 Location=”http://www.opensaml.org/SAML-Authority”
 AuthorityKind=“samlp:AssertionIdReference”/>
 <wsse:KeyIdentifier wsu:Id=”…”
 ValueType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0#SAMLAssertionID”>
 _a75adf55-01d7-40cc-929f-dbd8372ebdbe
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#STR1">
 <Transforms>
 <ds:Transform
 Algorithm="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform">
 <wsse:TransformationParameters>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </wsse:TransformationParameters>
 </ds:Transform>
 </Transforms>
 <ds:DigestMethod
 Algorithm= "http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>...</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#MsgBody">
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>...</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>HJJWbvqW9E84vJVQk…</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference wsu:Id=”STR2”
 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1”>
 <wsse:KeyIdentifier wsu:Id=”…”
 ValueType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0#SAMLAssertionID”>
 _a75adf55-01d7-40cc-929f-dbd8372ebdfc
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </S12:Header>
 <S12:Body wsu:Id="MsgBody">
 <ReportRequest>
 <TickerSymbol>SUNW</TickerSymbol>
 </ReportRequest>
 </S12:Body>
</S12:Envelope>
3.5.2.4 Example V2.0

The following example illustrates the mapping of the preceding example to SAML V2.0 assertions.

<?xml version="1.0" encoding="UTF-8"?>
<S12:Envelope xmlns:S12="..." xmlns:wsu="...">
 <S12:Header>
 <wsse:Security xmlns:wsse="..." xmlns:wsse11="..." xmlns:ds="...">
 <saml2:Assertion xmlns:saml2="..." xmlns:xsi="..."

 ID=”_a75adf55-01d7-40cc-929f-dbd8372ebdfc">
 <saml2:Subject>

 <saml2:NameID>

...

 </saml2:NameID>

 <saml2:SubjectConfirmation
 Method=”urn:oasis:names:tc:SAML:2.0:cm:holder-of-key”>
 <saml2:SubjectConfirmationData

 xsi:type="saml2:KeyInfoConfirmationDataType">
 <ds:KeyInfo>
 <ds:KeyValue>…</ds:KeyValue>
 </ds:KeyInfo>
 </saml2:SubjectConfirmationData>
 </saml2:SubjectConfirmation>
 </saml2:Subject>
 <saml2:Statement>

 …
 </saml2:Statement>
 <ds:Signature>…</ds:Signature>
 </saml2:Assertion>
 <wsse:SecurityTokenReference wsu:Id=”STR1”
 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0”>
 <wsse:Reference wsu:Id=”…”
 URI=”https://www.opensaml.org?_a75adf55-01d7-40cc-929f-dbd8372ebdbe”>
 </wsse:Reference>
 </wsse:SecurityTokenReference>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#STR1">
 <Transforms>
 <ds:Transform
 Algorithm="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform">
 <wsse:TransformationParameters>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </wsse:TransformationParameters>
 </ds:Transform>
 </Transforms>
 <ds:DigestMethod
 Algorithm= "http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>...</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#MsgBody">
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>...</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>HJJWbvqW9E84vJVQk…</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference wsu:Id=”STR2”
 wsse11:TokenType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0”>
 <wsse:KeyIdentifier wsu:Id=”…”
 ValueType=”http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID”>
 _a75adf55-01d7-40cc-929f-dbd8372ebdfc
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </S12:Header>
 <S12:Body wsu:Id="MsgBody">
 <ReportRequest>
 <TickerSymbol>SUNW</TickerSymbol>
 </ReportRequest>
 </S12:Body>
</S12:Envelope>
3.5.3 Bearer Confirmation Method

This profile does NOT require message receivers to establish the relationship between a received message and the statements of any bearer confirmed (i.e., confirmation method urn:oasis:names:tc:SAML:1.0:cm:bearer) assertions conveyed or referenced from the message. Conformant implementations of this profile MUST be able to process references and convey bearer assertions within <wsse:Security> headers. Any additional processing requirements that pertain specifically to bearer confirmed assertions are outside the scope of this profile.

3.6 Error Codes

When a system that implements the SAML token profile of WSS: SOAP Message Security does not perform its normal processing because of an error detected during the processing of a security header, it MAY choose to report the cause of the error using the SOAP fault mechanism. The SAML token profile of WSS: SOAP Message Security does not require that SOAP faults be returned for such errors, and systems that choose to return faults SHOULD take care not to introduce any security vulnerabilities as a result of the information returned in error responses.

Systems that choose to return faults SHOULD respond with the error codes and fault strings defined in the WSS: SOAP Message Security specification. The RECOMMENDED correspondence between the common assertion processing failures and the error codes defined in WSS: SOAP Message Security are defined in the following table:

	Assertion Processing Error
	RECOMMENDED Error(Faultcode)

	A referenced SAML assertion could not be retrieved.
	wsse:SecurityTokenUnavailable

	An assertion contains a <saml:Condition> element that the receiver does not understand.
	wsse:UnsupportedSecurityToken

	A signature within an assertion or referencing an assertion is invalid.
	wsse:FailedCheck

	The issuer of an assertion is not acceptable to the receiver.
	wsse:InvalidSecurityToken

	The receiver does not understand the extension schema used in an assertion.
	wsse:UnsupportedSecurityToken

	The receiver does not support the SAML version of a referenced or included assertion.
	wsse:UnsupportedSecurityToken

The preceding table defines fault codes in a form suitable for use with SOAP 1.1. The WSS: SOAP Message Security specification describes how to map SOAP 1.1 fault constructs to the SOAP 1.2 fault constructs.

4 Threat Model and Countermeasures (non-normative)
This document defines the mechanisms and procedures for securely attaching SAML assertions to SOAP messages. SOAP messages are used in multiple contexts, specifically including cases where the message is transported without an active session, the message is persisted, or the message is routed through a number of intermediaries. Such a general context of use suggests that users of this profile must be concerned with a variety of threats.

In general, the use of SAML assertions with WSS: SOAP Message Security introduces no new threats beyond those identified for SAML or by the WSS: SOAP Message Security specification. The following sections provide an overview of the characteristics of the threat model, and the countermeasures that SHOULD be adopted for each perceived threat.

4.1 Eavesdropping

Eavesdropping is a threat to the SAML token profile of WSS: SOAP Message Security in the same manner as it is a threat to any network protocol. The routing of SOAP messages through intermediaries increases the potential incidences of eavesdropping. Additional opportunities for eavesdropping exist when SOAP messages are persisted.

To provide maximum protection from eavesdropping, assertions, assertion references, and sensitive message content SHOULD be encrypted such that only the intended audiences can view their content. This approach removes threats of eavesdropping in transit, but MAY not remove risks associated with storage or poor handling by the receiver.

Transport-layer security MAY be used to protect the message and contained SAML assertions and/or references from eavesdropping while in transport, but message content MUST be encrypted above the transport if it is to be protected from eavesdropping by intermediaries.

4.2 Replay

Reliance on authority-protected (e.g., signed) assertions with a holder-of-key subject confirmation mechanism precludes all but a holder of the key from binding the assertions to a SOAP message. Although this mechanism effectively restricts data origin to a holder of the confirmation key, it does not, by itself, provide the means to detect the capture and resubmission of the message by other parties.

Assertions that contain a sender-vouches confirmation mechanism introduce another dimension to replay vulnerability if the assertions impose no restriction on the entities that may use or reuse the assertions.

Replay attacks can be detected by receivers if message senders include additional message identifying information (e.g., timestamps, nonces, and or recipient identifiers) within origin-protected message content and receivers check this information against previously received values.

4.3 Message Insertion

The SAML token profile of WSS: SOAP Message Security is not vulnerable to message insertion attacks.
4.4 Message Deletion

The SAML token profile of WSS: SOAP Message Security is not vulnerable to message deletion attacks.
4.5 Message Modification

Messages constructed according to this specification are protected from message modification if receivers can detect unauthorized modification of relevant message content. Therefore, it is strongly RECOMMENDED that all relevant and immutable message content be signed by an attesting entity. Receivers SHOULD only consider the correspondence between the subject of the SAML assertions and the SOAP message content to have been established for those portions of the message that are protected by the attesting entity against modification by another entity.
To ensure that message receivers can have confidence that received assertions have not been forged or altered since their issuance, SAML assertions appearing in or referenced from <wsse:Security> header elements MUST be protected against unauthorized modification (e.g., signed) by their issuing authority or the attesting entity (as the case warrants). It is strongly RECOMMENDED that an attesting entity sign any <saml:Assertion> elements that it is attesting for and that are not signed by their issuing authority.

Transport-layer security MAY be used to protect the message and contained SAML assertions and/or assertion references from modification while in transport, but signatures are required to extend such protection through intermediaries.

To ensure that message receivers can have confidence that an assertion with an equivalent confirmation key has not been substituted for the assertion used by the attesting entity, the attesting entity MAY include the assertion (or an unambiguous reference to it) in the attested for (i.e., signed) message content.

4.6 Man-in-the-Middle

Assertions with a holder-of-key subject confirmation method are not vulnerable to a MITM attack. Assertions with a sender-vouches subject confirmation method are vulnerable to MITM attacks to the degree that the receiver does not have a trusted binding of key to the attesting entity’s identity.
5 References
[GLOSSARY]
Informational RFC 2828, "Internet Security Glossary," May 2000.

[KEYWORDS]
S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, Harvard University, March 1997

[SAMLBindV1]
Oasis Standard, E. Maler, P.Mishra, and R. Philpott (Editors), Bindings and Profiles for the OASIS Security Assertion Markup Language (SAML) V1.1, September 2003.

[SAMLBindV2]
Oasis Standard, S. Cantor, F. Hirsch, J. Kemp, R. Philpott, E. Maler (Editors), Bindings for the OASIS Security Assertion Markup Language (SAML) V2.0, March 2005.

[SAMLCoreV1]
Oasis Standard, E. Maler, P.Mishra, and R. Philpott (Editors), Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V1.1, September 2003.

[SAMLCoreV2]
Oasis Standard, S. Cantor, J. Kemp, R. Philpott, E. Maler (Editors), Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML) V2.0, March 2005.

[SOAP]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.

W3C Working Draft, Nilo Mitra (Editor), SOAP Version 1.2 Part 0: Primer, June 2002.

W3C Working Draft, Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik Frystyk Nielsen (Editors), SOAP Version 1.2 Part 1: Messaging Framework, June 2002.

W3C Working Draft, Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik Frystyk Nielsen (Editors), SOAP Version 1.2 Part 2: Adjuncts, June 2002.

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[WS-SAML]
Contribution to the WSS TC, P. Mishra (Editor), WS-Security Profile of the Security Assertion Markup Language (SAML) Working Draft 04, Sept 2002.

[WSS: SAML Token Profile] Oasis Standard, P. Hallem-Baker, A. Nadalin, C. Kaler, R. Monzillo (Editors), Web Services Security: SAML Token Profile 1.0, December 2004.

[WSS: SOAP Message Security V1.0] Oasis Standard, A. Nadalin, C.Kaler, P. Hallem-Baker, R. Monzillo (Editors), Web Services Security: SOAP Message Security 1.0 (WS-Security 2004), August 2003.

[WSS: SOAP Message Security V1.1] Oasis Standard, A. Nadalin, C.Kaler, R. Monzillo, P. Hallem-Baker,(Editors), Web Services Security: SOAP Message Security 1.1 (WS-Security 2004), December 2005.
[WSS: SOAP Message Security V1.1.1] Oasis Standard, A. Nadalin, et al Web Services Security: SOAP Message Security 1.1.1 http://docs.oasis-open.org/wss-m/wss/v1.1.1/csd01/wss-SOAPMessageSecurity-v1.1.1-csd01.pdf
[XML-ns]
W3C Recommendation, "Namespaces in XML," 14 January 1999.

[XML Signature]
W3C Recommendation, "XML Signature Syntax and Processing," 12 February 2002.

[XML Token]
Contribution to the WSS TC, Chris Kaler (Editor),
WS-Security Profile for XML-based Tokens, August 2002.
Conformance

The last numbered section in the specification must be the Conformance section. Conformance Statements/Clauses go here.
A. Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
Current Contributors:
	Tom
	Rutt
	Fujitsu Limited

	Jacques
	Durand
	Fujitsu Limited

	Calvin
	Powers
	IBM

	Kelvin
	Lawrence
	IBM

	Michael
	McIntosh
	Individual

	Thomas
	Hardjono
	M.I.T.

	David
	Turner
	Microsoft Corporation

	Anthony
	Nadalin
	Microsoft Corporation

	Monica
	Martin
	Microsoft Corporation

	Marc
	Goodner
	Microsoft Corporation

	Peter
	Davis
	Neustar

	Hal
	Lockhart
	Oracle Corporation

	Rich
	Levinson
	Oracle Corporation

	Anil
	Saldhana
	Red Hat

	Martin
	Raepple
	SAP AG

	Federico
	Rossini
	Telecom Italia S.p.a.

	Carlo
	Milono
	TIBCO Software Inc.

	Don
	Adams
	TIBCO Software Inc.

	Jerry
	Smith
	US Department of Defense (DoD)

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Previous Contributors:
	Michael
	Hu
	Actional

	Maneesh
	Sahu
	Actional

	Duane
	Nickull
	Adobe Systems

	Gene
	Thurston
	AmberPoint

	Frank
	Siebenlist
	Argonne National Laboratory

	Peter
	Dapkus
	BEA

	Hal
	Lockhart
	BEA Systems

	Denis
	Pilipchuk
	BEA Systems

	Corinna
	Witt
	BEA Systems

	Steve
	Anderson
	BMC Software

	Rich
	Levinson
	Computer Associates

	Thomas
	DeMartini
	ContentGuard

	Guillermo
	Lao
	ContentGuard

	TJ
	Pannu
	ContentGuard

	Xin
	Wang
	ContentGuard

	Merlin
	Hughes
	Cybertrust

	Dale
	Moberg
	Cyclone Commerce

	Shawn
	Sharp
	Cyclone Commerce

	Rich
	Salz
	Datapower

	Ganesh
	Vaideeswaran
	Documentum

	Sam
	Wei
	EMC

	Tim
	Moses
	Entrust

	Carolina
	Canales-Valenzuela
	Ericsson

	Dana S.
	Kaufman
	Forum Systems

	Toshihiro
	Nishimura
	Fujitsu

	Tom
	Rutt
	Fujitsu

	Kefeng
	Chen
	GeoTrust

	Irving
	Reid
	Hewlett-Packard

	Kojiro
	Nakayama
	Hitachi

	Yutaka
	Kudo
	Hitachi

	Jason
	Rouault
	HP

	Paula
	Austel
	IBM

	Derek
	Fu
	IBM

	Maryann
	Hondo
	IBM

	Kelvin
	Lawrence
	IBM

	Michael
	McIntosh
	IBM

	Anthony
	Nadalin
	IBM

	Nataraj
	Nagaratnam
	IBM

	Bruce
	Rich
	IBM

	Ron
	Williams
	IBM

	Bob
	Blakley
	IBM

	Joel
	Farrell
	IBM

	Satoshi
	Hada
	IBM

	Hiroshi
	Maruyama
	IBM

	David
	Melgar
	IBM

	Kent
	Tamura
	IBM

	Wayne
	Vicknair
	IBM

	Don
	Flinn
	Individual

	Phil
	Griffin
	Individual

	Mark
	Hayes
	Individual

	John
	Hughes
	Individual

	Peter
	Rostin
	Individual

	Davanum
	Srinivas
	Individual

	Bob
	Morgan
	Individual/Internet2

	Kate
	Cherry
	Lockheed Martin

	Paul
	Cotton
	Microsoft

	Vijay
	Gajjala
	Microsoft

	Martin
	Gudgin
	Microsoft

	Chris
	Kaler
	Microsoft

	Bob
	Atkinson
	Microsoft

	Keith
	Ballinger
	Microsoft

	Allen
	Brown
	Microsoft

	Giovanni
	Della-Libera
	Microsoft

	Alan
	Geller
	Microsoft

	Johannes
	Klein
	Microsoft

	Scott
	Konersmann
	Microsoft

	Chris
	Kurt
	Microsoft

	Brian
	LaMacchia
	Microsoft

	Paul
	Leach
	Microsoft

	John
	Manferdelli
	Microsoft

	John
	Shewchuk
	Microsoft

	Dan
	Simon
	Microsoft

	Hervey
	Wilson
	Microsoft

	Jeff
	Hodges
	Neustar

	Frederick
	Hirsch
	Nokia

	Senthil
	Sengodan
	Nokia

	Abbie
	Barbir
	Nortel

	Lloyd
	Burch
	Novell

	Ed
	Reed
	Novell

	Charles
	Knouse
	Oblix

	Prateek
	Mishra
	Oracle

	Vamsi
	Motukuru
	Oracle

	Ramana
	Turlapi
	Oracle

	Vipin
	Samar
	Oracle

	Jerry
	Schwarz
	Oracle

	Eric
	Gravengaard
	Reactivity

	Andrew
	Nash
	Reactivity

	Stuart
	King
	Reed Elsevier

	Ben
	Hammond
	RSA Security

	Rob
	Philpott
	RSA Security

	Martijn
	de Boer
	SAP

	Blake
	Dournaee
	Sarvega

	Sundeep
	Peechu
	Sarvega

	Coumara
	Radja
	Sarvega

	Pete
	Wenzel
	SeeBeyond

	Jonathan
	Tourzan
	Sony

	Yassir
	Elley
	Sun

	Manveen
	Kaur
	Sun Microsystems

	Ronald
	Monzillo
	Sun Microsystems

	Jan
	Alexander
	Systinet

	Michael
	Nguyen
	The IDA of Singapore

	Don
	Adams
	TIBCO

	Symon
	Chang
	TIBCO Software

	John
	Weiland
	US Navy

	Hans
	Granqvist
	VeriSign

	Phillip
	Hallem-Baker
	VeriSign

	Hemma
	Prafullchandra
	VeriSign

	Morten
	Jorgensen
	Vordel

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

B. Revision History

	Revision
	Date
	Editor
	Changes Made

	WD01
	17-January-2011
	Carlo Milono
	Corrected/added hyperlinks where missing; added Status section

	WD02
	8-February-2011
	Carlo Milono
	Added Related Work to reflect v1.1.1 of the specs; changed References for SOAP Message Security to reflect v1.1.1; Changed WD# to 2; Added Date; Moved Current Members to Previous and added new Current Members; saved document under wd02; entered the Revision History

Merged Old Current Contributors with Old Previous, created a New Current Contributors.

	WD03
	16-March-2011
	David Turner
	Corrected some links

[image: image1.png]
� The optional Usage attribute of the <wsse:SecurityTokenReference> element MAY be used to associate one of more semantic usage labels (as URIs) with a reference and thus use of a Security Token. Please refer to � HYPERLINK "#wssec" �WSS: SOAP Message Security� for the details of this attribute.

� When the confirmation method is urn:oasis:names:tc:SAML:1.0:cm:bearer, proof of the relationship between the attesting entity and the subject of the statements in the assertion is implicit and no steps need be taken by the receiver to establish this relationship.

� When a <ds:KeyInfo> element is specified, it identifies the key that applies to all the key confirmed methods of the confirmation element.

� "The Errata for Web Services Security: SOAP Message Security Version 1.0" (at � HYPERLINK "http://www.oasis-open.org/committees/wss" �http://www.oasis-open.org/committees/wss�) removed the default designation from the #Base64Binary value for the EncodingType attribute of the KeyIdentifier element. Therefore, omitting a value for EncodingType and requiring that Base64 encoding not be performed, as specified by this profile, is consistent with the WS-Security Specification (including V1.1).

�� HYPERLINK "#SAMLCOREV1" �[SAMLCoreV1]� defines KeyInfo of SubjectConfirmation as containing a “cryptographic key held by the subject”. Demonstration of this key is sufficient to establish who is (or may act as the) subject. Moreover, since it cannot be proven that a confirmation key is known (or known only) by the subject whose identity it establishes, requiring that the key be held by the subject is an untestable requirement that adds nothing to the strength of the confirmation mechanism. In � HYPERLINK "#SAMLCoreV2" �[SAMLCoreV2]�, the OASIS Security Services Technical Committee agreed to remove the phrase “held by the subject” from the definition of KeyInfo within SubjectConfirmation(Data).

�Two holder-of-key confirmed assertions are equivalently confirmed if they may be confirmed using the same confirmation key.

wss-SAMLTokenProfile-v1.1.1-wd##
Working Draft
 MACROBUTTON NoMacro [DD Month YYYY]
Copyright © OASIS® 2010. All Rights Reserved.
 Standards Track Work Product
Page 3 of 39

