
ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 1 of 140

Web Services Federation Language (WS-
Federation) Version 1.2

Committee Specification 01

05 March 2009

Specification URIs:
This Version:

http://docs.oasis-open.org/wsfed/federation/v1.2/cs/ws-federation-1.2-spec-cs-01.doc
(Authoritative)
http://docs.oasis-open.org/wsfed/federation/v1.2/cs/ws-federation-1.2-spec-cs-01.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/cs/ws-federation-1.2-spec-cs-01.html

Previous Version:
http://docs.oasis-open.org/wsfed/federation/v1.2/cd/ws-federation-1.2-spec-cd-03.doc
(Authoritative)
http://docs.oasis-open.org/wsfed/federation/v1.2/cd/ws-federation-1.2-spec-cd-03.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/cd/ws-federation-1.2-spec-cd-03.html

Latest Version:
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.doc
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.html

Technical Committee:
OASIS Web Services Federation (WSFED) TC

Chair(s):
Chris Kaler, Microsoft
Michael McIntosh, IBM

Editor(s):
Marc Goodner, Microsoft
Anthony Nadalin, IBM

Related work:
This specification is related to:

 WSS

 WS-Trust

 WS-SecurityPolicy

Declared XML Namespace(s):
http://docs.oasis-open.org/wsfed/federation/200706
http://docs.oasis-open.org/wsfed/authorization/200706
http://docs.oasis-open.org/wsfed/privacy/200706

Abstract:
This specification defines mechanisms to allow different security realms to federate, such that
authorized access to resources managed in one realm can be provided to security principals
whose identities and attributes are managed in other realms. This includes mechanisms for

http://docs.oasis-open.org/wsfed/federation/v1.2/cs/ws-federation-1.2-spec-cs-01.doc
http://docs.oasis-open.org/wsfed/federation/v1.2/cs/ws-federation-1.2-spec-cs-01.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/cs/ws-federation-1.2-spec-cs-01.html
http://docs.oasis-open.org/wsfed/federation/v1.2/cd/ws-federation-1.2-spec-cd-03.doc
http://docs.oasis-open.org/wsfed/federation/v1.2/cd/ws-federation-1.2-spec-cd-03.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/cd/ws-federation-1.2-spec-cd-03.html
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.doc
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsfed
http://docs.oasis-open.org/wsfed/federation/200706
http://docs.oasis-open.org/wsfed/authorization/200706
http://docs.oasis-open.org/wsfed/privacy/200706

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 2 of 140

brokering of identity, attribute, authentication and authorization assertions between realms, and
privacy of federated claims.

By using the XML, SOAP and WSDL extensibility models, the WS-* specifications are designed
to be composed with each other to provide a rich Web services environment. WS-Federation by
itself does not provide a complete security solution for Web services. WS-Federation is a building
block that is used in conjunction with other Web service, transport, and application-specific
protocols to accommodate a wide variety of security models.

Status:
This document was last revised or approved by the WSFED TC on the above date. The level of
approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location
noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/wsfed/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/wsfed/ipr.php).

The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/wsfed/.

http://www.oasis-open.org/committees/wsfed/
http://www.oasis-open.org/committees/wsfed/
http://www.oasis-open.org/committees/wsfed/ipr.php
http://www.oasis-open.org/committees/wsfed/ipr.php
http://www.oasis-open.org/committees/wsfed/
http://www.oasis-open.org/committees/wsfed/

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 3 of 140

Notices

Copyright © OASIS® 2009. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The names "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should
be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/trademark.php

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 4 of 140

Table of Contents

1 Introduction ... 7

1.1 Document Roadmap ... 7

1.2 Goals and Requirements ... 8

1.2.1 Requirements ... 8

1.2.2 Non-Goals .. 9

1.3 Notational Conventions ... 9

1.4 Namespaces ... 10

1.5 Schema and WSDL Files... 11

1.6 Terminology .. 11

1.7 Normative References ... 13

1.8 Non-Normative References ... 16

2 Model.. 17

2.1 Federation Basics.. 17

2.2 Metadata Model .. 20

2.3 Security Model .. 23

2.4 Trust Topologies and Security Token Issuance .. 23

2.5 Identity Providers... 27

2.6 Attributes and Pseudonyms ... 27

2.7 Attributes, Pseudonyms, and IP/STS Services ... 31

3 Federation Metadata ... 33

3.1 Federation Metadata Document... 33

3.1.1 Referencing Other Metadata Documents .. 35

3.1.2 Role Descriptor Types .. 37

3.1.3 LogicalServiceNamesOffered Element ... 43

3.1.4 PseudonymServiceEndpoints Element ... 43

3.1.5 AttributeServiceEndpoints Element ... 44

3.1.6 SingleSignOutSubscripionEndpoints Element ... 44

3.1.7 SingleSignOutNotificationEndpoints Element .. 45

3.1.8 TokenTypesOffered Element .. 45

3.1.9 ClaimTypesOffered Element ... 46

3.1.10 ClaimTypesRequested Element.. 47

3.1.11 ClaimDialectsOffered Element .. 48

3.1.12 AutomaticPseudonyms Element ... 48

3.1.13 PassiveRequestorEndpoints Element ... 49

3.1.14 TargetScopes Element ... 49

3.1.15 [Signature] Property ... 50

3.1.16 Example Federation Metadata Document ... 51

3.2 Acquiring the Federation Metadata Document ... 52

3.2.1 WSDL .. 52

3.2.2 The Federation Metadata Path ... 53

3.2.3 Retrieval Mechanisms .. 53

3.2.4 FederatedMetadataHandler Header ... 54

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 5 of 140

3.2.5 Metadata Exchange Dialect .. 55

3.2.6 Publishing Federation Metadata Location ... 55

3.2.7 Federation Metadata Acquisition Security ... 57

4 Sign-Out ... 58

4.1 Sign-Out Message... 58

4.2 Federating Sign-Out Messages ... 60

5 Attribute Service ... 62

6 Pseudonym Service .. 64

6.1 Filtering Pseudonyms .. 65

6.2 Getting Pseudonyms ... 66

6.3 Setting Pseudonyms ... 68

6.4 Deleting Pseudonyms.. 69

6.5 Creating Pseudonyms ... 69

7 Security Tokens and Pseudonyms .. 71

7.1 RST and RSTR Extensions ... 72

7.2 Usernames and Passwords ... 72

7.3 Public Keys ... 73

7.4 Symmetric Keys .. 73

8 Additional WS-Trust Extensions .. 74

8.1 Reference Tokens ... 74

8.2 Indicating Federations ... 75

8.3 Obtaining Proof Tokens from Validation ... 75

8.4 Client-Based Pseudonyms .. 76

8.5 Indicating Freshness Requirements ... 77

9 Authorization ... 78

9.1 Authorization Model ... 78

9.2 Indicating Authorization Context .. 78

9.3 Common Claim Dialect .. 80

9.3.1 Expressing value constraints on claims .. 82

9.4 Claims Target .. 84

9.5 Authorization Requirements .. 85

10 Indicating Specific Policy/Metadata ... 87

11 Authentication Types... 89

12 Privacy.. 90

12.1 Confidential Tokens ... 90

12.2 Parameter Confirmation... 91

12.3 Privacy Statements ... 92

13 Web (Passive) Requestors .. 94

13.1 Approach... 94

13.1.1 Sign-On .. 94

13.1.2 Sign-Out ... 95

13.1.3 Attributes .. 96

13.1.4 Pseudonyms .. 97

13.1.5 Artifacts/Cookies .. 98

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 6 of 140

13.1.6 Bearer Tokens and Token References ... 98

13.1.7 Freshness .. 98

13.2 HTTP Protocol Syntax ... 99

13.2.1 Parameters .. 99

13.2.2 Requesting Security Tokens ... 100

13.2.3 Returning Security Tokens ... 102

13.2.4 Sign-Out Request Syntax ... 103

13.2.5 Attribute Request Syntax .. 104

13.2.6 Pseudonym Request Syntax... 105

13.3 Detailed Example of Web Requester Syntax .. 105

13.4 Request and Result References .. 109

13.5 Home Realm Discovery ... 112

13.5.1 Discovery Service... 112

13.6 Minimum Requirements ... 112

13.6.1 Requesting Security Tokens ... 112

13.6.2 Returning Security Tokens ... 113

13.6.3 Details of the RequestSecurityTokenResponse element ... 113

13.6.4 Details of the Returned Security Token Signature ... 114

13.6.5 Request and Response References ... 114

14 Additional Policy Assertions .. 115

14.1 RequireReferenceToken Assertion .. 115

14.2 WebBinding Assertion ... 116

14.3 Authorization Policy ... 117

15 Error Handling... 118

16 Security Considerations .. 120

17 Conformance .. 122

Appendix A WSDL .. 123

Appendix B Sample HTTP Flows for Web Requestor Detailed Example .. 124

Appendix C Sample Use Cases... 127

C.1 Single Sign On ... 127

C.2 Sign-Out ... 128

C.3 Attributes .. 128

C.4 Pseudonyms... 129

C.5 Detailed Example ... 130

C.6 No Resource STS ... 131

C.7 3
rd

-Party STS .. 132

C.8 Delegated Resource Access ... 132

C.9 Additional Web Examples ... 133

No Resource STS ... 133

3
rd

-Party STS .. 134

Sign-Out ... 135

Delegated Resource Access ... 136

Appendix D SAML Binding of Common Claims .. 138

Appendix E Acknowledgements .. 139

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 7 of 140

1 Introduction 1

This specification defines mechanisms to allow different security realms to federate, such that authorized 2
access to resources managed in one realm can be provided to security principals whose identities are 3
managed in other realms. While the final access control decision is enforced strictly by the realm that 4
controls the resource, federation provides mechanisms that enable the decision to be based on the 5
declaration (or brokering) of identity, attribute, authentication and authorization assertions between 6
realms. The choice of mechanisms, in turn, is dependent upon trust relationships between the realms. 7
While trust establishment is outside the scope of this document, the use of metadata to help automate the 8
process is discussed. 9

A general federation framework must be capable of integrating existing infrastructures into the federation 10
without requiring major new infrastructure investments. This means that the types of security tokens and 11
infrastructures can vary as can the attribute stores and discovery mechanisms. Additionally, the trust 12
topologies, relationships, and mechanisms can also vary requiring the federation framework to support 13
the resource’s approach to trust rather than forcing the resource to change. 14

The federation framework defined in this specification builds on WS-Security, WS-Trust, and the WS-* 15
family of specifications providing a rich extensible mechanism for federation. The WS-Security and WS-16
Trust specification allow for different types of security tokens, infrastructures, and trust topologies. This 17
specification uses these building blocks to define additional federation mechanisms that extend these 18
specifications and leverage other WS-* specifications. 19

The mechanisms defined in this specification can be used by Web service (SOAP) requestors as well as 20
Web browser requestors. The Web service requestors are assumed to understand the WS-Security and 21
WS-Trust mechanisms and be capable of interacting directly with Web service providers. The Web 22
browser mechanisms describe how the WS-* messages (e.g. WS-Trust’s RST and RSTR) are encoded in 23
HTTP messages such that they can be passed between resources and Identity Provider (IP)/ Security 24
Token Service (STS) parties by way of a Web browser client. This definition allows the full richness of 25
WS-Trust, WS-Policy, and other WS-* mechanisms to be leveraged in Web browser environments. 26

It is expected that WS-Policy and WS-SecurityPolicy (as well as extensions in this specification) are used 27
to describe what aspects of the federation framework are required/supported by federation participants 28
and that this information is used to determine the appropriate communication options. The assertions 29
defined within this specification have been designed to work independently of a specific version of WS-30
Policy. At the time of the publication of this specification the versions of WS-Policy known to correctly 31
compose with this specification are WS-Policy 1.2 and 1.5. Within this specification the use of the 32
namespace prefix wsp refers generically to the WS-Policy namespace, not a specific version. 33

1.1 Document Roadmap 34

The remainder of this section describes the goals, conventions, namespaces, schema and WSDL 35
locations, and terminology for this document. 36

Chapter 2 provides an overview of the federation model. This includes a discussion of the federation 37
goals and issues, different trust topologies, identity mapping, and the components of the federation 38
framework. 39

Chapter 3 describes the overall federation metadata model and how it is used within the federation 40
framework. This includes how it is expressed and obtained within and across federations. 41

Chapter 4 describes the optional sign-out mechanisms of the federation framework. This includes how 42
sign-out messages are managed within and across federations including the details of sign-out 43
messages. 44

Chapter 5 describes the role of attribute services in the federation framework. 45

Chapter 6 defines the pseudonym service within the federation framework. This includes how 46
pseudonyms are obtained, mapped, and managed. 47

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 8 of 140

Chapter 7 presents how pseudonyms can be directly integrated into security token services by extending 48
the token request and response messages defined in WS-Trust. 49

Chapter 8 introduces additional extensions to WS-Trust that are designed to facilitate federation and 50
includes the use of token references, federation selection, extraction of keys for different trust styles, and 51
different authentication types. 52

Chapter 9 describes federated authorization including extensions to WS-Trust and minimum 53
requirements. 54

Chapter 10 describes how specific policy and metadata can be provided for a specific message pattern 55
and during normal requestor/recipient interactions. 56

Chapter 11 describes pre-defined types of authentication for use with WS-Trust. 57

Chapter 12 describes extensions to WS-Trust for privacy of security token claims and how privacy 58
statements can be made in federated metadata documents. 59

Chapter 13 describes how WS-Federation and WS-Trust can be used by web browser requestors and 60
web applications that do not support direct SOAP messaging. 61

Chapter 14 describes extensions to WS-SecurityPolicy to allow federation participants to indicate 62
additional federation requirements. 63

Chapters 15 and 16 define federation-specific error codes and outline security considerations for 64
architects, implementers, and administrators of federated systems. 65

Chapters 17 and 18 acknowledge contributors to the specification and all references made by this 66
specification to other documents. 67

Appendix I provides a sample WSDL definition of the services defined in this specifications. 68

Appendix II provides a detailed example of the messages for a Web browser-based requestor that is 69
using the federation mechanisms described in chapter 9. 70

Appendix III describes several additional use cases motivating the federation framework for both SOAP-71
based and Web browser-based requestors. 72

1.2 Goals and Requirements 73

The primary goal of this specification is to enable federation of identity, attribute, authentication, and 74
authorization information. 75

1.2.1 Requirements 76

The following list identifies the key driving requirements for this specification: 77

 Enable appropriate sharing of identity, authentication, and authorization data using different or like 78

mechanisms 79

 Allow federation using different types of security tokens, trust topologies, and security infrastructures 80

 Facilitate brokering of trust and security token exchange for both SOAP requestors and Web 81

browsers using common underlying mechanisms and semantics 82

 Express federation metadata to facilitate communication and interoperability between federation 83

participants 84

 Allow identity mapping to occur at either requestor, target service, or any IP/STS 85

 Provide identity mapping support if target services choose to maintain OPTIONAL local identities, but 86

do not require local identities 87

 Allow for different levels of privacy for identity (e.g. different forms and uniqueness of digital identities) 88

information and attributes 89

 Allow for authenticated but anonymous federation 90

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 9 of 140

1.2.2 Non-Goals 91

The following topics are outside the scope of this document: 92

 Definition of message security (see WS-Security) 93

 Trust establishment/verification protocols (see WS-Trust) 94

 Management of trust or trust relationships 95

 Specification of new security token formats beyond token references 96

 Specification of new attribute store interfaces beyond UDDI 97

 Definition of new security token assertion/claim formats 98

 Requirement on specific security token formats 99

 Requirement on specific types of trust relationships 100

 Requirement on specific types of account linkages 101

 Requirement on specific types of identity mapping 102

1.3 Notational Conventions 103

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 104
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 105
in [KEYWORDS]. 106

This specification uses the following syntax to define outlines for assertions: 107

 The syntax appears as an XML instance, but values in italics indicate data types instead of literal 108
values. 109

 Characters are appended to elements and attributes to indicate cardinality: 110

o "?" (0 or 1) 111

o "*" (0 or more) 112

o "+" (1 or more) 113

 The character "|" is used to indicate a choice between alternatives. 114

 The characters "(" and ")" are used to indicate that contained items are to be treated as a group 115
with respect to cardinality or choice. 116

 The characters "[" and "]" are used to call out references and property names. 117

 Ellipses (i.e., "...") indicate points of extensibility. Additional children and/or attributes MAY be 118
added at the indicated extension points but MUST NOT contradict the semantics of the parent 119
and/or owner, respectively. By default, if a receiver does not recognize an extension, the receiver 120
SHOULD ignore the extension; exceptions to this processing rule, if any, are clearly indicated 121
below. 122

 XML namespace prefixes (see Table 2) are used to indicate the namespace of the element being 123
defined. 124

 125

Elements and Attributes defined by this specification are referred to in the text of this document using 126
XPath 1.0 expressions. Extensibility points are referred to using an extended version of this syntax: 127

 An element extensibility point is referred to using {any} in place of the element name. This 128
indicates that any element name can be used, from any namespace other than the namespace of 129
this specification. 130

 An attribute extensibility point is referred to using @{any} in place of the attribute name. This 131
indicates that any attribute name can be used, from any namespace other than the namespace of 132
this specification. 133

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 10 of 140

Extensibility points in the exemplar may not be described in the corresponding text. 134

1.4 Namespaces 135

The following namespaces are used in this document: 136

Prefix Namespace

fed http://docs.oasis-open.org/wsfed/federation/200706

auth http://docs.oasis-open.org/wsfed/authorization/200706

priv http://docs.oasis-open.org/wsfed/privacy/200706

mex http://schemas.xmlsoap.org/ws/2004/09/mex

S11 http://schemas.xmlsoap.org/soap/envelope/

S12 http://www.w3.org/2003/05/soap-envelope

wsa http://www.w3.org/2005/08/addressing

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-secext-1.0.xsd

wsse11 http://docs.oasis-open.org/wss/oasis-wss-wsecurity-

secext-1.1.xsd

wst http://docs.oasis-open.org/ws-sx/ws-trust/200512

sp http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/200512

wsrt http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer

wsxf http://schemas.xmlsoap.org/ws/2004/09/transfer

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-utility-1.0.xsd

ds http://www.w3.org/2000/09/xmldsig#

xs http://www.w3.org/2001/XMLSchema

md urn:oasis:names:tc:SAML:2.0:metadata

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 11 of 140

It should be noted that the versions identified in the above table supersede versions identified in 137
referenced specifications. 138

1.5 Schema and WSDL Files 139

The schemas for this specification can be located at: 140

http://docs.oasis-open.org/wsfed/federation/v1.2/federation.xsd 141
http://docs.oasis-open.org/wsfed/authorization/v1.2/authorization.xsd 142
http://docs.oasis-open.org/wsfed/privacy/v1.2/privacy.xsd 143

The WSDL for this specification can be located at: 144

http://docs.oasis-open.org/wsfed/federation/v1.2/federation.wsdl 145

1.6 Terminology 146

The following definitions establish the terminology and usage in this specification. 147

Association – The relationship established to uniquely link a principal across trust realms, despite the 148
principal’s having different identifiers in each trust realm. This is also referred to as “linked accounts” for 149
the more narrowly scoped definition of associations (or linking). 150

Attribute Service - An attribute service is a Web service that maintains information (attributes) about 151
principals within a trust realm or federation. The term principal, in this context, can be applied to any 152
system entity, not just a person. 153

Authorization Service – A specialized type of Security Token Service (STS) that makes authorization 154

decisions. 155

Claim – A claim is a declaration made by an entity (e.g. name, identity, key, group, privilege, capability, 156
attribute, etc). 157

Digest – A digest is a cryptographic checksum of an octet stream. 158

Digital Identity – A digital representation of a principal (or group of principals) that is unique to that 159
principal (or group), and that acts as a reference to that principal (or group). For example, an email 160
address MAY be treated as a digital identity, just as a machine’s unique IP address MAY also be treated 161
as a digital identity, or even a generated unique identifier. In the context of this document, the term 162
identity is often used to refer to a digital identity. A principal MAY have multiple digital identities, 163

Digital Signature - A digital signature (of data or a message) is a value computed on the data/message 164
(typically a hash) and protected with a cryptographic function. This has the effect of binding the digital 165
signature to the data/message in such a way that intended recipients of the data can use the signature to 166
verify that the data/message has not been altered since it was signed by the signer. 167

Digital Signature Validation – Digital signature validation is the process of verifying that digitally signed 168
data/message has not been altered since it was signed. 169

Direct Brokered Trust – Direct Brokered Trust is when one party trusts a second party who, in turn, 170
trusts and vouches for, the claims of a third party. 171

Direct Trust – Direct trust is when a Relying Party accepts as true all (or some subset of) the claims in 172
the token sent by the requestor. 173

Federated Context – A group of realms to which a principal has established associations and to which a 174
principal has presented Security Tokens and obtained session credentials. A federated context is 175
dynamic, in that a realm is not part of the federated context if the principal has not presented Security 176
Tokens. A federated context is not persistent, in that it does not exist beyond the principals (Single) Sign-177
Out actions. 178

Federation – A federation is a collection of realms that have established a producer-consumer 179
relationship whereby one realm can provide authorized access to a resource it manages based on an 180
identity, and possibly associated attributes, that are asserted in another realm. Federation requires trust 181

http://docs.oasis-open.org/wsfed/federation/200706
http://docs.oasis-open.org/wsfed/federation/v1.2/federation.xsd
http://docs.oasis-open.org/wsfed/federation/v1.2/federation.xsd
http://docs.oasis-open.org/wsfed/authorization/200706
http://docs.oasis-open.org/wsfed/authorization/v1.2/authorization.xsd
http://docs.oasis-open.org/wsfed/authorization/v1.2/authorization.xsd
http://docs.oasis-open.org/wsfed/privacy/200706
http://docs.oasis-open.org/wsfed/privacy/v1.2/privacy.xsd
http://docs.oasis-open.org/wsfed/privacy/v1.2/privacy.xsd
http://docs.oasis-open.org/wsfed/federation/v1.2/federation.wsdl

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 12 of 140

such that a Relying Party can make a well-informed access control decision based on the credibility of 182
identity and attribute data that is vouched for by another realm. 183

Federate – The process of establishing a federation between realms (partners). Associations are how 184
principals create linkages between federated realms. 185

Identity Mapping – Identity Mapping is a method of creating relationships between digital identities or 186
attributes associated with an individual principal by different Identity or Service Providers 187

Identity Provider (IP) – An Identity Provider is an entity that acts as an authentication service to end 188
requestors and a data origin authentication service to service providers (this is typically an extension of a 189
Security Token Service). Identity Providers (IP) are trusted (logical) 3rd parties which need to be trusted 190
both by the requestor (to maintain the requestor's identity information as the loss of this information can 191
result in the compromise of the requestors identity) and the service provider which MAY grant access to 192
valuable resources and information based upon the integrity of the identity information provided by the IP. 193

Indirect Brokered Trust – Indirect Brokered Trust is a variation on direct brokered trust where the 194
second party can not immediately validate the claims of the third party to the first party and negotiates 195
with the third party, or additional parties, to validate the claims and assess the trust of the third party. 196

IP/STS – The acronym IP/STS is used to indicate a service that is either an Identity Provider (IP) or 197
Security Token Service (STS). 198

Metadata – Any data that describes characteristics of a subject. For example, federation metadata 199

describes attributes used in the federation process such as those used to identify – and either locate or 200

determine the relationship to – a particular Identity Provider, Security Token Service or Relying Party 201

service. 202

Metadata Endpoint Reference (MEPR) – A location expressed as an endpoint reference that enables a 203
requestor to obtain all the required metadata for secure communications with a target service. This 204
location MAY contain the metadata or a pointer to where it can be obtained. 205

Principal – An end user, an application, a machine, or any other type of entity that may act as a 206
requestor. A principal is typically represented with a digital identity and MAY have multiple valid digital 207
identities 208

PII – Personally identifying information is any type of information that can be used to distinguish a 209

specific individual or party, such as your name, address, phone number, or e-mail address. 210

Proof-of-Possession – Proof-of-possession is authentication data that is provided with a message to 211
prove that the message was sent and or created by a claimed identity. 212

Proof-of-Possession Token – A proof-of-possession token is a security token that contains data that a 213
sending party can use to demonstrate proof-of-possession. Typically, although not exclusively, the proof-214
of-possession information is encrypted with a key known only to the sender and recipient. 215

Pseudonym Service – A pseudonym service is a Web service that maintains alternate identity 216
information about principals within a trust realm or federation. The term principal, in this context, can be 217
applied to any system entity, not just a person. 218

Realm or Domain – A realm or domain represents a single unit of security administration or trust. 219

Relying Party – A Web application or service that consumes Security Tokens issued by a Security Token 220
Service. 221

Security Token – A security token represents a collection of claims. 222

Security Token Service (STS) - A Security Token Service is a Web service that provides issuance and 223

management of security tokens (see [WS-Security] for a description of security tokens). That is, it 224

makes security statements or claims often, although not required to be, in cryptographically protected 225

sets. These statements are based on the receipt of evidence that it can directly verify, or security tokens 226

from authorities that it trusts. To assert trust, a service might prove its right to assert a set of claims by 227

providing a security token or set of security tokens issued by an STS, or it could issue a security token 228

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 13 of 140

with its own trust statement (note that for some security token formats this can just be a re-issuance or 229

co-signature). This forms the basis of trust brokering. 230

Sender Authentication – Sender authentication is corroborated authentication evidence possibly across 231
Web service actors/roles indicating the sender of a Web service message (and its associated data). Note 232
that it is possible that a message may have multiple senders if authenticated intermediaries exist. Also 233
note that it is application-dependent (and out of scope) as to how it is determined who first created the 234
messages as the message originator might be independent of, or hidden behind an authenticated sender. 235

Signed Security Token – A signed security token is a security token that is asserted and 236
cryptographically signed by a specific authority (e.g. an X.509 certificate or a Kerberos ticket) 237

Sign-Out –The process by which a principal indicates that they will no longer be using their token and 238
services in the realm in response to which the realm typically destroys their token caches and clear saved 239
session credentials for the principal. 240

Single Sign-Out (SSO) – The process of sign-out in a federated context which involves notification to 241
Security Token Services and Relying Parties to clear saved session credentials and Security Tokens. 242

SOAP Recipient – A SOAP recipient is an application that is capable of receiving Web services 243
messages such as those described in WS-Security, WS-Trust, and this specification. 244

SOAP Requestor – A SOAP requestor is an application (possibly a Web browser) that is capable of 245
issuing Web services messages such as those described in WS-Security, WS-Trust, and this 246
specification. 247

Subset – A subset is a set of restrictions to limit options for interoperability. 248

Trust - Trust is the characteristic whereby one entity is willing to rely upon a second entity to execute a 249
set of actions and/or to make a set of assertions about a set of principals and/or digital identities. In the 250
general sense, trust derives from some relationship (typically a business or organizational relationship) 251
between the entities. With respect to the assertions made by one entity to another, trust is commonly 252
asserted by binding messages containing those assertions to a specific entity through the use of digital 253
signatures and/or encryption. 254

Trust Realm/Domain - A Trust Realm/Domain is an administered security space in which the source and 255
target of a request can determine and agree whether particular sets of credentials from a source satisfy 256
the relevant security policies of the target. The target MAY defer the trust decision to a third party (if this 257
has been established as part of the agreement) thus including the trusted third party in the Trust 258
Domain/Realm. 259

Validation Service - A validation service is a specialized form of a Security Token Service that uses the 260
WS-Trust mechanisms to validate provided tokens and assess their level of trust (e.g. claims trusted). 261

Web Browser Requestor – A Web browser requestor is an HTTP browser capable of broadly supported 262
[HTTP]. If a Web browser is not able to construct a SOAP message then it is often referred to as a 263
passive requestor. 264

1.7 Normative References 265

[HTTP] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. 266
Berners-Lee, RFC 2616, "Hypertext Transfer Protocol -- HTTP/1.1". 267
June 1999. 268

http://www.ietf.org/rfc/rfc2616.txt 269

[HTTPS] IETF Standard, "The TLS Protocol", January 1999. 270

http://www.ietf.org/rfc/rfc2246.txt 271

[KEYWORDS] S. Bradner, "Key words for use in RFCs to Indicate Requirement 272
Levels", RFC 2119, Harvard University, March 1997. 273

http://www.ietf.org/rfc/rfc2119.txt. 274

[SOAP] W3C Note, "SOAP: Simple Object Access Protocol 1.1", 08 May 2000. 275

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2119.txt

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 14 of 140

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ 276

[SOAP12] W3C Recommendation, "SOAP 1.2 Part 1: Messaging Framework 277
(Second Edition)", 27 April 2007. 278

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/ 279

[URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers 280
(URI): Generic Syntax", RFC 3986, MIT/LCS, Day Software, Adobe 281
Systems, January 2005. 282

http://www.ietf.org/rfc/rfc3986.txt 283

[WS-Addressing] W3C Recommendation, "Web Services Addressing (WS-Addressing)", 284
9 May 2006. 285

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/ 286

[WS-Eventing] W3C Member Submission, "Web Services Eventing (WS-Eventing)”, 287
15 March 2006 288
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/ 289

[WS-MetadataExchange] W3C Member Submission, Web Services Metadata Exchange (WS-290
MetadataExchange), 13 August 2008 291

http://www.w3.org/Submission/2008/SUBM-WS-MetadataExchange-292
20080813/ 293

[WS-Policy] W3C Member Submission "Web Services Policy 1.2 - Framework", 25 294
April 2006. 295

http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/ 296

W3C Recommendation “Web Services Policy 1.5 – Framework”, 04 297
September 2007 298

http://www.w3.org/TR/2007/REC-ws-policy-20070904/ 299

[WS-PolicyAttachment] W3C Member Submission "Web Services Policy 1.2 - Attachment", 25 300
April 2006. 301

http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-302
20060425/ 303

W3C Recommendation “Web Services Policy 1.5 – Attachment”, 04 304
September 2007 305

http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904/ 306

[WS-SecurityPolicy] OASIS Standard, "WS-SecurityPolicy 1.2", July 2007 307

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702 308

[WS-Security] OASIS Standard, "OASIS Web Services Security: SOAP Message 309
Security 1.0 (WS-Security 2004)", March 2004. 310

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-311
message-security-1.0.pdf 312

 OASIS Standard, "OASIS Web Services Security: SOAP Message 313
Security 1.1 (WS-Security 2004)", February 2006. 314

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-315
spec-os-SOAPMessageSecurity.pdf 316

[WSS:UsernameToken] OASIS Standard, "Web Services Security: UsernameToken Profile", 317
March 2004 318

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-319
token-profile-1.0.pdf 320

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/
http://www.w3.org/Submission/2008/SUBM-WS-MetadataExchange-20080813/
http://www.w3.org/Submission/2008/SUBM-WS-MetadataExchange-20080813/
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/
http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-20060425/
http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-20060425/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 15 of 140

OASIS Standard, "Web Services Security: UsernameToken Profile 321
1.1", February 2006 322

http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-323
spec-os-UsernameTokenProfile.pdf 324

[WSS:X509Token] OASIS Standard, "Web Services Security X.509 Certificate Token 325
Profile", March 2004 326

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-327
profile-1.0.pdf 328

OASIS Standard, "Web Services Security X.509 Certificate Token 329
Profile", February 2006 330

http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-331
spec-os-x509TokenProfile.pdf 332

[WSS:KerberosToken] OASIS Standard, “Web Services Security Kerberos Token Profile 1.1”, 333
February 2006 334

http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-335
spec-os-KerberosTokenProfile.pdf 336

[WSS:SAMLTokenProfile] OASIS Standard, “Web Services Security: SAML Token Profile”, 337
December 2004 338

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf 339

OASIS Standard, “Web Services Security: SAML Token Profile 1.1”, 340
February 2006 341

http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-342
spec-os-SAMLTokenProfile.pdf 343

[WS-ResourceTransfer] W3C Member Submission, "Web Services Resource Transfer (WS-344
ResourceTransfer)”, 12 August 2008 345

http://www.w3.org/Submission/2008/SUBM-WSRT-20080812/ 346

[WS-Transfer] W3C Member Submission, "Web Services Transfer (WS-Transfer)", 27 347
September 2006 348
http://www.w3.org/Submission/2006/SUBM-WS-Transfer-20060927/ 349

[WS-Trust] OASIS Standard, "WS-Trust 1.3", March 2007 350

http://docs.oasis-open.org/ws-sx/ws-trust/200512 351

[ISO8601] ISO Standard 8601:2004(E), "Data elements and interchange formats 352
– Information interchange - Representation of dates and times", Third 353
edition, December 2004 354

http://isotc.iso.org/livelink/livelink/4021199/ISO_8601_2004_E.zip?func355
=doc.Fetch&nodeid=4021199 356

[DNS-SRV-RR] Gulbrandsen, et al, RFC 2782, "DNS SRV RR", February 2000. 357

http://www.ietf.org/rfc/rfc2782.txt 358

[XML-Schema1] W3C Recommendation, "XML Schema Part 1: Structures Second 359
Edition", 28 October 2004. 360

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ 361

[XML-Schema2] W3C Recommendation, "XML Schema Part 2: Datatypes Second 362
Edition", 28 October 2004. 363

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ 364

[XML-C14N] W3C Recommendation, "Canonical XML Version 1.0", 15 March 2001 365

http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.w3.org/Submission/2008/SUBM-WSRT-20080812/
http://www.w3.org/Submission/2006/SUBM-WS-Transfer-20060927/
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://isotc.iso.org/livelink/livelink/4021199/ISO_8601_2004_E.zip?func=doc.Fetch&nodeid=4021199
http://isotc.iso.org/livelink/livelink/4021199/ISO_8601_2004_E.zip?func=doc.Fetch&nodeid=4021199
http://www.ietf.org/rfc/rfc2782.txt
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 16 of 140

http://www.w3.org/TR/2001/REC-xml-c14n-20010315 366

W3C Recommendation, "Canonical XML Version 1.1", 2 May 2008 367

http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/ 368

[XML-Signature] W3C Recommendation, "XML-Signature Syntax and Processing", 12 369
February 2002 370

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/ 371

W3C Recommendation, "XML Signature Syntax and Processing 372
(Second Edition)", 10 June 2008http://www.w3.org/TR/2008/REC-373
xmldsig-core-20080610/ 374

[WSDL 1.1] W3C Note, "Web Services Description Language (WSDL 1.1)," 15 375
March 2001. 376

http://www.w3.org/TR/2001/NOTE-wsdl-20010315 377

[XPATH] W3C Recommendation "XML Path Language (XPath) Version 1.0", 16 378
November 1999. 379

http://www.w3.org/TR/1999/REC-xpath-19991116 380

[RFC 4648] S. Josefsson, et. al, RFC 4648 "The Base16, Base32, and Base64 381
Data Encodings" October 2006 382

http://www.ietf.org/rfc/rfc4648.txt 383

[Samlv2Meta] Metadata for the OASIS Security Assertion Markup Language (SAML) 384
V2.0. OASIS SSTC, September 2004. 385

Document ID sstc-saml-metadata-2.0-cd-03. 386

http://www.oasis-open.org/committees/security/ 387

 388

1.8 Non-Normative References 389

 390

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.ietf.org/rfc/rfc4648.txt
http://www.oasis-open.org/committees/security/

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 17 of 140

2 Model 391

This chapter describes the overall model for federation building on the foundations specified in [WS-392
Security], [WS-SecurityPolicy], and [WS-Trust]. 393

2.1 Federation Basics 394

The goal of federation is to allow security principal identities and attributes to be shared across trust 395

boundaries according to established policies. The policies dictate, among other things, formats and 396

options, as well as trusts and privacy/sharing requirements. 397

In the context of web services the goal is to allow these identities and attributes to be brokered from 398

identity and security token issuers to services and other relying parties without requiring user intervention 399

(unless specified by the underlying policies). This process involves the sharing of federation metadata 400

which describes information about federated services, policies describing common communication 401

requirements, and brokering of trust and tokens via security token exchange (issuances, validation, etc.). 402

Federations must support a wide variety of configurations and environments. This framework leverages 403

the WS-* specifications to create an evolutionary federation path allowing services to use only what they 404

need and leverage existing infrastructures and investments. 405

Federations can exist within organizations and companies as well as across organizations and 406

companies. They can also be ad-hoc collections of principals that choose to participate in a community. 407

The figure below illustrates a few sample federations: 408

 409

Requestor

Identity

Provider
Resource

Company A

Requestor

Identity

Provider
Resource

Company A Company B

Requestor

Identity

Provider

Company A

Requestor

Identity

Provider

Company B

Requestor

Identity

Provider

Company C

(a) (b) (c) 410

Figures 1a, 1b, 1c: Sample Federation Scenarios 411

As a consequence, federations MAY exist within one or multiple administrative domains, span multiple 412

security domains, and MAY be explicit (requestor knows federation is occurring) or implicit (federation is 413

hidden such as in a portal) as illustrated in the figure below: 414

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 18 of 140

Requestor

Identity

Provider
Resource

Company A

Requestor

Identity

Provider
Resource

Company A Company B

Requestor

Identity

Provider

Company A Company B

Resource

Internet

Requestor

Identity

Provider
Resource

Company A Company B

(a) (b)

(c) (d)
 415

Figures 2a, 2b, 2c, 2d: Sample Administrative Domains 416

Two points of differentiation for these models are the degree to which the Resource Provider and Identity 417

Provider services can communicate and the levels of trust between the parties. For example, in cross-418

domain scenarios, the requestor’s Identity Provider MAY be directly trusted and accessible or it MAY 419

have a certificate from a trusted source and be hidden behind a firewall making it unreachable as 420

illustrated in the Figure below: 421

 422

Figures 3a, 3b: Accessibility of Identity Provider 423

In the federation process some level of information is shared. The amount of information shared is 424

governed by policy and often dictated by contract. This is because the information shared is often of a 425

personal or confidential nature. For example, this may indicate name, personal identification numbers, 426

Requestor

Identity

Provider
Resource

Company A Company B

Requestor

Identity

Provider
Resource

Company A Company B

(a) (b)

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 19 of 140

addresses, etc. In some cases the only information that is exchanged is an authentication statement (e.g. 427

employee of company “A”) allowing the actual requestor to be anonymous as in the example below: 428

Requestor

Identity

Provider
Resource

Company A Company B

U/P

ID

ID

“A”

“A”

 429

Figure 4: Sample Anonymous Access 430

To establish a federation context for a principal either the principal’s identity is universally accepted (so 431

that its association is “pre-established” across trust realms within a federation context), or it must be 432

brokered into a trusted identity relevant to each trust realm within the federation context. The latter case 433

requires the process of identity mapping – that is, the conversion of a digital identity from one realm to a 434

digital identity valid in another realm by a party that trusts the starting realm and has the rights to speak 435

for (make assertions to) the ending realm, or make assertions that the ending realm trusts. Identity 436

mapping (this brokering) is typically implemented by an IP/STS when initially obtaining tokens for a 437

service or when exchanging tokens at a service’s IP/STS. 438

A principal’s digital identity can be represented in different forms requiring different types of mappings. 439

For example, if a digital identity is fixed (immutable across realms within a federation), it may only need to 440

be mapped if a local identity is needed. Fixed identities make service tracking (e.g. personalization) easy 441

but this can also be a privacy concern (service collusion). This concern is lessened if the principal has 442

multiple identities and chooses which to apply to which service, but collusion is still possible. Note that in 443

some environments, collusion is desirable in that it can (for example) provide a principal with a better 444

experience. 445

Another approach to identity mapping is pair-wise mapping where a unique digital identity is used for 446

each principal at each target service. This simplifies service tracking (since the service is given a unique 447

ID for each requestor) and prevents cross-service collusion by identity (if performed by a trusted service). 448

While addressing collusion, this requires the principal’s IP/STS to drive identity mapping. 449

A third approach is to require the service to be responsible for the identity mapping. That is, the service is 450

given an opaque handle which it must then have mapped into an identity it understands – assuming it 451

cannot directly process the opaque handle. More specifically, the requestor’s IP/STS generates a digital 452

identity that cannot be reliably used by the target service as a key for local identity mapping (e.g. the 453

marker is known to be random or the marker’s randomness is not known. The target service then uses 454

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 20 of 140

the requestor’s mapping service (called a pseudonym service) to map the given (potentially random) 455

digital identity into a constant service-specific digital identity which it has registered with the requestor’s 456

mapping service. This also addresses the collusion issue but pushes the mapping burden onto the 457

service (but keeps the privacy of all information in the requestor’s control). 458

The following sections describe how the WS-* specifications are used and extended to create a 459

federation framework to support these concepts. 460

2.2 Metadata Model 461

As discussed in the previous section, federations can be loosely coupled. As well, even within tightly 462
coupled federations there is a need to discover the metadata and policies of the participants within the 463
federation with whom a requestor is going to communicate. 464

This discovery process begins with the target service, that is, the service to which the requester wishes to 465
ultimately communicate. Given the metadata endpoint reference (MEPR) for the target service allows the 466
requestor to obtain all requirement metadata about the service (e.g. federation metadata, communication 467
policies, WSDL, etc.). 468

This section describes the model where the MEPR points to an endpoint where the metadata can be 469
obtain, which is, in turn, used to locate the actual service. An equally valid approach is to have a MEPR 470
that points to the actual service and also contains all of the associated metadata (as described in [WS-471
MetadataExchange]) and thereby not requiring the extra discovery steps. 472

Federation metadata describes settings and information about how a service is used within a federation 473
and how it participates in the federation. Federation metadata is only one component of the overall 474
metadata for a service – there is also communication policy that describes the requirements for web 475
service messages sent to the service and a WSDL description of the organization of the service, 476
endpoints, and messages. 477

It should be noted that federation metadata, like communication policy, can be scoped to services, 478
endpoints, or even to messages. As well, the kinds of information described are likely to vary depending 479
on a services role within the federation (e.g. target service, security token service …). 480

Using the target service’s metadata a requestor can discover the MEPRs of any related services that it 481
needs to use if it is to fully engage with the target service. The discovery process is repeated for each of 482
the related services to discover the full set of requirements to communicate with the target service. This 483
is illustrated in the figure below: 484

Target Service

MEPR

Target

Service

Requestor

Related Service

MEPR

Related

Service

Related Service

MEPR

Related

Service

Related Service

Related

Service

 485

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 21 of 140

Figure 5a: Obtaining Federation Metadata (not embedded in EPR) 486

The discovery of metadata can be done statically or dynamically. Note that if it is obtained statically, 487
there is a possibility of the data becoming stale resulting in communication failures. 488

As previously noted the MEPR MAY contain the metadata and refer to the actual service. That is, the 489
EPR for the actual service MAY be within the metadata pointed to by the EPR (Figure 5a). As well, the 490
EPR for the actual service MAY also contain (embed) the metadata (Figure 5b). An alternate view of 491
Figure 5a in this style is presented in Figure 5b: 492

Target Service

MEPR

Target

Service

Requestor

Related Service

MEPR

Related

Service

Related Service

MEPR

Related

Service

Related Service

Related

Service

 493

Figure 5b: Obtaining Federation Metadata (embedded) 494

Figures 5a and 5b illustrate homogenous use of MEPRs, but a mix is allowed. That is, some MEPRs 495
might point at metadata endpoints where the metadata can be obtained (which contains the actual 496
service endpoints) and some may contain actual service references with the service’s metadata 497
embedded within the EPR. 498

In some cases there is a need to refer to services by a name, thereby allowing a level of indirection to 499
occur. This can be handled directly by the application if there are a set of well-known application-specific 500
logical names or using some external mechanism or directory. In such cases the mapping of logical 501
endpoints to physical endpoints is handled directly and such mappings are outside the scope of this 502
specification. The following example illustrates the use of logical service names: 503

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 22 of 140

 504

Figure 6: Example of Logical Service Names 505

To simplify metadata access, and to allow different kinds of metadata to be scoped to different levels of 506
the services, both communication policies (defined in [WS-Policy]) and federation metadata (described in 507
next chapter) can be embedded within WSDL using the mechanisms described in [WS-PolicyAttachment]. 508

In some scenarios a service MAY be part of multiple federations. In such cases there is a need to make 509
all federation metadata available, but there is often a desire to minimize what needs to be downloaded. 510
For this reason federation metadata can reference metadata sections located elsewhere as well as 511
having the metadata directly in the document. For example, this approach allows, a service to have a 512
metadata document that has the metadata for the two most common federations in which the service 513
participates and pointers (MEPR) to the metadata documents for the other federations. This is illustrated 514
in the figure below: 515

 Federaton

 Metadata

Federation1

 …

 …

 …

Federation2

 …

 …

 …

Federation3

Federation4

...

 Federaton

 Metadata

Federation3

 …

 …

 …

 Federaton

 Metadata

Federation4

 …

 …

 …

 516

Figure 7: Federation Metadata Document 517

This section started by assuming knowledge of the MEPR for the target service. In some cases this is not 518
known and a discovery process (described in section 3) is needed to obtain the federation metadata in 519
order to bootstrap the process described in this section (e.g. using DNS or well-known addresses). 520

Target Service

MEPR

Target

Service

Requestor

Related Service

MEPR

Related

Service

Related Service “X”

“X”

MEPR

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 23 of 140

2.3 Security Model 521

As described in [WS-Trust], a web service MAY require a set of claims, codified in security tokens and 522
related message elements, to process an incoming request. Upon evaluating the policy and metadata, if 523
the requester does not have the necessary security token(s) to prove its right to assert the required 524
claims, it MAY use the mechanisms described in [WS-Trust] (using security tokens or secrets it has 525
already) to acquire additional security tokens. 526

This process of exchanging security tokens is typically bootstrapped by a requestor authenticating to an 527
IP/STS to obtain initial security tokens using mechanisms defined in [WS-Trust]. Additional mechanisms 528
defined in this specification along with [WS-MetadataExchange] can be used to enable the requestor to 529
discover applicable policy, WSDL and schema about a service endpoint, which can in turn be used to 530
determine the metadata, security tokens, claims, and communication requirements that are needed to 531
obtain access to a resource (recall that federation metadata was discussed in the previous section). 532

These initial security tokens MAY be accepted by various Web services or exchanged at Security Token 533
Services (STS) / Identity Providers (IP) for additional security tokens subject to established trust 534
relationships and trust policies as described in WS-Trust. This exchange can be used to create a local 535
access token or to map to a local identity. 536

This specification also describes an Attribute/Pseudonym service that can be used to provide 537
mechanisms for restricted sharing of principal information and principal identity mapping (when different 538
identities are used at different resources). The metadata mechanisms described in this document are 539
used to enable a requestor to discover the location of various Attribute/Pseudonym services. 540

Finally, it should be noted that just as a resource MAY act as its own IP/STS or have an embedded 541
IP/STS. Similarly, a requestor MAY also act as its own IP/STS or have an embedded IP/STS. 542

2.4 Trust Topologies and Security Token Issuance 543

The models defined in [WS-Security], [WS-Trust], and [WS-Policy] provides the basis for federated trust. 544
This specification extends this foundation by describing how these models are combined to enable richer 545
trust realm mechanisms across and within federations. This section describes different trust topologies 546
and how token exchange (or mapping) can be used to broker the trust for each scenario. Many of the 547
scenarios described in section 2.1 are illustrated here in terms of their trust topologies and illustrate 548
possible token issuance patterns for those scenarios. 549

Requestor

IP/STS

Resource

Security

Token(s)

Policy

Security

Token(s)

Policy

Security

Token(s)

Policy

IP/STS

Security

Token(s)

Policy

TRUST

1
2

3

T
R

U
S

T

T
R

U
S

T

 550

 Figure 8: Federation and Trust Model 551

Figure 8 above illustrates one way the WS-Trust model may be applied to simple federation scenarios. 552

Here security tokens (1) from the requestor’s trust realm are used to acquire security tokens from the 553

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 24 of 140

resource’s trust realm (2) These tokens are then presented to the resource/service’s realm (3) to access 554

the resource/service . That is, a token from one STS is exchanged for another at a second STS or 555

possibly stamped or cross-certified by a second STS (note that this process can be repeated allowing for 556

trust chains of different lengths). 557

Note that in the figure above the trust of the requestor to its IP/STS and the resource to its IP/STS are 558

illustrated. These are omitted from subsequent diagrams to make the diagrams for legible. 559

Figure 9 below illustrates another approach where the resource/service acts as a validation service. In 560

this scenario, the requestor presents the token provided by the requestor’s STS (1, 2) to the resource 561

provider, where the resource provider uses its security token service to understand and validate this 562

security token(s) (3). In this case information on the validity of the presented token should be returned by 563

the resource provider’s token service. 564

 565

Figure 9: Alternate Federation and Trust Model 566

Note that the model above also allows for different IP/STS services within the same trust realm (e.g. 567

authentication and authorization services). 568

In both of the above examples, a trust relationship has been established between the security token 569

services. Alternatively, as illustrated in Figure 10, there may not be a direct trust relationship, but an 570

indirect trust relationship that relies on a third-party to establish and confirm separate direct trust 571

relationships. 572

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 25 of 140

 573

Figure 10: Indirect Trust 574

In practice, a requestor is likely to interact with multiple resources/services which are part of multiple trust 575
realms as illustrated in the figure below: 576

 577

Figure 11: Multiple Trust Domains 578

Similarly, in response to a request a resource/service may need to access other resources/service on 579
behalf of the requestor as illustrated in figure 12: 580

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 26 of 140

 581

Figure 12: Trust between Requestor-Resource and Resource-Delegate Resource 582

In such cases (as illustrated in Figure 12) the first resource, in its capacity as a second requestor on 583
behalf of the original requestor, provides security tokens to allow/indicate proof of (ability for) delegation. 584
It should be noted that there are a number of variations on this scenario. For example, the security token 585
service for the final resource may only have a trust relationship with the token service from the original 586
requestor (illustrated below), as opposed to the figure above where the trust doesn’t exist with the original 587
requestor’s STS. 588

 589

Figure 13: No Trust Relationship between Resource Providers 590

Specifically, in Figure 13 the resource or resource's security token service initiates a request for a security 591
token that delegates the required claims. For more details on how to format such requests, refer to WS-592
Trust. These options are specified as part of the <wst:RequestSecurityToken> request. 593

It should be noted that delegation tokens, as well as the identity token of the delegation target, might 594
need to be presented to the final service to ensure proper authorization. 595

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 27 of 140

In all cases, the original requestor indicates the degree of delegation it is willing to support. Security 596
token services SHOULD NOT allow any delegation or disclosure not specifically authorized by the original 597
requestor, or by the service's policy. 598

Another form of federation involves ad hoc networks of peer trust. That is, there MAY be direct trust 599
relationships that are not based on certificate chains. In such cases an identity’s chain is irrelevant or 600
may even be self-signed. Such trusts MAY be enforced at an IP/STS or at a Relying Party directly. 601

2.5 Identity Providers 602

A Security Token Service (STS) is a generic service that issues/exchanges security tokens using a 603
common model and set of messages. As such, any Web service can, itself, be an STS simply by 604
supporting the [WS-Trust] specification. Consequently, there are different types of security token services 605
which provide different types of functions. For example, an STS might simply verify credentials for 606
entrance to a realm or evaluate the trust of supplied security tokens. 607

One possible function of a security token service is to provide digital identities – an Identity Provider (IP). 608
This is a special type of security token service that, at a minimum, performs authentication and can make 609
identity (or origin) claims in issued security tokens. 610

In many cases IP and STS services are interchangeable and many references within this document 611
identify both. 612

The following example illustrates a possible combination of an Identity Provider (IP) and STS. In Figure 613
14, a requestor obtains an identity security token from its Identity Provider (1) and then presents/proves 614
this to the STS for the desired resource. If successful (2), and if trust exists and authorization is 615
approved, the STS returns an access token to the requestor. The requestor then uses the access token 616
on requests to the resource or Web service (3). Note that it is assumed that there is a trust relationship 617
between the STS and the identity provider. 618

Requestor

STS

Resource

Identity

Provider

1. Obtain identity

security token
2. Present/prove identity and

obtain access token

3. Present/prove

access on messages

TRUST

 619

Figure 14: Role of IP/STS in Basic Federation Model 620

2.6 Attributes and Pseudonyms 621

Attributes are typically used when applications need additional information about the requestor that has 622
not already been provided or cached, or is not appropriate to be sent in every request or saved in security 623
tokens. Attributes are also used when ad hoc information is needed that cannot be known at the time the 624
requests or token issuance. 625

Protecting privacy in a federated environment often requires additional controls and mechanisms. One 626
such example is detailed access control for any information that may be considered personal or subject to 627
privacy governances. Another example is obfuscation of identity information from identity providers (and 628
security token services) to prevent unwanted correlation or mapping of separately managed identities. 629

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 28 of 140

When requestors interact with resources in different trust realms (or different parts of a federation), there 630
is often a need to know additional information about the requestor in order to authorize, process, or 631
personalize the experience. A service, known as an Attribute Service MAY be available within a realm or 632
federation. As such, an attribute service is used to provide the attributes about a requestor that are 633
relevant to the completion of a request, given that the service is authorized to obtain this information. 634
This approach allows the sharing of data between authorized entities. 635

To facilitate single sign-on where multiple identities need to be automatically mapped and the privacy of 636
the principal needs to be maintained, there MAY also be a pseudonym service. A pseudonym service 637
allows a principal to have different aliases at different resources/services or in different realms, and to 638
optionally have the pseudonym change per-service or per-login. While some scenarios support identities 639
that are trusted as presented, pseudonyms services allow those cases where identity mapping needs to 640
occur between an identity and a pseudonym on behalf of the principal. 641

There are different approaches to identity mapping. For example, the mapping can be performed by the 642
IP/STS when requesting a token for the target service. Alternatively, target services can register their 643
own mappings. This latter approach is needed when the digital identity cannot be reliability used as a key 644
for local identity mapping (e.g. when a random digital identity is used not a constant or pair-wise digital 645
identity). 646

Figure 15 illustrates the general model for Attribute & Pseudonym Services (note that there are different 647
variations which are discussed later in this specification). This figure illustrates two realms with 648
associated attribute/pseudonym services and some of the possible interactions. Note that it is assumed 649
that there is a trust relationship between the realms. 650

Trust

Requestor

IP/STS

Attribute &

Pseudonym

Service

Resource

IP/STS

1c

4

2

3

5

1a

1b

 651

Figure 15: Attributes & Pseudonyms 652

With respect to Figure 15, in an initial (bootstrap) case, a requestor has knowledge of the policies of a 653
resource, including its IP/STS. The requestor obtains its identity token from its IP/STS (1a) and 654
communicates with the resource's IP/STS (2) to obtain an access token for the resource. In this example 655
the resource IP/STS has registered a pseudonym with the requestor's pseudonym service (3) possibly for 656
sign-out notification or for service-driven mappings. The requestor accesses the resource using the 657
pseudonym token (4). The resource can obtain additional information (5) from the requestor's attribute 658
service if authorized based on its identity token (1c). It should be noted that trust relationships will need 659
to exist in order for the resource or its IP/STS to access the requestor's attribute or pseudonym service. 660
In subsequent interactions, the requestor's IP/STS may automatically obtain pseudonym credentials for 661
the resource (1b) if they are available. In such cases, steps 2 and 3 are omitted. Another possible 662

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 29 of 140

scenario is that the requestor registers the tokens from step 2 with its pseudonym service directly (not 663
illustrated). Note that if the mapping occurs at the IP/STS then a service-consumable identity is returned 664
in step 1a. 665

Pseudonym services could be integrated with identity providers and security token services. Similarly, a 666

pseudonym service could be integrated with an attribute service as a specialized form of attribute. 667

Pseudonyms are an OPTIONAL mechanism that can be used by authorized cooperating services to 668
federate identities and securely and safely access profile attribute information, while protecting the 669
principal’s privacy. This is done by allowing services to issue pseudonyms for authenticated identities 670
and letting authorized services query for profile attributes which they are allowed to access, including 671
pseudonyms specific to the requesting service. The need for service-driven mapping is typically known 672
up-front or indicated in metadata. 673

While pseudonyms are helpful for principals who want to keep from having their activities tracked 674
between the various sites they visit, they may add a level of complexity as the principal must typically 675
manage the authorization and privacy of each pseudonym. For principals who find this difficult to 676
coordinate, or don't have requirements that would necessitate pseudonyms, identity providers MAY offer 677
a constant identifier for that principal. 678

For example, a requestor authenticates with Business456.com with their primary identity "Fred.Jones". 679
However, when the requestor interacts with Fabrikam123.com, he uses the pseudonym "Freddo". 680

Some identity providers issue a constant digital identity such as a name or ID at a particular realm. 681
However, there is often a desire to prevent identity collusion between service providers. This 682
specification provides two possible countermeasures. The first approach is to have identity providers 683
issue random (or pseudo-random, pair wise, etc.) IDs each time a requestor signs in. This means that the 684
resulting identity token contains a unique (or relatively unique) identifier, typically random, that hides their 685
identity. As such, it cannot be used (by itself) as a digital identity (e.g. for personalization). The identity 686
needs to be mapped into a service-specific digital identity. This can be done by the requestor ahead of 687
time when requesting a service-specific token or by the service when processing the request. The 688
following example illustrate mapping by the service. 689

In this example the unique identity returned is "ABC123@Business456.com". The requestor then visits 690
Fabrikam123.com. The Web service at Fabrikam123.com can request information about the requestor 691
"ABC123@Business456.com" from the pseudonym/attribute service for Business456.com. If the 692
requester has authorized it, the information will be provided by the identity service. 693

A variation on this first approach is the use of randomly generated pseudonyms; the requestor may 694
indicate that they are "Freddo" to the Web service at Fabrikam123.com through some sort of mapping. 695
Fabrikam123.com can now inform the pseudonym service for Business456.com that 696
"ABC123@Business456.com" is known as "Freddo@Fabrikam123.com" (if authorized and allowed by the 697
principal's privacy policy). This is illustrated below: 698

 699

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 30 of 140

Figure 16: Pseudonym 700

Note that the attribute, pseudonym, and Identity Provider services could be combined or separated in 701
many different configurations. Figure 16 illustrates a configuration where the IP is separate from the 702
pseudonym service. In such a case there is shared information or specialized trust to allow the 703
pseudonym service to perform the mapping or to make calls to the IP to facilitate the mapping. Different 704
environments will have different configurations based on their needs, security policies, technologies used, 705
and existing infrastructure. 706

The next time the requestor signs in to Business456.com Identity Provider, it might return a new identifier, 707
like XYZ321@Business456.com, in the token to be presented to Fabrikam in step 3. The Web service at 708
Fabrikam123.com can now request a local pseudonym for XYZ321@Business456.com and be told 709
"Freddo@Fabrikam123.com" This is possible because the Business456 pseudonym service interacts with 710
the Business456 IP and is authorized and allowed under the principal's privacy policy to reverse map 711
"XYZ321@Business456.com" into a known identity at Business456.com which has associated with it 712
pseudonyms for different realms. (Note that later in this section a mechanism for directly returning the 713
pseudonym by the IP is discussed). Figure 17 below illustrates this scenario: 714

 715

Figure 17: Pseudonym - local id 716

Now the Fabrikam web service can complete the request using the local name to obtain data stored 717
within the local realm on behalf of the requestor as illustrated below: 718

 719

Figure 18: Pseudonym - local realm 720

Another variation of the first approach is to have the requestor map the identity, by creating pseudonyms 721
for specific services. In this case the Identity Provider (or STS) can operate hand-in-hand with the 722
pseudonym service. That is, the requestor asks its Identity Provider (or STS) for a token to a specified 723
trust realm or resource/service. The STS looks for pseudonyms and issues a token which can be used at 724
the specified resource/service as illustrated in figure 19 below: 725

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 31 of 140

 726

Figure 19: Pseudonym – token acceptance 727

The second approach is to create static identities for each service (or a group of services). That is, 728
principle A at service X is given the digital identity 12, principle A at service Y is given the digital identity 729
75, principle B at service X is given the digital identity 46, and so on. Operationally this approach is much 730
like the last variation from the first approach. That is, the requestor must map its identity to an identity for 731
the service (or service group) via a token request from its IP/STS (or using the pseudonym service 732
directly). Consequently requestor mapping from random identities and pair-wise mapping are functionally 733
equivalent. 734

2.7 Attributes, Pseudonyms, and IP/STS Services 735

This specification extends the WS-Trust model to allow attributes and pseudonyms to be integrated into 736
the token issuance mechanism to provide federated identity mapping and attribute retrieval mechanisms, 737
while protecting a principals’ privacy. Any attribute, including pseudonyms, MAY be provided by an 738
attribute or pseudonym service using the WS-Trust Security Token Service interface and token issuance 739
protocol. Additional protocols or interfaces, especially for managing attributes and pseudonyms may 740
MAY be supported; however, that is outside the scope of this specification. Figure 20 below illustrates the 741
key aspects of this extended model: 742

IP/STS
Pseudonym

Services

Token

requests

Sign

Out

Federated

Sign out

Messages

Account

Management

Get/Set/Delete

Psuedonyms

Attribute

Services

Principal

Attribute

Management

Custom

Attribute

Interfaces 743

Figure 20: Pseudonyms, Attributes and Token Issuance 744

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 32 of 140

As shown above, Principals request security tokens from Identity Providers and security token services. 745
As well, Principals MAY send sign-out requests (either explicitly as described later or implicitly by 746
cancelling tokens) indicating that cached or state information can be flushed immediately. Principals 747
request tokens for resources/service using the mechanisms described in WS-Trust and the issued tokens 748
may either represent the principals' primary identity or some pseudonym appropriate for the scope. The 749
Identity Provider (or STS) MAY send OPTIONAL sign-out notifications to subscribers (as described later). 750
Principals are associated with the attribute/pseudonym services and attributes and pseudonyms are 751
added and used. 752

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 33 of 140

3 Federation Metadata 753

Once two parties have made the decision to federate their computing systems, it is usually necessary to 754

configure their respective systems to enable federated operation. For example, the officers of a company 755

such as contoso.com might reach a business arrangement where they choose to provide a set of services 756

to someone who can present identity credentials (in the form of security tokens) issued by fabrikam.com. 757

In this example, it may be necessary for contoso.com administrator to update a local database with the 758

public key that fabrikam.com uses to sign its security tokens. In addition to the signing key, it may be 759

necessary for an organization to make available other types of information pertinent to a federated 760

relationship. Depending on the arrangement between the organizations, in some cases it is desirable to 761

help automate this configuration process. 762

This section defines a XML document format for federation metadata that can be made available by an 763

organization to make it easier for partners to federate with that organization. Furthermore, this section 764

defines a process by which this document can be obtained securely. 765

It should be noted that a service may be part of multiple federations and be capable of receiving 766

messages at the same endpoint in the context of all, or some subset of these federations. Consequently 767

the federation metadata document allows for statements to be made about each federation. 768

The metadata document can take different forms. The following list identifies a few common forms: 769

• A document describing the metadata for a single federation 770

• A document with separate sections for each federation, when a service is part of multiple 771

federations 772

• A document with references to metadata documents 773

• A document for a single service identifying multiple issuance MEPRs that are offered by the 774

service (the MEPRs can be used to obtain issuer-specific metadata) 775

• A document embedded inside of a WSDL description (described below) 776

Federation metadata documents may be obtained in a variety of ways as described in section 3.2. It 777

should be noted that services MAY return different federation metadata documents based on the identity 778

and claims presented by a requestor. 779

3.1 Federation Metadata Document 780

The federation metadata document is an XML document containing a set of one or more OPTIONAL XML 781

elements that organizations can fill to proffer information that may be useful to partners for establishing a 782

federation. This section defines the overall document format and several OPTIONAL elements that MAY 783

be included in the federation metadata document. 784

There are two formats for the federation metadata document. The distinction between the two forms can 785

be made based on the namespace of the root element of the metadata document. 786

The federation metadata document SHOULD be of the following form: 787

<?xml version="1.0" encoding="..." ?> 788
<md:EntitiesDescriptor xmlns:md="..." .../> | 789
<md:EntityDescriptor [fed:FederationID="..."] xmlns:md="..." .../> 790

This form of the federation metadata document extends the core concept of the SAML metadata 791
document [Samlv2Meta] by removing the restriction that it only describes SAML entities. 792

/md:EntitiesDescriptor 793

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 34 of 140

This element is used to express authoritative information about all participants in a federation. 794

/md:EntityDescriptor 795

This element is used to express all of the metadata which a service provider chooses to publish 796
about its participation in a specific federation. 797

/md:EntityDescriptor/@fed:FederationID 798

This OPTIONAL string attribute provides an identifier for the federation to which the federation 799
metadata applies. When the metadata for a service provider is published as an 800

<md:EntityDescriptor> element of a Named <md:EntitiesDescriptor> grouping, the value of the 801

fed:FederationID attribute MUST be the same as the value of the md:Name attribute of the 802

<md:EntitiesDescriptor> element. 803

 804

The federation metadata document MAY be of the following form: 805

<?xml version="1.0" encoding="..." ?> 806
<fed:FederationMetadata xmlns:fed="..." ...> 807
 <fed:Federation [FederationID="..."] ...> + 808
 [Federation Metadata] 809
 </fed:Federation> 810
 [Signature] 811
</fed:FederationMetadata> 812

Note that this form is provided for existing implementations and is discouraged for use in new 813

implementations. Each fed:Federation federation section in this format is functionally equivalent to the 814

RECOMMENDED md:EntityDescriptor format described above. 815

The document consists of one or more federation sections which describe the metadata for the endpoint 816

within a federation. The federation section MAY specify an URI indicating an identifier for the federation 817

using the FederationID attribute, or it MAY omit this identifier indicating the “default federation”. A 818

federation metadata document MUST NOT contain more than one default federation, that is, , only one 819

section may omit the FederationID attribute if multiple sections are provided. 820

The [Federation Metadata] property of the metadata document represents a set of one or more 821

OPTIONAL XML elements within a federation scope that the federation metadata provider wants to 822

supply to its partners. The [Signature] property provides a digital signature (typically using XML Digital 823

Signature [XML-Signature]) over the federation metadata document to ensure data integrity and provide 824

data origin authentication. The recipient of a federation metadata document SHOULD ignore any 825

metadata elements that it does not understand or know how to process. 826

Participants in a federation have different roles. Consequently not all metadata statements apply to all 827

roles. There are three general roles: requestors who make web service requests, security token services 828

who issues federated tokens, and service provides who rely on tokens from token providers. 829

The following table outlines the common roles and associated metadata statements: 830

Role Applicable Metadata Statements

Any participant mex:MetadataReference,

fed:AttributeServiceEndpoints

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 35 of 140

Role Applicable Metadata Statements

Security Token Service md:KeyDescriptor,

fed:PseudonymServiceEndpoints,

fed:SingleSignOutSubscriptionEndpoints,

fed:TokenTypesOffered,

fed:ClaimTypesOffered,

fed:AutomaticPseudonyms

fed:LogicalServiceNamesOffered

Service provider / Relying Party

(includes Security Token Service)

fed:TokenIssuerName,

md:KeyDescriptor,

fed:SingleSignoutNotificationEndpoints

The contents of the federated metadata are extensible so services can add new elements. Each 831

federated metadata statement MUST define if it is optional or required for specific roles. When 832

processing a federated metadata document, unknown elements SHOULD be ignored. 833

The following sections detail referencing federation metadata documents, the predefined elements, 834

signing metadata documents, and provide a sample federation metadata document. 835

3.1.1 Referencing Other Metadata Documents 836

An endpoint MAY choose not to provide the statements about each federation to which it belongs. 837

Instead it MAY provide an endpoint reference to which a request for federation metadata can be sent to 838

retrieve the metadata for that specific federation. This is indicated by placing a 839

<mex:MetadataReference> element inside the <fed:Federation> for the federation. In such 840

cases the reference MUST identify a document containing only federation metadata sections. Retrieval 841

of the referenced federation metadata documents is done using the mechanisms defined in [WS-842

MetadataExchange]. The content MUST match the reference context. That is, if the reference is from 843

the default <fed:Federation> then the target MUST contain a <fed:FederationMetadata> 844

document with a default <fed:Federation>. If the reference is from a <fed:Federation> element 845

with a FederationID then the target MUST contain a <fed:FederationMetadata> document with a 846

<fed:Federation> element that has the same FederationID as the source <fed:Federation> 847

element. 848

It should be noted that an endpoint MAY choose to only report a subset of federations to which it belongs 849

to requestors. 850

The following pseudo-example illustrates a federation metadata document that identifies participation in 851

three federations. The metadata for the default federation is specified in-line within the document itself, 852

whereas metadata references are specified for details on the other two federations. 853

<?xml version="1.0" encoding="utf-8" ?> 854
<fed:FederationMetadata xmlns:fed="..." 855
 xmlns:mex="..." 856
 xmlns:wsa="..." 857
 xmlns:wsse="..." 858
 xmlns:ds="..."> 859
 <fed:Federation> 860
 <fed:TokenSigningKeyInfo> 861
 <wsse:SecurityTokenReference> 862
 <ds:X509Data> 863
 <ds:X509Certificate> 864
 ... 865
 </ds:X509Certificate> 866
 </ds:X509Data> 867

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 36 of 140

 </wsse:SecurityTokenReference> 868
 </fed:TokenSigningKeyInfo> 869
 ... 870
 </fed:Federation> 871
 <fed:Federation FederationID="http://example.com/federation35532"> 872
 <mex:MetadataReference> 873
 <wsa:Address>http://example.com/federation35332/FedMD 874
 </wsa:Address> 875
 </mex:MetadataReference> 876
 </fed:Federation> 877
 <fed:Federation FederationID="http://example.com/federation54478"> 878
 <mex:MetadataReference> 879
 <wsa:Address>http://example.com/federation54478/FedMD 880
 </wsa:Address> 881
 </mex:MetadataReference> 882
 </fed:Federation> 883
</fed:FederationMetadata> 884

Federation metadata documents can also be named with a URI and referenced to allow sharing of 885

content (e.g. at different endpoints in a WSDL file). To share content between two <fed:Federation> 886

elements the <fed:FederationInclude> element is used. When placed inside a 887

<fed:Federation> element the <fed:FederationInclude> element indicates that the identified 888

federation’s metadata statements are effectively copied into the containing <fed:Federation> 889

element. 890

For example, the following examples are functionally equivalent: 891

<?xml version="1.0" encoding="utf-8" ?> 892
<fed:FederationMetadata xmlns:fed="..." xmlns:wsse="..." xmlns:ds="..."> 893
 <fed:Federation FederationID="http://example.com/f1"> 894
 <fed:TokenSigningKeyInfo> 895
 <wsse:SecurityTokenReference> 896
 <ds:X509Data> 897
 <ds:X509Certificate> 898
 ... 899
 </ds:X509Certificate> 900
 </ds:X509Data> 901
 </wsse:SecurityTokenReference> 902
 </fed:TokenSigningKeyInfo> 903
 </fed:Federation> 904
 <fed:Federation FederationID="http://example.com/federation35532"> 905
 <fed:TokenSigningKeyInfo> 906
 <wsse:SecurityTokenReference> 907
 <ds:X509Data> 908
 <ds:X509Certificate> 909
 ... 910
 </ds:X509Certificate> 911
 </ds:X509Data> 912
 </wsse:SecurityTokenReference> 913
 </fed:TokenSigningKeyInfo> 914
 </fed:Federation> 915
</fed:FederationMetadata> 916

and 917

<?xml version="1.0" encoding="utf-8" ?> 918
<fed:FederationMetadata xmlns:fed="..." xmlns:wsse="..." xmlns:ds="..."> 919
 <fed:Federation FederationID="http://example.com/f1"> 920
 <fed:TokenSigningKeyInfo> 921
 <wsse:SecurityTokenReference> 922
 <ds:X509Data> 923
 <ds:X509Certificate> 924
 ... 925

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 37 of 140

 </ds:X509Certificate> 926
 </ds:X509Data> 927
 </wsse:SecurityTokenReference> 928
 </fed:TokenSigningKeyInfo> 929
 </fed:Federation> 930
 <fed:Federation FederationID="http://example.com/federation35532"> 931
 <fed:FederationInclude>http://example.com/f1</fed:FederationInclude> 932
 </fed:Federation> 933
</fed:FederationMetadata> 934

Typically a <fed:FederationInclude> reference identifies a <fed:Federation> element 935

elsewhere in the document. However, the URI MAY represent a “well-known” metadata document that is 936

known to the processor. The mechanism by which a processor “knows” such URIs is undefined and 937

outside the scope of this specification. 938

When referencing or including other metadata documents the contents are logically combined. As such it 939

is possible for some elements to be repeated. While the semantics of this is defined by each element, 940

typically it indicates a union of the information. That is, both elements apply. 941

The mechanisms defined in this section allow creation of composite federation metadata documents. For 942

example, if there is metadata common to multiple federations it can be described separately and then 943

referenced from the definitions of each federation which can then include additional (non-conflicting) 944

metadata specific to the federation. 945

3.1.2 Role Descriptor Types 946

There are concrete service roles defined for <md:EntityDescriptor> which are similar to roles performed 947
by some of the WS-Federation service instances. The SAML <md:IDPSSODescriptor> element defines a 948
role similar to that of the WS-Federation <fed:TokenIssuerEndpoints> element and the 949
<md:AttributeAuthorityDescriptor> element corresponds to the <fed:AttributeServiceEndpoints> element. 950
There is no direct [Samlv2Meta] corollary for the WS-Federation <fed:PseudonymServiceEndpoints> 951
element. 952

 953

The service roles for these three WS-Federation Identity Provider services, and for a generic Relying 954
Party application service, are derived from <md:RoleDescriptor> using the xsi:type extensibility 955
mechanism. For clarity schema is used in defining the following types rather than the exemplar used 956
throughout the rest of the specification. 957

3.1.2.1 WebServiceDescriptorType 958

All of the concrete role definitions of md:EntityDescriptor are expressed in terms of SAML profiles and 959

protocols. The fed:WebServiceDescriptorType is defined here as an extension of md:RoleDescriptor for 960

use in md:EntityDescriptor for the expression of WS-Federation service instances. 961

<complexType name="WebServiceDescriptorType" abstract="true"> 962
 <complexContent> 963
 <extension base="md:RoleDescriptorType"> 964
 <sequence> 965
 <element ref="fed:LogicalServiceNamesOffered" 966
 minOccurs="0" maxOccurs="1" /> 967
 <element ref="fed:TokenTypesOffered" 968
 minOccurs="0" maxOccurs="1" /> 969
 <element ref="fed:ClaimDialectsOffered" 970
 minOccurs="0" maxOccurs="1" /> 971
 <element ref="fed:ClaimTypesOffered" 972
 minOccurs="0" maxOccurs="1" /> 973
 <element ref="fed:ClaimTypesRequested" 974
 minOccurs="0" maxOccurs="1"/> 975

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 38 of 140

 <element ref="fed:AutomaticPseudonyms" 976
 minOccurs="0" maxOccurs="1"/> 977
 <element ref="fed:TargetScopes" 978
 minOccurs="0" maxOccurs="1"/> 979
 </sequence> 980
 <attribute name="ServiceDisplayName" type="xs:String" use="optional"/> 981
 <attribute name="ServiceDescription" type="xs:String" use="optional"/> 982
 </extension> 983
 </complexContent> 984
</complexType> 985
 986
<element name='LogicalServiceNamesOffered' 987
 type=fed:LogicalServiceNamesOfferedType' /> 988
<element name="fed:TokenTypeOffered" type="fed:TokenType"/> 989
<element name="fed:ClaimDialectsOffered" type="fed:ClaimDialectsOfferedType"/> 990
<element name="fed:ClaimTypesOffered" type="fed:ClaimTypesOfferedType"/> 991
<element name="ClaimTypesRequested" type="tns:ClaimTypesRequestedType"/> 992
<element name="fed:AutomaticPseudonyms" type="xs:boolean"/> 993
<element name="fed:TargetScope" type="tns:EndpointType"/> 994

 995

/fed:WebServiceDescriptor/@SerivceDisplayName 996

This OPTIONAL string attribute provides a friendly name for this service instance that can be 997
shown in user interfaces. It is a human readable label that can be used to index metadata 998
provided for different service instances. 999

/fed:WebServiceDescriptor/@SerivceDescription 1000

This OPTIONAL string attribute provides a description for this service instance that can be shown 1001
in user interfaces. It is a human readable description that can be used to understand the type of 1002
service to which the metadata applies. 1003

/fed:WebServiceDescriptore/fed:LogicalServiceNamesOffered 1004

This OPTIONAL element allows a federation metadata provider to specify to specify a “logical 1005
name” that is associated with the service. See section 3.1.3 details. 1006

/fed:WebServiceDescriptor/fed:TokenTypesOffered 1007

This OPTIONAL element allows a federation metadata provider to specify token types that can be 1008
issued by the service. See section 3.1.8 for details. 1009

/fed:WebServiceDescriptor/fed:ClaimTypesOffered 1010

This OPTIONAL element allows a federation metadata provider to specify offered claim types, 1011
using the schema provided by the common claim dialect defined in this specification that can be 1012
asserted in security tokens issued by the service. See section 3.1.9 for details. 1013

/fed:WebServiceDescriptorType/fed:ClaimTypeRequested 1014

This OPTIONAL element allows a federation metadata provider to specify claim types, using the 1015
schema provided by the common claim dialect defined in this specification, that MAY or MUST be 1016
present in security tokens requested by the service. See section 3.1.10 for additional details. 1017

/fed:WebServiceDescriptor/fed:ClaimDialectsOffered 1018

This OPTIONAL element allows a federation metadata provider to specify dialects, via URI(s), 1019
that are accepted in token requests to express the syntax for requested claims. See section 1020
3.1.11 for details. 1021

/fed:WebServiceDescriptor/fed:AutomaticPseudonyms 1022

This OPTIONAL element allows a federation metadata provider to indicate if it automatically 1023
maps pseudonyms or applies some form of identity mapping. See section 3.1.12 for details. 1024

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 39 of 140

/fed:WebServiceDescriptor/fed:TargetScope 1025

This OPTIONAL element allows a federation metadata provider to indicate the EPRs that are 1026
associated with token scopes of the relying party or STS. See section 3.1.14 for details. 1027

 1028

New complex service types for Security Token, Attribute and Pseudonym services are derived from 1029

fed:WebServiceDescriptorType as described in the following sections. These types will be used to 1030

extend <md:RoleDescriptor> to create service roles which are similar to <md:IDPSSODescriptor>. A 1031

new complex generic application service type is also derived from fed:WebServiceDescriptorType . This 1032

type will be used to extend <md:RoleDescriptor> to create a service role which is similar to 1033

<md:SPSSODescriptor>. 1034

3.1.2.2 SecurityTokenServiceType 1035

<complexType name="SecurityTokenServiceType"> 1036
 <extension base="fed:WebServiceDescriptorType"> 1037
 <sequence> 1038
 <element ref="fed:SecurityTokenServiceEndpoint" 1039
 minOccurs="1" maxOccurs="unbounded"/> 1040
 <element ref="fed:SingleSignOutSubscriptionEndpoint" 1041
 minOccurs="0" maxOccurs="unbounded"/> 1042
 <element ref="fed:SingleSignOutNotificationEndpoint" 1043
 minOccurs="0" maxOccurs="unbounded"/> 1044
 <element ref="fed:PassiveRequestorEndpoint" 1045
 minOccurs="0" maxOccurs="unbounded"/> 1046
 </sequence> 1047
 </extension> 1048
</complexType> 1049
<element name="fed:SecurityTokenServiceEndpoint" 1050
 type="wsa:EndpointReferenceType"/> 1051
<element name="fed:SingleSignOutSubscriptionEndpoint" 1052
 type="wsa:EndpointReferenceType"/> 1053
<element name="fed:SingleSignOutNotificationEndpoint" 1054
 type="wsa:EndpointReferenceType"/> 1055
<element name="fed:PassiveRequestorEndpoint" 1056
 type="wsa:EndpointReferenceType"/> 1057

These definitions apply to the derived type listed in the schema outlined above. 1058

fed:SecurityTokenServiceType/fed:SecurityTokenSerivceEndpoint 1059

This required element specifies the endpoint address of a security token service that supports the 1060
WS-Federation and WS-Trust interfaces. Its contents MUST an endpoint reference as defined 1061
by [WS-Addressing] that provides a transport address for the security token service. It MAY be 1062
repeated for different, but functionally equivalent, endpoints of the same logical service instance. 1063

fed:SecurityTokenServiceType/fed:SingleSignOutSubscriptionSerivceEndpoint 1064

This optional element specifies the endpoint address of a service which can be used to subscribe 1065
to federated sign-out messages. Its contents MUST an endpoint reference as defined by [WS-1066
Addressing] that provides a transport address for the subscription service. It MAY be repeated 1067
for different, but functionally equivalent, endpoints of the same logical service instance. 1068

fed:SecurityTokennServiceType/fed:SingleSignOutNotificationSerivceEndpoint 1069

This optional element specifies the endpoint address of a service to which push notifications of 1070
sign-out are to be sent. Its contents MUST be an endpoint reference as defined by [WS-1071
Addressing] that provides a transport address for the notification service. It MAY be repeated for 1072
different, but functionally equivalent, endpoints of the same logical service instance. 1073

fed:SecurityTokenServiceType/fed:PassiveRequestorEndpoint 1074

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 40 of 140

This optional element specifies the endpoint address of a service that supports the WS-1075
Federation Web (Passive) Requestor protocol. It MAY be repeated for different, but functionally 1076
equivalent, endpoints of the same logical service instance. 1077

 1078

An <md:EntityDescriptor> that provides a WS-Federation based security token service is indicated by 1079
using the <md:RoleDescriptor> extensibility point as follows. 1080

 1081

<EntityDescriptor xmlns="urn:oasis:names:tc:SAML:2.0:metadata" 1082
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion" 1083
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 1084
 entityID="..."> 1085
 <ds:Signature>...</ds:Signature> 1086
 <RoleDescriptor xsi:type="fed:SecurityTokenServiceType" 1087
 protocolSupportEnumeration="http://docs.oasis-1088
open.org/wsfed/federation/200706" 1089
 "http://docs.oasis-open.org/ws-sx/ws-trust/200512"> 1090
 ... 1091
 </RoleDescriptor> 1092
 ... 1093
</EntityDescriptor> 1094

 1095

3.1.2.3 PseudonymServiceType 1096

<complexType name="PseudonymServiceType"> 1097
 <extension base="fed:WebServiceDescriptorType"> 1098
 <sequence> 1099
 <element ref="fed:PseudonymServiceEndpoint" 1100
 minOccurs="1" maxOccurs="unbounded"/> 1101
 <element ref="fed:SingleSignOutNotificationEndpoint" 1102
 minOccurs="0" maxOccurs="unbounded"/> 1103
 </sequence> 1104
 </extension> 1105
</complexType> 1106
<element name="fed:PseudonymServiceEndpoint" 1107
 type="tns:EndpointType"/> 1108
<element name="fed:SingleSignOutNotificationEndpoint" 1109
 type="tns:EndpointType"/> 1110

These definitions apply to the derived type listed in the schema outlined above. 1111

fed:PseudonymServiceType/fed:PseudonymSerivceEndpoint 1112

This required element specifies the endpoint address of a pseudonym service that supports the 1113
WS-Federation and WS-Trust interfaces. Its contents MUST an endpoint reference as defined 1114
by [WS-Addressing] that provides a transport address for the pseudonym service. It MAY be 1115
repeated for different, but functionally equivalent, endpoints of the same logical service instance. 1116

fed:PseudonymServiceType/fed:SingleSignOutNotificationSerivceEndpoint 1117

This optional element specifies the endpoint address of a service to which push notifications of 1118
sign-out are to be sent. Its contents MUST be an endpoint reference as defined by [WS-1119
Addressing] that provides a transport address for the notification service. It MAY be repeated for 1120
different, but functionally equivalent, endpoints of the same logical service instance. 1121

 1122

An <md:EntityDescriptor> that provides a WS-Federation based pseudonym service is indicated by using 1123
the <md:RoleDescriptor> extensibility point as follows. 1124

 1125

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 41 of 140

<EntityDescriptor xmlns="urn:oasis:names:tc:SAML:2.0:metadata" 1126
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion" 1127
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 1128
 entityID="..."> 1129
 <ds:Signature>...</ds:Signature> 1130
 <RoleDescriptor xsi:type="fed:PseudonymServiceType" 1131
 protocolSupportEnumeration="http://docs.oasis-1132
open.org/wsfed/federation/200706" 1133
 "http://docs.oasis-open.org/ws-sx/ws-trust/200512"> 1134
 ... 1135
 </RoleDescriptor> 1136
 ... 1137
</EntityDescriptor> 1138

3.1.2.4 AttributeServiceType 1139

<complexType name="AttributeServiceType"> 1140
 <extension base="fed:WebServiceDescriptorType"> 1141
 <sequence> 1142
 <element ref="fed:AttributeServiceEndpoint" 1143
 minOccurs="1" maxOccurs="unbounded"/> 1144
 <element ref="fed:SingleSignOutNotificationEndpoint" 1145
 minOccurs="0" maxOccurs="unbounded"/> 1146
 </sequence> 1147
 </extension> 1148
</complexType> 1149
<element name="fed:AttributeServiceEndpoint" 1150
 type="tns:EndpointType"/> 1151
<element name="fed:SingleSignOutNotificationEndpoint" 1152
 type="tns:EndpointType"/> 1153

These definitions apply to the derived type listed in the schema outlined above. 1154

fed:AttributeServiceType/fed:AttributeSerivceEndpoint 1155

This required element specifies the endpoint address of an attribute service that supports the 1156
WS-Federation and WS-Trust interfaces. Its contents MUST an endpoint reference as defined 1157
by [WS-Addressing] that provides a transport address for the attribute service. It MAY be 1158
repeated for different, but functionally equivalent, endpoints of the same logical service instance. 1159

fed:AttributeServiceType/fed:SingleSignOutNotificationSerivceEndpoint 1160

This optional element specifies the endpoint address of a service to which push notifications of 1161
sign-out are to be sent. Its contents MUST be an endpoint reference as defined by [WS-1162
Addressing] that provides a transport address for the notification service. It MAY be repeated for 1163
different, but functionally equivalent, endpoints of the same logical service instance. 1164

 1165

An <md:EntityDescriptor> that provides a WS-Federation based atribute service is indicated by using the 1166
<md:RoleDescriptor> extensibility point as follows. 1167

 1168

<EntityDescriptor xmlns="urn:oasis:names:tc:SAML:2.0:metadata" 1169
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion" 1170
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 1171
 entityID="…"> 1172
 <ds:Signature>...</ds:Signature> 1173
 <RoleDescriptor xsi:type="fed:AttributeServiceType" 1174
 protocolSupportEnumeration="http://docs.oasis-1175
open.org/wsfed/federation/200706" 1176
 "http://docs.oasis-open.org/ws-sx/ws-trust/200512"> 1177
 … 1178

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 42 of 140

 </RoleDescriptor> 1179
 … 1180
</EntityDescriptor> 1181

 1182

3.1.2.5 ApplicationServiceType 1183

<complexType name="ApplicationServiceType"> <extension 1184
base="fed:WebServiceDescriptorType"> 1185
 <sequence> 1186
 <element ref="fed:ApplicationServiceEndpoint" 1187
 minOccurs="1" maxOccurs="unbounded"/> 1188
 <element ref="fed:SingleSignOutNotificationEndpoint" 1189
 minOccurs="0" maxOccurs="unbounded"/> 1190
 <element ref="fed:PassiveRequestorEndpoint" 1191
 minOccurs="0" maxOccurs="unbounded"/> 1192
 </sequence> 1193
 </extension> 1194
</complexType> 1195
<element name="fed:ApplicationServiceEndpoint" 1196
 type="tns:EndpointType"/> 1197
<element name="fed:SingleSignOutNotificationEndpoint" 1198
 type="tns:EndpointType"/> 1199
<element name="fed:PassiveRequestorEndpoint" 1200
 type="tns:EndpointType"/> 1201

These definitions apply to the derived type listed in the schema outlined above. 1202

fed:ApplicationServiceType/fed:ApplicationSerivceEndpoint 1203

This required element specifies the endpoint address of a Relying Party application service that 1204
supports the WS-Federation and WS-Trust interfaces. Its contents MUST an endpoint reference 1205
as defined by [WS-Addressing] that provides a transport address for the application service. It 1206
MAY be repeated for different, but functionally equivalent, endpoints of the same logical service 1207
instance. 1208

fed:ApplicationServiceType/fed:SingleSignOutNotificationSerivceEndpoint 1209

This optional element specifies the endpoint address of a service to which push notifications of 1210
sign-out are to be sent. Its contents MUST be an endpoint reference as defined by [WS-1211
Addressing] that provides a transport address for the notification service. It MAY be repeated for 1212
different, but functionally equivalent, endpoints of the same logical service instance. 1213

fed:ApplicationServiceType/fed:PassiveRequestorEndpoint 1214

This optional element specifies the endpoint address of a service that supports the WS-1215
Federation Web (Passive) Requestor protocol. It MAY be repeated for different, but functionally 1216
equivalent, endpoints of the same logical service instance. 1217

 1218

An <md:EntityDescriptor> that provides a WS-Federation based application service is indicated by using 1219
the <md:RoleDescriptor> extensibility point as follows. 1220

 1221

<EntityDescriptor xmlns="urn:oasis:names:tc:SAML:2.0:metadata" 1222
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion" 1223
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 1224
 entityID="..."> 1225
 <ds:Signature>...</ds:Signature> 1226
 <RoleDescriptor xsi:type="fed:ApplicationServiceType" 1227
 protocolSupportEnumeration="http://docs.oasis-1228
open.org/wsfed/federation/200706" 1229

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 43 of 140

 "http://docs.oasis-open.org/ws-sx/ws-trust/200512"> 1230
 ... 1231
 </RoleDescriptor> 1232
 ... 1233
</EntityDescriptor> 1234

 1235

3.1.3 LogicalServiceNamesOffered Element 1236

In some scenarios token issuers are referred to be a logical name representing an equivalence class of 1237

issuers. For example, a Relying Party may not care what specific bank issues a token so long as the 1238

issuance is associated with a specific credit card program. To facilitate this, federated metadata provides 1239

the <sp:TokenIssuerName> element (described in [WS-SecurityPolicy]) to indicate that a Relying Party 1240

needs a token from a specific class of issuer. 1241

As stated, the OPTIONAL <fed:LogicalServiceNamesOffered> element allows a federation 1242

metadata provider, specifically a token service in this case, to specify a set of “logical names” that are 1243

associated with the provider. That is, when a Relying Party indicates a logical name for a token issuer 1244

using the <sp:TokenIssuerName> element in a token assertion the 1245

<fed:LogicalServiceNamesOffered> element this element can be used as a correlation 1246

mechanism by clients. This element populates the [Federation Metadata] property. This is typically a 1247

service-level statement but can be an endpoint-level statement. 1248

The schema for this optional element is shown below. 1249

<fed:LogicalServiceNamesOffered ...> 1250
 <fed:IssuerName Uri="xs:anyURI" .../> + 1251
</fed:LogicalServiceNamesOffered> 1252

The following example illustrates using this optional element to specify a logical name of the federating 1253
organization as a token issuer. 1254

<fed:LogicalServiceNamesOffered> 1255
 <fed:IssuerName Uri="http://fabrikam.com/federation/corporate" /> 1256
</fed:LogicalServiceNamesOffered> 1257

 1258

3.1.4 PseudonymServiceEndpoints Element 1259

The OPTIONAL <fed:PseudonymServiceEndpoints> element allows a federation metadata provider 1260

to specify the endpoint address of its pseudonym service (or addresses for functionally equivalent 1261

pseudonym services) which can be referenced by federated partners when requesting tokens from it. 1262

When present, this indicates that services SHOULD use the pseudonym service to map identities to local 1263

names as the identities MAY vary across invocations. This element populates the [Federation Metadata] 1264

property. This is typically specified by token issuers and security token services. This is typically a 1265

service-level statement but can be an endpoint-level statement. 1266

The schema for this optional element is shown below. 1267

<fed:PseudonymServiceEndpoints> 1268
 wsa:EndpointReferenceType + 1269
</fed:PseudonymServiceEndpoints> 1270

The content of this element is one, or more, endpoint references as defined by [WS-Addressing] providing 1271

a transport address for an STS interface to the pseudonym service (or functionally equivalent pseudonym 1272

service endpoints). Eachendpoint reference MAY (and SHOULD if there is no expectation that the policy 1273

is known a priori) include metadata for the STS endpoint or a reference to an endpoint from where such 1274

http://fabrikam.com/federation/corporate

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 44 of 140

metadata can be retrieved by a token requestor (see [WS-Addressing] and [WS-MetadataExchange] for 1275

additional details). 1276

This element allows attributes to be added. Use of this extensibility point MUST NOTalter the 1277

semantics defined in this specification. 1278

It should be noted that this element MAY occur multiple times indicating distinct services with different 1279

capabilities. Service providers MUST include equivalent endpoints – different endpoint references for a 1280

single service, or for a set of logically equivalent services – in a single 1281

<fed:PseudonymServiceEndpoints> element. 1282

The following example illustrates using this optional element to specify an endpoint address for the 1283

pseudonym service of the federating organization. 1284

<fed:PseudonymServiceEndpoints> 1285
 <wsa:Address> http://fabrkam.com/federation/Pseudo </wsa:Address> 1286
</fed:PseudonymServiceEndpoints> 1287

3.1.5 AttributeServiceEndpoints Element 1288

The OPTIONAL <fed:AttributeServiceEndpoints> element allows a federation metadata 1289

provider to specify the endpoint address of its attribute service (or addresses for functionally equivalent 1290

attribute services) which can be referenced by federated partners when requesting tokens from it. This 1291

element populates the [Federation Metadata] property. This is typically specified by requestors and is a 1292

service-level statement. 1293

The schema for this optional element is shown below. 1294

<fed:AttributeServiceEndpoints> 1295
 wsa:EndpointReferenceType + 1296
</fed:AttributeServiceEndpoints> 1297

The content of this element is one, or more, endpoint references as defined by [WS-Addressing] providing 1298

a transport address for an STS interface to the service (or functionally equivalent attribute service 1299

endpoints). Each endpoint reference MAY (and SHOULD if there is no expectation that the policy is 1300

known a priori) include metadata for the STS endpoint or a reference to an endpoint from where such 1301

metadata can be retrieved by a token requestor (see [WS-Addressing] and [WS-MetadataExchange] for 1302

additional details). 1303

This element allows attributes to be added. Use of this extensibility point MUST NOTalter the 1304

semantics defined in this specification. 1305

It should be noted that this element MAY occur multiple times indicating distinct services with different 1306

capabilities. Service providers MUST include equivalent endpoints – different endpoint references for a 1307

single service, or for a set of logically equivalent services – in a single <fed:AttributeServiceEndpoints> 1308

element. 1309

The following example illustrates using this optional element to specify an endpoint address for the 1310

attribute service of the federating organization. 1311

<fed:AttributeServiceEndpoints> 1312
 <wsa:Address> http://fabrkam.com/federation/Attr </wsa:Address> 1313
</fed:AttributeServiceEndpoints> 1314

3.1.6 SingleSignOutSubscripionEndpoints Element 1315

The OPTIONAL <fed:SingleSignOutSubscriptionEndpoints> element allows a federation 1316

metadata provider to specify the endpoint address of its subscription service (or addresses for functionally 1317

equivalent subscription services) which can be used to subscribe to federated sign-out messages. This 1318

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 45 of 140

element populates the [Federation Metadata] property. This is typically specified by token issuers and 1319

security token services. This is typically a service-level statement but can be an endpoint-level statement. 1320

The schema for this optional element is shown below. 1321

<fed:SingleSignOutSubscriptionEndpoints> 1322
 wsa:EndpointReferenceType + 1323
</fed:SingleSignOutSubscriptionEndpoints> 1324

The content of this element is one, or more, endpoint references as defined by [WS-Addressing] providing 1325

a transport address for the subscription manager (or functionally equivalent subscription services). 1326

This element allows attributes to be added. Use of this extensibility point MUST NOTalter the 1327

semantics defined in this specification. 1328

3.1.7 SingleSignOutNotificationEndpoints Element 1329

Services MAY subscribe for sign-out notifications however clients MAY also push notifications to services. 1330

The OPTIONAL <fed:SingleSignOutNotificationEndpoints> element allows a federation 1331

metadata provider to specify the endpoint address (or functionally equivalent addresses) to which push 1332

notifications of sign-out are to be sent. This element populates the [Federation Metadata] property. This 1333

is typically specified by service providers and security token services. This is typically a service-level 1334

statement but can be an endpoint-level statement. 1335

The schema for this optional element is shown below. 1336

<fed:SingleSignOutNotificationEndpoints> 1337
 wsa:EndpointReferenceType + 1338
</fed:SingleSignOutNotificationEndpoints> 1339

The content of this element is one, or more, endpoint references as defined by [WS-Addressing] providing 1340

a transport address for the notification service (or functionally equivalent notification service endpoints) . 1341

This element allows attributes to be added. Use of this extensibility point MUST NOT alter the 1342

semantics defined in this specification. 1343

3.1.8 TokenTypesOffered Element 1344

The OPTIONAL <fed:TokenTypesOffered> element allows a federation metadata provider to specify 1345

the list of offered security token types that can be issued by its STS. A federated partner can use the 1346

offered token types to decide what token type to ask for when requesting tokens from it. This element 1347

populates the [Federation Metadata] property. This is typically specified by token issuers and security 1348

token services. This is typically a service-level statement but can be an endpoint-level statement. 1349

The schema for this optional element is shown below. 1350

<fed:TokenTypesOffered ...> 1351
 <fed:TokenType Uri="xs:anyURI" ...> 1352
 ... 1353
 </fed:TokenType> + 1354
 ... 1355
</fed:TokenTypesOffered> 1356

The following describes the elements listed in the schema outlined above: 1357

/fed: TokenTypesOffered 1358

This element is used to express the list of token types that the federating STS is capable of 1359
issuing. 1360

/fed:TokenTypesOffered/fed:TokenType 1361

This element indicates an individual token type that the STS can issue. 1362

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 46 of 140

/fed:TokenTypesOffered/fed:TokenType/@Uri 1363

This attribute provides the unique identifier (URI) of the individual token type that the STS can 1364
issue. 1365

/fed:TokenTypesOffered/fed:TokenType/{any} 1366

The semantics of any content for this element are undefined. Any extensibility or use of sub-1367
elements MUST NOT alter the semantics defined in this specification. 1368

/fed:TokenTypesOffered/fed:TokenType/@{any} 1369

This extensibility mechanism allows attributes to be added. Use of this extensibility mechanism 1370
MUST NOT violate or alter the semantics defined in this specification. 1371

/fed:TokenTypesOffered/@{any} 1372

This extensibility mechanism allows attributes to be added. Use of this extensibility mechanism 1373
MUST NOT violate or alter the semantics defined in this specification. 1374

/fed:TokenTypesOffered/{any} 1375

The semantics of any content for this element are undefined. Any extensibility or use of sub-1376
elements MUST NOT alter the semantics defined in this specification. 1377

The following example illustrates using this optional element to specify that the issuing STS of the 1378

federating organization can issue both SAML 1.1 and SAML 2.0 tokens [WSS:SAMLTokenProfile]. 1379

<fed:TokenTypesOffered> 1380
 <fed:TokenType Uri="urn:oasis:names:tc:SAML:1.1" /> 1381
 <fed:TokenType Uri="urn:oasis:names:tc:SAML:2.0" /> 1382
</fed:TokenTypesOffered> 1383

3.1.9 ClaimTypesOffered Element 1384

The OPTIONAL <fed:ClaimTypesOffered> element allows a federation metadata provider such as 1385

an IdP to specify the list of publicly offered claim types, named using the schema provided by the 1386

common claims dialect defined in this specification, that can be asserted in security tokens issued by its 1387

STS. It is out of scope of this specification whether or not a URI used to name a claim type resolves. 1388

Note that issuers MAY support additional claims and that not all claims may be available for all token 1389

types. If other means of describing/identifying claims are used in the future, then corresponding XML 1390

elements can be introduced to publish the new claim types. A federated partner can use the offered claim 1391

types to decide which claims to ask for when requesting tokens from it. This specification places no 1392

requirements on the syntax used to describe the claims. This element populates the [Federation 1393

Metadata] property. This is typically specified by token issuers and security token services. This is 1394

typically a service-level statement but can be an endpoint-level statement. 1395

The schema for this optional element is shown below. 1396

<fed:ClaimTypesOffered ...> 1397
 <auth:ClaimType ...> ... </auth:ClaimType> + 1398
</fed:ClaimTypesOffered> 1399

The following describes the elements listed in the schema outlined above: 1400

/fed:ClaimTypesOffered 1401

This element is used to express the list of claim types that the STS is capable of issuing. 1402

/fed:ClaimTypesOffered/@{any} 1403

This extensibility point allows attributes to be added. Use of this extensibility mechanism MUST 1404
NOT alter the semantics defined in this specification. 1405

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 47 of 140

The following example illustrates using this optional element to specify that the issuing STS of the 1406

federating organization can assert two claim types named using the common claims format. 1407

<fed:ClaimTypesOffered> 1408
 <auth:ClaimType Uri="http://.../claims/EmailAddr" > 1409
 <auth:DisplayName>Email Address</auth:DisplayName> 1410
 </auth:ClaimType> 1411
 <auth:ClaimType Uri="http://.../claims/IsMember" > 1412
 <auth:DisplayName>Is a Member (yes/no)</auth:DisplayName> 1413
 <auth:Description>If a person is a member of this club</auth:Description> 1414
 </auth:ClaimType> 1415
</fed:ClaimTypesOffered> 1416

3.1.10 ClaimTypesRequested Element 1417

The OPTIONAL <fed:ClaimTypesRequested> element allows a federation metadata provider such 1418

as an RP to specify the list of publicly requested claim types, named using the schema provided by the 1419

common claims dialect defined in this specification, that are necessary to be asserted in security tokens 1420

used to access its services. It is out of scope of this specification whether or not a URI used to name a 1421

claim type resolves. Note that federation metadata provider MAY support additional claims and that not all 1422

claims may be available for all token types. If other means of describing/identifying claims are used in the 1423

future, then corresponding XML elements can be introduced to request the new claim types. A federated 1424

partner can use the requested claim types to decide which claims to ask for when requesting tokens for 1425

the federation metadata provider. This specification places no requirements on the syntax used to 1426

describe the claims. This element populates the [Federation Metadata] property. This is typically 1427

specified by token issuers and security token services. This is typically a service-level statement but can 1428

be an endpoint-level statement. 1429

The schema for this optional element is shown below. 1430

<fed:ClaimTypesRequested ...> 1431
 <auth:ClaimType ...> ... </auth:ClaimType> + 1432
</fed:ClaimTypesRequested> 1433

The following describes the elements listed in the schema outlined above: 1434

/fed:ClaimTypesRequested 1435

This element is used to express the list of claim types that MAY or MUST be present in security 1436
tokens submitted to the service. 1437

/fed:ClaimTypesOffered/@{any} 1438

This extensibility point allows attributes to be added. Use of this extensibility mechanism MUST 1439
NOT alter the semantics defined in this specification. 1440

The following example illustrates using this optional element to specify that the federation metadata 1441

provider requests two claim types, named using the common claims format. 1442

<fed:ClaimTypesRequested> 1443
 <auth:ClaimType Uri="http://.../claims/EmailAddr" > 1444
 <auth:DisplayName>Email Address</auth:DisplayName> 1445
 </auth:ClaimType> 1446
 <auth:ClaimType Uri="http://.../claims/IsMember" > 1447
 <auth:DisplayName>Is a Member (yes/no)</auth:DisplayName> 1448
 <auth:Description>If a person is a member of this club</auth:Description> 1449
 </auth:ClaimType> 1450
</fed:ClaimTypesRequested> 1451

 1452

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 48 of 140

3.1.11 ClaimDialectsOffered Element 1453

The OPTIONAL fed:ClaimDialectsOffered element allows a federation metadata provider to specify the 1454
list of dialects, named using URIs, that are accepted by its STS in token requests to express the claims 1455
requirement. A federated partner can use is list to decide which dialect to use to express its desired 1456
claims when requesting tokens from it. This specification defines one standard claims dialect in the 1457
subsequent section 9.3, but other claim dialects MAY be defined elsewhere for use in other scenarios. 1458
This element populates the [Federation Metadata] property. This is typically specified by token issuers 1459
and security token services. This is typically a service-level statement but can be an endpoint-level 1460
statement. 1461

The schema for this optional element is shown below. 1462

<fed:ClaimDialectsOffered> 1463
 <fed:ClaimDialect Uri="xs:anyURI" /> + 1464
</fed:ClaimDialectsOffered> 1465

The following describes the elements listed in the schema outlined above: 1466

/fed:ClaimDialectsOffered 1467

This element is used to express the list of claim dialects that the federating STS can understand 1468
and accept. 1469

/fed:ClaimDialectsOffered/fed:ClaimDialect 1470

This element indicates an individual claim dialect that the STS can understand. 1471

/fed:ClaimDialectsOffered/fed:ClaimDialect/@Uri 1472

This attribute provides the unique identifier (URI) of the individual claim dialect that the STS can 1473
understand. 1474

/fed:ClaimDialectsOffered/fed:ClaimDialect/… 1475

The semantics of any content for this element are undefined. Any extensibility or use of sub-1476
elements MUST NOT alter the semantics defined in this specification. 1477

/fed:ClaimDialectsOffered/fed:ClaimDialect/@{any} 1478

This extensibility mechanism allows attributes to be added. Use of this extensibility mechanism 1479
MUST NOT violate or alter the semantics defined in this specification. 1480

/fed:ClaimDialectsOffered/@{any} 1481

This extensibility mechanism allows attributes to be added. Use of this extensibility mechanism 1482
MUST NOT violate or alter the semantics defined in this specification. 1483

The following example illustrates using this optional element to specify that the issuing STS of the 1484
federating organization can accept the one standard claims dialect defined in this specification. 1485

 1486

<fed:ClaimDialectsOffered> 1487
 <fed:ClaimDialect Uri="http://schemas.xmlsoap.org/ws/2005/05/fedclaims" /> 1488
</fed:ClaimDialectsOffered> 1489

3.1.12 AutomaticPseudonyms Element 1490

The OPTIONAL <fed:AutomaticPseudonyms> element allows a federation metadata provider to 1491

indicate if it automatically maps pseudonyms or applies some form of identity mapping. This element 1492

populates the [Federation Metadata] property. This is typically specified by token issuers and security 1493

token services. This is typically a service-level statement but can be an endpoint-level statement. If not 1494

specified, requestors SHOULD assume that the service does not perform automatic mapping (although it 1495

MAY). 1496

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 49 of 140

The schema for this optional element is shown below. 1497

<fed:AutomaticPseudonyms> 1498
 xs:boolean 1499
</fed:AutomaticPseudonyms> 1500

3.1.13 PassiveRequestorEndpoints Element 1501

The optional <fed:PassiveRequestorEndpoints> element allows a federation metadata provider, 1502

security token service, or relying party to specify the endpoint address that supports the Web (Passive) 1503

Requestor protocol described below in section 13. This element populates the [Federation Metadata] 1504

property. This is an endpoint-level statement. 1505

The schema for this optional element is shown below. 1506

<fed:PassiveRequestorEndpoints> 1507
 <wsa:EndpointReference> ... </wsa:EndpointReference>+ 1508
</fed:PassiveRequestorEndpoints> 1509

The content of this element is an endpoint reference element as defined by [WS-Addressing] that 1510
identifies an endpoint address that supports receiving the Web (Passive) Requestor protocol messages 1511
described below in section 13. 1512
This element allows attributes to be added so long as they do not alter the semantics defined in this 1513
specification. 1514

It should be noted that this element MAY occur multiple times indicating distinct endpoints with different 1515
capabilities. Service providers MUST include functionally equivalent endpoints in a single 1516
<fed:PassiveRequestorEndpoints> element. 1517

The following example illustrates using this optional element to specify the endpoint address that supports 1518
the Web (Passive) Requestor protocol described in section 13 for the token issuing STS of the federating 1519
organization. 1520

<fed:PassiveRequestorEndpoints> 1521
 <wsa:EndpointReference> 1522
 <wsa:Address> http://fabrikam.com/federation/STS/Passive </wsa:Address> 1523
 </wsa:EndpointReference> 1524
</fed:PassiveRequestorEndpoints> 1525

 1526

3.1.14 TargetScopes Element 1527

The [WS-Trust] protocol allows a token requester to indicate the target where the issued token will be 1528
used (i.e., token scope) by using the optional element wsp:AppliesTo in the RST message. To 1529
communicate the supported wsp:AppliesTo (wtrealm values in passive requestor scenarios) for a realm, 1530
federated metadata provides the <fed:TargetScopes> element to indicate the EPRs that are associated 1531
with token scopes of the relying party or STS. Note that an RP or STS MAY be capable of supporting 1532
other wsp:AppliesTo values. This element populates the [Federation Metadata] property. This is typically 1533
a service-level statement. 1534

The schema for this optional element is shown below. 1535

http://fabrikam.com/federation/STS/Passive

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 50 of 140

<fed:TargetScopes ...> 1536
 <wsa:EndpointReference> 1537
 ... 1538
 </wsa:endpointReference> + 1539
</fed:TargetScopes> 1540

The following example illustrates using this optional element to specify a logical name of the federating 1541
organization as a token issuer. 1542

<fed:TargetScopes > 1543
 <wsa:EndpointReference> 1544
 <wsa:Address> http://fabrikam.com/federation/corporate </wsa:Address> 1545
 </wsa:endpointReference> 1546
</fed:TargetScopes > 1547

 1548

3.1.15 [Signature] Property 1549

The OPTIONAL [Signature] property provides a digital signature over the federation metadata document 1550

to ensure data integrity and provide data origin authentication. The provider of a federation metadata 1551

document SHOULD include a digital signature over the metadata document, and consumers of the 1552

metadata document SHOULD perform signature verification if a signature is present. 1553

The token used to sign this document MUST speak for the endpoint. If the metadata is for a token issuer 1554

then the key used to sign issued tokens SHOULD be used to sign this document. This means that if a 1555

<fed:TokenSigningKey> is specified, it SHOULD be used to sign this document. 1556

This section describes the use of [XML-Signature] to sign the federation metadata document, but other 1557

forms of digital signatures MAY be used for the [Signature] property. XML Signature is the 1558

RECOMMENDED signing mechanism. The [Signature] property (in the case of XML Signature this is 1559

represented by the <ds:Signature> element) provides the ability for a federation metadata provider 1560

organization to sign the metadata document such that a partner organization consuming the metadata 1561

can authenticate its origin. 1562

The signature over the federation metadata document MUST be signed using an enveloped signature 1563

format as defined by the [XML-Signature] specification. In such cases the root of the signature envelope 1564

MUST be the <fed:FederationMetadata> element as shown in the following example. If the 1565

metadata document is included inside another XML document, such as a SOAP message, the root of the 1566

signature envelope MUST remain the same. Additionally, XML Exclusive Canonicalization [XML-C14N] 1567

MUST be used when signing with [XML-Signature]. 1568

(01) [<?xml version='1.0' encoding=... >] 1569
(02) <fed:FederationMetadata 1570
(03) xmlns:fed="..." xmlns:ds="..." 1571
(04) wsu:Id="_fedMetadata"> 1572
(05) ... 1573

http://fabrikam.com/federation/corporate

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 51 of 140

(06) <ds:Signature xmlns:ds="..."> 1574
(07) <ds:SignedInfo> 1575
(08) <ds:CanonicalizationMethod Algorithm="..." /> 1576
(09) <ds:SignatureMethod Algorithm="..." /> 1577
(10) <ds:Reference URI="_fedMetadata"> 1578
(11) <ds:Transforms> 1579
(12) <ds:Transform Algorithm=".../xmldsig#enveloped-signature" /> 1580
(13) <ds:Transform Algorithm=".../xml-exc-c14n#" /> 1581
(14) </ds:Transforms> 1582
(15) <ds:DigestMethod Algorithm="..." /> 1583
(16) <ds:DigestValue>xdJRPBPERvaZD9gTt4e6Mg==</ds:DigestValue> 1584
(17) </ds:Reference> 1585
(18) </ds:SignedInfo> 1586
(19) <ds:SignatureValue> mpcFEK6JuUFBPoJQ8VBW2Q==</ds:SignatureValue> 1587
(20) <ds:KeyInfo> 1588
(21) ... 1589
(22) </ds:KeyInfo> 1590
(23) </ds:Signature> 1591
(24) </fed:FederationMetadata> 1592

Note that the enveloped signature contains a single ds:Reference element (line 10) containing a URI 1593

reference to the <fed:FederationMetadata> root element (line 04) of the metadata document. 1594

 1595

3.1.16 Example Federation Metadata Document 1596

The following example illustrates a signed federation metadata document that uses the OPTIONAL 1597

metadata elements described above and an enveloped [XML Signature] to sign the document. 1598

<?xml version="1.0" encoding="utf-8" ?> 1599
<fed:FederationMetadata wsu:Id="_fedMetadata" 1600
 xmlns:fed="..." xmlns:wsu="..." xmlns:wsse="..." xmlns:ds="..." 1601
 xmlns:wsa="..."> 1602
 <fed:Federation> 1603
 <fed:TokenSigningKeyInfo> 1604
 <wsse:SecurityTokenReference> 1605
 <ds:X509Data> 1606
 <ds:X509Certificate> 1607
 MIIBsTCCAV+g...zRn3ZVIcvbQE= 1608
 </ds:X509Certificate> 1609
 </ds:X509Data> 1610
 </wsse:SecurityTokenReference> 1611
 </fed:TokenSigningKeyInfo> 1612
 <fed:TokenIssuerName> 1613
 http://fabrikam.com/federation/corporate 1614
 </fed:TokenIssuerName> 1615
 <fed:TokenIssuerEndpoint> 1616
 <wsa:Address> http://fabrkam.com/federation/STS </wsa:Address> 1617
 </fed:TokenIssuerEndpoint> 1618
 <fed:TokenTypesOffered> 1619
 <fed:TokenType Uri="urn:oasis:names:tc:SAML:1.1" /> 1620
 <fed:TokenType Uri="urn:oasis:names:tc:SAML:2.0" /> 1621
 </fed:TokenTypesOffered> 1622
 1623
 <fed:ClaimTypesOffered> 1624
 <auth:ClaimType Uri="http://.../claims/EmailAddr" > 1625
 <auth:DisplayName>Email Address</auth:DisplayName> 1626
 </auth:ClaimType> 1627
 <auth:ClaimType Uri="http://.../claims/IsMember" > 1628
 <auth:DisplayName>Is a Member (yes/no)</auth:DisplayName> 1629
 <auth:Description>If a person is a member of this club</auth:Description> 1630
 </auth:ClaimType> 1631

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 52 of 140

 </fed:ClaimTypesOffered> </fed:Federation> 1632
 1633
 <ds:Signature xmlns:ds="..."> 1634
 <ds:SignedInfo> 1635
 <ds:CanonicalizationMethod Algorithm="..." /> 1636
 <ds:SignatureMethod Algorithm="..." /> 1637
 <ds:Reference URI="_fedMetadata"> 1638
 <ds:Transforms> 1639
 <ds:Transform Algorithm=".../xmldsig#enveloped-signature" /> 1640
 <ds:Transform Algorithm=".../xml-exc-c14n#" /> 1641
 </ds:Transforms> 1642
 <ds:DigestMethod Algorithm="..." /> 1643
 <ds:DigestValue>xdJRPBPERvaZD9gTt4e6Mg==</ds:DigestValue> 1644
 </ds:Reference> 1645
 </ds:SignedInfo> 1646
 <ds:SignatureValue>mpcFEK6JuUFBPoJQ8VBW2Q==</ds:SignatureValue> 1647
 <ds:KeyInfo> 1648
 ... 1649
 </ds:KeyInfo> 1650
 </ds:Signature> 1651
</fed:FederationMetadata> 1652

3.2 Acquiring the Federation Metadata Document 1653

This section provides specific details and restrictions on how a party may securely obtain the federation 1654

metadata document for a target domain representing a target organization it wishes to federate with. It 1655

should be noted that some providers of federation metadata documents MAY require authentication of 1656

requestors or MAY provide different (subset) documents if requestors are not authenticated. 1657

It is assumed that the target domain is expressed as a fully-qualified domain name (FQDN). In other 1658

words, it is expressed as the DNS domain name of the target organization, e.g., fabrikam.com. 1659

It should be noted that compliant services are NOT REQUIRED to support all of the mechanisms defined 1660

in this section. If a client only has a DNS host name and wants to obtain the federation metadata, the 1661

following order is the RECOMMENDED bootstrap search order: 1662

1. Use the well-known HTTPS address with the federation ID 1663

2. Use the well-known HTTPS address for the default federation 1664

3. Use the well-known HTTP address with the federation ID 1665

4. Use the well-known HTTP address for the default federation 1666

5. Look for any DNS SRV records indicating federation metadata locations 1667

If multiple locations are available and no additional prioritization is specified, the following order is the 1668

RECOMMENDED download processing order: 1669

1. HTTPS 1670

2. WS-Transfer/WS-ResourceTransfer 1671

3. HTTP 1672

3.2.1 WSDL 1673

The metadata document MAY be included within a WSDL document using the extensibility mechanisms 1674

of WSDL. Specifically the <fed:FederationMetadata> element can be placed inside of WSDL 1675

documents in the same manner as policy documents are as specified in WS-PolicyAttachment. 1676

The metadata document can appear in WSDL for a service, port, or binding. 1677

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 53 of 140

3.2.2 The Federation Metadata Path 1678

A default path MAY be supported to provide federation metadata. The path for obtaining the federation 1679

metadata document for the default federation for a target domain denoted by target-DNS-domain 1680

SHOULD be constructed as follows: 1681

http://server-name/FederationMetadata/spec-version/FederationMetadata.xml 1682

or 1683

https://server-name/FederationMetadata/spec-version/FederationMetadata.xml 1684

where 1685

server-name is the host name (DNS name) of a server providing the federation metadata document. It 1686

SHOULD be obtained by doing a DNS query of SRV records for target-DNS-domain as 1687

described in Section 3.2.6. If no DNS record is found, then the target DNS domain name MUST 1688

BE used as the default value of the server name as well. 1689

spec-version is the version of the federation metadata specification supported by the acquiring party. For 1690

this version of the specification the spec-version MUST BE the string "2007-06". 1691

Implementations MAY choose to use a short form of the target DNS domain name, such as the primary 1692

domain and suffix, but this choice is implementation specific. 1693

The following subsections describe the mechanisms through which the federation metadata document for 1694

a target domain may be acquired by a federating party. The target domain MUST support at least one of 1695

the mechanisms described below, but MAY choose to support more than one mechanism. 1696

It is RECOMMENDED that a target domain (or organization) that makes federation metadata available for 1697

acquisition by partners SHOULD publish DNS SRV resource records to allow an acquiring party to locate 1698

the servers where the metadata is available. The type and format of the SRV resource records to be 1699

published in DNS is described in Section 3.2.6. These records correspond to each metadata acquisition 1700

mechanism specified in the following subsections. 1701

If a specific federation context is known, the following URLs SHOULD be checked prior to checking for 1702

the default federation context. 1703

http://server-name/FederationMetadata/spec-version/fed-id/FederationMetadata.xml 1704

or 1705

https://server-name/FederationMetadata/spec-version/fed-id/FederationMetadata.xml 1706

where 1707

fed-id is the FederationID value described previously for identifying a specific federation. 1708

3.2.3 Retrieval Mechanisms 1709

The following OPTIONAL retrieval mechanisms are defined: 1710

Using HTTP 1711

The federation metadata document may be obtained from the following URL using HTTP GET 1712

mechanism: 1713

http:path 1714

where path is constructed as described in Section 3.2.2. 1715

Metadata signatures are RECOMMENDED when using HTTP download. 1716

Using HTTPS 1717

The federation metadata document MAY be obtained from the following URL using HTTPS GET 1718

mechanism: 1719

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 54 of 140

https:path 1720

where path is constructed as described in Section 3.2.2. 1721

There is no requirement that the HTTPS server key be related to the signing key identified in the 1722

metadata document, but it is RECOMMENDED that requestors verify that both keys can speak for the 1723

target service. 1724

Using WS-Transfer/WS-ResourceTransfer 1725

The federation metadata document can be obtained by sending the [WS-Transfer] "Get" operation to an 1726

endpoint that serves that metadata as described in [WS-MetadataExchange] (see also section 3.2.5). 1727

Note that the [WS-ResourceTransfer] extensions MAY be used to filter the metadata information returned. 1728

The use of [WS-Security] with [WS-Transfer/WS-ResourceTransfer] is RECOMMENDED to authenticate 1729

the sender and protect the integrity of the message. 1730

3.2.4 FederatedMetadataHandler Header 1731

If an endpoint reference for metadata obtained via SOAP requests is not already available to a requester 1732

(e.g. when only a URL is know), the requestor SHOULD include the 1733

<fed:FederationMetadataHandler> header to allow metadata requests to be quickly identified. 1734

The syntax is as follows: 1735

<fed:FederationMetadataHandler .../> 1736

The<fed:FederationMetadataHandler> header SHOULD NOT use a S:mustUnderstand='1' 1737

attribute. Inclusion of this header allows a front-end service to know that federation metadata is being 1738

requested and perform header-based routing. 1739

The following example illustrates a [WS-Transfer] with [WS-ResourceTransfer] extensions request 1740

message to obtain the federation metadata document for an organization with contoso.com as its domain 1741

name. 1742

(01) <s12:Envelope 1743
(02) xmlns:s12="..." 1744
(03) xmlns:wsa="..." 1745
(04) xmlns:wsxf="..." 1746
(05) xmlns:fed="..."> 1747
(06) <s12:Header> 1748
(07) <wsa:Action> 1749
(08) http://schemas.xmlsoap.org/ws/2004/09/transfer/Get 1750
(09) </wsa:Action> 1751
(10) <wsa:MessageID> 1752
(11) uuid:73d7edfd-5c3d-b949-46ba-02decaee433f 1753
(12) </wsa:MessageID> 1754
(13) <wsa:ReplyTo> 1755
(14) <wsa:Address>http://fabrikam.com/Endpoint</wsa:Address> 1756
(15) </wsa:ReplyTo> 1757
(16) <wsa:To> 1758
(17) http://contoso.com/FederationMetadata/2007-06/FederationMetadata.xml 1759
(18) </wsa:To> 1760
(19) <fed:FederatedMetadataHandler /> 1761
(20) </s12:Header> 1762
(21) <s12:Body /> 1763
(22) </s12:Envelope> 1764

The response to the [WS-Transfer] with [WS-ResourceTransfer] extensions request message is illustrated 1765

below. 1766

(01) <s12:Envelope 1767
(02) xmlns:s12="..." 1768

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 55 of 140

(03) xmlns:wsa="..." 1769
(04) xmlns:wsxf="..." 1770
(05) xmlns:fed="..."> 1771
(06) <s12:Header> 1772
(07) <wsa:To>http://fabrikam.com/Endpoint</wsa:To> 1773
(08) <wsa:Action> 1774
(09) http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse 1775
(10) </wsa:Action> 1776
(11) <wsa:MessageID> 1777
(12) uuid:86d7eac5-6e3d-b869-64bc-35edacee743d 1778
(13) </wsa:MessageID> 1779
(14) <wsa:RelatesTo> 1780
(15) uuid:73d7edfd-5c3d-b949-46ba-02decaee433f 1781
(16) </wsa:RelatesTo> 1782
(17) </s12:Header> 1783
(18) <s12:Body> 1784
(19) <fed:FederationMetadata 1785
(20) xmlns:fed="..."> 1786
(21) ... 1787
(22) </fed:FederationMetadata> 1788
(21) </s12:Body> 1789
(22) </s12:Envelope> 1790

3.2.5 Metadata Exchange Dialect 1791

The federation metadata document MAY be included as a metadata unit within a Web service 1792

<mex:Metadata> element, which is a collection of metadata units, using the metadata unit inclusion 1793

mechanisms described in [WS-MetadataExchange]. This can be done by including a 1794

<mex:MetadataSection> element that contains the federation metadata document in-line or by 1795

reference. To facilitate inclusion of the federation metadata as a particular type of metadata unit, the 1796

following metadata dialect URI is defined in this specification that MUST be used as the value of the 1797

<mex:MetadataSection/@Dialect> XML attribute: 1798

 http://docs.oasis-open.org/wsfed/federation/200706 1799

No identifiers for federation metadata units, as specified by the value of the OPTIONAL 1800

<mex:MetadataSection/@Identifier> XML attribute, are defined in this specification. 1801

For example, a federation metadata unit specified in-line within a <mex:Metadata> element is shown 1802

below: 1803

<mex:Metadata> 1804

 <mex:MetadataSection 1805

 Dialect='http://docs.oasis-open.org/wsfed/federation/200706'> 1806

 <fed:FederationMetadata ...> 1807

 ... 1808

 </fed:FederationMetadata> 1809

 <mex:MetadataSection> 1810

<mex:Metadata> 1811

3.2.6 Publishing Federation Metadata Location 1812

A target domain (or organization) that makes federation metadata available for acquisition by partners 1813

SHOULD publish SRV resource records in the DNS database to allow an acquiring party to locate the 1814

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 56 of 140

servers where the metadata is available. The specific format and content of the SRV resource records to 1815

be published is described here. 1816

The SRV record is used to map the name of a service (in this case the federation metadata service) to 1817

the DNS hostname of a server that offers the service. For more information about SRV resource records, 1818

see [DNS-SRV-RR]. The general form of the owner name of a SRV record to be published is as follows: 1819

_Service.Protocol.TargetDnsDomain 1820

In this case, a target domain offers the “federation metadata” service over one or more of the protocol 1821

mechanisms described earlier (namely, HTTP, HTTPS or WS-Transfer/WS-ResourceTransfer). For each 1822

protocol mechanism supported by a target domain, a corresponding SRV record SHOULD published in 1823

DNS as follows. 1824

If acquisition of the federation metadata document using HTTP GET (Section 3.2.3) is supported, then the 1825

owner name of the published SRV record MUST be of the form below: 1826

_fedMetadata._http.TargetDnsDomain 1827

If acquisition of the federation metadata document using HTTPS GET (Section 3.2.3) is supported, then 1828

the owner name of the published SRV record MUST be of the form below: 1829

_fedMetadata._https.TargetDnsDomain 1830

If acquisition of the federation metadata document using [WS-Transfer/WS-ResourceTransfer] (Section 1831

3.2.3) is supported, then the owner name of the published SRV record MUST be of the form below: 1832

_fedMetadata._wsxfr._http.TargetDnsDomain 1833

The remaining information included in the SRV record content is as follows: 1834

Priority The priority of the server. Clients attempt to contact the server with the lowest priority and

move to higher values if servers are unavailable (or not desired).

Weight A load-balancing mechanism that is used when selecting a target server from those that

have the same priority. Clients can randomly choose a server with probability proportional

to the weight.

Port The port where the server is listening for the service.

Target The fully-qualified domain name of the host server.

Note that if multiple protocols are specified with the same priority, the requestor MAY use any protocol or 1835

process in any order it chooses. 1836

The following example illustrates the complete SRV records published by the organization with domain 1837

name “contoso.com” that makes its federation metadata available over all three mechanisms discussed 1838

earlier. 1839

 1840

server1.contoso.com IN A 128.128.128.0 1841
server2.contoso.com IN A 128.128.128.1 1842
_fedMetadata._http.contoso.com IN SRV 0 0 80 server1.contoso.com 1843
_fedMetadata._https.contoso.com IN SRV 0 0 443 server1.contoso.com 1844
_fedMetadata._wsxfr.contoso.com IN SRV 0 0 80 server2.contoso.com 1845

A client attempting to acquire the federation metadata for a target domain using any selected protocol 1846

mechanism SHOULD query DNS for SRV records using one of the appropriate owner name forms 1847

described above. 1848

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 57 of 140

3.2.7 Federation Metadata Acquisition Security 1849

It is RECOMMENDED that a target domain publishing federation metadata SHOULD include a signature 1850

in the metadata document using a key that is authorized to "speak for" the target domain. If the metadata 1851

contains a <fed:TokenSigningKey> element then this key SHOULD be used for the signature. If 1852

there are multiple Federation elements specified then the default scope’s signing key SHOULD be 1853

used. If there is no default scope then the choice is up to the signer. Recipients of federation metadata 1854

SHOULD validate that signature to authenticate the metadata publisher and verify the integrity of the 1855

data. Specifically, a recipient SHOULD verify that the key used to sign the document has the right to 1856

"speak for" the target domain (see target-DNS-domain in Section 3.2.2) with which the recipient is trying 1857

to federate. See also the security considerations at the end of this document. 1858

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 58 of 140

4 Sign-Out 1859

The purpose of a federated sign-out is to clean up any cached state and security tokens that may exist 1860
within the federation, but which are no longer required. In typical usage, sign-out notification serves as a 1861
hint – upon termination of a principal’s session – that it is OK to flush cached data (such as security 1862
tokens) or state information for that specific principal. It should be noted that a sign-out message is a 1863
one-way message. No "sign-out-complete" reply message can be required since the Sign-Out operation 1864
cannot be guaranteed to complete. Further, sign-out requests might be processed in batch, causing a 1865
time delay that is too long for the request and response to be meaningfully correlated. In addition, 1866
requiring a Web browser requestor to wait for a successful completion response could introduce arbitrary 1867
and lengthy delays in the user experience. The processing implication of sign-out messages can vary 1868
depending on the type of application that is being used to sign-out. For example, the implication of sign-1869
out on currently active transactions is undefined and is resource-specific. 1870

In some cases, formal sign-out is implicit or not required. This section defines messages that MAY be 1871
used by profiles for explicit sign-out. 1872

In general, sign-out messages are unreliable and correct operation must be ensured in their absence (i.e., 1873
the messages serve as hints only). Consequently, these messages MUST also be treated as idempotent 1874
since multiple deliveries could occur. 1875

When sign-out is supported, it is typically provided as part of the IP/STS as it is usually the central 1876
processing point. 1877

Sign-out is separate from token cancellation as it applies to all tokens and all target sites for the principal 1878
within the domain/realm. 1879

4.1 Sign-Out Message 1880

The sign-out mechanism allows requestors to send a message to its IP/STS indicating that the requester 1881
is initiating a termination of the SSO. That is, cached information or state information can safely be 1882
flushed. This specification defines OPTIONAL sign-out messages that MAY be used. It should be noted, 1883
however, that the typical usage pattern is that only token issuance and message security are used and 1884
sign-out messages are only for special scenarios. Sign-out messages, whether from the client to the 1885
IP/STS, from the IP/STS to a subscriber, or from the client to a service provider, all use the same 1886
message form described in this section. 1887

For SOAP, the action of this message is as follows: 1888

http://docs.oasis-open.org/wsfed/federation/200706/SignOut 1889

The following represents an overview of the syntax of the <fed:SignOut> element: 1890

<fed:SignOut wsu:Id="..." ...> 1891
 <fed:Realm>xs:anyURI</fed:Realm> ? 1892
 <fed:SignOutBasis ...>...<fed:SignOutBasis> 1893
 ... 1894
</fed:SignOut> 1895

The following describes elements and attributes used in a <fed:SignOut> element. 1896

/fed:SignOut 1897

This element represents a sign-out message. 1898

/fed:SignOut/fed:Realm 1899

This OPTIONAL element specifies the "realm" to which the sign-out applies and is specified as a 1900
URI. If no realm is specified, then it is assumed that the recipient understands and uses a 1901
fixed/default realm. 1902

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 59 of 140

/fed:SignOut/fed:SignOutBasis 1903

The contents of this REQUIRED element indicate the principal that is signing out. Note that any 1904
security token or security token reference MAY be used here and multiple tokens MAY be 1905
specified. That said, it is expected that the <UsernameToken> will be the most common. Note 1906

that a security token or security token reference MUST be specified. 1907

/fed:SignOut/fed:SignOutBasis/@{any} 1908

This is an extensibility mechanism to allow additional attributes, based on schemas, to be added 1909
to the element. Use of this extensibility mechanism MUST NOT alter the semantics of this 1910
specification. 1911

/fed:SignOut/fed:SignOutBasis/{any} 1912

This is an extensibility mechanism to allow the inclusion of the relevant security token reference 1913
or security token(s). 1914

/fed:SignOut/@wsu:Id 1915

This OPTIONAL attribute specifies a string label for this element. 1916

/fed:SignOut/@{any} 1917

This is an extensibility mechanism to allow additional attributes, based on schemas, to be added 1918
to the element. Use of this extensibility mechanism MUST NOT alter the semantics of this 1919
specification. 1920

/fed:SignOut/{any} 1921

 This is an extensibility mechanism to allow additional elements to be used. For example, an STS 1922
might use extensibility to further qualify the sign-out basis. Use of this extensibility mechanism 1923
MUST NOT alter the semantics of this specification. 1924

 1925

The <fed:SignOut> message SHOULD be signed by the requestor to prevent tampering and to 1926

prevent unauthorized sign-out messages (i.e., Alice sending a sign-out message for Bob without Bob's 1927
knowledge or permission). The signature SHOULD contain a timestamp to prevent replay attacks (see 1928
WS-Security for further discussion on this). It should be noted, however, that a principal MAY delegate 1929
the right to issue such messages on their behalf. The following represents an example of the 1930
<fed:SignOut> message: 1931

<S:Envelope xmlns:S="..." xmlns:wsa="..." xmlns:wsxf="..." xmlns:fed="..." 1932
 xmlns:wsu="..." xmlns:wsse="..."> 1933
 <S:Header> 1934
 ... 1935
 <wsu:Timestamp wsu:Id="ts"> 1936
 ... 1937
 </wsu:Timestamp> 1938
 <wsse:Security> 1939
 <!-- Signature referecing IDs "ts" & "so" --> 1940
 ... 1941
 </wsse:Security> 1942
 </S:Header> 1943
 <S:Body> 1944
 <fed:SignOut wsu:Id="so"> 1945
 <fed:SignOutBasis> 1946
 <wsse:UsernameToken> 1947
 <wsse:Username>NNK</wsse:Username> 1948
 </wsse:UsernameToken> 1949
 </fed:SignOutBasis> 1950
 </fed:SignOut> 1951
 </S:Body> 1952
</S:Envelope> 1953

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 60 of 140

4.2 Federating Sign-Out Messages 1954

In many environments there is a need to take the messages indicating sign-out and distribute them 1955

across the federation, subject to authorization and privacy rules. Consequently, these messages result 1956

from when an explicit message is sent to the IP/STS (by either the principal or a delegate such as an 1957

IP/STS), or implicitly from an IP/STS as a result of some other action (such as a token request). 1958

In the typical use case, federated sign-out messages will be generated by the principal terminating a 1959

session, either at the “primary STS” (the IP/STS that manages the principal’s identity) or at one of the 1960

resource providers (or its STS) accessed during the session. There are two primary flows for these 1961

messages. In one case they are effectively chained through all the STSs involved in the session; that is, 1962

a mechanism is used (if available) by the “primary STS” to send sign-out messages to all the other STSs 1963

in a sequential manner by causing each message to cause the next message to occur in sequence 1964

resulting in a message back to itself either on completion or at each step to orchestrate the process. The 1965

second approach is to require the “primary STS” to send sign-out messages to all the other token 1966

services and target services in parallel (those that it knows about). 1967

The chained (sequential) approach has been found to be fragile. If one of the message fails to complete 1968

its local processing and does not pass the sign-out message on – or the network partitions – the sign-out 1969

notification does not reach all the involved parties. For this reason, compliant implementations SHOULD 1970

employ the parallel approach. If the session is terminated at a resource provider, it SHOULD clean up 1971

any local state and then send a sign-out message to the “primary STS”. The latter SHOULD send parallel 1972

sign-out messages to all the other STSs. 1973

Sessions MAY involve secondary branches (between token services at different resources) of which the 1974

“primary STS” has no knowledge. In these cases, the appropriate resource token services SHOULD 1975

perform the role of “primary STS” for sign-out of these branches. 1976

It should be noted that clients MAY also push (send) sign-out messages directly to other services such as 1977

secondary IP/STSs or service providers. 1978

Sign-out could potentially be applied to one of two different scopes for the principal’s session. Sign-out 1979

initiated at the “primary STS” SHOULD have global scope and apply to all resource STSs and all 1980

branches of the session. Sign-out initiated at a resource STS could also have global scope as described 1981

above. However, it could also be considered as a request to clean up only the session state related to 1982

that particular resource provider. Thus implementations MAY provide a mechanism to restrict the scope 1983

of federated sign-out requests that originate at a resource STS to its particular branch of the principal’s 1984

session. This SHOULD result in cleaning up all state at (or centered upon) that STS. It SHOULD involve 1985

a request to be sent to the “primary STS” to clean up session state only for that particular STS or 1986

resource provider. 1987

Federated sign-out request processing could involve providing status messages to the user. This 1988

behavior is implementation specific and out-of-scope of this specification. 1989

The result of a successful request is that all compliant SSO messages generated implicitly or explicitly are 1990
sent to the requesting endpoints if allowed by the authorization/privacy rules. 1991

SSO messages MAY be obtained by subscribing to the subscription endpoint using the mechanisms 1992
described in [WS-Eventing]. The subscription endpoint, if available, is described in the federation 1993
metadata document. 1994

The [WS-Eventing] mechanisms allow for subscriptions to be created, renewed, and cancelled. SSO 1995
subscriptions MAY be filtered using the XPath filter defined in [WS-Eventing] or using the SSO filter 1996
specified by the following URI: 1997

http://docs.oasis-open.org/wsfed/federation/200706/ssoevt 1998

This filter allows the specification of a realm and security tokens to restrict the SSO messages. The 1999
syntax is as follows: 2000

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 61 of 140

<wse:Subscribe ...> 2001
 ... 2002
 <wse:Filter Dialect=".../federation/ssoevt"> 2003
 <fed:Realm>...</fed:Realm> ? 2004
 ...security tokens... 2005
 </wse:Filter> 2006
 ... 2007
</wse:Subscribe> 2008

The following describes elements and attributes illustrated above: 2009

/wse:Filter/fed:Realm 2010

This OPTIONAL element specifies the "realm" to which the sign-out applies. At most one 2011
<fed:Realm> can be specified. The contents of this element are the same type and usage as in 2012

the fed:Signout/fed:Realm described above. If this element is not specified it is assumed 2013

that either the subscription service knows how to infer the correct realm and uses a single 2014
service-determined realm or the request fails. Note that if multiple realms are desired then 2015
multiple subscriptions are needed. 2016

/wse:Filter/… security tokens(s) … 2017

The contents of these OPTIONAL elements restrict messages to only the specified identities. 2018
Note that any security token or security token reference MAY be used here and multiple tokens 2019
MAY be specified. That said, it is expected that the <wsse:UsernameToken> will be the most 2020

common. Note that if multiple tokens are specified they represent a logical OR – that is, 2021
messages that match any of the tokens for the corresponding realm are reported. 2022

This filter dialect does not allow any contents other than those described above. If no filter is specified 2023
then the subscription service MAY fail or MAY choose a default filter for the subscription. 2024

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 62 of 140

5 Attribute Service 2025

Web services often need to be able to obtain additional data related to service requestors to provide the 2026
requestor with a richer (e.g. personalized) experience. This MAY be addressed by having an attribute 2027
service that requesters and services MAY use to access this additional information. In many cases, the 2028
release of this information about a service requestor is subject to authorization and privacy rules and 2029
access to this data (or the separate service that has data available for such purposes) is only granted to 2030
authorized services for any given attribute. 2031

Attribute stores most likely exist in some form already in service environments using service-specific 2032
protocols (e.g. such as LDAP). An attribute service provides the interface to this attribute store. 2033

Figure 21 below illustrates the conceptual namespace of an attribute service. 2034

An attribute service MAY leverage existing repositories and may MAY provide some level of organization 2035
or context. That is, this specification makes no proposals or requirements on the organization of the data, 2036
just that if a principal exists, any corresponding attribute data should be addressable using the 2037
mechanisms described here. 2038

Principals represent any kind of resource, not just people. Consequently, the attribute mechanisms MAY 2039
be used to associate attributes with any resource, not just with identities. Said another way, principal 2040
identities represent just one class of resource that can be used by this specification. 2041

Principals and resources MAY have specific policies that are required when accessing and managing 2042
their attributes. Such policies use the [WS-Policy] framework. As well, these principals (and resources) 2043
MAY be specified as domain expressions to scope policy assertions as described in [WS-2044
PolicyAttachment]. 2045

 2046

Figure 21 Attribute Service 2047

It is expected that separate attributes MAY be shared differently and MAY require different degrees of 2048
privacy and protection. Consequently, each attribute expression SHOULD be capable of expressing its 2049
own access control and privacy policy. As well, the access control and privacy policy SHOULD take into 2050
account the associated scope(s) and principals that can speak for the scope(s). 2051

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 63 of 140

Different services MAY support different types of attribute services which MAY be identified via policy by 2052
definition of new policy assertions indicating the attribute service supported. 2053

Each attribute store MAY support different subsets of the functionality as described above. The store's 2054
policy indicates what functionality it supports. 2055

This specification does not require a specific attribute service definition or interface. However, as 2056
indicated in sections 2.7 and 3.1.8, the WS-Trust Security Token Service interface and token issuance 2057
protocol MAY be used as the interface to an attribute service. Reusing an established service model and 2058
protocol could simplify threat analysis and implementation of attribute services. 2059

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 64 of 140

6 Pseudonym Service 2060

The OPTIONAL pseudonym service is a special type of attribute service which maintains alternate identity 2061
information (and optionally associated tokens) for principals. 2062

Pseudonym services MAY exist in some form already in service environments using service-specific 2063
protocols. This specification defines an additional, generic, interface to these services for interoperability 2064
with Web services. 2065

The figure below illustrates the conceptual namespace of a pseudonym service: 2066

 2067

Figure 22 Pseudonym Service 2068

The service MAY provide some level of organization or context. That is, this specification makes no 2069
proposals or requirements on the organization of the data, just that a principal exist and be addressable 2070
using the mechanisms described here. 2071

Within the namespace principals are associated and a set of zero or more pseudonyms defined. Each 2072
pseudonym MAY be scoped, that is, each pseudonym may have a scope to which it applies (possibly 2073
more than one resource/service). 2074

A pseudonym MAY have zero or more associated security tokens. This is an important aspect because it 2075
allows an IP to directly return the appropriate token for specified scopes. For example, when Fred.Jones 2076
requested a token for Fabrikam123.com, his IP could have returned the Freddo identity directly allowing 2077
the requestor to pass this to Fabrikam123. This approach is more efficient and allows for greater privacy 2078
options. 2079

It is expected that pseudonyms MAY have different access control and privacy policies and that these can 2080
vary by principal or by scope within principal. Consequently, each pseudonym SHOULD be capable of 2081
expressing its own access control and privacy policy. As well, the access control and privacy policy 2082
SHOULD take into account the associated scope(s) and principals that can speak for the scope(s). 2083

Pseudonym services MUST support the interfaces defined in this section for getting, setting, and deleting 2084
pseudonyms. 2085

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 65 of 140

6.1 Filtering Pseudonyms 2086

When performing operations on a pseudonym store it is RECOMMENDED to filter the scope of the 2087
operation. This is done using the following dialect with the [WS-ResourceTransfer] extensions to [WS-2088
Transfer]: 2089

http://docs.oasis-open.org/wsfed/federation/200706/pseudonymdialect 2090

Alternatively, the <fed:FilterPseudonyms> header MAY be specified with WS-Transfer to allow 2091

filtering to be specified as part of an endpoint reference (EPR). 2092

The syntax for the <fed:FilterPseudonyms> element is as follows: 2093

<fed:FilterPseudonyms ...> 2094
 <fed:PseudonymBasis ...>...</fed:PseudonymBasis> ? 2095
 <fed:RelativeTo ...>...</fed:RelativeTo> ? 2096
 ... 2097
</fed:FilterPseudonyms> 2098

The following describes elements and attributes used in a <fed:FilterPseudonyms> element. 2099

/fed:FilterPseudonyms 2100

This element indicates a request to filter a pseudonym operation based on given identity 2101
information and applicability scope. 2102

/fed:FilterPseudonyms/fed:PseudonymBasis 2103

This element specifies a security token or security token reference identifying the known identity 2104
information. This element is typically required to identify the basis but MAY be omitted if the 2105
context is known. This specification places no requirements on what information (claims) are 2106
required to be a pseudonym basis – that can vary by service. 2107

/fed:FilterPseudonyms/fed:PseudonymBasis/@{any} 2108

This is an extensibility point allowing attributes to be specified. Use of this extensibility 2109
mechanism MUST NOT alter semantics defined in this specification. 2110

/fed:FilterPseudonyms/fed:PseudonymBasis/{any} 2111

This is an extensibility mechanism to allow the inclusion of the relevant security token reference 2112
or security token. 2113

/fed:FilterPseudonyms/fed:RelativeTo 2114

This RECOMMENDED element indicates the scope for which the pseudonym is requested. This 2115
element has the same type as <wsp:AppliesTo>. 2116

/fed:FilterPseudonyms/fed:RelativeTo/@{any} 2117

This is an extensibility point allowing attributes to be specified. 2118

Use of this extensibility mechanism MUST NOT alter the semantics of this specification. 2119

alter semantics defined in this specification. 2120

/fed:FilterPseudonyms/@{any} 2121

This is an extensibility point allowing attributes to be specified. Use of this extensibility 2122
mechanism MUST NOT . alter semantics defined in this specification. 2123

/fed:FilterPseudonyms/{any} 2124

This is an extensibility point allowing content elements to be specified. 2125

Use of this extensibility mechanism MUST NOT alter semantics defined in this specification. 2126

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 66 of 140

As noted above, in some circumstances it MAY be desirable to include a filter as part of an EPR. To 2127

accommodate this, <fed:FilterPseudonyms> element MAY be specified as a SOAP header. It is 2128

RECOMMENDED that the SOAP mustUnderstand attribute be specified as true whenever this is used as 2129

a header. If a <fed:FilterPseudonyms> header is specified, the message MUST NOT contain 2130

additional filtering. 2131

6.2 Getting Pseudonyms 2132

Pseudonyms are requested from a pseudonym service using the [WS-Transfer] “GET” method with the 2133
[WS-ResourceTransfer] extensions. The dialect defined in 6.1 (or the <fed:FilterPseudonyms> 2134

header) is used to restrict the pseudonyms that are returned. 2135

Pseudonyms are returned in the body of the GET response message in a <fed:Pseudonym> element 2136

as follows: 2137

<fed:Pseudonym ...> 2138
 <fed:PseudonymBasis ...>...</fed:PseudonymBasis> 2139
 <fed:RelativeTo ...>...</fed:RelativeTo> 2140
 <wsu:Expires>...</wsu:Expires> 2141
 <fed:SecurityToken ...>...</fed:SecurityToken> * 2142
 <fed:ProofToken ...>...</fed:ProofToken> * 2143
 ... 2144
</fed:Pseudonym> 2145

The following describes elements and attributes described above: 2146

/fed:Pseudonym 2147

This element represents a pseudonym for a principal. 2148

/fed:Pseudonym/fed:PseudonymBasis 2149

This element specifies a security token or security token reference identifying the known identity 2150
information (see [WS-Security]). Often this is equivalent to the basis in the request although if 2151
multiple pseudonyms are returned that value may be different. 2152

/fed:Pseudonym/fed:PseudonymBasis/@{any} 2153

This is an extensibility point allowing attributes to be specified. 2154

Use of this extensibility mechanism MUST NOTalter semantics defined in this specification. 2155

/fed:Pseudonym/fed:PseudonymBasis/{any} 2156

This is an extensibility mechanism to allow the inclusion of the relevant security token reference 2157
or security token. Use of this extensibility mechanism MUST NOT alter semantics defined in this 2158
specification. 2159

/fed:Pseudonym/fed:RelativeTo 2160

This REQUIRED element indicates the scope for which the pseudonym is requested. This 2161
element has the same type as <wsp:AppliesTo>. 2162

/fed:Pseudonym/fed:RelativeTo/@{any} 2163

This is an extensibility point allowing attributes to be specified. Use of this extensibility 2164
mechanism MUST NOT alter semantics defined in this specification. 2165

/fed:Pseudonym/wsu:Expires 2166

This OPTIONAL element indicates the expiration of the pseudonym. 2167

/fed:Pseudonym/fed:SecurityToken 2168

This OPTIONAL element indicates a security token for the scope. Note that multiple tokens MAY 2169
be specified. 2170

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 67 of 140

/fed:Pseudonym/fed:SecurityToken/@{any} 2171

This is an extensibility point allowing attributes to be specified. Use of this extensibility 2172
mechanism MUST NOT alter semantic defined in this specification. 2173

/fed:Pseudonym/fed:SecurityToken/{any} 2174

This is an extensibility mechanism to allow the inclusion of the relevant security token(s). Use of 2175
this extensibility mechanism MUST NOT alter semantics defined in this specification 2176

/fed:Pseudonym/fed:ProofToken 2177

This OPTIONAL element indicates a proof token for the scope. Note that multiple tokens MAY be 2178
specified. 2179

/fed:Pseudonym/fed:ProofToken/@{any} 2180

This is an extensibility point allowing attributes to be specified. Use of this extensibility 2181
mechanism MUST NOT alter semantics defined in this specification. 2182

/fed:Pseudonym/fed:ProofToken/{any} 2183

This is an extensibility mechanism to allow the inclusion of the relevant security token(s). Use of 2184
this extensibility mechanism MUST NOT alter semantics defined in this specification. 2185

/fed:Pseudonym/@{any} 2186

This is an extensibility point allowing attributes to be specified. Use of this extensibility 2187
mechanism MUST NOT alter semantics defined in this specification. 2188

/fed:Pseudonym/{any} 2189

This is an extensibility point allowing content elements to be specified. Use of this extensibility 2190
mechanism MUST NOT alter semantics defined in this specification. 2191

For example, the following example obtains the local pseudonym associated with the identity (indicated 2192
binary security token) for the locality (target scope) indicated by the URI 2193
http://www.fabrikam123.com/NNK. 2194

<S:Envelope xmlns:S="..." xmlns:wsa="..." xmlns:wsxf="..." xmlns:fed="..." 2195
 xmlns:wsu="..." xmlns:wsse="..." xmlns:wsrt="..."> 2196
 <S:Body> 2197
 <wsrt:Get 2198
 Dialect="http://docs.oasis-open.org/wsfed/federation/200706/pseudonymdialect"> 2199
 <wsrt:Expression> 2200
 <fed:FilterPseudonyms> 2201
 <fed:PseudonymBasis> 2202
 <wsse:BinarySecurityToken>...</wsse:BinarySecurityToken> 2203
 </fed:PseudonymBasis> 2204
 <fed:RelativeTo> 2205
 <wsa:Address> 2206
 http://www.fabrikam123.com/NNK 2207
 </wsa:Address> 2208
 </fed:RelativeTo> 2209
 </fed:FilterPseudonyms> 2210
 </wsrt:Expression> 2211
 </wsrt:Get> 2212
 </S:Body> 2213
</S:Envelope> 2214

A sample response might be as follows: 2215

<S:Envelope xmlns:S="..." xmlns:wsa="..." xmlns:wsxf="..." xmlns:fed="..." 2216
 xmlns:wsu="..." xmlns:wsse="..." xmlns:wsrt="..."> 2217
 <S:Body> 2218
 <wsrt:GetResponse> 2219
 <wsrt:Result> 2220

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 68 of 140

 <fed:Pseudonym> 2221
 <fed:RelativeTo> 2222
 <wsa:Address> 2223
 http://www.fabrikam123.com/NNK 2224
 </wsa:Address> 2225
 </fed:RelativeTo> 2226
 <wsu:Expires>2003-12-10T09:00Z</wsu:Expires> 2227
 <fed:SecurityToken>...</fed:SecurityToken> 2228
 <fed:ProofToken>...</fed:ProofToken> 2229
 </fed:Pseudonym> 2230
 </wsrt:Result> 2231
 </wsrt:GetResponse> 2232
 </S:Body> 2233
</S:Envelope> 2234

6.3 Setting Pseudonyms 2235

Pseudonyms are updated in a pseudonym service using the [WS-Transfer] “PUT” operation with the [WS-2236
ResourceTransfer] extensions using the dialect defined in 6.1 (or the <fed:FilterPseudonyms> 2237

header). This allows one or more pseudonyms to be added. If a filter is not specified, then the PUT 2238
impacts the full pseudonym set. It is RECOMMENDED that filters be used. 2239

The following example sets pseudonym associated with the identity (indicated binary security token) for 2240
the locality (target scope) indicated by the URI http://www.fabrikam123.com/NNK. 2241

<S:Envelope xmlns:S="..." xmlns:wsa="..." xmlns:wsxf="..." xmlns:fed="..." 2242
 xmlns:wsu="..." xmlns:wsse="..." xmlns:wsrt="..."> 2243
 <S:Body> 2244
 <wsrt:Put 2245
 Dialect="http://docs.oasis-open.org/wsfed/federation/200706/pseudonymdialect"> 2246
 <wsrt:Fragment Mode="Inset"> 2247
 <wsrt:Expression> 2248
 <fed:FilterPseudonyms> 2249
 <fed:PseudonymBasis> 2250
 <wsse:BinarySecurityToken>...</wsse:BinarySecurityToken> 2251
 </fed:PseudonymBasis> 2252
 <fed:RelativeTo> 2253
 <wsa:Address> 2254
 http://www.fabrikam123.com/NNK 2255
 </wsa:Address> 2256
 </fed:RelativeTo> 2257
 </fed:FilterPseudonyms> 2258
 </wsrt:Expression> 2259
 <wsrt:Value> 2260
 <fed:Pseudonym> 2261
 <fed:PseudonymBasis> 2262
 <wsse:BinarySecurityToken>...</wsse:BinarySecurityToken> 2263
 </fed:PseudonymBasis> 2264
 <fed:RelativeTo> 2265
 <wsa:Address> 2266
 http://www.fabrikam123.com/NNK 2267
 </wsa:Address> 2268
 </fed:RelativeTo> 2269
 <fed:SecurityToken> 2270
 <wsse:UsernameToken> 2271
 <wsse:Username> "Nick" </wsse:Username> 2272
 </wsse:UsernameToken> 2273
 </fed:SecurityToken> 2274
 <fed:ProofToken>...</fed:ProofToken> 2275
 </fed:Pseudonym> 2276
 </wsrt:Value> 2277
 </wsrt:Fragment> 2278

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 69 of 140

 </wsrt:Put> 2279
 </S:Body> 2280
</S:Envelope> 2281

6.4 Deleting Pseudonyms 2282

Pseudonyms are deleted in a pseudonym service using the [WS-Transfer] “PUT” operation with the [WS-2283
ResourceTransfer] extensions. The dialect defined in 6.1 (or the <fed:FilterPseudonyms> header) is 2284

used to restrict the scope of the “PUT” to only remove pseudonym information corresponding to the filter. 2285
If a filter is not specified, then the PUT impacts the full pseudonym set. It is RECOMMENDED that filters 2286
be used. 2287

The following example deletes the pseudonym associated with the identity (indicated binary security 2288
token) for the locality (target scope) indicated by the URI http://www.fabrikam123.com/NNK. 2289

<S:Envelope xmlns:S="..." xmlns:wsa="..." xmlns:wsxf="..." xmlns:fed="..." 2290
 xmlns:wsu="..." xmlns:wsse="..." xmlns:wsrt="..."> 2291
 <S:Body> 2292
 <wsrt:Put 2293
 Dialect="http://docs.oasis-open.org/wsfed/federation/200706/pseudonymdialect"> 2294
 <wsrt:Fragment Mode="Remove"> 2295
 <wsrt:Expression> 2296
 <fed:FilterPseudonyms> 2297
 <fed:PseudonymBasis> 2298
 <wsse:BinarySecurityToken>...</wsse:BinarySecurityToken> 2299
 </fed:PseudonymBasis> 2300
 <fed:RelativeTo> 2301
 <wsa:Address> 2302
 http://www.fabrikam123.com/NNK 2303
 </wsa:Address> 2304
 </fed:RelativeTo> 2305
 </fed:FilterPseudonyms> 2306
 </wsrt:Expression> 2307
 </wsrt:Fragment> 2308
 </wsrt:Put> 2309
 </S:Body> 2310
</S:Envelope> 2311

6.5 Creating Pseudonyms 2312

Pseudonyms are created in a pseudonym service using the WS-Resource “CREATE” operation with the 2313
[WS-ResourceTransfer] extensions. This allows one or more pseudonyms to be added. The dialect 2314
defined in 6.1 (or the <fed:FilterPseudonyms> header) is specified on the CREATE to only create 2315

pseudonym information corresponding to the filter. If a filter is not specified, then the CREATE impacts 2316
the full pseudonym set. It is RECOMMENDED that filters be used. 2317

The following example creates pseudonym associated with the identity (indicated binary security token) 2318
for the locality (target scope) indicated by the URI http://www.fabrikam123.com/NNK. 2319

<S:Envelope xmlns:S="..." xmlns:wsa="..." xmlns:wsxf="..." xmlns:fed="..." 2320
 xmlns:wsu="..." xmlns:wsse="..." xmlns:wsrt="..."> 2321
 <S:Body> 2322
 <wsrt:Create 2323
 Dialect="http://docs.oasis-open.org/wsfed/federation/200706/pseudonymdialect"> 2324
 <wsrt:Fragment> 2325
 <wsrt:Expression> 2326
 <fed:FilterPseudonyms> 2327
 <fed:PseudonymBasis> 2328
 <wsse:BinarySecurityToken>...</wsse:BinarySecurityToken> 2329
 </fed:PseudonymBasis> 2330
 <fed:RelativeTo> 2331

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 70 of 140

 <wsa:Address> 2332
 http://www.fabrikam123.com/NNK 2333
 </wsa:Address> 2334
 </fed:RelativeTo> 2335
 </fed:FilterPseudonyms> 2336
 </wsrt:Expression> 2337
 <wsrt:Value> 2338
 <fed:Pseudonym> 2339
 <fed:PseudonymBasis> 2340
 <wsse:BinarySecurityToken>...</wsse:BinarySecurityToken> 2341
 </fed:PseudonymBasis> 2342
 <fed:RelativeTo> 2343
 <wsa:Address> 2344
 http://www.fabrikam123.com/NNK 2345
 </wsa:Address> 2346
 </fed:RelativeTo> 2347
 <fed:SecurityToken> 2348
 <wsse:UsernameToken> 2349
 <wsse:Username> "Nick" </wsse:Userename> 2350
 </wsse:UsernameToken> 2351
 </fed:SecurityToken> 2352
 <fed:ProofToken>...</fed:ProofToken> 2353
 </fed:Pseudonym> 2354
 </wsrt:Value> 2355
 </wsrt:Fragment> 2356
 </wsrt:Create> 2357
 </S:Body> 2358
</S:Envelope> 2359

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 71 of 140

7 Security Tokens and Pseudonyms 2360

As previously mentioned, the pseudonym service MAY also be used to store tokens associated with the 2361
pseudonym. Cooperating Identity Providers and security token services can then be used to 2362
automatically obtain the pseudonyms and tokens based on security token requests for scopes associated 2363
with the pseudonyms. 2364

Figure 23 below illustrates two examples of how security tokens are associated with resources/services. 2365
In the figure on the left, the requestor first obtains the security token(s) from the IP/STS for the 2366
resource/service (1) and then saves them in the pseudonym service (2). The pseudonyms can be 2367
obtained from the pseudonym service prior to subsequent communication with the resource removing the 2368
need for the resource's IP/STS to communicate with the requestor's pseudonym service (3). The figure 2369
on the right illustrates the scenario where IP/STS for the resource/service associates the security token(s) 2370
for the requestor as needed and looks them up (as illustrated in previous sections). 2371

Requestor

IP/STS

Resource

Attr/Pseudo

Service

2. Associate token

with Resource
1. Get token

for Resource

Requestor

IP/STS

Resource

Attr/Pseudo

Service

4. Associate token

with Resource

3. Get token

for Resource

 2372

Figure 23: Attribute & Pseudonym Services Relationships to IP/STS Services 2373

 2374

However when the requestor requests tokens for a resource/service, using a WS-Trust 2375
<RequestSecurityToken> whose scope has an associated pseudonym/token, it is returned as 2376

illustrated below in the <RequestSecurityTokenResponse> which can then be used when 2377

communicating with the resource: 2378

 2379

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 72 of 140

Figure 24: Attribute & Pseudonym Service Fronted by IP/STS 2380

The pseudonym service SHOULD be self-maintained with respect to valid security tokens. That is, 2381
security tokens that have expired or are otherwise not valid for any reason MAY be automatically 2382
discarded by the service. 2383

This approach is an alternative to having the pseudonym service directly return the security token 2384
issuance. Both approaches SHOULD be supported in order to address different scenarios and 2385
requirements. 2386

The following sub-sections describe how token issuance works for different types of keys. 2387

7.1 RST and RSTR Extensions 2388

With the addition of pseudonyms and the integration of an IP/STS with a pseudonym service, an IP/STS 2389
MAY automatically map pseudonyms based on the target service. If it doesn’t, the following additional 2390
options MAY be included in the security token requests using the <wst:RequestSecurityToken> 2391

request to explicitly request a mapping or to clarify the type of mapping desired. 2392

The following syntax illustrates the RST extension to support these new options: 2393

<fed:RequestPseudonym SingleUse="xs:boolean" ? Lookup="xs:boolean" ? ...> 2394
 ... 2395
</fed:RequestPseudonym> 2396

/fed:RequestPseudonym 2397

This OPTIONAL element MAY be specified in a <wst:RequestSecurityToken> request to 2398

indicate how pseudonyms are to be processed for the requested token. 2399

/fed:RequestPseudonym/@SingleUse 2400

This optional OPTIONAL attribute indicates if a single-use pseudonym is returned (true), or if the 2401
service uses a constant identifier (false – the default). 2402

/fed:RequestPseudonym/@Lookup 2403

This OPTIONAL attribute indicates if an associated pseudonym for the specified scope is used 2404
(true – the default) or if the primary identity is used even if an appropriate pseudonym is 2405
associated (false). 2406

/fed:RequestPseudonym/{any} 2407

This is an extensibility mechanism to allow additional information to be specified. Use of this 2408
extensibility mechanism MUST NOT alter the semantics defined in this specification. 2409

/fed:RequestPseudonym/@{any} 2410

This is an extensibility mechanism to allow additional attributes to be specified. Use of this 2411
extensibility mechanism MUST NOT alter the semantics defined in this specification. 2412

If the <RequestPseudonym> isn't present, pseudonym usage/lookup and single use is at the discretion 2413

of the IP/STS. Note that if present, as with all RST parameters, processing is at the discretion of the STS 2414

and it MAY choose to use its own policy instead of honoring the requestor’s parameters. 2415

Note that the above MAY be echoed in a RSTR response confirming the value used by the STS. 2416

7.2 Usernames and Passwords 2417

If an IP/STS returns a security token based on a username, then the token can be stored in the 2418
pseudonym service. 2419

If a corresponding password is issued (or if the requestor specified one), then it too MAY be stored with 2420
the pseudonym and security token so that it can be returned as the proof-of-possession token in the 2421
RSTR response. 2422

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 73 of 140

If a pseudonym is present, but no security token is specified, then the IP/STS MAY return a 2423
<UsernameToken> in the RSTR response to indicate the pseudonym. 2424

7.3 Public Keys 2425

Generally, when an IP/STS issues a new security token with public key credentials, the public key in the 2426
new security token is the same as the key in the provided input security token thereby allowing the same 2427
proof (private key) to be used with the new token since the public key is the same. In such cases, the 2428
new token can be saved directly. 2429

If, however, the IP/STS issues a new public key (and corresponding private key), then the private key 2430
MAY be stored with the pseudonym as a proof token so that it can be subsequently returned as the proof-2431
of-possession token in the RSTR response. 2432

7.4 Symmetric Keys 2433

If an IP/STS returns a token based on a symmetric key (and the corresponding proof information), then 2434
the proof information MAY be stored with the pseudonym and token so that it can be used to construct a 2435
proof-of-possession token in the RSTR response. 2436

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 74 of 140

8 Additional WS-Trust Extensions 2437

The following sub-sections define additional extensions to [WS-Trust] to facilitate federation. 2438

8.1 Reference Tokens 2439

Tokens are exchanged using the mechanisms described in [WS-Trust]. In some cases, however, it is 2440
more efficient to not return the token, but return a handle to the token along with the proof information. 2441
Requestors can then send messages to services secured with the proof token but only passing the token 2442
reference. The recipient is then responsible for obtaining the actual token. 2443

To support this scenario, a reference token MAY be returned in a RSTR response message instead of the 2444
actual token. This is a security token and can be used in any way a security token is used; it is just that 2445
its contents need to be fetched before they can be processed. Specifically, this token can then be used 2446
with [WS-Security] (referenced by ID only) to associate a token with the message. Note that the proof key 2447
corresponding to the token referenced is used to sign messages. The actual token can later be obtained 2448
from the issuing party (or its delegate) using the reference provided. 2449

The following URI is defined to identify a reference token within [WS-Security]: 2450

http://docs.oasis-open.org/wsfed/federation/200706/reftoken 2451

The following syntax defines a reference token that can be used in compliance with this specification: 2452

<fed:ReferenceToken ...> 2453
 <fed:ReferenceEPR>wsa:EndpointReferenceType</fed:ReferenceEPR> + 2454
 <fed:ReferenceDigest ...>xs:base64Binary</fed:ReferenceDigest> ? 2455
 <fed:ReferenceType ...>xs:anyURI</fed:ReferenceType> ? 2456
 <fed:SerialNo ...>...</fed:SerialNo> ? 2457
 ... 2458
</fed:ReferenceToken> 2459

/fed:ReferenceToken 2460

This specifies a reference token indicating the EPR to which a [WS-Transfer] (with OPTIONAL 2461
[WS-ResourceTransfer] extensions) GET request can be made to obtain the token. 2462

/fed:ReferenceToken/fed:ReferenceEPR 2463

The actual EPR to which the [WS-Transfer/WS-ResourceTransfer] GET request is directed. At 2464
least one EPR MUST be specified. 2465

/fed:ReferenceToken/fed:ReferenceDigest 2466

An OPTIONAL SHA1 digest of token to be returned. The value is the base64 encoding of the 2467
SHA1 digest. If the returned token is a binary token, the SHA1 is computed over the raw octets. 2468
If the returned token is XML, the SHA1 is computed over the Exclusive XML Canonicalized [XML-2469
C14N] form of the token. 2470

/fed:ReferenceToken/fed:ReferenceDigest/@{any} 2471

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2472
mechanism MUST NOT alter the semantics defined in this specification. 2473

/fed:ReferenceToken/fed:ReferenceType 2474

An OPTIONAL URI value that indicates the type of token that is being referenced. It is 2475
RECOMMENDED that this be provided to allow processors to determine acceptance without 2476
having to fetch the token, but in some circumstances this is difficult so it is not required. 2477

/fed:ReferenceToken/fed:ReferenceType/@{any} 2478

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 75 of 140

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2479
mechanism MUST NOT alter the semantics defined in this specification. 2480

/fed:ReferenceToken/fed:SerialNo 2481

An OPTIONAL URI value that uniquely identifies the reference token. 2482

/fed:ReferenceToken/fed:SerialNo/@{any} 2483

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2484
mechanism MUST NOT alter the semantics defined in this specification. 2485

/fed:ReferenceToken/{any} 2486

This extensibility mechanism allows additional informative elements to be specified Use of this 2487
extensibility mechanism MUST NOT alter the semantics defined in this specification. 2488

/fed:ReferenceToken/@{any} 2489

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2490
mechanism MUST NOT alter the semantics defined in this specification. 2491

There are no requirements on the security associated with the handle or dereferencing it. If the resulting 2492
token is secured or does not contain sensitive information the STS MAY just make it openly accessible. 2493
Alternatively, the STS MAY use the <wsp:AppliesTo> information from the RST to secure the token 2494

such that only requestors that can speak for that address can obtain the token. 2495

8.2 Indicating Federations 2496

In some scenarios an STS, resource provider, or service provider MAY be part of multiple federations and 2497
allow token requests at a single endpoint that could be processed in the context of any of the federations 2498
(so long as the requestor is authorized). In such cases, there may be a need for the requestor to identify 2499
the federation context in which it would like the token request to be processed. 2500

The following <fed:FederationID> element can be included in a RST (as well as an RSTR): 2501

<fed:FederationID ...>xs:anyURI</fed:FederationID> 2502

/fed:FederationID 2503

This element identifies the federation context as a URI value in which the token request is made 2504
(or was processed). 2505

/fed:FederationID/@{any} 2506

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2507
mechanism MUST NOT alter the semantics defined in this specification. 2508

Note that if a FederationID is not specified, the default federation is assumed. 2509

8.3 Obtaining Proof Tokens from Validation 2510

A requestor may obtain a token for a federation for which the recipient service doesn’t actually have the 2511
rights to use and extract the session key. For example, when a requestor’s IP/STS and the recipient’s 2512
IP/STS have an arrangement and share keys but the requestor and recipient only describe federation 2513
between themselves. In such cases, the requestor and the recipient MUST obtain the session keys 2514
(proof tokens) from their respective IP/STS. For the requestor this is returned in the proof token of its 2515
request. 2516

For the recipient, it must pass the message to its IP/STS to have it validated. As part of the validation 2517
process, the proof token MAY be requested by including the parameter below in the RST. When this 2518
element is received by an IP/STS, it indicates a desire to have a <wst:RequestedProofToken> 2519

returned with the session key so that the recipient does not have to submit subsequent messages for 2520
validation. 2521

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 76 of 140

The syntax of the <fed:RequestProofToken> is as follows: 2522

<fed:RequestProofToken ...> 2523
 ... 2524
</fed:RequestProofToken> 2525

/fed:RequestProofToken 2526

When used with a Validate request this indicates that the requestor would like the STS to return a 2527
proof token so that subsequent messages using the same token/key can be processed by the 2528
recipient directly. 2529

/fed:RequestProofToken/@{any} 2530

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2531
mechanism MUST NOT alter the semantics defined in this specification. 2532

/fed:RequestProofToken/{any} 2533

This contents of this element are undefined and MAY be extended. Use of this extensibility 2534
mechanism MUST NOT alter the semantics defined in this specification. 2535

 2536

8.4 Client-Based Pseudonyms 2537

Previous sections have discussed requesting pseudonyms based on registered identities. In some cases 2538
a requestor desires a pseudonym to be issued using ad hoc data that is specifies as an extension to the 2539
RST request. As with all WS-Trust parameters, the IP/STS is NOT REQUIRED to honor the parameter, 2540
but if it does, it SHOULD echo the parameter in the RSTR. 2541

A requestor MAY specify the <fed:ClientPseudonym> element to indicate pseudonym information it 2542

would like used in the issued token. The STS MUST accept all of the information or none of it. That is, it 2543
MUST NOT use some pseudonym information but not other pseudonym information. 2544

The syntax of the <fed:ClientPseudonym> element is as follows: 2545

<fed:ClientPseudonym ...> 2546
 <fed:PPID ...>xs:string</fed:PPID> ? 2547
 <fed:DisplayName ...>xs:string</fed:DisplayName> ? 2548
 <fed:Email ...>xs:string</fed:EMail> ? 2549
 ... 2550
</fed:ClientPseudonym> 2551

/fed:ClientPseudonym 2552

This indicates a request to use specific identity information in resulting security tokens. 2553

/fed:ClientPseudonym/fed:PPID 2554

If the resulting security token contains any form of private personal identifier, this string value is to 2555
be used as the basis. The issuer MAY use this value as the input (a seed) to a custom function 2556
and the result used in the issued token. 2557

/fed:ClientPseudonym/fed:PPID/@{any} 2558

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2559
mechanism MUST NOT alter the semantics defined in this specification. 2560

/fed:ClientPseudonym/fed:DisplayName 2561

If the resulting security token contains any form of display or subject name, this string value is to 2562
be used. 2563

/fed:ClientPseudonym/fed:DisplayName/@{any} 2564

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 77 of 140

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2565
mechanism MUST NOT alter the semantics defined in this specification. 2566

/fed:ClientPseudonym/fed:EMail 2567

If the resulting security token contains any form electronic mail address, this string value is to be 2568
used. 2569

/fed:ClientPseudonym/fed:Email/@{any} 2570

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2571
mechanism MUST NOT alter the semantics defined in this specification. 2572

/fed:ClientPseudonym/{any} 2573

This extensibility point allows other pseudonym information to be specified. If the STS does not 2574
understand any element it MUST either ignore the entire <fed:ClientPseudonym> or Fault. 2575

/fed:ClientPseudonym/@{any} 2576

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2577
mechanism MUST NOT alter the semantics defined in this specification. 2578

8.5 Indicating Freshness Requirements 2579

There are times when a token requestor desires to limit the age of the credentials used to authenticate. 2580
The parameter MAY be specified in a RST to indicate the desired upper bound on credential age. As well 2581
this parameter is used to indicate if the requestor is willing to allow issuance based on cached 2582
credentials. 2583

The syntax of the <fed:Freshness> element is as follow: 2584

<fed:Freshness AllowCache="xs:boolean" ...> 2585
 xs:unsignedInt 2586
</fed:Freshness> 2587

/fed:Freshness 2588

This indicates a desire to limit the age of authentication credentials. This REQUIRED unsigned 2589
integer value indicates the upper bound on credential age specified in minutes only. A value of 2590
zero (0) indicates that the STS is to immediately verify identity if possible or use the minimum age 2591
credentials possible if immediate (e.g. interactive) verification is not possible. If the AllowCache 2592

attribute is specified, then the cached credentials SHOULD meet the freshness time window. 2593

/fed:Freshness/@{any} 2594

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2595
mechanism MUST NOT alter the semantics defined in this specification. 2596

/fed:Freshness/@AllowCache 2597

This OPTIONAL Boolean qualifier indicates if cached credentials are allowed. The default value 2598
is true indicating that cached information MAY be used. If false the STS SHOULD NOT use 2599
cached credentials in processing the request. 2600

If the credentials provided are valid but do not meet the freshness requirements, then the 2601
fed:NeedFresherCredentials fault MUST be returned informing the requestor that they need to 2602

obtain fresher credentials in order to process their request. 2603

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 78 of 140

9 Authorization 2604

An authorization service is a specific instance of a security token service (STS). To ensure consistent 2605

processing and interoperability, this specification defines a common model for authorization services, a 2606

set of extensions enabling rich authorization, and a common profile of [WS-Trust] to facilitate 2607

interoperability with authorization services. 2608

This section describes a model and two extensions specific to rich authorization. The first allows 2609

additional context information to be provided in authorization requests. The second allows services to 2610

indicate that additional claims are required to successfully process specific requests. 2611

9.1 Authorization Model 2612

An authorization service is an STS that operates in a decision brokering process. That is, it receives a 2613

request (either directly or on behalf of another party) for a token (or set of tokens) to access another 2614

service. Such a service MAY be separate from the target service or it MAY be co-located. The 2615

authorization service determines if the requested party can access the indicated service and, if it can, 2616

issues a token (or set of tokens) with the allowed rights at the specified service. These two aspects are 2617

distinct and could be performed by different collaborating services. 2618

In order to make the authorization decision, the authorization service MUST ensure that the requestor has 2619

presented and proven the claims required to access the target service (or resource) indicated in the 2620

request (e.g. in the <wsp:AppliesTo> parameter). Logically, the authorization service constructs a 2621

table of name/value pairs representing the claims required by the target service. The logical requirement 2622

table is constructed from the following sources and may MAY be supplemented by additional service 2623

resources: 2624

• The address of the EPR for the target service 2625

• The reference properties from the EPR of the target service 2626

• Parameters of the RST 2627

• External access control policies 2628

Similarly, the claim table is a logical table representing the claims and information available for the 2629

requestor that the authorization service uses as the basis for its decisions. This logical table is 2630

constructed from the following sources: 2631

• Proven claims that are bound to the RST request (both primary and supporting) 2632

• Supplemental authorization context information provided in the request 2633

• External authorization policies 2634

9.2 Indicating Authorization Context 2635

In the [WS-Trust] protocol, the requestor of a token conveys the desired properties of the required token 2636

(such as the token type, key type, claims needed, etc.) in the token request represented by the RST 2637

element. Each such property is represented by a child element of the RST, and is typically specified by 2638

the Relying Party that will consume the issued token in its security policy assertion as defined by [WS-2639

SecurityPolicy]. The token properties specified in a token request (RST) generally translate into some 2640

aspect of the content of the token that is issued by a STS. However, in many scenarios, there is a need to 2641

be able to convey additional contextual data in the token request that influences the processing and token 2642

issuance behavior at the STS. The supplied data MAY (but need not) directly translate into some aspect 2643

of the actual token content. 2644

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 79 of 140

To enable this a new element, <auth:AdditionalContext>, is defined to provide additional context 2645

information. This MAY be specified in RST requests and MAY be included in RSTR responses. 2646

The syntax is as follows: 2647

<wst:RequestSecurityToken> 2648
 ... 2649
 <auth:AdditionalContext> 2650
 <auth:ContextItem Name="xs:anyURI" Scope="xs:anyURI" ? ...> 2651
 (<auth:Value>xs:string</auth:Value> | 2652
 xs:any) ? 2653
 </auth:ContextItem> * 2654
 ... 2655
 </auth:AdditionalContext> 2656
 ... 2657
</wst:RequestSecurityToken> 2658

The following describes the above syntax: 2659

/auth:AdditionalContext 2660

This OPTIONAL element provides additional context for the authorization decision (which 2661
determines token issuance). 2662

/auth:AdditionalContext/ContextItem 2663

This element is provides additional authorization context as simple name/value pairs. Note that 2664
this is the only fed:AdditionalContext element defined in this specification. 2665

/auth:AdditionalContext/ContextItem/@Name 2666

This REQUIRED URI attribute specifies the kind of the context item being provided. There are no 2667
pre-defined context names. 2668

/auth:AdditionalContext/ContextItem/@Scope 2669

This OPTIONAL URI attribute specifies the scope of the context item. That is, the subject of the 2670
context item. If this is not specified, then the scope is undefined. 2671

The following scopes a pre-defined but others MAY be added: 2672

URI Description

http://docs.oasis-

open.org/wsfed/authorization/200706/ctx/requestor

The context item applies to the requestor

of the token (or the OnBehalfOf)

http://docs.oasis-

open.org/wsfed/authorization/200706/ctx/target

The context item applies to the intended

target (AppliesTo) of the token

http://docs.oasis-

open.org/wsfed/authorization/200706/ctx/action

The context item applies to the intended

action at the intended target (AppliesTo)

of the token

/auth:AdditionalContext/ContextItem/Value 2673

This OPTIONAL string element specifies the simple string value of the context item. 2674

/auth:AdditionalContext/ContextItem/{any} 2675

This OPTIONAL element allows a custom context value to be associated with the context item. 2676
This MUST NOT be specified along with the Value element (there can only be a single value). 2677

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 80 of 140

/auth:AdditionalContext/ContextItem/@{any} 2678

This extensibility point allows additional attributes to be specified. Use of this extensibility 2679
mechanism MUST NOT violate any semantics defined in this document. 2680

/auth:AdditionalContext/@{any} 2681

This extensibility point allows additional attributes. Use of this extensibility mechanism MUST 2682
NOT violate any semantics defined in this document. 2683

/auth:AdditionalContext/{any} 2684

This element has an open content model allowing different types of context to be specified. That 2685
is, custom elements can be defined and included so long as all involved parties understand the 2686
elements. 2687

An example of an RST token request where this element is used to specify additional context data is 2688

given below. Note that this example specifies claims using a custom dialect. 2689

<wst:RequestSecurityToken> 2690
 <wst:TokenType> 2691
 urn:oasis:names:tc:SAML:1.0:assertion 2692
 </wst:TokenType> 2693
 <wst:RequestType> 2694
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue 2695
 </wst:RequestType> 2696
 <wst:Claims Dialect="..."> 2697
 ... 2698

</wst:Claims> 2699
... 2700
<auth:AdditionalContext> 2701
 <auth:ContextItem Name="urn:...:PurchaseAmount"> 2702
 <auth:Value>125.00</auth:Value> 2703
 </auth:ContextItem> 2704
 <auth:ContextItem Name="urn:...:MerchantId"> 2705
 <auth:Value>FABRIKAM 92305645883256</auth:Value> 2706
 </auth:ContextItem> 2707

 </auth:AdditionalContext> 2708
</wst:RequestSecurityToken> 2709

9.3 Common Claim Dialect 2710

There are different claim representations that are used across different Web Service implementations 2711

making it difficult to express claims in a common interoperable way. To facilitate interoperability, this 2712

section defines a simple dialect for expressing claims in a format-neutral way. This new dialect uses the 2713

<auth:ClaimType> element for representing a claim, and the dialect is identified by the following URI: 2714

http://docs.oasis-open.org/wsfed/authorization/200706/authclaims 2715

This dialect MAY be used within the <wst:Claims> element when making token requests or in 2716

responses. This dialect MAY also be used in describing a service’s security requirements using [WS-2717

SecurityPolicy]. Note that the xml:lang attribute MAY be used where allowed via attribute extensibility to 2718

specify a language of localized elements and attributes using the language codes specified in [RFC 2719

3066]. 2720

The syntax for the <auth:ClaimType> element for representing a claim is as follows: 2721

<auth:ClaimType Uri="xs:anyURI" Optional="xs:boolean"> 2722
 <auth:DisplayName ...> xs:string </auth:DisplayName> ? 2723
 <auth:Description ...> xs:string </auth:Description> ? 2724
 <auth:DisplayValue ...> xs:string </auth:DisplaValue> ? 2725
 (<auth:Value>...</auth:Value> | 2726
 <auth:StructuredValue ...>...</auth:StructuredValue> | 2727

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 81 of 140

 (<auth:EncryptedValue @DecryptionCondition="xs:anyURI"> 2728
 <xenc:EncryptedData>...</xenc:EncryptedData> 2729
 <auth:EncryptedValue>) | 2730
 <auth:ConstrainedValue>...</auth:ConstrainedValue>) ? 2731
 ... 2732
</auth:ClaimType> 2733

The following describes the above syntax: 2734

/auth:ClaimType 2735

This element represents a specific claim. 2736

/auth:ClaimType/@Uri 2737

This REQUIRED URI attribute specifies the kind of the claim being indicated. The following claim 2738
type is pre-defined, but other types MAY be defined: 2739

URI Description

http://docs.oasis-

open.org/wsfed/authorization/200706/claims/action

The wsa:Action specified in a request

/auth:ClaimType/@Optional 2740

This OPTIONAL boolean attribute specifies the claim is optional (true) or required (false). The 2741
default value is false. 2742

/auth:ClaimType/auth:DisplayName 2743

This OPTIONAL element provides a friendly name for this claim type that can be shown in user 2744
interfaces. 2745

/auth:ClaimType/auth:DisplayName/@{any} 2746

This extensibility point allows attributes to be added. Use of this extensibility mechanism MUST 2747
NOT alter the semantics defined in this specification. 2748

/auth:ClaimType/auth:Description 2749

This OPTIONAL element provides a description of the semantics for this claim type. 2750

/auth:ClaimType/auth:Description/@{any} 2751

This extensibility point allows attributes to be added. Use of this extensibility mechanism MUST 2752
NOT alter the semantics defined in this specification. 2753

/auth:ClaimType/auth:DisplayValue 2754

This OPTIONAL element provides a displayable value for a claim returned in a security token. 2755

/auth:ClaimType/auth:DisplayValue/@{any} 2756

This extensibility point allows attributes to be added. Use of this extensibility mechanism MUST 2757
NOT alter the semantics defined in this specification. 2758

/auth:ClaimType/auth:Value 2759

This OPTIONAL element allows a specific string value to be specified for the claim. 2760

/auth:ClaimType/auth:EncryptedValue 2761

This OPTIONAL element is used to convey the ciphertext of a claim. 2762

/auth:Claims/auth:ClaimType/auth:EncryptedValue/xenc:EncryptedData 2763

This OPTIONAL element is only used for conveying the KeyInfo. 2764

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 82 of 140

/auth:Claims/auth:ClaimType/auth:EncryptedValue/@DecryptionCondition 2765

This OPTIONAL attribute specifies the URI indicating the conditions under which this claim 2766
SHOULD be decrypted. 2767

The decryptor SHOULD decrypt only if the decryption condition is fulfilled. Note that a decryptor 2768
MAY be a 3

rd
 party. In order for such a decryption to happen, the recipient of the claim has to 2769

provide the ciphertext and decryption condition to the decryptor.. This specification does not 2770
define any URI values. Participating parties MAY use other values under private agreements. 2771

/auth:ClaimType/auth:StructuredValue 2772

This OPTIONAL element specifies the value of a claim in a well formed xml structure. 2773

/auth:ClaimType/auth:StructuredValue/@{any} 2774

This extensibility point allows additional structured value types to be specified for the claim. Use 2775
of this extensibility point MUST NOT alter the semantics defined in this specification. 2776

 2777

/auth:ClaimType/auth:ConstrainedValue 2778

This OPTIONAL element specifies constraints on a given claim. It MAY contain the constraint that 2779
value MUST satisfy, or it MAY contain the actual constrained value. For more details on 2780
constraints see section 9.3.1. 2781

/auth:ClaimType/@{any} 2782

This extensibility point allows attributes to be added. Use of this extensibility point MUST NOT 2783
alter the semantics defined in this specification. 2784

/auth:ClaimType/{any} 2785

This extensibility point allows additional values types to be specified for the claim. Use of this 2786
extensibility point MUST NOT alter the semantics defined in this specification. 2787

 2788

9.3.1 Expressing value constraints on claims 2789

When requesting or returning claims in a [WS-Trust] RST request or specifying required claims in [WS-2790
SecurityPolicy] it MAY be necessary to express specific constraints on those claims. The 2791
<auth:ConstrainedValue> element, used within the <auth:ClaimType> element, provides this 2792

capability. 2793

 2794

The semantics of the comparison operators specified in the <auth:ConstrainedValue> element are 2795

specific to the given claim type unless explicitly defined below. 2796

 2797

The syntax for the <auth:ConstrainedValue> element, used within the <auth:ClaimType> 2798

element, is as follows. 2799

 <auth:ConstrainedValue AssertConstraint="xs:boolean"> 2800
 (<auth:ValueLessThan> 2801
 (<auth:Value> xs:string </auth:Value> | 2802

 <auth:StructuredValue> xs:any </auth:StructuredValue>) 2803
 </auth:ValueLessThan> | 2804
 <auth:ValueLessThanOrEqual> 2805
 (<auth:Value> xs:string </auth:Value> | 2806
 <auth:StructuredValue> xs:any </auth:StructuredValue>) 2807
 </auth:ValueLessThanOrEqual> | 2808
 <auth:ValueGreaterThan> 2809
 (<auth:Value> xs:string </auth:Value> | 2810
 <auth:StructuredValue> xs:any </auth:StructuredValue>) 2811

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 83 of 140

 </auth:ValueGreaterThan> | 2812
 <auth:ValueGreaterThanOrEqual> 2813
 (<auth:Value> xs:string </auth:Value> | 2814
 <auth:StructuredValue> xs:any </auth:StructuredValue>) 2815
 </auth:ValueGreaterThanOrEqual> | 2816
 <auth:ValueInRange> 2817
 <auth:ValueUpperBound> 2818
 (<auth:Value> xs:string </auth:Value> | 2819
 <auth:StructuredValue> xs:any </auth:StructuredValue>) 2820
 </auth:ValueUpperBound> 2821
 <auth:ValueLowerBound> 2822
 (<auth:Value> xs:string </auth:Value> | 2823
 <auth:StructuredValue> xs:any </auth:StructuredValue>) 2824
 </auth:ValueLowerBound> 2825
 </auth:ValueInRange> | 2826
 <auth:ValueOneOf> 2827
 (<auth:Value> xs:string </auth:Value> | 2828
 <auth:StructuredValue> xs:any </auth:StructuredValue>) + 2829
 </auth:ValueOneOf>) ? 2830
 ... 2831
 </auth:ConstrainedValue> ? 2832

The following describe the above syntax 2833

/auth:ClaimType/auth:ConstrainedValue 2834

This OPTIONAL element indicates that there are constraints on the claim value. This element 2835
MUST contain one of the defined elements below when used in a RST/RSTR message. This 2836
element MAY be empty when used in the fed:ClaimTypesOffered element to describe a service's 2837
capabilities which means that any constrained value form, from he defined elements below, is 2838
supported for the claim type. 2839

/auth:ClaimType/auth:ConstrainedValue/@AssertConstraint 2840

This OPTIONAL attribute indicates that when a claim is issued the constraint itself is asserted 2841
(when true) or that a value that adheres to the condition is asserted (when false). The default 2842
value is true. 2843

/auth:ClaimType/auth:ConstrainedValue/auth:ValueLessThan 2844

This OPTIONAL element indicates that the value of the claim MUST be less than the given value. 2845

/auth:ClaimType/auth:ConstrainedValue/auth:ValueLessThan/auth:Value 2846

This element specifies the string value the claim MUST be less than. 2847

/auth:ClaimType/auth:ConstrainedValue/auth:ValueLessThan/auth:StructuredValue 2848

This element specifies the value of a claim in a well formed xml structure the claim MUST be less 2849
than. 2850

/auth:ClaimType/auth:ConstrainedValue/auth:ValueLessThanOrEqual 2851

This OPTIONAL element indicates that the value of the claim MUST be less than or equal to the 2852
given value. 2853

/auth:ClaimType/auth:ConstrainedValue/auth:ValueLessThanOrEqua/auth:Value 2854

This element specifies the string value the claim MUST be less than or equal to. 2855

/auth:ClaimType/auth:ConstrainedValue/auth:ValueLessThanOrEqual/auth:StructuredValue 2856

This element specifies the value of a claim in a well formed xml structure the claim MUST be less 2857
than or equal to. 2858

/auth:ClaimType/auth:ConstrainedValue/auth:ValueGreaterThan 2859

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 84 of 140

This OPTIONAL element indicates that the value of the claim MUST be greater than the given 2860
value. 2861

/auth:ClaimType/auth:ConstrainedValue/auth:ValueGreaterThan/auth:Value 2862

This element specifies the string value the claim MUST be greater than. 2863

/auth:ClaimType/auth:ConstrainedValue/auth:ValueGreaterThan/auth:StructuredValue 2864

This element specifies the value of a claim in a well formed xml structure the claim MUST be 2865
greater than. 2866

/auth:ClaimType/auth:ConstrainedValue/auth:ValueGreaterThanOrEqual 2867

This OPTIONAL element indicates that the value of the claim MUST be greater than or equal to 2868
the given value. 2869

/auth:ClaimType/auth:ConstrainedValue/auth:ValueGreaterThanOrEqual/auth:Value 2870

This element specifies the string value the claim MUST be greater than or equal to. 2871

/auth:ClaimType/auth:ConstrainedValue/auth:ValueGreaterThanOrEqual/auth:StructuredValue 2872

This element specifies the value of a claim in a well formed xml structure the claim MUST be 2873
greater than or equal to. 2874

/auth:ClaimType/auth:ConstrainedValue/auth:ValueInRange 2875

This OPTIONAL element indicates that the value of the claim MUST be in the specified range. 2876
The specified boundary values are included in the range. 2877

/auth:ClaimType/auth:ConstrainedValue/auth:ValueInRange/auth:ValueUpperBound 2878

This element specifies the upper limit on a given value. 2879

/auth:ClaimType/auth:ConstrainedValue/auth:ValueInRange/auth:ValueLowerBound 2880

This element specifies the lower limit on a given value. 2881

/auth:ClaimType/auth:ConstrainedValue/auth:ValueOneOf 2882

This element specifies a collection of values among which the value of claim MUST fall. 2883

/auth:ClaimType/auth:ConstrainedValue/auth:ValueOneOf/auth:Value 2884

This element specifies an allowed string value for the claim. 2885

/auth:ClaimType/auth:ConstrainedValue/auth:ValueOneOf/auth:StructuredValue 2886

This element specifies an allowed value for the claim in a well formed xml structure. 2887

/auth:ClaimType/auth:ConstrainedValue/{any} 2888

This extensibility point allows additional constrained value types to be specified for the claim.. 2889
Use of this extensibility mechanism MUST NOT alter the semantics defined in this specification. 2890

 2891

 2892

9.4 Claims Target 2893

The @fed:ClaimsTarget attribute is defined for use on the wst:Claims element as a way to indicate the 2894
intended consumer of claim information . 2895

The syntax for @auth:ClaimsTarget is as follows. 2896

<wst:Claims fed:ClaimsTarget="..." ...> 2897
 ... 2898
</wst:Claims> 2899

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 85 of 140

The following describes the above syntax. 2900

 2901

/wst:Claims /@fed:ClaimsTarget 2902

This OPTIONAL attribute indicates the intended consumer of the claim information. If this 2903
attribute is not specified, then a default value is assumed. The predefined values are listed in the 2904
table below, but parties MAY use other values under private agreements. This attribute MAY be 2905
used if the context doesn’t provide a default target or if a different target is required. This attribute 2906
MUST NOT appear in a RST or RSTR message defined in WS-Trust, 2907

 2908

URI Description

http://docs.oasis-

open.org/wsfed/authorization/200706/claims/target/recipient

(default)

Whoever is the ultimate

receiver of the element

is expected to process it.

http://docs.oasis-

open.org/wsfed/authorization/200706/claims/target/client

The client or originating

requestor (typically the

party issuing the original

RST request) is

expected to process this

element.

http://docs.oasis-

open.org/wsfed/authorization/200706/claims/target/issuer

The entity that has the

responsibility and

(typically the party

issuing the token) is

expected to process this

element.

http://docs.oasis-

open.org/wsfed/authorization/200706/claims/target/rp

The entity that is

expected to consume a

security token is

expected to process this

element.

 2909

 2910

9.5 Authorization Requirements 2911

Authorization requestors and issuing services (providers) compliant with this specification MUST conform 2912

to the rules described in this section when issuing RST requests and returning RSTR responses. 2913

R001 – The authorization service MUST accept an <wsp:AppliesTo> target in the RST 2914

R002 – The authorization service MUST specify an <wsp:AppliesTo> target in the RSTR if one is 2915

specified in the RST 2916

R003 – The authorization service SHOULD encode the <wsp:AppliesTo> target in issued tokens if the 2917

token format supports it 2918

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 86 of 140

R004 – The <wsp:AppliesTo> target for issued token MAY be for a broader scope than the scope 2919

specified in the RST but MUST NOT be narrower (as specified in WS-Trust) 2920

R005 – The authorization service MUST accept reference properties in the <wsp:AppliesTo> target 2921

R006 – The authorization service MUST accept the <auth:AdditionalContext> parameter 2922

R007 – The authorization service MUST accept the claim dialect defined in this specification 2923

R008 – The authorization service MAY ignore elements in the auth:AdditionalContext parameter if it 2924

doesn’t recognize or understand them 2925

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 87 of 140

10 Indicating Specific Policy/Metadata 2926

When a requestor communicates with a recipient service there may be additional security requirements, 2927

beyond those in the general security policy or other metadata, that are required based on the specifics of 2928

the request. For example, if a request contains a “gold customer” custom message header to indicate 2929

customer classification (and routing), then proof that the requestor is a gold member may be required 2930

when the request is actually authorized. There may also be contextual requirements which are hard to 2931

express in a general policy. For example, if a requestor wants to submit a purchase, it may be required to 2932

present a token from a trusted source attesting that the requestor has the requisite funds. 2933

To address this scenario a mechanism is introduced whereby the recipient service MAY indicate to the 2934

requestor that additional security semantics apply to the request. The requestor MAY reconstruct the 2935

message in accordance with the new requirements if it can do so. In some cases the requestor may 2936

need to obtain additional tokens from an authorization or identity service and then reconstruct and 2937

resubmit the message. 2938

The mechanism defined by this specification that MAY be used to dynamically indicate that a specific 2939

policy or metadata applies to a specific request is to issue a specialized SOAP Fault. This fault indicates 2940

to the requestor that additional security metadata is REQUIRED. The new metadata, in its complete form 2941

(not a delta) is specified in the fault message using the WS-MetadataExchange format. 2942

The fault is the fed:SpecificMetadata and is specified as the fault code. The <S:Detail> of this 2943

fault contains a mex:Metadata element containing sections with the effective metadata for the endpoint 2944

processing this specific request. 2945

The following example illustrates a fault with embedded policy: 2946

<S:Envelope xmlns:S="..." xmlns:auth="..." xmlns:wst="..." xmlns:fed="..." 2947
 xmlns:sp="..." xmlns:wsp="..." xmlns:mex="..."> 2948
 <S:Body> 2949
 <S:Fault> 2950
 <S:Code> 2951
 <S:Value>fed:SpecificMetadata</S:Value> 2952
 </S:Code> 2953
 <S:Reason> 2954
 <S:Text>Additional credentials required in order to 2955
 perform operation. Please resubmit request with 2956
 appropriate credentials. 2957
 </S:Text> 2958
 </S:Reason> 2959
 <S:Detail> 2960
 <mex:Metadata> 2961
 <mex:MetadataSection 2962
 Dialect='http://schemas.xmlsoap.org/ws/2004/09/policy'> 2963
 <wsp:Policy> 2964
 ... 2965
 <sp:EndorsingSupportingTokens> 2966
 <sp:IssuedToken> 2967
 <sp:Issuer>...</sp:Issuer> 2968
 <sp:RequestSecurityTokenTemplate> 2969
 <wst:Claims> 2970
 ... 2971
 </wst:Claims> 2972
 <auth:AdditionalContext> 2973
 ... 2974
 </auth:AdditionalContext> 2975
 ... 2976

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 88 of 140

 </sp:RequestSecurityTokenTemplate> 2977
 </sp:IssuedToken> 2978
 </sp:EndorsingSupportingTokens> 2979
 </wsp:Policy> 2980
 </mex:MetadataSection> 2981
 </mex:Metadata> 2982
 </S:Detail> 2983
 </S:Fault> 2984
 </S:Body> 2985
</S:Envelope> 2986

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 89 of 140

11 Authentication Types 2987

The [WS-Trust] specification defines the wst:AuthenticationType parameter to indicate a desired 2988

type of authentication (or to return the type of authentication verified). However, no pre-defined values 2989
are specified. While any URI can be used, to facilitate federations the following OPTIONAL types are 2990
defined but are NOT REQUIRED to be used: 2991

URI Description

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/unknown

Unknown level of authentication

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/default

Default sign-in mechanisms

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/Ssl

Sign-in using SSL

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/SslAndKey

Sign-in using SSL and a security key

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/SslAndStro
ngPasssword

Sign-in using SSL and a “strong”
password

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/SslAndStro
ngPasswordWithExpiration

Sign-in using SSL and a “strong”
password with expiration

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/smartcard

Sign-in using Smart Card

 2992

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 90 of 140

12 Privacy 2993

When a requestor contacts an authority to obtain a security token or to obtain authorization for an action it 2994

is often the case that information subject to personal or organizational privacy requirements MAY be 2995

presented in order to authorize the request. In such cases the authority MAY require the requestor to 2996

indicate the restrictions it expects on the use and distribution of sensitive information contained in tokens 2997

it obtains. In this document, this is referred to as a “disclosure constraint”. It should be noted that 2998

disclosure constraints may apply if the requestor is requesting tokens for itself or if the requestor is acting 2999

on behalf of another party. 3000

This specification describes how requestors can communicate their disclosure constraints to security 3001

token services using the [WS-Trust] protocol. It additionally facilitates the requestor’s compliance with 3002

such constraints by allowing it to request elevated data protection for some or all of the response and 3003

issued tokens. The disclosure constraint and protection elevation request are communicated using 3004

existing WS-Trust mechanisms as well as extensions defined in this specification. 3005

The WS-Trust specification describes how to request tokens as well as parameters to the token request 3006

(RST) for indicating how to encrypt proof information as well as algorithms to be used. The following sub-3007

sections define extension parameters that MAY be specified in RST requests (and echoed in RSTR 3008

responses) to indicate additional privacy options which complement the existing WS-Trust parameters. 3009

12.1 Confidential Tokens 3010

The information contained within an issued token MAY be confidential or sensitive. Consequently, the 3011

requestor may wish to have this information protected (confidential) so that only the intended recipient of 3012

the resulting token (or tokens) can access the information. 3013

The [WS-Trust] specification describes how to indicate a key to use if any data in the token is to be 3014

encrypted, but doesn’t specify any mandates around when or what data is to be protected. This 3015

parameter indicates a protection requirement from the requestor (the STS MAY choose to protect data 3016

even if the requestor doesn’t mandate it). 3017

Any protected (encrypted) information is secured using the token specified in the <wst:Encryption> 3018

parameter or using a token the recipient knows to be correct for the request. 3019

The following parameters MAY be specified in an RST request (and echoed in an RSTR response) to 3020

indicate that potentially sensitive information in the token be protected: 3021

<wst:RequestSecurityToken> 3022
 ... 3023
 <priv:ProtectData ...> 3024
 <wst:Claims ...>...</wst:Claims> ? 3025
 ... 3026
 </priv:ProtectData> 3027
 ... 3028
</wst:RequestSecurityToken> 3029

The following describes the above syntax: 3030

/priv:ProtectData 3031

This OPTIONAL parameter indicates that sensitive information in any resultant tokens MUST be 3032
protected (encrypted). If specific claims are identified they MUST be protected. The issuer MAY 3033
have an out-of-band agreement with the requestor as to what MUST be protected. If not, and if 3034
specific claims are not identified, the issuer MUST protect all claims. The issuer MAY choose to 3035
protect more than just the requested claims. 3036

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 91 of 140

/priv:ProtectData/@{any} 3037

This extensibility point allows additional attributes to be specified. Use of this extensibility 3038
mechanism MUST NOT violate any semantics defined in this document. 3039

/priv:ProtectData/wst:Claims 3040

This OPTIONAL element allows the requestor to indicate specific claims which, at a minimum, 3041
MUST be protected. This re-uses the claim specification mechanism from [WS-Trust]. Claims 3042
specified in this set MUST be protected. There is no requirement that all claims specified are in 3043
the issued token. That is, claims identified but not issued MAY be ignored by the STS. 3044

/priv:ProtectData/{any} 3045

This extensibility point allows additional content to be specified Use of this extensibility point 3046
MUST NOT violate any semantics defined in this document. 3047

12.2 Parameter Confirmation 3048

The RST request MAY contain a number of parameters indicating a requestor’s disclosure constraints 3049

and data protection preferences. The STS MAY choose , (but is is not required) to honor these 3050

preferences and MAY, (or might not) include selected parameters in any RSTR response. 3051

For privacy reasons a requestor may wish to (a) know if privacy preferences (or any RST parameter) 3052

were accepted or not, (b) what default parameter values were used, (c) require that privacy preferences 3053

(or any RST parameter) be honored, and (d) know what the STS is reporting in a token if it is protected 3054

and unreadable by the requestor. 3055

The following parameters MAY be specified in a RST request (and echoed in an RSTR response) to 3056

indicate to support these requirements: 3057

<wst:RequestSecurityToken> 3058
 ... 3059
 <priv:EnumerateParameters ...> 3060
 <xs:list itemType='xs:QName' /> 3061
 </priv:EnumerateParameters> 3062
 <priv:FaultOnUnacceptedRstParameters ...> 3063
 ... 3064
</priv:FaultOnUnacceptedRstParameters> 3065
 <priv:EnumerateAllClaims ...> 3066
 ... 3067
 <priv:EnumerateAllClaims ...> 3068
 ... 3069
</wst:RequestSecurityToken> 3070

The following describes the above syntax: 3071

/priv:EnumerateParameters 3072

A RST request MAY include parameters but the STS is not required to honor them. As such 3073
there is no way for the requestor to know what values where used by the STS. This OPTIONAL 3074
parameter provides a way to request the STS to return the values it used for parameters (or Fault 3075
if it refuses) – either taken from the RST or defaulted using internal policy or settings. The 3076
contents of this parameter indicate a list of QNames that represents RST parameters which 3077
MUST be included in the RSTR. That is, each QName listed MUST be present in the RSTR 3078
returned by the STS indicating the value the STS used for the parameter. 3079

/priv:EnumerateParameters/@{any} 3080

This extensibility point allows additional attributes to be specified. Use of this extensibility point 3081
MUST NOT violate any semantics defined in this document. 3082

/priv:FaultOnUnacceptedRstParameters 3083

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 92 of 140

This OPTIONAL parameter indicates that if any parameters specified in the RST are not accepted 3084
by the STS, then the STS MUST Fault the request (see the Error Code section for the applicable 3085
Fault code). This means that any unknown parameter causes the request to fail. Note that this 3086
includes extension parameters to the RST. 3087

/priv:FaultOnUnacceptedRstParameters/@{any} 3088

This extensibility point allows additional attributes to be specified. Use of this extensibility point 3089
MUST NOT violate any semantics defined in this document. 3090

/priv:FaultOnUnacceptedRstParameters/{any} 3091

This extensibility point allows additional content to be specified. Use of this extensibility point 3092
MUST NOT violate any semantics defined in this document. 3093

/priv:EnumerateAllClaims 3094

This OPTIONAL parameter indicates that all claims issued in resulting tokens MUST be identified 3095
in the RSTR so that the requestor can inspect them. The claims are returned in a 3096
<wst:Claims> element in the RSTR. 3097

/priv:EnumerateAllClaims/@{any} 3098

This extensibility point allows additional attributes to be specified. Use of this extensibility point 3099
MUST NOTviolate any semantics defined in this document. 3100

/priv:EnumerateAllClaims/{any} 3101

This extensibility point allows additional content to be specified. Use of this extensibility point 3102
MUST NOT violate any semantics defined in this document. 3103

12.3 Privacy Statements 3104

Some services offer privacy statements. This specification defines a mechanism by which privacy 3105

statements, in any form of representation, can be obtained using the mechanisms defined in [WS-3106

Transfer/WS-ResourceTransfer]. 3107

The following URI is defined which can be used as a metadata section dialect in [WS-Transfer/WS-3108

ResourceTransfer]: 3109

http://docs.oasis-open.org/wsfed/privacy/200706/privacypolicy 3110

As well, the following element can be used to indicate the EPR to which a [WS-Transfer/WS-3111

ResourceTransfer] GET message can be sent to obtain the privacy policy: 3112

<priv:PrivacyPolicyEndpoint SupportsMex="xs:boolean" ?> 3113
 ...endpoint reference value... 3114
</priv:PrivacyPolicyEndpoint 3115

This element is an endpoint-reference as described in [WS-Addressing]. A [WS-Transfer/WS-3116

ResourceTransfer] GET message can be sent to it to obtain the previously defined privacy policy dialect. 3117

If the SupportsMex attribute is true (the default is false), then a [WS-MetadataExchange] request can be 3118

directed at the endpoint. 3119

Note that no specific privacy policy form is mandated so requestors must inspect the contents of the 3120

returned privacy policy (or policies) to determine if they can process it (them). The privacy policy could be 3121

a complete privacy policy document, a privacy policy document that references other privacy policies, or 3122

even a compact form of a privacy policy. The form of these documents is outside the scope of this 3123

document. 3124

Alternatively, HTTP GET targets can be specified by including a URL with the following federated 3125

metadata statement: 3126

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 93 of 140

<priv:PrivacyNoticeAt ...> location URL </priv:PrivacyNoticeAt> 3127

 3128

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 94 of 140

13 Web (Passive) Requestors 3129

This specification defines a model and set of messages for brokering trust and federation of identity and 3130

authentication information across different trust realms and protocols. This section describes how this 3131

Federations model is applied to Web requestors such as Web browsers that cannot directly make Web 3132

Service requests. 3133

13.1 Approach 3134

The federation model previously described builds on the foundation established by [WS-Security] and 3135

[WS-Trust]. Typical Web client requestors cannot perform the message security and token request 3136

operations defined in these specifications. Consequently, this section describes the mechanisms for 3137

requesting, exchanging, and issuing security tokens within the context of a Web requestor. 3138

Web requestors use different but philosophically compatible message exchanges. For example, the 3139

resource might act as its own Security Token Service (STS) and not use a separate service (or even URI) 3140

thereby eliminating some steps. It is expected that subsequent profiles can be defined to extend the Web 3141

mechanisms to include additional exchange patterns. 3142

13.1.1 Sign-On 3143

The primary issue for Web browsers is that there is no easy way to directly issue SOAP requests. 3144

Consequently, the processing MUST be performed within the confines of the base HTTP 1.1 functionality 3145

(GET, POST, redirects, and cookies) and conform as closely as possible to the WS-Trust protocols for 3146

token acquisition. 3147

At a high-level, requestors are associated with an Identity Provider (IP) or Security Token Service (STS) 3148

where they authenticate themselves. At the time/point of initial authentication an artifact/cookie MAY be 3149

created for the requestor at their Identity Provider so that every request for a resource doesn't require 3150

requestor intervention. At other times, authentication at each request is the desired behavior. 3151

In the Web approach, there is a common pattern used when communicating with an IP/STS. In the first 3152

step, the requestor accesses the resource; the requestor is then redirected to an IP/STS if no token or 3153

cookie is supplied on the request. The requestor may MAY be redirected to a local IP/STS operated by 3154

the resource provider. If it has not cached data indicating that the requestor has already been 3155

authenticated, a second redirection to the requestor's IP/STS will be performed. This redirection process 3156

MAY require prompting the user to determine the requestor’s home realm. The IP/STS in the requestor’s 3157

home realm generates a security token for use by the federated party. This token MAY be consumed 3158

directly by the resource, or it MAY be exchanged at the resource’s IP/STS for a token consumable by the 3159

resource. In some cases the requestor’s IP/STS has the requisite information cached to be able to issue 3160

a token, in other cases it must prompt the user. Note that the resource’s IP/STS can be omitted if the 3161

resource is willing to consume the requestor’s token directly. 3162

The figure below illustrates an example flow where there is no resource IP/STS. As depicted, all 3163

communication occurs with the standard HTTP GET and POST methods, using redirects (steps 23 and 3164

56) to automate the communication. Note that when returning non-URL content a POST is REQUIRED 3165

(e.g. in step 6) if a result reference is not used. In step 2 the resource MAY act as its own IP/STS so 3166

communication with an additional service isn't required. Note that step 3 depicts the resource redirecting 3167

directly to the requestor’s IP/STS. As previously discussed, this could redirect to an IP/STS for the 3168

resource (or any number of chained IP/STS services). It might also redirect to a home realm discovery 3169

service. 3170

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 95 of 140

It should be noted that in step 4, the authentication protocol employed MAY be implementation-3171

dependent. 3172

 3173

Figure 25: Sample Browser Sign-On 3174

13.1.2 Sign-Out 3175

For Web browsers, sign-out can be initiated by selecting the sign-out URL at a resource. In doing so, the 3176

browser will ultimately be redirected to the requestor's IP/STS indicating sign-out. Note that the browser 3177

MAY be first redirected to the resource's IP/STS and then to the requestor's IP/STS. Note that if multiple 3178

IP/STS services are used, and unaware of each other, multiple sign-outs MAY be required. 3179

The requestor's IP/STS SHOULD keep track of the realms to which it has issued tokens where cleanup 3180

may be required – specifically the IP/STS for the realms (or resources if different). When the sign-out is 3181

received at the requestor's IP/STS, it SHOULD initiate clean-up (e.g. issuing HTTP GET requests against 3182

the tracked realms indicating a sign-out cleanup is in effect or it can use the sign-out mechanism 3183

previously discussed). The exact mechanism by which this occurs is up to the IP/STS and is policy-3184

driven. The only requirement is that a sign-out cleanup be performed at the IP/STS so that subsequent 3185

requests to the IP/STS don’t use cached data. 3186

As described in section 4.2, there are two possible flows for these messages. They could be effectively 3187

chained through all the STSs involved in the session by successively redirecting the browser between 3188

each resource IP/STS and the requestor’s IP/STS. Or the requestor’s IP/STS can send sign-out 3189

messages to all the other STSs in parallel. The chained (sequential) approach has been found to be 3190

fragile in practice. If a resource IP/STS fails to redirect the user after cleaning up local state, or the 3191

network partitions, the sign-out notification will not reach all the resource IP/STSs involved. For this 3192

reason, compliant implementations SHOULD employ the parallel approach. 3193

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 96 of 140

When a sign-out clean-up GET is received at a realm, the realm SHOULD clean-up any cached 3194

information and delete any associated artifacts/cookies. If requested, on completion the requestor is 3195

redirected back to requestor's IP/STS. 3196

 3197

Figure 26: Sample Browser Sign-Out 3198

The figure above illustrates this process where a resource-specific IP/STS doesn’t exist. The mechanism 3199

illustrated use redirection in steps 2 and 4 (optional) and the general correlation of messages to chain the 3200

sign-out. As previously noted there could be a resource-specific IP/STS which handles local chaining or 3201

notification. 3202

It should be noted that as a result of the single sign-out request (steps 5 and 6), an IP/STS MAY send 3203

sign-out messages as described in this specification. 3204

13.1.3 Attributes 3205

At a high-level, attribute processing uses the same mechanisms defined for security token service 3206

requests and responses. That is, redirection is used to issue requests to attribute services and 3207

subsequent redirection returns the results of the attribute operations. All communication occurs with the 3208

standard HTTP 1.1 GET and POST methods using redirects to automate the communication as shown in 3209

the example below. 3210

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 97 of 140

 3211

Figure 27: Sample Browser Attribute Access 3212

The figure above illustrates this process including calling out the redirection in steps 2 and 4 and the 3213

general correlation of messages for an attribute scenario where there is no resource-specific IP/STS. 3214

As well, it should be noted that as a result of step 3 the IP/STS MAY prompt the user for approval before 3215

proceeding to step 4. 3216

13.1.4 Pseudonyms 3217

At a high-level, pseudonym processing uses the same mechanisms defined for attribute and security 3218

token service requests. That is, redirection is used to issue requests to pseudonym services and 3219

subsequent redirection returns the results of the pseudonym operations. All communication occurs with 3220

the standard HTTP GET and POST methods using redirects to automate the communication as in the 3221

example below. 3222

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 98 of 140

 3223

Figure 28: Sample Browser Pseudonym Access 3224

The figure above illustrates this process including calling out the redirection in steps 2 and 4 and the 3225

general correlation of messages for an attribute scenario where there is no resource-specific IP/STS. 3226

13.1.5 Artifacts/Cookies 3227

In order to prevent requestor interaction on every request for security token, artifacts/cookies can be used 3228

by SSO implementations as they are used today to cache state and/or authentication information or 3229

issued tokens. However implementations MAY omit this caching if the desired behavior is to authenticate 3230

on every request. As noted in the Security Consideration section later in this document, there are 3231

security issues when using cookies. 3232

There are no restrictions placed on artifacts/cookie formats – they are up to each service to determine. 3233

However, it is RECOMMENDED artifacts/cookies be encrypted or computationally hard to compromise. 3234

13.1.6 Bearer Tokens and Token References 3235

In cases where bearer tokens or references to tokens are passed it is strongly RECOMMENDED that the 3236

messages use transport security in order to prevent attack. 3237

13.1.7 Freshness 3238

In cases where a resource requires specific authentication freshness, they can specify requirements in 3239

their IP/STS requests, as described in the following section (see 13.2.2). 3240

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 99 of 140

13.2 HTTP Protocol Syntax 3241

This section describes the syntax of the protocols used by Web requestors. This protocol typically uses 3242

the redirection facilities of HTTP 1.1. This happens using a standard HTTP 302 error code for redirects 3243

(as illustrated below) and HTTP POST to push the forms: 3244

HTTP/1.1 302 Found 3245
Location: url?parameters 3246

The exact parameters and form fields are described in detail in the sub-sections that follow the detailed 3247

example. 3248

In the descriptions below, some mechanisms are OPTIONAL meaning they MAY be supported. Within a 3249

mechanism, certain parameters MUST be specified while others, noted using square brackets, are 3250

OPTIONAL and MAY (or might not) be present. 3251

13.2.1 Parameters 3252

All HTTP 1.1 methods (both GET and POST) used in the redirection protocol allow query string 3253

parameters as illustrated below: 3254

GET url?parameters 3255
POST url?parameters 3256

The GET and POST requests have required parameters and may have optional parameters depending 3257

on the operation being performed. For GET requests, these parameters are specified in the query string; 3258

for POST requests, these parameters are specified in the POST body (using the standard encoding rules 3259

for POST). The query string parameters of a POST request SHOULD be for extensibility only, and MAY 3260

be ignored by an implementation that is otherwise compliant with this specification. 3261

The following describes the parameters used for messages in this profile: 3262

wa=string 3263
[wreply=URL] 3264
[wres=URL] 3265
[wctx=string] 3266
[wp=URI] 3267
[wct=timestring] 3268
[wfed=string] 3269
[wencoding=string] 3270

wa 3271

This REQUIRED parameter specifies the action to be performed. By including the action, URIs 3272
can be overloaded to perform multiple functions. For sign-in, this string MUST be "wsignin1.0". 3273
Note that this serves roughly the same purpose as the WS-Addressing Action header for the WS-3274
Trust SOAP RST messages. 3275

wreply 3276

This OPTIONAL parameter is the URL to which responses are directed. Note that this serves 3277
roughly the same purpose as the WS-Addressing <wsa:ReplyTo> header for the WS-Trust 3278

SOAP RST messages. 3279

wres 3280

This OPTIONAL parameter is the URL for the resource accessed. This is a legacy parameter 3281
which isn’t typically used. The wtrealm parameter is typically used instead. 3282

wctx 3283

This OPTIONAL parameter is an opaque context value that MUST be returned with the issued 3284
token if it is passed in the request. Note that this serves roughly the same purpose as the WS-3285

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 100 of 140

Trust SOAP RST @Context attribute. In order not to exceed URI length limitations, the value of 3286
this parameter should be as small as possible. 3287

wp 3288

This OPTIONAL parameter is the URL for the policy which can be obtained using an HTTP GET 3289
and identifies the policy to be used related to the action specified in "wa", but MAY have a 3290
broader scope than just the "wa". Refer to WS-Policy and WS-Trust for details on policy and 3291
trust. This attribute is only used to reference policy documents. Note that this serves roughly the 3292
same purpose as the Policy element in the WS-Trust SOAP RST messages. 3293

wct 3294

This OPTIONAL parameter indicates the current time at the sender for ensuring freshness. This 3295
parameter is the string encoding of time using the XML Schema datetime time using UTC 3296
notation. Note that this serves roughly the same purpose as the WS-Security Timestamp 3297
elements in the Security headers of the SOAP RST messages. 3298

wfed 3299

This OPTIONAL parameter indicates the federation context in which the request is made. This is 3300
equivalent to the FederationId parameter in the RST message. 3301

wencoding 3302

This OPTIONAL parameter indicates the encoding style to be used for XML parameter content. If 3303
not specified the default behavior is to use standard URL encoding rules. This specification only 3304
defines one other alternative, base64url as defined in section 5 of [RFC 4648]. Support for 3305
alternate encodings is expressed by assertions under the WebBinding assertion defined in this 3306
specification. 3307

Note that any values specified in parameters are subject to encoding as specified in the HTTP 1.1 3308

specification. 3309

When an HTTP POST is used, any of the query strings can be specified in the form contents using the 3310

same name. Note that in this profile form values take precedence over URL parameters. 3311

Parameterization is extensible so that cooperating parties can exchange additional information in 3312

parameters based on agreements or policy. 3313

13.2.2 Requesting Security Tokens 3314

The HTTP requests to an Identity Provider or security token service use a common syntax based on 3315

HTTP forms. Requests typically arrive using the HTTP GET method as illustrated below but MAY be 3316

issued using a POST method: 3317

GET resourceSTS?parameters HTTP/1.1 3318
POST resourceSTS?parameters HTTP/1.1 3319

The parameters described in the previous section (wa, wreply, wres, wctx, wp, wct) apply to the token 3320

request. The additional parameters described below also apply. Note that any values specified in forms 3321

are subject to encoding as described in the HTTP 1.1 specification. 3322

The following describes the additional parameters used for a token request: 3323

wtrealm=string 3324
[wfresh=freshness] 3325
[wauth=uri] 3326
[wreq=xml] 3327

wtrealm 3328

This REQUIRED parameter is the URI of the requesting realm. The wtrealm SHOULD be the 3329
security realm of the resource in which nobody (except the resource or authorized delegates) can 3330

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 101 of 140

control URLs. Note that this serves roughly the same purpose as the AppliesTo element in the 3331
WS-Trust SOAP RST messages. 3332

wfresh 3333

This OPTIONAL parameter indicates the freshness requirements. If specified, this indicates the 3334
desired maximum age of authentication specified in minutes. An IP/STS SHOULD NOT issue a 3335
token with a longer lifetime. If specified as “0” it indicates a request for the IP/STS to re-prompt 3336
the user for authentication before issuing the token. Note that this serves roughly the same 3337
purpose as the Freshness element in the WS-Trust SOAP RST messages. 3338

wauth 3339

This OPTIONAL parameter indicates the REQUIRED authentication level. Note that this 3340
parameter uses the same URIs and is equivalent to the wst:AuthenticationType element in 3341

the WS-Trust SOAP RST messages. 3342

wreq 3343

This OPTIONAL parameter specifies a token request using either a 3344
<wst:RequestSecurityToken> element or a full request message as described in WS-Trust. 3345

If this parameter is not specified, it is assumed that the responding service knows the correct type 3346
of token to return. Note that this can contain the same RST payload as used in WS-Trust RST 3347
messages. 3348

To complete the protocol for requesting a token, it is necessary to redirect the Web requestor from the 3349

resource, or its local IP/STS, to the requestor’s IP/STS. Determining the location of this IP/STS is 3350

frequently referred to as Home Realm Discovery; that is, determining the realm which manages the 3351

requestor’s identity and thus where its IP/STS is located. This frequently involves interaction with the 3352

user (see section 13.5 for additional discussion). There are situations – particularly when users only 3353

access resources via portals and never directly via bookmarked URLs – when it can be advantageous to 3354

include the requestor’s home realm in the request to avoid the requirement for human interaction. The 3355

following parameter MAY be specified for this purpose. 3356

[whr=string] 3357

whr 3358

This OPTIONAL parameter indicates the account partner realm of the client. This parameter is 3359
used to indicate the IP/STS address for the requestor. This may be specified directly as a URL or 3360
indirectly as an identifier (e.g. urn: or uuid:). In the case of an identifier the recipient is expected 3361
to know how to translate this (or get it translated) to a URL. When the whr parameter is used, the 3362
resource, or its local IP/STS, typically removes the parameter and writes a cookie to the client 3363
browser to remember this setting for future requests. Then, the request proceeds in the same 3364
way as if it had not been provided. Note that this serves roughly the same purpose as federation 3365
metadata for discovering IP/STS locations previously discussed. 3366

In the event that the XML request cannot be passed in the form (due to size or other considerations), the 3367

following parameter MAY be specified and the form made available by reference: 3368

wreqptr=url 3369

wreqptr 3370

This OPTIONAL parameter specifies a URL for where to find the request expressed as a 3371
<wst:RequestSecurityToken> element. Note that this does not have a WS-Trust parallel. 3372

The wreqptr parameter MUST NOT be included in a token request if wreq is present. 3373

When using wreqptr it is strongly RECOMMENDED that the provider of the wreqptr data authenticate the 3374

data to the consumer (relying party) in some way and that the provider authenticate consumers 3375

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 102 of 140

requesting the wreqptr data. If the wreqptr data is sensitive the provider SHOULD consider ensuring 3376

confidentiality of the data transfer. 3377

The RST is logically constructed to process the request. If one is specified (either directly via wreq or 3378

indirectly via wreqptr) it is the authoritative source for parameter information. That is, parameters outside 3379

of the RST (e.g. wfresh, wtrealm, …) are used to construct an RST if the RST is not present or if the 3380

corresponding RST values are not present. 3381

13.2.3 Returning Security Tokens 3382

Security tokens are returned by passing an HTTP form. To return the tokens, this profile embeds a 3383

<wst:RequestSecurityTokenResponse> element as specified in [WS-Trust]. 3384

POST resourceURI?parameters HTTP/1.1 3385
GET resourceURI?parameters HTTP/1.1 3386

In many cases the IP/STS to whom the request is being made, will prompt the requestor for information or 3387

for confirmation of the receipt of the token. As a result, the IP/STS can return an HTTP form to the 3388

requestor who then submits the form using an HTTP POST method. This allows the IP/STS to return 3389

security token request responses in the body rather than embedded in the limited URL query string. 3390

However, in some circumstances interaction with the requestor may not be required (e.g. cached 3391

information). In these circumstances the IP/STS have several options: 3392

1. Use a form anyway to confirm the action 3393

2. Return a form with script to automate and instructions for the requestor in the event that scripting 3394

has been disabled 3395

3. Use HTTP GET and return a pointer to the token request response (unless it is small enough to fit 3396

inside the query string) 3397

This specification RECOMMENDS using the POST method as the GET method requires additional state 3398

to be maintained and complicates the cleanup process whereas the POST method carries the state inside 3399

the method. 3400

Note that when using the POST method, any values specified in parameters are subject to encoding as 3401

described in the HTTP 1.1 specification. The standard parameters apply to returning tokens as do the 3402

following additional form parameters: 3403

wresult=xml 3404
[wctx=string] 3405

wresult 3406

This REQUIRED parameter specifies the result of the token issuance. This can take the form of 3407
the <wst:RequestSecurityTokenResponse> element or 3408

<wst:RequestSecurityTokenResponseCollection> element, a SOAP security token 3409

request response (that is, a <S:Envelope>) as detailed in WS-Trust, or a SOAP <S:Fault> 3410

element. This carries the same content as a WS-Trust RSTR element (or even the actual SOAP 3411
Envelope containing the RSTR element). 3412

wctx 3413

This OPTIONAL parameter specifies the context information (if any) passed in with the request 3414
and typically represents context from the original request. 3415

In the event that the token/result cannot be passed in the form, the following parameter MAY be specified: 3416

wresultptr=url 3417

wresultptr 3418

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 103 of 140

This parameter specifies a URL to which an HTTP GET can be issued. The result is a document 3419
of type text/xml that contains the issuance result. This can either be the 3420

<wst:RequestSecurityTokenResponse> element, the 3421

<wst:RequestSecurityTokenResponseCollection> element, a SOAP response, or a 3422

SOAP <S:Fault> element. Note that this serves roughly the same purpose as the WS-3423

ReferenceToken mechanism previously discussed (although this is used for the full response not 3424
just the token). 3425

13.2.4 Sign-Out Request Syntax 3426

This section describes how sign-out requests are formed and redirected by Web requestors. For 3427

modularity, it should be noted that support for sign-out is OPTIONAL. 3428

Sign-out can be initiated by a client at one of four points in the system: 3429

1. A Relying Party application server 3430

2. A Relying Party STS 3431

3. An application server local to the Identity Provider 3432

4. The Identity Provider STS 3433

For the first three use cases, the requestor's client must be redirected to the Identity Provider STS where 3434

the current session originated. This STS is required to send clean-up messages to all Relying Party STSs 3435

and any local applications for which the IP STS has issued security tokens for the requestor's current 3436

session. How the STS tracks this state for the requestor is implementation specific and outside the scope 3437

of this specification. 3438

 As can be seen, for passive requestors the sign-out process is divided into two separate phases, referred 3439

to as sign-out and clean-up. Two different messages are used to ensure that all components of the 3440

system understand which phase is in effect to ensure that the requestor's sign-out request is processed 3441

correctly. 3442

13.2.4.1 Sign-out Message Syntax 3443

 3444

The following describes the parameters used for the sign-out request (note that this parallels the sign-out 3445

SOAP message previously discussed): 3446

wa=string 3447
wreply=URL 3448

wa 3449

This REQUIRED parameter specifies the action to be performed. By including the action, URIs 3450
can be overloaded to perform multiple functions. For sign-out, this string MUST be "wsignout1.0". 3451

 3452

wreply 3453

This OPTIONAL parameter specifies the URL to return to once clean-up (sign-out) is complete. If 3454
this parameter is not specified, then after cleanup the GET completes by returning any realm-3455
specific data such as a string indicating cleanup is complete for the realm. 3456

13.2.4.2 Clean-up Message Syntax 3457

The following describes the parameters used for the clean-up phase of a sign-out 3458
request: 3459

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 104 of 140

wa=string 3460
wreply=URL 3461

wa 3462

This required parameter specifies the action to be performed. By including the action, URIs can 3463
be overloaded to perform multiple functions. For the clean-up phase of a sign-out request, this 3464
string MUST be "wsignoutcleanup1.0". 3465

wreply 3466

This optional parameter specifies the URL to return to once clean-up is complete. If this 3467
parameter is not specified, then after cleanup the GET MAY complete by returning any realm-3468
specific data such as a string indicating cleanup is complete for the realm. 3469

 3470

13.2.5 Attribute Request Syntax 3471

This section describes how attribute requests are formed and redirected by Web requestors. For 3472

modularity, it should be noted that support for attributes is OPTIONAL. Additionally it should be noted 3473

that security considerations may apply. While the structure described here MAY be used with an attribute 3474

service supporting Web clients, the actual attribute request and response XML syntax is undefined and 3475

specific to the attribute store. 3476

The following describes the valid parameters used within attributes requests: 3477

wa=string 3478
[wreply=URL] 3479
[wtrealm=URL] 3480
wattr=xml-attribute-request 3481
wattrptr=URL 3482
wresult=xml-result 3483
wresultptr-URL 3484

wa 3485

This REQUIRED parameter specifies the action to be performed. By including the action, URIs 3486
can be overloaded to perform multiple functions. For attribute requests, this string MUST be 3487
"wattr1.0". 3488

wreply 3489

This OPTIONAL parameter specifies the URL to return to when the attribute result is complete. 3490

wattr 3491

This OPTIONAL parameter specifies the attribute request. The syntax is specific to the attribute 3492
store being used and is not mandated by this specification. This attribute is only present on the 3493
request. 3494

wattrptr 3495

This OPTIONAL parameter specifies URL where the request can be obtained. 3496

wresult 3497

This OPTIONAL parameter specifies the result as defined by the attribute store and is not 3498
mandated by this specification. This attribute is only present on the responses. 3499

wresultptr 3500

This OPTIONAL parameter specifies URL where the result can be obtained. 3501

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 105 of 140

13.2.6 Pseudonym Request Syntax 3502

This section describes how pseudonym requests are formed and redirected by Web requestors. For 3503

modularity, it should be noted that support for pseudonyms is also OPTIONAL. As well, it should be 3504

noted that security considerations may apply. 3505

The following describes the valid parameters used within pseudonym requests (note that this parallels the 3506

pseudonym messages previously discussed): 3507

wa=string 3508
[wreply=URL] 3509
[wtrealm=URL] 3510
wpseudo=xml-pseudonym-request 3511
wpseudoptr=URL 3512
wresult=xml-result 3513
wresultptr=URL 3514

wa 3515

This REQUIRED parameter specifies the action to be performed. By including the action, URIs 3516
can be overloaded to perform multiple functions. For pseudonym requests, this string MUST be 3517
"wpseudo1.0". 3518

wreply 3519

This OPTIONAL parameter specifies the URL to return to when the pseudonym result is 3520
complete. 3521

wpseudo 3522

This OPTIONAL parameter specifies the pseudonym request and either contains a SOAP 3523
envelope or a pseudonym request, such as a WS-Transfer/WS-ResourceTransfer <Get>. This 3524

attribute is only present on the request. 3525

wpseudoptr 3526

This OPTIONAL parameter specifies URL from which the request element can be obtained. 3527

wresult 3528

This OPTIONAL parameter specifies the result as either a SOAP envelope or a pseudonym 3529
response. This attribute is only present on the responses. 3530

wresultptr 3531

This optional OPTIONAL parameter specifies URL from which the result element can be 3532
obtained. 3533

13.3 Detailed Example of Web Requester Syntax 3534

This section provides a detailed example of the protocol defined in this specification. The exact flow for 3535

Web sign-in scenarios can vary significantly; however, the following diagram and description depict a 3536

common or basic sequence of events. 3537

In this scenario, the user at a requestor browser is attempting to access a resource which requires 3538

security authentication to be validated by the resource's security token service. In this example there is a 3539

resource-specific IP/STS. 3540

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 106 of 140

Requestor

Browser

Requestor

IP/STS

Resource

IP/STS

GET resource

Redirect to resource’s IP/STS

GET resource token

UI to determine realm

Redirect to requestor’s IP/STS

Requestor IP/

STS token

UI to collect

authentication

data

1.

2.

3.

3.1

4.

5.

5.1.

WS

Resource

Return requestor

token

6.

POST requestor token
7.

Return resource token
8.

POST resource token
9.

Return result
10.

 3541

Figure 29: Details Sample Browser Sign-In 3542

Simple Scenario: 3543

This scenario depicts an initial federated flow. Note that subsequent flows from the requestor to the 3544

resource realm MAY be optimized. The steps below describe the above interaction diagram. Appendix 3545

III provides a set of sample HTTP messages for these steps. 3546

Step 1: The requestor browser accesses a resource, typically using the HTTP GET method. 3547

Step 2: At the resource, the requestor's request is redirected to the IP/STS associated with the target 3548

resource. The redirected URL MAY contain additional information reflecting agreements which the 3549

resource and its IP/STS have established; however, this (redirection target) URL MUST be used 3550

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 107 of 140

throughout the protocol as the URL for the resource's IP/STS. Typically, this occurs using a standard 3551

HTTP 302 error code. (Alternatively, the request for the token MAY be done using a HTTP POST method 3552

described in step 6). 3553

It is RECOMMENDED that the resource STS provide confidentiality (e.g. using encryption or HTTP/S) of 3554

the information. 3555

Step 3: Upon receipt of the redirection, the IP/STS must determine the requestor realm. This requestor 3556

realm MAY be cached in an artifact/cookie from an earlier exchange, it MAY be known to or fixed by the 3557

resource, or the requestor MAY be prompted to enter or select their realm (step 3.1). 3558

Step 3.1: This is an OPTIONAL step. If the resource IP/STS cannot determine the requestor’s realm, 3559

then the IP/STS MAY prompt the requestor for realm information. 3560

Step 4: The resource IP/STS redirects to the requestor’s IP/STS in order to validate the requestor. 3561

Typically, this is done using a HTTP 302 redirect. 3562

As in step 2, additional information MAY be passed to reflect the agreement between the two IP/STS’s, 3563

and this request for the token MAY be done using a POST method (see syntax for details). 3564

The requestor IP/STS SHOULD provide information confidentiality or use HTTP/S or some other 3565

transport-level security mechanism. 3566

Step 5: The requestor's IP/STS now authenticates the requestor to establish a sign in. 3567

Step 5.1: Validation of the requestor MAY involve displaying some UI in this OPTIONAL step. 3568

Step 6: Once requestor information has been successfully validated, a security token response (RSTR) is 3569

formatted and sent to the resource IP/STS. 3570

Processing continues at the resource IP/STS via a redirect. 3571

While an IP/STS MAY choose to return a pointer to token information using wresultptr, it is 3572

RECOMMENDED that, whenever possible to return the security token (RSTR) using a POST method to 3573

reduce the number of overall messages. This MAY be done using requestor-side scripting. The exact 3574

syntax is described in Appendix I. 3575

Step 7: Resource's IP/STS receives and validates the requestor's security token (RSTR). 3576

Step 8: The resource's IP/STS performs a federated authentication/authorization check (validation 3577

against policy). After a successful check, the resource's IP/STS can issue a security token for the 3578

resource. The resource IP/STS redirects to the resource. 3579

It should be noted that the OPTIONAL wctx parameter specifies the opaque context information (if any) 3580

passed in with the original request and is echoed back here. This mechanism is an optional way for the 3581

IP/STS to have state returned to it. 3582

At this point the resource's IP/STS MAY choose to set an artifact/cookie to indicate the sign-in state of the 3583

requestor (which likely includes the requestor’s realm). 3584

Step 9: The resource receives the security token (RSTR) from the resource IP/STS. On successful 3585

validation the resource processes the request (per policy). 3586

The security token SHOULD be passed using an HTML POST using the syntax previously described. 3587

Step 10: The resource MAY establish a artifact/cookie indicating the sign-in state of the requestor when it 3588

returns the result of the resource request. 3589

 3590

Optimized Scenario: 3591

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 108 of 140

 3592

Figure 30: Optimized Sample Browser Sign-In 3593

This scenario assumes that an initial federated flow has occurred. Note that many legs of the initial flow 3594

MAY be eliminated due to the presence of artifacts/cookies. For readability, the similar steps are 3595

numbered consistently with the previous non-optimized example. 3596

Step 1: The requestor browser accesses a resource, typically using the HTTP GET method. 3597

Step 2: At the resource, the requestor's request is redirected to the IP/STS associated with the target 3598

resource. The redirected URL MAY contain additional information reflecting agreements which the 3599

resource and its IP/STS have established; however, this (redirection target) URL MUST be used 3600

throughout the protocol as the URL for the resource's IP/STS. Typically, this occurs using a standard 3601

HTTP 302 error code. (Alternatively, the request for the token MAY be done using a HTTP POST method 3602

described in step 6). 3603

It is RECOMMENDED that the resource STS provide confidentiality (e.g. using encryption or HTTP/S) of 3604

the information. 3605

Step 3: Upon receipt of the redirection, the IP/STS must determine the requestor realm. This requestor 3606

realm could be cached in an artifact/cookie from an earlier exchange, it could be known to or fixed by the 3607

resource, or the requestor MAY be prompted to enter or select their realm (step 3.1). 3608

Step 8: The resource's IP/STS performs a federated authentication/authorization check (validation 3609

against policy). After a successful check, the resource's IP/STS can issue a security token for the 3610

resource. The resource IP/STS redirects to the resource. 3611

It should be noted that the OPTIONAL wctx parameter specifies the opaque context information (if any) 3612

passed in with the original request and is echoed back here. This mechanism is an optional way for the 3613

IP/STS to have state returned to it. 3614

At this point the resource's IP/STS MAY choose to set an artifact/cookie to indicate the sign-in state of the 3615

requestor (which likely includes the requestor’s realm). 3616

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 109 of 140

Step 9: The resource receives the security token (RSTR) from the resource IP/STS. On successful 3617

validation the resource processes the request (per policy). 3618

The security token SHOULD be passed using an HTML POST using the syntax previously described. 3619

Step 10: The resource MAY establish a artifact/cookie indicating the sign-in state of the requestor when it 3620

returns the result of the resource request. 3621

13.4 Request and Result References 3622

The previous example illustrates a common form of messaging when passing WS-Trust messages via a 3623

simple Web browser. However, in some scenarios it is undesirable to use POST messages and carry the 3624

full details within the messages (e.g. when redirecting through wireless or mobile devices). In such cases 3625

requests and responses can be referenced via a URL and all messages passed as part of the query 3626

strings (or inside small POSTs). 3627

Request references are specified via wreqptr and typically specify a <wst:RequestSecurityToken> 3628

element that can be obtained by issuing a HTTP GET against the specified URL. Response references 3629

are specified via wresultptr and typically specify a <wst:RequestSecurityTokenResponse> or 3630

<wst:RequestSecurityTokenResponseCollection> element that can be obtained by issuing a 3631

HTTP GET against the specified URL. 3632

This section provides a detailed example of the use of references with the protocol defined in this 3633

specification. The exact flow for Web sign-in scenarios can vary significantly; however, the following 3634

diagram and description depict a common or basic sequence of events. Note that this example only 3635

illustrates result reference not request references and makes use of a resource-specific IP/STS. 3636

In this scenario, the user at a requestor browser is attempting to access a resource which requires 3637

security authentication to be validated by the resource's security token service. 3638

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 110 of 140

Requestor

Browser

Requestor

IP/STS

Resource

IP/STS

GET resource

Redirect to resource’s IP/STS

GET resource token

UI to determine realm

Redirect to requestor’s IP/STS

Requestor IP/

STS token

UI to collect

authentication

data

1.

2.

3.

3.1

4.

5.

5.1.

WS

Resource

Return requestor

token reference

6.

Redirect
7.

GET requestor

token from

reference

7.1.

Return requestor

token

7.2.

Return resource token reference
8.

Redirect
9.

Return result
10.

GET resource

token from

reference

9.1.

Return resource

token

9.2.

 3639

Figure 31: Sample Browser Sign-In with Request and Result References 3640

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 111 of 140

Step 1: The requestor browser accesses a resource, typically using the HTTP GET method. 3641

Step 2: At the resource, the requestor's request is redirected to the IP/STS associated with the target 3642

resource. The redirected URL MAY contain additional information reflecting agreements which the 3643

resource and its IP/STS have established; however, this (redirection target) URL MUST be used 3644

throughout the protocol as the URL for the resource's IP/STS. Typically, this occurs using a standard 3645

HTTP 302 error code. (Alternatively, the request for the token MAY be done using a HTTP POST method 3646

described in step 6). 3647

It is RECOMMENDED that the resource STS provide confidentiality (e.g. using encryption or HTTP/S) of 3648

the information. 3649

Step 3: Upon receipt of the redirection, the IP/STS must determine the requestor realm. This requestor 3650

realm could be cached in an artifact/cookie from an earlier exchange, it could be known to or fixed by the 3651

resource, or the requestor MAY be prompted to enter or select their realm (step 3.1). 3652

Step 3.1: This is an OPTIONAL step. If the resource IP/STS cannot determine the requestor’s realm, 3653

then the IP/STS MAY prompt the requestor for realm information. 3654

Step 4: The resource IP/STS redirects to the requestor’s IP/STS in order to validate the requestor. 3655

Typically, this is done using a HTTP 302 redirect. 3656

As in step 2, additional information MAY be passed to reflect the agreement between the two IP/STS’s, 3657

and this request for the token MAY be done using a POST method (see syntax for details). 3658

The requestor IP/STS SHOULD provide information confidentiality or use HTTP/S or some other 3659

transport-level security mechanism. 3660

Step 5: The requestor's IP/STS now authenticates the requestor to establish a sign in. 3661

Step 5.1: Validation of the requestor MAY involve displaying some UI in this OPTIONAL step. 3662

Step 6: Once requestor information has been successfully validated, a security token response (RSTR) is 3663

formatted and sent to the resource IP/STS. 3664

Processing continues at the resource IP/STS via a redirect. 3665

Step 7: Resource's IP/STS receives and validates the requestor's security token (RSTR). 3666

Step 7.1: The Resource IP/STS issues a GET to the Requestor IP/STS to obtain the actual RSTR. 3667

Step 7.2: The Requestor IP/STS responds to the GET and returns the actual RSTR. 3668

Step 8: The resource's IP/STS performs a federated authentication/authorization check (validation 3669

against policy). After a successful check, the resource's IP/STS can issue a security token for the 3670

resource. The resource IP/STS redirects to the resource. 3671

It should be noted that the OPTIONAL wctx parameter specifies the opaque context information (if any) 3672

passed in with the original request and is echoed back here. This mechanism is an optional way for the 3673

IP/STS to have state returned to it. 3674

At this point the resource's IP/STS MAY choose to set an artifact/cookie to indicate the sign-in state of the 3675

requestor (which likely includes the requestor’s realm). 3676

Step 9: The resource receives the security token (RSTR) from the resource IP/STS. On successful 3677

validation the resource processes the request (per policy). 3678

The security token SHOULD be passed using an HTML POST using the syntax previously described. 3679

Step 9.1: The Resource issues a GET to the Resource IP/STS to obtain the actual RSTR. 3680

Step 9.2: The Resource IP/STS responds to the GET and returns the actual RSTR. 3681

Step 10: The resource MAY establish a artifact/cookie indicating the sign-in state of the requestor when it 3682

returns the result of the resource request. 3683

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 112 of 140

13.5 Home Realm Discovery 3684

In the protocol previously described the resource or the resource’s IP/STS must determine the IP/STS for 3685

the requestor and re-direct to obtain an identity token. After this is done, the information can be cached in 3686

a cookie (or by whatever means is desired). 3687

There is no normative way of discovering the home realm of the requestor, however, the following 3688

mechanisms are common methods: 3689

• Fixed – The home realm is fixed or known 3690

• Requestor IP – The home realm is determined using the requestor’s IP address 3691

• Prompt – The user is prompted (typically using a Web page) 3692

• Discovery Service – A service is used to determine the home realm 3693

• Shared Cookie – A shared cookie from a shared domain is used (out of scope) 3694

The first three mechanisms are well understood, the Discovery Service is discussed next, and the cookie 3695

mechanism is outside the scope of this document. 3696

13.5.1 Discovery Service 3697

The Home Realm Discovery Service is a Web-based service that, through implementation-specific 3698
methods MAY be able to determine a requestor’s home realm without user interaction. 3699

A resource or resource IP/STS MAY redirect to a discovery service to attempt to determine the home 3700

realm without prompting the user. The discovery service MUST redirect back to the URL specified by the 3701

wreply parameter. If the context parameter is specified it MUST also be specified. If the discovery 3702

service was able to determine the home realm, it is returned using the whr parameter defined in section 3703

13.2.2. This parameter contains a URI which identifies the home realm of the user. This SHOULD be the 3704

same URI that the user’s realm uses for the wtrealm parameter when it makes token requests to other 3705

federated partners. This value can be used to lookup the URL for the user’s IP/STS for properly 3706

redirecting the token request. 3707

If the discovery service is unable to determine the home realm then the whr parameter is not specified 3708
and the home realm must be discovered by other means. 3709

13.6 Minimum Requirements 3710

For the purposes of interoperability of federated Web Single Sign-on, this sub-section defines a subset of 3711

the exchanges defined in this chapter which MUST be supported by all Web-enabled requestors and 3712

services. Optional aspects are optional for both clients and services. 3713

The scenario and diagram(s) in section 13.3 illustrates the core Sign-On messages between two 3714
federated realms. This is the center of the interoperability subset described below. 3715

13.6.1 Requesting Security Tokens 3716

The focus of these requirements is on the message exchange between the requestor IP/STS and the 3717
resource IP/STS. Thus, to conform to this specification, messages 1, 4, 7 & 10 MUST be supported 3718
(again refer to the figure and steps in section 13.3). All other message exchanges are implementation 3719
specific and are only provided here for guidance. 3720

A security token is requested via SignIn message in step 2 of the diagram. Message 3 arrives via HTTP 3721
GET and is protected by SSL/TLS. The parameters are encoded in a query string as specified in section 3722
13.2. The message will contain parameters as detailed below. Parameters enclosed in brackets are 3723
OPTIONAL. 3724

 3725

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 113 of 140

wa=wsignin1.0 3726
wtrealm=resource realm URI 3727
[wreply=Resource IP/STS Url] 3728
[wctx=anything] 3729
[wct=ISO8601 UTC] 3730

 3731

The REQUIRED wa field is common to all SignIn messages and is fixed. 3732

The REQUIRED wtrealm field MUST contain a URI that the Resource IP/STS and Requestor IP/STS 3733
have agreed to use to identify the realm of Resource IP/STS in messages to Requestor IP/STS. 3734

The OPTIONAL wreply field specifies the URL to which this message’s response will be POSTed (see 3735
Returning Security Tokens). 3736

The OPTIONAL wctx field is provided for Resource IP/STS’s use and MUST be returned by Requestor 3737
IP/STS unchanged. 3738

The OPTIONAL wct field, if present, MUST contain the current time in UTC using the ISO8601 format 3739
(e.g. “2003-04-30T22:47:20Z”). This field MAY not be available if the requestor is coming via a portal link. 3740
Individual implementations of Requestor IP/STS MAY require this field to be present. 3741

Other options MAY be specified but are not required to be supported. 3742

13.6.2 Returning Security Tokens 3743

A security token is returned in response to successful Web SignIn messages, as described in the 3744
example protocol message flow in section 13.3. Security tokens are returned to the requestor and 3745
SHOULD be transmitted to a Resource Provider via HTTP POST and be protected by SSL/TLS, as 3746
depicted in steps 6-7 and 9-10 of figure 29. Optionally, the token MAY be returned using the wresultptr 3747
parameter. Encoding of the parameters in the POST body MUST be supported. The parameters to the 3748
message MAY be encoded in the query string if wresultptr is being used. The message will contain 3749
parameters as detailed below. Parameters enclosed in brackets are OPTIONAL. 3750

 3751

wa=wsignin1.0 3752
wresult=RequestSecurityTokenResponse 3753
[wctx=wctx from the request] 3754
[wresultptr=URL] 3755

 3756

The REQUIRED wa field is common to all SignIn messages and is fixed. 3757

The REQUIRED wresult field MUST contain a <wst:RequestSecurityTokenResponse> element, as 3758

detailed below. 3759

The OPTIONAL wctx field MUST be identical to the wctx field from the incoming SignIn message that 3760
evoked this response. 3761

The OPTIONAL wresultptr field provides a pointer to the resulting 3762

<wst:RequestSecurityTokenResponse> element, as detailed below. 3763

13.6.3 Details of the RequestSecurityTokenResponse element 3764

The <wst:RequestSecurityTokenResponse> element that is included as the wresult field in the 3765

SignIn response MUST contain a <wst:RequestedSecurityToken> element. Support for SAML 3766

assertions MUST be provided but another token format MAY be used (depending on policy). 3767

The <wst:RequestSecurityTokenResponse> element MAY include a wsp:AppliesTo / 3768

wsa:EndpointReference / wsa:Address element that specifies the Resource Realm URI. Note that 3769

this data MUST be consistent with similar data present in security tokens (if any is present) – for example 3770

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 114 of 140

it must duplicate the information in the signed token’s saml:Audience element when SAML security 3771
tokens are returned. 3772

13.6.4 Details of the Returned Security Token Signature 3773

It MUST be possible to return signed security tokens, but unsecured tokens MAY be returned. Signed 3774
security tokens SHOULD contain an enveloped signature to prevent tampering but MAY use alternative 3775
methods if the security token format allows for specialized augmentation of the token. The signature 3776
SHOULD be performed over canonicalized XML [XML-C14N] (failure to do so MAY result in non-verifiable 3777
security tokens). The signature SHOULD be produced using the Requestor STS private key, which 3778
SHOULD correspond to either a security token included as part of the response or pre-established with 3779
the requestor. Note that in the above example the certificate is included directly in KeyInfo (via the 3780
X509Data element [WSS:X509Token]). This is the RECOMMENDED approach. 3781

When used, the X509SKI element contains the base64 encoded plain (i.e., non-DER-encoded) value of 3782
an X509 V.3 SubjectKeyIdentifier extension. If the SubjectKeyIdentifier field is not present in the 3783
certificate, the certificate itself MUST be included directly in KeyInfo (see the above example). 3784

Note that typically the returned security token is unencrypted (The entire RSTR is sent over SSL3.0/TLS 3785
[HTTPS]) but it MAY be encrypted in specialized scenarios. 3786

Take care to include appropriate transforms in Signature/Reference/Transforms. For example, all SAML 3787
tokens [WSS:SAMLTokenProfile] following the rules above MUST contain the enveloped signature and 3788
EXCLUSIVE cannonicalization transforms. 3789

13.6.5 Request and Response References 3790

If the wreqptr or wresultptr parameters are supported, it MUST be possible to pass 3791

<wst:RequestSecurityToken> in the wreqptr and either 3792

<wst:RequestSecurityTokenResponse> or 3793

<wst:RequestSecurityTokenResponseCollection> in wresultptr. Other values MAY (but are not 3794

required) to be supported. 3795

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 115 of 140

14 Additional Policy Assertions 3796

This specification defines the following assertions for use with [WS-Policy] and [WS-SecurityPolicy]. 3797

14.1 RequireReferenceToken Assertion 3798

This element represents a requirement to include a ReferenceToken (as described previously in this 3799

specification). The default version of this token is the version described in this document. 3800

The syntax is as follows: 3801

<fed:RequireReferenceToken sp:IncludeToken="xs:anyURI" ? ... > 3802
 <wsp:Policy> 3803
 <fed:RequireReferenceToken11 ...>...</fed:RequireReferenceToken11> ? 3804
 ... 3805
 </wsp:Policy> ? 3806
 ... 3807
</fed:RequireReferenceToken> 3808

The following describes the attributes and elements listed in the schema outlined above: 3809

/fed:RequireReferenceToken 3810

This identifies a RequireReference assertion 3811

/fed:RequireReferenceToken/sp:IncludeToken 3812

This OPTIONAL attribute identifies the token inclusion value for this token assertion 3813

/fed:RequireReferenceToken/wsp:Policy 3814

This OPTIONAL element identifies additional requirements for use of the 3815
fed:RequireReferenceToken assertion. 3816

/fed:RequireReferenceToken/wsp:Policy/fed:RequireReferenceToken11 3817

This OPTIONAL element indicates that a reference token should be used as defined in this 3818
specification. 3819

/fed:RequireReferenceToken/wsp:Policy/fed:RequireReferenceToken11/@{any} 3820

This extensibility mechanism allows attributes to be added. Use of this extensibility point MUST 3821
NOT violate or alter the semantics defined in this specification. 3822

/fed:RequireReferenceToken/wsp:Policy/fed:RequireReferenceToken11/{any} 3823

This is an extensibility point allowing content elements to be specified. Use of this extensibility 3824
point MUST NOT alter semantic defined in this specification. 3825

/fed:RequireReferenceToken/@{any} 3826

This extensibility mechanism allows attributes to be added . Use of this extensibility point MUST 3827
NOT violate or alter the semantics defined in this specification. 3828

/fed:RequireReferenceToken/{any} 3829

This is an extensibility point allowing content elements to be specified. Use of this extensibility 3830
point MUST NOT alter semantic defined in this specification. 3831

This assertion is used wherever acceptable token types are identified (e.g. within the supporting token 3832

assertions defined in WS-SecurityPolicy). 3833

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 116 of 140

14.2 WebBinding Assertion 3834

The WebBinding assertion is used in scenarios where requests are made of token services using a Web 3835

client and HTTP with GET, POST, and redirection as described in Section 13. Specifically, this assertion 3836

indicates that the requests use the Web client mechanism defined in this document and are protected 3837

using the means provided by a transport. This binding has several specific binding properties: 3838

• The [TransportToken] property indicates what transport mechanism is used to protect requests 3839

and responses. 3840

• The [AuthenticationToken] property indicates the REQUIRED token type for authentication. Note 3841

that this can be a choice of formats as it uses nested policy. Also note that this can specify 3842

fed:ReferenceToken as an option to indicate that token handles are accepted (and dereferenced). 3843

• The [RequireSignedTokens] property indicates that tokens MUST be signed i.e. only tokens that 3844

are signed are accepted. 3845

• The [RequireBearerTokens] property indicates that tokens MUST be bearer tokens i.,e only 3846

bearer tokens are accepted. 3847

• The [RequireSharedCookies] property indicates if shared cookies MUST be used for home realm 3848

discovery 3849

• The [Bas64Url] property indicates that base64url encoded xml parameter content is REQUIRED. 3850

 The syntax is as follows: 3851

<fed:WebBinding ...> 3852
 <wsp:Policy> 3853
 <sp:TransportToken ...> ... </sp:TransportToken> ? 3854
 <fed:AuthenticationToken ... > ? 3855
 <wsp:Policy> ... </wsp:Policy> 3856
 <fed:ReferenceToken ...>... </fed:ReferenceToken> ? 3857
 </fed:AuthenticationToken> <fed:RequireSignedTokens ... /> ? 3858
 <fed:RequireBearerTokens ... /> ? 3859
 <fed:RequireSharedCookies ... /> ? 3860
 <fed:Base64Url ... /> ? 3861
 ... 3862
 </wsp:Policy> ? 3863
</fed:WebBinding> 3864

The following describes the attributes and elements listed in the schema outlined above: 3865

/fed:WebBinding 3866

This identifies a WebBinding assertion 3867

/fed:WebBinding/wsp:Policy 3868

This identifies a nested wsp:Policy element that defines the behavior of the WebBinding 3869

assertion. 3870

/fed:WebBinding/wsp:Policy/sp:TransportToken 3871

This indicates that a Transport Token as defined in [WS-SecurityPolicy] is REQUIRED 3872

/fed:WebBinding/wsp:Policy/fed:AuthenticationToken 3873

This indicates the REQUIRED token type for authentication. 3874

/fed:WebBinding/wsp:Policy/fed:AuthenticationToken/wsp:Policy 3875

This indicates a nested wsp:Policy element to specify a choice of formats for the authentication 3876
token. 3877

/fed:WebBinding/wsp:Policy/fed:AuthenticationToken/fed:ReferenceToken 3878

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 117 of 140

This OPTIONAL element indicates token handles that are accepted. See section 8.1 for a 3879
complete description. 3880

/fed:WebBinding/wsp:Policy/RequireSignedTokens 3881

This indicates a requirement for tokens to be signed. This sets the [RequireSignedTokens] 3882
property to true (the default value is false). 3883

/fed:WebBinding/wsp:Policy/RequireBearerTokens 3884

This indicates a requirement for bearer tokens. This sets the [RequireBearerTokens] property to 3885
true (the default value is false). 3886

/fed:WebBinding/wsp:Policy/RequireSharedCookies 3887

This indicates a requirement for shared cookies to facilitate home realm discovery. This sets the 3888
[RequireSharedCookies] property to true (the default value is false). 3889

/fed:WebBinding/wsp:Policy/Base64Url 3890

This indicates a requirement for xml parameter content to be base64url encoded. This sets the 3891
[Bas64Url] property to true (the default value is false). 3892

Note that the sp:AlgorithmSuite, sp:Layout, and sp:IncludeTimestamp properties are not used 3893

by this binding and SHOULD NOT be specified. 3894

This assertion SHOULD only be used with endpoint subjects. 3895

14.3 Authorization Policy 3896

To indicate support for the authorization features described in this specification, the following policy 3897

assertions are specified. 3898

<fed:RequiresGenericClaimDialect ... /> 3899
<fed:IssuesSpecificMetadataFault ... /> 3900
<fed:AdditionalContextProcessed ... /> 3901

The following describes the above syntax: 3902

/fed:RequiresGenericClaimDialect 3903

This assertion indicates that the use of the generic claim dialect defined in this specification in 3904
Section 9.3.is REQUIRED by the service. 3905

/fed:IssuesSpecificPolicyFault 3906

This assertion indicates that the service issues the fed:SpecificPolicy Fault defined in this 3907

document if the security requirements for a specific request are beyond those of the base policy. 3908

/fed:AdditionalContextProcessed 3909

This assertion indicates that the service will process the fed:AdditionalContext parameter if 3910

specified in an RST request. 3911

Typically these assertions are specified at the service or port/endpoint. 3912

These assertions SHOULD be specified within a binding assertion. 3913

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 118 of 140

15 Error Handling 3914

This specification defines the following error codes that MAY be used. Other errors MAY also be used. 3915

These errors use the SOAP Fault mechanism. Note that the reason text provided below is 3916

RECOMMENDED, buy alternative text MAY be provided if more descriptive or preferred by the 3917

implementation. The table below is defined in terms of SOAP 1.1. For SOAP 1.2 the Fault/Code/Value is 3918

env:Sender (as defined in SOAP 1.2) and the Fault/Code/SubCode/Value is the faultcode below, and the 3919

Fault/Reason/Text is the faultstring below. It should be notes that profiles MAY provide second-level 3920

detail fields but they should be careful not to introduce security vulnerabilities when doing so (e.g. by 3921

providing too detailed information or echoing confidential information over insecure channels). It is 3922

RECOMMENDED that Faults use the indicated action URI when sending the Fault. 3923

Error that occurred

(faultstring)

Fault code (faultcode) Fault Action URI

No pseudonym found for

the specified scope

fed:NoPseudonymInScope http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/NoPseudonymInScope

The principal is already

signed in (need not be

reported)

fed:AlreadySignedIn http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/AlreadySignedIn

The principal is not signed

in (need not be reported)

fed:NotSignedIn http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/NotSignedIn

An improper request was

made (e.g.,

Invalid/unauthorized

pseudonym request)

fed:BadRequest http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/BadRequest

No match for the specified

scope

fed:NoMatchInScope http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/NoMatchInScope

Credentials provided don’t

meet the freshness

requirements

fed:NeedFresherCredentials http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/NeedFresherCredentials

Specific policy applies to

the request – the new

policy is specified in the

S12:Detail element.

fed:SpecificPolicy http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/SpecificPolicy

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 119 of 140

Error that occurred

(faultstring)

Fault code (faultcode) Fault Action URI

The specified dialect for

claims is not supported

fed:UnsupportedClaimsDialect http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/UnsupportedClaimsDialect

A requested RST

parameter was not

accepted by the STS. The

details element contains a

fed:Unaccepted

element. This element’s

value is a list of the

unaccepted parameters

specified as QNames.

fed:RstParameterNotAccepted http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/RstParameterNotAccepted

A desired issuer name is

not supported by the STS

fed:IssuerNameNotSupported http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/IssuerNameNotSupported

A wencoding value or

other parameter with XML

content was received in an

unknown/unsupported

encoding.

fed:UnsupportedEncoding http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/UnsupportedEncoding

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 120 of 140

16 Security Considerations 3924

It is strongly RECOMMENDED that the communication between services be secured using the 3925
mechanisms described in [WS-Security]. In order to properly secure messages, the body and all relevant 3926
headers need to be included in the signature. 3927

Metadata that is exchanged also needs to be secured to prevent various attacks. All metadata 3928
documents SHOULD be verified to ensure that the issuer can speak for the specified endpoint and that 3929
the metadata is what the issuer intended. 3930

All federation-related messages such as sign-out, principal, attribute, and pseudonym management 3931
SHOULD be integrity protected (signed or use transport security). If a message is received where the 3932
body is not integrity protected, it is RECOMMENDED that the message not be processed. 3933

All sign-out requests SHOULD be signed by the principal being purported to be signing in or out, or by a 3934
principal that is authorized to be on behalf of the indicated principal. 3935

It is also RECOMMENDED that all messages be signed by the appropriate security token service. If a 3936
message is received that does not have a signature from a principal authorized to speak for the security 3937
token service, it is RECOMMENDED that the message not be processed. 3938

When using Web messages care should be taken around processing of the wreply parameter as its value 3939
could be spoofed. It is RECOMMENDED that implementations do explicit lookup and verification of URL, 3940
and that these values be passed with transport security. 3941

The attribute service maintains information that may be very sensitive. Significant care SHOULD be 3942
taken to ensure that a principal's privacy is taken into account first and foremost. 3943

The pseudonym service may contain passwords or other information used in proof-of-possession 3944
mechanisms. Extreme care needs to be taken with this data to ensure that it cannot be compromised. It 3945
is strongly RECOMMENDED that such information be encrypted over communications channels and in 3946
any physical storage. 3947

If a security token does not contain an embedded signature (or similar integrity mechanism to protect 3948
itself), it SHOULD be included in any message integrity mechanisms (e.g. included in the message 3949
signature). 3950

If privacy is a concern, the security tokens used to authenticate and authorize messages MAY be 3951
encrypted for the authorized recipient(s) using mechanisms in WS-Security. 3952

Care SHOULD be taken when processing and responding to requests from 3
rd

-parties to mitigate 3953

potential information disclosure attacks by way of faulting requests for specific claims. 3954

As a general rule tokens SHOULD NOT have lifetimes beyond the minimum of the basis credentials 3955
(security tokens). However, in some cases special arrangements may exist and issuers may provide 3956
longer lived tokens. Care SHOULD be taken in such cases not to introduce security vulnerabilities. 3957

The following list summarizes common classes of attacks that apply to this protocol and identifies the 3958
mechanism to prevent/mitigate the attacks. Note that wherever WS-Security is suggested as the 3959
mitigation, [HTTPS] is the corresponding mechanism for Web requestors: 3960

 Metadata alteration – Alteration is prevented by including signatures in metadata or using secure 3961

channels for metadata transfer. 3962

 Message alteration – Alteration is prevented by including signatures of the message information 3963

using [WS-Security]. 3964

 Message disclosure – Confidentiality is preserved by encrypting sensitive data using [WS-Security]. 3965

 Key integrity – Key integrity is maintained by using the strongest algorithms possible (by comparing 3966

secured policies – see [WS-Policy] and [WS-SecurityPolicy]). 3967

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 121 of 140

 Authentication – Authentication is established using the mechanisms described in [WS-Security] 3968

and [WS-Trust]. Each message is authenticated using the mechanisms described in [WS-Security]. 3969

 Accountability – Accountability is a function of the type of and string of the key and algorithms being 3970

used. In many cases, a strong symmetric key provides sufficient accountability. However, in some 3971

environments, strong PKI signatures are required. 3972

 Availability – All reliable messaging services are subject to a variety of availability attacks. Replay 3973

detection is a common attack and it is RECOMMENDED that this be addressed by the mechanisms 3974

described in [WS-Security]. Other attacks, such as network-level denial of service attacks are harder 3975

to avoid and are outside the scope of this specification. That said, care SHOULD be taken to ensure 3976

that minimal state is saved prior to any authenticating sequences. 3977

 Replay attacks: It is possible that requests for security tokens could be replayed. Consequently, it 3978

is RECOMMENDED that all communication between Security Token Services and resources take 3979

place over secure connections. All cookies indicating state SHOULD be set as secure. 3980

 Forged security tokens: Security token services MUST guard their signature keys to prevent 3981

forging of tokens and requestor identities. 3982

 Privacy: Security token services SHOULD NOT send requestors’ personal identifying information or 3983

information without getting consent from the requestor. For example a Web site SHOULD NOT 3984

receive requestors’ personal information without an appropriate consent process. 3985

 Compromised services: If a Security Token Service is compromised, all requestor accounts 3986

serviced SHOULD be assumed to be compromised as well (since an attacker can issue security 3987

tokens for any account they want). However they SHOULD NOT not be able to issue tokens directly 3988

for identities outside the compromised realm. This is of special concern in scenarios like the 3
rd

 party 3989

brokered trust where a 3
rd

 party IP/STS is brokering trust between two realms. In such a case 3990

compromising the broker results in the ability to indirectly issue tokens for another realm by indicating 3991

trust. 3992

As with all communications careful analysis SHOULD be performed on the messages and interactions to 3993

ensure they meet the desired security requirements. 3994

 3995

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 122 of 140

17 Conformance 3996

An implementation conforms to this specification if it satisfies all of the MUST or REQUIRED level 3997

requirements defined within this specification. A SOAP Node MUST NOT use the XML namespace 3998

identifier for this specification (listed in Section 1.4) within SOAP Envelopes unless it is compliant with this 3999

specification. 4000

This specification references a number of other specifications (see the table above). In order to comply 4001

with this specification, an implementation MUST implement the portions of referenced specifications 4002

necessary to comply with the required provisions of this specification. Additionally, the implementation of 4003

the portions of the referenced specifications that are specifically cited in this specification MUST comply 4004

with the rules for those portions as established in the referenced specification. 4005

Additionally normative text within this specification takes precedence over normative outlines (as 4006

described in section 1.3), which in turn take precedence over the XML Schema [XML Schema Part 1, 4007

Part 2] and WSDL [WSDL 1.1] descriptions. That is, the normative text in this specification further 4008

constrains the schemas and/or WSDL that are part of this specification; and this specification contains 4009

further constraints on the elements defined in referenced schemas. 4010

If an OPTIONAL message is not supported, then the implementation SHOULD Fault just as it would for 4011
any other unrecognized/unsupported message. If an OPTIONAL message is supported, then the 4012
implementation MUST satisfy all of the MUST and REQUIRED sections of the message. 4013

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 123 of 140

Appendix A WSDL 4014

The following illustrates the WSDL for the Web service methods described in this specification: 4015

<wsdl:definitions xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/' 4016
xmlns:xs='http://www.w3.org/2001/XMLSchema' 4017

 xmlns:tns='http://docs.oasis-open.org/wsfed/federation/200706' 4018
 targetNamespace='http://docs.oasis-open.org/wsfed/federation/200706' > 4019
 4020
<!-- WS-Federation endpoints implement WS-Trust --> 4021
<wsdl:import namespace='http://docs.oasis-open.org/ws-sx/ws-trust/200512 4022
location='http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3.wsdl' 4023
/> 4024
 4025
<!-- WS-Federation endpoints can implement WS-MEX --> 4026
<wsdl:import namespace='http://schemas.xmlsoap.org/ws/2004/09/mex' 4027
location='http://schemas.xmlsoap.org/ws/2004/09/mex/MetadataExchange.wsdl' /> 4028
 4029
<!-- WS-Federation endpoints can implement WS-Eventing --> 4030
<wsdl:import namespace='http://schemas.xmlsoap.org/ws/2004/08/eventing' 4031
location='http://schemas.xmlsoap.org/ws/2004/08/eventing/eventing.wsdl' /> 4032
 4033
<!-- WS-Federation endpoints can implement WS-Transfer --> 4034
<wsdl:import namespace='http://schemas.xmlsoap.org/ws/2004/09/transfer' 4035
location='http://schemas.xmlsoap.org/ws/2004/09/transfer/transfer.wsdl'/> 4036
 4037
<!-- WS-Federation endpoints can implement WS-ResourceTransfer --> 4038
<wsdl:import 4039
namespace='http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer' 4040
location='http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/wsrt.wsdl' /> 4041
 4042
<wsdl:types> 4043
 <xs:schema> 4044
 <xs:import namespace='http://docs.oasis-open.org/wsfed/federation/200706' /> 4045
 </xs:schema> 4046
</wsdl:types> 4047
 4048
<wsdl:message name='SignOut' > 4049
 <wsdl:part name='Body' element='tns:SignOut' /> 4050
</wsdl:message> 4051
 4052
<wsdl:portType name='SignOutIn' > 4053
 <wsdl:operation name='SignOut' > 4054
 <wsdl:input message='tns:SignOut' /> 4055
 </wsdl:operation> 4056
</wsdl:portType> 4057
 4058
<wsdl:portType name='SignOutOut' > 4059
 <wsdl:operation name='SignOut' > 4060
 <wsdl:output message='tns:SignOut' /> 4061
 </wsdl:operation> 4062
</wsdl:portType> 4063
 4064
</wsdl:definitions> 4065

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 124 of 140

Appendix B Sample HTTP Flows for Web Requestor 4066

Detailed Example 4067

This appendix provides sample HTTP messages for the detailed example previously described in the 4068

Web requestor section. 4069

In this example, the following URLs are used: 4070

Item URL

Resource Realm Resource.com

Resource https://res.resource.com/sales

Resource's IP/STS https://sts.resource.com/sts

Account Account.com

Resource https://sts.account.com/sts

Step 1 – GET resource 4071

GET https://res.resource.com/sales HTTP/1.1 4072

Step 2 – Redirect to resource’s IP/STS 4073

HTTP/1.1 302 Found 4074
Location: 4075
https://sts.resource.com/sts?wa=wsignin1.0&wreply=https://res.resource.com/sal4076
es&wct=2003-03-03T19:06:21Z 4077

In addition, the resource could check for a previously written artifact/cookie and, if present, skip to Step 4078

10. 4079

Step 3 – GET resource challenge 4080

GET https://sts.resource.com/sts?wa=wsignin1.0&wreply= 4081
https://res.resource.com/sales&wct=2003-03-03T19:06:21Z HTTP/1.1 4082

Step 3.1 – UI to determine realm (OPTIONAL) 4083

 [Implementation Specific Traffic] 4084

Step 4 – Redirect to requestor’s IP/STS 4085

HTTP/1.1 302 Found 4086
Location: https://sts.account.com/sts?wa=wsignin1.0&wreply= 4087
https://sts.resource.com/sts&wctx= https://res.resource.com/sales&wct=2003-03-4088
03T19:06:22Z&wtrealm=resource.com 4089

In addition, the Resource IP/STS MAY check for a previously written artifact/cookie and, if present, skip to 4090

Step 8. 4091

Step 5 – Requestor IP/STS challenge 4092

GET 4093
https://sts.account.com/sts?wa=wsignin1.0&wreply=https://sts.resource.com/sts&4094
wctx=https://res.resource.com/sales&wct=2003-03-4095
03T19:06:22Z&wtrealm=resource.com HTTP/1.1 4096

Step 5.1 – UI to collect authentication data (OPTIONAL) 4097

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 125 of 140

 [Implementation Specific Traffic] 4098

Step 6 – Return requestor token 4099

HTTP/1.1 200 OK 4100
... 4101
 4102
<html xmlns="https://www.w3.org/1999/xhtml"> 4103
<head> 4104
<title>Working...</title> 4105
</head> 4106
<body> 4107
<form method="post" action="https://sts.resource.com/sts"> 4108
<p> 4109
<input type="hidden" name="wa" value="wsignin1.0" /> 4110
<input type="hidden" name="wctx" value="https://res.resource.com/sales" /> 4111
<input type="hidden" name="wresult" 4112
value="<RequestSecurityTokenResponse>...</RequestSecurityTokenRespons4113
e>" /> 4114
<button type="submit">POST</button> <!-- included for requestors that do not 4115
support javascript --> 4116
</p> 4117
</form> 4118
<script type="text/javascript"> 4119
setTimeout('document.forms[0].submit()', 0); 4120
</script> 4121
</body> 4122
</html> 4123

Step 7 – POST requestor token 4124

POST https://sts.resource.com/sts HTTP/1.1 4125
… 4126
 4127
wa=wsignin1.0 4128
wctx=https://res.resource.com/sales 4129
wresult=<RequestSecurityTokenResponse>…</RequestSecurityTokenResponse> 4130

Step 8 – Return resource token 4131

HTTP/1.1 200 OK 4132
… 4133
 4134
<html xmlns="https://www.w3.org/1999/xhtml"> 4135
<head> 4136
<title>Working...</title> 4137
</head> 4138
<body> 4139
<form method="post" action="https://res.resource.com/sales"> 4140
<p> 4141
<input type="hidden" name="wa" value="wsignin1.0" /> 4142
<input type="hidden" name="wresult" 4143
value="<RequestSecurityTokenResponse>...</RequestSecurityTokenRespons4144
e>" /> 4145
<button type="submit">POST</button> <!-- included for requestors that do not 4146
support javascript --> 4147
</p> 4148
</form> 4149
<script type="text/javascript"> 4150
setTimeout('document.forms[0].submit()', 0); 4151
</script> 4152
</body> 4153
</html> 4154

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 126 of 140

Step 9 – POST Resource token 4155

POST https://res.resource.com/sales HTTP/1.1 4156
... 4157
 4158
wa=wsignin1.0 4159
wresult=<RequestSecurityTokenResponse>...</RequestSecurityTokenResponse> 4160

Step 10 – Return result 4161

[Implementation Specific Traffic] 4162

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 127 of 140

Appendix C Sample Use Cases 4163

The following sub-sections describe several use case scenarios and how they could be supported using 4164

this specification. Note that for each scenario there are potentially multiple ways to apply the messages 4165

and patterns in this specification so these examples SHOULD NOT not be interpreted as the only or even 4166

the best approach, just an exemplary approach. 4167

C.1 Single Sign On 4168

Requestors use the mechanisms defined within [WS-Security], [WS-Trust], and [WS-Federation] to effect 4169

single sign-on. 4170

At a high-level, policy is used to indicate communication requirements. Requestors can obtain the policy 4171

ahead of time or via error responses from services. In general, requestors are required to obtain a 4172

security token (or tokens) from their Identity Provider (or STS) when they authenticate themselves. The 4173

IP/STS generates a security token for use by the federated party. This is done using the mechanisms 4174

defined in WS-Trust. In some scenarios, the target service acts as its own IP/STS so communication with 4175

an additional service isn't required. Otherwise the requestor MAY be required to obtain additional security 4176

tokens from service-specific or service-required identity providers or security token services. The figure 4177

below illustrates one possible flow. 4178

 4179

While the example above doesn't illustrate this, it is possible that the WS-Trust messages for security 4180

tokens MAY involve challenges to the requestors. Refer to WS-Trust for additional information. 4181

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 128 of 140

C.2 Sign-Out 4182

Just as it isn't typical for Web Service requestors to sign-in as a special operation, it isn't typical to sign-4183

out either. However, for those scenarios where this is desirable, the sign-out messages defined in this 4184

specification can be used. 4185

In situations where federated sign-out messages are desirable, the requestor's IP/STS SHOULD keep 4186

track of the realms to which it has issued tokens – specifically the IP/STS for the realms (or resources if 4187

different). When the sign-out is received at the requestor's IP/STS, the requestor’s IP/STS is responsible 4188

for issuing federated sign-out messages to interested and authorized parties. The exact mechanism by 4189

which this occurs is up to the IP/STS, but it is strongly RECOMMENDED that the sign-out messages 4190

defined in WS-Federation be used. 4191

When a federated sign-out message is received at a realm, the realm SHOULD clean-up any cached 4192

information and delete any associated state as illustrated in the figure below: 4193

 4194

C.3 Attributes 4195

For Web Service requestors, attribute services are identified via WS-Policy or metadata as previously 4196

described. Web services and other authorized parties can obtain or even update attributes using the 4197

messages defined by the specific attribute service. 4198

The figure below illustrates a scenario where a requestor issues a request to a Web service. The request 4199

MAY include the requestor's policy or it may MAY be already cached at the service or the requestor MAY 4200

use [WS-MetadataExchange]. The Web service issues a request to the requestor's attribute service to 4201

obtain the values of a few attributes; WS-Policy MAY be used to describe the location of the attribute 4202

service. The service is authorized so the attributes are returned. The request is processed and a 4203

response is returned to the requestor. 4204

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 129 of 140

 4205

C.4 Pseudonyms 4206

For Web Service requestors, pseudonym services are identified via metadata as previously described. 4207

Services and other authorized parties can obtain or manage pseudonyms using the messages previously 4208

defined. 4209

The figure below illustrates a scenario where a requestor issues a request to a Web service. The request 4210

MAY include the requestor's policy and the location of the requestor’s pseudonym service or it MAY be 4211

already cached at the Web service. The Web service issues a request to the requestor's pseudonyms 4212

service to obtain the pseudonyms that are authorized by the security token. The Web service is 4213

authorized so the pseudonym is returned. The request is processed and a response is returned to the 4214

requestor. 4215

 4216

As previously described, the pseudonym and IP/STS can interact as part of the token issuance process. 4217

The figure below illustrates a scenario where a requestor has previously associated a pseudonym and a 4218

security token for a specific realm. When the requestor requests a security token to the domain/realm, 4219

the pseudonym and token are obtained and returned to the requestor. The requestor uses these security 4220

tokens for accessing the Web service. 4221

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 130 of 140

 4222

C.5 Detailed Example 4223

This section provides a detailed example of the protocol defined in this specification. The exact flow can 4224

vary significantly; however, the following diagram and description depict a common sequence of events. 4225

In this scenario, a SOAP requestor is attempting to access a service which requires security 4226

authentication to be validated by the resource's security token service. 4227

 4228

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 131 of 140

Step 1: Acquire Policy 4229

If the requestor doesn't already have the policy for the service, it can obtain it using the mechanisms 4230

defined in WS-MetadataExchange. 4231

Step 2: Return Policy 4232

The requested policy is returned using the mechanisms defined in WS-MetadataExchange. 4233

Step 3: Request Security Token 4234

The requestor requests a security token from its IP/STS (assuming short-lived security tokens) using the 4235

mechanisms defined in WS-Trust (<RequestSecurityToken>) 4236

Step 4: Issue Security Token 4237

The IP/STS returns a security token (and optional proof of possession information) using the mechanisms 4238

defined in WS-Trust (<RequestSecurityTokenResponse> and <RequestedProofToken>) 4239

Step 5: Request Security Token 4240

The requestor requests a security token from the Web services IP/STS for the target Web service using 4241

the mechanisms defined in WS-Trust (<RequestSecurityToken>). Note that this is determined via 4242

policy or some out-of-band mechanism. 4243

Step 6: Issue Security Token 4244

The Web service's IP/STS returns a token (and optionally proof of possession information) using the 4245

mechanisms defined in WS-Trust (<RequestSecurityTokenResponse>) 4246

Step 7: Send secured request 4247

The requestor sends the request to the service attaching and securing the message using the issued 4248

tokens as described in WS-Security. 4249

Step 8: Return result 4250

The service issues a secured reply using its security token. 4251

C.6 No Resource STS 4252

The figure below illustrates the resource access scenario above, but without a resource STS. That is, the 4253

Web service acts as its own STS: 4254

 4255

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 132 of 140

C.7 3rd-Party STS 4256

The figure below illustrates the resource access scenario above, but trust is brokered through a 3rd-party 4257

STS: 4258

 4259

Note that 3
rd

-Party IP/STS is determined via policy or some out-of-band mechanism. 4260

C.8 Delegated Resource Access 4261

The figure below illustrates where a resource accesses data from another resource on behalf of the 4262

requestor: 4263

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 133 of 140

 4264

In this example, the requestor used a <RequestSecurityTokenResponse> as defined in WS-Trust to 4265

issue the delegation token in Step 1. This provides to Web Service 1 the necessary information so that 4266

Web Service 1 can act on the requestor’s behalf as it contacts Web Service 2. 4267

 4268

C.9 Additional Web Examples 4269

This section presents interaction diagrams for additional Web requestor scenarios. 4270

 No Resource STS 4271

The figure below illustrates the sign-in scenario above, but without a resource STS. That is, the requestor 4272

acts as its own STS: 4273

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 134 of 140

 4274

 3rd-Party STS 4275

The figure below illustrates the sign-in scenario above, but trust is brokered through a 3rd-party STS: 4276

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 135 of 140

 4277

 Sign-Out 4278

The figure below illustrates the sign-out flow for a Web browser requestor that has signed in at two sites 4279

and requests that the sign-out cleanup requests redirect back to the requestor: The message flow is an 4280

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 136 of 140

example of the use case in which all sign-out messages must be transmitted by the requestor. Since it 4281

cannot be assumed that all browser requestors can transmit parallel requests, the sequential method is 4282

depicted. This message flow is enabled by the "wreply" parameter defined in section 13.2.4. 4283

 4284

 Delegated Resource Access 4285

The figure below illustrates the case where a resource accesses data from another resource on behalf of 4286

the first resource and the information is returned through the requestor: 4287

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 137 of 140

 4288

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 138 of 140

Appendix D SAML Binding of Common Claims 4289

The content of the auth:Value, auth:EncryptedValue, auth:StructuredValue, and auth:ConstrainedValue 4290
elements, not including the root node, can be serialized into any token format that supports the content 4291
format. For SAML 1.1 and 2.0 this content SHOULD be serialized into the saml:AttributeValue element. 4292

The display information, such as auth:DisplayName, auth:Description and auth:DisplayValue is not 4293
intended for serialization into tokens. 4294

 4295

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 139 of 140

Appendix E Acknowledgements 4296

The following individuals have participated in the creation of this specification and are gratefully 4297
acknowledged: 4298

Original Authors of the initial contributions: 4299
Hal Lockhart, BEA 4300
Steve Anderson, BMC Software 4301
Jeff Bohren, BMC Software 4302
Yakov Sverdlov, CA Inc. 4303
Maryann Hondo, IBM 4304
Hiroshi Maruyama, IBM 4305
Anthony Nadalin (Editor), IBM 4306
Nataraj Nagaratnam, IBM 4307
Toufic Boubez, Layer 7 Technologies, Inc. 4308
K Scott Morrison, Layer 7 Technologies, Inc. 4309
Chris Kaler (Editor), Microsoft 4310
Arun Nanda, Microsoft 4311
Don Schmidt, Microsoft 4312
Doug Walters, Microsoft 4313
Hervey Wilson, Microsoft 4314
Lloyd Burch, Novell, Inc. 4315
Doug Earl, Novell, Inc. 4316
Siddharth Bajaj, VeriSign 4317
Hemma Prafullchandra, VeriSign 4318

 4319

Original Acknowledgements of the initial contributions: 4320
John Favazza, CA 4321
Tim Hahn, IBM 4322
Andrew Hatley, IBM 4323
Heather Hinton, IBM 4324
Michael McIntosh, IBM 4325
Anthony Moran, IBM 4326
Birgit Pfitzmann, IBM 4327
Bruce Rich, IBM 4328
Shane Weeden, IBM 4329
Jan Alexander, Microsoft 4330
Greg Carpenter, Microsoft 4331
Paul Cotton, Microsoft 4332
Marc Goodner, Microsoft 4333
Martin Gudgin, Microsoft 4334
Savas Parastatidis, Microsoft 4335

 4336

TC Members during the development of this specification: 4337
Don Adams, TIBCO Software Inc. 4338
Steve Anderson, BMC Software 4339
Siddharth Bajaj, VeriSign 4340
Abbie Barbir, Nortel 4341
Hanane Becha, Nortel 4342
Toufic Boubez, Layer 7 Technologies Inc. 4343
Norman Brickman, Mitre Corporation 4344
Geoff Bullen, Microsoft Corporation 4345

ws-federation-1.2-spec-cs-01 5 March 2009

Copyright © OASIS® 1993–2009. All Rights Reserved. Page 140 of 140

Lloyd Burch, Novell 4346
Brian Campbell, Ping Identity Corporation 4347
Greg Carpenter, Microsoft Corporation 4348
Steve Carter, Novell 4349
Marco Carugi, Nortel 4350
Paul Cotton, Microsoft Corporation 4351
Doug Davis, IBM 4352
Fred Dushin, IONA Technologies 4353
Doug Earl, Novell 4354
Colleen Evans, Microsoft Corporation 4355
Christopher Ferris, IBM 4356
Marc Goodner, Microsoft Corporation 4357
Tony Gullotta, SOA Software Inc. 4358
Maryann Hondo, IBM 4359
Mike Kaiser, IBM 4360
Chris Kaler, Microsoft Corporation 4361
Paul Knight, Nortel 4362
Heather Kreger, IBM 4363
Ramanathan Krishnamurthy, IONA Technologies 4364
Kelvin Lawrence, IBM 4365
Paul Lesov, Wells Fargo 4366
David Lin, IBM 4367
Jonathan Marsh, WSO2 4368
Robin Martherus, Ping Identity Corporation 4369
Monica Martin, Microsoft Corporation 4370
Michael McIntosh, IBM 4371
Nandana Mihindukulasooriya, WSO2 4372
Anthony Nadalin, IBM 4373
Arun Nanda, Microsoft Corporation 4374
Kimberly Pease, Active Endpoints, Inc. 4375
Larry Rogers, Lockheed Martin 4376
Anil Saldhana, Red Hat 4377
Richard Sand, Tripod Technology Group, Inc. 4378
Don Schmidt, Microsoft Corporation 4379
Sidd Shenoy, Microsoft Corporation 4380
Kent Spaulding, Tripod Technology Group, Inc. 4381
David Staggs, Veterans Health Administration 4382
Yakov Sverdlov, CA 4383
Gene Thurston, AmberPoint 4384
Atul Tulshibagwale, Hewlett-Packard 4385
Ron Williams, IBM 4386
Jason Woloz, Booz Allen Hamilton 4387
Gerry Woods, SOA Software Inc. 4388

 4389

