

Web Services Business Activity
(WS-BusinessActivity) Version 1.2
Committee Specification 01

2 October 2008
Specification URIs:
This Version:

http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-cs-01/wstx-wsba-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-cs-01.doc (Authoritative format)
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-cs-01.pdf

Previous Version:
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-cd-02/wstx-wsba-1.2-spec-cd-02.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-cd-02.doc (Authoritative format)
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-cd-02.pdf

Latest Approved Version:
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec.doc
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec.pdf

Technical Committee:
OASIS Web Services Transaction (WS-TX) TC

Chair(s):
Eric Newcomer, Iona
Ian Robinson, IBM

Editor(s):
Tom Freund, IBM <tjfreund@us.ibm.com>
Mark Little, JBoss Inc. <mark.little@jboss.com>

Declared XML Namespaces:
http://docs.oasis-open.org/ws-tx/wsba/2006/06

Abstract:
The WS-BusinessActivity specification provides the definition of two Business Activity
coordination types: AtomicOutcome or MixedOutcome, that are to be used with the extensible
coordination framework described in the WS-Coordination specification. This specification also
defines two specific Business Activity agreement coordination protocols for the Business Activity
coordination types: BusinessAgreementWithParticipantCompletion, and
BusinessAgreementWithCoordinatorCompletion. Developers can use these protocols when
building applications that require consistent agreement on the outcome of long-running distributed
activities.

Status:
This document was last revised or approved by the WS-TX TC on the above date. The level of
approval is also listed above. Check the “Latest Approved Version” location noted above for
possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 1 of 31

http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-cs-01/wstx-wsba-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-cs-01.doc
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-cs-01.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-cd-02/wstx-wsba-1.2-spec-cd-02.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-cd-02.doc
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-cd-02.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec/wstx-wsba-1.1-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec.doc
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec.pdf
http://www.oasis-open.org/committees/ws-tx
http://docs.oasis-open.org/ws-tx/wsba/2006/06

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 2 of 31

“Send A Comment” button on the Technical Committee’s web page at www.oasis-
open.org/committees/ws-tx .
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (www.oasis-
open.org/committees/ws-tx/ipr.php).
The non-normative errata page for this specification is located at www.oasis-
open.org/committees/ws-tx .

http://www.oasis-open.org/committees/ws-tx
http://www.oasis-open.org/committees/ws-tx
http://www.oasis-open.org/committees/ws-tx/ipr.php
http://www.oasis-open.org/committees/ws-tx/ipr.php
http://www.oasis-open.org/committees/ws-tx
http://www.oasis-open.org/committees/ws-tx

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 3 of 31

Notices
Copyright © OASIS Open 2008. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 4 of 31

Table of Contents
1 Introduction ... 5

1.1 Model .. 5
1.2 Composable Architecture ... 6
1.3 Terminology .. 6
1.4 Namespace ... 7

1.4.1 Prefix Namespace ... 7
1.5 XSD and WSDL Files ... 7
1.6 Protocol Elements ... 7
1.7 Conformance .. 7
1.8 Normative References .. 7

2 Business Activity Context ... 9
3 Coordination Types and Protocols ... 10

3.1 Preconditions .. 10
3.2 BusinessAgreementWithParticipantCompletion Protocol ... 10
3.3 BusinessAgreementWithCoordinatorCompletion Protocol ... 13

4 Policy Assertions .. 16
4.1 Assertion Models .. 16
4.2 Normative Outlines ... 16
4.3 Assertion Attachment .. 17
4.4 Assertion Example .. 17

5 Security Considerations ... 19
6 Use of WS-Addressing Headers .. 21
A. Acknowledgements .. 22
B. State Tables for the Agreement Protocols ... 23

B.1 Participant view of BusinessAgreementWithParticipantCompletion .. 24
B.2 Coordinator view of BusinessAgreementWithParticipantCompletion .. 26
B.3 Participant view of BusinessAgreementWithCoordinatorCompletion .. 28
B.4 Coordinator view of BusinessAgreementWithCoordinatorCompletion .. 30

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 5 of 31

1 Introduction 1

The current set of Web service specifications [WSDL] [SOAP 1.1] [SOAP 1.2] define protocols for Web
service interoperability. Web services increasingly tie together a number of participants forming large
distributed applications. The resulting activities may have complex structure and relationships.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

38
39
40
41
42

The WS-Coordination [WSCOOR] specification defines an extensible framework for defining coordination
types.
This specification provides the definition of two Business Activity coordination types used to coordinate
activities that apply business logic to handle exceptions that occur during the execution of activities of a
business process. Actions are applied immediately and are permanent. Compensating actions may be
invoked in the event of an error. WS-BusinessActivity defines protocols that enable existing business
process and work flow systems to wrap their proprietary mechanisms and interoperate across trust
boundaries and different vendor implementations.
To understand the protocols described in this specification, the following assumptions are made:

• The reader is familiar with the WS-Coordination [WSCOOR] specification which defines the
framework for the Business Activity coordination protocols.

• The reader is familiar with WS-Addressing [WSADDR] and WS-Policy [WSPOLICY].
Business activities have the following characteristics:

• A business activity may consume many resources over a long duration.
• There may be a significant number of atomic transactions involved.
• Individual tasks within a business activity can be seen prior to the completion of the business

activity, their results may have an impact outside of the computer system.
• Responding to a request may take a very long time. Human approval, assembly, manufacturing,

or delivery may have to take place before a response can be sent.
• In the case where a business exception requires an activity to be logically undone, abort is

typically not sufficient. Exception handling mechanisms may require business logic, for example
in the form of a compensation task, to reverse the effects of a previously completed task.

• Participants in a business activity may be in different domains of trust where all trust relationships
are established explicitly.

The Business Activity protocols defined in this specification have the following design points:
• All state transitions are reliably recorded, including application state and coordination metadata.
• All non-terminal notifications are acknowledged in the protocol to ensure a consistent view of

state between the coordinator and participant. A coordinator or participant may solicit the status
of its partner or retry sending notifications in order to achieve this.

• Each notification is defined as an individual message. Transport level request/response retry and
time out are not sufficient mechanisms to achieve end-to-end agreement coordination for long-
running activities.

1.1 Model 37

Business Activity coordination protocols provide the following flexibility:
• A business application may be partitioned into business activity scopes. A business activity scope

is a business task consisting of a general-purpose computation carried out as a bounded set of
operations on a collection of Web services that require a mutually agreed outcome. There may be
any number of hierarchical nesting levels. Nested scopes:

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 6 of 31

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

64
65
66
67
68
69
70

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

– Allow a business application to select which child tasks are included in the overall outcome
processing. For example, a business application might solicit an estimate from a number of
suppliers and choose a quote or bid based on lowest-cost.

– Allow a business application to catch an exception thrown by a child task, apply an exception
handler, and continue processing even if something goes wrong. When a child completes its
work, it may be associated with a compensation that is registered with the parent activity.

• A participant task within a business activity may specify that it is leaving a business activity. This
provides the ability to exit a business activity and allows business programs to delegate
processing to other scopes. The participant list is dynamic and a participant may exit the protocol
at any time without waiting for the outcome of the protocol.

• The Business Activity coordination protocols allow a participant task within a business activity to
specify its outcome directly without waiting for solicitation. Such a feature is generally useful when

• A task fails so that the notification can be used by a business activity exception handler to modify
the goals and drive processing in a timely manner.

• The Business Activity coordination protocols allow participants in a coordinated business activity
to perform "tentative" operations as a normal part of the activity. The result of such "tentative"
operations may become visible before the activity is complete and may require business logic to
run in the event that the operation needs to be compensated. Such a feature is critical when the
joint work of a business activity requires many operations performed by independent services
over a long period of time.

1.2 Composable Architecture 63

By using the XML [XML],SOAP [SOAP 1.1] [SOAP 1.2] and WSDL [WSDL] extensibility model, SOAP-
based and WSDL-based specifications are designed to work together to define a rich Web services
environment. As such, WS-BusinessActivity by itself does not define all features required for a complete
solution. WS-BusinessActivity is a building block used with other specifications of Web services (e.g.,
WS-Coordination [WSCOOR], WS-Security [WSSec]) and application-specific protocols that are able to
accommodate a wide variety of coordination protocols related to the coordination actions of distributed
applications.

1.3 Terminology 71

The uppercase key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as
described in RFC2119 [RFC2119].
This specification uses an informal syntax to describe the XML grammar of the XML fragments below:

• The syntax appears as an XML instance, but the values indicate the data types instead of values.
• Element names ending in "..." (such as <element.../> or <element...>) indicate that

elements/attributes irrelevant to the context are being omitted.
• Attributed names ending in "..." (such as name=...) indicate that the values are specified below.
• Grammar in bold has not been introduced earlier in the document, or is of particular interest in an

example.
• <!-- description --> is a placeholder for elements from some "other" namespace (like ##other in

XSD).
• Characters are appended to elements, attributes, and <!-- descriptions --> as follows: "?" (0 or 1),

"*" (0 or more), "+" (1 or more). The characters "[" and "]" are used to indicate that contained
items are to be treated as a group with respect to the "?", "*", or "+" characters.

• The XML namespace prefixes (defined below) are used to indicate the namespace of the element
being defined.

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 7 of 31

89
90

92

• Examples starting with <?xml contain enough information to conform to this specification; others
examples are fragments and require additional information to be specified in order to conform.

1.4 Namespace 91

The XML namespace [XML-ns] URI that MUST be used by implementations of this specification is:

 http://docs.oasis-open.org/ws-tx/wsba/2006/06 93

95

1.4.1 Prefix Namespace 94

The following namespaces are used in this document:

Prefix Namespace

wscoor http://docs.oasis-open.org/ws-tx/wscoor/2006/06

wsba http://docs.oasis-open.org/ws-tx/wsba/2006/06

1.5 XSD and WSDL Files 96

Dereferencing the XML namespace defined in section 1.4 will produce the Resource Directory
Description Language (RDDL) [RDDL] document that describes this namespace, including the XML
schema [XML-Schema1] [XML-Schema2] and WSDL [WSDL] declarations associated with this
specification.

97
98
99

100
101
102
103
104
105
106

108
109
110
111

113
114
115
116

118
119
120
121
122
123
124

SOAP bindings for the WSDL [WSDL], referenced in the RDDL [RDDL] document, MUST use
"document" for the style attribute.
There should be no inconsistencies found between any of the normative text within this specification, the
normative outlines, the XML Schema definitions, and the WSDL descriptions, and so no general
precedence rule is defined. If an inconsistency is observed then it should be reported as a comment on
the specification as described in the "Status" section above.

1.6 Protocol Elements 107

The protocol elements define various extensibility points that allow other child or attribute content.
Additional children and/or attributes MAY be added at the indicated extension points but MUST NOT
contradict the semantics of the parent and/or owner, respectively. If a receiver does not recognize an
extension, the receiver SHOULD ignore the extension.

1.7 Conformance 112

An implementation is not conformant with this specification if it fails to satisfy one or more of the MUST or
REQUIRED level requirements defined herein. A SOAP Node MUST NOT use elements and attributes of
the declared XML Namespace (listed on the title page) for this specification within SOAP Envelopes
unless it is conformant with this specification.

1.8 Normative References 117

[RDDL] Jonathan Borden, Tim Bray, eds. “Resource Directory Description Language
(RDDL) 2.0”, http://www.openhealth.org/RDDL/20040118/rddl-20040118.html,
January 2004.

[RFC2119] S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels”,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[SOAP 1.1] W3C Note, "SOAP: Simple Object Access Protocol 1.1,"
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, 08 May 2000.

http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://www.openhealth.org/RDDL/20040118/rddl-20040118.html
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 8 of 31

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160

[SOAP 1.2] W3C Recommendation, "SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition)", http://www.w3.org/TR/2007/REC-soap12-part1-20070427/,
April 2007.

[XML] W3C Recommendation, "Extensible Markup Language (XML) 1.0 (Fourth
Edition),"http://www.w3.org/TR/2006/REC-xml-20060816, 16 August 2006.

[XML-ns] W3C Recommendation, "Namespaces in XML 1.0 (Second Edition),"
http://www.w3.org/TR/2006/REC-xml-names-20060816, 16 August 2006.

[XML-Schema1] W3C Recommendation, "XML Schema Part 1: Structures Second Edition,"
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028, 28 October 2004.

[XML-Schema2] W3C Recommendation, "XML Schema Part 2: Datatypes Second Edition,"
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028, 28 October 2004.

[WSCOOR] OASIS Committee Specification, Web Services Coordination (WS-Coordination)
1.2, http:/docs.oasis-open.org/ws-tx/wscoor/2006/06, October 2008

[WSDL] Web Services Description Language (WSDL) 1.1
"http://www.w3.org/TR/2001/NOTE-wsdl-20010315"

[WSADDR] Web Services Addressing (WS-Addressing) 1.0, W3C Recommendation,
http://www.w3.org/2005/08/addressing

[WSPOLICY] W3C Recommendation, Web Services Policy 1.5 – Framework (WS-Policy),
http://www.w3.org/TR/2007/REC-ws-policy-20070904/, September 2007.

[WSPOLICYATTACH] W3C Recommendation, Web Services Policy 1.5 – Attachment (WS-
PolicyAttachment, http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904/,
September 2007.

 [WSSec] OASIS Standard, March 2004, "Web Services Security 1.0: SOAP Message
Security 1.0 (WS-Security 2004), "http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soap-message-security-1.0.pdf

 OASIS Standard, February 2006, Web Services Security: SOAP Message
Security 1.1 (WS-Security 2004), http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf.

[WSSecPolicy] OASIS Committee Draft 01, WS-SecurityPolicy 1.3, http://docs.oasis-
open.org/ws-sx/ws-securitypolicy/200802, July 2008.

[WSSecConv] OASIS Committee Draft 01, WS-SecureConversation 1.4, http://docs.oasis-
open.org/ws-sx/ws-secureconversation/200512, July 2008.

[WSTrust] OASIS Committee Draft 01, WS-Trust 1.4, http://docs.oasis-open.org/ws-sx/ws-
trust/200802, June 2008.

http://www.w3.org/TR/2007/REC-soap12-part1-20070427
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028
http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/2005/08/addressing
http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200802
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200802
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
http://docs.oasis-open.org/ws-sx/ws-trust/200802
http://docs.oasis-open.org/ws-sx/ws-trust/200802

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 9 of 31

2 Business Activity Context 161

This section describes the Business Activity usage of WS-Coordination protocols. 162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

WS-BusinessActivity builds on WS-Coordination [WSCOOR], which defines an Activation service, a
Registration service, and a CoordinationContext type. Example message flows and a complete
description of creating and registering for coordinated activities is found in WS-Coordination [WSCOOR].
The Business Activity coordination context is a CoordinationContext type with a coordination type defined
in this specification. Business Activity application messages that propagate a coordination context MUST
use a Business Activity coordination context. If these application messages use a SOAP binding, the
Business Activity coordination context MUST flow as a SOAP header in the message.
WS-BusinessActivity adds the following semantics to the CreateCoordinationContext operation on the
Activation service:

• If the request includes the CurrentContext element, the target coordinator is interposed as a
subordinate to the coordinator stipulated inside the CurrentContext element.

• If the request does not include a CurrentContext element, the target coordinator creates a new
activity and acts as the root.

A coordination context MAY have an Expires element. This element specifies the period, measured from
the point in time at which the context was first created or received, after which a business activity MAY be
terminated solely due to its length of operation. From that point forward, the coordinator MAY elect to
unilaterally cancel or compensate the activity, as appropriate, so long as it has not made a close decision.
Similarly, a participant MAY elect to exit the activity so long as it has not already decided to complete.
A coordination context MAY have additional elements for extensibility.

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 10 of 31

3 Coordination Types and Protocols 182

Business Activities support two coordination types and two protocol types. Either protocol type MAY be
used with either coordination type.

183
184
185 One of the following two URIs MUST be used to specify a Business Activity CoordinationContext type:

http://docs.oasis-open.org/ws-tx/wsba/2006/06/AtomicOutcome 186
http://docs.oasis-open.org/ws-tx/wsba/2006/06/MixedOutcome 187

188
189
190
191
192
193
194
195
196
197
198
199
200

202
203
204
205
206
207
208

210
211
212
213
214
215
216

A coordinator for an AtomicOutcome coordination type MUST direct all participants either to close or to
compensate. A coordinator for a MixedOutcome coordination type MUST direct all participants to an
outcome but MAY direct each individual participant to close or compensate. All Business Activity
coordinators MUST implement the AtomicOutcome coordination type. A Business Activity coordinator
MAY implement the MixedOutcome coordination type.
The Coordination protocols for business activities are summarized below with names relative to the wsba
base name:

• BusinessAgreementWithParticipantCompletion: A participant registers for this protocol with its
coordinator, so that its coordinator can manage it. A participant knows when it has completed all
work for a business activity.

• BusinessAgreementWithCoordinatorCompletion: A participant registers for this protocol with
its coordinator, so that its coordinator can manage it. A participant relies on its coordinator to tell it
when it has received all requests to perform work within the business activity.

3.1 Preconditions 201

The correct operation of the protocols requires that a number of preconditions must be established prior
to the processing:

1. The source SHOULD have knowledge of the destination's policies, if any, and the source
SHOULD be capable of formulating messages that adhere to this policy.

2. If a secure exchange of messages is required, then the source and destination MUST have
appropriate security credentials (such as transport-level security credentials or security tokens) in
order to protect messages.

3.2 BusinessAgreementWithParticipantCompletion Protocol 209

The state diagram in Figure 1 illustrates the abstract behavior of the protocol between a coordinator and a
participant. The states in the Figure 1 reflect the view an individual participant or coordinator has of its
state in the protocol at a given point in time. As messages take time to be delivered, the views of the
coordinator and a participant may temporarily differ. Omitted are details such as resending of messages
or the exchange of error messages due to protocol error. Refer to Appendix B: State Tables for the
Agreement Protocols for a detailed description of this protocol.
Participants that register for this protocol MUST use the following protocol identifier:

http://docs.oasis-open.org/ws-tx/wsba/2006/06/ParticipantCompletion 217

Active Completed Closing

Ended Compensating

Exiting

Canceling

Failing

Completed Close Closed

Cancel

Compensate

Fail

Failed

Compensated

Exited Exit

Canceled

NotCompleting NotCompleted Cannot Complete

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 11 of 31

218
Coordinator generated Participant generated

Figure 1: BusinessAgreementWithParticipantCompletion abstract state diagram 219

220
221
222
223
224
225
226
227

228
229
230
231
232

233
234
235
236
237

238
239
240
241

242

The coordinator accepts:
Completed

Upon receipt of this notification, the coordinator knows that the participant has completed all
processing related to the protocol instance. For the next protocol message the coordinator MUST
send a Close or Compensate notification to indicate the final outcome of the protocol instance.
After sending the Completed notification, a participant MUST NOT participate in any further work
under that activity.

Fail
Upon receipt of this notification, the coordinator knows that the participant has failed during the
Active, Canceling or Compensating states; the state of the work performed by the participant is
undetermined. For the next protocol message the coordinator MUST send a Failed notification.
This notification carries a QName defined in schema indicating the cause of the failure.

Compensated
After transmitting this notification, the participant SHOULD forget about the activity. Upon receipt
of this notification, the coordinator knows that the participant has successfully compensated all
processing related to the protocol instance; the coordinator SHOULD forget its state about that
participant.

Closed
After transmitting this notification, the participant SHOULD forget about the activity. Upon receipt
of this notification, the coordinator knows that the participant has finalized the protocol instance
successfully; the coordinator SHOULD forget its state about that participant.

Canceled

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 12 of 31

243
244
245
246

247
248
249
250
251
252

253
254
255
256
257
258
259
260

261
262
263
264
265

266
267
268
269
270
271

272
273
274
275
276
277

278
279
280
281

282
283
284
285

286
287
288
289
290

291

After transmitting this notification, the participant SHOULD forget about the activity. Upon receipt
of this notification, the coordinator knows that the participant has successfully canceled all
processing related to the protocol instance; the coordinator SHOULD forget its state about that
participant.

Exit
Upon receipt of this notification, the coordinator knows that the participant will no longer
participate in the business activity, and any pending work was discarded by the participant and
any work performed by the participant related to the protocol instance was successfully canceled.
For the next protocol message the coordinator MUST send an Exited notification. The Exit
message MAY be sent by a participant only from the Active or Completing states.

CannotComplete
Upon receipt of this notification, the coordinator knows that the participant has determined that it
cannot successfully complete all processing related to the protocol instance. Any pending work
was discarded by the participant and any work performed by the participant related to the protocol
instance was successfully canceled. For the next protocol message the coordinator MUST send a
NotCompleted notification. After sending the CannotComplete notification, a participant MUST
NOT participate in any further work under that activity. The CannotComplete message MAY be
sent by a participant only from the Active state.

The participant accepts:
Close

Upon receipt of this notification, the participant knows the protocol instance is to be ended
successfully. For the next protocol message the participant MUST send a Closed notification to
end the protocol instance.

Cancel
Upon receipt of this notification, the participant knows that the work being done has to be
canceled. For the next protocol message, the participant MUST send either a Canceled or Fail
message. A Canceled message SHOULD be sent by the participant if the work is successfully
canceled; this also ends the protocol instance. A Fail message SHOULD be sent by the
participant if the work was not successfully canceled.

Compensate
Upon receipt of this notification, the participant knows that the work being done should be
compensated. For the next protocol message the participant MUST send a Compensated or Fail
notification. A Compensated message SHOULD be sent by the participant if the work is
successfully compensated; this also ends the protocol instance. A Fail message SHOULD be
sent by the participant if the work was not successfully compensated.

Failed
After transmitting this notification, the coordinator SHOULD forget about the participant. Upon
receipt of this notification, the participant knows that the coordinator is aware of a failure and no
further actions are required of the participant; the participant SHOULD forget the activity.

Exited
After transmitting this notification, the coordinator SHOULD forget about the participant. Upon
receipt of this notification, the participant knows that the coordinator is aware the participant will
no longer participate in the activity; the participant SHOULD forget the activity.

NotCompleted
After transmitting this notification, the coordinator SHOULD forget about the participant. Upon
receipt of this notification, the participant knows that the coordinator is aware that the participant
cannot complete all processing related to the protocol instance and that the participant will no
longer participate in the activity; the participant SHOULD forget the activity.

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 13 of 31

292
293
294
295
296
297

298
299
300
301

302
303
304
305

306

307
308
309
310
311
312
313

315
316
317
318

Both the coordinator and participant accept:
GetStatus

This message requests the current state of a coordinator or participant. In response the
coordinator or participant returns a Status message containing a QName indicating which column
of the state table [Appendix B: State Tables for the Agreement Protocols] the coordinator or
participant is currently in. GetStatus never provokes a state change.

For example, a coordinator that is waiting for a participant to initiate the
BusinessAgreementWithParticipantCompletion may use this message to confirm that the
participant is in one of the expected states: wsba:Active or wsba:Completed. If the participant has
forgotten the activity the Status response MUST be wsba:Ended.

Status
This message is received in response to a GetStatus request. The message includes a QName
indicating the state of the coordinator or participant to which the request was sent. For example, if
a participant is in the closing state as indicated by the state table, it would return wsba:Closing.

The coordinator may enter a condition in which it has sent a protocol message and it receives a protocol
message from the participant that is consistent with the former state, not the current state. In this case,
the coordinator MUST revert to the prior state, accept the notification from the participant, and continue
the protocol from that point. If the participant detects this condition, it MUST discard the inconsistent
protocol message from the coordinator.
A party MUST be prepared to receive duplicate notifications. If a duplicate message is received it MUST
be treated as specified in the state tables [Appendix B: State Tables for the Agreement Protocols].

3.3 BusinessAgreementWithCoordinatorCompletion Protocol 314

The BusinessAgreementWithCoordinatorCompletion protocol is the same as the
BusinessAgreementWithParticipantCompletion protocol, except that a participant relies on its coordinator
to tell it when it has received all requests to do work within the business activity.
Participants that register for this protocol MUST use the following protocol identifier:

http://docs.oasis-open.org/ws-tx/wsba/2006/06/CoordinatorCompletion 319

Active Completed Closing Ended

Compensating

Exiting

Canceling

Failing

Completed Close Closed

Compensate

Fail

Failed

Compensated

Canceled

Exit

Completing

Complete

Cancel

NotCompleting

CannotComplete NotCompleted

Exited

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 14 of 31

320
Participant generated Coordinator generated

Figure 2: BusinessAgreementWithCoordinatorCompletion abstract state diagram 321
322
323
324
325
326
327
328
329
330
331
332

333
334
335
336
337
338
339
340

The BusinessAgreementWithCoordinatorCompletion protocol redefines the following notifications in
Section 3.2 above:

The coordinator accepts:
Fail

Upon receipt of this notification, the coordinator knows that the participant has failed during the
Active, Canceling, Completing or Compensating states; the state of the work performed by the
participant is undetermined. For the next protocol message the coordinator MUST send a Failed
notification. This notification carries a QName defined in schema indicating the cause of the
failure.

CannotComplete
Upon receipt of this notification, the coordinator knows that the participant has determined that it
cannot successfully complete all processing related to the protocol instance. Any pending work
was discarded by the participant and any work performed by the participant related to the protocol
instance was successfully canceled. For the next protocol message the coordinator MUST send a
NotCompleted notification. After sending the CannotComplete notification, a participant MUST
NOT participate in any further work under that activity. The CannotComplete message MAY be
sent by a participant only from the Active or Completing states.

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 15 of 31

341
342
343
344
345
346
347
348
349

In addition to the notifications in Section 3.2 above, the BusinessAgreementWithCoordinatorCompletion
protocol adds the following notification:

The participant accepts:
Complete

Upon receipt of this notification the participant knows that it will receive no new requests for work
within the business activity. The participant completes application processing and if successful
MUST transmit a Completed notification. If unsuccessful the participant MUST transmit an Exit,
Fail, or CannotComplete notification.

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 16 of 31

4 Policy Assertions 350

WS-Policy Framework [WSPOLICY] and WS-Policy Attachment [WSPOLICYATTACH] collectively
define a framework, model and grammar for expressing the capabilities, requirements, and general
characteristics of entities in an XML Web services-based system. To enable a Web service to describe
Business Activity related capabilities and requirements of a service and its operations, this specification
defines a pair of Business Agreement policy assertions that leverage the WS-Policy framework

351
352
353
354
355
356

358
359
360
361
362

[WSPOLICY].

4.1 Assertion Models 357

The Business Activity policy assertions are provided by a Web service to qualify the Business Activity
related processing of messages associated with the particular operation to which the assertions are
scoped. The Business Activity policy assertions indicate:

• Whether the sender of an input message MAY or MUST include an AtomicOutcome coordination
context flowed with the message. The coordination type of such a context MUST be the following:

http://docs.oasis-open.org/ws-tx/wsba/2006/06/AtomicOutcome 363

364
365

• Whether the sender of an input message MAY or MUST include a MixedOutcome coordination
context flowed with the message. The coordination type of such a context MUST be the following:

http://docs.oasis-open.org/ws-tx/wsba/2006/06/MixedOutcome 366

368

4.2 Normative Outlines 367

The normative outlines for the Business Activity policy assertions are:

<wsba:BAAtomicOutcomeAssertion [wsp:Optional="true"]? ... > 369
 ... 370
</wsba:BAAtomicOutcomeAssertion> 371

372
373
374
375
376
377
378
379

380
381
382

The following describes additional, normative constraints on the outline listed above:
/wsba:BAAtomicOutcomeAssertion

A policy assertion that specifies that the sender of an input message MUST include a
coordination context for a Business Activity with AtomicOutcome coordination type flowed with
the message. From the perspective of the requester, the target service that processes the activity
MUST behave as if it had participated in the activity. For application messages that use a SOAP
binding, the Business Activity coordination context MUST flow as a SOAP header in the
message.

/wsba: BAAtomicOutcomeAssertion/@wsp:Optional="true"
Per WS-Policy [WSPOLICY], this is compact notation for two policy alternatives, one with and
one without the assertion.

<wsba:BAMixedOutcomeAssertion [wsp:Optional="true"]? ... > 383
 ... 384
</wsba:BAMixedOutcomeAssertion> 385

386
387
388
389
390
391

The following describes additional, normative constraints on the outline listed above:
/wsba:BAMixedOutcomeAssertion

A policy assertion that specifies that the sender of an input message MUST include a
coordination context for a Business Activity with MixedOutcome coordination type flowed with the
message. From the perspective of the requester, the target service that processes the activity
MUST behave as if it had participated in the activity. For application messages that use a SOAP

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 17 of 31

392
393

394
395
396

397
398

400
401
402
403
404
405
406
407
408

410

binding, the Business Activity coordination context MUST flow as a SOAP header in the
message.

/wsba: BAMixedOutcomeAssertion/@wsp:Optional="true"
Per WS-Policy [WSPOLICY], this is compact notation for two policy alternatives, one with and
one without the assertion.

Policy assertions defined in this specification MUST NOT include a wsp:Ignorable attribute with a value of
“true”.

4.3 Assertion Attachment 399

Because the Business Activity policy assertions indicate Business Activity related behavior for a single
operation, the assertions have an Operation Policy Subject [WSPOLICYATTACH].
WS-PolicyAttachment [WSPOLICYATTACH] defines two WSDL [WSDL] policy attachment points with
an Operation Policy Subject:

• wsdl:portType/wsdl:operation – A policy expression containing a Business Activity policy
assertion MUST NOT be attached to a wsdl:portType; the Business Activity policy assertions
specify a concrete behavior whereas the wsdl:portType is an abstract construct.

• wsdl:binding/wsdl:operation – A policy expression containing a Business Activity policy assertion
SHOULD be attached to a wsdl:binding.

4.4 Assertion Example 409

An example use of the Business Activity policy assertion follows:

(01) <wsdl:definitions 411

(02) targetNamespace="hotel.example.com" 412

(03) xmlns:tns="hotel.example.com" 413

(04) xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 414

(05) xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" 415

(06) xmlns:wsba="http://docs.oasis-open.org/ws-tx/wsba/2006/06" 416

(07) xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss- 417
wssecurity-utility-1.0.xsd" > 418

(08) <wsp:Policy wsu:Id="BAAtomicPolicy" > 419

(09) <wsba:BAAtomicOutcomeAssertion/> 420

(10) <!-- omitted assertions --> 421

(11) </wsp:Policy> 422

(12) <!-- omitted elements --> 423

(13) <wsdl:binding name="HotelBinding" type="tns:HotelPortType" > 424

(14) <!-- omitted elements --> 425

(15) <wsdl:operation name="ReserveRoom" > 426

(16) <wsp:PolicyReference URI="#BAAtomicPolicy" wsdl:required="true"/> 427

(17) <!-- omitted elements --> 428

(18) </wsdl:operation> 429

(19) </wsdl:binding> 430

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 18 of 31

(20) </wsdl:definitions> 431
 432

433
434
435
436
437
438

Lines (8-11) are a policy expression that includes a Business Activity policy assertion (Line 9) to indicate
that a coordination context for a Business Activity with an AtomicOutcome, expressed in WS-Coordination
[WS-COOR] format, MUST be used.
Lines (13-19) are a WSDL [WSDL] binding. Line (16) indicates that the policy in Lines (8-11) applies to
this binding, specifically indicating that a coordination context for a Business Activity with an
AtomicOutcome MUST flow inside “ReserveRoom” messages.

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 19 of 31

5 Security Considerations 439

It is strongly RECOMMENDED that the communication between services be secured using the
mechanisms described in WS-Security

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

[WSSec]. In order to properly secure messages, the body and all
relevant headers need to be included in the signature. Specifically, the <wscoor:CoordinationContext>
header needs to be signed with the body and other key message headers in order to "bind" the two
together.
In the event that a participant communicates frequently with a coordinator, it is RECOMMENDED that a
security context be established using the mechanisms described in WS-Trust [WSTrust] and WS-
SecureConversation [WSSecConv] allowing for potentially more efficient means of authentication.
It is common for communication with coordinators to exchange multiple messages. As a result, the usage
profile is such that it is susceptible to key attacks. For this reason it is strongly RECOMMENDED that the
keys be changed frequently. This "re-keying" can be effected a number of ways. The following list outlines
four common techniques:

• Attaching a nonce to each message and using it in a derived key function with the shared secret
• Using a derived key sequence and switch "generations"
• Closing and re-establishing a security context (not possible for delegated keys)
• Exchanging new secrets between the parties (not possible for delegated keys)

It should be noted that the mechanisms listed above are independent of the Security Context Token
(SCT) and secret returned when the coordination context is created. That is, the keys used to secure the
channel may be independent of the key used to prove the right to register with the activity.
The security context MAY be re-established using the mechanisms described in WS-Trust [WSTrust] and
WS-SecureConversation [WSSecConv]. Similarly, secrets MAY be exchanged using the mechanisms
described in WS-Trust [WSTrust]. Note, however, that the current shared secret SHOULD NOT be used
to encrypt the new shared secret. Derived keys, the preferred solution from this list, MAY be specified
using the mechanisms described in WS-SecureConversation [WSSecConv].
The following list summarizes common classes of attacks that apply to this protocol and identifies the
mechanism to prevent/mitigate the attacks:

• Message alteration – Alteration is prevented by including signatures of the message information
using WS-Security [WSSec].

• Message disclosure – Confidentiality is preserved by encrypting sensitive data using WS-
Security [WSSec].

• Key integrity – Key integrity is maintained by using the strongest algorithms possible (by
comparing secured policies – see WS-Policy [WSPOLICY] and WS-SecurityPolicy
[WSSecPolicy]).

• Authentication – Authentication is established using the mechanisms described in WS-Security
[WSSec] and WS-Trust [WSTrust]. Each message is authenticated using the mechanisms
described in WS-Security [WSSec].

• Accountability – Accountability is a function of the type of and string of the key and algorithms
being used. In many cases, a strong symmetric key provides sufficient accountability. However, in
some environments, strong PKI signatures are required.

• Availability – Many services are subject to a variety of availability attacks. Replay is a common
attack and it is RECOMMENDED that this be addressed as described in the next bullet. Other
attacks, such as network-level denial of service attacks are harder to avoid and are outside the
scope of this specification. That said, care should be taken to ensure that minimal processing be
performed prior to any authenticating sequences.

• Replay – Messages may be replayed for a variety of reasons. To detect and eliminate this attack,
mechanisms should be used to identify replayed messages such as the timestamp/nonce

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 20 of 31

486
487

outlined in WS-Security [WSSec]. Alternatively, and optionally, other technologies, such as
sequencing, can also be used to prevent replay of application messages.

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 21 of 31

6 Use of WS-Addressing Headers 488

The protocols defined in WS-BusinessActivity use a "one way" message exchange pattern consisting of a
sequence of notification messages between a coordinator and a participant. There are two types of
notification messages used in these protocols:

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

• A notification message is a terminal message when it indicates the end of a
coordinator/participant relationship. Closed, Compensated, Canceled, Exited, NotCompleted
and Failed are terminal messages as are the protocol faults defined in WS-Coordination
[WSCOOR].

• A notification message is a non-terminal message when it does not indicate the end of a
coordinator/participant relationship. Complete, Completed, Close, Compensate, Cancel, Exit,
CannotComplete and Fail are non-terminal messages.

The following statements define addressing interoperability requirements for the respective Business
Activity message types:
Non-terminal notification messages

• MUST include a [source endpoint] property whose [address] property is not set to
‘http://www.w3.org/2005/08/addressing/anonymous’ or
'http://www.w3.org/2005/08/addressing/none’

Both terminal and non-terminal notification messages
• MUST include a [reply endpoint] property whose [address] property is set to

'http://www.w3.org/2005/08/addressing/none’
Notification messages used in WS-BusinessActivity protocols MUST include as the [action] property an
action URI that consists of the wsba namespace URI concatenated with the "/" character and the element
name of the message. For example:

http://docs.oasis-open.org/ws-tx/wsba/2006/06/Complete 511

512
513
514
515
516
517
518
519
520
521
522
523

Notification messages are normally addressed according to section 3.3 of WS-Addressing 1.0 – Core
[WSADDR] by both coordinators and participants using the Endpoint References initially obtained during
the Register-RegisterResponse exchange. If a [source endpoint] property is present in a notification
message, it MAY be used by the recipient. Cases exist where a coordinator or participant has forgotten
an activity that is completed and needs to respond to a resent protocol message. In such cases, the
[source endpoint] property SHOULD be used as described in section 3.3 of WS-Addressing 1.0 -– Core
[WSADDR]. Permanent loss of connectivity between a coordinator and a participant in an in-doubt state
can result in data corruption.
Protocol faults raised by a coordinator or participant during the processing of a notification message are
terminal notifications and MUST be composed using the same mechanisms as other terminal notification
messages.
All messages are delivered using connections initiated by the sender.

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 22 of 31

A. Acknowledgements 524

This document is based on initial contribution to OASIS WS-TX Technical Committee by the following
authors: Luis Felipe Cabrera (Microsoft), George Copeland (Microsoft), Max Feingold (Microsoft), Robert
W Freund (Hitachi), Tom Freund (IBM), Sean Joyce (IONA), Johannes Klein (Microsoft), David
Langworthy (Microsoft), Mark Little (JBoss Inc.), Frank Leymann (IBM), Eric Newcomer (IONA), David
Orchard (BEA Systems), Ian Robinson (IBM), Tony Storey (IBM), Satish Thatte (Microsoft).

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

The following individuals have provided invaluable input into the initial contribution: Francisco Curbera
(IBM), Doug Davis (IBM), Gert Drapers (Microsoft), Don Ferguson (IBM), Kirill Gavrylyuk (Microsoft), Dan
House (IBM), Oisin Hurley (IONA), Thomas Mikalsen (IBM), Jagan Peri (Microsoft), John Shewchuk
(Microsoft), Stefan Tai (IBM).

The following individuals were members of the committee during the development of this specification:
Participants:

Charlton Barreto, Adobe Systems, Inc.
Martin Chapman, Oracle
Kevin Conner, JBoss Inc.
Paul Cotton, Microsoft Corporation
Doug Davis, IBM
Colleen Evans, Microsoft Corporation
Max Feingold, Microsoft Corporation
Thomas Freund, IBM
Robert Freund, Hitachi, Ltd.
Peter Furniss, Choreology Ltd.
Marc Goodner, Microsoft Corporation
Alastair Green, Choreology Ltd.
Daniel House, IBM
Ram Jeyaraman, Microsoft Corporation
Paul Knight, Nortel Networks Limited
Mark Little, JBoss Inc.
Jonathan Marsh, Microsoft Corporation
Monica Martin, Sun Microsystems
Joseph Fialli, Sun Microsystems
Eric Newcomer, IONA Technologies
Eisaku Nishiyama, Hitachi, Ltd.
Alain Regnier, Ricoh Company, Ltd.
Ian Robinson, IBM
Tom Rutt, Fujitsu Limited
Andrew Wilkinson, IBM

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 23 of 31

B. State Tables for the Agreement Protocols 563

The following state tables show state transitions that occur in the receiver when a protocol message is
received or in the sender when a protocol message is sent.

564
565
566
567

Each cell in the tables uses the following convention:

Legend

Action to take
Next state

 568

569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

Each state supports a number of possible events. Expected events are processed by taking the
prescribed action and transitioning of the next state. Unexpected protocol messages MUST result in a
fault message as defined in the state tables. These faults MUST use a standard fault code defined in
WS-Coordination [WS-COOR].
The following rules need to be applied when reading the state tables in this document:

• For the period of time that a protocol message is in transit the sender and recipient states will be
different.
The sender of a protocol message transitions to the "next state" when the message is first sent.
The recipient of a protocol message transitions to the "next state" when the message is first
received.

• As described earlier in this document, if the coordinator receives a protocol message from the
participant that is consistent with the former state of the coordinator then the coordinator reverts
to its prior state, accepts the notification from the participant, and continues the protocol from that
point.

The GetStatus and Status protocol messages are not included in the tables as these never result in a
change of state.
These tables present the view of a coordinator or participant with respect to a single partner. A
coordinator with multiple participants can be understood as a collection of independent coordinator state
machines, each with its own state.

B.1 Participant view of BusinessAgreementWithParticipantCompletion 588

589

BusinessAgreementWithParticipantCompletion protocol
(Participant View)

Inbound
Events

States

Active Canceling Completed Closing Compensating Failing
(Active,

Canceling)

Failing
(Compensat-

ing)

NotCompleting Exiting Ended

Cancel

Canceling

Ignore

Canceling

Resend
Completed

Completed

Ignore

Closing

Ignore

Compensating

Resend
 Fail

Failing-*

Ignore

Failing-
Compensating

Resend
CannotComplete

NotCompleting

Resend
Exit

Exiting

Send
Canceled

Ended

Close Invalid
State

Active

Invalid
State

Canceling

Closing

Ignore

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Invalid
State

NotCompleting

Invalid
State

Exiting

Send
Closed

Ended

Compensate Invalid
State

Active

Invalid
State

Canceling

Compensating

Invalid
State

Closing

Ignore

Compensating

Invalid
State

Failing-*

Resend
Fail

Failing-
Compensating

Invalid
State

NotCompleting

Invalid
State

Exiting

Send
Compensated

Ended

Failed Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Forget

Ended

Forget

Ended

Invalid
State

NotCompleting

Invalid
State

Exiting

Ignore

Ended

Exited Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Invalid
State

NotCompleting

Forget

Ended

Ignore

Ended

NotCompleted Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Forget

Ended

Invalid
State

Exiting

Ignore

Ended

 590

591

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 24 of 31

 592

593
BusinessAgreementWithParticipantCompletion protocol

(Participant View)

Outbound
Events

States

Active Canceling Completed Closing Compensating Failing
(Active,

Canceling,
Compensating)

NotCompleting Exiting Ended

Exit

Exiting

Invalid
State

Canceling

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

NotCompleting

Exiting

Invalid
State

Ended

Completed

Completed

Invalid
State

Canceling

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

NotCompleting

Invalid
State

Exiting

Invalid
State

Ended

Fail

Failing-
Active

Failing-
Canceling

Invalid
State

Completed

Invalid
State

Closing

Failing-
Compensating

Failing-*

Invalid
State

NotCompleting

Invalid
State

Exiting

Invalid
State

Ended

CannotComplete

NotCompleting

Invalid
State

Canceling

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

NotCompleting

Invalid
State

Exiting

Invalid
State

Ended

Canceled Invalid
State

Active

Forget

Ended

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

NotCompleting

Invalid
State

Exiting

Ended

Closed Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completed

Forget

Ended

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

NotCompleting

Invalid
State

Exiting

Ended

Compensated Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completed

Invalid
State

Closing

Forget

Ended

Invalid
State

Failing-*

Invalid
State

NotCompleting

Invalid
State

Exiting

Ended

 594

595

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 25 of 31

B.2 Coordinator view of BusinessAgreementWithParticipantCompletion 596

597
BusinessAgreementWithParticipantCompletion protocol

(Coordinator View)

Inbound
Events

States

Active Canceling Completed Closing Compensating Failing
(Active,

Canceling)

Failing
(Compensat-

ing)

NotCompleting Exiting Ended

Exit

Exiting

Exiting

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

 Invalid
State

Failing-
Compensating

Invalid
 State

NotCompleting

Ignore

Exiting

Resend
Exited

Ended

Completed

Completed

Completed

Ignore

Completed

Resend
Close

Closing

Resend
Compensate

Compensating

Invalid
State

Failing-*

Ignore

Failing-
Compensating

Invalid
 State

NotCompleting

Invalid
State

Exiting

Ignore

Ended

Fail

Failing-
Active

Failing-
Canceling

Invalid
State

Completed

Invalid
State

Closing

Failing-
Compensating

Ignore

Failing-*

Ignore

Failing-
Compensating

Invalid
 State

NotCompleting

Invalid
State

Exiting

Resend
Failed

Ended

CannotComplete

NotCompleting

NotCompleting

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Ignore

NotCompletng

Invalid
State

Exiting

Resend
NotCompleted

Ended

Canceled Invalid
State

Active

Forget

Ended

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Invalid
 State

NotCompleting

Invalid
State

Exiting

Ignore

Ended

Closed Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completed

Forget

Ended

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Invalid
 State

NotCompleting

Invalid
State

Exiting

Ignore

Ended

Compensated Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completed

Invalid
State

Closing

Forget

Ended

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Invalid
 State

NotCompleting

Invalid
State

Exiting

Ignore

Ended

598

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 26 of 31

 599

600
BusinessAgreementWithParticipantCompletion protocol

(Coordinator View)

Outbound
Events

States

Active Canceling Completed Closing Compensating Failing
(Active,

Canceling,
Compensating)

NotCompleting Exiting Ended

Cancel

Canceling

Canceling

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

NotCompleting

Invalid
State

Exiting

Invalid
State

Ended

Close Invalid
State

Active

Invalid
State

Canceling

Closing

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

NotCompleting

Invalid
State

Exiting

Invalid
State

Ended

Compensate Invalid
State

Active

Invalid
State

Canceling

Compensating

Invalid
State

Closing

Compensating

Invalid
State

Failing-*

Invalid
State

NotCompleting

Invalid
State

Exiting

Invalid
State

Ended

Failed Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Forget

Ended

Invalid
State

NotCompleting

Invalid
State

Exiting

Ended

Exited Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

NotCompleting

Forget

Ended

Ended

NotCompleted Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Forget

Ended

Invalid
State

Exiting

Ended

601
602

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 27 of 31

B.3 Participant view of BusinessAgreementWithCoordinatorCompletion 603

604
BusinessAgreementWithCoordinatorCompletion protocol

(Participant View)

Inbound
Events

States

Active Canceling Completing Completed Closing Compensating Failing
(Active,

Canceling,
Completing)

Failing
(Compensat-

ing)

NotCompleting Exiting Ended

Cancel

Canceling

Ignore

Canceling

Canceling

Resend
Completed

Completed

Ignore

Closing

Ignore

Compensating

Resend
Fail

Failing-*

Ignore

Failing-
Compensating

Resend
CannotComplete

NotCompleting

Resend
Exit

Exiting

Send
Canceled

Ended

Complete

Completing

Ignore

Canceling

Ignore

Completing

Resend
Completed

Completed

Ignore

Closing

Ignore

Compensating

Resend
Fail

Failing-*

Ignore

Failing-
Compensating

Resend
CannotComplete

NotCompleting

Resend
Exit

Exiting

Send
 Fail

Ended

Close Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completing

Closing

Ignore

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Invalid
State

NotCompleting

Invalid
State

Exiting

Send
Closed

Ended

Compensate Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completing

Compensating

Invalid
State

Closing

Ignore

Compensating

Invalid
State

Failing-*

Resend
Fail

Failing-
Compensating

Invalid
State

NotCompleting

Invalid
State

Exiting

Send
Compensated

Ended

Failed Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completing

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Forget

Ended

Forget

Ended

Invalid
State

NotCompleting

Invalid
State

Exiting

Ignore

Ended

Exited Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completing

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Invalid
State

NotCompleting

Forget

Ended

Ignore

Ended

NotCompleted Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completing

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Forget

Ended

Invalid
State

Exiting

Ignore

Ended

605

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 28 of 31

 606

607
BusinessAgreementWithCoordinatorCompletion protocol

(Participant View)

Outbound
Events

States

Active Canceling Completing Completed Closing Compensating Failing
(Active,

Canceling,
Completing,

Compensating)

NotCompleting Exiting Ended

Exit

Exiting

Invalid
State

Canceling

Exiting

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
 State

NotCompleting

Exiting

Invalid
State

Ended

Completed Invalid
State

Active

Invalid
State

Canceling

Completed

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
 State

NotCompleting

Invalid
State

Exiting

Invalid
State

Ended

Fail

Failing-
Active

Failing-
Canceling

Failing-
Completing

Invalid
State

Completed

Invalid
State

Closing

Failing-
Compensating

Failing-*

Invalid
 State

NotCompleting

Invalid
State

Exiting

Invalid
State

Ended

CannotComplete

NotCompleting

Invalid
State

Canceling

NotCompleting

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

NotCompleting

Invalid
State

Exiting

Invalid
State

Ended

Canceled Invalid
State

Active

Forget

Ended

Invalid
State

Completing

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
 State

NotCompleting

Invalid
State

Exiting

Ended

Closed Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completing

Invalid
State

Completed

Forget

Ended

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
 State

NotCompleting

Invalid
State

Exiting

Ended

Compensated Invalid
State

Active

Invalid
State

Canceling

Invalid
State

Completing

Invalid
State

Completed

Invalid
State

Closing

Forget

Ended

Invalid
State

Failing-*

Invalid
 State

NotCompleting

Invalid
State

Exiting

Ended

608
609

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 29 of 31

B.4 Coordinator view of BusinessAgreementWithCoordinatorCompletion 610

611
BusinessAgreementWithCoordinatorCompletion protocol

(Coordinator View)

Inbound
Events

States

Active Canceling
(Active)

Canceling
(Completing)

Completing Completed Closing Compensating Failing
(Active,

Canceling,
Completing)

Failing

(Compensat-
ing)

NotCompleting Exiting Ended

Exit

Exiting

Exiting

Exiting

Exiting

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

 Invalid
State

Failing-
Compensating

Invalid
State

NotCompleting

Ignore

Exiting

Resend
Exited

Ended

Completed Invalid
State

Active

Invalid
 State

Canceling-
Active

Completed

Completed

Ignore

Completed

Resend
Close

Closing

Resend
Compensate

Compensating

Invalid
State

Failing-*

Ignore

 Failing-
Compensating

Invalid
State

NotCompleting

Invalid
State

Exiting

Ignore

Ended

Fail

Failing-
Active

Failing-
Canceling

Failing-
Canceling

Failing-
Completing

Invalid
State

Completed

Invalid
State

Closing

Failing-
Compensating

Ignore

Failing-*

Ignore

Failing-
Compensating

Invalid
State

NotCompleting

Invalid
State

Exiting

Resend
Failed

Ended

CannotComplete

NotCompleting

NotCompleting

NotCompleting

NotCompleting

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Ignore

NotCompleting

Invalid
State

Exiting

Resend
NotCompleted

Ended

Canceled Invalid
State

Active

Forget

Ended

Forget

Ended

Invalid
State

Completing

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Invalid
State

NotCompleting

Invalid
State

Exiting

Ignore

Ended

Closed Invalid
State

Active

Invalid
State

Canceling-
Active

Invalid
State

Canceling-
Completing

Invalid
State

Completing

Invalid
State

Completed

Forget

Ended

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Invalid
State

NotCompleting

Invalid
State

Exiting

Ignore

Ended

Compensated Invalid
State

Active

Invalid
 State

Canceling-
Active

Invalid
State

Canceling-
Completing

Invalid
State

Completing

Invalid
State

Completed

Invalid
State

Closing

Forget

Ended

Invalid
State

Failing-*

Invalid
State

Failing-
Compensating

Invalid
State

NotCompleting

Invalid
State

Exiting

Ignore

Ended

612
613

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 30 of 31

 614

615
BusinessAgreementWithCoordinatorCompletion protocol

(Coordinator View)

Outbound
Events

States

Active Canceling
(Active,

Completing)

Completing Completed Closing Compensating Failing
(Active,

Canceling,
Completing,

Compensating)

NotCompleting Exiting Ended

Cancel

Canceling-
Active

Canceling-*

Canceling-
Completing

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

NotCompleting

Invalid
State

Exiting

Invalid
State

Ended

Complete

Completing

Invalid
State

Canceling-*

Completing

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

NotCompleting

Invalid
State

Exiting

Invalid
State

Ended

Close Invalid
State

Active

Invalid
State

Canceling-*

Invalid
State

Completing

Closing

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

NotCompleting

Invalid
State

Exiting

Invalid
State

Ended

Compensate Invalid
State

Active

Invalid
State

Canceling-*

Invalid
State

Completing

Compensating

Invalid
State

Closing

Compensating

Invalid
State

Failing-*

Invalid
State

NotCompleting

Invalid
State

Exiting

Invalid
State

Ended

Failed Invalid
State

Active

Invalid
State

Canceling-*

Invalid
State

Completing

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Forget

Ended

Invalid
State

NotCompleting

Invalid
State

Exiting

Ended

Exited Invalid
State

Active

Invalid
State

Canceling-*

Invalid
State

Completing

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Invalid
State

NotCompleting

Forget

Ended

Ended

NotCompleted Invalid
State

Active

Invalid
State

Canceling-*

Invalid
State

Completing

Invalid
State

Completed

Invalid
State

Closing

Invalid
State

Compensating

Invalid
State

Failing-*

Forget

Ended

Invalid
State

Exiting

Ended

616
617

wstx-wsba-1.2-spec-cs-01 2 October 2008
Copyright © OASIS Open 2008. All Rights Reserved. Page 31 of 31

	1 Introduction
	1.1 Model
	1.2 Composable Architecture
	1.3 Terminology
	1.4 Namespace
	1.4.1 Prefix Namespace

	1.5 XSD and WSDL Files
	1.6 Protocol Elements
	1.7 Conformance
	1.8 Normative References

	2 Business Activity Context
	3 Coordination Types and Protocols
	3.1 Preconditions
	3.2 BusinessAgreementWithParticipantCompletion Protocol
	3.3 BusinessAgreementWithCoordinatorCompletion Protocol

	4 Policy Assertions
	4.1 Assertion Models
	4.2 Normative Outlines
	4.3 Assertion Attachment
	4.4 Assertion Example

	5 Security Considerations
	6 Use of WS-Addressing Headers

