

Web Services Atomic Transaction (WS-
AtomicTransaction) 1.1
Committee Draft 01, March 15, 2006

Document Identifier:
wstx-wsat-1.1-spec-cd-01

Location:
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-cd-01.pdf

Technical Committee:
OASIS WS-TX TC

Chair(s):
Eric Newcomer, Iona
Ian Robinson, IBM

Editor(s):
Mark Little, JBoss Inc. <mark.little@jboss.com>
Andrew Wilkinson, IBM <awilkinson@uk.ibm.com>

Abstract:
This specification provides the definition of the atomic transaction coordination type that is to be
used with the extensible coordination framework described in the WS-Coordination specification.
The specification defines three specific agreement coordination protocols for the atomic
transaction coordination type: completion, volatile two-phase commit, and durable two-phase
commit. Developers can use any or all of these protocols when building applications that require
consistent agreement on the outcome of short-lived distributed activities that have the all-or-
nothing property.

Status:
This document is published by the WS-TX TC as a “committee draft".
This document was last revised or approved by the WS-TX TC on the above date. The level of
approval is also listed above. Check the current location noted above for possible later revisions
of this document. This document is updated periodically on no particular schedule.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at www.oasis-
open.org/committees/ws-tx .
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (www.oasis-
open.org/committees/ws-tx/ipr.php).
The non-normative errata page for this specification is located at www.oasis-
open.org/committees/ws-tx .

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 1 of 27

http://www.oasis-open.org/committees/ws-tx
http://www.oasis-open.org/committees/ws-tx
http://www.oasis-open.org/committees/ws-tx/ipr.php
http://www.oasis-open.org/committees/ws-tx/ipr.php
http://www.oasis-open.org/committees/ws-tx
http://www.oasis-open.org/committees/ws-tx

Notices
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by
implementers or users of this specification, can be obtained from the OASIS President.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to implement this
specification. Please address the information to the OASIS President.

Copyright © OASIS Open 2006. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
does not be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 2 of 27

Table of contents

1 Note on terminology... 4
1.1 Composable Architecture... 4
1.2 Namespace .. 4

1.2.1 Prefix Namespace .. 4
1.3 XSD and WSDL Files... 4
1.4 AT Protocol Elements .. 5
1.5 Normative References ... 5
1.6 Non-normative References .. 5

2 Introduction .. 7
3 Atomic Transaction Context... 8
4 Atomic Transaction Protocols .. 9

4.1 Preconditions ... 9
4.2 Completion Protocol... 9
4.3 Two-Phase Commit Protocol ... 10

4.3.1 Volatile Two-Phase Commit Protocol ... 10
4.3.2 Durable Two-Phase Commit Protocol .. 11
4.3.3 2PC Diagram and Notifications... 11

5 AT Policy Assertion.. 13
5.1 Assertion Model ... 13
5.2 Normative Outline .. 13
5.3 Assertion Attachment ... 14
5.4 Assertion Example ... 14

6 Transaction Faults ... 16
6.1 InconsistentInternalState.. 17

7 Security Model ... 18
8 Security Considerations... 20
9 Use of WS-Addressing Headers.. 22
10 State Tables... 23
Appendix A. Acknowledgements.. 26
Appendix B. Revision History ... 27

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 3 of 27

1 Note on terminology 1

2
3
4

5
6

7

8
9

10
11
12
13

14

15

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in RFC2119 [KEYWORDS].

Namespace URIs of the general form http://example.org and http://example.com represents some
application-dependent or context-dependent URI as defined in RFC 2396 [URI].

1.1 Composable Architecture
By using the SOAP [SOAP]and WSDL [WSDL] extensibility model, SOAP-based and WSDL-based
specifications are designed to work together to define a rich Web services environment. As such, WS-
AtomicTransaction by itself does not define all features required for a complete solution. WS-
AtomicTransaction is a building block used with other specifications of Web services (e.g., WS-
Coordination, WS-Security) and application-specific protocols that are able to accommodate a wide
variety of coordination protocols related to the coordination actions of distributed applications.

1.2 Namespace
The XML namespace URI that MUST be used by implementations of this specification is:

http://docs.oasis-open.org/ws-tx/wsat/2006/0316

17

18

This is also used as the CoordinationContext type for atomic transactions.

1.2.1 Prefix Namespace
Prefix Namespace

S http://www.w3.org/2003/05/soap-envelope

wscoor http://docs.oasis-open.org/ws-tx/wscoor/2006/03

wsat http://docs.oasis-open.org/ws-tx/wsat/2006/03

19
20

If an action URI is used then the action URI MUST consist of the wsat namespace URI concatenated with
the "/" character and the element name. For example:

 http://docs.oasis-open.org/ws-tx/wsat/2006/03/Commit 21

22

23

24

25

26
27

1.3 XSD and WSDL Files
The following links hold the XML schema and the WSDL declarations defined in this document.

http://docs.oasis-open.org/ws-tx/wsat/2006/03/wsat.xsd

http://docs.oasis-open.org/ws-tx/wsat/2006/03/wsat.wsdl

Soap bindings for the WSDL documents defined in this specification MUST use "document" for the style
attribute.

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 4 of 27

http://example.org/
http://example.com/
http://docs.oasis-open.org/ws-tx/wsat/2006/03
http://www.w3.org/2003/05/soap-envelope
http://schemas.xmlsoap.org/ws/2004/10/wscoor
http://schemas.xmlsoap.org/ws/2004/10/wsat
http://docs.oasis-open.org/ws-tx/wsat/2006/03/wsat.xsd
http://docs.oasis-open.org/ws-tx/wsat/2006/03/wsat.wsdl

1.4 AT Protocol Elements 28

29
30
31
32

33

34

35
36
37

38
39

40
41
42

43
44

45
46

47
48

49
50

51
52
53

54
55
56

57
58
59

60
61

62

The protocol elements define various extensibility points that allow other child or attribute content.
Additional children and/or attributes MAY be added at the indicated extension points but MUST NOT
contradict the semantics of the parent and/or owner, respectively. If a receiver does not recognize an
extension, the receiver SHOULD ignore the extension.

1.5 Normative References

1.6 Non-normative References
[KEYWORDS]

S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, Harvard
University, March 1997

[SOAP]

W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000

[URI]

T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax,"
RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998

[XML-ns]

W3C Recommendation, "Namespaces in XML," 14 January 1999

[XML-Schema1]

W3C Recommendation, "XML Schema Part 1: Structures," 2 May 2001

[XML-Schema2]

W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001

[WSCOOR]

Web Services Coordination (WS-Coordination) 1.1, OASIS, March 2006

[WSADDR]

Web Services Addressing (WS-Addressing), Microsoft, IBM, Sun, BEA Systems, SAP, Sun,
August 2004

[WSPOLICY]

Web Services Policy Framework (WS-Policy), VeriSign, Microsoft, Sonic Software, IBM, BEA
Systems, SAP, September 2004

[WSPOLICYATTACH]

Web Services Policy Attachment (WS-PolicyAttachment), VeriSign, Microsoft, Sonic Software,
IBM, BEA Systems, SAP, September 2004

[WSDL]

Web Services Description Language (WSDL) 1.1

"http://www.w3.org/TR/2001/NOTE-wsdl-20010315"

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 5 of 27

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://docs.oasis-open.org/ws-tx/wscoor/2006/03
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://schemas.xmlsoap.org/ws/2004/09/policy/
http://schemas.xmlsoap.org/ws/2004/09/policy/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

63
64
65

66
67
68

69
70
71
72

73
74
75
76

[WSSec]

OASIS Standard 200401, March 2004, "Web Services Security: SOAP Message Security 1.0
(WS-Security 2004)"

[WSSecPolicy]

Web Services Security Policy Language (WS-SecurityPolicy), Microsoft, VeriSign, IBM, RSA
Security, July 2005

[WSSecConv]

Web Services Secure Conversation Language (WS-SecureConversation), OpenNetwork, Layer7,
Netegrity, Microsoft, Reactivity, IBM, VeriSign, BEA Systems, Oblix, RSA Security, Ping Identity,
Westbridge, Computer Associates, February 2005

[WSTrust]

Web Services Trust Language (WS-Trust), OpenNetwork, Layer7, Netegrity, Microsoft,
Reactivity, VeriSign, IBM, BEA Systems, Oblix, RSA Security, Ping Identity, Westbridge,
Computer Associates, February 2005.

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 6 of 27

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://schemas.xmlsoap.org/ws/2005/02/sc/
http://schemas.xmlsoap.org/ws/2005/02/trust/

2 Introduction 77

78
79
80

81
82
83
84
85
86

87

88
89
90

91
92

93

94
95
96
97
98
99

100
101
102
103
104

105
106
107

The current set of Web service specifications [WSDL] [SOAP] defines protocols for Web service
interoperability. Web services increasingly tie together a number of participants forming large distributed
applications. The resulting activities may have complex structure and relationships.

The WS-Coordination specification defines an extensible framework for defining coordination types. This
specification provides the definition of an atomic transaction coordination type used to coordinate
activities having an "all or nothing" property. Atomic transactions commonly require a high level of trust
between participants and are short in duration. The Atomic Transaction specification defines protocols
that enable existing transaction processing systems to wrap their proprietary protocols and interoperate
across different hardware and software vendors.

To understand the protocol described in this specification, the following assumptions are made:

• The reader is familiar with existing standards for two-phase commit protocols and with
commercially available implementations of such protocols. Therefore this section includes only
those details that are essential to understanding the protocols described.

• The reader is familiar with the WS-Coordination [WSCOOR] specification that defines the
framework for the WS-AtomicTransaction coordination protocols.

• The reader is familiar with WS-Addressing [WSADDR] and WS-Policy [WSPOLICY].

Atomic transactions have an all-or-nothing property. The actions taken prior to commit are only tentative
(i.e., not persistent and not visible to other activities). When an application finishes, it requests the
coordinator to determine the outcome for the transaction. The coordinator determines if there were any
processing failures by asking the participants to vote. If the participants all vote that they were able to
execute successfully, the coordinator commits all actions taken. If a participant votes that it needs to
abort or a participant does not respond at all, the coordinator aborts all actions taken. Commit makes the
tentative actions visible to other transactions. Abort makes the tentative actions appear as if the actions
never happened. Atomic transactions have proven to be extremely valuable for many applications. They
provide consistent failure and recovery semantics, so the applications no longer need to deal with the
mechanics of determining a mutually agreed outcome decision or to figure out how to recover from a
large number of possible inconsistent states.

Atomic Transaction defines protocols that govern the outcome of atomic transactions. It is expected that
existing transaction processing systems wrap their proprietary mechanisms and interoperate across
different vendor implementations.

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 7 of 27

3 Atomic Transaction Context 108

109
110
111

112
113

114
115

116
117

118
119

120
121
122
123

124

Atomic Transaction builds on WS-Coordination, which defines an activation and a registration service.
Example message flows and a complete description of creating and registering for coordinated activities
is found in the WS-Coordination specification [WSCOOR].

The Atomic Transaction coordination context must flow on all application messages involved with the
transaction.

Atomic Transaction adds the following semantics to the CreateCoordinationContext operation on the
activation service.

• If the request includes the CurrentContext element, the target coordinator is interposed as a
subordinate to the coordinator stipulated inside the CurrentContext element.

• If the request does not include a CurrentContext element, the target coordinator creates a new
transaction and acts as the root.

A coordination context may have an Expires attribute. This attribute specifies the earliest point in time at
which a transaction may be terminated solely due to its length of operation. From that point forward, the
transaction manager may elect to unilaterally roll back the transaction, so long as it has not transmitted a
Commit or a Prepared notification.

The Atomic Transaction protocol is identified by the following coordination type:

 http://docs.oasis-open.org/ws-tx/wsat/2006/03 125

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 8 of 27

4 Atomic Transaction Protocols 126

127

128
129
130

131
132
133

134
135

136
137

138

139

140
141

142
143

144
145

146

147
148

149

This specification defines the following protocols for atomic transactions.

• Completion: The completion protocol initiates commitment processing. Based on each
protocol's registered participants, the coordinator begins with Volatile 2PC then proceeds through
Durable 2PC. The final result is signaled to the initiator.

• Two-Phase Commit (2PC): The 2PC protocol coordinates registered participants to reach a
commit or abort decision, and ensures that all participants are informed of the final result. The
2PC protocol has two variants:

o Volatile 2PC: Participants managing volatile resources such as a cache should
register for this protocol.

o Durable 2PC: Participants managing durable resources such as a database should
register for this protocol.

A participant can register for more than one of these protocols by sending multiple Register messages.

4.1 Preconditions
The correct operation of the protocols requires that a number of preconditions MUST be established prior
to the processing:

1. The source MUST have knowledge of the destination's policies, if any, and the source MUST be
capable of formulating messages that adhere to this policy.

2. If a secure exchange of messages is required, then the source and destination MUST have a
security context.

4.2 Completion Protocol
The Completion protocol is used by an application to tell the coordinator to either try to commit or abort an
atomic transaction. After the transaction has completed, a status is returned to the application.

An initiator registers for this protocol using the following protocol identifier:

 http://docs.oasis-open.org/ws-tx/wsat/2006/03/Completion 150

151

152

153

The diagram below illustrates the protocol abstractly:

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 9 of 27

 154
155
156

157
158
159

160
161
162

163

164
165
166

167
168
169

170

171

172
173
174

175

176
177
178
179
180

181

The coordinator accepts:

Commit

Upon receipt of this notification, the coordinator knows that the participant has completed
application processing and that it should attempt to commit the transaction.

Rollback

Upon receipt of this notification, the coordinator knows that the participant has terminated
application processing and that it should abort the transaction.

The initiator accepts:

Committed

Upon receipt of this notification, the initiator knows that the coordinator reached a decision to
commit.

Aborted

Upon receipt of this notification, the initiator knows that the coordinator reached a decision to
abort.

Conforming implementations must implement Completion.

4.3 Two-Phase Commit Protocol
The Two-Phase Commit (2PC) protocol is a Coordination protocol that defines how multiple participants
reach agreement on the outcome of an atomic transaction. The 2PC protocol has two variants: Durable
2PC and Volatile 2PC.

4.3.1 Volatile Two-Phase Commit Protocol
Upon receiving a Commit notification in the completion protocol, the root coordinator begins the prepare
phase of all participants registered for the Volatile 2PC protocol. All participants registered for this
protocol must respond before a Prepare is issued to a participant registered for Durable 2PC. Further
participants may register with the coordinator until the coordinator issues a Prepare to any durable
participant. A volatile recipient is not guaranteed to receive a notification of the transaction's outcome.

Participants register for this protocol using the following protocol identifier:

 http://docs.oasis-open.org/ws-tx/wsat/2006/03/Volatile2PC182

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 10 of 27

http://docs.oasis-open.org/ws-tx/wsat/2006/03/Volatile2PC

4.3.2 Durable Two-Phase Commit Protocol 183

184
185
186
187

188

After receiving a Commit notification in the completion protocol and upon successfully completing the
prepare phase for Volatile 2PC participants, the root coordinator begins the Prepare phase for Durable
2PC participants. All participants registered for this protocol must respond Prepared or ReadOnly before
a Commit notification is issued to a participant registered for either protocol.

Participants register for this protocol using the following protocol identifier:

 http://docs.oasis-open.org/ws-tx/wsat/2006/03/Durable2PC189

190

191

192

4.3.3 2PC Diagram and Notifications
The diagram below illustrates the protocol abstractly:

 193

194

195
196
197
198

199
200
201
202

203
204
205
206

207

208
209
210

The participant accepts:

Prepare

Upon receipt of this notification, the participant knows to enter phase 1 and vote on the outcome
of the transaction. If the participant does not know of the transaction, it must vote to abort. If the
participant has already voted, it should resend the same vote.

Rollback

Upon receipt of this notification, the participant knows to abort, and forget, the transaction. This
notification can be sent in either phase 1 or phase 2. Once sent, the coordinator may forget all
knowledge of this transaction.

Commit

Upon receipt of this notification, the participant knows to commit the transaction. This notification
can only be sent after phase 1 and if the participant voted to commit. If the participant does not
know of the transaction, it must send a Committed notification to the coordinator.

The coordinator accepts:

Prepared

Upon receipt of this notification, the coordinator knows the participant is prepared and votes to
commit the transaction.

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 11 of 27

http://docs.oasis-open.org/ws-tx/wsat/2006/03/Durable2PC

211
212
213
214

215
216
217

218
219
220

221
222
223

224

ReadOnly

Upon receipt of this notification, the coordinator knows the participant votes to commit the
transaction, and has forgotten the transaction. The participant does not wish to participate in
phase 2.

Aborted

Upon receipt of this notification, the coordinator knows the participant has aborted, and forgotten,
the transaction.

Committed

Upon receipt of this notification, the coordinator knows the participant has committed the
transaction. That participant may be safely forgotten.

Replay

Upon receipt of this notification, the coordinator may assume the participant has suffered a
recoverable failure. It should resend the last appropriate protocol notification.

Conforming implementations MUST implement the 2PC protocol.

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 12 of 27

5 AT Policy Assertion 225

226
227
228
229
230

231

232
233
234

235
236

237
238

239
240

241

242

WS-Policy Framework [WS-Policy] and WS-Policy Attachment [WS-PolicyAttachment] collectively define
a framework, model and grammar for expressing the capabilities, requirements, and general
characteristics of entities in an XML Web services-based system. To enable a web service to describe
transactional capabilities and requirements of a service and its operations, this specification defines a pair
of Atomic Transaction policy assertions that leverage the WS-Policy framework.

5.1 Assertion Model
The AT policy assertions are provided by a web service to qualify the transactional processing of
messages associated with the particular operation to which the assertions are scoped. The AT policy
assertions indicate:

1. whether a requester MAY, MUST or SHOULD NOT include an AtomicTransaction
CoordinationContext flowed with the message.

2. the capability of the target service to process the message under an atomic transaction
regardless of whether the requester supplies an AtomicTransaction CoordinationContext.

The AT policy assertions are semantically independent of one another, and may be used together or in
isolation.

5.2 Normative Outline
The normative outlines for the AT policy assertions are:

<wsat:ATAssertion [wsp:Optional="true"]? ... > 243

 ... 244

</wsat:ATAssertion> 245

246

247

248
249
250

The following describes additional, normative constraints on the outline listed above:

/wsat:ATAssertion

A policy assertion that specifies that an atomic transaction MUST be flowed inside a requester’s
message. From the perspective of the requester, the target service that processes the transaction MUST
behave as if it had participated in the transaction. The transaction MUST be represented as a SOAP
header in CoordinationContext format, as defined in WS-Coordination [WS-Coordination]. 251

252 /wsat:ATAssertion/@wsp:Optional="true"

Per WS-Policy [WS-Policy], this is compact notation for two policy alternatives, one with and one without
the assertion. Presence of both policy alternatives indicates that the behavior indicated by the assertion is
optional, such that an atomic transaction MAY be flowed inside a requester’s message. The absence of
the assertion is interpreted to mean that a transaction SHOULD NOT be flowed inside a requester’s
message.

253
254
255
256
257

<wsat:ATAlwaysCapability ... /> 258

259

260

The following describes additional, normative constraints on the outline listed above:

/wsat:ATAlwaysCapability

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 13 of 27

261
262
263
264
265

266

267
268

269
270

271
272
273

274
275

276

277

A policy assertion that specifies a capability of the target service indicating that a requester’s message
will be processed transactionally regardless of whether the requester supplies an AtomicTransaction
CoordinationContext. If an AtomicTransaction context is provided by the requester, it will be used.
Otherwise the processing of the message will be within a transaction implicitly started and ended by the
target service’s environment as part of the processing of that message.

5.3 Assertion Attachment
Because the AT policy assertions indicate atomic transaction behavior for a single operation, the
assertions have Operation Policy Subject [WS-PolicyAttachment].

WS-PolicyAttachment defines two WSDL [WSDL 1.1] policy attachment points with Operation Policy
Subject:

• wsdl:portType/wsdl:operation – A policy expression containing the AT policy assertion MUST
NOT be attached to a wsdl:portType; the AT policy assertions specify a concrete behavior
whereas the wsdl:portType is an abstract construct.

• wsdl:binding/wsdl:operation – A policy expression containing the AT policy assertions SHOULD
be attached to a wsdl:binding.

5.4 Assertion Example
An example use of the AT policy assertion follows:

(01) <wsdl:definitions 278

(02) targetNamespace="bank.example.com" 279

(03) xmlns:tns="bank.example.com" 280

(04) xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 281

(05) xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" 282

(06) xmlns:wsat="http://docs.oasis-open.org/ws-tx/wsat/2006/03" 283

(07) xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-284
wssecurity-utility-1.0.xsd" > 285

(08) 286

(09) <wsp:Policy wsu:Id="TransactedPolicy1" > 287

(10) <wsat:ATAssertion wsp:optional="true" /> 288

(11) <!-- omitted assertions --> 289

(12) </wsp:Policy> 290

(13) <wsp:Policy wsu:Id="TransactedPolicy2" > 291

(14) <wsat:ATAlwaysCapability /> 292

(15) <!-- omitted assertions --> 293

(16) </wsp:Policy> 294

(17) <!-- omitted elements --> 295

(18) <wsdl:binding name="BankBinding" type="tns:BankPortType" > 296

(19) <!-- omitted elements --> 297

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 14 of 27

(20) <wsdl:operation name="QueryBalance" > 298

(21) <wsp:PolicyReference URI="#TransactedPolicy2" 299
wsdl:required="true" /> 300

(22) <!-- omitted elements --> 301

(23) </wsdl:operation> 302

(24) <wsdl:operation name="TransferFunds" > 303

(25) <wsp:PolicyReference URI="#TransactedPolicy1" 304
wsdl:required="true" /> 305

(26) <!-- omitted elements --> 306

(27) </wsdl:operation> 307

(28) </wsdl:binding> 308

(29) </wsdl:definitions> 309

310

311

Lines (9-12) are a policy expression that includes an AT policy assertion (Line 10) to indicate that an
atomic transaction in WS-Coordination [WS-Coordination] format MAY be used. 312

313
314
315

Lines (13-16) are a policy expression that includes an AT policy assertion (Line 14) to indicate that a
capability of the target service is that it will process messages in a transaction regardless of whether any
AtomicTransaction CoordinationContext is sent by the requester.

Lines (20-23) are a WSDL [WSDL 1.1] binding. Line (21) indicates that the policy in Lines (13-16) applies
to this binding, specifically indicating that QueryBalance messages are processed in an atomic
transaction regardless of whether a requester provides an AtomicTransaction CoordinationContext.

316
317
318

Lines (24-27) are a WSDL [WSDL 1.1] binding. Line (25) indicates that the policy in Lines (9-12) applies
to this binding, specifically indicating that an atomic transaction MAY flow inside messages.

319
320

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 15 of 27

6 Transaction Faults 321

322 WS-AtomicTransaction faults MUST include as the [action] property the following fault action URI:

http://docs.oasis-open.org/ws-tx/wsat/2006/03/fault 323

324
325

326

327

328

329

330

331
332

333

The faults defined in this section are generated if the condition stated in the preamble is met. Faults are
targeted at a destination endpoint according to the fault handling rules defined in [WSADDR].

The definitions of faults in this section use the following properties:

[Code] The fault code.

[Subcode] The fault subcode.

[Reason] The English language reason element.

[Detail] The detail element. If absent, no detail element is defined for the fault.

For SOAP 1.2, the [Code] property MUST be either "Sender" or "Receiver". These properties are
serialized into text XML as follows:

SOAP Version Sender Receiver

SOAP 1.2 S:Sender S:Receiver

334

335

The properties above bind to a SOAP 1.2 fault as follows:

336 <S:Envelope>
337 <S:Header>
338 <wsa:Action>
339 http://docs.oasis-open.org/ws-tx/wsat/2006/03/fault
340 </wsa:Action>
341 <!-- Headers elided for clarity. -->
342 </S:Header>
343 <S:Body>
344 <S:Fault>
345 <S:Code>

 <S:Value>[Code]</S:Value> 346
 <S:Subcode> 347
 <S:Value>[Subcode]</S:Value> 348

349 </S:Subcode>
350 </S:Code>
351 <S:Reason>

 <S:Text xml:lang="en">[Reason]</S:Text> 352
353 </S:Reason>
354 <S:Detail>

 [Detail] 355
 ... 356

357 </S:Detail>
358 </S:Fault>
359 </S:Body>
360

361

</S:Envelope>

The properties bind to a SOAP 1.1 fault as follows:

<S11:Envelope> 362

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 16 of 27

363 <S11:Body>
364 <S11:Fault>

 <faultcode>[Subcode]</faultcode> 365
 <faultstring xml:lang="en">[Reason]</faultstring> 366

367 </S11:Fault>
368 </S11:Body>
369

370

371
372

373

374

375

376

377

</S11:Envelope>

6.1 InconsistentInternalState
This fault is sent by a participant to indicate that it cannot fulfill its obligations. This indicates a global
consistency failure and is an unrecoverable condition.

Properties:

[Code] Sender

[Subcode] wsat:InconsistentInternalState

[Reason] A global consistency failure has occurred. This is an unrecoverable condition.

[Detail] unspecified

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 17 of 27

7 Security Model 378

379
380
381
382

383
384

385
386
387

388
389
390
391
392

393
394

The security model for atomic transactions builds on the model defined in WS-Coordination [WSCOOR].
That is, services have policies specifying their requirements and requestors provide claims (either implicit
or explicit) and the requisite proof of those claims. Coordination context creation establishes a base
secret which can be delegated by the creator as appropriate.

Because atomic transactions represent a specific use case rather than the general nature of coordination
contexts, additional aspects of the security model can be specified.

All access to atomic transaction protocol instances is on the basis of identity. The nature of transactions,
specifically the uncertainty of systems means that the security context established to register for the
protocol instance may not be available for the entire duration of the protocol.

Consider for example the scenarios where a participant has committed its part of the transaction, but for
some reason the coordinator never receives acknowledgement of the commit. The result is that when
communication is re-established in the future, the coordinator will attempt to confirm the commit status of
the participant, but the participant, having committed the transaction and forgotten all information
associated with it, no longer has access to the special keys associated with the token.

The participant can only prove its identity to the coordinator when it indicates that the specified
transaction is not in its log and assumed committed. This is illustrated in the figure below:

 395

396
397
398

399
400
401
402

There are, of course, techniques to mitigate this situation but such options will not always be successful.
Consequently, when dealing with atomic transactions, it is critical that identity claims always be proven to
ensure that correct access control is maintained by coordinators.

There is still value in coordination context-specific tokens because they offer a bootstrap mechanism so
that all participants need not be pre-authorized. As well, it provides additional security because only
those instances of an identity with access to the token will be able to securely interact with the coordinator
(limiting privileges strategy). This is illustrated in the figure below:

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 18 of 27

 403

404
405
406

The "list" of authorized participants ensures that application messages having a coordination context are
properly authorized since altering the coordination context ID will not provide additional access unless (1)
the bootstrap key is provided, or (2) the requestor is on the authorized participant "list" of identities.

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 19 of 27

8 Security Considerations 407

408
409
410
411
412

413
414
415

416
417
418
419

420

421

422

423

424
425
426

427
428
429
430
431

432
433

434
435

436
437

438
439
440

441
442
443

444
445
446

It is strongly RECOMMENDED that the communication between services be secured using the
mechanisms described in WS-Security [WSSec]. In order to properly secure messages, the body and all
relevant headers need to be included in the signature. Specifically, the
<wscoor:CoordinationContext> header needs to be signed with the body and other key message
headers in order to "bind" the two together.

In the event that a participant communicates frequently with a coordinator, it is RECOMMENDED that a
security context be established using the mechanisms described in WS-Trust [WSTrust] and WS-
SecureConversation [WSSecConv] allowing for potentially more efficient means of authentication.

It is common for communication with coordinators to exchange multiple messages. As a result, the usage
profile is such that it is susceptible to key attacks. For this reason it is strongly RECOMMENDED that the
keys be changed frequently. This "re-keying" can be effected a number of ways. The following list
outlines four common techniques:

• Attaching a nonce to each message and using it in a derived key function with the shared secret

• Using a derived key sequence and switch "generations"

• Closing and re-establishing a security context (not possible for delegated keys)

• Exchanging new secrets between the parties (not possible for delegated keys)

It should be noted that the mechanisms listed above are independent of the SCT and secret returned
when the coordination context is created. That is, the keys used to secure the channel may be
independent of the key used to prove the right to register with the activity.

The security context MAY be re-established using the mechanisms described in WS-Trust [WSTrust] and
WS-SecureConversation [WSSecConv]. Similarly, secrets can be exchanged using the mechanisms
described in WS-Trust. Note, however, that the current shared secret SHOULD NOT be used to encrypt
the new shared secret. Derived keys, the preferred solution from this list, can be specified using the
mechanisms described in WS-SecureConversation.

The following list summarizes common classes of attacks that apply to this protocol and identifies the
mechanism to prevent/mitigate the attacks:

• Message alteration – Alteration is prevented by including signatures of the message information
using WS-Security [WSSec].

• Message disclosure – Confidentiality is preserved by encrypting sensitive data using WS-
Security.

• Key integrity – Key integrity is maintained by using the strongest algorithms possible (by
comparing secured policies – see WS-Policy [WSPOLICY] and WS-SecurityPolicy
[WSSecPolicy]).

• Authentication – Authentication is established using the mechanisms described in WS-Security
and WS-Trust [WSTrust]. Each message is authenticated using the mechanisms described in
WS-Security [WSSec].

• Accountability – Accountability is a function of the type of and string of the key and algorithms
being used. In many cases, a strong symmetric key provides sufficient accountability. However,
in some environments, strong PKI signatures are required.

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 20 of 27

• Availability – Many services are subject to a variety of availability attacks. Replay is a common
attack and it is RECOMMENDED that this be addressed as described in the next bullet. Other
attacks, such as network-level denial of service attacks are harder to avoid and are outside the
scope of this specification. That said, care should be taken to ensure that minimal processing be
performed prior to any authenticating sequences.

447
448
449
450
451

452
453
454
455

• Replay – Messages may be replayed for a variety of reasons. To detect and eliminate this
attack, mechanisms should be used to identify replayed messages such as the timestamp/nonce
outlined in WS-Security [WSSec]. Alternatively, and optionally, other technologies, such as
sequencing, can also be used to prevent replay of application messages.

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 21 of 27

9 Use of WS-Addressing Headers 456

457

458
459

460

461
462

463
464
465

466
467
468

469
470

471

472

473

474

475

476
477

478

479
480
481
482
483
484

485
486
487
488

489
490
491

The messages defined in WS-AtomicTransaction can be classified into two types:

• Notification messages: Commit, Rollback, Committed, Aborted, Prepare,
Prepared, ReadOnly and Replay.

• Fault messages

Notification messages follow the standard "one way" pattern as defined in WS-Addressing. There are two
types of notification messages:

• A notification message is a terminal message when it indicates the end of a
coordinator/participant relationship. Committed, Aborted and ReadOnly are
terminal messages.

• A notification message is a non-terminal message when it does not indicate the end
of a coordinator/participant relationship. Commit, Rollback, Prepare, Prepared
and Replay are non-terminal messages.

The following statements define addressing interoperability requirements for the WS-AtomicTransaction
message types:

Non-terminal notification messages

• MUST include a wsa:ReplyTo header

Terminal notification messages

• SHOULD NOT include a wsa:ReplyTo header

Fault messages

• MUST include a wsa:RelatesTo header, specifying the MessageID from the Notification
message that generated the fault condition.

Notification messages are addressed by both coordinators and participants using the Endpoint
References initially obtained during the Register-RegisterResponse exchange. If a wsa:ReplyTo header
is present in a notification message it MAY be used by the recipient, for example in cases where a
Coordinator or Participant has forgotten a transaction that is completed and needs to respond to a resent
protocol message. Permanent loss of connectivity between a coordinator and a participant in an in-doubt
state can result in data corruption.

If a wsa:FaultTo header is present on a message that generates a fault condition, then it MUST be used
by the recipient as the destination for any fault. Otherwise, fault messages MAY be addressed by both
coordinators and participants using the Endpoint References initially obtained during the Register-
RegisterResponse exchange.

All messages are delivered using connections initiated by the sender. Endpoint References MUST
contain physical addresses and MUST NOT use the well-known "anonymous" endpoint defined in WS-
Addressing.

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 22 of 27

10 State Tables 492

493
494
495
496

497

498

The following state tables specify the behavior of coordinators and participants when presented with
protocol messages or internal events. These tables present the view of a coordinator or participant with
respect to a single partner. A coordinator with multiple participants can be understood as a collection of
independent coordinator state machines.

Each cell in the tables uses the following convention:

Legend

Action to take

Next state

499

500
501
502
503

Each state supports a number of possible events. Expected events are processed by taking the
prescribed action and transitioning to the next state. Unexpected protocol messages will result in a fault
message, with a standard fault code such as Invalid State or Inconsistent Internal State. Events that may
not occur in a given state are labeled as N/A.

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 23 of 27

Atomic Transaction 2PC protocol

(Coordinator View)

States Inbound
Events

None Active Preparing Prepared PreparedSuccess Committing Aborting

Register
Invalid State

None

Send
RegisterResponse

Active

Durable: Invalid
State

Aborting

Volatile: Send
RegisterResponse

Active

N/A
Invalid State

PreparedSuccess

Invalid State

Committing

Invalid State

Aborting

Prepared

Durable: Send
Rollback

Volatile:
Invalid State

None

Invalid State

Aborting

Record Vote

Preparing
N/A

Ignore

PreparedSuccess

Resend Commit

Committing

Resend
Rollback, and

Forget

Aborting

ReadOnly
Ignore

None

Forget

Active

Forget

Preparing
N/A

Invalid State

PreparedSuccess

Invalid State

Committing

Forget

Aborting

Aborted
Ignore

None

Forget

Aborting

Forget

Aborting
N/A

Invalid State

PreparedSuccess

Invalid State

Committing

Forget

Aborting

Committed
Ignore

None

Invalid State

Aborting

Invalid State

Aborting
N/A

Invalid State

PreparedSuccess

Forget

Committing

Invalid State

Aborting

Replay

Durable: Send
Rollback

Volatile:
Invalid State

None

Send Rollback

Aborting

Send Rollback

Aborting
N/A

Ignore

PreparedSuccess

Send Commit

Committing

Send Rollback

Aborting

Internal
Events

User
Commit

Return
Aborted

None

Send Prepare

Preparing

Ignore

Preparing
N/A

Ignore

Prepared Success

Return Committed

Committing

Return Aborted

Aborting

User
Rollback

Return
Aborted

None

Send Rollback

Aborting

Send Rollback

Aborting
N/A

Invalid State

PreparedSuccess

Invalid State

Committing

Return Aborted

Aborting

Expires
Times Out

N/A
Send Rollback

Aborting

Send Rollback

Aborting
N/A

Ignore

PreparedSuccess

Ignore

Committing

Ignore

Aborting

Comms
Times Out

N/A N/A
Resend Prepare

Preparing
N/A N/A

Resend Commit

Committing
N/A

Commit
Decision

N/A N/A
Record Outcome

Prepared Success
N/A N/A N/A N/A

Write Done N/A N/A N/A N/A
Send Commit

Committing
N/A N/A

Write
Failed

N/A N/A N/A N/A
Send Rollback

Aborting
N/A N/A

All
Forgotten

N/A Active None N/A N/A None None

504

505

506
507

508

509
510

Notes:

1. Transitions with a “N/A” as their action are inexpressible. A TM should view these transitions as
serious internal consistency issues, and probably fatal.

2. Internal events are those that are created either within a TM itself, or on its local system.

“Forget” implies that the subordinate’s is participation is removed from the coordinator (if necessary), and
otherwise the message is ignored

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 24 of 27

Atomic Transaction 2PC Protocol

(Participant View)

States Inbound
Events

None Active Preparing Prepared PreparedSuccess Committing Aborting

Register
Response

Register
Subordinate

Active

Ignore

Active

Ignore

Preparing

Ignore

 Prepared

Ignore

PreparedSuccess

Ignore

Committing

Ignore

Aborting

Prepare
Send Aborted

None

Gather
Vote

Decision

Preparing

Ignore

Preparing

Ignore

Prepared

Resend Prepared

PreparedSuccess

Ignore

Committing

Resend Aborted, and
Forget

Aborting

Commit
Send

Committed

None

Invalid
State

Aborting

Invalid State

Aborting

Invalid State

Aborting

Initiate Commit Decision

Committing

Ignore

Committing

InconsistentInternalState

Aborting

Rollback
Send Aborted

None

Initiate
Rollback,

Send
Aborted,

and
Forget

Aborting

Initiate
Rollback, Send
Aborted, and

Forget

Aborting

Initiate Rollback,
Send Aborted,

and Forget

Aborting

Initiate Rollback, Send
Aborted, and Forget

Aborting

InconsistentInternalState

Committing

Send Aborted, and
Forget

Aborting

Internal
Events

Expires
Times Out

N/A

Send
Aborted

Aborting

Send Aborted

Aborting

Ignore

Prepared

Ignore

PreparedSuccess

Ignore

Committing

Ignore

Aborting

Comms
Times Out

N/A N/A N/A N/A
Resend Prepared

PreparedSuccess
N/A N/A

Commit
Decision

N/A N/A

Record
Commit

Prepared

N/A N/A

Send Committed and
Forget

Committing

N/A

Rollback
Decision

N/A N/A
Send Aborted

Aborting
N/A N/A N/A N/A

Write
Done

N/A N/A N/A
Send Prepared

PreparedSuccess
N/A N/A N/A

Write
Failed

N/A N/A N/A

Initiate Rollback,
Send Aborted,

and Forget

Aborting

N/A N/A N/A

All
Forgotten

None N/A

Send
ReadOnly

None

N/A N/A None None

511

512

513
514

515

Notes:

1. Transitions with a “N/A” as their action are inexpressible. A TM should view these transitions as
serious internal consistency issues, and probably fatal.

2. Internal events are those that are created either within a TM itself, or on its local system.

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 25 of 27

Appendix A. Acknowledgements 516

517
518
519
520
521
522
523
524
525
526

527

528
529

530
531
532

This document is based on initial contributions to the OASIS WS-TX Technical Committee by the
following authors: Luis Felipe Cabrera, Microsoft, George Copeland, Microsoft, Max Feingold, Microsoft,
Robert W Freund, Hitachi, Tom Freund, IBM, Sean Joyce, IONA, Johannes Klein, Microsoft, David
Langworthy, Microsoft, Mark Little, Arjuna Technologies, Frank Leymann, IBM, Eric Newcomer, IONA,
David Orchard, BEA Systems, Ian Robinson, IBM, Tony Storey, IBM, Satish Thatte, Microsoft.

The following individuals have provided invaluable input into the initial contribution: Francisco Curbera,
IBM, Doug Davis, IBM, Gert Drapers, Microsoft, Don Ferguson, IBM, Kirill Gavrylyuk, Microsoft, Dan
House, IBM, Oisin Hurley, IONA, Thomas Mikalsen, IBM, Jagan Peri, Microsoft, John Shewchuk,
Microsoft, Stefan Tai, IBM.

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:

Participants:
[Participant Name, Affiliation | Individual Member]
[Participant Name, Affiliation | Individual Member]

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 26 of 27

Appendix B. Revision History 533

Revision yy-mm-dd Editor Changes Made

01 05-11-22 Mark Little Initial Working Draft

01 05-11-23 Andrew Wilkinson Initial Working Draft

02 06-02-12 Mark Little Updated for issue i017

03 06-03-02 Andrew Wilkinson Updated for issue 015

04 06-03-10 Andrew Wilkinson Updated for issue 009

cd-01 06-03-15 Andrew Wilkinson Updates to produce CD-01

534

wstx-wsat-1.1-spec-cd-01 March 15, 2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 27 of 27

	1 Note on terminology
	1.1 Composable Architecture
	1.2 Namespace
	1.2.1 Prefix Namespace

	1.3 XSD and WSDL Files
	1.4 AT Protocol Elements
	1.5 Normative References
	1.6 Non-normative References

	2 Introduction
	3 Atomic Transaction Context
	4 Atomic Transaction Protocols
	4.1 Preconditions
	4.2 Completion Protocol
	4.3 Two-Phase Commit Protocol
	4.3.1 Volatile Two-Phase Commit Protocol
	4.3.2 Durable Two-Phase Commit Protocol
	4.3.3 2PC Diagram and Notifications

	5 AT Policy Assertion
	5.1 Assertion Model
	5.2 Normative Outline
	5.3 Assertion Attachment
	5.4 Assertion Example

	6 Transaction Faults
	6.1 InconsistentInternalState

	7 Security Model
	8 Security Considerations
	9 Use of WS-Addressing Headers
	10 State Tables

