
ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 1 of 76

WS-Trust 1.3

OASIS Standard incorporating Proposed Errata

30 April 2008

Artifact Identifier:

ws-trust-1.3-spec-errata-cd

Location:
This Version:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-errata-cd-01.doc
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-errata-cd-01.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-errata-cd-01.html

Previous Version:
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-os-01.doc
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-os-01.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-os-01.html

Latest Version:
http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.doc
http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.html

Technical Committee:

OASIS Web Service Secure Exchange TC

Chair(s):
Kelvin Lawrence, IBM
Chris Kaler, Microsoft

Editor(s):
Anthony Nadalin, IBM
Marc Goodner, Microsoft
Martin Gudgin, Microsoft
Abbie Barbir, Nortel
Hans Granqvist, VeriSign

Related work:

N/A

Declared XML namespace(s):

http://docs.oasis-open.org/ws-sx/ws-trust/200512

Abstract:
This specification defines extensions that build on [WS-Security] to provide a framework for
requesting and issuing security tokens, and to broker trust relationships.

Status:
This document was last revised or approved by the WS-SX TC on the above date. The level of
approval is also listed above. Check the current location noted above for possible later revisions
of this document. This document is updated periodically on no particular schedule.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-errata-cd-01.doc
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-errata-cd-01.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-errata-cd-01.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-os-01.doc
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-os-01.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-os-01.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.doc
http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 2 of 76

“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/ws-sx.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/ws-sx/ipr.php).

The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/ws-sx.

http://www.oasis-open.org/committees/ws-sx
http://www.oasis-open.org/committees/ws-sx
http://www.oasis-open.org/committees/ws-sx/ipr.php
http://www.oasis-open.org/committees/ws-sx/ipr.php
http://www.oasis-open.org/committees/ws-sx
http://www.oasis-open.org/committees/ws-sx

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 3 of 76

Notices

Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/trademark.php

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 4 of 76

Table of Contents

1 Introduction ... 6

1.1 Goals and Non-Goals ... 6

1.2 Requirements ... 7

1.3 Namespace ... 7

1.4 Schema and WSDL Files .. 8

1.5 Terminology .. 8

1.5.1 Notational Conventions ... 9

1.6 Normative References .. 10

1.7 Non-Normative References .. 11

2 Web Services Trust Model ... 12

2.1 Models for Trust Brokering and Assessment .. 13

2.2 Token Acquisition ... 1413

2.3 Out-of-Band Token Acquisition ... 14

2.4 Trust Bootstrap ... 14

3 Security Token Service Framework ... 15

3.1 Requesting a Security Token.. 15

3.2 Returning a Security Token .. 16

3.3 Binary Secrets .. 18

3.4 Composition .. 18

4 Issuance Binding .. 19

4.1 Requesting a Security Token.. 19

4.2 Request Security Token Collection .. 2221

4.2.1 Processing Rules... 23

4.3 Returning a Security Token Collection ... 2423

4.4 Returning a Security Token .. 24

4.4.1 wsp:AppliesTo in RST and RSTR ... 25

4.4.2 Requested References .. 26

4.4.3 Keys and Entropy .. 26

4.4.4 Returning Computed Keys .. 27

4.4.5 Sample Response with Encrypted Secret ... 28

4.4.6 Sample Response with Unencrypted Secret ... 28

4.4.7 Sample Response with Token Reference ... 29

4.4.8 Sample Response without Proof-of-Possession Token .. 29

4.4.9 Zero or One Proof-of-Possession Token Case ... 29

4.4.10 More Than One Proof-of-Possession Tokens Case ... 30

4.5 Returning Security Tokens in Headers ... 31

5 Renewal Binding ... 33

6 Cancel Binding ... 36

6.1 STS-initiated Cancel Binding .. 37

7 Validation Binding ... 39

8 Negotiation and Challenge Extensions .. 42

8.1 Negotiation and Challenge Framework .. 43

8.2 Signature Challenges ... 43

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 5 of 76

8.3 Binary Exchanges and Negotiations ... 44

8.4 Key Exchange Tokens .. 45

8.5 Custom Exchanges ... 46

8.6 Signature Challenge Example .. 46

8.7 Custom Exchange Example ... 48

8.8 Protecting Exchanges ... 49

8.9 Authenticating Exchanges .. 50

9 Key and Token Parameter Extensions ... 5251

9.1 On-Behalf-Of Parameters ... 5251

9.2 Key and Encryption Requirements ... 5251

9.3 Delegation and Forwarding Requirements ... 5756

9.4 Policies .. 5857

9.5 Authorized Token Participants .. 5958

10 Key Exchange Token Binding .. 6059

11 Error Handling .. 6261

12 Security Considerations ... 6362

A. Key Exchange .. 6564

A.1 Ephemeral Encryption Keys ... 6564

A.2 Requestor-Provided Keys .. 6564

A.3 Issuer-Provided Keys ... 6665

A.4 Composite Keys ... 6665

A.5 Key Transfer and Distribution ... 6766

A.5.1 Direct Key Transfer ... 6766

A.5.2 Brokered Key Distribution ... 6766

A.5.3 Delegated Key Transfer .. 6867

A.5.4 Authenticated Request/Reply Key Transfer .. 6968

A.6 Perfect Forward Secrecy .. 7069

B. WSDL ... 7170

C. Acknowledgements .. 7372

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 6 of 76

1 Introduction 1

[WS-Security] defines the basic mechanisms for providing secure messaging. This specification uses 2

these base mechanisms and defines additional primitives and extensions for security token exchange to 3

enable the issuance and dissemination of credentials within different trust domains. 4

 5

In order to secure a communication between two parties, the two parties must exchange security 6

credentials (either directly or indirectly). However, each party needs to determine if they can "trust" the 7

asserted credentials of the other party. 8

 9

In this specification we define extensions to [WS-Security] that provide: 10

 Methods for issuing, renewing, and validating security tokens. 11

 Ways to establish assess the presence of, and broker trust relationships. 12

 13

Using these extensions, applications can engage in secure communication designed to work with the 14

general Web services framework, including WSDL service descriptions, UDDI businessServices and 15

bindingTemplates, and [SOAP] [SOAP2] messages. 16

 17

To achieve this, this specification introduces a number of elements that are used to request security 18

tokens and broker trust relationships. 19

 20

This specification defines a number of extensions; compliant services are NOT REQUIRED to implement 21

everything defined in this specification. However, if a service implements an aspect of the specification, it 22

MUST comply with the requirements specified (e.g. related "MUST" statements). 23

 24

Section 12 is non-normative. 25

1.1 Goals and Non-Goals 26

The goal of WS-Trust is to enable applications to construct trusted [SOAP] message exchanges. This 27

trust is represented through the exchange and brokering of security tokens. This specification provides a 28

protocol agnostic way to issue, renew, and validate these security tokens. 29

 30

This specification is intended to provide a flexible set of mechanisms that can be used to support a range 31

of security protocols; this specification intentionally does not describe explicit fixed security protocols. 32

 33

As with every security protocol, significant efforts must be applied to ensure that specific profiles and 34

message exchanges constructed using WS-Trust are not vulnerable to attacks (or at least that the attacks 35

are understood). 36

 37

The following are explicit non-goals for this document: 38

 Password authentication 39

 Token revocation 40

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 7 of 76

 Management of trust policies 41

 42

Additionally, the following topics are outside the scope of this document: 43

 Establishing a security context token 44

 Key derivation 45

1.2 Requirements 46

The Web services trust specification must support a wide variety of security models. The following list 47

identifies the key driving requirements for this specification: 48

 Requesting and obtaining security tokens 49

 Establishing, managing and assessing trust relationships 50

1.3 Namespace 51

The [URI] that MUST be used by implementations of this specification is: 52

 http://docs.oasis-open.org/ws-sx/ws-trust/200512 53

Table 1 lists XML namespaces that are used in this specification. The choice of any namespace prefix is 54

arbitrary and not semantically significant. 55

Table 1: Prefixes and XML Namespaces used in this specification. 56

Prefix Namespace Specification(s)

S11 http://schemas.xmlsoap.org/soap/envelope/ [SOAP]

S12 http://www.w3.org/2003/05/soap-envelope [SOAP12]

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd

[WS-Security]

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0.xsd

[WS-Security]

wsse11 http://docs.oasis-open.org/wss/oasis-wss-wsecurity-secext-

1.1.xsd

[WS-Security]

wst http://docs.oasis-open.org/ws-sx/ws-trust/200512 This specification

ds http://www.w3.org/2000/09/xmldsig# [XML-Signature]

xenc http://www.w3.org/2001/04/xmlenc# [XML-Encrypt]

wsp http://schemas.xmlsoap.org/ws/2004/09/policy [WS-Policy]

wsa http://www.w3.org/2005/08/addressing [WS-Addressing]

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2003/05/soap-envelope
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/oasis-wss-wsecurity-secext-1.1.xsd
http://docs.oasis-open.org/wss/oasis-wss-wsecurity-secext-1.1.xsd
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2001/04/xmlenc
http://schemas.xmlsoap.org/ws/2002/12/policy
http://www.w3.org/2005/08/addressing

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 8 of 76

xs http://www.w3.org/2001/XMLSchema [XML-Schema1]

[XML-Schema2]

1.4 Schema and WSDL Files 57

The schema [XML-Schema1], [XML-Schema2] for this specification can be located at: 58

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust.xsd 59

 60

The WSDL for this specification can be located in Appendix II of this document as well as at: 61

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust.wsdl 62

In this document, reference is made to the wsu:Id attribute, wsu:Created and wsu:Expires 63

elements in the utility schema. These were added to the utility schema with the intent that other 64
specifications requiring such an ID or timestamp could reference it (as is done here). 65

1.5 Terminology 66

Claim – A claim is a statement made about a client, service or other resource (e.g. name, identity, key, 67

group, privilege, capability, etc.). 68

Security Token – A security token represents a collection of claims. 69

Signed Security Token – A signed security token is a security token that is cryptographically endorsed 70

by a specific authority (e.g. an X.509 certificate or a Kerberos ticket). 71

Proof-of-Possession Token – A proof-of-possession (POP) token is a security token that contains 72

secret data that can be used to demonstrate authorized use of an associated security token. Typically, 73

although not exclusively, the proof-of-possession information is encrypted with a key known only to the 74

recipient of the POP token. 75

Digest – A digest is a cryptographic checksum of an octet stream. 76

Signature – A signature is a value computed with a cryptographic algorithm and bound to data in such a 77

way that intended recipients of the data can use the signature to verify that the data has not been altered 78

and/or has originated from the signer of the message, providing message integrity and authentication. 79

The signature can be computed and verified with symmetric key algorithms, where the same key is used 80

for signing and verifying, or with asymmetric key algorithms, where different keys are used for signing and 81

verifying (a private and public key pair are used). 82

Trust Engine – The trust engine of a Web service is a conceptual component that evaluates the security-83

related aspects of a message as described in section 2 below. 84

Security Token Service – A security token service (STS) is a Web service that issues security tokens 85

(see [WS-Security]). That is, it makes assertions based on evidence that it trusts, to whoever trusts it (or 86

to specific recipients). To communicate trust, a service requires proof, such as a signature to prove 87

knowledge of a security token or set of security tokens. A service itself can generate tokens or it can rely 88

on a separate STS to issue a security token with its own trust statement (note that for some security token 89

formats this can just be a re-issuance or co-signature). This forms the basis of trust brokering. 90

Trust – Trust is the characteristic that one entity is willing to rely upon a second entity to execute a set of 91

actions and/or to make set of assertions about a set of subjects and/or scopes. 92

Direct Trust – Direct trust is when a relying party accepts as true all (or some subset of) the claims in the 93

token sent by the requestor. 94

Direct Brokered Trust – Direct Brokered Trust is when one party trusts a second party who, in turn, 95

trusts or vouches for, a third party. 96

http://www.w3.org/2001/XMLSchema

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 9 of 76

Indirect Brokered Trust – Indirect Brokered Trust is a variation on direct brokered trust where the 97

second party negotiates with the third party, or additional parties, to assess the trust of the third party. 98

Message Freshness – Message freshness is the process of verifying that the message has not been 99
replayed and is currently valid. 100

We provide basic definitions for the security terminology used in this specification. Note that readers 101

should be familiar with the [WS-Security] specification. 102

1.5.1 Notational Conventions 103

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD 104

NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described 105

in [RFC2119]. 106

 107

Namespace URIs of the general form "some-URI" represents some application-dependent or context-108

dependent URI as defined in [URI]. 109

 110

This specification uses the following syntax to define outlines for messages: 111

 The syntax appears as an XML instance, but values in italics indicate data types instead of literal 112

values. 113

 Characters are appended to elements and attributes to indicate cardinality: 114

o "?" (0 or 1) 115

o "*" (0 or more) 116

o "+" (1 or more) 117

 The character "|" is used to indicate a choice between alternatives. 118

 The characters "(" and ")" are used to indicate that contained items are to be treated as a group 119

with respect to cardinality or choice. 120

 The characters "[" and "]" are used to call out references and property names. 121

 Ellipses (i.e., "...") indicate points of extensibility. Additional children and/or attributes MAY be 122

added at the indicated extension points but MUST NOT contradict the semantics of the parent 123

and/or owner, respectively. By default, if a receiver does not recognize an extension, the receiver 124

SHOULD ignore the extension; exceptions to this processing rule, if any, are clearly indicated 125

below. 126

 XML namespace prefixes (see Table 1) are used to indicate the namespace of the element being 127

defined. 128

 129

Elements and Attributes defined by this specification are referred to in the text of this document using 130
XPath 1.0 expressions. Extensibility points are referred to using an extended version of this syntax: 131

 An element extensibility point is referred to using {any} in place of the element name. This 132
indicates that any element name can be used, from any namespace other than the namespace of 133
this specification. 134

 An attribute extensibility point is referred to using @{any} in place of the attribute name. This 135
indicates that any attribute name can be used, from any namespace other than the namespace of 136
this specification. 137

 138

In this document reference is made to the wsu:Id attribute and the wsu:Created and wsu:Expires 139

elements in a utility schema (http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-140

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 10 of 76

1.0.xsd). The wsu:Id attribute and the wsu:Created and wsu:Expires elements were added to the 141

utility schema with the intent that other specifications requiring such an ID type attribute or timestamp 142

element could reference it (as is done here). 143

 144

1.6 Normative References 145

[RFC2119] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels", 146
RFC 2119, Harvard University, March 1997. 147

http://www.ietf.org/rfc/rfc2119.txt 148

[RFC2246] IETF Standard, "The TLS Protocol", January 1999. 149

http://www.ietf.org/rfc/rfc2246.txt 150

[SOAP] W3C Note, "SOAP: Simple Object Access Protocol 1.1", 08 May 2000. 151

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ 152

[SOAP12] W3C Recommendation, "SOAP 1.2 Part 1: Messaging Framework", 24 153
June 2003. 154

http://www.w3.org/TR/2003/REC-soap12-part1-20030624/ 155

[URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers 156
(URI): Generic Syntax", RFC 3986, MIT/LCS, Day Software, Adobe 157
Systems, January 2005. 158

http://www.ietf.org/rfc/rfc3986.txt 159

[WS-Addressing] W3C Recommendation, "Web Services Addressing (WS-Addressing)", 9 160
May 2006. 161

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509 162

[WS-Policy] W3C Member Submission, "Web Services Policy 1.2 - Framework", 25 163
April 2006. 164

http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/ 165

[WS-PolicyAttachment] W3C Member Submission, "Web Services Policy 1.2 - Attachment", 25 166
April 2006. 167

http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-168
20060425/ 169

[WS-Security] OASIS Standard, "OASIS Web Services Security: SOAP Message Security 170
1.0 (WS-Security 2004)", March 2004. 171

 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-172
security-1.0.pdf 173

OASIS Standard, "OASIS Web Services Security: SOAP Message Security 174
1.1 (WS-Security 2004)", February 2006. 175

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-176
spec-os-SOAPMessageSecurity.pdf 177

[XML-C14N] W3C Recommendation, "Canonical XML Version 1.0", 15 March 2001. 178

http://www.w3.org/TR/2001/REC-xml-c14n-20010315 179

[XML-Encrypt] W3C Recommendation, "XML Encryption Syntax and Processing", 10 180
December 2002. 181

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/ 182

[XML-Schema1] W3C Recommendation, "XML Schema Part 1: Structures Second Edition", 183
28 October 2004. 184

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ 185

[XML-Schema2] W3C Recommendation, "XML Schema Part 2: Datatypes Second Edition", 186
28 October 2004. 187

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ 188

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/
http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-20060425/
http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-20060425/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 11 of 76

[XML-Signature] W3C Recommendation, "XML-Signature Syntax and Processing", 12 189
February 2002. 190

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/ 191

 192

1.7 Non-Normative References 193

[Kerberos] J. Kohl and C. Neuman, "The Kerberos Network 149 Authentication 194
Service (V5)," RFC 1510, September 1993. 195

http://www.ietf.org/rfc/rfc1510.txt 196

[WS-Federation] "Web Services Federation Language," BEA, IBM, Microsoft, RSA Security, 197
VeriSign, July 2003. 198

[WS-SecurityPolicy] OASIS Committee Draft, “WS-SecurityPolicy 1.2”, September 2006 199

 http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512 200

[X509] S. Santesson, et al,"Internet X.509 Public Key Infrastructure Qualified 201
Certificates Profile." 202

http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-203
REC-X.509-200003-I 204

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.ietf.org/rfc/rfc1510.txt
http://schemas.xmlsoap.org/ws/2003/07/secext/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-X.509-200003-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-X.509-200003-I

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 12 of 76

2 Web Services Trust Model 205

The Web service security model defined in WS-Trust is based on a process in which a Web service can 206

require that an incoming message prove a set of claims (e.g., name, key, permission, capability, etc.). If a 207

message arrives without having the required proof of claims, the service SHOULD ignore or reject the 208

message. A service can indicate its required claims and related information in its policy as described by 209

[WS-Policy] and [WS-PolicyAttachment] specifications. 210

 211

Authentication of requests is based on a combination of optional OPTIONAL network and transport-212

provided security and information (claims) proven in the message. Requestors can authenticate 213

recipients using network and transport-provided security, claims proven in messages, and encryption of 214

the request using a key known to the recipient. 215

 216

One way to demonstrate authorized use of a security token is to include a digital signature using the 217

associated secret key (from a proof-of-possession token). This allows a requestor to prove a required set 218

of claims by associating security tokens (e.g., PKIX, X.509 certificates) with the messages. 219

 If the requestor does not have the necessary token(s) to prove required claims to a service, it can 220

contact appropriate authorities (as indicated in the service's policy) and request the needed tokens 221

with the proper claims. These "authorities", which we refer to as security token services, may in turn 222

require their own set of claims for authenticating and authorizing the request for security tokens. 223

Security token services form the basis of trust by issuing a range of security tokens that can be used 224

to broker trust relationships between different trust domains. 225

 This specification also defines a general mechanism for multi-message exchanges during token 226

acquisition. One example use of this is a challenge-response protocol that is also defined in this 227

specification. This is used by a Web service for additional challenges to a requestor to ensure 228

message freshness and verification of authorized use of a security token. 229

 230

This model is illustrated in the figure below, showing that any requestor may also be a service, and that 231

the Security Token Service is a Web service (that is, it may MAY express policy and require security 232

tokens). 233

 234

 235

This general security model – claims, policies, and security tokens – subsumes and supports several 236

more specific models such as identity-based authorization, access control lists, and capabilities-based 237

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 13 of 76

authorization. It allows use of existing technologies such as X.509 public-key certificates, XML-based 238

tokens, Kerberos shared-secret tickets, and even password digests. The general model in combination 239

with the [WS-Security] and [WS-Policy] primitives is sufficient to construct higher-level key exchange, 240

authentication, policy-based access control, auditing, and complex trust relationships. 241

 242

In the figure above the arrows represent possible communication paths; the requestor may MAY obtain a 243

token from the security token service, or it may MAY have been obtained indirectly. The requestor then 244

demonstrates authorized use of the token to the Web service. The Web service either trusts the issuing 245

security token service or may MAY request a token service to validate the token (or the Web service may 246

MAY validate the token itself). 247

 248

In summary, the Web service has a policy applied to it, receives a message from a requestor that possibly 249

includes security tokens, and may MAY have some protection applied to it using [WS-Security] 250

mechanisms. The following key steps are performed by the trust engine of a Web service (note that the 251

order of processing is non-normative): 252

1. Verify that the claims in the token are sufficient to comply with the policy and that the message 253

conforms to the policy. 254

2. Verify that the attributes of the claimant are proven by the signatures. In brokered trust models, 255

the signature may notMAY NOT verify the identity of the claimant – it may MAY verify the identity 256

of the intermediary, who may MAY simply assert the identity of the claimant. The claims are either 257

proven or not based on policy. 258

3. Verify that the issuers of the security tokens (including all related and issuing security token) are 259

trusted to issue the claims they have made. The trust engine may MAY need to externally verify 260

or broker tokens (that is, send tokens to a security token service in order to exchange them for 261

other security tokens that it can use directly in its evaluation). 262

 263

If these conditions are met, and the requestor is authorized to perform the operation, then the service can 264

process the service request. 265

In this specification we define how security tokens are requested and obtained from security token 266

services and how these services may MAY broker trust and trust policies so that services can perform 267

step 3. 268

Network and transport protection mechanisms such as IPsec or TLS/SSL [RFC2246] can be used in 269

conjunction with this specification to support different security requirements and scenarios. If available, 270

requestors should consider using a network or transport security mechanism to authenticate the service 271

when requesting, validating, or renewing security tokens, as an added level of security. 272

 273

The [WS-Federation] specification builds on this specification to define mechanisms for brokering and 274

federating trust, identity, and claims. Examples are provided in [WS-Federation] illustrating different trust 275

scenarios and usage patterns. 276

2.1 Models for Trust Brokering and Assessment 277

This section outlines different models for obtaining tokens and brokering trust. These methods depend 278

on whether the token issuance is based on explicit requests (token acquisition) or if it is external to a 279

message flow (out-of-band and trust management). 280

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 14 of 76

2.2 Token Acquisition 281

As part of a message flow, a request may MAY be made of a security token service to exchange a 282

security token (or some proof) of one form for another. The exchange request can be made either by a 283

requestor or by another party on the requestor's behalf. If the security token service trusts the provided 284

security token (for example, because it trusts the issuing authority of the provided security token), and the 285

request can prove possession of that security token, then the exchange is processed by the security 286

token service. 287

 288

The previous paragraph illustrates an example of token acquisition in a direct trust relationship. In the 289

case of a delegated request (one in which another party provides the request on behalf of the requestor 290

rather than the requestor presenting it themselves), the security token service generating the new token 291

may notMAY NOT need to trust the authority that issued the original token provided by the original 292

requestor since it does trust the security token service that is engaging in the exchange for a new security 293

token. The basis of the trust is the relationship between the two security token services. 294

2.3 Out-of-Band Token Acquisition 295

The previous section illustrated acquisition of tokens. That is, a specific request is made and the token is 296

obtained. Another model involves out-of-band acquisition of tokens. For example, the token may be sent 297

from an authority to a party without the token having been explicitly requested or the token may have 298

been obtained as part of a third-party or legacy protocol. In any of these cases the token is not received 299

in response to a direct SOAP request. 300

2.4 Trust Bootstrap 301

An administrator or other trusted authority may MAY designate that all tokens of a certain type are trusted 302

(e.g. all Kerberos tokens from a specific realm or all X.509 tokens from a specific CA). The security token 303

service maintains this as a trust axiom and can communicate this to trust engines to make their own trust 304

decisions (or revoke it later), or the security token service may MAY provide this function as a service to 305

trusting services. 306

There are several different mechanisms that can be used to bootstrap trust for a service. These 307

mechanisms are non-normative and are not requiredNOT REQUIRED in any way. That is, services are 308

free to bootstrap trust and establish trust among a domain of services or extend this trust to other 309

domains using any mechanism. 310

 311

Fixed trust roots – The simplest mechanism is where the recipient has a fixed set of trust relationships. 312

It will then evaluate all requests to determine if they contain security tokens from one of the trusted roots. 313

 314

Trust hierarchies – Building on the trust roots mechanism, a service may MAY choose to allow 315

hierarchies of trust so long as the trust chain eventually leads to one of the known trust roots. In some 316

cases the recipient may MAY require the sender to provide the full hierarchy. In other cases, the recipient 317

may MAY be able to dynamically fetch the tokens for the hierarchy from a token store. 318

 319

Authentication service – Another approach is to use an authentication service. This can essentially be 320

thought of as a fixed trust root where the recipient only trusts the authentication service. Consequently, 321

the recipient forwards tokens to the authentication service, which replies with an authoritative statement 322

(perhaps a separate token or a signed document) attesting to the authentication. 323

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 15 of 76

3 Security Token Service Framework 324

This section defines the general framework used by security token services for token issuance. 325

 326

A requestor sends a request, and if the policy permits and the recipient's requirements are met, then the 327

requestor receives a security token response. This process uses the <wst:RequestSecurityToken> 328

and <wst:RequestSecurityTokenResponse> elements respectively. These elements are passed as 329

the payload to specific WSDL ports (described in section 1.4) that are implemented by security token 330

services. 331

 332

This framework does not define specific actions; each binding defines its own actions. 333

When requesting and returning security tokens additional parameters can be included in requests, or 334

provided in responses to indicate server-determined (or used) values. If a requestor specifies a specific 335

value that isn't supported by the recipient, then the recipient MAY fault with a wst:InvalidRequest (or 336

a more specific fault code), or they MAY return a token with their chosen parameters that the requestor 337

may MAY then choose to discard because it doesn't meet their needs. 338

 339

The requesting and returning of security tokens can be used for a variety of purposes. Bindings define 340

how this framework is used for specific usage patterns. Other specifications may MAY define specific 341

bindings and profiles of this mechanism for additional purposes. 342

In general, it is RECOMMENDED that sources of requests be authenticated; however, in some cases an 343

anonymous request may MAY be appropriate. Requestors MAY make anonymous requests and it is up 344

to the recipient's policy to determine if such requests are acceptable. If not a fault SHOULD be generated 345

(but is not requiredNOT REQUIRED to be returned for denial-of-service reasons). 346

 347

The [WS-Security] specification defines and illustrates time references in terms of the dateTime type 348

defined in XML Schema. It is RECOMMENDED that all time references use this type. It is further 349

RECOMMENDED that all references be in UTC time. Requestors and receivers SHOULD NOT rely on 350

other applications supporting time resolution finer than milliseconds. Implementations MUST NOT 351

generate time instants that specify leap seconds. Also, any required clock synchronization is outside the 352

scope of this document. 353

 354

The following sections describe the basic structure of token request and response elements identifying 355

the general mechanisms and most common sub-elements. Specific bindings extend these elements with 356

binding-specific sub-elements. That is, sections 3.1 and 3.2 should be viewed as patterns or templates 357

on which specific bindings build. 358

3.1 Requesting a Security Token 359

The <wst:RequestSecurityToken> element (RST) is used to request a security token (for any 360

purpose). This element SHOULD be signed by the requestor, using tokens contained/referenced in the 361

request that are relevant to the request. If using a signed request, the requestor MUST prove any 362

required claims to the satisfaction of the security token service. 363

If a parameter is specified in a request that the recipient doesn't understand, the recipient SHOULD fault. 364

The syntax for this element is as follows: 365

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 16 of 76

 <wst:RequestSecurityToken Context="..." xmlns:wst="..."> 366
 <wst:TokenType>...</wst:TokenType> 367
 <wst:RequestType>...</wst:RequestType> 368
 <wst:SecondaryParameters>...</wst:SecondaryParameters> 369
 ... 370
 </wst:RequestSecurityToken> 371

The following describes the attributes and elements listed in the schema overview above: 372

/wst:RequestSecurityToken 373

This is a request to have a security token issued. 374

/wst:RequestSecurityToken/@Context 375

This optionalOPTIONAL URI specifies an identifier/context for this request. All subsequent RSTR 376
elements relating to this request MUST carry this attribute. This, for example, allows the request 377
and subsequent responses to be correlated. Note that no ordering semantics are provided; that 378
is left to the application/transport. 379

/wst:RequestSecurityToken/wst:TokenType 380

This optionalOPTIONAL element describes the type of security token requested, specified as a 381
URI. That is, the type of token that will be returned in the 382

<wst:RequestSecurityTokenResponse> message. Token type URIs are typically defined in 383

token profiles such as those in the OASIS WSS TC. 384

/wst:RequestSecurityToken/wst:RequestType 385

The mandatory RequestType element is used to indicate, using a URI, the class of function that 386

is being requested. The allowed values are defined by specific bindings and profiles of WS-Trust. 387
Frequently this URI corresponds to the [WS-Addressing] Action URI provided in the message 388
header as described in the binding/profile; however, specific bindings can use the Action URI to 389
provide more details on the semantic processing while this parameter specifies the general class 390
of operation (e.g., token issuance). This parameter is requiredREQUIRED. 391

/wst:RequestSecurityToken/wst:SecondaryParameters 392

If specified, this optionalOPTIONAL element contains zero or more valid RST parameters (except 393

wst:SecondaryParameters) for which the requestor is not the originator. 394

The STS processes parameters that are direct children of the <wst:RequestSecurityToken> 395

element. If a parameter is not specified as a direct child, the STS MAY look for the parameter 396

within the <wst:SecondaryParameters> element (if present). The STS MAY filter secondary 397

parameters if it doesn't trust them or feels they are inappropriate or introduce risk (or based on its 398
own policy). 399

/wst:RequestSecurityToken/{any} 400

This is an extensibility mechanism to allow additional elements to be added. This allows 401
requestors to include any elements that the service can use to process the token request. As 402
well, this allows bindings to define binding-specific extensions. If an element is found that is not 403
understood, the recipient SHOULD fault. 404

/wst:RequestSecurityToken/@{any} 405

This is an extensibility mechanism to allow additional attributes, based on schemas, to be added. 406
If an attribute is found that is not understood, the recipient SHOULD fault. 407

3.2 Returning a Security Token 408

The <wst:RequestSecurityTokenResponse> element (RSTR) is used to return a security token or 409

response to a security token request. The <wst:RequestSecurityTokenResponseCollection> 410

element (RSTRC) MUST be used to return a security token or response to a security token request on the 411

final response. 412

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 17 of 76

 413

It should be noted that any type of parameter specified as input to a token request MAY be present on 414

response in order to specify the exact parameters used by the issuer. Specific bindings describe 415

appropriate restrictions on the contents of the RST and RSTR elements. 416

In general, the returned token should SHOULD be considered opaque to the requestor. That is, the 417

requestor shouldn't SHOULD NOT be required to parse the returned token. As a result, information that 418

the requestor may desire, such as token lifetimes, SHOULD be returned in the response. Specifically, 419

any field that the requestor includes SHOULD be returned. If an issuer doesn't want to repeat all input 420

parameters, then, at a minimum, if the issuer chooses a value different from what was requested, the 421

issuer SHOULD include the parameters that were changed. 422

If a parameter is specified in a response that the recipient doesn't understand, the recipient SHOULD 423

fault. 424

In this specification the RSTR message is illustrated as being passed in the body of a message. 425

However, there are scenarios where the RSTR must be passed in conjunction with an existing application 426

message. In such cases the RSTR (or the RSTR collection) MAY be specified inside a header block. 427

The exact location is determined by layered specifications and profiles; however, the RSTR MAY be 428

located in the <wsse:Security> header if the token is being used to secure the message (note that the 429

RSTR SHOULD occur before any uses of the token). The combination of which header block contains 430

the RSTR and the value of the optionalOPTIONAL @Context attribute indicate how the RSTR is 431

processed. It should be noted that multiple RSTR elements can be specified in the header blocks of a 432

message. 433

It should be noted that there are cases where an RSTR is issued to a recipient who did not explicitly issue 434

an RST (e.g. to propagate tokens). In such cases, the RSTR may MAY be passed in the body or in a 435

header block. 436

The syntax for this element is as follows: 437

 <wst:RequestSecurityTokenResponse Context="..." xmlns:wst="..."> 438
 <wst:TokenType>...</wst:TokenType> 439
 <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken> 440
 ... 441
 </wst:RequestSecurityTokenResponse> 442

The following describes the attributes and elements listed in the schema overview above: 443

/wst:RequestSecurityTokenResponse 444

This is the response to a security token request. 445

/wst:RequestSecurityTokenResponse/@Context 446

This optionalOPTIONAL URI specifies the identifier from the original request. That is, if a context 447
URI is specified on a RST, then it MUST be echoed on the corresponding RSTRs. For 448
unsolicited RSTRs (RSTRs that aren't the result of an explicit RST), this represents a hint as to 449
how the recipient is expected to use this token. No values are pre-defined for this usage; this is 450
for use by specifications that leverage the WS-Trust mechanisms. 451

/wst:RequestSecurityTokenResponse/wst:TokenType 452

This optionalOPTIONAL element specifies the type of security token returned. 453

/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken 454

This optionalOPTIONAL element is used to return the requested security token. Normally the 455
requested security token is the contents of this element but a security token reference MAY be 456
used instead. For example, if the requested security token is used in securing the message, 457

then the security token is placed into the <wsse:Security> header (as described in [WS-458

Security]) and a <wsse:SecurityTokenReference> element is placed inside of the 459

<wst:RequestedSecurityToken> element to reference the token in the <wsse:Security> 460

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 18 of 76

header. The response MAY contain a token reference where the token is located at a URI 461
outside of the message. In such cases the recipient is assumed to know how to fetch the token 462
from the URI address or specified endpoint reference. It should be noted that when the token is 463
not returned as part of the message it cannot be secured, so a secure communication 464
mechanism SHOULD be used to obtain the token. 465

/wst:RequestSecurityTokenResponse/{any} 466

This is an extensibility mechanism to allow additional elements to be added. If an element is 467
found that is not understood, the recipient SHOULD fault. 468

/wst:RequestSecurityTokenResponse/@{any} 469

This is an extensibility mechanism to allow additional attributes, based on schemas, to be added. 470
If an attribute is found that is not understood, the recipient SHOULD fault. 471

3.3 Binary Secrets 472

It should be noted that in some cases elements include a key that is not encrypted. Consequently, the 473

<xenc:EncryptedData> cannot be used. Instead, the <wst:BinarySecret> element can be used. 474

This SHOULD only be used when the message is otherwise protected (e.g. transport security is used or 475

the containing element is encrypted). This element contains a base64 encoded value that represents an 476

arbitrary octet sequence of a secret (or key). The general syntax of this element is as follows (note that 477

the ellipses below represent the different containers in which this element may MAY appear, for example, 478

a <wst:Entropy> or <wst:RequestedProofToken> element): 479

.../wst:BinarySecret 480

This element contains a base64 encoded binary secret (or key). This can be either a symmetric 481
key, the private portion of an asymmetric key, or any data represented as binary octets. 482

.../wst:BinarySecret/@Type 483

This optionalOPTIONAL attribute indicates the type of secret being encoded. The pre-defined 484
values are listed in the table below: 485

URI Meaning

http://docs.oasis-open.org/ws-sx/ws-

trust/200512/AsymmetricKey

The private portion of a public key token

is returned – this URI assumes both

parties agree on the format of the octets;

other bindings and profiles MAY define

additional URIs with specific formats

http://docs.oasis-open.org/ws-sx/ws-

trust/200512/SymmetricKey

A symmetric key token is returned

(default)

http://docs.oasis-open.org/ws-sx/ws-

trust/200512/Nonce

A raw nonce value (typically passed as

entropy or key material)

.../wst:BinarySecret/@{any} 486

This is an extensibility mechanism to allow additional attributes, based on schemas, to be added. 487
If an attribute is found that is not understood, the recipient SHOULD fault. 488

3.4 Composition 489

The sections below, as well as other documents, describe a set of bindings using the model framework 490

described in the above sections. Each binding describes the amount of extensibility and composition with 491

other parts of WS-Trust that is permitted. Additional profile documents MAY further restrict what can be 492

specified in a usage of a binding. 493

http://schemas.xmlsoap.org/ws/2004/12/security/trust/AsymmetricKey
http://schemas.xmlsoap.org/ws/2004/12/security/trust/AsymmetricKey
http://schemas.xmlsoap.org/ws/2004/12/security/trust/SymmetricKey
http://schemas.xmlsoap.org/ws/2004/12/security/trust/SymmetricKey
http://schemas.xmlsoap.org/ws/2004/12/security/trust/Nonce
http://schemas.xmlsoap.org/ws/2004/12/security/trust/Nonce

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 19 of 76

4 Issuance Binding 494

Using the token request framework, this section defines bindings for requesting security tokens to be 495

issued: 496

Issue – Based on the credential provided/proven in the request, a new token is issued, possibly 497
with new proof information. 498

For this binding, the following [WS-Addressing] actions are defined to enable specific processing context 499

to be conveyed to the recipient: 500

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue 501
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Issue 502
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal 503

For this binding, the <wst:RequestType> element uses the following URI: 504

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue 505

The mechanisms defined in this specification apply to both symmetric and asymmetric keys. As an 506

example, a Kerberos KDC could provide the services defined in this specification to make tokens 507

available; similarly, so can a public key infrastructure. In such cases, the issuing authority is the security 508

token service. It should be noted that in practice, asymmetric key usage often differs as it is common to 509

reuse existing asymmetric keys rather than regenerate due to the time cost and desire to map to a 510

common public key. In such cases a request might be made for an asymmetric token providing the public 511

key and proving ownership of the private key. The public key is then used in the issued token. 512

 513

A public key directory is not really a security token service per se; however, such a service MAY 514

implement token retrieval as a form of issuance. It is also possible to bridge environments (security 515

technologies) using PKI for authentication or bootstrapping to a symmetric key. 516

 517

This binding provides a general token issuance action that can be used for any type of token being 518

requested. Other bindings MAY use separate actions if they have specialized semantics. 519

 520

This binding supports the optional OPTIONAL use of exchanges during the token acquisition process as 521

well as the optional OPTIONAL use of the key extensions described in a later section. Additional profiles 522

are needed to describe specific behaviors (and exclusions) when different combinations are used. 523

4.1 Requesting a Security Token 524

When requesting a security token to be issued, the following optional OPTIONAL elements MAY be 525

included in the request and MAY be provided in the response. The syntax for these elements is as 526

follows (note that the base elements described above are included here italicized for completeness): 527

 <wst:RequestSecurityToken xmlns:wst="..."> 528
 <wst:TokenType>...</wst:TokenType> 529
 <wst:RequestType>...</wst:RequestType> 530
 ... 531
 <wsp:AppliesTo>...</wsp:AppliesTo> 532
 <wst:Claims Dialect="...">...</wst:Claims> 533
 <wst:Entropy> 534
 <wst:BinarySecret>...</wst:BinarySecret> 535
 </wst:Entropy> 536
 <wst:Lifetime> 537

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Issue
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 20 of 76

 <wsu:Created>...</wsu:Created> 538
 <wsu:Expires>...</wsu:Expires> 539
 </wst:Lifetime> 540
 </wst:RequestSecurityToken> 541

The following describes the attributes and elements listed in the schema overview above: 542

/wst:RequestSecurityToken/wst:TokenType 543

If this optionalOPTIONAL element is not specified in an issue request, it is RECOMMENDED that 544

the optionalOPTIONAL element <wsp:AppliesTo> be used to indicate the target where this 545

token will be used (similar to the Kerberos target service model). This assumes that a token type 546

can be inferred from the target scope specified. That is, either the <wst:TokenType> or the 547

<wsp:AppliesTo> element SHOULD be defined within a request. If both the 548

<wst:TokenType> and <wsp:AppliesTo> elements are defined, the <wsp:AppliesTo> 549

element takes precedence (for the current request only) in case the target scope requires a 550
specific type of token. 551

/wst:RequestSecurityToken/wsp:AppliesTo 552

This optionalOPTIONAL element specifies the scope for which this security token is desired – for 553
example, the service(s) to which this token applies. Refer to [WS-PolicyAttachment] for more 554

information. Note that either this element or the <wst:TokenType> element SHOULD be 555

defined in a <wst:RequestSecurityToken> message. In the situation where BOTH fields 556

have values, the <wsp:AppliesTo> field takes precedence. This is because the issuing service 557

is more likely to know the type of token to be used for the specified scope than the requestor (and 558
because returned tokens should be considered opaque to the requestor). 559

/wst:RequestSecurityToken/wst:Claims 560

This optionalOPTIONAL element requests a specific set of claims. Typically, this element 561
contains requiredREQUIRED and/or optionalOPTIONAL claim information identified in a service's 562
policy. 563

/wst:RequestSecurityToken/wst:Claims/@Dialect 564

This required REQUIRED attribute contains a URI that indicates the syntax used to specify the 565
set of requested claims along with how that syntax should SHOULD be interpreted. No URIs are 566
defined by this specification; it is expected that profiles and other specifications will define these 567
URIs and the associated syntax. 568

/wst:RequestSecurityToken/wst:Entropy 569

This optionalOPTIONAL element allows a requestor to specify entropy that is to be used in 570

creating the key. The value of this element SHOULD be either a <xenc:EncryptedKey> or 571

<wst:BinarySecret> depending on whether or not the key is encrypted. Secrets SHOULD be 572

encrypted unless the transport/channel is already providing encryption. 573

/wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret 574

This optionalOPTIONAL element specifies a base64 encoded sequence of octets representing 575
the requestor's entropy. The value can contain either a symmetric or the private key of an 576
asymmetric key pair, or any suitable key material. The format is assumed to be understood by 577
the requestor because the value space may MAY be (a) fixed, (b) indicated via policy, (c) inferred 578
from the indicated token aspects and/or algorithms, or (d) determined from the returned token. 579
(See Section 3.3) 580

/wst:RequestSecurityToken/wst:Lifetime 581

This optionalOPTIONAL element is used to specify the desired valid time range (time window 582
during which the token is valid for use) for the returned security token. That is, to request a 583
specific time interval for using the token. The issuer is not obligated to honor this range – they 584
may MAY return a more (or less) restrictive interval. It is RECOMMENDED that the issuer return 585

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 21 of 76

this element with issued tokens (in the RSTR) so the requestor knows the actual validity period 586
without having to parse the returned token. 587

/wst:RequestSecurityToken/wst:Lifetime/wsu:Created 588

This optionalOPTIONAL element represents the creation time of the security token. Within the 589
SOAP processing model, creation is the instant that the infoset is serialized for transmission. The 590
creation time of the token SHOULD NOT differ substantially from its transmission time. The 591
difference in time should SHOULD be minimized. If this time occurs in the future then this is a 592
request for a postdated token. If this attribute isn't specified, then the current time is used as an 593
initial period. 594

/wst:RequestSecurityToken/wst:Lifetime/wsu:Expires 595

This optionalOPTIONAL element specifies an absolute time representing the upper bound on the 596
validity time period of the requested token. If this attribute isn't specified, then the service 597

chooses the lifetime of the security token. A Fault code (wsu:MessageExpired) is provided if 598

the recipient wants to inform the requestor that its security semantics were expired. A service 599
MAY issue a Fault indicating the security semantics have expired. 600

 601

The following is a sample request. In this example, a username token is used as the basis for the request 602

as indicated by the use of that token to generate the signature. The username (and password) is 603

encrypted for the recipient and a reference list element is added. The <ds:KeyInfo> element refers to 604

a <wsse:UsernameToken> element that has been encrypted to protect the password (note that the 605

token has the wsu:Id of "myToken" prior to encryption). The request is for a custom token type to be 606

returned. 607

<S11:Envelope xmlns:S11="..." xmlns:wsu="..." xmlns:wsse="..." 608
 xmlns:xenc="..." xmlns:wst="..."> 609
 <S11:Header> 610
 ... 611
 <wsse:Security> 612
 <xenc:ReferenceList>...</xenc:ReferenceList> 613
 <xenc:EncryptedData Id="encUsername">...</xenc:EncryptedData> 614
 <ds:Signature xmlns:ds="..."> 615
 ... 616
 <ds:KeyInfo> 617
 <wsse:SecurityTokenReference> 618
 <wsse:Reference URI="#myToken"/> 619
 </wsse:SecurityTokenReference> 620
 </ds:KeyInfo> 621
 </ds:Signature> 622
 </wsse:Security> 623
 ... 624
 </S11:Header> 625
 <S11:Body wsu:Id="req"> 626
 <wst:RequestSecurityToken> 627
 <wst:TokenType> 628
 http://example.org/mySpecialToken 629
 </wst:TokenType> 630
 <wst:RequestType> 631
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue 632
 </wst:RequestType> 633
 </wst:RequestSecurityToken> 634
 </S11:Body> 635
</S11:Envelope> 636

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 22 of 76

4.2 Request Security Token Collection 637

There are occasions where efficiency is important. Reducing the number of messages in a message 638

exchange pattern can greatly improve efficiency. One way to do this in the context of WS-Trust is to avoid 639

repeated round-trips for multiple token requests. An example is requesting an identity token as well as 640

tokens that offer other claims in a single batch request operation. 641

 642

To give an example, imagine an automobile parts supplier that wishes to offer parts to an automobile 643

manufacturer. To interact with the manufacturer web service the parts supplier may have to present a 644

number of tokens, such as an identity token as well as tokens with claims, such as tokens indicating 645

various certifications to meet supplier requirements. 646

 647

It is possible for the supplier to authenticate to a trust server and obtain an identity token and then 648

subsequently present that token to obtain a certification claim token. However, it may be much more 649

efficient to request both in a single interaction (especially when more than two tokens are required). 650

 651

Here is an example of a collection of authentication requests corresponding to this scenario: 652

 653

<wst:RequestSecurityTokenCollection xmlns:wst="..."> 654
 655
 <!-- identity token request --> 656
 <wst:RequestSecurityToken Context="http://www.example.com/1"> 657
 <wst:TokenType> 658
 http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-659
1.1#SAMLV2.0 660
 </wst:TokenType> 661
 <wst:RequestType>http://docs.oasis-open.org/ws-sx/ws-662
trust/200512/BatchIssue</wst:RequestType> 663
 <wsp:AppliesTo xmlns:wsp="..." xmlns:wsa="..."> 664
 <wsa:EndpointReference> 665
 <wsa:Address>http://manufacturer.example.com/</wsa:Address> 666
 </wsa:EndpointReference> 667
 </wsp:AppliesTo> 668
 <wsp:PolicyReference xmlns:wsp="..." 669
URI='http://manufacturer.example.com/IdentityPolicy' /> 670
 </wst:RequestSecurityToken> 671
 672
 <!-- certification claim token request --> 673
 <wst:RequestSecurityToken Context="http://www.example.com/2"> 674
 <wst:TokenType> 675
 http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-676
1.1#SAMLV2.0 677
 </wst:TokenType> 678
 <wst:RequestType>http://docs.oasis-open.org/ws-sx/ws-trust/200512 679
/BatchIssue</wst:RequestType> 680
 <wst:Claims xmlns:wsp="..."> 681
 http://manufacturer.example.com/certification 682
 </wst:Claims> 683
 <wsp:PolicyReference 684
URI='http://certificationbody.example.org/certificationPolicy’ /> 685
 </wst:RequestSecurityToken> 686
 </wst:RequestSecurityTokenCollection> 687

 688

The following describes the attributes and elements listed in the overview above: 689

 690

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 23 of 76

/wst:RequestSecurityTokenCollection 691

The RequestSecurityTokenCollection (RSTC) element is used to provide multiple RST 692

requests. One or more RSTR elements in an RSTRC element are returned in the response to the 693

RequestSecurityTokenCollection. 694

4.2.1 Processing Rules 695

The RequestSecurityTokenCollection (RSTC) element contains 2 or more 696

RequestSecurityToken elements. 697

 698

1. The single RequestSecurityTokenResponseCollection response MUST contain at least 699

one RSTR element corresponding to each RST element in the request. A RSTR element 700

corresponds to an RST element if it has the same Context attribute value as the RST element. 701

Note: Each request may MAY generate more than one RSTR sharing the same Context attribute 702

value 703

a. Specifically there is no notion of a deferred response 704

b. If any RST request results in an error, then no RSTRs will be returned and a SOAP Fault 705

will be generated as the entire response. 706

2. Every RST in the request MUST use an action URI value in the RequestType element that is a 707

batch version corresponding to the non-batch version, in particular one of the following: 708

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchIssue 709

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchValidate 710

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchRenew 711

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchCancel 712

 713

These URIs MUST also be used for the [WS-Addressing] actions defined to enable specific 714

processing context to be conveyed to the recipient. 715

 716

Note: that these operations require that the service can either succeed on all the RST requests or 717

must notMUST NOT perform any partial operation. 718

 719

3. All Signatures MUST reference the entire RSTC. One or more Signatures referencing the entire 720

collection MAY be used. 721

4. No negotiation or other multi-leg authentication mechanisms are allowed in batch requests or 722

responses to batch requests; the communication with STS is limited to one RSTC request and 723

one RSTRC response. 724

5. This mechanism requires that every RST in a RSTC is to be handled by the single endpoint 725

processing the RSTC. 726

 727

If any error occurs in the processing of the RSTC or one of its contained RSTs, a SOAP fault must MUST 728

be generated for the entire batch request so no RSTC element will be returned. 729

 730

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 24 of 76

4.3 Returning a Security Token Collection 731

The <wst:RequestSecurityTokenResponseCollection> element (RSTRC) MUST be used to return a 732

security token or response to a security token request on the final response. Security tokens can only be 733

returned in the RSTRC on the final leg. One or more <wst:RequestSecurityTokenResponse> elements 734

are returned in the RSTRC. 735

The syntax for thiss element is as follows: 736

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="..."> 737
 <wst:RequestSecurityTokenResponse>...</wst:RequestSecurityTokenResponse> + 738
 </wst:RequestSecurityTokenResponseCollection> 739

The following describes the attributes and elements listed in the schema overview above: 740

/wst:RequestSecurityTokenResponseCollection 741

This element contains one or more <wst:RequestSecurityTokenResponse> elements for a 742

security token request on the final response. 743

/wst:RequestSecurityTokenResponseCollection/wst:RequestSecurityTokenResponse 744

See section 4.4 for the description of the <wst:RequestSecurityTokenResponse> element. 745

4.4 Returning a Security Token 746

When returning a security token, the following optional OPTIONAL elements MAY be included in the 747

response. Security tokens can only be returned in the RSTRC on the final leg. The syntax for these 748

elements is as follows (note that the base elements described above are included here italicized for 749

completeness): 750

 <wst:RequestSecurityTokenResponse xmlns:wst="..."> 751
 <wst:TokenType>...</wst:TokenType> 752
 <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken> 753
 ... 754
 <wsp:AppliesTo xmlns:wsp="...”>...</wsp:AppliesTo> 755
 <wst:RequestedAttachedReference> 756
 ... 757
 </wst:RequestedAttachedReference> 758
 <wst:RequestedUnattachedReference> 759
 ... 760
 </wst:RequestedUnattachedReference> 761
 <wst:RequestedProofToken>...</wst:RequestedProofToken> 762
 <wst:Entropy> 763
 <wst:BinarySecret>...</wst:BinarySecret> 764
 </wst:Entropy> 765
 <wst:Lifetime>...</wst:Lifetime> 766
 </wst:RequestSecurityTokenResponse> 767

The following describes the attributes and elements listed in the schema overview above: 768

/wst:RequestSecurityTokenResponse/wsp:AppliesTo 769

This optionalOPTIONAL element specifies the scope to which this security token applies. Refer 770

to [WS-PolicyAttachment] for more information. Note that if an <wsp:AppliesTo> was specified 771

in the request, the same scope SHOULD be returned in the response (if a <wsp:AppliesTo> is 772

returned). 773

/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken 774

This optionalOPTIONAL element is used to return the requested security token. This element is 775
optionalOPTIONAL, but it is REQUIRED that at least one of 776

<wst:RequestedSecurityToken> or <wst:RequestedProofToken> be returned unless 777

there is an error or part of an on-going message exchange (e.g. negotiation). If returning more 778
than one security token see section 4.3, Returning Multiple Security Tokens. 779

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 25 of 76

/wst:RequestSecurityTokenResponse/wst:RequestedAttachedReference 780

Since returned tokens are considered opaque to the requestor, this optionalOPTIONAL element 781
is specified to indicate how to reference the returned token when that token doesn't support 782
references using URI fragments (XML ID). This element contains a 783

<wsse:SecurityTokenReference> element that can be used verbatim to reference the token 784

(when the token is placed inside a message). Typically tokens allow the use of wsu:Id so this 785
element isn't required. Note that a token MAY support multiple reference mechanisms; this 786
indicates the issuer’s preferred mechanism. When encrypted tokens are returned, this element is 787

not needed since the <xenc:EncryptedData> element supports an ID reference. If this 788

element is not present in the RSTR then the recipient can assume that the returned token (when 789
present in a message) supports references using URI fragments. 790

/wst:RequestSecurityTokenResponse/wst:RequestedUnattachedReference 791

In some cases tokens need not be present in the message. This optionalOPTIONAL element is 792
specified to indicate how to reference the token when it is not placed inside the message. This 793

element contains a <wsse:SecurityTokenReference> element that can be used verbatim to 794

reference the token (when the token is not placed inside a message) for replies. Note that a token 795
MAY support multiple external reference mechanisms; this indicates the issuer’s preferred 796
mechanism. 797

/wst:RequestSecurityTokenResponse/wst:RequestedProofToken 798

This optionalOPTIONAL element is used to return the proof-of-possession token associated with 799
the requested security token. Normally the proof-of-possession token is the contents of this 800
element but a security token reference MAY be used instead. The token (or reference) is 801
specified as the contents of this element. For example, if the proof-of-possession token is used as 802

part of the securing of the message, then it is placed in the <wsse:Security> header and a 803

<wsse:SecurityTokenReference> element is used inside of the 804

<wst:RequestedProofToken> element to reference the token in the <wsse:Security> 805

header. This element is optionalOPTIONAL, but it is REQUIRED that at least one of 806

<wst:RequestedSecurityToken> or <wst:RequestedProofToken> be returned unless 807

there is an error. 808

/wst:RequestSecurityTokenResponse/wst:Entropy 809

This optionalOPTIONAL element allows an issuer to specify entropy that is to be used in creating 810

the key. The value of this element SHOULD be either a <xenc:EncryptedKey> or 811

<wst:BinarySecret> depending on whether or not the key is encrypted (it SHOULD be unless 812

the transport/channel is already encrypted). 813

/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret 814

This optionalOPTIONAL element specifies a base64 encoded sequence of octets represent the 815
responder's entropy. (See Section 3.3) 816

/wst:RequestSecurityTokenResponse/wst:Lifetime 817

This optionalOPTIONAL element specifies the lifetime of the issued security token. If omitted the 818
lifetime is unspecified (not necessarily unlimited). It is RECOMMENDED that if a lifetime exists 819
for a token that this element be included in the response. 820

4.4.1 wsp:AppliesTo in RST and RSTR 821

Both the requestor and the issuer can specify a scope for the issued token using the <wsp:AppliesTo> 822

element. If a token issuer cannot provide a token with a scope that is at least as broad as that requested 823

by the requestor then it SHOULD generate a fault. This section defines some rules for interpreting the 824

various combinations of provided scope: 825

 If neither the requestor nor the issuer specifies a scope then the scope of the issued token is 826

implied. 827

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 26 of 76

 If the requestor specifies a scope and the issuer does not then the scope of the token is assumed 828

to be that specified by the requestor. 829

 If the requestor does not specify a scope and the issuer does specify a scope then the scope of 830

the token is as defined by the issuers scope 831

 If both requestor and issuer specify a scope then there are two possible outcomes: 832

o If both the issuer and requestor specify the same scope then the issued token has that 833

scope. 834

o If the issuer specifies a wider scope than the requestor then the issued token has the 835

scope specified by the issuer. 836

 837

The following table summarizes the above rules: 838

Requestor wsp:AppliesTo Issuer wsp:AppliesTo Results

Absent Absent OK. Implied scope.

Present Absent OK. Issued token has scope

specified by requestor.

Absent Present OK. Resulting token has scope

specified by issuer.

Present Present and matches

Requestor

OK.

Present Present and specifies a scope

greater than specified by the

requestor

OK. Issuer scope.

4.4.2 Requested References 839

The token issuer can optionally OPTIONALLY provide <wst:RequestedAttachedReference> and/or 840

<wst:RequestedUnattachedReference> elements in the RSTR. It is assumed that all token types can be 841

referred to directly when present in a message. This section outlines the expected behaviour on behalf of 842

clients and servers with respect to various permutations: 843

 If a <wst:RequestedAttachedReference> element is NOT returned in the RSTR then the client 844

SHOULD assume that the token can be referenced by ID. Alternatively, the client MAY use token-845

specific knowledge to construct an STR. 846

 If a <wst:RequestedAttachedReference> element is returned in the RSTR then the token 847

cannot be referred to by ID. The supplied STR MUST be used to refer to the token. 848

 If a <wst:RequestedUnattachedReference> element is returned then the server MAY reference 849

the token using the supplied STR when sending responses back to the client. Thus the client 850

MUST be prepared to resolve the supplied STR to the appropriate token. Note: the server 851

SHOULD NOT send the token back to the client as the token is often tailored specifically to the 852

server (i.e. it may be encrypted for the server). References to the token in subsequent messages, 853

whether sent by the client or the server, that omit the token MUST use the supplied STR. 854

4.4.3 Keys and Entropy 855

The keys resulting from a request are determined in one of three ways: specific, partial, and omitted. 856

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 27 of 76

 In the case of specific keys, a <wst:RequestedProofToken> element is included in the 857

response which indicates the specific key(s) to use unless the key was provided by the requestor 858

(in which case there is no need to return it). 859

 In the case of partial, the <wst:Entropy> element is included in the response, which indicates 860

partial key material from the issuer (not the full key) that is combined (by each party) with the 861

requestor's entropy to determine the resulting key(s). In this case a <wst:ComputedKey> 862

element is returned inside the <wst:RequestedProofToken> to indicate how the key is 863

computed. 864

 In the case of omitted, an existing key is used or the resulting token is not directly associated with 865

a key. 866

 867

The decision as to which path to take is based on what the requestor provides, what the issuer provides, 868

and the issuer's policy. 869

 If the requestor does not provide entropy or issuer rejects the requestor's entropy, a proof-of-870

possession token MUST be returned with an issuer-provided key. 871

 If the requestor provides entropy and the responder doesn't (issuer uses the requestor's key), 872

then a proof-of-possession token need not be returned. 873

 If both the requestor and the issuer provide entropy, then the partial form is used. Ideally both 874

entropies are specified as encrypted values and the resultant key is never used (only keys 875

derived from it are used). As noted above, the <wst:ComputedKey> element is returned inside 876

the <wst:RequestedProofToken> to indicate how the key is computed. 877

 878

The following table illustrates the rules described above: 879

Requestor Issuer Results

Provide Entropy Uses requestor entropy as key No proof-of-possession token is

returned.

Provides entropy No keys returned, key(s) derived

using entropy from both sides

according to method identified in

response

Issues own key (rejects

requestor's entropy)

Proof-of-possession token contains

issuer's key(s)

No Entropy provided Issues own key Proof-of-possession token contains

issuer's key(s)

Does not issue key No proof-of-possession token

4.4.4 Returning Computed Keys 880

As previously described, in some scenarios the key(s) resulting from a token request are not directly 881

returned and must be computed. One example of this is when both parties provide entropy that is 882

combined to make the shared secret. To indicate a computed key, the <wst:ComputedKey> element 883

MUST be returned inside the <wst:RequestedProofToken> to indicate how the key is computed. The 884

following illustrates a syntax overview of the <wst:ComputedKey> element: 885

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="..."> 886
 <wst:RequestSecurityTokenResponse> 887

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 28 of 76

 <wst:RequestedProofToken> 888
 <wst:ComputedKey>...</wst:ComputedKey> 889
 </wst:RequestedProofToken> 890
 </wst:RequestSecurityTokenResponse> 891
 </wst:RequestSecurityTokenResponseCollection> 892

 893

The following describes the attributes and elements listed in the schema overview above: 894

/wst:RequestSecurityTokenResponse/wst:RequestedProofToken/wst:ComputedKey 895

The value of this element is a URI describing how to compute the key. While this can be 896
extended by defining new URIs in other bindings and profiles, the following URI pre-defines one 897
computed key mechanism: 898

URI Meaning

http://docs.oasis-open.org/ws-sx/ws-

trust/200512/CK/PSHA1

The key is computed using P_SHA1 from the

TLS specification to generate a bit stream

using entropy from both sides. The exact

form is:

 key = P_SHA1 (EntREQ, EntRES)

It is RECOMMENDED that EntREQ be a

string of length at least 128 bits.

This element MUST be returned when key(s) resulting from the token request are computed. 899

4.4.5 Sample Response with Encrypted Secret 900

The following illustrates the syntax of a sample security token response. In this example the token 901

requested in section 4.1 is returned. Additionally a proof-of-possession token element is returned 902

containing the secret key associated with the <wst:RequestedSecurityToken> encrypted for the 903

requestor (note that this assumes that the requestor has a shared secret with the issuer or a public key). 904

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 905
 <wst:RequestSecurityTokenResponse> 906
 <wst:RequestedSecurityToken> 907
 <xyz:CustomToken xmlns:xyz="..."> 908
 ... 909
 </xyz:CustomToken> 910
 </wst:RequestedSecurityToken> 911
 <wst:RequestedProofToken> 912
 <xenc:EncryptedKey Id="newProof" xmlns:xenc="..."> 913
 ... 914
 </xenc:EncryptedKey> 915
 </wst:RequestedProofToken> 916
 </wst:RequestSecurityTokenResponse> 917
 </wst:RequestSecurityTokenResponseCollection> 918

4.4.6 Sample Response with Unencrypted Secret 919

The following illustrates the syntax of an alternative form where the secret is passed in the clear because 920

the transport is providing confidentiality: 921

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 922
 <wst:RequestSecurityTokenResponse> 923
 <wst:RequestedSecurityToken> 924
 <xyz:CustomToken xmlns:xyz="..."> 925
 ... 926
 </xyz:CustomToken> 927
 </wst:RequestedSecurityToken> 928

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 29 of 76

 <wst:RequestedProofToken> 929
 <wst:BinarySecret>...</wst:BinarySecret> 930
 </wst:RequestedProofToken> 931
 </wst:RequestSecurityTokenResponse> 932
 </wst:RequestSecurityTokenResponseCollection> 933

4.4.7 Sample Response with Token Reference 934

If the returned token doesn't allow the use of the wsu:Id attribute, then a 935

<wst:RequestedAttachedReference> is returned as illustrated below. The following illustrates the 936

syntax of the returned token has a URI which is referenced. 937

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 938
 <wst:RequestSecurityTokenResponse> 939
 <wst:RequestedSecurityToken> 940
 <xyz:CustomToken ID="urn:fabrikam123:5445" xmlns:xyz="..."> 941
 ... 942
 </xyz:CustomToken> 943
 </wst:RequestedSecurityToken> 944
 <wst:RequestedAttachedReference> 945
 <wsse:SecurityTokenReference xmlns:wsse="...”> 946
 <wsse:Reference URI="urn:fabrikam123:5445"/> 947
 </wsse:SecurityTokenReference> 948
 </wst:RequestedAttachedReference> 949
 ... 950
 </wst:RequestSecurityTokenResponse> 951
 </wst:RequestSecurityTokenResponseCollection> 952

 953

In the example above, the recipient may place the returned custom token directly into a message and 954

include a signature using the provided proof-of-possession token. The specified reference is then placed 955

into the <ds:KeyInfo> of the signature and directly references the included token without requiring the 956

requestor to understand the details of the custom token format. 957

4.4.8 Sample Response without Proof-of-Possession Token 958

The following illustrates the syntax of a response that doesn't include a proof-of-possession token. For 959

example, if the basis of the request were a public key token and another public key token is returned with 960

the same public key, the proof-of-possession token from the original token is reused (no new proof-of-961

possession token is required). 962

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 963
 <wst:RequestSecurityTokenResponse> 964
 <wst:RequestedSecurityToken> 965
 <xyz:CustomToken xmlns:xyz="..."> 966
 ... 967
 </xyz:CustomToken> 968
 </wst:RequestedSecurityToken> 969
 </wst:RequestSecurityTokenResponse> 970
 </wst:RequestSecurityTokenResponseCollection> 971

 972

4.4.9 Zero or One Proof-of-Possession Token Case 973

In the zero or single proof-of-possession token case, a primary token and one or more tokens are 974
returned. The returned tokens either use the same proof-of-possession token (one is returned), or no 975
proof-of-possession token is returned. The tokens are returned (one each) in the response. The 976
following example illustrates this case. The following illustrates the syntax of a supporting security token 977

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 30 of 76

is returned that has no separate proof-of-possession token as it is secured using the same proof-of-978
possession token that was returned. 979

 980

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 981
 <wst:RequestSecurityTokenResponse> 982
 <wst:RequestedSecurityToken> 983
 <xyz:CustomToken xmlns:xyz="..."> 984
 ... 985
 </xyz:CustomToken> 986
 </wst:RequestedSecurityToken> 987
 <wst:RequestedProofToken> 988
 <xenc:EncryptedKey Id="newProof" xmlns:xenc="...”> 989
 ... 990
 </xenc:EncryptedKey> 991
 </wst:RequestedProofToken> 992
 </wst:RequestSecurityTokenResponse> 993
 </wst:RequestSecurityTokenResponseCollection> 994

4.4.10 More Than One Proof-of-Possession Tokens Case 995

The second case is where multiple security tokens are returned that have separate proof-of-possession 996

tokens. As a result, the proof-of-possession tokens, and possibly lifetime and other key parameters 997

elements, may MAY be different. To address this scenario, the body MAY be specified using the syntax 998

illustrated below: 999

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 1000
 <wst:RequestSecurityTokenResponse> 1001
 ... 1002
 </wst:RequestSecurityTokenResponse> 1003
 <wst:RequestSecurityTokenResponse> 1004
 ... 1005
 </wst:RequestSecurityTokenResponse> 1006
 ... 1007
 </wst:RequestSecurityTokenResponseCollection> 1008

The following describes the attributes and elements listed in the schema overview above: 1009

/wst:RequestSecurityTokenResponseCollection 1010

This element is used to provide multiple RSTR responses, each of which has separate key 1011
information. One or more RSTR elements are returned in the collection. This MUST always be 1012
used on the final response to the RST. 1013

/wst:RequestSecurityTokenResponseCollection/wst:RequestSecurityTokenResponse 1014

Each RequestSecurityTokenResponse element is an individual RSTR. 1015

/wst:RequestSecurityTokenResponseCollection/{any} 1016

This is an extensibility mechanism to allow additional elements, based on schemas, to be added. 1017

/wst:RequestSecurityTokenResponseCollection/@{any} 1018

This is an extensibility mechanism to allow additional attributes, based on schemas, to be added. 1019

The following illustrates the syntax of a response that includes multiple tokens each, in a separate RSTR, 1020

each with their own proof-of-possession token. 1021

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 1022
 <wst:RequestSecurityTokenResponse> 1023
 <wst:RequestedSecurityToken> 1024
 <xyz:CustomToken xmlns:xyz="..."> 1025
 ... 1026
 </xyz:CustomToken> 1027

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 31 of 76

 </wst:RequestedSecurityToken> 1028
 <wst:RequestedProofToken> 1029
 <xenc:EncryptedKey Id="newProofA"> 1030
 ... 1031
 </xenc:EncryptedKey> 1032
 </wst:RequestedProofToken> 1033
 </wst:RequestSecurityTokenResponse> 1034
 <wst:RequestSecurityTokenResponse> 1035
 <wst:RequestedSecurityToken> 1036
 <abc:CustomToken xmlns:abc="..."> 1037
 ... 1038
 </abc:CustomToken> 1039
 </wst:RequestedSecurityToken> 1040
 <wst:RequestedProofToken> 1041
 <xenc:EncryptedKey Id="newProofB xmlns:xenc="...”> 1042
 ... 1043
 </xenc:EncryptedKey> 1044
 </wst:RequestedProofToken> 1045
 </wst:RequestSecurityTokenResponse> 1046
 </wst:RequestSecurityTokenResponseCollection> 1047

4.5 Returning Security Tokens in Headers 1048

In certain situations it is useful to issue one or more security tokens as part of a protocol other than 1049

RST/RSTR. This typically requires that the tokens be passed in a SOAP header. The tokens present in 1050

that element can then be referenced from elsewhere in the message. This section defines a specific 1051

header element, whose type is the same as that of the <wst:RequestSecurityTokenCollection> 1052

element (see Section 4.3), that can be used to carry issued tokens (and associated proof tokens, 1053

references etc.) in a message. 1054

 <wst:IssuedTokens xmlns:wst="...”> 1055
 <wst:RequestSecurityTokenResponse> 1056
 ... 1057
 </wst:RequestSecurityTokenResponse>+ 1058
 </wst:IssuedTokens> 1059

 1060

The following describes the attributes and elements listed in the schema overview above: 1061

/wst:IssuedTokens 1062

This header element carries one or more issued security tokens. This element schema is defined 1063

using the RequestSecurityTokenResponse schema type. 1064

/wst:IssuedTokens/wst:RequestSecurityTokenResponse 1065

This element MUST appear at least once. Its meaning and semantics are as defined in Section 4.2. 1066

/wst:IssuedTokens/{any} 1067

This is an extensibility mechanism to allow additional elements, based on schemas, to be added. 1068

/wst:IssuedTokens/@{any} 1069

This is an extensibility mechanism to allow additional attributes, based on schemas, to be added. 1070

 1071

There MAY be multiple instances of the <wst:IssuedTokens> header in a given message. Such 1072

instances MAY be targeted at the same actor/role. Intermediaries MAY add additional 1073

<wst:IssuedTokens> header elements to a message. Intermediaries SHOULD NOT modify any 1074

<wst:IssuedTokens> header already present in a message. 1075

 1076

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 32 of 76

It is RECOMMENDED that the <wst:IssuedTokens> header be signed to protect the integrity of the 1077

issued tokens and of the issuance itself. If confidentiality protection of the <wst:IssuedTokens> header is 1078

required REQUIRED then the entire header MUST be encrypted using the <wsse11:EncryptedHeader> 1079

construct. This helps facilitate re-issuance by the receiving party as that party can re-encrypt the entire 1080

header for another party rather than having to extract and re-encrypt portions of the header. 1081

 1082

The following example illustrates a response that includes multiple <wst:IssuedTokens> headers. 1083

<?xml version="1.0" encoding="utf-8"?> 1084
<S11:Envelope xmlns:S11="..." xmlns:wst="..." xmlns:wsp="..." xmlns:ds="..." 1085
xmlns:x="..."> 1086
 <S11:Header> 1087
 <wst:IssuedTokens> 1088
 <wst:RequestSecurityTokenResponse> 1089
 <wsp:AppliesTo> 1090
 <x:SomeContext1 /> 1091
 </wsp:AppliesTo> 1092
 <wst:RequestedSecurityToken> 1093
 ... 1094
 </wst:RequestedSecurityToken> 1095
 ... 1096
 </wst:RequestSecurityTokenResponse> 1097
 <wst:RequestSecurityTokenResponse> 1098
 <wsp:AppliesTo> 1099
 <x:SomeContext1 /> 1100
 </wsp:AppliesTo> 1101
 <wst:RequestedSecurityToken> 1102
 ... 1103
 </wst:RequestedSecurityToken> 1104
 ... 1105
 </wst:RequestSecurityTokenResponse> 1106
 </wst:IssuedTokens> 1107
 <wst:IssuedTokens S11:role="http://example.org/somerole" > 1108
 <wst:RequestSecurityTokenResponse> 1109
 <wsp:AppliesTo> 1110
 <x:SomeContext2 /> 1111
 </wsp:AppliesTo> 1112
 <wst:RequestedSecurityToken> 1113
 ... 1114
 </wst:RequestedSecurityToken> 1115
 ... 1116
 </wst:RequestSecurityTokenResponse> 1117
 </wst:IssuedTokens> 1118
 </S11:Header> 1119
 <S11:Body> 1120
 ... 1121
 </S11:Body> 1122
</S11:Envelope> 1123

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 33 of 76

5 Renewal Binding 1124

Using the token request framework, this section defines bindings for requesting security tokens to be 1125

renewed: 1126

Renew – A previously issued token with expiration is presented (and possibly proven) and the 1127
same token is returned with new expiration semantics. 1128

 1129

For this binding, the following actions are defined to enable specific processing context to be conveyed to 1130

the recipient: 1131

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew 1132
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Renew 1133
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/RenewFinal 1134

For this binding, the <wst:RequestType> element uses the following URI: 1135

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Renew 1136

For this binding the token to be renewed is identified in the <wst:RenewTarget> element and the 1137

optional OPTIONAL <wst:Lifetime> element MAY be specified to request a specified renewal 1138

duration. 1139

 1140

Other extensions MAY be specified in the request (and the response), but the key semantics (size, type, 1141

algorithms, scope, etc.) MUST NOT be altered during renewal. Token services MAY use renewal as an 1142

opportunity to rekey, so the renewal responses MAY include a new proof-of-possession token as well as 1143

entropy and key exchange elements. 1144

 1145

The request MUST prove authorized use of the token being renewed unless the recipient trusts the 1146

requestor to make third-party renewal requests. In such cases, the third-party requestor MUST prove its 1147

identity to the issuer so that appropriate authorization occurs. 1148

 1149

The original proof information SHOULD be proven during renewal. 1150

 1151

The renewal binding allows the use of exchanges during the renewal process. Subsequent profiles MAY 1152

define restriction around the usage of exchanges. 1153

 1154

During renewal, all key bearing tokens used in the renewal request MUST have an associated signature. 1155

All non-key bearing tokens MUST be signed. Signature confirmation is RECOMMENDED on the renewal 1156

response. 1157

 1158

The renewal binding also defines several extensions to the request and response elements. The syntax 1159

for these extension elements is as follows (note that the base elements described above are included 1160

here italicized for completeness): 1161

 <wst:RequestSecurityToken xmlns:wst="...”> 1162
 <wst:TokenType>...</wst:TokenType> 1163
 <wst:RequestType>...</wst:RequestType> 1164
 ... 1165
 <wst:RenewTarget>...</wst:RenewTarget> 1166

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Renew

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 34 of 76

 <wst:AllowPostdating/> 1167
 <wst:Renewing Allow=”...” OK=”...”/> 1168
 </wst:RequestSecurityToken> 1169

/wst:RequestSecurityToken/wst:RenewTarget 1170

This requiredREQUIRED element identifies the token being renewed. This MAY contain a 1171
<wsse:SecurityTokenReference> pointing at the token to be renewed or it MAY directly contain 1172

the token to be renewed. 1173

/wst:RequestSecurityToken/wst:AllowPostdating 1174

This optional OPTIONAL element indicates that returned tokens should SHOULD allow requests 1175
for postdated tokens. That is, this allows for tokens to be issued that are not immediately valid 1176
(e.g., a token that can be used the next day). 1177

/wst:RequestSecurityToken/wst:Renewing 1178

This optionalOPTIONAL element is used to specify renew semantics for types that support this 1179
operation. 1180

/wst:RequestSecurityToken/wst:Renewing/@Allow 1181

This optionalOPTIONAL Boolean attribute is used to request a renewable token. If not specified, 1182
the default value is true. A renewable token is one whose lifetime can be extended. This is done 1183
using a renewal request. The recipient MAY allow renewals without demonstration of authorized 1184
use of the token or they MAY fault. 1185

/wst:RequestSecurityToken/wst:Renewing/@OK 1186

This optionalOPTIONAL Boolean attribute is used to indicate that a renewable token is 1187
acceptable if the requested duration exceeds the limit of the issuance service. That is, if true then 1188
tokens can be renewed after their expiration. It should be noted that the token is NOT valid after 1189
expiration for any operation except renewal. The default for this attribute is false. It NOT 1190
RECOMMENDED to use this as it can leave you open to certain types of security attacks. 1191
Issuers MAY restrict the period after expiration during which time the token can be renewed. This 1192
window is governed by the issuer's policy. 1193

The following example illustrates a request for a custom token that can be renewed. 1194

 <wst:RequestSecurityToken xmlns:wst="...”> 1195
 <wst:TokenType> 1196
 http://example.org/mySpecialToken 1197
 </wst:TokenType> 1198
 <wst:RequestType> 1199
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue 1200
 </wst:RequestType> 1201
 <wst:Renewing/> 1202
 </wst:RequestSecurityToken> 1203

 1204

The following example illustrates a subsequent renewal request and response (note that for brevity only 1205

the request and response are illustrated). Note that the response includes an indication of the lifetime of 1206

the renewed token. 1207

 <wst:RequestSecurityToken xmlns:wst="...”> 1208
 <wst:TokenType> 1209
 http://example.org/mySpecialToken 1210
 </wst:TokenType> 1211
 <wst:RequestType> 1212
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Renew 1213
 </wst:RequestType> 1214
 <wst:RenewTarget> 1215
 ... reference to previously issued token ... 1216
 </wst:RenewTarget> 1217

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 35 of 76

 </wst:RequestSecurityToken> 1218
 1219
 <wst:RequestSecurityTokenResponse xmlns:wst="...”> 1220
 <wst:TokenType> 1221
 http://example.org/mySpecialToken 1222
 </wst:TokenType> 1223
 <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken> 1224
 <wst:Lifetime>...</wst:Lifetime> 1225
 ... 1226
 </wst:RequestSecurityTokenResponse> 1227

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 36 of 76

6 Cancel Binding 1228

Using the token request framework, this section defines bindings for requesting security tokens to be 1229

cancelled: 1230

Cancel – When a previously issued token is no longer needed, the Cancel binding can be used 1231
to cancel the token, terminating its use. After canceling a token at the issuer, a STS MUST not 1232
validate or renew the token. A STS MAY initiate the revocation of a token, however, revocation is 1233
out of scope of this specification and a client MUST NOT rely on it. If a client needs to ensure the 1234
validity of a token, it must MUST validate the token at the issuer. 1235

 1236

For this binding, the following actions are defined to enable specific processing context to be conveyed to 1237

the recipient: 1238

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel 1239
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Cancel 1240

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/CancelFinal 1241

For this binding, the <wst:RequestType> element uses the following URI: 1242

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Cancel 1243

Extensions MAY be specified in the request (and the response), but the semantics are not defined by this 1244

binding. 1245

 1246

The request MUST prove authorized use of the token being cancelled unless the recipient trusts the 1247

requestor to make third-party cancel requests. In such cases, the third-party requestor MUST prove its 1248

identity to the issuer so that appropriate authorization occurs. 1249

In a cancel request, all key bearing tokens specified MUST have an associated signature. All non-key 1250

bearing tokens MUST be signed. Signature confirmation is RECOMMENDED on the closure response. 1251

 1252

A cancelled token is no longer valid for authentication and authorization usages. 1253

On success a cancel response is returned. This is an RSTR message with the 1254

<wst:RequestedTokenCancelled> element in the body. On failure, a Fault is raised. It should be 1255

noted that the cancel RSTR is informational. That is, the security token is cancelled once the cancel 1256

request is processed. 1257

 1258

The syntax of the request is as follows: 1259

 <wst:RequestSecurityToken xmlns:wst="...”> 1260
 <wst:RequestType>...</wst:RequestType> 1261
 ... 1262
 <wst:CancelTarget>...</wst:CancelTarget> 1263
 </wst:RequestSecurityToken> 1264

/wst:RequestSecurityToken/wst:CancelTarget 1265

This requiredREQUIRED element identifies the token being cancelled. Typically this contains a 1266

<wsse:SecurityTokenReference> pointing at the token, but it could also carry the token 1267

directly. 1268

The following example illustrates a request to cancel a custom token. 1269

<S11:Envelope xmlns:S11="..." xmlns:wst="..." xmlns:wsse="..."> 1270

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Cancel

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 37 of 76

 <S11:Header> 1271
 <wsse:Security> 1272
 ... 1273
 </wsse:Security> 1274
 </S11:Header> 1275
 <S11:Body> 1276
 <wst:RequestSecurityToken> 1277
 <wst:RequestType> 1278
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Cancel 1279
 </wst:RequestType> 1280
 <wst:CancelTarget> 1281
 ... 1282
 </wst:CancelTarget> 1283
 </wst:RequestSecurityToken> 1284
 </S11:Body> 1285
</S11:Envelope> 1286

The following example illustrates a response to cancel a custom token. 1287

<S11:Envelope xmlns:S11="..." xmlns:wst="..." xmlns:wsse="..."> 1288
 <S11:Header> 1289
 <wsse:Security> 1290
 ... 1291
 </wsse:Security> 1292
 </S11:Header> 1293
 <S11:Body> 1294
 <wst:RequestSecurityTokenResponse> 1295
 <wst:RequestedTokenCancelled/> 1296
 </wst:RequestSecurityTokenResponse> 1297
 </S11:Body> 1298
</S11:Envelope> 1299

6.1 STS-initiated Cancel Binding 1300

Using the token request framework, this section defines an optional OPTIONAL binding for requesting 1301

security tokens to be cancelled by the STS: 1302

STS-initiated Cancel – When a previously issued token becomes invalid on the STS, the STS-1303
initiated Cancel binding can be used to cancel the token, terminating its use. After canceling a 1304
token, a STS MUST not validate or renew the token. This binding can be only used when STS 1305
can send one-way messages to the original token requestor. 1306

 1307

For this binding, the following actions are defined to enable specific processing context to be conveyed to 1308

the recipient: 1309

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/STSCancel 1310

For this binding, the <wst:RequestType> element uses the following URI: 1311

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/STSCancel 1312

Extensions MAY be specified in the request, but the semantics are not defined by this binding. 1313

 1314

The request MUST prove authorized use of the token being cancelled unless the recipient trusts the 1315

requestor to make third-party cancel requests. In such cases, the third-party requestor MUST prove its 1316

identity to the issuer so that appropriate authorization occurs. 1317

In a cancel request, all key bearing tokens specified MUST have an associated signature. All non-key 1318

bearing tokens MUST be signed. 1319

 1320

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 38 of 76

A cancelled token is no longer valid for authentication and authorization usages. 1321

 1322

The mechanism to determine the availability of STS-initiated Cancel binding on the STS is out of scope of 1323

this specification. Similarly, how the client communicates its endpoint address to the STS so that it can 1324

send the STSCancel messages to the client is out of scope of this specification. This functionality is 1325

implementation specific and can be solved by different mechanisms that are not in scope for this 1326

specification. 1327

 1328

This is a one-way operation, no response is returned from the recipient of the message. 1329

 1330

The syntax of the request is as follows: 1331

 <wst:RequestSecurityToken xmlns:wst="...”> 1332
 <wst:RequestType>...</wst:RequestType> 1333
 ... 1334
 <wst:CancelTarget>...</wst:CancelTarget> 1335
 </wst:RequestSecurityToken> 1336

/wst:RequestSecurityToken/wst:CancelTarget 1337

This requiredREQUIRED element identifies the token being cancelled. Typically this contains a 1338

<wsse:SecurityTokenReference> pointing at the token, but it could also carry the token 1339

directly. 1340

The following example illustrates a request to cancel a custom token. 1341

<?xml version="1.0" encoding="utf-8"?> 1342
<S11:Envelope xmlns:S11="..." xmlns:wst="..." xmlns:wsse="..."> 1343
 <S11:Header> 1344
 <wsse:Security> 1345
 ... 1346
 </wsse:Security> 1347
 </S11:Header> 1348
 <S11:Body> 1349
 <wst:RequestSecurityToken> 1350
 <wst:RequestType> 1351
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/STSCancel 1352
 </wst:RequestType> 1353
 <wst:CancelTarget> 1354
 ... 1355
 </wst:CancelTarget> 1356
 </wst:RequestSecurityToken> 1357
 </S11:Body> 1358
</S11:Envelope> 1359

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 39 of 76

7 Validation Binding 1360

Using the token request framework, this section defines bindings for requesting security tokens to be 1361

validated: 1362

Validate – The validity of the specified security token is evaluated and a result is returned. The 1363
result may MAY be a status, a new token, or both. 1364

 1365

It should be noted that for this binding, a SOAP Envelope MAY be specified as a "security token" if the 1366

requestor desires the envelope to be validated. In such cases the recipient SHOULD understand how to 1367

process a SOAP envelope and adhere to SOAP processing semantics (e.g., mustUnderstand) of the 1368

version of SOAP used in the envelope. Otherwise, the recipient SHOULD fault. 1369

For this binding, the following actions are defined to enable specific processing context to be conveyed to 1370

the recipient: 1371

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate 1372
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Validate 1373

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/ValidateFinal 1374

 1375

For this binding, the <wst:RequestType> element contains the following URI: 1376

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Validate 1377

 1378

The request provides a token upon which the request is based and optional OPTIONAL tokens. As well, 1379

the optional OPTIONAL <wst:TokenType> element in the request can indicate desired type response 1380

token. This may MAY be any supported token type or it may MAY be the following URI indicating that 1381

only status is desired: 1382

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Status 1383

 1384

For some use cases a status token is returned indicating the success or failure of the validation. In other 1385

cases a security token MAY be returned and used for authorization. This binding assumes that the 1386

validation requestor and provider are known to each other and that the general issuance parameters 1387

beyond requesting a token type, which is optionalOPTIONAL, are not needed (note that other bindings 1388

and profiles could define different semantics). 1389

 1390

For this binding an applicability scope (e.g., <wsp:AppliesTo>) need not be specified. It is assumed 1391

that the applicability of the validation response relates to the provided information (e.g. security token) as 1392

understood by the issuing service. 1393

 1394

The validation binding does not allow the use of exchanges. 1395

 1396

The RSTR for this binding carries the following element even if a token is returned (note that the base 1397

elements described above are included here italicized for completeness): 1398

 <wst:RequestSecurityToken xmlns:wst="...”> 1399
 <wst:TokenType>...</wst:TokenType> 1400
 <wst:RequestType>...</wst:RequestType> 1401

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 40 of 76

 <wst:ValidateTarget>... </wst:ValidateTarget> 1402
 ... 1403
 </wst:RequestSecurityToken> 1404

 1405

 <wst:RequestSecurityTokenResponse xmlns:wst="..." > 1406
 <wst:TokenType>...</wst:TokenType> 1407
 <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken> 1408
 ... 1409
 <wst:Status> 1410
 <wst:Code>...</wst:Code> 1411
 <wst:Reason>...</wst:Reason> 1412
 </wst:Status> 1413
 </wst:RequestSecurityTokenResponse> 1414

 1415

/wst:RequestSecurityToken/wst:ValidateTarget 1416

This requiredREQUIRED element identifies the token being validated. Typically this contains a 1417

<wsse:SecurityTokenReference> pointing at the token, but could also carry the token 1418

directly. 1419

/wst:RequestSecurityTokenResponse/wst:Status 1420

When a validation request is made, this element MUST be in the response. The code value 1421
indicates the results of the validation in a machine-readable form. The accompanying text 1422
element allows for human textual display. 1423

/wst:RequestSecurityTokenResponse/wst:Status/wst:Code 1424

This requiredREQUIRED URI value provides a machine-readable status code. The following 1425
URIs are predefined, but others MAY be used. 1426

URI Description

http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/valid The Trust service

successfully validated the

input

http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/invalid The Trust service did not

successfully validate the

input

/wst:RequestSecurityTokenResponse/wst:Status/wst:Reason 1427

This optionalOPTIONAL string provides human-readable text relating to the status code. 1428

 1429

The following illustrates the syntax of a validation request and response. In this example no token is 1430

requested, just a status. 1431

 <wst:RequestSecurityToken xmlns:wst="...”> 1432
 <wst:TokenType> 1433
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Status 1434
 </wst:TokenType> 1435
 <wst:RequestType> 1436
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Validate 1437
 </wst:RequestType> 1438
 </wst:RequestSecurityToken> 1439

 1440

<wst:RequestSecurityTokenResponse xmlns:wst="...”> 1441
 <wst:TokenType> 1442

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 41 of 76

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Status 1443
 </wst:TokenType> 1444
 <wst:Status> 1445
 <wst:Code> 1446
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/valid 1447
 </wst:Code> 1448
 </wst:Status> 1449
 ... 1450
 </wst:RequestSecurityTokenResponse> 1451

The following illustrates the syntax of a validation request and response. In this example a custom token 1452

is requested indicating authorized rights in addition to the status. 1453

 <wst:RequestSecurityToken xmlns:wst="...”> 1454
 <wst:TokenType> 1455
 http://example.org/mySpecialToken 1456
 </wst:TokenType> 1457
 <wst:RequestType> 1458
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Validate 1459
 </wst:RequestType> 1460
 </wst:RequestSecurityToken> 1461

 1462

 <wst:RequestSecurityTokenResponse xmlns:wst="...”> 1463
 <wst:TokenType> 1464
 http://example.org/mySpecialToken 1465
 </wst:TokenType> 1466
 <wst:Status> 1467
 <wst:Code> 1468
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/valid 1469
 </wst:Code> 1470
 </wst:Status> 1471
 <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken> 1472
 ... 1473
 </wst:RequestSecurityTokenResponse> 1474

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 42 of 76

8 Negotiation and Challenge Extensions 1475

The general security token service framework defined above allows for a simple request and response for 1476

security tokens (possibly asynchronous). However, there are many scenarios where a set of exchanges 1477

between the parties is required REQUIRED prior to returning (e.g., issuing) a security token. This section 1478

describes the extensions to the base WS-Trust mechanisms to enable exchanges for negotiation and 1479

challenges. 1480

 1481

There are potentially different forms of exchanges, but one specific form, called "challenges", provides 1482

mechanisms in addition to those described in [WS-Security] for authentication. This section describes 1483

how general exchanges are issued and responded to within this framework. Other types of exchanges 1484

include, but are not limited to, negotiation, tunneling of hardware-based processing, and tunneling of 1485

legacy protocols. 1486

 1487

The process is straightforward (illustrated here using a challenge): 1488

 1489

 1490

1. A requestor sends, for example, a <wst:RequestSecurityToken> message with a 1491

timestamp. 1492

2. The recipient does not trust the timestamp and issues a 1493

<wst:RequestSecurityTokenResponse> message with an embedded challenge. 1494

3. The requestor sends a <wst:RequestSecurityTokenReponse> message with an answer to 1495

the challenge. 1496

4. The recipient issues a <wst:RequestSecurityTokenResponseCollection> message with 1497

the issued security token and optional OPTIONAL proof-of-possession token. 1498

 1499

It should be noted that the requestor might challenge the recipient in either step 1 or step 3. In which 1500

case, step 2 or step 4 contains an answer to the initiator's challenge. Similarly, it is possible that steps 2 1501

and 3 could iterate multiple times before the process completes (step 4). 1502

 1503

The two services can use [WS-SecurityPolicy] to state their requirements and preferences for security 1504

tokens and encryption and signing algorithms (general policy intersection). This section defines 1505

mechanisms for legacy and more sophisticated types of negotiations. 1506

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 43 of 76

8.1 Negotiation and Challenge Framework 1507

The general mechanisms defined for requesting and returning security tokens are extensible. This 1508

section describes the general model for extending these to support negotiations and challenges. 1509

 1510

The exchange model is as follows: 1511

1. A request is initiated with a <wst:RequestSecurityToken> that identifies the details of the 1512

request (and may MAY contain initial negotiation/challenge information) 1513

2. A response is returned with a <wst:RequestSecurityTokenResponse> that contains 1514

additional negotiation/challenge information. Optionally, this may MAY return token information in 1515

the form of a <wst:RequestSecurityTokenResponseCollection> (if the exchange is two 1516

legs long). 1517

3. If the exchange is not complete, the requestor uses a 1518

<wst:RequestSecurityTokenResponse> that contains additional negotiation/challenge 1519

information. 1520

4. The process repeats at step 2 until the negotiation/challenge is complete (a token is returned or a 1521

Fault occurs). In the case where token information is returned in the final leg, it is returned in the 1522

form of a <wst:RequestSecurityTokenResponseCollection>. 1523

 1524

The negotiation/challenge information is passed in binding/profile-specific elements that are placed inside 1525

of the <wst:RequestSecurityToken> and <wst:RequestSecurityTokenResponse> elements. 1526

 1527

It is RECOMMENDED that at least the <wsu:Timestamp> element be included in messages (as per 1528

[WS-Security]) as a way to ensure freshness of the messages in the exchange. Other types of 1529

challenges MAY also be included. For example, a <wsp:Policy> element may be used to negotiate 1530

desired policy behaviors of both parties. Multiple challenges and responses MAY be included. 1531

8.2 Signature Challenges 1532

Exchange requests are issued by including an element that describes the exchange (e.g. challenge) and 1533

responses contain an element describing the response. For example, signature challenges are 1534

processed using the <wst:SignChallenge> element. The response is returned in a 1535

<wst:SignChallengeResponse> element. Both the challenge and the response elements are 1536

specified within the <wst:RequestSecurityTokenResponse> element. Some forms of negotiation 1537

MAY specify challenges along with responses to challenges from the other party. It should be noted that 1538

the requestor MAY provide exchange information (e.g. a challenge) to the recipient in the initial request. 1539

Consequently, these elements are also allowed within a <wst:RequestSecurityToken> element. 1540

 1541

The syntax of these elements is as follows: 1542

 <wst:SignChallenge xmlns:wst="...”> 1543
 <wst:Challenge ...>...</wst:Challenge> 1544
 </wst:SignChallenge> 1545

 1546

 <wst:SignChallengeResponse xmlns:wst="...”> 1547
 <wst:Challenge ...>...</wst:Challenge> 1548
 </wst:SignChallengeResponse> 1549

 1550

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 44 of 76

The following describes the attributes and tags listed in the schema above: 1551

.../wst:SignChallenge 1552

This optionalOPTIONAL element describes a challenge that requires the other party to sign a 1553
specified set of information. 1554

.../wst:SignChallenge/wst:Challenge 1555

This requiredREQUIRED string element describes the value to be signed. In order to prevent 1556
certain types of attacks (such as man-in-the-middle), it is strongly RECOMMENDED that the 1557
challenge be bound to the negotiation. For example, the challenge SHOULD track (such as using 1558
a digest of) any relevant data exchanged such as policies, tokens, replay protection, etc. As well, 1559
if the challenge is happening over a secured channel, a reference to the channel SHOULD also 1560
be included. Furthermore, the recipient of a challenge SHOULD verify that the data tracked 1561
(digested) matches their view of the data exchanged. The exact algorithm MAY be defined in 1562
profiles or agreed to by the parties. 1563

.../SignChallenge/{any} 1564

This is an extensibility mechanism to allow additional negotiation types to be used. 1565

.../wst:SignChallenge/@{any} 1566

This is an extensibility mechanism to allow additional attributes, based on schemas, to be added 1567
to the element. 1568

.../wst:SignChallengeResponse 1569

This optionalOPTIONAL element describes a response to a challenge that requires the signing of 1570
a specified set of information. 1571

.../wst:SignChallengeResponse/wst:Challenge 1572

If a challenge was issued, the response MUST contain the challenge element exactly as 1573
received. As well, while the RSTR response SHOULD always be signed, if a challenge was 1574
issued, the RSTR MUST be signed (and the signature coupled with the message to prevent 1575
replay). 1576

.../wst:SignChallengeResponse/{any} 1577

This is an extensibility mechanism to allow additional negotiation types to be used. 1578

.../wst:SignChallengeResponse/@{any} 1579

This is an extensibility mechanism to allow additional attributes, based on schemas, to be added 1580
to the element. 1581

8.3 Binary Exchanges and Negotiations 1582

Exchange requests may MAY also utilize existing binary formats passed within the WS-Trust framework. 1583

A generic mechanism is provided for this that includes a URI attribute to indicate the type of binary 1584

exchange. 1585

 1586

The syntax of this element is as follows: 1587

 <wst:BinaryExchange ValueType="..." EncodingType="..." xmlns:wst="...”> 1588
 </wst:BinaryExchange> 1589

The following describes the attributes and tags listed in the schema above (note that the ellipses below 1590

indicate that this element may MAY be placed in different containers. For this specification, these are 1591

limited to <wst:RequestSecurityToken> and <wst:RequestSecurityTokenResponse>): 1592

.../wst:BinaryExchange 1593

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 45 of 76

This optionalOPTIONAL element is used for a security negotiation that involves exchanging 1594
binary blobs as part of an existing negotiation protocol. The contents of this element are blob-1595
type-specific and are encoded using base64 (unless otherwise specified). 1596

.../wst:BinaryExchange/@ValueType 1597

This requiredREQUIRED attribute specifies a URI to identify the type of negotiation (and the 1598
value space of the blob – the element's contents). 1599

.../wst:BinaryExchange/@EncodingType 1600

This requiredREQUIRED attribute specifies a URI to identify the encoding format (if different from 1601
base64) of the negotiation blob. Refer to [WS-Security] for sample encoding format URIs. 1602

.../wst:BinaryExchange/@{any} 1603

This is an extensibility mechanism to allow additional attributes, based on schemas, to be added 1604
to the element. 1605

Some binary exchanges result in a shared state/context between the involved parties. It is 1606

RECOMMENDED that at the conclusion of the exchange, a new token and proof-of-possession token be 1607

returned. A common approach is to use the negotiated key as a "secure channel" mechanism to secure 1608

the new token and proof-of-possession token. 1609

For example, an exchange might establish a shared secret Sx that can then be used to sign the final 1610

response and encrypt the proof-of-possession token. 1611

8.4 Key Exchange Tokens 1612

In some cases it may MAY be necessary to provide a key exchange token so that the other party (either 1613

requestor or issuer) can provide entropy or key material as part of the exchange. Challenges may 1614

notMAY NOT always provide a usable key as the signature may use a signing-only certificate. 1615

 1616

The section describes two optional OPTIONAL elements that can be included in RST and RSTR 1617

elements to indicate that a Key Exchange Token (KET) is desired, or to provide a KET. 1618

The syntax of these elements is as follows (Note that the ellipses below indicate that this element may 1619

MAY be placed in different containers. For this specification, these are limited to 1620

<wst:RequestSecurityToken> and <wst:RequestSecurityTokenResponse>): 1621

<wst:RequestKET xmlns:wst="..." /> 1622

 1623

<wst:KeyExchangeToken xmlns:wst="...”>...</wst:KeyExchangeToken> 1624

 1625

The following describes the attributes and tags listed in the schema above: 1626

.../wst:RequestKET 1627

This optional OPTIONAL element is used to indicate that the receiving party (either the original 1628
requestor or issuer) should SHOULD provide a KET to the other party on the next leg of the 1629
exchange. 1630

.../wst:KeyExchangeToken 1631

This optional OPTIONAL element is used to provide a key exchange token. The contents of this 1632
element either contain the security token to be used for key exchange or a reference to it. 1633

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 46 of 76

8.5 Custom Exchanges 1634

Using the extensibility model described in this specification, any custom XML-based exchange can be 1635

defined in a separate binding/profile document. In such cases elements are defined which are carried in 1636

the RST and RSTR elements. 1637

 1638

It should be noted that it is NOT REQUIRED that exchange elements be symmetric. That is, a specific 1639

exchange mechanism MAY use multiple elements at different times, depending on the state of the 1640

exchange. 1641

8.6 Signature Challenge Example 1642

Here is an example exchange involving a signature challenge. In this example, a service requests a 1643

custom token using a X.509 certificate for authentication. The issuer uses the exchange mechanism to 1644

challenge the requestor to sign a random value (to ensure message freshness). The requestor provides 1645

a signature of the requested data and, once validated, the issuer then issues the requested token. 1646

 1647

The first message illustrates the initial request that is signed with the private key associated with the 1648

requestor's X.509 certificate: 1649

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." 1650
 xmlns:wsu="..." xmlns:wst="..."> 1651
 <S11:Header> 1652
 ... 1653
 <wsse:Security> 1654
 <wsse:BinarySecurityToken 1655
 wsu:Id="reqToken" 1656
 ValueType="...X509v3"> 1657
 MIIEZzCCA9CgAwIBAgIQEmtJZc0... 1658
 </wsse:BinarySecurityToken> 1659
 <ds:Signature xmlns:ds="..."> 1660
 ... 1661
 <ds:KeyInfo> 1662
 <wsse:SecurityTokenReference> 1663
 <wsse:Reference URI="#reqToken"/> 1664
 </wsse:SecurityTokenReference> 1665
 </ds:KeyInfo> 1666
 </ds:Signature> 1667
 </wsse:Security> 1668
 ... 1669
 </S11:Header> 1670
 <S11:Body> 1671
 <wst:RequestSecurityToken> 1672
 <wst:TokenType> 1673
 http://example.org/mySpecialToken 1674
 </wst:TokenType> 1675
 <wst:RequestType> 1676
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue 1677
 </wst:RequestType> 1678
 </wst:RequestSecurityToken> 1679
 </S11:Body> 1680
</S11:Envelope> 1681

 1682

The issuer (recipient) service doesn't trust the sender's timestamp (or one wasn't specified) and issues a 1683

challenge using the exchange framework defined in this specification. This message is signed using the 1684

private key associated with the issuer's X.509 certificate and contains a random challenge that the 1685

requestor must sign: 1686

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 47 of 76

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 1687
 xmlns:wst="..."> 1688
 <S11:Header> 1689
 ... 1690
 <wsse:Security> 1691
 <wsse:BinarySecurityToken 1692
 wsu:Id="issuerToken" 1693
 ValueType="...X509v3"> 1694
 DFJHuedsujfnrnv45JZc0... 1695
 </wsse:BinarySecurityToken> 1696
 <ds:Signature xmlns:ds="..."> 1697
 ... 1698
 </ds:Signature> 1699
 </wsse:Security> 1700
 ... 1701
 </S11:Header> 1702
 <S11:Body> 1703
 <wst:RequestSecurityTokenResponse> 1704
 <wst:SignChallenge> 1705
 <wst:Challenge>Huehf...</wst:Challenge> 1706
 </wst:SignChallenge> 1707
 </wst:RequestSecurityTokenResponse> 1708
 </S11:Body> 1709
</S11:Envelope> 1710

 1711

The requestor receives the issuer's challenge and issues a response that is signed using the requestor's 1712

X.509 certificate and contains the challenge. The signature only covers the non-mutable elements of the 1713

message to prevent certain types of security attacks: 1714

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 1715
 xmlns:wst="..."> 1716
 <S11:Header> 1717
 ... 1718
 <wsse:Security> 1719
 <wsse:BinarySecurityToken 1720
 wsu:Id="reqToken" 1721
 ValueType="...X509v3"> 1722
 MIIEZzCCA9CgAwIBAgIQEmtJZc0... 1723
 </wsse:BinarySecurityToken> 1724
 <ds:Signature xmlns:ds="..."> 1725
 ... 1726
 </ds:Signature> 1727
 </wsse:Security> 1728
 ... 1729
 </S11:Header> 1730
 <S11:Body> 1731
 <wst:RequestSecurityTokenResponse> 1732
 <wst:SignChallengeResponse> 1733
 <wst:Challenge>Huehf...</wst:Challenge> 1734
 </wst:SignChallengeResponse> 1735
 </wst:RequestSecurityTokenResponse> 1736
 </S11:Body> 1737
</S11:Envelope> 1738

 1739

The issuer validates the requestor's signature responding to the challenge and issues the requested 1740

token(s) and the associated proof-of-possession token. The proof-of-possession token is encrypted for 1741

the requestor using the requestor's public key. 1742

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 1743
 xmlns:wst="..." xmlns:xenc="..."> 1744
 <S11:Header> 1745

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 48 of 76

 ... 1746
 <wsse:Security> 1747
 <wsse:BinarySecurityToken 1748
 wsu:Id="issuerToken" 1749
 ValueType="...X509v3"> 1750
 DFJHuedsujfnrnv45JZc0... 1751
 </wsse:BinarySecurityToken> 1752
 <ds:Signature xmlns:ds="..."> 1753
 ... 1754
 </ds:Signature> 1755
 </wsse:Security> 1756
 ... 1757
 </S11:Header> 1758
 <S11:Body> 1759
 <wst:RequestSecurityTokenResponseCollection> 1760
 <wst:RequestSecurityTokenResponse> 1761
 <wst:RequestedSecurityToken> 1762
 <xyz:CustomToken xmlns:xyz="..."> 1763
 ... 1764
 </xyz:CustomToken> 1765
 </wst:RequestedSecurityToken> 1766
 <wst:RequestedProofToken> 1767
 <xenc:EncryptedKey Id="newProof"> 1768
 ... 1769
 </xenc:EncryptedKey> 1770
 </wst:RequestedProofToken> 1771
 </wst:RequestSecurityTokenResponse> 1772
 </wst:RequestSecurityTokenResponseCollection> 1773
 </S11:Body> 1774
</S11:Envelope> 1775

8.7 Custom Exchange Example 1776

Here is another illustrating the syntax for a token request using a custom XML exchange. For brevity, 1777

only the RST and RSTR elements are illustrated. Note that the framework allows for an arbitrary number 1778

of exchanges, although this example illustrates the use of four legs. The request uses a custom 1779

exchange element and the requestor signs only the non-mutable element of the message: 1780

 <wst:RequestSecurityToken xmlns:wst="...”> 1781
 <wst:TokenType> 1782
 http://example.org/mySpecialToken 1783
 </wst:TokenType> 1784
 <wst:RequestType> 1785
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue 1786
 </wst:RequestType> 1787
 <xyz:CustomExchange xmlns:xyz="..."> 1788
 ... 1789
 </xyz:CustomExchange> 1790
 </wst:RequestSecurityToken> 1791

 1792

The issuer service (recipient) responds with another leg of the custom exchange and signs the response 1793

(non-mutable aspects) with its token: 1794

 <wst:RequestSecurityTokenResponse xmlns:wst="...”> 1795
 <xyz:CustomExchange xmlns:xyz="..."> 1796
 ... 1797
 </xyz:CustomExchange> 1798
 </wst:RequestSecurityTokenResponse> 1799

 1800

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 49 of 76

The requestor receives the issuer's exchange and issues a response that is signed using the requestor's 1801

token and continues the custom exchange. The signature covers all non-mutable aspects of the 1802

message to prevent certain types of security attacks: 1803

 <wst:RequestSecurityTokenResponse xmlns:wst="...”> 1804
 <xyz:CustomExchange xmlns:xyz="..."> 1805
 ... 1806
 </xyz:CustomExchange> 1807
 </wst:RequestSecurityTokenResponse> 1808

 1809

The issuer processes the exchange and determines that the exchange is complete and that a token 1810

should be issued. Consequently it issues the requested token(s) and the associated proof-of-possession 1811

token. The proof-of-possession token is encrypted for the requestor using the requestor's public key. 1812

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 1813
 <wst:RequestSecurityTokenResponse> 1814
 <wst:RequestedSecurityToken> 1815
 <xyz:CustomToken xmlns:xyz="..."> 1816
 ... 1817
 </xyz:CustomToken> 1818
 </wst:RequestedSecurityToken> 1819
 <wst:RequestedProofToken> 1820
 <xenc:EncryptedKey Id="newProof" xmlns:xenc="..."> 1821
 ... 1822
 </xenc:EncryptedKey> 1823
 </wst:RequestedProofToken> 1824
 <wst:RequestedProofToken> 1825
 <xenc:EncryptedKey xmlns:xenc="...">...</xenc:EncryptedKey> 1826
 </wst:RequestedProofToken> 1827
 </wst:RequestSecurityTokenResponse> 1828
 </wst:RequestSecurityTokenResponseCollection> 1829

It should be noted that other example exchanges include the issuer returning a final custom exchange 1830

element, and another example where a token isn't returned. 1831

8.8 Protecting Exchanges 1832

There are some attacks, such as forms of man-in-the-middle, that can be applied to token requests 1833

involving exchanges. It is RECOMMENDED that the exchange sequence be protected. This may MAY 1834

be built into the exchange messages, but if metadata is provided in the RST or RSTR elements, then it is 1835

subject to attack. 1836

 1837

Consequently, it is RECOMMENDED that keys derived from exchanges be linked cryptographically to the 1838

exchange. For example, a hash can be computed by computing the SHA1 of the exclusive 1839

canonicalization [XML-C14N] of all RST and RSTR elements in messages exchanged. This value can 1840

then be combined with the exchanged secret(s) to create a new master secret that is bound to the data 1841

both parties sent/received. 1842

 1843

To this end, the following computed key algorithm is defined to be optionally OPTIONALLY used in these 1844

scenarios: 1845

URI Meaning

http://docs.oasis-open.org/ws-sx/ws-

trust/200512/CK/HASH

The key is computed using P_SHA1 as

follows:

 H=SHA1(ExclC14N(RST...RSTRs))

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 50 of 76

 X=encrypting H using negotiated

 key and mechanism

 Key=P_SHA1(X,H+"CK-HASH")

The octets for the "CK-HASH" string are the

UTF-8 octets.

8.9 Authenticating Exchanges 1846

After an exchange both parties have a shared knowledge of a key (or keys) that can then be used to 1847

secure messages. However, in some cases it may be desired to have the issuer prove to the requestor 1848

that it knows the key (and that the returned metadata is valid) prior to the requestor using the data. 1849

However, until the exchange is actually completed it may MAY be (and is often) inappropriate to use the 1850

computed keys. As well, using a token that hasn't been returned to secure a message may complicate 1851

processing since it crosses the boundary of the exchange and the underlying message security. This 1852

means that it may notMAY NOT be appropriate to sign the final leg of the exchange using the key derived 1853

from the exchange. 1854

 1855

For this reason an authenticator is defined that provides a way for the issuer to verify the hash as part of 1856

the token issuance. Specifically, when an authenticator is returned, the 1857

<wst:RequestSecurityTokenResponseCollection> element is returned. This contains one 1858

RSTR with the token being returned as a result of the exchange and a second RSTR that contains the 1859

authenticator (this order SHOULD be used). When an authenticator is used, RSTRs MUST use the 1860

@Context element so that the authenticator can be correlated to the token issuance. The authenticator is 1861

separated from the RSTR because otherwise computation of the RST/RSTR hash becomes more 1862

complex. The authenticator is represented using the <wst:Authenticator> element as illustrated 1863

below: 1864

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 1865
 <wst:RequestSecurityTokenResponse Context="..."> 1866
 ... 1867
 </wst:RequestSecurityTokenResponse> 1868
 <wst:RequestSecurityTokenResponse Context="..."> 1869
 <wst:Authenticator> 1870
 <wst:CombinedHash>...</wst:CombinedHash> 1871
 ... 1872
 </wst:Authenticator> 1873
 </wst:RequestSecurityTokenResponse> 1874
 </wst:RequestSecurityTokenResponseCollection> 1875

 1876

The following describes the attributes and elements listed in the schema overview above (the ... notation 1877

below represents the path RSTRC/RSTR and is used for brevity): 1878

.../wst:Authenticator 1879

This optionalOPTIONAL element provides verification (authentication) of a computed hash. 1880

.../wst:Authenticator/wst:CombinedHash 1881

This optionalOPTIONAL element proves the hash and knowledge of the computed key. This is 1882
done by providing the base64 encoding of the first 256 bits of the P_SHA1 digest of the computed 1883
key and the concatenation of the hash determined for the computed key and the string "AUTH-1884
HASH". Specifically, P_SHA1(computed-key, H + "AUTH-HASH")0-255. The octets for the "AUTH-1885
HASH" string are the UTF-8 octets. 1886

 1887

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 51 of 76

This <wst:CombinedHash> element is optional OPTIONAL (and an open content model is used) to 1888

allow for different authenticators in the future. 1889

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 52 of 76

9 Key and Token Parameter Extensions 1890

This section outlines additional parameters that can be specified in token requests and responses. 1891

Typically they are used with issuance requests, but since all types of requests may MAY issue security 1892

tokens they could apply to other bindings. 1893

9.1 On-Behalf-Of Parameters 1894

In some scenarios the requestor is obtaining a token on behalf of another party. These parameters 1895

specify the issuer and original requestor of the token being used as the basis of the request. The syntax 1896

is as follows (note that the base elements described above are included here italicized for completeness): 1897

 <wst:RequestSecurityToken xmlns:wst="...”> 1898
 <wst:TokenType>...</wst:TokenType> 1899
 <wst:RequestType>...</wst:RequestType> 1900
 ... 1901
 <wst:OnBehalfOf>...</wst:OnBehalfOf> 1902
 <wst:Issuer>...</wst:Issuer> 1903
 </wst:RequestSecurityToken> 1904

 1905

The following describes the attributes and elements listed in the schema overview above: 1906

/wst:RequestSecurityToken/wst:OnBehalfOf 1907

This optionalOPTIONAL element indicates that the requestor is making the request on behalf of 1908
another. The identity on whose behalf the request is being made is specified by placing a 1909

security token, <wsse:SecurityTokenReference> element, or 1910

<wsa:EndpointReference> element within the <wst:OnBehalfOf> element. The requestor 1911

MAY provide proof of possession of the key associated with the OnBehalfOf identity by including 1912
a signature in the RST security header generated using the OnBehalfOf token that signs the 1913
primary signature of the RST (i.e. endorsing supporting token concept from WS-SecurityPolicy). 1914
Additional signed supporting tokens describing the OnBehalfOf context MAY also be included 1915
within the RST security header. 1916

/wst:RequestSecurityToken/wst:Issuer 1917

This optionalOPTIONAL element specifies the issuer of the security token that is presented in the 1918
message. This element's type is an endpoint reference as defined in [WS-Addressing]. 1919

 1920

In the following illustrates the syntax for a proxy that is requesting a security token on behalf of another 1921

requestor or end-user. 1922

 <wst:RequestSecurityToken xmlns:wst="...”> 1923
 <wst:TokenType>...</wst:TokenType> 1924
 <wst:RequestType>...</wst:RequestType> 1925
 ... 1926
 <wst:OnBehalfOf>endpoint-reference</wst:OnBehalfOf> 1927
 </wst:RequestSecurityToken> 1928

9.2 Key and Encryption Requirements 1929

This section defines extensions to the <wst:RequestSecurityToken> element for requesting specific 1930

types of keys or algorithms or key and algorithms as specified by a given policy in the return token(s). In 1931

some cases the service may support a variety of key types, sizes, and algorithms. These parameters 1932

allow a requestor to indicate its desired values. It should be noted that the issuer's policy indicates if input 1933

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 53 of 76

values must be adhered to and faults generated for invalid inputs, or if the issuer will provide alterative 1934

values in the response. 1935

 1936

Although illustrated using the <wst:RequestSecurityToken> element, these options can also be 1937

returned in a <wst:RequestSecurityTokenResponse> element. 1938

The syntax for these optional OPTIONAL elements is as follows (note that the base elements described 1939

above are included here italicized for completeness): 1940

 <wst:RequestSecurityToken xmlns:wst="...”> 1941
 <wst:TokenType>...</wst:TokenType> 1942
 <wst:RequestType>...</wst:RequestType> 1943
 ... 1944
 <wst:AuthenticationType>...</wst:AuthenticationType> 1945
 <wst:KeyType>...</wst:KeyType> 1946
 <wst:KeySize>...</wst:KeySize> 1947
 <wst:SignatureAlgorithm>...</wst:SignatureAlgorithm> 1948
 <wst:EncryptionAlgorithm>...</wst:EncryptionAlgorithm> 1949
 <wst:CanonicalizationAlgorithm>...</wst:CanonicalizationAlgorithm> 1950
 <wst:ComputedKeyAlgorithm>...</wst:ComputedKeyAlgorithm> 1951
 <wst:Encryption>...</wst:Encryption> 1952
 <wst:ProofEncryption>...</wst:ProofEncryption> 1953
 <wst:KeyWrapAlgorithm>...</wst:KeyWrapAlgorithm> 1954
 <wst:UseKey Sig="..."> </wst:UseKey> 1955
 <wst:SignWith>...</wst:SignWith> 1956
 <wst:EncryptWith>...</wst:EncryptWith> 1957
 </wst:RequestSecurityToken> 1958

 1959

The following describes the attributes and elements listed in the schema overview above: 1960

/wst:RequestSecurityToken/wst:AuthenticationType 1961

This optionalOPTIONAL URI element indicates the type of authentication desired, specified as a 1962
URI. This specification does not predefine classifications; these are specific to token services as 1963
is the relative strength evaluations. The relative assessment of strength is up to the recipient to 1964
determine. That is, requestors should SHOULD be familiar with the recipient policies. For 1965
example, this might be used to indicate which of the four U.S. government authentication levels is 1966
requiredREQUIRED. 1967

/wst:RequestSecurityToken/wst:KeyType 1968

This optionalOPTIONAL URI element indicates the type of key desired in the security token. The 1969
predefined values are identified in the table below. Note that some security token formats have 1970
fixed key types. It should be noted that new algorithms can be inserted by defining URIs in other 1971
specifications and profiles. 1972

URI Meaning

http://docs.oasis-open.org/ws-sx/ws-

trust/200512/PublicKey

A public key token is requested

http://docs.oasis-open.org/ws-sx/ws-

trust/200512/SymmetricKey

A symmetric key token is requested (default)

http://docs.oasis-open.org/ws-

sx/wstrust/200512/Bearer

A bearer token is requested. This key type

can be used by requestors to indicate that

they want a security token to be issued that

does not require proof of possession.

/wst:RequestSecurityToken/wst:KeySize 1973

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 54 of 76

This optionalOPTIONAL integer element indicates the size of the key requiredREQUIRED 1974
specified in number of bits. This is a request, and, as such, the requested security token is not 1975
obligated to use the requested key size. That said, the recipient SHOULD try to use a key at 1976
least as strong as the specified value if possible. The information is provided as an indication of 1977
the desired strength of the security. 1978

/wst:RequestSecurityToken/wst:SignatureAlgorithm 1979

This optionalOPTIONAL URI element indicates the desired signature algorithm used within the 1980
returned token. This is specified as a URI indicating the algorithm (see [XML-Signature] for 1981
typical signing algorithms). 1982

/wst:RequestSecurityToken/wst:EncryptionAlgorithm 1983

This optionalOPTIONAL URI element indicates the desired encryption algorithm used within the 1984
returned token. This is specified as a URI indicating the algorithm (see [XML-Encrypt] for typical 1985
encryption algorithms). 1986

/wst:RequestSecurityToken/wst:CanonicalizationAlgorithm 1987

This optionalOPTIONAL URI element indicates the desired canonicalization method used within 1988
the returned token. This is specified as a URI indicating the method (see [XML-Signature] for 1989
typical canonicalization methods). 1990

/wst:RequestSecurityToken/wst:ComputedKeyAlgorithm 1991

This optionalOPTIONAL URI element indicates the desired algorithm to use when computed keys 1992
are used for issued tokens. 1993

/wst:RequestSecurityToken/wst:Encryption 1994

This optionalOPTIONAL element indicates that the requestor desires any returned secrets in 1995
issued security tokens to be encrypted for the specified token. That is, so that the owner of the 1996
specified token can decrypt the secret. Normally the security token is the contents of this element 1997
but a security token reference MAY be used instead. If this element isn't specified, the token 1998
used as the basis of the request (or specialized knowledge) is used to determine how to encrypt 1999
the key. 2000

/wst:RequestSecurityToken/wst:ProofEncryption 2001

This optionalOPTIONAL element indicates that the requestor desires any returned secrets in 2002
proof-of-possession tokens to be encrypted for the specified token. That is, so that the owner of 2003
the specified token can decrypt the secret. Normally the security token is the contents of this 2004
element but a security token reference MAY be used instead. If this element isn't specified, the 2005
token used as the basis of the request (or specialized knowledge) is used to determine how to 2006
encrypt the key. 2007

/wst:RequestSecurityToken/wst:KeyWrapAlgorithm 2008

This optionalOPTIONAL URI element indicates the desired algorithm to use for key wrapping 2009
when STS encrypts the issued token for the relying party using an asymmetric key. 2010

/wst:RequestSecurityToken/wst:UseKey 2011

If the requestor wishes to use an existing key rather than create a new one, then this 2012
optionalOPTIONAL element can be used to reference the security token containing the desired 2013

key. This element either contains a security token or a <wsse:SecurityTokenReference> 2014

element that references the security token containing the key that should SHOULD be used in the 2015

returned token. If <wst:KeyType> is not defined and a key type is not implicitly known to the 2016

service, it MAY be determined from the token (if possible). Otherwise this parameter is 2017
meaningless and is ignored. Requestors SHOULD demonstrate authorized use of the public key 2018
provided. 2019

/wst:RequestSecurityToken/wst:UseKey/@Sig 2020

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 55 of 76

In order to authenticate the key referenced, a signature MAY be used to prove the referenced 2021
token/key. If specified, this optionalOPTIONAL attribute indicates the ID of the corresponding 2022
signature (by URI reference). When this attribute is present, a key need not be specified inside 2023
the element since the referenced signature will indicate the corresponding token (and key). 2024

/wst:RequestSecurityToken/wst:SignWith 2025

This optionalOPTIONAL URI element indicates the desired signature algorithm to be used with 2026
the issued security token (typically from the policy of the target site for which the token is being 2027
requested. While any of these optionalOPTIONAL elements MAY be included in RSTRs, this one 2028
is a likely candidate if there is some doubt (e.g., an X.509 cert that can only use DSS). 2029

/wst:RequestSecurityToken/wst:EncryptWith 2030

This optionalOPTIONAL URI element indicates the desired encryption algorithm to be used with 2031
the issued security token (typically from the policy of the target site for which the token is being 2032
requested.) While any of these optionalOPTIONAL elements MAY be included in RSTRs, this 2033
one is a likely candidate if there is some doubt. 2034

The following summarizes the various algorithm parameters defined above. T is the issued token, P is the 2035
proof key. 2036
 2037

SignatureAlgorithm - The signature algorithm to use to sign T 2038

EncryptionAlgorithm - The encryption algorithm to use to encrypt T 2039

CanonicalizationAlgorithm - The canonicalization algorithm to use when signing T 2040

ComputedKeyAlgorithm - The key derivation algorithm to use if using a symmetric key for P 2041

where P is computed using client, server, or combined entropy 2042

Encryption - The token/key to use when encrypting T 2043

ProofEncryption - The token/key to use when encrypting P 2044

UseKey - This is P. This is generally used when the client supplies a public-key that it wishes to 2045

be embedded in T as the proof key 2046

SignWith - The signature algorithm the client intends to employ when using P to 2047

sign 2048

The encryption algorithms further differ based on whether the issued token contains asymmetric key or 2049

symmetric key. Furthermore, they differ based on what type of key is used to protect the issued token 2050

from the STS to the relying party. The following cases can occur: 2051

T contains symmetric key/STS uses symmetric key to encrypt T for RP 2052

EncryptWith – used to indicate symmetric algorithm that client will use to protect message to RP 2053

when using the proof key (e.g. AES256) 2054

EncryptionAlgorithm – used to indicate the symmetric algorithm that the STS should SHOULD 2055

use to encrypt the T (e.g. AES256) 2056

 2057

T contains symmetric key/STS uses asymmetric key to encrypt T for RP 2058

EncryptWith – used to indicate symmetric algorithm that client will use to protect message to RP 2059

when using the proof key (e.g. AES256) 2060

EncryptionAlgorithm – used to indicate the symmetric algorithm that the STS SHOULD should 2061

use to encrypt T for RP (e.g. AES256) 2062

KeyWrapAlgorithm – used to indicate the KeyWrap algorithm that the STS SHOULD should use 2063

to wrap the generated key that is used to encrypt the T for RP 2064

 2065

T contains asymmetric key/STS uses symmetric key to encrypt T for RP 2066

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 56 of 76

EncryptWith – used to indicate the KeyWrap algorithm that the client will use to 2067

protect the symmetric key that is used to protect messages to RP when using the proof key (e.g. 2068

RSA-OAEP-MGF1P) 2069

EncryptionAlgorithm – used to indicate the symmetric algorithm that the STS SHOULD should 2070

use to encrypt T for RP (e.g. AES256) 2071

 2072

T contains asymmetric key/STS uses asymmetric key to encrypt T for RP 2073

EncryptWith - used to indicate the KeyWrap algorithm that the client will use to 2074

protect symmetric key that is used to protect message to RP when using the proof 2075

key (e.g. RSA-OAEP-MGF1P) 2076

EncryptionAlgorithm - used to indicate the symmetric algorithm that the STS SHOULD should 2077

use to encrypt T for RP (e.g. AES256) 2078

KeyWrapAlgorithm – used to indicate the KeyWrap algorithm that the STS SHOULD should use 2079

to wrap the generated key that is used to encrypt the T for RP 2080

 2081

The example below illustrates a request that utilizes several of these parameters. A request is made for a 2082

custom token using a username and password as the basis of the request. For security, this token is 2083

encrypted (see "encUsername") for the recipient using the recipient's public key and referenced in the 2084

encryption manifest. The message is protected by a signature using a public key from the sender and 2085

authorized by the username and password. 2086

 2087

The requestor would like the custom token to contain a 1024-bit public key whose value can be found in 2088

the key provided with the "proofSignature" signature (the key identified by "requestProofToken"). The 2089

token should be signed using RSA-SHA1 and encrypted for the token identified by 2090

"requestEncryptionToken". The proof should be encrypted using the token identified by 2091

"requestProofToken". 2092

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 2093
 xmlns:wst="..." xmlns:ds="..." xmlns:xenc="..."> 2094
 <S11:Header> 2095
 ... 2096
 <wsse:Security> 2097
 <xenc:ReferenceList>...</xenc:ReferenceList> 2098
 <xenc:EncryptedData Id="encUsername">...</xenc:EncryptedData> 2099
 <wsse:BinarySecurityToken wsu:Id="requestEncryptionToken" 2100
 ValueType="...SomeTokenType" xmlns:x="..."> 2101
 MIIEZzCCA9CgAwIBAgIQEmtJZc0... 2102
 </wsse:BinarySecurityToken> 2103
 <wsse:BinarySecurityToken wsu:Id="requestProofToken" 2104
 ValueType="...SomeTokenType" xmlns:x="..."> 2105
 MIIEZzCCA9CgAwIBAgIQEmtJZc0... 2106
 </wsse:BinarySecurityToken> 2107
 <ds:Signature Id="proofSignature"> 2108
 ... signature proving requested key ... 2109
 ... key info points to the "requestedProofToken" token ... 2110
 </ds:Signature> 2111
 </wsse:Security> 2112
 ... 2113
 </S11:Header> 2114
 <S11:Body wsu:Id="req"> 2115
 <wst:RequestSecurityToken> 2116
 <wst:TokenType> 2117
 http://example.org/mySpecialToken 2118
 </wst:TokenType> 2119

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 57 of 76

 <wst:RequestType> 2120
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue 2121
 </wst:RequestType> 2122
 <wst:KeyType> 2123
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey 2124
 </wst:KeyType> 2125
 <wst:KeySize>1024</wst:KeySize> 2126
 <wst:SignatureAlgorithm> 2127
 http://www.w3.org/2000/09/xmldsig#rsa-sha1 2128
 </wst:SignatureAlgorithm> 2129
 <wst:Encryption> 2130
 <Reference URI="#requestEncryptionToken"/> 2131
 </wst:Encryption> 2132
 <wst:ProofEncryption> 2133
 <wsse:Reference URI="#requestProofToken"/> 2134
 </wst:ProofEncryption> 2135
 <wst:UseKey Sig="#proofSignature"/> 2136
 </wst:RequestSecurityToken> 2137
 </S11:Body> 2138
</S11:Envelope> 2139

9.3 Delegation and Forwarding Requirements 2140

This section defines extensions to the <wst:RequestSecurityToken> element for indicating 2141

delegation and forwarding requirements on the requested security token(s). 2142

The syntax for these extension elements is as follows (note that the base elements described above are 2143

included here italicized for completeness): 2144

 <wst:RequestSecurityToken xmlns:wst="...”> 2145
 <wst:TokenType>...</wst:TokenType> 2146
 <wst:RequestType>...</wst:RequestType> 2147
 ... 2148
 <wst:DelegateTo>...</wst:DelegateTo> 2149
 <wst:Forwardable>...</wst:Forwardable> 2150
 <wst:Delegatable>...</wst:Delegatable> 2151
 </wst:RequestSecurityToken> 2152

/wst:RequestSecurityToken/wst:DelegateTo 2153

This optionalOPTIONAL element indicates that the requested or issued token be delegated to 2154
another identity. The identity receiving the delegation is specified by placing a security token or 2155

<wsse:SecurityTokenReference> element within the <wst:DelegateTo> element. 2156

/wst:RequestSecurityToken/wst:Forwardable 2157

This optional OTPIONAL element, of type xs:boolean, specifies whether the requested security 2158
token should SHOULD be marked as "Forwardable". In general, this flag is used when a token is 2159
normally bound to the requestor's machine or service. Using this flag, the returned token MAY be 2160
used from any source machine so long as the key is correctly proven. The default value of this 2161
flag is true. 2162

/wst:RequestSecurityToken/wst:Delegatable 2163

This optional OPTIONAL element, of type xs:boolean, specifies whether the requested security 2164
token should SHOULD be marked as "Delegatable". Using this flag, the returned token MAY be 2165
delegated to another party. This parameter SHOULD be used in conjunction with 2166

<wst:DelegateTo>. The default value of this flag is false. 2167

 2168

The following illustrates the syntax of a request for a custom token that can be delegated to the indicated 2169

recipient (specified in the binary security token) and used in the specified interval. 2170

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 58 of 76

 <wst:RequestSecurityToken xmlns:wst="...”> 2171
 <wst:TokenType> 2172
 http://example.org/mySpecialToken 2173
 </wst:TokenType> 2174
 <wst:RequestType> 2175
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue 2176
 </wst:RequestType> 2177
 <wst:DelegateTo> 2178
 <wsse:BinarySecurityToken 2179
xmlns:wsse="...">...</wsse:BinarySecurityToken> 2180
 </wst:DelegateTo> 2181
 <wst:Delegatable>true</wst:Delegatable> 2182
 </wst:RequestSecurityToken> 2183

9.4 Policies 2184

This section defines extensions to the <wst:RequestSecurityToken> element for passing policies. 2185

 2186

The syntax for these extension elements is as follows (note that the base elements described above are 2187

included here italicized for completeness): 2188

 <wst:RequestSecurityToken xmlns:wst="...”> 2189
 <wst:TokenType>...</wst:TokenType> 2190
 <wst:RequestType>...</wst:RequestType> 2191
 ... 2192
 <wsp:Policy xmlns:wsp="...”>...</wsp:Policy> 2193
 <wsp:PolicyReference xmlns:wsp="...”>...</wsp:PolicyReference> 2194
 </wst:RequestSecurityToken> 2195

 2196

The following describes the attributes and elements listed in the schema overview above: 2197

/wst:RequestSecurityToken/wsp:Policy 2198

This optionalOPTIONAL element specifies a policy (as defined in [WS-Policy]) that indicates 2199
desired settings for the requested token. The policy specifies defaults that can be overridden by 2200
the elements defined in the previous sections. 2201

/wst:RequestSecurityToken/wsp:PolicyReference 2202

This optionalOPTIONAL element specifies a reference to a policy (as defined in [WS-Policy]) that 2203
indicates desired settings for the requested token. The policy specifies defaults that can be 2204
overridden by the elements defined in the previous sections. 2205

 2206

The following illustrates the syntax of a request for a custom token that provides a set of policy 2207

statements about the token or its usage requirements. 2208

 <wst:RequestSecurityToken xmlns:wst="...”> 2209
 <wst:TokenType> 2210
 http://example.org/mySpecialToken 2211
 </wst:TokenType> 2212
 <wst:RequestType> 2213
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue 2214
 </wst:RequestType> 2215
 <wsp:Policy xmlns:wsp="..."> 2216
 ... 2217
 </wsp:Policy> 2218
 </wst:RequestSecurityToken> 2219

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 59 of 76

9.5 Authorized Token Participants 2220

This section defines extensions to the <wst:RequestSecurityToken> element for passing information 2221

about which parties are authorized to participate in the use of the token. This parameter is typically used 2222

when there are additional parties using the token or if the requestor needs to clarify the actual parties 2223

involved (for some profile-specific reason). 2224

It should be noted that additional participants will need to prove their identity to recipients in addition to 2225

proving their authorization to use the returned token. This typically takes the form of a second signature 2226

or use of transport security. 2227

 2228

The syntax for these extension elements is as follows (note that the base elements described above are 2229

included here italicized for completeness): 2230

 <wst:RequestSecurityToken xmlns:wst="...”> 2231
 <wst:TokenType>...</wst:TokenType> 2232
 <wst:RequestType>...</wst:RequestType> 2233
 ... 2234
 <wst:Participants> 2235
 <wst:Primary>...</wst:Primary> 2236
 <wst:Participant>...</wst:Participant> 2237
 </wst:Participants> 2238
 </wst:RequestSecurityToken> 2239

 2240

The following describes elements and attributes used in a <wsc:SecurityContextToken> element. 2241

/wst:RequestSecurityToken/wst:Participants/ 2242

This optionalOPTIONAL element specifies the participants sharing the security token. Arbitrary 2243
types may MAY be used to specify participants, but a typical case is a security token or an 2244
endpoint reference (see [WS-Addressing]). 2245

/wst:RequestSecurityToken/wst:Participants/wst:Primary 2246

This optionalOPTIONAL element specifies the primary user of the token (if one exists). 2247

/wst:RequestSecurityToken/wst:Participants/wst:Participant 2248

This optionalOPTIONAL element specifies participant (or multiple participants by repeating the 2249
element) that play a (profile-dependent) role in the use of the token or who are allowed to use the 2250
token. 2251

/wst:RequestSecurityToken/wst:Participants/{any} 2252

This is an extensibility option to allow other types of participants and profile-specific elements to 2253
be specified. 2254

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 60 of 76

10 Key Exchange Token Binding 2255

Using the token request framework, this section defines a binding for requesting a key exchange token 2256

(KET). That is, if a requestor desires a token that can be used to encrypt key material for a recipient. 2257

 2258

For this binding, the following actions are defined to enable specific processing context to be conveyed to 2259

the recipient: 2260

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KET 2261
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/KET 2262

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/KETFinal 2263

 2264

For this binding, the RequestType element contains the following URI: 2265

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/KET 2266

 2267

For this binding very few parameters are specified as input. Optionally OPTIONALLY the 2268

<wst:TokenType> element can be specified in the request can indicate desired type response token 2269

carrying the key for key exchange; however, this isn't commonly used. 2270

The applicability scope (e.g. <wsp:AppliesTo>) MAY be specified if the requestor desires a key 2271

exchange token for a specific scope. 2272

 2273

It is RECOMMENDED that the response carrying the key exchange token be secured (e.g., signed by the 2274

issuer or someone who can speak on behalf of the target for which the KET applies). 2275

 2276

Care should be taken when using this binding to prevent possible man-in-the-middle and substitution 2277

attacks. For example, responses to this request SHOULD be secured using a token that can speak for 2278

the desired endpoint. 2279

 2280

The RSTR for this binding carries the <RequestedSecurityToken> element even if a token is returned 2281

(note that the base elements described above are included here italicized for completeness): 2282

 <wst:RequestSecurityToken xmlns:wst="...”> 2283
 <wst:TokenType>...</wst:TokenType> 2284
 <wst:RequestType>...</wst:RequestType> 2285
 ... 2286
 </wst:RequestSecurityToken> 2287

 2288

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 2289
 <wst:RequestSecurityTokenResponse> 2290
 <wst:TokenType>...</wst:TokenType> 2291
 <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken> 2292
 ... 2293
 </wst:RequestSecurityTokenResponse> 2294
 </wst:RequestSecurityTokenResponseCollection> 2295

 2296

The following illustrates the syntax for requesting a key exchange token. In this example, the KET is 2297

returned encrypted for the requestor since it had the credentials available to do that. Alternatively the 2298

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/KET
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/KET

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 61 of 76

request could be made using transport security (e.g. TLS) and the key could be returned directly using 2299

<wst:BinarySecret>. 2300

 <wst:RequestSecurityToken xmlns:wst="...”> 2301
 <wst:RequestType> 2302
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/KET 2303
 </wst:RequestType> 2304
 </wst:RequestSecurityToken> 2305

 2306

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 2307
 <wst:RequestSecurityTokenResponse> 2308
 <wst:RequestedSecurityToken> 2309
 <xenc:EncryptedKey xmlns:xenc="...”>...</xenc:EncryptedKey> 2310
 </wst:RequestedSecurityToken> 2311
 </wst:RequestSecurityTokenResponse> 2312
 </wst:RequestSecurityTokenResponseCollection> 2313

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 62 of 76

11 Error Handling 2314

There are many circumstances where an error can occur while processing security information. Errors 2315

use the SOAP Fault mechanism. Note that the reason text provided below is RECOMMENDED, but 2316

alternative text MAY be provided if more descriptive or preferred by the implementation. The tables 2317

below are defined in terms of SOAP 1.1. For SOAP 1.2, the Fault/Code/Value is env:Sender (as defined 2318

in SOAP 1.2) and the Fault/Code/Subcode/Value is the faultcode below and the Fault/Reason/Text is the 2319

faultstring below. It should be noted that profiles MAY provide second-level detail fields, but they should 2320

be careful not to introduce security vulnerabilities when doing so (e.g., by providing too detailed 2321

information). 2322

Error that occurred (faultstring) Fault code (faultcode)

The request was invalid or malformed wst:InvalidRequest

Authentication failed wst:FailedAuthentication

The specified request failed wst:RequestFailed

Security token has been revoked wst:InvalidSecurityToken

Insufficient Digest Elements wst:AuthenticationBadElements

The specified RequestSecurityToken is not
understood.

wst:BadRequest

The request data is out-of-date wst:ExpiredData

The requested time range is invalid or
unsupported

wst:InvalidTimeRange

The request scope is invalid or unsupported wst:InvalidScope

A renewable security token has expired wst:RenewNeeded

The requested renewal failed wst:UnableToRenew

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 63 of 76

12 Security Considerations 2323

As stated in the Goals section of this document, this specification is meant to provide extensible 2324

framework and flexible syntax, with which one could implement various security mechanisms. This 2325

framework and syntax by itself does not provide any guarantee of security. When implementing and using 2326

this framework and syntax, one must make every effort to ensure that the result is not vulnerable to any 2327

one of a wide range of attacks. 2328

 2329

It is not feasible to provide a comprehensive list of security considerations for such an extensible set of 2330

mechanisms. A complete security analysis must be conducted on specific solutions based on this 2331

specification. Below we illustrate some of the security concerns that often come up with protocols of this 2332

type, but we stress that this is not an exhaustive list of concerns. 2333

 2334

The following statements about signatures and signing apply to messages sent on unsecured channels. 2335

 2336

It is critical that all the security-sensitive message elements must be included in the scope of the 2337

message signature. As well, the signatures for conversation authentication must include a timestamp, 2338

nonce, or sequence number depending on the degree of replay prevention required as described in [WS-2339

Security] and the UsernameToken Profile. Also, conversation establishment should include the policy so 2340

that supported algorithms and algorithm priorities can be validated. 2341

 2342

It is required that security token issuance messages be signed to prevent tampering. If a public key is 2343

provided, the request should be signed by the corresponding private key to prove ownership. As well, 2344

additional steps should be taken to eliminate replay attacks (refer to [WS-Security] for additional 2345

information). Similarly, all token references should be signed to prevent any tampering. 2346

 2347

Security token requests are susceptible to denial-of-service attacks. Care should be taken to mitigate 2348

such attacks as is warranted by the service. 2349

 2350

For security, tokens containing a symmetric key or a password should only be sent to parties who have a 2351

need to know that key or password. 2352

 2353

For privacy, tokens containing personal information (either in the claims, or indirectly by identifying who is 2354

currently communicating with whom) should only be sent according to the privacy policies governing 2355

these data at the respective organizations. 2356

 2357

For some forms of multi-message exchanges, the exchanges are susceptible to attacks whereby 2358

signatures are altered. To address this, it is suggested that a signature confirmation mechanism be used. 2359

In such cases, each leg should include the confirmation of the previous leg. That is, leg 2 includes 2360

confirmation for leg 1, leg 3 for leg 2, leg 4 for leg 3, and so on. In doing so, each side can confirm the 2361

correctness of the message outside of the message body. 2362

 2363

There are many other security concerns that one may need to consider in security protocols. The list 2364

above should not be used as a "check list" instead of a comprehensive security analysis. 2365

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 64 of 76

 2366

It should be noted that use of unsolicited RSTRs implies that the recipient is prepared to accept such 2367

issuances. Recipients should ensure that such issuances are properly authorized and recognize their 2368

use could be used in denial-of-service attacks. 2369

In addition to the consideration identified here, readers should also review the security considerations in 2370

[WS-Security]. 2371

 2372

Both token cancellation bindings defined in this specification require that the STS MUST NOT validate or 2373

renew the token after it has been successfully canceled. The STS must take care to ensure that the token 2374

is properly invalidated before confirming the cancel request or sending the cancel notification to the client. 2375

This can be more difficult if the token validation or renewal logic is physically separated from the issuance 2376

and cancellation logic. It is out of scope of this spec how the STS propagates the token cancellation to its 2377

other components. If STS cannot ensure that the token was properly invalidated it MUST NOT send the 2378

cancel notification or confirm the cancel request to the client. 2379

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 65 of 76

A. Key Exchange 2380

Key exchange is an integral part of token acquisition. There are several mechanisms by which keys are 2381

exchanged using [WS-Security] and WS-Trust. This section highlights and summarizes these 2382

mechanisms. Other specifications and profiles may MAY provide additional details on key exchange. 2383

 2384

Care must be taken when employing a key exchange to ensure that the mechanism does not provide an 2385

attacker with a means of discovering information that could only be discovered through use of secret 2386

information (such as a private key). 2387

 2388

It is therefore important that a shared secret should only be considered as trustworthy as its source. A 2389

shared secret communicated by means of the direct encryption scheme described in section I.1 is 2390

acceptable if the encryption key is provided by a completely trustworthy key distribution center (this is the 2391

case in the Kerberos model). Such a key would not be acceptable for the purposes of decrypting 2392

information from the source that provided it since an attacker might replay information from a prior 2393

transaction in the hope of learning information about it. 2394

 2395

In most cases the other party in a transaction is only imperfectly trustworthy. In these cases both parties 2396

should SHOULD contribute entropy to the key exchange by means of the <wst:entropy> element. 2397

A.1 Ephemeral Encryption Keys 2398

The simplest form of key exchange can be found in [WS-Security] for encrypting message data. As 2399

described in [WS-Security] and [XML-Encrypt], when data is encrypted, a temporary key can be used to 2400

perform the encryption which is, itself, then encrypted using the <xenc:EncryptedKey> element. 2401

 2402

The illustrates the syntax for encrypting a temporary key using the public key in an issuer name and serial 2403

number: 2404

 <xenc:EncryptedKey xmlns:xenc="..."> 2405
 ... 2406
 <ds:KeyInfo xmlns:ds="..."> 2407
 <wsse:SecurityTokenReference xmlns:wsse="..."> 2408
 <ds:X509IssuerSerial> 2409
 <ds:X509IssuerName> 2410
 DC=ACMECorp, DC=com 2411
 </ds:X509IssuerName> 2412
 <ds:X509SerialNumber>12345678</ds:X509SerialNumber> 2413
 </ds:X509IssuerSerial> 2414
 </wsse:SecurityTokenReference> 2415
 </ds:KeyInfo> 2416
 ... 2417
 </xenc:EncryptedKey> 2418

A.2 Requestor-Provided Keys 2419

When a request sends a message to an issuer to request a token, the client can provide proposed key 2420

material using the <wst:Entropy> element. If the issuer doesn't contribute any key material, this is 2421

used as the secret (key). This information is encrypted for the issuer either using 2422

<xenc:EncryptedKey> or by using a transport security. If the requestor provides key material that the 2423

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 66 of 76

recipient doesn't accept, then the issuer should SHUOLD reject the request. Note that the issuer need 2424

not return the key provided by the requestor. 2425

 2426

The following illustrates the syntax of a request for a custom security token and includes a secret that is 2427

to be used for the key. In this example the entropy is encrypted for the issuer (if transport security was 2428

used for confidentiality then the <wst:Entropy> element would contain a <wst:BinarySecret> 2429

element): 2430

 <wst:RequestSecurityToken xmlns:wst="...”> 2431
 <wst:TokenType> 2432
 http://example.org/mySpecialToken 2433
 </wst:TokenType> 2434
 <wst:RequestType> 2435
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue 2436
 </wst:RequestType> 2437
 <wst:Entropy> 2438
 <xenc:EncryptedData xmlns:xenc="...">...</xenc:EncryptedData> 2439
 </wst:Entropy> 2440
 </wst:RequestSecurityToken> 2441

A.3 Issuer-Provided Keys 2442

If a requestor fails to provide key material, then issued proof-of-possession tokens contain an issuer-2443

provided secret that is encrypted for the requestor (either using <xenc:EncryptedKey> or by using a 2444

transport security). 2445

 2446

The following illustrates the syntax of a token being returned with an associated proof-of-possession 2447

token that is encrypted using the requestor's public key. 2448

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 2449
 <wst:RequestSecurityTokenResponse> 2450
 <wst:RequestedSecurityToken> 2451
 <xyz:CustomToken xmlns:xyz="..."> 2452
 ... 2453
 </xyz:CustomToken> 2454
 </wst:RequestedSecurityToken> 2455
 <wst:RequestedProofToken> 2456
 <xenc:EncryptedKey xmlns:xenc="..." Id="newProof"> 2457
 ... 2458
 </xenc:EncryptedKey> 2459
 </wst:RequestedProofToken> 2460
 </wst:RequestSecurityTokenResponse> 2461
 </wst:RequestSecurityTokenResponseCollection> 2462

A.4 Composite Keys 2463

The safest form of key exchange/generation is when both the requestor and the issuer contribute to the 2464

key material. In this case, the request sends encrypted key material. The issuer then returns additional 2465

encrypted key material. The actual secret (key) is computed using a function of the two pieces of data. 2466

Ideally this secret is never used and, instead, keys derived are used for message protection. 2467

 2468

The following example illustrates a server, having received a request with requestor entropy returning its 2469

own entropy, which is used in conjunction with the requestor's to generate a key. In this example the 2470

entropy is not encrypted because the transport is providing confidentiality (otherwise the 2471

<wst:Entropy> element would have an <xenc:EncryptedData> element). 2472

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 67 of 76

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 2473
 <wst:RequestSecurityTokenResponse> 2474
 <wst:RequestedSecurityToken> 2475
 <xyz:CustomToken xmlns:xyz="..."> 2476
 ... 2477
 </xyz:CustomToken> 2478
 </wst:RequestedSecurityToken> 2479
 <wst:Entropy> 2480
 <wst:BinarySecret>UIH...</wst:BinarySecret> 2481
 </wst:Entropy> 2482
 </wst:RequestSecurityTokenResponse> 2483
 </wst:RequestSecurityTokenResponseCollection> 2484

A.5 Key Transfer and Distribution 2485

There are also a few mechanisms where existing keys are transferred to other parties. 2486

A.5.1 Direct Key Transfer 2487

If one party has a token and key and wishes to share this with another party, the key can be directly 2488

transferred. This is accomplished by sending an RSTR (either in the body or header) to the other party. 2489

The RSTR contains the token and a proof-of-possession token that contains the key encrypted for the 2490

recipient. 2491

 2492

In the following example a custom token and its associated proof-of-possession token are known to party 2493

A who wishes to share them with party B. In this example, A is a member in a secure on-line chat 2494

session and is inviting B to join the conversation. After authenticating B, A sends B an RSTR. The RSTR 2495

contains the token and the key is communicated as a proof-of-possession token that is encrypted for B: 2496

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 2497
 <wst:RequestSecurityTokenResponse> 2498
 <wst:RequestedSecurityToken> 2499
 <xyz:CustomToken xmlns:xyz="..."> 2500
 ... 2501
 </xyz:CustomToken> 2502
 </wst:RequestedSecurityToken> 2503
 <wst:RequestedProofToken> 2504
 <xenc:EncryptedKey xmlns:xenc="..." Id="newProof"> 2505
 ... 2506
 </xenc:EncryptedKey> 2507
 </wst:RequestedProofToken> 2508
 </wst:RequestSecurityTokenResponse> 2509
 </wst:RequestSecurityTokenResponseCollection> 2510

A.5.2 Brokered Key Distribution 2511

A third party may MAY also act as a broker to transfer keys. For example, a requestor may obtain a 2512

token and proof-of-possession token from a third-party STS. The token contains a key encrypted for the 2513

target service (either using the service's public key or a key known to the STS and target service). The 2514

proof-of-possession token contains the same key encrypted for the requestor (similarly this can use public 2515

or symmetric keys). 2516

 2517

In the following example a custom token and its associated proof-of-possession token are returned from a 2518

broker B to a requestor R for access to service S. The key for the session is contained within the custom 2519

token encrypted for S using either a secret known by B and S or using S's public key. The same secret is 2520

encrypted for R and returned as the proof-of-possession token: 2521

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 68 of 76

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 2522
 <wst:RequestSecurityTokenResponse> 2523
 <wst:RequestedSecurityToken> 2524
 <xyz:CustomToken xmlns:xyz="..."> 2525
 ... 2526
 <xenc:EncryptedKey xmlns:xenc="..."> 2527
 ... 2528
 </xenc:EncryptedKey> 2529
 ... 2530
 </xyz:CustomToken> 2531
 </wst:RequestedSecurityToken> 2532
 <wst:RequestedProofToken> 2533
 <xenc:EncryptedKey Id="newProof"> 2534
 ... 2535
 </xenc:EncryptedKey> 2536
 </wst:RequestedProofToken> 2537
 </wst:RequestSecurityTokenResponse> 2538
 </wst:RequestSecurityTokenResponseCollection> 2539

A.5.3 Delegated Key Transfer 2540

Key transfer can also take the form of delegation. That is, one party transfers the right to use a key 2541

without actually transferring the key. In such cases, a delegation token, e.g. XrML, is created that 2542

identifies a set of rights and a delegation target and is secured by the delegating party. That is, one key 2543

indicates that another key can use a subset (or all) of its rights. The delegate can provide this token and 2544

prove itself (using its own key – the delegation target) to a service. The service, assuming the trust 2545

relationships have been established and that the delegator has the right to delegate, can then authorize 2546

requests sent subject to delegation rules and trust policies. 2547

 2548

In this example a custom token is issued from party A to party B. The token indicates that B (specifically 2549

B's key) has the right to submit purchase orders. The token is signed using a secret key known to the 2550

target service T and party A (the key used to ultimately authorize the requests that B makes to T), and a 2551

new session key that is encrypted for T. A proof-of-possession token is included that contains the 2552

session key encrypted for B. As a result, B is effectively using A's key, but doesn't actually know the key. 2553

 <wst:RequestSecurityTokenResponseCollection xmlns:wst="...”> 2554
 <wst:RequestSecurityTokenResponse> 2555
 <wst:RequestedSecurityToken> 2556
 <xyz:CustomToken xmlns:xyz="..."> 2557
 ... 2558
 <xyz:DelegateTo>B</xyz:DelegateTo> 2559
 <xyz:DelegateRights> 2560
 SubmitPurchaseOrder 2561
 </xyz:DelegateRights> 2562
 <xenc:EncryptedKey xmlns:xenc="..."> 2563
 ... 2564
 </xenc:EncryptedKey> 2565
 <ds:Signature xmlns:ds="...">...</ds:Signature> 2566
 ... 2567
 </xyz:CustomToken> 2568
 </wst:RequestedSecurityToken> 2569
 <wst:RequestedProofToken> 2570
 <xenc:EncryptedKey xmlns:xenc="..." Id="newProof"> 2571
 ... 2572
 </xenc:EncryptedKey> 2573
 </wst:RequestedProofToken> 2574
 </wst:RequestSecurityTokenResponse> 2575
 </wst:RequestSecurityTokenResponseCollection> 2576

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 69 of 76

A.5.4 Authenticated Request/Reply Key Transfer 2577

In some cases the RST/RSTR mechanism is not used to transfer keys because it is part of a simple 2578

request/reply. However, there may be a desire to ensure mutual authentication as part of the key 2579

transfer. The mechanisms of [WS-Security] can be used to implement this scenario. 2580

 2581

Specifically, the sender wishes the following: 2582

 Transfer a key to a recipient that they can use to secure a reply 2583

 Ensure that only the recipient can see the key 2584

 Provide proof that the sender issued the key 2585

 2586

This scenario could be supported by encrypting and then signing. This would result in roughly the 2587

following steps: 2588

1. Encrypt the message using a generated key 2589

2. Encrypt the key for the recipient 2590

3. Sign the encrypted form, any other relevant keys, and the encrypted key 2591

 2592

However, if there is a desire to sign prior to encryption then the following general process is used: 2593

1. Sign the appropriate message parts using a random key (or ideally a key derived from a random 2594

key) 2595

2. Encrypt the appropriate message parts using the random key (or ideally another key derived from 2596

the random key) 2597

3. Encrypt the random key for the recipient 2598

4. Sign just the encrypted key 2599

 2600

This would result in a <wsse:Security> header that looks roughly like the following: 2601

 <wsse:Security xmlns:wsse="..." xmlns:wsu="..." 2602
 xmlns:ds="..." xmlns:xenc="..."> 2603
 <wsse:BinarySecurityToken wsu:Id="myToken"> 2604
 ... 2605
 </wsse:BinarySecurityToken> 2606
 <ds:Signature> 2607
 ...signature over #secret using token #myToken... 2608
 </ds:Signature> 2609
 <xenc:EncryptedKey Id="secret"> 2610
 ... 2611
 </xenc:EncryptedKey> 2612
 <xenc:RefrenceList> 2613
 ...manifest of encrypted parts using token #secret... 2614
 </xenc:RefrenceList> 2615
 <ds:Signature> 2616
 ...signature over key message parts using token #secret... 2617
 </ds:Signature> 2618
 </wsse:Security> 2619

 2620

As well, instead of an <xenc:EncryptedKey> element, the actual token could be passed using 2621

<xenc:EncryptedData>. The result might look like the following: 2622

 <wsse:Security xmlns:wsse="..." xmlns:wsu="..." 2623
 xmlns:ds="..." xmlns:xenc="..."> 2624

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 70 of 76

 <wsse:BinarySecurityToken wsu:Id="myToken"> 2625
 ... 2626
 </wsse:BinarySecurityToken> 2627
 <ds:Signature> 2628
 ...signature over #secret or #Esecret using token #myToken... 2629
 </ds:Signature> 2630
 <xenc:EncryptedData Id="Esecret”> 2631
 ...Encrypted version of a token with Id="secret"... 2632
 </xenc:EncryptedData> 2633
 <xenc:RefrenceList> 2634
 ...manifest of encrypted parts using token #secret... 2635
 </xenc:RefrenceList> 2636
 <ds:Signature> 2637
 ...signature over key message parts using token #secret... 2638
 </ds:Signature> 2639
 </wsse:Security> 2640

A.6 Perfect Forward Secrecy 2641

In some situations it is desirable for a key exchange to have the property of perfect forward secrecy. This 2642

means that it is impossible to reconstruct the shared secret even if the private keys of the parties are 2643

disclosed. 2644

 2645

The most straightforward way to attain perfect forward secrecy when using asymmetric key exchange is 2646

to dispose of one's key exchange key pair periodically (or even after every key exchange), replacing it 2647

with a fresh one. Of course, a freshly generated public key must still be authenticated (using any of the 2648

methods normally available to prove the identity of a public key's owner). 2649

 2650

The perfect forward secrecy property may MAY be achieved by specifying a <wst:entropy> element 2651

that contains an <xenc:EncryptedKey> that is encrypted under a public key pair created for use in a 2652

single key agreement. The public key does not require authentication since it is only used to provide 2653

additional entropy. If the public key is modified, the key agreement will fail. Care should be taken, when 2654

using this method, to ensure that the now-secret entropy exchanged via the <wst:entropy> element is 2655

not revealed elsewhere in the protocol (since such entropy is often assumed to be publicly revealed 2656

plaintext, and treated accordingly). 2657

 2658

Although any public key scheme might be used to achieve perfect forward secrecy (in either of the above 2659

methods) it is generally desirable to use an algorithm that allows keys to be generated quickly. The Diffie-2660

Hellman key exchange is often used for this purpose since generation of a key only requires the 2661

generation of a random integer and calculation of a single modular exponent. 2662

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 71 of 76

B. WSDL 2663

The WSDL below does not fully capture all the possible message exchange patterns, but captures the 2664

typical message exchange pattern as described in this document. 2665

<?xml version="1.0"?> 2666
<wsdl:definitions 2667
 targetNamespace="http://docs.oasis-open.org/ws-sx/ws-2668
trust/200512/wsdl" 2669
 xmlns:tns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/wsdl" 2670
 xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512" 2671
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 2672
 xmlns:xs="http://www.w3.org/2001/XMLSchema" 2673
> 2674
<!-- this is the WS-I BP-compliant way to import a schema --> 2675
 <wsdl:types> 2676
 <xs:schema> 2677
 <xs:import 2678
 namespace="http://docs.oasis-open.org/ws-sx/ws-trust/200512" 2679
 schemaLocation="http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-2680
trust.xsd"/> 2681
 </xs:schema> 2682
 </wsdl:types> 2683
 2684
<!-- WS-Trust defines the following GEDs --> 2685
 <wsdl:message name="RequestSecurityTokenMsg"> 2686
 <wsdl:part name="request" element="wst:RequestSecurityToken" /> 2687
 </wsdl:message> 2688
 <wsdl:message name="RequestSecurityTokenResponseMsg"> 2689
 <wsdl:part name="response" 2690
 element="wst:RequestSecurityTokenResponse" /> 2691
 </wsdl:message> 2692
 <wsdl:message name="RequestSecurityTokenResponseCollectionMsg"> 2693
 <wsdl:part name="responseCollection" 2694
 element="wst:RequestSecurityTokenResponseCollection"/> 2695
 </wsdl:message> 2696
 2697
<!-- This portType models the full request/response the Security Token 2698
Service: --> 2699
 2700
 <wsdl:portType name="WSSecurityRequestor"> 2701
 <wsdl:operation name="SecurityTokenResponse"> 2702
 <wsdl:input 2703
 message="tns:RequestSecurityTokenResponseMsg"/> 2704
 </wsdl:operation> 2705
 <wsdl:operation name="SecurityTokenResponse2"> 2706
 <wsdl:input 2707
 message="tns:RequestSecurityTokenResponseCollectionMsg"/> 2708
 </wsdl:operation> 2709
 <wsdl:operation name="Challenge"> 2710
 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/> 2711
 <wsdl:output message="tns:RequestSecurityTokenResponseMsg"/> 2712
 </wsdl:operation> 2713
 <wsdl:operation name="Challenge2"> 2714
 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/> 2715
 <wsdl:output 2716
 message="tns:RequestSecurityTokenResponseCollectionMsg"/> 2717
 </wsdl:operation> 2718
 </wsdl:portType> 2719
 2720
<!-- These portTypes model the individual message exchanges --> 2721

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 72 of 76

 2722
 <wsdl:portType name="SecurityTokenRequestService"> 2723
 <wsdl:operation name="RequestSecurityToken"> 2724
 <wsdl:input message="tns:RequestSecurityTokenMsg"/> 2725
 </wsdl:operation> 2726
 </wsdl:portType> 2727
 2728
 <wsdl:portType name="SecurityTokenService"> 2729
 <wsdl:operation name="RequestSecurityToken"> 2730
 <wsdl:input message="tns:RequestSecurityTokenMsg"/> 2731
 <wsdl:output message="tns:RequestSecurityTokenResponseMsg"/> 2732
 </wsdl:operation> 2733
 <wsdl:operation name="RequestSecurityToken2"> 2734
 <wsdl:input message="tns:RequestSecurityTokenMsg"/> 2735
 <wsdl:output 2736
 message="tns:RequestSecurityTokenResponseCollectionMsg"/> 2737
 </wsdl:operation> 2738
 </wsdl:portType> 2739
</wsdl:definitions> 2740
 2741

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 73 of 76

C. Acknowledgements 2742

The following individuals have participated in the creation of this specification and are gratefully 2743
acknowledged: 2744

Original Authors of the initial contribution: 2745

Steve Anderson, OpenNetwork 2746

Jeff Bohren, OpenNetwork 2747

Toufic Boubez, Layer 7 2748

Marc Chanliau, Computer Associates 2749

Giovanni Della-Libera, Microsoft 2750

Brendan Dixon, Microsoft 2751

Praerit Garg, Microsoft 2752

Martin Gudgin (Editor), Microsoft 2753

Phillip Hallam-Baker, VeriSign 2754

Maryann Hondo, IBM 2755

Chris Kaler, Microsoft 2756

Hal Lockhart, BEA 2757

Robin Martherus, Oblix 2758

Hiroshi Maruyama, IBM 2759

Anthony Nadalin (Editor), IBM 2760

Nataraj Nagaratnam, IBM 2761

Andrew Nash, Reactivity 2762

Rob Philpott, RSA Security 2763

Darren Platt, Ping Identity 2764

Hemma Prafullchandra, VeriSign 2765

Maneesh Sahu, Actional 2766

John Shewchuk, Microsoft 2767

Dan Simon, Microsoft 2768

Davanum Srinivas, Computer Associates 2769

Elliot Waingold, Microsoft 2770

David Waite, Ping Identity 2771

Doug Walter, Microsoft 2772

Riaz Zolfonoon, RSA Security 2773
 2774
Original Acknowledgments of the initial contribution: 2775

Paula Austel, IBM 2776

Keith Ballinger, Microsoft 2777

Bob Blakley, IBM 2778

John Brezak, Microsoft 2779

Tony Cowan, IBM 2780

Cédric Fournet, Microsoft 2781

Vijay Gajjala, Microsoft 2782

HongMei Ge, Microsoft 2783

Satoshi Hada, IBM 2784

Heather Hinton, IBM 2785

Slava Kavsan, RSA Security 2786

Scott Konersmann, Microsoft 2787

Leo Laferriere, Computer Associates 2788

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 74 of 76

Paul Leach, Microsoft 2789

Richard Levinson, Computer Associates 2790

John Linn, RSA Security 2791

Michael McIntosh, IBM 2792

Steve Millet, Microsoft 2793

Birgit Pfitzmann, IBM 2794

Fumiko Satoh, IBM 2795

Keith Stobie, Microsoft 2796

T.R. Vishwanath, Microsoft 2797

Richard Ward, Microsoft 2798

Hervey Wilson, Microsoft 2799

 2800

TC Members during the development of this specification: 2801

Don Adams, Tibco Software Inc. 2802

Jan Alexander, Microsoft Corporation 2803

Steve Anderson, BMC Software 2804

Donal Arundel, IONA Technologies 2805

Howard Bae, Oracle Corporation 2806

Abbie Barbir, Nortel Networks Limited 2807

Charlton Barreto, Adobe Systems 2808

Mighael Botha, Software AG, Inc. 2809

Toufic Boubez, Layer 7 Technologies Inc. 2810

Norman Brickman, Mitre Corporation 2811

Melissa Brumfield, Booz Allen Hamilton 2812

Lloyd Burch, Novell 2813

Scott Cantor, Internet2 2814

Greg Carpenter, Microsoft Corporation 2815

Steve Carter, Novell 2816

Ching-Yun (C.Y.) Chao, IBM 2817

Martin Chapman, Oracle Corporation 2818

Kate Cherry, Lockheed Martin 2819

Henry (Hyenvui) Chung, IBM 2820

Luc Clement, Systinet Corp. 2821

Paul Cotton, Microsoft Corporation 2822

Glen Daniels, Sonic Software Corp. 2823

Peter Davis, Neustar, Inc. 2824

Martijn de Boer, SAP AG 2825

Werner Dittmann, Siemens AG 2826

Abdeslem DJAOUI, CCLRC-Rutherford Appleton Laboratory 2827

Fred Dushin, IONA Technologies 2828

Petr Dvorak, Systinet Corp. 2829

Colleen Evans, Microsoft Corporation 2830

Ruchith Fernando, WSO2 2831

Mark Fussell, Microsoft Corporation 2832

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 75 of 76

Vijay Gajjala, Microsoft Corporation 2833

Marc Goodner, Microsoft Corporation 2834

Hans Granqvist, VeriSign 2835

Martin Gudgin, Microsoft Corporation 2836

Tony Gullotta, SOA Software Inc. 2837

Jiandong Guo, Sun Microsystems 2838

Phillip Hallam-Baker, VeriSign 2839

Patrick Harding, Ping Identity Corporation 2840

Heather Hinton, IBM 2841

Frederick Hirsch, Nokia Corporation 2842

Jeff Hodges, Neustar, Inc. 2843

Will Hopkins, BEA Systems, Inc. 2844

Alex Hristov, Otecia Incorporated 2845

John Hughes, PA Consulting 2846

Diane Jordan, IBM 2847

Venugopal K, Sun Microsystems 2848

Chris Kaler, Microsoft Corporation 2849

Dana Kaufman, Forum Systems, Inc. 2850

Paul Knight, Nortel Networks Limited 2851

Ramanathan Krishnamurthy, IONA Technologies 2852

Christopher Kurt, Microsoft Corporation 2853

Kelvin Lawrence, IBM 2854

Hubert Le Van Gong, Sun Microsystems 2855

Jong Lee, BEA Systems, Inc. 2856

Rich Levinson, Oracle Corporation 2857

Tommy Lindberg, Dajeil Ltd. 2858

Mark Little, JBoss Inc. 2859

Hal Lockhart, BEA Systems, Inc. 2860

Mike Lyons, Layer 7 Technologies Inc. 2861

Eve Maler, Sun Microsystems 2862

Ashok Malhotra, Oracle Corporation 2863

Anand Mani, CrimsonLogic Pte Ltd 2864

Jonathan Marsh, Microsoft Corporation 2865

Robin Martherus, Oracle Corporation 2866

Miko Matsumura, Infravio, Inc. 2867

Gary McAfee, IBM 2868

Michael McIntosh, IBM 2869

John Merrells, Sxip Networks SRL 2870

Jeff Mischkinsky, Oracle Corporation 2871

Prateek Mishra, Oracle Corporation 2872

Bob Morgan, Internet2 2873

Vamsi Motukuru, Oracle Corporation 2874

ws-trust-1.3-spec-errata-cd 30 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 76 of 76

Raajmohan Na, EDS 2875

Anthony Nadalin, IBM 2876

Andrew Nash, Reactivity, Inc. 2877

Eric Newcomer, IONA Technologies 2878

Duane Nickull, Adobe Systems 2879

Toshihiro Nishimura, Fujitsu Limited 2880

Rob Philpott, RSA Security 2881

Denis Pilipchuk, BEA Systems, Inc. 2882

Darren Platt, Ping Identity Corporation 2883

Martin Raepple, SAP AG 2884

Nick Ragouzis, Enosis Group LLC 2885

Prakash Reddy, CA 2886

Alain Regnier, Ricoh Company, Ltd. 2887

Irving Reid, Hewlett-Packard 2888

Bruce Rich, IBM 2889

Tom Rutt, Fujitsu Limited 2890

Maneesh Sahu, Actional Corporation 2891

Frank Siebenlist, Argonne National Laboratory 2892

Joe Smith, Apani Networks 2893

Davanum Srinivas, WSO2 2894

Yakov Sverdlov, CA 2895

Gene Thurston, AmberPoint 2896

Victor Valle, IBM 2897

Asir Vedamuthu, Microsoft Corporation 2898

Greg Whitehead, Hewlett-Packard 2899

Ron Williams, IBM 2900

Corinna Witt, BEA Systems, Inc. 2901

Kyle Young, Microsoft Corporation 2902

