
ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 1 of 41

WS-SecureConversation 1.3

Committee Specification 01, 29 November 2006

Artifact Identifier:

ws-secureconversation-1.3-spec-cs-01

Location:
Current: http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/
This Version: http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-
secureconversation-1.3-spec-cs-01.doc
Previous Version: http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-
secureconversation-1.3-spec-cd-01.doc

Artifact Type:

specification

Technical Committee:

OASIS Web Services Secure Exchange TC

Chair(s):
Kelvin Lawrence, IBM
Chris Kaler, Microsoft

Editor(s):
Anthony Nadalin, IBM
Marc Goodner, Microsoft
Martin Gudgin, Microsoft
Abbie Barbir, Nortel
Hans Granqvist, VeriSign

OASIS Conceptual Model topic area:

[Topic Area]

Related work:

NA

Abstract:

This specification defines extensions that build on [WS-Security] to provide a framework for

requesting and issuing security tokens, and to broker trust relationships.

Status:
This document was last revised or approved by the WS-SX TC on the above date. The level of
approval is also listed above. Check the current location noted above for possible later revisions
of this document. This document is updated periodically on no particular schedule.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/ws-sx.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/ws-sx/ipr.php.

The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/ws-sx.

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-spec-cs-01.doc
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-spec-cs-01.doc
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-spec-cd-01.doc
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-spec-cd-01.doc
http://www.oasis-open.org/committees/ws-sx
http://www.oasis-open.org/committees/ws-sx
http://www.oasis-open.org/committees/ws-sx/ipr.php
http://www.oasis-open.org/committees/ws-sx/ipr.php
http://www.oasis-open.org/committees/ws-sx
http://www.oasis-open.org/committees/ws-sx

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 2 of 41

Notices

Copyright © OASIS Open 2006. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 3 of 41

Table of Contents

1 Introduction ... 4

1.1 Goals and Non-Goals ... 4

1.2 Requirements ... 4

1.3 Namespace ... 4

1.4 Schema File .. 5

1.5 Terminology .. 5

1.5.1 Notational Conventions ... 6

1.6 Normative References .. 7

1.7 Non-Normative References .. 8

2 Security Context Token (SCT) ... 9

3 Establishing Security Contexts ... 12

3.1 SCT Binding of WS-Trust ... 13

3.2 SCT Request Example without Target Scope .. 13

3.3 SCT Request Example with Target Scope ... 14

3.4 SCT Propagation Example ... 16

4 Amending Contexts .. 17

5 Renewing Contexts .. 19

6 Canceling Contexts .. 21

7 Deriving Keys ... 23

7.1 Syntax ... 24

7.2 Examples .. 26

7.3 Implied Derived Keys .. 27

8 Associating a Security Context ... 29

9 Error Handling .. 31

10 Security Considerations ... 32

A. Sample Usages .. 33

A.1 Anonymous SCT .. 33

A.2 Mutual Authentication SCT... 34

B. Token Discovery Using RST/RSTR ... 35

C. Acknowledgements .. 36

D. Revision History .. 41

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 4 of 41

1 Introduction 1

The mechanisms defined in [WS-Security] provide the basic mechanisms on top of which secure 2

messaging semantics can be defined for multiple message exchanges. This specification defines 3

extensions to allow security context establishment and sharing, and session key derivation. This allows 4

contexts to be established and potentially more efficient keys or new key material to be exchanged, 5

thereby increasing the overall performance and security of the subsequent exchanges. 6

The [WS-Security] specification focuses on the message authentication model. This approach, while 7

useful in many situations, is subject to several forms of attack (see Security Considerations section of 8

[WS-Security] specification). 9

Accordingly, this specification introduces a security context and its usage. The context authentication 10

model authenticates a series of messages thereby addressing these shortcomings, but requires 11

additional communications if authentication happens prior to normal application exchanges. 12

 13

The security context is defined as a new [WS-Security] token type that is obtained using a binding of [WS-14

Trust]. 15

 16

Compliant services are NOT REQUIRED to implement everything defined in this specification. However, 17

if a service implements an aspect of the specification, it MUST comply with the requirements specified 18

(e.g. related "MUST" statements). 19

1.1 Goals and Non-Goals 20

The primary goals of this specification are: 21

 Define how security contexts are established 22

 Describe how security contexts are amended 23

 Specify how derived keys are computed and passed 24

 25

It is not a goal of this specification to define how trust is established or determined. 26

This specification is intended to provide a flexible set of mechanisms that can be used to support a range 27

of security protocols. Some protocols may require separate mechanisms or restricted profiles of this 28

specification. 29

1.2 Requirements 30

The following list identifies the key driving requirements: 31

 Derived keys and per-message keys 32

 Extensible security contexts 33

1.3 Namespace 34

The [URI] that MUST be used by implementations of this specification is: 35

 http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512 36

Table 1 lists XML namespaces that are used in this specification. The choice of any namespace prefix is 37

arbitrary and not semantically significant. 38

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 5 of 41

Table 1: Prefixes and XML Namespaces used in this specification. 39

Prefix Namespace Specification(s)

S11 http://schemas.xmlsoap.org/soap/envelope/ [SOAP]

S12 http://www.w3.org/2003/05/soap-envelope [SOAP12]

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd

[WS-Security]

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0.xsd

[WS-Security]

wst http://docs.oasis-open.org/ws-sx/ws-trust/200512 [WS-Trust]

wsc http://docs.oasis-open.org/ws-sx/ws-

secureconversation/200512

This specification

wsa http://www.w3.org/2005/08/addressing [WS-Addressing]

ds http://www.w3.org/2000/09/xmldsig# [XML-Signature]

xenc http://www.w3.org/2001/04/xmlenc# [XML-Encrypt]

1.4 Schema File 40

The schema [XML-Schema1], [XML-Schema2] for this specification can be located at: 41

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-42
secureconversation.xsd 43

 44

In this document, reference is made to the wsu:Id attribute in the utility schema. These were added to 45

the utility schema with the intent that other specifications requiring such an ID or timestamp could 46

reference it (as is done here). 47

1.5 Terminology 48

Claim – A claim is a statement made about a client, service or other resource (e.g. name, identity, key, 49

group, privilege, capability, etc.). 50

Security Token – A security token represents a collection of claims. 51

Security Context – A security context is an abstract concept that refers to an established authentication 52

state and negotiated key(s) that may have additional security-related properties. 53

Security Context Token – A security context token (SCT) is a wire representation of that security context 54

abstract concept, which allows a context to be named by a URI and used with [WS-Security]. 55

Signed Security Token – A signed security token is a security token that is asserted and 56

cryptographically endorsed by a specific authority (e.g. an X.509 certificate or a Kerberos ticket). 57

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2003/05/soap-envelope
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
http://www.w3.org/2005/08/addressing
http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2001/04/xmlenc

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 6 of 41

Proof-of-Possession Token – A proof-of-possession (POP) token is a security token that contains 58

secret data that can be used to demonstrate authorized use of an associated security token. Typically, 59

although not exclusively, the proof-of-possession information is encrypted with a key known only to the 60

recipient of the POP token. 61

Digest – A digest is a cryptographic checksum of an octet stream. 62

Signature - A signature [XML-Signature] is a value computed with a cryptographic algorithm and bound 63

to data in such a way that intended recipients of the data can use the signature to verify that the data has 64

not been altered and/or has originated from the signer of the message, providing message integrity and 65

authentication. The signature can be computed and verified with symmetric key algorithms, where the 66

same key is used for signing and verifying, or with asymmetric key algorithms, where different keys are 67

used for signing and verifying (a private and public key pair are used). 68

Security Token Service - A security token service (STS) is a Web service that issues security tokens 69

(see [WS-Security]). That is, it makes assertions based on evidence that it trusts, to whoever trusts it (or 70

to specific recipients). To communicate trust, a service requires proof, such as a signature, to prove 71

knowledge of a security token or set of security token. A service itself can generate tokens or it can rely 72

on a separate STS to issue a security token with its own trust statement (note that for some security token 73

formats this can just be a re-issuance or co-signature). This forms the basis of trust brokering. 74

Request Security Token (RST) – A RST is a message sent to a security token service to request a 75

security token. 76

Request Security Token Response (RSTR) – A RSTR is a response to a request for a security token. 77
In many cases this is a direct response from a security token service to a requestor after receiving an 78
RST message. However, in multi-exchange scenarios the requestor and security token service may 79
exchange multiple RSTR messages before the security token service issues a final RSTR message. One 80
or more RSTRs are contained within a single RequestSecurityTokenResponseCollection (RSTRC). 81

1.5.1 Notational Conventions 82

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD 83

NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described 84

in [RFC2119]. 85

 86

Namespace URIs of the general form "some-URI" represents some application-dependent or context-87

dependent URI as defined in [URI]. 88

 89

This specification uses the following syntax to define outlines for messages: 90

 The syntax appears as an XML instance, but values in italics indicate data types instead of literal 91

values. 92

 Characters are appended to elements and attributes to indicate cardinality: 93

o "?" (0 or 1) 94

o "*" (0 or more) 95

o "+" (1 or more) 96

 The character "|" is used to indicate a choice between alternatives. 97

 The characters "(" and ")" are used to indicate that contained items are to be treated as a group 98

with respect to cardinality or choice. 99

 The characters "[" and "]" are used to call out references and property names. 100

 Ellipses (i.e., "...") indicate points of extensibility. Additional children and/or attributes MAY be 101

added at the indicated extension points but MUST NOT contradict the semantics of the parent 102

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 7 of 41

and/or owner, respectively. By default, if a receiver does not recognize an extension, the receiver 103

SHOULD ignore the extension; exceptions to this processing rule, if any, are clearly indicated 104

below. 105

 XML namespace prefixes (see Table 1) are used to indicate the namespace of the element being 106

defined. 107

 108

Elements and Attributes defined by this specification are referred to in the text of this document using 109
XPath 1.0 expressions. Extensibility points are referred to using an extended version of this syntax: 110

 An element extensibility point is referred to using {any} in place of the element name. This 111
indicates that any element name can be used, from any namespace other than the namespace of 112
this specification. 113

 An attribute extensibility point is referred to using @{any} in place of the attribute name. This 114
indicates that any attribute name can be used, from any namespace other than the namespace of 115
this specification. 116

 117

In this document reference is made to the wsu:Id attribute and the wsu:Created and wsu:Expires 118

elements in a utility schema (http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-119

1.0.xsd). The wsu:Id attribute and the wsu:Created and wsu:Expires elements were added to the 120

utility schema with the intent that other specifications requiring such an ID type attribute or timestamp 121

element could reference it (as is done here). 122

 123

1.6 Normative References 124

[RFC2119] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels", RFC 125
2119, Harvard University, March 1997. 126
http://www.ietf.org/rfc/rfc2119.txt . 127

[RFC2246] IETF Standard, "The TLS Protocol", January 1999. 128
http://www.ietf.org/rfc/rfc2246.txt 129

[SOAP] W3C Note, "SOAP: Simple Object Access Protocol 1.1", 08 May 2000. 130
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/. 131

[SOAP12] W3C Recommendation, "SOAP 1.2 Part 1: Messaging Framework", 24 June 132
2003. 133
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/ 134

[URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): 135
Generic Syntax", RFC 3986, MIT/LCS, Day Software, Adobe Systems, January 136
2005. 137

http://www.ietf.org/rfc/rfc3986.txt 138

[WS-Addressing] W3C Recommendation, "Web Services Addressing (WS-Addressing)", 9 May 139
2006. 140

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509. 141

[WS-Security] OASIS Standard, "OASIS Web Services Security: SOAP Message Security 1.0 142
(WS-Security 2004)", March 2004. 143

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-144
security-1.0.pdf 145

OASIS Standard, "OASIS Web Services Security: SOAP Message Security 1.1 146
(WS-Security 2004)", February 2006. 147

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-148
SOAPMessageSecurity.pdf 149

[WS-Trust] OASIS Committee Draft, “WS-Trust 1.3”, September 2006 150

 http://docs.oasis-open.org/ws-sx/ws-trust/200512 151

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://docs.oasis-open.org/ws-sx/ws-trust/200512

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 8 of 41

[XML-Encrypt] W3C Recommendation, "XML Encryption Syntax and Processing", 10 December 152
2002. 153

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/. 154

[XML-Schema1] W3C Recommendation, "XML Schema Part 1: Structures Second Edition", 28 155
October 2004. 156

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/. 157

[XML-Schema2] W3C Recommendation, "XML Schema Part 2: Datatypes Second Edition", 28 158
October 2004. 159

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/. 160

[XML-Signature] W3C Recommendation, "XML-Signature Syntax and Processing", 12 February 161
2002. 162

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/ 163

1.7 Non-Normative References 164

[WS-MEX] "Web Services Metadata Exchange (WS-MetadataExchange)", BEA, Computer 165
Associates, IBM, Microsoft, SAP, Sun Microsystems, Inc., webMethods, 166
September 2004. 167

[WS-Policy] W3C Member Submission, "Web Services Policy 1.2 - Framework", 25 April 168
2006. 169

http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/ 170

[WS-PolicyAttachment] W3C Member Submission, "Web Services Policy 1.2 - Attachment" , 25 171
April 2006. 172

http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-20060425/ 173

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425
http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-20060425/

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 9 of 41

2 Security Context Token (SCT) 174

While message authentication is useful for simple or one-way messages, parties that wish to exchange 175

multiple messages typically establish a security context in which to exchange multiple messages. A 176

security context is shared among the communicating parties for the lifetime of a communications session. 177

 178

In this specification, a security context is represented by the <wsc:SecurityContextToken> security 179

token. In the [WS-Security] and [WS-Trust] framework, the following URI is used to represent the token 180

type: 181

 http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct 182

 183

The Security Context Token does not support references to it using key identifiers or key names. All 184

references MUST either use an ID (to a wsu:Id attribute) or a <wsse:Reference> to the 185

<wsc:Identifier> element. 186

 187

Once the context and secret have been established (authenticated), the mechanisms described in 188

Derived Keys can be used to compute derived keys for each key usage in the secure context. 189

 190

The following illustration represents an overview of the syntax of the <wsc:SecurityContextToken> 191

element. It should be noted that this token supports an open content model to allow context-specific data 192

to be passed. 193

 <wsc:SecurityContextToken wsu:Id="..." xmlns:wsc="..." xmlns:wsu="..." ...> 194
 <wsc:Identifier>...</wsc:Identifier> 195
 <wsc:Instance>...</wsc:Instance> 196
 ... 197
 </wsc:SecurityContextToken> 198

 199

The following describes elements and attributes used in a <wsc:SecurityContextToken> element. 200

/wsc:SecurityContextToken 201

This element is a security token that describes a security context. 202

/wsc:SecurityContextToken/wsc:Identifier 203

This required element identifies the security context using an absolute URI. Each security context 204
URI MUST be unique to both the sender and recipient. It is RECOMMENDED that the value be 205
globally unique in time and space. 206

/wsc:SecurityContextToken/wsc:Instance 207

When contexts are renewed and given different keys it is necessary to identify the different key 208
instances without revealing the actual key. When present this optional element contains a string 209

that is unique for a given key value for this wsc:Identifier. The initial issuance need not 210

contain a wsc:Instance element, however, all subsequent issuances with different keys MUST 211

have a wsc:Instance element with a unique value. 212

/wsc:SecurityContextToken/@wsu:Id 213

This optional attribute specifies a string label for this element. 214

/wsc:SecurityContextToken/@{any} 215

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 10 of 41

This is an extensibility mechanism to allow additional attributes, based on schemas, to be added 216
to the element. 217

/wsc:SecurityContextToken/{any} 218

 This is an extensibility mechanism to allow additional elements (arbitrary content) to be used. 219

 220

The <wsc:SecurityContextToken> token elements MUST be preserved. That is, whatever elements 221

contained within the tag on creation MUST be preserved wherever the token is used. A consumer of a 222

<wsc:SecurityContextToken> token MAY extend the token by appending information. 223

Consequently producers of <wsc:SecurityContextToken> tokens should consider this fact when 224

processing previously generated tokens. A service consuming (processing) a 225

<wsc:SecurityContextToken> token MAY fault if it discovers an element or attribute inside the token 226

that it doesn't understand, or it MAY ignore it. The fault code wsc:UnsupportedContextToken is 227

RECOMMENDED if a fault is raised. The behavior is specified by the services policy [WS-Policy] [WS-228

PolicyAttachment]. Care should be taken when adding information to tokens to ensure that relying parties 229

can ensure the information has not been altered since the SCT definition does not require a specific way 230

to secure its contents (which as noted above can be appended to). 231

 232

Security contexts, like all security tokens, can be referenced using the mechanisms described in [WS-233

Security] (the <wsse:SecurityTokenReference> element referencing the wsu:Id attribute relative to 234

the XML base document or referencing using the <wsc:Identifier> element's absolute URI). When a 235

token is referenced, the associated key is used. If a token provides multiple keys then specific bindings 236

and profiles must describe how to reference the separate keys. If a specific key instance needs to be 237

referenced, then the global attribute wsc:Instance is included in the <wsse:Reference> sub-element 238

(only when using <wsc:Identifier> references) of the <wsse:SecurityTokenReference> 239

element as illustrated below: 240

 <wsse:SecurityTokenReference xmlns:wsse="..." xmlns:wsc="..."> 241
 <wsse:Reference URI="uuid:... " wsc:Instance="..."/> 242
 </wsse:SecurityTokenReference> 243

 244

The following sample message illustrates the use of a security context token. In this example a context 245

has been established and the secret is known to both parties. This secret is used to sign the message 246

body. 247

(001) <?xml version="1.0" encoding="utf-8"?> 248
(002) <S11:Envelope xmlns:S11="..." xmlns:ds="..." xmlns:wsse="..." 249
 xmlns:wsu="..." xmlns:wsc="..."> 250
(003) <S11:Header> 251
(004) ... 252
(005) <wsse:Security> 253
(006) <wsc:SecurityContextToken wsu:Id="MyID"> 254
(007) <wsc:Identifier>uuid:...</wsc:Identifier> 255
(008) </wsc:SecurityContextToken> 256
(009) <ds:Signature> 257
(010) ... 258
(011) <ds:KeyInfo> 259
(012) <wsse:SecurityTokenReference> 260
(013) <wsse:Reference URI="#MyID"/> 261
(014) </wsse:SecurityTokenReference> 262
(015) </ds:KeyInfo> 263
(016) </ds:Signature> 264
(017) </wsse:Security> 265
(018) </S11:Header> 266
(019) <S11:Body wsu:Id="MsgBody"> 267

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 11 of 41

(020) <tru:StockSymbol 268
 xmlns:tru="http://fabrikam123.com/payloads"> 269
 QQQ 270
 </tru:StockSymbol> 271
(021) </S11:Body> 272
(022) </S11:Envelope> 273

 274

Let's review some of the key sections of this example: 275

Lines (003)-(018) contain the SOAP message headers. 276

Lines (005)-(017) represent the <wsse:Security> header block. This contains the security-related 277

information for the message. 278

Lines (006)-(008) specify a security token that is associated with the message. In this case it is a security 279

context token. Line (007) specifies the unique ID of the context. 280

Lines (009)-(016) specify the digital signature. In this example, the signature is based on the security 281

context (specifically the secret/key associated with the context). Line (010) represents the typical 282

contents of an XML Digital Signature which, in this case, references the body and potentially some of the 283

other headers expressed by line (004). 284

 285

Lines (012)-(014) indicate the key that was used for the signature. In this case, it is the security context 286

token included in the message. Line (013) provides a URI link to the security context token specified in 287

Lines (006)-(008). 288

The body of the message is represented by lines (019)-(021). 289

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 12 of 41

3 Establishing Security Contexts 290

A security context needs to be created and shared by the communicating parties before being used. This 291

specification defines three different ways of establishing a security context among the parties of a secure 292

communication. 293

 294

Security context token created by a security token service – The context initiator asks a security 295

token service to create a new security context token. The newly created security context token is 296

distributed to the parties through the mechanisms defined here and in [WS-Trust]. For this scenario the 297

initiating party sends a <wst:RequestSecurityToken> request to the token service and a 298

<wst:RequestSecurityTokenResponseCollection> containing a 299

<wst:RequestSecurityTokenResponse> is returned. The response contains a 300

<wst:RequestedSecurityToken> containing (or pointing to) the new security context token and a 301

<wst:RequestedProofToken> pointing to the "secret" for the returned context. The requestor then 302

uses the security context token (with [WS-Security]) when securing messages to applicable services. 303

 304

Security context token created by one of the communicating parties and propagated with a 305

message – The initiator creates a security context token and sends it to the other parties on a message 306

using the mechanisms described in this specification and in [WS-Trust]. This model works when the 307

sender is trusted to always create a new security context token. For this scenario the initiating party 308

creates a security context token and issues a signed unsolicited 309

<wst:RequestSecurityTokenResponse> to the other party. The message contains a 310

<wst:RequestedSecurityToken> containing (or pointing to) the new security context token and a 311

<wst:RequestedProofToken> pointing to the "secret" for the security context token. The recipient 312

can then choose whether or not to accept the security context token. As described in [WS-Trust], the 313

<wst:RequestSecurityTokenResponse> element MAY be in the 314

<wst:RequestSecurityTokenResponseCollection> within a body or inside a header block. It 315

should be noted that unless delegation tokens are used, this scenario requires that parties trust each 316

other to share a secret key (and non-repudiation is probably not possible). As receipt of these messages 317

may be expensive, and because a recipient may receive multiple messages, the 318

…/wst:RequestSecurityTokenResponse/@Context attribute in [WS-Trust] allows the initiator to specify a 319

URI to indicate the intended usage (allowing processing to be optimized). 320

 321

Security context token created through negotiation/exchanges – When there is a need to negotiate 322

or participate in a sequence of message exchanges among the participants on the contents of the 323

security context token, such as the shared secret, this specification allows the parties to exchange data to 324

establish a security context. For this scenario the initiating party sends a 325

<wst:RequestSecurityToken> request to the other party and a 326

<wst:RequestSecurityTokenResponse> is returned. It is RECOMMENDED that the framework 327

described in [WS-Trust] be used; however, the type of exchange will likely vary. If appropriate, the basic 328

challenge-response definition in [WS-Trust] is RECOMMENDED. Ultimately (if successful), a final 329

response contains a <wst:RequestedSecurityToken> containing (or pointing to) the new security 330

context and a <wst:RequestedProofToken> pointing to the "secret" for the context. 331

If an SCT is received, but the key sizes are not supported, then a fault SHOULD be generated using the 332

wsc:UnsupportedContextToken fault code unless another more specific fault code is available. 333

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 13 of 41

3.1 SCT Binding of WS-Trust 334

This binding describes how to use [WS-Trust] to request and return SCTs. This binding builds on the 335

issuance binding for [WS-Trust] (note that other sections of this specification define new separate 336

bindings of [WS-Trust]). Consequently, aspects of the issuance binding apply to this binding unless 337

otherwise stated. For example, the token request type is the same as in the issuance binding. 338

 339

When requesting and returning security context tokens the following Action URIs [WS-Addressing] are 340

used (note that a specialized action is used here because of the specialized semantics of SCTs): 341

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT 342
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT 343

 344

As with all token services, the options supported may be limited. This is especially true of SCTs because 345

the issuer may only be able to issue tokens for itself and quite often will only support a specific set of 346

algorithms and parameters as expressed in its policy. 347

SCTs are not required to have lifetime semantics. That is, some SCTs may have specific lifetimes and 348

others may be bound to other resources rather than have their own lifetimes. 349

Since the SCT binding builds on the issuance binding, it allows the optional extensions defined for the 350

issuance binding including the use of exchanges. Subsequent profiles MAY restrict the extensions and 351

types and usage of exchanges. 352

3.2 SCT Request Example without Target Scope 353

The following illustrates a request for a SCT from a security token service. The request in this example 354

contains no information concerning the Web Service with whom the requestor wants to communicate 355

securely (e.g. using the wsp:AppliesTo parameter in the RST). In order for the security token service to 356

process this request it must have prior knowledge for which Web Service the requestor needs a token. 357

This may be preconfigured although it is typically passed in the RST. In this example the key is encrypted 358

for the recipient (security token service) using the token service's X.509 certificate as per XML Encryption 359

[XML-Encrypt]. The encrypted data (using the encrypted key) contains a <wsse:UsernameToken> 360

token that the recipient uses to authorize the request. The request is secured (integrity) using the X.509 361

certificate of the requestor. The response encrypts the proof information using the requestor's X.509 362

certificate and secures the message (integrity) using the token service's X.509 certificate. Note that the 363

details of XML Signature and XML Encryption have been omitted; refer to [WS-Security] for additional 364

details. It should be noted that if the requestor doesn't have an X.509 certificate this scenario could be 365

achieved using a TLS [RFC2246] connection or by creating an ephemeral key. 366

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 367
 xmlns:wst="..." xmlns:xenc="..."> 368
 <S11:Header> 369
 ... 370
 <wsa:Action xmlns:wsa="..."> 371
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT 372
 </wsa:Action> 373
 ... 374
 <wsse:Security> 375
 <xenc:EncryptedKey> 376
 ... 377
 </xenc:EncryptedKey> 378
 <xenc:EncryptedData Id="encUsernameToken"> 379
 ... encrypted username token (whose id is myToken) ... 380
 </xenc:EncryptedData> 381
 <ds:Signature xmlns:ds="..."> 382
 ... 383

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 14 of 41

 <ds:KeyInfo> 384
 <wsse:SecurityTokenReference> 385
 <wsse:Reference URI="#myToken"/> 386
 </wsse:SecurityTokenReference> 387
 </ds:KeyInfo> 388
 </ds:Signature> 389
 </wsse:Security> 390
 ... 391
 </S11:Header> 392
 <S11:Body wsu:Id="req"> 393
 <wst:RequestSecurityToken> 394
 <wst:TokenType> 395
 http://docs.oasis-open.org/ws-sx/ws-396
secureconversation/200512/sct 397
 </wst:TokenType> 398
 <wst:RequestType> 399
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue 400
 </wst:RequestType> 401
 </wst:RequestSecurityToken> 402
 </S11:Body> 403
</S11:Envelope> 404

 405

<S11:Envelope xmlns:S11="..." 406
 xmlns:wst="..." xmlns:wsc="..." xmlns:xenc="..."> 407
 <S11:Header> 408
 ... 409
 <wsa:Action xmlns:wsa="..."> 410
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT 411
 </wsa:Action> 412
 ... 413
 </S11:Header> 414
 <S11:Body> 415

 <wst:RequestSecurityTokenResponseCollection> 416
 <wst:RequestSecurityTokenResponse> 417
 <wst:RequestedSecurityToken> 418
 <wsc:SecurityContextToken> 419
 <wsc:Identifier>uuid:...</wsc:Identifier> 420
 </wsc:SecurityContextToken> 421
 </wst:RequestedSecurityToken> 422
 <wst:RequestedProofToken> 423
 <xenc:EncryptedKey Id="newProof"> 424
 ... 425
 </xenc:EncryptedKey> 426
 </wst:RequestedProofToken> 427
 </wst:RequestSecurityTokenResponse> 428
 </wst:RequestSecurityTokenResponseCollection> 429
 </S11:Body> 430
</S11:Envelope> 431

3.3 SCT Request Example with Target Scope 432

There are scenarios where a security token service is used to broker trust using SCT tokens between 433

requestors and Web Services endpoints. In these cases it is typical for requestors to identify the target 434

Web Service in the RST. 435

In the example below the requestor uses the element <wsp:AppliesTo> with an endpoint reference as 436

described in [WS-Trust] in the SCT request to indicate the Web Service the token is needed for. 437

In the request example below the <wst:TokenType> element is omitted. This requires that the security 438

token service know what type of token the endpoint referenced in the <wsp:AppliesTo> element expects. 439

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 440

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 15 of 41

 xmlns:wst="..." xmlns:xenc="..." xmlns:wsp="..." xmlns:wsa="..."> 441
 <S11:Header> 442
 ... 443
 <wsa:Action xmlns:wsa="..."> 444
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT 445
 </wsa:Action> 446
 ... 447
 <wsse:Security> 448
 ... 449
 </wsse:Security> 450
 ... 451
 </S11:Header> 452
 <S11:Body wsu:Id="req"> 453
 <wst:RequestSecurityToken> 454
 <wst:RequestType> 455
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue 456
 </wst:RequestType> 457
 <wsp:AppliesTo> 458
 <wsa:EndpointReference> 459
 <wsa:Address>http://example.org/webservice</wsa:Address> 460
 </wsa:EndpointReference> 461
 </wsp:AppliesTo> 462
 </wst:RequestSecurityToken> 463
 </S11:Body> 464
</S11:Envelope> 465

 466

<S11:Envelope xmlns:S11="..." 467
 xmlns:wst="..." xmlns:wsc="..." xmlns:xenc="..." xmlns:wsp="..." 468
xmlns:wsa="..."> 469
 <S11:Header> 470
 <wsa:Action xmlns:wsa="..."> 471
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT 472
 </wsa:Action> 473
 ... 474
 </S11:Header> 475
 <S11:Body> 476

 <wst:RequestSecurityTokenResponseCollection> 477
 <wst:RequestSecurityTokenResponse> 478
 <wst:RequestedSecurityToken> 479
 <wsc:SecurityContextToken> 480
 <wsc:Identifier>uuid:...</wsc:Identifier> 481
 </wsc:SecurityContextToken> 482
 </wst:RequestedSecurityToken> 483
 <wst:RequestedProofToken> 484
 <xenc:EncryptedKey Id="newProof"> 485
 ... 486
 </xenc:EncryptedKey> 487
 </wst:RequestedProofToken> 488
 <wsp:AppliesTo> 489
 <wsa:EndpointReference> 490
 <wsa:Address>http://example.org/webservice</wsa:Address> 491
 </wsa:EndpointReference> 492
 </wsp:AppliesTo> 493
 </wst:RequestSecurityTokenResponse> 494

 </wst:RequestSecurityTokenResponseCollection> 495
 </S11:Body> 496
</S11:Envelope> 497

 498

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 16 of 41

3.4 SCT Propagation Example 499

The following illustrates propagating a context to another party. This example does not contain any 500

information regarding the Web Service the SCT is intended for (e.g. using the wsp:AppliesTo parameter 501

in the RST). 502

<S11:Envelope xmlns:S11="..." 503
 xmlns:wst="..." xmlns:wsc="..." xmlns:xenc="..." > 504
 <S11:Header> 505
 ... 506
 </S11:Header> 507
 <S11:Body> 508
 <wst:RequestSecurityTokenResponse> 509
 <wst:RequestedSecurityToken> 510
 <wsc:SecurityContextToken> 511
 <wsc:Identifier>uuid:...</wsc:Identifier> 512
 </wsc:SecurityContextToken> 513
 </wst:RequestedSecurityToken> 514
 <wst:RequestedProofToken> 515
 <xenc:EncryptedKey Id="newProof"> 516
 ... 517
 </xenc:EncryptedKey> 518
 </wst:RequestedProofToken> 519
 </wst:RequestSecurityTokenResponse> 520
 </S11:Body> 521
</S11:Envelope> 522

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 17 of 41

4 Amending Contexts 523

When an SCT is created, a set of claims is associated with it. There are times when an existing SCT 524

needs to be amended to carry additional claims (note that the decision as to who is authorized to amend 525

a context is a service-specific decision). This is done using the SCT Amend binding. In such cases an 526

explicit request is made to amend the claims associated with an SCT. It should be noted that using the 527

mechanisms described in [WS-Trust], an issuer MAY, at any time, return an amended SCT by issuing an 528

unsolicited (not explicitly requested) SCT inside an RSTR (either as a separate message or in a header). 529

The following Action URIs are used with this binding: 530

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT/Amend 531
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT/Amend 532

 533

This binding allows optional extensions but DOES NOT allow key semantics to be altered. 534

Proof of possession of the key associated with the security context MUST be proven in order for context 535
to be amended. It is RECOMMENDED that the proof of possession is done by creating a signature over 536
the message body and key headers using the key associated with the security context. 537

Additional claims to amend the security context with MUST be indicated by providing signatures over the 538
security context signature created using the key associated with the security context. Those additional 539
signatures are used to prove additional security tokens that carry claims to augment the security context. 540

This binding uses the request type from the issuance binding. 541

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 542
 xmlns:wst="..." xmlns:wsc="..."> 543
 <S11:Header> 544
 ... 545
 <wsa:Action xmlns:wsa="..."> 546
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT/Amend 547
 </wsa:Action> 548
 ... 549
 <wsse:Security> 550
 <xx:CustomToken wsu:Id="cust" xmlns:xx="..."> 551
 ... 552
 </xx:CustomToken> 553
 <ds:Signature xmlns:ds="..."> 554
 ...signature over #sig1 using #cust... 555
 </ds:Signature> 556
 <wsc:SecurityContextToken wsu:Id="sct"> 557
 <wsc:Identifier>uuid:...UUID1...</wsc:Identifier> 558
 </wsc:SecurityContextToken> 559
 <ds:Signature xmlns:ds="..." Id="sig1"> 560
 ...signature over body and key headers using #sct... 561
 <ds:KeyInfo> 562
 <wsse:SecurityTokenReference> 563
 <wsse:Reference URI="#sct"/> 564
 </wsse:SecurityTokenReference> 565
 </ds:KeyInfo> 566
 ... 567
 </ds:Signature> 568
 </wsse:Security> 569
 ... 570
 </S11:Header> 571
 <S11:Body wsu:Id="req"> 572

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT/Amend

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 18 of 41

 <wst:RequestSecurityToken> 573
 <wst:RequestType> 574
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue 575
 </wst:RequestType> 576
 </wst:RequestSecurityToken> 577
 </S11:Body> 578
</S11:Envelope> 579

 580

<S11:Envelope xmlns:S11="..." xmlns:wst="..." xmlns:wsc="..."> 581
 <S11:Header> 582
 ... 583
 <wsa:Action xmlns:wsa="..."> 584
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT/Amend 585
 </wsa:Action> 586
 ... 587
 </S11:Header> 588
 <S11:Body> 589

 <wst:RequestSecurityTokenResponseCollection> 590
 <wst:RequestSecurityTokenResponse> 591
 <wst:RequestedSecurityToken> 592
 <wsc:SecurityContextToken> 593
 <wsc:Identifier>uuid:...UUID1...</wsc:Identifier> 594
 </wsc:SecurityContextToken> 595
 </wst:RequestedSecurityToken> 596
 </wst:RequestSecurityTokenResponse> 597

 </wst:RequestSecurityTokenResponseCollection> 598
 </S11:Body> 599
</S11:Envelope> 600

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 19 of 41

5 Renewing Contexts 601

When a security context is created it typically has an associated expiration. If a requestor desires to 602

extend the duration of the token it uses this specialized binding of the renewal mechanism defined in WS-603

Trust. The following Action URIs are used with this binding: 604

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT/Renew 605
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT/Renew 606

 607

This binding allows optional extensions but DOES NOT allow key semantics to be altered. 608

A renewal MUST include re-authentication of the original claims because the original claims might have 609
an expiration time that conflicts with the requested expiration time in the renewal request. Because the 610
security context token issuer is not required to cache such information from the original issuance request, 611
the requestor is required to re-authenticate the original claims in every renewal request. It is 612
RECOMMENDED that the original claims re-authentication is done in the same way as in the original 613
token issuance request. 614

Proof of possession of the key associated with the security context MUST be proven in order for security 615
context to be renewed. It is RECOMMENDED that this is done by creating the original claims signature 616
over the signature that signs message body and key headers. 617

During renewal, new key material MAY be exchanged. Such key material MUST NOT be protected using 618
the existing session key. 619

This binding uses the request type from the renewal binding. 620

The following example illustrates a renewal which re-proves the original claims. 621

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 622
 xmlns:wst="..." xmlns:wsc="..."> 623
 <S11:Header> 624
 ... 625
 <wsa:Action xmlns:wsa="..."> 626
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT/Renew 627
 </wsa:Action> 628
 ... 629
 <wsse:Security> 630
 <xx:CustomToken wsu:Id="cust" xmlns:xx="..."> 631
 ... 632
 </xx:CustomToken> 633
 <ds:Signature xmlns:ds="..." Id="sig1"> 634
 ... signature over body and key headers using #cust... 635
 </ds:Signature> 636
 <wsc:SecurityContextToken wsu:Id="sct"> 637
 <wsc:Identifier>uuid:...UUID1...</wsc:Identifier> 638
 </wsc:SecurityContextToken> 639
 <ds:Signature xmlns:ds="..." Id="sig2"> 640
 ... signature over #sig1 using #sct ... 641
 </ds:Signature> 642
 </wsse:Security> 643
 ... 644
 </S11:Header> 645
 <S11:Body wsu:Id="req"> 646
 <wst:RequestSecurityToken> 647
 <wst:RequestType> 648

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT/Renew

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 20 of 41

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Renew 649
 </wst:RequestType> 650
 <wst:RenewTarget> 651
 <wsse:SecurityTokenReference> 652
 <wsse:Reference URI="uuid:...UUID1..."/> 653
 </wsse:SecurityTokenReference> 654
 </wst:RenewTarget> 655
 <wst:Lifetime>...</wst:Lifetime> 656
 </wst:RequestSecurityToken> 657
 </S11:Body> 658
</S11:Envelope> 659

 660

<S11:Envelope xmlns:S11="..." xmlns:wst="..." xmlns:wsc="..."> 661
 <S11:Header> 662
 ... 663
 <wsa:Action xmlns:wsa="..."> 664
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT/Renew 665
 </wsa:Action> 666
 ... 667
 </S11:Header> 668
 <S11:Body> 669
 <wst:RequestSecurityTokenResponseCollection> 670
 <wst:RequestSecurityTokenResponse> 671
 <wst:RequestedSecurityToken> 672
 <wsc:SecurityContextToken> 673
 <wsc:Identifier>uuid:...UUID1...</wsc:Identifier> 674
 <wsc:Instance>UUID2</wsc:Instance> 675
 </wsc:SecurityContextToken> 676
 </wst:RequestedSecurityToken> 677
 <wst:Lifetime>...</wst:Lifetime> 678
 </wst:RequestSecurityTokenResponse> 679

 </wst:RequestSecurityTokenResponseCollection> 680
 </S11:Body> 681
</S11:Envelope> 682

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 21 of 41

6 Canceling Contexts 683

It is not uncommon for a requestor to be done with a security context token before it expires. In such 684

cases the requestor can explicitly cancel the security context using this specialized binding based on the 685

WS-Trust Cancel binding. 686

The following Action URIs are used with this binding: 687

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT/Cancel 688
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT/Cancel 689

 690

Once a security context has been cancelled it MUST NOT be allowed for authentication or authorization 691

or allow renewal. 692

 693

Proof of possession of the key associated with the security context MUST be proven in order for security 694

context to be cancelled. It is RECOMMENDED that this is done by creating a signature over the message 695

body and key headers using the key associated with the security context. 696

 697

This binding uses the Cancel request type from WS-Trust. 698

 699

As described in WS-Trust the RSTR cancel message is informational and the context is cancelled once 700

the cancel RST is processed even if the cancel RSTR is never received by the requestor. 701

 702

The following example illustrates canceling a context. 703

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 704
 xmlns:wst="..." xmlns:wsc="..."> 705
 <S11:Header> 706
 ... 707
 <wsa:Action xmlns:wsa="..."> 708
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT/Cancel 709
 </wsa:Action> 710
 ... 711
 <wsse:Security> 712
 <wsc:SecurityContextToken wsu:Id="sct"> 713
 <wsc:Identifier>uuid:...UUID1...</wsc:Identifier> 714
 </wsc:SecurityContextToken> 715
 <ds:Signature xmlns:ds="..." Id="sig1"> 716
 ...signature over body and key headers using #sct... 717
 </ds:Signature> 718
 </wsse:Security> 719
 ... 720
 </S11:Header> 721
 <S11:Body wsu:Id="req"> 722
 <wst:RequestSecurityToken> 723
 <wst:RequestType> 724
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Cancel 725
 </wst:RequestType> 726
 <wst:CancelTarget> 727
 <wsse:SecurityTokenReference> 728
 <wsse:Reference URI="uuid:...UUID1..."/> 729
 </wsse:SecurityTokenReference> 730
 </wst:CancelTarget> 731
 </wst:RequestSecurityToken> 732

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT/Cancel

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 22 of 41

 </S11:Body> 733
</S11:Envelope> 734

 735

<S11:Envelope xmlns:S11="..." xmlns:wst="..." > 736
 <S11:Header> 737
 ... 738
 <wsa:Action xmlns:wsa="..."> 739
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT/Cancel 740
 </wsa:Action> 741
 ... 742
 </S11:Header> 743
 <S11:Body> 744

 <wst:RequestSecurityTokenResponseCollection> 745
 <wst:RequestSecurityTokenResponse> 746
 <wst:RequestedTokenCancelled/> 747
 </wst:RequestSecurityTokenResponse> 748

 </wst:RequestSecurityTokenResponseCollection> 749
 </S11:Body> 750
</S11:Envelope> 751

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 23 of 41

7 Deriving Keys 752

A security context token implies or contains a shared secret. This secret MAY be used for signing and/or 753

encrypting messages, but it is RECOMMENDED that derived keys be used for signing and encrypting 754

messages associated only with the security context. 755

 756

Using a common secret, parties may define different key derivations to use. For example, four keys may 757

be derived so that two parties can sign and encrypt using separate keys. In order to keep the keys fresh 758

(prevent providing too much data for analysis), subsequent derivations may be used. We introduce the 759

<wsc:DerivedKeyToken> token as a mechanism for indicating which derivation is being used within a 760

given message. 761

 762

The derived key mechanism can use different algorithms for deriving keys. The algorithm is expressed 763

using a URI. This specification defines one such algorithm. 764

 765

As well, while presented here using security context tokens, the <wsc:DerivedKeyToken> token can 766

be used to derive keys from any security token that has a shared secret, key, or key material. 767

 768

We use a subset of the mechanism defined for TLS in RFC 2246. Specifically, we use the P_SHA-1 769

function to generate a sequence of bytes that can be used to generate security keys. We refer to this 770

algorithm as: 771

 http://docs.oasis-open.org/ws-sx/ws-772
secureconversation/200512/dk/p_sha1 773

 774

This function is used with three values – secret, label, and seed. The secret is the shared secret that is 775

exchanged (note that if two secrets were securely exchanged, possibly as part of an initial exchange, they 776

are concatenated in the order they were sent/received). Secrets are processed as octets representing 777

their binary value (value prior to encoding). The label is the concatenation of the client's label and the 778

service's label. These labels can be discovered in each party's policy (or specifically within a 779

<wsc:DerivedKeyToken> token). Labels are processed as UTF-8 encoded octets. If either isn't 780

specified in the policy, then a default value of "WS-SecureConversation" (represented as UTF-8 octets) is 781

used. The seed is the concatenation of nonce values (if multiple were exchanged) that were exchanged 782

(initiator + receiver). The nonce is processed as a binary octet sequence (the value prior to base64 783

encoding). The nonce seed is required, and MUST be generated by one or more of the communicating 784

parties. The P_SHA-1 function has two parameters – secret and value. We concatenate the label and 785

the seed to create the value. That is: 786

 P_SHA1 (secret, label + seed) 787

 788

At this point, both parties can use the P_SHA-1 function to generate shared keys as needed. For this 789

protocol, we don't define explicit derivation uses. 790

 791

The <wsc:DerivedKeyToken> element is used to indicate that the key for a specific reference is 792

generated from the function. This is so that explicit security tokens, secrets, or key material need not be 793

exchanged as often thereby increasing efficiency and overall scalability. However, parties MUST 794

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 24 of 41

mutually agree on specific derivations (e.g. the first 128 bits is the client's signature key, the next 128 bits 795

in the client's encryption key, and so on). The policy presents a method for specifying this information. 796

The RECOMMENDED approach is to use separate nonces and have independently generated keys for 797

signing and encrypting in each direction. Furthermore, it is RECOMMENDED that new keys be derived 798

for each message (i.e., previous nonces are not re-used). 799

 800

Once the parties determine a shared secret to use as the basis of a key generation sequence, an initial 801

key is generated using this sequence. When a new key is required, a new <wsc:DerivedKeyToken> 802

may be passed referencing the previously generated key. The recipient then knows to use the sequence 803

to generate a new key, which will match that specified in the security token. If both parties pre-agree on 804

key sequencing, then additional token exchanges are not required. 805

 806

For keys derived using a shared secret from a security context, the 807

<wsse:SecurityTokenReference> element SHOULD be used to reference the 808

<wsc:SecurityContextToken>. Basically, a signature or encryption references a 809

<wsc:DerivedKeyToken> in the <wsse:Security> header that, in turn, references the 810

<wsc:SecurityContextToken>. 811

 812

Derived keys are expressed as security tokens. The following URI is used to represent the token type: 813

 http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/dk 814

 815

The derived key token does not support references using key identifiers or key names. All references 816

MUST use an ID (to a wsu:Id attribute) or a URI reference to the <wsc:Identifier> element in the 817

SCT. 818

7.1 Syntax 819

The following illustrates the syntax for <wsc:DerivedKeyToken>: 820

 <wsc:DerivedKeyToken wsu:Id="..." Algorithm="..." xmlns:wsc="..." 821
xmlns:wsse="..." xmlns:wsu="..."> 822
 <wsse:SecurityTokenReference>...</wsse:SecurityTokenReference> 823
 <wsc:Properties>...</wsc:Properties> 824
 <wsc:Generation>...</wsc:Generation> 825
 <wsc:Offset>...</wsc:Offset> 826
 <wsc:Length>...</wsc:Length> 827
 <wsc:Label>...</wsc:Label> 828
 <wsc:Nonce>...</wsc:Nonce> 829
 </wsc:DerivedKeyToken> 830

 831

The following describes the attributes and tags listed in the schema overview above: 832

/wsc:DerivedKeyToken 833

This specifies a key that is derived from a shared secret. 834

/wsc:DerivedKeyToken/@wsu:Id 835

This optional attribute specifies an XML ID that can be used locally to reference this element. 836

/wsc:DerivedKeyToken/@Algorithm 837

This optional URI attribute specifies key derivation algorithm to use. This specification predefines 838

the P_SHA1 algorithm described above. If this attribute isn't specified, this algorithm is assumed. 839

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 25 of 41

/wsc:DerivedKeyToken/wsse:SecurityTokenReference 840

This optional element is used to specify security context token, security token, or shared 841
key/secret used for the derivation. If not specified, it is assumed that the recipient can determine 842
the shared key from the message context. If the context cannot be determined, then a fault such 843

as wsc:UnknownDerivationSource should be raised. 844

/wsc:DerivedKeyToken/wsc:Properties 845

This optional element allows metadata to be associated with this derived key. For example, if the 846

<wsc:Name> property is defined, this derived key is given a URI name that can then be used as 847

the source for other derived keys. The <wsc:Nonce> and <wsc:Label> elements can be 848

specified as properties and indicate the nonce and label to use (defaults) for all keys derived from 849
this key. 850

/wsc:DerivedKeyToken/wsc:Properties/wsc:Name 851

This optional element is used to give this derived key a URI name that can then be used as the 852
source for other derived keys. 853

/wsc:DerivedKeyToken/wsc:Properties/wsc:Label 854

This optional element defines a label to use for all keys derived from this key. See 855
/wsc:DerivedKeyToken/wsc:Label defined below. 856

/wsc:DerivedKeyToken/wsc:Properties/wsc:Nonce 857

This optional element defines a nonce to use for all keys derived from this key. See 858
/wsc:DerivedKeyToken/wsc:Nonce defined below. 859

/wsc:DerivedKeyToken/wsc:Properties/{any} 860

This is an extensibility mechanism to allow additional elements (arbitrary content) to be used. 861

/wsc:DerivedKeyToken/wsc:Generation 862

If fixed-size keys (generations) are being generated, then this optional element can be used to 863
specify which generation of the key to use. The value of this element is an unsigned long value 864
indicating the generation number to use (beginning with zero). This element MUST NOT be used 865

if the <wsc:Offset> element is specified. Specifying this element is equivalent to specifying the 866

<wsc:Offset> and <wsc:Length> elements having multiplied out the values. That is, offset = 867

(generation) * fixed_size and length = fixed_size. 868

/wsc:DerivedKeyToken/wsc:Offset 869

If fixed-size keys are not being generated, then the <wsc:Offset> and <wsc:Length> 870

elements indicate where in the byte stream to find the generated key. This specifies the ordering 871
(in bytes) of the generated output. The value of this optional element is an unsigned long value 872
indicating the byte position (starting at 0). For example, 0 indicates the first byte of output and 16 873
indicates the 17

th
 byte of generated output. This element MUST NOT be used if the 874

<wsc:Generation> element is specified. It should be noted that not all algorithms will support 875

the <wsc:Offset> and <wsc:Length> elements. 876

/wsc:DerivedKeyToken/wsc:Length 877

This element specifies the length (in bytes) of the derived key. This optional element can be 878

specified in conjunction with <wsc:Offset> or <wsc:Generation>. If this isn't specified, it is 879

assumed that the recipient knows the key size to use. The value of this element is an unsigned 880
long value indicating the size of the key in bytes (e.g., 16). 881

/wsc:DerivedKeyToken/wsc:Label 882

The label can be specified within a <wsc:DerivedKeyToken> using the wsc:Label element. If the 883
label isn't specified then a default value of "WS-SecureConversationWS-SecureConversation" 884
(represented as UTF-8 octets) is used. Labels are processed as UTF-8 encoded octets. 885

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 26 of 41

/wsc:DerivedKeyToken/wsc:Nonce 886

If specified, this optional element specifies a base64 encoded nonce that is used in the key 887
derivation function for this derived key. If this isn't specified, it is assumed that the recipient 888
knows the nonce to use. Note that once a nonce is used for a derivation sequence, the same 889
nonce SHOULD be used for all subsequent derivations. 890

 891

If additional information is not specified (such as explicit elements or policy), then the following defaults 892

apply: 893

 The offset is 0 894

 The length is 32 bytes (256 bits) 895

 896

It is RECOMMENDED that separate derived keys be used to strengthen the cryptography. If multiple keys 897

are used, then care should be taken not to derive too many times and risk key attacks. 898

7.2 Examples 899

The following example illustrates a message sent using two derived keys, one for signing and one for 900

encrypting: 901

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 902
 xmlns:xenc="..." xmlns:wsc="..." xmlns:ds="..."> 903
 <S11:Header> 904
 <wsse:Security> 905
 <wsc:SecurityContextToken wsu:Id="ctx2"> 906
 <wsc:Identifier>uuid:...UUID2...</wsc:Identifier> 907
 </wsc:SecurityContextToken> 908
 <wsc:DerivedKeyToken wsu:Id="dk2"> 909
 <wsse:SecurityTokenReference> 910
 <wsse:Reference URI="#ctx2"/> 911
 </wsse:SecurityTokenReference> 912
 <wsc:Nonce>KJHFRE...</wsc:Nonce> 913
 </wsc:DerivedKeyToken> 914
 <xenc:ReferenceList> 915
 ... 916
 <ds:KeyInfo> 917
 <wsse:SecurityTokenReference> 918
 <wsse:Reference URI="#dk2"/> 919
 </wsse:SecurityTokenReference> 920
 </ds:KeyInfo> 921
 ... 922
 </xenc:ReferenceList> 923
 <wsc:SecurityContextToken wsu:Id="ctx1"> 924
 <wsc:Identifier>uuid:...UUID1...</wsc:Identifier> 925
 </wsc:SecurityContextToken> 926
 <wsc:DerivedKeyToken wsu:Id="dk1"> 927
 <wsse:SecurityTokenReference> 928
 <wsse:Reference URI="#ctx1"/> 929
 </wsse:SecurityTokenReference> 930
 <wsc:Nonce>KJHFRE...</wsc:Nonce> 931
 </wsc:DerivedKeyToken> 932
 <xenc:ReferenceList> 933
 ... 934
 <ds:KeyInfo> 935
 <wsse:SecurityTokenReference> 936
 <wsse:Reference URI="#dk1"/> 937
 </wsse:SecurityTokenReference> 938
 </ds:KeyInfo> 939
 ... 940

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 27 of 41

 </xenc:ReferenceList> 941
 </wsse:Security> 942
 ... 943
 </S11:Header> 944
 <S11:Body> 945
 ... 946
 </S11:Body> 947
</S11:Envelope> 948

 949

The following illustrates the syntax for a derived key based on the 3rd generation of the shared key 950

identified in the specified security context: 951

 <wsc:DerivedKeyToken xmlns:wsc="..." xmlns:wsse="..."> 952
 <wsse:SecurityTokenReference> 953
 <wsse:Reference URI="#ctx1"/> 954
 </wsse:SecurityTokenReference> 955
 <wsc:Generation>2</wsc:Generation> 956
 </wsc:DerivedKeyToken> 957

 958

The following illustrates the syntax for a derived key based on the 1st generation of a key derived from an 959

existing derived key (4th generation): 960

 <wsc:DerivedKeyToken xmlns:wsc="..."> 961
 <wsc:Properties> 962
 <wsc:Name>.../derivedKeySource</wsc:Name> 963
 <wsc:Label>NewLabel</wsc:Label> 964
 <wsc:Nonce>FHFE...</wsc:Nonce> 965
 </wsc:Properties> 966
 <wsc:Generation>3</wsc:Generation> 967
 </wsc:DerivedKeyToken> 968

 969

 <wsc:DerivedKeyToken wsu:Id="newKey" xmlns:wsc="..." xmlns:wsse="..." > 970
 <wsse:SecurityTokenReference> 971
 <wsse:Reference URI=".../derivedKeySource"/> 972
 </wsse:SecurityTokenReference> 973
 <wsc:Generation>0</wsc:Generation> 974
 </wsc:DerivedKeyToken> 975

 976

In the example above we have named a derived key so that other keys can be derived from it. To do this 977

we use the <wsc:Properties> element name tag to assign a global name attribute. Note that in this 978

example, the ID attribute could have been used to name the base derived key if we didn't want it to be a 979

globally named resource. We have also included the <wsc:Label> and <wsc:Nonce> elements as 980

metadata properties indicating how to derive sequences of this derivation. 981

7.3 Implied Derived Keys 982

This specification also defines a shortcut mechanism for referencing certain types of derived keys. 983

Specifically, a @wsc:Nonce attribute can also be added to the security token reference (STR) defined in 984

the [WS-Security] specification. When present, it indicates that the key is not in the referenced token, but 985

is a key derived from the referenced token's key/secret. The @wsc:Length attribute can be used in 986

conjunction with @wsc:Nonce in the security token reference (STR) to indicate the length of the derived 987

key. The value of this attribute is an unsigned long value indicating the size of the key in bytes. If this 988

attribute isn't specified, the default derived key length value is 32. 989

 990

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 28 of 41

Consequently, the following two illustrations are functionally equivalent: 991

 <wsse:Security xmlns:wsc="..." xmlns:wsse="..." xmlns:xx="..." 992
xmlns:ds="..." xmlns:wsu="..."> 993
 <xx:MyToken wsu:Id="base">...</xx:MyToken> 994
 <wsc:DerivedKeyToken wsu:Id="newKey"> 995
 <wsse:SecurityTokenReference> 996
 <wsse:Reference URI="#base"/> 997
 </wsse:SecurityTokenReference> 998
 <wsc:Nonce>...</wsc:Nonce> 999
 </wsc:DerivedKeyToken> 1000
 <ds:Signature> 1001
 ... 1002
 <ds:KeyInfo> 1003
 <wsse:SecurityTokenReference> 1004
 <wsse:Reference URI="#newKey"/> 1005
 </wsse:SecurityTokenReference> 1006
 </ds:KeyInfo> 1007
 </ds:Signature> 1008
 </wsse:Security> 1009

 1010

This is functionally equivalent to the following: 1011

 <wsse:Security xmlns:wsc="..." xmlns:wsse="..." xmlns:xx="..." 1012
xmlns:ds="..." xmlns:wsu="..."> 1013
 <xx:MyToken wsu:Id="base">...</xx:MyToken> 1014
 <ds:Signature> 1015
 ... 1016
 <ds:KeyInfo> 1017
 <wsse:SecurityTokenReference wsc:Nonce="..."> 1018
 <wsse:Reference URI="#base"/> 1019
 </wsse:SecurityTokenReference> 1020
 </ds:KeyInfo> 1021
 </ds:Signature> 1022
 </wsse:Security> 1023

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 29 of 41

8 Associating a Security Context 1024

For a variety of reasons it may be necessary to reference a Security Context Token. These references 1025

can be broken into two general categories: references from within the <wsse:Security> element, 1026

generally used to indicate the key used in a signature or encryption operation and references from other 1027

parts of the SOAP envelope, for example to specify a token to be used in some particular way. 1028

References within the <wsse:Security> element can further be divided into reference to an SCT 1029

found within the message and references to a SCT not present in the message. 1030

 1031

The Security Context Token does not support references to it using key identifiers or key names. All 1032

references MUST either use an ID (to a wsu:Id attribute) or a <wsse:Reference> to the 1033

<wsc:Identifier> element. 1034

 1035

References using an ID are message-specific. References using the <wsc:Identifier> element value 1036

are message independent. 1037

 1038

If the SCT is referenced from within the <wsse:Security> element or from an RST or RSTR, it is 1039

RECOMMENDED that these references be message independent, but these references MAY be 1040
message-specific. A reference from the RST/RSTR is treated differently than other references from the 1041
SOAP Body as the RST/RSTR is exclusively dealing with security related information similar to the 1042
<wsse:Security> element. 1043

 1044

When an SCT located in the <wsse:Security> element is referenced from outside the 1045

<wsse:Security> element, a message independent referencing mechanisms MUST be used, to 1046

enable a cleanly layered processing model unless there is a prior agreement between the involved parties 1047
to use message-specific referencing mechanism. 1048

 1049

When an SCT is referenced from within the <wsse:Security> element, but the SCT is not present in 1050

the message, (presumably because it was transmitted in a previous message) a message independent 1051
referencing mechanism MUST be used. 1052

 1053

The following example illustrates associating a specific security context with an action. 1054

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 1055
 xmlns:wsc="..."> 1056
 <S11:Header> 1057
 ... 1058
 <wsse:Security> 1059
 <wsc:SecurityContextToken wsu:Id="sct1"> 1060
 <wsc:Identifier>uuid:...UUID1...</wsc:Identifier> 1061
 </wsc:SecurityContextToken> 1062
 <ds:Signature xmlns:ds="..."> 1063
 ...signature over body and key headers using #sct1... 1064
 </ds:Signature> 1065
 <wsc:SecurityContextToken wsu:Id="sct2"> 1066
 <wsc:Identifier>uuid:...UUID2...</wsc:Identifier> 1067
 </wsc:SecurityContextToken> 1068
 <ds:Signature xmlns:ds="..."> 1069
 ...signature over body and key headers using #sct2... 1070
 </ds:Signature> 1071
 </wsse:Security> 1072

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 30 of 41

 ... 1073
 </S11:Header> 1074
 <S11:Body wsu:Id="req"> 1075
 <xx:Custom xmlns:xx="http://example.com/custom" xmlns:wsse="..."> 1076
 ... 1077
 <wsse:SecurityTokenReference> 1078
 <wsse:Reference URI="uuid:...UUID2..."/> 1079
 </wsse:SecurityTokenReference> 1080
 </xx:Custom> 1081
 </S11:Body> 1082
</S11:Envelope> 1083

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 31 of 41

9 Error Handling 1084

There are many circumstances where an error can occur while processing security information. Errors 1085

use the SOAP Fault mechanism. Note that the reason text provided below is RECOMMENDED, but 1086

alternative text MAY be provided if more descriptive or preferred by the implementation. The tables 1087

below are defined in terms of SOAP 1.1. For SOAP 1.2, the Fault/Code/Value is env:Sender (as defined 1088

in SOAP 1.2) and the Fault/Code/Subcode/Value is the faultcode below and the Fault/Reason/Text is the 1089

faultstring below. It should be noted that profiles MAY provide second-level details fields, but they should 1090

be careful not to introduce security vulnerabilities when doing so (e.g. by providing too detailed 1091

information). 1092

Error that occurred (faultstring) Fault code (faultcode)

The requested context elements are insufficient
or unsupported.

wsc:BadContextToken

Not all of the values associated with the SCT are
supported.

wsc:UnsupportedContextToken

The specified source for the derivation is
unknown.

wsc:UnknownDerivationSource

The provided context token has expired wsc:RenewNeeded

The specified context token could not be
renewed.

wsc:UnableToRenew

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 32 of 41

10 Security Considerations 1093

As stated in the Goals section of this document, this specification is meant to provide extensible 1094

framework and flexible syntax, with which one could implement various security mechanisms. This 1095

framework and syntax by itself does not provide any guarantee of security. When implementing and using 1096

this framework and syntax, one must make every effort to ensure that the result is not vulnerable to any 1097

one of a wide range of attacks. 1098

 1099

It is not feasible to provide a comprehensive list of security considerations for such an extensible set of 1100

mechanisms. A complete security analysis must be conducted on specific solutions based on this 1101

specification. Below we illustrate some of the security concerns that often come up with protocols of this 1102

type, but we stress that this is not an exhaustive list of concerns. 1103

 1104

It is critical that all relevant elements of a message be included in signatures. As well, the signatures for 1105

security context establishment must include a timestamp, nonce, or sequence number depending on the 1106

degree of replay prevention required. Security context establishment should include full policies to 1107

prevent possible attacks (e.g. downgrading attacks). 1108

 1109

Authenticating services are susceptible to denial of service attacks. Care should be taken to mitigate 1110

such attacks as is warranted by the service. 1111

 1112

There are many other security concerns that one may need to consider in security protocols. The list 1113

above should not be used as a "check list" instead of a comprehensive security analysis. 1114

 1115

In addition to the consideration identified here, readers should also review the security considerations in 1116

[WS-Security] and [WS-Trust]. 1117

 1118

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 33 of 41

A. Sample Usages 1119

This non-normative appendix illustrates several sample usage patterns of [WS-Trust] and this document. 1120

Specifically, it illustrates different patterns that could be used to parallel, at an end-to-end message level, 1121

the selected TLS/SSL scenarios. This is not intended to be the definitive method for the scenarios, nor is 1122

it fully inclusive. Its purpose is simply to illustrate, in a context familiar to readers, how this specification 1123

might be used. 1124

The following sections are based on a scenario where the client wishes to authenticate the server prior to 1125

sharing any of its own credentials. 1126

 1127

It should be noted that the following sample usages are illustrative; any implementation of the examples 1128

illustrated below should be carefully reviewed for potential security attacks. For example, multi-leg 1129

exchanges such as those below should be careful to prevent man-in-the-middle attacks or downgrade 1130

attacks. It may be desirable to use running hashes as challenges that are signed or a similar mechanism 1131

to ensure continuity of the exchange. 1132

The examples below assume that both parties understand the appropriate security policies in use and 1133

can correctly construct signatures and encryption that the other party can process. 1134

A.1 Anonymous SCT 1135

In this scenario the requestor wishes to remain anonymous while authenticating the recipient and 1136

establishing an SCT for secure communication. 1137

 1138

This scenario assumes that the requestor has a key for the recipient. If this isn't the case, they can use 1139

[WS-MEX] or the mechanisms described in a later section or obtain one from another security token 1140

service. 1141

 1142

There are two basic patterns that can apply, which only vary slightly. The first is as follows: 1143

1. The requestor sends an RST to the recipient requesting an SCT. The request contains key 1144

material encrypted for the recipient. The request is not authenticated. 1145

2. The recipient, if it accepts such requests, returns an RSTRC with one or more RSTRs with the 1146

SCT as the requested token and does not return any proof information indicating that the 1147

requestor's key is the proof. 1148

A slight variation on this is as follows: 1149

1. The requestor sends an RST to the recipient requesting an SCT. The request contains key 1150

material encrypted for the recipient. The request is not authenticated. 1151

2. The recipient, if it accepts such requests, returns an RSTRC with one or more RSTR and with the 1152

SCT as the requested token and returns its own key material encrypted using the requestor's key. 1153

 1154

Another slight variation is to return a new key encrypted using the requestor's provided key. 1155

It should be noted that the variations that involve encrypting data using the requestor's key material might 1156

be subject to certain types of key attacks. 1157

Yet another approach is to establish a secure channel (e.g. TLS/SSL IP/Sec) between the requestor and 1158

the recipient. Key material can then safely flow in either direction. In some circumstances, this provides 1159

greater protection than the approach above when returning key information to the requestor. 1160

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 34 of 41

A.2 Mutual Authentication SCT 1161

In this scenario the requestor is willing to authenticate, but wants the recipient to authenticate first. The 1162

following steps outline the message flow: 1163

1. The requestor sends an RST requesting an SCT. The request contains key material encrypted 1164

for the recipient. The request is not authenticated. 1165

2. The recipient returns an RSTRC with one or more RSTRs including a challenge for the requestor. 1166

The RSTRC is secured by the recipient so that the requestor can authenticate it. 1167

3. The requestor, after authenticating the recipient's RSTRC, sends an RSTRC responding to the 1168

challenge. 1169

4. The recipient, after authenticating the requestor's RSTRC, sends a secured RSTRC containing 1170

the token and either proof information or partial key material (depending on whether or not the 1171

requestor provided key material). 1172

 1173

Another variation exists where step 1 includes a specific challenge for the service. Depending on the 1174

type of challenge used this may not be necessary because the message may contain enough entropy to 1175

ensure a fresh response from the recipient. 1176

 1177

In other variations the requestor doesn't include key information until step 3 so that it can first verify the 1178

signature of the recipient in step 2. 1179

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 35 of 41

B. Token Discovery Using RST/RSTR 1180

If the recipient's security token is not known, the RST/RSTR mechanism can still be used. The following 1181

example illustrates one possible sequence of messages: 1182

1. The requestor sends an RST requesting an SCT. This request does not contain any key 1183

material, nor is the request authenticated. 1184

2. The recipient sends an RSTRC with one or more RSTRs to the requestor with an embedded 1185

challenge. The RSTRC is secured by the recipient so that the requestor can authenticate it. 1186

3. The requestor sends an RSTRC to the recipient and includes key information protected for the 1187

recipient. This request may or may not be secured depending on whether or not the request is 1188

anonymous. 1189

4. The final issuance step depends on the exact scenario. Any of the final legs from above might be 1190

used. 1191

 1192

Note that step 1 might include a challenge for the recipient. Please refer to the comment in the previous 1193

section on this scenario. 1194

Also note that in response to step 1 the recipient might issue a fault secured with [WS-Security] providing 1195

the requestor with information about the recipient's security token. 1196

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 36 of 41

C. Acknowledgements 1197

The following individuals have participated in the creation of this specification and are gratefully 1198
acknowledged: 1199

Original Authors of the initial contribution: 1200

Steve Anderson, OpenNetwork 1201

Jeff Bohren, OpenNetwork 1202

Toufic Boubez, Layer 7 1203

Marc Chanliau, Computer Associates 1204

Giovanni Della-Libera, Microsoft 1205

Brendan Dixon, Microsoft 1206

Praerit Garg, Microsoft 1207

Martin Gudgin (Editor), Microsoft 1208

Satoshi Hada, IBM 1209

Phillip Hallam-Baker, VeriSign 1210

Maryann Hondo, IBM 1211

Chris Kaler, Microsoft 1212

Hal Lockhart, BEA 1213

Robin Martherus, Oblix 1214

Hiroshi Maruyama, IBM 1215

Anthony Nadalin (Editor), IBM 1216

Nataraj Nagaratnam, IBM 1217

Andrew Nash, Reactivity 1218

Rob Philpott, RSA Security 1219

Darren Platt, Ping Identity 1220

Hemma Prafullchandra, VeriSign 1221

Maneesh Sahu, Actional 1222

John Shewchuk, Microsoft 1223

Dan Simon, Microsoft 1224

Davanum Srinivas, Computer Associates 1225

Elliot Waingold, Microsoft 1226

David Waite, Ping Identity 1227

Doug Walter, Microsoft 1228

Riaz Zolfonoon, RSA Security 1229

 1230

Original Acknoledgements of the initial contribution: 1231

Paula Austel, IBM 1232
Keith Ballinger, Microsoft 1233
John Brezak, Microsoft 1234
Tony Cowan, IBM 1235
HongMei Ge, Microsoft 1236
Slava Kavsan, RSA Security 1237
Scott Konersmann, Microsoft 1238
Leo Laferriere, Computer Associates 1239
Paul Leach, Microsoft 1240
Richard Levinson, Computer Associates 1241
John Linn, RSA Security 1242
Michael McIntosh, IBM 1243
Steve Millet, Microsoft 1244

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 37 of 41

Birgit Pfitzmann, IBM 1245
Fumiko Satoh, IBM 1246
Keith Stobie, Microsoft 1247
T.R. Vishwanath, Microsoft 1248
Richard Ward, Microsoft 1249
Hervey Wilson, Microsoft 1250

TC Members during the development of this specification: 1251

Don Adams, Tibco Software Inc. 1252

Jan Alexander, Microsoft Corporation 1253

Steve Anderson, BMC Software 1254

Donal Arundel, IONA Technologies 1255

Howard Bae, Oracle Corporation 1256

Abbie Barbir, Nortel Networks Limited 1257

Charlton Barreto, Adobe Systems 1258

Mighael Botha, Software AG, Inc. 1259

Toufic Boubez, Layer 7 Technologies Inc. 1260

Norman Brickman, Mitre Corporation 1261

Melissa Brumfield, Booz Allen Hamilton 1262

Lloyd Burch, Novell 1263

Scott Cantor, Internet2 1264

Greg Carpenter, Microsoft Corporation 1265

Steve Carter, Novell 1266

Ching-Yun (C.Y.) Chao, IBM 1267

Martin Chapman, Oracle Corporation 1268

Kate Cherry, Lockheed Martin 1269

Henry (Hyenvui) Chung, IBM 1270

Luc Clement, Systinet Corp. 1271

Paul Cotton, Microsoft Corporation 1272

Glen Daniels, Sonic Software Corp. 1273

Peter Davis, Neustar, Inc. 1274

Martijn de Boer, SAP AG 1275

Werner Dittmann, Siemens AG 1276

Abdeslem DJAOUI, CCLRC-Rutherford Appleton Laboratory 1277

Fred Dushin, IONA Technologies 1278

Petr Dvorak, Systinet Corp. 1279

Colleen Evans, Microsoft Corporation 1280

Ruchith Fernando, WSO2 1281

Mark Fussell, Microsoft Corporation 1282

Vijay Gajjala, Microsoft Corporation 1283

Marc Goodner, Microsoft Corporation 1284

Hans Granqvist, VeriSign 1285

Martin Gudgin, Microsoft Corporation 1286

Tony Gullotta, SOA Software Inc. 1287

Jiandong Guo, Sun Microsystems 1288

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 38 of 41

Phillip Hallam-Baker, VeriSign 1289

Patrick Harding, Ping Identity Corporation 1290

Heather Hinton, IBM 1291

Frederick Hirsch, Nokia Corporation 1292

Jeff Hodges, Neustar, Inc. 1293

Will Hopkins, BEA Systems, Inc. 1294

Alex Hristov, Otecia Incorporated 1295

John Hughes, PA Consulting 1296

Diane Jordan, IBM 1297

Venugopal K, Sun Microsystems 1298

Chris Kaler, Microsoft Corporation 1299

Dana Kaufman, Forum Systems, Inc. 1300

Paul Knight, Nortel Networks Limited 1301

Ramanathan Krishnamurthy, IONA Technologies 1302

Christopher Kurt, Microsoft Corporation 1303

Kelvin Lawrence, IBM 1304

Hubert Le Van Gong, Sun Microsystems 1305

Jong Lee, BEA Systems, Inc. 1306

Rich Levinson, Oracle Corporation 1307

Tommy Lindberg, Dajeil Ltd. 1308

Mark Little, JBoss Inc. 1309

Hal Lockhart, BEA Systems, Inc. 1310

Mike Lyons, Layer 7 Technologies Inc. 1311

Eve Maler, Sun Microsystems 1312

Ashok Malhotra, Oracle Corporation 1313

Anand Mani, CrimsonLogic Pte Ltd 1314

Jonathan Marsh, Microsoft Corporation 1315

Robin Martherus, Oracle Corporation 1316

Miko Matsumura, Infravio, Inc. 1317

Gary McAfee, IBM 1318

Michael McIntosh, IBM 1319

John Merrells, Sxip Networks SRL 1320

Jeff Mischkinsky, Oracle Corporation 1321

Prateek Mishra, Oracle Corporation 1322

Bob Morgan, Internet2 1323

Vamsi Motukuru, Oracle Corporation 1324

Raajmohan Na, EDS 1325

Anthony Nadalin, IBM 1326

Andrew Nash, Reactivity, Inc. 1327

Eric Newcomer, IONA Technologies 1328

Duane Nickull, Adobe Systems 1329

Toshihiro Nishimura, Fujitsu Limited 1330

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 39 of 41

Rob Philpott, RSA Security 1331

Denis Pilipchuk, BEA Systems, Inc. 1332

Darren Platt, Ping Identity Corporation 1333

Martin Raepple, SAP AG 1334

Nick Ragouzis, Enosis Group LLC 1335

Prakash Reddy, CA 1336

Alain Regnier, Ricoh Company, Ltd. 1337

Irving Reid, Hewlett-Packard 1338

Bruce Rich, IBM 1339

Tom Rutt, Fujitsu Limited 1340

Maneesh Sahu, Actional Corporation 1341

Frank Siebenlist, Argonne National Laboratory 1342

Joe Smith, Apani Networks 1343

Davanum Srinivas, WSO2 1344

Yakov Sverdlov, CA 1345

Gene Thurston, AmberPoint 1346

Victor Valle, IBM 1347

Asir Vedamuthu, Microsoft Corporation 1348

Greg Whitehead, Hewlett-Packard 1349

Ron Williams, IBM 1350

Corinna Witt, BEA Systems, Inc. 1351

Kyle Young, Microsoft Corporation 1352

 1353

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 40 of 41

1354

ws-secureconversation-1.3-spec-cs-01 29 November 2006
Copyright © OASIS Open 2006. All Rights Reserved. Page 41 of 41

D. Revision History 1355

[optional; should not be included in OASIS Standards] 1356

 1357

Revision Date Editor Changes Made

01 11-15-2006 Marc Goodner Prepared Committee Spec from CD01

PR004 – Applied changes to section 8

PR005 – Applied changes to sections 5, 6
and 8

PR006 – Applied nits as identified

02 11-29-2006 Marc Goodner i120 – Applied nits as identified

 1358

