

An OASIS WS-Calendar White Paper

Conceptual Overview of WS-Calendar CD01

Understanding inheritance using the semantic elements of web
services

By Toby Considine

On behalf of the OASIS WS-Calendar Technical Committee

Date: 15 September 2010

Last revision 22 September 2010
2

WS-Calendar defines calls and semantics to perform temporal alignment in web services

interactions. Short running services traditionally have been handled as if they were instantaneous,

and have used just-in-time requests for scheduling. Longer running processes, including physical

processes, may require significant lead times. When multiple long-running services participate in the

same business process, it may be more important to negotiate a common completion time than a

common start time. WS-Calendar extends the well-known semantics and interactions built around

iCalendar and applies them to service coordination. This white paper explains some of the issues in

generic service coordination as an aid to understanding how and when to use WS-Calendar

This white paper was produced and approved by the OASIS WS-Calendar Technical Committee as

a Committee Draft. It has not been reviewed and/or approved by the OASIS membership at-large.

Copyright © 2009 OASIS. All rights reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property

Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website. This document and

translations of it may be copied and furnished to others, and derivative works that comment on or otherwise

explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part,

without restriction of any kind, provided that the above copyright notice and this section are included on all such

copies and derivative works. However, this document itself may not be modified in any way, including by

removing the copyright notice or references to OASIS, except as needed for the purpose of developing any

document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to

copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages

other than English. The limited permissions granted above are perpetual and will not be revoked by OASIS or its

successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and

OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY

WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP

RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE.

Conceptual Overview of WS-Calendar WD01

Table of Contents

Why WS-Calendar, why now? .. 4

WS-Calendar builds on iCalendar .. 5

Building on iCalendar’s Components ... 5

Semantic Components of WS-Calendar ... 6

The Core Components ... 6

Summary .. 8

Assembling Business Objects using WS-Calendar .. 9

Inheritance .. 9

Stacking Inheritance ... 10

Advanced Scheduling .. 12

Multiple Relationships ... 12

Classroom Scheduling Revisited .. 13

Last revision 22 September 2010
4

Why WS-Calendar, why now?
As physical resources become scarcer, it is imperative to manage the systems that

manage our physical world just as we manage business and personal services. The

controlling paradigm of our resources shifts from static efficiency to just-in-time provision

of services. At the same time, technology and policy are moving toward reliance on

resources that are intermittently available, creating another constantly changing schedule.

The challenge of the internet of things is to manage the collision of these schedules.

Service oriented architecture has seen growing use in IT as a paradigm for organizing and

utilizing distributed capabilities that may be under the control of different ownership

domains. It is natural to think of one computer agent’s requirements being met by a

computer agent belonging to a different owner. The granularity of needs and capabilities

vary from fundamental to complex, and any given need may require the combining of

numerous capabilities while any single capability may address more than one need. SOA

is seen to provide a powerful framework for matching needs and capabilities and for

combining capabilities to address those needs. The purpose of using a capability is to

realize one or more real world effects. When we expose these capabilities for remote

interaction, we refer to it as a service.

Physical processes are already being coordinated by web services. Building systems and

industrial processes are operated using oBIX, BACnet/WS, LON-WS, OPC XML, and a

number of proprietary specifications including TAC-WS, Gridlogix EnNet, and

MODBUS.NET. In particular, if building systems coordinate with the schedules of the

building’s occupants, they can reduce energy use while improving performance.

Service interactions have typically lacked a notion of schedule or of temporal coordination.

Short running services have been handled as if they were instantaneous, and schedules

have been managed through just-in-time requests. Longer running processes, including

physical processes, may require significant lead times. Long-running processes have

different dynamics than do short ones. For example, it may it may be more important in

some scenarios to negotiate a common completion time than a common start time.

Physical services rely on a diverse mix of technologies that may be in place for decades.

Direct control of diverse technologies requires in-depth knowledge of each technology.

Approaches that rely on direct control of services by a central system increase integration

costs and reduce interoperability. Interaction patterns that increase schedule autonomy

free up such systems for technical innovations by reducing the need for a central agent to

know and manage multiple lead times.

An increasing number of efforts are underway that require synchronization of processes

on an “internet scale”. Efforts to build an intelligent power grid (or smart grid) rely on

coordinating processes in homes, offices, and industry with projected and actual power

availability; these efforts envision communicating different price schedules at different

times. Emergency management coordinators wish to inform geographic regions of future

events, such as a projected tornado touchdown. The open Building Information Exchange

specification (OBIX) lacks a common schedule communications for interaction with

enterprise activities. These and other efforts benefit from a common cross-domain, cross

specification standard for communicating schedule and interval.

Conceptual Overview of WS-Calendar WD01

WS-Calendar builds on iCalendar

For human interactions and human scheduling, the well-known iCalendar format

addresses these problems. Prior to WS-Calendar, there has been no comparable

standard for web services. As an increasing number of physical processes become

managed by web services, the lack of a similar standard for scheduling and coordination

of services becomes critical.

WS-Calendar is part of a concerted effort to address the issues above. CalConnect,

working through the IETF, has updated the RFC for iCalendar to support extensibility

[RFC 5545]. They have submitted a standard for XML serialization of iCalendar which the

WS-Calendar specification relies on heavily.

The intent of the WS-Calendar technical committee was to adapt the existing

specifications for calendaring and apply them to develop a standard for how schedule and

event information is passed between and within services. The standard adopts the

semantics and vocabulary of iCalendar for application to the completion of web service

contracts. WS Calendar builds on work done and ongoing in The Calendaring and

Scheduling Consortium (CalConnect), which works to increase interoperation between

calendaring systems.

Building on iCalendar’s Components

The iCalendar object includes many elements to support distributed scheduling and

authorization for events. Transactions are committed based upon distributed decisions

communicated by systems that are frequently off-line. Calendar management is a rich and

complex problem whose solutions and techniques are robust and mature. WS-Calendar

includes service definitions to invoke these behaviors.

At the heart of the iCalendar message is the components collection. WS-Calendar

extends the semantics of these components to meet the needs of service integration.

Figure 1: iCalendar specifies scheduling components that are well known and well

understood

Don’t worry. You won’t see the iCalendar components (vobjects) again. WS-Calendar

inherits behaviors and attributes form the iCalendar components to define the Interval, the

Sequence and the Calendar Gluon. WS-Calendar builds services scheduling and

performance alignment upon these three components. Because of the inheritance, these

objects can travel within and interact with the world of today’s calendars.

Last revision 22 September 2010
6

Semantic Components of WS-Calendar
WS-Calendar semantics define a structure for the common expression of schedules for

events or a series of events. Because physical processes may require other supporting

services, scheduling of the services described in these structures may be constrained in

performance; you can’t schedule a reception at a hotel without also scheduling a set-up

and a clean-up. WS-Calendar enables the expression of such relationships without

requiring the calling party to understand the supporting processes.

Other processes may involve parameterized negotiations between services. Intervals may

be of fixed or variable duration. Purchase prices and quantities may vary over time. The

intervals may be consecutive, or intermittent. WS-Calendar provides a common

mechanism for elaborating these details using inheritance and local over-rides to enable

remote invocation, controlled patterns for service specification, and two-way negotiation

while achieving parsimonious serialization.

The Core Components

Figure 2: Intervals and Calendar Gluons

The core components of WS-Calendar are the Interval and the Calendar Gluon. Each of

these inherits definitions and structure from the iCalendar components.

Intervals

The Interval is a length of time associated with service performance. Each interval has a

defined payload of XML information. When an interval has a scheduled start time or end

time, then we call it a Scheduled Interval.

iCalendar components include Relations, whereby the message publisher can specify

relationships between components. The iCalendar relationships are PARENT, CHILD,

SIBLING, START, and END. WS-Calendar extends this list with Temporal Relationships:

STARTFINISH, STARTSTART, FINISHSTRT, FINISHFINISH, each with an offset

expressed as a duration. Intervals and relationships together define Sequences.

Conceptual Overview of WS-Calendar WD01

Sequences

A Sequence is a collection of intervals with defined temporal relationships. The simplest

sequence is set of consecutive intervals of the same duration. WS-Calendar names such

a simple, regular Sequence a Partition.

Figure 3: The Partition, the simplest Sequence

Figure 3 depicts a simple repeating time interval along with a single external expression of

the type of information provided by each interval. In Figure 3, it is labeled Energy

Requirements; in WS-Calendar, this is an instance of a Calendar Gluon (see below).

The intervals in a sequence have a coherent set of relationships between them. The

collection of Intervals in Figure 3 defines a period of time, but not a particular period; there

is no start or end time for any of the Intervals. If a single interval of a Sequence is

scheduled, one can compute the schedule for each of them. A particular service

interaction can schedule the Sequence by defining a Start Date and Time. Another

interaction could schedule the same Sequence again with a different Start Date and Time.

Calendar Gluons

Calendar Gluons hold information to define an interval. Any information specified in an

Interval can also be specified in the Calendar Gluon. So why have a Calendar Gluon?

In physics, Gluons act to mediate as well as to participate in the interactions between

quarks. A Calendar Gluon defines information to be inherited by each Interval in the

Sequence, as well as scheduling the entire sequence.

Referring again to the Industrial Load Profile in Figure 3, the Calendar Gluon specifies that

each Interval is defining Energy Requirements. The amount required varies by each

interval, but the service of each Interval is the same. Collections of such similar intervals

are useful in energy and other markets involving volatile resources.

Repeating intervals are interesting in day-to-day interactions because they are the way

many services already are delivered. It is useful to be able to vary a Sequence

parametrically. Take, for example, classroom scheduling at a College. It is typical for class

schedules to use one hour intervals on Monday, Wednesday, and Friday. Classes

Last revision 22 September 2010
8

scheduled on Tuesdays and Thursdays are of 50% longer duration to establish an

equivalent in classroom time for classes taught on the two schedules.

Figure 4: Classroom Schedules

Classroom Schedule 1 shows a schedule for one hour classes. Classroom Schedule 2

illustrates an every hour and a half schedule for classes, with 15 minute breaks built in.

The duration of each Interval, and the relationship between each interval and the

preceding one, can be expressed within each interval using the Temporal Relationships.

For a regular sequence such as those in Figure 4, it is much simpler to express the

duration and relationship once, in the Calendar Gluon. All Intervals in the Sequence will

inherit those elements unless overridden.

Summary

WS-Calendar uses the Interval, the Sequence, and the Calendar Gluon to define

repeating instances of service performance. Inheritance within Sequences allows

parsimonious serialization as well as specific use for a variety of purposes.

Conceptual Overview of WS-Calendar WD01

Assembling Business Objects using WS-Calendar
This section provides an overview of how to build regularly recurring temporal service

structures using inheritance. It also discusses how to override that inheritance when you

need to.

Figure 5: Building a Sequence into a Business Service

In Figure 5, we start with a simple Sequence. To each interval, we can add some contract

or service information. Finally, we schedule the Sequence by adding a single start date to

the whole Sequence.

Inheritance

Figure 6: Inheriting Duration from an Calendar Gluon

We can reduce the amount of repetition using a Calendar Gluon to create a default

duration for the Sequence. In Figure 6, Sequence 1 and Sequence 2 are identical.

Figure 7: Inheriting Schedule from an Calendar Gluon

In a similar way, Figure 7 shows two identical Sequences, one inheriting a schedule from

an Calendar Gluon that indicates that Interval A starts at a particular date and time. Note

Last revision 22 September 2010
10

that inheritance of a Scheduling option is unique in that it sets the time only on the Interval

mentioned in the Relationship. This is because all Intervals in a Sequence become

scheduled when any member of the Sequence is scheduled.

Stacking Inheritance

Calendar Gluons can also be related recursively, that is, WS-Calendar supports defining a

Calendar Gluon with another Calendar Gluon, and thereby with the entire sequence.

Figure 8: Introducing Stacked Inheritance

In Figure 8, the Sequence is scheduled by adding a Calendar Gluon to an existing

Calendar Gluon. The pre-existing Calendar Gluon defined the service offering and the

default interval (15 minutes) for the Energy Market Sequence. The pre-existing Calendar

Gluon also defined Interval A as the entry point for the sequence, i.e., any schedule

established will be applied to Interval A.

This use of a Calendar Gluon enables some interesting service behaviors. A Sequence

and a Calendar Gluon can define a complete service, with the entry point defined by the

Gluon. We might call this service a market Offering. Another party can contract that

offering by referencing the existing intact Sequence as referred to by the Calendar Gluon.

In market service interactions, scheduling a service is calling for execution of a contract.

Stacked inheritance enables a clean separation of product definition and market call for

execution.

Figure 9: Second Stacking Inheritance example

Figure 9 shows a different use of stacked inheritance. A catering system interacts with a

standard contract for the HVAC system to support a reception in a hotel. The building

system integrator created standard contracts in the Energy Management System (EMS)

for those activities that are invariant. The standard contract leaves indeterminate those

elements that vary for each catering job. The Sequence is assigned a name and an entry

point using the Calendar Gluon.

Conceptual Overview of WS-Calendar WD01

At a later time, the catering software invokes this defined offering, associating the

schedule and the capacity requirements to make a contract. Through inheritance, only the

“Event” interval is changed, receiving a capacity (to influence ventilation) and the duration

for the reception. Because the exposed Calendar Gluon indicates that the “Event” is the

entry point, the reception schedule for 9:00 schedules the series so that the “Event”

begins at 9:00. The catering software requires no knowledge of the support services

offered in other intervals.

Once the contract is created, the room would show up as Busy during room set-up and

break-down when standards-based calendaring inquiries are made against the EMS.

Figure 10: Stacking Calendar Gluons three deep

In the very similar scenario in Figure 10, an energy generation resource has market

offering that requires 50 minutes of pre-notification. On September 4
th
, the generation

resource is bid into the next day’s market with a price it is willing to accept. The market

operator, schedules energy production and notifies the resource that its bid has been

accepted and that its services will be required for six and a half hours.
1

1
 Note: This is meant to be neither a depiction of today’s markets, nor a recommendation for tomorrow’s. It is

merely an illustration of the capabilities and approach.

Last revision 22 September 2010
12

Advanced Scheduling
The examples so far have included only simple partitions and single schedules. This

section illustrates some of the flexibility of the WS-Calendar scheduling model

Multiple Relationships

Key interactions in smart energy involve mutually unintelligible systems coordinating their

behavior for the optimum economic result. Today’s interactions are machine to machine

interactions; tomorrows will be business to business.

Figure 11: One Calendar Gluon, Two Sequences

Figure 11 illustrates an Energy Management System (EMS), which is offering demand

response (DR) to the grid-based markets. The building system integrator has defined the

Sequence to shut down certain systems, and then to restore them to full operation

afterwards. This is the HVAC Load Shed Contract.

The energy use effect of these decisions appears in a parallel Sequence, herein the DR

Offer. Notice that the lead time in HVAC operation is longer than the lead time in DR—the

first activities of the HVAC system do not yet reduce energy use. Notice as well, that

during system restoration, the building will use more energy than it does during normal

operations, indicated by a -5kWh Demand Response.

When the energy supplier sends a notification of a DR Event, it schedules that event to

begin at 1:30 and to last for two and a half hours. This offer also comes with a monetary

value. When the EMS accepts the offer, it shares the DR event as scheduled with the

purchaser, and notifies the building systems of the three intervals in the HVAC contract as

scheduled.

Conceptual Overview of WS-Calendar WD01

Neither the EMS system nor the DR purchaser needs to have any understanding of the

underlying systems. Each needs merely to read the WS-Calendar based service

attributes.

Classroom Scheduling Revisited

We started this document with an illustration of classroom schedules rendered in WS-

Calendar. We now revisit this illustration using the concepts including inheritance and

contracts that that paper has illustrated. We started this discussion of Sequences with an

illustration of classroom scheduling in Figure 4.

Figure 12: Classroom Schedules Revisited

In Figure 12, we revisit this using the inheritance. In this high-tech classroom, there are

systems to warm up, and ventilation levels to be maintained to support each class. The

registrar’s office puts out a schedule for each classroom indicating how many students will

be in it for each of six periods during the day.

The classes are not really an hour long, but are 50 minutes long with a 10 minute break

between classes. A Campus EMS creates a schedule with an Calendar Gluon that

includes a 50 minute duration and a FINISHSTART relationship with a duration of 10

minutes. Each day begins at 9:00. This is the standard building system contract for Fall

Classes.

To finally schedule contract performance, a Calendar Gluon referencing the Fall Classes

and the date for each school day during the semester is created.

