
BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 1 of 78

Basic Profile Version 2.0

Committee Specification Draft 01 /
Public Review Draft 01

13 September 2013

Specification URIs
This version:

http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/csprd01/BasicProfile-v2.0-csprd01.doc
(Authoritative)
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/csprd01/BasicProfile-v2.0-csprd01.html
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/csprd01/BasicProfile-v2.0-csprd01.pdf

Previous version:

N/A

Latest version:
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/BasicProfile-v2.0.doc (Authoritative)
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/BasicProfile-v2.0.html
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/BasicProfile-v2.0.pdf

Technical Committee:

OASIS Web Services Basic Reliable and Secure Profiles (WS-BRSP) TC

Chair:

Jacques Durand (jdurand@us.fujitsu.com), Fujitsu Limited

Editors:
Tom Rutt (trutt@us.fujitsu.com), Fujitsu Limited
Micah Hainline (micah.hainline@asolutions.com), Asynchrony Solutions, Inc.
Ram Jeyaraman (Ram.Jeyaraman@microsoft.com), Microsoft
Jacques Durand (jdurand@us.fujitsu.com), Fujitsu Limited

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

 Test Assertions: http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/csprd01/testassertions/

 XML schemas: http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/csprd01/schemas/

Related work:

This specification is related to:

 WS-I Basic Profile 2.0 Final Material 2010-11-09. http://ws-i.org/Profiles/BasicProfile-2.0-
2010-11-09.html.

Abstract:
This document defines the WS-I Basic Profile 2.0 consisting of a set of clarifications, refinements,
interpretations and amplifications to a combination of non-proprietary Web services specifications
in order to promote interoperability. It is an evolution of WS-I Basic Profile 1.1 and is based on
SOAP 1.2. In particular it adds support for WS-Addressing.

Status:
This document was last revised or approved by the OASIS Web Services Basic Reliable and
Secure Profiles (WS-BRSP) TC on the above date. The level of approval is also listed above.
Check the “Latest version” location noted above for possible later revisions of this document.

http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/csprd01/BasicProfile-v2.0-csprd01.doc
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/csprd01/BasicProfile-v2.0-csprd01.html
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/csprd01/BasicProfile-v2.0-csprd01.pdf
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/BasicProfile-v2.0.doc
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/BasicProfile-v2.0.html
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/BasicProfile-v2.0.pdf
http://www.oasis-open.org/committees/ws-brsp/
mailto:jdurand@us.fujitsu.com
http://www.fujitsu.com/
mailto:trutt@us.fujitsu.com
http://www.fujitsu.com/
mailto:micah.hainline@asolutions.com
http://www.asolutions.com/
mailto:Ram.Jeyaraman@microsoft.com
http://www.microsoft.com/
mailto:jdurand@us.fujitsu.com
http://www.fujitsu.com/
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/csprd01/testassertions/
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/csprd01/schemas/
http://ws-i.org/Profiles/BasicProfile-2.0-2010-11-09.html
http://ws-i.org/Profiles/BasicProfile-2.0-2010-11-09.html

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 2 of 78

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/ws-brsp/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/ws-brsp/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[BasicProfile-V2.0]

Basic Profile Version 2.0. 13 September 2013. OASIS Committee Specification Draft 01 / Public
Review Draft 01. http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/csprd01/BasicProfile-v2.0-
csprd01.html.

http://www.oasis-open.org/committees/comments/index.php?wg_abbrev=ws-brsp
http://www.oasis-open.org/committees/ws-brsp/
http://www.oasis-open.org/committees/ws-brsp/
http://www.oasis-open.org/committees/ws-brsp/ipr.php
http://www.oasis-open.org/committees/ws-brsp/ipr.php
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/csprd01/BasicProfile-v2.0-csprd01.html
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/csprd01/BasicProfile-v2.0-csprd01.html

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 3 of 78

Notices

Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

http://www.oasis-open.org/policies-guidelines/ipr
http://www.oasis-open.org/
http://www.oasis-open.org/policies-guidelines/trademark

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 4 of 78

Table of Contents

1 Introduction ... 8

1.1 Relationships to Other Profiles ... 8

1.1.1 Compatibility with Basic Profile 1.1 ... 8

1.1.2 Relationship to Basic Profile 1.2.. 8

1.2 Guiding Principles ... 8

1.3 Test Assertions ... 9

1.4 Notational Conventions ... 10

1.5 Terminology .. 11

1.6 Profile Identification and Versioning ... 12

1.7 Normative References .. 12

1.8 Non-Normative References .. 14

2 Conformance .. 15

2.1 Requirements Semantics .. 15

2.2 Conformance Targets ... 15

2.3 Conformance Scope ... 16

2.4 Conformance Clauses .. 16

2.4.1 “Core” Conformance .. 17

2.4.2 “HTTP Transport” Conformance.. 17

2.5 Claiming Conformance ... 17

2.5.1 Claiming Conformance using the Conformance Claim Attachment Mechanisms 17

2.5.2 Claiming Conformance using WS-Policy and WS-PolicyAttachment 18

3 Messaging .. 19

3.1 Message Serialization ... 20

3.1.1 XML Envelope Serialization .. 20

3.1.2 Unicode BOMs .. 20

3.1.3 XML Declarations .. 21

3.1.4 Character Encodings ... 21

3.1.5 XOP Encoded Messages .. 21

3.2 SOAP Envelopes .. 22

3.2.1 SOAP Envelope Structure ... 22

3.2.2 SOAP Body Namespace Qualification .. 23

3.2.3 Disallowed Constructs ... 23

3.2.4 xsi:type Attributes .. 23

3.2.5 SOAP 1.2 attributes on SOAP 1.2 elements ... 23

3.3 SOAP Processing Model .. 23

3.3.1 SOAP Fault Processing ... 24

3.4 SOAP Faults ... 24

3.4.1 Identifying SOAP Faults .. 24

3.5 Use of SOAP in HTTP .. 24

3.5.1 HTTP Protocol Binding .. 24

3.5.2 Parameters on the Content-Type MIME Header ... 25

3.5.3 HTTP Success Status Codes .. 25

3.5.4 HTTP Redirect Status Codes .. 25

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 5 of 78

3.5.5 HTTP Cookies ... 25

3.5.6 Non-Addressable Consumers and Instances .. 26

3.6 Use of URIs in SOAP .. 26

3.6.1 Use of SOAP-defined URIs ... 27

3.7 WS-Addressing Support ... 27

3.7.1 Requiring WS-Addressing SOAP Headers ... 27

3.7.2 NotUnderstood block in MustUnderstand Fault on WS-Addressing SOAP Headers 27

3.7.3 Use of wsa:Action and WS-Addressing 1.0 - Metadata .. 27

3.7.4 Valid Values for action Parameter on the Content-Type MIME header When WS-Addressing is
Used ... 28

3.7.5 SOAP Defined Faults Action URI .. 28

3.7.6 Understanding WS-Addressing SOAP Header Blocks ... 28

3.7.7 Ignored or Absent WS-Addressing Headers ... 28

3.7.8 Present and Understood WS-Addressing Headers... 29

3.7.9 SOAP MustUnderstand or VersionMismatch fault Transmission .. 30

3.7.10 Faulting Behavior with Present and Understood WS-Addressing Headers 30

3.7.11 [message id] and One-Way Operations .. 30

3.7.12 Refusal to Honor WS-Addressing Headers ... 31

3.7.13 Use of Non-Anonymous Response EPRs ... 31

3.7.14 Optionality of the wsa:To header... 31

3.7.15 Extending WSDL Endpoints with an EPR ... 32

3.7.16 Combining Synchronous and Asynchronous Operations ... 33

3.7.17 Conflicting Addressing Policies ... 37

4 Service Description... 38

4.1 Required Description .. 38

4.2 Document Structure .. 39

4.2.1 WSDL Import location Attribute Structure ... 39

4.2.2 WSDL Import location Attribute Semantics ... 39

4.2.3 XML Version Requirements .. 39

4.2.4 XML Namespace Declarations .. 39

4.2.5 WSDL and the Unicode BOM.. 39

4.2.6 Acceptable WSDL Character Encodings .. 40

4.2.7 Namespace Coercion .. 40

4.2.8 WSDL Extensions ... 40

4.3 Types .. 41

4.3.1 QName References ... 41

4.3.2 Schema targetNamespace Structure .. 41

4.3.3 soapenc:Array ... 41

4.3.4 WSDL and Schema Definition Target Namespaces ... 43

4.3.5 Multiple GED Definitions with the same QName ... 43

4.3.6 Multiple Type Definitions with the same QName .. 43

4.4 Messages.. 43

4.4.1 Bindings and Parts .. 44

4.4.2 Bindings and Faults ... 46

4.4.3 Unbound portType Element Contents ... 46

4.5 Port Types... 46

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 6 of 78

4.5.1 Ordering of part Elements ... 46

4.5.2 Allowed Operations ... 47

4.5.3 Distinctive Operations ... 47

4.5.4 parameterOrder Attribute Construction ... 47

4.5.5 Exclusivity of type and element Attributes ... 47

4.6 Bindings .. 47

4.6.1 Use of SOAP Binding .. 47

4.7 SOAP Binding ... 48

4.7.1 HTTP Transport ... 48

4.7.2 Consistency of style Attribute .. 48

4.7.3 Encodings and the use Attribute ... 48

4.7.4 Multiple Bindings for portType Elements ... 48

4.7.5 Operation Signatures .. 49

4.7.6 Multiple Ports on an Endpoint ... 49

4.7.7 Child Element for Document-Literal Bindings ... 49

4.7.8 One-Way Operations ... 49

4.7.9 Namespaces for wsoap12 Elements ... 50

4.7.10 Consistency of portType and binding Elements .. 50

4.7.11 Enumeration of Faults ... 50

4.7.12 Consistency of Envelopes with Descriptions ... 51

4.7.13 Response Wrappers .. 51

4.7.14 Part Accessors .. 51

4.7.15 Namespaces for Children of Part Accessors .. 52

4.7.16 Required Headers ... 54

4.7.17 Allowing Undescribed Headers ... 54

4.7.18 Ordering Headers .. 54

4.7.19 Describing action Parameter on the Content-Type MIME Header .. 54

4.7.20 SOAPAction HTTP Header ... 55

4.7.21 SOAP Binding Extensions ... 55

4.8 Use of @soapActionRequired in WSDL 1.1 SOAP 1.2 Binding ... 56

4.9 Use of XML Schema ... 56

4.10 4.10 WS-Addressing 1.0 - Metadata .. 57

5 WSDL Corrections .. 58

5.1 Document Structure .. 58

5.1.1 WSDL Schema Definitions .. 58

5.1.2 WSDL and Schema Import .. 58

5.1.3 Placement of WSDL import Elements ... 60

5.1.4 WSDL documentation Element ... 62

5.2 Message ... 62

5.2.1 Declaration of part Elements ... 62

5.3 SOAP Binding ... 63

5.3.1 Specifying the transport Attribute .. 63

5.3.2 SOAP 1.2 Binding Extension... 63

5.3.3 Type and Name of SOAP Binding Elements ... 63

5.3.4 name Attribute on Faults ... 64

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 7 of 78

5.3.5 Omission of the use Attribute .. 64

5.3.6 Default for use Attribute ... 64

6 Service Publication and Discovery ... 65

6.1 bindingTemplates ... 65

6.2 tModels ... 66

7 Security ... 68

7.1 Use of HTTPS ... 69

Appendix A. Extensibility Points .. 70

Appendix B. Schemas ... 72

Appendix C. Testing .. 73

C.1 Testability of Requirements.. 73

C.2 Structure of Test Assertions ... 73

C.3 Test Log Conventions .. 76

Appendix D. Acknowledgments ... 77

Appendix E. Revision History .. 78

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 8 of 78

1 Introduction

This document defines the WS-I Basic Profile 2.0 (hereafter, "Profile"), consisting of a set of non-
proprietary Web services specifications, along with clarifications, refinements, interpretations and
amplifications of those specifications which promote interoperability.

Section 2 introduces the Profile, and explains its relationships to other profiles.

Section 3, "Profile Conformance," explains what it means to be conformant to the Profile.

Each subsequent section addresses a component of the Profile, and consists of two parts; an overview
detailing the component specifications and their extensibility points, followed by subsections that address
individual parts of the component specifications. Note that there is no relationship between the section
numbers in this document and those in the referenced specifications. Relationships to Other Profiles

1.1 Relationships to Other Profiles

This Profile is derived from the Basic Profile 1.1 [BP1.1] (BP 1.1) by incorporating any errata to date and
including those requirements related to the serialization of envelopes and their representation in
messages from the Simple SOAP Binding Profile 1.0 .

This Profile is NOT intended to be composed with the Simple SOAP Binding Profile 1.0. The Attachments
Profile 1.0 [AP1.0] adds support for SOAP with Attachments, and is intended to be used in combination
with this Profile.

1.1.1 Compatibility with Basic Profile 1.1

This Profile (BP 2.0) is the first version of the WS-I Basic Profile that changes the version of SOAP in the
profile scope from SOAP 1.1 to the W3C SOAP 1.2 Recommendation . As such, BP 1.1 conformant
messages are inherently incompatible with those conformant with BP 2.0, while receivers and instances
processing these messages may or may not support these two versions of the Basic Profile.

1.1.2 Relationship to Basic Profile 1.2

Similarly to this Profile, Basic Profile 1.2 [BP1.2] (BP 1.2) is derived from Basic Profile 1.1 [BP1.1] .
Unlike this Profile, the version of SOAP in scope for BP 1.2 is, like BP 1.1, SOAP 1.1 . To the extent
possible, this Profile and BP 1.2 attempt to maintain a common set of requirement numbers, and common
requirement and expository text. There are cases where the differences between SOAP 1.1 and SOAP
1.2 necessitate unique requirements and/or differing requirement and expository text. Therefore, some
requirements and test assertions may present issues of forward or backward compatibility.

1.2 Guiding Principles

The Profile was developed according to a set of principles that, together, form the philosophy of the
Profile, as it relates to bringing about interoperability. This section documents these guidelines.

No guarantee of interoperability

http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-10.html
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.ws-i.org/Profiles/BasicProfile-1.2.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-10.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 9 of 78

It is impossible to completely guarantee the interoperability of a particular service. However, the
Profile does address the most common problems that implementation experience has revealed to
date.

Application semantics
Although communication of application semantics can be facilitated by the technologies that
comprise the Profile, assuring the common understanding of those semantics is not addressed by
it.

Testability
When possible, the Profile makes statements that are testable. However, requirements do not
need to be testable to be included in the Profile. Preferably, testing is achieved in a non-intrusive
manner (e.g., by examining artifacts "on the wire").

Strength of requirements
The Profile makes strong requirements (e.g., MUST, MUST NOT) wherever feasible; if there are
legitimate cases where such a requirement cannot be met, conditional requirements (e.g.,
SHOULD, SHOULD NOT) are used. Optional and conditional requirements introduce ambiguity
and mismatches between implementations.

Restriction vs. relaxation
When amplifying the requirements of referenced specifications, the Profile may restrict them, but
does not relax them (e.g., change a MUST to a MAY).

Multiple mechanisms
If a referenced specification allows multiple mechanisms to be used interchangeably, the Profile
selects those that are well-understood, widely implemented and useful. Extraneous or
underspecified mechanisms and extensions introduce complexity and therefore reduce
interoperability.

Future compatibility
When possible, the Profile aligns its requirements with in-progress revisions to the specifications
it references. This aids implementers by enabling a graceful transition, and assures that WS-I
does not 'fork' from these efforts. When the Profile cannot address an issue in a specification it
references, this information is communicated to the appropriate body to assure its consideration.

Compatibility with deployed services
Backwards compatibility with deployed Web services is not a goal for the Profile, but due
consideration is given to it; the Profile does not introduce a change to the requirements of a
referenced specification unless doing so addresses specific interoperability issues.

Focus on interoperability
Although there are potentially a number of inconsistencies and design flaws in the referenced
specifications, the Profile only addresses those that affect interoperability.

Conformance targets
Where possible, the Profile places requirements on artifacts (e.g., WSDL descriptions, SOAP
messages) rather than the producing or consuming software's behaviors or roles. Artifacts are
concrete, making them easier to verify and therefore making conformance easier to understand
and less error-prone.

Lower-layer interoperability
The Profile speaks to interoperability at the application layer; it assumes that interoperability of
lower-layer protocols (e.g., TCP, IP, Ethernet) is adequate and well-understood. Similarly,
statements about application-layer substrate protocols (e.g., SSL/TLS, HTTP) are only made
when there is an issue affecting Web services specifically; WS-I does not attempt to assure the
interoperability of these protocols as a whole. This assures that WS-I's expertise in and focus on
Web services standards is used effectively.

1.3 Test Assertions

This profile document is complemented by a separate Test Assertions (TA) file that contains scripted
(XPath 2.0) test assertions for assessing conformance of an endpoint to the BP2.0 profile.

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 10 of 78

Test assertions are not guaranteed to exhaustively cover every case where a profile requirement applies.
In several instances, more than one test assertion is needed to address the various situations where a
profile requirement applies

Each profile requirement is tagged with:

 The level of conformance this requirement belongs to (either CORE, or HTTP-TRANSPORT).
See the Conformance section.

 A testability assessment (TESTABLE, TESTABLE_SCENARIO_DEPENDENT, NOT_TESTED,
NOT_TESTABLE)

 Optionally, one or more test assertion identifiers (e.g. BP1905)

The structure of test assertions and the meaning of the testability assessment are described in Appendix
C. “Testing”

1.4 Notational Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

Normative statements of requirements in the Profile (i.e., those impacting conformance, as outlined in
"Conformance Requirements") are presented in the following manner:

RnnnnStatement text here.

where "nnnn" is replaced by a number that is unique among the requirements in the Profile, thereby
forming a unique requirement identifier.

Requirements can be considered to be namespace qualified, in such a way as to be compatible with
QNames from Namespaces in XML [xmlNames]. If there is no explicit namespace prefix on a
requirement's identifier (e.g., "R9999" as opposed to "bp10:R9999"), it should be interpreted as being in
the namespace identified for this Profile.

Extensibility points in underlying specifications (see "Conformance Scope") are presented in a similar
manner:

EnnnnExtensibility Point Name - Description

where "nnnn" is replaced by a number that is unique among the extensibility points in the Profile. As with
requirement statements, extensibility statements can be considered namespace-qualified.

This specification uses a number of namespace prefixes throughout; their associated URIs are listed
below. Note that the choice of any namespace prefix is arbitrary and not semantically significant.

 soap12 - " http://www.w3.org/2003/05/soap-envelope "

 xsi - " http://www.w3.org/2001/XMLSchema-instance "

 xsd - " http://www.w3.org/2001/XMLSchema "

 soapenc - " http://www.w3.org/2003/05/soap-encoding "

 wsdl - " http://schemas.xmlsoap.org/wsdl/ "

 wsoap12 - " http://schemas.xmlsoap.org/wsdl/soap12/ "

 uddi - " urn:uddi-org:api_v2 "

 wsa - " http://www.w3.org/2005/08/addressing "

http://www.w3.org/TR/REC-xml-names/

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 11 of 78

 xop - " http://www.w3.org/2004/08/xop/include "

1.5 Terminology

The following list of terms have specific definitions that are authoritative for this profile:

non-addressable

A CONSUMER or INSTANCE is deemed "non-addressable" when, for whatever reason, it is
either unwilling or unable to provide a network endpoint that is capable of accepting connections.
This means that the CONSUMER or INSTANCE cannot service incoming HTTP connections and
can only transmit HTTP Request messages and receive HTTP Response messages.

rpc-literal binding

An "rpc-literal binding" is a wsdl:binding element whose child wsdl:operation elements

are all rpc-literal operations.

An "rpc-literal operation" is a wsdl:operation child element of wsdl:binding whose

wsoap12:body descendant elements specify the use attribute with the value "literal", and either:

1. The style attribute with the value "rpc" is specified on the child wsoap12:operation

element; or

2. The style attribute is not present on the child wsoap12:operation element, and the

wsoap12:binding element in the enclosing wsdl:binding specifies the style

attribute with the value "rpc".

document-literal binding

A "document-literal binding" is a wsdl:binding element whose child wsdl:operation

elements are all document-literal operations.

A "document-literal operation" is a wsdl:operation child element of wsdl:binding whose

wsoap12:body descendent elements specifies the use attribute with the value "literal" and,

either:

1. The style attribute with the value "document" is specified on the child

wsoap12:operation element; or

2. The style attribute is not present on the child wsoap12:operation element, and the

wsoap12:binding element in the enclosing wsdl:binding specifies the style

attribute with the value "document"; or

3. The style attribute is not present on both the child wsoap12:operation element and

the wsoap12:binding element in the enclosing wsdl:binding.

operation signature

The Profile defines the "operation signature" to be the fully qualified name of the child element of
SOAP body of the SOAP input message described by an operation in a WSDL binding and the

URI value of the wsa:Action SOAP header block, if present.

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 12 of 78

In the case of rpc-literal binding, the operation name is used as a wrapper for the part accessors.
In the document-literal case, since a wrapper with the operation name is not present, the
message signatures must be correctly designed so that they meet this requirement.

1.6 Profile Identification and Versioning

This document is identified by a name (in this case, Basic Profile) and a version number (here, 2.0).
Together, they identify a particular profile instance.

Version numbers are composed of a major and minor portion, in the form "major.minor". They can be
used to determine the precedence of a profile instance; a higher version number (considering both the
major and minor components) indicates that an instance is more recent, and therefore supersedes earlier
instances.

Instances of profiles with the same name (e.g., "Example Profile 1.1" and "Example Profile 5.0") address
interoperability problems in the same general scope (although some developments may require the exact
scope of a profile to change between instances).

One can also use this information to determine whether two instances of a profile are backwards-
compatible; that is, whether one can assume that conformance to an earlier profile instance implies
conformance to a later one. Profile instances with the same name and major version number (e.g.,
"Example Profile 1.0" and "Example Profile 1.1") MAY be considered compatible. Note that this does not
imply anything about compatibility in the other direction; that is, one cannot assume that conformance
with a later profile instance implies conformance to an earlier one.

1.7 Normative References

[AP1.0] "Attachments Profile Version 1.0 (AP1.0)", WS-I Final Material, 20 April 2006,
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html

[BP1.1] "Basic Profile Version 1.1 (BP 1.1)", WS-I Final Material, 10 April 2006,,
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

[BP1.2] Basic Profile 1.2, OASIS Committee Specification Draft, May 2013. (TBD)

[claimAttachment] M. Nottingham et al , “WS-I Conformance Claim Attachment Mechanisms
Version 1.0”, November 2004. http://www.ws-i.org/Profiles/ConformanceClaims-
1.0-2004-11-15.html

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.

[RFC2246] T. Dierks et al, “The TLS Protocol Version 1.0” , January 1999,
http://www.ietf.org/rfc/rfc2246.txt

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.2.html
http://www.ws-i.org/Profiles/ConformanceClaims-1.0-2004-11-15.html
http://www.ws-i.org/Profiles/ConformanceClaims-1.0-2004-11-15.html
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2246.txt

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 13 of 78

[RFC2459] R. Housley et al, “Internet X.509 Public Key Infrastructure Certificate and CRL
Profile” , January 1999, http://www.ietf.org/rfc/rfc2459.txt

[RFC2818] E. Rescorla , "HTTP over TLS", May 2000,. http://www.ietf.org/rfc/rfc2818.txt

[RFC2616] R. Fielding et. al., “Hypertext Transfer Protocol -- HTTP/1.1”, IETF RFC 2119,
June 1999. http://www.ietf.org/rfc/rfc2616

[RFC2965] D. Kristol et. al., “HTTP State Management Mechanism”, IETF RFC 2965,
October 2000. http://www.ietf.org/rfc/rfc2965

[RFC3023] M. Murata et al, "XML Media Types”, IETF RFC 3023, January 2001,.
http://www.ietf.org/rfc/rfc3023

[RFC3986] T. Berners-Lee et al, "Uniform Resource Identifier (URI): Generic Syntax”, IETF
RFC 3896, January 2005,. http://www.apps.ietf.org/rfc/rfc3986.html

[SOAP12-mtom] "SOAP Message Transmission Optimization Mechanism”, W3C
Recommendation, 25 January 2005,. http://www.w3.org/TR/2005/REC-soap12-
mtom-20050125/

[SOAP12part1] M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging Framework”, W3C
Recommendation, 2007,. http://www.w3.org/TR/soap12-part1/

[SOAP12part2] M. Gudgin, et al, "SOAP Version 1.2 Part 2: Adjuncts”, W3C Recommendation,
2007, http://www.w3.org/TR/soap12-part2/

[SSLV3] A. Freirer et al, “The SSL Protocol Version 3.0” , Internet Draft , November 18,
1994, http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt

[UDDI2schema] “UDDI Version 2 XML Schema", 2002, http://uddi.org/schema/uddi_v2.xsd

[UDDI2.04API] “UDDI Version 2.04 API Specification", UDDI Committee Specification,19 July
2002 , http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm

[UDDI2.03Data] “UDDI Version 2.03 Data Structure Reference', UDDI Committee Specification,
19 July 2002, http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm

 [WSAddrCore] "WS-Addressing 1.0 - Core”, W3C Recommendation, 9 May
2006,.http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/

[WSAddrSoap] "WS-Addressing 1.0 – SOAP Binding”, W3C Recommendation, 9 May
2006,.http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/ (except for
sections 4, 5.1.1, 5.2.1 and 6.2)

[WSAddrMeta] "WS-Addressing 1.0 – Metadata”, W3C Recommendation, 4 September 2007,.
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904/ (except for
sections 4.1.1, 4.4.2, 4.4.3 and 5.2)

http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2616
http://www.ietf.org/rfc/rfc2965
http://www.ietf.org/rfc/rfc3023
http://www.apps.ietf.org/rfc/rfc3986.html
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt
http://uddi.org/schema/uddi_v2.xsd
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904/

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 14 of 78

[WSDL1.1] “Web Services Description Language (WSDL) 1.)", W3C Note, 15 March 2001.
hhttp://www.w3.org/TR/2001/NOTE-wsdl-20010315

[WSDL11SOAP12] “WSDL 1.1 Binding Extensions for SOAP 1.2", W3C Member Submission, 05
April 2006 , http://www.w3.org/Submission/wsdl11soap12 /

[XML1.0] "Extensible Markup Language (XML) 1.0 (Fourth Edition)”, W3C
Recommendation, 29 September 2006,. http://www.w3.org/TR/2006/REC-xml-
20060816/

[xmlNames] T. Bray et al, “Namespaces in XML 1.0” (Second Edition)", W3C
Recommendation, 16 August 2006. http://www.w3.org/TR/2006/REC-xml-names-
20060816/

[xmSchema-1] “XML Schema Part 1: Structures (Second Edition)", W3C Recommendation, 28
October 2004. http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

[xmSchema-2] “XML Schema Part 2: Datatypes (Second Edition)", W3C Recommendation, 28
October 2004. http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[xop] "XML-binary Optimized Packaging”, W3C Recommendation, 25 January 2005,.
http://www.w3.org/TR/2005/REC-xop10-20050125/ /

The following specifications' requirements are incorporated into the Profile by reference, except where
superseded by the Profile:

1.8 Non-Normative References

There are no non normative references.

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/Submission/wsdl11soap12
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2005/REC-xop10-20050125/%20/

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 15 of 78

2 Conformance

Conformance to the Profile is defined by adherence to the set of requirements defined for a specific
target, within the scope of the Profile. This section explains these terms and describes how conformance
is defined and used.

2.1 Requirements Semantics

The Profile is defined using a set of Requirements. Each Requirement is an atomic normative statement
targeting a particular artifact subject to conformance assessment. In other words, requirements state the
criteria for conformance to the Profile. They typically refer to an existing specification and embody
refinements, amplifications, interpretations and clarifications to it in order to improve interoperability. All
requirements in the Profile are considered normative, and those in the specifications it references that are
in-scope (see "Conformance Scope") should likewise be considered normative. When requirements in the
Profile and its referenced specifications contradict each other, the Profile's requirements take precedence
for purposes of Profile conformance.

Requirement levels, using RFC2119 language (e.g., MUST, MAY, SHOULD) indicate the nature of the
requirement and its impact on conformance. Each requirement is individually identified (e.g., R9999) for
convenience.

For example;

R9999 Any WIDGET SHOULD be round in shape.

This requirement is identified by "R9999", applies to the target WIDGET (see below), and places a
conditional requirement upon widgets.

Each requirement statement contains exactly one requirement level keyword (e.g., "MUST") and one
conformance target keyword (e.g., "MESSAGE"). The conformance target keyword appears in bold text
(e.g. "MESSAGE"). Other conformance targets appearing in non-bold text are being used strictly for their
definition and NOT as a conformance target. Additional text may be included to illuminate a requirement
or group of requirements (e.g., rationale and examples); however, prose surrounding requirement
statements must not be considered in determining conformance.

Definitions of terms in the Profile are considered authoritative for the purposes of determining
conformance.

2.2 Conformance Targets

Conformance targets identify what artifacts (e.g., SOAP message, WSDL description, UDDI registry data)
or parties (e.g., SOAP processor, end user) requirements apply to.

This allows for the definition of conformance in different contexts, to assure unambiguous interpretation of
the applicability of requirements, and to allow conformance testing of artifacts (e.g., SOAP messages and
WSDL descriptions) and the behavior of various parties to a Web service (e.g., clients and service
instances).

Requirements' conformance targets are physical artifacts wherever possible, to simplify testing and avoid
ambiguity.

http://www.ietf.org/rfc/rfc2119.txt

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 16 of 78

The following conformance targets are used in the Profile:

 MESSAGE - protocol elements that transport the ENVELOPE (e.g., SOAP/HTTP messages)

 ENVELOPE - the serialization of the soap12:Envelope element and its content

 DESCRIPTION - descriptions of types, messages, interfaces and their concrete protocol and data
format bindings, and the network access points associated with Web services (e.g., WSDL
descriptions) (from Basic Profile 1.0)

 INSTANCE - software that implements a wsdl:port or a uddi:bindingTemplate (from Basic Profile
1.0)

 CONSUMER - software that invokes an INSTANCE (from Basic Profile 1.0)

 SENDER - software that generates a message according to the protocol(s) associated with it
(from Basic Profile 1.0)

 RECEIVER - software that consumes a message according to the protocol(s) associated with it
(e.g., SOAP processors) (from Basic Profile 1.0)

 REGDATA - registry elements that are involved in the registration and discovery of Web services
(e.g. UDDI tModels) (from Basic Profile 1.0)

 SIMPLE_SOAP_MESSAGE - A MESSAGE that has as an entity-body that has a 'Content-Type'
HTTP header field with a field-value of 'application/soap+xml'HTTP-TRANSPORT

 XOP_ENCODED_MESSAGE - A MESSAGE that has an entity-body that has a 'Content-Type'
HTTP header field with a field-value of 'multipart/related' with a type parameter of
'application/xop+xml'HTTP-TRANSPORT

2.3 Conformance Scope

The scope of the Profile delineates the technologies that it addresses; in other words, the Profile only
attempts to improve interoperability within its own scope. Generally, the Profile's scope is bounded by the
specifications referenced by it.

The Profile's scope is further refined by extensibility points. Referenced specifications often provide
extension mechanisms and unspecified or open-ended configuration parameters; when identified in the
Profile as an extensibility point, such a mechanism or parameter is outside the scope of the Profile, and
its use or non-use is not relevant to conformance.

Note that the Profile may still place requirements on the use of an extensibility point. Also, specific uses of
extensibility points may be further restricted by other profiles, to improve interoperability when used in
conjunction with the Profile.

Because the use of extensibility points may impair interoperability, their use should be negotiated or
documented in some fashion by the parties to a Web service; for example, this could take the form of an
out-of-band agreement.

The Profile's scope is defined by the referenced specifications in clause 1.7, as refined by the extensibility
points in Appendix A.

2.4 Conformance Clauses

This Profile concerns several conformance targets. Conformance targets are identified in requirements as
described in Section 2.2. Conformance claims may apply to any above conformance target.

There are two major ways to conform to this profile, identified by “tags” associated with each profile
requirement. These tags are “CORE” and “HTTP-TRANSPORT”:

http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 17 of 78

 "CORE" (transport- independent) conformance level. When the endpoint advertising conformance
to this Profile is using a transport other than HTTP, then only the requirements tagged with
"CORE" apply.

 "HTTP-TRANSPORT" (HTTP transport-specific) conformance level. When the endpoint
advertising conformance to this Profile is using HTTP, then all of the requirements of the Profile
tagged either with “CORE” or with “HTTP-TRANSPORT” apply as specified in Section 2.

These define two levels of conformance, as “CORE” conformance is included in “HTTP-transport”
conformance. In other words, conformance at HTTP-transport level implies conformance at CORE level.

2.4.1 “Core” Conformance

A conformance target (as defined above) is said to be conforming to this profile at the “core” conformance
level if this target fulfills all the requirements that are tagged “CORE” and that are relevant to this target
type.

2.4.2 “HTTP Transport” Conformance

A conformance target (as defined above) is said to be conforming to this profile at the “HTTP transport”
conformance level if this target fulfills all the requirements that are tagged either as “CORE” or as “HTTP-
TRANSPORT” and that are relevant to this target type.

In other words, conformance at this level implies conformance at CORE level.

2.5 Claiming Conformance

Claims of conformance to the Profile can be made using either of the following mechanisms: 1) use of the
Conformance Claim Attachment Mechanisms [claimAttachment] (see Section 2.4.1), or 2) use of the Web
Services Policy - Framework [WS-Policy 1.5] and Web Services Policy - Attachment [WS-Policy
Attachment 1.5] (see Section 2.4.2). Prior agreements between partners on how Profile conformance is to
be advertised or required might exist. When no such prior agreement exists and there is a need to
advertise, the use of WS-Policy is RECOMMENDED over the use of the Conformance Claim Attachment
Mechanisms.

2.5.1 Claiming Conformance using the Conformance Claim Attachment
Mechanisms

Claims of conformance to this Profile can be made using the following Conformance Claim Attachment
Mechanisms [claimAttachment] , when the applicable Profile requirements associated with the listed
targets have been met:

 WSDL 1.1 Claim Attachment Mechanism for Web Services Instances - MESSAGE,
DESCRIPTION, INSTANCE, RECEIVER

 WSDL 1.1 Claim Attachment Mechanism for Web Description Constructs - DESCRIPTION

 UDDI Claim Attachment Mechanism for Web Services Instances - MESSAGE,
DESCRIPTION, INSTANCE, RECEIVER

 UDDI Claim Attachment Mechanism for Web Services Registrations - REGDATA

The Basic Profile 2.0 conformance claim URI is:

http://ws-i.org/profiles/basic-profile/2.0/Conformant

When a web service instance is using HTTP, then all of the requirements of the Profile apply as specified
in Section 2. When a transport other than HTTP is used, then only the requirements tagged with "CORE"
apply.

http://www.ws-i.org/Profiles/ConformanceClaims-1.0-2004-11-15.html
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/TR/ws-policy-attach/
http://www.ws-i.org/Profiles/ConformanceClaims-1.0-2004-11-15.html
http://www.ws-i.org/Profiles/ConformanceClaims-1.0-2004-11-15.html

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 18 of 78

2.5.2 Claiming Conformance using WS-Policy and WS-PolicyAttachment

Mechanisms described in Web Services Policy - Framework [WS-Policy 1.5] and Web Services Policy -
Attachment [WS-Policy Attachment 1.5] specifications can be used to advertise conformance to this
Profile. The Profile defines the following policy assertion for this purpose:

<bp20:Conformant xmlns:bp20="http://ws-i.org/profiles/basic-

profile/2.0/"/>

A non-normative copy of the XML Schema is provided in Appendix B , for convenience.

The presence of this assertion indicates that the policy subject supports the requirements of this Profile in
a manner that conforms to Basic Profile 2.0 (See Section 2). This assertion also requires that
CONSUMERS MUST use the effected protocols in a way that conforms to Basic Profile 2.0. The absence
of this assertion says nothing about Basic Profile 2.0 conformance; it simply indicates the lack of an
affirmative declaration of and requirement for Basic Profile 2.0 conformance.

The bp20:Conformant policy assertion applies to the endpoint policy subject.

For WSDL 1.1, this assertion can be attached to a wsdl11:port or wsdl11:binding . A policy

expression containing the bp20:Conformant policy assertion MUST NOT be attached to a

wsdl:portType .

For example,
CORRECT:

<wsp:Policy xmlns:bp20="http://ws-i.org/profiles/basic-profile/2.0/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy">

 <bp20:Conformant/>

</wsp:Policy>

The example above shows a policy expression that requires Basic Profile 2.0.

For example,
CORRECT:

<wsp:Policy xmlns:bp20="http://ws-i.org/profiles/basic-profile/2.0/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">

 <wsam:Addressing>

 <wsp:Policy/>

 </wsam:Addressing>

 <bp20:Conformant/>

</wsp:Policy>

The example above shows a policy expression that requires WS-Addressing and Basic Profile 2.0.

http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy-attach/

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 19 of 78

3 Messaging

This section of the Profile incorporates the following specifications by reference, and defines extensibility
points within them:

 SOAP Version 1.2 Part 1: Messaging Framework (Second Edition) [SOAP12part1]
Extensibility points:

o E0001 - Header blocks - Header blocks are an extensibility mechanism in
SOAP.CORETESTABLEBP1901

o E0002 - Processing order - The order of processing of a SOAP envelope's components
(e.g., headers) is unspecified, and therefore may need to be negotiated out-of-
band.CORENOT_TESTABLE

o E0003 - Use of intermediaries - SOAP Intermediaries is an underspecified mechanism in
SOAP 1.2, and their use may require out-of-band negotiation. Their use may also
necessitate careful consideration of where Profile conformance is
measured.CORENOT_TESTABLE

o E0004 - SOAP role values - Values of the SOAP role attribute, other than the special uri
'http://www.w3.org/2003/05/soap-envelope/role/next', represent a private agreement
between parties of the web service.CORETESTABLEBP1904

o E0005 - Fault details - Faults may have Detail elements. The contents of these elements
are not described in SOAP 1.2.CORETESTABLEBP1905

o E0024 - Namespace Attributes - Namespace attributes on soap12:Envelope and
soap12:Header elementsCORETESTABLE

o E0025 - Attributes on soap12:Body elements - Neither namespaced nor local attributes
are constrained by SOAP 1.2.CORETESTABLE

 SOAP Version 1.2 Part 2: Adjuncts (Second Edition) [SOAP12part2]
Extensibility points:

o E0026 - SOAP envelope in HTTP Response message to WSDL one-way operation - The
SOAP 1.2 Request Response Binding specification does not specify the purpose or
processing of such envelopes.HTTP-TRANSPORTTESTABLE

 RFC2616: Hypertext Transfer Protocol -- HTTP/1.1 [RFC2616]
Extensibility points:

o E0007 - HTTP Authentication - HTTP authentication allows for extension schemes,
arbitrary digest hash algorithms and parameters.HTTP-TRANSPORTTESTABLE

o E0008 - Unspecified Header Fields - HTTP allows arbitrary headers to occur in
messages.HTTP-TRANSPORTTESTABLE

o E0010 - Content-Encoding - The set of content-codings allowed by HTTP is open-ended
and any besides 'gzip', 'compress', or 'deflate' are an extensibility point.HTTP-

TRANSPORTTESTABLE
o E0011 - Transfer-Encoding - The set of transfer-encodings allowed by HTTP is open-

ended.HTTP-TRANSPORTTESTABLE
o E0029 - Use of messages other than SOAP 1.2 or XOP messages - Use of Messages

other than a SIMPLE_SOAP_MESSAGE or a XOP_ENCODED_MESSAGE is an
extensibility pointCORETESTABLE

 RFC2965: HTTP State Management Mechanism [RFC2965]

 WS-Addressing 1.0 - Core [WSAddrCore]

 WS-Addressing 1.0 - SOAP Binding [WSAddrSoap] (except for sections 4, 5.1.1, 5.2.1 and 6.2)
Extensibility points:

o E0027 - Use of SOAP role attribute and WS-Addressing - WS-Addressing allows multiple
instances of headers such as wsa:To, wsa:ReplyTo, and wsa:FaultTo, so long as they
are targeted to different SOAP roles.CORETESTABLE

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/
http://www.ietf.org/rfc/rfc2616
http://www.ietf.org/rfc/rfc2965
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 20 of 78

o E0028 - Endpoint references are extensible - When extension attributes or elements
appear as part of an endpoint reference, the processing model for such extensions is
defined by the specification for those extensions.CORENOT_TESTABLE

 WS-Addressing 1.0 - Metadata [WSAddrMeta] (except for sections 4.1.1, 4.4.2, 4.4.3 and 5.2)

 SOAP Message Transmission Optimization Mechanism [SOAP12-mtom]

 XML-Binary Optimized Packaging [xop]

 XML Media Types [RFC3023]

These extensibility points are listed, along with any extensibility points from other sections of this Profile,
in Appendix B

3.1 Message Serialization

This Profile is intended to compose with mechanisms to describe whether messages are encoded as
SIMPLE_SOAP_MESSAGEs or XOP_ENCODED_MESSAGEs. As such it does not mandate that both of
these encodings be supported for any given operation. Indeed, neither of these encodings need be
supported if an alternate encoding such as that described in the Attachments Profile 1.0 is used.

SOAP 1.2 defines an XML structure for serializing messages, the envelope. This Profile places the
following constraints on the use and serialization of the soap12:Envelope element and its content:

This Profile allows for the use of protocol bindings other than HTTP. Section 2.2 identifies the use of
Simple SOAP and XOP encoded messages using HTTP. Section 3.1 identifies how encoding is handled
for HTTP only. RFC 2616 and RFC3023 provide guidance for HTTP, supplemented by requirements
throughout this profile. If another transport protocol is used, the responsibility for defining how to handle
transport-specific features (e.g. content encoding) falls to the specification of the binding of SOAP to that
transport protocol.

This section of the Profile incorporates the following specifications by reference:

 Extensible Markup Language (XML) 1.0 (Fourth Edition) [XML1.0]

 Attachments Profile Version 1.0 [AP1.0]

3.1.1 XML Envelope Serialization

R9701 An ENVELOPE MUST be serialized as XML 1.0. CORETESTABLE

BP1019

3.1.2 Unicode BOMs

XML 1.0 allows UTF-8 encoding to include a BOM; therefore, receivers of envelopes must be prepared to
accept them. The BOM is mandatory for XML encoded as UTF-16.

R4006 A RECEIVER MUST NOT fault due to the presence of a UTF-8
Unicode Byte Order Mark (BOM) in the SOAP envelope when
the envelope is correctly encoded using UTF-8 and the

"charset" parameter of the HTTP Content-Type header has a
value of "utf-8" (see RFC3023).
CORETESTABLE_SCENARIO_DEPENDENT BP1306

R4007 A RECEIVER MUST NOT fault due to the presence of a UTF-16
Unicode Byte Order Mark (BOM) in the SOAP envelope when
the envelope is correctly encoded using UTF-16 and the

"charset" parameter of the HTTP Content-Type header has a

http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/xop10/
http://www.ietf.org/rfc/rfc3023
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ietf.org/rfc/rfc2616
http://www.ietf.org/rfc/rfc3023
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ietf.org/rfc/rfc3023

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 21 of 78

value of "utf-16" (see RFC3023).
CORETESTABLE_SCENARIO_DEPENDENTBP1307

3.1.3 XML Declarations

Presence or absence of an XML declaration does not affect interoperability. Certain implementations
might always precede their XML serialization with the XML declaration.

R1010 A RECEIVER MUST NOT fault due to the presence of an XML
Declaration in the SOAP envelope (as specified by Section 2.8
of XML 1.0,"Prolog and Document Type Declaration").
CORETESTABLEBP1015

3.1.4 Character Encodings

As a consequence of Section 4.3.3 of XML 1.0, "Character Encoding in Entities", which requires XML
processors to support both the UTF-8 and UTF-16 character encodings, this Profile mandates that
RECEIVERs support both UTF-8 and UTF-16 character encodings.

To improve interoperability, the "charset" parameter of Content-Type HTTP header field must be used to
determine the correct character encoding of the message.

As this Profile allows the use of protocol bindings other than HTTP, the transport is responsible for
defining how encoding is handled as specified in Section 2.2 for Simple SOAP and XOP encoded
messages using HTTP. This applies to this section and Section 3.1.5.

R1012 An ENVELOPE MUST be serialized using either UTF-8 or UTF-
16 character encoding. CORETESTABLEBP1018

R1018 A SIMPLE_SOAP_MESSAGE MUST indicate the correct
character encoding, using the "charset" parameter.
CORETESTABLEBP1018

R1019 A RECEIVER MUST ignore the encoding pseudo-attribute of the
envelope's XML declaration.
CORETESTABLE_SCENARIO_DEPENDENTBP1306

3.1.5 XOP Encoded Messages

There exists some confusion among implementations about the proper encoding of the action

parameter for XOP encoded messages. The multipart/related media type specification does not

include an action parameter, though it does permit extensibility. Thus, the action parameter on the

multipart/relatedContent-Type header has no defined semantic. The correct encoding is to

include the action parameter inside the start-info parameter of the enclosing MIME

multipart/related entity body as well as inside the type parameter of the root part. Nevertheless,

existing SENDERs could emit an XOP message with the action parameter encoded as a separate

parameter on the Content-Type header of the enclosing multipart/related MIME entity body. This

Profile does not preclude a RECEIVER from accepting such a message.

See Section 3.1.4 for conformance criteria when using HTTP.

R1020 A XOP_ENCODED_MESSAGE MUST include the start-info

parameter in the Content-Type header of the enclosing

multipart/related MIME entity body. CORETESTABLEBP1020

R1021 A XOP_ENCODED_MESSAGE MUST include the full value of
the type parameter from the root entity body part inside the

start-info parameter of the enclosing multipart/related

http://www.ietf.org/rfc/rfc3023
http://www.w3.org/TR/2006/REC-xml-20060816/#sec-prolog-dtd
http://www.w3.org/TR/2006/REC-xml-20060816/#charencoding

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 22 of 78

MIME entity body part's Content-Type header.
CORETESTABLEBP1021

R1022 A RECEIVER MUST NOT fault due to the action parameter of
an XOP encoded message being included with the value of the

start-info parameter inside the Content-Type header of the

enclosing multipart/related MIME entity body.
CORENOT_TESTABLE

For example,
INCORRECT:
MIME-Version: 1.0

Content-Type: Multipart/Related;boundary=MIME_boundary;

 type="application/xop+xml";

 start="<mymessage.xml@example.org>";

 start-info="application/soap+xml";

 action="ProcessData"

--MIME_boundary

Content-Type: application/xop+xml;

 charset=UTF-8;

 type="application/soap+xml; action=\"ProcessData\""

Content-Transfer-Encoding: 8bit

Content-ID: <mymessage.xml@example.org>

...

CORRECT:
MIME-Version: 1.0

Content-Type: Multipart/Related;boundary=MIME_boundary;

 type="application/xop+xml";

 start="<mymessage.xml@example.org>";

 start-info="application/soap+xml; action=\"ProcessData\""

Content-Description: A SOAP message with my pic and sig in it

--MIME_boundary

Content-Type: application/xop+xml;

 charset=UTF-8;

 type="application/soap+xml; action=\"ProcessData\""

Content-Transfer-Encoding: 8bit

Content-ID: <mymessage.xml@example.org>

...

3.2 SOAP Envelopes

SOAP 1.2, Section 5, defines a structure for composing messages, the "SOAP Envelope". The Profile
mandates the use of that structure, and places the following constraints on its use.

3.2.1 SOAP Envelope Structure

There are obvious interoperability problems if different implementations do not agree on the number of

allowable children for the soap12:Body element.

R9980 An ENVELOPE MUST conform to the structure specified in
SOAP Version 1.2 Part 1, Section 5, "SOAP Envelope"
(subject to amendment by the Profile). CORETESTABLEBP1600

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/#soapenv

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 23 of 78

R9981 An ENVELOPE MUST have exactly zero or one child elements

of the soap12:Body element. CORETESTABLEBP1881

See the requirements in Section 4.4.1 for the corresponding, requisite constraints on a DESCRIPTION.

3.2.2 SOAP Body Namespace Qualification

The use of unqualified element names may cause naming conflicts, therefore qualified names must be

used for the children of soap12:Body .

R1014 The children of the soap12:Body element in an ENVELOPE
MUST be namespace qualified. CORETESTABLEBP1202

3.2.3 Disallowed Constructs

XML DTDs and PIs may introduce security vulnerabilities, processing overhead and semantic ambiguity
when used in envelopes. As a result, certain XML constructs are disallowed by section 5 of SOAP 1.2.

Although published errata NE05 (see http://www.w3.org/XML/xml-names-19990114-errata) allows the
namespace declaration xmlns:xml="http://www.w3.org/XML/1998/namespace" to appear, some older
processors considered such a declaration to be an error. These requirements ensure that conformant
artifacts have the broadest interoperability possible.

R1008 An ENVELOPE MUST NOT contain a Document Type
Declaration. CORETESTABLEBP1007

R1009 An ENVELOPE MUST NOT contain Processing Instructions.
CORETESTABLEBP1208

R1033 An ENVELOPE MUST NOT contain the namespace declaration
xmlns:xml="http://www.w3.org/XML/1998/namespace".
CORETESTABLEBP1033

3.2.4 xsi:type Attributes

In many cases, senders and receivers will share some form of type information related to the envelopes
being exchanged.

R1017 A RECEIVER MUST NOT fault on the absence of the xsi:type
attribute in envelopes, except in cases where this attribute is
required to indicate a derived type (see XML Schema Part 1:
Structures, Section 2.6.1). CORENOT_TESTABLE

3.2.5 SOAP 1.2 attributes on SOAP 1.2 elements

R1032 The soap12:Envelope, soap12:Header, and soap12:Body
elements in an ENVELOPE MUST NOT have attributes in the

namespace "http://www.w3.org/2003/05/soap-envelope".
CORETESTABLEBP1032

3.3 SOAP Processing Model

SOAP 1.2, Section 2 defines a model for the processing of envelopes. In particular, it defines rules for the
processing of header blocks and the envelope body. It also defines rules related to generation of faults.
The Profile places the following constraints on the processing model:

http://www.w3.org/XML/xml-names-19990114-errata
http://www.w3.org/TR/xmlschema-1/#xsi_type
http://www.w3.org/TR/xmlschema-1/#xsi_type
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/#msgexchngmdl

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 24 of 78

3.3.1 SOAP Fault Processing

When a fault is generated, no further processing should be performed. In request-response exchanges, a
fault message will be transmitted to the sender of the request, and some application level error will be
flagged to the user.

Both SOAP and this Profile use the term 'generate' to denote the creation of a SOAP Fault. It is important
to realize that generation of a Fault is distinct from its transmission, which in some cases is not required.

R1029 Where the normal outcome of processing a SOAP envelope
would have resulted in the transmission of a SOAP response,
but rather a fault is generated instead, the RECEIVER MUST
NOT transmit the non-faulting response. CORENOT_TESTABLE

Note that there may be valid reasons (such as security considerations) why a fault might not be
transmitted.

3.4 SOAP Faults

3.4.1 Identifying SOAP Faults

Some consumer implementations erroneously use only the HTTP status code to determine the presence
of a Fault. Because there are situations where the Web infrastructure changes the HTTP status code, and
for general reliability, the Profile requires that they examine the envelope. A Fault is an envelope that has

a single child element of the soap12:Body element, that element being the soap12:Fault element.

R1107 A RECEIVER MUST interpret a SOAP message as a Fault when

the soap12:Body of the message has a single soap12:Fault
child. CORENOT_TESTABLE

3.5 Use of SOAP in HTTP

While SOAP itself is not transport specific, this Profile focuses on its use with HTTP and makes no
requirements on the use of any other transport. Other profiles might be developed to focus on the
particulars of other transports, but that is out of scope for this Profile. With respect to compliance to this
Profile, any requirement that mentions the HTTP transport applies only when HTTP is being used. Any
requirement that is not specific to HTTP (i.e. does not mention HTTP specifically) applies toward
conformance regardless of the transport mechanism being used. For convenience, the HTTP transport-
specific requirements have been identified and tagged as specified in Section 2.4.

Section 7 of SOAP 1.2 Part 2 defines a single protocol binding, for HTTP/1.1. The Profile makes use of
that binding, and places the following constraints on its use:

For this section, the conformance criteria for the use of HTTP as a transport protocol are specified in
Section 2.3.

3.5.1 HTTP Protocol Binding

Several versions of HTTP are defined. HTTP/1.1 has performance advantages, and is more clearly
specified than HTTP/1.0.

R1141 When HTTP is used as the transport, a MESSAGE MUST be
sent using either HTTP/1.1 or HTTP/1.0. HTTP-

TRANSPORTTESTABLEBP1002

R1140 When HTTP is used as the transport, a MESSAGE SHOULD be
sent using HTTP/1.1. HTTP-TRANSPORTTESTABLEBP1001

http://www.w3.org/TR/2003/REC-soap12-part2-20030624/#soapinhttp
http://www.ietf.org/rfc/rfc2616

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 25 of 78

Note that support for HTTP/1.0 is implied in HTTP/1.1, and that intermediaries may change the version of
a message; for more information about HTTP versioning, see RFC2145, "Use and Interpretation of HTTP
Version Numbers."

3.5.2 Parameters on the Content-Type MIME Header

R1109 If present, the values of the following parameters - type, start-

info, action, and boundary - on the Content-Type MIME
header field-value in a request MESSAGE MUST be a quoted
string. HTTP-TRANSPORTTESTABLEBP1006

3.5.3 HTTP Success Status Codes

HTTP uses the 2xx series of status codes to communicate success. In particular, 200 is the default for
successful messages, but 202 can be used to indicate that a message has been submitted for
processing. Additionally, other 2xx status codes may be appropriate, depending on the nature of the
HTTP interaction.

R1124 An INSTANCE MUST use a 2xx HTTP status code on a
response message that indicates the successful outcome of a
HTTP Request. HTTP-TRANSPORTNOT_TESTABLE

R1111 An INSTANCE SHOULD use a "200 OK" HTTP status code on a
response message that contains an envelope that is not a
fault. HTTP-TRANSPORTTESTABLEBP1100

R1112 An INSTANCE SHOULD use either a "200 OK" or "202
Accepted" HTTP status code for a response message that
does not contain a SOAP envelope but indicates the
successful outcome of a HTTP Request. HTTP-

TRANSPORTTESTABLEBP1101

Despite the fact that the HTTP 1.1 assigns different meanings to response status codes "200" and "202",
in the context of the Profile they should be considered equivalent by the initiator of the request. The
Profile accepts both status codes because some SOAP implementations have little control over the HTTP
protocol implementation and cannot control which of these response status codes is sent.

3.5.4 HTTP Redirect Status Codes

There are interoperability problems with using many of the HTTP redirect status codes, generally
surrounding whether to use the original method, or GET. The Profile mandates "307 Temporary Redirect",
which has the semantic of redirection with the same HTTP method, as the correct status code for
redirection. For more information, see the 3xx status code descriptions in RFC2616.

R1130 An INSTANCE MUST use the "307 Temporary Redirect" HTTP
status code when redirecting a request to a different endpoint.
HTTP-TRANSPORTNOT_TESTABLE

RFC2616 notes that user-agents should not automatically redirect requests; however, this requirement
was aimed at browsers, not automated processes (which many Web services will be). Therefore, the
Profile allows, but does not require, consumers to automatically follow redirections.

3.5.5 HTTP Cookies

The HTTP State Management Mechanism [RFC2965] ("Cookies") allows the creation of stateful sessions
between Web browsers and servers. Because they are designed for hypertext browsing, Cookies do not
have well-defined semantics for Web services, and, because they are external to the envelope, are not

http://www.ietf.org/rfc/rfc2965

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 26 of 78

accommodated by either SOAP 1.2 or WSDL 1.1. This Profile limits the ways in which Cookies can be
used, without completely disallowing them.

R1122 An INSTANCE using Cookies SHOULD conform to RFC2965.
HTTP-TRANSPORTNOT_TESTED

R1121 An INSTANCE SHOULD NOT require consumer support for
Cookies in order to function correctly. HTTP-TRANSPORTNOT_TESTED

The Profile recommends that cookies not be required by instances for proper operation; they should be a
hint, to be used for optimization, without materially affecting the execution of the Web service.

3.5.6 Non-Addressable Consumers and Instances

Definition: non-addressable

A CONSUMER or INSTANCE is deemed "non-addressable" when, for whatever reason, it is either
unwilling or unable to provide a network endpoint that is capable of accepting connections. This means
that the CONSUMER or INSTANCE cannot service incoming HTTP connections and can only transmit
HTTP Request messages and receive HTTP Response messages.

Non-addressable CONSUMERs and INSTANCEs, by their nature, cannot service incoming HTTP
connections. Therefore any ENVELOPEs that they receive, either as requests (in the case of
INSTANCEs) or responses (in the case of CONSUMERs), MUST, when HTTP is used, be carried in the
entity-body of an HTTP Request message.

R1202 When a CONSUMER is non-addressable, a SOAP ENVELOPE,
that is described by the output message of a WSDL operation
supported by an INSTANCE, MUST be bound to a HTTP
Response message. HTTP-TRANSPORTTESTABLEBP1126aBP1126b

R1203 When an INSTANCE is non-addressable, a SOAP ENVELOPE,
that is described by the input message of a WSDL operation
supported by the INSTANCE, MUST be bound to a HTTP
Response message. HTTP-TRANSPORTTESTABLE

R1204 When an INSTANCE is non-addressable, a SOAP ENVELOPE,
that is described by the output message of a WSDL operation
supported by the INSTANCE, MUST be bound to a HTTP
Request message. HTTP-TRANSPORTTESTABLE

Note that INSTANCEs can poll for requests from CONSUMERs using mechanisms such as those
described in WS-MakeConnection.

3.6 Use of URIs in SOAP

This section of the Profile incorporates the following specifications by reference:

 RFC3986: Uniform Resource Identifier (URI): Generic Syntax [RFC3986]

SOAP 1.2, Section 6 describes the use URIs as identifiers. For example, the role attribute value is a

URI that identifies the SOAP node(s) to which a particular header block is targeted. To ensure
interoperability it is important that SENDERs and RECEIVERs share a common understanding of how
such URI values will be compared. The Profile places the following constraints on the use of such URI
values:

http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html
http://www.apps.ietf.org/rfc/rfc3986.html
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/#useofuris

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 27 of 78

3.6.1 Use of SOAP-defined URIs

A SOAP 1.2 defined URI, such as the role value "http://www.w3.org/2003/05/soap-envelope/role/next",

is treated as follows:

R1160 A RECEIVER, for the purposes of comparison of URI values of
information items defined by the SOAP 1.2 specification,
MUST treat the computed absolute URI values as simple
strings as defined in RFC3986 (see RFC3986, Section 6.2.1).
CORENOT_TESTABLE

3.7 WS-Addressing Support

WS-Addressing is a part of core Web services infrastructure. To facilitate interoperability and to provide a
common baseline, this profile requires compliant clients and services to provide support for WS-
Addressing Core, WS-Addressing SOAP Binding and WS-Addressing Metadata, as modified by this
Profile.

Support for WS-Addressing by a specific "service" is optional. However, a service may require the use of
WS-Addressing, in which case, for successful interaction with that service, a client will need to support it.

Note that two BP compliant web services instances may both support the use of WS- Addressing yet fail
to agree on a common set of features necessary to interact with one another. For example, a RECEIVER
may require the use of non-anonymous response EPRs (and advertise this via the

wsam:NonAnonymousResponses nested policy assertion) yet a SENDER, for various reasons (e.g. the

presence of NATs or firewalls), may only support the use of anonymous response EPRs.

3.7.1 Requiring WS-Addressing SOAP Headers

R1040 If an endpoint requires use of WS-Addressing by use of a

wsam:Addressing policy assertion, an ENVELOPE sent by a
SENDER MUST carry all required WS-Addressing SOAP
headers.
CORETESTABLEBP1040aBP1040bBP1040cBP1142aBP1142bBP1142cBP1143aBP114
3bBP1143c

3.7.2 NotUnderstood block in MustUnderstand Fault on WS-Addressing
SOAP Headers

R1041 An ENVELOPE that is a MustUnderstand SOAP fault, sent from
an endpoint that has a policy alternative containing the
wsam:Addressing assertion attached to its WSDL endpoint
subject, MUST NOT contain a NotUnderstood SOAP header
block with the qname attribute value that identifies a WS-
Addressing defined SOAP header block. CORETESTABLEBP1041

3.7.3 Use of wsa:Action and WS-Addressing 1.0 - Metadata

WS-Addressing 1.0 - Metadata, Section 5.1 [WSAddrMeta] defines additional constraints on the
cardinality of WS-Adressing Message Addressing Properties defined in WS-Addressing 1.0 – Core
[WSAddrCore]. These constraints are defined for every message involved in WSDL 1.1 transmission
primitives. The Profile requires conformance to this section when WS-Addressing is used in conjunction
with a WSDL 1.1 description.

http://www.apps.ietf.org/rfc/rfc3986.html
http://www.apps.ietf.org/rfc/rfc3986.html#sec-6.2.1

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 28 of 78

R1142 An ENVELOPE that includes a wsa:Action SOAP header block
and which is described using a WSDL 1.1 description MUST
conform to WS-Addressing 1.0 - Metadata, Section 5.1.
CORETESTABLEBP1142aBP1142bBP1142cBP1143aBP1143bBP1143c

3.7.4 Valid Values for action Parameter on the Content-Type MIME header
When WS-Addressing is Used

There could be some confusion with regards to the range of valid values for the action parameter on the

Content-Type MIME header when WS-Addressing is used.

When composed with WS-Addressing, the value of the action parameter, if present, is limited to the

absolute URI that matches the value specified for wsa:Action . The action parameter is optional and

is therefore not required to be present on the header. This is useful, for example, when the value of

wsa:Action is sensitive and is therefore encrypted.

R1144 When the wsa:Action SOAP header block is present in an

envelope, the value of the action parameter, if present, on the

Content-Type MIME header of the MESSAGE MUST be an
absolute URI that has the same value as the value of the

wsa:Action header. HTTP-TRANSPORTTESTABLEBP1144

3.7.5 SOAP Defined Faults Action URI

WS-Addressing provides the URI http://www.w3.org/2005/08/addressing/soap/fault for

"SOAP defined faults". However, it only recommends, rather than mandates its use for the SOAP 1.2
defined MustUnderstand and VersionMismatch faults. This Profile mandates the use of the WS-
Addressing defined wsa:Action value for SOAP 1.2 defined MustUnderstand and VersionMismatch faults,
for interoperability.

R1035 An ENVELOPE MUST use the
http://www.w3.org/2005/08/addressing/soap/fault URI as the

value for the wsa:Action SOAP header element, when present,
for either of the SOAP 1.2 defined VersionMismatch and
MustUnderstand faults. CORETESTABLEBP1035

3.7.6 Understanding WS-Addressing SOAP Header Blocks

WS-Addressing 1.0 - SOAP Binding [WSAddrSoap] defines multiple SOAP header blocks (wsa:To,
wsa:From, wsa:ReplyTo, wsa:FaultTo, wsa:Action, wsa:MessageID, and wsa:RelatesTo). These SOAP
header blocks are part of the same module. A SOAP node that conforms to the Profile understands and
honors all of these SOAP header blocks (when it understands WS-Addressing) or none at all (when it
does not understand WS-Addressing).

R1143 When a message contains multiple WS-Addressing SOAP
header blocks with at least one of those header blocks

containing a soap12:mustUnderstand='1' attribute, then a
RECEIVER MUST honor all the WS-Addressing SOAP header
blocks or none of them. CORETESTABLEBP1043aBP1043b

3.7.7 Ignored or Absent WS-Addressing Headers

When WS-Addressing headers are present in a SOAP envelope, but do not contain a

soap12:mustUnderstand="1" attribute, a RECEIVER may choose to ignore these SOAP headers

(per R1143). Consistent with R1036, valid reasons may exist why (not where) faults are not transmitted.

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 29 of 78

R1145 If a SOAP envelope does not contain any WS-Addressing
header blocks, or contains WS-Addressing header blocks that

do not include any soap12:mustUnderstand="1" attributes, and
the RECEIVER chooses to ignore them, then any response
(normal or fault) SHOULD be transmitted. If it is transmitted
then it is transmitted on the HTTP Response message (if
available). HTTP-TRANSPORTNOT_TESTED

3.7.8 Present and Understood WS-Addressing Headers

When any WS-Addressing header blocks are present in a SOAP envelope (where

soap12:mustUnderstand="1" attributes exist or the header contents are understood), any non-

faulting response will be transmitted to the endpoint referred to by the wsa:ReplyTo header. Should a

fault be generated, it replaces the non-faulting response.

R1146 A RECEIVER MUST transmit non-faulting responses to the

endpoint referred to by the wsa:ReplyTo header or generate a
fault instead (per R1029). CORETESTABLEBP1146

SOAP 1.2 allows a RECEIVER to ignore headers that it does not understand. This behavior is particularly
relevant for WS-Addressing headers that affect message processing and routing. As an example, take
the following message sent to a SOAP node that does not understand the
"http://www.w3.org/2005/08/addressing" namespace:

<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <soap12:Header>

 <wsa:MessageID>uuid:8B82EA41-1485-13A6-5631527DC83F4168</wsa:MessageID>

 <wsa:Action>http://www.wstf.org/docs/scenarios/sc002/Echo</wsa:Action>

 <wsa:ReplyTo>

 <wsa:Address>http://server.foobie.com/NotifyEcho/asynchResp</wsa:Address>

 </wsa:ReplyTo>

 . . .

 </soap12:Header>

 <soap12:Body>

 . . .

 </soap12:Body>

</soap12:Envelope>

The SENDER expects the response to be sent "server.foobie.com". Yet, because it does not recognize
the WS-Addressing 1.0 namespace, the RECEIVER will ignore the WS-Addressing headers as if WS-

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 30 of 78

Addressing weren't engaged; consequently the SOAP response will be sent in the entity-body of the
HTTP Response and may be missed by the SENDER.

Another example is where a message with an empty SOAP Body carries the semantic intent in its

wsa:Action header.

In situations where the ability of the receiving node to understand WS-Addressing 1.0 headers is in doubt
and the correct processing of the WS-Addressing is semantically significant (such as the two examples

given), the SENDER is encouraged to add the soap12:mustUnderstand attribute with a value of "1" to

the wsa:Action header. This prompts the RECEIVER to generate a MustUnderstand fault in cases

where the WS-Addressing headers are not understood.

3.7.9 SOAP MustUnderstand or VersionMismatch fault Transmission

SOAP MustUnderstand and VersionMismatch faults are detected irrespective of the use of WS-
Addressing headers. There may be valid reasons why (not where) faults are transmitted, e.g. security
concerns or the HTTP Response connection is no longer available. In these cases the SENDER will not
receive any SOAP envelope response.

R1036 Regardless of whether the wsa:ReplyTo or wsa:FaultTo SOAP
headers appear in the incoming message, a RECEIVER that
receives a SOAP envelope that generates either a SOAP
MustUnderstand or VersionMismatch fault SHOULD transmit
either fault. If it is transmitted, such a fault is transmitted on the
HTTP Response message (if available). HTTP-

TRANSPORTNOT_TESTED

3.7.10 Faulting Behavior with Present and Understood WS-Addressing
Headers

When WS-Addressing headers are present in a SOAP envelope (where

soap12:mustUnderstand="1" attributes exist or the header contents are understood), should a fault

be generated, it will be transmitted to the endpoint referred to by the wsa:FaultTo header. WS-

Addressing specifies expected behavior should the wsa:FaultTo header be absent.

R1147 If a fault is generated, the RECEIVER SHOULD transmit the
fault (per R1029). CORENOT_TESTED

R1161 Other than those faults specified in R1036, faults in R1147
SHOULD be transmitted by the RECEIVER as specified in
WS-Addressing 1.0 - Core, Section 3.4. CORETESTABLE

R1162 When the wsa:FaultTo SOAP header exists, the RECEIVER
MUST NOT transmit faults to the endpoint referred to by the

wsa:ReplyTo header. CORETESTABLE

R1148 If an error occurs when transmitting the fault in R1147, a
RECEIVER MAY choose to send a fault related to this
transmission error on the HTTP Response (if available). HTTP-

TRANSPORTNOT_TESTED

Note: To avoid a recursive situation, if a fault is generated while trying to transmit to the endpoint referred

to by the wsa:ReplyTo header (R1146) and the wsa:FaultTo header is absent, R1147 does not apply.

3.7.11 [message id] and One-Way Operations

When sending a one-way message the SENDER could choose to ignore any possible response - for
example, a fault. However, if the SENDER is interested in receiving those messages, the SENDER will

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/#formreplymsg

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 31 of 78

need to include a [message id] property in the one-way message to ensure that the response can be
successfully transmitted (see WS-Addressing 1.0 - Core, Section 3.4).

R1163 When applying the processing rules defined by WS-Addressing
1.0 - Core, Section 3.4, if a related message lacks a [message
id] property, the RECEIVER MUST generate a

wsa:MessageAddressingHeaderRequired fault. CORETESTABLE

While the RECEIVER is under no obligation to transmit faults, including a [message id] property will
provide the RECEIVER with sufficient information to generate a response if needed.

3.7.12 Refusal to Honor WS-Addressing Headers

There may be many reasons (e.g. security, unsupported wsa:Address values, ...) why a RECEIVER does
not honor any WS-Addressing headers. In these cases and irrespective of where the condition occurs,
when any WS-Addressing headers are present in a SOAP envelope (where soap12:mustUnderstand=1
attributes exist or the header contents are understood), the RECEIVER must generate a fault.

R1149 If a RECEIVER detects one of the error conditions specified in
Section 6.4 of the Web Services Addressing 1.0 - SOAP

Binding, it MUST generate a fault using the [Code], [Subcode],

and [Subsubcode] listed for that particular error condition.
CORETESTABLEBP1149aBP1149bBP1149cBP1149d

3.7.13 Use of Non-Anonymous Response EPRs

The WS-Addressing [destination] URI of an outgoing message influences where this message will be
sent. In the case of the outgoing response (normal or fault), if this URI is a non-anonymous URI then this
message will be sent over a separate HTTP connection from one used to carry the request message.

R1152 If an INSTANCE attempts to send a message to a non-
anonymous [destination] URI then the message MUST be
transmitted in the entity-body of an HTTP Request.
CORETESTABLEBP1152aBP1152bBP1152c

3.7.14 Optionality of the wsa:To header

WS-Addressing 1.0 - Core and WS-Addressing 1.0 - Metadata are unclear about whether and when the

wsa:To header element is required in a SOAP message. This Profile makes the following, clarifying

requirement.

R1153 Except in cases in which an instance exposes a WSDL

description and its endpoint includes a wsdl:port that has

been extended with a wsa:EndpointReference, a RECEIVER
MUST NOT fault a SOAP request message due to the

absence of the wsa:To header. CORETESTABLEBP1153aBP1153b

Although the wsa:To header is optional, as a matter of best practice implementations are encouraged to

include this header (with a non-anonymous value) as its presence provides a greater degree of flexibility
in handling certain situations; for example, when moving a service endpoint from one URI to another.

As per WS-Addressing 1.0 - Core, the [destination] message addressing property of a request message

without a wsa:To header is "http://www.w3.org/2005/08/addressing/anonymous". Note that none of the

WS-Addressing 1.0 specifications describes the semantics of sending a SOAP request message, over

HTTP, either without a wsa:To header or with a wsa:To header with the value of

"http://www.w3.org/2005/08/addressing/anonymous". To clarify, such a request is considered to be
addressed to "the entity listening at the URI of the HTTP Request that contains this message". Sent over
a connection to http://www.example.org, the following three example messages are consistent:

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/#formreplymsg
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/#formreplymsg
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/#formreplymsg
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/#soapfaults
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/#soapfaults

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 32 of 78

For example,
CORRECT:
POST /NotifyEcho/soap12service HTTP/1.1

Content-Type: text/xml;charset=UTF-8

...

<soap12:Envelope ...>

 <soap12:Header>

 <wsa:Action>http://www.wstf.org/sc002/Echo</wsa:Action>

 </soap12:Header>

 <soap12:Body>

 ...

 </soap12:Body>

</soap12:Envelope>

CORRECT:
POST /NotifyEcho/soap12service HTTP/1.1

Content-Type: text/xml;charset=UTF-8

...

<soap12:Envelope ...>

 <soap12:Header>

 <wsa:To>http://www.w3.org/2005/08/addressing/anonymous</wsa:To>

 <wsa:Action>http://www.wstf.org/sc002/Echo</wsa:Action>

 </soap12:Header>

 <soap12:Body>

 ...

 </soap12:Body>

</soap12:Envelope>

CORRECT:
POST /NotifyEcho/soap12service HTTP/1.1

Content-Type: text/xml;charset=UTF-8

...

<soap12:Envelope ...>

 <soap12:Header>

 <wsa:To>http://www.example.org/NotifyEcho/soap12service</wsa:To>

 <wsa:Action>http://www.wstf.org/sc002/Echo</wsa:Action>

 </soap12:Header>

 <soap12:Body>

 ...

 </soap12:Body>

</soap12:Envelope>

3.7.15 Extending WSDL Endpoints with an EPR

WS-Addressing 1.0 - Metadata is unclear about the relationship between the elements of a WSDL 1.1
description of an endpoint and the values of the addressing properties of a message sent to that
endpoint. In particular, the value of the [destination] message addressing property needs to be clarified in
order to insure interoperability between SENDER and RECEIVER. There are two cases to consider. The

first case is where the wsdl:port has been extended with a wsa:EndpointReference as described

by Section 4.1 of WS-Addressing 1.0 - Metadata. In this case the following requirement applies:

R1154 When sending a request message to an endpoint which is

specified by a WSDL 1.1 description in which the wsdl:port

element has been extended with a wsa:EndpointReference, if

the wsa:Action SOAP header block is present, the SENDER

MUST populate the wsa:To and reference parameter SOAP
headers of that request message with the values of the

wsa:Address and wsa:ReferenceParameters elements

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 33 of 78

(respectively) of the extending endpoint reference.
CORETESTABLE

Note that, since [address] is a required property of an endpoint reference, extending a wsdl:port with a

wsa:EndpointReference has the effect of populating the [destination] property of the outgoing

message, thus mandating the inclusion of the wsa:To header.

The second case is where the wsdl:port has not been extended with a wsa:EndpointReference.

R1155 When sending a request message to an endpoint which is

specified by a WSDL 1.1 description in which the wsdl:port
element has not been extended with a

wsa:EndpointReference, if the wsa:Action SOAP header block

is present, the SENDER MAY populate the wsa:To SOAP

header of that request message with the value of the location

attribute of the wsoap12:address extension element.
CORETESTABLE

3.7.16 Combining Synchronous and Asynchronous Operations

WS-Addressing 1.0 - Metadata defines a policy assertion, wsam:Addressing, that is used to indicate

whether WS-Addressing is supported or required. It is a nested policy container assertion and can contain

additional restrictions (specifically the wsam:AnonymousResponses and

wsam:NonAnonymousResponses policy assertions) on the value of the response endpoint EPRs in

request messages. A top-level assertion without any nested assertions implies that both anonymous and
non-anonymous are allowed. The WS-Addressing 1.0 - Metadata specification sets the scope of this
assertion to be endpoint policy subject. However, with regards to the anonymous/non-anonymous
restrictions, experience has shown that it is often desirable to have different policies for different
operations on the same endpoint. For example, some of the operations of an endpoint may need to be
synchronous while others may need to be asynchronous. It is worthwhile to indicate this difference in a
WSDL description. In the absence of any guidance on the mechanism(s) for expressing such per-
operation distinctions, individual implementations will create their own extensions for enabling this
feature. To avoid the interoperability problems inherent in such an approach, the Profile defines the
following extension to the behavior defined by WS-Addressing 1.0 Metadata.

WS-Addressing 1.0 Metadata allows policies containing the wsam:Addressing policy assertion to be

attached to either a wsdl:port or a wsdl:binding. To these two options the Profile adds a third option

which allows policies containing the wsam:Addressing policy assertion to be attached to

wsdl:binding/wsdl:operation elements. When the wsam:Addressing policy assertion is

attached to the wsdl:binding/wsdl:operation element, it applies to the operation policy subject.

Nevertheless, it should always be the case that if one operation of an endpoint supports or requires WS-
Addressing, then all operations of that endpoint must support or require WS-Addressing (although,
potentially, with different restrictions). Furthermore, to simplify the calculation of the effective policy for
each operation and decrease the possibility of creating conflicting policies, each operation within such an
endpoint should affirmatively declare its policy with respect to WS-Addressing.

R1156 In a DESCRIPTION, a policy that contains the wsam:Addressing

assertion MUST be attached to either a wsdl:port, a

wsdl:binding or a wsdl:binding/wsdl:operation.
CORENOT_TESTABLE_XPATH

R1157 If a DESCRIPTION has a policy alternative containing the

wsam:Addressing assertion attached to a

wsdl:binding/wsdl:operation, then all of the wsdl:operations

within that wsdl:binding MUST also have a policy alternative

containing the wsam:Addressing assertion attached to them.
CORENOT_TESTABLE_XPATH

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 34 of 78

In addition to the above restrictions and as stated in R1158, the effective policy alternatives for a given
policy subject must not contain conflicting assertions.

For example,
INCORRECT:

<wsdl:binding name="sc009SOAP12Binding" type="tns:sc009PortType">

 <wsp:Policy>

 <wsam:Addressing>

 <wsp:Policy/>

 </wsam:Addressing>

 </wsp:Policy>

 ...

 <wsdl:operation name="CreatePO">

 <wsp:Policy>

 <wsam:Addressing>

 <wsp:Policy>

 <wsam:NonAnonymousResponses/>

 </wsp:Policy>

 </wsam:Addressing>

 </wsp:Policy>

 ...

 </wsdl:operation>

 <wsdl:operation name="GetPOStatus">

 ...

 </wsdl:operation>

 <wsdl:operation name="UpdatePO">

 <wsp:Policy>

 <wsam:Addressing>

 <wsp:Policy>

 <wsam:NonAnonymousResponses/>

 </wsp:Policy>

 </wsam:Addressing>

 </wsp:Policy>

 ...

 </wsdl:operation>

 <wsdl:operation name="CancelPO">

 ...

 </wsdl:operation>

</wsdl:binding>

<wsdl:service name="sc009Service">

 <wsdl:port name="soap12port" binding="tns:sc009SOAP12Binding">

 ...

 </wsdl:port>

</wsdl:service>

The above example is incorrect for two reasons. Firstly, it violates R1157 because the GetPOStatus and

CancelPO operations do not have policies containing the wsam:Addressing assertion attached to them.

Secondly, the effective policies for both the CreatePO and UpdatePO operations contain conflicting

assertions (a wsam:Addressing assertion that is unconstrained with regards to anonymous/non-

anonymous and a wsam:Addressing assertion that is constrained to just non-anonymous) within the

same alternative.

For example,
INCORRECT:

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 35 of 78

<wsdl:binding name="sc009SOAP12Binding" type="tns:sc009PortType">

 ...

 <wsdl:operation name="CreatePO">

 <wsp:Policy>

 <wsam:Addressing>

 <wsp:Policy>

 <wsam:NonAnonymousResponses/>

 </wsp:Policy>

 </wsam:Addressing>

 </wsp:Policy>

 ...

 </wsdl:operation>

 <wsdl:operation name="GetPOStatus">

 <wsp:Policy>

 <wsam:Addressing>

 <wsp:Policy/>

 </wsam:Addressing>

 </wsp:Policy>

 ...

 </wsdl:operation>

 <wsdl:operation name="UpdatePO">

 <wsp:Policy>

 <wsam:Addressing>

 <wsp:Policy>

 <wsam:NonAnonymousResponses/>

 </wsp:Policy>

 </wsam:Addressing>

 </wsp:Policy>

 ...

 </wsdl:operation>

 <wsdl:operation name="CancelPO">

 <wsp:Policy>

 <wsam:Addressing>

 <wsp:Policy/>

 </wsam:Addressing>

 </wsp:Policy>

 ...

 </wsdl:operation>

</wsdl:binding>

<wsdl:service name="sc009Service">

 <wsdl:port name="soap12port" binding="tns:sc009SOAP12Binding">

 <wsp:Policy>

 <wsam:Addressing>

 <wsp:Policy/>

 </wsam:Addressing>

 </wsp:Policy>

 ...

 </wsdl:port>

</wsdl:service>

The above example is incorrect because the effective policies for both the CreatePO and UpdatePO

operations contain conflicting assertions (a wsam:Addressing assertion that is unconstrained with

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 36 of 78

regards to anonymous/non-anonymous and a wsam:Addressing assertion that is constrained to just

non-anonymous) within the same alternative.

For example,
CORRECT:

<wsdl:binding name="sc009SOAP12Binding" type="tns:sc009PortType">

 ...

 <wsdl:operation name="CreatePO">

 <wsp:Policy>

 <wsam:Addressing>

 <wsp:Policy>

 <wsam:NonAnonymousResponses/>

 </wsp:Policy>

 </wsam:Addressing>

 </wsp:Policy>

 ...

 </wsdl:operation>

 <wsdl:operation name="GetPOStatus">

 <wsp:Policy>

 <wsam:Addressing>

 <wsp:Policy/>

 </wsam:Addressing>

 </wsp:Policy>

 ...

 </wsdl:operation>

 <wsdl:operation name="UpdatePO">

 <wsp:Policy>

 <wsam:Addressing>

 <wsp:Policy>

 <wsam:NonAnonymousResponses/>

 </wsp:Policy>

 </wsam:Addressing>

 </wsp:Policy>

 ...

 </wsdl:operation>

 <wsdl:operation name="CancelPO">

 <wsp:Policy>

 <wsam:Addressing>

 <wsp:Policy/>

 </wsam:Addressing>

 </wsp:Policy>

 ...

 </wsdl:operation>

</wsdl:binding>

<wsdl:service name="sc009Service">

 <wsdl:port name="soap12port" binding="tns:sc009SOAP12Binding">

 ...

 </wsdl:port>

</wsdl:service>

The above example is correct. All of the operations in the soap12port of the s009Service require WS-
Addressing. While the response EPRs for GetPOStatus and CancelPO are unconstrained, the response
EPRs for the CreatePO and UpdatePO operations must be non-anonymous.

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 37 of 78

3.7.17 Conflicting Addressing Policies

When used together, the wsam:AnonymousResponses and wsam:NonAnonymousResponses nested

policy assertions could result in an effective policy that contradicts WS-Addressing 1.0 - Metadata (i.e.
"request messages sent to this endpoint must use response endpoint EPRs that simultaneously do and
do not contain the WS-Addressing anonymous URI"). The Profile restricts the use of the

wsam:AnonymousResponses and wsam:NonAnonymousResponses nested policy assertions to avoid

this situation.

R1158 In a DESCRIPTION the effective policy for a given endpoint

MUST NOT contain both the wsam:AnonymousResponses and

wsam:NonAnonymousResponses assertions within a single policy
alternative. CORENOT_TESTABLE_XPATH

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 38 of 78

4 Service Description

The Profile uses Web Services Description Language (WSDL) [WSDL1.1] to enable the description of
services as sets of endpoints operating on messages.

This section of the Profile incorporates the following specifications by reference, and defines extensibility
points within them:

 Namespaces in XML 1.0 (Second Edition) [xmlNames]

 XML Schema Part 1: Structures [xmSchema-1]
Extensibility points:

o E0017 - Schema annotations - XML Schema allows for annotations, which may be used
to convey additional information about data structures.CORE

 XML Schema Part 2: Datatypes [xmSchema-2]

 Web Services Description Language (WSDL) 1.1 [WSDL1.1]
Extensibility points:

o E0013 - WSDL extensions - WSDL allows extension elements and attributes in certain
places, including the use and specification of alternate protocol binding extensions; use
of such extensions requires out-of-band negotiation.CORE

o E0014 - Validation mode - whether the parser used to read WSDL and XML Schema
documents performs DTD validation or not.CORE

o E0015 - Fetching of external resources - whether the parser used to read WSDL and
XML Schema documents fetches external entities and DTDs.CORE

o E0016 - Relative URIs - WSDL does not adequately specify the use of relative URIs for
the following: wsoap12:body/@namespace, wsoap12:address/@location,
wsdl:import/@location, xsd:schema/@targetNamespace and
xsd:import/@schemaLocation. Their use may require further coordination; see XML Base
for more information.CORE

These extensibility points are listed, along with any extensibility points from other sections of this Profile,
in Appendix A

4.1 Required Description

An instance of a Web service is required to make the contract that it operates under available in some
fashion.

R0001 Either an INSTANCE's WSDL 1.1 description, its UDDI binding
template, or both MUST be available to an authorized
consumer upon request. CORETESTABLEBP2703

This means that if an authorized consumer requests a service description of a conformant service
instance, then the service instance provider must make the WSDL document, the UDDI binding template,
or both available to that consumer. A service instance may provide run-time access to WSDL documents
from a server, but is not required to do so in order to be considered conformant. Similarly, a service
instance provider may register the instance provider in a UDDI registry, but is not required to do so to be
considered conformant. In all of these scenarios, the WSDL contract must exist, but might be made
available through a variety of mechanisms, depending on the circumstances.

http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 39 of 78

4.2 Document Structure

WSDL 1.1, Section 2.1 defines the overall structure of an XML document for describing Web services.
The Profile mandates the use of that structure, and places the following constraints on its use.

Note that Section 5.1, "Document Structure", contains additional, corrective requirements on the structure
of a WSDL 1.1 document.

4.2.1 WSDL Import location Attribute Structure

WSDL 1.1 is not clear about whether the location attribute of the wsdl:import statement is required,

or what its content is required to be.

R2007 A DESCRIPTION MUST specify a non-empty location attribute

on the wsdl:import element. CORETESTABLEBP2098

Although the wsdl:import statement is modeled after the xsd:import statement, the location

attribute is required by wsdl:import while the corresponding attribute on xsd:import,

schemaLocation is optional. Consistent with location being required, its content is not intended to be

empty.

4.2.2 WSDL Import location Attribute Semantics

WSDL 1.1 is unclear about whether WSDL processors must actually retrieve and process the WSDL

document from the URI specified in the location attribute on the wsdl:import statements it

encounters.

R2008 A CONSUMER MAY, but need not, retrieve a WSDL description
from the URI specified in the location attribute on a

wsdl:import element. CORENOT_TESTED

The value of the location attribute of a wsdl:import element is a hint. A WSDL processor may have

other ways of locating a WSDL description for a given namespace.

4.2.3 XML Version Requirements

Neither WSDL 1.1 nor XML Schema 1.0 mandate a particular version of XML. For interoperability, WSDL
documents and the schemas they import expressed in XML must use version 1.0.

R4004 A DESCRIPTION MUST use version 1.0 of the eXtensible
Markup Language W3C Recommendation. CORENOT_TESTED

4.2.4 XML Namespace Declarations

Although published errata NE05 (see http://www.w3.org/XML/xml-names-19990114-errata) allows this
namespace declaration to appear, some older processors considered such a declaration to be an error.
This requirement ensures that conformant artifacts have the broadest interoperability possible.

R4005 A DESCRIPTION SHOULD NOT contain the namespace
declaration
xmlns:xml="http://www.w3.org/XML/1998/namespace".
CORETESTABLEBP2034

4.2.5 WSDL and the Unicode BOM

XML 1.0 allows documents that use the UTF-8 character encoding to include a BOM; therefore,
description processors must be prepared to accept them.

http://www.w3.org/TR/2001/NOTE-wsdl-20010315#_document-s

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 40 of 78

R4002 A DESCRIPTION MAY include the Unicode Byte Order Mark
(BOM). CORENOT_TESTED

4.2.6 Acceptable WSDL Character Encodings

The Profile consistently requires either UTF-8 or UTF-16 encoding for both SOAP and WSDL.

R4003 A DESCRIPTION MUST use either UTF-8 or UTF-16 encoding.
CORETESTABLEBP2201

4.2.7 Namespace Coercion

Namespace coercion on wsdl:import is disallowed by the Profile.

R2005 The targetNamespace attribute on the wsdl:definitions element
of a description that is being imported MUST have same the

value as the namespace attribute on the wsdl:import element in
the importing DESCRIPTION. CORETESTABLEBP2104

4.2.8 WSDL Extensions

Requiring support for WSDL extensions that are not explicitly specified by this or another WS-I Profile can
lead to interoperability problems with development tools that have not been instrumented to understand
those extensions.

R2025 A DESCRIPTION containing WSDL extensions MUST NOT use
them to contradict other requirements of the Profile.
CORENOT_TESTABLE

R2026 A DESCRIPTION SHOULD NOT include extension elements

with a wsdl:required attribute value of "true" on any WSDL

construct (wsdl:binding, wsdl:portType, wsdl:message,

wsdl:types or wsdl:import) that claims conformance to the
Profile. CORETESTABLEBP2123

R2027 If during the processing of a description, a consumer encounters

a WSDL extension element that has a wsdl:required attribute
with a boolean value of "true" that the consumer does not
understand or cannot process, the CONSUMER MUST fail
processing. CORENOT_TESTABLE

Development tools that consume a WSDL description and generate software for a Web service instance
might not have built-in understanding of an unknown WSDL extension. Hence, use of required WSDL
extensions should be avoided. Use of a required WSDL extension that does not have an available
specification for its use and semantics imposes potentially insurmountable interoperability concerns for all
but the author of the extension. Use of a required WSDL extension that has an available specification for
its use and semantics reduces, but does not eliminate the interoperability concerns that lead to this
refinement.

For the purposes of the Profile, all elements in the "http://schemas.xmlsoap.org/wsdl/" namespace are
extensible via element as well as attributes. As a convenience, WS-I has published a version of the
WSDL 1.1 schema that reflects this capability at: http://ws-i.org/profiles/basic/1.1/wsdl-2004-08-24.xsd

http://ws-i.org/profiles/basic/1.1/wsdl-2004-08-24.xsd

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 41 of 78

4.3 Types

WSDL 1.1, Section 2.2 defines the wsdl:types element to enclose data type definitions that are

relevant to the Web service described. The Profile places the following constraints pertinent to those

portions of the content of the wsdl:types element that are referred to by WSDL elements that make

Profile conformance claims:

4.3.1 QName References

XML Schema requires each QName reference to use either the target namespace, or an imported

namespace (one marked explicitly with an xsd:import element). QName references to namespaces

represented only by nested imports are not allowed.

WSDL 1.1 is unclear as to which schema target namespaces are suitable for QName references from a
WSDL element. The Profile allows QName references from WSDL elements both to the target

namespace defined by the xsd:schema element, and to imported namespaces. QName references to

namespaces that are only defined through a nested import are not allowed.

R2101 A DESCRIPTION MUST NOT use QName references to WSDL
components in namespaces that have been neither imported,
nor defined in the referring WSDL document.
CORETESTABLEBP2416

R2102 A QName reference to a Schema component in a
DESCRIPTION MUST use the namespace defined in the

targetNamespace attribute on the xsd:schema element, or to a

namespace defined in the namespace attribute on an

xsd:import element within the xsd:schema element.
CORETESTABLEBP2417

4.3.2 Schema targetNamespace Structure

Requiring a targetNamespace on all xsd:schema elements that are children of wsdl:types is a good

practice, places a minimal burden on authors of WSDL documents, and avoids the cases that are not as
clearly defined as they might be.

R2105 All xsd:schema elements contained in a wsdl:types element of a

DESCRIPTION MUST have a targetNamespace attribute with a

valid and non-null value, UNLESS the xsd:schema element has

xsd:import and/or xsd:annotation as its only child element(s).
CORETESTABLEBP2107

4.3.3 soapenc:Array

The recommendations in WSDL 1.1 Section 2.2 for declaration of array types have been interpreted in
various ways, leading to interoperability problems. Further, there are other clearer ways to declare arrays.

R2110 In a DESCRIPTION, declarations MUST NOT extend or restrict

the soapenc:Array type. CORETESTABLEBP2108b

R2111 In a DESCRIPTION, declarations MUST NOT use

wsdl:arrayType attribute in the type declaration.
CORETESTABLEBP2108a

R2112 In a DESCRIPTION, elements SHOULD NOT be named using
the convention ArrayOfXXX. CORETESTABLEBP2110

http://www.w3.org/TR/2001/NOTE-wsdl-20010315#_types

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 42 of 78

R2113 An ENVELOPE MUST NOT include the soapenc:arrayType
attribute. CORETESTABLEBP1204

For example,
INCORRECT:

Given the WSDL Description:

<xsd:element name="MyArray2" type="tns:MyArray2Type"/>

<xsd:complexType name="MyArray2Type"

 xmlns:soapenc="http://www.w3.org/2003/05/soap-encoding"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexContent>

 <xsd:restriction base="soapenc:Array">

 <xsd:sequence>

 <xsd:element name="x" type="xsd:string" minOccurs="0"

maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute ref="soapenc:arrayType"

wsdl:arrayType="tns:MyArray2Type[]"/>

 </xsd:restriction> </xsd:complexContent>

 </xsd:complexType>

The envelope would serialize as (omitting namespace declarations for clarity):

<MyArray2 soapenc:arrayType="tns:MyArray2Type[]">

 <x>abcd</x>

 <x>efgh</x>

</MyArray2>

CORRECT:

Given the WSDL Description:

<xsd:element name="MyArray1" type="tns:MyArray1Type"/>

<xsd:complexType name="MyArray1Type">

 <xsd:sequence>

 <xsd:element name="x" type="xsd:string" minOccurs="0"

maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

The envelope would serialize as (omitting namespace declarations for clarity):

<MyArray1>

 <x>abcd</x>

 <x>efgh</x>

</MyArray1>

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 43 of 78

4.3.4 WSDL and Schema Definition Target Namespaces

The names defined by schemas and the names assigned to WSDL definitions are in separate symbol
spaces.

R2114 The target namespace for WSDL definitions and the target
namespace for schema definitions in a DESCRIPTION MAY
be the same. CORENOT_TESTED

4.3.5 Multiple GED Definitions with the same QName

The schema components of all the xs:schema children, and their imports and includes, of the wsdl:types

element comprise a single symbol space containing all the global element declarations. Thus, when
global element declarations share a qualified name, a single component will be represented in the symbol
space. If two declarations are identical, there is no ambiguity in the structure of the component, but if the
declarations differ, it is indeterminate as to which of the declarations will be represented, which may lead
to interoperability problems. Because defining an equivalence algorithm is impractical, this requirement
warns against any appearance of declarations with the same qualified name. However, duplicate
declarations are not strictly prohibited, as user inspection may determine that two declarations are
actually identical (e.g. they were imported from the same set of components) and thus are unlikely to
cause interoperability problems.

R2115 A DESCRIPTION SHOULD NOT contain multiple global element
declarations that share the same qualified name.
CORETESTABLEBP2124

4.3.6 Multiple Type Definitions with the same QName

The schema components of all the xs:schema children, and their imports and includes, of the wsdl:types
element comprise single symbol spaces containing all the type definitions. Thus, when type definitions
share a qualified name, a single component will be represented in the symbol space. If two definitions are
identical, there is no ambiguity in the structure of the component, but if the definitions differ, it is
indeterminate as to which of the definitions will be represented, which may lead to interoperability
problems. Because defining an equivalence algorithm is impractical, this requirement warns against any
appearance of definitions with the same qualified name. However, duplicate definitions are not strictly
prohibited, as user inspection may determine that two definitions are actually identical (e.g. they were
imported from the same set of components) and thus are unlikely to cause interoperability problems.

R2116 A DESCRIPTION SHOULD NOT contain multiple type
definitions that share the same qualified name.
CORETESTABLEBP2125

4.4 Messages

WSDL 1.1, Section 2.3 defines the wsdl:message elements that are used to represent abstract

definitions of the data being transmitted. It uses wsdl:binding elements to define how the abstract

definitions are bound to a specific message serialization. The Profile places the following constraints on

wsdl:message elements and on how conformant wsdl:binding elements may use wsdl:message

element(s).

Note that Section 5.2, "Message", contains additional, corrective requirements on the structure of
wsdl:message elements.

In this section the following definitions are used to make the requirements more compact and easier to
understand.

http://www.w3.org/TR/2001/NOTE-wsdl-20010315#_messages

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 44 of 78

Definition: rpc-literal binding

An "rpc-literal binding" is a wsdl:binding element whose child wsdl:operation elements are all rpc-

literal operations.

An "rpc-literal operation" is a wsdl:operation child element of wsdl:binding whose wsoap12:body

descendant elements specify the use attribute with the value "literal", and either:

1. The style attribute with the value "rpc" is specified on the child wsoap12:operation element;

or

2. The style attribute is not present on the child wsoap12:operation element, and the

wsoap12:binding element in the enclosing wsdl:binding specifies the style attribute with

the value "rpc".

Definition: document-literal binding

A "document-literal binding" is a wsdl:binding element whose child wsdl:operation elements are

all document-literal operations.

A "document-literal operation" is a wsdl:operation child element of wsdl:binding whose

wsoap12:body descendent elements specifies the use attribute with the value "literal" and, either:

1. The style attribute with the value "document" is specified on the child wsoap12:operation

element; or

2. The style attribute is not present on the child wsoap12:operation element, and the

wsoap12:binding element in the enclosing wsdl:binding specifies the style attribute with

the value "document"; or

3. The style attribute is not present on both the child wsoap12:operation element and the

wsoap12:binding element in the enclosing wsdl:binding.

4.4.1 Bindings and Parts

There are various interpretations about how many wsdl:part elements are permitted or required for

document-literal and rpc-literal bindings and how they must be defined.

R2201 A document-literal binding in a DESCRIPTION MUST, in each of

its wsoap12:body element(s), have at most one part listed in the

parts attribute, if the parts attribute is specified.
CORETESTABLEBP2111

R2210 If a document-literal binding in a DESCRIPTION does not

specify the parts attribute on a wsoap12:body element, the

corresponding abstract wsdl:message MUST define zero or one

wsdl:parts. CORETESTABLEBP2119

R2202 A wsdl:binding in a DESCRIPTION MAY contain wsoap12:body

element(s) that specify that zero parts form the soap12:Body.
CORENOT_TESTED

R2203 An rpc-literal binding in a DESCRIPTION MUST refer, in its

wsoap12:body element(s), only to wsdl:part element(s) that

have been defined using the type attribute. CORETESTABLEBP2013

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 45 of 78

R2211 An ENVELOPE described with an rpc-literal binding MUST NOT

have the xsi:nil attribute with a value of "1" or "true" on the
part accessors. CORETESTABLEBP1211aBP1211b

R2207 A wsdl:message in a DESCRIPTION MAY contain wsdl:parts

that use the elements attribute provided those wsdl:parts are

not referred to by a wsoap12:body in an rpc-literal binding.
CORENOT_TESTED

R2204 A document-literal binding in a DESCRIPTION MUST refer, in

each of its wsoap12:body element(s), only to wsdl:part

element(s) that have been defined using the element attribute.
CORETESTABLEBP2012

R2208 A binding in a DESCRIPTION MAY contain wsoap12:header

element(s) that refer to wsdl:parts in the same wsdl:message

that are referred to by its wsoap12:body element(s).
CORENOT_TESTED

R2212 An ENVELOPE described using an rpc-literal binding MUST
contain exactly one part accessor element for each of the

wsdl:part elements bound to the wsoap12:body element in the
rpc-literal binding corresponding to the envelope.
CORETESTABLEBP1212aBP1212b

R2213 In a doc-literal description where the value of the parts attribute
of wsoap12:body is an empty string, the corresponding
ENVELOPE MUST have no element content in the
soap12:Body element. CORETESTABLEBP1213aBP1213b

R2214 In a rpc-literal description where the value of the parts attribute
of wsoap12:body is an empty string, the corresponding
ENVELOPE MUST have no part accessor elements.
CORETESTABLEBP1214aBP1214b

Use of wsdl:message elements with zero parts is permitted in Document styles to permit operations that

can send or receive envelopes with empty soap12:Bodys. Use of wsdl:message elements with zero

parts is permitted in RPC styles to permit operations that have no (zero) parameters and/or a return
value.

For document-literal bindings, the Profile requires that at most one part, abstractly defined with the

element attribute, be serialized into the soap12:Body element.

When a wsdl:part element is defined using the type attribute, the serialization of that part in a

message is equivalent to an implicit (XML Schema) qualification of a minOccurs attribute with the value

"1", a maxOccurs attribute with the value "1" and a nillable attribute with the value "false".

It is necessary to specify the equivalent implicit qualification because the wsdl:part element does not

allow one to specify the cardinality and nillability rules. Specifying the cardinality and the nillability rules
facilitates interoperability between implementations. The equivalent implicit qualification for nillable
attribute has a value of "false" because if it is specified to be "true" one cannot design a part whereby the

client is always required to send a value. For applications that want to allow the wsdl:part to to be

nillable, it is expected that applications will generate a complexType wrapper and specify the nillability
rules for the contained elements of such a wrapper.

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 46 of 78

4.4.2 Bindings and Faults

There are several interpretations for how wsdl:part elements that describe wsoap12:fault,

wsoap12:header, and wsoap12:headerfault may be defined.

R2205 A wsdl:binding in a DESCRIPTION MUST refer, in each of its

wsoap12:header, wsoap12:headerfault and wsoap12:fault

elements, only to wsdl:part element(s) that have been defined

using the element attribute. CORETESTABLEBP2113

Because faults and headers do not contain parameters, wsoap12:fault, wsoap12:header and

wsoap12:headerfault assume, per WSDL 1.1, that the value of the style attribute is "document".

R2204 requires that all wsdl:part elements with a style attribute whose value is "document" that are

bound to wsoap12:body be defined using the element attribute. This requirement does the same for

wsoap12:fault, wsoap12:header and wsoap12:headerfault elements.

4.4.3 Unbound portType Element Contents

WSDL 1.1 is not explicit about whether it is permissible for a wsdl:binding to leave the binding for

portions of the content defined by a wsdl:portType unspecified.

R2209 A wsdl:binding in a DESCRIPTION SHOULD bind every

wsdl:part of a wsdl:message in the wsdl:portType to which it

refers to one of wsoap12:body, wsoap12:header, wsoap12:fault

or wsoap12:headerfault. CORETESTABLEBP2114

A portType defines an abstract contract with a named set of operations and associated abstract
messages. Although not disallowed, it is expected that every part of the abstract input, output and fault

messages specified in a portType is bound to wsoap12:body or wsoap12:header (and so forth) as

appropriate when using the SOAP binding as defined in WSDL 1.1 Section 3. Un-bound wsdl:parts
should be ignored.

4.5 Port Types

WSDL 1.1, Section 2.4 defines the wsdl:portType elements that are used to group a set of abstract

operations. The Profile places the following constraints on conformant wsdl:portType element(s):

4.5.1 Ordering of part Elements

Permitting the use of parameterOrder helps code generators in mapping between method signatures

and messages on the wire.

R2301 The order of the elements in the soap12:Body of an ENVELOPE

MUST be the same as that of the wsdl:parts in the

wsdl:message that describes it for each of the wsdl:part

elements bound to the envelope's corresponding wsoap12:body
element. CORETESTABLEBP1111aBP1111bBP1012aBP1012b

R2302 A DESCRIPTION MAY use the parameterOrder attribute of an

wsdl:operation element to indicate the return value and
method signatures as a hint to code generators.
CORENOT_TESTED

http://www.w3.org/TR/2001/NOTE-wsdl-20010315#_porttypes

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 47 of 78

4.5.2 Allowed Operations

Solicit-Response and Notification operations are not well defined by WSDL 1.1; furthermore, WSDL 1.1
does not define bindings for them.

R2303 A DESCRIPTION MUST NOT use Solicit-Response and

Notification type operations in a wsdl:portType definition.
CORETESTABLEBP2208

4.5.3 Distinctive Operations

Operation name overloading in a wsdl:portType is disallowed by the Profile.

R2304 A wsdl:portType in a DESCRIPTION MUST have operations

with distinct values for their name attributes. CORETESTABLEBP2010

Note that this requirement applies only to the wsdl:operations within a given wsdl:portType. A

wsdl:portType may have wsdl:operations with names that are the same as those found in other

wsdl:portTypes.

4.5.4 parameterOrder Attribute Construction

WSDL 1.1 does not clearly state how the parameterOrder attribute of the wsdl:operation element

(which is the child of the wsdl:portType element) should be constructed.

R2305 A wsdl:operation element child of a wsdl:portType element in a
DESCRIPTION MUST be constructed so that the

parameterOrder attribute, if present, omits at most 1 wsdl:part
from the output message. CORETESTABLEBP2014

If a wsdl:part from the output message is omitted from the list of wsdl:parts that is the value of the

parameterOrder attribute, the single omitted wsdl:part is the return value. There are no restrictions

on the type of the return value. If no part is omitted, there is no return value.

4.5.5 Exclusivity of type and element Attributes

WSDL 1.1 does not clearly state that both type and element attributes cannot be specified to define a

wsdl:part in a wsdl:message.

R2306 A wsdl:message in a DESCRIPTION MUST NOT specify both

type and element attributes on the same wsdl:part.
CORETESTABLEBP2116

4.6 Bindings

In WSDL 1.1, the wsdl:binding element supplies the concrete protocol and data format specifications

for the operations and messages defined by a particular wsdl:portType. The Profile places the

following constraints on conformant binding specifications:

4.6.1 Use of SOAP Binding

The Profile limits the choice of bindings to the well-defined and most commonly used SOAP 1.2 binding.

R2401 A wsdl:binding element in a DESCRIPTION MUST use the
SOAP 1.2 binding as defined in the WSDL 1.1 Binding
Extension for SOAP 1.2. CORETESTABLEBP2402

http://www.w3.org/Submission/2006/SUBM-wsdl11soap12-20060405/
http://www.w3.org/Submission/2006/SUBM-wsdl11soap12-20060405/

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 48 of 78

Note that this places a requirement on the construction of conformant wsdl:binding elements. It does

not place a requirement on descriptions as a whole; in particular, it does not preclude WSDL documents

from containing non-conformant wsdl:binding elements. Also, a binding may have WSDL extensibility

elements present which change how messages are serialized.

4.7 SOAP Binding

The WSDL 1.1 Binding Extension for SOAP 1.2 [WSDL11SOAP12] defines a binding for SOAP 1.2
endpoints. This Profile mandates the use of the SOAP 1.2 binding as defined in WSDL 1.1 Binding
Extension for SOAP 1.2, and places the following constraints on its use:

Note that Section 5.3, "SOAP Binding", contains additional, corrective requirements on the use of the
SOAP 1.2 binding.

4.7.1 HTTP Transport

The profile limits the underlying transport protocol to HTTP.

R2702 When HTTP is used, a wsdl:binding element in a
DESCRIPTION MUST specify the HTTP transport protocol

with SOAP binding. Specifically, the transport attribute of its

wsoap12:binding child MUST have the value
"http://schemas.xmlsoap.org/soap/http". HTTP-

TRANSPORTTESTABLEBP2404

Note that this requirement does not prohibit the use of HTTPS; See R5000.

4.7.2 Consistency of style Attribute

The style, "document" or "rpc", of an interaction is specified at the wsdl:operation level, permitting

wsdl:bindings whose wsdl:operations have different styles. This has led to interoperability

problems. Additionally, use of document-literal binding, which generally allows for simpler
implementations than the rpc-literal binding, is encouraged. This hint is not always appropriate, especially
in the case of some existing implementations, which continue to be supported by this profile.

R2705 A wsdl:binding in a DESCRIPTION MUST either be a rpc-literal
binding or a document-literal binding. CORETESTABLEBP2017

4.7.3 Encodings and the use Attribute

The Profile prohibits the use of encodings, including the SOAP encoding.

R2706 A wsdl:binding in a DESCRIPTION MUST use the value of

"literal" for the use attribute in all wsoap12:body, wsoap12:fault,

wsoap12:header and wsoap12:headerfault elements.
CORETESTABLEBP2406

4.7.4 Multiple Bindings for portType Elements

The Profile explicitly permits multiple bindings for the same portType.

R2709 A wsdl:portType in a DESCRIPTION MAY have zero or more

wsdl:bindings that refer to it, defined in the same or other
WSDL documents. CORENOT_TESTED

http://www.w3.org/Submission/2006/SUBM-wsdl11soap12-20060405/

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 49 of 78

4.7.5 Operation Signatures

Definition: operation signature

The Profile defines the "operation signature" to be the fully qualified name of the child element of SOAP
body of the SOAP input message described by an operation in a WSDL binding and the URI value of the
wsa:Action SOAP header block, if present.

In the case of rpc-literal binding, the operation name is used as a wrapper for the part accessors. In the
document-literal case, since a wrapper with the operation name is not present, the message signatures
must be correctly designed so that they meet this requirement.

An endpoint that supports multiple operations must unambiguously identify the operation being invoked
based on the input message that it receives. This is only possible if all the operations specified in the

wsdl:binding associated with an endpoint have a unique operation signature.

R2710 The operations in a wsdl:binding in a DESCRIPTION MUST
result in operation signatures that are different from one
another. CORETESTABLEBP2120aBP2120b

4.7.6 Multiple Ports on an Endpoint

When input messages destined for two different wsdl:ports at the same network endpoint are

indistinguishable on the wire, it may not be possible to determine the wsdl:port being invoked by them.

This may cause interoperability problems. However, there may be situations (e.g., SOAP versioning,
application versioning, conformance to different profiles) where it is desirable to locate more than one port
on an endpoint; therefore, the Profile allows this.

R2711 A DESCRIPTION SHOULD NOT have more than one wsdl:port

with the same value for the location attribute of the

wsoap12:address element. CORETESTABLEBP2711

4.7.7 Child Element for Document-Literal Bindings

WSDL 1.1 is not completely clear what, in document-literal style bindings, the child element of

soap12:Body is.

R2712 A document-literal binding MUST be serialized as an

ENVELOPE with a soap12:Body whose child element is an
instance of the global element declaration referenced by the

corresponding wsdl:message part. CORETESTABLEBP1011aBP1011b

4.7.8 One-Way Operations

There are differing interpretations of how HTTP is to be used when performing one-way operations. The
SOAP 1.2 Request-Response SOAP MEP specifies the expectations for the SOAP/HTTP binding.

R2714 For one-way operations, an HTTP Response MESSAGE MAY
contain an envelope. HTTP-TRANSPORTNOT_TESTED

R2727 For one-way operations, a CONSUMER MUST NOT interpret a
successful HTTP Response status code (i.e., 2xx) to mean the
message is valid or that the receiver would process it. HTTP-

TRANSPORTNOT_TESTABLE

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 50 of 78

One-way operations typically do not produce SOAP responses. However, some INSTANCEs may choose
to communicate infrastructure-related faults (e.g. MustUnderstand, VersionMismatch) in the HTTP
Response message. In addition to this, the use of some protocol extensions (e.g. WS-
ReliableMessaging) may create the possibility for non-empty responses to one-way messages. For these
reasons the Basic Profile 1.1 requirement that the HTTP Response message not contain a SOAP
envelope has been relaxed. Note: the fact that an INSTANCE may choose to communicate infrastructure-
related faults in the HTTP Response does not mean that the CONSUMER can expect it to do so.

The HTTP Response to a one-way operation indicates the success or failure of the transmission of the
message. Based on the semantics of the different response status codes supported by the HTTP
protocol, the Profile specifies that "200" and "202" are the preferred status codes that the sender should
expect, signifying that the one-way message was received. A successful transmission does not indicate
that the SOAP processing layer and the application logic has had a chance to validate the envelope or
have committed to processing it.

4.7.9 Namespaces for wsoap12 Elements

There is confusion about what namespace is associated with the child elements of various children of

soap12:Envelope, which has led to interoperability difficulties. The Profile defines these.

R2716 A document-literal binding in a DESCRIPTION MUST NOT have

the namespace attribute specified on contained wsoap12:body,

wsoap12:header, wsoap12:headerfault and wsoap12:fault
elements. CORETESTABLEBP2019

R2717 An rpc-literal binding in a DESCRIPTION MUST have the

namespace attribute specified, the value of which MUST be an

absolute URI, on contained wsoap12:body elements.
CORETESTABLEBP2020

R2726 An rpc-literal binding in a DESCRIPTION MUST NOT have the

namespace attribute specified on contained wsoap12:header,

wsoap12:headerfault and wsoap12:fault elements.
CORETESTABLEBP2117

In a document-literal SOAP binding, the serialized element child of the soap12:Body gets its namespace

from the targetNamespace of the schema that defines the element. Use of the namespace attribute of

the wsoap12:body element would override the element's namespace. This is not allowed by the Profile.

Conversely, in a rpc-literal SOAP binding, the serialized child element of the soap12:Body element

consists of a wrapper element, whose namespace is the value of the namespace attribute of the

wsoap12:body element and whose local name is either the name of the operation or the name of the

operation suffixed with "Response". The namespace attribute is required, as opposed to being optional,

to ensure that the children of the soap12:Body element are namespace-qualified.

4.7.10 Consistency of portType and binding Elements

The WSDL description must be consistent at both wsdl:portType and wsdl:binding levels.

R2718 A wsdl:binding in a DESCRIPTION MUST have the same set of

wsdl:operations as the wsdl:portType to which it refers.
CORETESTABLEBP2118

4.7.11 Enumeration of Faults

A Web service description should include all faults known at the time the service is defined. There is also
need to permit generation of new faults that had not been identified when the Web service was defined.

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 51 of 78

R2740 A wsdl:binding in a DESCRIPTION SHOULD contain a

wsoap12:fault describing each known fault. CORENOT_TESTABLE

R2741 A wsdl:binding in a DESCRIPTION SHOULD contain a

wsoap12:headerfault describing each known header fault.
CORENOT_TESTABLE

R2742 An ENVELOPE MAY contain a fault with a detail element that

is not described by a wsoap12:fault element in the
corresponding WSDL description. CORENOT_TESTABLE

R2743 An ENVELOPE MAY contain the details of a header processing
related fault in a SOAP header block that is not described by a

wsoap12:headerfault element in the corresponding WSDL
description. CORENOT_TESTABLE

4.7.12 Consistency of Envelopes with Descriptions

These requirements specify that when an instance receives an envelope that does not conform to the
WSDL description, a fault should be generated unless the instance takes it upon itself to process the
envelope regardless of this.

As specified by the SOAP processing model, (a) a "VersionMismatch" faultcode must be generated if the
namespace of the "Envelope" element is incorrect, (b) a "MustUnderstand" fault must be generated if the
instance does not understand a SOAP header block with a value of "1" for the

soap12:mustUnderstand attribute. In all other cases where an envelope is inconsistent with its WSDL

description, a fault with a "Client" faultcode should be generated.

R2724 If an INSTANCE receives an envelope that is inconsistent with

its WSDL description, it SHOULD generate a soap12:Fault
with a faultcode of "Client", unless a "MustUnderstand" or
"VersionMismatch" fault is generated. CORENOT_TESTED

R2725 If an INSTANCE receives an envelope that is inconsistent with
its WSDL description, it MUST check for "VersionMismatch",
"MustUnderstand" and "Client" fault conditions in that order.
CORENOT_TESTABLE

4.7.13 Response Wrappers

WSDL 1.1 Section 3.5 could be interpreted to mean the RPC response wrapper element must be named

identical to the name of the wsdl:operation.

R2729 An ENVELOPE described with an rpc-literal binding that is a
response MUST have a wrapper element whose name is the

corresponding wsdl:operation name suffixed with the string
"Response". CORETESTABLEBP1005

4.7.14 Part Accessors

For rpc-literal envelopes, WSDL 1.1 is not clear what namespace, if any, the accessor elements for
parameters and return value are a part of. Different implementations make different choices, leading to
interoperability problems.

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 52 of 78

R2735 An ENVELOPE described with an rpc-literal binding MUST place
the part accessor elements for parameters and return value in
no namespace. CORETESTABLEBP1008aBP1008b

R2755 The part accessor elements in a MESSAGE described with an
rpc-literal binding MUST have a local name of the same value

as the name attribute of the corresponding wsdl:part element.
CORETESTABLEBP1755aBP1755b

Settling on one alternative is crucial to achieving interoperability. The Profile places the part accessor
elements in no namespace as doing so is simple, covers all cases, and does not lead to logical
inconsistency.

4.7.15 Namespaces for Children of Part Accessors

For rpc-literal envelopes, WSDL 1.1 is not clear on what the correct namespace qualification is for the
child elements of the part accessor elements when the corresponding abstract parts are defined to be of

types from a different namespace than the targetNamespace of the WSDL description for the abstract

parts.

R2737 An ENVELOPE described with an rpc-literal binding MUST
namespace qualify the descendents of part accessor elements
for the parameters and the return value, as defined by the
schema in which the part accessor types are defined.
CORENOT_TESTABLE_XPATH

WSDL 1.1 Section 3.5 states: "The part names, types and value of the namespace attribute are all inputs
to the encoding, although the namespace attribute only applies to content not explicitly defined by the
abstract types."

However, it does not explicitly state that the element and attribute content of the abstract (complexType)
types is namespace qualified to the targetNamespace in which those elements and attributes were
defined. WSDL 1.1 was intended to function in much the same manner as XML Schema. Hence,
implementations must follow the same rules as for XML Schema. If a complexType defined in

targetNamespace "A" were imported and referenced in an element declaration in a schema with

targetNamespace "B", the element and attribute content of the child elements of that complexType

would be qualified to namespace "A" and the element would be qualified to namespace "B".

For example,
CORRECT:

Given this WSDL, which defines some schema in the "http://example.org/foo/" namespace in the

wsdl:types section contained within a wsdl:definitions that has a targetNamespace attribute

with the value "http://example.org/bar/" (thus, having a type declared in one namespace and the
containing element defined in another);

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsoap12="http://schemas.xmlsoap.org/wsdl/soap12/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:bar="http://example.org/bar/"

 targetNamespace="http://example.org/bar/"

 xmlns:foo="http://example.org/foo/">

 <types>

 <xsd:schema targetNamespace="http://example.org/foo/"

 xmlns:tns="http://example.org/foo/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 53 of 78

 attributeFormDefault="unqualified">

 <xsd:complexType name="fooType">

 <xsd:sequence>

 <xsd:element ref="tns:bar"/>

 <xsd:element ref="tns:baf"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="bar" type="xsd:string"/>

 <xsd:element name="baf" type="xsd:integer"/>

 </xsd:schema>

 </types>

 <message name="BarMsg">

 <part name="BarAccessor" type="foo:fooType"/>

 </message>

 <portType name="BarPortType">

 <operation name="BarOperation">

 <input message="bar:BarMsg"/>

 </operation>

 </portType>

 <binding name="BarSOAP12Binding" type="bar:BarPortType">

 <wsoap12:binding transport="http://schemas.xmlsoap.org/soap/http"

style="rpc"/>

 <operation name="BarOperation">

 <input>

 <wsoap12:body use="literal" namespace="http://example.org/bar/"/>

 </input>

 </operation>

 </binding>

 <service name="serviceName">

 <port name="BarSOAPPort" binding="bar:BarSOAP12Binding">

 <wsoap12:address location="http://example.org/myBarSOAPPort"/>

 </port>

 </service>

</definitions>

The resulting envelope for BarOperation is:

<s:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"

 xmlns:foo="http://example.org/foo/">

 <soap12:Header/>

 <soap12:Body>

 <m:BarOperation xmlns:m="http://example.org/bar/">

 <BarAccessor>

 <foo:bar>String</foo:bar>

 <foo:baf>0</foo:baf>

 </BarAccessor>

 </m:BarOperation>

 </soap12:Body>

</soap12:Envelope>

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 54 of 78

4.7.16 Required Headers

WSDL 1.1 does not clearly specify whether all wsoap12:headers specified on the wsdl:input or

wsdl:output elements of a wsdl:operation element in the SOAP binding section of a WSDL

description must be included in the resultant envelopes when they are transmitted. The Profile makes all
such headers mandatory, as there is no way in WSDL 1.1 to mark a header optional.

R2738 An ENVELOPE MUST include all wsoap12:headers specified on

a wsdl:input or wsdl:output of a wsdl:operation of a

wsdl:binding that describes it.
CORETESTABLEBP1009aBP1009bBP1009cBP1009d

4.7.17 Allowing Undescribed Headers

Headers are SOAP's extensibility mechanism. Headers that are not defined in the WSDL description may
need to be included in the envelopes for various reasons.

R2739 An ENVELOPE MAY contain SOAP header blocks that are not

described in the wsdl:binding that describes it. CORENOT_TESTED

R2753 An ENVELOPE containing SOAP header blocks that are not

described in the appropriate wsdl:binding MAY have the

mustUnderstand attribute on such SOAP header blocks set to
'1'. CORENOT_TESTED

4.7.18 Ordering Headers

There is no correlation between the order of wsoap12:headers in the description and the order of

SOAP header blocks in the envelope. Similarly, more than one instance of each specified SOAP header
block may occur in the envelope.

R2751 The order of wsoap12:header elements in wsoap12:binding
sections of a DESCRIPTION MUST be considered
independent of the order of SOAP header blocks in the
envelope. CORENOT_TESTABLE

R2752 An ENVELOPE MAY contain more than one instance of each

SOAP header block for each wsoap12:header element in the

appropriate child of wsoap12:binding in the corresponding
description. CORENOT_TESTED

4.7.19 Describing action Parameter on the Content-Type MIME Header

See Section 3.5.2 Parameters on the Content-Type MIME Header.

R2744 If the action parameter on the HTTP Content-Type header is
present in a MESSAGE, its value MUST be equal to the value

of the soapAction attribute of the corresponding

wsoap12:operation in the WSDL description, if this attribute is
present and not empty. HTTP-TRANSPORTTESTABLEBP1116aBP1116b

See also R1109 and related requirements for more discussion of action parameter on the Content-

Type MIME header.

For example,
CORRECT:

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 55 of 78

A WSDL Description that has:

<wsoap12:operation soapAction="http://example.org/foo"/>

results in a message with the action parameter on the Content-Type MIME header field-value set to:

"http://example.org/foo"

4.7.20 SOAPAction HTTP Header

Unlike SOAP 1.1, SOAP 1.2 HTTP binding does not use the SOAPAction HTTP header in the HTTP
Request messages. Relying on the presence of SOAPAction HTTP header or the value of SOAPAction
HTTP header may result in interoperability problems.

R2760 A RECEIVER MUST NOT rely on the presence of SOAPAction
HTTP header to correctly process the message. HTTP-

TRANSPORTNOT_TESTABLE

R2761 A SENDER SHOULD NOT include the SOAPAction HTTP
header. HTTP-TRANSPORTTESTABLEBP1761

4.7.21 SOAP Binding Extensions

The wsdl:required attribute has been widely misunderstood and used by WSDL authors sometimes to

incorrectly indicate the optionality of wsoap12:headers. The wsdl:required attribute, as specified in

WSDL 1.1, is an extensibility mechanism aimed at WSDL processors. It allows new WSDL extension

elements to be introduced in a graceful manner. The intent of wsdl:required is to signal to the WSDL

processor whether the extension element needs to be recognized and understood by the WSDL
processor in order that the WSDL description be correctly processed. It is not meant to signal
conditionality or optionality of some construct that is included in the envelopes. For example, a

wsdl:required attribute with the value "false" on a wsoap12:header element must not be interpreted

to signal to the WSDL processor that the described SOAP header block is conditional or optional in the
envelopes generated from the WSDL description. It is meant to be interpreted as "in order to send a

envelope to the endpoint that includes in its description the wsoap12:header element, the WSDL

processor MUST understand the semantic implied by the wsoap12:header element."

The default value for the wsdl:required attribute for WSDL 1.1 SOAP Binding extension elements is

"false". Most WSDL descriptions in practice do not specify the wsdl:required attribute on the SOAP

Binding extension elements, which could be interpreted by WSDL processors to mean that the extension
elements may be ignored. The Profile requires that all WSDL 1.1 extensions be understood and

processed by the consumer, irrespective of the presence or the value of the wsdl:required attribute on

an extension element.

R2747 A CONSUMER MUST understand and process all WSDL 1.1
SOAP Binding extension elements, irrespective of the

presence or absence of the wsdl:required attribute on an
extension element; and irrespective of the value of the

wsdl:required attribute, when present. CORENOT_TESTABLE

R2748 A CONSUMER MUST NOT interpret the presence of the

wsdl:required attribute on a wsoap12 extension element with a
value of "false" to mean the extension element is optional in
the envelopes generated from the WSDL description.
CORENOT_TESTABLE

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 56 of 78

4.8 Use of @soapActionRequired in WSDL 1.1 SOAP 1.2 Binding

This section of the Profile incorporates the following specifications by reference:

 WSDL 1.1 Binding Extension for SOAP 1.2 [WSDL11SOAP12]

The WSDL 1.1 Binding Extension for SOAP 1.2 incorporates an attribute called

wsoap12:soapActionRequired that has a default value of 'true'. This has the effect that, in order to

have the action parameter omitted from the Content-Type HTTP header field, one would need to

explicitly include the attribute in a description with a value of 'false'. The action parameter is defined by

SOAP 1.2 to be OPTIONAL so as to enable use cases in which the sender of a SOAP message wishes
to disallow casual inspection of the clear-text part of the message to infer its purpose or intent.
Additionally, implementations are cautioned that they SHOULD NOT require the parameter's presence in
a message in order to process the message.

The Profile WG believes that the wsoap12:soapActionRequired attribute runs counter to the SOAP

1.2 specification's intent. Therefore, the attribute has been profiled such that it MUST NOT be used, as it
would tend to eliminate the very use cases that lead to the design of the SOAP 1.2 action parameter.

R2756 A DESCRIPTION MUST NOT include the

wsoap12:soapActionRequired attribute. HTTP-

TRANSPORTTESTABLEBP2756

R2759 A CONSUMER MUST treat the absence of the

wsoap12:soapActionRequired attribute as if it had a value of
'false'. HTTP-TRANSPORTNOT_TESTED

R2758 A MESSAGE MAY omit the action parameter from the Content-

Type HTTP header field. HTTP-TRANSPORTNOT_TESTED

R2757 A RECEIVER MUST NOT fault due to the absence or presence

of the action parameter on the HTTP Content-Type header
field. HTTP-TRANSPORTTESTABLEBP1757

Although the WSDL 1.1 Binding Extension for SOAP 1.2 describes how the action parameter of the

Content-Type header field is set by the wsoap12:soapAction attribute of the wsoap12:operation

element, there are implementations that include the action parameter in request messages even in

cases where the wsoap12:soapAction attribute does not appear in the wsoap12:operation that

describes these requests. Note that, in some of these cases, the action parameter might have an empty

string ("") value.

4.9 Use of XML Schema

This section of the Profile incorporates the following specifications by reference:

 XML Schema Part 1: Structures [xmSchema-1]

 XML Schema Part 2: Datatypes [xmSchema-2]

WSDL 1.1 uses XML Schema as one of its type systems. The Profile mandates the use of XML Schema
as the type system for WSDL descriptions of Web Services.

R2800 A DESCRIPTION MAY use any construct from XML Schema
1.0. CORENOT_TESTED

http://www.w3.org/Submission/wsdl11soap12/
http://www.w3.org/Submission/2006/SUBM-wsdl11soap12-20060405/
http://www.w3.org/Submission/2006/SUBM-wsdl11soap12-20060405/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 57 of 78

R2801 A DESCRIPTION MUST use XML Schema 1.0
Recommendation as the basis of user defined datatypes and
structures. CORETESTABLEBP2122

4.10 4.10 WS-Addressing 1.0 - Metadata

WS-Addressing message addressing properties (MAPs) can be specified in a WSDL document. The
Profile adds restrictions to such properties specified in WSDL.

The wsam:Action attribute is used in WSDL to specify the value of the wsa:Action SOAP header in

the envelope. A default value computation algorithm is specified for the case where an explicit

wsam:Action attribute is not specified.

R2900 The value of the wsa:Action header block in an ENVELOPE
MUST equal the value (either actual or computed) of the

wsam:Action attribute for the corresponding WSDL element

(wsdl:input, wsdl:output, or wsdl:fault) contained in the

target wsdl:operation of the wsdl:portType.
CORETESTABLEBP1142aBP1142bBP1142cBP1143aBP1143bBP1143cBP1090aBP109
0b

R2901 In a DESCRIPTION, the actual value of the wsam:Action

attribute for the wsdl:input element contained in the target

wsdl:operation of the wsdl:portType MUST be equal to the

value of the soapAction attribute, if present, of the

wsoap12:operation element contained in the target

wsdl:operation of the wsdl:binding. CORETESTABLEBP2801

Note that this requirement is closely related to R1144, which defines the relationship between the value of

the wsa:Action SOAP header and the value of the action parameter of the HTTP Content-Type MIME

header.

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 58 of 78

5 WSDL Corrections

The following sections contain requirements that correct errors and inconsistencies in the Web Services
Description Language (WSDL) 1.1. These have been collected into this common section to serve as a
reference point for other specifications.

This section of the Profile incorporates the following specifications by reference:

 Web Services Description Language (WSDL) 1.1 [WSDL1.1]

 XML Schema Part 1: Structures [xmSchema-1]

 XML Schema Part 2: Datatypes [xmSchema-2]

These extensibility points are listed, along with any extensibility points from other sections of this Profile,
in Appendix A

5.1 Document Structure

WSDL 1.1, Section 2.1 defines the overall structure of an XML document for describing Web services.
This Profile mandates the use of that structure, with the following corrections:

5.1.1 WSDL Schema Definitions

The normative schemas for WSDL appearing in Appendix 4 of the WSDL 1.1 specification have
inconsistencies with the normative text of the specification. The Profile references new schema
documents that have incorporated fixes for known errors.

R2028 A DESCRIPTION using the WSDL namespace (prefixed "wsdl"
in this Profile) MUST be valid according to the XML Schema
found at "http://ws-i.org/profiles/basic/1.1/wsdl-2004-08-
24.xsd". CORETESTABLEBP2705

R2029 A DESCRIPTION using the WSDL SOAP binding namespace
(prefixed "wsoap12" in this Profile) MUST be valid according to
the XML Schema found at "
http://schemas.xmlsoap.org/wsdl/soap12/wsdl11soap12-
20060302.xsd". CORETESTABLEBP2704

Although the Profile requires WSDL descriptions to be Schema valid, it does not require consumers to
validate WSDL documents. It is the responsibility of a WSDL document's author to assure that it is
Schema valid.

5.1.2 WSDL and Schema Import

Some examples in WSDL 1.1 incorrectly show the WSDL import statement being used to import XML
Schema definitions. The Profile clarifies use of the import mechanisms to keep them consistent and
confined to their respective domains. Imported schema documents are also constrained by XML version
and encoding requirements consistent to those of the importing WSDL documents.

R2001 A DESCRIPTION MUST only use the WSDL "import" statement
to import another WSDL description. CORETESTABLEBP2101

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315#_document-s
http://ws-i.org/profiles/basic/1.1/wsdl-2004-08-24.xsd
http://ws-i.org/profiles/basic/1.1/wsdl-2004-08-24.xsd
http://schemas.xmlsoap.org/wsdl/soap12/wsdl11soap12-20060302.xsd
http://schemas.xmlsoap.org/wsdl/soap12/wsdl11soap12-20060302.xsd
http://schemas.xmlsoap.org/wsdl/soap12/wsdl11soap12-20060302.xsd

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 59 of 78

R2803 In a DESCRIPTION, the namespace attribute of the wsdl:import
MUST NOT be a relative URI. CORETESTABLEBP2803

R2002 To import XML Schema Definitions, a DESCRIPTION MUST use
the XML Schema "import" statement. CORETESTABLEBP2101

R2003 A DESCRIPTION MUST use the XML Schema "import"

statement only within the xsd:schema element of the types
section. CORETESTABLEBP2103

R2004 In a DESCRIPTION the schemaLocation attribute of an
xsd:import element MUST NOT resolve to any document
whose root element is not "schema" from the namespace
"http://www.w3.org/2001/XMLSchema". CORETESTABLEBP2106

R2009 An XML Schema directly or indirectly imported by a
DESCRIPTION MAY include the Unicode Byte Order Mark
(BOM). CORENOT_TESTABLE

R2010 An XML Schema directly or indirectly imported by a
DESCRIPTION MUST use either UTF-8 or UTF-16 encoding.
CORETESTABLEBP2202

R2011 An XML Schema directly or indirectly imported by a
DESCRIPTION MUST use version 1.0 of the eXtensible
Markup Language W3C Recommendation. CORENOT_TESTED

For example,
INCORRECT:

<definitions name="StockQuote"

 targetNamespace="http://example.com/stockquote/definitions"

 xmlns:sq="http://example.com/stockquote"

 ...

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import namespace="http://example.com/stockquote"

 location="http://example.com/stockquote/schemas/stockquote.xsd"/>

 <message name="GetLastTradePriceInput">

 <part name="body" element="sq:TradePriceRequest"/>

 </message>

 ...

</definitions>

CORRECT:

<definitions name="StockQuote"

 targetNamespace="http://example.com/stockquote/definitions"

 xmlns:sq="http://example.com/stockquote"

 ...

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import namespace="http://example.com/stockquote/definitions"

location="http://example.com/stockquote/definitions/stockquote.wsdl"/>

 <message name="GetLastTradePriceInput">

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 60 of 78

 <part name="body" element="sq:TradePriceRequest"/>

 </message>

 ...

</definitions>

CORRECT:

<definitions name="StockQuote"

 targetNamespace="http://example.com/stockquote/definitions"

 xmlns:sq="http://example.com/stockquote"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 ...

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>

 <xsd:schema targetNamespace="http://example.com/stockquote">

 <xsd:import namespace="http://example.com/stockquote"

schemaLocation="http://example.com/stockquote/schemas/stockquote.xsd"/>

 <xsd:element name="TradePriceRequest" type="sq:PriceRequestType"/>

 </xsd:schema>

 </types>

 <message name="GetLastTradePriceInput">

 <part name="body" element="sq:TradePriceRequest"/>

 </message>

 ...

</definitions>

5.1.3 Placement of WSDL import Elements

Example 3 in WSDL 1.1 Section 3.1 causes confusion regarding the placement of wsdl:import.

R2022 When they appear in a DESCRIPTION, wsdl:import elements
MUST precede all other elements from the WSDL namespace

except wsdl:documentation. CORETESTABLEBP2105

R2023 When they appear in a DESCRIPTION, wsdl:types elements
MUST precede all other elements from the WSDL namespace

except wsdl:documentation and wsdl:import.
CORETESTABLEBP2018

For example,
INCORRECT:

<definitions name="StockQuote"

 ...

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="GetLastTradePriceInput">

 <part name="body" element="sq:TradePriceRequest"/>

 </message>

 ...

 <import namespace="http://example.com/stockquote/definitions"

location="http://example.com/stockquote/definitions/stockquote.wsdl"/>

 ...

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteSoap">

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 61 of 78

 ...

 </port>

 </service>

</definitions>

CORRECT:

<definitions name="StockQuote"

 ...

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import namespace="http://example.com/stockquote/definitions"

location="http://example.com/stockquote/definitions/stockquote.wsdl"/>

 <message name="GetLastTradePriceInput">

 <part name="body" element="sq:TradePriceRequest"/>

 </message>

 ...

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteSoap">

 ...

 </port>

 </service>

</definitions>

INCORRECT:

<definitions name="StockQuote"

 ...

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="GetLastTradePriceInput">

 <part name="body" element="sq:TradePriceRequest"/>

 </message>

 ...

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteSoap">

 ...

 </port>

 </service>

 <types>

 <xsd:schema targetNamespace="http://example.com/stockquote">

 ...

 </xsd:schema>

 </types>

</definitions>

CORRECT:

<definitions name="StockQuote"

 ...

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import namespace="http://example.com/stockquote/definitions"

location="http://example.com/stockquote/definitions/stockquote.wsdl"/>

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 62 of 78

 <types>

 <xsd:schema targetNamespace="http://example.com/stockquote">

 ...

 </xsd:schema>

 </types>

 <message name="GetLastTradePriceInput">

 <part name="body" element="sq:TradePriceRequest"/>

 </message>

 ...

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteSoap">

 ...

 </port>

 </service>

</definitions>

5.1.4 WSDL documentation Element

The WSDL 1.1 schema and the WSDL 1.1 specification are inconsistent with respect to where

wsdl:documentation elements may be placed.

R2030 In a DESCRIPTION the wsdl:documentation element MAY be

present as the first child element of wsdl:import, wsdl:part

and wsdl:definitions in addition to the elements cited in the
WSDL 1.1 specification. CORENOT_TESTED

5.2 Message

WSDL 1.1, Section 2.3 defines the wsdl:message elements that are used to represent abstract

definitions of the data being transmitted. This Profile defines the following corrections on wsdl:message

elements.

5.2.1 Declaration of part Elements

Examples 4 and 5 in WSDL 1.1 Section 3.1 incorrectly show the use of XML Schema types (e.g.

"xsd:string") as a valid value for the element attribute of a wsdl:part element.

R2206 A wsdl:message in a DESCRIPTION containing a wsdl:part that

uses the element attribute MUST refer, in that attribute, to a
global element declaration. CORETESTABLEBP2115

For example,
INCORRECT:

<message name="GetTradePriceInput">

 <part name="tickerSymbol" element="xsd:string"/>

</message>

CORRECT:

<message name="GetTradePriceInput">

 <part name="body" element="tns:SubscribeToQuotes"/>

</message>

http://www.w3.org/TR/2001/NOTE-wsdl-20010315#_messages

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 63 of 78

5.3 SOAP Binding

The WSDL 1.1 Binding Extension for SOAP 1.2 defines a binding for SOAP 1.2 endpoints. This Profile
mandates the use of the SOAP 1.2 binding as defined in WSDL 1.1 Binding Extension for SOAP 1.2, with
the following corrections:

5.3.1 Specifying the transport Attribute

There is an inconsistency between the WSDL 1.1 specification and the WSDL 1.1 schema regarding the

transport attribute. The WSDL 1.1 specification requires it; however, the schema shows it to be

optional.

R2701 The wsdl:binding element in a DESCRIPTION MUST be

constructed so that its wsoap12:binding child element specifies

the transport attribute. CORETESTABLEBP2403

5.3.2 SOAP 1.2 Binding Extension

R2179 In a DESCRIPTION, a wsoap12:fault MUST specify the

contents of the SOAP 1.2 fault Detail element.
CORENOT_TESTABLE

The wsoap12:fault element is meant to describe the SOAP 1.2 fault detail entries. WSDL 1.1 Binding

Extension for SOAP 1.2 incorrectly says that it specifies the contents of the Reason element.

5.3.3 Type and Name of SOAP Binding Elements

The WSDL 1.1 schema disagrees with the WSDL 1.1 specification about the name and type of an

attribute of the wsoap12:header and wsoap12:headerfault elements.

R2720 A wsdl:binding in a DESCRIPTION MUST use the part
attribute with a schema type of "NMTOKEN" on all contained

wsoap12:header and wsoap12:headerfault elements.
CORETESTABLEBP2021

R2749 A wsdl:binding in a DESCRIPTION MUST NOT use the parts

attribute on contained wsoap12:header and

wsoap12:headerfault elements. CORETESTABLEBP2021

The WSDL Schema gives the attribute's name as "parts" and its type as "NMTOKENS". The schema is

incorrect since each wsoap12:header and wsoap12:headerfault element references a single

wsdl:part.

For example,
CORRECT:

<binding name="StockQuoteSoap" type="tns:StockQuotePortType">

 <wsoap12:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="SubscribeToQuotes">

 <input>

 <wsoap12:body parts="body" use="literal"/>

 <wsoap12:header message="tns:SubscribeToQuotes" part="subscribeheader"

use="literal"/>

 </input>

 </operation>

</binding>

http://www.w3.org/Submission/2006/SUBM-wsdl11soap12-20060405/

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 64 of 78

5.3.4 name Attribute on Faults

There is inconsistency between the WSDL 1.1 specification and the WSDL 1.1 schema, which does not

list the name attribute.

R2721 A wsdl:binding in a DESCRIPTION MUST have the name

attribute specified on all contained wsoap12:fault elements.
CORETESTABLEBP2022

R2754 In a DESCRIPTION, the value of the name attribute on a

wsoap12:fault element MUST match the value of the name

attribute on its parent wsdl:fault element. CORETESTABLEBP2032

5.3.5 Omission of the use Attribute

There is inconsistency between the WSDL 1.1 specification and the WSDL 1.1 schema regarding the use

attribute.

R2722 A wsdl:binding in a DESCRIPTION MAY specify the use

attribute on contained wsoap12:fault elements. CORENOT_TESTED

R2723 If in a wsdl:binding in a DESCRIPTION the use attribute on a

contained wsoap12:fault element is present, its value MUST
be "literal". CORETESTABLEBP2406

WSDL 1.1 Section 3.6 indicates that the use attribute of wsoap12:fault is required while in the

schema the use attribute is defined as optional. The Profile defines it as optional, to be consistent with

wsoap12:body.

Since the use attribute is optional, the Profile identifies the default value for the attribute when omitted.

Finally, to assure that the Profile is self-consistent, the only permitted value for the use attribute is

"literal".

5.3.6 Default for use Attribute

There is an inconsistency between the WSDL 1.1 specification and the WSDL 1.1 schema regarding

whether the use attribute is optional on wsoap12:body, wsoap12:header, and

wsoap12:headerfault, and if so, what omitting the attribute means.

R2707 A wsdl:binding in a DESCRIPTION that contains one or more

wsoap12:body, wsoap12:fault, wsoap12:header or

wsoap12:headerfault elements that do not specify the use
attribute MUST be interpreted as though the value "literal" had
been specified in each case. CORENOT_TESTABLE

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 65 of 78

6 Service Publication and Discovery

When publication or discovery of Web services is required, UDDI is the mechanism the Profile has
adopted to describe Web service providers and the Web services they provide. Business, intended use,
and Web service type descriptions are made in UDDI terms; detailed technical descriptions are made in
WSDL terms. Where the two specifications define overlapping descriptive data and both forms of
description are used, the Profile specifies that the descriptions must not conflict.

Registration of Web service instances in UDDI registries is optional. By no means do all usage scenarios
require the kind of metadata and discovery UDDI provides, but where such capability is needed, UDDI is
the sanctioned mechanism.

Note that the Web services that constitute UDDI V2 are not fully conformant with the Profile 1.0 because
they do not accept messages whose envelopes are encoded in either UTF-8 and UTF-16 as required by
the Profile. (They accept UTF-8 only.) That there should be such a discrepancy is hardly surprising given
that UDDI V2 was designed and, in many cases, implemented before the Profile was developed. UDDI's
designers are aware of UDDI V2's nonconformance and will take it into consideration in their future work.

This section of the Profile incorporates the following specifications by reference:

 UDDI Version 2.04 API Specification, Dated 19 July 2002 [UDDI2.04API]

 UDDI Version 2.03 Data Structure Reference, Dated 19 July 2002 [UDDI2.03Data]

 UDDI Version 2 XML Schema [UDDI2schema]

These extensibility points are listed, along with any extensibility points from other sections of this Profile,
in Appendix B

6.1 bindingTemplates

This section of the Profile incorporates the following specifications by reference:

 UDDI Version 2.03 Data Structure Reference [UDDI2.03Data] , Section 7

UDDI represents Web service instances as uddi:bindingTemplate elements. The

uddi:bindingTemplate plays a role that is the rough analog of the wsdl:port, but provides options

that are not expressible in WSDL. To keep the WSDL description of an instance and its UDDI description

consistent, the Profile places the following constraints on how uddi:bindingTemplate elements may

be constructed.

WSDL's wsoap12:address element requires the network address of the instance to be directly

specified. In contrast, UDDI V2 provides two alternatives for specifying the network address of instances it

represents. One, the uddi:accessPoint, mirrors the WSDL mechanism by directly specifying the

address. The other, the uddi:hostingRedirector, provides a Web service-based indirection

mechanism for resolving the address, and is inconsistent with the WSDL mechanism.

R3100 REGDATA of type uddi:bindingTemplate representing a

conformant INSTANCE MUST contain the uddi:accessPoint
element. CORENOT_TESTED

For example,

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm
http://uddi.org/schema/uddi_v2.xsd
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130769

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 66 of 78

INCORRECT:

<bindingTemplate bindingKey="...">

 <description xml:lang="EN">BarSOAPPort</description>

 <hostingRedirector bindingKey="..."/>

 <tModelInstanceDetails>

 ...

 </tModelInstanceDetails>

</bindingTemplate>

CORRECT:

<bindingTemplate bindingKey="...">

 <description xml:lang="EN">BarSOAPPort</description>

 <accessPoint>http://example.org/myBarSOAPPort</accessPoint>

 <tModelInstanceDetails>

 ...

 </tModelInstanceDetails>

</bindingTemplate>

6.2 tModels

This section of the Profile incorporates the following specifications by reference:

 UDDI Version 2.03 Data Structure Reference [UDDI2.03Data], Section 8

UDDI represents Web service types as uddi:tModel elements. (See UDDI Data Structures section

8.1.1.) These may, but need not, point (using a URI) to the document that contains the actual description.
Further, UDDI is agnostic with respect to the mechanisms used to describe Web service types. The
Profile cannot be agnostic about this because interoperation is very much complicated if Web service
types do not have descriptions or if the descriptions can take arbitrary forms.

The UDDI API Specification, appendix I.1.2.1.1 allows but does not require uddi:tModel elements that

use WSDL to describe the Web service type they represent to state that they use WSDL as the
description language. Not doing so leads to interoperability problems because it is then ambiguous what
description language is being used.

Therefore the Profile places the following constraints on how uddi:tModel elements that describe Web

service types may be constructed:

The Profile chooses WSDL as the description language because it is by far the most widely used such
language.

R3002 REGDATA of type uddi:tModel representing a conformant Web
service type MUST use WSDL as the description language.
CORENOT_TESTED

To specify that conformant Web service types use WSDL, the Profile adopts the UDDI categorization for
making this assertion.

R3003 REGDATA of type uddi:tModel representing a conformant Web
service type MUST be categorized using the uddi:types
taxonomy and a categorization of "wsdlSpec". CORENOT_TESTED

For the uddi:overviewURL in a uddi:tModel to resolve to a wsdl:binding, the Profile must adopt

a convention for distinguishing among multiple wsdl:bindings in a WSDL document. The UDDI Best

Practice for Using WSDL in a UDDI Registry specifies the most widely recognized such convention.

http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130775
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130777
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130777
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137792

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 67 of 78

R3010 REGDATA of type uddi:tModel representing a conformant Web
service type MUST follow V1.08 of the UDDI Best Practice for
Using WSDL in a UDDI Registry. CORENOT_TESTED

It would be inconsistent if the wsdl:binding that is referenced by the uddi:tModel does not conform

to the Profile.

R3011 The wsdl:binding that is referenced by REGDATA of type

uddi:tModel MUST itself conform to the Profile. CORENOT_TESTED

http://www.oasis-open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-using-wsdl-v108-20021110.htm
http://www.oasis-open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-using-wsdl-v108-20021110.htm

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 68 of 78

7 Security

As is true of all network-oriented information technologies, the subject of security is a crucial one for Web
services. For Web services, as for other information technologies, security consists of understanding the
potential threats an attacker may mount and applying operational, physical, and technological
countermeasures to reduce the risk of a successful attack to an acceptable level. Because an "acceptable
level of risk" varies hugely depending on the application, and because costs of implementing
countermeasures is also highly variable, there can be no universal "right answer" for securing Web
services. Choosing the absolutely correct balance of countermeasures and acceptable risk can only be
done on a case by case basis.

While Basic Profile conformance is important for the web services community to ensure interoperability,
an instance is expected take whatever security countermeasures it deems necessary to protect itself;
even if in that specific case it is acting outside of and is not in conformance with this Profile.

There are common patterns of countermeasures that experience shows reduce the risks to acceptable
levels for many Web services. The Profile adopts, but does not mandate use of, the most widely used of
these: HTTP secured with either TLS 1.0 or SSL 3.0 (HTTPS). That is, conformant Web services may use
HTTPS; they may also use other countermeasure technologies or none at all.

HTTPS is widely regarded as a mature standard for encrypted transport connections to provide a basic
level of confidentiality. HTTPS thus forms the first and simplest means of achieving some basic security
features that are required by many real-world Web service applications. HTTPS may also be used to
provide client authentication through the use of client-side certificates.

See conformance criteria in Section 2 when the HTTP(S) transport protocol is used.

This section of the Profile incorporates the following specifications by reference, and defines extensibility
points within them:

 RFC2818: HTTP Over TLS [RFC2818]

 RFC2246: The TLS Protocol Version 1.0 [RFC2246]
Extensibility points:

o E0019 - TLS Cyphersuite - TLS allows for the use of arbitrary encryption
algorithms.HTTP-TRANSPORT

o E0020 - TLS Extensions - TLS allows for extensions during the handshake phase.HTTP-

TRANSPORT

 The SSL Protocol Version 3.0 [SSLV3]
Extensibility points:

o E0021 - SSL Cyphersuite - SSL allows for the use of arbitrary encryption
algorithms.HTTP-TRANSPORT

 RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL Profile [RFC2459]
Extensibility points:

o E0022 - Certificate Authority - The choice of the Certificate Authority is a private
agreement between parties.HTTP-TRANSPORT

o E0023 - Certificate Extensions - X509 allows for arbitrary certificate extensions.HTTP-
TRANSPORT

These extensibility points are listed, along with any extensibility points from other sections of this Profile,
in Appendix B

http://www.ietf.org/rfc/rfc2818
http://www.ietf.org/rfc/rfc2246
http://wp.netscape.com/eng/ssl3/draft302.txt
http://www.ietf.org/rfc/rfc2459

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 69 of 78

7.1 Use of HTTPS

HTTPS is such a useful, widely understood basic security mechanism that the Profile needs to allow it.

R5000 An INSTANCE MAY require the use of HTTPS. HTTP-

TRANSPORTNOT_TESTED

R5001 If an INSTANCE requires the use of HTTPS, the location

attribute of the wsoap12:address element in its wsdl:port
description MUST be a URI whose scheme is "https";
otherwise it MUST be a URI whose scheme is "http". HTTP-

TRANSPORTNOT_TESTED

Simple HTTPS provides authentication of the Web service instance by the consumer but not
authentication of the consumer by the instance. For many instances this leaves the risk too high to permit
interoperation. Including the mutual authentication facility of HTTPS in the Profile permits instances to use
the countermeasure of authenticating the consumer. In cases in which authentication of the instance by
the consumer is insufficient, this often reduces the risk sufficiently to permit interoperation.

R5010 An INSTANCE MAY require the use of HTTPS with mutual
authentication. HTTP-TRANSPORTNOT_TESTED

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 70 of 78

Appendix A. Extensibility Points

This section identifies extensibility points, as defined in "Scope of the Profile," for the Profile's component
specifications.

These mechanisms are out of the scope of the Profile and Profile conformance. An initial, non-exhaustive
list of these extensibility points is provided here as their use may affect interoperability. In order to avoid
interoperability issues not addressed by the Profile, out-of-band agreement on the use of these
extensibility points may be necessary between the parties to a Web service.

In SOAP Version 1.2 Part 1: Messaging Framework (Second Edition) [SOAP12part1]:

 E0001 - Header blocks - Header blocks are an extensibility mechanism in
SOAP.CORETESTABLEBP1901

 E0002 - Processing order - The order of processing of a SOAP envelope's components (e.g.,
headers) is unspecified, and therefore may need to be negotiated out-of-
band.CORENOT_TESTABLE

 E0003 - Use of intermediaries - SOAP Intermediaries is an underspecified mechanism in SOAP
1.2, and their use may require out-of-band negotiation. Their use may also necessitate careful
consideration of where Profile conformance is measured.CORENOT_TESTABLE

 E0004 - SOAP role values - Values of the SOAP role attribute, other than the special uri
'http://www.w3.org/2003/05/soap-envelope/role/next', represent a private agreement between
parties of the web service.CORETESTABLEBP1904

 E0005 - Fault details - Faults may have Detail elements. The contents of these elements are not
described in SOAP 1.2.CORETESTABLEBP1905

 E0024 - Namespace Attributes - Namespace attributes on soap12:Envelope and
soap12:Header elementsCORETESTABLE

 E0025 - Attributes on soap12:Body elements - Neither namespaced nor local attributes are
constrained by SOAP 1.2.CORETESTABLE

In SOAP Version 1.2 Part 2: Adjuncts (Second Edition) [SOAP12part2]:

 E0026 - SOAP envelope in HTTP Response message to WSDL one-way operation - The
SOAP 1.2 Request Response Binding specification does not specify the purpose or processing of
such envelopes.HTTP-TRANSPORTTESTABLE

In RFC2616: Hypertext Transfer Protocol -- HTTP/1.1 [RFC2616]:

 E0007 - HTTP Authentication - HTTP authentication allows for extension schemes, arbitrary
digest hash algorithms and parameters.HTTP-TRANSPORTTESTABLE

 E0008 - Unspecified Header Fields - HTTP allows arbitrary headers to occur in messages.HTTP-

TRANSPORTTESTABLE

 E0010 - Content-Encoding - The set of content-codings allowed by HTTP is open-ended and
any besides 'gzip', 'compress', or 'deflate' are an extensibility point.HTTP-TRANSPORTTESTABLE

 E0011 - Transfer-Encoding - The set of transfer-encodings allowed by HTTP is open-
ended.HTTP-TRANSPORTTESTABLE

 E0029 - Use of messages other than SOAP 1.2 or XOP messages - Use of Messages other
than a SIMPLE_SOAP_MESSAGE or a XOP_ENCODED_MESSAGE is an extensibility
pointCORETESTABLE

In WS-Addressing 1.0 - SOAP Binding [WSAddrSoap] (except for sections 4, 5.1.1, 5.2.1 and 6.2):

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/
http://www.ietf.org/rfc/rfc2616
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 71 of 78

 E0027 - Use of SOAP role attribute and WS-Addressing - WS-Addressing allows multiple
instances of headers such as wsa:To, wsa:ReplyTo, and wsa:FaultTo, so long as they are
targeted to different SOAP roles.CORETESTABLE

 E0028 - Endpoint references are extensible - When extension attributes or elements appear as
part of an endpoint reference, the processing model for such extensions is defined by the
specification for those extensions.CORENOT_TESTABLE

In XML Schema Part 1: Structures [xmSchema-1]:

 E0017 - Schema annotations - XML Schema allows for annotations, which may be used to
convey additional information about data structures.CORE

In Web Services Description Language (WSDL) 1.1 [WSDL1.1]:

 E0013 - WSDL extensions - WSDL allows extension elements and attributes in certain places,
including the use and specification of alternate protocol binding extensions; use of such
extensions requires out-of-band negotiation.CORE

 E0014 - Validation mode - whether the parser used to read WSDL and XML Schema documents
performs DTD validation or not.CORE

 E0015 - Fetching of external resources - whether the parser used to read WSDL and XML
Schema documents fetches external entities and DTDs.CORE

 E0016 - Relative URIs - WSDL does not adequately specify the use of relative URIs for the
following: wsoap12:body/@namespace, wsoap12:address/@location, wsdl:import/@location,
xsd:schema/@targetNamespace and xsd:import/@schemaLocation. Their use may require
further coordination; see XML Base for more information.CORE

In RFC2246: The TLS Protocol Version 1.0 [RFC2246]:

 E0019 - TLS Cyphersuite - TLS allows for the use of arbitrary encryption algorithms.HTTP-

TRANSPORT

 E0020 - TLS Extensions - TLS allows for extensions during the handshake phase.HTTP-

TRANSPORT

In The SSL Protocol Version 3.0 [SSLV3]:

 E0021 - SSL Cyphersuite - SSL allows for the use of arbitrary encryption algorithms.HTTP-

TRANSPORT

In RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL Profile [RFC2459]:

 E0022 - Certificate Authority - The choice of the Certificate Authority is a private agreement
between parties.HTTP-TRANSPORT

 E0023 - Certificate Extensions - X509 allows for arbitrary certificate extensions.HTTP-

TRANSPORT

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ietf.org/rfc/rfc2246
http://wp.netscape.com/eng/ssl3/draft302.txt
http://www.ietf.org/rfc/rfc2459

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 72 of 78

Appendix B. Schemas

A non-normative copy of the XML Schema for WS-Policy conformance claims is listed below for
convenience:

<xs:schema targetNamespace='http://ws-i.org/profiles/basic-profile/2.0/'

 xmlns:xs='http://www.w3.org/2001/XMLSchema'

 elementFormDefault='qualified'

 blockDefault='#all'>

 <xs:element name='Conformant'>

 <xs:complexType>

 <xs:sequence>

 <xs:any namespace='##other' processContents='lax' minOccurs='0'
maxOccurs='unbounded'/>

 </xs:sequence>

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 </xs:element>

</xs:schema>

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 73 of 78

Appendix C. Testing

C.1 Testability of Requirements

The testability of each requirement is represented by the following tags:

 TESTABLE: This means that the requirement could be tested, and that some test assertion(s)
has been written for it.

 TESTABLE_SCENARIO_DEPENDENT: This means that a specific test scenario is needed in
order to exercise the related test assertion, because the test assertion is designed to trigger only
on specific input material. Producing this input material requires executing a scenario with specific
data that is very unlikely to be produced by systems in production under normal operating
conditions (e.g. material known to NEVER be recognizable by an endpoint.)

 NOT_TESTED: This is the case for most optional requirements (SHOULD, MAY), and for most
Extensibility points as well as for requirements targeting UDDI. Some requirements may also
require Schema awareness (ability to process schemas) from the Analyzer test tool. As this
conflicted with the ability to use several freely available XSLT20 processors that are not Schema
aware, such requirements have been marked "NOT_TESTED" unless this verification was done
by tools prior to creating the test log file, which would then just contain some metadata indicating
the results of these schema-realted tests. A subsequent version may cover untested
requirements. In this profile, the core requirements for assessing interoperability of
implementations have been initially targeted

 NOT_TESTABLE: This means that these requirements cannot be tested based on the technology
choices (black-box testing, XPath scripting)

C.2 Structure of Test Assertions

The test assertions are structured in XML, with some elements scripted using XPath2.0 and are
automatically processable using the version 2.0 of the WS-I Analyzer tools.

Test Assertion Part What it means:

Test Assertion ID (required)

[markup: testAssertion/@id]

A unique ID for the current test assertion.

Description (optional)

[markup: testAssertion/description]

A plain text description of the current test assertion. At
minimum expressing the TA predicate.

Comments (optional)

[markup: testAssertion/comments]

A plain text comment about the TA script and how well it covers
the profile requirement. Explanation material for users, and
developers (what could be improved, etc.).

Target (required)
The artifacts to be tested, defined by an XPath expression that
returns a list of XML nodes from the log file in input. For every

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 74 of 78

[markup: testAssertion/target]

artifact (node) selected by the Target expression, there will be a
report entry for this TA in the test report, with a result of either:

 passed

 failed

 warning

 notApplicable

 notRelevant

 missingInput

 undetermined

See the "reporting" item for the meaning of these results.

Cotarget (optional)

[markup: testAssertion/cotarget]

Artifact that is related to the target, and that needs be accessed
for the testing. Identified by an XPath expression that may refer
to the related target node using the variable '$target'.

For example, the target can be a SOAP message and the
cotarget the WSDL file that describes this SOAP message.

A cotarget must have a @name attribute that identifies it. The
value of this attribute can be used as a variable (when
prepending '$' to it) by subsequently defined cotargets,
prerequisite and predicate.

Prerequisite (optional)

[markup: testAssertion/@preReq]
(optional)

[markup: testAssertion/prerequisite]
(optional)

The pre-condition for evaluating this Test Assertion on this
target. If the prerequisite evaluates to "false" then the target
does not qualify for this Test Assertion (the test report is
"notRelevant")

The first part (preReq attribute) is an enumeration of Test
Assertion IDs. Each one of the prerequisite TAs must either use
the same target (e.g. SOAP Envelope, or WSDL binding, etc.)
as this TA, or a target that is of a more general type than the
main TA target. The target must "pass" each one of these
prerequisite TAs in order to qualify for this TA.

(e.g. the target of TA t1 can be a WSDL binding while the target
of a TA t2 prerequisite of t1, can be the entire WSDL file).

The second part ("prerequisite" element) is an XPath (boolean)
expression of the same nature as the predicate. If present, it
must evaluate to "true" for the target to qualify. If it fails, the
result for the current TA in the report will be "notRelevant".
Otherwise, the target can be further evaluated by the predicate
of the main TA. The expression may refer to the target explicitly
using the variable name "$target", or to any cotarget using its
name as variable name ($[name]).

Predicate (required)

[markup: testAssertion/predicate]

A logical expression that evaluates whether this target is
fulfilling the profile requirement addressed by this test
Assertion. By default:

- A result of true means the requirement is fulfilled (reported as
a "passed" in the test report).
- A result of false means the requirement is violated (reported

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 75 of 78

as a "failed" in the test report).

However, in some cases and for testability reasons, the
predicate may be designed as a partial indicator e.g. only
indicates some cases of fulfillment, or some cases of violation.
As a result, when "true" indicates fulfillment it may be that
"false" is unconclusive, or conversely "false" will indicate
violation, but "true" is unconclusive. In such cases, the
"Reporting" element specifies the meaning of the predicate
result w/r to the profile requirement.

The predicate expression implicitly refers to the target (whic is
its "XPath context") although it may explicitly refer to it using the
variable name "$target". It may refer to any cotarget using its
name as variable name ($[name]).

Prescription (required)

[markup:
testAssertion/prescription/@level]

Conveys the level of prescription associated with the profile
requirement. At least three values may be used:

 mandatory: maps to RFC2119 keywords MUST,
MUST NOT, SHALL, SHALL NOT, REQUIRED (and
sometimes MAY NOT)

 preferred: maps to RFC2119 keywords SHOULD,
SHOULD NOT, RECOMMENDED, NOT
RECOMMENDED

 permitted: maps to RFC2119 keywords MAY,
OPTIONAL.

Reporting (optional)

[markup: testAssertion/reporting]

For each possible outcome of the predicate (true or false),
specifies how it must be interpreted w/r to the profile feature.
Two attributes are used that both must be present, when this
element is present:

 @true attribute: may take values among {passed,
failed, warning, undetermined} (default is 'passed')

 @false attribute: may take values among {passed,
failed, warning, undetermined} (default is 'failed')

The reported outcomes have the following meaning:

 passed: the target passes the test and can be
considered as fulfilling the profile feature.

 failed: the target fails the test and can be considered
as violating (or not exhibiting) the profile feature.

 warning: the test result is inconclusive. There is a
possibility of profile requirement violation, that deserved
further investigation.

 undetermined: the test result is inconclusive for this
predicate value.

NOTES: the predicate of the TA may be worded in a negative
way so that @false='passed' although that is not
recommended. The result of a test should not be related to the
prescription level, e.g. a "preferred" or "permitted" level should

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 76 of 78

not imply that @false='warning'.

Other test results that are automatically generated and not
controlled by the "reporting" element are:

 notRelevant: the target failed the prerequisite condition
and therefore does not qualify for further testing (i.e.
the predicate expression is NOT evaluated on it).

 missingInput: a cotarget expression returned an
empty node set.

 notApplicable: this target was not even selected by
the target XPath expression, while being of the same
general artifact type (e.g. message type).

C.3 Test Log Conventions

The test assertions designed for this test suite are written to work over "test log" files that are assumed to
follow some rules in their structure and content. These rules are more completely stated in the
documentation associated with the log file description. Some of these rules are:

 Every message in the log must be uniquely identified: it must have a unique pair of values for:
{message/@conversation, message/@id}, where @id is unique within each conversation.
Typically, a conversation is used to identify an HTTP connection and the group of messages over
this connection.

 A response message (for WSDL request-responses as well as RM lifecycle messages) always
appears after the request message in the log file.

 A wsa:RelatesTo reference always refers to a message that has been logged before.

 A Fault message always appears after the message-in-error.

 An RM acknowledgement always appears after the messages it acknowledges.

 There should not be both a doc-lit and an rpc-lit bindings for the same portType.

 Imports must be resolved locally to the log file.

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 77 of 78

Appendix D. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:

Participants:

Antonio Campanile, Bank of America
Robin Cover, OASIS
Doug Davis, IBM
Jacques Durand, Fujitsu
Pim van der Eijk, Sonnenglanz Consulting
Chet Ensign, OASIS
Joel Fleck II, Hewlett-Packard
Micah Hainline, Asynchrony Solutions, Inc.
Gershon Janssen, Individual
Ram Jeyaraman, Microsoft
Sarosh Niazi, Cisco Systems
Tom Rutt, Fujitsu Limited
Alessio Soldano, Red Hat

In addition, the Technical Committee thanks members of the WS-I Basic Profile Working Group whose
work provided the foundation for this document, and in particular the former editorial team:

Robert Chumbley , IBM
Gilbert Pilz , Oracle
Prasad Yendluri, webMethods
Tom Rutt, Fujitsu

BasicProfile–v2.0-csprd01 13 September 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 78 of 78

Appendix E. Revision History

Revision Date Editor Changes Made

[WD01] [3/6/2013] [Tom Rutt] [Moved referenced specs annex into Normative
references]

[WD02] [5/6/2013] [jacques Durand] Aligned references in specification body

Added conformance clauses.

