

UBL 2 Guidelines for Customization,
First Edition
Committee Specification 01

25 December 2009
Specification URIs:
This Version:

http://docs.oasis-open.org/ubl/guidelines/UBL2-Customization1.0cs01.pdf (Authoritative)
http://docs.oasis-open.org/ubl/guidelines/UBL2-Customization1.0cs01.doc
http://docs.oasis-open.org/ubl/guidelines/UBL2-Customization1.0cs01.html

Previous Version:
http://docs.oasis-open.org/ubl/guidelines/UBL2-Customization1prd03.pdf (Authoritative)
http://docs.oasis-open.org/ubl/guidelines/UBL2-Customization1prd03.doc
http://docs.oasis-open.org/ubl/guidelines/UBL2-Customization1prd03.html

Latest Version:
http://docs.oasis-open.org/ubl/guidelines/UBL-Customization1.0.pdf
http://docs.oasis-open.org/ubl/guidelines/UBL-Customization1.0.doc
http://docs.oasis-open.org/ubl/guidelines/UBL-Customization1.0.html

Technical Committee:
OASIS Universal Business Language (UBL) TC

Chairs:
Jon Bosak
Tim McGrath

Editors:
Michael Grimley
Mavis Cournane
Tim McGrath
G. Ken Holman
Jon Bosak

Related work:
This specification is related to:

• UBL 1.0 Context Methodology
Abstract:

This document provides practical guidance in creating UBL-conformant and UBL-
compatible document schemas.

Status:
This document was last revised or approved by the UBL TC on the above date. The
level of approval is also listed above. Check the “Latest Version” or “Latest Approved
Version” location noted above for possible later revisions of this document.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 1 of 1

http://docs.oasis-open.org/ubl/guidelines/UBL2-Customization1.0cs01.pdf
http://docs.oasis-open.org/ubl/guidelines/UBL2-Customization1.0cs01.doc
http://docs.oasis-open.org/ubl/guidelines/UBL2-Customization1.0cs01.html
http://docs.oasis-open.org/ubl/guidelines/UBL2-Customization1prd03.pdf
http://docs.oasis-open.org/ubl/guidelines/UBL2-Customization1prd03.doc
http://docs.oasis-open.org/ubl/guidelines/UBL2-Customization1prd03.html
http://docs.oasis-open.org/ubl/guidelines/UBL-Customization1.0.pdf
http://docs.oasis-open.org/ubl/guidelines/UBL-Customization1.0.doc
http://docs.oasis-open.org/ubl/guidelines/UBL-Customization1.0.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 2 of 2

Technical Committee members should send comments on this specification to the
Technical Committee’s email list. Others should send comments to the Technical
Committee by using the “Send A Comment” button on the Technical Committee’s web
page at http://www.oasis-open.org/committees/ubl/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to
the Intellectual Property Rights section of the Technical Committee web page
(http://www.oasis-open.org/committees/ubl/ipr.php).
If there is a non-normative errata page for this specification, it is located at
http://www.oasis-open.org/committees/ubl/.

http://www.oasis-open.org/committees/ubl/
http://www.oasis-open.org/committees/ubl/ipr.php
http://www.oasis-open.org/committees/ubl/

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 3 of 3

Notices
Copyright © OASIS® 2008-2009. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS
Intellectual Property Rights Policy (the “OASIS IPR Policy”). The full Policy may be found at the
OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published, and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this section are included on all such copies and derivative works. However, this
document itself may not be modified in any way, including by removing the copyright notice or
references to OASIS, except as needed for the purpose of developing any document or deliverable
produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as
set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages
other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.
This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that
would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS
Standard to notify OASIS TC Administrator and provide an indication of its willingness to grant
patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS
Technical Committee that produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership
of any patent claims that would necessarily be infringed by implementations of this specification by a
patent holder that is not willing to provide a license to such patent claims in a manner consistent with
the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may
include such claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Information on
OASIS’ procedures with respect to rights in any document or deliverable produced by an OASIS
Technical Committee can be found on the OASIS website. Copies of claims of rights made available
for publication and any assurances of licenses to be made available, or the result of an attempt
made to obtain a general license or permission for the use of such proprietary rights by
implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained
from the OASIS TC Administrator. OASIS makes no representation that any information or list of
intellectual property rights will at any time be complete, or that any claims in such list are, in fact,
Essential Claims.
The names “OASIS” and “UBL” are trademarks of OASIS, the owner and developer of this
specification, and should be used only to refer to the organization and its official outputs. OASIS
welcomes reference to, and implementation and use of, specifications, while reserving the right to
enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php for guidance.

http://www.oasis-open.org/
http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/who/trademark.php

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 4 of 4

Table of contents
Table of contents .. 4
Table of figures ... 5
1 Introduction .. 6

1.1 Definition of terms ... 6
1.2 Informative references .. 7
1.3 Acknowledging OASIS copyright .. 7
1.4 Conformance vs. compatibility .. 8

1.4.1 UBL conformance .. 8
1.4.2 Code list conformance ... 9
1.4.3 UBL compatibility ... 12
1.4.4 Maintaining common meanings ... 13
1.4.5 Customization profiles .. 13
1.4.6 Identifying versions, customizations, and profiles .. 14

1.5 Overview of customization methodology ... 14
1.6 Calculation models .. 15

2 Designing for UBL customization .. 16
2.1 Designing for conformance ... 16

2.1.1 Subsets of the document model ... 16
2.1.2 Code list constraints on document content .. 17
2.1.3 Other constraints on document content ... 17
2.1.4 Examples of conformant customizations .. 18

2.2 Designing for compatibility .. 21
2.2.1 Re-use of UBL .. 21
2.2.2 Compatible extension of UBL ... 21
2.2.3 The customization ripple effect .. 26

3 Specification .. 29
3.1 Using XML Schema (XSD).. 29

3.1.1 Customized schemas ... 29
3.1.2 New document schemas .. 30
3.1.3 Subset schemas ... 31
3.1.4 Using UBLExtension .. 32

3.2 Using XPath .. 37
3.3 Using genericode .. 38
3.4 Using Schematron .. 38
3.5 Using the UBL library for non-UBL document types ... 39
3.6 Managing specifications of customizations ... 39

4 Validation .. 41
5 Conformance ... 44

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 5 of 5

Table of figures
Figure 1. Conformant schemas and document instances ... 8
Figure 2. Compatible schemas and document instances ... 13
Figure 3. Overview of UBL development methodology ... 15
Figure 4. NES subset architecture .. 18
Figure 5. UBL standard Delivery aggregate .. 19
Figure 6. NES common Delivery customization .. 19
Figure 7. NES Invoice Delivery customization .. 20
Figure 8. Example of conformance with a UBL subset ... 20
Figure 9. Extending an aggregate information entity .. 24
Figure 10. An example design for a compatible document type ... 26
Figure 11. Model of a UBL document type ... 27
Figure 12. Conformant subsetting (no changes in namespace) ... 27
Figure 13. Ripple effect — customized aggregate .. 27
Figure 14. Ripple effect — customized basic information entity ... 28
Figure 15. An example of a subset schema .. 31
Figure 16. Overlaying customization schema fragments .. 32
Figure 17. An example of extending with alien content .. 33
Figure 18. An example of extending UBL information entities .. 34
Figure 19. Extension of non-UBL business objects .. 35
Figure 20. Using a shared ID to connect information in UBLExtension with a line item 36
Figure 21. Replication within UBLExtension ... 37
Figure 22. Using the UBL library for non-UBL documents .. 39
Figure 23. The published processing model for UBL .. 41
Figure 24. A customized processing model supporting forward compatibility 42

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 6 of 6

1 Introduction
The OASIS Universal Business Language Technical Committee (UBL TC) has produced a
vocabulary that, for many user communities, can be used “as is.” However, the TC also
recognizes that some user communities must address use cases whose requirements are not
met by the UBL off-the-shelf solution. These Guidelines are intended to aid such users in
developing custom solutions based on UBL.

5

10

15

20

25

30

35

The goal of these UBL customization guidelines is to maintain a common understanding of the
meaning of information being exchanged between specific implementations.
The determining factors governing when to customize may be business-driven, technically
driven, or both. The decision should driven by real world needs balanced against perceived
economic benefits.

1.1 Definition of terms
To assist with the scoping of this document, let us begin with some definitions:

Customization: The alteration of something in order to better fit requirements.
UBL customization: The description of XML instances, or XML-based applications acting
on those instances, that are somehow based on or derived from the UBL Standard.
Data Type: Defines the set of valid values that can be used for a particular Basic Business
Information Entity. A Data Type is specified as a restriction of an ebXML Core Component
Type. In UBL, Data Types are expressed as XML Schema simple and complex types.
Information entity: A piece of data or a group of pieces of data with a unique definition. In
UBL, information entities are expressed as XML information items.
Business Information Entity: Following the concepts of the ebXML Core Component
Technical Specification (CCTS), a Business Information Entity (BIE) can be a Basic
Business Information Entity (BBIE), an Association Business Information Entity (ASBIE), or
an Aggregate Business Information Entity (ABIE).
Information item: An XML document’s information set consists of a number of information
items; the information set for any well-formed XML document will contain at least a
document information item and several others.1
UBL conformant schema: A schema created by a community of interest that validates
customized document constraints without violating UBL standard schema document
constraints.
UBL standard schema: A normative conformant UBL schema published by OASIS.
UBL conformant instance: An instance that validates against a UBL standard schema.
UBL compatible: To be consistent with UBL information entities and the principles behind
UBL's models or their development.
Version: The word "version" used in this document applies to customizations of UBL, dot-
releases of UBL, dot-releases of customizations of UBL, and customizations of dot-releases
of UBL.

1 See http://www.w3.org/TR/2004/REC-xml-infoset-20040204/#infoitem

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 7 of 7

45

50

55

60

70

75

80

XSD: A synonym for W3C XML Schema.

1.2 Informative references 40

The following documents are referenced in the text.
[CCTS] ISO/TS 15000-5:2005, Electronic Business Extensible Markup Language

(ebXML) -- Part 5: ebXML Core Components Technical Specification,
Version 2.01 (ebCCTS). http://www.iso.org/iso/iso_catalogue
/catalogue_tc/catalogue_detail.htm?csnumber=41022

[HISC] OASIS UBL Human Interface Subcommittee, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=ubl-hisc

[JAXB] Java Architecture for XML Binding,
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/

[JiBX] Binding XML to Java Code, http://jibx.sourceforge.net/
[NDR] OASIS Public Review Draft, Universal Business Language (UBL) Naming

and Design Rules 2.0, September 2006. http://docs.oasis-
open.org/ubl/prd-UBL-NDR-2.0.pdf

[SBS 1.0] OASIS Committee Specification, Universal Business Language 1.0 Small
Business Subset 1.0, April 2006. http://docs.oasis-open.org/ubl/cs-UBL-
1.0-SBS-1.0/

[UBL-XPath] http://www.oasis-open.org/committees/download.php/16336/UBL-2.0-
SBS-20060120-XPath.zip

[XPath1.0] W3C XML Path Language (XPath) Version 1.0,
http://www.w3.org/TR/xpaths

[XPath File] http://docs.oasis-open.org/ubl/submissions/XPath-files/
[UXO] http://ubl.xml.org/

1.3 Acknowledging OASIS copyright 65

UBL is provided under the OASIS Royalty Free on Limited Terms policy, and this should be
recognized in any customizations.
OASIS policies support implementations, subsets, and extensions of OASIS works as long as
they acknowledge derivation from OASIS works and do not incorrectly claim compliance with or
identity with an OASIS work. If you modify the UBL Invoice schema, for example, you cannot
claim that it is still the UBL Invoice schema, but you should acknowledge that the new work was
derived from the UBL Invoice schema.
Specifications and models published for use by others that incorporate OASIS work should
include the following in an appropriate place, usually near the author’s own copyright notice:

Portions copyright (c) OASIS Open 200[9]. All Rights Reserved.
This text can be followed by the OASIS policy URI if the author wishes to provide that reference:

http://www.oasis-open.org/who/intellectualproperty.php
Those who publish such works should take note of the rights available under the OASIS IPR
Policy and their limitations, including any notices posted with respect to a specific work. In
specific cases there may be parties other than OASIS who, from time to time, post assertions
that a license is needed. For IPR notices relating to UBL, see

http://www.oasis-open.org/committees/ubl/ipr.php
OASIS generally welcomes the creation of derivative works, and in appropriate cases, OASIS
may assist in publicizing the work through its own channels.

1.4 Conformance vs. compatibility 85

Once the need to customize UBL has been determined, designers must decide whether the
result will be UBL conformant or UBL compatible. Although the UBL TC will not be involved in
determining or certifying whether customizations are conformant, compatible, or otherwise, we
supply these definitions as a point of reference for those who might.

1.4.1 UBL conformance 90

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 8 of 8

95

100

UBL conformance at the instance and schema level means that there are no constraint
violations when validating the instance against a UBL standard schema. A UBL conformant
instance is an instance that validates against a UBL standard schema (and does not violate any
of the Additional Document Constraints specified in the UBL standard). A UBL conformant
schema is a schema that will validate only UBL conformant instances.
The UBL TC publishes the UBL standard schemas as OASIS technical specifications. These
provide the base vocabulary that ensures common understanding.
Figure 1 shows the scope of UBL conformance. By definition, all schema-valid instances of a
conformant customization are schema-valid instances of UBL as well; however, this is not
necessarily true the other way around. Not all schema-valid instances of a UBL document will
conform to every customization, because some instances will contain elements that are optional
in the standard but are omitted from the customization. Indeed, some customizations will be
intended primarily to screen out optional instance data that has been deemed unwanted for a
particular set of applications.

 105
Figure 1. Conformant schemas and document instances

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 9 of 9

115

120

125

130

135

A major advantage of UBL conformance is that it minimizes the need for custom software or
modifications to UBL applications designed to process the full UBL Standard — assuming that
nonstandard elements have not been added via the UBL extension mechanism (Section 3.1.4).

1.4.2 Code list conformance 110

Conformance (both schema conformance and code list conformance) is important in the context
of trading partner agreements. An agreement between two or more trading partners that gives
UBL electronic documents the legal force of their paper equivalents should specify both the
schemas to be used and the code list values to be accepted, as well a context-dependent
assortment of other possible data value constraints beyond the scope of this discussion, such
as a list of authorized buyers.2
As defined above, UBL conformance is simple: if an instance validates against the published
UBL schema, it is UBL conformant, and if it doesn't, it's not.
It should be understood that the values of data items in UBL instances are not included in the
concept of UBL conformance. UBL defines the vocabulary, structure, and data typing of
conformant UBL instances; it has nothing to say about allowable prices or street addresses or
the names of people or companies. UBL is meant to specify the shape and labeling of the data
container, not the values that go inside.
UBL conformance is easy to define because many years of industry development invested in
the creation of the necessary formalisms (XML, XSD) and software (standard XML/XSD
validators) enable us to simply relate UBL conformance to validation against the published UBL
schemas. Thus, the mechanism for UBL conformance checking is built right into the definition.
Code list conformance is distinguished from UBL conformance because it is concerned with the
values used by trading partners in specific business relationships and cannot be defined in
advance by the UBL Technical Committee. However, the TC does provide default versions of
the code lists referenced in UBL schemas as a convenience to users.

1.4.2.1 Enforcing code list conformance
Just as with code list conformance itself, it should be understood the UBL 2.0 Standard does not
mandate any particular framework for code list checking. The logic needed to check code
values appearing in UBL instances can be implemented in many ways.3 For example, in high-
volume transaction processing environments, this checking is more likely to be carried out with
custom programming than with the free software tools included in the UBL distribution (see
footnote).

2 The Model UBL Letter Agreement developed for U.S. users by the American Bar Association
can be found at http://www.oasis-open.org/committees/document.php?document_id=24992.
International users are referred to the UNECE Electronic Commerce Agreement at
http://www.unece.org/cefact/recommendations/rec31/rec31_ecetrd257e.pdf.

3 In order to demonstrate the concept, and as a convenience for users, UBL 2.0 publishes its default code
lists using the OASIS Genericode 1.0 specification and provides a set of software for performing code list
checking using a freely available XSLT processor (see Appendix E of the UBL 2.0 Standard). But the
XSLT or other technology file that drives this process (defaultCodeList.xsl) can easily be replaced by a
custom user-defined XSLT file to expand or limit the set of acceptable code list values and optionally
provide further back-end filtering.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 10 of 10

140

145

150

155

160

165

170

175

180

1.4.2.2 UBL conformance of UBL-provided code lists
With the exception of four UN/CEFACT code lists in UBL 2.0 noted below, any UBL-provided
code list can be modified to suit the agreed-upon requirements of any trading relationship
without breaking UBL conformance, because most UBL code list values are schema-
constrained by nothing but their data type.
However, this does not change the basic idea of code list conformance; it simply moves
conformance determination to a different part of the constraint checking process.

1.4.2.2.1 Code list conformance ownership
A key reason for moving code list value specification out of the UBL schemas is to distinguish
the parts of constraint checking belonging to UBL proper from parts that can be modified without
deviating from UBL conformance.
The owners of code list conformance criteria are the organizations (typically standards bodies of
some kind) responsible for creating and maintaining code lists, and statements about code list
conformance must therefore be related to the relevant owner. Thus, for example, an agreement
to exchange only instances validating against UBL standard schemas and using only those
country codes appearing in the ISO 3166-1 country code list is an agreement to exchange only
instances that are both UBL conformant and ISO 3166-1 conformant.
This doesn't change the basic idea of code list conformance; an instance that conforms to ISO
3166-1 is an instance that uses only ISO 3166-1 country codes. But this is not UBL
conformance, it is ISO 3166-1 conformance.

1.4.2.2.2 Simple code list conformance specification
As a convenience to implementers, the UBL distribution package includes a number of code
lists that offer a way to simplify trading partner agreements in the default case. Trading partners
working from a template such as the Model UBL Letter Agreement who are willing to default to
the code lists provided in the UBL 2.0 distribution (for example) can simply agree to conform to
“the code lists provided in the OASIS Standard UBL 2.0 distribution.” If deviations are small,
they can use some formula such as “the code lists provided in the OASIS Standard UBL 2.0
distribution, with the exception that country codes shall be restricted to US, CA, and MX.” (Note
that these examples are not intended as legal advice, but are given to illustrate the concept.)
It must be remembered, however, that the conformance in question is not to UBL, but rather to
the code lists included in the UBL distribution, many of which are defined by other organizations.
With the exception of the four UN/CEFACT lists in UBL 2.0 discussed below, modifications to
the code lists provided in the UBL distribution will have no effect on UBL conformance, though
they may well implicate trading partner agreements governing the exchange of UBL instances.
Conformance to the code lists included in the UBL 2.0 distribution will in effect bind to the
following:

UBL 2.0 code lists referenced only in the file defaultCodeList.xsl
Defined by external agencies

UNECE Rec 19 Transport Mode Codes
UNECE Rec 20 Unit of Measure Codes
UNECE Rec 21 Packaging Type Codes
UNECE Rec 24 Transportation Status Codes
UNECE 3155 Communication Address Code Qualifiers
UNECE 4461 Payment Means
UNECE 4465 Adjustment Reason Descriptions

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 11 of 11

185

190

195

205

210

215

220

UNECE 8053 Equipment Type Code Qualifiers
ISO 3166-1 Country Codes
ISO 4217 Alpha Currency Codes

Defined by UBL
UBL Chip Codes
UBL Document Status Codes
UBL Latitude Direction Codes
UBL Line Status Codes
UBL Longitude Direction Codes
UBL Operator Codes
UBL Substitution Codes

UBL 2.0 code lists imported via the UN/CEFACT UDT schema module
ISO Currency Codes (as UN/CEFACT 54217:2001)
ISO Language Codes (as UN/CEFACT 5639:1988) (not currently used)
IANA MIME Media Type Codes (as UN/CEFACT IANAMIMEMediaType:2003)
UNECE Unit Codes (as UN/CEFACT 66411:2001)

1.4.2.2.3 Complex code list conformance specification 200

The set of acceptable code values in a code list can sometimes vary depending on where in an
instance document they are found. Such code list differentiation can be an easy way to add
some very useful business logic. For example, two partners might agree that the list of
acceptable country codes for Customer Party addresses is different from the list of acceptable
country codes for Supplier Party addresses.
Acceptable code values can also depend conditionally on other instance data values; for
example, it might be desired to assert the condition “If the country code is FR, then the currency
code must be EUR.”
To meet this need, the OASIS Code List Representation Technical Committee has developed
both a standard XML encoding for code lists (genericode) and a powerful and sophisticated
methodology for formally representing agreements about the association of code lists and code
list subsets with specific portions of XML instances (Context/value association, or CVA).4

1.4.2.3 UN/CEFACT schema modules in UBL 2.0
The inherently simple distinction between schema validation and the checking of data values in
UBL instances is sometimes obscured by the fact that XSD does provide a mechanism for
enumerating lists of the allowable values of data items. With one exception, UBL does not use
this mechanism.
The single exception is the enumeration in UBL 2.0 of allowable values for four standard code
lists recommended by UN/CEFACT:

• ISO Currency Codes,

• ISO Language Codes,

• IANA MIME Media Type Codes, and

• UNECE Unit Codes.

4 See the TC web site at http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=codelist for
details.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 12 of 12

225

230

235

240

245

These code list values are specified as xsd:enumerations in four schema modules defined by
UN/CEFACT and are imported by all UBL 2.0 schemas via the UN/CEFACT Unqualified Data
Type schema module (see Section 5.2.4 of the UBL 2.0 Standard and the xsd/common
directory of the 2.0 distribution). Because of this exception, a UBL 2.0 instance that contains a
value for one of these codes that does not appear in the enumerations imported by the
UN/CEFACT UDT module is, technically speaking, not UBL conformant, because it will fail UBL
schema validation.
The exception for these four code lists resulted from a policy decision to adopt the UN/CEFACT
list schemas and the UN/CEFACT UDT schema module as published by UN/CEFACT. From
the architectural standpoint, this approach is contrary to the approach taken for constraint
checking of all other UBL instance values. For this reason, the UBL TC has already determined
that this exception for UN/CEFACT recommendations will not persist in UBL 2.1. In versions of
UBL 2 later than 2.0, all code lists, including the four published by UN/CEFACT, will be provided
in the form that is already used in 2.0 for other code lists.

1.4.3 UBL compatibility
To be UBL compatible means to be consistent with UBL information entities and the principles
behind UBL's models or their development. These principles are defined in the ebXML Core
Component Technical Specification (CCTS) and the UBL Naming and Design Rules (NDR).
While conformance and interoperability of these customized documents cannot be guaranteed,
we can expect some degree of familiarity through the re-use of common information entities and
their design principles.
Compatibility should be a design objective when creating new document types or extending
existing UBL document types.
Figure 2 illustrates the scope of UBL compatibility.

Figure 2. Compatible schemas and document instances

1.4.4 Maintaining common meanings 250

It is important to recognize that the information entities in UBL should not be repurposed in a
customization. That is, customizations must avoid semantic drift in the meaning of UBL
information entities.
For example, a change to the definition of a term is contrary to the use of UBL as a tool for
conveying common meanings, and it violates semantic conformance to the UBL standard, even
though such violations cannot be caught by schema validation. Contracts between trading
partners that agree to accept UBL documents as legally equivalent to their paper equivalents
should bind those users to the meanings specified in the published definitions.

255

260

265

1.4.5 Customization profiles
Customizations of UBL may apply to a set of business processes within a given context of use.
Within each specific business process, a profile characterizes the choreography of the
interchanges.
Defining different profiles means that a given document type may have different sets of
constraints in each profile within the same customization family. For example, an Invoice
instance used for a profile that involves only an Order and Invoice being exchanged may not
require as many information entities as an Invoice instance used in a profile for a complete
supply chain.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 13 of 13

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 14 of 14

270

275

280

285

290

295

Thus the three dimensions of the set of UBL document structural constraints are defined by the
UBL version (standard), the implementation context (customization), and the business process
(profile). For example, Stand Alone Invoicing is a profile of the Northern European Subset
customization of the UBL 2.0 standard.

1.4.6 Identifying versions, customizations, and profiles
A document instance claiming to satisfy the constraints for a particular profile in a customization
asserts this using the following information entities at the root of each document:

• UBLVersionID
An identifier reserved for UBL version identification. Not actually a modifiable value, but
required to understand which version of UBL is being customized.

• UBLCustomizationID
An identifier (such as a URI) for a user-defined customization of UBL.

• UBLProfileID
An identifier (such as a URI) for a user-defined profile of the customization being used.
Profiles are further refinements of customizations that enable “families” of customizations
to be implemented.

For example, Stand Alone Invoicing, which is a profile of the Northern European Subset
customization of the UBL 2.0 standard, is identified as:

• UBLVersionID: 2.0

• UBLCustomizationID: NES

• UBLProfileID: urn:www:nesubl:eu:profiles:profile1:ver1.0

1.5 Overview of customization methodology
The UBL library and document schemas have been developed from conceptual models based
on the principles of the ebXML Core Component Technical Specification. These models are
then expressed in W3C XML Schema (XSD), based on the UBL Naming and Design Rules. It is
these schemas that are used to both specify and validate UBL conformance. The steps involved
in UBL development are shown in Figure 3 below.
It is recommended that a similar approach be followed when customizing UBL. Therefore, the
following sections discuss conceptual design (Section 2), then the specification of XML
documents (Section 3), and finally the validation aspects of customization (Section 4).

300

305

Figure 3. Overview of UBL development methodology

1.6 Calculation models
The UBL Technical Committee does not prescribe a calculation model that governs how values
in instances are calculated (for example, the inclusion of allowances in a line extension
amount). Any actual implementation of UBL should document its calculation model via a prose
description or a formal description using, for example, the methodology being developed by the
OASIS Test Assertion Guidelines Technical Committee.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 15 of 15

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 16 of 16

2 Designing for UBL customization
The design of the conceptual models for UBL and its customizations is not affected by the
syntactical issues of XML, schema languages, or validation tools. The UBL TC uses
spreadsheets and UML for model design, but this is not a requirement. 310

315

320

325

330

335

Designing a customization may involve:

• Adding information entities to meet requirements of a specific business context

• Omitting optional information entities not needed in a specific context

• Refining the meaning of information entities

• Creating constraints on possible values for information entities (such as code lists)

• Combining (or recombining) and assembling information entities into new aggregations or
documents

• Adding business rules
Note that the design models in UBL adhere to CCTS naming conventions. Information entities
are referenced by their Dictionary Entry Names, and the terminology used here reflects this.

2.1 Designing for conformance
When designing for UBL conformance (see 1.3.1), the key objective is to create custom models
that can be used to specify and validate UBL-conformant instances. A UBL conformant instance
is an instance validating against customized document constraints while simultaneously
validating against a UBL standard schema.
Consequently, designing for conformance applies primarily to restrictions:5

• Subsets of the document model — restricting the number of information entities in a
document

• Constraints on document content — restricting the possible values an information entity
can have

2.1.1 Subsets of the document model
The standard UBL document types have been designed to accommodate a broad range of
contexts. As a result, if all optional elements in a UBL document type were instantiated, the
resulting instance would be extremely verbose. For example, if a UBL Order document
contained just one instance of all its possible information entities, that document would contain
approximately 800,000 elements and attributes. Most implementations will not need all the
information entities defined by the standard document type. The use of subsets allows for the
removal from a document model of any optional information entities that are not needed to
satisfy the specific business requirements of an implementation.

5 UBL also allows conformant extensions to be made using an extension area provided in the
Standard schema (section 3.1.4).

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 17 of 17

340

345

350

355

365

370

375

It must be noted that subsetting can only be used to remove optional elements or change
cardinality in ways that do not reduce the required minimum number of occurrences or extend
the permitted maximum number of occurrences of an element. Thus,

0..1 can become 1..1 or 0..0 (but not, for example, 1..2)
0..n can become 0..1, 1..m, 1..n, m..n, or 0..0 (where m<n)
1..n can become 1..1, m..n, or 1..m (where m<n)
1..1 cannot be changed

2.1.2 Code list constraints on document content
Constraining the values for an information entity to a fixed set (such as with a code list) is a
common customization requirement. For example, “the Currency Code must be expressed
using ISO 4217 codes” is a constraint on the possible values for Currency Code in a document
instance.
In UBL, there are two levels of constraints for codes:

• Code lists without defined values
These are not empty lists, they are lists without constraints — in effect, infinite lists of
values constrained only by their lexical form. These are expressed as Unqualified Code
Data types.

• Code lists with defined values
These are explicit lists that constrain possible values for the content. These are expressed
as Qualified Code Data types. They are specializations of the Unqualified Code Data type.

2.1.3 Other constraints on document content 360

There are other cases in which the treatment of UBL instances may require customization in
order to limit or restrict content values. For example:

“The Total Value of an Order cannot exceed $100,000.”
“The length of an Address Line cannot exceed 40 characters.”

Co-occurrence constraints apply when the values of one or more information entities are
affected by the values of one or more other information entities in the document content. The
basis can be the presence or absence of content, or particular values of content. For example,

“For each Party, one or both of Party ID and Party Name must be present, but not neither.”
“The Shipping Address must be the same as the Billing Address.”
“The Start Date must be earlier than the End Date.”

A value calculation is another form of constraint. For example:
“Associated tax information entities are mandatory when the item’s value exceeds a
specified amount, while they must be absent when the item’s value does not exceed a
specified amount.”

Methods for specifying and validating such business rule constraints are discussed in section
3.4.

2.1.4 Examples of conformant customizations

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 18 of 18

380

The Northern European Subset group (NES), a collaborative effort of state agencies from six
European nations, has produced conformant subsets of UBL 2.0 documents by selectively
excluding information entities from the UBL library,6 as shown in Figure 4.

Figure 4. NES subset architecture

In the NES customization, the Delivery aggregate is an example of an information entity that is
used across several documents and processes. The UBL standard Delivery is defined in the
UBL Common Library (see Figure 5).

385

7

6 See http://www.nesubl.eu/documents/nes2.4.6dae77a0113497f158680001674.html
7 Note that information entities are referenced at the modeling level by their CCTS Dictionary Entry
Names, not by their XML element names.

Figure 5. UBL standard Delivery aggregate

This includes several information entities that are not required in the NES processes and
documents, so the standard Delivery is restricted at the NES Common Library level as shown in
Figure 6.

390

Figure 6. NES common Delivery customization

However, even at the NES Common Library level, the Delivery subset still contains information
entities that do not make sense in the context of specific documents. For example, the NES
project have determined that it not logical to have Minimum_Quantity and Latest_Delivery Date
information entities in an Invoice document. Therefore, NES requires one more level of subset

395

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 19 of 19

customization where only information entities relevant to specific document types are present.
The NES Invoice Library further restricts Delivery as shown in Figure 7.

 400
Figure 7. NES Invoice Delivery customization

This subtractive refinement approach ensures that all NES conformant document instances are
UBL conformant as well, as shown in Figure 8.

405 Figure 8. Example of conformance with a UBL subset

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 20 of 20

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 21 of 21

410

415

420

425

430

435

440

445

2.2 Designing for compatibility
When designing for compatibility, the key objective is to re-use as much of the UBL model as
possible. Where this is not possible, the guiding principles of UBL should be followed, in
particular, its application of the UN/CEFACT ebXML Core Component Technical Specification
(CCTS).

2.2.1 Re-use of UBL
Two categories of the UBL library are candidates for re-use in a customization:

• Business Information Entities (BIEs)
Re-using UBL information entities keeps customization as closely aligned with UBL as
possible and prevents an unnecessary proliferation of information entities requiring
maintenance.
A key objective should be to re-use existing UBL BIEs at the highest possible level. For
example, it is better to re-use the UBL Party aggregate than to create a competing
information entity with similar content.

• Data Types
CCTS defines a set of Core Component Types that should be the basis for all data types.

2.2.2 Compatible extension of UBL
If re-use of existing UBL information entities is not feasible, customizers may need to add to the
UBL model additional information entities to satisfy business requirements. In these situations it
is possible to extend the UBL library in a compatible manner.
Extension means to add to, or associate with, existing entities additional information that may be
required for a particular context of use. That is, an extension creates a superset of the original
information entity. It is recommended that such an extension include the original information
entity as an association from the information entity that extends it. For example, UBL Customer
Party is an extension of Party because it contains additional information required if the party is a
Customer. Structurally, Customer Party has an association to Party, making Customer Party a
superset of Party.
Compatible extensions can be implemented in parts of a schema outside the extension area
provided in the Standard version. This allows validation checks to be built into the compatible
schema that cannot be enforced in the extension area of a conformant schema.

2.2.2.1 Using qualified names
UBL supports the CCTS principle of qualifying the Property Term of an information entity’s
Dictionary Entry Name to indicate specialized re-use of an information entity.
The use of qualified Dictionary Entry Names is not apparent in the UBL name (XML element
name) because the underscore character is omitted. However, it does affect the XML type used,
because only the unqualified name is used to identify the XML type for the definition.

Example
Address. Country Subentity Code. Code can be qualified as Address. Canadian_
Country Subentity Code. Code, indicating that the context of use for the Subentity code
values is Canadian provinces. The XML element name would be
CanadianCountrySubentityCode. However, the XML type would be defined as
CountrySubentityCodeType.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 22 of 22

450

455

460

470

475

480

490

2.2.2.2 Re-using aggregate information entities
The principle applied is that if a required aggregate information entity has the same structure as
a standard UBL information entity, then it should not be a redefinition but a re-use by
association. The qualifying terms used to name the new association information entity then
describe the role it plays.

Example
If an Address is required for a Party’s local address, and this uses the normal address
structure, it could be defined as Party. Local_ Address.

If the new aggregate information entity does not have the same structure as a standard UBL
information entity, then the required information entity has a new name, not a qualified name. If
possible, the new aggregate may then be associated with the UBL information entity being
extended.

Example
If an Address has additional information entities when the address is in Japan, then a
new aggregate information entity called Japanese Address would be created. This is not
a qualification, but a new name. Ideally this should contain the original Address structure
by association plus the new Japanese information entities.

2.2.2.3 New basic information entities 465

A customization may require new basic information entities. These should be based on an
existing UBL or CCTS data type (or a refinement thereof). Note that where the new basic
information entity is included in an aggregate information entity, it will result in a new aggregate
information entity being defined as well (see 2.2.3).
When establishing a new basic information entity, it is necessary to associate it with a data type.
This is determined by the Representation Term part of the information entity’s Dictionary Entry
Name.

Example
A Japanese Address may have an additional information entity called Prefecture. Text.
This new basic information entity would use the standard Text data type.

Changing or specializing an information entity’s definition changes the information entity (see
1.3.4). Therefore, a new basic information entity must be defined.

Example
In UBL, Communication. Channel. Text is defined as “The method of communication
expressed as text.” If an information entity is required to specify the Skype name as a
specific communication channel, then a new information entity (perhaps called
Communication. Skype Name. Text) should be defined.

In UBL, Representation Terms are implemented either as standard CCTS data types (known as
unqualified data types) or as UBL defined data types (qualified data types).

2.2.2.3.1 Qualified data types 485

In cases where the required information entity’s representation does not fit an existing data type,
a new qualified data type may be required. New qualified data types can be based on either
UBL qualified data types or CCTS unqualified data types.
In UBL, only Code types are qualified, but this does not preclude customizers creating their own
qualified data types from other CCTS unqualified data types.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 23 of 23

495

500

505

510

515

520

525

530

535

2.2.2.3.2 Qualified code data types
A basic information entity represented by Code type in UBL may be refined with a set of known
values. UBL itself provides two sets of definitions for Code types:

• Without defined values (the CCTS unqualified code data type). There are no constraints on
the values used for instances of this information entity.
For example, Country Subentity_ Code (in Address) is assigned the Code type.

• With defined values (the code data type is qualified by UBL). All values for instances of this
information entity must exist in the given code list.
For example, Identification_ Code (in Country) is assigned the Country Identification_ Code
type.

Code list customization can be applied in many situations:
Extensions of new types: Where a new type has been added in a customization that
requires a code (or other form of value constraint). For example, the new
CarbonEmissionRating information entity may use a formal coding system.
Extensions of existing types: Where a new value for an existing type has been added in a
customization as a code (or other form of value constraint). For example, a customization
may need an as-yet-not-standardized new code for PaymentMeansCode. Instances with
these values are not UBL conformant.
Restrictions of specified code lists: Where an existing type has an existing list of
applicable codes and a customization needs to restrict the use of codes to a subset. For
example, restricting PaymentMeansCode to only cash and credit card and no other means of
payment. Instances with these values are UBL conformant.
Restrictions of unspecified code lists: Where an existing type without an existing list of
applicable codes has a customized code (or other form of value constraint) applied to it. For
example, restricting CountrySubentityCode to the US state codes in a profile for the United
States. Instances with these values are UBL conformant.
Identifiers: Where a basic information entity uses a type derived from the CCTS
IdentifierType. Instances with these values are UBL conformant.
Values for any other basic information entity: Where a basic information entity uses any
type and the customization wishes to constrain the value to one of a controlled set of values.
Instances with these values are UBL conformant.

Assigning a qualified code list to a basic information entity that was previously unqualified
restricts the infinite list into a finite list, so this restriction on possible content values defines a
subset. Therefore, assigning a qualified code list to a basic information entity that was
previously unqualified is a conformant restriction. Whereas assigning a new qualified code type
to a basic information entity already having assigned values will only be a conformant
customization if the new qualified code list values are a subset of original qualified code type.

Example of customized code data type
In UBL, Currency_ Code. Type, which qualifies a CCTS unqualified data type, is a
restriction on the Code. Type. A customization for European Currency_ Code. Type
could further qualify the UBL qualified data type and further restrict the Currency_ Code
Data Type to specific European currency code values.

Note that UBL does not arbitrarily create sets of code list values and discourages this for
customizations. Where possible, standard international code sets from ISO, UN/ECE, and other
standards development agencies should be used.

2.2.2.4 New associations
Aggregate information entities are included in a document model by associating them with a
parent aggregate. This association is defined as an association information entity.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 24 of 24

540

545

550

555

560

If the required aggregation has the same structure as an existing aggregate, a new association
should be created with the existing aggregate (as in 2.2.2). This new association represents a
new use of the aggregate, so qualifying terms can be used to describe the new role.

Example
In UBL, Address is re-used in contexts such as Postal_ Address, Delivery_ Address and
Pickup_ Address. They all share the same structure as Address with the terms “Postal,”
“Delivery,” and “Pickup” providing the qualification.

By re-using the unqualified aggregate (Address), the same XML type (AddressType) will be
used for implementation of all these information entities.

2.2.2.5 New aggregates
A new aggregate should be created if the required aggregation does not exist in UBL or is an
extension of an existing aggregate, making it no longer conformant. When creating new
aggregates, there are some general principles to follow:

1. A new aggregate may also include the aggregate being extended, as a child by association
(as in 2.2.2 above).
Example

UBL itself follows these principles. In UBL, Customer Party is a new aggregate that has
a different structure than Party. The Party structure is re-used by association in
Customer Party. In addition, Customer Party also contains additional information entities.
The name Customer Party is not a qualification of the name Party, but an extension to
the UBL Party to create a new aggregate. Figure 9 shows the UBL Customer Party
aggregate.

Figure 9. Extending an aggregate information entity

2. Aggregations should comprise collections of information entities that share functional
dependency. That is, the only information entities that belong in an aggregation are basic
information entities or associations to other aggregates whose values may change when
the aggregate itself changes.

565

570

Examples
The description of an item depends on what that item is. If the item changes, then the
description changes. This means the description is functionally dependent on the item,
and in this case, the information entity Description would be aggregated into the
aggregate Item.
If the price of a cup of coffee is based on whether it is to take out, drink at the table, or
drink at the bar, then the price is functionally dependent on the location. In this case, the

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 25 of 25

575

580

585

590

595

information entity Price would be aggregated into an aggregate perhaps called Coffee
Location.

3. New aggregates should attempt to re-use patterns of UBL structures where possible.
Example

A customization may require a Purchaser aggregate instead of the UBL Buyer Party. For
compatibility, at a minimum, the UBL Buyer Party should be the basis for designing the
Purchaser aggregate. The advantage of re-using UBL constructs is that there is some
degree of traceability back to the original UBL model.

2.2.2.6 New document types
Where existing UBL document types do not meet requirements, it is necessary to create a new
document model. The key steps in assembling new document type structures are:

1. Select/create the root aggregate for the document type
2. Assemble the required information entities from the UBL library (and/or customized

extensions), applying cardinality constraints.
3. For all required associations from these information entities assemble the required

information entities (and/or customized extensions), applying cardinality constraints.
4. Continue step 3 recursively through all required associations.

As an example, Figure 10 demonstrates the structure of a new document type known as
Notification (actually based on the UBL Receipt Advice document type).
First, a new aggregate called Notification is created. Two associations to the UBL Party are
used, one qualified as Carrier_ Party and the other as Consignor_ Party. The association to the
UBL Shipment is the only other association for a Notification. Following down the pathway of
associations from Shipment, only Goods Item, Consignment, Delivery and Transport Handling
Unit are used. Each of these, in turn, uses only the required associations. Therefore, the
Notification document type is a compatible customization of the UBL Receipt Advice document.

 class System

Shipment

Notification

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 26 of 26

- ID: int
- TotalTransportHandlingUnit: int

- ID: int

Goods Item

- Description: int
- ID: int

Party
Consignor

Carrier

Consignment

- ID: int
Delivery

TransportHandlingUnit

- ItemIdentifier: int

Package

- PackageTypeCode: int

PartyAddress

Despatch

PartyAddress

Actual

TransportServ ices

- ServiceCode: int

DeliveryTerms

Class1

- Amount: int
- ID: int

PaymentMeans

- PaymentMeansCode: int

Financia lAccount

- BankingDetailsForCOD: int

Despatch

Delivery

Payee

Despatch

FinalAddress

OriginalAddress

Delivery

600

605

610

615

Figure 10. An example design for a compatible document type

2.2.3 The customization ripple effect
The creation of any new information entity or data type affects all information entities and data
types in its ancestral path. Every UBL construct has a distinct, unique identity; any change
made within it changes the identity of the whole construct and hence everything above it in the
document tree. This could be regarded as a ripple effect.

Example
A UBL Address is always the same structure. If any information entity is added to, or
required information entity is removed from, the UBL Address, it can no longer be
identified as the UBL Address.
This change of identity bubbles or ripples upward through any parent of Customized_
Address.

This rule guarantees that UBL-consuming code is never “surprised” by an unexpected
difference hiding inside an incoming data structure wrongly identified as standard UBL. This
difference must at a minimum be indicated by a change in XML namespace.
Consider the following model of a UBL document type, which will be used to illustrate the ripple
effect. Every construct is in the ubl: namespace.

Figure 11. Model of a UBL document type

2.2.3.1 Customized aggregates using subsetting
620 When a customization is a proper subset of a UBL document type, only optional objects are

removed (Figure 12). There is no ripple effect; everything keeps the ubl: namespace.

Figure 12. Conformant subsetting (no changes in namespace)

2.2.3.2 Custom aggregates using UBL information entities
625 When a new aggregate is added to a customized document type, all of its parents must also be

modified to reflect the new information entity. In the example shown in Figure 13 below, a
custom aggregate (“myxx1”) is created using standard UBL information entities. Its parent
(“newxx2”) must then be customized to allow this custom aggregate (“myxx1”) in its content
model. Accordingly, the document root (“compatiblexx3”) must also be a customization.

 630
Figure 13. Ripple effect — customized aggregate

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 27 of 27

2.2.3.3 Custom aggregate using custom information entities

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 28 of 28

635

When a new information entity is added to a customization, all of its ancestors must also be
modified to reflect the new information entity. In the example in Figure 14 below, a customized
aggregate (“my_xx2”) is created by adding a custom basic information entity (“xx1”). Its parent
(“new_xx3”) must then be customized to allow this custom basic information entity (“xx1”) in its
content model. Accordingly, the document level aggregate (“compatible_xx4”) must also be a
customization.

640

645

Figure 14. Ripple effect — customized basic information entity

To sum up:

• Customizing a data type creates a new basic information entity

• Customizing a basic information entity creates a new aggregate information entity

• Customizing an aggregate information entity means creating a new aggregate information
entity and new associations that refer to it

• Customizing an association creates a new aggregate

• Any new aggregate means a new document model

 Any nonconformant customization means a new document model.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 29 of 29

3 Specification 650

A specification is used to describe to communities and developers of document interfaces the
set of valid instances of an XML document type. These specifications form the basis of the
customizations and profiles of UBL used in specific contexts.
The same customized document instance can be specified using different syntaxes and
methods. Several of these are described in this section. UBL does not mandate the use of any
given syntax or method for specifying customizations (or profiles) because this choice does not
affect the conformance (or compliance) of the document instances to the UBL standard.

655

660

670

675

680

685

3.1 Using XML Schema (XSD)
The UBL TC uses XSD, the standard XML schema language produced by the World Wide Web
Consortium (W3C), to specify its document formats. There are formal Naming and Design Rules
[NDR] for the use of XML Schema to specify UBL documents.8 The UBL Naming and Design
Rules should be used when specifying the model using XSD.
Therefore it is appealing to use XML Schema for specifying customized document formats as
well. However, there are several ways in which this can be achieved.

3.1.1 Customized schemas 665

Schema customization formed the basis of the UBL 1.0 Context Methodology. Feedback from
those attempting to apply this methodology has led the UBL TC to be more catholic in its
approach to customization in UBL 2.0, though the approach recommended in the 1.0 Context
Methodology remains valid for customizing by making changes directly to the standard schemas
in certain circumstances.
At least two scenarios in particular lend themselves to XSD derivations performed on existing
types:

• An existing UBL type fits the requirements for the application with modifications supported
by XSD derivation. These modifications can include extension (adding new information to
an existing type) and/or refinement (restricting the set of information allowed to a subset of
that permitted by the existing type).

• No existing UBL type is found that can be used as the basis for the new type.
Nevertheless, the base library of core components that underlies UBL can be used to build
up the new type so as to ensure that interoperability is at least possible on the core
component level.

However, XSD derivation does not support certain customization requirements:

• Unable to declare derivatives of the extension point
It is not possible to express in an XSD extension or restriction of the published UBL
schemas that a given extension element is allowed to be a child of the extension point.
Consider the two possibilities based on the published UBL schemas defining the extension

8 Note that logical constructs known in CCTS as Business Information Entities (BIEs) and Data Types are
both implemented in XSD as “types,” and the terminology used in this section reflects this.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 30 of 30

690

695

700

705

710

715

720

725

730

element with an xsd:any constraint of ##any to allow any element of any namespace to be
a child of the element:

Extension
In the case of extension, a deriving schema attempts to add the definition of the
customization extension element to the children of the UBL extension point (it is
unclear how this is done because of derivation rules in XSD). A validating processor is
obliged to first satisfy the base schema expression for the extension element before
attempting to satisfy the extension constructs. But the processor will have already
consumed all of the particles with the ##any of the base schema before hitting the end
of the extension children; thus, when it attempts to validate the presence of the
extension element, there are no particles left to be the extension element.

Restriction
Similarly, in the case of restriction, a deriving schema attempts to restrict the definition
of the UBL extension point to be elements of any namespace, followed by the
customization extension element, followed by elements of any namespace. Again the
use of ##any directs the validating processor to consume all children of the extension
point, and only when done will it then try to find an extension element which is not
there.

• Unable to directly elide optional elements through derivation
Should a customization definition wish to elide an optional element and make it totally
unavailable, there is no way an XSD schema can restrict an existing content model to
indicate that an optional element already declared in the base model is not included in the
restricted model. Instead, the restricted model must re-list the entire collection of elements
with the exception of the one that is to be removed.

• Unable to express different enumeration restrictions based on context
All elements in UBL are global; thus, those with enumerated data types necessarily have
global scope across an entire instance. There is no way an XSD schema can restrict an
existing content model to indicate that a contextual use of a data type has a different
subset of enumerated values than in another contextual use.

• Unable to express co-occurrence constraints
There is no way to express in an XSD schema a constraint on the existence of, or the
contents of, information entities based on the existence of, or the contents of, other
information entities.

• Unable to maintain modeling conventions using XSD extension
In UBL all aggregate information entities are modeled with all basic information entities
listed first as children, followed by all associate information entities listed next as children.
XSD extension allows additional constructs to be added only after all of the base
constructs. Should a customization to a UBL aggregate information entity need a new child
basic information entity, this basic information entity cannot be placed before child
associate information entities when using XSD extension.

3.1.2 New document schemas
XSD schemas are used in UBL to express normative document constraints. It is possible to
express the same document constraints in other schema languages such as RELAX NG or
even by using imperative or declarative assertion languages such as Schematron. Since UBL
uses XSD for its standard schemas, however, it is assumed in the following that new schemas

based on UBL will use XSD simply to save labor. If XSD is chosen, new compatible document
types should adhere to the UBL Naming and Design Rules, and if other formalisms are chosen,
the UBL NDR conventions should be followed where possible.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 31 of 31

735

740

745

750

Several tools exist for generating new UBL NDR conformant document schemas from logical
models. Some of these are listed at the UBL online community website, ubl.xml.org [UXO].

3.1.3 Subset schemas
Where the requirements are for a pure subset (as noted in 2.1.1 and illustrated in Figure 12), it
is possible to prune a UBL document schema to create a new, smaller schema defining only the
subset required.
Because UBL relies on a common library of re-usable types, this approach does not support the
restriction of selective types based on context. That is, an Address when used in one part of the
subset schema cannot have a different restriction from an Address in another part of the
document.
One approach for producing subset schemas is to work with the UBL schemas as input and use
the XML comment construct to elide all of the information entities not used by the customization.
A human reader of the schema specifications can see all of the UBL standardized constructs,
easily distinguishing those that are in the customization and those that are not.
Another approach for producing subset schemas is to work at an abstract model level and to
synthesize the schema fragments from scratch from the subset model. This is the approach
taken by the NES project group9 (see 2.1.4). Figure 15 shows the schema fragment that
specifies the NES Invoice Delivery customization shown in Figure 7.

Figure 15. An example of a subset schema

Figure 16 shows a way to organize schema modifications in creating a subset. The customized
schema fragments on the left are overlaid onto a copy of the xsd/ or xsdrt/ subdirectory from the
UBL distribution package, replacing the corresponding document schema, aggregates schema,
and basics schema. This creates a customization suite of schema fragments representing
instances with only those constructs allowed by the customization and not simply all elements
allowed by UBL. Only those original schema fragments that correspond to the changed
fragments are replaced, thus preserving all of the schema fragment linkages for those
fragments that remain unchanged.

755

760

9 See http://www.nesubl.eu/documents/nesvalidationtools.4.6f60681109102909b80002641.html

Document Schema
e.g. Invoice, Order, etc.

Common
Aggregate

Components
(cac)

Common
Basic

Components
(cbc)

Qualified/
Specialized
Datatypes

(qdt)
Unqualified
Datatypes

(udt)

Common
Extension

Components
(ext)

Extension
Content
Datatype

(ext)

include

import

Extension
Content
Datatype

(ext)

Extension
Datatype
Definition

(cust)

Customization
Extension

Replacement
Schemas

Customization
Document
Schema

Customization
Restriction

Replacement
Schemas

replace

Customization
Aggregate

Components
(cac)

Customization
Basic

Components
(cbc)

Figure 16. Overlaying customization schema fragments (Crane Softwrights Ltd. Used by permission.)

3.1.4 Using UBLExtension
765

770

775

780

785

The one exception to the general rule that only subsets are conformant is the UBLExtension
element. If new information entities are added to an existing document type exclusively in the
extension area, instances validating against the extended schema are still UBL conformant. But
in these cases, schema validation cannot ensure the structural integrity of the new information
entities.
The UBLExtension element found at the beginning of all UBL documents allows communities of
interest to specify additional information entities as part of a UBL standard document.
Conformance is not affected by the content of the UBLExtension, as it may contain any type of
information entity (because it uses <xsd:any> in its declaration). If new information entities are
added to a UBL document type only in the extension area, any instances validating against the
extended schema are still UBL conformant (but may not be UBL compatible).
The Extension Content Datatype module is shown in Figure 16, as that fragment that is
replaced with the customization's specification of the UBL extension point. This eliminates the
need to touch the module expressing the standardized extension metadata in Common
Extension Components.
The UBLExtension element is not one of UBL’s information entities. It is a structural device that
allows arbitrary extensions to a UBL document type without affecting UBL conformance. As
such, it is an artefact of document specification, not document design.
Having only one location for extensions manages the expectations of applications for locating
added non-standard constructs. Note that extended information entities are not allowed
anywhere else in a UBL document type outside of the UBLExtension element, otherwise
validation against standard UBL schemas will report errors of unexpected content.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 32 of 32

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 33 of 33

790

795

Injudicious use of UBLExtension will obviously have damaging consequences for understanding
the meaning of information in the documents. UBLExtension should never be used for
information that may properly be conveyed in standard UBL types elsewhere in the document.
Metadata available on each UBLExtension should be used to identify the nature and source of
the extension.
There are two situations where UBLExtension may be considered appropriate:

1. Where the requirement is to incorporate alien content in a standard UBL document type
that cannot be contained as an Attachment.
Example

In Figure 17, UBLExtensions is used to specify legacy EDIFACT information entities
(defined here as myext:ExtensionContent) that must be included in the document
instance for message routing purposes.

800

805

Figure 17. An example of extending with alien content

2. Where a customizing organization wishes to extend information entities in a standard UBL
document type and still have their documents be validated by the standard UBL schema.
Example

In Figure 18, the UBL Address has been extended to include a Postoffice information
entity. This new structure is known as AlternativePostalExtendedAddress.

Figure 18. An example of extending UBL information entities

Complex extensions are best organized in modules that correspond to components of the
standard UBL document structure. Figure 19 shows a set of extensions implemented as a set of
four fragments: the specification of a redefined UBL extension point (in the UBL extension
namespace); the specification of the apex element of the extension (in another namespace); the
specification of ABIE constructs (in yet another namespace); and the specification of extension
BBIE constructs (in still another namespace). The suggested apex fragment is analogous to the
document schema; it has no corollary in standard UBL and could easily be abandoned if the
extension business objects migrated to a later version of the UBL common library.

810

815

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 34 of 34

Extension
Content
Datatype

(ext)

Document Schema
e.g. Invoice, Order, etc.

Common
Aggregate

Components
(cac)

Common
Basic

Components
(cbc)

Unqualified
Datatypes

(udt)

Qualified/
Specialized
Datatypes

(qdt)

Common
Extension

Components
(ext)

Extension
Content
Datatype

(ext)

Extension
Aggregate

Components
(mycac)

Extension
Basic

Components
(mycbc)

include

import

Extension
Apex

(myext)

Figure 19. Extension of non-UBL business objects (Crane Softwrights Ltd. Used by permission.)

3.1.4.1 Referencing information in UBLExtension
There are some complexities when using UBLExtension to specify optional extensions to
aggregates that may have many occurrences. For example, suppose we require extension to
the UBL aggregate, Item, to allow a CarbonEmissionRating, and not all Items have a rating.

820

825

830

835

The problem arises when instances contain items of a certain type that may or may not be
extended by information in the extension area. That is, when the extended information entity
has a minimum cardinality of zero and the aggregate being extended has a maximum cardinality
of many.
Using the previous example, then in a given instance of a document, some Items may be
extended to include their CarbonEmissionRating and others may not. The challenge is how to
specify in the UBLExtension area which CarbonEmissionRating belongs to which Item in the
main body of the document.
This problem can be generalized as the need to specify the precise context (or position in the
document tree) of each element in the UBLExtension. There are at least two approaches to
solving this.

1. Use a reference identifier.
Many constructs in UBL, for example Line Items and Parties, may use identifiers. Reusing
these identifiers in extension content provides a natural association between content found
under the extension point and content found in the standardized constructs, resulting in a
virtual extended record. In Figure 20 the UBL LineItem/ID is used to establish which line
item the LineItem/custInfo applies to.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 35 of 35

840

845

850

855

Figure 20. Using a shared ID to connect information in UBLExtension with a line item

Some UBL aggregates have no identifiers, however, and in such cases a surrogate unique
identifier would have to be created to link the information entity in the extension with the
relevant information entity in the document body.

2. Replicate the entire aggregate in the UBLExtension.
Using this approach, the UBLExtension can contain a copy of the associated information
from the body of the document instance so that the extensions are found in their context.
In Figure 21, the entire LineItem (with the additional information entity) is repeated in the
UBLExtension, and an appropriately configured application finds all the extended records
in one place.
Replication may require increasingly larger portions of the document to be included in the
UBLExtension to unambiguously identify the context of an extended information entity.
Taking this to its extreme may mean specifying the entire body of the extended document
in the UBLExtension. This means that each document instance then contains two sets of
content — one (in the body) without any extensions and the other (in the UBLExtension) as
the required document including extensions. As a result, the body of the document then
contains the UBL conformant information (for validation) and the UBLExtension contains
the actual document content required for the business process.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 36 of 36

Figure 21. Replication within UBLExtension

3.2 Using XPath 860

XPath syntax may also be used to specify a customization. The XPath recommendation [XPath
1.0] defines a model for the information found in XML instances. The specification describes
well-formed instances (which may or may not be valid). It focuses on the information found in
the instance and not the syntax used in the instance to express the information.
Because XPath specifies the absolute document structure in its entirety, it is possible to restrict
selective types based on context. For example, an Address when used in one part of the
schema may have a different customization than in another part.

865

870

875

The UBL Human Interface Subcommittee [HISC] project has created an XML vocabulary for
enumerating information entities in a set of available XPath addresses from the document
element to all information entities allowed by a given document model described by a schema or
to all information entities found in a particular XML instance. The normative instance of an
XPath file for a given document model is an XML instance of the XPath file vocabulary [XPath
File]. This instance can be machine-processed by any XML-aware application and can also be
used to create human-readable reports and diagnostic materials.
The UBL NDRs make it straightforward to create XPath files from the published XSD
expressions,10 and XPath files for UBL schemas are publicly available [UBL-XPath]. These
XPath files express in a programmatically processed form all of the possible combinations of
XML hierarchy for the information entities described by each UBL document type. The size of
the resulting files makes this technique best suited to restrictions or subsets of UBL document

10 Note that XPath files need not be generated from XSD schemas or XML instances. The UBL logical
models can also be used as a source for creating XPath files.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 37 of 37

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 38 of 38

880

885

890

895

900

905

910

915

types. The UBL Small Business Subset version 1.0 [SBS1.0] is an example of how a subset
may be specified using XPaths.

3.3 Using genericode
UBL uses the OASIS standard genericode XML format to specify values (and associated
metadata) for code lists. These are found in the subdirectories of

http://docs.oasis-open.org/ubl/os-UBL-2.0-update/cl/gc/
The cefact directory under cl/gc contains the code lists associated with the supplemental
components of the CCTS unqualified data types. These components are found in all UBL basic
information entities whose types are derived from the related CCTS unqualified data type.
The default directory under cl/gc has the standard code lists associated with UBL basic
information entities whose types are qualified from the CCTS CodeType.11
The special-purpose directory under cl/gc has a selection of code lists that customizers may find
useful in their deployment of UBL but that are not included in the UBL value validation example.
The genericode standard is recommended as the syntax for specifying customized sets of
possible values as well.
Note that genericode only provides a way of specifying the values of a code list; it does not
provide for specifying the contexts in which the values are used. An example of a specification
providing contextual use of values from genericode files is Context/Value Association (CVA),
which was used by the UBL TC in the creation of the artefacts in the sample validation directory.
While genericode provides for the specification of list-level metadata (about the list of codes as
a whole) and value-level metadata (about each coded value found in the list), the CVA file
provides for the specification of instance-level metadata (about the list-level metadata
associated with a particular coded value used in an instance).
The latest versions of both the genericode OASIS standard and the CVA work-in-progress can
be found linked from

http://www.oasis-open.org/committees/codelist
When a customization creates any kind of code list in genericode, it has the obligation to ascribe
unique list-level metadata to that list, even if that list is a subset of another list with its own list-
level metadata. Every list must be uniquely identified. Where necessary, the CVA file provides
for masquerading the use of a value from a customized list as if it were a value from an original
list.
Note that genericode and CVA files have uses other than instance validation, such as in
constraining data entry.

3.4 Using Schematron
There are many business rules a customization may require that constrain the values used in
the documents. Some of these constraints cannot be specified easily using schema validation
semantics. A useful syntax for the formal assertion of these type of value constraints is
Schematron (ISO/IEC 19757-3).

11 The values in this list constrain the supplied “second pass value validation” example found in the
sample validation directory http://docs.oasis-open.org/ubl/os-UBL-2.0-update/val/

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 39 of 39

920

925

930

Using Schematron, a customization can specify all such assertions in a declarative fashion
independent of how the assertions are actually implemented as running code in a validation
process.
Note there can be implementations of CVA files that incorporate business rules expressed as
Schematron assertions when aggregating all value constraints applicable to XML documents.

3.5 Using the UBL library for non-UBL document types
Even when a completely new document type must be defined, it can prove advantageous to use
as much of the UBL library as possible. Figure 22 shows an approach to specifying the schema
fragments defining a non-UBL document using both UBL and non-UBL business objects. This is
similar to the structure suggested in Figure 19 for extending documents from the UBL schema
set. Note the aggregate and component extension fragments corresponding to the like UBL
fragments. The suggested apex fragment has no corollary in UBL and could be abandoned if
the extension business objects migrate to a future version of the UBL common library with the
document element receiving an "official" UBL namespace as a new UBL document.

Extension
Content
Datatype

(ext)

My Document Schema
(mydoc)

Common
Aggregate

Components
(cac)

Common
Basic

Components
(cbc)

Unqualified
Datatypes

(udt)

Qualified/
Specialized
Datatypes

(qdt)

Common
Extension

Components
(ext)

Extension
Content
Datatype

(ext)

Extension
Aggregate

Components
(mycac)

Extension
Basic

Components
(mycbc)

include

import

Extension
Apex

(myext)

Figure 22. Using the UBL library for non-UBL documents (Crane Softwrights Ltd. Used by permission.)

3.6 Managing specifications of customizations
935 It is possible to create a metamodel that describes the various aspects of customization. This

may then be used to create and manage document specifications based on customizations of

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 40 of 40

940

UBL, including any customized BIEs, business rules, and value constraints. This approach has
been used by the Danish OIOUBL project12 to create and maintain their documentation.
A useful source of customization specifications is the UBL community website, ubl.xml.org
[UXO].

12 See http://www.oioubl.info/classes/en/

4 Validation
The UBL committee has published a processing model for a UBL system receiving an XML UBL
document, as illustrated in Figure 23.

Valid
?

XML

XSLT

XSLT

Incoming
instance

Value
Constraints

W3C
Schema

Structure
Constraints

XSD

Application
Code

Value
Validation

Structural and
Lexical Validation

Semantic
Interpretation

One-time
Preparation

Run-time
Processing

1 2

Valid
?

reject reject

N
Y

N
Y

Figure 23. The published processing model for UBL 945

950

955

960

In this model, two distinct steps are engaged to determine the validity of an instance for
processing by a receiving application. The structural and lexical constraints are expressed in the
W3C Schema XSD file. The value constraints are expressed in an XSLT file.13 Only when an
instance has successfully passed structural validation does it make sense to check value
validation. At either stage of validation, a failure indicates that the message is to be rejected,
either because the document structure is invalid or because value constraints have been
violated.
If the application requires schema validity for the loading of data structures, this is assured by
the first step. Checking the value constraints in the second step relieves the application from
having to know which constraints apply, and processing can focus on whatever values have
been allowed to pass. Thus the application can be quite generic in nature by supporting all
possible values. The application does not have to change if the constraints on values change in
different business contexts.
A receiving application is assumed to have been programmed to be aware of only the
constructs of a particular customization of UBL. It will therefore be deployed with the schemas
for that UBL customization and will typically perform validation of received documents in
advance of acting on the semantics represented by the information structured and identified in
the XML. The customized application receiving an instance conforming to a complete UBL

13 The standard UBL XSD files and a default suite of code list value checks compiled in an XSLT
stylesheet are included in the UBL 2.0 specification package.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 41 of 41

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 42 of 42

965

970

schema, to a different customization, or to a later version of the same customization may find
either unrecognized constructs or recognized constructs in unexpected places. For example, a
customization version 2.5 application would not recognize foreign constructs or constructs
introduced by the schema for the customization’s version 2.7.
The published processing model for like-versioned UBL systems does not support a version 2.5
application receiving foreign content or a version 2.7 instance with unexpected content.
Figure 24 illustrates a processing model augmenting the processing model described in the UBL
2.0 specification.

Valid
?

XML

XSLT

XSLT

Incoming
instance

Value
Constraints

W3C
Schema

Structure
Constraints

XSD

Application
Code

Value
Validation

Structural and Lexical
Validation

Semantic
Interpretation

One-time
Preparation

Run-time
Processing

1 2

Valid
?

rejectValid
?

reject

XSLT

Version
Filter

XSLT

W3C
Schema

Structure
Constraints

XSD

1

Initial pass/fail indication

N
Y

N

N

Y

F

Figure 24. A customized processing model supporting forward compatibility

This alternative processing model for the receiving system uses only that version of UBL
schema supported by the receiving system and does not involve any inspection of the XML
instance in advance of validation. In this model, an initial schema validation failure indication is
recognized to possibly have been triggered by an instance using features added in a schema
version later than the version supported by the system. After such a failure, an instance pruning
process takes away unknown constructs from the instance being validated. The resulting
pruned instance can then be checked for schema validity. If successful, the pruned instance is
passed to the second stage value validation.

975

980

985

990

As with the standardized model, passing value validation grants delivery of the instance to the
application. In this model, however, a second piece of information accompanies the instance
being passed to the application. The application can already assume that value constraints in
the document are satisfied. An “initial pass/fail” indication tells the application that the instance it
is working with satisfies the structure constraints in either an unmodified (“initial pass”) or a
modified (“initial fail”) state.
An unmodified instance can be acceptable for business processing regardless of the stated
version number found in the UBLVersionID element or the string found in the
UBLCustomizationID element if all of the business objects found in the instance conform to the
constraints of the application, notwithstanding the presence of additions from a version other
than the one the processing application is set up to handle. The application can use out-of-band

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 43 of 43

995

1000

1005

1010

1015

decision making based on these unrecognized elements to accept or reject a modified instance
for the purposes of doing business.
Whether modified or unmodified, information contained in instances emerging from this process
can successfully be extracted by the kind of application that relies on schema validation to
inspect instance content. Without some mechanism like the one shown in Figure 24, some
instances will be blocked at validation that might, upon further inspection, be judged acceptable
because the receiving system simply doesn't need the extra information. JAXB [JAXB] and JiBX
[JiBX] are two examples of programming language interfaces to XML in which the programmer
validates the incoming instance in order to properly load Java classes. If the interface rejects the
instance due to a failure to validate, then the content cannot even be inspected in order for
business rules to be applied to business-level rejections. The method shown in Figure 24
guarantees that the application can at least build an input data structure before deciding
whether to accept the instance for further processing or, if not, to decide what kind of message
to send back to the originating system.
Consider an instance labeled UBL 2.7 coming into a system that validates using a UBL 2.5
schema. First, suppose that the instance happens not to use any elements defined later than
2.5; it validates against the 2.5 schema and is passed to the 2.5-aware application untouched
and with an "initial pass" indication. In this case, the 2.7 label is probably irrelevant except as
possibly interesting incidental information. Now suppose that the instance does contain
unrecognized constructs from schema versions later than 2.5. This instance fails to validate
against the 2.5 schema, but when the unrecognized elements are removed, it becomes, in
effect, a 2.5 subset instance that gets passed on to the 2.5-aware application with an "initial fail"
indication. In this second case, the 2.7 label probably is relevant to the application and to the
user in deciding how to proceed.

UBL2-Customization1.0cs01 25 December 2009
Copyright © OASIS® 2009. All Rights Reserved. Page 44 of 44

5 Conformance
This document is intended for guidance in using UBL and therefore contains no conformance
requirements.

 1020

	1 Introduction
	1.1 Definition of terms
	1.2 Informative references
	1.3 Acknowledging OASIS copyright
	1.4 Conformance vs. compatibility
	1.4.1 UBL conformance
	1.4.2 Code list conformance
	1.4.2.1 Enforcing code list conformance
	1.4.2.2 UBL conformance of UBL-provided code lists
	1.4.2.2.1 Code list conformance ownership
	1.4.2.2.2 Simple code list conformance specification
	1.4.2.2.3 Complex code list conformance specification

	1.4.2.3 UN/CEFACT schema modules in UBL 2.0

	1.4.3 UBL compatibility
	1.4.4 Maintaining common meanings
	1.4.5 Customization profiles
	1.4.6 Identifying versions, customizations, and profiles

	1.5 Overview of customization methodology
	1.6 Calculation models

	2 Designing for UBL customization
	2.1 Designing for conformance
	2.1.1 Subsets of the document model
	2.1.2 Code list constraints on document content
	2.1.3 Other constraints on document content
	2.1.4 Examples of conformant customizations

	2.2 Designing for compatibility
	2.2.1 Re-use of UBL
	2.2.2 Compatible extension of UBL
	2.2.2.1 Using qualified names
	2.2.2.2 Re-using aggregate information entities
	2.2.2.3 New basic information entities
	2.2.2.3.1 Qualified data types
	2.2.2.3.2 Qualified code data types

	2.2.2.4 New associations
	2.2.2.5 New aggregates
	2.2.2.6 New document types

	2.2.3 The customization ripple effect
	2.2.3.1 Customized aggregates using subsetting
	2.2.3.2 Custom aggregates using UBL information entities
	2.2.3.3 Custom aggregate using custom information entities

	3 Specification
	3.1 Using XML Schema (XSD)
	3.1.1 Customized schemas
	3.1.2 New document schemas
	3.1.3 Subset schemas
	3.1.4 Using UBLExtension
	3.1.4.1 Referencing information in UBLExtension

	3.2 Using XPath
	3.3 Using genericode
	3.4 Using Schematron
	3.5 Using the UBL library for non-UBL document types
	3.6 Managing specifications of customizations

	4 Validation
	5 Conformance

