

Topology and Orchestration

Specification for Cloud Applications

(TOSCA) Primer Version 1.0

Committee Note Draft 01

31 January 2013

Specification URIs
This version:
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-
v1.0-cnd01.doc (Authoritative)
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-
v1.0-cnd01.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-
v1.0-cnd01.pdf

Previous version:
N/A

Latest version:
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.doc
(Authoritative)
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-
v1.0.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf

Technical Committee:
OASIS Topology and Orchestration Specification for Cloud Applications
(TOSCA) TC

Chairs:
Paul Lipton (paul.lipton@ca.com), CA Technologies
Simon Moser (smoser@de.ibm.com), IBM

Editors:
Frank Leymann (Frank.Leymann@informatik.uni-stuttgart.de), IBM
Matt Rutkowski (mrutkows@us.ibm.com), IBM
Adolf Hohl (Adolf.Hohl@netapp.com), NetApp
Marvin Waschke (marvin.waschke@ca.com), CA Technologies
Paul Zhang (paul.zhangyi@huawei.com), Huawei

http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.doc
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.doc
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.doc
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf
http://www.oasis-open.org/committees/tosca/
http://www.oasis-open.org/committees/tosca/
mailto:paul.lipton@ca.com
http://www.ca.com/
mailto:smoser@de.ibm.com
http://www.ibm.com/
mailto:Frank.Leymann@informatik.uni-stuttgart.de
http://www.ibm.com/
mailto:mrutkows@us.ibm.com
http://www.ibm.com/
mailto:Adolf.Hohl@netapp.com
http://www.netapp.com/
mailto:marvin.waschke@ca.com
http://www.ca.com/
mailto:paul.zhangyi@huawei.com
http://www.huawei.com/

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 2 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

Related work:
This document is related to:

¶ Topology and Orchestration Specification for Cloud Applications Version 1.0. Latest
version. http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html.

Abstract:
This document provides an introduction to the Topology and Orchestration Specification
for Cloud Applications (TOSCA).

Status:
This document was last revised or approved by the OASIS Topology and Orchestration
Specification for Cloud Applications (TOSCA) TC on the above date. The level of approval
ƛǎ ŀƭǎƻ ƭƛǎǘŜŘ ŀōƻǾŜΦ /ƘŜŎƪ ǘƘŜ ά[ŀǘŜǎǘ ǾŜǊǎƛƻƴέ ƭƻŎŀǘƛƻƴ ƴƻǘŜŘ ŀōƻǾŜ ŦƻǊ ǇƻǎǎƛōƭŜ ƭŀǘŜǊ
revisions of this document.
Technical Committee members should send comments on this document to the
¢ŜŎƘƴƛŎŀƭ /ƻƳƳƛǘǘŜŜΩǎ ŜƳŀƛƭ ƭƛǎǘΦ hǘƘŜǊǎ ǎƘƻǳƭŘ ǎŜƴŘ ŎƻƳƳŜƴǘǎ ǘƻ ǘƘŜ ¢ŜŎƘƴƛŎŀƭ
/ƻƳƳƛǘǘŜŜ ōȅ ǳǎƛƴƎ ǘƘŜ άSend A Commentέ ōǳǘǘƻƴ ƻƴ ǘƘŜ ¢ŜŎƘƴƛŎŀƭ /ƻƳƳƛǘǘŜŜΩǎ ǿŜō
page at http://www.oasis-open.org/committees/tosca/ .

Citation format:
When referencing this document the following citation format should be used:

[TOSCA-Primer]

Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer Version
1.0. 31 January 2013. OASIS Committee Note Draft 01. http://docs.oasis-
open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html.

Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS

Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the

OASIS website.

This document and translations of it may be copied and furnished to others, and derivative

works that comment on or otherwise explain it or assist in its implementation may be prepared,

copied, published, and distributed, in whole or in part, without restriction of any kind, provided

that the above copyright notice and this section are included on all such copies and derivative

works. However, this document itself may not be modified in any way, including by removing

the copyright notice or references to OASIS, except as needed for the purpose of developing any

document or deliverable produced by an OASIS Technical Committee (in which case the rules

applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to

translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its

successors or assigns.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
http://www.oasis-open.org/committees/tosca/
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
http://www.oasis-open.org/policies-guidelines/ipr

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 3 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

This document and the information contained herein is provided on an "AS IS" basis and OASIS

DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY

WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP

RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 4 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

Table of Contents
1. Introduction ... 9

1.1 Statement of Purpose .. 9

1.2 Scope of this Document ... 9

1.3 References (non-normative).. 10

1.3.1 Standards .. 10

1.3.2 Software and Services ... 10

2 What Everybody Should Know About TOSCA .. 11

2.1 An overview of TOSCA ... 11

2.1.1 Bringing Cloud Services to Market ς TOSCA Roles ... 11

2.1.2 TOSCA Value Statement.. 11

2.1.3 TOSCA Processing Environment.. 12

2.2 Roles Involved in Modeling a Cloud Application ... 16

2.2.1 Type Architect Role ... 17

2.2.2 Artifact Developers Role ... 18

2.2.3 Application Architect Role .. 19

3 What Type Architects Should Know About TOSCA .. 25

3.1 Providing Node Types and Relationship Types .. 25

3.1.1 Vendor Perspective ... 25

3.1.2 Node Types ... 26

3.1.3 The Lifecycle Interface .. 26

3.1.4 Relationship Types .. 28

3.2 Using Inheritance ... 28

3.3 Providing Requirement Types and Capability Types ... 30

3.4 Green Field Perspective ... 32

3.5 Modular Design of Service Templates ... 32

3.6 Simplifying Application Modeling: Composable Service Templates.................................... 33

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 5 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

3.6.1 Turning Service Templates into Composables .. 34

3.6.2 Using Abstract Node Types ... 34

3.6.3 Substitution of Abstract Node Types by Service Templates ... 35

4 What Artifact Developers Should Know About TOSCA .. 36

4.1 Defining Artifact Types .. 36

4.2 Defining Artifact Templates ... 37

4.3 Providing Implementations ... 39

4.3.1 Coping With Environment-Specific Implementations .. 40

5 What Cloud Service Providers Should Know About TOSCA ... 42

5.1 Adaptation to Particular Cloud Providers .. 42

5.1.1 Deployment of implementation artifacts and deployment artifacts 42

6 What Application Architects Should Know About TOSCA ... 44

6.1 Single-Tier MySQL Database for our SugarCRM Web Application 44

6.1.1 Required Node Types .. 45

6.1.2 Turning Node Types into Node Templates ... 49

6.1.3 Required Artifact Types .. 51

6.1.4 Turning Artifact Types into Artifact Templates... 53

6.1.5 Required Relationship Types .. 53

6.1.6 Turning Relationship Types into Relationship Templates... 54

6.2 Two-Tier SugarCRM Web Application Example ... 56

6.2.1 Required Node Types .. 56

6.2.2 Turning Node Types into Node Templates ... 61

6.2.3 Required Artifact Types .. 63

6.2.4 Turning Artifact Types into Artifact Templates... 64

6.2.5 Required Relationship Types .. 64

6.2.6 Turning Relationship Types into Relationship Templates... 66

6.2.7 Creating the Cloud Service Archive (CSAR) ... 67

7 Moving Virtual Machines to the TOSCA World.. 69

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 6 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

7.1 Deploying a New Virtual Machine (VM) .. 69

7.1.1 Required Node Types .. 69

7.1.2 Creating the Service Template xml file .. 70

8 How TOSCA Works with Other Cloud Standards ... 73

8.1 Mapping TOSCA to DMTF OVF... 73

8.1.1 Use Case One: OVF Package for Single Virtual System ... 73

8.1.2 Use Case Two. OVF Package for Multiple Virtual Systems ... 76

Appendix A. Acknowledgments ... 80

Appendix B. Terminology & Acronyms .. 81

B.1 Acronyms ... 81

Appendix C. Revision History ... 82

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 7 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

List of Figures
Figure 1 - Sample Architecture of a TOSCA Environment ... 13

Figure 2 - Sample "Declarative" Processing Sequence When Importing a CSAR .. 14

Figure 3 - Sample Extension of a CSAR for "Imperative" Processing .. 15

Figure 4 - Sample "Imperative" Processing Sequence When Importing a CSAR ... 16

Figure 5 - Topology of a Simple Cloud Application .. 21

Figure 6 - Service Template of a Sample Application Including a Build Plan .. 22

Figure 7 - Service Template that Makes Use of Requirements and Capabilities .. 23

Figure 8 ς Defining Interfaces and Their Implementations For Particular Node Types 27

Figure 9 ς Node, Artifact, Relationship, Requirements and Capabilities Type Hierarchies 29

Figure 10 - Making Use of Imports .. 33

Figure 11 - Service Template Substituting a Node Type ... 35

Figure 12 - Key Definitions for TOSCA Artifacts and their Relationships .. 36

Figure 13 - Node Type Inheritance for a SugarCRM Database Tier ... 49

Figure 14 - Node Type Inheritance for a SugarCRM Web Application Tier ... 61

Figure 15 - Sample Service Topology for OVF Use Case 1 ... 73

Figure 16 - Sample Service Topology for OVF Use Case 2 ... 76

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 8 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

List of Tables
Table 1 - TOSCA Benefits by Service Role .. 12

Table 2 ς Single-Tier MySQL Database Example's Base Node Types .. 45

Table 3 ς Single-¢ƛŜǊ aȅ{v[5ŀǘŀōŀǎŜ 9ȄŀƳǇƭŜΩǎ {ǇŜŎƛŦƛŎ bƻŘŜ ¢ȅǇŜǎ .. 47

Table 4 ς Single-Tier MySQL Database Example's Custom Node Types .. 48

Table 5 ς Single-Tier MySQL Database Example's Base Artifact Types ... 52

Table 6 ς Single-Tier MySQL Database Example's Base Relationship Types ... 54

Table 7 ς SugarCRM Web Application Example's Base Node Types ... 56

Table 8 ς {ǳƎŀǊ/wa ²Ŝō !ǇǇƭƛŎŀǘƛƻƴ 9ȄŀƳǇƭŜΩǎ {ǇŜŎƛŦƛŎ bƻŘŜ ¢ȅǇŜǎ .. 59

Table 9 ς SugarCRM Web Application Example's Custom Node Types .. 60

Table 10 ς SugarCRM Web Application Example's Base Relationship Types .. 65

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 9 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

1 Introduction

1.1 Statement of Purpose

Cloud computing offers a compelling cost-effective model for businesses that wish to host their

applications and services in an environment where it can scale to meet their customer demands

while reducing their need in maintaining the overhead of large datacenters and their operations.

However, these same customers, until TOSCA, lacked a standard means to describe the topology

of their applications along with their dependent environments, services and artifacts inside a

single service template which would enable them to deploy and manage them against the

capabilities offered by any cloud provider, regardless of their infrastructure or service model.

This document seeks to provide a practical introduction to the TOSCA meta-model as defined

within the TOSCA version 1.0 draft specification. It is intended to guide application architects

and developers, as well as cloud providers and tool vendors, through the process of modeling

and representing some basic applications as TOSCA service templates. Its purpose is to make

you, regardless of your role, productive using TOSCA as soon as possible.

Each scenario is authored in a way to highlight the considerations and activities each role

involved in the process of creating a cloud-based application would approach their task using

different aspects and concepts from TOSCA.

The authors of this primer realize that many of the sample applications presented in this first

ǾŜǊǎƛƻƴ ƻŦ ǘƘŜ ǇǊƛƳŜǊ ŀǊŜ ǉǳƛǘŜ ǎƛƳǇƭŜ ŎƻƳǇŀǊŜŘ ǘƻ ǘƘŜ ǇƻǎǎƛōƭŜ άǊŜŀƭ ǿƻǊƭŘέ ŀǇǇƭƛŎŀǘƛƻƴǎ Ƴŀƴȅ

readers may be concerned with. It may seem even seem that using a modeling language like

¢h{/! ƳƛƎƘǘ ǎŜŜƳ ƭƛƪŜ άƻǾŜǊƪƛƭƭέ ŦƻǊ ǎǳŎƘ ŎŀǎŜǎ ǿƘŜƴ ŎƻƳǇŀǊŜŘ ǘƻ ǎƻƳŜ ŘƻƳŀƛƴ-specific

alternatives that are available. However, it is our hope, that through careful explanation of the

thinking behind TOSCA modeling (even using the ōŀǎƛŎ άƘŜƭƭƻ ǿƻǊƭŘέ ŜȄŀƳǇƭŜǎ ƛƴŎƭǳŘŜŘύ ǘƘŜ

readers will come to appreciate the power, flexibility and benefits of TOSCA to handle more

complex cases over other, more narrowly-scoped alternatives.

1.2 Scope of this Document

The aim of this document is to provide a quick start for cloud service developers to describe

operational procedures using TOSCA. The following of this document is written primarily for

cloud service developers and touches upon the view of other roles only. It is not meant to be a

reference ς it provides an answer for the most urgent questions to get familiar and leverage

TOSCA from the chosen role.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 10 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

1.3 References (non-normative)

1.3.1 Standards

[DMTF-CIMI]

Cloud Infrastructure Management Interface (CIMI) Model and REST Interface over HTTP

Specification, Version 1.0, a Distributed Management Task Force (DMTF) Standard (DSP0263), 30

October 2012, http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdf

[TOSCA-CSD-1.0]

OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA), Version 1.0,

Committee Specification Draft (CSD) 06 / Public Review Draft 01, 29 November 2012,

http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.pdf

1.3.2 Software and Services

[Amazon-EC2]

Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/.

[Apache-HTTP-Server]

Apache HTTP Server Project, http://httpd.apache.org/.

[MySQL-DB]

MySQL Community Server, http://dev.mysql.com/downloads/mysql/5.1.html.

[OpenStack]

OpenStack ς Open Source Cloud Computing Software, http://www.openstack.org/.

[SugarCRM-CE]

SugarCRM Community Edition (CE), http://www.sugarforge.org/projects/sugarcrm/.

http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.pdf
http://aws.amazon.com/ec2/
http://httpd.apache.org/
http://dev.mysql.com/downloads/mysql/5.1.html
http://www.openstack.org/
http://www.sugarforge.org/projects/sugarcrm/

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 11 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

2 What Everybody Should Know About TOSCA

2.1 An overview of TOSCA

TOSCA formalizes a significant amount of interactions between somebody who develops IT

delivered services and the one who actually operates them. In this chapter, we outline how

TOSCA roles map to real-world IT business actors and what value it brings for each individual

actor. However, it should be noted, that the majority of this document is targeted for people or

ƻǊƎŀƴƛȊŀǘƛƻƴǎ ŀŎǘƛƴƎ ƛƴ ŀ ά/ƭƻǳŘ {ŜǊǾƛŎŜ 5ŜǾŜƭƻǇŜǊέ ǊƻƭŜΦ

2.1.1 Bringing Cloud Services to Market ɀ TOSCA Roles

TOSCA is a specification which adds value to the relationships between users, providers and

developers of IT provided services. The roles are oriented on a model where a cloud service

developer provides services which they distribute via further channels, primarily cloud service

providers and which are eventually offered to service consumers.

The roles that we will reference in this document are briefly defined here:

¶ Cloud Service Consumer: A service consumer leverages IT provided services to run their

business. These persons benefit from TOSCA, but not from direct contact with the

specification.

¶ Cloud Service Developer: The main business of a cloud service developer is developing

cloud services that will rely upon the operational and support services of from a Cloud

Service Provider offers. The cloud service developer uses TOSCA to express how to

instantiate and operate the services they developed.

¶ Cloud Service Provider: The main business of a cloud service provider is operating

services developed by cloud service developers. Persons in this role use TOSCA to map

request of a new service consumer to their infrastructure.

Of course, roles typically apply to separate market actors but one actor may also serve in

multiple roles.

2.1.2 TOSCA Value Statement

TOSCA provides a compelling value statement for each role and its corresponding actor. In this

section, we would like to highlight the reason why it makes sense to use the TOSCA specification

for those who develop cloud services and those who deploy and operate them. Furthermore,

there is an incentive for service consumers to choose services deployed and operated using

TOSCA.

Although the majority of this document will be from the view of the TOSCA role of a Cloud

Service Developer, the following table shows the benefits of TOSCA for each service role:

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 12 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

TABLE 1 - TOSCA BENEFITS BY SERVICE ROLE

TOSCA Service Roles

Cloud Service

Consumer

Cloud Service Developer Cloud Service Provider

Cloud Service Consumers

benefit indirectly from the

standardization which

TOSCA brings to the Cloud

Service Developer and

Cloud Service Provider.

These benefits include:

¶ More choices and
flexibility in Cloud
Provider.

¶ Lower set-up and
operational costs from
TOSCA automation.

A Cloud Service Developer uses

TOSCA as the standard to get

their developed services at Cloud

Service Providers in place. These

persons:

¶ Leverage the operational
expertise of Cloud Service
Providers

¶ May further leverage the
business/distribution network
of Cloud Service Providers

¶ Are able to choose from a
wider range of cloud service
providers.

¶ Can work with multiple Cloud
Service Providers in different
legal environments with
reasonable effort.

A Cloud Service Provider

uses TOSCA to rapidly offer

and deploy cloud services

developed by Cloud Service

Developers for Cloud Service

Consumers. Provides:

¶ Act as resellers for
services developed by
cloud service developer.

¶ Can extend service
offerings and revenue
chances.

¶ Optimize deployment and
operational procedures
and expenses.
¶ Optimize the time to

market for services

2.1.3 TOSCA Processing Environment

A TOSCA environment, operated by a Cloud Service Provider, might include various features that

would be used to process TOSCA definitions according to the specification. These features may

in turn be grouped into and provided as components that can be described as parts of cloud

architectures. Many different ways of grouping these features into components and arranging

these components into architecture exist. In addition, each vendor may decide which set of

features to support and how they would be provided within their specific architecture. The

figure below shows an example of a complete TOSCA environment in order to better help the

reader comprehend the conceptual modeling and processing steps behind the TOSCA

specification (see Figure 1).

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 13 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

FIGURE 1 - SAMPLE ARCHITECTURE OF A TOSCA ENVIRONMENT

Cloud applications are typically packaged in TOSCA using Cloud Service Archive όƻǊ ά/{!wέύ ŦƛƭŜǎΦ

While the format of a CSAR file is defined by TOSCA, the way in which such files are created is

out of scope of the specification. These archives could be created manually, but the TOSCA

environment suggests that (graphical) TOSCA Modeling Tools would be offered to Cloud Service

Developers to ease the creation of CSAR files. Nevertheless, the Modeling Tool is optional in a

TOSCA environment, which is indicated by rendering it via a dashed box. Similarly, the Process

Engine and the Model Interpreter are optional components as well, which is why they are also

depicted by dashed boxes. However, when processing a CSAR in an imperative manner (see

Section 2.2.3.1), a Process Engine is a mandatory component, but the Model Interpreter is still

optional. Conversely, when processing a CSAR in a declarative manner (see Section 2.2.3.1) the

Model Interpreter is mandatory and the Process Engine may be omitted.

During normal processing, CSAR files would be passed to the TOSCA Container within the

environment: the TOSCA Container (or simply container for short) understands all the steps

necessary to deploy, manage and decommission the cloud application over its lifecycle

according to its definition.

As its first action, the container forwards a CSAR to the CSAR Processor which is the component

in charge of processing the CSAR file in such a way that it can be initially deployed (step 1 in

Figure 2). For this purpose, the CSAR Processor may interact with a Model Interpreter

component (step 2 in Figure 2). Such an interaction may be necessary in case the cloud

application packaged into the CSAR is processed declaratively.

The CSAR Processor will extract the definitions from the CSAR and pass them to the Definition

Manager (step 3 in Figure 2). The Definitions Manager is in charge of storing the definitions into

the Model Repository such that all the definitions are available later on (step 4 in Figure 2).

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 14 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

Furthermore, the CSAR Processor would also extract all implementation artifacts and

deployment artifacts from the CSAR and passes them to the Artifact Manager (step 5 in Figure

2). The Artifact Manager component stores the artifacts in appropriate artifact stores (step 6 in

Figure 2). This may include storing virtual images into image libraries available in the

environment, storing scripts in subdirectories, etc. Next, the Deploy Manager is in charge to

deploy all implementation artifacts into the environment (step 7 in Figure 2). Once this is done,

the executables of all operations of node types and relationship types used in the topology

template of the cloud application are available in the environment and ready for use.

FIGURE 2 - SAMPLE "DECLARATIVE" PROCESSING SEQUENCE WHEN IMPORTING A CSAR

In an alternative processing flow (Figure 3), the TOSCA Modeling Tool (step 1 in Figure 3),

instead of the container, may interact with a Model Interpreter component (step 2 in Figure 3)

to transform a declarative model specified by an application architect into a completely

imperatively processable model (step 3 in Figure 3) before it is packaged into a CSAR. In that

case, the CSAR will always contain definitions that can be imperatively processed freeing the

container from dealing with the declarative processing model at all.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 15 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

FIGURE 3 - SAMPLE EXTENSION OF A CSAR FOR "IMPERATIVE" PROCESSING

In the case where the TOSCA service template contains plans, the TOSCA container would

perform additional imperative processing steps that continue from those shown in Figure 2 for

the declarative case. The Deploy Manager of the container will deploy each plan into the Process

Engine (step 7 in Figure 4). Deploying a plan into the Process Engine includes binding the tasks of

the plans to the formerly deployed implementation artifacts: a task in a plan may refer to the

operations of node types and relationship types, and the implementation artifacts of these

operations are now known because they have been deployed at concrete endpoints in the

environment before.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 16 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

FIGURE 4 - SAMPLE "IMPERATIVE" PROCESSING SEQUENCE WHEN IMPORTING A CSAR

After these steps, the environment is set up for managing the cloud application represented by

the CSAR and instances of the cloud application can be created. Creation of an instance of the

cloud application is performed by the Instance Manager (step A in Figure 4). An instance of a

cloud application is created by either invoking the build plan of the cloud application (i.e.

imperative processing as shown in step B in Figure 4) that is executed by the Process Engine, or

by interacting with the Model Interpreter όƛΦŜΦ ŘŜŎƭŀǊŀǘƛǾŜ ǇǊƻŎŜǎǎƛƴƎ ŀǎ ǎƘƻǿƴ ƛƴ ǎǘŜǇ .Ω ƻŦ

Figure 4). Once a cloud application has been created it can be managed by invoking the other

plans defined in the service template of the cloud application; these plans are executed by the

process engine (step C in Figure 4). Finally, when the cloud application is no longer needed, it is

decommissioned (by means of a plan performed by the Process Engine, or via the Model

Interpreter).

Note: The Process Engine is shown above as an optional component of the
environment. In the case where a cloud application will be processed in a
declarative way, i.e. without any plans, a process engine is not needed.

2.2 Roles Involved in Modeling a Cloud Application

In this document, we attempt to author sections that are targeted to the possible roles that may

be involved with developing or interacting with cloud applications modeled using TOSCA:

The technical roles this document primarily addresses include the type architect, the artifact

developer and the application architect and are profiled in this section. Each of these roles is a

specialization of the generic role cloud application service developer. Depending on your

company, the same person may fulfill more than one of these specialized roles. Concerted

actions of these three roles are required to create a TOSCA service template and a

corresponding TOSCA Cloud Service Archive (CSAR).

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 17 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

There are two other roles that may be concerned with TOSCA modeled cloud applications: the

cloud service consumer and the cloud service provider. The cloud service consumer makes use of

a modeled cloud application service, e.g. by following the self-service paradigm, browsing a

cloud service catalogue and deciding to subscribe to a particular cloud service. The cloud service

provider offers an environment (which will typically encompass a TOSCA container) in which

cloud services can be run, especially provisioned, managed, and decommissioned.

Both these last two roles are typically not involved in the details of creating a service template,

its types, artifacts, or the CSAR packaging of a cloud service. However, if you have a cloud service

provider role and want to understand more about deploying TOSCA service templates, please

read Section 5.

Note: In the subsequent sections, we use the notion of cloud services and cloud
applications synonymously.

2.2.1 Type Architect Role

The type architect is an expert for the types of components required by applications as well as

the various types of connections between these components. This especially includes

knowledge of the local management behavior of such components and connections, which is

defined as the operations of these components and connections. Types of components are

defined as TOSCA Node Types, and types of connections are defined as TOSCA Relationship

Types.

For example, web applications based on the Java programming language may consist of

άǎŜǊǾƭŜǘǎέ όƻǊ ƎǊŀƴǳƭŀǊ ǎŜǊǾƛŎŜǎύ ǘƘŀǘ Ǌǳƴ ƛƴ ŀ ǿŜō ǎŜǊǾŜǊΦ ¢ƘŜǎŜ ǎŜǊǾƭŜǘǎ Ƴŀȅ ǊŜǉǳƛǊŜ ŀ ǊŜƭŀǘƛƻƴŀƭ

Database Management System (DBMS) for managing persistent data. A type architect will then

ŘŜŦƛƴŜ ŀ ά{ŜǊǾƭŜǘέ ƴƻŘŜ ǘȅǇŜΣ ŀ ά²Ŝō {ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜΣ ŀǎ ǿŜƭƭ ŀǎ ŀ ά5.a{έ ƴƻŘŜ ǘȅǇŜΦ

Since servlets are deployed on web servers, the type architect might define a relationship type

άIƻǎǘŜŘhƴέ ǘƘŀǘ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ ŜȄǇǊŜǎǎ ǘƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǊŜƭŀǘƛƻƴǎƘƛǇ ōŜǘǿŜŜƴ ŀ ǎŜǊǾƭet and

ƛǘǎ ǿŜō ǎŜǊǾŜǊΦ {ƛƳƛƭŀǊƭȅΣ ŀ ǊŜƭŀǘƛƻƴǎƘƛǇ ά/ƻƴƴŜŎǘǎ¢ƻ5.a{έ ǿƛƭƭ ōŜ ŘŜŦƛƴŜŘ ǘƻ ŜȄǇǊŜǎǎ ǘƘŜ

ǎŜǊǾƭŜǘΩǎ ǊŜǉǳƛǊŜƳŜƴǘ ŦƻǊ ŀŎŎŜǎǎƛƴƎ ŀ 5.a{Φ ¢ƘŜ ƭƻŎŀƭ ƳŀƴŀƎŜƳŜƴǘ ōŜƘŀǾƛƻǊ ƻŦ ŀ ǎǇŜŎƛŦƛŎ 5.a{

includes operations for starting and stopping the database system, for backup and recovery of

particular database content and other tasks.

Often, type architects are employees of vendors offering components or the ability to connect

such components for use by application architects to define their cloud applications. For

example, the vendor of a specific relational database system may define a node type that

defines the properties of that relational database system as well as its local management

ōŜƘŀǾƛƻǊΦ CƻǊ ǘƘƛǎ ǇǳǊǇƻǎŜΣ ǘƘŜ ǘȅǇŜ ŀǊŎƘƛǘŜŎǘ Ƴŀȅ ƛƴƘŜǊƛǘ ŦǊƻƳ ǘƘŜ ά5.a{έ node type

mentioned above; this new, derived node type may define additional properties and include

local management behavior (as additional operations) that is common for all relational database

systems, independent of the specific product of a particular vendor. Such product-independent

node types (as well as relationship types) may be defined by vendor consortia, for example, to

ease the definition of product-specific types and to ensure within a cloud application the

exploitation of different products in different environments.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 18 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

Note: The entire cloud application itself (i.e. its own service template) may be
treated as a single set of services and defined as another TOSCA Node Type.

For example, a cloud application representing a clustered application server
(perhaps consisting of an HTTP server, a cluster manager, several cluster
members, etc.) may be grouped together and defined as a new node type called
ñScalableAppServerò. This can be achieved by exporting relevant properties and
operations of the enclosed node templates and relationship templates to ñthe

boundaryò of the service template (by means of the BoundaryDefinition

element). In such a way, node types can be ñimplementedò by means of the
language provided by TOSCA itself, supporting a recursive model of specifying
increasingly complex cloud applications.

If you hold the role of a type architect, we recommend reading the contents of Section 3.

2.2.2 Artifact Developers Role

While the type architect is a specialist on the enablement of the management behavior of cloud

applications as well as providing components of cloud applications and their connections, the

artifact developer is an expert in code artifacts. They are in charge of providing and describing

the installables and executables required to instantiate and manage a cloud application. For this

purpose, the artifact developer defines the corresponding TOSCA Node Type Implementations

and Relationship Type Implementations.

TOSCA supports two kinds of such code artifacts, namely Implementation Artifacts and

Deployment Artifacts. Implementation artifacts are the executables implementing the

operations of the interfaces of node types and relationship types. Deployment artifacts are the

installables of the components that make up a cloud application; these components are defined

by means of node types.

Each artifact has a TOSCA Artifact Type. An artifact type defines the kind of an artifact (e.g. a

WŀǾŀ !ǊŎƘƛǾŜ ƻǊ άW!wέ ŦƛƭŜ ƻǊ ŀƴ wta ǇŀŎƪŀƎŜύΣ ŀǎ ǿŜƭƭ ŀǎ ǘhe kind of information required to

ŎƻǊǊŜŎǘƭȅ ǇǊƻŎŜǎǎ ǘƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ŀǊǘƛŦŀŎǘΦ CƻǊ ŜȄŀƳǇƭŜΣ ŀƴ ŀǊǘƛŦŀŎǘ ǘȅǇŜ ƴŀƳŜŘ άW!wŦƛƭŜέ Ƴŀȅ

specify that a JAR file has a file name and a version number.

A TOSCA Artifact Template represents a reusable artifact (e.g. a particular RPM package, or a

particular JAR file) and provides the actual information required to cope with the artifact. An

example would be a JAR file, which provides a service for registering customers, and has the file

ƴŀƳŜ άwŜƎƛǎǘŜǊ/ǳǎǘƻƳŜǊέ ŀƴŘ Ƙŀǎ ǘƘŜ ǾŜǊǎƛƻƴ άмΦлέΦ !ƴ ŀǊǘƛŦŀŎǘ ǘŜƳǇƭŀǘŜ Ǉƻƛƴǘǎ ǘƻ ǘƘŜ ŀŎǘǳŀƭ

code it represents, for example by pointing to a CSAR or to an FTP address.

All implementation artifacts and deployment artifacts required to install, run, and manage an

instance of a node type or a relationship type is defined as a TOSCA Node Type Implementation

or TOSCA Relationship Type Implementation, respectively. A node type implementation or a

relationship type implementation refers to the artifact templates needed in order to bundle

appropriate implementation artifacts and deployment artifacts. An implementation artifact or a

deployment artifact may add further information about the artifact used, which is dependent on

its usage context; for example, authentication information might be required to process an RPM

package.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 19 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

In order to provide components that are useful in different kinds of cloud applications, the

corresponding node types and associated node type implementations must be defined. The

same is true for connections between components of cloud applications: they are defined by

relationship types and relationship type implementations. Thus, type architects provide the type

definitions that artifact developers take as basis for creating their implementations.

Related type definitions and implementations might then be packaged by vendors into CSARs.

These packages may then be used by application architects to import the corresponding types

and implementations allowing them to reuse the types and implementation in building their

own cloud applications.

If you hold the role of artifact developer, we recommend reading the contents of Section 4.

2.2.3 Application Architect Role

The application architect is an expert in both, the overall structure of a cloud application, its

composite types and artifacts, as well as its global management behavior covering its complete

lifecycle. The structure of a cloud application is specified by means of a topology template. Thus,

the application architect identifies and defines the node templates making up a cloud

application as well as the relationship templates wiring the collection of node templates into the

topology of the cloud application. For this purpose, the application architect relies on node

types and relationship types available at their disposal, and that have already been defined by a

type architect previously. However, some application architects may also need to define their

own node and artifact types when ready-made types have not been made available to them by

some type architect. In these cases, the application architect would need to understand the

functions described for the type architect and artifact developer roles already discussed in this

chapter.

The global management behavior covering the complete lifecycle of a cloud application is

defined by means of plans. A plan is a workflow that specifies the sequencing in which individual

management operations offered by the node templates and relationship templates making up

the cloud application have to be executed. The management operations available for the node

templates and relationship templates are exactly the operations defined by the type architect

when specifying the node types and relationship types of the corresponding templates.

Furthermore, a plan may include any other task required to define overall management

behavior. For example, acquiring a license for a cloud application might be realized by a plan.

This plan may use operations for acquiring licenses of each individual component of the cloud

application. Corresponding operations may have been defined by the type architect of the node

types and relationship types of the affected templates.

A topology template and its corresponding plans are referred to collectively as a service

template. A service template is the definition of the types of components that make up a cloud

application. The executables required to actually instantiate, run and manage the cloud

application are packaged with the service template into a CSAR (i.e. a Cloud Service ARchive).

Typically, a CSAR is a self-contained and portable representation of a cloud application that can

be deployed and managed in an environment that supports TOSCA.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 20 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

If you hold the role of an application architect, we recommend reading the contents of Section

6.

2.2.3.1 A Note on Imperative Processing and Declarative Processing of Service
Templates

TOSCA supports processing of service templates in two different flavors. The first, referred to as

imperative processing of a service template, requires the complete topology of a cloud

application to be explicitly defined, as well as all of its management behavior by means of plans.

The second flavor, referred to as declarative processing of a service template, is based on the

assumption that it is possible to infer the management behavior of the corresponding cloud

application (e.g. how to deploy the application); this typically requires the precise definition of

the semantics of node types and relationship types and their correct interpretation within a

TOSCA environment.

In other words: the imperative processing flavor specifies precisely how a cloud application is

structured and managed, while the declarative processing flavor specifies what structural

elements of a cloud application are needed and what management behavior is to be realized.

While the TOSCA specification already provides hooks (such as TOSCA plans) for defining models

that encompass imperative processing of service templates, its current focus in the first version

of the specification is on declarative processing.

As an example, you want to model a cloud application that consists of a customer database that

is managed by a relational database system that makes use of block storage. The topology of the

corresponding cloud application consists of three nodes (see Figure 5 ōŜƭƻǿύΥ ǘƘŜ ά/ǳǎǘƻƳŜǊ5.έ

ƴƻŘŜΣ ǘƘŜ άaȅ5.a{έ ƴƻŘŜΣ ŀƴŘ ǘƘŜ άaȅ.ƭƻŎƪ{ǘƻǊŜέ ƴƻŘŜΦ

These three nodes are connected by two relationshiǇǎΥ ǘƘŜ ά/ǳǎǘƻƳŜǊ5.ψƻƴψaȅ5.a{έ

ǊŜƭŀǘƛƻƴǎƘƛǇ ŎƻƴƴŜŎǘǎ ǘƘŜ ά/ǳǎǘƻƳŜǊ5.έ ƴƻŘŜ ŀƴŘ ǘƘŜ άaȅ5.a{έ ƴƻŘŜΤ ǘƘŜ

άaȅ.ƭƻŎƪ{ǘƻǊŜψŦƻǊψaȅ5.a{έ ǊŜƭŀǘƛƻƴǎƘƛǇ ŎƻƴƴŜŎǘǎ ǘƘŜ άaȅ5.a{έ ƴƻŘŜ ŀƴŘ ǘƘŜ

άaȅ.ƭƻŎƪ{ǘƻǊŜέ ƴƻŘŜΦ CǳǊǘƘŜǊƳƻǊŜΣ ǘƘŜ ŦƛƎǳǊŜ ŀƭǎƻ ŘŜǇƛŎǘǎ ǘƘŜ ƻǇŜǊŀǘƛƻƴǎ ƻŦ ǘƘŜ nodes and the

relationships that are offered to manage the overall cloud application. In this example, the

άaȅ5.a{έ ƴƻŘŜ ƻŦŦŜǊǎ ǘƘŜ άLƴǎǘŀƭƭόύέ ƻǇŜǊŀǘƛƻƴ ǳǎŜŘ ǘƻ ƛƴǎǘŀƭƭ ƛƴ ƛƴǎǘŀƴŎŜ ƻŦ ǘƘŜ ŘŀǘŀōŀǎŜ

system in the environment. This explicitly defines the topology of your cloud application.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 21 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

FIGURE 5 - TOPOLOGY OF A SIMPLE CLOUD APPLICATION

Note: In order to ease comprehension of the basic mechanisms behind TOSCA
we are bit lax in this section when using TOSCA terminology. For example, we
do not distinguish between node types and node templates, or relationship types
and relationship templates, respectively, but we just speak about nodes and
relationships. In the other sections of this primer, we use the precise language
established by TOSCA.

For example, the precise terminology would be ñthe CustomerDB node template
refers to the DBMS node typeò etc. We will explain the differences between types
and templates in the following sections.

In case you focus on deployment and decommissionƛƴƎ ƻŦ ȅƻǳǊ ŎƭƻǳŘ ŀǇǇƭƛŎŀǘƛƻƴΣ ȅƻǳ ŘƻƴΩǘ

have to provide additional plans to the topology. This is because the Model Interpreter (see

Section 2.1.3) of your TOSCA container can infer how to initially deploy and finally

decommission the cloud application. The model as depicted in Figure 2 is sufficient for

declarative processing of the sample cloud application. For example, the Model Interpreter can

(in a nutshell) simply ƴŀǾƛƎŀǘŜ ǘƘŜ ǘƻǇƻƭƻƎȅ άŦǊƻƳ ǘƘŜ ƭŜŀǾŜǎ ǘƻ ǘƘŜ ǊƻƻǘέΦ CƻǊ ŜŀŎƘ ƴƻŘŜ

reached it will invoke the operation distinguished as the one to use for creating an instance of

the node, and similar for the relationships.

For this purpose, each node and relationship must support basic lifecycle operations such as an

operation to create and delete instances, starting and stopping instances and so on. When

initially provisioning a new instance of a cloud application, the Model Interpreter will determine

the corresponding operation of each node (or relationship, respectively, if necessary). Also, the

order in which relations have to be considered must be clear. For example, when provisioning

ŀƴ ƛƴǎǘŀƴŎŜ ƻŦ ǘƘŜ ǎŀƳǇƭŜ ŎƭƻǳŘ ŀǇǇƭƛŎŀǘƛƻƴΣ ǘƘŜ ά!ǘǘŀŎƘόύέ ƻǇŜǊŀǘƛƻƴ ƻŦ ǘƘŜ

άaȅ.ƭƻŎƪ{ǘƻǊŀƎŜψCƻǊψaȅ5.a{έ Ŏŀƴ ƻƴƭȅ ƳŜŀƴƛƴƎŦǳƭƭȅ ōŜ ǇŜǊŦƻǊƳŜŘ ƻƴŎŜ ǘƘŜ άaȅ.ƭƻŎƪ{ǘƻǊŜέ

ƛǎ ŀƭƭƻŎŀǘŜŘ ŀƴŘ ǘƘŜ άaȅ5.a{έ ƛǎ ƛƴǎǘŀƭƭŜŘΦ

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 22 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

FIGURE 6 - SERVICE TEMPLATE OF A SAMPLE APPLICATION INCLUDING A BUILD PLAN

In contrast to declarative processing that relies on a Model Interpreter available in the

environment, imperative processing of the cloud application extends the topology by explicitly

modeled plans that specify how to manage the cloud application. For example, Figure 6 shows

the plan that ensures the initial deployment of the cloud application ς such kind of plan is called

a build planΦ ¢Ƙƛǎ Ǉƭŀƴ ǿƛƭƭ ŦƛǊǎǘ ǇŜǊŦƻǊƳ ǘƘŜ DŜǘ {ǘƻǊŀƎŜ ǘŀǎƪ ǘƘŀǘ ƛǎ ōƻǳƴŘ ǘƻ ǘƘŜ ά!ƭƭƻŎŀǘŜόύέ

ƻǇŜǊŀǘƛƻƴ ƻŦ ǘƘŜ άaȅ.ƭƻŎƪ{ǘƻǊŜέ ƴƻŘŜΦ bŜȄǘΣ ǘƘŜ άLƴǎǘŀƭƭ 5.a{έ ǘŀǎƪ ǿƛƭƭ ƛƴǾƻƪŜ ǘƘŜ άLƴǎǘŀƭƭόύέ

ƻǇŜǊŀǘƛƻƴ ƻŦ ǘƘŜ άaȅ5.a{έ ƴƻŘŜΣ ǘƘŜ ά!ǘǘŀŎƘ {ǘƻǊŀƎŜέ ǘŀǎƪ ǿƛƭƭ ƛƴǾƻƪŜ ǘƘŜ ά!ǘǘŀŎƘόύέ

ƻǇŜǊŀǘƛƻƴ ƻŦ ǘƘŜ άaȅ.ƭƻŎƪ{ǘƻǊŜψCƻǊψaȅ5.a{έ ǊŜƭŀǘƛƻƴǎƘƛǇΣ ŀƴŘ ǎƻ ƻƴΦ ¢Ƙƛǎ ŜȄǇƭƛŎƛǘƭȅ ŘŜŦƛƴŜǎ

how tƻ ǎŜǘ ǳǇ ǘƘŜ ŜƴǾƛǊƻƴƳŜƴǘ ŦƻǊ ȅƻǳǊ ά/ǳǎǘƻƳŜǊ5.έ ŎƭƻǳŘ ŀǇǇƭƛŎŀǘƛƻƴΦ wŜŎŀƭƭ όŀǎ ǎƪŜǘŎƘŜŘ ƛƴ

Section 2.1.3), that the implementation artifacts of these operations will be deployed before by

the Deployment Manager of the TOSCA container, i.e. they are available in your environment

and can be bound to the tasks of the plan during deployment of the plan itself.

2.2.3.2 Note on Advanced Processing of Service Templates

Typically, the topology will be same whether it is processed imperatively or declaratively. But

the flavor of declarative processing of a service template may get more advanced making

modeling of cloud applications even easier. As describe before, declarative processing infers

plans for provisioning and decommissioning of instances of the specified topologies. More

advanced declarative processing may be based on nodes of the topology that simply declare

ǊŜǉǳƛǊŜƳŜƴǘǎ ƻƴ ǘƘŜƛǊ άŘƻǿƴǎǘǊŜŀƳέ ǘƻǇƻƭƻƎȅΦ Lƴ ŀ ǎǳǇǇƻǊǘƛƴƎ ¢h{/! ŜƴǾƛǊƻƴƳŜƴǘΣ ƴƻŘŜǎ ƘŀǾŜ

been made available that specify their capabilities, allowing the Model Interpreter of the

environment to match requirements and capabilities. As a result, topology models including

ǊŜǉǳƛǊŜƳŜƴǘǎ ŀƴŘ ŎŀǇŀōƛƭƛǘƛŜǎ ǿƛƭƭ ōŜ άŀǳǘƻ-ŎƻƳǇƭŜǘŜŘέΦ

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 23 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

For example, the modified topology of your cloud application may specify just two nodes (see

Figure 7Σ ƭŜŦǘ ǎƛŘŜύΥ ǘƘŜ ά/ǳǎǘƻƳŜǊ5.έ ƴƻŘŜ ŀƴŘ ǘƘŜ άaȅ5.a{έ ƴƻŘŜΦ ¢ƘŜ ƭŀǘǘŜǊ ƴƻŘŜ ƛǎ

associated with an explicit requirement ŦƻǊ ά.ƭƻŎƪ{ǘƻǊŀƎŜέΣ ŎŀƭƭŜŘ ά.ƭƻŎƪ{ǘƻǊŀƎŜψbŜŜŘŜŘέ ƛƴ ǘƘŜ

figure. The environment may be aware of a node that explicitly declares a matching capability:

ƛƴ ǘƘŜ ŦƛƎǳǊŜ ǘƘŜ ά.ƭƻŎƪ{ǘƻǊŜέ ƴƻŘŜ ƛǎ ǎƘƻǿ ǘƘŀǘ ŘŜŎƭŀǊŜǎ ǘƘŜ ά.ƭƻŎƪ{ǘƻǊŀƎŜψhŦŦŜǊŜŘέ ŎŀǇŀōƛƭƛǘȅ

(and that has been defined to correspond to ǘƘŜ ά.ƭƻŎƪ{ǘƻǊŀƎŜψbŜŜŘŜŘέ ǊŜǉǳƛǊŜƳŜƴǘύΦ ¢ƘŜ

Model Interpreter of a TOSCA environment will then match the requirement and the capability.

Thus, it will automatically extend the specified topology accordingly: the topology on the right

side of Figure 7 results. Furthermore, it will infer the corresponding build and decommissioning

plans as sketched before.

FIGURE 7 - SERVICE TEMPLATE THAT MAKES USE OF REQUIREMENTS AND CAPABILITIES

Declarative processing of service templates that supports derivation and the addition of plans

requires a very crisp and precise specification of node types and relationship types by type

architects. Also, type architects must follow certain conventions. For example, node types must

provide a lifecycle interface that encompasses operations for starting, stopping, etc. instances of

the node type. Relationship types must define the order in which their sources and targets must

be manipulated. The order in which relatiƻƴǎƘƛǇ ǘȅǇŜǎ ƘŀǾŜ ǘƻ ōŜ ŎƻƴǎƛŘŜǊŜŘ ǿƘŜƴ άƎŜƴŜǊŀǘƛƴƎέ

ŀ Ǉƭŀƴ Ƴǳǎǘ ōŜ ŘŜŦƛƴŜŘΤ ŦƻǊ ŜȄŀƳǇƭŜΣ ǘƘŜ ǊŜƭŀǘƛƻƴǎƘƛǇ ǘȅǇŜ ά5ŜǇŜƴŘǎhƴέ Ƴǳǎǘ ǘŀƪŜ ǇǊŜŦŜǊŜƴŎŜ

ƻŦ ǘƘŜ ǊŜƭŀǘƛƻƴǎƘƛǇ ǘȅǇŜ ά/ƻƴƴŜŎǘǎ¢ƻέΦ Lƴ ƻǊŘŜǊ ǘƻ ƳŀƪŜ ǳǎŜ ƻŦ ŀǳǘƻ-completion features for

topologies the type architect must specify requirements and capabilities as well as their

matching.

The declarative approach puts much more burden on the type architect, while the imperative

approach puts much more burden on the application architect. In practice, more complex cloud

applications will be modeled by a combination of both modeling approaches. For example, while

the behavior for initial deployment and decommissioning may be inferred in many cases from

the topology of a cloud application, plans for granting access rights and establishing security

policies can typically not be inferred, i.e. they have to be modeled explicitly. Similarly, defining

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 24 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

precedence rules for relationship types might get complex when the number of such types

increase, and a TOSCA environment (Section 2.1.3) may not automatically support all such

predefined relationship types and the preference rules. In any case, the imperative approach

will work because the application architect precisely instructs the TOSCA environment how to

manage a cloud application (including initial deployment and decommissioning) ς of course,

interoperability can only be achieved if the plans specified by the application architect only

make use of operations defined as part of the associated topology, and no operations are used

that are proprietary to a specific environment.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 25 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

3 What Type Architects Should Know About TOSCA
The type architect is an expert for the types of components required by applications as well as

the various types of connections between these components. By defining such components (i.e.

TOSCA Node Types) and connections (i.e. TOSCA Relationship Types) the type architect enables

an application architect to specify the topology of a cloud application.

Furthermore, the type architect specifies types of requirements and capabilities. Such

requirement types and capability types are the basis for defining requirements and capabilities

of individual node types. In turn, requirements and capabilities of node types eases the correct

specification of cloud applications, thus, supporting application architects: for example,

graphical modeling tools may check the validity of relationship types used to connect two node

templates; or a tool may suggest node types that may be connected to an already chosen node

type; or an environment may bind node types to a node of a topology the requirements of

which have not been fulfilled yet.

Finally, the type architect defines the interfaces of a node type, as well as the source interfaces

and target interfaces of relationship types. This is a perquisite for defining all management

behavior by application architects: the declarative flavor of processing service templates

depends on the existence of certain lifecycle operations for provisioning and decommissioning,

and the imperative flavor depends on proper interfaces by binding tasks of management plans

to the operations of these interfaces.

3.1 Providing Node Types and Relationship Types

3.1.1 Vendor Perspective

A vendor of components that should become the basis for cloud applications will typically

render these components as TOSCA Node Types. For example, a vendor that wants to offer their

database management system and web server as components to be used by their customers to

build cloud ŀǇǇƭƛŎŀǘƛƻƴǎ ǿƛƭƭ ŘŜŦƛƴŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ƴƻŘŜ ǘȅǇŜǎ όŜΦƎΦ ŀ άaȅ5.a{έ ƴƻŘŜ ǘȅǇŜ ŀƴŘ ŀ

άaȅ²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜΣ ǊŜǎǇŜŎǘƛǾŜƭȅύΦ CǳǊǘƘŜǊƳƻǊŜΣ ǘƘŜ ǾŜƴŘƻǊ ǿƛƭƭ ŀƭǎƻ ŘŜŦƛƴŜ ŀ

corresponding relationship type representing the ability to connect their database management

ǎȅǎǘŜƳ ŀƴŘ ǘƘŜƛǊ ǿŜō ǎŜǊǾŜǊΦ CƻǊ ŜȄŀƳǇƭŜΣ ǘƘŜ άaȅ²Ŝō{ŜǊǾŜǊψ/ƻƴƴŜŎǘǎ¢ƻψaȅ5.a{έ

relationship type supports enables the construction of a connection between the DBMS and the

web server of the vendor, as well as later destroying an existing connection at decommissioning

time.

hŦǘŜƴΣ ŘƛŦŦŜǊŜƴǘ ǾŜƴŘƻǊǎ ƻŦŦŜǊ ǇǊƻŘǳŎǘǎ ƻŦ ǘƘŜ ǎŀƳŜ ǘȅǇŜΦ CƻǊ ŜȄŀƳǇƭŜΣ έǾŜƴŘƻǊ ·έ ŀǎ ǿŜƭƭ ŀǎ

άǾŜƴŘƻǊ ¸έ Ƴŀȅ ƻŦŦŜǊ ŀ ǿŜō ǎŜǊǾŜǊΦ .ƻǘƘ ǇǊƻŘǳŎǘǎ Ƴŀȅ ƘŀǾŜ ǾŜƴŘƻǊ ǎǇŜŎƛŦƛŎ ŀǎǇŜŎǘǎ ƭƛƪŜ ǾŜƴŘƻǊ

specific operations or properties; thus, two different vendor specific node types will result (e.g.

ǘƘŜ ά·²Ŝō{ŜǊǾŜǊέ ŀƴŘ ǘƘŜ ά¸²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜǎύΦ bŜǾŜǊǘƘŜƭŜǎǎΣ ōƻǘƘ ƴƻŘŜ ǘȅǇŜǎ ǿƛƭƭ

ǘȅǇƛŎŀƭƭȅ ƘŀǾŜ ŀ ƭƻǘ ƻŦ ŎƻƳƳƻƴŀƭƛǘƛŜǎ ƭƛƪŜ ǇǊƻǇŜǊǘƛŜǎ ŀǎ άServerNameέ ƻǊ άIPAddressέ, or the

lifecycle interface; tƘǳǎΣ ŀ ŎƻƳƳƻƴ ƴƻŘŜ ǘȅǇŜ ά²Ŝō{ŜǊǾŜǊέ Ŏŀƴ ōŜ ŘŜŦƛƴŜŘ ǎǇŜŎƛŦȅƛƴƎ ǘƘŜ

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 26 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

commonalities of all web servers of the different vendors. The vendor specific node types

ά·²Ŝō{ŜǊǾŜǊέ ŀƴŘ ά¸²Ŝō{ŜǊǾŜǊέ ǿƛƭƭ ǘƘŜƴ ƛƴƘŜǊƛǘ ŦǊƻƳ ǘƘŜ ŎƻƳƳƻƴ ά²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜΣ

which will onƭȅ ŘŜŦƛƴŜ ǾŜƴŘƻǊ ǎǇŜŎƛŦƛŎǎ ƻƴ ǘƻǇ ƻŦ ǘƘŜ ά²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜΦ

3.1.2 Node Types

The following NodeType element defines the άApacheWebServerέ node type. It inherits from

the άWebServerέ node type as specified in the nested DerivedFrom element. The Apache-

specific properties are defined in the PropertiesDefinition element; these properties will

typically add new properties compared to the inherited άWebServerέ properties but it may also

override definitions specified for the άWebServerέ node type. The άApacheWebServerέ defines

two capabilities defined by separate CapabilityDefinition elements. The first capability

specifies that an άApacheWebServerέ node may contain any number of Web Application nodes

(as ƛƴŘƛŎŀǘŜŘ ōȅ ǘƘŜ ǾŀƭǳŜ άлέ ƻŦ ǘƘŜ lowerBound attribute and tƘŜ άǳƴōƻǳƴŘŜŘέ ǾŀƭǳŜ ƻŦ ǘƘŜ

upperBound attribute of the corresponding CapabilityDefinition element). Similarly, the

second capability specifies that an άApacheWebServerέ may contain any number of modules.

Finally, the άApacheWebServerέ defines a single interface, which is the lifecycle interface (see

below).

 <NodeType name=" ApacheWebServer ">

 <documentation>Apache Web Server</documentation>

 <DerivedFrom typeRef="ns1:WebServer"/>

 <PropertiesDefinition element="tns:ApacheWebServerProperties"/>

 <CapabilityDefinitions>

 <CapabilityDefinition

 capabilityType="tns:ApacheWebApplicationContainerCapability"

 lowerBound="0" name="webapps" upperBound="unbounded"/>

 <CapabilityDefinition

 capabilityType="tns:ApacheModuleC ontainerCapability"

 lowerBound="0" name="modules" upperBound="unbounded"/>

 </CapabilityDefinitions>

 <Interfaces>

 <Interface name="http:// www.example.com/ interfaces/lifecycle">

 <Operation name="install"/>

 <Operation na me="configure"/>

 <Operation name="start"/>

 <Operation name="stop"/>

 <Operation name="uninstall"/>

 </Interface>

 </Interfaces>

 </NodeType>

3.1.3 The Lifecycle Interface

The lifecycle interface is defined by the following Interfa ce element. Note, that this definition

is non-normative. The lifecycle interface defines five operations: the άinstallέ operation will be

invoked to install (and, thus, instantiate) an instance of the node type containing this interface.

Configuration of the instance is achieved by invoking the άconfigureέ operation. Starting and

stopping an instance is done by means of the άstartέ and άstopέ operations. Decommissioning is

achieved by invoking the άuninstallέ operation.

<Interface name="http:// www.example. com/ interfaces/lifecycle">

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 27 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 <Operation name="install"/>

 <Operation name="configure"/>

 <Operation name="start"/>

 <Operation name="stop"/>

 <Operation name="uninstall"/>

</Interface>

Note: These lifecycle operations are defined without any input or output
parameters. This means that each lifecycle operation ñjustò defines the effects
that can be achieved by it, i.e. the name of a lifecycle operation indicates its
semantics. It is expected that every implementation of a lifecycle operation of a
particular name understands this semantics and faithfully realizes it. For
example, an implementation of the start operation of a web server will start the
web server (and not stop it).

Different implementations of an operation of a particular name may expect different input

parameters and may produce different output parameters. For example, the configure

ƻǇŜǊŀǘƛƻƴ ǳǎŜŘ ōȅ ŀ 5.a{ ƴƻŘŜ ǘȅǇŜ ǿƛƭƭ ǊŜǉǳƛǊŜ ŘƛŦŦŜǊŜƴǘ ǇŀǊŀƳŜǘŜǊǎ ǘƘŀƴ ǘƘŜ άŎƻƴŦƛƎǳǊŜέ

operation of a web server. It is expected that the user of a concrete implementation of a given

operation understands which parameters are to be exchanged. The knowledge of the actual

parameters exchanged may come from various sources, e.g. via documentation that comes with

the implementation.

The actual implementations of the operations of a NodeType are specified by a node type

implementation (i.e. by a NodeTypeImplementation element) provided for each node type.

The concrete executable of an operation of a node type is defined by a corresponding

ImplementationArti fact element of the node type implementation, which in turn

references an ArtifactTemplate element. This artifact template points to the executable

implementing the operation for the node type. More details about these relations are given in

Section 4; for a quick overview on these relations see Figure 8.

FIGURE 8 ς DEFINING INTERFACES AND THEIR IMPLEMENTATIONS FOR PARTICULAR NODE TYPES

Note: Node Types may define additional interfaces that provide operations that
go beyond lifecycle capabilities. For example, a DBMS node type may define an

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 28 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

interface that supports the management of data stored by the DBMS; such an
interface may include operations for backup and restore tables, creating and
dropping indexes and so on.

3.1.4 Relationship Types

The following relationship type defines the ability to establish a connection to a SQL database.

This relationship type inherits from the άConnectsToέ relationship type as specified in the

nested DerivedFrom element. The database connection can be established between any node

type that requires a connection to a SQL database and any node type that provides the

capability of being an SQL database: the ValidSource element defines possible source node

types (by means of a corresponding requirement type) and the ValidTarget element defines

the potential target node types (by means of a corresponding Capabilit yDefinition type).

The άMySQLDatabaseConnectionέ relationship type also defines operations that can be used to

act on the source of the relationship: the SourceInterface element specifies the

άΧκ/ƻƴƴŜŎǘǎ¢ƻέ ƛƴǘŜǊŦŀŎŜ ǿƛǘƘ ǘƘŜ άconnectToέ operation.

 <RelationshipType name=" MySQLDatabaseConnection ">

 <documentati on>Connects on</documentation>

 <DerivedFrom typeRef="ns1:ConnectsTo"/>

 <SourceInterfaces>

 <Interface name="http:// www.example.com/ ToscaBaseTypes/ConnectsTo">

 <Operation name="connectTo"/>

 </Interface>

 </SourceInterfaces>

 <ValidSource typeRef="tns:MySQLDatabaseEndpointRequirement"/>

 <ValidTarget typeRef="tns:MySQLDatabaseEndpointCapability"/>

 </RelationshipType>

3.2 Using Inheritance

The use of inheritance is well-established and proven as very useful. To support inheritance in

TOSCA, each language element that allows defining types (i.e. node types, relationship types,

artifact types, requirement types, and capability types) has a nested DerivedFrom element

that allows supporting super types. In a non-normative manner, hierarchies for all these types

have been defined in order to achieve interoperability between TOSCA environments. Figure 9

(below) sketches these hierarchies.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 29 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

FIGURE 9 ς NODE, ARTIFACT, RELATIONSHIP, REQUIREMENTS AND CAPABILITIES TYPE HIERARCHIES

¢ƘŜ ŦƻƭƭƻǿƛƴƎ ά!ǇŀŎƘŜ²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜ ƛƴƘŜǊƛǘǎ ŦǊƻƳ ǘƘŜ ά²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜΦ ¢Ƙƛǎ ƛǎ

defined by means of a DerivedFrom ŜƭŜƳŜƴǘ ǿƛǘƘ ǘƘŜ ǾŀƭǳŜ ά²Ŝō{ŜǊǾŜǊέ ǎǇŜŎƛŦƛŜŘ ŦƻǊ ǘƘŜ

typeRef attribute.

 <NodeType name="ApacheWebServer">

 <DerivedFrom typeRef="ns1:WebServer"/>

 ...

 </NodeType>

¢ƘŜ ά²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜ ƛƴ ǘǳǊƴ ƛƴƘŜǊƛǘǎ ŦǊƻƳ ǘƘŜ άwƻƻǘbƻŘŜ¢ȅǇŜέΦ {ƛƴŎŜ ǘƘŜ

ά!ǇŀŎƘŜ²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜ ƛƴƘŜǊƛǘǎ ŦǊƻƳ ǘƘŜ ά²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜΣ ŀƴ

ά!ǇŀŎƘŜ²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜ Ƙŀǎ ōƻǘƘΣ ŀ ά{ƻŦǘǿŀǊŜ/ƻƴǘŀƛƴŜǊwŜǉǳƛǊŜƳŜƴǘέ ŀǎ ǿŜƭƭ ŀǎ ŀ

ά²Ŝō!ǇǇƭƛŎŀǘƛƻƴ/ƻƴǘŀƛƴŜǊ/ŀǇŀōƛƭƛǘȅέ ōŜŎŀǳǎŜ ǘƘƛǎ ǊŜǉǳƛǊŜƳŜƴǘ ŀƴŘ ǘƘƛǎ ŎŀǇŀōƛƭƛǘȅ Ƙŀǎ ōŜŜƴ

ŘŜŦƛƴŜŘ ǿƛǘƘ ǘƘŜ ά²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜ ōȅ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ƴŜǎǘŜŘ RequirementDefinition

and CapabilityDefinition elements.

 <NodeType name="WebServer">

 <documentation>Web Server</documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 <RequirementDefinitions>

 <RequirementDefinition lowerBound="1" name="container"

 requirementType="tns:SoftwareContainerRequirement" upperBound="1"/>

 </RequirementDefinitions>

 <CapabilityDefinitions>

 <CapabilityDefinition

 capabilityType="tns:WebApplicationContainerCapability"

 lowerBound="0" name="webapps" u pperBound="unbounded"/>

 </CapabilityDefinitions>

 </NodeType>

The next two code snippets show inheritance between relationship types (via the

RelationshipType ŜƭŜƳŜƴǘύΦ ¢ƘŜ άaȅ{v[5ŀǘŀōŀǎŜ/ƻƴƴŜŎǘƛƻƴέ ǊŜƭŀǘƛƻƴǎƘƛǇ ǘȅǇŜ ƛƴƘŜǊƛǘǎ

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 30 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

ŦǊƻƳ ǘƘŜ ά/ƻƴƴŜŎǘǎ¢ƻέ ǊŜlationship type, which in turn inherits from the

άwƻƻǘwŜƭŀǘƛƻƴǎƘƛǇ¢ȅǇŜέ ǊŜƭŀǘƛƻƴǎƘƛǇ ǘȅǇŜΦ

 <RelationshipType name="MySQLDatabaseConnection">

 <DerivedFrom typeRef="ns1:ConnectsTo"/>

 ...

 </RelationshipType>

IŜǊŜ ƛǎ ǘƘŜ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ǘƘŜ ά/ƻƴƴŜŎǘǎ¢ƻέ ǊŜƭŀǘƛƻƴǎƘƛǇ ǘȅǇŜΥ

 <RelationshipType name="ConnectsTo">

 <documentation>ConnectsTo</documentation>

 <DerivedFrom typeRef="tns:RootRelationshipType"/>

 <ValidSource typeRef="tns:EndpointRequirement"/>

 <ValidTarget typeRef="tns:EndpointC apability"/>

 </RelationshipType>

The next section will show examples of the use of inheritance for both, requirement types and

capability types. Section 4.1 gives examples of inheritance between artifact types.

3.3 Providing Requirement Types and Capability Types

In TOSCA, requirements and capabilities allow to define dependencies between node types. For

ŜȄŀƳǇƭŜΣ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ά!ǇŀŎƘŜ²Ŝō!ǇǇƭƛŎŀǘƛƻƴ/ƻƴǘŀƛƴŜǊ/ŀǇŀōƛƭƛǘȅέ ŎŀǇŀōƛƭƛǘȅ ǘȅǇŜ ŀƭƭƻǿǎ ǘƻ

express the capability of a node type to serve as a runtime container for an Apache web

application; note, that the capability type inherits from the

ά²Ŝō!ǇǇƭƛŎŀǘƛƻƴ/ƻƴǘŀƛƴŜǊ/ŀǇŀōƛƭƛǘȅέΦ 9ŀŎƘ ƴƻŘŜ ǘȅǇŜ ǘƘŀǘ ƛƴŎƭǳŘŜǎ ŀ

CapabilityDefinition ƻŦ ǘƘƛǎ ǘȅǇŜ όŀǎ ǘƘŜ ά!ǇŀŎƘŜ²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ŘŜŦƛƴŜŘ ŀōƻǾŜύ

warrants that it can serve as a container for Apache web applications.

 <CapabilityType name=" ApacheWebApplicationContainerCapability ">

 <documentation>Apache Web Application

 Container Capability</documentati on>

 <DerivedFrom typeRef="ns1:WebApplicationContainerCapability"/>

 </CapabilityType>

Lƴ ŎŀǎŜ ƻŦ ǘƘŜ ά!ǇŀŎƘŜ²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜ ƳŜƴǘƛƻƴŜŘ ŜŀǊƭƛŜǊΣ ǘƘŜ ƴƻŘŜ ǘȅǇŜ ŀŎǘǳŀƭƭȅ ǊŜŦƛƴŜǎ

ǘƘŜ ƎŜƴŜǊƛŎ ά²Ŝō!ǇǇƭƛŎŀǘƛƻƴ/ƻƴǘŀƛƴŜǊ/ŀǇŀōƛƭƛǘȅέ ƛƴƘŜǊƛǘŜŘ ŦǊƻƳ ƴƻŘŜ ǘȅǇŜ ά²Ŝō{ŜǊǾŜǊέ ōȅ

ǎǇŜŎƛŦȅƛƴƎ ǘƘŜ ǎǇŜŎƛŀƭƛȊŜŘ ά!ǇŀŎƘŜ²Ŝō!ǇǇƭƛŎŀǘƛƻƴ/ƻƴǘŀƛƴŜǊ/ŀǇŀōƛƭƛǘȅέΦ Lǘ ǘƘŜǊŜōȅ ǊŜǎǘǊƛŎǘǎ ƛǘǎ

container capabilities to Apache web applications only, meaning that general web applications

may not necessarily run on instances of the node type.

 <NodeType name=" ApacheWebServer ">

 <DerivedFrom typeRef="ns1:WebServer"/>

 ...

 <CapabilityDefinitions>

 <CapabilityDefinition

 capabilityType="tns:ApacheWebApplicationContainerCapability"

 lowerBound="0" name=" webapps " up perBound="unbounded"/>

 ...

 </CapabilityDefinitions>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 31 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 ...

 </NodeType>

¢ƘŜ ·a[ǎƴƛǇǇŜǘ ŀōƻǾŜ ǎƘƻǿǎ ǘƘŜ ǊŜŦƛƴŜƳŜƴǘ ƻŦ ǘƘŜ άǿŜōŀǇǇǎέ ŎŀǇŀōƛƭƛǘȅ ƛƴƘŜǊƛǘŜŘ ŦǊƻƳ ǘƘŜ

ά²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜΦ ¢ƘŜ ŎŀǇŀōƛƭƛǘȅ ǘȅǇŜ ƛǎ ǊŜŦƛƴŜŘ ǘƻ ǘƘŜ ǎǇŜŎƛŀƭƛȊŜŘ

ά!ǇŀŎƘŜ²Ŝō!ǇǇƭƛŎŀǘƛƻƴ/ƻƴǘŀƛƴŜǊ/ŀǇŀōƛƭƛǘȅέ ǘȅǇŜ ǿƘƛŎƘ ƛǎ ŘŜǊƛǾŜŘ ŦǊƻƳ ǘƘŜ ƳƻǊŜ ƎŜƴŜǊƛŎ

ŎŀǇŀōƛƭƛǘȅ ǘȅǇŜ ά²Ŝō!ǇǇƭƛŎŀǘƛƻƴ/ƻƴǘŀƛƴŜǊ/ŀǇŀōƛƭƛǘȅέΦ

When associating a node type with other node types (i.e. establishing relationship between

them) each requirement of the source of these associations should be matched by a capability of

one target of one of the associations. This way, requirements and capabilities support fulfillment

of dependencies and help to ensure correctness of the topology of cloud applications. Note, that

requirements and capabilities are not intended to express quality-of-services (like availability

classes, etc.). Such non-functional properties should be expressed by means of policies (which

are currently beyond the scope of this document).

¢ƘŜ ƴŜȄǘ άaȅ{v[5ŀǘŀōŀǎŜ9ƴŘǇƻƛƴǘwŜǉǳƛǊŜƳŜƴǘέ ǊŜǉǳƛǊŜƳŜƴǘ ǘȅǇŜ ǎǳǇǇƻǊǘǎ ǘƻ ŜȄǇǊŜǎǎ ǘƘŀǘ ŀ

certain node type requires a database endpoint that provides features of an SQL database

system. It inherits from the general requirement for database features. Note, that the

requirement type explicitly specifies by which capability type it can be satisfied by means of the

requiredCapabilityType attribute: this attribute refers to the satisfying CapabilityType .

 <RequirementType name=" MySQLDatabaseEndpointRequirement "

 requiredCapabilityType="tns:MySQLDatabaseEndpointCapability">

 <documentation>MySQL Database Endpoint Requirement</documentation>

 <DerivedFrom typeRef="ns1:DatabaseEndpointRequirement"/>

 </RequirementType>

The following CapabilityType definition satisfies the former RequirementType :

 <CapabilityType name=" MySQLDatabaseEndpointCapability ">

 <documentation>MySQL Database Endpoint Capability</documentation>

 <DerivedFrom typeRef="ns1:DatabaseEndpointCapability"/>

 </CapabilityType>

Remark: The semantics of requirement types and capability types are
documented together with their formal XML definition. It is assumed that type
architects understand this semantics when claiming capabilities of the node types
they define; similarly, artifact developers will have to choose appropriate
implementations to ensure the warrants made by a type architect about the node
type they implement.

Typically, requirement types and capability types are very generic in nature. Thus, it is expected
that only few type architects will have to define their own requirement types and capability
types but that independent groups like vendor consortia or standardization bodies will define
these types.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 32 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

3.4 Green Field Perspective

It is assumed that for popular application domains all types necessary to define cloud

applications in such a domain will be defined by interest groups, consortia, or standardization

bodies, for example. Thus, it will often be the case that the types you need will have already

been defined and you can use them immediately.

In other cases, you will have to define the necessary types. For example, if you are a vendor of

complex applications it is likely that not all types you need to model your application are already

defined by others. Or if you want to build cloud applications based on rarely used components,

the types required for these components (i.e. node types, requirement types, or capability

types) as well the relationship types used to connect your newly defined node types with other

node types must be defined by yourself.

3.5 Modular Design of Service Templates

The TOSCA Definitions element has a targetNamespace attribute. As usual, this allows to

scope names of definitions for two main purposes:

1. Avoiding name clashes, and

2. Reusing existing definitions by referring to them by name in their namespace.

In order to define new elements in a particular namespace you create a Definitions document,

set the value of its targetNamespace attribute to this particular value and, then, you specify

the new elements in this Definitions element. For example, in Figure 10 - Making Use of

ImportsέΣ ǘƘŜ ǎŜǊǾƛŎŜ ǘŜƳǇƭŀǘŜ ŘŜŦƛƴŜŘ ƛƴ ǘƘŜ Definitions document shown is put into the

namespace set by the Definitions element.

Note: that selective TOSCA language elements like service templates, node

type, and others, have their own targetNamespace attribute to support local

specification of namespaces for the names of these elements, but this is an
advanced usage that we will not discuss in this document.

The Definitions document is then stored somewhere. Typically, it will be made available via a

dereferencable URI. This URI is then used as value of the location attribute of an Import

element. A TOSCA processor will then make all the definitions of the imported document

available in scope of the importing Definitions document. This way, the TOSCA Import element

supports reuse of definitions.

Note: Not only can TOSCA Definitions documents be imported in this manner,
but also any other types of definitions can be imported via the same mechanism.

To ease processing of imported documents, the Import element has an

importType attribute the value of which indicates the kind of information

imported (e.g. an XML schema document, a BPMN document, along with a
TOSCA Definitions document).

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 33 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

FIGURE 10 - MAKING USE OF IMPORTS

In Figure 10, the Definitions document imports types that have been already defined in the own

namespace of the Definitions document. This way, TOSCA supports a modular approach to

define service templates: different kinds of types may be specified in different Definitions

documents. For example, node types of your application will be defined in a different document

than the capability types of your application. This allows type architects with different focus to

define their own Definition documents and make them available for import into other

Definitions document. The figure also indicates that all elements newly defined in the Definitions

document shown will be in the same namespace that contains the own type definitions.

Similarly, the document imports two documents that contain definitions that are domain-

specific (for example, node types and relationship types that are useful for web applications) as

well as definitions that are domain-ƛƴŘŜǇŜƴŘŜƴǘ όŦƻǊ ŜȄŀƳǇƭŜΣ ŀ ά{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜ ŀƴŘ ŀƴ

άOperatingSystemέ ƴƻŘŜ ǘȅǇŜύΦ .ƻǘƘΣ ǘƘŜ ŘƻƳŀƛƴ-specific definitions and the domain

independent definitions have been defined by other groups like interest groups, industry

consortia, standardization bodies, or vendors.

Finally, not only types can be defined in particular namespaces and be made available in

separate files but also node type implementations and relationship implementations. This allows

a vendor to make use of types defined elsewhere to provide the implementations of these types

ōŀǎŜŘ ƻƴ ǘƘŜƛǊ ǇǊƻŘǳŎǘǎΦ CƻǊ ŜȄŀƳǇƭŜΣ άǾŜƴŘƻǊ ·έ Ƴŀȅ ǳǎŜ ǘƘŜ ά5.a{έ ƴƻŘŜ ǘȅǇŜ ŀƴŘ ǇǊƻǾƛŘŜ ŀ

ŘŜŦƛƴƛǘƛƻƴǎ ŘƻŎǳƳŜƴǘ ŦƻǊ ǘƘŜ ά·ψ5.a{έ ƴƻŘŜ ǘȅǇŜ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ōȅ ƛƳǇƻǊǘƛƴƎ ǘƘŜ ŘƻŎǳƳŜƴǘ

ŎƻƴǘŀƛƴƛƴƎ ǘƘŜ ά5.a{έ ƴƻŘŜ ǘȅǇŜ ŀƴŘ ŀŘŘƛƴƎ ǘƘŜ ǾŜƴŘƻǊ ǎǇŜŎƛŦƛŎ ƛƴŦƻǊƳŀǘƛƻƴ ǘƻ ǘƘŜ

corresponding node type implementation.

3.6 Simplifying Application Modeling: Composable Service Templates

Remark: This section describes an advanced feature of TOSCA; thus, you may
choose to skip this section at a first pass through the document. When you need
to express more complex applications using TOSCA as composable service
templates, you may want to return here to understand this concept.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 34 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

3.6.1 Turning Service Templates into Composables

Often, not only individual types can be reused but complete topologies are meaningful in many

situations. For example, in most cases a Web server requires persistency by means of an SQL

Database system; the connection between the corresponding two node types is achieved via an

appropriate relationship type. TOSCA supports to model a corresponding service template and

turn this service template into a substitutable for a node type. This is achieved by means of the

BoundaryDefinitions element: This element contains nested elements that can refer to the

ŎƻƴǎǘƛǘǳŜƴŎƛŜǎ όƭƛƪŜ ƴƻŘŜ ǘŜƳǇƭŀǘŜǎ ŜǘŎΦύ ƻŦ ǘƘŜ ǎŜǊǾƛŎŜ ǘŜƳǇƭŀǘŜ ŀƴŘ άŜȄǇƻǊǘέ ŎƻǊǊŜǎǇƻƴŘƛƴƎ

ŘŜŦƛƴƛǘƛƻƴǎ άǘƻ ǘƘŜ ōƻǳƴŘŀǊȅέ ƻŦ ǘƘŜ ǎŜǊǾƛŎŜ ǘŜƳǇƭŀǘŜΦ ¢Ƙƛǎ ǿŀȅΣ ǘƘŜ ǎŜǊǾƛŎŜ ǘŜƳǇƭŀǘŜ άƭƻƻƪǎ ƭƛƪŜ

ŀ ƴƻŘŜ ǘȅǇŜέ ŀƴŘ Ŏŀƴ ōŜ ǳǎŜŘ ŀǎ ǎǳŎƘ ƛƴ ŀƴƻǘƘŜǊ ǎŜǊǾƛŎŜ ǘŜƳǇƭŀǘŜΦ

In the following code snippet, the BoundaryDefinitions element defines the properties of

the service template rendered as a node type: each of these properties is defined by a mapping

prescription of properties of node templates or relationship templates of making up the

topology of the service template. Similarly, individual operations of nodes can be referenced to

be visible as operations of the service template rendered as node type.

 <ServiceTemplate name="WebAppInfrastructure " ... >

 <BoundaryDefinitions>

 <Properties>

 <PropertyMappings>

 <PropertyMapping .../>

 </Properties>

 <Interfaces>

 <Interface name=...>

 <Operation name=...>

 <NodeOperation nodeRef=...

 interfaceName=...

 operationName=.../>

 </Operation>

 </Interface>

 </Interfaces>

 </Bou ndaryDefinitions>

 </ServiceTemplate>

3.6.2 Using Abstract Node Types

A node types Ƴŀȅ ōŜ ŘŜŦƛƴŜŘ ŀǎ ŀōǎǘǊŀŎǘ ōȅ ǎŜǘǘƛƴƎ ǘƘŜ ǾŀƭǳŜ άȅŜǎέ ŦƻǊ ƛǘǎ abstract attribute. A

node template that is defined based on an abstract node type cannot be instantiated. Thus, in

order to be able to instantiate a node template, its node type must be concrete.

One way to turn an abstract node type into a node type that can be used as the basis for an

instantiatable node template is to define another node type that is derived from the abstract

node type and that is not an abstract node type. This way, abstract node types define common

knowledge or best practices about the component services that make up cloud applications and

that would need to be refined by more concrete definitions.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 35 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

3.6.3 Substitution of Abstract Node Types by Service Templates

One way abstract node types can be made concrete is by substituting them by a service

template that has been defined as being a substitute for another node type by proper boundary

definitions.

A node type can be substituted by a service template. For this purpose, a service template must

be turned into a substituting (or composable) service template by defining a

BoundaryDefinitions element for it (see section 3.6.1). Figure 11 depicts a service template

ά{¢έ ǘƘŀǘ ŜȄǇƻǎŜǎ ǎŜƭŜŎǘƛǾŜ ǇǊƻǇŜǊǘƛŜǎΣ ƻǇŜǊŀǘƛƻƴǎΣ ŎŀǇŀōƛƭƛǘƛŜǎΣ ŀƴŘ ǊŜǉǳƛǊŜƳŜƴǘǎ ƻŦ ǎƻƳŜ ƻŦ ƛǘǎ

ingredients to the outside. This is done by corresponding boundary definitions like

PropertyMappings for defining the properties visible at the boundary of the service template

ά{¢έΣ ƻǊ NodeOperation elements for exposing operations of interfaces available at the

ōƻǳƴŘŀǊȅ ƻŦ ά{¢έΦ

FIGURE 11 - SERVICE TEMPLATE SUBSTITUTING A NODE TYPE

{ŜǊǾƛŎŜ ǘŜƳǇƭŀǘŜ ά{¢έ Ƴŀȅ ǎǳōǎǘƛǘǳǘŜ ƴƻŘŜ ǘȅǇŜ άbέ ōŜŎŀǳǎŜ ǘƘŜ ōƻǳƴŘŀǊȅ ƻŦ ά{¢έ ƳŀǘŎƘŜǎ ŀƭƭ

ŘŜŦƛƴƛƴƎ ŜƭŜƳŜƴǘǎ ƻŦ άbέΥ ŀƭƭ ǇǊƻǇŜǊǘƛŜǎΣ ƻǇŜǊŀǘƛƻƴǎΣ ǊŜǉǳƛǊŜƳŜƴǘǎ ŀƴŘ ŎŀǇŀōƛƭƛǘƛŜǎ ƻŦ ά{¢έ ƳŀǘŎƘ

ŜȄŀŎǘƭȅ ǘƘƻǎŜ ƻŦ άbέΦ CǊƻƳ ǘƘƛǎ ǇŜǊǎǇŜŎǘƛǾŜΣ άbέ ŀƴŘ ά{¢έ ŀǊŜ ǳƴŘƛǎǘƛƴƎǳƛǎƘŀōƭŜΣ ƛΦŜΦ ǘƘŜ ǎŜǊǾƛŎŜ

ǘŜƳǇƭŀǘŜ ά{¢έ Ƴŀȅ ǎǳōǎǘƛǘǳǘŜ ƴƻŘŜ ǘȅǇŜ άbέΦ 9ǎǇŜŎƛŀƭƭȅΣ ŀƴ ŀōǎǘǊŀŎǘ ƴƻŘŜ ǘȅǇŜ Ƴŀȅ ōŜ

substituted by a service template that matches all the characteristics of the abstract node type.

To ease the matchmaking of a service template and a node type the ServiceTemplate

element may explicitly set its substitutableNodeType attribute to the name of the node

type it can substitute.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 36 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

4 What Artifact Developers Should Know About TOSCA
As discussed before, the artifact developer is an expert in code artifacts: he is in charge of

providing the installables and executables required to instantiate and manage a cloud

application. The upper half of Figure 12 depicts the definitions an artifact developer has to

ǇǊƻǾƛŘŜ ƛƴ ƻǊŘŜǊ ǘƻ ŘŜƭƛǾŜǊ ŀƴ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƻŦ ǘƘŜ ά!ǇŀŎƘŜ²Ŝō{ŜǊǾŜǊέ ƴƻŘŜ ǘȅǇŜΦ ¢ƘŜ ŦƛƎǳǊŜ

also shows how these definitions relate to each other.

FIGURE 12 - KEY DEFINITIONS FOR TOSCA ARTIFACTS AND THEIR RELATIONSHIPS

4.1 Defining Artifact Types

A TOSCA Artifact Type represents the kind of an installable or the kind of an executable. For

example, whether the installable is an image or zip file, or the executable is a script or a JEE

component.

In order to define the installables and executables required to provision and manage a cloud

application, the artifact developer needs to define (or make use of already existing) artifact

types. Artifact types are independent of any particular application domain and define the kind of

artifacts, e.g. that a particular artifact is a script or is an EJB. Artifact types also define the

properties of artifact types. These properties are assumed to be invariant, i.e. an artifact

implementation that is based on an artifact type specifies values for the properties that are

independent from the concrete use of the artifact implementation. When an artifact

implementation is actually used in an implementation artifact or a deployment artifact,

additional individual variant information can be added to the invariant data in the artifact

specific content field of the corresponding implementation artifact or deployment artifact.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 37 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

The following (non-normative) ScriptArtifactProperties element describes the invariant

metadata of an implementation artifacts or a deployment artifact that is a script: a script

(according to the ScriptArtifactProperties element) always has ά{criptLanguageέ and a

άtrimaryScriptέ ŜƭŜƳŜƴǘǎ.

 <xs:element name=" ScriptArtifactPrope rties ">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tScriptArtifactProperties"/>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:complexType name=" tScriptArtifactProperties ">

 <xs:complexContent>

 <xs:extension bas e="tExtensibleElements">

 <xs:sequence>

 <xs:element name="ScriptLanguage" type="xs:anyURI"/>

 <xs:element name="PrimaryScript" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

The ScriptArtifac tProperties element is referenced within the following άScriptArtifactέ

ArtifactType as part of the PropertiesDefinition elementΩǎ element attribute. This

artifact type is derived from the άRootArtifactTypeέ representing the common definitional items

of all artifact types in our sample domain.

 <ArtifactType name=" ScriptArtifact ">

 <documentation>Script Artifact</documentation>

 <DerivedFrom typeRef="RootArtifactType"/>

 <PropertiesDefinition element="ScriptArtifactProperties"/>

 </ArtifactType>

4.2 Defining Artifact Templates

A TOSCA Artifact Template represents a concrete executable or installable. It provides actual

properties of the installable or executable (like the language of a script) and a reference where

to find the executable or the installable (like a link into a CSAR).

An ArtifactTemplate is based (by means of its type attribute) on an artifact type from

which it gets the kind of properties the values of which have to be specified for the concrete

executable or installable in its Prope rties element. The concrete executable or installable

itself is referenced in its ArtifactReference element: typically, the reference will be to an

object of the CSAR containing the artifact template itself, or via a dereferencable URL pointing

to the location where the artifact can be downloaded.

The following ArtifactTemplate specifies the information about the άconfigure.shέ script.

The properties of this script say that it is a shell script (via the ΨshΩ value of the

ScriptLanguage element), and that its primary script is

άscripts/ApacheWebServer/configure.shέ (via the PrimaryScript element). The reference

attribute of the ArtifactReference element points to the άscripts/ApacheWebServerέ

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 38 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

directory of the CSAR including the artifact template; path expressions are always interpreted as

starting from the CSAR as the root of the directory tree. The I nclude element, nested in the

ArtifactReference element, specifies that the artifact template consists of exactly the

άconfigure.shέ script of that directory.

 <ArtifactTemplate id=" 314 "

 type="ns1:ScriptArtifact">

 <Properties>

 <ns1:ScriptArtifactProperties

 xmlns:ns1="http://www.example.com/ToscaBaseTypes"

 xmlns="http://www.example.com/ToscaBaseTypes">

 <Scrip tLanguage> sh </ScriptLanguage>

 <PrimaryScript> scripts/ApacheWebServer/configure.sh </PrimaryScript>

 </ns1:ScriptArtifactProperties>

 </Properties>

 <ArtifactReferences>

 <ArtifactReference reference="scripts/ApacheWebServer">

 <Include pattern=" configure.sh "/>

 </ArtifactReference>

 </ArtifactReferences>

 </ArtifactTemplate>

Let us take a look at the pseudo-code for a different TOSCA Artifact Template (listed below). It is

an artifact template that consists of two scrƛǇǘǎΣ ǘƘŜ άŎƻƴƴŜŎǘ¢ƻ5ŀǘŀōŀǎŜΦǎƘέ ǎŎǊƛǇǘ ŀƴŘ ǘƘŜ

άǊǳƴ{ƛƭŜƴǘLƴǎǘŀƭƭΦǎƘέ ǎŎǊƛǇǘΦ .ƻǘƘ ǎŎǊƛǇǘǎ ŀǊŜ ǎƘŜƭƭ ǎŎǊƛǇǘǎ όƘŀǾŜ ŀƴ ΨǎƘΩ ǾŀƭǳŜ ƛƴ ǘƘŜ

ScriptLanguage ŜƭŜƳŜƴǘύΣ ŀƴŘ ǘƘŜ άŎƻƴƴŜŎǘ¢ƻ5ŀǘŀōŀǎŜΦǎƘέ ǎŎǊƛǇǘ ƛǎ ǘƘŜ ǇǊƛƳŀǊȅ ǎŎǊƛǇǘ

(specified in the PrimaryScript eleƳŜƴǘύΤ ŀƴŘ ǘƘŜ άǊǳƴ{ƛƭŜƴǘLƴǎǘŀƭƭΦǎƘέ ǎŎǊƛǇǘ ƛǎ ƴŜŜŘŜŘ ōȅ ǘƘŜ

άŎƻƴƴŜŎǘ¢ƻ5ŀǘŀōŀǎŜΦǎƘ ǎŎǊƛǇǘέ ǳƴŘŜǊ ŎŜǊǘŀƛƴ ŎƻƴŘƛǘƛƻƴǎ όȅƻǳ ƴŜŜŘ ǘƻ ǘŀƪŜ ŀ ƭƻƻƪ ŀǘ ǘƘŜ ŎƻƴǘŜƴǘǎ

of the corresponding script to understand those conditions). The ArtifactReference

element points tƻ ǘƘŜ άǎŎǊƛǇǘǎκaȅ{v[5ŀǘŀōŀǎŜ/ƻƴƴŜŎǘƛƻƴέ ŘƛǊŜŎǘƻǊȅ ƻŦ ǘƘŜ ƛƴŎƭǳŘƛƴƎ /{!w όǾƛŀ

its reference ŀǘǘǊƛōǳǘŜύ ŀƴŘ ǎŜƭŜŎǘǎ ǘƘŜ άŎƻƴƴŜŎǘ¢ƻ5ŀǘŀōŀǎŜΦǎƘέ ǎŎǊƛǇǘ ŀƴŘ ǘƘŜ

άǊǳƴ{ƛƭŜƴǘLƴǎǘŀƭƭΦǎƘέ ǎŎǊƛǇǘ ŦǊƻƳ ǘƘŀǘ ŘƛǊŜŎǘƻǊȅ όōȅ ƳŜŀƴǎ ƻŦ ǘƘŜ ƴŜǎǘŜŘ Include elements).

 <Art ifactTemplate id=" 271 "

 type="ns1:ScriptArtifact">

 <Properties>

 <ns1:ScriptArtifactProperties

 xmlns:ns1="http://www.exemple.com/ToscaBaseTypes"

 xmlns="http://www.example.com/ToscaBaseTypes">

 <ScriptLangua ge>sh </ScriptLanguage>

 <PrimaryScript>scripts/MySQLDatabaseConnection/connectToDatabase.sh

 </PrimaryScript>

 </ns1:ScriptArtifactProperties>

 </Properties>

 <ArtifactReferences>

 <ArtifactReference reference="scripts/MySQLDataba seConnection">

 <Include pattern=" connectToDatabase.sh "/>

 <Include pattern=" runSilentInstall.sh "/>

 </ArtifactReference>

 </ArtifactReferences>

 </ArtifactTemplate>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 39 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

4.3 Providing Implementations

A TOSCA Node Type Implementation or Relationship Type Implementation provided the

executables of the operations of the interfaces of the corresponding node or relationship types,

respectively, as well as the required installables. The executables of the operations are defined

as Implementation Artifacts, and the installables are defined as Deployment Artifacts: a node

type implementation (or relationship type implementation) bundles these artifacts into a single

unit.

The following NodeTypeImplementation bundles the ImplementationArtifacts for all

the operations of the άApacheWebServerέ node type (as referenced by its nodeType attribute)

and also provides a reference to an installableΣ ƛƴ ǘƘƛǎ ŎŀǎŜ ŀƴ άh{tŀŎƪŀƎŜέΣ as part of its

DeploymentArtifact . For each Operation that appears in the referenced nodeType Ωǎ

Interface element, the corresponding NodeTypeImplementation must provide a matching

ImplementationArtifact element. {ǇŜŎƛŦƛŎŀƭƭȅΣ ŜŀŎƘ ƴƻŘŜ ǘȅǇŜΩǎ Operation has a name

ŀǘǘǊƛōǳǘŜ ŀƴŘ ǘƘƛǎ ŀǘǘǊƛōǳǘŜΩǎ ǾŀƭǳŜ ƘŜƭǇǎ ǳǎ ƭƻŎŀǘŜ ǘƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ

Implem entationArtifact which will have an operationName attribute with the same

value. Once we locate the matching ImplementationArtifact via this method, we can use

ŀǊǘƛŦŀŎǘΩǎ artifactRef and artifactType attributes to locate the actual executables.

In the sample code below, each ImplementationArtifact provides executables for the

lifecycle interface of the άApacheWebServerέ node type όŜΦƎΦ άƛƴǎǘŀƭƭέΣ άŎƻƴŦƛƎǳǊŜέΣ άǎǘŀǊǘέΣ

άǎǘƻǇέ ŀƴŘ άǳƴƛƴǎǘŀƭƭέύ. [ƻƻƪƛƴƎ ŀǘ LƳǇƭŜƳŜƴǘŀǘƛƻƴ!ǊǘƛŦŀŎǘ ŦƻǊ ǘƘŜ άconfigureέ operation (as

indicated by its operationName attribute), we see that its executable is identified by the

artifactRef attributeΩǎ ǾŀƭǳŜ άомпέ ǿƘƛŎƘ ƳŀǘŎƘŜǎ ǎƻƳŜ ArtifactTemplate (defined

elsewhere) that has an id attribute ŀƭǎƻ ǿƛǘƘ ǘƘŜ ǾŀƭǳŜ άомпέΦ. The ArtifactTe mplate

referenced by its id , in this case, would provide the details about a άconfigure.shέ shell script

which implements the άconfigureέ operation

Note: Although the values for the artifactRef of the

NodeTypeImplemention and the id of the ArtifactTemplate are simple

numbers in our examples, in actual practice these would be UUIDs to prevent
collisions of artifact references when composing and publishing service
templates for real world consumption.

Finally, the DeploymentArtifact element of the node type implementation refers to the

ŀǊǘƛŦŀŎǘ ǘŜƳǇƭŀǘŜ ǿƛǘƘ ƛŘŜƴǘƛŦƛŜǊ άноέΦ ¢ƘŜ ǊŜŦŜǊŜƴŎŜŘ ƛƴǎǘŀƭƭŀōƭŜ ƛǎ ŀƴ ƻǇŜǊŀǘƛƴƎ ǎȅǎǘŜƳ ǇŀŎƪŀƎŜ

as indicated by the value of its artifactType attribute.

 <NodeTypeImplementation name=" ApacheWebServerImplementation "

 nodeType="tns:ApacheWebServer">

 <ImplementationArtifacts>

 <ImplementationArtifact

 artifactRef="11"

 artifactType="ns1:ScriptArtifact"

 interfaceName="http://www.example.com/interfaces/lifecycle"

 ope rationName=" install "/>

 <ImplementationArtifact

 artifactRef="314"

 artifactType="ns1:ScriptArtifact"

 interfaceName="http://www.example.com/interfaces/lifecycle"

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 40 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 operationName=" configure "/>

 <ImplementationArtifact

 artifactRef="13"

 artifactType="ns1:ScriptArtifact"

 interfaceName="http://www.example.com/interfaces/lifecycle"

 operationName=" start "/>

 <ImplementationArtifact

 artifactRef="17"

 artifactType="ns1:ScriptA rtifact"

 interfaceName="http://www.example.com/interfaces/lifecycle"

 operationName=" stop "/>

 <ImplementationArtifact

 artifactRef="19"

 artifactType="ns1:ScriptArtifact"

 interfaceName="http://www.example.com/inte rfaces/lifecycle"

 operationName=" uninstall "/>

 </ImplementationArtifacts>

 <DeploymentArtifacts>

 <DeploymentArtifact

 artifactRef=" 23 "

 artifactType="ns1: OsPackageArtifact "

 name="http - packages"/>

 </Deployment Artifacts>

 </NodeTypeImplementation>

Relationship types may have interfaces defined too: namely interfaces that can act on the

source of the relationship or on the target of the relationship. Thus, relationship types with

interfaces must be realized by corresponding RelationShipType elements.

The following RelationshipTypeImplementation element provides the implementation

artifact for the άconnectToέ operation of the άConnectsToέ interface of the

άMySQLDatabaseConnectionέ relationship type. The corresponding

ImplementationArtifact element refers to the artifact template with a reference identifier

(i.e. the artifactRef attribute) of άнтмέΦ ¢Ƙƛǎ ŀǊǘƛŦŀŎǘ ǘŜƳǇƭŀǘŜ ōǳƴŘƭŜǎ ǘƘŜ ǎŎǊƛǇǘǎ

implementing the ability to connect to a particular database (see before).

 <RelationshipTypeImplementation

 name="MySQLDatabaseConnectionImplementation "

 relationshipType="tns:MySQLDatabaseConnection">

 <ImplementationArtifacts>

 <ImplementationArtifact

 artifactRef="271"

 artifactType= "ns1:ScriptArtifact"

 interfaceName="http://www.example.com/ToscaBaseTypes/ConnectsTo"

 operationName="connectTo"/>

 </ImplementationArtifacts>

 </RelationshipTypeImplementation>

4.3.1 Coping With Environment-Specific Implementations

Implementation artifacts or deployment artifacts may depend on specific features they assume

to be available in an environment they are deployed in. For example, the executable of an

implementation artifact may make use of specific APIs in order to realize the operation it is

associated with. Such dependencies can be expressed by a set of

RequiredContainerFeature elements. Each such element denotes an individual

requirement by means of a URI. An environment that processes a service template uses these

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 41 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

features to determine the node type implementation of a certain node type that is most

appropriate for the environment.

 <NodeTypeImplementation

name="ApacheWebServerSpecialImplementation "

 nodeType="tns:ApacheWebServer">

 <RequiredContaine rFeatures>

 <RequiredContainerFeature

 feature="http://www.example.com/RequiredFeatures/MyImageLibrary"/>

 </RequiredContainerFeatures>

 <ImplementationArtifacts>

 ...

 </ImplementationArtifacts>

 <DeploymentArtifacts>

 ...

 </DeploymentArtifacts>

 </NodeTypeImplementation>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 42 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

5 What Cloud Service Providers Should Know About
TOSCA

5.1 Adaptation to Particular Cloud Providers

²ƘƛƭŜ ¢h{/!Ωǎ Ǝƻŀƭ ƛǎ ǘƘŜ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ŎƭƻǳŘ ǎŜǊǾƛŎŜǎ ƛƴ ŀ ǇƻǊǘŀōƭŜ ƳŀƴƴŜǊΣ ƛΦŜΦ ƛƴŘŜǇŜƴŘŜƴǘ of

the particular building blocks used in the actual cloud environment of a provider implementing a

TOSCA compliant cloud, there is a gap to bridge between the service definition itself and the

concrete infrastructure components to be used to run the instances of the cloud service. The

closer the elements of the service definition are related to the infrastructure, the harder it is to

keep them described in a portable way. The approach of TOSCA is to use appropriate and well

defined abstractions to allow portable definitions. Examples of such abstractions are J2EE

application servers, which ς with different implementations ς provide standardized abstractions

to be used by compliant applications, allowing them to ignore potentially significantly differing

aspects in the underlying operating system.

While this example shows, that these abstractions are typically used in hierarchical layers (with

the application being a layer on top of the application server, itself being a layer on top of the

operating system, which itself is an abstraction layer on top of the hardware), it also gets clear

this abstraction is more difficult to achieve as you get closer to particular hardware or

infrastructure, because the abstractions and associated standards are not so well known and

common, or despite of a well-defined, common standard, the actually used implementation

might vary significantly.

To solve this issue, some aspects or elements of a TOSCA cloud service definition need to be

mapped to the concrete elements used in the deployment of a service provider. TOSCA foresees

a few ways to achieve this mapping:

5.1.1 Deployment of implementation artifacts and deployment artifacts

In order to allow a service definition to accommodate for different elements in the

environment, the CSAR might contain so-called implementation artifacts or deployment

artifacts.

Deployment artifacts essentially contain (software) elements, which are needed to implement

the cloud service, for example they may contain the necessary J2EE modules for an application,

or a particular software application. These software elements might be dependent on the

actually available underlying abstractions, therefore the CSAR may contain multiple variations of

the artifact to match the actually used abstractions, if needed for a particular CSP. For example,

a CSAR might contain as a deployment artifact multiple different images (or references to those)

ŦƻǊ ǘƘŜ ŘƛŦŦŜǊŜƴǘ ǘŀǊƎŜǘ ŎƭƻǳŘ ǇǊƻǾƛŘŜǊ ŜƴǾƛǊƻƴƳŜƴǘǎ ŎƻƴǘŀƛƴƛƴƎ ǘƘŜ άǎŀƳŜέ ǎƻŦǘǿŀǊŜ ŎƻƴǘŜƴǘ

(e.g. Apache).

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 43 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

TOSCA Implementation Artifacts are routines which are needed for executing activities in the

ŎƻǳǊǎŜ ƻŦ ƳŀƴŀƎƛƴƎ ǘƘŜ ŎƭƻǳŘ ǎŜǊǾƛŎŜΣ ŦƻǊ ŜȄŀƳǇƭŜ ǘƻ ƛƴǎǘŀƴǘƛŀǘŜ ŀ ǎŜǊǾƛŎŜ όŀƪŀ άǇǊƻǾƛǎƛƻƴƛƴƎέύΣ

adapting it to the used environment. Again, one CSAR may contain multiple variations of an

implementation artifact to address different infrastructure elements or services available in the

concrete deployment environment. As an example, the provisioning of additional storage

capacity independent of the VM image might use different variations of an implementation

artifact, e.g. one using OpenStack compliant interfaces, another using Amazon EC2 compliant

interfaces (as different abstractions) depending on the underlying provider infrastructure.

More information about deployment artifacts and implementation artifacts is available in

Section 4.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 44 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

6 What Application Architects Should Know About
TOSCA

This chapter introduces a cloud application that will serǾŜ ŀǎ ǘƘŜ άƘŜƭƭƻ ǿƻǊƭŘέ ŜȄŀƳǇƭŜ ŦƻǊ

incrementally describing some essential TOSCA concepts against a practical, real-world

application and expressing them using the TOSCA standard. This example may, at first glance

appear simple; however, it allows us to introduce some powerful capabilities that TOSCA

enables for the application architect. We will emphasize the declarative approach in defining

the application throughout this example in order to highlight the interoperability and reusability

possibilities of modeling using TOSCA.

First, we will show how TOSCA modeling can describe the logical groupings (parts) of an

ŀǇǇƭƛŎŀǘƛƻƴ ǘƘŀǘ ǎƘƻǳƭŘ ōŜ ŘŜǇƭƻȅŜŘΣ ŎƻƴŦƛƎǳǊŜŘ ŀƴŘ ƳŀƴŀƎŜŘ ǘƻƎŜǘƘŜǊ ŀǎ άǘƛŜǊǎέΦ ¢Ƙƛǎ ǎŀƳŜ

grouping concept can also be used to communicate the scaling policies that apply to each tier so

that they can be independently scaled by cloud service providers to accommodate variations in

consumer demand.

Specifically, the cloud application in this example will consist of two tiers. One tier will describe a

ǘȅǇƛŎŀƭ /ǳǎǘƻƳŜǊ wŜƭŀǘƛƻƴǎƘƛǇ aŀƴŀƎŜƳŜƴǘ ό/waύ ǿŜō ŀǇǇƭƛŎŀǘƛƻƴ ǿƘƛŎƘ ǿŜ ǿƛƭƭ Ŏŀƭƭ ǘƘŜ άǿŜō

ŀǇǇƭƛŎŀǘƛƻƴ ǘƛŜǊέΦ ¢ƘŜ ƻǘƘŜǊ ǘƛŜǊ ǿƛƭƭ ŘŜǎŎǊƛōŜ ŀ {v[5ŀǘŀōŀǎŜΣ ƻǊ άŘŀǘŀōŀǎŜ ǘƛŜǊέΣ ǿƘƛŎƘ ǎǘƻǊŜǎ

the actual customer relational data the CRM application will connect to and use.

²Ŝ ǿƛƭƭ ŦƛǊǎǘ ǎƘƻǿ Ƙƻǿ ǘƘŜ άŘŀǘŀōŀǎŜ ǘƛŜǊέ Ŏŀƴ ōŜ ŘŜǎŎǊƛōŜŘ ŀǎ ƭŀȅŜǊŜŘΣ ƎǊŀƴǳƭŀǊ ǎŜǘ ƻŦ ǎŜǊǾƛŎŜ

components, or TOSCA nodes, each declaring the hosting capabilities they offer which can be

matched to the requirements of other layers by the provider. We then take the cloud developer

ǘƘǊƻǳƎƘ ŎǊŜŀǘƛƴƎ ǘƘŜ ƎǊŀƴǳƭŀǊ ŘŜǎŎǊƛǇǘƛƻƴ ƻŦ ǘƘŜ ǿŜō ŀǇǇƭƛŎŀǘƛƻƴ ǎǘŀŎƪ όƻǊ άǘƛŜǊέύ ƛƴ ŀ ƳŀƴƴŜǊ

that permits them to be portable across different cloud service providers (even those that may

offer different underlying service models).

CƛƴŀƭƭȅΣ ǿŜ ǎƘƻǿ Ƙƻǿ ǘƻ ŎƻƴƴŜŎǘ ǘƘŜ άǿŜō ŀǇǇƭƛŎŀǘƛƻƴ ǘƛŜǊέ ǘƻ ǘƘŜ ŘŀǘŀōŀǎŜ ǿƛǘƘƛƴ ǘƘŜ

άŘŀǘŀōŀǎŜ ǘƛŜǊέ ǳǎƛƴƎ ŀ ά/ƻƴƴŜŎǘǎ¢ƻέ ǊŜƭŀǘƛƻƴǎƘƛǇ ǘȅǇŜ ǘƘŀǘ Ƙŀǎ ƛǘǎ ƻǿƴ ŎƻƴƴŜŎǘƛƻƴ-specific

requirements and capabilities for matching node templates and which itself can also carry a set

of configurable connection properties.

6.1 Single-Tier MySQL Database for our SugarCRM Web Application

Most every web application interacts with a Database Management System (DMBS) that serves

as the service layer on-top of a database that holds the domain-specific data the application is

ŎƻƴŎŜǊƴŜŘ ǿƛǘƘ ƛƴ ƛǘǎ άŘŀȅ ǘƻ Řŀȅέ ƻǇŜǊŀǘƛƻƴǎΦ ¢Ƙƛǎ ǎŜŎǘƛƻƴ ōŜƎƛƴǎ ōȅ ǎƘƻǿƛƴƎ Ƙƻǿ ¢h{/! Ŏŀƴ ōŜ

used to model this common application dependency, specifically using a MySQL database, so

that it can be interoperably deployed and referenced on clouds that support TOSCA. We then

ǎƘƻǿ Ƙƻǿ ǿŜ Ŏŀƴ ŎǳǎǘƻƳƛȊŜ ǘƘƛǎ ƎŜƴŜǊŀƭƛȊŜŘ άŘŀǘŀōŀǎŜ ǎǘŀŎƪέ ƛƴǘƻ ŀ άŘŀǘŀōŀǎŜ ǘƛŜǊέ ǘƘŀǘ ƻǳǊ

ŜȄŀƳǇƭŜΩǎ SugarCRM Web Application tier (see Section 6.2) can eventually reference from its

own TOSCA types, templates and artifacts.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 45 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

6.1.1 Required Node Types

When modeling using TOSCA, one of the first things you would need to do is to identify the

logical set of component services that the application is both composed of as well as those

services that the application relies upon for deployment, installation, execution and other

lifecycle operations. Each of these components would be represented as a TOSCA node type

each exporting an associated, configurable set of properties (or settings) as well as their

invocable operations.

Of course, the node types used to describe these components and their dependencies may be

fully defined within a single TOSCA service template itself; however, TOSCA permits node types

in one service template to reference nodes types defined externally by some other party. These

external types could be developed and published by infrastructure, platform, middleware and

software service providers so they are made widely available to cloud application architects.

This is done through the importing of Definitions documents as described in Section 3.5

έModular Design of Service TemplatesέΦ

6.1.1.1 Define the Required Base Node Types

The first step a cloud developer should take when modeling their cloud application is to identify

the basic set of components services their application is comprised of. Most web applications

require some form of database along with the necessary components to deploy, host and

manage it over its lifecycle. The cloud application developer would then need to describe these

basic components, their interfaces and properties as TOSCA Node Types.

¢ƘŜ ŦƻƭƭƻǿƛƴƎ ǘŀōƭŜ ŘŜǎŎǊƛōŜǎ ǘƘŜ ōŀǎƛŎ ƻǊ άōŀǎŜέ ƴƻŘŜ ǘȅǇŜǎ ǘƘŀǘ ǿŜ ǿƛƭƭ ǳǎŜ ǘƻ ŎƻƳǇƻǎŜ ŀ

ǘȅǇƛŎŀƭ ŘŀǘŀōŀǎŜ ŎƻƳǇƻƴŜƴǘǎ άǎǘŀŎƪέ ǳǎƛƴƎ ¢h{/!Υ

TABLE 2 ς SINGLE-TIER MYSQL DATABASE EXAMPLE'S BASE NODE TYPES

Base Node Type Name Description

Database Represents an abstract Database along with basic structure
(schema), properties and operations.

Database Management

Service (DBMS)

Represents an abstract Database Management Service
(DBMS) and its basic operations.

Operating System (OS) Represents an abstract notion of an Operating System
service (or Platform Service).

Server wŜǇǊŜǎŜƴǘǎ ŀƴ ŀōǎǘǊŀŎǘ ƴƻǘƛƻƴ ƻŦ ŀ άŎƻƳǇǳǘŜέ ǎŜǊǾƛŎŜ ŀƭƻƴƎ
with its properties and operations. For example, this could
be further developed to describe a Virtual Machine (VM), a
Virtual Processing Unit (VPU) or an actual CPU when
describing the TOSCA cloud application to a cloud service

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 46 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

provider.

Tier Represents an abstract grouping concept for other node
types, typically used to describe a stack of software (nodes)
ǘƘŀǘ ǎƘƻǳƭŘ ōŜ ƳŀƴŀƎŜŘ ŀƴŘκƻǊ ǎŎŀƭŜŘ ǘƻƎŜǘƘŜǊ άŀǎ ŀ TierέΦ

¢ƘŜǎŜ άōŀǎŜέ ƴƻŘŜ ǘȅǇŜǎ ŘŜǊƛǾŜ ŦǊƻƳ ǘƘŜ ¢h{/! ǎŎƘŜƳŀΩǎ άǊƻƻǘ ƴƻŘŜέ ŀƴŘ ǿƻǳƭŘ ōŜ

represented in pseudo-XML as follows:

 <NodeType name=" Database ">

 <documentation>A basic Database</documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 ...

 </NodeType>

 <NodeType name=" DBMS">

 <documentation> A basic Database Management System </documentation>

 <DerivedFrom typeRef="tn s:RootNodeType"/>

 ...

 </NodeType>

 <NodeType name=" OperatingSystem ">

 <documentation> A basic operating system/platform </documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 ...

 </NodeType>

 <NodeType name=" Server ">

 <documentation> A basic cloud compute resource</documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 ...

 </NodeType>

 <NodeType name=" Tier ">

 <documentation>Tier</documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 ...

 </NodeType>

Again, here we simply show the basic type definitions; other required elements of the TOSCA

NodeType ŜƭŜƳŜƴǘΩǎ ŘŜŦƛƴƛǘƛƻƴ ŀǊŜ ŘƛǎŎǳǎǎŜŘ ƛƴ ƭŀǘŜǊ ǎŜŎǘƛƻƴǎΦ

As you can see, many of these base node types which will serve the basic building blocks for our

exŀƳǇƭŜΩǎ ŘŀǘŀōŀǎŜ ǘƛŜǊ ƳƛƎƘǘ ŀƭǎƻ ōŜ ǳǎŜŘ ǿƘŜƴ ƳƻŘŜƭƛƴƎ ǿŜō ŀǇǇƭƛŎŀǘƛƻƴǎ ŀǎ ǿŜƭƭΦ Lƴ ŦŀŎǘΣ ƛƴ

the following section (section 6.2ύ ǿƛƭƭ ǎƘƻǿ Ƙƻǿ ǘƘŜ ά¢ƛŜǊέΣ ά{ŜǊǾŜǊέΣ ŀƴŘ άhǇŜǊŀǘƛƴƎ {ȅǎǘŜƳέ

base node types are indŜŜŘ ǊŜŦŜǊŜƴŎŜŘ ŀƎŀƛƴ ŀǎ ǘƘŜ άōǳƛƭŘƛƴƎ ōƭƻŎƪǎέ ŦƻǊ ƳƻŘŜƭƛƴƎ ǘƘŜ ǿŜō

ŀǇǇƭƛŎŀǘƛƻƴ ŎƻƳǇƻƴŜƴǘǎ ŦƻǊ ŀ άǿŜō ŀǇǇƭƛŎŀǘƛƻƴ ǘƛŜǊέΦ

!ŘŘƛǘƛƻƴŀƭƭȅΣ ǘƘŜǎŜ άōŀǎŜέ ƴƻŘŜ ǘȅǇŜǎ ŀƭƭƻǿ ǳǎ ǘƻ ŎƻƴŎŜǇǘǳŀƭƭȅ άŎƻƭƭŀǇǎŜέ ŎƻƳǇƭŜȄ ƳƛŘŘƭŜǿŀǊŜ

service models into basic, well-understood abstract node types cloud service providers might

accept and understand when deploying interoperable TOSCA applications. This concept would

ŀƭƭƻǿ ŘŜǾŜƭƻǇŜǊǎ ǘƻ ŦƻŎǳǎ ƻƴ ƳƻŘŜƭƛƴƎ ǘƘŜƛǊ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ǎǇŜŎƛŦƛŎ ŎƻƳǇƻƴŜƴǘǎΣ ŘŜǇŜƴŘŜƴŎƛŜǎ

and other details (in a declarative way) while not immediately concerning themselves with all

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 47 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

the possible implementations cloud service providers may choose to employ when orchestrating

their application.

In the next sections, we will show how the application architect can easily use these base types

to derive more specific (and even customized) node types that further describe the granular

details for their actual database components and supporting services.

!ǎ ǘƘŜ ¢h{/! ǎǘŀƴŘŀǊŘ ŜǾƻƭǾŜǎΣ ǘƘŜǎŜ άōŀǎŜέ ŀǇǇƭƛŎŀǘƛƻƴ ƴƻŘŜ ǘȅǇŜǎ would ideally be offered as

commonly defined TOSCA types (within a TOSCA Definitions document) and their orchestration

would be well-understood by multiple cloud service providers that encounter them. These node

types could include additional normative information including basic properties, capabilities and

operations common to services of that type. For example, any derivation of the DBMS base

node type might include some standardized set of properties, interfaces and policy

requirements common to most database management services, as well as exporting a typical

ŘŀǘŀōŀǎŜ ǎŜǊǾƛŎŜ ŎƻƴǘŀƛƴŜǊΩǎ ƘƻǎǘƛƴƎ ŎŀǇŀōƛƭƛǘƛŜǎΦ

6.1.1.2 Define the Required Specific Node Types

bƻǿ ǘƘŀǘ ǿŜ ƘŀǾŜ ƛŘŜƴǘƛŦƛŜŘ ǘƘŜ άōŀǎŜέ ƴƻŘŜ ǘȅǇŜǎ ŦƻǊ ƳƻŘŜƭƛƴƎ ŀ ŘŀǘŀōŀǎŜ ǘƛŜǊΣ ǘƘŜ ƴŜȄǘ ǎǘŜǇ

for the developer would be to extend these types to more clearly represent the specific

middleware (and other software) our application actually uses. These new types would derive

ŘƛǊŜŎǘƭȅ ŦǊƻƳ ǘƘŜ άōŀǎŜέ ǘȅǇŜǎ ǿŜ ŘŜŦƛƴŜŘ ŀōƻǾŜ ŀƴŘ ǇǊƻǾƛŘŜ ǘƘƛǎ ƴŜȄǘ ƭŜǾŜƭ ƻŦ ŘŜǘŀƛƭ ǘhat

ǎǇŜŎƛŀƭƛȊŜ ǘƘŜƳ ŦƻǊ άǎǇŜŎƛŦƛŎέ ǎƻŦǘǿŀǊŜΦ ¢ƻ ŜȄƘƛōƛǘ ǘƘƛǎ ŎƻƴŎŜǇǘΣ ƭŜǘΩǎ ŦǳǊǘƘŜǊ ŀǎǎǳƳŜ ǘƘŀǘ ǘƘŜ

ŎƻƳǇŀƴȅΩǎ ǿŜō ŀǇǇƭƛŎŀǘƛƻƴ ǇŜǊǎƛǎǘǎ ƛǘǎ ŎǳǎǘƻƳŜǊ Řŀǘŀ ƛƴ ŀ MySQL database which needs to be

ŘŜǎŎǊƛōŜŘ ǳǎƛƴƎ ŀ άǎǇŜŎƛŦƛŎέ ƴƻŘŜ ǘȅǇŜ ǘƘŀǘ ōǳƛƭŘǎ ǳǇƻƴ ǘƘŜ άōŀǎŜέ ŘŀǘŀōŀǎŜ ƴƻŘŜ ǘȅǇŜΦ

The following table describes the specific node types that would be needed to support a MySQL

database example along with the base types they extend from:

TABLE 3 ς SINGLE-TIER MYSQL DATABASE EXAMPLEΩS SPECIFIC NODE TYPES

Specific Node Type

Name

Extends Node Type Description

MySQL (DBMS) Database
Management
Service (DBMS)

Represents a specialized MySQL Database
aŀƴŀƎŜƳŜƴǘ {ŜǊǾƛŎŜ όƛΦŜΦ ŀ ǎǇŜŎƛŀƭƛȊŜŘ ά5.a{έ
node type).

MySQL Database Database wŜǇǊŜǎŜƴǘǎ ŀ ƴƻŘŜ ǘȅǇŜ ά5ŀǘŀōŀǎŜέ ƴƻŘŜ ǘȅǇŜ
specialized for MySQL.

The pseudo-XML code sample below shows how these special node types for the MySQL

ŘŀǘŀōŀǎŜ ǎŜǊǾƛŎŜ ŀƴŘ aȅ{v[ŘŀǘŀōŀǎŜ ŎƻƳǇƻƴŜƴǘǎ όƛΦŜΦ ǘƘŜ άaȅ{v[5.a{έ ŀƴŘ

άaȅ{v[5ŀǘŀōŀǎŜέ ƴƻŘŜ ǘȅǇŜǎ ǊŜǎǇŜŎǘƛǾŜƭȅύ ƳƛƎƘǘ ōŜ ŘŜŦƛƴŜŘΦ ¢ƘŜǎŜ ŀǊŜ ǎƘƻǿƴ ǘƻ ŘŜǊƛǾŜ ŦǊƻƳ

the base node types we introduced in the previous section (using the typeRef attribute where

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 48 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

άƴǎмέ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ Ŧǳƭƭȅ-qualified targetnamespace ŦƻǊ ǘƘƻǎŜ άōŀǎŜέ ƴƻŘŜ ǘȅǇŜǎ and their

Definitions document):

 <NodeType name=" MySQLDBMS">

 <documentation>MySQL</documentation>

 <DerivedFrom typeRef="ns1: DBMS"/>

 <PropertiesDefinition element="tns:MySQLProperties"/>

 <Interfaces>

 <Interface name="http:// www.example.com / interfaces/ lifecycle">

 <Operation name="install"/>

 <Operation name="configure"/>

 <Operation name="start"/>

 <Operation name="stop"/>

 <Operation name="uninstall"/>

 </Interface>

 </Interfaces>

 </NodeT ype>

 <NodeType name=" MySQLDatabase ">

 <documentation>MySQL Database</documentation>

 <DerivedFrom typeRef="ns1: Database "/>

 </NodeType>

It is envisioned, that as TOSCA gains adoption, middleware and cloud service providers would

develop, publish ŀƴŘ Ƴŀƛƴǘŀƛƴ ƴƻǊƳŀǘƛǾŜ άǎǇŜŎƛŀƭƛȊŜŘέ ƴƻŘŜ ǘȅǇŜ Definitions documents that

describe their component services using TOSCA. Additionally, their types would be derived from

ǎǘŀƴŘŀǊŘƛȊŜŘ ¢h{/! άōŀǎŜέ ƴƻŘŜ ǘȅǇŜǎ όŀǎ ŘŜǎŎǊƛōŜŘ ƛƴ ǘƘŜ ǇǊŜǾƛƻǳǎ ǎŜŎǘƛƻƴύΦ /ǊŜŀǘƛƴƎ ŀ TOSCA

type ecosystem in this manner would further enable cloud application developers to more easily

model and compose simple, interoperable cloud applications as TOSCA service templates.

¢ƘŜǎŜ ǘȅǇŜǎΣ άǎǇŜŎƛŦƛŎέ ǘƻ aȅ{v[ŘŀǘŀōŀǎŜǎΣ ŎƻǳƭŘ ōŜ ǇǳōƭƛǎƘŜŘΣ ƳŀŘe available and maintained

within a TOSCA Definitions document that is offered by the entity that governs MySQL software

components and services.

6.1.1.3 $ÅÆÉÎÅ ÔÈÅ 2ÅÑÕÉÒÅÄ Ȱ#ÕÓÔÏÍȱ .ÏÄÅ 4ÙÐÅÓ

¢ƘŜ ŎƭƻǳŘ ŘŜǾŜƭƻǇŜǊΣ ƘŀǾƛƴƎ ǘƘŜ ƴŜŎŜǎǎŀǊȅ ǎŜǘ ƻŦ ōƻǘƘ άōŀǎŜέ ŀƴŘ άǎǇŜŎƛŦƛŎέ ƴƻŘŜ ǘȅǇŜǎ ŘŜŦƛƴŜŘ

ŦƻǊ ŀ ŘŀǘŀōŀǎŜ ǘƛŜǊΣ ƛǎ ƴƻǿ ŀōƭŜ ǘƻ ŦǳǊǘƘŜǊ ŜȄǘŜƴŘ ŀƴŘ άŎǳǎǘƻƳƛȊŜέ ǘƘŜƳ ǘƻ ǇǊƻǾƛŘŜ ǘƘŜ Ŧƛƴŀƭ

ŘŜǘŀƛƭǎ ƴŜŜŘŜŘ ŦƻǊ ǘƘŜƛǊ ŀǇǇƭƛŎŀǘƛƻƴΦ ¢ƘŜǎŜ άŎǳǎǘƻƳέ ƴƻŘŜ ǘȅǇŜǎ ƳƛƎƘǘ ƛƴŎƭǳŘŜ ŜǾŜƴ ƳƻǊŜ

properties, interfaces and other details needed to make it suitable for use by their actual

ŀǇǇƭƛŎŀǘƛƻƴΦ Lƴ ƻǳǊ ŜȄŀƳǇƭŜΣ ǘƘŜ ŎƻƳǇŀƴȅΩǎ ŀǇǇƭƛŎŀǘƛƻƴ ǎǇŜŎƛŦƛŎŀƭƭȅ ǳǎŜǎ ŀƴ ƻǇŜƴ ǎƻǳǊŎŜ

Customer Relationship Management (CRM) solution, such as SugarCRM, which may need a

suitably ŎǳǎǘƻƳƛȊŜŘ άaȅ{v[5ŀǘŀōŀǎŜέ ƴƻŘŜ ǘȅǇŜ ŦƻǊ ǇǊƻǇŜǊ ƻǇŜǊŀǘƛƻƴΦ

¢ƘŜ ŦƻƭƭƻǿƛƴƎ ǘŀōƭŜ ŘŜǎŎǊƛōŜǎ ǘƘŜ ŎǳǎǘƻƳƛȊŀǘƛƻƴ ƻŦ ǘƘŜ ǎǇŜŎƛŦƛŎ άaȅ{v[5ŀǘŀōŀǎŜέ ƴƻŘŜ ǘȅǇŜ

ƛƴǘƻ ƻƴŜ άŎǳǎǘƻƳƛȊŜŘέ ŦƻǊ ŀ {ǳƎŀǊ/wa ŘŀǘŀōŀǎŜΥ

TABLE 4 ς SINGLE-TIER MYSQL DATABASE EXAMPLE'S CUSTOM NODE TYPES

Custom Node Type

Name

Extends Specific Node

Type

Description

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 49 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

SugarCRM Database MySQL Database Represents the database that is designed
ǘƻ ǿƻǊƪ ǿƛǘƘ ǘƘŜ ŎƻƳǇŀƴȅΩǎ {ǳƎŀǊ/wa
application which is a custom derivation
ƻŦ ǘƘŜ άMySQL Databaseέ type.

¢ƘŜ ·a[ŦƻǊ ǘƘƛǎ άŎǳǎǘƻƳέ NodeType definition might look something like:

 <NodeType name=" SugarCRMDatabase ">

 <documentation>SugarCRM Database</documentation>

 <DerivedFrom typeRef="ns1: MySQLDatabase "/>

 <PropertiesDefinition element="tns:SugarCRMDatabaseProperties"/>

 <Interfaces>

 <Interface name=" http:// www.example.com / interfaces/ lifecycle ">

 <Operation name="install"/>

 <Operation name="start"/>

 <Operation name="uninstall"/>

 </Interfac e>

 </Interfaces>

 </NodeType>

6.1.1.4 Node Type Inheritance (Base, Specific, Custom)

If we were to look at the node type inheritance hierarchy for the base, specific and custom node

ǘȅǇŜǎ ƛŘŜƴǘƛŦƛŜŘ ŀōƻǾŜ ŦƻǊ ǘƘŜ άŘŀǘŀōŀǎŜ ǘƛŜǊέ ƻŦ ƻǳǊ ŜȄŀƳǇƭŜΣ ƛǘ ǿƻǳƭŘ ƭƻƻƪ as follows:

FIGURE 13 - NODE TYPE INHERITANCE FOR A SUGARCRM DATABASE TIER

6.1.2 Turning Node Types into Node Templates

Node types, by themselves simply describe the properties, operations, requirements and

capabilities representative of that class of services or software. They are not composable as

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 50 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

TOSCA models; instead TOSCA Node Templates are used to turn TOSCA Node Types into

modelable entities that can be instantiated with specific properties, etc. and related to other

node templates to describe, in our current example, the overall SugarCRM MySQL database

ǘƛŜǊΩǎ ǘƻǇƻƭƻƎȅΦ

The pseudo-·a[ŦƻǊ ǘƘŜ ƴƻŘŜ ǘŜƳǇƭŀǘŜǎ ŦƻǊ ǘƘŜ ŘŀǘŀōŀǎŜ ǘƛŜǊΩǎ ƴƻŘŜ ǘȅǇŜǎ ǿƻǳƭŘ ƭƻƻƪ

something like this:

 <! ð namespace s for the external node type definitions d escribed above -- >

 <! ð Namespaces for imported TOSCA NodeType Definitions documents -- >

 xmlns:ns1="http:// www.example.com / Tosca BaseTypes "

 xmlns:ns2="http:// www.example.com / Tosca Specific Types "

 xmlns:ns3="http:// www.example.com / SugarCRMCustom Type s "

 <! -- Define the node templates for the ñDatabase Tierò -- >

 <NodeTemplate id=" DatabaseTier " name="Database Tier" type="ns1: Tier ">

 </NodeTemplate>

 <NodeTemplate id=" VmMySql" name="VM for MySQL" type="ns1: Server ">

 <Properties>

 <ns1:ServerProperties>

 <NumCpus>1</NumCpus>

 <Memory>1024</Memory>

 <Disk>10</Disk>

 </ns1:ServerProperties>

 </Properties>

 </NodeTemplate>

 <NodeTemplate id=" OsMySQL" name="OS for MySQL"

type="ns1: OperatingSystem ">

 </Nod eTemplate>

 <NodeTemplate id=" MySql " name="MySQL" type="ns2: MySQL">

 <Properties>

 <ns2:MySQLProperties>

 <RootPassword>password</RootPassword>

 </ns2:MySQLProperties>

 </Properties>

 </NodeTemplate>

 <NodeTemplate id=" SugarCrmDb" name="SugarCRM DB"

type="ns3: SugarCRMDatabase ">

 <Properties>

 <ns3:SugarCRMDatabaseProperties>

 <DBName>sugardb</DBName>

 <DBUser>sugaradmin</DBUser>

 <DBPassword>sugaradmin</DBPassword>

 <mySqlPort>3306</mySqlPort>

 </ns3:SugarCRMDatabaseProperties>

 </Properties>

 </NodeTemplate>

!ǎ ȅƻǳ Ŏŀƴ ǎŜŜΣ ƭƻƻƪƛƴƎ ŀǘ ǘƘŜ {ǳƎŀǊ/wa ŘŀǘŀōŀǎŜΩǎ NodeTemplate όƛΦŜΦ ά{ǳƎŀǊ/ǊƳ5ōέύ ǿƘƛŎƘ

ƛǎ ōŀǎŜŘ ǳǇƻƴ ǘƘŜ ά{ǳƎŀǊ/wa5ŀǘŀōŀǎŜέ NodeType detailed earlier, we see that the template

includes specific property settings that the application developer has provided that describes

settings to be applied to that server when orchestrated by the TOSCA processing environment:

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 51 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 <NodeTemplate id=" SugarCrmDb " name="SugarCRM DB"

 type="ns3: SugarCRMDatabase ">

 <Properties>

 <ns3:SugarCRMDatabaseProperties>

 <DBName>sugardb</DBName>

 <DBUser>sugaradmin</DBUser>

 <DBPassword>sugaradmin</DBPassword>

 <mySqlPort>3306</mySqlPort>
 </ns3:SugarCRMD atabaseProperties>

 </Properties>

 </NodeTemplate>

¢ƘŜǎŜ ǇǊƻǇŜǊǘƛŜǎ ŀǊŜ ŎƻƴǾŜȅŜŘ ǘƻ ǘƘŜ ŎƭƻǳŘ ǇǊƻǾƛŘŜǊΩǎ ǳƴŘŜǊƭȅƛƴƎ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ŎƻƴǘŀƛƴŜǊ

software such that the application developer need not understand the implementation details

of any particular ǇǊƻǾƛŘŜǊΩǎ ŘŀǘŀōŀǎŜ ŎƻƴǘŀƛƴŜǊΦ

hŦ ŎƻǳǊǎŜΣ ǿŜ ŀƭǎƻ ƴŜŜŘ ǘƻ ŎǊŜŀǘŜ ƴƻŘŜ ǘŜƳǇƭŀǘŜǎ ŦƻǊ ǘƘŜ άŎǳǎǘƻƳέ ƴƻŘŜ ǘȅǇŜǎ ƻŦ ƻǳǊ

application each with their own custom property settings:

 <NodeTemplate id=" SugarCrmApp " name="SugarCRM App"

 type="n s3: SugarCRMApplication ">

 <Properties>

 <ns3:SugarCRMApplicationProperties>

 <SugarCRMKey>somekey</SugarCRMKey>

 <AdminUser>admin</AdminUser>

 <AdminPassword>admin</AdminPassword>

 <DBexists>false</DBexists>

 </ns3:SugarCRMApplicationProperties>

 </Properties>

 ...

 </NodeTemplate>

 <NodeTemplate id=" SugarCrmDb " name="SugarCRM DB"

 type="ns3: SugarCRMDatabase ">

 <Properties>

 <ns3:SugarCRMDatabaseProperties>

 <DBName>sugardb</DBName>

 <DBUser>sugaradmin</DBUser>

 <DBPassword>sugaradmin</DBPassword>

 <mySqlPort>3306</mySqlPort>

 </ns3:SugarCRMDatabaseProperties>

 </Properties>

 ...

 </NodeTemplate>

6.1.3 Required Artifact Types

In order to actually deploy and install a cloud application using a TOSCA service template, the

application architect would also need to describe the actual scripts, files, software packages and

other types of artifacts that would be used during these first stages of an application lifecycle.

6.1.3.1 Define Required Base Artifact Types

¢ƘŜ ŦƻƭƭƻǿƛƴƎ ǘŀōƭŜ ƭƛǎǘǎ ǿƘŀǘ ƛǎ ǾƛŜǿŜŘ ŀǎ ǎƻƳŜ ƻŦ ǘƘŜ ŎƻƳƳƻƴ άōŀǎŜέ ŀǊǘƛŦŀŎǘ ǘȅǇŜǎ ǘƘŀǘ ŀǊŜ

necessary for fully describing our SugarCRM application that could be understood by multiple

service providers:

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 52 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

TABLE 5 ς SINGLE-TIER MYSQL DATABASE EXAMPLE'S BASE ARTIFACT TYPES

Base Artifact Type Name Description

File Artifact Represents artifacts that contain generalized data or
metadata that is somehow used or required during an
ŀǇǇƭƛŎŀǘƛƻƴΩǎ ƭƛŦŜŎȅŎƭŜ ŀƴŘ ŜƴŎŀǇǎǳƭŀǘŜŘ ƛƴǘƻ ŀ ǎƛƴƎƭŜ ŦƛƭŜΦ

Script Artifact Represents artifacts are typically files that encapsulate
commands, macros and other instructions that are executed
(or interpreted) to perform some operation. These files are
often authored using various script programming languages
designed for these purposes.

Archive Artifact Represents artifacts that contain a collection of files that are
packaged together for storage or transport between
(deployment) locations. Archive artifacts usually contain
additional metadata about the files it contains such as a file
manifest, filesystem layout and access control information.

Package Artifact Represents artifacts that contain a collection of files that
comprise a complete software application or service which
are packaged together for convenient distribution,
deployment and/or installation.

These types would look something like this in pseudo-XML using the TOSCA standard:

 <ArtifactType name=" FileArtifact ">

 <documentation>File Artifact</documentation>

 <DerivedFrom typeRef="tns:RootArtifactType"/>

 </ArtifactType>

 <ArtifactType name=" ScriptArtifact ">

 <documentation>Script Artifact</documentation>

 <DerivedFrom typeRef="tns:RootArtifactType"/>

 <PropertiesDefinit ion element="tns:ScriptArtifactProperties"/>

 </ArtifactType>

 <ArtifactType name=" ArchiveArtifact ">

 <documentation>Archive Artifact</documentation>

 <DerivedFrom typeRef="tns:RootArtifactType"/>

 <PropertiesDefinition element="tns:ArchiveArti factProperties"/>

 </ArtifactType>

 <ArtifactType name=" PackageArtifact ">

 <documentation> Package Artifact</documentation>

 <DerivedFrom typeRef="tns:RootArtifactType"/>

 <Prop ertiesDefinition element="tns: PackageArtifactProperties"/>

 </Artif actType>

aǳŎƘ ƭƛƪŜ άōŀǎŜέ ƴƻŘŜ ǘȅǇŜǎΣ ǘƘŜǎŜ άōŀǎŜέ ŀǊǘƛŦŀŎǘ ǘȅǇŜǎ ŜȄǘŜƴŘ ŦǊƻƳ ŀ ¢h{/!

RootArtifactType and they themselves could also be extended to create specialized or

custom artifact types. These four base artifact types defined above are suitable for conceivably

describing most kinds of software-related artifacts (not just for our current database tier). For

example, a Web Application Archive (or WAR file) could be defined as a specialized

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 53 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

άArchive!ǊǘƛŦŀŎǘέ type which in turn could be used to create custom application types by web

application developers and vendors.

6.1.4 Turning Artifact Types into Artifact Templates

In order to model artifacts in TOSCA, we have to create TOSCA Artifact Templates from the

Artifact Types we have defined above. The following example code shows how an installation

script used to install the MySQL database would be represented as an artifact template:

 <ArtifactTemplate id="uid:at - example1234"

 type="ns1: ScriptArtifact ">

 <Properties>

 <ns1: ScriptArt ifactProperties

 xmlns:ns1="http://www.example.com/ToscaBaseTypes">

 <ScriptLanguage> sh </ScriptLanguage>

 <PrimaryScript> scripts/MySQL/install.sh </PrimaryScript>

 </ns1:ScriptArtifactProperties>

 </Properties>

 <ArtifactRefe rences>

 <ArtifactReference reference=" scripts/MySQL ">

 <Include pattern=" install.sh "/>

 </ArtifactReference>

 </ArtifactReferences>

 </ArtifactTemplate>

As you can see, this template provides the values for the ScriptArtifactProperti es and

ArtifactReference elements that are customized to describe the ScriptLanguage ŀǎ άǎƘέ

όŀƴ ŀōōǊŜǾƛŀǘƛƻƴ ŦƻǊ ǘƘŜ άǎƘŜƭƭέ ǎŎǊƛǇǘ ŀƴŘ ŀƭǎƻ ƛǘǎ ǇǊƻŎŜǎǎƛƴƎ ǳǘƛƭƛǘȅύ ŀƭƻƴƎ ǿƛǘƘ ǘƘŜ ƴŀƳŜ ƻŦ ǘƘŜ

ǎŎǊƛǇǘΩǎ ŦƛƭŜ ŀƴŘ ǊŜƭŀǘƛǾŜ ƭƻŎŀǘƛƻƴ ǿƛǘƘƛƴ ǘƘŜ /{!w ŦƛƭŜΦ

6.1.5 Required Relationship Types

Having identified the set of nodes and artifacts required to express our database tier, we now

must be able to describe how these TOSCA modelable components would relate to each other

in a cloud deployment. For this purpose, TOSCA introduces the notion of Relationship Types

ǿƘƛŎƘ ŘŜŦƛƴŜ ǘƘŜ άŜŘƎŜǎέ ƻŦ ŀ ¢h{/! ǘƻǇƻƭƻƎȅ ǘƘŀǘ ǿƘŜƴ ǘǳǊƴŜŘ ƛƴǘƻ ¢h{/! Relationship

Templates are able to describe the logical relationships and other dependencies between the

ŀǇǇƭƛŎŀǘƛƻƴΩǎ ƴƻŘŜ ǘŜƳǇƭŀǘŜǎΦ

6.1.5.1 Required Base Relationship Types

The database components from our SugarCRM example require just a single base relationship

type that provides us the means to express their relationships to one another conceptually in a

cloud deployment. This fundamental relationship we need to describe expresses the notion of

άŎƻƴǘŀƛƴƳŜƴǘέΦ Lƴ ƻǘƘŜǊ ǿƻǊŘǎΣ ƛǘ ŘŜǎŎǊƛōŜǎ Ƙƻǿ ƻƴŜ ƴƻŘŜ ŘŜǇŜƴŘǎ ƻƴ ŀƴƻǘƘŜǊ ƴƻŘŜ ǘƻ ǇǊƻǾƛŘŜ

its necessary services to manage and host nodes of its type during their lifecycle. This

relationship type we wiƭƭ ǎƛƳǇƭȅ Ŏŀƭƭ άIƻǎǘŜŘhƴέΦ {ǇŜŎƛŦƛŎŀƭƭȅ ŦǊƻƳ ƻǳǊ ŜȄŀƳǇƭŜΣ ǘƘŜ άSugarCRM

Databaseέ ƴƻŘŜ ǿƻǳƭŘ ōŜ άIƻǎǘŜŘhƴέ ǘƘŜ άaȅ{v[5.a{έ ƴƻŘŜ ǿƘƛŎƘ ƛƴ ǘǳǊƴ ƛǎ ƘƻǎǘŜŘ ƻƴ ŀƴ

άhǇŜǊŀǘƛƴƎ {ȅǎǘŜƳέ node.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 54 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

The table below highlights the base relationship type we need to describe the fundamental

ŎƻƴŎŜǇǘ ƻŦ άŎƻƴǘŀƛƴƳŜƴǘέ ǿƘŜƴ ƳƻŘŜƭƛƴƎ ǿƛǘƘ ¢h{/!Υ

TABLE 6 ς SINGLE-TIER MYSQL DATABASE EXAMPLE'S BASE RELATIONSHIP TYPES

Base Relationship Type Name Description

HostedOn Represents a hosting relationship between two nodes in a
service template.

The definition for this base relationship types would look something like this:

 <RelationshipType name=" HostedOn ">

 <documentation>Hosted on</documentation>

 <DerivedFrom typeRef="tns:RootRelationshipType"/>

 <ValidSource typeRef="tns:ContainerRequirement"/>

 <ValidTarget typeRef="tns:ContainerCapability"/>

 </RelationshipType>

6.1.5.2 Specific and Custom Relationship Types

Of course, the base relationship type show above can also be extended (as we showed for node

and artifact types above) to create middleware and application (vendor) specific types. Again,

these extensions would include additional properties needed to relate components for those

ǊŜǎǇŜŎǘƛǾŜ ǎƻŦǘǿŀǊŜ ƻŦŦŜǊƛƴƎǎ ŀƴŘ ǎŜǊǾƛŎŜǎΦ CƻǊ ŜȄŀƳǇƭŜΣ ǘƘŜ ōŀǎŜ άIƻǎǘŜŘhƴέ ǘȅǇŜ Ŏŀƴ ōŜ

ŜȄǘŜƴŘŜŘ ǘƻ ŎǊŜŀǘŜ ŀ ǎǇŜŎƛŦƛŎ άaȅ{v[5ŀǘŀōŀǎŜIƻǎǘŜŘhƴaȅ{v[έ RelationshipType to better

describe the requirements and property settings needed to realize a containment relationship

ōŜǘǿŜŜƴ άaȅ{v[5.a{έ ŀƴŘ άaȅ{v[5ŀǘŀōŀǎŜέ ƴƻŘŜ ǘŜƳǇƭŀǘŜǎ ǾŜrsus some other middleware

ǇǊƻǾƛŘŜǊΩǎ ŘŀǘŀōŀǎŜΦ

 <RelationshipType name=" MySQLDatabaseHostedOnMySQL ">

 <documentation>Hosted on</documentation>

 <DerivedFrom typeRef="ns1: HostedOn "/>

 <SourceInterfaces>

 <Interface name="http://www.example.c om/ToscaBaseTypes/HostedOn">

 <Operation name="hostOn"/>

 </Interface>

 </SourceInterfaces>

 <ValidSource typeRef="tns:MySQLDatabaseContainerRequirement"/>

 <ValidTarget typeRef="tns:MySQLDatabaseContainerCapability"/>

 </Relationship Type>

6.1.6 Turning Relationship Types into Relationship Templates

As we discussed for TOSCA Node Types, which are turned into TOSCA Node Templates so that

they can be modeled, TOSCA Relationship Types also must be turned into TOSCA Relationship

Templates in order to use them in a TOSCA service model. Relationship Templates represents

ǘƘŜ άŜŘƎŜǎέ ƻŦ ŀ ¢h{/! ƳƻŘŜƭ ŀƴŘ ǊŜǇǊŜǎŜƴǘǎ ŀƴ ƛƴǎǘŀƴŎŜ ƻŦ ǊŜƭŀǘƛƻƴǎƘƛǇ ǘȅǇŜ ǘƘŀǘ ƛǘ ǊŜŦŜǊŜƴŎŜǎ

as part of its definition along with specific property values used during orchestration of the

template.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 55 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

A relationship template, besides being based upon a relationship type, also describes the valid

node source and target Node Templates these relationships are designed to connect (i.e. via the

SourceElement and TargetElement elements).

For example, the RelationshipTemplate ǎƘƻǿƴ ōŜƭƻǿ ƛǎ ŘŜǎƛƎƴŜŘ ǘƻ ǊŜƭŀǘŜ ƻǳǊ ŜȄŀƳǇƭŜΩǎ

ά{ǳƎŀǊ/wa 5ŀǘŀōŀǎŜέ NodeTemplate ǘƻ ƻǳǊ άaȅ{v[5a.{έ NodeTemplate . Specifically, this

ǊŜƭŀǘƛƻƴǎƘƛǇ ǘŜƳǇƭŀǘŜ ǿƻǳƭŘ ōŜ ŀōƭŜ ǘƻ ŎƻƴƴŜŎǘ ŀ άǎƻǳǊŎŜέ ƴƻŘŜ ǘŜƳǇƭŀǘŜ ǘƘŀǘ ŘŜŎƭŀres it

ǊŜǉǳƛǊŜǎ ŀ ά{ǳƎŀǊ/ǊƳ5ōψŎƻƴǘŀƛƴŜǊέ ǘƻ ŀƴƻǘƘŜǊ ƴƻŘŜ ǘŜƳǇƭŀǘŜ ǘƘŀǘ ŜȄǇƻǊǘǎ ǘƘŜ ŎŀǇŀōƛƭƛǘȅ ƻŦ

ŎƻƴǘŀƛƴƛƴƎ άaȅ{ǉƭψŘŀǘŀōŀǎŜǎέΥ

 <RelationshipTemplate id=" SugarCrmDb_HostedOn_MySql "

 name="hosted on" type="ns2:MySQLDatabaseHostedOnMySQL">

 <Sourc eElement ref="SugarCrmDb_container"/>

 <TargetElement ref="MySql_databases"/>

 </RelationshipTemplate>

As we can see the NodeTemplate ŦƻǊ ǘƘŜ ά{ǳƎŀǊ/ǊƳ5ōέ ǿƻǳƭŘ ŘŜŎƭŀǊŜ ŀ Requirement for a

άaȅ{v[5ŀǘŀōŀǎŜ/ƻƴǘŀƛƴŜǊwŜǉǳƛǊŜƳŜƴǘέ ǘȅǇŜ ƛŘŜƴǘƛŦƛŜŘ ŀǎ ά{ǳƎŀǊ/ǊƳ5ōψŎƻƴǘŀƛƴŜǊέ όǿƘƛŎƘ ƛǎ

referenced in the SourceElement of the RelationshipTemplate shown above):

 <NodeTemplate id=" SugarCrmDb " name="SugarCRM DB"

 type="ns3:SugarCRMDatabase">

 <Properties>

 ...

 </Properties>

 <Requirem ents>

 <Requirement id=" SugarCrmDb_container " name="container"

 type="ns2:MySQLDatabaseContainerRequirement"/>

 </Requirements>

 <Capabilities>

 ...

 </Capabilities>

 </NodeTemplate>

!ƴŘ ǘƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ άaȅ{v[έ NodeTemplate would have a Capability element that

ƛƴŘŜŜŘ ŜȄǇƻǊǘǎ ŀ άaȅ{v[5ŀǘŀōŀǎŜ/ƻƴǘŀƛƴŜǊ/ŀǇŀōƛƭƛǘȅέ ǘȅǇŜ ƛƴŘƛŎŀǘƛƴƎ ƛǘ Ŏŀƴ Ƙƻǎǘ ŦǊƻƳ

άaȅ{ǉƭψŘŀǘŀōŀǎŜǎέ όƛΦŜΦ aȅ{v[ǘȅǇŜ ŘŀǘŀōŀǎŜ ƴƻŘŜǎύΥ

 <NodeTemplate id=" MySql " name="MySQL" type="ns2:MySQL">

 <Properties>

 <ns2:MySQLProperties>

 ...

 </ns2:MySQLProperties>

 </Properties>

 <Requirements>

 ...

 </Requirements>

 <Capabilities>

 <Capability id=" MySql_databases " name="databases"

 type="ns2:MySQLDatabaseCo ntainerCapability"/>

 </Capabilities>

 </NodeTemplate>

Note: The TOSCA specification enables application architects the means to
design their service template to permit providers the ability to either select from a
set of similar nodes types that provide the same functionality. For example, the

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 56 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

database tier could include two types of ñDBMSò node types allowing the provider
to choose the best match for their infrastructure.

6.2 Two-Tier SugarCRM Web Application Example

This section will describe how a cloud application developer would model a basic, two-tier web

application using TOSCA. We will describe how to define the types and templates for the nodes,

ŀǊǘƛŦŀŎǘǎ ŀƴŘ ǊŜƭŀǘƛƻƴǎƘƛǇǎ ƴŜŜŘŜŘ ǘƻ ŘŜǎŎǊƛōŜ ǘƘŜ ŎƻƳǇƻƴŜƴǘǎ ƻŦ ŀ άǿŜō ŀǇǇƭƛŎŀǘƛƻƴ ǘƛŜǊέΦ ¢ƘŜƴ

we wiƭƭ ǇǊƻǾƛŘŜ ŀ ƳŜŀƴǎ ǘƻ ŎƻƴƴŜŎǘ ǘƘŜ άǿŜō ŀǇǇƭƛŎŀǘƛƻƴ ǘƛŜǊέ ǘƻ ǘƘŜ άŘŀǘŀōŀǎŜ ǘƛŜǊέ ǘƘŀǘ ǿŀǎ

fully developed in previous section (i.e. Section 6.1Σ άIntroductionέύ ŀƴŘ ŀƭǊŜŀdy customized for

our SugarCRM web application. Finally, we will show how to package all these into a TOSCA

CSAR file ready for deployment and installation.

6.2.1 Required Node Types

This section will parallel the same activities that we described when developing the required

node types for our database tier (see Section 6.1.1). However, we will attempt to feature only

ǘƘŜ ƴŜǿ ǘȅǇŜǎΣ ŀǊǘƛŦŀŎǘǎΣ ǊŜƭŀǘƛƻƴǎƘƛǇǎ ŀƴŘ ŎƻƴŎŜǇǘǎ ǘƘŀǘ ŀǊŜ ƴŜŎŜǎǎŀǊȅ ǘƻ ŎƻƳǇƻǎŜ ǘƘŜ άǿŜō

applicatƛƻƴ ǘƛŜǊέ ŦƻǊ ƻǳǊ ŜȄŀƳǇƭŜ ŀǇǇƭƛŎŀǘƛƻƴΦ

6.2.1.1 Define the Required Base Node Types

¢ƘŜ ŎƭƻǳŘ ŘŜǾŜƭƻǇŜǊΩǎ ǿƻǳƭŘ ŀƎŀƛƴ ƛŘŜƴǘƛŦȅ ǘƘŜ ōŀǎƛŎ ǎŜǘ ƻŦ ŎƻƳǇƻƴŜƴǘ ƴƻŘŜǎ ƴŜŜŘŜŘ ǘƻ

describe the significant parts of the web application stack (as we did in Section 6.1.1.1 for the

ŘŀǘŀōŀǎŜ ǘƛŜǊΩǎ άōŀǎŜέ ƴƻŘŜ ǘȅǇŜǎύΦ ²Ŝ ǿƻǳƭŘ ƴŜŜŘ ǘƻ ŘŜŦƛƴŜ ƻǊ ǊŜŦŜǊŜƴŎŜ ǘƘŜ ŦƻƭƭƻǿƛƴƎ άōŀǎŜέ

TOSCA Node Types in order to have the types needed to eventually model a basic web

application tier:

TABLE 7 ς SUGARCRM WEB APPLICATION EXAMPLE'S BASE NODE TYPES

Base Node Type Name Description

Web Application Represents an abstract web application along with basic
properties and operations.

Web Server Represents an abstract service that is capable of hosting and
providing management operations for one or more web
applications.

Operating System (OS) ¢Ƙƛǎ ƛǎ ǘƘŜ ǎŀƳŜ άōŀǎŜέ ǘȅǇŜ ŀǎ ŘŜǎŎǊƛōŜŘ ƛƴ {ŜŎǘƛƻƴ 6.1.1.1.

Server ¢Ƙƛǎ ƛǎ ǘƘŜ ǎŀƳŜ άōŀǎŜέ ǘȅǇŜ as described in Section 6.1.1.1.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 57 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

Tier ¢Ƙƛǎ ƛǎ ǘƘŜ ǎŀƳŜ άōŀǎŜέ ǘȅǇŜ ŀǎ ŘŜǎŎǊƛōŜŘ ƛƴ {ŜŎǘƛƻƴ 6.1.1.1.

Once again, these base node types would derive from the TOSCA sŎƘŜƳŀΩǎ άǊƻƻǘ ƴƻŘŜέ ŀƴŘ ōŜ

represented in pseudo-XML as follows:

 <NodeType name=" WebApplication ">

 <documentation> A basic Web Application </documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 é

 </NodeType>

 <NodeType name=" WebServer " >

 <documentation> A basic Web Server </documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 é

 </NodeType>

 <NodeType name=" OperatingSystem ">

 <documentation> A basic operating system/platform </documentation>

 <DerivedFrom typeRef ="tns:RootNodeType"/>

 é

 </NodeType>

 <NodeType name=" Server ">

 <documentation> A basic cloud compute resource</documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 é

 </NodeType>

The other elements of the node type are discussed in later sections.

Remark: Ideally, as mentioned above in Section 6.1.1.1, the definitions and
treatment for these ñbaseò node types would ideally be standardized and agreed
upon by multiple cloud service providers so that cloud application developers,
using the TOSCA standard, could truly compose interoperable TOSCA service
templates without worrying about underlying provider implementations of these
base services.

For example, any derivation of the ñServerò base node type would be expected to
have some common properties and definitions of its own service requirements
and hosting capabilities by any CSP.

Lƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŜȄŀƳǇƭŜΣ ǿŜ ǎƘƻǿ ǘƘŜ άServerέ NodeType referencing an externally defined set

of standardized properties, declaring that it requires a service provider to have a valid

άŎƻƴǘŀƛƴŜǊέ ǘƻ άƘƻǎǘέ ƛǘǎ ŎƻƳǇƻƴŜƴǘ όƛΦŜΦ ŀ άIƻǎǘŜŘhƴέ ǊŜƭŀǘƛƻƴǎƘƛǇύ ŀƴŘ ǘƘŀǘ ƛǘ ƛǘǎŜƭŦ ǇǊƻǾƛŘŜǎ

ǘƘŜ ŎŀǇŀōƛƭƛǘȅ ǘƻ άƘƻǎǘέ ŀƴ ƻǇŜǊŀǘƛƴƎ ǎȅǎǘŜƳ ŎƻƴǘŀƛƴŜǊ όƻǊ ƴƻŘŜύΦ

 <NodeType name=" Server ">

 <documentation> A basic cloud compute/execution resource</documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 <PropertiesDefinition element="tns:ServerProperties"/>

 <RequirementDefinitions>

 <RequirementDefinition low erBound="0" name="container"

 requirementType="tns: ServerContainerRequirement "

upperBound="1"/>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 58 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 é

 </RequirementDefinitions>

 <CapabilityDefinitions>

 <CapabilityDefinition

 capabilityType="tns: OperatingSystemCont ainerCapability "

 lowerBound="0" name="os" upperBound="1"/>

 é

 </CapabilityDefinitions>

 é

 </NodeType>

²ƘŜǊŜ ǘƘŜ ŜȄǘŜǊƴŀƭƭȅ ǇǊƻǾƛŘŜŘ άServerPropertiesέ complex type would be defined as follows:

 <xs:complexType name=" ServerPropert ies ">

 <xs:sequence>

 <xs:element default="1" name=" NumCpus">

 <xs:annotation>

 <xs:documentation xml:lang="en">Number of CPUs</xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:in t">

 <xs:enumeration value="1"/>

 <xs:enumeration value="2"/>

 <xs:enumeration value="4"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name=" Memory" type="xs:int">

 <xs: annotation>

 <xs:documentation xml:lang="en">Memory size (in MB)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name=" Disk " type="xs:int">

 <xs:annotation>

 <xs:documentation xml:lang="en">Disk si ze (in GB)</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

6.2.1.2 Define the Required Specific Node Types

[ŜǘΩǎ ŦǳǊǘƘŜǊ ŀǎǎǳƳŜΣ ŦƻǊ ƻǳǊ ŜȄŀƳǇƭŜΣ ǘƘŀǘ ǘƘƛǎ ŎƻƳǇŀƴȅΩǎ ŀǇǇƭƛŎŀǘƛƻƴ ǎǇŜŎƛŦƛŎŀƭƭȅ ǳǎŜǎ ŀƴ ƻǇŜƴ

source Customer Relationship Management (CRM) solution, such as SugarCRM which is hosted

by an Apache web server (perhaps running on a Linux operating system distribution of some

kind). This SugarCRM web application would persist its customer data in a MySQL database

much like the one we described earlier in this chapter. Readers will recognize these software

components as a typical open-source-based, middleware stack used to host many web

ŀǇǇƭƛŎŀǘƛƻƴ ǘƻŘŀȅ ƛƴ ǘƘŜΦ {ƻƳŜǘƛƳŜǎ ǘƘƛǎ ƛǎ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ ŀ άLAMPs stackέ ǿƘƛŎƘ ǎǘŀƴŘǎ ŦƻǊ ǘƘŜ

component software (Linux, Apache, MySQL and an Apache PHP module) to support the web

application.

The following table shows these specific node types needed to describe our web application

stack along with the base types they extend:

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 59 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

TABLE 8 ς SUGARCRM WEB APPLICATION EXAMPLEΩS SPECIFIC NODE TYPES

Specific Node Type

Name

Extends Node Type Description

Apache Web Server Web Server Represents an Apache specialization of the
ōŀǎƛŎ άWeb Serverέ node type including any
additional properties, operations and
capabilities specific to Apache.

Apache Web

Application

Web Application Represents an Apache specialization of the
ōŀǎƛŎ άWeb Applicationέ node type including
any additional properties, operations and
capabilities specific to Apache.

Apache Module TOSCA Root In this case, the middleware service itself is
composed of optional functional components
that can be represented as their own node
types.

Specifically this node represents an Apache-
specific node type that describes software
modules which are understood and managed
by Apache web servers.

Apache PHP Module Apache Module wŜǇǊŜǎŜƴǘǎ ŀƴ έApache Moduleέ node type
that specializes in providing PHP Hypertext
tǊƻŎŜǎǎƻǊ ŦǳƴŎǘƛƻƴŀƭƛǘȅ ǘƻ άApache Web
Applicationέ ƴƻŘŜǎΦ

.Ŝƭƻǿ ǿŜ ǎƘƻǿ Ƙƻǿ ǘƘŜǎŜ άǎǇŜŎƛŦƛŎέ Node Types for the SugarCRM, Apache and MySQL service

related components would appear as pseudo-XML:

 <NodeType name=" ApacheWebServer ">

 <documentation>Apache Web Server</documentation>

 <DerivedFrom typeRef="ns1: WebServer "/>

 <PropertiesDefinition element="tns:ApacheWeb ServerProperties"/>

 <Interfaces>

 <Interface name="http:// www.example.com /lifecycle">

 <Operation name="install"/>

 <Operation name="configure"/>

 <Operation name="start"/>

 <Operation name="stop"/>

 <Operation name="uninstall"/>

 </Interface>

 </Interfaces>

 </NodeType>

 <NodeType name=" ApacheWebApplication ">

 <documentation>Apache Web Application</documentation>

 <DerivedFrom typeRef="ns1: WebApplicatio n"/>

 </NodeType>

 <NodeType name=" ApacheModule ">

 <documentation>Apache Module</documentation>

 <DerivedFrom typeRef="ns1: RootNodeType "/>

 </NodeType>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 60 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 <NodeType name=" ApachePHPModule ">

 <documentation>Apache PHP Module</documentation>

 <DerivedFrom typeRef="tns: ApacheModule "/>

 <Interfaces>

 <Interface name="http:// www.example.com /lifecycle 2">

 <Operation name="start"/>

 <Operation name="uninstall"/>

 </Interface>

 </Interfaces>

 </NodeType>

As you can see, we also introduced a new node type that derives from the TOSCA root node

ǘȅǇŜ ŦƻǊ ά!ǇŀŎƘŜ aƻŘǳƭŜέΦ ¢h{/! ƳƻŘŜƭǎ ǇŜǊƳƛǘ ƳƛŘŘƭŜǿŀǊŜ ǎƻŦǘǿŀǊŜ ǇǊƻǾƛŘŜǊǎΣ ƭƛƪŜ !ǇŀŎƘŜΣ

to describe the components of their own specific software as TOSCA models themselves; this

enabling even better granular orchestration of these constituent components by CSPs using the

TOSCA standard.

6.2.1.3 Define the Required Custom Node Types

¢ƘŜ ŎƭƻǳŘ ŘŜǾŜƭƻǇŜǊΣ ƘŀǾƛƴƎ ǘƘŜ ƴŜŎŜǎǎŀǊȅ ǎŜǘ ƻŦ ōƻǘƘ άōŀǎŜέ ŀƴŘ άǎǇŜŎƛŦƛŎέ ƴƻŘŜ ǘȅǇŜǎ ŘŜŦƛƴŜŘ

for a typicaƭ ǿŜō ŀǇǇƭƛŎŀǘƛƻƴ ǎǘŀŎƪΣ ƛǎ ƴƻǿ ŀōƭŜ ǘƻ ǎƛƳǇƭȅ ŜȄǘŜƴŘ ǘƘŜ ŀǇǇǊƻǇǊƛŀǘŜ άǎǇŜŎƛŦƛŎέ ƴƻŘŜ

ǘȅǇŜǎ ǘƻ ŘŜǎŎǊƛōŜ ǘƘŜ ŎǳǎǘƻƳƛȊŀǘƛƻƴǎ ƴŜŜŘŜŘ ǘƻ άǎǘŀƴŘ ǳǇέ ǘƘŜ ŎƻƳǇŀƴȅΩǎ ŀŎǘǳŀƭ {ǳƎŀǊ/wa

application:

TABLE 9 ς SUGARCRM WEB APPLICATION EXAMPLE'S CUSTOM NODE TYPES

Custom Node Type

Name

Extends Specific Node

Type

Description

SugarCRM Application Apache Web
Application

wŜǇǊŜǎŜƴǘǎ ǘƘŜ ŎƻƳǇŀƴȅΩǎ ŀŎǘǳŀƭ
SugarCRM application service which is a
ŎǳǎǘƻƳ ŘŜǊƛǾŀǘƛƻƴ ƻŦ ǘƘŜ άApache Web
Applicationέ node type.

SugarCRM Database MySQL Database Represents the database that is designed
ǘƻ ǿƻǊƪ ǿƛǘƘ ǘƘŜ ŎƻƳǇŀƴȅΩǎ {ǳƎŀǊ/wa
application which is a custom derivation
ƻŦ ǘƘŜ άMySQL Databaseέ type.

The pseudo-XML for these custom NodeTypes would be something like this:

 <NodeType name=" SugarCRMApplication ">

 <documentation>SugarCRM Application</documentation>

 <DerivedFrom typeRef="ns1: ApacheWebApplication "/>

 <PropertiesDefinition element="tns:SugarCRMApplicationProperties"/>

 <Interfaces>

 <Interfac e name=" http://www.example.com/lifecycle3 ">

 <Operation name="install"/>

 <Operation name="configure"/>

 <Operation name="start"/>

 <Operation name="uninstall"/>

 </Interfa ce>

 </Interfaces>

http://www.example.com/lifecycle3

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 61 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 </NodeType>

 <NodeType name=" SugarCRMDatabase ">

 <documentation>SugarCRM Database</documentation>

 <DerivedFrom typeRef="ns1: MySQLDatabase "/>

 <PropertiesDefinition element="tns:SugarCRMDatabaseProperties"/>

 <Interfac es>

 <Interface name=" http:// www.example.com/ lifecycle 4">

 <Operation name="install"/>

 <Operation name="start"/>

 <Operation name="uninstall"/>

 </Interface>

 </Interfaces>

 </NodeType>

6.2.1.4 Node Type Inheritance (Base, Specific, Custom)

If we were to look at the node type inheritance hierarchy for the base, specific and custom node

ǘȅǇŜǎ ƛŘŜƴǘƛŦƛŜŘ ŀōƻǾŜ ŦƻǊ ǘƘŜ άǿŜō ŀǇǇƭƛŎŀǘƛƻƴ ǘƛŜǊέ ƻŦ ƻǳǊ ŜȄŀƳǇƭŜΣ ƛǘ ǿƻǳƭŘ ƭƻƻƪ ŀǎ ŦƻƭƭƻǿǎΥ

FIGURE 14 - NODE TYPE INHERITANCE FOR A SUGARCRM WEB APPLICATION TIER

6.2.2 Turning Node Types into Node Templates

Node types, by themselves simply describe the properties, operations, requirements and

capabilities representative of that class of services or software. They are not composable and

cannot be modeled; instead TOSCA Node Templates are used to turn Node Types into

component entities that can be instantiated with specific properties, etc. and related to other

bƻŘŜ ¢ŜƳǇƭŀǘŜǎ ǘƻ ŘŜǎŎǊƛōŜ ǘƘŜ ƻǾŜǊŀƭƭ ŀǇǇƭƛŎŀǘƛƻƴ ǎŜǊǾƛŎŜΩǎ ǘƻǇƻlogy.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 62 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

The pseudo-·a[ŦƻǊ ǘƘŜ ƴƻŘŜ ǘŜƳǇƭŀǘŜǎ ŦƻǊ άǎǇŜŎƛŦƛŎέ ƴƻŘŜ ǘȅǇŜǎ ǿƻǳƭŘ ƭƻƻƪ ǎƻƳŜǘƘƛƴƎ ƭƛƪŜ

this:

 <! ð Namespaces for imported TOSCA NodeType Definitions documents -- >

 xmlns:ns1="http:// www.example.com / Tosca BaseTypes "

 xmlns:ns2="http:// www.example.com / Tosca Specific Types "

 xmlns:ns3="http:// www.example.com / SugarCRMCustom Types "

 <! -- Define the node templates for the ñWeb Tierò -- >

 <NodeTemplate id=" WebTier " name="Web Tier"

 type="ns1: Tier ">

 </NodeTemplate>

 <NodeTemplat e id=" VmApache" name="VM for Apache Web Server"

 type="ns1: Server ">

 <Properties>

 <ns1:ServerProperties>

 <NumCpus>1</NumCpus>

 <Memory>1024</Memory>

 <Disk>10</Disk>

 </ns1:ServerProperties>

 </Properties >

 </NodeTemplate>

 <NodeTemplate id=" OsApache " name="OS for Apache"

type="ns1: OperatingSystem ">

 </NodeTemplate>

 <NodeTemplate id=" ApacheWebServer " name="Apache Web Server"

 type="ns2: ApacheWebServer ">

 <Properties>

 <ns2:Ap acheWebServerProperties>

 <httpdport>80</httpdport>

 </ns2:ApacheWebServerProperties>

 </Properties>

 </NodeTemplate>

 <NodeTemplate id=" SugarCrmApp " name="SugarCRM App"

 type="ns3: SugarCRMApplication ">

 <Properties>

 <ns3:SugarCRMApplicationProperties>

 <SugarCRMKey>dummy</SugarCRMKey>

 <AdminUser>admin</AdminUser>

 <AdminPassword>admin</AdminPassword>

 </ns3:SugarCRMApplicationProperties>

 </Properties>

 </NodeTemplate>

 <NodeTempla te id=" PhpModule " name="PHP Module"

 type="ns2: ApachePHPModule ">

 </NodeTemplate>

As you can see, looking at the web serverΩǎ NodeTemplate όƛΦŜΦ ά±Ƴ!ǇŀŎƘŜέύ ǿƘƛŎƘ ƛǎ ōŀǎŜŘ

ǳǇƻƴ ǘƘŜ ά{ŜǊǾŜǊέ NodeType as described in the previous section, we see that the template

includes specific property settings that the application developer has provided that describes

settings to be applied to an actual server at a CSP when orchestrated:

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 63 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 <NodeTemplate id=" VmApache" name="VM for Apache Web Server"

typ e="ns1: Server ">

 <Properties>

 <ns1:ServerProperties>

 <NumCpus>1</NumCpus>

 <Memory>1024</Memory>

 <Disk>10</Disk>
 </ns1:ServerProperties>

 </Properties>

 ...

 </NodeTemplate>

These properties are conveyed to the cloǳŘ ǇǊƻǾƛŘŜǊΩǎ ǳƴŘŜǊƭȅƛƴƎ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ŎƻƴǘŀƛƴŜǊ

software such that the application developer need not understand the implementation details

of any particular provider which supports interoperability.

As before, we also need to create node templates for tƘŜ άŎǳǎǘƻƳέ ƴƻŘŜ ǘȅǇŜǎ ƻŦ ƻǳǊ

application each with their own custom property settings:

 <NodeTemplate id=" SugarCrmApp " name="SugarCRM App"

type="ns3: SugarCRMApplication ">

 <Properties>

 <ns3:SugarCRMApplicationProperties>

 <SugarCRMKey>somekey</SugarCRMKey>

 <AdminUser>admin</AdminUser>

 <AdminPassword>admin</AdminPassword>

 <DBexists>false</DBexists>

 </ns3:SugarCRMApplicationProperties>

 </Properties>

 ...

 </NodeTemplate>

 <NodeTemplate id=" Sugar CrmDb" name="SugarCRM DB"

type="ns3: SugarCRMDatabase ">

 <Properties>

 <ns3:SugarCRMDatabaseProperties>

 <DBName>sugardb</DBName>

 <DBUser>sugaradmin</DBUser>

 <DBPassword>sugaradmin</DBPassword>

 <mySqlPort>3306</myS qlPort>

 </ns3:SugarCRMDatabaseProperties>

 </Properties>

 ...

 </NodeTemplate>

6.2.3 Required Artifact Types

In order to actually deploy and install the web application using a TOSCA service template, the

application architect would also need to describe the actual scripts, files, software packages and

other types of artifacts that would be used to deploy, install the actual software components for

our web application stack.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 64 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

6.2.3.1 Define Required Base Artifact Types

The same set of base artifact types that we listed and described in Section 6.1.3.1 when we

ǿŀƭƪŜŘ ǘƘǊƻǳƎƘ ŀǊŎƘƛǘŜŎǘƛƴƎ ŀ aȅ{v[άŘŀǘŀōŀǎŜ ǘƛŜǊέ όƛΦŜΦ ǘƘŜ ŀǊǘƛŦŀŎǘ ǘȅǇŜǎ άFile ArtifactέΣ

άScript ArtifactέΣ άArchive Artifactέ ŀƴŘ άPackage Artifactέύ ŀre the same ones we will use for

architecting for deriving the necessary set of artifacts for our web application tier.

6.2.4 Turning Artifact Types into Artifact Templates

The service template for our SugarCRM web application (tier) example would include many

different kinds of artifacts that would be needed to not only deploy and install the component

software (such as packages, archives, configuration files and policy documents), but also files

ǳǎŜŘ ŀǘ ǾŀǊƛƻǳǎ ǎǘŀƎŜǎ ƻŦ ǘƘŜǎŜ ŎƻƳǇƻƴŜƴǘǎΩ ǊŜǎǇŜŎǘƛǾŜ ƭƛŦŜŎȅŎƭŜǎ and corresponding operations

όǎǳŎƘ ŀǎ ǎŎǊƛǇǘǎύΦ .Ŝƭƻǿ ǿŜ ǎƘƻǿ ŀƴ ŜȄŀƳǇƭŜ ƻŦ ŀ άǎŎǊƛǇǘέ ŀǊǘƛŦŀŎǘ ǘƘŀǘ /{t ǿƻǳƭŘ ǳǎŜ ŘǳǊƛƴƎ ǘƘŜ

άƛƴǎǘŀƭƭέ ƻǇŜǊŀǘƛƻƴ ŦƻǊ ǘƘŜ ά!ǇŀŎƘŜ²Ŝō{ŜǊǾŜǊέ ƴƻŘŜΥ

 <ArtifactTemplate id="uid:install - xxx" type="ns1: ScriptArtifact ">

 <Prope rties>

 <ns1:ScriptArtifactProperties>

 <ScriptLanguage>sh</ScriptLanguage>

 <PrimaryScript>scripts/ApacheWebServer/install.sh</PrimaryScript>

 </ns1:ScriptArtifactProperties>

 </Properties>

 <ArtifactReferences>

 <Artifa ctReference reference="scripts/ApacheWebServer">

 <Include pattern=" install.sh "/>

 </ArtifactReference>

 </ArtifactReferences>

 </ArtifactTemplate>

6.2.5 Required Relationship Types

6.2.5.1 Required Base Relationship Types

In Section 6.1.5.1 άRequired Base Relationship TypesέΣ ǿŜ ŜǎǘŀōƭƛǎƘŜŘ ŀ ōŀǎŜ ǊŜƭŀǘƛƻƴǎƘƛǇ ǘȅǇŜ

ǘƘŀǘ ŘŜǎŎǊƛōŜǎ άŎƻƴǘŀƛƴƳŜƴǘέ ǿƘƛŎƘ ǿŀǎ ƴŀƳŜŘ άIƻǎǘŜŘhƴέΦ ¢Ƙƛǎ ǘȅǇŜ ƛǎ ƻŦ ŎƻǳǊǎŜ ŜǎǎŜƴǘƛŀƭ ŦƻǊ

describing the essential hosting relationships between the component nodes of our web

application stack. However, our SugarCRM example application introduces the need for two

ŀŘŘƛǘƛƻƴŀƭ ōŀǎƛŎ ǊŜƭŀǘƛƻƴǎƘƛǇǎ ǘƻ Ŧǳƭƭȅ ŘŜǎŎǊƛōŜ ǘƘŜ ǊŜƭŀǘƛƻƴǎƘƛǇǎ ƻŦ ƻǳǊ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ƳƻŘŜƭΦ

The first relationship type we need to add to our set of required base types would describe a

ǎŜǊǾƛŎŜ ǘƘŀǘ ƛǎ ŀǾŀƛƭŀōƭŜ ǘƘǊƻǳƎƘ ŀ ƴŜǘǿƻǊƪ ŜƴŘǇƻƛƴǘ ŀŎŎŜǎǎƛōƭŜ ŦǊƻƳ ǘƘŜ ŎƭƻǳŘΩǎ ƴŜǘǿƻǊƪ ŀƴŘ ƛǎ

ǊŜǉǳƛǊŜŘ ŘǳǊƛƴƎ ǎƻƳŜ ǎǘŀƎŜ ƻŦ ŀƴƻǘƘŜǊ ǎŜǊǾƛŎŜΩǎ ƭƛŦŜŎȅŎƭŜΦ ¢Ƙƛǎ ά/ƻƴƴŜŎǘǎ¢ƻέ ǊŜƭŀǘƛƻƴǎƘƛǇ ŎƻǳƭŘ

either represent a continuous or periodic network connection IP based (typically using an

HTTP(s) protocol). From our example, our SugarCRM Web Application ǿƻǳƭŘ ά/ƻƴƴŜŎǘǎ¢ƻέ ǘƘŜ

SugarCRM Database (our custom MySQL database) over an HTTP connection.

The second type we introduce here is a relationship that describes a more generalized

ŘŜǇŜƴŘŜƴŎȅ ōŜǘǿŜŜƴ ƴƻŘŜǎ ǘƘŀǘ ǿŜ ǿƛƭƭ ǎƛƳǇƭŜ ƴŀƳŜ ά5ŜǇŜƴŘǎhƴέΦ ¢Ƙƛǎ ǊŜƭŀǘƛƻƴǎƘƛǇ ƛǎ

exhibited by the SugarCRM Web Application ƴƻŘŜ ǿƘƛŎƘ άŘŜǇŜƴŘǎ ƻƴέ ǘƘŜ Apache PHP Module

in order to execute.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 65 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

¢ƘŜ ǘŀōƭŜ ōŜƭƻǿ ƘƛƎƘƭƛƎƘǘǎ ǘƘŜ ƴŀƳŜǎ ŀƴŘ ŘŜǎŎǊƛǇǘƛƻƴǎ ŦƻǊ ǘƘŜǎŜ ŀŘŘƛǘƛƻƴŀƭ ǊŜǉǳƛǊŜŘ άōŀǎŜέ

relationship types for convenience:

TABLE 10 ς SUGARCRM WEB APPLICATION EXAMPLE'S BASE RELATIONSHIP TYPES

Base Relationship Type Name Description

ConnectsTo Represents a network connection between two nodes in a
service template.

DependsOn Represents a general dependency relationship between two
nodes in a service template.

The definitions for these base relationship types would look something like this:

 <RelationshipType name=" ConnectsTo ">

 <documentation>ConnectsTo</documentation>

 <DerivedFrom typeRef="tns:RootRelationshipType"/>

 <ValidSource typeRef="tns:EndpointRequirement"/>

 <Valid Target typeRef="tns:EndpointCapability"/>

 </RelationshipType>

 <RelationshipType name=" DependsOn">

 <documentation>Depends on</documentation>

 <DerivedFrom typeRef="tns:RootRelationshipType"/>

 <ValidSource typeRef="tns:FeatureRequirement"/>

 <ValidTarget typeRef="tns:FeatureCapability"/>

 </RelationshipType>

6.2.5.2 Specific and Custom Relationship Types

Of course, the base relationship types shown above in Table 10 can also be extended to create

middleware and application (vendor) specific types that have additional properties available for

those respective software offerings and services. As was shown in Section 6.1.5.2 when the base

άIƻǎǘŜŘhƴέ ǊŜƭŀǘƛƻƴǎƘƛǇ ǘȅǇe was used to derive a specific άaȅ{v[5ŀǘŀōŀǎŜIƻǎǘŜŘhƴaȅ{v[έ

relationship type, we can ŘŜŦƛƴŜ ǎƛƳƛƭŀǊ άIƻǎǘŜŘhƴέ ǊŜƭŀǘƛƻƴǎƘƛǇ ǘȅǇŜǎ ŦƻǊ ŜŀŎƘ ƻŦ ǘƘŜ ƭƻƎƛŎŀƭ

ŎƻƴǘŀƛƴƳŜƴǘǎ ōŜǘǿŜŜƴ ƴƻŘŜ ǘŜƳǇƭŀǘŜǎ ŦƻǊ ƻǳǊ ǿŜō ŀǇǇƭƛŎŀǘƛƻƴ ǎǘŀŎƪΦ CƻǊ ŜȄŀƳǇƭŜΣ ǘƘŜ ά!ǇŀŎƘŜ

PHP ModuƭŜέ ǿƻǳƭŘ ōŜ ƭƻƎƛŎŀƭƭȅ ƘƻǎǘŜŘ ōȅ ǘƘŜ ά!ǇŀŎƘŜ ²Ŝƴ {ŜǊǾŜǊέΥ

 <RelationshipTemplate id=" PhpModule_HostedOn_Apache "

 name="hosted on" type="ns2:ApacheModuleHostedOnApache">

 <SourceElement ref="PhpModule_container"/>

 <TargetElement r ef="ApacheWebServer_modules"/>

 </RelationshipTemplate>

¢ƘŜ ōŀǎŜ ά/ƻƴƴŜŎǘǎ¢ƻέ ǊŜƭŀǘƛƻƴǎƘƛǇ ǘȅǇŜ ǿƻǳƭŘ ōŜ ŜȄǘŜƴŘŜŘ ǘƻ ŎǊŜŀǘŜ ŀ

άaȅ{v[5ŀǘŀōŀǎŜ/ƻƴƴŜŎǘƛƻƴέ ǘƻ ōŜǘǘŜǊ ŘŜǎŎǊƛōŜ ǘƘŜ ǊŜǉǳƛǊŜƳŜƴǘǎ ŀƴŘ ǇǊƻǇŜǊǘȅ ǎŜǘǘƛƴƎǎ ƴŜŜŘŜŘ

to realize a connection to our deǎƛǊŜŘ άaȅ{v[5ŀǘŀōŀǎŜέ ƴƻŘŜ ǘŜƳǇƭŀǘŜ ǾŜǊǎǳǎ ǎƻƳŜ ƻǘƘŜǊ ƪƛƴŘ

of database.

 <RelationshipType name=" MySQLDatabaseConnection ">

 <documentation>Connects on</documentation>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 66 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 <DerivedFrom typeRef="ns1: ConnectsTo "/>

 <SourceInterfaces>

 <Interface name="http://www.example.com/ToscaBaseTypes/ConnectsTo">

 <Operation name="connectTo"/>

 </Interface>

 </SourceInterfaces>

 <ValidSource typeRef="tns:MySQLDatabaseEndpointRequirement"/>

 <ValidTarget typeRef="tns:MySQLDatabaseEndpointC apability"/>

 </RelationshipType>

6.2.6 Turning Relationship Types into Relationship Templates

As we discussed for TOSCA Node Types, which are turned into TOSCA Node Templates so that

they can be modeled, TOSCA Relationship Types also must be turned into TOSCA Relationship

Templates in order to use them in a TOSCA service model. The Relationship Template

ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ άŜŘƎŜǎέ ƻŦ ŀ ¢h{/! ƳƻŘŜƭ ŀƴŘ ǊŜǇǊŜǎŜƴǘǎ ŀƴ ƛƴǎǘŀƴŎŜ ƻŦ ǊŜƭŀǘƛƻƴǎƘƛǇ ǘȅǇŜ ǘƘŀǘ ƛǘ

references as part of its definition along with specific property values used during orchestration

of the template.

A relationship template, besides being based upon a relationship type, also describes the valid

node source and target Node Templates these relationships are designed to connect (i.e. via the

SourceElement and TargetElement elements).

For example, the RelationshipTemplate ǎƘƻǿƴ ōŜƭƻǿ ƛǎ ŘŜǎƛƎƴŜŘ ǘƻ ŎƻƴƴŜŎǘ ƻǳǊ ŜȄŀƳǇƭŜΩǎ

SugarCRM database NodeTemplate to our SugarCRM application NodeTemplate. Specifically, it

Ŏŀƴ ŎƻƴƴŜŎǘ άǎƻǳǊŎŜέ ƴƻŘŜ ǘŜƳǇƭŀǘŜǎ ǘƘŀǘ ŘŜŎƭare they require a named

ά{ǳƎŀǊ/ǊƳ!ǇǇψŘŀǘŀōŀǎŜέ ŎƻƴƴŜŎǘƛƻƴ ǘƻ άǘŀǊƎŜǘέ ƴƻŘŜ ǘŜƳǇƭŀǘŜǎ ǘƘŀǘ ŘŜŎƭŀǊŜ ǘƘŜȅ ŀǊŜ ŎŀǇŀōƭŜ

ƻŦ ŀŎŎŜǇǘƛƴƎ ά{ǳƎŀǊ/ǊƳ5ōψŎƭƛŜƴǘǎέΥ

 <RelationshipTemplate id=" SugarCrmApp_ConnectsTo_SugarCrmDb "

 name="connects to" type="ns2:MySQLDat abaseConnection">

 <SourceElement ref="SugarCrmApp_database"/>

 <TargetElement ref="SugarCrmDb_clients"/>

 </RelationshipTemplate>

!ǎ ǿŜ Ŏŀƴ ǎŜŜ ǘƘŜ bƻŘŜ¢ŜƳǇƭŀǘŜ ŦƻǊ ǘƘŜ ά{ǳƎŀǊ/ǊƳ!ǇǇέ ǿƻǳƭŘ ŘŜŎƭŀǊŜ ŀ Requirement for a

άaȅ{v[5ŀǘŀōŀǎŜ9ƴŘǇƻƛƴǘwŜǉǳƛǊŜƳŜƴǘέ ǘȅǇŜ ƛŘŜƴǘƛŦƛŜŘ ŀǎ ά{ǳƎŀǊ/ǊƳ!ǇǇψŘŀǘŀōŀǎŜέ όǿƘƛŎƘ ƛǎ

referenced in the SourceElement of the RelationshipTemplate shown above):

 <NodeTemplate id=" SugarCrmApp " name="SugarCRM App"

 type="ns3:SugarCRMApplication">

 ...

 <Requirements>

 <Requirement id="SugarCrmApp_phpRuntime" name="phpRuntime"

type="ns2:PHPRuntimeRequirement"/>

 <Requirement id=" SugarCrmApp_database " name="database"

type="ns2:MySQLDatabaseEndpointRequirement"/>

 <Requirement id="SugarCrmApp_container" name="container"

type="ns2:ApacheWebApplicationContainerRequirement"/>

 </Requirements>

 </NodeTemplate>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 67 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

!ƴŘ ǘƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ά{ǳƎŀǊ/ǊƳ5ōέ bƻŘŜ¢ŜƳǇƭŀǘŜ ǿƻǳƭŘ ƘŀǾŜ ŀ Capability element that

ƛƴŘŜŜŘ ŜȄǇƻǊǘǎ ŀ άaȅ{v[5ŀǘŀōŀǎŜ9ƴŘǇƻƛƴǘ/ŀǇŀōƛƭƛǘȅέ ƛƴŘƛŎŀǘƛƴƎ ƛǘ Ŏŀƴ ŀŎŎŜǇǘ ŎƻƴƴŜŎǘƛƻƴǎ ŦǊƻƳ

ά{ǳƎŀǊ/ǊƳ5ōψŎƭƛŜƴǘǎέΥ

 <NodeTemplate id=" SugarCrmDb " name="SugarCRM DB"

type="ns3:SugarCRMDatabase">

 ...

 <Requirements>

 <Requirement id=" SugarCrmDb_container" name="container"

type="ns2:MySQLDatabaseContainerRequirement"/>

 </Requirements>

 <Capabilities>

 <Capability id=" SugarCrmDb_clients " name="clients"

type="ns2:MySQLDatabaseEndpointCapability"/>

 </Capabilities>

 </NodeTemplate>

In addition, we can describe hƻǿ ƻǳǊ ά{ǳƎŀǊ/wa ²Ŝō !ǇǇƭƛŎŀǘƛƻƴέ ƴƻŘŜ ǘŜƳǇƭŀǘŜ

ά5ŜǇŜƴŘǎhƴέ ŀƴ !ǇŀŎƘŜ tIt aƻŘǳƭŜ ƛƴ ƻǊŘŜǊ ǘƻ ǇǊƻǇŜǊƭȅ Ǌǳƴ ǘƘŜ {ǳƎŀǊ/wa ŀǇǇƭƛŎŀǘƛƻƴ ƛǘǎŜƭŦΥ

 <RelationshipTemplate id=" SugarCrmApp_DependsOn_PhpModule "

 name="depends on" type="ns1:DependsOn">

 <SourceElement ref="SugarCrmApp_phpRuntime"/>

 <TargetElement ref="PhpModule_phpApps"/>

 </RelationshipTemplate>

6.2.7 Creating the Cloud Service Archive (CSAR)

Describing exhaustively the numerous types, templates for the nodes, relationships and artifacts

that would be defined and connected to one another to realize a complete TOSCA service

ǘŜƳǇƭŀǘŜ ƛƴ ŀ άtǊƛƳŜǊέ ǿƻǳƭŘ ōŜ ŎƻǳƴǘŜǊǇǊƻŘǳŎǘƛǾŜΦ IƻǿŜǾŜǊΣ ǿŜ ǿƛǎƘ ǘƻ ǎƘƻǿ Ƙƻǿ ǘƘŜ /{!w

file would be structured given the expectation for such a set of files and artifacts.

hǳǊ ŜȄŀƳǇƭŜΩǎ ¢h{/! Service Template (which contains the complete two-tier model of our

SugarCRM application) would have many XML schema files, Definitions documents, and artifacts

(files) that would be packaged together to create a CSAR fileΦ ¢ƘŜ /{!w ŦƛƭŜ ά{ǳƎŀǊ/wa-MySQL-

Example.CSARέ όƴŀƳŜŘ ǘƻ ƳŀǘŎƘ ƻǳǊ ŜȄŀƳǇƭŜύ would have the following directory structure

along with samples of files that contain the types and definitions we described throughout

Section 6:

 SugarCRM- MySQL- Example .CSAR

 /TOSCA- Metadata

 /TOSCA.meta

 /types

 /Artifacts.xsd

 /ToscaBaseTypes.xsd

 /ToscaSpecificTypes.xsd

 /SugarCRMCustomTypes.xsd

 /Definitions

 / ToscaBaseTypes - Definiti ons .xml

 /ToscaSpecificTypes - Definitions.xml

 /SugarCRMCustomTypes - Definitions.xml

 /SugarCRM - Definitions.xml

 /files

 ... (subdirectories would include various software packages/archives)

 /scripts

 /ApacheModuleHostedOnApac he

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 68 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 /ApachePHPModule

 /ApacheWebServer

 /MySQL

 /MySQLDatabaseHostedOnMySQL

 /SugarCRMApplication

 /SugarCRMDatabase

!ƴŘ ǘƘŜ ŦƛƭŜ άTOSCA.metaέ contains:

 TOSCA- Meta - File - Version: 1.0

 CSAR- Version: 1.0

 Created - By: OASIS TO SCA Interop SC

 Name: Definitions/TOSCABaseTypes - Definitions.xml

 Content - Type: application/vnd.oasis.tosca.definitions

 Name: Definitions/TOSCASpecificTypes - Definitions.xml

 Content - Type: application/vnd.oasis.tosca.definitions

 Name: Definition s/SugarCRMCustomTypes - Definitions.xml

 Content - Type: application/vnd.oasis.tosca.definitions

 Name: Definitions/SugarCRM - Definitions.xml

 Content - Type: application/vnd.oasis.tosca.definitions

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 69 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

7 Moving Virtual Machines to the TOSCA World
A developer's first experience with hosting an application in the Cloud may be simply packaging

up an existing application and moving it to a virtual machine (VM) that's hosted remotely (either

within their enterprise or on a public Cloud). Typically, the easiest way to do this is to create an

image (e.g. an ISO image) of an entire machine and then unpackaging it onto a Cloud-hosted

virtual machine.

This section describes how virtual machines can be deployed via TOSCA.

7.1 Deploying a New Virtual Machine (VM)

In this scenario, the deployment artifact being described by a TOSCA CSAR file will be a virtual

machine image. The container into which it will be deployed will be a Machine (as defined by

CIMI).

7.1.1 Required Node Types

This scenario requires the cloud service provider (CSP) to define one NodeType that will be

supported by its TOSCA implementation. This NodeTypeΣ ŎŀƭƭŜŘ ŀ άaŀŎƘƛƴŜέΣ ŘŜŦƛƴŜǎ ǘƘŜ ǾƛǊǘǳŀƭ

hardware characteristics of the new virtual machine - ǘƘŜ ŀŎǘǳŀƭ ǇǊƻǇŜǊǘƛŜǎ ƻŦ ǘƘŜ άaŀŎƘƛƴŜέ

will be in a complex type called "MachineTemplate". Below is an example of what a cloud

service provider might advertise:

 <NodeType name=" Machine ">

 <documentation> A new virtual machine as defined by CIMI </documention>

 <DerivedFrom typeRef="t ns:RootNodeType"/>

 <PropertiesDefinition element="tns:MachineTemplate"/>

 </NodeType>

Where "MachineTemplate" is defined as follows:

 <Definitions id=" CSPTypes" targetNamespace="http://mycsp.com/toscaTypes"

 xmlns=" http://docs.oasis - open.org/tosca /ns/2011/12 "

 xmlns:tbase=" http:// example.com/ToscaBaseTypes"

 xmlns:tns="http://mycsp.com/toscaTypes">

 <Types>

 <xs:complexType name=" MachineTemplate ">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="description" type="xs:string"/>

 <xs:complexType name="MachineConfiguration">

 <xs:sequence>

 <xs:element name="cpu" type="xs:integer"/>

 <xs:element name="memory" type="xs:integer"/>

 <xs:complexType name="disk" minOccurs="0" maxOccurs="unbounded">

 <xs:sequence>

 <xs:element name="capacity" type="xs:integer"/>

 <xs:element name="format" type="xs:string"/>

 <xs:element name= "initialLocation" type="xs:string"/>

 </xs:sequence>

 </xs:complextType>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 70 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 <xs:element name="cpuArch" type="xs:string" minOccurs="0"/>

 <xs:element name="cpuSpeed" type="xs:integer" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:sequence>

 </xs:complexType>

 </Types>

 <NodeType name="Machine">

 <documentation> A new virtual machine as defined by CIMI </documention>

 <DerivedFrom typeRef="t base :Root NodeType"/>

 <PropertiesDefinition element="tns:MachineTemplate"/>

 </NodeType>

 </Definitions>

7.1.2 Creating the Service Template xml file

Given the above NodeType , a service template XML file, called άMachine.xmlέ, can then be

created by the application developer, filling in all of the properties of the new machine as well

as including a reference to the ISO image file containing the application:

 <Definitions xmlns=" http://docs.oasis - open.org/tosca/ns/2011/12 "

 xmlns:csp="http://mycsp.com/tos caTypes"

 xmlns:tns="http://example.com/myApp"

 targetNamespace="http://example.com/myApp" >

 <Import importType="http://docs.oasis - open.org/tosca/ns/2011/12"

 namespace="http://mycsp.com/tosca/toscaTypes" />

 <ArtifactTemplat e id="myImage" type="csp:ISOImageArtifact">

 <ArtifactReferences>

 <ArtifactReference reference="http://example.com/myISOs/machine1.ISO"/>

 </ArtifactReferences>

 </ArtifactTemplate>

 <ServiceTemplate name="MyFirstMachine">

 <TopologyTemplate>

 ...

 <NodeTemplate type=" csp: Machine ">

 <Properties>

 <csp:MachineTemplate xmlns="http://mycsp.com/toscaTypes">

 <name> MyMachine </name>

 <description> My First Machine </descri ption>

 <MachineConfiguration>

 <cpu>4</cpu>

 <memory>64000</memory>

 <disk>

 <capacity>512000</capacity>

 <format>NTFS</format>

 <initialLocation> C:</initialLocation>

 </disk>
 </MachineConfiguration>

 </csp:MachineTemplate>

 </Properties>

 <DeploymentArtifact

 artifactRef="tns:myImage"

 artifactType="csp:ISOImageArtifa ct" />

 </NodeTemplate>

 ...

 </TopologyTemplate>

 </ServiceTemplate>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 71 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 </Definitions>

In this XML file there are a couple of things being defined:

¶ In the Import statement there is no Location attribute specified. In this case the

location of the imported Definitions (document) will be inherently known by the Cloud

Service Provider.

¶ In the Definitions element itself a couple of XML namespaces are defined. The

default namespace is defined as the one from the TOSCA specification itself, this tells us

that most (but not all) of the XML elements are defined by the TOSCA specification. The

"csp" namespace will be used for XML elements, or NodeTypes , that are defined by the

cloud service provider and will be available for the application to use. The "tns"

namespace are for application owned/defined entities - such as the name of the service

template.

¶ Next is the ArtifactTemplate element. This element defines the type of artifact (in

this case an ISO image) and includes a reference to where the image can be retrieved -

in this case "http://example.com/myISO/machine1.ISO". How this ISO file was created

and placed at this URL is out of scope for this document.

¶ And finally in the ServiceTemplate element we bind the ISO image to a particular

άaŀŎƘƛƴŜέΦ Lƴ ƻǊŘŜǊ ǘƻ Řƻ ǘƘƛǎ ǿŜ ƴŜŜŘ ǘǿƻ ǇƛŜŎŜǎ ƻŦ ƛƴŦƻǊƳŀǘƛƻƴΦ CƛǊǎǘΣ ǿŜ ƴŜŜŘ ǘƘŜ

ŎƻƴŦƛƎǳǊŀǘƛƻƴ ǇŀǊŀƳŜǘŜǊǎ ƻŦ ǘƘŜ ƴŜǿ άaŀŎƘƛƴŜέ ǘƘŀǘ ƛǎ ǘƻ ōŜ ŎǊŜŀǘŜŘΦ Lƴ ǘƘƛǎ ŎŀǎŜ, the

application is asking for a new virtual machine with 4 CPUs, 64 megabytes of memory

and one ephemeral disk (with 512 megabytes, formatted with NTFS, available as the "C"

drive). Notice that the XML elements that define the characteristics of the άMachineέ

are not in the same XML namespace as the rest of the XML document. Since the cloud

service provider, and not the TOSCA specification, defined what a "Machine" NodeType

looked like, those elements are in the "csp" namespace.

Second, we need to tell the cloud service provider which ISO file to use when creating

the new machine - in other words, we need to reference the deployment artifact we

defined at the top of the XML file.

Creating the Cloud Service Archive (CSAR) file

This service template can now be used to create a CSAR file, called άmyFirstMachine.CSARέ, with

the following structure:

 myFirstMachine.CSAR

 /TOSCA- Metadata

 /TOSCA.meta

 /Definitions

 /Machine.xml

Where άTOSCA.metaέ contains:

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 72 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 TOSCA- Meta - File - Version: 1.0

 CSAR- Version: 1.0

 Created - By: Joe Smith

This CSAR file can then be given to a TOSCA provider which will then deploy the application on a

new virtual machine.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 73 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

8 How TOSCA Works with Other Cloud Standards

8.1 Mapping TOSCA to DMTF OVF

The deployment artifact of a node (i.e. a TOSCA Node Template or a Node Type Implementation)

in a TOSCA Service Template can be represented by an image definition such as an OVF package.

If OVF is used by a node, it means that the node is deployed on a virtual system or a component

(OVFΩs άproductέ) running in a virtual system, as defined in the OVF package.

8.1.1 Use Case One: OVF Package for Single Virtual System

Consider a web application deployment requires an application server. The application server is

implemented by a virtual system installing Linux OS and App Container. The virtual system is

defined in an OVF descriptor file and an image installing SUSE Linux and Tomcat is included in

the OVF package.

Accordingly, developers define two NodeType s in TOSCA for the application server and the Web

application respectively. The NodeTypeImplementation for the NodeType of the application

server provides the deployment artifact άappServer.ovaέ to materialize instance of the

particular NodeTemplate referring the NodeType of the application server. The

NodeTypeImplementation also provides the implementation artifact άserverMgt.warέ to

implement the interface operations of the NodeType . The service template topology is shown in

Figure 15.

FIGURE 15 - SAMPLE SERVICE TOPOLOGY FOR OVF USE CASE 1

The NodeType for the application server is defined within the Definitions element of a

Definitions document identified as άMyNodeTypesέ within the target namespace

άƘǘǘǇΥκκǿǿǿΦŜȄŀƳǇƭŜΦŎƻƳκ{ŀƳǇƭŜNodeTypeǎέ. Thus, by importing the corresponding

namespace into another Definitions document, the NodeType is available for use in the other

document.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 74 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 <Definitions id =" MyNodeTypes " name="My Node Types"

 targetNamespace="http://www. example .com/ Sample NodeTypes ">

 <NodeType name=" ApplicationServer "

 targetNamespace= " http://www.example.com/SampleNodeTypes ">

 <Interfaces>

 <Interface name= " MyAppServerInterface " >

 <Operation name= " DeployAppServer " >

 </Interface>

 </Interfaces>

 </NodeType>

 </Definitions>

The following steps should be followed in order to take an OVF package as the deployment

artifact for the NodeTemplate of the NodeType άApplicationServerέ.

8.1.1.1 Step One. Defining the ArtifactType that can be used for describing OVF
packages as deployable artifacts.

Like the NodeType , the ArtifactType is also defined in a Definitions document with the id

attribute value άaȅ!ǊǘƛŦŀŎǘTypeǎέ ǿƛǘƘƛƴ ǘƘŜ ǘŀǊƎŜǘ ƴŀƳŜǎǇŀŎŜ

άƘǘǘǇΥκκǿǿǿΦŜȄŀƳǇƭŜΦŎƻƳκ{ŀƳǇƭŜ!ǊǘƛŦŀŎǘTypeǎέΦ ¢ƘǳǎΣ ōȅ ƛƳǇƻǊǘƛƴƎ ǘƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ

namespace into another Definitions document, the ArtifactType is available for use in the

other document.

 <Definitions id =" MyArtifactTypes " name="My Artifact Types "

 targetNamespace="http://www. example .com/ Sample Artifact Types "

 xmlns: mnt="http://www.example.com/BaseArtifactTypes"

 xmlns:map="http://www.example.com/SampleArtifactProperties >

 <Import importType=" http://docs.oasis - open.org/tosca/ns/2011/12 "

 namespace="http:// www.example.com/ToscaBaseTypes "/>

 <Import importType="http://www.w3.org/2001/XMLSchema"

 namespace="http:// www.example.com/SampleArtifactProperties "/>

 <Artifact Type name=" OVFPackage">

 <DerivedFrom typeRef="ba: VMPackage"/>

 <PropertiesDefinition element="map: OVFPackageProperties"/>

 </ArtifactType>

 </ Definitions >

8.1.1.2 Step Two. Defining the Artifact Template referring to the ArtifactType
ȰOVFPackageȱ.

¢ƘŜ άh±CtŀŎƪŀƎŜέ ArtifactType is defined in another Definitions document with the id of

άMyArtifactsέ within the target namespace άƘǘǘǇΥκκǿǿǿΦŜȄŀƳǇƭŜΦŎƻƳκ{ŀƳǇƭŜ!ǊǘƛŦŀŎǘǎέ. Thus,

by importing the corresponding namespace into another Definitions document, the

Artifact Template is available for use in the other document.

 <Definitions id =" MyArtifacts " name="My Artifacts"

 targetNamespace=" http://www.example.com/Sample Artifa cts "

 xmlns:sat= "http://www. example .com/ Sample ArtifactTypes ">

 <Import namespace= " http://www.example.com/SampleArtifact Type s"

 location= " http://www.example.com/

 Types/MyArtifactTypes.tosca "

 i mportType= " http://docs.oasis - open.org/tosca/ ns/ 2011/12 " />

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 75 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 <ArtifactTemplate id =" MyOVFInstallable "

 name=" My OVF Installable "

 Type= " sat:OVFPackage ">

 <ArtifactReferences>

 <ArtifactReference refe rence= " files/appServer.ova " />

 </ArtifactReferences>

 <ArtifactTemplate>

 </Definitions>

8.1.1.3 Step Three. Defining the NodeTypeImplementation ȰMyImplsȱ.

The following code block defines an implementation of the NodeType άApplicationServerέ.

 <Defini tions id=" MyImpls " name="My Implementations "

 targetNamespace= " http://www.example.com/Sample Implementation s"

 xmlns: snt =" http://www. example .com/ Sample NodeTypes "

 xmlns: sat ="http://www. example .com/ Sample Artifact Type s"

 xmlns:s a=" http://www.examp le.com/SampleArtifacts "

 xmlns:ba= " http://www.example.com/BaseArtifactTypes " >

 <Import importType=" http://docs.oasis - open.org/tosca/ns/2011/12 "

 namespace="http:// www.example.com/BaseArtifactTypes "/>

 <Import namespace= " http:// www.example.com/SampleArtifact Type s"

 location= " http://www.example.com/

 Types/ MyArtifact Types.tosca "

 importType= " http://docs.oasis - open.org/tosca/ ns/ 2011/12 " />

 <Import namespace= " http:// www.example.com/Sa mpleArtifacts "

 location= " http://www.example.com/

 Artifacts/ MyArtifact s.tosca "

 importType= " http://docs.oasis - open.org/tosca/ ns/ 2011/12 " />

 <Import namespace= " http:// www.example.com/Sample NodeType s"

 location= " http://www.example.com/

 Types/ MyNodeTypes.tosca "

 importType= " http://docs.oasis - open.org/tosca/ ns/ 2011/12 " />

 <NodeTypeImplementation name ="MyAppServer Impl s"

 nodeType=" snt : ApplicationServer ">

 <ImplementationArtifacts>

 <ImplementationArtifact name="My AppServer Management"

 interfaceName=" MyAppServerInterface "

 artifactType="ba:WARFile">

 files/serverMgt.war

 </ ImplementationArtifact>

 </ImplementationArtifacts>

 <DeploymentArtifacts>

 <DeploymentArtifact name="My OVFPackage"

 artifactType=" sat: OVFPackage "

 artifactRef="sa: MyOVFInstallable ">

 </ DeploymentArtifact>

 </DeploymentArtifacts>

 </NodeTypeImplementation>

 </Definitions>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 76 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

8.1.2 Use Case Two. OVF Package for Multiple Virtual Systems

OVF package may contain multiple VM images which are Deployment Artifacts for multiple Node

Type Implementations or Node Templates, hints should be given so that TOSCA container can

map the right VM image with a node type implementation or template.

Consider a web application deployment requires an Application server and a DB server. So, two

VM images are needed, where one image installing Linux OS and Apache and the other one

installing Linux OS and MySQL. Therefore, in an OVF descriptor file, these two images are

described by two VirtualSystem elements and included in one

VirtualSystemCollection element as follows:

 <VirtualSystemCollection ovf:id="multi - tier - app">

 <Info>A collection of virtual machines</Info>

 <Name>Multi - tiered Appliance </Name>

 <SomeSection>

 <! -- Additional secti on content -- >

 </SomeSection>

 <VirtualSystem ovf:id=" appServer ">

 <Info>A virtual machine installing Suse Linux and Tomcat</Info>

 <Name>Application Server</Name>

 <! -- Additional sections -- >

 </VirtualSystem>

 <Vir tualSystem ovf:id=" dbServer ">

 <Info>A virtual machine installing Suse Linux and MySQL</Info>

 <Name>DB Server</Name>

 <! -- Additional sections -- >

 </VirtualSystem>

 </VirtualSystemCollection>

Accordingly, developers define two NodeType s in TOSCA for the άApplication Serverέ and the

άDatabase Serverέ respectively. The NodeTypeImplementations for these two NodeType s

refer the same OVF package as the deployment artifact. The service topology is shown in Figure

16.

FIGURE 16 - SAMPLE SERVICE TOPOLOGY FOR OVF USE CASE 2

The NodeType s for the ά!pplication Serverέ and άDatabase Serverέ are defined in a Definitions

document άMyNodeTypesέ within the target namespace

άhttp://www. example.com/SampleNodeTypeǎέ. Thus, by importing the corresponding

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 77 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

namespace into another Definitions document, the NodeType s are available for use in the other

document.

 <Definitions id =" MyNodeTypes " name="My Node Types"

 targetNamespace="ht tp://www. example .com/ Sample NodeTypes ">

 <NodeType name=" ApplicationServer "

 targetNamespace= " http://www.example.com/SampleNodeTypes ">

 <Interfaces>

 <Interface name= " MyAppServerInterface " >

 <Operation name= " DeployA ppServer " >

 </Interface>

 </Interfaces>

 </NodeType>

 <NodeType name=" DBServer "

 targetNamespace= " http://www.example.com/SampleNodeTypes ">

 <Interfaces>

 <Interface name= " MyDBServerInterface " >

 <Oper ation name= " DeployDBServer " >

 <Operation name= " AcquireNetworkAddress " >

 </Interface>

 </Interfaces>

 </NodeType>

 </Definitions>

Since the deployment artifacts to implement these two NodeType s are packaged in a single OVF

package, the instances for these two nodes can be instantiated by importing the OVF package

only once. There may be interaction between these two nodes. For example, the application

server may acquire the network address of the database server in order to connect to it. The

TOSCA container should know which VM is for the application server and which one is for the

database server after successfully importing the OVF package.

The ArtifactTemplates are defined in a Definitions document άMyArtifactsέ within the

target namespace άƘǘǘǇΥκκǿǿǿΦŜȄŀƳǇƭŜΦŎƻƳκ{ŀƳǇƭŜ!ǊǘƛŦŀŎǘǎέ. Thus, by importing the

corresponding namespace into another Definitions document, the Artifact Templates are

available for use in the other document.

 <Definitions id =" MyArtifacts " name="My Artifacts "

 targetNamespace=" http://www.example.com/Sample Artifacts "

 xmlns:sat= "http://www. example .com/ Sample Artifact Type s">

 <Import namespace= " http:// www.example.com/SampleArtifact Type s"

 location= " http://www.example.com/

 Types/MyArtifactTypes.tosca "

 importType= " http://docs.oasis - open.org/tosca/ ns/ 2011/12 " />

 <ArtifactTemplate id =" AppServerInstallable "

 name=" Application Server Installable "

 Type= " sat:O VFPackage ">

 <ArtifactReferences>

 <ArtifactReference reference= " files/myService.ova " />

 <Include pattern="appserver.img"/ >

 </ArtifactReferences>

 <ArtifactTemplate>

 <ArtifactTemplate id =" DBServerInstallable "

 name=" Database Server Installable "

 Type= " sat:OVFPackage ">

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 78 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

 <ArtifactReferences>

 <ArtifactReference reference= " files/ myService.ova " />

 <Include pattern="dbserver.img"/ >

 </Arti factReferences>

 <ArtifactTemplate>

 </Definitions>

By specifying the VM image in the ArtifactTemplates and referring to them in the

DeploymentArtifacts of NodeTypeImplementations , the TOSCA container can be aware

of the role of each VM. The NodeTypeIm plementations for NodeTypes can be defined as

follows:

 <Definitions id=" MyImpls " name="My Implementations "

 targetNamespace= " http://www.example.com/Sample Implementation s"

 xmlns: snt =" http://www. example .com/ Sample NodeTypes "

 xmlns: sat ="http://www . example .com/ Sample Artifact Type s"

 xmlns:s a=" http://www.example.com/SampleArtifacts "

 xmlns:ba= " http://www.example.com/BaseArtifactTypes " >

 <Import importType=" http://docs.oasis - open.org/tosca/ns/2011/12 "

 namespace="http:// www.example.com/ToscaBaseTypes "/>

 <Import namespace= " http:// www.example.com/SampleArtifact Type s"

 location= " http://www.example.com/Types/MyArtifactTypes.tosca "

 importType= " http://docs.oasis - open.org/tosca/ ns/ 2011/12 " />

 <Import names pace= " http:// www.example.com/SampleArtifacts "

 location= " http://www.example.com/Artifacts/MyArtifacts.tosca "

 importType= " http://docs.oasis - open.org/tosca/ ns/ 2011/12 " />

 <Import namespace= " http://www.example.com/Sample NodeType s"

 location= " http://www.example.com/Types/MyNodeTypes.tosca "

 importType= " http://docs.oasis - open.org/tosca/ ns/ 2011/12 " />

 <NodeTypeImplementation name =" MyAppServerImpls "

 nodeType=" snt : ApplicationServer " >

 <DeploymentArtifacts>

 <DeploymentArtifact name=" AppServerDA "

 artifactType=" sat:OVF Package "

 artifactRef="sa: AppServerInstallable ">

 </ DeploymentArtifact>

 </Deployme ntArtifacts>

 </NodeTypeImplementation>

 <NodeTypeImplementation name =" MyDBServerImpls "

 nodeType=" snt : DBServer ">

 <DeploymentArtifacts>

 <DeploymentArtifact name=" DBServerDA "

 artifactType=" sat:OVF Package "

 artifactRef="sa: DBServerInstallable ">

 </ DeploymentArtifact>

 </DeploymentArtifacts>

 </NodeTypeImplementation>

 </Definitions>

Based on the above Definitions document, the TOSCA container can determine that the VM

made from άappserver.imgέ is the application server and the VM made from άdbserver.imgέ is

the database server. When the operation άAcquireNetworkAddressέ defined in the NodeType

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 79 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

άDBServerέ is performed, the TOSCA container can access the correct IP Address of the VM for

the database server.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 80 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

Appendix A. Acknowledgments

The following individuals have participated in the creation of this document and are gratefully

acknowledged by the TOSCA TC:

Contributors by Section:

Section 1: Matt Rutkowski, IBM
Section 2: Adolf Hohl, NetApp; Frank Leymann, IBM
Section 3: Frank Leymann, IBM
Section 4: Frank Leymann, IBM
Section 5: Dietmar Noll, IBM; Frank Leymann, IBM
Section 6: Matt Rutkowski, IBM
Section 7: Doug Davis, IBM; Thomas Spatzier, IBM
Section 8: Paul Zhang, Huawei; Marvin Waschke, CA

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 81 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

Appendix B. Terminology & Acronyms

B.1 Acronyms

Acronym Phrase

BPMN Business Process Model and Notation

CIMI Cloud Infrastructure Management Interface, a DMTF specification.

CRM Customer Relationship Management

CSAR Cloud Service Archive, a TOSCA specified format

DMTF Distributed Management Task Force

EC2 Elastic Compute Cloud, an Amazon Web Service (AWS).

EJB Enterprise JavaBeans

FTP File Transfer Protocol

J2EE Java 2 Platform, Enterprise Edition

JAR Java ARchive

NTFS New Technology File System

OVF Open Virtualization Format

PHP PHP: Hypertext Preprocessor, a recursive acronym.

QoS Quality of Service

RPM RPM Package Manager, a packaging format used on some Linux

distributions.

TAR Unix-style archive file format; originally developed for tape archives, but

has been adopted for additional uses.

UID, UUID Unique Identifier, and Universally Unique Identifier

VM Virtual Machine

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 82 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

Appendix C. Revision History

Revision Date Editor Changes Made

WD1, Rev. 01 2012-11-01 Matt Rutkowski,

IBM

Initial Version, with Table of Contents

(TOC).

WD1, Rev. 02 2012-11-04 Frank Leymann,

IBM

Addition of initial Chapter 2 content.

WD1, Rev. 03 2012-11-05 Adolf Hohl, NetApp Addition of remainder of Chapter 2

content.

WD1, Rev. 04 2012-11-09 Matt Rutkowski,

IBM

Cleanup and edits for Chapters 1 & 2.

Added Terminology and Acronyms

Appendix.

WD1, Rev. 05 2012-11-15 Frank Leymann,

IBM;

Matt Rutkowski,

IBM

Frank added explanation of declarative vs.

imperative models. Also, added the section

sketching the TOSCA environment with

corresponding figures. Matt preformed more

edits/cleanup.

WD1, Rev. 06 2012-11-19 Matt Rutkowski,

IBM

!ŘŘŜŘ ά{ǘŀǘŜƳŜƴǘ ƻŦ tǳǊǇƻǎŜέ ǘƻ

Introduction (Chapter 1).

WD1, Rev. 07 2012-11-26 Matt Rutkowski,

IBM

Authored contents of Section 3.1 plus

general editing of grammar and content

for document consistency.

WD2, Rev. 01 2012-12-05 Paul Zhang,

Huawei; Marv

Waschke, CA

!ŘŘŜŘ ŎƻƴǘŜƴǘǎ ŦƻǊ {ŜŎǘƛƻƴ уΦм άaŀǇǇƛƴƎ

¢h{/! ǘƻ 5a¢C h±CέΦ

WD2, Rev. 02 2012-12-10 Matt Rutkowski,

IBM

!ŘŘƛǘƛƻƴ ƻŦ {ŜŎǘƛƻƴ т ά²Ƙŀǘ ŎƭƻǳŘ

ǇǊƻǾƛŘŜǊǎ ǎƘƻǳƭŘ ƪƴƻǿΧέ ŀƭƻƴƎ ǿƛǘƘ ŜŘƛǘǎ

and comments.

Fixed style problems with Section 8.1

merge, fixed code samples, and updated

document fields, minor edits.

WD2, Rev. 03 2012-12-11 Matt Rutkowski,

IBM

Comprehensive editing of Section 2

contents. Minor edits to other sections.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 83 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

WD2, Rev. 04 2012-12-12 Frank Leymann,

IBM; Matt

Rutkowski, IBM

aŜǊƎŜŘ ƛƴ {ŜŎǘƛƻƴ с ά²Ƙŀǘ !ǊǘƛŦŀŎǘ

ŘŜǾŜƭƻǇŜǊǎ ǎƘƻǳƭŘ ƪƴƻǿΧέΦ CƛȄŜŘ ŀƭƭ ŦƛƎǳǊŜ

ŎŀǇǘƛƻƴǎ ŀƴŘ ŀŘŘŜŘ ά[ƛǎǘ ƻŦ CƛƎǳǊŜǎέ ǘŀōƭŜ

to top of document. Minor edits to

Section 6.

WD3, Rev. 01 2012-12-13 Matt Rutkowski,

IBM

/ǊŜŀǘŜŘ άŎƭŜŀƴέ ǾŜǊǎƛƻƴ ōŀǎŜŘ ǳǇƻƴ ²5нΣ

Rev. 04 as WD3, Rev. 01 as approved by

the TOSCA. TC on 2012-12-13.

WD3, Rev.

02; Rev. 03

2013-01-09;

2013-01-10

Matt Rutkowski,

IBM; Frank

Leymann, IBM;

Doug Davis, IBM

Merged in additional initial content for

sections 3 (Matt), 4 (Doug) and complete

section 5 content from Frank. Added non-

normative references for TOSCA spec. and

referenced open source projects. Added

new acronyms/definitions.

WD4, Rev 02 2013-01-16 Matt Rutkowski,

IBM; Frank

Leymann, IBM,

Doug Davis, IBM

Matt: Complete top-down edit, all styles,

keywords, tables, figures, reference all

fixed and made consistent. Reorganization

ƻŦ ŎƘŀǇǘŜǊǎ ǘƻ ŘƛǎŎǳǎǎ ŀƭƭ άŀōǎǘǊŀŎǘέ

ŎƻƴŎŜǇǘǎ ōŜŦƻǊŜ άŎƻƴŎǊŜǘŜέ ŜȄŀƳǇƭŜǎΦ

wŜŀǳǘƘƻǊŜŘ ǘŜȄǘ ǘƻ Ŧƛǘ ƴŜǿ ǎŜŎǘƛƻƴ άŦƭƻǿέΦ

LƴŎƭǳǎƛƻƴ ƻŦ /ƘŀǇǘŜǊ п !ǊǘƛŦŀŎǘ 5ŜǾŜƭƻǇŜǊǎέ

from Frank Leymann and review/edit of its

contents.

Merged additional content from Doug

5ŀǾƛǎ ŦƻǊ ƳƛƎǊŀǘƛƴƎ άƳǳƭǘƛ-±aέ

applications in Chapter 7.

WD5, Rev1 2013-01-17 Matt Rutkowski,

IBM

Clean version reviewed and approved by

TC during TOSCA TC meeting 2013-01-17

WD5, Rev2e 2013-01-22 Matt Rutkowski,

IBM

Rewrite of section 6 to split DB tier from

Web App tier and adjust

tables/figures/code examples to match.

WD5, Rev2f 2013-01-23 Matt Rutkowski,

IBM

Merged updates for Ch.4 from Doug Davis

and Section 3.4.3 from Frank Leymann.

Addressed comments from Frank for

Section 6 where still applicable.

WD5, Rev3 2013-01-24 Matt Rutkowski,

IBM

Addressed all legacy

comments/outstanding work items based

upon resolutions/plans discussed on

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 84 of 84

[T
y
p
e

 t
h

e
 d

o
cu

m
e

n
t
tit

le
]

ŜŘƛǘƻǊΩǎ Ŏŀƭƭ ŘǳǊƛƴƎ ǘƻǇ-down review. Also

addressed updates to section 7 from Doug

Davis/Thomas Spatzier and comments

from Frank Leymann on section 6

contents. Removed Section 7.2 at the

ǊŜǉǳŜǎǘ ƻŦ 5ƻǳƎ 5ŀǾƛǎΦ aŀǘǘΩǎ

Edits/Revisions and remaining content for

ǎŜŎǘƛƻƴ сΦ aŀǘǘΩǎ

WD6, Rev1 2013-01-24 Matt Rutkowski,

IBM

TC approved the creation of WD6, Rev1

during the OASIS TOSCA TC call on 2013-

01-24 based upon WD5, Rev3b.

WD6, Rev2 2013-01-30;

2013-01-31

Matt Rutkowski,

IBM

Addressed comments and corrections

from Gerd Breiter, Doug Davis and Frank

Leymann. Also, some other

corrections/edits based upon another top-

down re-read of the final document.

