

Topology and Orchestration

Specification for Cloud Applications

(TOSCA) Primer Version 1.0

Committee Note Draft 01

31 January 2013

Specification URIs
This version:
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-
v1.0-cnd01.doc (Authoritative)
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-
v1.0-cnd01.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-
v1.0-cnd01.pdf

Previous version:
N/A

Latest version:
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.doc
(Authoritative)
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-
v1.0.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf

Technical Committee:
OASIS Topology and Orchestration Specification for Cloud Applications
(TOSCA) TC

Chairs:
Paul Lipton (paul.lipton@ca.com), CA Technologies
Simon Moser (smoser@de.ibm.com), IBM

Editors:
Frank Leymann (Frank.Leymann@informatik.uni-stuttgart.de), IBM
Matt Rutkowski (mrutkows@us.ibm.com), IBM
Adolf Hohl (Adolf.Hohl@netapp.com), NetApp
Marvin Waschke (marvin.waschke@ca.com), CA Technologies
Paul Zhang (paul.zhangyi@huawei.com), Huawei

http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.doc
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.doc
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.doc
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf
http://www.oasis-open.org/committees/tosca/
http://www.oasis-open.org/committees/tosca/
mailto:paul.lipton@ca.com
http://www.ca.com/
mailto:smoser@de.ibm.com
http://www.ibm.com/
mailto:Frank.Leymann@informatik.uni-stuttgart.de
http://www.ibm.com/
mailto:mrutkows@us.ibm.com
http://www.ibm.com/
mailto:Adolf.Hohl@netapp.com
http://www.netapp.com/
mailto:marvin.waschke@ca.com
http://www.ca.com/
mailto:paul.zhangyi@huawei.com
http://www.huawei.com/

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 2 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Related work:
This document is related to:

 Topology and Orchestration Specification for Cloud Applications Version 1.0. Latest
version. http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html.

Abstract:
This document provides an introduction to the Topology and Orchestration Specification
for Cloud Applications (TOSCA).

Status:
This document was last revised or approved by the OASIS Topology and Orchestration
Specification for Cloud Applications (TOSCA) TC on the above date. The level of approval
is also listed above. Check the “Latest version” location noted above for possible later
revisions of this document.
Technical Committee members should send comments on this document to the
Technical Committee’s email list. Others should send comments to the Technical
Committee by using the “Send A Comment” button on the Technical Committee’s web
page at http://www.oasis-open.org/committees/tosca/.

Citation format:
When referencing this document the following citation format should be used:

[TOSCA-Primer]

Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer Version
1.0. 31 January 2013. OASIS Committee Note Draft 01. http://docs.oasis-
open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html.

Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS

Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the

OASIS website.

This document and translations of it may be copied and furnished to others, and derivative

works that comment on or otherwise explain it or assist in its implementation may be prepared,

copied, published, and distributed, in whole or in part, without restriction of any kind, provided

that the above copyright notice and this section are included on all such copies and derivative

works. However, this document itself may not be modified in any way, including by removing

the copyright notice or references to OASIS, except as needed for the purpose of developing any

document or deliverable produced by an OASIS Technical Committee (in which case the rules

applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to

translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its

successors or assigns.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
http://www.oasis-open.org/committees/tosca/
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
http://www.oasis-open.org/policies-guidelines/ipr

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 3 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

This document and the information contained herein is provided on an "AS IS" basis and OASIS

DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY

WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP

RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 4 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Table of Contents
1. Introduction ... 9

1.1 Statement of Purpose .. 9

1.2 Scope of this Document ... 9

1.3 References (non-normative).. 10

1.3.1 Standards .. 10

1.3.2 Software and Services ... 10

2 What Everybody Should Know About TOSCA .. 11

2.1 An overview of TOSCA ... 11

2.1.1 Bringing Cloud Services to Market – TOSCA Roles ... 11

2.1.2 TOSCA Value Statement.. 11

2.1.3 TOSCA Processing Environment.. 12

2.2 Roles Involved in Modeling a Cloud Application ... 16

2.2.1 Type Architect Role ... 17

2.2.2 Artifact Developers Role ... 18

2.2.3 Application Architect Role .. 19

3 What Type Architects Should Know About TOSCA .. 25

3.1 Providing Node Types and Relationship Types .. 25

3.1.1 Vendor Perspective ... 25

3.1.2 Node Types ... 26

3.1.3 The Lifecycle Interface .. 26

3.1.4 Relationship Types .. 28

3.2 Using Inheritance ... 28

3.3 Providing Requirement Types and Capability Types ... 30

3.4 Green Field Perspective ... 32

3.5 Modular Design of Service Templates ... 32

3.6 Simplifying Application Modeling: Composable Service Templates.................................... 33

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 5 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3.6.1 Turning Service Templates into Composables .. 34

3.6.2 Using Abstract Node Types ... 34

3.6.3 Substitution of Abstract Node Types by Service Templates ... 35

4 What Artifact Developers Should Know About TOSCA .. 36

4.1 Defining Artifact Types .. 36

4.2 Defining Artifact Templates ... 37

4.3 Providing Implementations ... 39

4.3.1 Coping With Environment-Specific Implementations .. 40

5 What Cloud Service Providers Should Know About TOSCA ... 42

5.1 Adaptation to Particular Cloud Providers .. 42

5.1.1 Deployment of implementation artifacts and deployment artifacts 42

6 What Application Architects Should Know About TOSCA ... 44

6.1 Single-Tier MySQL Database for our SugarCRM Web Application 44

6.1.1 Required Node Types .. 45

6.1.2 Turning Node Types into Node Templates ... 49

6.1.3 Required Artifact Types .. 51

6.1.4 Turning Artifact Types into Artifact Templates... 53

6.1.5 Required Relationship Types .. 53

6.1.6 Turning Relationship Types into Relationship Templates... 54

6.2 Two-Tier SugarCRM Web Application Example ... 56

6.2.1 Required Node Types .. 56

6.2.2 Turning Node Types into Node Templates ... 61

6.2.3 Required Artifact Types .. 63

6.2.4 Turning Artifact Types into Artifact Templates... 64

6.2.5 Required Relationship Types .. 64

6.2.6 Turning Relationship Types into Relationship Templates... 66

6.2.7 Creating the Cloud Service Archive (CSAR) ... 67

7 Moving Virtual Machines to the TOSCA World.. 69

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 6 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

7.1 Deploying a New Virtual Machine (VM) .. 69

7.1.1 Required Node Types .. 69

7.1.2 Creating the Service Template xml file .. 70

8 How TOSCA Works with Other Cloud Standards ... 73

8.1 Mapping TOSCA to DMTF OVF... 73

8.1.1 Use Case One: OVF Package for Single Virtual System ... 73

8.1.2 Use Case Two. OVF Package for Multiple Virtual Systems ... 76

Appendix A. Acknowledgments ... 80

Appendix B. Terminology & Acronyms .. 81

B.1 Acronyms ... 81

Appendix C. Revision History ... 82

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 7 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

List of Figures
Figure 1 - Sample Architecture of a TOSCA Environment ... 13

Figure 2 - Sample "Declarative" Processing Sequence When Importing a CSAR .. 14

Figure 3 - Sample Extension of a CSAR for "Imperative" Processing .. 15

Figure 4 - Sample "Imperative" Processing Sequence When Importing a CSAR ... 16

Figure 5 - Topology of a Simple Cloud Application .. 21

Figure 6 - Service Template of a Sample Application Including a Build Plan .. 22

Figure 7 - Service Template that Makes Use of Requirements and Capabilities .. 23

Figure 8 – Defining Interfaces and Their Implementations For Particular Node Types 27

Figure 9 – Node, Artifact, Relationship, Requirements and Capabilities Type Hierarchies 29

Figure 10 - Making Use of Imports .. 33

Figure 11 - Service Template Substituting a Node Type ... 35

Figure 12 - Key Definitions for TOSCA Artifacts and their Relationships .. 36

Figure 13 - Node Type Inheritance for a SugarCRM Database Tier ... 49

Figure 14 - Node Type Inheritance for a SugarCRM Web Application Tier ... 61

Figure 15 - Sample Service Topology for OVF Use Case 1 ... 73

Figure 16 - Sample Service Topology for OVF Use Case 2 ... 76

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 8 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

List of Tables
Table 1 - TOSCA Benefits by Service Role .. 12

Table 2 – Single-Tier MySQL Database Example's Base Node Types .. 45

Table 3 – Single-Tier MySQL Database Example’s Specific Node Types .. 47

Table 4 – Single-Tier MySQL Database Example's Custom Node Types .. 48

Table 5 – Single-Tier MySQL Database Example's Base Artifact Types ... 52

Table 6 – Single-Tier MySQL Database Example's Base Relationship Types ... 54

Table 7 – SugarCRM Web Application Example's Base Node Types ... 56

Table 8 – SugarCRM Web Application Example’s Specific Node Types .. 59

Table 9 – SugarCRM Web Application Example's Custom Node Types .. 60

Table 10 – SugarCRM Web Application Example's Base Relationship Types .. 65

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 9 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

1 Introduction

1.1 Statement of Purpose

Cloud computing offers a compelling cost-effective model for businesses that wish to host their

applications and services in an environment where it can scale to meet their customer demands

while reducing their need in maintaining the overhead of large datacenters and their operations.

However, these same customers, until TOSCA, lacked a standard means to describe the topology

of their applications along with their dependent environments, services and artifacts inside a

single service template which would enable them to deploy and manage them against the

capabilities offered by any cloud provider, regardless of their infrastructure or service model.

This document seeks to provide a practical introduction to the TOSCA meta-model as defined

within the TOSCA version 1.0 draft specification. It is intended to guide application architects

and developers, as well as cloud providers and tool vendors, through the process of modeling

and representing some basic applications as TOSCA service templates. Its purpose is to make

you, regardless of your role, productive using TOSCA as soon as possible.

Each scenario is authored in a way to highlight the considerations and activities each role

involved in the process of creating a cloud-based application would approach their task using

different aspects and concepts from TOSCA.

The authors of this primer realize that many of the sample applications presented in this first

version of the primer are quite simple compared to the possible “real world” applications many

readers may be concerned with. It may seem even seem that using a modeling language like

TOSCA might seem like “overkill” for such cases when compared to some domain-specific

alternatives that are available. However, it is our hope, that through careful explanation of the

thinking behind TOSCA modeling (even using the basic “hello world” examples included) the

readers will come to appreciate the power, flexibility and benefits of TOSCA to handle more

complex cases over other, more narrowly-scoped alternatives.

1.2 Scope of this Document

The aim of this document is to provide a quick start for cloud service developers to describe

operational procedures using TOSCA. The following of this document is written primarily for

cloud service developers and touches upon the view of other roles only. It is not meant to be a

reference – it provides an answer for the most urgent questions to get familiar and leverage

TOSCA from the chosen role.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 10 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

1.3 References (non-normative)

1.3.1 Standards

[DMTF-CIMI]

Cloud Infrastructure Management Interface (CIMI) Model and REST Interface over HTTP

Specification, Version 1.0, a Distributed Management Task Force (DMTF) Standard (DSP0263), 30

October 2012, http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdf

[TOSCA-CSD-1.0]

OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA), Version 1.0,

Committee Specification Draft (CSD) 06 / Public Review Draft 01, 29 November 2012,

http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.pdf

1.3.2 Software and Services

[Amazon-EC2]

Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/.

[Apache-HTTP-Server]

Apache HTTP Server Project, http://httpd.apache.org/.

[MySQL-DB]

MySQL Community Server, http://dev.mysql.com/downloads/mysql/5.1.html.

[OpenStack]

OpenStack – Open Source Cloud Computing Software, http://www.openstack.org/.

[SugarCRM-CE]

SugarCRM Community Edition (CE), http://www.sugarforge.org/projects/sugarcrm/.

http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.pdf
http://aws.amazon.com/ec2/
http://httpd.apache.org/
http://dev.mysql.com/downloads/mysql/5.1.html
http://www.openstack.org/
http://www.sugarforge.org/projects/sugarcrm/

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 11 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

2 What Everybody Should Know About TOSCA

2.1 An overview of TOSCA

TOSCA formalizes a significant amount of interactions between somebody who develops IT

delivered services and the one who actually operates them. In this chapter, we outline how

TOSCA roles map to real-world IT business actors and what value it brings for each individual

actor. However, it should be noted, that the majority of this document is targeted for people or

organizations acting in a “Cloud Service Developer” role.

2.1.1 Bringing Cloud Services to Market – TOSCA Roles

TOSCA is a specification which adds value to the relationships between users, providers and

developers of IT provided services. The roles are oriented on a model where a cloud service

developer provides services which they distribute via further channels, primarily cloud service

providers and which are eventually offered to service consumers.

The roles that we will reference in this document are briefly defined here:

 Cloud Service Consumer: A service consumer leverages IT provided services to run their

business. These persons benefit from TOSCA, but not from direct contact with the

specification.

 Cloud Service Developer: The main business of a cloud service developer is developing

cloud services that will rely upon the operational and support services of from a Cloud

Service Provider offers. The cloud service developer uses TOSCA to express how to

instantiate and operate the services they developed.

 Cloud Service Provider: The main business of a cloud service provider is operating

services developed by cloud service developers. Persons in this role use TOSCA to map

request of a new service consumer to their infrastructure.

Of course, roles typically apply to separate market actors but one actor may also serve in

multiple roles.

2.1.2 TOSCA Value Statement

TOSCA provides a compelling value statement for each role and its corresponding actor. In this

section, we would like to highlight the reason why it makes sense to use the TOSCA specification

for those who develop cloud services and those who deploy and operate them. Furthermore,

there is an incentive for service consumers to choose services deployed and operated using

TOSCA.

Although the majority of this document will be from the view of the TOSCA role of a Cloud

Service Developer, the following table shows the benefits of TOSCA for each service role:

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 12 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

TABLE 1 - TOSCA BENEFITS BY SERVICE ROLE

TOSCA Service Roles

Cloud Service

Consumer

Cloud Service Developer Cloud Service Provider

Cloud Service Consumers

benefit indirectly from the

standardization which

TOSCA brings to the Cloud

Service Developer and

Cloud Service Provider.

These benefits include:

 More choices and
flexibility in Cloud
Provider.

 Lower set-up and
operational costs from
TOSCA automation.

A Cloud Service Developer uses

TOSCA as the standard to get

their developed services at Cloud

Service Providers in place. These

persons:

 Leverage the operational
expertise of Cloud Service
Providers

 May further leverage the
business/distribution network
of Cloud Service Providers

 Are able to choose from a
wider range of cloud service
providers.

 Can work with multiple Cloud
Service Providers in different
legal environments with
reasonable effort.

A Cloud Service Provider

uses TOSCA to rapidly offer

and deploy cloud services

developed by Cloud Service

Developers for Cloud Service

Consumers. Provides:

 Act as resellers for
services developed by
cloud service developer.

 Can extend service
offerings and revenue
chances.

 Optimize deployment and
operational procedures
and expenses.

 Optimize the time to
market for services

2.1.3 TOSCA Processing Environment

A TOSCA environment, operated by a Cloud Service Provider, might include various features that

would be used to process TOSCA definitions according to the specification. These features may

in turn be grouped into and provided as components that can be described as parts of cloud

architectures. Many different ways of grouping these features into components and arranging

these components into architecture exist. In addition, each vendor may decide which set of

features to support and how they would be provided within their specific architecture. The

figure below shows an example of a complete TOSCA environment in order to better help the

reader comprehend the conceptual modeling and processing steps behind the TOSCA

specification (see Figure 1).

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 13 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

FIGURE 1 - SAMPLE ARCHITECTURE OF A TOSCA ENVIRONMENT

Cloud applications are typically packaged in TOSCA using Cloud Service Archive (or “CSAR”) files.

While the format of a CSAR file is defined by TOSCA, the way in which such files are created is

out of scope of the specification. These archives could be created manually, but the TOSCA

environment suggests that (graphical) TOSCA Modeling Tools would be offered to Cloud Service

Developers to ease the creation of CSAR files. Nevertheless, the Modeling Tool is optional in a

TOSCA environment, which is indicated by rendering it via a dashed box. Similarly, the Process

Engine and the Model Interpreter are optional components as well, which is why they are also

depicted by dashed boxes. However, when processing a CSAR in an imperative manner (see

Section 2.2.3.1), a Process Engine is a mandatory component, but the Model Interpreter is still

optional. Conversely, when processing a CSAR in a declarative manner (see Section 2.2.3.1) the

Model Interpreter is mandatory and the Process Engine may be omitted.

During normal processing, CSAR files would be passed to the TOSCA Container within the

environment: the TOSCA Container (or simply container for short) understands all the steps

necessary to deploy, manage and decommission the cloud application over its lifecycle

according to its definition.

As its first action, the container forwards a CSAR to the CSAR Processor which is the component

in charge of processing the CSAR file in such a way that it can be initially deployed (step 1 in

Figure 2). For this purpose, the CSAR Processor may interact with a Model Interpreter

component (step 2 in Figure 2). Such an interaction may be necessary in case the cloud

application packaged into the CSAR is processed declaratively.

The CSAR Processor will extract the definitions from the CSAR and pass them to the Definition

Manager (step 3 in Figure 2). The Definitions Manager is in charge of storing the definitions into

the Model Repository such that all the definitions are available later on (step 4 in Figure 2).

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 14 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Furthermore, the CSAR Processor would also extract all implementation artifacts and

deployment artifacts from the CSAR and passes them to the Artifact Manager (step 5 in Figure

2). The Artifact Manager component stores the artifacts in appropriate artifact stores (step 6 in

Figure 2). This may include storing virtual images into image libraries available in the

environment, storing scripts in subdirectories, etc. Next, the Deploy Manager is in charge to

deploy all implementation artifacts into the environment (step 7 in Figure 2). Once this is done,

the executables of all operations of node types and relationship types used in the topology

template of the cloud application are available in the environment and ready for use.

FIGURE 2 - SAMPLE "DECLARATIVE" PROCESSING SEQUENCE WHEN IMPORTING A CSAR

In an alternative processing flow (Figure 3), the TOSCA Modeling Tool (step 1 in Figure 3),

instead of the container, may interact with a Model Interpreter component (step 2 in Figure 3)

to transform a declarative model specified by an application architect into a completely

imperatively processable model (step 3 in Figure 3) before it is packaged into a CSAR. In that

case, the CSAR will always contain definitions that can be imperatively processed freeing the

container from dealing with the declarative processing model at all.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 15 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

FIGURE 3 - SAMPLE EXTENSION OF A CSAR FOR "IMPERATIVE" PROCESSING

In the case where the TOSCA service template contains plans, the TOSCA container would

perform additional imperative processing steps that continue from those shown in Figure 2 for

the declarative case. The Deploy Manager of the container will deploy each plan into the Process

Engine (step 7 in Figure 4). Deploying a plan into the Process Engine includes binding the tasks of

the plans to the formerly deployed implementation artifacts: a task in a plan may refer to the

operations of node types and relationship types, and the implementation artifacts of these

operations are now known because they have been deployed at concrete endpoints in the

environment before.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 16 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

FIGURE 4 - SAMPLE "IMPERATIVE" PROCESSING SEQUENCE WHEN IMPORTING A CSAR

After these steps, the environment is set up for managing the cloud application represented by

the CSAR and instances of the cloud application can be created. Creation of an instance of the

cloud application is performed by the Instance Manager (step A in Figure 4). An instance of a

cloud application is created by either invoking the build plan of the cloud application (i.e.

imperative processing as shown in step B in Figure 4) that is executed by the Process Engine, or

by interacting with the Model Interpreter (i.e. declarative processing as shown in step B’ of

Figure 4). Once a cloud application has been created it can be managed by invoking the other

plans defined in the service template of the cloud application; these plans are executed by the

process engine (step C in Figure 4). Finally, when the cloud application is no longer needed, it is

decommissioned (by means of a plan performed by the Process Engine, or via the Model

Interpreter).

Note: The Process Engine is shown above as an optional component of the
environment. In the case where a cloud application will be processed in a
declarative way, i.e. without any plans, a process engine is not needed.

2.2 Roles Involved in Modeling a Cloud Application

In this document, we attempt to author sections that are targeted to the possible roles that may

be involved with developing or interacting with cloud applications modeled using TOSCA:

The technical roles this document primarily addresses include the type architect, the artifact

developer and the application architect and are profiled in this section. Each of these roles is a

specialization of the generic role cloud application service developer. Depending on your

company, the same person may fulfill more than one of these specialized roles. Concerted

actions of these three roles are required to create a TOSCA service template and a

corresponding TOSCA Cloud Service Archive (CSAR).

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 17 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

There are two other roles that may be concerned with TOSCA modeled cloud applications: the

cloud service consumer and the cloud service provider. The cloud service consumer makes use of

a modeled cloud application service, e.g. by following the self-service paradigm, browsing a

cloud service catalogue and deciding to subscribe to a particular cloud service. The cloud service

provider offers an environment (which will typically encompass a TOSCA container) in which

cloud services can be run, especially provisioned, managed, and decommissioned.

Both these last two roles are typically not involved in the details of creating a service template,

its types, artifacts, or the CSAR packaging of a cloud service. However, if you have a cloud service

provider role and want to understand more about deploying TOSCA service templates, please

read Section 5.

Note: In the subsequent sections, we use the notion of cloud services and cloud
applications synonymously.

2.2.1 Type Architect Role

The type architect is an expert for the types of components required by applications as well as

the various types of connections between these components. This especially includes

knowledge of the local management behavior of such components and connections, which is

defined as the operations of these components and connections. Types of components are

defined as TOSCA Node Types, and types of connections are defined as TOSCA Relationship

Types.

For example, web applications based on the Java programming language may consist of

“servlets” (or granular services) that run in a web server. These servlets may require a relational

Database Management System (DBMS) for managing persistent data. A type architect will then

define a “Servlet” node type, a “Web Server” node type, as well as a “DBMS” node type.

Since servlets are deployed on web servers, the type architect might define a relationship type

“HostedOn” that can be used to express the corresponding relationship between a servlet and

its web server. Similarly, a relationship “ConnectsToDBMS” will be defined to express the

servlet’s requirement for accessing a DBMS. The local management behavior of a specific DBMS

includes operations for starting and stopping the database system, for backup and recovery of

particular database content and other tasks.

Often, type architects are employees of vendors offering components or the ability to connect

such components for use by application architects to define their cloud applications. For

example, the vendor of a specific relational database system may define a node type that

defines the properties of that relational database system as well as its local management

behavior. For this purpose, the type architect may inherit from the “DBMS” node type

mentioned above; this new, derived node type may define additional properties and include

local management behavior (as additional operations) that is common for all relational database

systems, independent of the specific product of a particular vendor. Such product-independent

node types (as well as relationship types) may be defined by vendor consortia, for example, to

ease the definition of product-specific types and to ensure within a cloud application the

exploitation of different products in different environments.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 18 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Note: The entire cloud application itself (i.e. its own service template) may be
treated as a single set of services and defined as another TOSCA Node Type.

For example, a cloud application representing a clustered application server
(perhaps consisting of an HTTP server, a cluster manager, several cluster
members, etc.) may be grouped together and defined as a new node type called
“ScalableAppServer”. This can be achieved by exporting relevant properties and
operations of the enclosed node templates and relationship templates to “the

boundary” of the service template (by means of the BoundaryDefinition

element). In such a way, node types can be “implemented” by means of the
language provided by TOSCA itself, supporting a recursive model of specifying
increasingly complex cloud applications.

If you hold the role of a type architect, we recommend reading the contents of Section 3.

2.2.2 Artifact Developers Role

While the type architect is a specialist on the enablement of the management behavior of cloud

applications as well as providing components of cloud applications and their connections, the

artifact developer is an expert in code artifacts. They are in charge of providing and describing

the installables and executables required to instantiate and manage a cloud application. For this

purpose, the artifact developer defines the corresponding TOSCA Node Type Implementations

and Relationship Type Implementations.

TOSCA supports two kinds of such code artifacts, namely Implementation Artifacts and

Deployment Artifacts. Implementation artifacts are the executables implementing the

operations of the interfaces of node types and relationship types. Deployment artifacts are the

installables of the components that make up a cloud application; these components are defined

by means of node types.

Each artifact has a TOSCA Artifact Type. An artifact type defines the kind of an artifact (e.g. a

Java Archive or “JAR” file or an RPM package), as well as the kind of information required to

correctly process the corresponding artifact. For example, an artifact type named “JARfile” may

specify that a JAR file has a file name and a version number.

A TOSCA Artifact Template represents a reusable artifact (e.g. a particular RPM package, or a

particular JAR file) and provides the actual information required to cope with the artifact. An

example would be a JAR file, which provides a service for registering customers, and has the file

name “RegisterCustomer” and has the version “1.0”. An artifact template points to the actual

code it represents, for example by pointing to a CSAR or to an FTP address.

All implementation artifacts and deployment artifacts required to install, run, and manage an

instance of a node type or a relationship type is defined as a TOSCA Node Type Implementation

or TOSCA Relationship Type Implementation, respectively. A node type implementation or a

relationship type implementation refers to the artifact templates needed in order to bundle

appropriate implementation artifacts and deployment artifacts. An implementation artifact or a

deployment artifact may add further information about the artifact used, which is dependent on

its usage context; for example, authentication information might be required to process an RPM

package.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 19 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

In order to provide components that are useful in different kinds of cloud applications, the

corresponding node types and associated node type implementations must be defined. The

same is true for connections between components of cloud applications: they are defined by

relationship types and relationship type implementations. Thus, type architects provide the type

definitions that artifact developers take as basis for creating their implementations.

Related type definitions and implementations might then be packaged by vendors into CSARs.

These packages may then be used by application architects to import the corresponding types

and implementations allowing them to reuse the types and implementation in building their

own cloud applications.

If you hold the role of artifact developer, we recommend reading the contents of Section 4.

2.2.3 Application Architect Role

The application architect is an expert in both, the overall structure of a cloud application, its

composite types and artifacts, as well as its global management behavior covering its complete

lifecycle. The structure of a cloud application is specified by means of a topology template. Thus,

the application architect identifies and defines the node templates making up a cloud

application as well as the relationship templates wiring the collection of node templates into the

topology of the cloud application. For this purpose, the application architect relies on node

types and relationship types available at their disposal, and that have already been defined by a

type architect previously. However, some application architects may also need to define their

own node and artifact types when ready-made types have not been made available to them by

some type architect. In these cases, the application architect would need to understand the

functions described for the type architect and artifact developer roles already discussed in this

chapter.

The global management behavior covering the complete lifecycle of a cloud application is

defined by means of plans. A plan is a workflow that specifies the sequencing in which individual

management operations offered by the node templates and relationship templates making up

the cloud application have to be executed. The management operations available for the node

templates and relationship templates are exactly the operations defined by the type architect

when specifying the node types and relationship types of the corresponding templates.

Furthermore, a plan may include any other task required to define overall management

behavior. For example, acquiring a license for a cloud application might be realized by a plan.

This plan may use operations for acquiring licenses of each individual component of the cloud

application. Corresponding operations may have been defined by the type architect of the node

types and relationship types of the affected templates.

A topology template and its corresponding plans are referred to collectively as a service

template. A service template is the definition of the types of components that make up a cloud

application. The executables required to actually instantiate, run and manage the cloud

application are packaged with the service template into a CSAR (i.e. a Cloud Service ARchive).

Typically, a CSAR is a self-contained and portable representation of a cloud application that can

be deployed and managed in an environment that supports TOSCA.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 20 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

If you hold the role of an application architect, we recommend reading the contents of Section

6.

2.2.3.1 A Note on Imperative Processing and Declarative Processing of Service
Templates

TOSCA supports processing of service templates in two different flavors. The first, referred to as

imperative processing of a service template, requires the complete topology of a cloud

application to be explicitly defined, as well as all of its management behavior by means of plans.

The second flavor, referred to as declarative processing of a service template, is based on the

assumption that it is possible to infer the management behavior of the corresponding cloud

application (e.g. how to deploy the application); this typically requires the precise definition of

the semantics of node types and relationship types and their correct interpretation within a

TOSCA environment.

In other words: the imperative processing flavor specifies precisely how a cloud application is

structured and managed, while the declarative processing flavor specifies what structural

elements of a cloud application are needed and what management behavior is to be realized.

While the TOSCA specification already provides hooks (such as TOSCA plans) for defining models

that encompass imperative processing of service templates, its current focus in the first version

of the specification is on declarative processing.

As an example, you want to model a cloud application that consists of a customer database that

is managed by a relational database system that makes use of block storage. The topology of the

corresponding cloud application consists of three nodes (see Figure 5 below): the “CustomerDB”

node, the “MyDBMS” node, and the “MyBlockStore” node.

These three nodes are connected by two relationships: the “CustomerDB_on_MyDBMS”

relationship connects the “CustomerDB” node and the “MyDBMS” node; the

“MyBlockStore_for_MyDBMS” relationship connects the “MyDBMS” node and the

“MyBlockStore” node. Furthermore, the figure also depicts the operations of the nodes and the

relationships that are offered to manage the overall cloud application. In this example, the

“MyDBMS” node offers the “Install()” operation used to install in instance of the database

system in the environment. This explicitly defines the topology of your cloud application.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 21 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

FIGURE 5 - TOPOLOGY OF A SIMPLE CLOUD APPLICATION

Note: In order to ease comprehension of the basic mechanisms behind TOSCA
we are bit lax in this section when using TOSCA terminology. For example, we
do not distinguish between node types and node templates, or relationship types
and relationship templates, respectively, but we just speak about nodes and
relationships. In the other sections of this primer, we use the precise language
established by TOSCA.

For example, the precise terminology would be “the CustomerDB node template
refers to the DBMS node type” etc. We will explain the differences between types
and templates in the following sections.

In case you focus on deployment and decommissioning of your cloud application, you don’t

have to provide additional plans to the topology. This is because the Model Interpreter (see

Section 2.1.3) of your TOSCA container can infer how to initially deploy and finally

decommission the cloud application. The model as depicted in Figure 2 is sufficient for

declarative processing of the sample cloud application. For example, the Model Interpreter can

(in a nutshell) simply navigate the topology “from the leaves to the root”. For each node

reached it will invoke the operation distinguished as the one to use for creating an instance of

the node, and similar for the relationships.

For this purpose, each node and relationship must support basic lifecycle operations such as an

operation to create and delete instances, starting and stopping instances and so on. When

initially provisioning a new instance of a cloud application, the Model Interpreter will determine

the corresponding operation of each node (or relationship, respectively, if necessary). Also, the

order in which relations have to be considered must be clear. For example, when provisioning

an instance of the sample cloud application, the “Attach()” operation of the

“MyBlockStorage_For_MyDBMS” can only meaningfully be performed once the “MyBlockStore”

is allocated and the “MyDBMS” is installed.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 22 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

FIGURE 6 - SERVICE TEMPLATE OF A SAMPLE APPLICATION INCLUDING A BUILD PLAN

In contrast to declarative processing that relies on a Model Interpreter available in the

environment, imperative processing of the cloud application extends the topology by explicitly

modeled plans that specify how to manage the cloud application. For example, Figure 6 shows

the plan that ensures the initial deployment of the cloud application – such kind of plan is called

a build plan. This plan will first perform the Get Storage task that is bound to the “Allocate()”

operation of the “MyBlockStore” node. Next, the “Install DBMS” task will invoke the “Install()”

operation of the “MyDBMS” node, the “Attach Storage” task will invoke the “Attach()”

operation of the “MyBlockStore_For_MyDBMS” relationship, and so on. This explicitly defines

how to set up the environment for your “CustomerDB” cloud application. Recall (as sketched in

Section 2.1.3), that the implementation artifacts of these operations will be deployed before by

the Deployment Manager of the TOSCA container, i.e. they are available in your environment

and can be bound to the tasks of the plan during deployment of the plan itself.

2.2.3.2 Note on Advanced Processing of Service Templates

Typically, the topology will be same whether it is processed imperatively or declaratively. But

the flavor of declarative processing of a service template may get more advanced making

modeling of cloud applications even easier. As describe before, declarative processing infers

plans for provisioning and decommissioning of instances of the specified topologies. More

advanced declarative processing may be based on nodes of the topology that simply declare

requirements on their “downstream” topology. In a supporting TOSCA environment, nodes have

been made available that specify their capabilities, allowing the Model Interpreter of the

environment to match requirements and capabilities. As a result, topology models including

requirements and capabilities will be “auto-completed”.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 23 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

For example, the modified topology of your cloud application may specify just two nodes (see

Figure 7, left side): the “CustomerDB” node and the “MyDBMS” node. The latter node is

associated with an explicit requirement for “BlockStorage”, called “BlockStorage_Needed” in the

figure. The environment may be aware of a node that explicitly declares a matching capability:

in the figure the “BlockStore” node is show that declares the “BlockStorage_Offered” capability

(and that has been defined to correspond to the “BlockStorage_Needed” requirement). The

Model Interpreter of a TOSCA environment will then match the requirement and the capability.

Thus, it will automatically extend the specified topology accordingly: the topology on the right

side of Figure 7 results. Furthermore, it will infer the corresponding build and decommissioning

plans as sketched before.

FIGURE 7 - SERVICE TEMPLATE THAT MAKES USE OF REQUIREMENTS AND CAPABILITIES

Declarative processing of service templates that supports derivation and the addition of plans

requires a very crisp and precise specification of node types and relationship types by type

architects. Also, type architects must follow certain conventions. For example, node types must

provide a lifecycle interface that encompasses operations for starting, stopping, etc. instances of

the node type. Relationship types must define the order in which their sources and targets must

be manipulated. The order in which relationship types have to be considered when “generating”

a plan must be defined; for example, the relationship type “DependsOn” must take preference

of the relationship type “ConnectsTo”. In order to make use of auto-completion features for

topologies the type architect must specify requirements and capabilities as well as their

matching.

The declarative approach puts much more burden on the type architect, while the imperative

approach puts much more burden on the application architect. In practice, more complex cloud

applications will be modeled by a combination of both modeling approaches. For example, while

the behavior for initial deployment and decommissioning may be inferred in many cases from

the topology of a cloud application, plans for granting access rights and establishing security

policies can typically not be inferred, i.e. they have to be modeled explicitly. Similarly, defining

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 24 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

precedence rules for relationship types might get complex when the number of such types

increase, and a TOSCA environment (Section 2.1.3) may not automatically support all such

predefined relationship types and the preference rules. In any case, the imperative approach

will work because the application architect precisely instructs the TOSCA environment how to

manage a cloud application (including initial deployment and decommissioning) – of course,

interoperability can only be achieved if the plans specified by the application architect only

make use of operations defined as part of the associated topology, and no operations are used

that are proprietary to a specific environment.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 25 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3 What Type Architects Should Know About TOSCA
The type architect is an expert for the types of components required by applications as well as

the various types of connections between these components. By defining such components (i.e.

TOSCA Node Types) and connections (i.e. TOSCA Relationship Types) the type architect enables

an application architect to specify the topology of a cloud application.

Furthermore, the type architect specifies types of requirements and capabilities. Such

requirement types and capability types are the basis for defining requirements and capabilities

of individual node types. In turn, requirements and capabilities of node types eases the correct

specification of cloud applications, thus, supporting application architects: for example,

graphical modeling tools may check the validity of relationship types used to connect two node

templates; or a tool may suggest node types that may be connected to an already chosen node

type; or an environment may bind node types to a node of a topology the requirements of

which have not been fulfilled yet.

Finally, the type architect defines the interfaces of a node type, as well as the source interfaces

and target interfaces of relationship types. This is a perquisite for defining all management

behavior by application architects: the declarative flavor of processing service templates

depends on the existence of certain lifecycle operations for provisioning and decommissioning,

and the imperative flavor depends on proper interfaces by binding tasks of management plans

to the operations of these interfaces.

3.1 Providing Node Types and Relationship Types

3.1.1 Vendor Perspective

A vendor of components that should become the basis for cloud applications will typically

render these components as TOSCA Node Types. For example, a vendor that wants to offer their

database management system and web server as components to be used by their customers to

build cloud applications will define corresponding node types (e.g. a “MyDBMS” node type and a

“MyWebServer” node type, respectively). Furthermore, the vendor will also define a

corresponding relationship type representing the ability to connect their database management

system and their web server. For example, the “MyWebServer_ConnectsTo_MyDBMS”

relationship type supports enables the construction of a connection between the DBMS and the

web server of the vendor, as well as later destroying an existing connection at decommissioning

time.

Often, different vendors offer products of the same type. For example, ”vendor X” as well as

“vendor Y” may offer a web server. Both products may have vendor specific aspects like vendor

specific operations or properties; thus, two different vendor specific node types will result (e.g.

the “XWebServer” and the “YWebServer” node types). Nevertheless, both node types will

typically have a lot of commonalities like properties as “ServerName” or “IPAddress”, or the

lifecycle interface; thus, a common node type “WebServer” can be defined specifying the

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 26 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

commonalities of all web servers of the different vendors. The vendor specific node types

“XWebServer” and “YWebServer” will then inherit from the common “WebServer” node type,

which will only define vendor specifics on top of the “WebServer” node type.

3.1.2 Node Types

The following NodeType element defines the “ApacheWebServer” node type. It inherits from

the “WebServer” node type as specified in the nested DerivedFrom element. The Apache-

specific properties are defined in the PropertiesDefinition element; these properties will

typically add new properties compared to the inherited “WebServer” properties but it may also

override definitions specified for the “WebServer” node type. The “ApacheWebServer” defines

two capabilities defined by separate CapabilityDefinition elements. The first capability

specifies that an “ApacheWebServer” node may contain any number of Web Application nodes

(as indicated by the value “0” of the lowerBound attribute and the “unbounded” value of the

upperBound attribute of the corresponding CapabilityDefinition element). Similarly, the

second capability specifies that an “ApacheWebServer” may contain any number of modules.

Finally, the “ApacheWebServer” defines a single interface, which is the lifecycle interface (see

below).

 <NodeType name="ApacheWebServer">
 <documentation>Apache Web Server</documentation>

 <DerivedFrom typeRef="ns1:WebServer"/>

 <PropertiesDefinition element="tns:ApacheWebServerProperties"/>

 <CapabilityDefinitions>

 <CapabilityDefinition

 capabilityType="tns:ApacheWebApplicationContainerCapability"

 lowerBound="0" name="webapps" upperBound="unbounded"/>

 <CapabilityDefinition

 capabilityType="tns:ApacheModuleContainerCapability"

 lowerBound="0" name="modules" upperBound="unbounded"/>

 </CapabilityDefinitions>

 <Interfaces>

 <Interface name="http://www.example.com/interfaces/lifecycle">

 <Operation name="install"/>

 <Operation name="configure"/>

 <Operation name="start"/>

 <Operation name="stop"/>

 <Operation name="uninstall"/>

 </Interface>

 </Interfaces>

 </NodeType>

3.1.3 The Lifecycle Interface

The lifecycle interface is defined by the following Interface element. Note, that this definition

is non-normative. The lifecycle interface defines five operations: the “install” operation will be

invoked to install (and, thus, instantiate) an instance of the node type containing this interface.

Configuration of the instance is achieved by invoking the “configure” operation. Starting and

stopping an instance is done by means of the “start” and “stop” operations. Decommissioning is

achieved by invoking the “uninstall” operation.

<Interface name="http://www.example.com/interfaces/lifecycle">

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 27 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 <Operation name="install"/>

 <Operation name="configure"/>

 <Operation name="start"/>

 <Operation name="stop"/>

 <Operation name="uninstall"/>

</Interface>

Note: These lifecycle operations are defined without any input or output
parameters. This means that each lifecycle operation “just” defines the effects
that can be achieved by it, i.e. the name of a lifecycle operation indicates its
semantics. It is expected that every implementation of a lifecycle operation of a
particular name understands this semantics and faithfully realizes it. For
example, an implementation of the start operation of a web server will start the
web server (and not stop it).

Different implementations of an operation of a particular name may expect different input

parameters and may produce different output parameters. For example, the configure

operation used by a DBMS node type will require different parameters than the “configure”

operation of a web server. It is expected that the user of a concrete implementation of a given

operation understands which parameters are to be exchanged. The knowledge of the actual

parameters exchanged may come from various sources, e.g. via documentation that comes with

the implementation.

The actual implementations of the operations of a NodeType are specified by a node type

implementation (i.e. by a NodeTypeImplementation element) provided for each node type.

The concrete executable of an operation of a node type is defined by a corresponding

ImplementationArtifact element of the node type implementation, which in turn

references an ArtifactTemplate element. This artifact template points to the executable

implementing the operation for the node type. More details about these relations are given in

Section 4; for a quick overview on these relations see Figure 8.

FIGURE 8 – DEFINING INTERFACES AND THEIR IMPLEMENTATIONS FOR PARTICULAR NODE TYPES

Note: Node Types may define additional interfaces that provide operations that
go beyond lifecycle capabilities. For example, a DBMS node type may define an

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 28 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

interface that supports the management of data stored by the DBMS; such an
interface may include operations for backup and restore tables, creating and
dropping indexes and so on.

3.1.4 Relationship Types

The following relationship type defines the ability to establish a connection to a SQL database.

This relationship type inherits from the “ConnectsTo” relationship type as specified in the

nested DerivedFrom element. The database connection can be established between any node

type that requires a connection to a SQL database and any node type that provides the

capability of being an SQL database: the ValidSource element defines possible source node

types (by means of a corresponding requirement type) and the ValidTarget element defines

the potential target node types (by means of a corresponding CapabilityDefinition type).

The “MySQLDatabaseConnection” relationship type also defines operations that can be used to

act on the source of the relationship: the SourceInterface element specifies the

“…/ConnectsTo” interface with the “connectTo” operation.

 <RelationshipType name="MySQLDatabaseConnection">
 <documentation>Connects on</documentation>

 <DerivedFrom typeRef="ns1:ConnectsTo"/>

 <SourceInterfaces>

 <Interface name="http://www.example.com/ToscaBaseTypes/ConnectsTo">

 <Operation name="connectTo"/>

 </Interface>

 </SourceInterfaces>

 <ValidSource typeRef="tns:MySQLDatabaseEndpointRequirement"/>

 <ValidTarget typeRef="tns:MySQLDatabaseEndpointCapability"/>

 </RelationshipType>

3.2 Using Inheritance

The use of inheritance is well-established and proven as very useful. To support inheritance in

TOSCA, each language element that allows defining types (i.e. node types, relationship types,

artifact types, requirement types, and capability types) has a nested DerivedFrom element

that allows supporting super types. In a non-normative manner, hierarchies for all these types

have been defined in order to achieve interoperability between TOSCA environments. Figure 9

(below) sketches these hierarchies.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 29 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

FIGURE 9 – NODE, ARTIFACT, RELATIONSHIP, REQUIREMENTS AND CAPABILITIES TYPE HIERARCHIES

The following “ApacheWebServer” node type inherits from the “WebServer” node type. This is

defined by means of a DerivedFrom element with the value “WebServer” specified for the

typeRef attribute.

 <NodeType name="ApacheWebServer">

 <DerivedFrom typeRef="ns1:WebServer"/>

 ...

 </NodeType>

The “WebServer” node type in turn inherits from the “RootNodeType”. Since the

“ApacheWebServer” node type inherits from the “WebServer” node type, an

“ApacheWebServer” node type has both, a “SoftwareContainerRequirement” as well as a

“WebApplicationContainerCapability” because this requirement and this capability has been

defined with the “WebServer” node type by corresponding nested RequirementDefinition

and CapabilityDefinition elements.

 <NodeType name="WebServer">

 <documentation>Web Server</documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 <RequirementDefinitions>

 <RequirementDefinition lowerBound="1" name="container"

 requirementType="tns:SoftwareContainerRequirement" upperBound="1"/>

 </RequirementDefinitions>

 <CapabilityDefinitions>

 <CapabilityDefinition

 capabilityType="tns:WebApplicationContainerCapability"

 lowerBound="0" name="webapps" upperBound="unbounded"/>

 </CapabilityDefinitions>

 </NodeType>

The next two code snippets show inheritance between relationship types (via the

RelationshipType element). The “MySQLDatabaseConnection” relationship type inherits

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 30 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

from the “ConnectsTo” relationship type, which in turn inherits from the

“RootRelationshipType” relationship type.

 <RelationshipType name="MySQLDatabaseConnection">

 <DerivedFrom typeRef="ns1:ConnectsTo"/>

 ...

 </RelationshipType>

Here is the definition of the “ConnectsTo” relationship type:

 <RelationshipType name="ConnectsTo">

 <documentation>ConnectsTo</documentation>

 <DerivedFrom typeRef="tns:RootRelationshipType"/>

 <ValidSource typeRef="tns:EndpointRequirement"/>

 <ValidTarget typeRef="tns:EndpointCapability"/>

 </RelationshipType>

The next section will show examples of the use of inheritance for both, requirement types and

capability types. Section 4.1 gives examples of inheritance between artifact types.

3.3 Providing Requirement Types and Capability Types

In TOSCA, requirements and capabilities allow to define dependencies between node types. For

example, the following “ApacheWebApplicationContainerCapability” capability type allows to

express the capability of a node type to serve as a runtime container for an Apache web

application; note, that the capability type inherits from the

“WebApplicationContainerCapability”. Each node type that includes a

CapabilityDefinition of this type (as the “ApacheWebServer” node defined above)

warrants that it can serve as a container for Apache web applications.

 <CapabilityType name="ApacheWebApplicationContainerCapability">
 <documentation>Apache Web Application

 Container Capability</documentation>

 <DerivedFrom typeRef="ns1:WebApplicationContainerCapability"/>

 </CapabilityType>

In case of the “ApacheWebServer” node type mentioned earlier, the node type actually refines

the generic “WebApplicationContainerCapability” inherited from node type “WebServer” by

specifying the specialized “ApacheWebApplicationContainerCapability”. It thereby restricts its

container capabilities to Apache web applications only, meaning that general web applications

may not necessarily run on instances of the node type.

 <NodeType name="ApacheWebServer">
 <DerivedFrom typeRef="ns1:WebServer"/>

 ...

 <CapabilityDefinitions>

 <CapabilityDefinition

 capabilityType="tns:ApacheWebApplicationContainerCapability"

 lowerBound="0" name="webapps" upperBound="unbounded"/>

 ...

 </CapabilityDefinitions>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 31 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 ...

 </NodeType>

The XML snippet above shows the refinement of the “webapps” capability inherited from the

“WebServer” node type. The capability type is refined to the specialized

“ApacheWebApplicationContainerCapability” type which is derived from the more generic

capability type “WebApplicationContainerCapability”.

When associating a node type with other node types (i.e. establishing relationship between

them) each requirement of the source of these associations should be matched by a capability of

one target of one of the associations. This way, requirements and capabilities support fulfillment

of dependencies and help to ensure correctness of the topology of cloud applications. Note, that

requirements and capabilities are not intended to express quality-of-services (like availability

classes, etc.). Such non-functional properties should be expressed by means of policies (which

are currently beyond the scope of this document).

The next “MySQLDatabaseEndpointRequirement” requirement type supports to express that a

certain node type requires a database endpoint that provides features of an SQL database

system. It inherits from the general requirement for database features. Note, that the

requirement type explicitly specifies by which capability type it can be satisfied by means of the

requiredCapabilityType attribute: this attribute refers to the satisfying CapabilityType.

 <RequirementType name="MySQLDatabaseEndpointRequirement"
 requiredCapabilityType="tns:MySQLDatabaseEndpointCapability">

 <documentation>MySQL Database Endpoint Requirement</documentation>

 <DerivedFrom typeRef="ns1:DatabaseEndpointRequirement"/>

 </RequirementType>

The following CapabilityType definition satisfies the former RequirementType:

 <CapabilityType name="MySQLDatabaseEndpointCapability">
 <documentation>MySQL Database Endpoint Capability</documentation>

 <DerivedFrom typeRef="ns1:DatabaseEndpointCapability"/>

 </CapabilityType>

Remark: The semantics of requirement types and capability types are
documented together with their formal XML definition. It is assumed that type
architects understand this semantics when claiming capabilities of the node types
they define; similarly, artifact developers will have to choose appropriate
implementations to ensure the warrants made by a type architect about the node
type they implement.

Typically, requirement types and capability types are very generic in nature. Thus, it is expected
that only few type architects will have to define their own requirement types and capability
types but that independent groups like vendor consortia or standardization bodies will define
these types.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 32 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3.4 Green Field Perspective

It is assumed that for popular application domains all types necessary to define cloud

applications in such a domain will be defined by interest groups, consortia, or standardization

bodies, for example. Thus, it will often be the case that the types you need will have already

been defined and you can use them immediately.

In other cases, you will have to define the necessary types. For example, if you are a vendor of

complex applications it is likely that not all types you need to model your application are already

defined by others. Or if you want to build cloud applications based on rarely used components,

the types required for these components (i.e. node types, requirement types, or capability

types) as well the relationship types used to connect your newly defined node types with other

node types must be defined by yourself.

3.5 Modular Design of Service Templates

The TOSCA Definitions element has a targetNamespace attribute. As usual, this allows to

scope names of definitions for two main purposes:

1. Avoiding name clashes, and

2. Reusing existing definitions by referring to them by name in their namespace.

In order to define new elements in a particular namespace you create a Definitions document,

set the value of its targetNamespace attribute to this particular value and, then, you specify

the new elements in this Definitions element. For example, in Figure 10 - Making Use of

Imports”, the service template defined in the Definitions document shown is put into the

namespace set by the Definitions element.

Note: that selective TOSCA language elements like service templates, node

type, and others, have their own targetNamespace attribute to support local

specification of namespaces for the names of these elements, but this is an
advanced usage that we will not discuss in this document.

The Definitions document is then stored somewhere. Typically, it will be made available via a

dereferencable URI. This URI is then used as value of the location attribute of an Import

element. A TOSCA processor will then make all the definitions of the imported document

available in scope of the importing Definitions document. This way, the TOSCA Import element

supports reuse of definitions.

Note: Not only can TOSCA Definitions documents be imported in this manner,
but also any other types of definitions can be imported via the same mechanism.

To ease processing of imported documents, the Import element has an

importType attribute the value of which indicates the kind of information

imported (e.g. an XML schema document, a BPMN document, along with a
TOSCA Definitions document).

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 33 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

FIGURE 10 - MAKING USE OF IMPORTS

In Figure 10, the Definitions document imports types that have been already defined in the own

namespace of the Definitions document. This way, TOSCA supports a modular approach to

define service templates: different kinds of types may be specified in different Definitions

documents. For example, node types of your application will be defined in a different document

than the capability types of your application. This allows type architects with different focus to

define their own Definition documents and make them available for import into other

Definitions document. The figure also indicates that all elements newly defined in the Definitions

document shown will be in the same namespace that contains the own type definitions.

Similarly, the document imports two documents that contain definitions that are domain-

specific (for example, node types and relationship types that are useful for web applications) as

well as definitions that are domain-independent (for example, a “Server” node type and an

“OperatingSystem” node type). Both, the domain-specific definitions and the domain

independent definitions have been defined by other groups like interest groups, industry

consortia, standardization bodies, or vendors.

Finally, not only types can be defined in particular namespaces and be made available in

separate files but also node type implementations and relationship implementations. This allows

a vendor to make use of types defined elsewhere to provide the implementations of these types

based on their products. For example, “vendor X” may use the “DBMS” node type and provide a

definitions document for the “X_DBMS” node type implementation by importing the document

containing the “DBMS” node type and adding the vendor specific information to the

corresponding node type implementation.

3.6 Simplifying Application Modeling: Composable Service Templates

Remark: This section describes an advanced feature of TOSCA; thus, you may
choose to skip this section at a first pass through the document. When you need
to express more complex applications using TOSCA as composable service
templates, you may want to return here to understand this concept.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 34 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3.6.1 Turning Service Templates into Composables

Often, not only individual types can be reused but complete topologies are meaningful in many

situations. For example, in most cases a Web server requires persistency by means of an SQL

Database system; the connection between the corresponding two node types is achieved via an

appropriate relationship type. TOSCA supports to model a corresponding service template and

turn this service template into a substitutable for a node type. This is achieved by means of the

BoundaryDefinitions element: This element contains nested elements that can refer to the

constituencies (like node templates etc.) of the service template and “export” corresponding

definitions “to the boundary” of the service template. This way, the service template “looks like

a node type” and can be used as such in another service template.

In the following code snippet, the BoundaryDefinitions element defines the properties of

the service template rendered as a node type: each of these properties is defined by a mapping

prescription of properties of node templates or relationship templates of making up the

topology of the service template. Similarly, individual operations of nodes can be referenced to

be visible as operations of the service template rendered as node type.

 <ServiceTemplate name="WebAppInfrastructure" ...>

 <BoundaryDefinitions>

 <Properties>

 <PropertyMappings>

 <PropertyMapping .../>

 </Properties>

 <Interfaces>

 <Interface name=...>

 <Operation name=...>

 <NodeOperation nodeRef=...

 interfaceName=...

 operationName=.../>

 </Operation>

 </Interface>

 </Interfaces>

 </BoundaryDefinitions>

 </ServiceTemplate>

3.6.2 Using Abstract Node Types

A node types may be defined as abstract by setting the value “yes” for its abstract attribute. A

node template that is defined based on an abstract node type cannot be instantiated. Thus, in

order to be able to instantiate a node template, its node type must be concrete.

One way to turn an abstract node type into a node type that can be used as the basis for an

instantiatable node template is to define another node type that is derived from the abstract

node type and that is not an abstract node type. This way, abstract node types define common

knowledge or best practices about the component services that make up cloud applications and

that would need to be refined by more concrete definitions.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 35 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3.6.3 Substitution of Abstract Node Types by Service Templates

One way abstract node types can be made concrete is by substituting them by a service

template that has been defined as being a substitute for another node type by proper boundary

definitions.

A node type can be substituted by a service template. For this purpose, a service template must

be turned into a substituting (or composable) service template by defining a

BoundaryDefinitions element for it (see section 3.6.1). Figure 11 depicts a service template

“ST” that exposes selective properties, operations, capabilities, and requirements of some of its

ingredients to the outside. This is done by corresponding boundary definitions like

PropertyMappings for defining the properties visible at the boundary of the service template

“ST”, or NodeOperation elements for exposing operations of interfaces available at the

boundary of “ST”.

FIGURE 11 - SERVICE TEMPLATE SUBSTITUTING A NODE TYPE

Service template “ST” may substitute node type “N” because the boundary of “ST” matches all

defining elements of “N”: all properties, operations, requirements and capabilities of “ST” match

exactly those of “N”. From this perspective, “N” and “ST” are undistinguishable, i.e. the service

template “ST” may substitute node type “N”. Especially, an abstract node type may be

substituted by a service template that matches all the characteristics of the abstract node type.

To ease the matchmaking of a service template and a node type the ServiceTemplate

element may explicitly set its substitutableNodeType attribute to the name of the node

type it can substitute.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 36 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

4 What Artifact Developers Should Know About TOSCA
As discussed before, the artifact developer is an expert in code artifacts: he is in charge of

providing the installables and executables required to instantiate and manage a cloud

application. The upper half of Figure 12 depicts the definitions an artifact developer has to

provide in order to deliver an implementation of the “ApacheWebServer” node type. The figure

also shows how these definitions relate to each other.

FIGURE 12 - KEY DEFINITIONS FOR TOSCA ARTIFACTS AND THEIR RELATIONSHIPS

4.1 Defining Artifact Types

A TOSCA Artifact Type represents the kind of an installable or the kind of an executable. For

example, whether the installable is an image or zip file, or the executable is a script or a JEE

component.

In order to define the installables and executables required to provision and manage a cloud

application, the artifact developer needs to define (or make use of already existing) artifact

types. Artifact types are independent of any particular application domain and define the kind of

artifacts, e.g. that a particular artifact is a script or is an EJB. Artifact types also define the

properties of artifact types. These properties are assumed to be invariant, i.e. an artifact

implementation that is based on an artifact type specifies values for the properties that are

independent from the concrete use of the artifact implementation. When an artifact

implementation is actually used in an implementation artifact or a deployment artifact,

additional individual variant information can be added to the invariant data in the artifact

specific content field of the corresponding implementation artifact or deployment artifact.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 37 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

The following (non-normative) ScriptArtifactProperties element describes the invariant

metadata of an implementation artifacts or a deployment artifact that is a script: a script

(according to the ScriptArtifactProperties element) always has “ScriptLanguage” and a

“PrimaryScript” elements.

 <xs:element name="ScriptArtifactProperties">
 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="tScriptArtifactProperties"/>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="tScriptArtifactProperties">
 <xs:complexContent>

 <xs:extension base="tExtensibleElements">

 <xs:sequence>

 <xs:element name="ScriptLanguage" type="xs:anyURI"/>

 <xs:element name="PrimaryScript" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

The ScriptArtifactProperties element is referenced within the following “ScriptArtifact”

ArtifactType as part of the PropertiesDefinition element’s element attribute. This

artifact type is derived from the “RootArtifactType” representing the common definitional items

of all artifact types in our sample domain.

 <ArtifactType name="ScriptArtifact">
 <documentation>Script Artifact</documentation>

 <DerivedFrom typeRef="RootArtifactType"/>

 <PropertiesDefinition element="ScriptArtifactProperties"/>

 </ArtifactType>

4.2 Defining Artifact Templates

A TOSCA Artifact Template represents a concrete executable or installable. It provides actual

properties of the installable or executable (like the language of a script) and a reference where

to find the executable or the installable (like a link into a CSAR).

An ArtifactTemplate is based (by means of its type attribute) on an artifact type from

which it gets the kind of properties the values of which have to be specified for the concrete

executable or installable in its Properties element. The concrete executable or installable

itself is referenced in its ArtifactReference element: typically, the reference will be to an

object of the CSAR containing the artifact template itself, or via a dereferencable URL pointing

to the location where the artifact can be downloaded.

The following ArtifactTemplate specifies the information about the “configure.sh” script.

The properties of this script say that it is a shell script (via the ‘sh’ value of the

ScriptLanguage element), and that its primary script is

“scripts/ApacheWebServer/configure.sh” (via the PrimaryScript element). The reference

attribute of the ArtifactReference element points to the “scripts/ApacheWebServer”

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 38 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

directory of the CSAR including the artifact template; path expressions are always interpreted as

starting from the CSAR as the root of the directory tree. The Include element, nested in the

ArtifactReference element, specifies that the artifact template consists of exactly the

“configure.sh” script of that directory.

 <ArtifactTemplate id="314"
 type="ns1:ScriptArtifact">

 <Properties>

 <ns1:ScriptArtifactProperties

 xmlns:ns1="http://www.example.com/ToscaBaseTypes"

 xmlns="http://www.example.com/ToscaBaseTypes">

 <ScriptLanguage>sh</ScriptLanguage>

 <PrimaryScript>scripts/ApacheWebServer/configure.sh</PrimaryScript>

 </ns1:ScriptArtifactProperties>

 </Properties>

 <ArtifactReferences>

 <ArtifactReference reference="scripts/ApacheWebServer">

 <Include pattern="configure.sh"/>
 </ArtifactReference>

 </ArtifactReferences>

 </ArtifactTemplate>

Let us take a look at the pseudo-code for a different TOSCA Artifact Template (listed below). It is

an artifact template that consists of two scripts, the “connectToDatabase.sh” script and the

“runSilentInstall.sh” script. Both scripts are shell scripts (have an ‘sh’ value in the

ScriptLanguage element), and the “connectToDatabase.sh” script is the primary script

(specified in the PrimaryScript element); and the “runSilentInstall.sh” script is needed by the

“connectToDatabase.sh script” under certain conditions (you need to take a look at the contents

of the corresponding script to understand those conditions). The ArtifactReference

element points to the “scripts/MySQLDatabaseConnection” directory of the including CSAR (via

its reference attribute) and selects the “connectToDatabase.sh” script and the

“runSilentInstall.sh” script from that directory (by means of the nested Include elements).

 <ArtifactTemplate id="271"
 type="ns1:ScriptArtifact">

 <Properties>

 <ns1:ScriptArtifactProperties

 xmlns:ns1="http://www.exemple.com/ToscaBaseTypes"

 xmlns="http://www.example.com/ToscaBaseTypes">

 <ScriptLanguage>sh</ScriptLanguage>

 <PrimaryScript>scripts/MySQLDatabaseConnection/connectToDatabase.sh

 </PrimaryScript>

 </ns1:ScriptArtifactProperties>

 </Properties>

 <ArtifactReferences>

 <ArtifactReference reference="scripts/MySQLDatabaseConnection">

 <Include pattern="connectToDatabase.sh"/>

 <Include pattern="runSilentInstall.sh"/>
 </ArtifactReference>

 </ArtifactReferences>

 </ArtifactTemplate>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 39 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

4.3 Providing Implementations

A TOSCA Node Type Implementation or Relationship Type Implementation provided the

executables of the operations of the interfaces of the corresponding node or relationship types,

respectively, as well as the required installables. The executables of the operations are defined

as Implementation Artifacts, and the installables are defined as Deployment Artifacts: a node

type implementation (or relationship type implementation) bundles these artifacts into a single

unit.

The following NodeTypeImplementation bundles the ImplementationArtifacts for all

the operations of the “ApacheWebServer” node type (as referenced by its nodeType attribute)

and also provides a reference to an installable, in this case an “OSPackage”, as part of its

DeploymentArtifact. For each Operation that appears in the referenced nodeType’s

Interface element, the corresponding NodeTypeImplementation must provide a matching

ImplementationArtifact element. Specifically, each node type’s Operation has a name

attribute and this attribute’s value helps us locate the corresponding

ImplementationArtifact which will have an operationName attribute with the same

value. Once we locate the matching ImplementationArtifact via this method, we can use

artifact’s artifactRef and artifactType attributes to locate the actual executables.

In the sample code below, each ImplementationArtifact provides executables for the

lifecycle interface of the “ApacheWebServer” node type (e.g. “install”, “configure”, “start”,

“stop” and “uninstall”). Looking at ImplementationArtifact for the “configure” operation (as

indicated by its operationName attribute), we see that its executable is identified by the

artifactRef attribute’s value “314” which matches some ArtifactTemplate (defined

elsewhere) that has an id attribute also with the value “314”.. The ArtifactTemplate

referenced by its id, in this case, would provide the details about a “configure.sh” shell script

which implements the “configure” operation

Note: Although the values for the artifactRef of the

NodeTypeImplemention and the id of the ArtifactTemplate are simple

numbers in our examples, in actual practice these would be UUIDs to prevent
collisions of artifact references when composing and publishing service
templates for real world consumption.

Finally, the DeploymentArtifact element of the node type implementation refers to the

artifact template with identifier “23”. The referenced installable is an operating system package

as indicated by the value of its artifactType attribute.

 <NodeTypeImplementation name="ApacheWebServerImplementation"
 nodeType="tns:ApacheWebServer">

 <ImplementationArtifacts>

 <ImplementationArtifact

 artifactRef="11"

 artifactType="ns1:ScriptArtifact"

 interfaceName="http://www.example.com/interfaces/lifecycle"

 operationName="install"/>
 <ImplementationArtifact

 artifactRef="314"

 artifactType="ns1:ScriptArtifact"

 interfaceName="http://www.example.com/interfaces/lifecycle"

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 40 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 operationName="configure"/>
 <ImplementationArtifact

 artifactRef="13"

 artifactType="ns1:ScriptArtifact"

 interfaceName="http://www.example.com/interfaces/lifecycle"

 operationName="start"/>
 <ImplementationArtifact

 artifactRef="17"

 artifactType="ns1:ScriptArtifact"

 interfaceName="http://www.example.com/interfaces/lifecycle"

 operationName="stop"/>
 <ImplementationArtifact

 artifactRef="19"

 artifactType="ns1:ScriptArtifact"

 interfaceName="http://www.example.com/interfaces/lifecycle"

 operationName="uninstall"/>
 </ImplementationArtifacts>

 <DeploymentArtifacts>

 <DeploymentArtifact

 artifactRef="23"

 artifactType="ns1:OsPackageArtifact"
 name="http-packages"/>

 </DeploymentArtifacts>

 </NodeTypeImplementation>

Relationship types may have interfaces defined too: namely interfaces that can act on the

source of the relationship or on the target of the relationship. Thus, relationship types with

interfaces must be realized by corresponding RelationShipType elements.

The following RelationshipTypeImplementation element provides the implementation

artifact for the “connectTo” operation of the “ConnectsTo” interface of the

“MySQLDatabaseConnection” relationship type. The corresponding

ImplementationArtifact element refers to the artifact template with a reference identifier

(i.e. the artifactRef attribute) of “271”. This artifact template bundles the scripts

implementing the ability to connect to a particular database (see before).

 <RelationshipTypeImplementation

 name="MySQLDatabaseConnectionImplementation"
 relationshipType="tns:MySQLDatabaseConnection">

 <ImplementationArtifacts>

 <ImplementationArtifact

 artifactRef="271"

 artifactType="ns1:ScriptArtifact"

 interfaceName="http://www.example.com/ToscaBaseTypes/ConnectsTo"

 operationName="connectTo"/>

 </ImplementationArtifacts>

 </RelationshipTypeImplementation>

4.3.1 Coping With Environment-Specific Implementations

Implementation artifacts or deployment artifacts may depend on specific features they assume

to be available in an environment they are deployed in. For example, the executable of an

implementation artifact may make use of specific APIs in order to realize the operation it is

associated with. Such dependencies can be expressed by a set of

RequiredContainerFeature elements. Each such element denotes an individual

requirement by means of a URI. An environment that processes a service template uses these

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 41 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

features to determine the node type implementation of a certain node type that is most

appropriate for the environment.

 <NodeTypeImplementation

name="ApacheWebServerSpecialImplementation"
 nodeType="tns:ApacheWebServer">

 <RequiredContainerFeatures>

 <RequiredContainerFeature

 feature="http://www.example.com/RequiredFeatures/MyImageLibrary"/>

 </RequiredContainerFeatures>

 <ImplementationArtifacts>

 ...

 </ImplementationArtifacts>

 <DeploymentArtifacts>

 ...

 </DeploymentArtifacts>

 </NodeTypeImplementation>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 42 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

5 What Cloud Service Providers Should Know About
TOSCA

5.1 Adaptation to Particular Cloud Providers

While TOSCA’s goal is the definition of cloud services in a portable manner, i.e. independent of

the particular building blocks used in the actual cloud environment of a provider implementing a

TOSCA compliant cloud, there is a gap to bridge between the service definition itself and the

concrete infrastructure components to be used to run the instances of the cloud service. The

closer the elements of the service definition are related to the infrastructure, the harder it is to

keep them described in a portable way. The approach of TOSCA is to use appropriate and well

defined abstractions to allow portable definitions. Examples of such abstractions are J2EE

application servers, which – with different implementations – provide standardized abstractions

to be used by compliant applications, allowing them to ignore potentially significantly differing

aspects in the underlying operating system.

While this example shows, that these abstractions are typically used in hierarchical layers (with

the application being a layer on top of the application server, itself being a layer on top of the

operating system, which itself is an abstraction layer on top of the hardware), it also gets clear

this abstraction is more difficult to achieve as you get closer to particular hardware or

infrastructure, because the abstractions and associated standards are not so well known and

common, or despite of a well-defined, common standard, the actually used implementation

might vary significantly.

To solve this issue, some aspects or elements of a TOSCA cloud service definition need to be

mapped to the concrete elements used in the deployment of a service provider. TOSCA foresees

a few ways to achieve this mapping:

5.1.1 Deployment of implementation artifacts and deployment artifacts

In order to allow a service definition to accommodate for different elements in the

environment, the CSAR might contain so-called implementation artifacts or deployment

artifacts.

Deployment artifacts essentially contain (software) elements, which are needed to implement

the cloud service, for example they may contain the necessary J2EE modules for an application,

or a particular software application. These software elements might be dependent on the

actually available underlying abstractions, therefore the CSAR may contain multiple variations of

the artifact to match the actually used abstractions, if needed for a particular CSP. For example,

a CSAR might contain as a deployment artifact multiple different images (or references to those)

for the different target cloud provider environments containing the “same” software content

(e.g. Apache).

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 43 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

TOSCA Implementation Artifacts are routines which are needed for executing activities in the

course of managing the cloud service, for example to instantiate a service (aka “provisioning”),

adapting it to the used environment. Again, one CSAR may contain multiple variations of an

implementation artifact to address different infrastructure elements or services available in the

concrete deployment environment. As an example, the provisioning of additional storage

capacity independent of the VM image might use different variations of an implementation

artifact, e.g. one using OpenStack compliant interfaces, another using Amazon EC2 compliant

interfaces (as different abstractions) depending on the underlying provider infrastructure.

More information about deployment artifacts and implementation artifacts is available in

Section 4.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 44 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

6 What Application Architects Should Know About
TOSCA

This chapter introduces a cloud application that will serve as the “hello world” example for

incrementally describing some essential TOSCA concepts against a practical, real-world

application and expressing them using the TOSCA standard. This example may, at first glance

appear simple; however, it allows us to introduce some powerful capabilities that TOSCA

enables for the application architect. We will emphasize the declarative approach in defining

the application throughout this example in order to highlight the interoperability and reusability

possibilities of modeling using TOSCA.

First, we will show how TOSCA modeling can describe the logical groupings (parts) of an

application that should be deployed, configured and managed together as “tiers”. This same

grouping concept can also be used to communicate the scaling policies that apply to each tier so

that they can be independently scaled by cloud service providers to accommodate variations in

consumer demand.

Specifically, the cloud application in this example will consist of two tiers. One tier will describe a

typical Customer Relationship Management (CRM) web application which we will call the “web

application tier”. The other tier will describe a SQL Database, or “database tier”, which stores

the actual customer relational data the CRM application will connect to and use.

We will first show how the “database tier” can be described as layered, granular set of service

components, or TOSCA nodes, each declaring the hosting capabilities they offer which can be

matched to the requirements of other layers by the provider. We then take the cloud developer

through creating the granular description of the web application stack (or “tier”) in a manner

that permits them to be portable across different cloud service providers (even those that may

offer different underlying service models).

Finally, we show how to connect the “web application tier” to the database within the

“database tier” using a “ConnectsTo” relationship type that has its own connection-specific

requirements and capabilities for matching node templates and which itself can also carry a set

of configurable connection properties.

6.1 Single-Tier MySQL Database for our SugarCRM Web Application

Most every web application interacts with a Database Management System (DMBS) that serves

as the service layer on-top of a database that holds the domain-specific data the application is

concerned with in its “day to day” operations. This section begins by showing how TOSCA can be

used to model this common application dependency, specifically using a MySQL database, so

that it can be interoperably deployed and referenced on clouds that support TOSCA. We then

show how we can customize this generalized “database stack” into a “database tier” that our

example’s SugarCRM Web Application tier (see Section 6.2) can eventually reference from its

own TOSCA types, templates and artifacts.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 45 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

6.1.1 Required Node Types

When modeling using TOSCA, one of the first things you would need to do is to identify the

logical set of component services that the application is both composed of as well as those

services that the application relies upon for deployment, installation, execution and other

lifecycle operations. Each of these components would be represented as a TOSCA node type

each exporting an associated, configurable set of properties (or settings) as well as their

invocable operations.

Of course, the node types used to describe these components and their dependencies may be

fully defined within a single TOSCA service template itself; however, TOSCA permits node types

in one service template to reference nodes types defined externally by some other party. These

external types could be developed and published by infrastructure, platform, middleware and

software service providers so they are made widely available to cloud application architects.

This is done through the importing of Definitions documents as described in Section 3.5

”Modular Design of Service Templates”.

6.1.1.1 Define the Required Base Node Types

The first step a cloud developer should take when modeling their cloud application is to identify

the basic set of components services their application is comprised of. Most web applications

require some form of database along with the necessary components to deploy, host and

manage it over its lifecycle. The cloud application developer would then need to describe these

basic components, their interfaces and properties as TOSCA Node Types.

The following table describes the basic or “base” node types that we will use to compose a

typical database components “stack” using TOSCA:

TABLE 2 – SINGLE-TIER MYSQL DATABASE EXAMPLE'S BASE NODE TYPES

Base Node Type Name Description

Database Represents an abstract Database along with basic structure
(schema), properties and operations.

Database Management

Service (DBMS)

Represents an abstract Database Management Service
(DBMS) and its basic operations.

Operating System (OS) Represents an abstract notion of an Operating System
service (or Platform Service).

Server Represents an abstract notion of a “compute” service along
with its properties and operations. For example, this could
be further developed to describe a Virtual Machine (VM), a
Virtual Processing Unit (VPU) or an actual CPU when
describing the TOSCA cloud application to a cloud service

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 46 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

provider.

Tier Represents an abstract grouping concept for other node
types, typically used to describe a stack of software (nodes)
that should be managed and/or scaled together “as a Tier”.

These “base” node types derive from the TOSCA schema’s “root node” and would be

represented in pseudo-XML as follows:

 <NodeType name="Database">
 <documentation>A basic Database</documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 ...

 </NodeType>

 <NodeType name="DBMS">
 <documentation> A basic Database Management System </documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 ...

 </NodeType>

 <NodeType name="OperatingSystem">
 <documentation> A basic operating system/platform </documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 ...

 </NodeType>

 <NodeType name="Server">
 <documentation> A basic cloud compute resource</documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 ...

 </NodeType>

 <NodeType name="Tier">
 <documentation>Tier</documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 ...

 </NodeType>

Again, here we simply show the basic type definitions; other required elements of the TOSCA

NodeType element’s definition are discussed in later sections.

As you can see, many of these base node types which will serve the basic building blocks for our

example’s database tier might also be used when modeling web applications as well. In fact, in

the following section (section 6.2) will show how the “Tier”, “Server”, and “Operating System”

base node types are indeed referenced again as the “building blocks” for modeling the web

application components for a “web application tier”.

Additionally, these “base” node types allow us to conceptually “collapse” complex middleware

service models into basic, well-understood abstract node types cloud service providers might

accept and understand when deploying interoperable TOSCA applications. This concept would

allow developers to focus on modeling their application’s specific components, dependencies

and other details (in a declarative way) while not immediately concerning themselves with all

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 47 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

the possible implementations cloud service providers may choose to employ when orchestrating

their application.

In the next sections, we will show how the application architect can easily use these base types

to derive more specific (and even customized) node types that further describe the granular

details for their actual database components and supporting services.

As the TOSCA standard evolves, these “base” application node types would ideally be offered as

commonly defined TOSCA types (within a TOSCA Definitions document) and their orchestration

would be well-understood by multiple cloud service providers that encounter them. These node

types could include additional normative information including basic properties, capabilities and

operations common to services of that type. For example, any derivation of the DBMS base

node type might include some standardized set of properties, interfaces and policy

requirements common to most database management services, as well as exporting a typical

database service container’s hosting capabilities.

6.1.1.2 Define the Required Specific Node Types

Now that we have identified the “base” node types for modeling a database tier, the next step

for the developer would be to extend these types to more clearly represent the specific

middleware (and other software) our application actually uses. These new types would derive

directly from the “base” types we defined above and provide this next level of detail that

specialize them for “specific” software. To exhibit this concept, let’s further assume that the

company’s web application persists its customer data in a MySQL database which needs to be

described using a “specific” node type that builds upon the “base” database node type.

The following table describes the specific node types that would be needed to support a MySQL

database example along with the base types they extend from:

TABLE 3 – SINGLE-TIER MYSQL DATABASE EXAMPLE’S SPECIFIC NODE TYPES

Specific Node Type

Name

Extends Node Type Description

MySQL (DBMS) Database
Management
Service (DBMS)

Represents a specialized MySQL Database
Management Service (i.e. a specialized “DBMS”
node type).

MySQL Database Database Represents a node type “Database” node type
specialized for MySQL.

The pseudo-XML code sample below shows how these special node types for the MySQL

database service and MySQL database components (i.e. the “MySQLDBMS” and

“MySQLDatabase” node types respectively) might be defined. These are shown to derive from

the base node types we introduced in the previous section (using the typeRef attribute where

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 48 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

“ns1” represents the fully-qualified targetnamespace for those “base” node types and their

Definitions document):

 <NodeType name="MySQLDBMS">
 <documentation>MySQL</documentation>

 <DerivedFrom typeRef="ns1:DBMS"/>
 <PropertiesDefinition element="tns:MySQLProperties"/>

 <Interfaces>

 <Interface name="http://www.example.com/interfaces/lifecycle">

 <Operation name="install"/>

 <Operation name="configure"/>

 <Operation name="start"/>

 <Operation name="stop"/>

 <Operation name="uninstall"/>

 </Interface>

 </Interfaces>

 </NodeType>

 <NodeType name="MySQLDatabase">
 <documentation>MySQL Database</documentation>

 <DerivedFrom typeRef="ns1:Database"/>
 </NodeType>

It is envisioned, that as TOSCA gains adoption, middleware and cloud service providers would

develop, publish and maintain normative “specialized” node type Definitions documents that

describe their component services using TOSCA. Additionally, their types would be derived from

standardized TOSCA “base” node types (as described in the previous section). Creating a TOSCA

type ecosystem in this manner would further enable cloud application developers to more easily

model and compose simple, interoperable cloud applications as TOSCA service templates.

These types, “specific” to MySQL databases, could be published, made available and maintained

within a TOSCA Definitions document that is offered by the entity that governs MySQL software

components and services.

6.1.1.3 Define the Required “Custom” Node Types

The cloud developer, having the necessary set of both “base” and “specific” node types defined

for a database tier, is now able to further extend and “customize” them to provide the final

details needed for their application. These “custom” node types might include even more

properties, interfaces and other details needed to make it suitable for use by their actual

application. In our example, the company’s application specifically uses an open source

Customer Relationship Management (CRM) solution, such as SugarCRM, which may need a

suitably customized “MySQL Database” node type for proper operation.

The following table describes the customization of the specific “MySQL Database” node type

into one “customized” for a SugarCRM database:

TABLE 4 – SINGLE-TIER MYSQL DATABASE EXAMPLE'S CUSTOM NODE TYPES

Custom Node Type

Name

Extends Specific Node

Type

Description

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 49 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

SugarCRM Database MySQL Database Represents the database that is designed
to work with the company’s SugarCRM
application which is a custom derivation
of the “MySQL Database” type.

The XML for this “custom” NodeType definition might look something like:

 <NodeType name="SugarCRMDatabase">
 <documentation>SugarCRM Database</documentation>

 <DerivedFrom typeRef="ns1:MySQLDatabase"/>
 <PropertiesDefinition element="tns:SugarCRMDatabaseProperties"/>

 <Interfaces>

 <Interface name=" http://www.example.com/interfaces/lifecycle ">

 <Operation name="install"/>

 <Operation name="start"/>

 <Operation name="uninstall"/>

 </Interface>

 </Interfaces>

 </NodeType>

6.1.1.4 Node Type Inheritance (Base, Specific, Custom)

If we were to look at the node type inheritance hierarchy for the base, specific and custom node

types identified above for the “database tier” of our example, it would look as follows:

FIGURE 13 - NODE TYPE INHERITANCE FOR A SUGARCRM DATABASE TIER

6.1.2 Turning Node Types into Node Templates

Node types, by themselves simply describe the properties, operations, requirements and

capabilities representative of that class of services or software. They are not composable as

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 50 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

TOSCA models; instead TOSCA Node Templates are used to turn TOSCA Node Types into

modelable entities that can be instantiated with specific properties, etc. and related to other

node templates to describe, in our current example, the overall SugarCRM MySQL database

tier’s topology.

The pseudo-XML for the node templates for the database tier’s node types would look

something like this:

 <!— namespaces for the external node type definitions described above -->

 <!— Namespaces for imported TOSCA NodeType Definitions documents -->

 xmlns:ns1="http://www.example.com/ToscaBaseTypes"

 xmlns:ns2="http://www.example.com/ToscaSpecificTypes"

 xmlns:ns3="http://www.example.com/SugarCRMCustomTypes"

 <!-- Define the node templates for the “Database Tier” -->

 <NodeTemplate id="DatabaseTier" name="Database Tier" type="ns1:Tier">
 </NodeTemplate>

 <NodeTemplate id="VmMySql" name="VM for MySQL" type="ns1:Server">
 <Properties>

 <ns1:ServerProperties>

 <NumCpus>1</NumCpus>

 <Memory>1024</Memory>

 <Disk>10</Disk>

 </ns1:ServerProperties>

 </Properties>

 </NodeTemplate>

 <NodeTemplate id="OsMySQL" name="OS for MySQL"

type="ns1:OperatingSystem">
 </NodeTemplate>

 <NodeTemplate id="MySql" name="MySQL" type="ns2:MySQL">
 <Properties>

 <ns2:MySQLProperties>

 <RootPassword>password</RootPassword>

 </ns2:MySQLProperties>

 </Properties>

 </NodeTemplate>

 <NodeTemplate id="SugarCrmDb" name="SugarCRM DB"

type="ns3:SugarCRMDatabase">
 <Properties>

 <ns3:SugarCRMDatabaseProperties>

 <DBName>sugardb</DBName>

 <DBUser>sugaradmin</DBUser>

 <DBPassword>sugaradmin</DBPassword>

 <mySqlPort>3306</mySqlPort>

 </ns3:SugarCRMDatabaseProperties>

 </Properties>

 </NodeTemplate>

As you can see, looking at the SugarCRM database’s NodeTemplate (i.e. “SugarCrmDb”) which

is based upon the “SugarCRMDatabase” NodeType detailed earlier, we see that the template

includes specific property settings that the application developer has provided that describes

settings to be applied to that server when orchestrated by the TOSCA processing environment:

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 51 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 <NodeTemplate id="SugarCrmDb" name="SugarCRM DB"
 type="ns3:SugarCRMDatabase">

 <Properties>

 <ns3:SugarCRMDatabaseProperties>

 <DBName>sugardb</DBName>

 <DBUser>sugaradmin</DBUser>

 <DBPassword>sugaradmin</DBPassword>

 <mySqlPort>3306</mySqlPort>
 </ns3:SugarCRMDatabaseProperties>

 </Properties>

 </NodeTemplate>

These properties are conveyed to the cloud provider’s underlying implementation container

software such that the application developer need not understand the implementation details

of any particular provider’s database container.

Of course, we also need to create node templates for the “custom” node types of our

application each with their own custom property settings:

 <NodeTemplate id="SugarCrmApp" name="SugarCRM App"

 type="ns3:SugarCRMApplication">
 <Properties>

 <ns3:SugarCRMApplicationProperties>

 <SugarCRMKey>somekey</SugarCRMKey>

 <AdminUser>admin</AdminUser>

 <AdminPassword>admin</AdminPassword>

 <DBexists>false</DBexists>

 </ns3:SugarCRMApplicationProperties>

 </Properties>

 ...

 </NodeTemplate>

 <NodeTemplate id="SugarCrmDb" name="SugarCRM DB"

 type="ns3:SugarCRMDatabase">
 <Properties>

 <ns3:SugarCRMDatabaseProperties>

 <DBName>sugardb</DBName>

 <DBUser>sugaradmin</DBUser>

 <DBPassword>sugaradmin</DBPassword>

 <mySqlPort>3306</mySqlPort>

 </ns3:SugarCRMDatabaseProperties>

 </Properties>

 ...

 </NodeTemplate>

6.1.3 Required Artifact Types

In order to actually deploy and install a cloud application using a TOSCA service template, the

application architect would also need to describe the actual scripts, files, software packages and

other types of artifacts that would be used during these first stages of an application lifecycle.

6.1.3.1 Define Required Base Artifact Types

The following table lists what is viewed as some of the common “base” artifact types that are

necessary for fully describing our SugarCRM application that could be understood by multiple

service providers:

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 52 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

TABLE 5 – SINGLE-TIER MYSQL DATABASE EXAMPLE'S BASE ARTIFACT TYPES

Base Artifact Type Name Description

File Artifact Represents artifacts that contain generalized data or
metadata that is somehow used or required during an
application’s lifecycle and encapsulated into a single file.

Script Artifact Represents artifacts are typically files that encapsulate
commands, macros and other instructions that are executed
(or interpreted) to perform some operation. These files are
often authored using various script programming languages
designed for these purposes.

Archive Artifact Represents artifacts that contain a collection of files that are
packaged together for storage or transport between
(deployment) locations. Archive artifacts usually contain
additional metadata about the files it contains such as a file
manifest, filesystem layout and access control information.

Package Artifact Represents artifacts that contain a collection of files that
comprise a complete software application or service which
are packaged together for convenient distribution,
deployment and/or installation.

These types would look something like this in pseudo-XML using the TOSCA standard:

 <ArtifactType name="FileArtifact">
 <documentation>File Artifact</documentation>

 <DerivedFrom typeRef="tns:RootArtifactType"/>

 </ArtifactType>

 <ArtifactType name="ScriptArtifact">
 <documentation>Script Artifact</documentation>

 <DerivedFrom typeRef="tns:RootArtifactType"/>

 <PropertiesDefinition element="tns:ScriptArtifactProperties"/>

 </ArtifactType>

 <ArtifactType name="ArchiveArtifact">
 <documentation>Archive Artifact</documentation>

 <DerivedFrom typeRef="tns:RootArtifactType"/>

 <PropertiesDefinition element="tns:ArchiveArtifactProperties"/>

 </ArtifactType>

 <ArtifactType name="PackageArtifact">
 <documentation>Package Artifact</documentation>

 <DerivedFrom typeRef="tns:RootArtifactType"/>

 <PropertiesDefinition element="tns:PackageArtifactProperties"/>

 </ArtifactType>

Much like “base” node types, these “base” artifact types extend from a TOSCA

RootArtifactType and they themselves could also be extended to create specialized or

custom artifact types. These four base artifact types defined above are suitable for conceivably

describing most kinds of software-related artifacts (not just for our current database tier). For

example, a Web Application Archive (or WAR file) could be defined as a specialized

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 53 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

“ArchiveArtifact” type which in turn could be used to create custom application types by web

application developers and vendors.

6.1.4 Turning Artifact Types into Artifact Templates

In order to model artifacts in TOSCA, we have to create TOSCA Artifact Templates from the

Artifact Types we have defined above. The following example code shows how an installation

script used to install the MySQL database would be represented as an artifact template:

 <ArtifactTemplate id="uid:at-example1234"

 type="ns1:ScriptArtifact">
 <Properties>

 <ns1:ScriptArtifactProperties
 xmlns:ns1="http://www.example.com/ToscaBaseTypes">

 <ScriptLanguage>sh</ScriptLanguage>

 <PrimaryScript>scripts/MySQL/install.sh</PrimaryScript>
 </ns1:ScriptArtifactProperties>

 </Properties>

 <ArtifactReferences>

 <ArtifactReference reference="scripts/MySQL">

 <Include pattern="install.sh"/>
 </ArtifactReference>

 </ArtifactReferences>

 </ArtifactTemplate>

As you can see, this template provides the values for the ScriptArtifactProperties and

ArtifactReference elements that are customized to describe the ScriptLanguage as “sh”

(an abbreviation for the “shell” script and also its processing utility) along with the name of the

script’s file and relative location within the CSAR file.

6.1.5 Required Relationship Types

Having identified the set of nodes and artifacts required to express our database tier, we now

must be able to describe how these TOSCA modelable components would relate to each other

in a cloud deployment. For this purpose, TOSCA introduces the notion of Relationship Types

which define the “edges” of a TOSCA topology that when turned into TOSCA Relationship

Templates are able to describe the logical relationships and other dependencies between the

application’s node templates.

6.1.5.1 Required Base Relationship Types

The database components from our SugarCRM example require just a single base relationship

type that provides us the means to express their relationships to one another conceptually in a

cloud deployment. This fundamental relationship we need to describe expresses the notion of

“containment”. In other words, it describes how one node depends on another node to provide

its necessary services to manage and host nodes of its type during their lifecycle. This

relationship type we will simply call “HostedOn”. Specifically from our example, the “SugarCRM

Database” node would be “HostedOn” the “MySQL DBMS” node which in turn is hosted on an

“Operating System” node.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 54 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

The table below highlights the base relationship type we need to describe the fundamental

concept of “containment” when modeling with TOSCA:

TABLE 6 – SINGLE-TIER MYSQL DATABASE EXAMPLE'S BASE RELATIONSHIP TYPES

Base Relationship Type Name Description

HostedOn Represents a hosting relationship between two nodes in a
service template.

The definition for this base relationship types would look something like this:

 <RelationshipType name="HostedOn">
 <documentation>Hosted on</documentation>

 <DerivedFrom typeRef="tns:RootRelationshipType"/>

 <ValidSource typeRef="tns:ContainerRequirement"/>

 <ValidTarget typeRef="tns:ContainerCapability"/>

 </RelationshipType>

6.1.5.2 Specific and Custom Relationship Types

Of course, the base relationship type show above can also be extended (as we showed for node

and artifact types above) to create middleware and application (vendor) specific types. Again,

these extensions would include additional properties needed to relate components for those

respective software offerings and services. For example, the base “HostedOn” type can be

extended to create a specific “MySQLDatabaseHostedOnMySQL” RelationshipType to better

describe the requirements and property settings needed to realize a containment relationship

between “MySQLDBMS” and “MySQLDatabase” node templates versus some other middleware

provider’s database.

 <RelationshipType name="MySQLDatabaseHostedOnMySQL">
 <documentation>Hosted on</documentation>

 <DerivedFrom typeRef="ns1:HostedOn"/>
 <SourceInterfaces>

 <Interface name="http://www.example.com/ToscaBaseTypes/HostedOn">

 <Operation name="hostOn"/>

 </Interface>

 </SourceInterfaces>

 <ValidSource typeRef="tns:MySQLDatabaseContainerRequirement"/>

 <ValidTarget typeRef="tns:MySQLDatabaseContainerCapability"/>

 </RelationshipType>

6.1.6 Turning Relationship Types into Relationship Templates

As we discussed for TOSCA Node Types, which are turned into TOSCA Node Templates so that

they can be modeled, TOSCA Relationship Types also must be turned into TOSCA Relationship

Templates in order to use them in a TOSCA service model. Relationship Templates represents

the “edges” of a TOSCA model and represents an instance of relationship type that it references

as part of its definition along with specific property values used during orchestration of the

template.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 55 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

A relationship template, besides being based upon a relationship type, also describes the valid

node source and target Node Templates these relationships are designed to connect (i.e. via the

SourceElement and TargetElement elements).

For example, the RelationshipTemplate shown below is designed to relate our example’s

“SugarCRM Database” NodeTemplate to our “MySQL DMBS” NodeTemplate. Specifically, this

relationship template would be able to connect a “source” node template that declares it

requires a “SugarCrmDb_container” to another node template that exports the capability of

containing “MySql_databases”:

 <RelationshipTemplate id="SugarCrmDb_HostedOn_MySql"
 name="hosted on" type="ns2:MySQLDatabaseHostedOnMySQL">

 <SourceElement ref="SugarCrmDb_container"/>

 <TargetElement ref="MySql_databases"/>

 </RelationshipTemplate>

As we can see the NodeTemplate for the “SugarCrmDb” would declare a Requirement for a

“MySQLDatabaseContainerRequirement” type identified as “SugarCrmDb_container” (which is

referenced in the SourceElement of the RelationshipTemplate shown above):

 <NodeTemplate id="SugarCrmDb" name="SugarCRM DB"
 type="ns3:SugarCRMDatabase">

 <Properties>

 ...

 </Properties>

 <Requirements>

 <Requirement id="SugarCrmDb_container" name="container"
 type="ns2:MySQLDatabaseContainerRequirement"/>

 </Requirements>

 <Capabilities>

 ...

 </Capabilities>

 </NodeTemplate>

And the corresponding “MySQL” NodeTemplate would have a Capability element that

indeed exports a “MySQLDatabaseContainerCapability” type indicating it can host from

“MySql_databases” (i.e. MySQL type database nodes):

 <NodeTemplate id="MySql" name="MySQL" type="ns2:MySQL">
 <Properties>

 <ns2:MySQLProperties>

 ...

 </ns2:MySQLProperties>

 </Properties>

 <Requirements>

 ...

 </Requirements>

 <Capabilities>

 <Capability id="MySql_databases" name="databases"
 type="ns2:MySQLDatabaseContainerCapability"/>

 </Capabilities>

 </NodeTemplate>

Note: The TOSCA specification enables application architects the means to
design their service template to permit providers the ability to either select from a
set of similar nodes types that provide the same functionality. For example, the

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 56 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

database tier could include two types of “DBMS” node types allowing the provider
to choose the best match for their infrastructure.

6.2 Two-Tier SugarCRM Web Application Example

This section will describe how a cloud application developer would model a basic, two-tier web

application using TOSCA. We will describe how to define the types and templates for the nodes,

artifacts and relationships needed to describe the components of a “web application tier”. Then

we will provide a means to connect the “web application tier” to the “database tier” that was

fully developed in previous section (i.e. Section 6.1, “Introduction”) and already customized for

our SugarCRM web application. Finally, we will show how to package all these into a TOSCA

CSAR file ready for deployment and installation.

6.2.1 Required Node Types

This section will parallel the same activities that we described when developing the required

node types for our database tier (see Section 6.1.1). However, we will attempt to feature only

the new types, artifacts, relationships and concepts that are necessary to compose the “web

application tier” for our example application.

6.2.1.1 Define the Required Base Node Types

The cloud developer’s would again identify the basic set of component nodes needed to

describe the significant parts of the web application stack (as we did in Section 6.1.1.1 for the

database tier’s “base” node types). We would need to define or reference the following “base”

TOSCA Node Types in order to have the types needed to eventually model a basic web

application tier:

TABLE 7 – SUGARCRM WEB APPLICATION EXAMPLE'S BASE NODE TYPES

Base Node Type Name Description

Web Application Represents an abstract web application along with basic
properties and operations.

Web Server Represents an abstract service that is capable of hosting and
providing management operations for one or more web
applications.

Operating System (OS) This is the same “base” type as described in Section 6.1.1.1.

Server This is the same “base” type as described in Section 6.1.1.1.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 57 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Tier This is the same “base” type as described in Section 6.1.1.1.

Once again, these base node types would derive from the TOSCA schema’s “root node” and be

represented in pseudo-XML as follows:

 <NodeType name="WebApplication">
 <documentation> A basic Web Application </documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 …

 </NodeType>

 <NodeType name="WebServer">
 <documentation> A basic Web Server </documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 …

 </NodeType>

 <NodeType name="OperatingSystem">
 <documentation> A basic operating system/platform </documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 …

 </NodeType>

 <NodeType name="Server">
 <documentation> A basic cloud compute resource</documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 …

 </NodeType>

The other elements of the node type are discussed in later sections.

Remark: Ideally, as mentioned above in Section 6.1.1.1, the definitions and
treatment for these “base” node types would ideally be standardized and agreed
upon by multiple cloud service providers so that cloud application developers,
using the TOSCA standard, could truly compose interoperable TOSCA service
templates without worrying about underlying provider implementations of these
base services.

For example, any derivation of the “Server” base node type would be expected to
have some common properties and definitions of its own service requirements
and hosting capabilities by any CSP.

In the following example, we show the “Server” NodeType referencing an externally defined set

of standardized properties, declaring that it requires a service provider to have a valid

“container” to “host” its component (i.e. a “HostedOn” relationship) and that it itself provides

the capability to “host” an operating system container (or node).

 <NodeType name="Server">
 <documentation> A basic cloud compute/execution resource</documentation>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 <PropertiesDefinition element="tns:ServerProperties"/>

 <RequirementDefinitions>

 <RequirementDefinition lowerBound="0" name="container"

 requirementType="tns:ServerContainerRequirement"
upperBound="1"/>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 58 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 …

 </RequirementDefinitions>

 <CapabilityDefinitions>

 <CapabilityDefinition

 capabilityType="tns:OperatingSystemContainerCapability"
 lowerBound="0" name="os" upperBound="1"/>

 …

 </CapabilityDefinitions>

 …

 </NodeType>

Where the externally provided “ServerProperties” complex type would be defined as follows:

 <xs:complexType name="ServerProperties">
 <xs:sequence>

 <xs:element default="1" name="NumCpus">
 <xs:annotation>

 <xs:documentation xml:lang="en">Number of CPUs</xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:int">

 <xs:enumeration value="1"/>

 <xs:enumeration value="2"/>

 <xs:enumeration value="4"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Memory" type="xs:int">
 <xs:annotation>

 <xs:documentation xml:lang="en">Memory size (in MB)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="Disk" type="xs:int">
 <xs:annotation>

 <xs:documentation xml:lang="en">Disk size (in GB)</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

6.2.1.2 Define the Required Specific Node Types

Let’s further assume, for our example, that this company’s application specifically uses an open

source Customer Relationship Management (CRM) solution, such as SugarCRM which is hosted

by an Apache web server (perhaps running on a Linux operating system distribution of some

kind). This SugarCRM web application would persist its customer data in a MySQL database

much like the one we described earlier in this chapter. Readers will recognize these software

components as a typical open-source-based, middleware stack used to host many web

application today in the. Sometimes this is referred to as a “LAMPs stack” which stands for the

component software (Linux, Apache, MySQL and an Apache PHP module) to support the web

application.

The following table shows these specific node types needed to describe our web application

stack along with the base types they extend:

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 59 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

TABLE 8 – SUGARCRM WEB APPLICATION EXAMPLE’S SPECIFIC NODE TYPES

Specific Node Type

Name

Extends Node Type Description

Apache Web Server Web Server Represents an Apache specialization of the
basic “Web Server” node type including any
additional properties, operations and
capabilities specific to Apache.

Apache Web

Application

Web Application Represents an Apache specialization of the
basic “Web Application” node type including
any additional properties, operations and
capabilities specific to Apache.

Apache Module TOSCA Root In this case, the middleware service itself is
composed of optional functional components
that can be represented as their own node
types.

Specifically this node represents an Apache-
specific node type that describes software
modules which are understood and managed
by Apache web servers.

Apache PHP Module Apache Module Represents an ”Apache Module” node type
that specializes in providing PHP Hypertext
Processor functionality to “Apache Web
Application” nodes.

Below we show how these “specific” Node Types for the SugarCRM, Apache and MySQL service

related components would appear as pseudo-XML:

 <NodeType name="ApacheWebServer">
 <documentation>Apache Web Server</documentation>

 <DerivedFrom typeRef="ns1:WebServer"/>
 <PropertiesDefinition element="tns:ApacheWebServerProperties"/>

 <Interfaces>

 <Interface name="http://www.example.com/lifecycle">

 <Operation name="install"/>

 <Operation name="configure"/>

 <Operation name="start"/>

 <Operation name="stop"/>

 <Operation name="uninstall"/>

 </Interface>

 </Interfaces>

 </NodeType>

 <NodeType name="ApacheWebApplication">
 <documentation>Apache Web Application</documentation>

 <DerivedFrom typeRef="ns1:WebApplication"/>
 </NodeType>

 <NodeType name="ApacheModule">
 <documentation>Apache Module</documentation>

 <DerivedFrom typeRef="ns1:RootNodeType"/>
 </NodeType>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 60 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 <NodeType name="ApachePHPModule">
 <documentation>Apache PHP Module</documentation>

 <DerivedFrom typeRef="tns:ApacheModule"/>
 <Interfaces>

 <Interface name="http://www.example.com/lifecycle2">

 <Operation name="start"/>

 <Operation name="uninstall"/>

 </Interface>

 </Interfaces>

 </NodeType>

As you can see, we also introduced a new node type that derives from the TOSCA root node

type for “Apache Module”. TOSCA models permit middleware software providers, like Apache,

to describe the components of their own specific software as TOSCA models themselves; this

enabling even better granular orchestration of these constituent components by CSPs using the

TOSCA standard.

6.2.1.3 Define the Required Custom Node Types

The cloud developer, having the necessary set of both “base” and “specific” node types defined

for a typical web application stack, is now able to simply extend the appropriate “specific” node

types to describe the customizations needed to “stand up” the company’s actual SugarCRM

application:

TABLE 9 – SUGARCRM WEB APPLICATION EXAMPLE'S CUSTOM NODE TYPES

Custom Node Type

Name

Extends Specific Node

Type

Description

SugarCRM Application Apache Web
Application

Represents the company’s actual
SugarCRM application service which is a
custom derivation of the “Apache Web
Application” node type.

SugarCRM Database MySQL Database Represents the database that is designed
to work with the company’s SugarCRM
application which is a custom derivation
of the “MySQL Database” type.

The pseudo-XML for these custom NodeTypes would be something like this:

 <NodeType name="SugarCRMApplication">
 <documentation>SugarCRM Application</documentation>

 <DerivedFrom typeRef="ns1:ApacheWebApplication"/>
 <PropertiesDefinition element="tns:SugarCRMApplicationProperties"/>

 <Interfaces>

 <Interface name=" http://www.example.com/lifecycle3">

 <Operation name="install"/>

 <Operation name="configure"/>

 <Operation name="start"/>

 <Operation name="uninstall"/>

 </Interface>

 </Interfaces>

http://www.example.com/lifecycle3

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 61 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 </NodeType>

 <NodeType name="SugarCRMDatabase">
 <documentation>SugarCRM Database</documentation>

 <DerivedFrom typeRef="ns1:MySQLDatabase"/>
 <PropertiesDefinition element="tns:SugarCRMDatabaseProperties"/>

 <Interfaces>

 <Interface name=" http://www.example.com/lifecycle4">

 <Operation name="install"/>

 <Operation name="start"/>

 <Operation name="uninstall"/>

 </Interface>

 </Interfaces>

 </NodeType>

6.2.1.4 Node Type Inheritance (Base, Specific, Custom)

If we were to look at the node type inheritance hierarchy for the base, specific and custom node

types identified above for the “web application tier” of our example, it would look as follows:

FIGURE 14 - NODE TYPE INHERITANCE FOR A SUGARCRM WEB APPLICATION TIER

6.2.2 Turning Node Types into Node Templates

Node types, by themselves simply describe the properties, operations, requirements and

capabilities representative of that class of services or software. They are not composable and

cannot be modeled; instead TOSCA Node Templates are used to turn Node Types into

component entities that can be instantiated with specific properties, etc. and related to other

Node Templates to describe the overall application service’s topology.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 62 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

The pseudo-XML for the node templates for “specific” node types would look something like

this:

 <!— Namespaces for imported TOSCA NodeType Definitions documents -->

 xmlns:ns1="http://www.example.com/ToscaBaseTypes"

 xmlns:ns2="http://www.example.com/ToscaSpecificTypes"

 xmlns:ns3="http://www.example.com/SugarCRMCustomTypes"

 <!-- Define the node templates for the “Web Tier” -->

 <NodeTemplate id="WebTier" name="Web Tier"

 type="ns1:Tier">
 </NodeTemplate>

 <NodeTemplate id="VmApache" name="VM for Apache Web Server"

 type="ns1:Server">
 <Properties>

 <ns1:ServerProperties>

 <NumCpus>1</NumCpus>

 <Memory>1024</Memory>

 <Disk>10</Disk>

 </ns1:ServerProperties>

 </Properties>

 </NodeTemplate>

 <NodeTemplate id="OsApache" name="OS for Apache"

type="ns1:OperatingSystem">
 </NodeTemplate>

 <NodeTemplate id="ApacheWebServer" name="Apache Web Server"

 type="ns2:ApacheWebServer">
 <Properties>

 <ns2:ApacheWebServerProperties>

 <httpdport>80</httpdport>

 </ns2:ApacheWebServerProperties>

 </Properties>

 </NodeTemplate>

 <NodeTemplate id="SugarCrmApp" name="SugarCRM App"

 type="ns3:SugarCRMApplication">
 <Properties>

 <ns3:SugarCRMApplicationProperties>

 <SugarCRMKey>dummy</SugarCRMKey>

 <AdminUser>admin</AdminUser>

 <AdminPassword>admin</AdminPassword>

 </ns3:SugarCRMApplicationProperties>

 </Properties>

 </NodeTemplate>

 <NodeTemplate id="PhpModule" name="PHP Module"

 type="ns2:ApachePHPModule">
 </NodeTemplate>

As you can see, looking at the web server’s NodeTemplate (i.e. “VmApache”) which is based

upon the “Server” NodeType as described in the previous section, we see that the template

includes specific property settings that the application developer has provided that describes

settings to be applied to an actual server at a CSP when orchestrated:

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 63 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 <NodeTemplate id="VmApache" name="VM for Apache Web Server"

type="ns1:Server">
 <Properties>

 <ns1:ServerProperties>

 <NumCpus>1</NumCpus>

 <Memory>1024</Memory>

 <Disk>10</Disk>
 </ns1:ServerProperties>

 </Properties>

 ...

 </NodeTemplate>

These properties are conveyed to the cloud provider’s underlying implementation container

software such that the application developer need not understand the implementation details

of any particular provider which supports interoperability.

As before, we also need to create node templates for the “custom” node types of our

application each with their own custom property settings:

 <NodeTemplate id="SugarCrmApp" name="SugarCRM App"

type="ns3:SugarCRMApplication">
 <Properties>

 <ns3:SugarCRMApplicationProperties>

 <SugarCRMKey>somekey</SugarCRMKey>

 <AdminUser>admin</AdminUser>

 <AdminPassword>admin</AdminPassword>

 <DBexists>false</DBexists>

 </ns3:SugarCRMApplicationProperties>

 </Properties>

 ...

 </NodeTemplate>

 <NodeTemplate id="SugarCrmDb" name="SugarCRM DB"

type="ns3:SugarCRMDatabase">
 <Properties>

 <ns3:SugarCRMDatabaseProperties>

 <DBName>sugardb</DBName>

 <DBUser>sugaradmin</DBUser>

 <DBPassword>sugaradmin</DBPassword>

 <mySqlPort>3306</mySqlPort>

 </ns3:SugarCRMDatabaseProperties>

 </Properties>

 ...

 </NodeTemplate>

6.2.3 Required Artifact Types

In order to actually deploy and install the web application using a TOSCA service template, the

application architect would also need to describe the actual scripts, files, software packages and

other types of artifacts that would be used to deploy, install the actual software components for

our web application stack.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 64 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

6.2.3.1 Define Required Base Artifact Types

The same set of base artifact types that we listed and described in Section 6.1.3.1 when we

walked through architecting a MySQL “database tier” (i.e. the artifact types “File Artifact”,

“Script Artifact”, “Archive Artifact” and “Package Artifact”) are the same ones we will use for

architecting for deriving the necessary set of artifacts for our web application tier.

6.2.4 Turning Artifact Types into Artifact Templates

The service template for our SugarCRM web application (tier) example would include many

different kinds of artifacts that would be needed to not only deploy and install the component

software (such as packages, archives, configuration files and policy documents), but also files

used at various stages of these components’ respective lifecycles and corresponding operations

(such as scripts). Below we show an example of a “script” artifact that CSP would use during the

“install” operation for the “ApacheWebServer” node:

 <ArtifactTemplate id="uid:install-xxx" type="ns1:ScriptArtifact">
 <Properties>

 <ns1:ScriptArtifactProperties>

 <ScriptLanguage>sh</ScriptLanguage>

 <PrimaryScript>scripts/ApacheWebServer/install.sh</PrimaryScript>

 </ns1:ScriptArtifactProperties>

 </Properties>

 <ArtifactReferences>

 <ArtifactReference reference="scripts/ApacheWebServer">

 <Include pattern="install.sh"/>
 </ArtifactReference>

 </ArtifactReferences>

 </ArtifactTemplate>

6.2.5 Required Relationship Types

6.2.5.1 Required Base Relationship Types

In Section 6.1.5.1 “Required Base Relationship Types”, we established a base relationship type

that describes “containment” which was named “HostedOn”. This type is of course essential for

describing the essential hosting relationships between the component nodes of our web

application stack. However, our SugarCRM example application introduces the need for two

additional basic relationships to fully describe the relationships of our application’s model.

The first relationship type we need to add to our set of required base types would describe a

service that is available through a network endpoint accessible from the cloud’s network and is

required during some stage of another service’s lifecycle. This “ConnectsTo” relationship could

either represent a continuous or periodic network connection IP based (typically using an

HTTP(s) protocol). From our example, our SugarCRM Web Application would “ConnectsTo” the

SugarCRM Database (our custom MySQL database) over an HTTP connection.

The second type we introduce here is a relationship that describes a more generalized

dependency between nodes that we will simple name “DependsOn”. This relationship is

exhibited by the SugarCRM Web Application node which “depends on” the Apache PHP Module

in order to execute.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 65 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

The table below highlights the names and descriptions for these additional required “base”

relationship types for convenience:

TABLE 10 – SUGARCRM WEB APPLICATION EXAMPLE'S BASE RELATIONSHIP TYPES

Base Relationship Type Name Description

ConnectsTo Represents a network connection between two nodes in a
service template.

DependsOn Represents a general dependency relationship between two
nodes in a service template.

The definitions for these base relationship types would look something like this:

 <RelationshipType name="ConnectsTo">
 <documentation>ConnectsTo</documentation>

 <DerivedFrom typeRef="tns:RootRelationshipType"/>

 <ValidSource typeRef="tns:EndpointRequirement"/>

 <ValidTarget typeRef="tns:EndpointCapability"/>

 </RelationshipType>

 <RelationshipType name="DependsOn">
 <documentation>Depends on</documentation>

 <DerivedFrom typeRef="tns:RootRelationshipType"/>

 <ValidSource typeRef="tns:FeatureRequirement"/>

 <ValidTarget typeRef="tns:FeatureCapability"/>

 </RelationshipType>

6.2.5.2 Specific and Custom Relationship Types

Of course, the base relationship types shown above in Table 10 can also be extended to create

middleware and application (vendor) specific types that have additional properties available for

those respective software offerings and services. As was shown in Section 6.1.5.2 when the base

“HostedOn” relationship type was used to derive a specific “MySQLDatabaseHostedOnMySQL”

relationship type, we can define similar “HostedOn” relationship types for each of the logical

containments between node templates for our web application stack. For example, the “Apache

PHP Module” would be logically hosted by the “Apache Wen Server”:

 <RelationshipTemplate id="PhpModule_HostedOn_Apache"
 name="hosted on" type="ns2:ApacheModuleHostedOnApache">

 <SourceElement ref="PhpModule_container"/>

 <TargetElement ref="ApacheWebServer_modules"/>

 </RelationshipTemplate>

The base “ConnectsTo” relationship type would be extended to create a

“MySQLDatabaseConnection” to better describe the requirements and property settings needed

to realize a connection to our desired “MySQL Database” node template versus some other kind

of database.

 <RelationshipType name="MySQLDatabaseConnection">
 <documentation>Connects on</documentation>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 66 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 <DerivedFrom typeRef="ns1:ConnectsTo"/>
 <SourceInterfaces>

 <Interface name="http://www.example.com/ToscaBaseTypes/ConnectsTo">

 <Operation name="connectTo"/>

 </Interface>

 </SourceInterfaces>

 <ValidSource typeRef="tns:MySQLDatabaseEndpointRequirement"/>

 <ValidTarget typeRef="tns:MySQLDatabaseEndpointCapability"/>

 </RelationshipType>

6.2.6 Turning Relationship Types into Relationship Templates

As we discussed for TOSCA Node Types, which are turned into TOSCA Node Templates so that

they can be modeled, TOSCA Relationship Types also must be turned into TOSCA Relationship

Templates in order to use them in a TOSCA service model. The Relationship Template

represents the “edges” of a TOSCA model and represents an instance of relationship type that it

references as part of its definition along with specific property values used during orchestration

of the template.

A relationship template, besides being based upon a relationship type, also describes the valid

node source and target Node Templates these relationships are designed to connect (i.e. via the

SourceElement and TargetElement elements).

For example, the RelationshipTemplate shown below is designed to connect our example’s

SugarCRM database NodeTemplate to our SugarCRM application NodeTemplate. Specifically, it

can connect “source” node templates that declare they require a named

“SugarCrmApp_database” connection to “target” node templates that declare they are capable

of accepting “SugarCrmDb_clients”:

 <RelationshipTemplate id="SugarCrmApp_ConnectsTo_SugarCrmDb"
 name="connects to" type="ns2:MySQLDatabaseConnection">

 <SourceElement ref="SugarCrmApp_database"/>

 <TargetElement ref="SugarCrmDb_clients"/>

 </RelationshipTemplate>

As we can see the NodeTemplate for the “SugarCrmApp” would declare a Requirement for a

“MySQLDatabaseEndpointRequirement” type identified as “SugarCrmApp_database” (which is

referenced in the SourceElement of the RelationshipTemplate shown above):

 <NodeTemplate id="SugarCrmApp" name="SugarCRM App"
 type="ns3:SugarCRMApplication">

 ...

 <Requirements>

 <Requirement id="SugarCrmApp_phpRuntime" name="phpRuntime"

type="ns2:PHPRuntimeRequirement"/>

 <Requirement id="SugarCrmApp_database" name="database"
type="ns2:MySQLDatabaseEndpointRequirement"/>

 <Requirement id="SugarCrmApp_container" name="container"

type="ns2:ApacheWebApplicationContainerRequirement"/>

 </Requirements>

 </NodeTemplate>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 67 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

And the corresponding “SugarCrmDb” NodeTemplate would have a Capability element that

indeed exports a “MySQLDatabaseEndpointCapability” indicating it can accept connections from

“SugarCrmDb_clients”:

 <NodeTemplate id="SugarCrmDb" name="SugarCRM DB"
type="ns3:SugarCRMDatabase">

 ...

 <Requirements>

 <Requirement id="SugarCrmDb_container" name="container"

type="ns2:MySQLDatabaseContainerRequirement"/>

 </Requirements>

 <Capabilities>

 <Capability id="SugarCrmDb_clients" name="clients"
type="ns2:MySQLDatabaseEndpointCapability"/>

 </Capabilities>

 </NodeTemplate>

In addition, we can describe how our “SugarCRM Web Application” node template

“DependsOn” an Apache PHP Module in order to properly run the SugarCRM application itself:

 <RelationshipTemplate id="SugarCrmApp_DependsOn_PhpModule"
 name="depends on" type="ns1:DependsOn">

 <SourceElement ref="SugarCrmApp_phpRuntime"/>

 <TargetElement ref="PhpModule_phpApps"/>

 </RelationshipTemplate>

6.2.7 Creating the Cloud Service Archive (CSAR)

Describing exhaustively the numerous types, templates for the nodes, relationships and artifacts

that would be defined and connected to one another to realize a complete TOSCA service

template in a “Primer” would be counterproductive. However, we wish to show how the CSAR

file would be structured given the expectation for such a set of files and artifacts.

Our example’s TOSCA Service Template (which contains the complete two-tier model of our

SugarCRM application) would have many XML schema files, Definitions documents, and artifacts

(files) that would be packaged together to create a CSAR file. The CSAR file “SugarCRM-MySQL-

Example.CSAR” (named to match our example) would have the following directory structure

along with samples of files that contain the types and definitions we described throughout

Section 6:

 SugarCRM-MySQL-Example.CSAR

 /TOSCA-Metadata

 /TOSCA.meta

 /types

 /Artifacts.xsd

 /ToscaBaseTypes.xsd

 /ToscaSpecificTypes.xsd

 /SugarCRMCustomTypes.xsd

 /Definitions

 /ToscaBaseTypes-Definitions.xml

 /ToscaSpecificTypes-Definitions.xml

 /SugarCRMCustomTypes-Definitions.xml

 /SugarCRM-Definitions.xml

 /files

 ... (subdirectories would include various software packages/archives)

 /scripts

 /ApacheModuleHostedOnApache

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 68 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 /ApachePHPModule

 /ApacheWebServer

 /MySQL

 /MySQLDatabaseHostedOnMySQL

 /SugarCRMApplication

 /SugarCRMDatabase

And the file “TOSCA.meta” contains:

 TOSCA-Meta-File-Version: 1.0

 CSAR-Version: 1.0

 Created-By: OASIS TOSCA Interop SC

 Name: Definitions/TOSCABaseTypes-Definitions.xml

 Content-Type: application/vnd.oasis.tosca.definitions

 Name: Definitions/TOSCASpecificTypes-Definitions.xml

 Content-Type: application/vnd.oasis.tosca.definitions

 Name: Definitions/SugarCRMCustomTypes-Definitions.xml

 Content-Type: application/vnd.oasis.tosca.definitions

 Name: Definitions/SugarCRM-Definitions.xml

 Content-Type: application/vnd.oasis.tosca.definitions

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 69 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

7 Moving Virtual Machines to the TOSCA World
A developer's first experience with hosting an application in the Cloud may be simply packaging

up an existing application and moving it to a virtual machine (VM) that's hosted remotely (either

within their enterprise or on a public Cloud). Typically, the easiest way to do this is to create an

image (e.g. an ISO image) of an entire machine and then unpackaging it onto a Cloud-hosted

virtual machine.

This section describes how virtual machines can be deployed via TOSCA.

7.1 Deploying a New Virtual Machine (VM)

In this scenario, the deployment artifact being described by a TOSCA CSAR file will be a virtual

machine image. The container into which it will be deployed will be a Machine (as defined by

CIMI).

7.1.1 Required Node Types

This scenario requires the cloud service provider (CSP) to define one NodeType that will be

supported by its TOSCA implementation. This NodeType, called a “Machine”, defines the virtual

hardware characteristics of the new virtual machine - the actual properties of the “Machine”

will be in a complex type called "MachineTemplate". Below is an example of what a cloud

service provider might advertise:

 <NodeType name="Machine">
 <documentation> A new virtual machine as defined by CIMI </documention>

 <DerivedFrom typeRef="tns:RootNodeType"/>

 <PropertiesDefinition element="tns:MachineTemplate"/>

 </NodeType>

Where "MachineTemplate" is defined as follows:

 <Definitions id="CSPTypes" targetNamespace="http://mycsp.com/toscaTypes"
 xmlns="http://docs.oasis-open.org/tosca/ns/2011/12"

 xmlns:tbase="http://example.com/ToscaBaseTypes"

 xmlns:tns="http://mycsp.com/toscaTypes">

 <Types>

 <xs:complexType name="MachineTemplate">
 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="description" type="xs:string"/>

 <xs:complexType name="MachineConfiguration">

 <xs:sequence>

 <xs:element name="cpu" type="xs:integer"/>

 <xs:element name="memory" type="xs:integer"/>

 <xs:complexType name="disk" minOccurs="0" maxOccurs="unbounded">

 <xs:sequence>

 <xs:element name="capacity" type="xs:integer"/>

 <xs:element name="format" type="xs:string"/>

 <xs:element name="initialLocation" type="xs:string"/>

 </xs:sequence>

 </xs:complextType>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 70 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 <xs:element name="cpuArch" type="xs:string" minOccurs="0"/>

 <xs:element name="cpuSpeed" type="xs:integer" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:sequence>

 </xs:complexType>

 </Types>

 <NodeType name="Machine">

 <documentation> A new virtual machine as defined by CIMI </documention>

 <DerivedFrom typeRef="tbase:RootNodeType"/>

 <PropertiesDefinition element="tns:MachineTemplate"/>

 </NodeType>

 </Definitions>

7.1.2 Creating the Service Template xml file

Given the above NodeType, a service template XML file, called “Machine.xml”, can then be

created by the application developer, filling in all of the properties of the new machine as well

as including a reference to the ISO image file containing the application:

 <Definitions xmlns="http://docs.oasis-open.org/tosca/ns/2011/12"

 xmlns:csp="http://mycsp.com/toscaTypes"

 xmlns:tns="http://example.com/myApp"

 targetNamespace="http://example.com/myApp" >

 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"

 namespace="http://mycsp.com/tosca/toscaTypes" />

 <ArtifactTemplate id="myImage" type="csp:ISOImageArtifact">

 <ArtifactReferences>

 <ArtifactReference reference="http://example.com/myISOs/machine1.ISO"/>

 </ArtifactReferences>

 </ArtifactTemplate>

 <ServiceTemplate name="MyFirstMachine">

 <TopologyTemplate>

 ...

 <NodeTemplate type="csp:Machine">
 <Properties>

 <csp:MachineTemplate xmlns="http://mycsp.com/toscaTypes">

 <name> MyMachine </name>

 <description> My First Machine </description>

 <MachineConfiguration>

 <cpu>4</cpu>

 <memory>64000</memory>

 <disk>

 <capacity>512000</capacity>

 <format>NTFS</format>

 <initialLocation>C:</initialLocation>

 </disk>
 </MachineConfiguration>

 </csp:MachineTemplate>

 </Properties>

 <DeploymentArtifact

 artifactRef="tns:myImage"

 artifactType="csp:ISOImageArtifact" />

 </NodeTemplate>

 ...

 </TopologyTemplate>

 </ServiceTemplate>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 71 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 </Definitions>

In this XML file there are a couple of things being defined:

 In the Import statement there is no Location attribute specified. In this case the

location of the imported Definitions (document) will be inherently known by the Cloud

Service Provider.

 In the Definitions element itself a couple of XML namespaces are defined. The

default namespace is defined as the one from the TOSCA specification itself, this tells us

that most (but not all) of the XML elements are defined by the TOSCA specification. The

"csp" namespace will be used for XML elements, or NodeTypes, that are defined by the

cloud service provider and will be available for the application to use. The "tns"

namespace are for application owned/defined entities - such as the name of the service

template.

 Next is the ArtifactTemplate element. This element defines the type of artifact (in

this case an ISO image) and includes a reference to where the image can be retrieved -

in this case "http://example.com/myISO/machine1.ISO". How this ISO file was created

and placed at this URL is out of scope for this document.

 And finally in the ServiceTemplate element we bind the ISO image to a particular

“Machine”. In order to do this we need two pieces of information. First, we need the

configuration parameters of the new “Machine” that is to be created. In this case, the

application is asking for a new virtual machine with 4 CPUs, 64 megabytes of memory

and one ephemeral disk (with 512 megabytes, formatted with NTFS, available as the "C"

drive). Notice that the XML elements that define the characteristics of the “Machine”

are not in the same XML namespace as the rest of the XML document. Since the cloud

service provider, and not the TOSCA specification, defined what a "Machine" NodeType

looked like, those elements are in the "csp" namespace.

Second, we need to tell the cloud service provider which ISO file to use when creating

the new machine - in other words, we need to reference the deployment artifact we

defined at the top of the XML file.

Creating the Cloud Service Archive (CSAR) file

This service template can now be used to create a CSAR file, called “myFirstMachine.CSAR”, with

the following structure:

 myFirstMachine.CSAR

 /TOSCA-Metadata

 /TOSCA.meta

 /Definitions

 /Machine.xml

Where “TOSCA.meta” contains:

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 72 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 TOSCA-Meta-File-Version: 1.0

 CSAR-Version: 1.0

 Created-By: Joe Smith

This CSAR file can then be given to a TOSCA provider which will then deploy the application on a

new virtual machine.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 73 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

8 How TOSCA Works with Other Cloud Standards

8.1 Mapping TOSCA to DMTF OVF

The deployment artifact of a node (i.e. a TOSCA Node Template or a Node Type Implementation)

in a TOSCA Service Template can be represented by an image definition such as an OVF package.

If OVF is used by a node, it means that the node is deployed on a virtual system or a component

(OVF’s “product”) running in a virtual system, as defined in the OVF package.

8.1.1 Use Case One: OVF Package for Single Virtual System

Consider a web application deployment requires an application server. The application server is

implemented by a virtual system installing Linux OS and App Container. The virtual system is

defined in an OVF descriptor file and an image installing SUSE Linux and Tomcat is included in

the OVF package.

Accordingly, developers define two NodeTypes in TOSCA for the application server and the Web

application respectively. The NodeTypeImplementation for the NodeType of the application

server provides the deployment artifact “appServer.ova” to materialize instance of the

particular NodeTemplate referring the NodeType of the application server. The

NodeTypeImplementation also provides the implementation artifact “serverMgt.war” to

implement the interface operations of the NodeType. The service template topology is shown in

Figure 15.

FIGURE 15 - SAMPLE SERVICE TOPOLOGY FOR OVF USE CASE 1

The NodeType for the application server is defined within the Definitions element of a

Definitions document identified as “MyNodeTypes” within the target namespace

“http://www.example.com/SampleNodeTypes”. Thus, by importing the corresponding

namespace into another Definitions document, the NodeType is available for use in the other

document.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 74 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 <Definitions id="MyNodeTypes" name="My Node Types"
 targetNamespace="http://www.example.com/SampleNodeTypes">

 <NodeType name="ApplicationServer"
 targetNamespace="http://www.example.com/SampleNodeTypes">

 <Interfaces>

 <Interface name="MyAppServerInterface">

 <Operation name="DeployAppServer">

 </Interface>

 </Interfaces>

 </NodeType>

 </Definitions>

The following steps should be followed in order to take an OVF package as the deployment

artifact for the NodeTemplate of the NodeType “ApplicationServer”.

8.1.1.1 Step One. Defining the ArtifactType that can be used for describing OVF
packages as deployable artifacts.

Like the NodeType, the ArtifactType is also defined in a Definitions document with the id

attribute value “MyArtifactTypes” within the target namespace

“http://www.example.com/SampleArtifactTypes”. Thus, by importing the corresponding

namespace into another Definitions document, the ArtifactType is available for use in the

other document.

 <Definitions id="MyArtifactTypes" name="My Artifact Types"
 targetNamespace="http://www.example.com/SampleArtifactTypes"

 xmlns:mnt="http://www.example.com/BaseArtifactTypes"

 xmlns:map="http://www.example.com/SampleArtifactProperties>

 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"

 namespace="http://www.example.com/ToscaBaseTypes"/>

 <Import importType="http://www.w3.org/2001/XMLSchema"

 namespace="http://www.example.com/SampleArtifactProperties"/>

 <ArtifactType name="OVFPackage">
 <DerivedFrom typeRef="ba:VMPackage"/>

 <PropertiesDefinition element="map:OVFPackageProperties"/>

 </ArtifactType>

 </Definitions>

8.1.1.2 Step Two. Defining the Artifact Template referring to the ArtifactType
“OVFPackage”.

The “OVFPackage” ArtifactType is defined in another Definitions document with the id of

“MyArtifacts” within the target namespace “http://www.example.com/SampleArtifacts”. Thus,

by importing the corresponding namespace into another Definitions document, the

ArtifactTemplate is available for use in the other document.

 <Definitions id="MyArtifacts" name="My Artifacts"
 targetNamespace="http://www.example.com/SampleArtifacts"

 xmlns:sat="http://www.example.com/SampleArtifactTypes">

 <Import namespace="http://www.example.com/SampleArtifactTypes"

 location="http://www.example.com/

 Types/MyArtifactTypes.tosca"

 importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 75 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 <ArtifactTemplate id="MyOVFInstallable"
 name="My OVF Installable"

 Type="sat:OVFPackage">

 <ArtifactReferences>

 <ArtifactReference reference="files/appServer.ova"/>

 </ArtifactReferences>

 <ArtifactTemplate>

 </Definitions>

8.1.1.3 Step Three. Defining the NodeTypeImplementation “MyImpls”.

The following code block defines an implementation of the NodeType “ApplicationServer”.

 <Definitions id="MyImpls" name="My Implementations"
 targetNamespace="http://www.example.com/SampleImplementations"

 xmlns:snt="http://www.example.com/SampleNodeTypes"

 xmlns:sat="http://www.example.com/SampleArtifactTypes"

 xmlns:sa="http://www.example.com/SampleArtifacts"

 xmlns:ba="http://www.example.com/BaseArtifactTypes">

 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"

 namespace="http://www.example.com/BaseArtifactTypes"/>

 <Import namespace="http://www.example.com/SampleArtifactTypes"

 location="http://www.example.com/

 Types/MyArtifactTypes.tosca"

 importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

 <Import namespace="http://www.example.com/SampleArtifacts"

 location="http://www.example.com/

 Artifacts/MyArtifacts.tosca"

 importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

 <Import namespace="http://www.example.com/SampleNodeTypes"

 location="http://www.example.com/

 Types/MyNodeTypes.tosca"

 importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

 <NodeTypeImplementation name="MyAppServerImpls"

 nodeType="snt:ApplicationServer">

 <ImplementationArtifacts>

 <ImplementationArtifact name="MyAppServerManagement"

 interfaceName="MyAppServerInterface"

 artifactType="ba:WARFile">

 files/serverMgt.war

 </ImplementationArtifact>

 </ImplementationArtifacts>

 <DeploymentArtifacts>

 <DeploymentArtifact name="MyOVFPackage"

 artifactType="sat:OVFPackage"

 artifactRef="sa:MyOVFInstallable">

 </DeploymentArtifact>

 </DeploymentArtifacts>

 </NodeTypeImplementation>

 </Definitions>

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 76 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

8.1.2 Use Case Two. OVF Package for Multiple Virtual Systems

OVF package may contain multiple VM images which are Deployment Artifacts for multiple Node

Type Implementations or Node Templates, hints should be given so that TOSCA container can

map the right VM image with a node type implementation or template.

Consider a web application deployment requires an Application server and a DB server. So, two

VM images are needed, where one image installing Linux OS and Apache and the other one

installing Linux OS and MySQL. Therefore, in an OVF descriptor file, these two images are

described by two VirtualSystem elements and included in one

VirtualSystemCollection element as follows:

 <VirtualSystemCollection ovf:id="multi-tier-app">

 <Info>A collection of virtual machines</Info>

 <Name>Multi-tiered Appliance</Name>
 <SomeSection>

 <!-- Additional section content -->

 </SomeSection>

 <VirtualSystem ovf:id="appServer">
 <Info>A virtual machine installing Suse Linux and Tomcat</Info>

 <Name>Application Server</Name>

 <!-- Additional sections -->

 </VirtualSystem>

 <VirtualSystem ovf:id="dbServer">
 <Info>A virtual machine installing Suse Linux and MySQL</Info>

 <Name>DB Server</Name>

 <!-- Additional sections -->

 </VirtualSystem>

 </VirtualSystemCollection>

Accordingly, developers define two NodeTypes in TOSCA for the “Application Server” and the

“Database Server” respectively. The NodeTypeImplementations for these two NodeTypes

refer the same OVF package as the deployment artifact. The service topology is shown in Figure

16.

FIGURE 16 - SAMPLE SERVICE TOPOLOGY FOR OVF USE CASE 2

The NodeTypes for the “Application Server” and “Database Server” are defined in a Definitions

document “MyNodeTypes” within the target namespace

“http://www.example.com/SampleNodeTypes”. Thus, by importing the corresponding

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 77 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

namespace into another Definitions document, the NodeTypes are available for use in the other

document.

 <Definitions id="MyNodeTypes" name="My Node Types"
 targetNamespace="http://www.example.com/SampleNodeTypes">

 <NodeType name="ApplicationServer"
 targetNamespace="http://www.example.com/SampleNodeTypes">

 <Interfaces>

 <Interface name="MyAppServerInterface">

 <Operation name="DeployAppServer">

 </Interface>

 </Interfaces>

 </NodeType>

 <NodeType name="DBServer"
 targetNamespace="http://www.example.com/SampleNodeTypes">

 <Interfaces>

 <Interface name="MyDBServerInterface">

 <Operation name="DeployDBServer">

 <Operation name="AcquireNetworkAddress">

 </Interface>

 </Interfaces>

 </NodeType>

 </Definitions>

Since the deployment artifacts to implement these two NodeTypes are packaged in a single OVF

package, the instances for these two nodes can be instantiated by importing the OVF package

only once. There may be interaction between these two nodes. For example, the application

server may acquire the network address of the database server in order to connect to it. The

TOSCA container should know which VM is for the application server and which one is for the

database server after successfully importing the OVF package.

The ArtifactTemplates are defined in a Definitions document “MyArtifacts” within the

target namespace “http://www.example.com/SampleArtifacts”. Thus, by importing the

corresponding namespace into another Definitions document, the ArtifactTemplates are

available for use in the other document.

 <Definitions id="MyArtifacts" name="My Artifacts"
 targetNamespace="http://www.example.com/SampleArtifacts"

 xmlns:sat="http://www.example.com/SampleArtifactTypes">

 <Import namespace="http://www.example.com/SampleArtifactTypes"

 location="http://www.example.com/

 Types/MyArtifactTypes.tosca"

 importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

 <ArtifactTemplate id="AppServerInstallable"
 name="Application Server Installable"

 Type="sat:OVFPackage">

 <ArtifactReferences>

 <ArtifactReference reference="files/myService.ova"/>

 <Include pattern="appserver.img"/>

 </ArtifactReferences>

 <ArtifactTemplate>

 <ArtifactTemplate id="DBServerInstallable"
 name="Database Server Installable"

 Type="sat:OVFPackage">

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 78 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 <ArtifactReferences>

 <ArtifactReference reference="files/ myService.ova"/>

 <Include pattern="dbserver.img"/>

 </ArtifactReferences>

 <ArtifactTemplate>

 </Definitions>

By specifying the VM image in the ArtifactTemplates and referring to them in the

DeploymentArtifacts of NodeTypeImplementations, the TOSCA container can be aware

of the role of each VM. The NodeTypeImplementations for NodeTypes can be defined as

follows:

 <Definitions id="MyImpls" name="My Implementations"
 targetNamespace="http://www.example.com/SampleImplementations"

 xmlns:snt="http://www.example.com/SampleNodeTypes"

 xmlns:sat="http://www.example.com/SampleArtifactTypes"

 xmlns:sa="http://www.example.com/SampleArtifacts"

 xmlns:ba="http://www.example.com/BaseArtifactTypes">

 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"

 namespace="http://www.example.com/ToscaBaseTypes"/>

 <Import namespace="http://www.example.com/SampleArtifactTypes"

 location="http://www.example.com/Types/MyArtifactTypes.tosca"

 importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

 <Import namespace="http://www.example.com/SampleArtifacts"

 location="http://www.example.com/Artifacts/MyArtifacts.tosca"

 importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

 <Import namespace="http://www.example.com/SampleNodeTypes"

 location="http://www.example.com/Types/MyNodeTypes.tosca"

 importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

 <NodeTypeImplementation name="MyAppServerImpls"
 nodeType="snt:ApplicationServer">

 <DeploymentArtifacts>

 <DeploymentArtifact name="AppServerDA"

 artifactType="sat:OVFPackage"

 artifactRef="sa:AppServerInstallable">

 </DeploymentArtifact>

 </DeploymentArtifacts>

 </NodeTypeImplementation>

 <NodeTypeImplementation name="MyDBServerImpls"
 nodeType="snt:DBServer">

 <DeploymentArtifacts>

 <DeploymentArtifact name="DBServerDA"

 artifactType="sat:OVFPackage"

 artifactRef="sa:DBServerInstallable">

 </DeploymentArtifact>

 </DeploymentArtifacts>

 </NodeTypeImplementation>

 </Definitions>

Based on the above Definitions document, the TOSCA container can determine that the VM

made from “appserver.img” is the application server and the VM made from “dbserver.img” is

the database server. When the operation “AcquireNetworkAddress” defined in the NodeType

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 79 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

“DBServer” is performed, the TOSCA container can access the correct IP Address of the VM for

the database server.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 80 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Appendix A. Acknowledgments

The following individuals have participated in the creation of this document and are gratefully

acknowledged by the TOSCA TC:

Contributors by Section:

Section 1: Matt Rutkowski, IBM
Section 2: Adolf Hohl, NetApp; Frank Leymann, IBM
Section 3: Frank Leymann, IBM
Section 4: Frank Leymann, IBM
Section 5: Dietmar Noll, IBM; Frank Leymann, IBM
Section 6: Matt Rutkowski, IBM
Section 7: Doug Davis, IBM; Thomas Spatzier, IBM
Section 8: Paul Zhang, Huawei; Marvin Waschke, CA

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 81 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Appendix B. Terminology & Acronyms

B.1 Acronyms

Acronym Phrase

BPMN Business Process Model and Notation

CIMI Cloud Infrastructure Management Interface, a DMTF specification.

CRM Customer Relationship Management

CSAR Cloud Service Archive, a TOSCA specified format

DMTF Distributed Management Task Force

EC2 Elastic Compute Cloud, an Amazon Web Service (AWS).

EJB Enterprise JavaBeans

FTP File Transfer Protocol

J2EE Java 2 Platform, Enterprise Edition

JAR Java ARchive

NTFS New Technology File System

OVF Open Virtualization Format

PHP PHP: Hypertext Preprocessor, a recursive acronym.

QoS Quality of Service

RPM RPM Package Manager, a packaging format used on some Linux

distributions.

TAR Unix-style archive file format; originally developed for tape archives, but

has been adopted for additional uses.

UID, UUID Unique Identifier, and Universally Unique Identifier

VM Virtual Machine

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 82 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Appendix C. Revision History

Revision Date Editor Changes Made

WD1, Rev. 01 2012-11-01 Matt Rutkowski,

IBM

Initial Version, with Table of Contents

(TOC).

WD1, Rev. 02 2012-11-04 Frank Leymann,

IBM

Addition of initial Chapter 2 content.

WD1, Rev. 03 2012-11-05 Adolf Hohl, NetApp Addition of remainder of Chapter 2

content.

WD1, Rev. 04 2012-11-09 Matt Rutkowski,

IBM

Cleanup and edits for Chapters 1 & 2.

Added Terminology and Acronyms

Appendix.

WD1, Rev. 05 2012-11-15 Frank Leymann,

IBM;

Matt Rutkowski,

IBM

Frank added explanation of declarative vs.

imperative models. Also, added the section

sketching the TOSCA environment with

corresponding figures. Matt preformed more

edits/cleanup.

WD1, Rev. 06 2012-11-19 Matt Rutkowski,

IBM

Added “Statement of Purpose” to

Introduction (Chapter 1).

WD1, Rev. 07 2012-11-26 Matt Rutkowski,

IBM

Authored contents of Section 3.1 plus

general editing of grammar and content

for document consistency.

WD2, Rev. 01 2012-12-05 Paul Zhang,

Huawei; Marv

Waschke, CA

Added contents for Section 8.1 “Mapping

TOSCA to DMTF OVF”.

WD2, Rev. 02 2012-12-10 Matt Rutkowski,

IBM

Addition of Section 7 “What cloud

providers should know…” along with edits

and comments.

Fixed style problems with Section 8.1

merge, fixed code samples, and updated

document fields, minor edits.

WD2, Rev. 03 2012-12-11 Matt Rutkowski,

IBM

Comprehensive editing of Section 2

contents. Minor edits to other sections.

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 83 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

WD2, Rev. 04 2012-12-12 Frank Leymann,

IBM; Matt

Rutkowski, IBM

Merged in Section 6 “What Artifact

developers should know…”. Fixed all figure

captions and added “List of Figures” table

to top of document. Minor edits to

Section 6.

WD3, Rev. 01 2012-12-13 Matt Rutkowski,

IBM

Created “clean” version based upon WD2,

Rev. 04 as WD3, Rev. 01 as approved by

the TOSCA. TC on 2012-12-13.

WD3, Rev.

02; Rev. 03

2013-01-09;

2013-01-10

Matt Rutkowski,

IBM; Frank

Leymann, IBM;

Doug Davis, IBM

Merged in additional initial content for

sections 3 (Matt), 4 (Doug) and complete

section 5 content from Frank. Added non-

normative references for TOSCA spec. and

referenced open source projects. Added

new acronyms/definitions.

WD4, Rev 02 2013-01-16 Matt Rutkowski,

IBM; Frank

Leymann, IBM,

Doug Davis, IBM

Matt: Complete top-down edit, all styles,

keywords, tables, figures, reference all

fixed and made consistent. Reorganization

of chapters to discuss all “abstract”

concepts before “concrete” examples.

Reauthored text to fit new section “flow”.

Inclusion of Chapter 4 Artifact Developers”

from Frank Leymann and review/edit of its

contents.

Merged additional content from Doug

Davis for migrating “multi-VM”

applications in Chapter 7.

WD5, Rev1 2013-01-17 Matt Rutkowski,

IBM

Clean version reviewed and approved by

TC during TOSCA TC meeting 2013-01-17

WD5, Rev2e 2013-01-22 Matt Rutkowski,

IBM

Rewrite of section 6 to split DB tier from

Web App tier and adjust

tables/figures/code examples to match.

WD5, Rev2f 2013-01-23 Matt Rutkowski,

IBM

Merged updates for Ch.4 from Doug Davis

and Section 3.4.3 from Frank Leymann.

Addressed comments from Frank for

Section 6 where still applicable.

WD5, Rev3 2013-01-24 Matt Rutkowski,

IBM

Addressed all legacy

comments/outstanding work items based

upon resolutions/plans discussed on

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

tosca-primer-v1.0-cnd01 31 January 2013
Non-Standards Track Copyright © OASIS Open 2013. All Rights Reserved. Page 84 of 84

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

editor’s call during top-down review. Also

addressed updates to section 7 from Doug

Davis/Thomas Spatzier and comments

from Frank Leymann on section 6

contents. Removed Section 7.2 at the

request of Doug Davis. Matt’s

Edits/Revisions and remaining content for

section 6. Matt’s

WD6, Rev1 2013-01-24 Matt Rutkowski,

IBM

TC approved the creation of WD6, Rev1

during the OASIS TOSCA TC call on 2013-

01-24 based upon WD5, Rev3b.

WD6, Rev2 2013-01-30;

2013-01-31

Matt Rutkowski,

IBM

Addressed comments and corrections

from Gerd Breiter, Doug Davis and Frank

Leymann. Also, some other

corrections/edits based upon another top-

down re-read of the final document.

