

TOSCA Simple Profile for Network Functions Virtualization (NFV) Version 1.0

Committee Specification Draft 04
11 May 2017
Specification URIs

This version:

http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd04/tosca-nfv-v1.0-csd04.pdf (Authoritative)
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd04/tosca-nfv-v1.0-csd04.html
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd04/tosca-nfv-v1.0-csd04.doc
Previous version:

http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd03/tosca-nfv-v1.0-csd03.pdf (Authoritative)
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd03/tosca-nfv-v1.0-csd03.html
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd03/tosca-nfv-v1.0-csd03.doc
Latest version:

http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.pdf (Authoritative)
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.doc
Technical Committee:

OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC
Chairs:

Paul Lipton (paul.lipton@ca.com), CA Technologies
John Crandall (jcrandal@brocade.com), Brocade
Editors:

Shitao Li (lishitao@huawei.com), Huawei Technologies Co., Ltd.
John Crandall (jcrandal@brocade.com), Brocade
Related work:

This specification is related to:
· Topology and Orchestration Specification for Cloud Applications Version 1.0. Edited by Derek Palma and Thomas Spatzier. 25 November 2013. OASIS Standard. Latest version: http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html.

Declared XML namespaces:

· http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0/nfv/1.0/
Abstract:

The TOSCA NFV profile specifies a Network Functions Virtualisation (NFV) specific data model using TOSCA language.
Status:

This document was last revised or approved by the OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical.
TC members should send comments on this specification to the TC’s email list. Others should send comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/tosca/.
This Committee Specification Draft is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established. For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-open.org/committees/tosca/ipr.php).
Note that any machine-readable content (aka Computer Language Definitions) declared Normative for this Work Product is provided in separate plain text files. In the event of a discrepancy between any such plain text file and display content in the Work Product's prose narrative document(s), the content in the separate plain text file prevails.
Citation format:

When referencing this specification the following citation format should be used:
 [TOSCA-Simple-Profile-NFV-v1.0]
TOSCA Simple Profile for Network Functions Virtualization (NFV) Version 1.0. Edited by Shitao Li and John Crandall. 11 May 2017. OASIS Committee Specification Draft 04. http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd04/tosca-nfv-v1.0-csd04.html. Latest version: http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html.
Notices
Copyright © OASIS Open 2017. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.
Table of Contents
61
Introduction

61.1 IPR Policy

61.2 Terminology

61.3 Normative References

72
Summary of key TOSCA concepts

83
NFV Architecture & Concept Overview

83.1 Deployment Template in NFV

93.2 Network Services Descriptor

93.2.1 Network Connectivity Topology

103.3 VNFD: Virtualized Network Function Descriptor

114
TOSCA Modeling Principles & Data Model

114.1 Namespace and Alias

114.2 VDU.Compute

114.3 VDU design by using TOSCA composition

135
VNF Descriptor Template for NFV

135.1 Introduction

135.2 TOSCA model for VNFD

145.2.1 Additional Requirements

145.3 Data Types

145.3.1 tosca.datatype.nfv.L2AddressData

155.3.2 tosca.datatypes.nfv.L3AddressData

165.3.3 tosca.datatypes.nfv.AddressData

185.3.4 tosca.datatypes.nfv.VirtualNetworkInterfaceRequirements

195.3.5 tosca.datatypes.nfv.ConnectivityType

205.3.6 tosca.datatypes.nfv.RequestedAdditionalCapability

215.3.7 tosca.datatypes.nfv.VirtualMemory

225.3.8 tosca.datatypes.nfv.VirtualCpu

245.3.6.1
Additional Requirements

245.3.9 tosca.datatypes.nfv.VirtualCpuPinning

255.3.10 tosca.datatypes.nfv.VnfcConfigurableProperties

265.4 Artifact types

265.4.1 tosca.artifacts.nfv.SwImage

285.5 Capabilities Types

285.5.1 tosca.capabilites.nfv.VirtualBindable

285.5.2 tosca.capabilities.nfv.Metric

285.5.3 tosca.capabilites.nfv.VirtualCompute

305.6 Requirements Types

305.7 Relationship Types

305.7.1 tosca.relationships.nfv.VirtualBindsTo

305.7.2 tosca.relationships.nfv.Monitor

305.8 Interface Types

305.9 Node Types

305.9.1 tosca.nodes.nfv.vnfd

305.9.2 tosca.nodes.nfv.VDU.Compute

345.9.3 tosca.nodes.nfv.VDU.VirtualStorage

365.9.4 tosca.nodes.nfv.Cpd

375.9.5 tosca.nodes.nfv.VduCpd

395.9.6 tosca.nodes.nfv.VnfVirtualLinkDesc

415.10 Group Types

415.11 Policy Types

415.12 Using Service Template for a VNFD

415.12.1 Metadata keynames

426
Examples

426.1 VNFD modeling design example by using TOSCA composition

46Appendix A. Acknowledgments

Participants:
46

47Appendix B. Revision History

1 Introduction
The TOSCA NFV profile specifies a NFV specific data model using TOSCA language. Network Functions Virtualisation aims to transform the way that network operators architect networks by evolving standard IT virtualisation technology to consolidate many network equipment types onto industry standard high volume servers, switches and storage, which could be located in Datacentres, Network Nodes and in the end user premises.

The deployment and operational behavior requirements of each Network Service in NFV is captured in a deployment template, and stored during the Network Service on-boarding process in a catalogue, for future selection for instantiation. This profile using TOSCA as the deployment template in NFV, and defines the NFV specific types to fulfill the NFV requirements. This profile also gives the general rules when TOSCA used as the deployment template in NFV.

1.1 IPR Policy

This Committee Specification Draft is being developed under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established.
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-open.org/committees/tosca/ipr.php).

1.2 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

1.3 Normative References

[RFC2119]
Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.

 [TOSCA-1.0]
Topology and Orchestration Topology and Orchestration Specification for Cloud Applications (TOSCA) Version 1.0, an OASIS Standard, 25 November 2013, http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
[TOSCA-Simple-Profile-YAML]
TOSCA Simple Profile in YAML Version 1.0
[ETSI GS NFV-IFA 011]
Network Functions Virtualisation (NFV); Management and Orchestration; VNF Packaging Specification"

[ETSI GS NFV-IFA 014]
Network Functions Virtualisation (NFV); Management and Orchestration; Network Service Template Specification
2 Summary of key TOSCA concepts
The TOSCA metamodel uses the concept of service templates to describe cloud workloads as a topology template, which is a graph of node templates modeling the components a workload is made up of and as relationship templates modeling the relations between those components. TOSCA further provides a type system of node types to describe the possible building blocks for constructing a service template, as well as relationship type to describe possible kinds of relations. Both node and relationship types may define lifecycle operations to implement the behavior an orchestration engine can invoke when instantiating a service template. For example, a node type for some software product might provide a ‘create’ operation to handle the creation of an instance of a component at runtime, or a ‘start’ or ‘stop’ operation to handle a start or stop event triggered by an orchestration engine. Those lifecycle operations are backed by implementation artifacts such as scripts or Chef recipes that implement the actual behavior.

An orchestration engine processing a TOSCA service template uses the mentioned lifecycle operations to instantiate single components at runtime, and it uses the relationship between components to derive the order of component instantiation. For example, during the instantiation of a two-tier application that includes a web application that depends on a database, an orchestration engine would first invoke the ‘create’ operation on the database component to install and configure the database, and it would then invoke the ‘create’ operation of the web application to install and configure the application (which includes configuration of the database connection).

The TOSCA simple profile assumes a number of base types (node types and relationship types) to be supported by each compliant environment such as a ‘Compute’ node type, a ‘Network’ node type or a generic ‘Database’ node type. Furthermore, it is envisioned that a large number of additional types for use in service templates will be defined by a community over time. Therefore, template authors in many cases will not have to define types themselves but can simply start writing service templates that use existing types. In addition, the simple profile will provide means for easily customizing existing types, for example by providing a customized ‘create’ script for some software.

3 NFV Architecture & Concept Overview

Network Functions Virtualization (NFV) leverages standard IT virtualization technology to enable rapid service innovation for Network Operators and Service Providers. Most current networks are comprised of diverse network appliances that are connected—or chained--in a specific way to achieve the desired network service functionality. NFV aims to replace these network appliances with virtualized network functions that can be consolidated onto industry-standard high volume servers, switches and storage, which could be in data centers, network nodes, or in the end-user premises. These virtual network functions can then be combined using dynamic methods—rather than just static ones—to create and manage network services in an agile fashion.

Deploying and operationalizing end-to-end services in NFV requires software-based tools for Management and Orchestration of virtualized network functions on independently deployed and operated NFV infrastructure platforms. These tools use Network Service Descriptors (NSDs) that capture deployment and operational behavior requirements of each network service. This section describes how NFV models network services and virtual network function using NSDs and VNFDs, respectfully.
3.1 Deployment Template in NFV
The deployment template in NFV fully describes the attributes and requirements necessary to realize such a Network Service. NFV Orchestrator (NFVO) manages the lifecycle of network service, manage the VNF lifecycle via the interface exposed by the VNF Manager (VNFM), and manages virtualized resources via the interfaces exposed by the VIM.

The deployment template for a network service in NFV is called a network service descriptor (NSD), it describes a relationship between VNFs and possibly PNFs that it contains and the links needed to connect VNFs.

There are four information elements defined apart from the top level Network Service (NS) information element:

· Virtualized Network Function (VNF) information element

· Physical Network Function (PNF) information element

· Virtual Link (VL) information element

· VNF Forwarding Graph (VNFFG) information element

A VNF Descriptor (VNFD) is a deployment template which describes a VNF in terms of its deployment and operational behavior requirements.

A VNF Forwarding Graph Descriptor (VNFFGD) is a deployment template which describes a topology of the Network Service or a portion of the Network Service, by referencing VNFs and PNFs and Virtual Links that connect them.

A Virtual Link Descriptor (VLD) is a deployment template which describes the resource requirements that are needed for a link between VNFs, PNFs and endpoints of the Network Service, which could be met by various link options that are available in the NFVI.
A Physical Network Function Descriptor (PNFD) describes the connectivity, Interface and KPIs requirements of Virtual Links to an attached Physical Network Function.
The NFVO receives all descriptors and on-boards to the catalogues, NSD, VNFFGD, and VLD are “on-boarded” into a NS Catalogue; VNFD is on-boarded in a VNF Catalogue, as part of a VNF Package. At the instantiation procedure, the sender (operator) sends an instantiation request which contains instantiation input parameters that are used to customize a specific instantiation of a network service or VNF. Instantiation input parameters contain information that identifies a deployment flavor to be used and those parameters used for the specific instance.

3.2 Network Services Descriptor

Editor note: A section describing ETSI NFV architecture & concept of NSD (IFA014). And, subsection describing some of the basic terminologies.
The Network Service Descriptor (NSD) is a deployment template which consists of information used by the NFV Orchestrator (NFVO) for life cycle management of an NS [ETSI GS NFV-IFA 014]. The description of a NS as used by the NFV Management and Orchestration (MANO) functions to deploy an NS instance includes or references the descriptors of its constituent objects:

•
Zero, one or more Virtualised Network Function Descriptors (VNFD);

•
Zero, one or more Physical Network connect PNFs to VLs;

•
Zero, one or more nested NSD”.

3.2.1 Network Connectivity Topology

A VNF Network Connectivity Topology (NCT) graph describes how one or more VNFs in a network service are connected to one another, regardless of the location and placement of the underlying physical network elements. A VNF NCT thus defines a logical network-level topology of the VNFs in a graph. Note that the (logical) topology represented by a VNF-NCT may change as a function of changing user requirements, business policies, and/or network context.

In NFV, the properties, relationships, and other metadata of the connections are specified in Virtual Link abstractions. To model how virtual links connect to virtual network functions, NFV introduces uses Connection Points (CPs) that represent the virtual and/or physical interfaces of the VNFs and their associated properties and other metadata.
The following figure shows a network service example. In this example, the network service includes three VNFs with two connections points (CP1 and CP14). Each VNF exposes different number of connection points and connect through a virtual links, such as VL1={CP1, CP4}; VL2={CP5, CP8,CP10}; VL3={CP6,CP7}; VL4={CP11, CP14}. Virtual Link connects two or more connection points. VNF Forwarding Graph represents the connections of the VNFs are connected through connection points and Virtual Links. Network Forwarding Path represents the flow where the packet will follow.

In this example, there are two VNF Forwarding Graph (VNFFG1 and VNFFG2), where each of VNFFG has different Network Forwarding Path (NFP1 and NFP2).

[image: image2.png]CP = connection point, VL = Virtual Link, VNFFG = VNF Forwarding Graph, NFP = Network Forwarding Path

Traffic
flow

VNFFG1:NFP2

Graph
endpoint

-
A e

VNFFG2:NFP1

,_________________
p S

Figure 3.2.1-1: Example network connectivity topology graph

3.3 VNFD: Virtualized Network Function Descriptor

A VNFD is a deployment template which describes a VNF in terms of deployment and operational behavior requirements. It also contains connectivity, interface and virtualized resource requirements [ETSI GS NFV-IFA 011]. The main parts of the VNFD are the following:

· VNF topology: it is modeled in a cloud agnostic way using virtualized containers and their connectivity. Virtual Deployment Units (VDU) describe the capabilities of the virtualized containers, such as virtual CPU, RAM, disks; their connectivity is modeled with VDU Connection Point Descriptors (VduCpd), Virtual Link Descriptors (Vld) and VNF External Connection Point Descriptors (VnfExternalCpd);

· VNF deployment aspects: they are described in one or more deployment flavours, including configurable parameters, instantiation levels, placement constraints (affinity / antiaffinity), minimum and maximum VDU instance numbers. Horizontal scaling is modeled with scaling aspects and the respective scaling levels in the deployment flavours;

· VNF lifecycle management (LCM) operations: describes the LCM operations supported per deployment flavour, and their input parameters; Note, that the actual LCM implementation resides in a different layer, namely referring to additional template artifacts.

Editor Note: VNF LCM operation modeling in TOSCA is still under discussion.

4 TOSCA Modeling Principles & Data Model

Editor Note: This section describing TOSCA modeling principles and data model for NFV, where the type, properties, capabilities, requirements, and relationships, etc. may/should/shall be used based on [TOSCA-1.0] and [TOSCA-Simple-Profile-YAML V1.0], or new type based on ETSI NFV requirements, etc.

4.1 Namespace and Alias
The following table defines the namespace alias and (target) namespace values that SHALL be used when referencing the TOSCA simple Profile for NFV version 1.0 specification.
	Alias
	Target Namespace
	Specification Description

	tosca_simple_profile_for_nfv_1_0
	http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0/nfv/1.0/
	The TOSCA Simple Profile for NFV v1.0 target namespace and namespace alias.

4.2 VDU.Compute

[image: image6.png]internalCpd

VirtualLinkable

req
VirtualBind
able

VirtualBinds

To

>

[VDU.Compute

VirtualComputeDescriptor

caph,

virtual_compute

VDU.AttachTo

req
Virtual_storage —r.)
A cap

VirtualBindable

artifact

swimage

VDU.VirtualStorage

VirtualStorageDescriptor

/{cap

virtual_compute
artifact

swimage

EDITOR NOTE: FFS. Document use of decoration of the VDU.Compute node with additional capabilities type (which carry properties is the prefer method) e.g. additional processor architecture requirements to existing VDU.Compute

4.3 VDU design by using TOSCA composition
Node template substitution for model composition feature as specified in TOSCA-Simple-Profile-YAML is used to abstract a subsystem as a component of another application. The details for such subsystem can be defined in a separate template file that can be used for substituting the more abstract representations in the application level template file.

For a VNF descriptor design, VDU can be considered as the subsystem of a VNF descriptor, a standalone TOSCA service template can be used to define the tolopogy of the VDU, and then the TOSCA compostion can be used to abstract the VDU as a new node type. [image: image3.png]ntermaiCpd

VDU Compute.

[— veucpa
Composon e EDY

rea Frm—
e woh|

k. et sompits

4% neincab
—|_. A
Acap
e,

Substittion
mappings

artfact

Editor’s note: the definition of tosca.nodes.nfv.VDUComposition is FFS.
5 VNF Descriptor Template for NFV

5.1 Introduction
The VNF Descriptor (VNFD) describes the topology of the VNF by means of ETSI NFV IFA011 [IFA011] terms such as VDUs, Connection Points, Virtual Links, External Connection Points, Scaling Aspects, Instantiation Levels and Deployment Flavours.

The VNFD (VNF Descriptor) is read by both the NFVO and the VNFM. It represents the contract & interface of a VNF and ensures the interoperability across the NFV functional blocks.
The main parts of the VNFD are the following:

· VNF topology: it is modeled in a cloud agnostic way using virtualized containers and their connectivity. Virtual Deployment Units (VDU) describe the capabilities of the virtualized containers, such as virtual CPU, RAM, disks; their connectivity is modeled with VDU Connection Point Descriptors (VduCpd), Virtual Link Descriptors (Vld) and VNF External Connection Point Descriptors (VnfExternalCpd);

· VNF deployment aspects: they are described in one or more deployment flavours, including instantiation levels, supported LCM operations, VNF LCM operation configuration parameters, placement constraints (affinity / antiaffinity), minimum and maximum VDU instance numbers, and scaling aspect for horizontal scaling.
5.2 TOSCA model for VNFD

The following table defines the TOSCA Type “derived from” values that SHALL be used when using the TOSCA Simple Profile for NFV version 1.0 specification [TOSCA-Simple-Profile-NFV-v1.0] for NFV VNFD.
	ETSI NFV Element

[IFA011]
	TOSCA VNFD

[TOSCA-Simple-Profile-NFV-v1.0]
	Derived from

	VNF
	tosca.nodes.nfv.VNF
	tosca.nodes.Root

	VDU
	tosca.nodes.nfv.VDU
	tosca.nodes.Root

	Cpd (Connection Point)
	tosca.nodes.nfv.Cpd
	tosca.nodes.Root

	VduCpd (internal connection point)
	tosca.nodes.nfv.VduCpd
	tosca.nodes.nfv.Cpd

	VnfVirtualLinkDesc (Virtual Link)
	tosca.nodes.nfv.VnfVirtualLinkDesc
	tosca.nodes.Root

	VnfExtCpd (External Connection Point)
	tosca.nodes.nfv.VnfExtCpd
	tosca.nodes.Root

	Virtual Storage
	
	

	Virtual Compute
	tosca.capabilities.nfv.VirtualCompute
	tosca.capabilities.Root

	Software Image
	tosca.artifacts.nfv.SwImage
	tosca.artifacts.Deployment.Image

	Deployment Flavour
	
	

	Scaling Aspect
	
	

	Element Group
	
	

	Instantiation Level
	
	

5.2.1 Additional Requirements
This Profile’s Node Type definitions are utilizing existing TOSCA grammar to:

· change the status of an inherited property (i.e., a property’s "status" keyname’s value)

· change the occurrences of inherited requirements or capabilities (e.g., by turning off a requirement by setting the occurrences keyname’s value to [0,0]

However, these features are not explicitly supported in TOSCA Simple Profile in YAML version 1.1, but the NFV work group has raised this as a requirement for the version 1.2 Simple Profile in YAML and has been assured this will appear as a supported feature of the grammar in that version.

5.3 Data Types

5.3.1 tosca.datatype.nfv.L2AddressData
Editor Note: Further discussion with ETSI IFA/SOL WG to defines these values.
	Shorthand Name
	L2AddressData

	Type Qualified Name
	tosca:tosca.datatype.nfv.L2AddressData

	Type URI
	tosca.datatype.nfv.L2AddressData

5.3.1.1 Properties
TBD
	Name
	Required
	Type
	Constraints
	Description

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

5.3.1.2 Definition
	TBD

5.3.1.3 Examples

TBD
5.3.2 tosca.datatypes.nfv.L3AddressData

The L3AddressData type is a complex TOSCA data type used to describe L3AddressData information element as defined in [ETSI GS NFV-IFA 011], it provides the information on the IP addresses to be assigned to the connection point instantiated from the parent Connection Point Descriptor.
	Shorthand Name
	L3AddressData

	Type Qualified Name
	tosca: L3AddressData

	Type URI
	tosca.datatypes.nfv.L3AddressData

5.3.2.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	ip_address_assignment
	yes
	Boolean
	
	Specify if the address assignment is the responsibility of management and orchestration function or not.

If it is set to True, it is the management and orchestration function responsibility.

	floating_ip_activated
	yes
	Boolean
	
	Specify if the floating IP scheme is activated on the Connection Point or not.

	ip_address_type
	no
	string
	Valid values: ipv4 , ipv6

	Define address type.

The address type should be aligned with the address type supported by the layer_protocol properties of the parent VnfExtCpd

	number_of_ip_address
	no
	Integer
	
	Minimum number of IP addresses to be assigned.

5.3.2.2 Definition
The TOSCA L3AddressData data type is defined as follows:

	tosca.datatypes.nfv.L3AddressData:

 derived_from: tosca.datatypes.Root

 properties:

 ip_address_assignment:

 type: Boolean

required: true
 floating_ip_activated:

 type: Boolean

required: true
 ip_address_type:

 type: string
 required: false
constraints:

 - valid_values: [ipv4, ipv6]
number_of_ip_address:

 type: integer

 required: false

5.3.2.3 Examples
Example usage of the L3AddressData data type:

	<some_tosca_entity>:

 properties:

l3_address_data:

ip_address_assignment: true

floating_ip_activated: true

ip_address_type: ipv4

number_of_ip_address: 4

5.3.3 tosca.datatypes.nfv.AddressData

The AddressData type is a complex TOSCA data type used to describe AddressData information element as defined in [ETSI GS NFV-IFA 011], it provides information on the addresses to be assigned to the connection point(s) instantiated from a Connection Point Descriptor.

	Shorthand Name
	AddressData

	Type Qualified Name
	tosca: AddressData

	Type URI
	tosca.datatypes.nfv.AddressData

5.3.3.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	address_type
	yes
	string
	Valid values:

mac_address

ip_address

	Describes the type of the address to be assigned to the connection point instantiated from the parent Connection Point Descriptor.
The content type shall be aligned with the address type supported by the layerProtocol property of the parent Connection Point Descriptor.

	l2_address_data
	no
	tosca.datatypes.nfv.L2AddressData
	Shall be present when the addressType is mac_address.
	Provides the information on the MAC addresses to be assigned to the connection point(s) instantiated from the parent Connection Point Descriptor.

	l3_address_data
	no
	L3AddressData
	Shall be present when the addressType is ip_address.

	Provides the information on the IP addresses to be assigned to the connection point instantiated from the parent Connection Point Descriptor.

5.3.3.2 Definition
The TOSCA AddressData data type is defined as follows:

	tosca.datatypes.nfv.AddressData:

 derived_from: tosca.datatypes.Root

 properties:

 address_type:

 type: string
required: true
constraints:

 - valid_values: [mac_address, ip_address]
 l2_address_data:

 type: tosca.datatypes.nfv.L2AddressData # empty in "GS NFV IFA011 V0.7.3"
 required: false
 l3_address_data:

 type: tosca.datatypes.nfv.L3AddressData
 required: false

5.3.3.3 Examples
Example usage of the AddressData data type:

	<some_tosca_entity>:

 properties:

address_Data:

address_type: IP address

l3_address_data:

 ip_address_assignment: true

 floating_ip_activated: true

 ip_address_type: IPv4 address

 number_of_ip_Address: 4

5.3.4 tosca.datatypes.nfv.VirtualNetworkInterfaceRequirements
The VirtualNetworkInterfaceRequirements type is a complex TOSCA data type used to describe VirtualNetworkInterfaceRequirements information element as defined in [ETSI GS NFV-IFA 011], it provides the information to specify requirements on a virtual network interface realising the CPs instantiated from this CPD.
	Shorthand Name
	VirtualNetworkInterfaceRequirements

	Type Qualified Name
	tosca: VirtualNetworkInterfaceRequirements

	Type URI
	tosca.datatypes.nfv. VirtualNetworkInterfaceRequirements

5.3.4.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	name
	no
	string
	
	Provides a human readable name for the requirement.

	description
	no
	string
	
	Provides a human readable description of the requirement.

	support_mandatory
	yes
	boolean
	none

	Indicates whether fulfilling the constraint is mandatory (TRUE) for successful operation or desirable (FALSE).

	requirement
	yes
	Not specified
	
	Specifies a requirement such as the support of SR-IOV, a particular data plane acceleration library, an API to be exposed by a NIC, etc.

5.3.4.2 Definition
The TOSCA VirtualNetworkInterfaceRequirements data type is defined as follows:

	tosca.datatypes.nfv.VirtualNetworkInterfaceRequirements:

 derived_from: tosca.datatypes.Root

 properties:

 name:

 type: string

required: false
 description:

 type: string

required: false
 support_mandatory:

 type: boolean
 required: true

requirement:

 type: # not specified
 required: true

5.3.4.3 Examples
Example usage of the VirtualNetworkInterfaceRequirements data type:

	<some_tosca_entity>:

 properties:

virtual_network_interface_requirements:

name: SR-IOV
description: support of SR-IOV
support_mandatory: true

5.3.5 tosca.datatypes.nfv.ConnectivityType
The TOSCA ConnectivityType type is a complex TOSCA data type used to describe ConnectivityType information element as defined in [ETSI GS NFV-IFA 011].

	Shorthand Name
	ConnectivityType

	Type Qualified Name
	tosca: ConnectivityType

	Type URI
	tosca.datatypes.nfv. ConnectivityType

5.3.5.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	layer_protocol
	yes
	string
	Valid values: ethernet, mpls, odu2, ipv4, ipv6, pseudo_wire
	Identifies the protocol this VL gives access to (ethernet, mpls, odu2, ipv4, ipv6, pseudo_wire).

	flow_pattern
	no
	string
	
	Identifies the flow pattern of the connectivity (Line, Tree, Mesh).

5.3.5.2 Definition
The TOSCA ConnectivityType data type is defined as follows:

	tosca.datatypes.nfv. ConnectivityType:

 derived_from: tosca.datatypes.Root

 properties:

 layer_protocol:

 type: string

required: yes

constraints:

 - valid_values: [ethernet, mpls, odu2, ipv4, ipv6, pseudo_wire]
 flow_pattern:

 type: string

required: false

5.3.5.3 Examples
Example usage of the VirtualNetworkInterfaceRequirements data type:

	<some_tosca_entity>:

 properties:

Connectivity_Type:

layer_protocal: lpv4
flow_pattern: Line

5.3.6 tosca.datatypes.nfv.RequestedAdditionalCapability
RequestAdditionalCapability describes additional capability for a particular VDU.

	Shorthand Name
	RequestedAdditionalCapability

	Type Qualified Name
	tosca: RequestedAdditionalCapability

	Type URI
	tosca.datatypes.nfv.RequestedAdditionalCapability

	derived_from
	tosca.datatype.Root

5.3.6.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	request_additional_capability_name
	yes
	string
	
	Identifies a requested additional capability for the VDU.

	support_mandatory
	yes
	boolean
	
	Indicates whether the requested additional capability is mandatory for successful operation.

	min_requested_additional_capability_version
	no
	string
	
	Identifies the minimum version of the requested additional capability.

	preferred_requested_additinal_capability_version
	no
	string
	
	Identifies the preferred version of the requested additional capability.

	target_performance_parameters
	yes
	map of string
	
	Identifies specific attributes, dependent on the requested additional capability type.

5.3.6.2 Definition
	tosca.datatypes.nfv.RequestedAdditionalCapability:

 derived_from: tosca.datatypes.Root

 properties:

 #name:

 # key of containing map

 support_mandatory:

 type: boolean

 required: true

 min_requested_additional_capability_version:

 type: string

 required: false

 preferred_requested_additional_capability_version:

 type: string

 required: false

 requested_additional_capability_name:

 type: string

 required: true

 target_performance_parameters:

 type: map

 entry_schema:

 type: string

 required: true

5.3.6.3 Examples
TBD

5.3.6.4 Additional Requirements
None
5.3.7 tosca.datatypes.nfv.VirtualMemory
VirtualMemory describes virtual memory for a particular VDU.

	Shorthand Name
	VirtualMemory

	Type Qualified Name
	tosca:VirtualMemory

	Type URI
	tosca.datatypes.nfv.VirtualMemory

	derived_from
	tosca.datatype.Root

5.3.7.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	virtual_mem_size
	yes
	scalar-unit.size
	number
	Amount of virtual memory.

	virtual_mem_oversubscription_polity
	no
	string
	
	The memory core oversubscription policy in terms of virtual memory to physical memory on the platform. The cardinality can be 0 during the allocation request, if no particular value is requested.

	numa_enabled
	no
	boolean
	
	It specifies the memory allocation to be cognisant of the relevant process/core allocation. The cardinality can be 0 during the allocation request, if no particular value is requested.

5.3.7.2 Definition
	tosca.datatypes.nfv.VirtualMemory:

 derived_from: tosca.datatypes.Root

 properties:

 virtual_mem_size:

 type: scalar-unit.size # Number

 required: true

 virtual_mem_oversubscription_policy:

 type: string

 required: false

 numa_enabled:

 type: boolean

 required: false

5.3.7.3 Examples
TBD

5.3.7.4 Additional Requirements
None

5.3.8 tosca.datatypes.nfv.VirtualCpu
VirtualMemory describes virtual memory for a particular VDU.

	Shorthand Name
	VirtualCpu

	Type Qualified Name
	tosca:VirtualCpu

	Type URI
	tosca.datatypes.nfv.VirtualCpu

	derived_from
	tosca.datatype.Root

5.3.8.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	cpu_architecture
	no
	string
	
	CPU architecture type. Examples are x86, ARM.

	num_virtual_cpu
	yes
	integer
	
	Number of virtual CPU’s

	virtual_cpu_clock
	no
	scalar-unit.frequency
	
	Minimum virtual CPU clock rate

	virtual_cpu_oversubscription_policy
	no
	string
	
	CPU core oversubscription policy

	virtual_cpu_pinning
	no
	tosca.datatypes.nfv.VirtualCpuPinning
	
	The virtual CPU pinning configuration for the virtualized compute resource.

5.3.8.2 Definition
	tosca.datatypes.nfv.VirtualCpu:

 derived_from: tosca.datatypes.Root

 properties:

 cpu_architecture:

 type: string

 required: false

 num_virtual_cpu:

 type: integer

 required: true

 virtual_cpu_clock:

 type: scalar-unit.frequency

 required: false

 virtual_cpu_oversubscription_policy:

 type: string

 required: false

 virtual_cpu_pinning:

 type: tosca.datatypes.nfv.VirtualCpuPinning

 required: false

5.3.8.3 Examples
TBD

5.3.6.1 Additional Requirements
None

5.3.9 tosca.datatypes.nfv.VirtualCpuPinning
VirtualCpuPinning describes CPU pinning configuration for a particular CPU.

	Shorthand Name
	VirtualCpuPinning

	Type Qualified Name
	tosca:VirtualCpuPinning

	Type URI
	tosca.datatypes.nfv.VirtualCpuPinning

	derived_from
	tosca.datatype.Root

5.3.9.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	cpu_pinning_policy
	no
	string
	Static or dynamic
	Indicates the policy for CPU pinning.

	cpu_pinning_map
	no
	map
	
	If cpuPinningPolicy is defined as "static", the cpuPinningMap provides the map of pinning virtual CPU cores to physical CPU cores/threads

5.3.9.2 Definition
	tosca.datatypes.nfv.VirtualCpuPinning:

 derived_from: tosca.datatypes.Root

 properties:

 cpu_pinning_policy:

 type: string # CpuPinningPolicy

 constraints:

 - valid_values: [static, dynamic]

 required: false

 cpu_pinning_map:

 type: map

 entry_schema:

 type: string

 required: false

5.3.9.3 Examples
TBD

5.3.9.4 Additional Requirements
None
5.3.10 tosca.datatypes.nfv.VnfcConfigurableProperties
VnfcconfigurableProperties describes VirtualCpuPinning describes additional configurable properties of a VNFC

	Shorthand Name
	VnfcconfigurableProperties

	Type Qualified Name
	tosca: VnfcconfigurableProperties

	Type URI
	tosca.datatypes.nfv.VnfcconfigurableProperties

	derived_from
	tosca.datatype.Root

5.3.10.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	additional_vnfc_configurable_properties
	no
	map
	
	Described additional configuration for VNFC

5.3.10.2 Definition
	tosca.datatypes.nfv.VnfcConfigurableProperties:

 derived_from: tosca.datatypes.Root

 properties:

 additional_vnfc_configurable_properties:

 type: map

 entry_schema:

 type: string

 required: false

5.3.10.3 Examples
TBD

5.3.10.4 Additional Requirements
None
5.4 Artifact types
5.4.1 tosca.artifacts.nfv.SwImage
	Shorthand Name
	SwImage

	Type Qualified Name
	tosca:SwImage

	Type URI
	tosca.artifacts.nfv.SwImage

	derived_from
	tosca.artifacts.Deployment.Image

5.4.1.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	name
	yes
	string
	
	Name of this software image

	version
	yes
	string
	
	Version of this software image

	checksum
	yes
	string
	
	Checksum of the software image file

	container_format
	yes
	string
	
	The container format describes the container file format in which software image is provided.

	disk_format
	yes
	string
	
	The disk format of a software image is the format of the underlying disk image

	min_disk
	yes
	scalar-unit.size
	
	The minimal disk size requirement for this software image.

	min_ram
	no
	scalar-unit.size
	
	The minimal RAM requirement for this software image.

	Size
	yes
	scalar-unit.size
	
	The size of this software image

	sw_image
	yes
	string
	
	A reference to the actual software image within VNF Package, or url.

	operating_system
	no
	string
	
	Identifies the operating system used in the software image.

	supported _virtualization_enviroment
	no
	list
	
	Identifies the virtualization environments (e.g. hypervisor) compatible with this software image

5.4.1.2 Definition
	tosca.artifacts.nfv.SwImage:

 derived_from: tosca.artifacts.Deployment.Image
 properties or metadata:

 #id:

 # node name
 name:

 type: string
 required: true
 version:

 type: string
 required: true
 checksum:

 type: string
 required: true
 container_format:

 type: string
 required: true
 disk_format:

 type: string
 required: true
 min_disk:

 type: scalar-unit.size # Number
 required: true
 min_ram:

 type: scalar-unit.size # Number
 required: false
 size:

 type: scalar-unit.size # Number
 required: true
 sw_image:

 type: string

 required: true
 operating_system:

 type: string
 required: false
 supported_virtualisation_environments:

 type: list

 entry_schema:

 type: string
 required: false

5.5 Capabilities Types

5.5.1 tosca.capabilites.nfv.VirtualBindable
A node type that includes the VirtualBindable capability indicates that it can be pointed by tosca.relationships.nfv.VirtualBindsTo relationship type.
	Shorthand Name
	VirtualBindable

	Type Qualified Name
	tosca: VirtualBindable

	Type URI
	tosca.capabilities.nfv.VirtualBindable

5.5.1.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	N/A
	N/A
	N/A
	N/A
	N/A

5.5.1.2 Definition
	tosca.capabilities.nfv.VirtualBindable:

 derived_from: tosca.capabilities.Node

5.5.2 tosca.capabilities.nfv.Metric

A node type that includes the Metric capability indicates that it can be monitored using an nfv.relationships.Monitor relationship type.
	Shorthand Name
	Metric

	Type Qualified Name
	tosca:Metric

	Type URI
	tosca.capabilities.nfv.Metric

5.5.2.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	N/A
	N/A
	N/A
	N/A
	N/A

5.5.2.2 Definition
	tosca.capabilities.nfv.Metric:

 derived_from: tosca.capabilities.Endpoint

5.5.3 tosca.capabilites.nfv.VirtualCompute
	Shorthand Name
	VirtualCompute

	Type Qualified Name
	tosca: VirtualCompute

	Type URI
	tosca.capabilities.nfv.VirtualCompute

	derived from
	tosca.nodes.Root

5.5.3.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	request_additional_capabilities
	No
	tosca.datatypes.nfv.RequestedAdditionalCapability
	
	Describes additional capability for a particular VDU.

	virtual_memory
	yes
	tosca.datatypes.nfv.VirtualMemory
	
	Describes virtual memory of the virtualized compute

	virtual_cpu
	yes
	tosca.datatypes.nfv.VirtualCpu
	
	Describes virtual CPU(s) of the virtualized compute.

5.5.3.2 Definition
	tosca.capabilities.nfv.VirtualCompute:

 derived_from: tosca.capabilities.Root

 properties:

 requested_additional_capabilities:

 type: map

 entry_schema:

 type: tosca.datatypes.nfv.RequestedAdditionalCapability

 required: false

 virtual_memory:

 type: tosca.datatypes.nfv.VirtualMemory

 required: true

 virtual_cpu:

 type: tosca.datatypes.nfv.VirtualCpu

 required: true

5.6 Requirements Types

5.7 Relationship Types

5.7.1 tosca.relationships.nfv.VirtualBindsTo
This relationship type represents an association relationship between VDU and CP node types.
	Shorthand Name
	VirtualBindsTo

	Type Qualified Name
	tosca: VirtualBindsTo

	Type URI
	tosca.relationships.nfv. VirtualBindsTo

5.7.1.1 Definition
	tosca.relationships.nfv.VirtualBindsTo:

 derived_from: tosca.relationships.DependsOn
 valid_target_types: [tosca.capabilities.nfv.VirtualBindable]

5.7.2 tosca.relationships.nfv.Monitor

This relationship type represents an association relationship to the Metric capability of VDU node types.
	Shorthand Name
	Monitor

	Type Qualified Name
	tosca:Monitor

	Type URI
	tosca.relationships.nfv.Monitor

5.7.2.1 Definition
	

5.8 Interface Types

5.9 Node Types
5.9.1 tosca.nodes.nfv.vnfd
5.9.2 tosca.nodes.nfv.VDU.Compute
The TOSCA nfv.VDU.Compute node type represents the virtual compute part of a VDU entity which it mainly describes the deployment and operational behavior of a VNF component (VNFC), as defined by [ETSI NFV IFA011].

.
	Shorthand Name
	VDU.Compute

	Type Qualified Name
	tosca:VDU.Compute

	Type URI
	tosca.nodes.nfv.VDU.Compute

	derived_from
	tosca.nodes.Compute

5.9.2.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	name
	yes
	string
	
	Human readable name of the Vdu

	description
	yes
	string
	
	Human readable description of the Vdu

	boot_order
	no
	list of string
	
	The key indicates the boot index (lowest index defines highest boot priority). The Value references a descriptor from which a valid boot device is created e.g. VirtualStorageDescriptor from which a VirtualStorage instance is created.
If no boot order is defined the default boot order defined in the VIM or NFVI shall be used.

	nfvi_constraints
	no
	list of string
	
	Describes constraints on the NFVI for the VNFC instance(s) created from this Vdu. For example, aspects of a secure hosting environment for the VNFC instance that involve additional entities or processes. More software images can be attached to the virtualization container using virtual_storage.

	configurable_properties
	yes
	map of tosca.datatypes.nfv.VnfcConfigurableProperties
	
	Describes the configurable properties of all VNFC instances based on this VDU.

5.9.2.2 Attributes

None

5.9.2.3 Requirements

	Name
	Required
	Type
	Constraints
	Description

	virtual_storage
	no
	tosca.nodes.nfv.VDU.VirtualStorage
	
	Describes storage requirements for a virtual_storage instance attached to the virtualization container created from virtual_compute defined for this vdu

5.9.2.4 Capabilities

	Name
	Type
	Constraints
	Description

	virtual_compute
	tosca.capabilities.nfv.VirtualCompute
	
	Describes virtual compute resources capabilities.

	monitoring_parameter
	tosca.capabilities.nfv.Metric
	None
	Monitoring parameter, which can be tracked for a VNFC based on this VDU

Examples include: memory-consumption, CPU-utilisation, bandwidth-consumption, VNFC downtime, etc.

	Virtual_binding
	tosca.capabilities.nfv.VirtualBindable
editor note: need to create a capability type
	
	Defines ability of VirtualBindable

5.9.2.5 Definition
	tosca.nodes.nfv.VDU.Compute:

 derived_from: tosca.nodes.Compute

 properties:

 name:

 type: string

 required: true

 description:

 type: string

 required: true

 boot_order:

 type: list # explicit index (boot index) not necessary, contrary to IFA011

 entry_schema:

 type: string

 required: false

 nfvi_constraints:

 type: list

 entry_schema:

 type: string

 required: false

 configurable_properties:

 type: map

 entry_schema:

 type: tosca.datatypes.nfv.VnfcConfigurableProperties

 required: true

attributes:
 private_address:
 status: deprecated

 public_address:
 status: deprecated

 networks:
 status: deprecated

 ports:
 status: deprecated

 capabilities:

 virtual_compute:

 type: tosca.capabilities.nfv.VirtualCompute

 virtual_binding:

 type: tosca.capabilities.nfv.VirtualBindable
 #monitoring_parameter:

 # modeled as ad hoc (named) capabilities in VDU node template

 # for example:

 #capabilities:

 # cpu_load: tosca.capabilities.nfv.Metric

 # memory_usage: tosca.capabilities.nfv.Metric

 host: #Editor note: FFS. How this capabilities should be used in NFV Profile

 type: tosca.capabilities.Container
 valid_source_types: [tosca.nodes.SoftwareComponent]
 occurrences: [0,UNBOUNDED]
 endpoint:

 occurrences: [0,0]
 os:

 occurrences: [0,0]
 scalable: #Editor note: FFS. How this capabilities should be used in NFV Profile

 type: tosca.capabilities.Scalable
 binding:

 occurrences: [0,UNBOUND]
 requirements:

 - virtual_storage:

 capability: tosca.capabilities.nfv.VirtualStorage

 relationship: tosca.relationships.nfv.VDU.AttachedTo
 node: tosca.nodes.nfv.VDU.VirtualStorage
 occurences: [0, UNBOUNDED]
 - local_storage: #For NFV Profile, this requirement is deprecated.

 occurrences: [0,0]
 artifacts:

 - sw_image:
 file:
 type: tosca.artifacts.nfv.SwImage

5.9.2.6 Artifact

	Name
	Required
	Type
	Constraints
	Description

	SwImage
	Yes
	tosca.artifacts.nfv.SwImage
	
	Describes the software image which is directly loaded on the virtualization container realizing this virtual storage.

5.9.3 tosca.nodes.nfv.VDU.VirtualStorage
The NFV VirtualStorage node type represents a virtual storage entity which it describes the deployment and operational behavior of a virtual storage resources, as defined by [ETSI NFV IFA011].

[editor note] open issue: should NFV profile use the current storage model as described in YAML 1.1. Pending on Shitao proposal (see NFVIFA(17)000110 discussion paper)

[editor note] new relationship type as suggested in Matt presentation. Slide 8. With specific rules of “valid_target_type”

	Shorthand Name
	VirtualStorage

	Type Qualified Name
	tosca: VirtualStorage

	Type URI
	tosca.nodes.nfv.VDU.VirtualStorage

	derived_from
	tosca.nodes.Root

5.9.3.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	id
	yes
	
	
	Unique identifier of the virtualStorage

	type_of_storage
	yes
	string
	volune, object
	Type of virtualized storage resource

	size_of_storage
	yes
	scalar-unit.size
	number
	Size of virtualized storage resource (in GB)

	rdma_enabled
	no
	boolean
	
	Indicate if the storage support RDMA

5.9.3.2 Attributes

None

5.9.3.3 Requirements

None

5.9.3.4 Capabilities

	Name
	Type
	Constraints
	Description

	virtual_storage
	tosca.capabilities.nfv.VirtualStorage

Editor Note: Need to create tosca.capabilities.nfv.VirtualStorage capability type.
	
	Defines the capabilities of virtual_storage.

5.9.3.5 Definition
	tosca.nodes.nfv.VDU.VirtualStorage:

 derived_from: tosca.nodes.Root

 properties:

 #id:

 # node name

 type_of_storage:

 type: string
 required: true
 size_of_storage:

 type: scalar-unit.size
 required: true
 rdma_enabled:

 type: boolean
 required: false
 capabilities:

 virtual_storage:

 type: tosca.capabilities.nfv.VirtualStorage

 artifacts:

 - sw_image:

 file:
 type: tosca.artifacts.Deployment.Image

5.9.3.6 Artifact

	Name
	Required
	Type
	Constraints
	Description

	sw_image
	yes
	tosca.artifacts.Deployment.Image
	
	Describes the software image which is directly loaded on the virtualization container realizing this virtual storage.

5.9.4 tosca.nodes.nfv.Cpd

The TOSCA nfv.Cpd node represents network connectivity to a compute resource or a VL as defined by [ETSI GS NFV-IFA 011]. This is an abstract type used as parent for the various Cpd types.

	Shorthand Name
	Cpd

	Type Qualified Name
	tosca:Cpd

	Type URI
	tosca.nodes.nfv.Cpd

5.9.4.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	layer_protocol
	yes
	string
	Valid values: Ethernet, mpls, odu2, ipv4, ipv6, pseudo-wire
	Identifies which protocol the connection point uses for connectivity purposes

	role
	no
	string

	Editor’s note: valid values: [root, leaf]
	Identifies the role of the port in the context of the traffic flow patterns in the VNF or parent NS.
For example a VNF with a tree flow pattern within the VNF will have legal cpRoles of ROOT and LEAF

	description
	no
	string
	
	Provides human-readable information on the purpose of the connection point (e.g. connection point for control plane traffic).

	address_data
	no
	AddressData []
	
	Provides information on the addresses to be assigned to the connection point(s) instantiated from this Connection Point Descriptor.

5.9.4.2 Attributes
	Name
	Required
	Type
	Constraints
	Description

	
	
	
	
	

5.9.4.3 Requirements

None

5.9.4.4 Capabilities
None
5.9.4.5 Definition
	tosca.nodes.nfv.Cpd:

 derived_from: tosca.nodes.Root
 properties:

layer_protocol:

 type:string

constraints:

 - valid_values: [ethernet, mpls, odu2, ipv4, ipv6, pseudo_wire]
required:true
role: #Name in ETSI NFV IFA011 v0.7.3 cpRole
 type:string

 constraints:

 - valid_values: [root, leaf]
required:flase

description:
type: string

required: false

address_data:

type: list

entry_schema:

 type: tosca.datatype.nfv.AddressData

required:false

5.9.4.6 Additional Requirement
None.
5.9.5 tosca.nodes.nfv.VduCpd

The TOSCA nfv.VduCpd node type represents a type of TOSCA Cpd node and describes network connectivity between a VNFC instance (based on this VDU) and an internal VL as defined by [ETSI GS NFV-IFA 011].

	Shorthand Name
	VduCpd

	Type Qualified Name
	tosca: VduCpd

	Type URI
	tosca.nodes.nfv.VduCpd

5.9.5.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	bitrate_requirement
	no
	integer
	
	Bitrate requirement on this connection point.

	virtual_network_interface_requirements
	no
	VirtualNetworkInterfaceRequirements []
	
	Specifies requirements on a virtual network interface realising the CPs instantiated from this CPD.

5.9.5.2 Attributes

None

5.9.5.3 Requirements

	Name
	Required
	Type
	Constraints
	Description

	virtual_binding
	yes
	tosca.capabilities.nfv.VirtualBindable
	
	Describe the requirement for binding with VDU

	virtual_link
	no
	tosca.capabilities.nfv.VirtualLinkable
	
	Describes the requirements for linking to virtual link

5.9.5.4 Definition
	tosca.nodes.nfv.VduCpd:

 derived_from: tosca.nodes.nfv.Cpd
 properties:

bitrate_requirement:

type: integer
required:false

virtual_network_interface_requirements

type: list

entry_schema:

 type: VirtualNetworkInterfaceRequirements

required:false

requirements:

 - virtual_link:

 capability: tosca.capabilities.nfv.VirtualLinkable

 relationship: tosca.relationships.nfv.VirtualLinksTo

 node: tosca.nodes.nfv.VnfVirtualLinkDesc - virtual_binding:

 capability: tosca.capabilities.nfv.VirtualBindable

 relationship: tosca.relationships.nfv.VirtualBindsTo

 node: tosca.nodes.nfv.VDU

Editor’s note: It is for further study whether the requirements should express in the VduCpd or in the Cpd?
5.9.6 tosca.nodes.nfv.VnfVirtualLinkDesc
The TOSCA nfv.VnfVirtualLinkDesc node type represents a logical internal virtual link as defined by [ETSI GS NFV-IFA 011].
	Shorthand Name
	VnfVirtualLinkDesc

	Type Qualified Name
	tosca:VnfVirtualLinkDesc

	Type URI
	tosca.nodes.nfv.VnfVirtualLinkDesc

5.9.6.1 Properties
	Name
	Required
	Type
	Constraints
	Description

	connectivity_type
	yes
	ConnectivityType
	
	specifies the protocol exposed by the VL and the flow pattern supported by the VL

	description
	no
	string
	
	provides human-readable information on the purpose of the VL (e.g. control plane traffic)

	test_access
	no
	string
	
	Test access facilities available on the VL (e.g. none, passive, monitoring, or active (intrusive) loopbacks at endpoints

	vl_flavours
	yes
	Map of tosca.datatypes.nfv.VlFlavour
Editor’s note: TBD
	
	Describe a specific flavour of the VL with specific bitrate requirements.

5.9.6.2 Attributes
None

5.9.6.3 Requirements

None
5.9.6.4 Capabilities

	Name
	Type
	Constraints
	Description

	virtual_linkable
	tosca.capabilities.nfv.VirtualLinkable
	
	Defines ability of VirtualLinkable

	monitoring_parameter
	tosca.capabilities.nfv.Metric
Editor’s note: TBD
	None
	Monitoring parameter, which can be tracked for virtualized resource on VL level

5.9.6.5 Definition
	tosca.nodes.nfv.VnfVirtualLinkDesc:

 derived_from: tosca.nodes.Root

 properties:

 connectivity_type:

 type: tosca.datatypes.nfv.ConnectivityType

 required: true

 description:

 type: string

 required: false

 test_access:

 type: list

 entry_schema:

 type: string
 required: false

 vl_flavours:

 type: map

 entry_schema:

 type: tosca.datatypes.nfv.VlFlavour

 required: true
 capabilities:
 #monitoring_parameters:

 # modeled as ad hoc (named) capabilities in node template

 virtual_linkable:

 type: tosca.capabilities.nfv.VirtualLinkable

5.9.6.6 Additional Requirement
5.10 Group Types

5.11 Policy Types

5.12 Using Service Template for a VNFD

5.12.1 Metadata keynames
The following table defines the list of recognized metadata keynames that SHALL be used for NFV VNFD service template:
	Keyname
	Required
	Type
	Description

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

6 Examples
6.1 VNFD modeling design example by using TOSCA composition
The following sample defines a VNFD example which contains three different types of VDUs, interconnected by two virtual link descriptors. In this example, the type of VDU C is not defined within the same VNFD service template file, instead, it is defined in a separate service template file.

[image: image4.png]VNFD (example)

N
VDUA [req cap L 1< req] VDU C
3 J substitutable,

\; ded <~<b

3%

req.

<
S
=
®

Figure 6.1-1 example of VDU composition design in a VNFD

The service template example of the above VNFD is showing as follow:

	tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:

 description: Template of a VNFD example
 node_templates:

 VDU_A:

 type: tosca.nodes.nfv.VDUComposition.vduA

 properties:

omitted here for brevity
 requirements:

 - virtual_link:VL_1
 - virtual_link:VL_2
 VDU_B:

 type: tosca.nodes.nfv.VDUComposition.vduB

 properties:

omitted here for brevity
 requirements:

 - virtual_link:VL_2
 VDU_C:

 # it can be substituted with a topology provided by another template
that exports a virtual_link type’s requirement.
 type: tosca.nodes.nfv. VDUComposition.vduC
 properties:

omitted here for brevity
requirements:

 - virtual_link:VL_1
VL_1:

 type: tosca.nodes.nfv.VnfVirtualLinkDesc
 properties:

omitted here for brevity
capabilities:

 - virtual_link
VL_2:

 type: tosca.nodes.nfv.VnfVirtualLinkDesc
 properties:

omitted here for brevity
capabilities:

 - virtual_link

The service template example for VDU C is showing as follow.
[image: image5.png]Substituion
mappings

Figure 6.1-2 example of VDU substitution mappings
	tosca_definitions _version: tosca_simple_profile_for_nfv_1_0

description: service template of a VDU # Human readable description of the Vdu.
 # Human readable name of the Vdu.
topology_template:

inputs:

subsititution_mappings:

 node_type: tosca.nodes.nfv.VNF. VDUComposition.vduC # this is just an example, users can define their own vdu node type based on their application
 requirements:

 virtualLinkable: [interanlCpd_001, virtualLinkable]

 capabilities:

 virtual_compute: [vduC_compute, virtual_compute]

 virtual_storage: [vduC_storage, virtual_storage]

node_templates:

vduC_compute: #editor’s note: call it VirtualComputeDescriptor or VDU_compute
 type: tosca.nodes.nfv.VDU.Compute
 properties:

omitted here for brevity
 capabilities:

virtual_compute:

 artifacts:
- sw_image:
 requirements:

 - virtual_storage: virtualStorage_001

 vduC_storage: # editor’s note: call it VirtualStorageDescriptor or

VDU_storage
type: tosca.nodes.nfv.VDU.VirtualStorage
 properties:

omitted here for brevity
 capabilities:

 virtual_storage:

 internalCpd: #ID of this internalCpd
type: tosca.nodes.nfv.VduCpd
 properties:

omitted here for brevity
 requirements:

 - VirtualLinkable:

 - VirtualBindable: vduC_compute

The subsititution_mappings section in the above example denotes that this service template can be used for substituting node tempates of type tosca.nodes.nfv.VNF.vduC. The virtualLinkable requirement of internalCpd is exposed as the external requirement of VDU C, which can be used to connect to the VL_1 as showed in figure 4.x.
Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
Chris Lauwers (lauwers@ubicity.com), Ubicity
Derek Palma (dpalma@vnomic.com), Vnomic

Matt Rutkowski (mrutkows@us.ibm.com), IBM

Shitao li (lishitao@huawei.com), Huawei Technologies Co.,Ltd.

Lawrence Lamers (ljlamers@vmware.com), VMware
Sridhar Ramaswamy (sramasw@Brocade.com), Brocade

John Crandall (jcrandal@Brocade.COM), Brocade

Thinh Nguyenphu (thinh.nguyenphu@nokia.com), Nokia

Dmytro Gassanov (dmytro.gassanov@NetCracker.com), NetCracker
Andrei Chekalin (chekalin@netcracker.com), NetCracker
Preetdeep Kumar (preetdeep.kumar@ca.com), CA Technologies
Bruce Thompson (brucet@cisco.com), Cisco Systems
Steve Baillargeon (steve.baillargeon@ericsson.com), Ericsson
Alexander Vul (alex.vul@intel.com), Intel Corporation

Michael Brenner (michael@gigaspaces.com),GigaSpaces Technologies
Hui Deng (denghui12@huawei.com), Huawei Technologies Co.,Ltd.
Appendix B. Revision History

	Revision
	Date
	Editor
	Changes Made

	WD01, Rev01
	2015-2-26
	Shitao li, Huawei
	· Adding clause 1, the introduction about this profile
· Adding clause 2, summary of key TOSCA concepts
· Adding clause 3, deployment template in NFV
· Adding clause 4, general mapping between TOSCA and NFV deployment template
· Adding clause 5, describes the main idea about using a service template for NFV NSD

	WD01, Rev02
	2015-4-15
	Shitao li, Huawei
	· Changing the NSD example used in clause 5
· Changing the TOSCA model for NSD in figure 3 in clause 5, consider a VNF and its connection point as a subsystem of a NS
· Adding the TOSCA template example for NSD in clause 5.1
· Adding NFV specific service properties for NSD in clause 5.2, the main properties are id ,vender and version
· Adding new capability tosca.capabilities.nfv.VirtualLinkable in clause 5.3
· Adding new relationship type tosca.relationships.nfv.VirtualLinkTo in clause 5.4, which used between connection point and virtual link node types.
· Adding clause 6, TOSCA data model for VNFD
· Adding clause 6.1, node template substitution mapping for a VNF
· Adding NFV specific service properties for VNFD in clause 6.2, the main properties are id ,vender and version
· Adding new node type tosca.nodes.nfv.vdu in clause 6.3
· Adding new node type tosca.nodes.nfv.CP in clause 6.4
· Adding clause 7, TOSCA template for VLD (virtual link descriptor)
· Adding new node type tosca.nodes.nfv.VL in clause 7.1

	WD01, Rev03
	2015-5-5
	Shitao li, Huawei
Chris Lauwers
	· Adding clause 3 for NFV overview
· Adding namespace for tosca-nfv- profile in clause 5.1
· Deleting the NFV specific service properties for NSD and VNFD
· Adding capability type definitions for VNF in clause 7.2(VirtualBindable, HA, HA.ActiveActive, HA.ActivePassive, Metric)
· Adding relationship type definitions for VNF in clause 7.3(VirtualBindsTo, nfv.HA, nfv.Monitor)
· Adding default VNF node type definition in clause 7.4.1
· Changing the VDU node type definition in clause 7.4.2(treat HA and monitor parameters as capabilities)
· Adding new node types definition for VL.Eline, VL.ELAN and VL.ETree in clause 8.2, 8.3 and 8.4.

	WD01, Rev04
	2015-5-13
	Chris Lauwers
	· Formatting changes

	WD02,Rev01
	2015-7-2
	Shitao li, Huawei
	· 6.1, changing the version number from 1.0.0 to 1.0
· 6.2, adding NFV usage specific metadata keynames
· 6.3, using metadata element instead of service_properties
· 7.1, using metadata element instead of service_properties

	WD02,Rev02
	2015-8-26
	Shitao li, Huawei
	· 6: change title to “TOSCA Data model for a network service”, and move the NSD example as well as NSD related definition to clause 11.
· 7: change title to “TOSCA Data model for a VNF”

· 8.1: in the text and the VNFD example, adding Forwarder capability to exteral connection point for supporting NFP description

· 10: moving VNFFG description text from clause 3.3 to clause 10.

· 10.1,10.2,10.3,10.4,10.5,10.6: adding TOSCA model for VNFFG, using group type for VNFFG and node type for NFP

· 11: moving TOSCA template for NSD from clause 7 to clause 11.

· 11.2: adding VNFFG and NFP in the NSD example

	WD02, Rew03
	2015-9-28
	Matt Rutkowski, IBM
	· 11.2: changing NSD example for NFP, adding “-” in front of every requirement.

	WD02, Rew04
	2015-10-15
	Chris Lauwers
	· Formatting changes

	WD02, Rew05
	2016-1-22
	Sridhar Ramaswamy, Brocade

Shitao li, Huawei
	· 12, adding new VNFD example for the single vRouter use case.

	WD02, Rev07
	2016-2-18
	Sridhar Ramaswamy, Brocade

Matt Rutkowski, IBM
	· 13. Enhance VDU with CPU Architecture properties like CPU pinning, Huge-pages, NUMA topology, etc.

· 13.2 Change, VirtualLink, ConnectionPoint to derive from / use appropriate Simple YAML Profile node_types and datatypes.

	WD02, Rev08
	2016-2-25
	Sridhar Ramaswamy, Brocade
	· Add anti-spoof protection flag to ConnectionPoint

· Update the samples based on new CPU Architecture Schema

· Add NFV Profile sample with efficient CPU and Memory allocation

· Add NFV profile sample with multiple VDUs

	WD02, Rev09
	2016-2-29
	Sridhar Ramaswamy,

Brocade
	· Move Compute Architecture capability and related datatypes to Sec 8.

· Add diagram for multi-vdu VNFD template example

· Add a note on artifacts for VDU

	WD03, Rev01
	2016-7-29
	Shitao Li

Huawei
	· Solve Issue TOSCA-289: Invalid definition for tosca.capabilities.Compute.Container.Architecture
· Solve Issue TOSCA-291: Invalid definition of tosca.nodes.nfv.VL.ELine
· Solve Issue TOSCA-293: tosca.nodes.nfv.CP type has "IP_address" as an attribute

· Solve Issue TOSCA-294: Inconsistent usage of anti_spoofing_protection CP property
· Solve Issue TOSCA-304: [TOSCA-Simple-Profile-NFV-v1.0] csd03 references an out of date ETSI specification
· Solve Issue TOSCA-310: Adding vEPC NSD example

	WD04, Rev02
	2016-9-6
	Shitao Li, Huawei
	· Solve Issue TOSCA-305: Proposal modification to ToC based on document Issue_TOSCA305_tosca-nfv-v1.0-wd03-rev01 TOC_r3
· Solve Issue TOSCA-311: Adding vEPC NSD example

	WD04, Rev03
	2016-11-7
	Shitao Li, Huawei
	· Adding new data types for connection point and virtual link based on ETSI NFV IFA011
· Moving ETSI GS NFV-MAN 001 v1.1.1 into informative reference.

· Solve Issue TOSCA-307 and TOSCA-308: adding new node type Cpd, VduCpd and VnfVirtualLinkDesc

	WD04, Rev04
	2016-11-14
	Shitao Li, Huawei
	· Editorial changes based on document Issue_TOSCA307_ConnectionPoint_VL_change proposal

	WD04, Rev05
	2017-1-17
	Shitao Li, Huawei
	· Editorial changes for Cpd and VnfVirtualLinkDesc based on document Issue_TOSCA307_ConnectionPoint_VL_change proposal-r2
· Clause 5.9.5.5, changed tosca.nodes.nfv.VL to tosca.nodes.nfv.VnfVirtualLinkDesc to align with IFA011.

· Deleted the legacy contents which are not aligned with IFA011:
· clause 5.1
· clause 5.9.1, the node type definition of VNF
· clause 5.9.2, the node type definition of VDU.
· examples of VNFD and NSD
· tosca.datatypes.compute.Container.Architecture.CPUAllocation
· tosca.datatypes.compute.Container.Architecture.NUMA
· tosca.capabilities.Compute.Container.Architecture
· Deleted NSD related content, v1.0 will only cover VNFD model.
· Removed ETSI GS NFV-MAN 001 v1.1.1 in the reference.
· Added text in 5.1 and 5.2 based on document Issue_TOSCA306_VNFD_IE_to_TOSCA_Types r5

	WD04, Rev06
	2017-2-15
	Shitao Li, Huawei
	· Added VDU.Compute definition in document “Issue_TOSCA310_VDU change proposal-option3a draft3”
· Added VNFD metadata keynames in document “VNFD metadata discussion”

	WD04, Rev07
	2017-4-12
	Shitao Li, Huawei
	· Added VDU design by using TOSCA composition in 4.3

· Added an example of VNFD modelling design in 6.1

· Deleted Metadata keynames definition in 5.12.1

	WD04, Rev08
	2017-4-26
	Shitao Li, Huawei
	· Modification and clarification on general description of VNFD and NSD in clause 3.

	WD04, Rev09
	2017-5-4
	Shitao Li, Huawei
	· Clarification of vdu.compute in 5.9.2

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 5 of 50
tosca-nfv-v1.0-csd04

11 May 2017

Standards Track Work Product
Copyright © OASIS Open 2017. All Rights Reserved.
Page 7 of 49

