JOASIS

TOSCA Version 2.0

Committee Specification Draft 01
23 April 2020

This stage:

https://docs.oasis-open.org/tosca/TOSCA/V2.0/csd01/TOSCA-v2.0-csd01.docx (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA/N2.0/csd01/TOSCA-v2.0-csd01.html
https://docs.oasis-open.org/tosca/TOSCA/N2.0/csd01/TOSCA-v2.0-csd01.pdf

Previous stage:
N/A

Latest stage:

https://docs.oasis-open.org/tosca/ TOSCA/N2.0/TOSCA-v2.0.docx (Authoritative)
https://docs.oasis-open.org/tosca/ TOSCA/N2.0/TOSCA-v2.0.html
https://docs.oasis-open.org/tosca/ TOSCA/N2.0/TOSCA-v2.0.pdf

Technical Committee:
OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC

Chairs:
Paul Lipton (paul.lipton@live.com), Individual Member
Chris Lauwers (lauwers@ubicity.com), Individual Member

Editors:
Chris Lauwers (lauwers@ubicity.com), Individual Member
Calin Curescu (calin.curescu@ericsson.com), Ericsson

Additional artifacts:
This prose specification is one component of a Work Product that also includes:
e TBD - schemas?

Related work:

This specification replaces or supersedes:

e Topology and Orchestration Specification for Cloud Applications Version 1.0. Edited by Derek Palma
and Thomas Spatzier. OASIS Standard. Latest version: http://docs.oasis-
open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html.

e TOSCA Simple Profile in YAML Version 1.3. Edited by Matt Rutkowski, Chris Lauwers, Claude
Noshpitz, and Calin Curescu. Latest version: https://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/1.3/TOSCA-Simple-Profile-YAML-v1.3.html.

This specification is related to:
e Introduction to TOSCA Version 2.0. Edited by Chris Lauwers and Calin Curescu. Work in progress.

Declared XML namespaces:
e http://docs.oasis-open.org/tosca/ns/2.0

Abstract:

This document defines a simplified profile of the TOSCA version 1.0 specification in a YAML rendering
which is intended to simplify the authoring of TOSCA service templates. This profile defines a less
verbose and more human-readable YAML rendering, reduced level of indirection between different
modeling artifacts as well as the assumption of a base type system.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 1 of 165

https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd01/TOSCA-v2.0-csd01.docx
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd01/TOSCA-v2.0-csd01.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd01/TOSCA-v2.0-csd01.pdf
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.docx
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.pdf
https://www.oasis-open.org/committees/tosca/
mailto:paul.lipton@live.com
mailto:lauwers@ubicity.com
mailto:lauwers@ubicity.com
mailto:calin.curescu@ericsson.com
http://ericsson.com/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
http://docs.oasis-open.org/tosca/ns/2.0

The OASIS TOSCA TC works to enhance the portability of cloud applications and services across their
entire lifecycle. TOSCA will enable the interoperable description of application and infrastructure cloud
services, the relationships between parts of the service, and the operational behavior of these services
(e.g., deploy, patch, shutdown) independent of the supplier creating the service or of any particular cloud
provider or hosting technology. TOSCA will also make it possible for higher-level operational behavior to
be associated with cloud infrastructure management.

By increasing service and application portability in a vendor-neutral ecosystem, TOSCA will enable:

e Portable deployment to any compliant cloud

e Smoother migration of existing applications to the cloud
¢ Flexible bursting (consumer choice)

¢ Dynamic, multi-cloud provider applications

Status:

This document was last revised or approved by the OASIS Topology and Orchestration Specification for
Cloud Applications (TOSCA) TC on the above date. The level of approval is also listed above. Check the
“Latest stage” location noted above for possible later revisions of this document. Any other numbered
Versions and other technical work produced by the Technical Committee (TC) are listed at
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical.

TC members should send comments on this specification to the TC’s email list. Others should send
comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send
A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/tosca/.

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/toscalipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such
plain text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:
[TOSCA-v2.0]

TOSCA Version 2.0. Edited by Chris Lauwers and Calin Curescu. 23 April 2020. OASIS Committee
Specification Draft 01. https://docs.oasis-open.org/tosca/ TOSCA/NV2.0/csd01/TOSCA-v2.0-csd01.html.
Latest stage: https://docs.oasis-open.org/tosca/TOSCA/NV2.0/TOSCA-v2.0.html.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 2 of 165

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd01/TOSCA-v2.0-csd01.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html

Notices

Copyright © OASIS Open 2020. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 3 of 165

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

Table of Contents

1 T 0o [1 o 1o T o TP PRRRR 17
R 1 o O = o [T YU OPPRPPPRRN 17
N =11 01 0 To] (oo Y PP PO PP U PP PP PPPPRTRPPPPRPN 17
1.3 NOIMALIVE REFEIENCESveiiii ittt e e sttt e e s bt e e s srbe e e e e snbb e e e e snbteeeesbreeeeans 17
1.4 NON-NOrMatiVe REEIENCES ... e e e st e e e e e e e e nneeees 17

2 L@ YT QT SRR 19
2% T @ o [= o3 1)Y= SR SERRR 19
2.2 SUMMary Of KEY TOSCA CONCEPLSeeiieiieitieitiete e ettt e e ettt e st e e sttt e e s sbe e e e s anbn e e e s asne e e e s anbeeeesannneeas 19
A [40T o] =T 4 a1 T 0 v= L4 £ SRS 19
A T 011 g To] (o | O S TP PSP PPUPPPPPI 20
2.0 Gl 0SS aAIY ..o —————————— 20

3 TOSCA definitioNS IN YAML ...ttt e e e e e e e e e e e e s e sabn b e e e e e e e e e aannnenees 22
3.1 TOSCA MELAMOUEL....... i eieieiiiee ettt e e e st e e e e e e s e st e e aeeesaantabaeeeeeeeesannsnraeeeeaeeeannns 22

3.1.1 Modeling conCepPtS and QOAIS.......ccccieiiieie e ————————— 22
3.1.2 Modeling definitionNS ANd FEUSE.........ccoiiiiiiiiiiiie et e e 22
3.1.3 Goal of the derivation and refineMENL TUIEScooii i 22
3.1.4 REQUINEA KEYNAMESitiieeiiititee ettt ettt e ettt e e e s i bt e e e st et e e e ab e e e e e aab e e e e anbb e e e e anbneeeeneee 23
T O 1S O AN =T Vo = SRR SRPR 23
3.2.1 Service Template definition ..o —————— 23
1 0 A (=) V] = 41T OSSO 23
T I 0 Y 1= - To Fo = B S Y T L 1= SRR 24

Tt B €1 = 00 0T N 24
3.2.0.2.1 REQUITEIMENTSeeee ettt ettt etttk e ekt e et e e s b e e e e s bt e e e s et e e s b bt e e e b b et e e nabn e e e s bb e e e eanrn e e e nnnes 25

T B [0 (= ST P PP PP PP PP PP PPPPPPPPPPPPPPPPPPRt 26
3.2.1.3 Top-level keyname definitioNS.coouiii ittt e e s 26

0 72000 R 0 A (o 1=Tox= o 1= 111 o o ST YL=1 51 o o PP PPPPPNt 26

I 0 Tt A (=Y F= 0 1= ST TSP PRP 26

3.2 0.3 1.2 GrAMIMIA . 26
3.2.1.3. 1.3 EXAMPIES: it e e e e e et e e e e e e e e reeeas 26
I T 111 = T - | - PP PERR 26
B.2.1.3.2. 1 KEYNAIME ..ottt e e e e et e e e e e e e e e e e e e e et e e e e e e e e e e s 26
B.2.0.3.2.2 GrAMIMIA . 26
3.2.1.3.2.3 EXAMPIE e e e e e e e e e e e et as 26
I R e (=] 1] o = LC= T 4 T= T 4T SO O O PSP P PP PUPPRO 27
3.2.1.3.3. 1 KBYNAIMIE ..ttt ettt e e et e e e e e et e e e e e e et e e e et e e e e s s 27
B.2.0.3.3.2 GrAMIMIA e 27
3.2.1.3.3.3 EXAMPIE .t n 27
3.2.0.3.314 NO S 27
3.2.1.3. 4 teMPIAE_AULNOT ...t 27
B.2.1.314. 1 KEYNAIMIE ..coiiiiiiitti et e ettt ettt e e e e e et e e et e e et et e e e e e e e e e e e e e e e e s n e s 27
B.2.0.3.4.2 GraMIMIA i 27
3B.2.1.3.4.3 EXAMPIE ...t n 27
3.2.1.3.5 tEMPIAE_VEISION ..ttt ettt ettt e e st e ekt e et e et e et 27
3.2.1.3.5. 1 KBYNAIME ..ttt ettt e e e et e e e e e e e e e e e e e e e e et e e s s 27
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 4 of 165

3.2.1.3.5.3 Example.........

312,03 5.4 NO S e
I e JL 5 W [T 1101 PR EPR PP

3.2.1.3.6.1 Keyname
B2 0 T A [~ I o =1 {19V o T PR ERRP P

3.2.1.3.7.1 Keyname

3.2.1.3.7.2 Grammar

o O T e B - 11] o] 1= PRSP
I e B = N (= o [0 1Y (o == TP RS

3.2.1.3.8.1 Keyname

3.2.1.3.8.2 Grammar

3.2.1.3.8.3 EXAMPIE ...t s
I B N 411 o To] 4 T O O OO T PP PP RPPPPPT

3.2.1.3.9.1 Keyname

3.2.1.3.9.2 Grammar

3.2.1.3.9.3 EXAMPIE ..t
0t e TRt 0= g 11 7= Lok A 1Y/ 01 PSR

3.2.1.3.10.1 Keyname
3.2.1.3.10.2 Grammar
1t e Tt 0 T - 10] o =R PR
0t e Tt I o =1 = T 1 o1 RO RR
3.2.1.3.11.1 Keyname
3.2.1.3.11.2 Grammar
3.2.1.3. 113 EXAMPIE e e e e e e e as
3.2.1.3.12 CAPADIIIY Y POS. ittt ettt e e et e e e e e e e e e e e e e e anraeeeas
3.2.1.3.12.1 Keyname
3.2.1.3.12.2 Grammar
3.2.1.3.12.3 EXAMPIE e e e e e e e as
312,03, 13 INEEI ACE Y PES ettt h e e
3.2.1.3.13.1 Keyname
3.2.1.3.13.2 Grammar
3.2.1.3.13.3 EXAMPIE . e e e e e e e e e e as 31
3.2.1.3. 14 relatioNSNIP_YPES ...eiieiiieie ittt 31
3.2.1.3.14.1 Keyname
3.2.1.3.14.2 Grammar
3B.2.1.3.14.3 EXAIMPIE ..ottt e e s
1t e Tt Sl o (o To [0 1Y/ o 1= J O OO TPPP TP UPPPPPTO
3.2.1.3.15.1 Keyname
3.2.1.3.15.2 Grammar
3.2.1.3.15.3 EXAIMPIE ..ottt n 32
B.2.1.3.15.4 INOTES. ..eeieiee ettt e e e e e e e e e e e e n et e e s s
3.2.1.3. 16 GIOUP_LYPES .reeeteeeeiiiitee e e e et ettt e e e s ettt e e e e ettt e e e e e e e et e e e e e e e e e e e e n et e e e e a e s
3.2.1.3.16.1 Keyname
3.2.1.3.16.2 Grammar
3.2.1.3.16.3 EXAIMPIE ..ottt e e n 33

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 5 of 165

I 0 Tt I A o To o3V 1Y/ 1= PP ERRT 33

3.2.1.3.17. 1 KBYNAIME . 33
T R T I €171 10 0 T | OO UPUPUPPPPP 33
o 0 T Iy N b= 1o] o] L= PSSP 33
3.2.2 Version and NAMESPEACEuuieeiiiiiee et e ettt e ettt e et e e st et e e e st et e e e aabr e e e e anbr e e e e aabeeeeaanbreeeaaneee 33
3.2.2.1 TOSCA Namespace URI @nd @li@Sccceeiiiiiuiiiiiii it e ettt e e e e e s e e e e e e s e eaanreee s 33
3.2.2.1.1 TOSCA NaMESPACE PIreFIX ..ciureiiiiiiiieiiie ettt e 34
3.2.2.1.2 TOSCA Namespacing in TOSCA Service TEMPIALESccvvviiririiiiiieeeiie e 34
3.2.2.1.3 Rules to avoid namespace COIlISIONSuueiiiiiiiiiiiiiiiee e e e s 34
3.2.2.1.3.1 Additional REQUITEMENTSciiiiiiiiiiiiie ettt et e e e st e e e e e s e rr e e e e e e s e nanareeeas 34
3.2.2.2 USING NABIMESPACESeeeeeeeiiitetieee e e e ettt te e e e e e e teeeeeteaaeaaaaeeeeeeaaeaaaaasbaeeeaaeaeaansesseaeaeeesaansnsseeeaaesaannnssneens 35
3.2.2.2.1 Example — Importing a Service Template and NameSPaCES..........cccovevrrieieeeiiiiiiiieee e e 35
3.2.2.2.1.1 Conceptual Global Namespace URI and Namespace Prefix tracking.............cccceevruneenn. 36
3.2.2.2.1.2 Conceptual Global Namespace and Type trackingcccceevrieiiiiiiiee e 37
3.2.3 IMPOItS @NG RETEIEINCES ..ottt et e et e e e
I T R 1 q o To] fo [1 711) o SRR
3.2.3. 1.1 KBYNAIMESeetieeeee ettt e oo ettt e e e e e et e e e e e et e et e e e e e et r e e e e e e e e e e e e e e e e e as
G T 2 €1 =1 11 1 T OO PP PUPR P
3.2.3.1.2.1 Single-line grammar:............
3.2.3.1.2.2 MUIt-lIN@ GramMMAToiiiiiiieiiiiie ettt e et e e st e e e snt e e e ente e e s anneeeeanaeee s
I T G B = {=To [011 (=1 44 1= 0] (PR
3.2.3.1.2.4 Import URI processing reQUIFEMENTS........ccoiiuurieiiueeeeaiiieeeaieeeessiieeessnteeeesneeeessneeeesnsneeens 39
T T O - 11 o] o = RO RR 39
3.2.3.2 REPOSIOrY EFINITION ...ttt e e e e st e e s e e e s nre e s 40
3.2.3.2. 1 KBYN@IMESeiteeieee ettt e e ettt e oo e ettt e e e e et e e e e e e et b e et e e e e e et rr e et e e e e e e e e e e e e e e e e e e s 40
I T €11 01 0T | SO PP PP PP PP PP PP PPPPPPPPPPPPPPPPPPRt 40
3.2.3.2.2.1 Single-line grammar (N0 Credential):ooourieiiiiiiiiiiieeee e 40
3.2.3.2.2.2 Multi-line grammar
B.2.3 2.3 EXAIMPIE ...ttt h et e e e et
3.2.4 Additional information definitioNS.ceeiiiiiiiiiiie e 40

3.2.4.1 Description definition
3.2.4.1.1 Keyname
3.2.4.1.2 Grammar
R G €= 101 o] [PP PEPTP PP
3.2.4.1.4 Notes...
B N L1 = o - - WP ERPT T
3.2.4.2.1 Keyname
3.2.4.2.2 Grammar
3.2.4.2.3 Examples
I [0 (= ST PP PP PPPPPPPPPPPPPPPPPPRt
B B B 1 I 1Y 10 To] PP ERPS
3.2.5 TYPE AEFINIIIONS ...ceeieiiieee ettt e e e e et e et e e e e e st et e e e e e e e e e e snnbrreeaaeens
3.2.5.1 General derivation and refine€MENT FUIESocuiiiiiiiee e 42
3.2.5.2 Common keynames in type defiNItiONSocuuiiiiiiiiiii e 43
3.2.5.2.1 Keynames.................
I T €1 41 0= | PP PPUPPPPPPPPPPPPPRt
3.2.5.2.3 Derivation rules
3.2.6 Topology Template definitioncoooiuiieiiiiiie e 44

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 6 of 165

.28 L KBYNMBITIES ...ttt s 44
I I €1 =111] 1 1 F= U PO PPPTPPR 44
B2 Tt R o] o U (=PRI 45
I 10t N R €1 =1 43 1 1 =Y PO PP TP PTPPRPT 45
I T B b 11] o] 1= PSSP 46
I ST o To Lo (R =T 4] 0] F= L (= T PRSP SRUR TP 46
B.2.6.2.2. 1 GEAMIMAT ... i 46
I I A - 11 1] o [SO USPR P 46
3.2.6.2.3 relationShip_teMPIALEScooiiiiiiiiei ettt e e e e et e e e e e e e et e e e e e e e e nnraeeeas 46
3.2.6.2.3.1 Grammar
3.2.6.2.3.2 Example.........
T T A o1 1 {0 | £ PP PPPPPPRPPPRE
3.2.6.2.4.1 Grammar
I I B e 1 1] o] = PSR
312.68.2.5 GIOUPS .ottt ettt ettt e+ttt e e e e e bttt e e e e e oAb b a et e e e e e e e bbbt e e e e e e e e e Rab e e e e e e e e e e nnrneeeas
3.2.6.25.1 Grammar
3.2.6.2.5.2 EXAMPIE ...t
B.2.6.2.6 PONICIES ..ttt ettt e h et e e a e
3.2.6.2.6.1 Grammar
3.2.6.2.6.2 EXAMPIE ... s
3.2.6.2.7 SUDSHULION_MEPPING ..itietiieiiiiee et ett et e e e e e sttt e e s sete e e e steeeesaaeeeaasteeesanaeeeesnneeeeeaneeeeennnees 48
3.2.6.2.7.1 requUIreMENT_MAPPING «.eccuueeeeieeeeeiiieeeaatteeeeateeeessteeeesateeeesasseeesasseeesasteeeesasseeesaseeessnseeees 48
I I e 1 1 1] o] U PP 49
S 2 B o] (= T PSPPSR 50
3.3 Nodes and RelatioNSNIPScccoe i ——————— 50
G 20 A (o To L= Y/ o= RSPV RPTPPPPR 50
1R 0 0 A (=) V4 = 41T SO PRRP TP 50
TR T0t 2 €1 > 0o 0T N 51
R R B B 1= 1)Y= 110 ¢ I (1] TP PP UUPT PP 51
3.3.1.4 AdditioNal REQUIFEMENTSueiiiiie ettt ie ettt e e e e ettt e e e e e s bbb et e e e e e e s e sbaaeeeaeeesasbssseaeaeesaannnssneens 52
R o =11 1] o =T PO PUUPT TP
3.3 2 NOUE TeMPIALE ... ————————
IR 0t B (= V] = 4 [T PSSO
303022 GIAIMMIA L.ttt
3.3.2.3 Additional requirements
R B =11 1] o L= T PP PP UUPTR SRR
3.3.3 REIALONSNID TY PO ..ttt e et e e et e e e snb e e e e et e e e nnbe e e e e neee
.33 L K BYNMBIMIES ...ttt e
303312 G AIMIMIA ..ttt
IR e T B B 1T (1Y 1110 I (1] = PP URP
R I R0 3 =11 4] o] L= PP EUPT P
3.3.4 Relationship TEMPIALE.coouiiie ettt
3.3 L KBYNMBITIES ...ttt e
3.3.4.2 Grammar
3.3.4.3 Additional requirements

B O =11 4] o L= PP UUPT P
3.3.5 Capabilities and REQUIFEIMENESoiiiiiiieiiiiiee ettt ettt e e e st e e e neee 57
TR TN A 0= o = 1o 1111V Y/ o 1= 2P RUPTOPP 57
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 7 of 165

3.3 5. 1.1 KBYNAITIES ...ceiiieiiiiieiiieiteet ettt ettt et ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt et eeeee e et et e e et e ee e e e e eeeeeeeeeeeeeeeeeeeeeereeernene

I IR 2 €1 =1 111 = PP T O PTPR P
3.3.5.1.3 DEIIVALION FUIES ...ttt e ettt ettt e e e e ettt e e e e e sttt e e e e e e s e sttt e eeaaeesaannnteeeeeaeeaannnsneeeas
R TN T B = 1 o o PP ERR SRR
3.3.5.2 Capability defiNitiON.........ccoiiiiiiiee et e e e e e e e e e e s e e e e e s e aarraaas
3.3.5.2. 1 KBYNAITIES ...ceiiiiiiiiieiiiei ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt et e ettt et e et et ettt e ee e et eeeeeseeeeeeeeeeeeeeeeeeeeeeereeeenene
R R €1 =1 11 1 T PO PUPR P
3.3.5.2.2.1 Short notation
TR Y272 N = (=T g [0 [=Yo Il g o) =i o] o PRSP 59
3.3.5.2.3 REFINEMENT FUIES ...ttt e e ettt e e e e e s ettt e e e e e e s e e e e e e e e e eennnnaeeeas 60
R T B e 101 o] (T PRSP PSURPPP 61
3.3.5.2.4.1 Simple NOtation @XAMPIEcooo i eeeas 61
3.3.5.2.4.2 Full notation example
3.3.5.2.5 AdditioNal FEQUIFEIMENTScciitiiiiiiiie ettt e et e e e bt e st e e b e e e e e e e nnnes
I RN O T =1 o1 VA= T3S o o] 0 =T o | PP
TR N TR T)Y 0 = 10 1= ST PP PPTTP PP
R R TR T €11 101 o F- | PP PP PP PP PPUPPPPPPPPPPPPPRt
G TR TR B - 12 o] o = O SR
3.3.5.3.3. 1 NOatioN EXAMPIEeeeieiiiiie ettt ettt e e et e e e sate e e e snte e e e enae e e s snneeeeanaeeean
3.3.5.4 REQUITEMENT TYPE ..eiiiiiiiieiiitt e ettt ettt ettt e e et e e e s et e e ekt et e e et et e e e be et e e bbbt e e aabe et e s b e e e e anbr e e e snn e e e s bneee s 62
3.3.5.5 ReqUIreMENt AefiNItIONo.vriiiiiiii ettt e e s e e s snb e e s e e e e s 62
TR ST)Y 0 = 10 1= ST P PP RPTP PP 63
3.3.5.5.1.1 Additional Keynames for multi-line relationship grammarccccococeviviiienniienennieennn 63
R R T I €11 101 o F- | PP PP P PP PPPPUPPPPPPPPRPPPPRt
3.3.5.5.2.1 Simple grammar (Capability Type only)
3.3.5.,5.2.2 Extended grammar (with Node and Relationship Types)
3.3.5.5.2.3 Extended grammar for declaring Parameter Definitions on the relationship’s Interfaces 64
3.3.5.5.3 REMINEMENT FUIES ...ttt e et e e 65
3.3.5.5.4 AddItioN@l FEQUITEIMENTSceiiiiiiiiiiiiie ettt e e e e e sttt e e e e e s bbb e e e e e e e s asbb e e e e e e e e e aanneneeeas 65
e TSR Sl o] £ T T T T PO TP P PR PPPPPRPN 65
3.3.5.5.6 Requirement definition is a tuple wWith @ filter ..o 65
3.3.5.6 REQUIrEMENT ASSIGNIMENTeeiiiiiieiiitii ettt e e e e e st e et e e e e e s b bbbt e eeeeeaabbbeeeeeeeeeaannnrreeeas 66
3.3.5.6.1 KBYNGAIMESeiiiiiiie ettt ettt ettt e e e e et e e e e e et e e e e e e e et et e e e e e e e e e e e e e e e e as 66
R R T I €11 101 o F- | PP P PP PPPPUPPPPPPPPRPPPPRt 67
3.3.5.6.2. 1 SO NOTALION:cciiitiii ettt et e e et e e s 67
3.3.5.6.2.2 EXIENUEA NOTALION:eeiiiiiiieiiiii ettt ettt et e e et e s e e s nneee s 67
3.3.5.6.2.3 Extended grammar with Property Assignments and Interface Assignments for the
relationship 67
3.3.5.6.3 EXAMPIES ...eeeeiiiiieieiiit ettt
3.3.5.6.3.1 Example 1 — Hosting requirement on a Node Type
3.3.5.6.3.2 Example 2 - Requirement with Node Template and a custom Relationship Type........... 69
3.3.5.6.3.3 Example 3 - Requirement for a Compute node with additional selection criteria (filter) ..69
3.3.5.6.3.4 Example 4 - Requirement assignment for definition with occurrences: [2,2].................... 70
RS ST A N[To (=B 11 (=Y o LY 11 o o PRSP 70
3.3 5.7. 1 KBYNAITIES ...ceiiiiiiiiieiiieiee ettt ettt ettt ettt ettt ettt ettt ettt ettt et et e et e et et et et et e e et e e e ee e e e et eeeeeeeeeeeeeeeeeeeeeeeenenene 70
3.3.5.7.2 Additional filtering on capability ProPertiescoi it 71
R R T ARG I €11 1o o= | PP PPUPPPPPPPPPPPPPRE 71
3.3.5.7.4 AJAItiONAl FEQUITEIMENLESeiiiiiiiieiiiiie ettt e ettt e e e e et e e e e e s bbbt e e e e e e s asbbbeeeeeaeeaannneaeeeas 71
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 8 of 165

B T AT - 1 o] o] [P ERR SRR 72

3.3.5.8 Property Filter definitiONoiiiiiiiiiiiie e e e e e e e e e e s r e e e e s e anrraee s 72
TR TS T €1 =T o o - | PP P PP PPPPUPPPPPPPPPPPPPRt 72
3.3.5.8.1.1 SNOI NOALION:cutiiitii ittt ettt e e e e e enne e 72
3.3.5.8.1.2 EXtENded NOTALION:eiiiiiiitiiiiee ettt ettt 72
3.3.5.8.2 AdditioNal REQUITEMENTScciiiiiiiiei ettt et e e e e e e e e e e e st a e e e e e s s eetabareeeeeeseennraeeeas 72
TR N G I [0145 = ot =2 TP 73
R G T80 A 141 (T - ot T Y 1= PP URPSP 73
G TR TG T I A =3 Y/ = 10 =P PPPPPPRPPPRE 73
TR JL TN B2 €1 =T o 0 - | PP P PP PP PP PPUPPPPPPPPPPPPPRt 73
3.3.6. 1.3 DENVALION FUIES ...ttt ettt b e sbe e bn e seb e nen e e st e e saneenereas 73
B N T80 T B = 1 o o R SRR 74
3.3.6.1.5 Additional REQUITEMENTSciiiiiiiiii ettt e e e e s e e e e e e st e e e e e s s eeabaaeeeeeeseanntaeeeas 74
G N I S o (1 OO TP 74
3.3.6.2 INtErface AEfINITION.oii it e e e e e st e e e e e e s et bba e e e e e e s s ansntreeeaeesaannnsbaeeas 74
TR N R =) Y 0 = 1 1= S PP P PP PPPT PP 74
R N T €11 01 0 - | GO PP PP PP PPPPUPPPPPPPPPPPPPRt 75
3.3.6.2.3 REFINEMENT FUIES ...ttt e e e e e sttt e e e e e e ettt e e e e e e s e sabebeeeaeeeaannnsaeeeas 75
3.3.6.3 Interface assignment
3.3.6.3. 1 KBYNAIMESetieeiee ettt ettt e ettt e e e e et e e e e e et e e e e e e e et e e e e e e e e e e e e e e e e e nn s
I e T2 €] =1 111 T ST PP PR
3.3.6.4 Operation definition
3.3.6.4. 1 KBYNGIMESciiiiiiiee ettt e ettt e ettt e e e e e e et e e e e e et e et e e e e e et r e e et e e e e e et e e e e e e e e e e s
I N S €] =1 111 T SO TP
3.3.6.4.2. 1 SNOI NOALION.coutiiitit ittt e et e e s e e st e st e nne e
3.3.6.4.2.2 Extended notation
3.3.6.4.3 REFINEMENT FUIES ...ttt e e e e e sttt e e e e e e s ettt e e e e e e s s sabeeeeeaeeeeannsaeeeas
3.3.6.4.4 AJdItIONAl FEQUITEIMENTSceiiiiiiiiiiiiie ettt e e e e e sttt e e e e e et b e e e e e e e s asbbr e e e e e e e e aannneneeeas
3.3.6.4.5 EXAMPIES ..ottt h et
3.3.6.4.5.1 Single-line example
3.3.6.4.5.2 Multi-line example with shorthand implementation definitions..............cccvieeiiiiiniineen. 78
3.3.6.4.5.3 Multi-line example with extended implementation definitions............cccccoveiieiniieee e 79
3.3.6.5 OPeration AaSSIGNIMENT.cc.iiiiiiee ettt e et e e e e e e e s b b et et e e e e e st bb et e e e e e e aanbbereeeeeesaannnrneeeas 79
3.3.6.5. 1 KBYNAIMESciiiiiiie ettt ettt e e e e et e e e e e et e e e e e e e et e e e e e e e e et e e e e e e e e s 79
R N R T2 €11 01 0T | PP P PP PP PP P PP PPPPPPPPPPPPPPPPPPRt 79
3.3.6.5.2. 1 SNOM NOLALION.euieiiee ittt e et e e e e e et e e e e e e e eabb e e e e e e e e e e nnereeeas 80
3.3.6.5.2.2 EXIENAEA NOLALIONcooiiiiiiiiiiee ettt e e e e e e e e e e e e e e nee s 80
3.3.6.5.3 AdditioNal FEQUIFEIMENTScoiiiiiiiiiiie ettt ettt et e e sttt e st e e s bn e e e e anbe e e e nnnees 80
3.3.6.5.4 EXampIescccvvveiiiiiiiiiiiiieeee e
3.3.6.6 Notification definition
3.3.6.6.1 KBYNAIMESeeeieieee ettt ettt e ettt e e e e ettt e e e e e et b e et e e e e e b e e et e e e e e e e e et e e e e e s
3.3.6.6.2 Grammareevveennnes
3.3.6.6.2.1 Short notation
SRS N G S T2 = (=T g [0 [=To Il g To) = Ui o] o T PUPPT PP 81
3.3.6.6.3 REFINEMENT TUIES ..ottt e e e e e e e e e e e e s et b b e e eaee e s s sabtbeeeeeessannssaeeeas 82
3.3.6.6.4 AJAItIONAl FEQUITEIMENLSeiiiiiiiieiiiii ettt e et e e e e ettt e e e e e e s e bbb et e e e e e e s asabbreeeeeeeaannneaeeeas 82
3.3.6.6.5 EXAIMPIESoeiiiiiiiiiiit ettt h et b bbbt et e b et e s 82
TR N G A \[o] 1] Tor= Vo] g W= XY o 0 1T o | PP UTPT O 82
3.3.6.7. 1 KBYNAITIES ...ceiiiiiiiiiiieieiteet ettt ettt ettt ettt ettt ettt ettt ettt ettt e e et et e e e ee e et et et et et e e et et et e ee e eeeeeeeeeeeeneeeeeeeeeeeeeeenene 83
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 9 of 165

R N S A €1 -1 111 1 4T T SO TP OR PPN 83

RS TRC G T 70 A (o [0 7= 11T o PSP 83

TR N G 72 = (=T g [0 (<o I g o) = i o o PRSP 83
3.3.6.7.3 AddItiONal FEQUITEMENLSeeiieiiiiiiiiee e e e eeee et e e e e e e e e e e e st e e e e e e s stb b e e e eaeeessasabsreeaeeeseaassaeeeas 83

B N G B = 1 o] o] [P ERR S 84
3.3.6.8 Operation and notification implementation definition...............cccooiiiiiie e 84

3.3.6.8. 1 KBYNAITIESeiiiiiiiiiiiiiii ittt ettt ettt ettt ettt ettt ettt ettt ettt ettt et et ettt ettt et et et e e e eeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeenenes 84

R H oI S T2 €1 =1 01 4 F- | PP PP PP P PPPPUPPPPPPPPPPPPPRt 84
3.3.6.8.2.1 Short notation for use with single artifactcccccoviiiiiriii 84
3.3.6.8.2.2 Short notation for use with multiple artifacts...........cccoooveiiiii 84
3.3.6.8.2.3 Extended notation for use with single artifact.............cccoceeeiiiiiiiiie e,
3.3.6.8.2.4 Extended notation for use with multiple artifacts

TR A Y 1] = o £ RSP
R T N 41 = ot Y/ o= OO U ST P TP PUPPPTPIN

.37, 0.1 KBYNGAIMES ...ttt ettt e oo e ettt e e e e e e et e e e e e e et e et e e e e e et r e et e e e e e e e e e e e e e e e e nn s

I T 0 €1 =1 11 0 = OO P TP

I T B - 11 4] o] LT O OO U PR TP P PPPPP P

3.3.7.1.4 AdditioNal REQUIFEIMENTSciuiiiieiiiieeiiiiee ettt e e ettt e e s tteee s st e e s steeeesbaeeeaasteeessnneeeesnbeeeeanneeeeennnes

I T T N\ o (1 OO P TP

IR B 2 AN 4 11 - Tox e (=1 11 1 1T o IS ERP
3.3.7.2.1 Keynames.................

T T A €11 01 0 F- | PP P PP PP PPPPUPPPPPPPPPPPPPRt
3.3.7.2.2. 1 SROI NOALION.ctiiiiie ettt et e st et enne e
3.3.7.2.2.2 EXIENUEA NOTATION:eeiiiiiiieiiiie ettt ettt et et e e et e s snne e e e e nneee s 88

T T A B - 12 o] o] =T RO PR 88

3.4 Properties, Attributes, and Parametersccvuiiiiiee i seer e e e e e e e er e e e e aanns 89
B L PIIMIEIVE LY DS e ——————— 89
3.4.1.1 REfEreNCE YAML TYPESitiieiiiiit ettt ettt ettt et e et e s bt e et b et e e et e e s b e e e e et e e e nnreeesnneee s 89
R 9 I o £ T T TP U PP PSR PPPPPRP 89

I O A O 1S OF AN V= {1 o] o PP ERP 89

Rt % R €1 = o o - |G PP P PP PPPPUPPPPPPPPPPPPPRt 90

3.4.1.2.2 VErSiON COMPAIISON......uuiiiiieeiiiititeeee e e e e ettt e e e e e aabbe et e e e e e e s bbb et e e e e e e aaabbbeeeeaeeeaabnbseeeeeeesaannneneeeas 90

B4 1.2.3 EXAIMPIES ...ttt ettt ettt et et e e Rt e b e e e 90

B L. 2.4 NOUES.....eeeett ettt etttk a e ekt h R Rt Rt h e h et e h e nh e nn e 90

3.4.1.2.5 AdditioNal REQUIFEIMENTSoiiiiiiiiiii ettt e e e e e st e e e e e e s abbb e e e e e e e s aannneneeeas 90

I e B O 1S OF NN - T [0 =N 1Y/ o 1T PP TPRP 91
ot R T €1 1T 01 0 = | PP PP P PP PP PPPPPPPPPPPPPPPPPPRt

I e T (=YY (o [O PRSP PPOTP P PUPPP

3.4.1.3.3 Examples

3.4.1.4 TOSCA list type

R ot I €1 = o o = UGS P PP PPUPPPPPPPPPPPPPRt
3.4.1.4.1.1 Square Bracket NOTALIONuviiiiiiieiii e 92
3.4.1.4.1.2 Bulleted list notation

3.4.1.4.2 Declaration EXAMPIESooi ettt a e e e e e eeas
3.4.1.4.2.1 Listdeclaration using @ SIMPIE tYPEceeiiiiiiiiiiiiii et 92
3.4.1.4.2.2 List declaration using a COMPIEX tYPEccoiiiiiiiiiiieiiiiiiiee e 92

3.4.1.4.3 Definition EXAMPIESocouiiieiiiiie ettt 92
3.4.1.4.3.1 Square Bracket NOTALIONeviiiiiiieiiie et e e s 92

TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 10 of 165

3.4.1.4.3.2 Bulleted liSt NOtAIONcoooiiiiiiiii e 93

3i4. 1.5 TOSCA MG LY ittt s 93
It R T0t B €1 =T 140 = PP PUPR P 93
3.4.1.5.1.1 SiNGIe-liNE QramMmMar.......cc.uviiiiie it e et e e e e e e e st e e e e e e s esabar e e e e e e s e ennrreeeas 93
3.4.1.5.1.2 MUI-ING QraMMAT ...ccooiiiiiiei et e e e e e e s et e e e e e e s e e a e e e e e e s e e anereeeas 93
3.4.1.5.2 Declaration Examples
3.4.1.5.2.1 Map declaration using @ SIMPIE TYPEvviiiiiiiiiieee e 93
3.4.1.5.2.2 Map declaration using @ COMPIEX TYPEeeeririiiiiiiieeiiiiee et 94
3.4.1.5.3 Definition EXAMPIESocoiiiieiiiiie ettt 94
3.4.1.5.3.1 SiNGIE-liNE NOTALION.......cciiiiiiiee et e e e e e e e e e s e e e e e e s e aneraeeas 94
3.4.1.5.3.2 MURFIING NOTATION ...ceiiiiiiieiiiei ettt e e e e e e e e e e e e et e e e e e e e e anneeeeeas 94
3.4.1.6 TOSCA SCAlar-UNIt TYP . ..uuiiiiiiieee e ittt e ettt e e e e e e e e e e e st e e e e e e e s etbaaaeeaeeesansbaereeeaeesaannnreeeas 94
I S Tt R € = g - OO PRRTP PP 94
3.4.1.6.2 AdditioN@l FEQUIFEIMENTSeeiitiiiieiiiieeiiiiee ettt e e et e e sttt e e e srte e e e sttt e e sbbeeeaasteeesenneeeesnbeeeeaaneeeeeannees 94
3.4.1.6.3 Concrete Types
3.4.1.6.4 SCAIAI-UNITL.SIZEeeiiiiie ettt ettt e et e et e e st e e e bt e e e e e st e e e e enrr e e e s
3.4.1.6.4.1 RECOGNIZE UNILSiiiiiiiiiieiiiiee ettt ettt et e an bt e e et e s e e e s nneee s 95
3B4.0.6.4.2 EXAMPIES ...oeiieieie et n 95
R 5 0 e T [0 (== S PP OPRURUPRPI 96
3.4.1.6.5 SCAlAr-UNILEIMIEei ittt e e et e et e e s b e e e b e e e sb e e e s bn e e e eenr e e e e nnnes 96
3.4.1.6.5.1 Recognized Units
3.4.1.6.5.2 EXAMPIES ...ooiiieeiie ittt
Bi4.1.6.5.3 INOTES....oiiiiiie ittt e e e e e e e e et e e e e e e e e s s
3.4.1.6.6 SCAlAr-UNIt.ITEQUENCY ...ttt ettt e et e st e e ettt e e s enae e e e snbbeeeenneeeeeennes
3.4.1.6.6.1 Recognized Units
34.1.6.6.2 EXAMPIES ..t e e e e e e e s
R Y ST e B[] (== OO UPPEEPT PP
3.4.1.6.7 SCAlAr-UNILDIIIALE.....ceeee ettt e e e et e e e e e e e nneae s 97
3.4.1.6.7.1 RECOGNIZEA UNIES ...ceiiiiiiiiiiiiiee ettt ettt e e e et e e e e e e e s e e e e e e e s e nnereeeas 97
3.4.1.6.7.2 Examples
B 1.6.7.3 NOEES i
IR D - = W Y/ oL PRSP
I 0 R (= V] = 41T PSSO RP TP
I €1 =Y 0] 0T N
3.4.2.3 DEIVALION TUIES ...ttt ettt e oottt e e e e e e bbbttt e e e e e s bbbttt e e e e e e abbbbreeeeeesannnnreeeas
3.4.2.4 AJdItIONal REQUITEMENESviiiiiiiit ettt ettt et e e e s b e e e e bt e e nnn e e e s nreee s 99
B ol =11 4] o] L= PP PERP TP 929
3.4.2.5.1 Defining & COMPIEX AALALYPEeiiiuiiiieiiiiee ettt e e e e s 99
3.4.2.5.2 Defining a datatype derived from an existing datatype.............eeeeeeiiiiiiiiiiee e 100
3.4.3 SChemM@a defiNItION e e e e e e e et e e e e e e e e et b e eeee e s
314,30 KBYNMAMIES ... ettt ettt e oo e ettt e e e e et e e e e e e e b E ettt e e e e o e e et e e e e e e e et e e e e e r e e e e e e e e s
R T2 €1 =1 10 0T N
3.4.3.3 REFINEMENT TUIESeiiiiiiiee et e et e sttt e e s et e e e st e e st e e e s nnes
3.4.4 Constraint clause definNitioNuiiiiiiii e
3.4. 4.1 OPEIAtOr KEYNAMES ...ueeeiiiiiiee ettt ettt e ket s et e e et e e ekt e e s b et e e e ab e e e ebb e e e e nbe e e e et e e e nneeeeennnes
3.4.4.1.1 Comparable value types
3.4.4.2 Schema CONSIIAINT PUMPOSEceeeiiiiiuitieiiaeeeaieiteeeee e e e e et e e e e e e e e s atbeeeeaae e e s e sbbeeeeaeeesaasnbeseeeaeesaanneseeens
3.4.4.3 AJdItiONal REGUITEMENESviiieiiiie ettt ettt et et e e et e e s e e e s b e e e nne e e s nnnes
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 11 of 165

R €1 =1 001 4T TN 103
B B =11 4] o] L= PP EPT PO 103
3.4.5 Property definitionc..oooi ittt e e 104
3.4.5.1 Attribute and Property refleCtion.............ooii oo 104
3.4.5.2 Keynames.........cccvvvvvvvnnnns
3.4.5.3 Status values
R R SR N € 17- 11 110 =T ST PP P TP PPPTT PP
3.4.5.5 Additional Requirements...
3.4.5.6 REINEMENT TUIES ..ottt e e e ettt e e e e e e et e e e e e e s e nnteeeeeaeeeeannnneeeeas
B T A =11 4] o] L= PP EPT O
3.4.6 Property aSSIGNIMENTeiiiiiiiiei it et e ettt et e e e s be e e e st e e e e e sbe e e e e sba e e e e aabeeeesabeeeeesabneeeean
3.4.6.1 Keynames
3262 GIAIMIMIA ...ttt e

3.4.6.3 Additional Requirements
I A N 111 o101 4= o 1= 1 71 1T o SRS
3.4.7.1 Attribute and Property refl@CtioN...........uiii i 108
I A (= = 41T PO P TP PP
I B €1 - 101 11 F= 1 PP PP PPPR
3.4.7.4 REfINEMENT TUIBS ...ttt e e e e e ettt e e e e e e s et bbe e e e e e e e s asnbtneeeeeeeannnnseeeeas
3.4.7.5 Additional Requirements
3.4.7.6 NOtESvvvveiriicee
3.4.7.7 Example
3.4.8 AIDULE @SSIgNIMENT. ... ———
O 0 A (= V4 F= [T PO PSPPI
32,82 GIAIMIMIA ...ttt

3.4.8.3 AJAItIONAl FEQUITEMENEScoiiiieeiiiie ettt et e e et e e s e e e st e e e e s e e e
3.4.9 Parameter defiNItiONoooi i e et e e e e e s
O Tt A (=) V4 = 41T PSPPI
3.0, 2 GIAIMMIA ...ttt
3.4.9.3 Additional Requirements
3.9, EXAMPIE ...ttt e e et e e et e e e e e b e
3.4.9.5 REFINEMENT TUIES ..ottt e e e e et e e e e e e e e bbb e e e e e e e e nnnreeeeas
3.4.10 Parameter Value aSSIGNIMENT........uuiii it iiieee ettt e et e e et e e e sba e e s sbreeeeabneeeeans 114
3.4.10.1 Keynames
0 ot O T2 €1 > o 0= N

3.4.10.3 Additional Requirements

3.4.11 Parameter mapping aSSIGNIMENToiiuuiiiiiiiiee i iiiee et e et e e s sbae e e e sbreeessbeeeeeabeeeeean 115
i 001 KBYNMBITIES ...ttt 115
I B €17 11 11 T T PP PRSP TP RPTT P PPPI 115
3.4.11.3 Attribute SEleCtioN TOMMIALcooiiiiiiee e e e 115

3.5 SUBDSTIEULION ..ottt e e st e s et e e et e e ekt e s e e e e e anre e e e e e 116

3.5.1 SUDSHItULION MAPPING ... eteteieiee ettt e e e ettt e e e e e s e bbb e e ee e e e e e s nnbebeeeaaeeaeaannbreaeeaaeas 116
3.5.1.1 Keynames
3.5.1.2 Grammar.....

BRI e B =11 o] o L= PP UPT PP
3.5.1.4 AJdItIONAl FEQUITEMENESciieiiiiiiiie ettt et et e e et e e s ane e e e st e e e e nee e e e nnnees 117
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 12 of 165

TR L [(=1 SO OU PR PPR 117

TS o] o 1= 4V 14 T= o] o1 T [P 117
35,21 K BYNMBITIES ...ttt e 117
IR T €1 - 141 1L PP PP PPPR 118
5.2, 3 INOEES .t e e 118
3.5.2.4 AJAItIONAI CONSIIAINTSeeeiiitieeeiitie ettt e st e e e s bt e s e e e e s b e e e nnre e e s nnnes 118
TSI B AN 111010 (= 0 =1 o] o1 o P 118
3.5.3. L KBYNMBIMIES ..ttt 119
ST I €1 - 1111 11 F= 1 PP PP PPPR 119
3.5.4 Capability MaPPINGcooveieee ittt e e b e b e e e e brree e 119
G TR 0 0 I =Y/ = 10 = 119
RS S €1 - 1 1110 = OSSO PPR 119
3.5.4.3 AJdItiONaAl FEQUITEMENESc.iviieiiiiie ettt e s e e et e s e e e e ann e e e s nn e e e nnnes 120
RNl = To W11 =T (=T | g = o] o1 T 120
3.5.5.0 KBYNMAMES ...ttt ettt e e oottt e e e e e e e et ees 120
ST €1 - 1111 4IPSO P PP PPPR 120
3.5.5.3 AJdItiONaAl FEQUITEMENESco.iviieiiiiie ettt et e bt e e e e e st e e e b e e e s s 121
3.5.6 [Nt ACE MAPPING .o ie e ——— 121
RS 0 R €11 1110 = PSPPI 121
NS T2 [0 (== PO PPPTRTRI 121
3.6 GroUPS AN POLICIES. ... ———— 121
NG A €] o 1U] oI 1Y/ oL PP P PP TP PPPPPPPI 122
G0 0 A (=) V= 0 [T OO PP TP PP 122
G B €1 1 110 = OO PSPPI 122
3.6.1.3 Notes
3.6.1.4 AJdItioNal REQUITEMENESviiiiiiiie ettt et e e et e et e e s b e e e e s e e s 123
G L =11 o] o L= PP UPTT PP 123
3.6.2 Group defiNitioNccocoe i —————————— 123
3u8. 2.1 KBYNMBITIES ...ttt 123
RG-SO P TP 123
3.6.2.3 Notes
3.6.2.4 AJditioNal REOQUIFEIMENESuiiiiiiiiiiiiti ettt e e e e ettt e e e e e e st b e e e e e e e s e nbbbr e e e e e e e aannnteeeeas 124
38,2 5 EXAMIPIE ..ttt e e e Rt e et e e e e e b 124
N G I o] 1o A Y] o= PP UUPPRTPPPPRP 124
3.6.3. 1 KBYNMAMES ...ttt ettt e ettt e e e e e ettt e e e e e e e et e e e e e e e e e e e e e e r et e e e e e e e e e e e e e ees 125
G 2 €1 11 1110 = PP PPPI 125
G Re C B o= 11 1] o L= PSP PPUPTT PP 125
N G R o] [1oa Ao 1= 1] a1 1T o PO PPTUPPPPPRP 126
BiB.4. L KBYNMBITIES ...ttt 126
G B €1 - 11 110 =T PP PP PT PP RPTPR PP 126
B84, 3 EXAMPIE ...ttt e bbbt e e e e e bt e e et 127
3.6.5 Trigger AefINITIONccoi e e ettt e e e e et e e e e e e e e e ennbreeeeaae s 127
3.6.5. 1 KBYNMAMIES ...ttt ettt e oot e e e oot ee e e e e e bttt e e e oo et e et e e e e e e e e e e e e e e e e a e s 127
3.6.5.2 Additional keynames for the extended condition NOLALIONuvviiiriiiiiiiiiee e 127
3.6.5.3 GIAMIMAceii e ittt ettt et oottt e e e e e b bttt e e e e ek b e e et e e e e ek n e et e e e e e e e e nr e e e e e e e e e e s 128
3.6.5.3.1 SO NMOALION.......eiiiiiiieiieie ettt e e e et e s et e e s e e e s e e e s sereeeeannreeenane 128
I T P2 = (=] o [=To [g o) =1 1] o PP PP PP PP PRI 128
3.6.6 Event Filter defiNitiONcuiieiii i r e e s e e e e s s st e e e e e e e e s rnaneeee s 128
3iB.6. 1 KBYNMBIMIES ...ttt 129
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 13 of 165

N N I € = 100111 = T PSP UPUPRUTRPRRNt 129

3.6.7 Condition clause defiNItiONoociiiiiiiiie e 129
BB 7. L KBYNMBITIES ...ttt 129
I T €1 - 141 1= PP PPPR 130
3.6.7.2.1 ANO CIAUSEottt ettt ettt h ettt b e s bt e s it s e e nab e st s e 130
B.8.7.2.2 OF ClAUSE.......eeeeeiee ettt oottt e e e oottt e e e e s e s ab ittt e e e e e s e snbteeeeaee e e nnnbeeeeaeeeeannnnneeeas 130
3.6.7.2.3 NOU CIAUSE ...ttt ettt b e s bt et st e sab e sbn e e st e naneenanee e 130
3.6.7.3 Direct assertion defiNItiON............o et e e e e e e e e e e e e e e e e e e e nnreeeeas 130
3.6.7.4 AJditional REQUIFEMENL.........eiiiiie it e et e ettt e e e e e ettt e e e e e e e e ssaeeeeaaeesaannsebeeeaeaeaannreneens 131
BB 7.5 INOLES .ttt 131
B G S = L1 o] o = PP 131
3.6.8 ASSErtioN AefINILIONcoiiiiiiii ittt et e et e e e st e e s s bt e e e e s bneeeean 132
3iB.8. L KBYNMBIMIES ...ttt e 132
N CIR e I €1 401 4IPSO P P PPPR 132
3.6.8.3 Example
3.6.9 ACHVILY AEFINITIONSeeiiitiie ettt e et e e e st e e s s bb e e e e snbneeeean 133
3.6.9.1 Delegate workflow activity definitionooeiiiiieiiieie et 133
3.6.9. 0.1 KBYNAIMESeiiieiiee i ettt e et e e e e ettt e e e e e e e e e e e e ek e e e e e e e e s e s e e e e e e e e e e nn e et e e e e e eeeas 133
G I 2 €1 =1 141 T ST PO PR PO PP 133
0TS X I8 720 A g (o] [0 7 11T o PP EPRR R 133
0TGN I 72 = (=T [0 (=Y g o) =i o o PP EPRT 133
3.6.9.2 Set state activity definitioNcueiiiiiiiii et 134
3.6.9.2. 1 KBYNGAIMIESeiiiiiiee e ittt e e e et e e e e et e e e e e ettt e e e e e et e et e e e e e s e s e e e e e e e e e e e nn e et e e e e e eeeas 134
G I €] =1 14 1 T SO PO PP TP PORRTPURI 134
3.6.9.3 Call operation activity definitioN...........c.eeiiiiiiieiii e 134
3.6.9.3. 1 KBYNAIMESeiiieiiee e ettt e e e ettt e e e e et e e e e e e ek n e e e e e e e s e s e e e e e e e e e et e e e n e eeeas 134
I O IR T2 €1 =1 01 10 F- | PP P PP PP PP PPPPPPPPPPPPPPPPPPPRE 135
0C TG T TR 77200 A g (o] i [0 7 11T o TP EPRT R 135
TG T T2 = (=T [0 (<o g To) =i o o NSO PRR PR 135
3.6.9.4 Inline workflow activity defiNitionoooiiiiiii e 135
3.6.9.4. 1 KEBYNGIMESeiiieiiee e ettt e e et e e e ettt e e e e e ettt e e e e ek e et e e e e e e e s e e e e e e e e e e e s nnn e et e e e e e nnrnnreeas 135
I e B €1 =1 01 0T | PP P PP PP PP PPPPPPPPPPPPPPPPPPPPRE 135
3.6.9.4.2. 1 SNOM NOTALION ...ttt e e e e ettt e e e e e e e b bbb e e e e e e e s anbbe b e e e e e e e e anneneeeas 135
BTG I 377 = (=T [0 (<o W g o) =i o] o W PP EPRR T 136
3.6.9.5 EXAIMPIEeeeiieeiiiee ettt oo e et e e e oo h et e e e e e e ba e e e e e e e e e e nnrr e e e e e e e e nnrreeeas 136
G A VAT Lo 7 0SS 136
3.7.1 Imperative Workflow definition ... 136
I A 0t R =) V4 = 0 [T PP P TP PP 136
T 2 €1 = 00 0= N 137
3.7.2 Workflow precondition definition............cc.cooiiiiiiiiiiii e 137
7.2, KBYNMBITIES ...ttt 137
T €1 > o1 2= S 138
3.7.3 WOrkflow Step definitioneeiiiiiiieii et e e 138
.73, L KBYNMBIMIES ...ttt 138
G T T €1 > oo 2T S 139
3.8 NOIMALIVE VAIUEScoiiiiiiiiiieeiee ettt ettt e e oo ettt e e e e e e e e s bbbt e e e e e e e e e annbe e e e e eaeeeaannnbnneaaaaens 139
IS 0 N\ o o L= 0 -1 =1 PSR 139
3.8.2 RelatioNShiP STALESeeiiiiiiiiie e e et e e a e e e e aaeea e s 140
R I [0 (=T O O TP TSRO P PP U PP UPPTRTPRPIN 140
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 14 of 165

RS ST B 11 (=01 1AV T 140

3.8.4 NetWOrk NAME @lIASESceiiiiiiieiiiiiie ettt e st e et e e s st e e s snbbeeeeanbbeeeean 140
Bi8id. L USAQJE ..eetuiuiuiuiniiitittieit bt 141

4 O 1S 07 AN (U g Tox 1T L PRSPPI 142
4.1 Reserved FUNCLON KEYWOITSciiiiiiiieiiiiie ettt ettt s bt e e et e e e i e e e e e 142
4.2 Environment Variable CONVENLIONScoiiuiiiiiiiiiee ittt e sbee e e snbee e e nees 142
4.2.1 Reserved Environment Variable Names and USagecccccvvveeiiiiiiiiiieece e e e 142
4.2.2 Prefixed vs. Unprefixed TARGET NAMES.......ccuuiiiiiiiiiieiie ettt 144
o R [0 (= TP PP PP POPPPPPPPPRN 144

4.3 INtrNSIC FUNCHIONS ... 144
o Tt N o0 T o7 | AP PPPTPTPP 144
o T 0 R €] =11 11 = | TS UU U UO P PP PP PUPRR 144
T N == 1o 112 =] £SO TP P PTP T POPPPPPPPRN 145

A 3.1 3 EXAIMPIES ...ttt h e e R et e ek et e e et e e e nn e e e e e e e e 145
I 22 o o PRSP PP UOPPPP PP 145
o P N €] =11 11 1 =T S TS UUU PP P PP PPPUPRPN 145
A.3.2.2 PaAlAMEIEIS ... 145

e A B b= 141 o) [PRSPPI 145
A.3.3H0KEN .o 145
G TR I R €] = 4o . = TP PP PUPPPPPPPRN 146
A.3.3.2 PaAlBMEIEIS ..o 146
4.3.3.3 EXAIMPIES ...ttt h et e et ekt e e e b e e e s e e e e e e e e 146

4.4 Property fUNCLONS ..o 146
o Ao = o] o 11 | PRSPPI UOTPPPPI 146
O I R €] =11 10 1 = | TS UUUP PP PPPP PP 146
Q4.0 2 PaABMEIEIS ... a e e aaaaas 147
O R B = 1y] o] =2 TP P PTT T PUPPPPPRPRN 147
o (= A o] (0] 1= 1 Y PP PP PP PRPPPPTPPP 148
o N €] =11 11 1 =L TR PP PP 148
A.4.2.2 PaArBMEIEIS ... e e 148
G B = 14] o (=2 TP PP POPPPPPRPPN 148

4.5 AIDULE FUNCHIONS ..ottt e e e e e s bbb e e e e e e s e ansbnereeaee s 149
A.5.1 gL ALIDULE ... e 149
T 0 R €] =11 10 1 = | ST P PP PPPPPPUPRRN 150
A.5.0.2 PaArBMEIEIS ... 150
T R I = 1y] o] =2 TP PP TUUPPPPPRPPN 150

T I\ o) (=S 150

Vo @ o =T =11 To] o I (0] g Tex 1 o] o T PO UUTTT TSP 150
v o = o] o<1 = 14 o) o T 01U 1 U PSPPSR 150
T 0 R €] =11 10 = | U UUSUPU PP PP PP 151
A.6.0.2 PalAMEIEIS ..o e e 151
T I Ao) = 151

4.7 NaVIQAtioN TUNCLIONSooiiiiiieiiei ittt e e e e e ettt e e e e e e s anbbbe e e e e e e e e e annbbaneeaaens 151
oy o = A aTo o LT o) 1] o= PSPPSR 151
o O I R €] =11 10 1 = T USSP UPPPUPPPRPRR 151
A.7.0.2 PalBMEIEIS ..o 151

A7 0.3 REIUINS <.t e aaaaaaaaaaaas 151

4.8 Artifact FUNCHIONS ..o 152
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 15 of 165

S o = - 14) =Tt S PP P PP UOTPP PRI 152

T I R] = 4o 0 =1 TP PP PP PP POPPPPPPPPRN 152

N I A o= 12101 1] (] £ S TS UUU PP PP P PP PSPPI 152

T G B = 1y] o 1= PSS OPPPPPRPRIN 152
4.8.1.3.1 Example: Retrieving artifact without specified location.............ccccceeee i 152

4.8.1.3.2 Example: Retrieving artifact as a local path ... 153

4.8.1.3.3 Example: Retrieving artifact in a specified [0CatioNccooiiiiieiiie i 153

4.9 Context-based Entity Nnames (gIODal)cuuiiiiiiiiiiiie e 154
e T O T o = | PSPPI 154

5 TOSCA Cloud Service Archive (CSAR) fOMMAL........c..eiiiiiiiiieiiiie e 155
5.1 Overall StruCture 0f @ CSARuiii e s s e e e et e e s e st e e e enbaeeeennees 155
5.2 TOSCA MELA FlB....coiiieiiiieieie ettt ettt e e e s e ettt e e e e e e s e s s bt e e e e e e e e s e annbnaeeeeeens 155
5.2.1 Custom keynames in the TOSCA.metafile........ccooeiiiiii i, 156
A = =10 1] o] [PPSO TP PP UOPPPPRPPPPPPT 156

5.3 Archive WithOut TOSCA-METATALA.uueiiiieiiiiiiiiiii e e e e e e e e s e senraaeeeaee s 156
B3 EXAIMIPIE e e ——————————— 156

6 SECUNLY CONSIABIALIONSeeiiiitiieeiitiie ettt ettt ettt e et e e e st e e e sbb e e e e aabb e e e e sabbeeeeabbeeeeabneeeean 158
7 (07] 01 (0] 40T o Lol TP UTT TR PPPPPPPPN 159
7.1 CONTOMMEANCE TAIGELS ..eeiiiuiiiiieitteie ettt ettt ettt e st e e sttt e e s e bt e e e eab b et e e e b b et e e anbbe e e e e nbe e e e anbneeeennees 159
7.2 Conformance Clause 1: TOSCA YAML service template ..., 159
7.3 Conformance Clause 2: TOSCA PrOCESSON....cccieieieieieieieieeeie e e e e e ettt 159
7.4 Conformance Clause 3: TOSCA OFCHESIIALONuuiiiieeiiiiiiiiie e s e neereee e e 160
7.5 Conformance Clause 4: TOSCA QENEIALONccccieiiie i 160
7.6 Conformance Clause 5: TOSCA AIChIVEoicuiiiiiiie et e e e e e s nneaeeeeeee s 160

Y o] o1=T o [)q AN Ao g [0 Y] (=T [[=T oL £ 161
APPENdiX B. EXAMPIE T ...ttt e e e e e neee 163
(2 ST W] o Yo 1= 1 VA T=T ot 1o o H PSPPSR 163
I S o S0 o 1= T [=T V==Y £ o S 163
B.1.1.1 SUD-SUD-SUDSIAIANY SECHOMN ..ottt et re e e nreee s 163
B.1.1.1.1 Sub-Sub-SUD-SUDSIIArY SECHON......ccii ittt e 163

P o] o1=T g o [O oAV IS (o o I o 11 (e Y20 164
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 16 of 165

1 Introduction

[All text is normative unless otherwise labeled]

1.1 IPR Policy

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-
open.org/committees/toscalipr.php).

1.2 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] and [RFC8174] when, and only when, they appear in
all capitals, as shown here.

1.3 Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14,
RFC 8174, DOI 10.17487/RFC8174, May 2017, <http://www.rfc-editor.org/info/rfc8174>.

[YAML-1.2] YAML, Version 1.2, 3rd Edition, Patched at 2009-10-01, Oren Ben-Kiki, Clark Evans, Ingy
dét Net http://www.yaml.org/spec/1.2/spec.html

[YAML-TS-1.1] Timestamp Language-Independent Type for YAML Version 1.1, Working Draft 2005-01-
18, http://yaml.org/type/timestamp.html

1.4 Non-Normative References

[RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security
Considerations", BCP 72, RFC 3552, DOI 10.17487/RFC3552, July 2003,
<https://www.rfc-editor.org/info/rfc3552>.

[Apache] Apache Server, https://httpd.apache.org/

[Chef] Chef, https://wiki.opscode.com/display/chef/Home
[NodedS] Node.js, https://nodejs.org/

[Puppet] Puppet, http://puppetlabs.com/

[WordPress] WordPress, https://wordpress.org/

[Maven-Version] Apache Maven version policy draft:
https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy

[JSON-Spec] The JSON Data Interchange Format (ECMA and IETF versions):

e http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
e https://tools.ietf.org/html/rfc7158

[JSON-Schema] JSON Schema specification:

e http://json-schema.org/documentation.html

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 17 of 165

https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/committees/tosca/ipr.php
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc8174
http://www.yaml.org/spec/1.2/spec.html
http://yaml.org/type/timestamp.html
https://www.rfc-editor.org/info/rfc3552
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://json-schema.org/documentation.html

[XMLSpec] XML Specification, W3C Recommendation, February 1998,
http://www.w3.0rg/TR/1998/REC-xmI-19980210

[XML Schema Part 11 XML Schema Part 1: Structures, W3C Recommendation, October 2004,
http://www.w3.org/TR/xmlschema-1/

[XML Schema Part2] XML Schema Part 2: Datatypes, W3C Recommendation, October 2004,
http://www.w3.org/TR/xmlschema-2/

[IANA register for Hash Function Textual Names] https://www.iana.org/assignments/hash-
function-text-names/hash-function-text-names.xhtmi

[Jinja2] Jinja2, jinja.pocoo.org/

[Twig] Twig, https://twig.symfony.com

(Note: Each reference to a separate document or artifact in this work must be listed here and must be
identified as either a Normative or a Non-Normative Reference.

For all References — Normative and Non-Normative:

Recommended approach: Set up [Reference] label elements as "Bookmarks", then create hyperlinks to
them within the document. (Here's how: Insert hyperlink->Place in this document->scroll down to
Bookmarks, select appropriate one.)

Use the "Ref" paragraph style to format references.

The proper format for citation of technical work produced by an OASIS TC (whether Standards
Track or Non-Standards Track) is:

[Citation Label] Work Product title (italicized). Edited by Albert Alston, Bob Ballston, and Calvin Carlson.
Approval date (DD Month YYYY). OASIS Stage Identifier and Revision Number (e.g., OASIS Committee
Specification Draft 01). Principal URI (version-specific URI, e.g., with stage component: somespec-v1.0-
csd01.html). Latest version: (latest version URI, without stage identifiers).

For example:

[OpenDoc-1.2] Open Document Format for Office Applications (OpenDocument) Version 1.2. Edited by
Patrick Durusau and Michael Brauer. 19 January 2011. OASIS Committee Specification Draft 07.
http://docs.oasis-open.org/office/v1.2/csd07/OpenDocument-v1.2-csd07.html. Latest version:
http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2.html.

Reference sources:

For references to IETF RFCs, use the approved citation formats at:
http://docs.oasis-open.org/templates/ietf-rfc-list/ietf-rfc-list.html.

For references to W3C Recommendations, use the approved citation formats at:
http://docs.oasis-open.org/templates/w3c-recommendations-list/w3c-recommendations-list.html.

Remove this note before submitting for publication.)

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 18 of 165

http://www.w3.org/TR/xmlschema-1/
http://docs.oasis-open.org/specGuidelines/ndr/namingDirectives.html#workProductName
http://docs.oasis-open.org/specGuidelines/ndr/namingDirectives.html#stage
http://docs.oasis-open.org/specGuidelines/ndr/namingDirectives.html#revision
http://docs.oasis-open.org/specGuidelines/ndr/namingDirectives.html#this-version
http://docs.oasis-open.org/specGuidelines/ndr/namingDirectives.html#latest-version
http://docs.oasis-open.org/office/v1.2/csd07/OpenDocument-v1.2-csd07.html
http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2.html
http://docs.oasis-open.org/templates/ietf-rfc-list/ietf-rfc-list.html
http://docs.oasis-open.org/templates/w3c-recommendations-list/w3c-recommendations-list.html

2 Overview

2.1 Objective

TOSCA specifies a rendering of TOSCA which aims to provide a more accessible syntax as well as a
more concise and incremental expressiveness of the TOSCA DSL in order to minimize the learning curve
and speed the adoption of the use of TOSCA to portably describe cloud applications.

This proposal describes a YAML rendering for TOSCA. YAML is a human friendly data serialization
standard (http://yaml.org/) with a syntax much easier to read and edit than XML. As there are a number of
DSLs encoded in YAML, a YAML encoding of the TOSCA DSL makes TOSCA more accessible by these
communities.

This proposal prescribes an isomorphic rendering in YAML of a subset of the TOSCA v1.0 XML
specification ensuring that TOSCA semantics are preserved and can be transformed from XML to YAML
or from YAML to XML. Additionally, in order to streamline the expression of TOSCA semantics, the YAML
rendering is sought to be more concise and compact through the use of the YAML syntax.

2.2 Summary of key TOSCA concepts

The TOSCA metamodel uses the concept of service templates that describe cloud workloads as a
topology template, which is a graph of node templates modeling the components a workload is made up
of and of relationship templates modeling the relations between those components. TOSCA further
provides a type system of node types to describe the possible building blocks for constructing a service
template, as well as relationship types to describe possible kinds of relations. Both node and relationship
types may define lifecycle operations to implement the behavior an orchestration engine can invoke when
instantiating a service template. For example, a node type for some software product might provide a
‘create’ operation to handle the creation of an instance of a component at runtime, or a ‘start’ or ‘stop’
operation to handle a start or stop event triggered by an orchestration engine. Those lifecycle operations
are backed by implementation artifacts such as scripts or Chef recipes that implement the actual
behavior.

An orchestration engine processing a TOSCA service template uses the mentioned lifecycle operations to
instantiate single components at runtime, and it uses the relationship between components to derive the
order of component instantiation. For example, during the instantiation of a two-tier application that
includes a web application that depends on a database, an orchestration engine would first invoke the
‘create’ operation on the database component to install and configure the database, and it would then
invoke the ‘create’ operation of the web application to install and configure the application (which includes
configuration of the database connection).

TOSCA assumes a number of base types (node types and relationship types) to be supported by each
compliant environment such as a ‘Compute’ node type, a ‘Network’ node type or a generic ‘Database’
node type. Furthermore, it is envisioned that a large number of additional types for use in service
templates will be defined by a community over time. Therefore, template authors in many cases will not
have to define types themselves but can simply start writing service templates that use existing types. In
addition, TOSCA will provide means for easily customizing and extending existing types, for example by
providing a customized ‘create’ script for some software.

2.3 Implementations

Different kinds of processors and artifacts qualify as implementations of TOSCA. Those that this
specification is explicitly mentioning or referring to fall into the following categories:

e TOSCA YAML service template (or “service template”): A YAML document artifact containing a
(TOSCA) topology template (see sections 3.9 “Service template definition”) that represents a Cloud
application. (see sections 3.8 “Topology template definition”)

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 19 of 165

http://yaml.org/

e TOSCA processor (or “processor”): An engine or tool that is capable of parsing and interpreting a
TOSCA service template for a particular purpose. For example, the purpose could be validation,
translation or visual rendering.

e TOSCA orchestrator (also called orchestration engine): A TOSCA processor that interprets a TOSCA
service template or a TOSCA CSAR in order to instantiate, deploy, and manage the described
application in a Cloud.

e TOSCA generator: A tool that generates a TOSCA service template. An example of generator is a
modeling tool capable of generating or editing a TOSCA service template (often such a tool would
also be a TOSCA processor).

e TOSCA archive (or TOSCA Cloud Service Archive, or “CSAR"): a package artifact that contains a
TOSCA service template and other artifacts usable by a TOSCA orchestrator to deploy an
application.

The above list is not exclusive. The above definitions should be understood as referring to and
implementing TOSCA as described in this document.

2.4 Terminology

The TOSCA language introduces a YAML grammar for describing service templates by means of
Topology Templates and towards enablement of interaction with a TOSCA instance model perhaps by
external APIs or plans. The primary focus currently is on design time aspects, i.e. the description of
services to ensure their exchange between Cloud providers, TOSCA Orchestrators and tooling.

The language provides an extension mechanism that can be used to extend the definitions with additional
vendor-specific or domain-specific information.

2.5 Glossary

The following terms are used throughout this specification and have the following definitions when used in
context of this document.

Term Definition

Instance Model A deployed service is a running instance of a Service Template. More precisely,
the instance is derived by instantiating the Topology Template of its Service
Template, most often by running a declarative workflow that is automatically
generated based on the node templates and relationship templates defined in
the Topology Template.

Node Template A Node Template specifies the occurrence of a component node as part of a
Topology Template. Each Node Template refers to a Node Type that defines
the semantics of the node (e.g., properties, attributes, requirements,
capabilities, interfaces). Node Types are defined separately for reuse purposes.

Relationship A Relationship Template specifies the occurrence of a relationship between

Template nodes in a Topology Template. Each Relationship Template refers to a
Relationship Type that defines the semantics relationship (e.g., properties,
attributes, interfaces, etc.). Relationship Types are defined separately for reuse
purposes.

Service Template A Service Template is typically used to specify the “topology” (or structure) and
“orchestration” (or invocation of management behavior) of IT services so that
they can be provisioned and managed in accordance with constraints and
policies.

Specifically, TOSCA Service Templates optionally allow definitions of a TOSCA
Topology Template, TOSCA types (e.g., Node, Relationship, Capability, Artifact,
etc.), groupings, policies and constraints along with any input or output
declarations.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 20 of 165

Topology Model

The term Topology Model is often used synonymously with the term Topology
Template with the use of “model” being prevalent when considering a Service
Template’s topology definition as an abstract representation of an application
or service to facilitate understanding of its functional components and by
eliminating unnecessary details.

Topology Template

A Topology Template defines the structure of a service in the context of a
Service Template. A Topology Template consists of a set of Node Template

and Relationship Template definitions that together define the topology model of
a service as a (not necessarily connected) directed graph.The term Topology
Template is often used synonymously with the term Topology Model. The
distinction is that a topology template can be used to instantiate and orchestrate
the model as a reusable pattern and includes all details necessary to
accomplish it.

Abstract Node

An abstract node template is a node template that doesn'’t define any

Template implementations for the TOSCA lifecycle management operations. Service
designers explicitly mark node templates as abstract using the substitute
directive. TOSCA orchestrators provide implementations for abstract node
templates by finding substituting templates for those node templates.

No-Op Node A No-Op node template is a node template that does not specify

Template implementations for any of its operations, but is not marked as abstract. No-op

TOSCA-v2.0-csd01

templates only act as placeholders for information to be used by other node
templates and do not need to be orchestrated.

23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 21 of 165

3 TOSCA definitions in YAML

Except for the examples, this section is normative and describes all of the YAML grammar, definitions
and block structure for all keys and mappings that are defined for the TOSCA Version 2.0 specification
that are needed to describe a TOSCA Service Template (in YAML).

3.1 TOSCA Metamodel

This section defines the models and the modeling goals that comprise the TOSCA Version 2.0
specification.

3.1.1 Modeling concepts and goals

TBD. Here we should have selected core concepts of TOSCA 1.0 from section “3 Core Concepts and
Usage Pattern” and this section should be a more in-depth section than section 2.1 in this document.

3.1.2 Modeling definitions and reuse

The TOSCA metamodel includes complex definitions used in types and templates. Reuse concepts
simplify the design of TOSCA templates by allowing relevant TOSCA entities to use and/or modify
definitions already specified during entity type design. The following four concepts are clarified next:

o Definition:
e The TOSCA specification is based on defining modeling entities.

o Entity definitions are based on different sets of keynames (with specific syntax and semantics)
that are associated with values (of a specific format).

e Derivation:
o Specific TOSCA entities support a type definition.
¢ When defining a type, it can be derived from a parent type.

e The derivation rules describe what (keyname) definitions are inherited from the parent type and
further if and how they can be expanded or modified.

o Refinement:
¢ Definitions within a type definition consist of the definition of keynames and other TOSCA entities
(e.g. properties, requirements, capabilities, etc.).
e The refinement rules pertaining to an entity describe how such entity definitions that are inherited
from the parent type during a type derivation can be expanded or modified.
e Assignment:
¢ When creating a topology template, we specify several entities that are part of the template (e.g.
nodes, relationships, groups, etc.).

e When adding such an entity in the topology template, for some definitions that appear in the
corresponding entity type (e.g. properties, operations, requirements, etc.) we may (or must)
assign a certain specification (or value).

3.1.3 Goal of the derivation and refinement rules

The main reason for derivation and refinement rules is to create a framework useful for a consistent
TOSCA type profile creation. The intuitive idea is that a derived type follows to a large extent the structure
and behavior of a parent type, otherwise it would be better to define a new "not derived" type.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 22 of 165

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html#_Toc356403643
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html#_Toc356403643

The guideline regarding the derivation rules is that a node of a derived type should be usable instead of a
node of the parent type during the selection and substitution mechanisms. These two mechanisms are
used by TOSCA templates to connect to TOSCA nodes and services defined by other TOSCA templates:

e The selection mechanism allows a node instance created a-priori by another service template to be
selected for usage (i.e. building relationships) to the current TOSCA template.

e The substitution mechanism allows a node instance to be represented by a service created
simultaneously via a substitution template.

It is relevant to emphasize the cross-template usage, as only in this case we deal with templates defined
at different design time-points, with potentially different editing and maintenance restrictions.

3.1.4 Required Keynames

The TOSCA metamodel includes complex definitions used in types (e.g., Node Types, Relationship
Types, Capability Types, Data Types, etc.) and templates (e.g. Service Template, Topology Template,
Node Template, etc.) each of which include their own list of reserved keynames that are sometimes
marked as required. If a keyname is marked as required it MUST be defined in that particular definition
context. Note that in the context of type definitions, types may be used to derive other types, and
keyname definitions MAY be inherited from parent types (according to the derivation rules of that type
entity). If a keyname definition is inherited, the derived type does not have to provide such definition.

3.2 TOSCA Service
A TOSCA Service is specified by a TOSCA Service Template.

3.2.1 Service Template definition

A TOSCA Service Template (YAML) document contains element definitions of building blocks for cloud
application, or complete models of cloud applications. This section describes the top-level structural
elements (TOSCA keynames) along with their grammars, which are allowed to appear in a TOSCA
Service Template document.

3.2.1.1 Keynames

The following is the list of recognized keynames for a TOSCA Service Template definition:

Keyname Required | Type Description

tosca_definitions_version yes string Defines the version of the TOSCA specification the
template (grammar) complies with.

namespace no URI The default (target) namespace for all unqualified Types
defined within the Service Template.

metadata no map of string | Defines a section used to declare additional metadata
information. Domain-specific TOSCA profile specifications
may define keynames that are required for their
implementations.

description no description Declares a description for this Service Template and its
contents.
dsl_definitions no N/A Declares optional DSL-specific definitions and conventions.

For example, in YAML, this allows defining reusable YAML
macros (i.e., YAML alias anchors) for use throughout the
TOSCA Service Template.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 23 of 165

Keyname Required | Type Description

repositories no map of Declares the map of external repositories which contain
Repository artifacts that are referenced in the service template along
definitions with their addresses and necessary credential information

used to connect to them in order to retrieve the artifacts.

imports no list of Declares a list import statements pointing to external
Import TOSCA Definitions documents. For example, these may be
Definitions file location or URIs relative to the service template file

within the same TOSCA CSAR file.

artifact_types no map of This section contains an optional map of artifact type
Artifact Types | definitions for use in the service template

data_types no map of Declares a map of optional TOSCA Data Type definitions.
Data Types

capability_types no map of This section contains an optional map of capability type
Capability definitions for use in the service template.
Types

interface_types no map of This section contains an optional map of interface type
Interface definitions for use in the service template.
Types

relationship_types no map of This section contains a map of relationship type definitions
Relationship for use in the service template.
Types

node_types no map of This section contains a map of node type definitions for use
Node Types in the service template.

group_types no map of This section contains a map of group type definitions for

Group Types use in the service template.

policy_types no list of This section contains a list of policy type definitions for use
Policy Types in the service template.
topology_template no Topology Defines the topology template of an application or service,
Template consisting of node templates that represent the
definition application’s or service’s components, as well as
relationship templates representing relations between the
components.

3.2.1.1.1 Metadata keynames

The following is the list of recognized metadata keynames for a TOSCA Service Template definition:

Keyname Required | Type Description

template_name no string Declares a descriptive name for the template.
template_author no string Declares the author(s) or owner of the template.
template_version no string Declares the version string for the template.

3.2.1.2 Grammar

The overall structure of a TOSCA Service Template and its top-level key collations using TOSCA is
shown below:

Required TOSCA Definitions version string
tosca definitions version: <value> # Required, see section 3.1 for usage

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 24 of 165

namespace: <URI>

Optional metadata
metadata:

Optional, see section 3.2 for usage

keyname: value pairs

template name: <value> # Optional, name of this service

template

template author: <value> # Optional, author of this service

template
template version:
template

<value> # Optional, version of this service

More optional entries of domain or profile specific metadata keynames

Optional description of the definitions inside the file.
description: <template type description>

dsl definitions:

map of YAML alias anchors (or macros)

repositories:
map of external

imports:
ordered list of

artifact types:
map of artifact

data types:
map of datatype

capability types:

repository definitions which host TOSCA artifacts

import definitions

type definitions

definitions

map of capability type definitions

interface types

map of interface type definitions

relationship types:

map of relationship type definitions

node types:

map of node type definitions

group_ types:

map of group type definitions

policy types:

map of policy type definitions

topology template:

topology template definition of the cloud application or service

3.2.1.2.1 Requirements

e The URI value “http://docs.oasis-open.org/tosca”, as well as all (path) extensions to it, SHALL be
reserved for TOSCA approved specifications and work. That means Service Templates that do not
originate from a TOSCA approved work product MUST NOT use it, in any form, when declaring a

(default) Namespace.

e The key “tosca_definitions_version” SHOULD be the first line of each Service Template.

TOSCA-v2.0-csd01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 25 of 165

http://docs.oasis-open.org/tosca

3.2.1.2.2 Notes

e TOSCA Service Templates do not have to contain a topology template and MAY contain simply type
definitions (e.g., Artifact, Interface, Capability, Node, Relationship Types, etc.) and be imported for
use as type definitions in other TOSCA Service Templates.

3.2.1.3 Top-level keyname definitions

3.2.1.3.1 tosca_definitions_version

This required element provides a means to include a reference to the TOSCA specification within the
TOSCA Definitions YAML file. It is an indicator for the version of the TOSCA grammar that should be
used to parse the remainder of the document.

3.2.1.3.1.1 Keyname

tosca definitions version

3.2.1.3.1.2 Grammar

Single-line form:

tosca definitions version: <tosca simple profile version>

3.2.1.3.1.3 Examples:

TOSCA Version 2.0 specification using the defined namespace alias (see Section 3.2.2.1 TOSCA
Namespace URI and alias):

tosca definitions version: tosca 2 0

TOSCA Version 2.0 specification using the fully defined (target) namespace (see Section 3.2.2.1 TOSCA
Namespace URI and alias):

tosca_definitions version: http://docs.ocasis-open.org/tosca/ns/2.0

3.2.1.3.2 metadata

This keyname is used to associate domain-specific metadata with the Service Template. The metadata
keyname allows a declaration of a map of keynames with string values.

3.2.1.3.2.1 Keyname

metadata

3.2.1.3.2.2 Grammar

metadata:
<map of string values>

3.2.1.3.2.3 Example

metadata:
creation date: 2015-04-14
date updated: 2015-05-01
status: developmental

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 26 of 165

3.2.1.3.3 template_name

This optional metadata keyname can be used to declare the name of service template as a single-line

string value.

3.2.1.3.3.1 Keyname

template name

3.2.1.3.3.2 Grammar

template name: <name string>

3.2.1.3.3.3 Example

template name: My service template

3.2.1.3.3.4 Notes

e Some service templates are designed to be referenced and reused by other service templates.
Therefore, in these cases, the template_name value SHOULD be designed to be used as a unique

identifier through the use of namespacing techniques.

3.2.1.3.4 template_author

This optional metadata keyname can be used to declare the author(s) of the service template as a single-

line string value.

3.2.1.3.4.1 Keyname

template author

3.2.1.3.4.2 Grammar

template author:

<author string>

3.2.1.3.4.3 Example

template author:

My service template

3.2.1.3.5 template_version

This optional metadata keyname can be used to declare a domain specific version of the service template

as a single-line string value.

3.2.1.3.5.1 Keyname

template version

3.2.1.3.5.2 Grammar

template version:

<version>

TOSCA-v2.0-csd01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 27 of 165

3.2.1.3.5.3 Example

template version: 2.0.17

3.2.1.3.5.4 Notes:

e Some service templates are designed to be referenced and reused by other service templates and
have a lifecycle of their own. Therefore, in these cases, a template_version value SHOULD be
included and used in conjunction with a unique template_name value to enable lifecycle management
of the service template and its contents.

3.2.1.3.6 description

This optional keyname provides a means to include single or multiline descriptions within a TOSCA
template as a scalar string value.

3.2.1.3.6.1 Keyname

description

3.2.1.3.7 dsl_definitions

This optional keyname provides a section to define macros (e.g., YAML-style macros when using the
TOSCA specification).

3.2.1.3.7.1 Keyname

dsl definitions

3.2.1.3.7.2 Grammar

dsl definitions:
<dsl definition 1>

<dsl definition n>

3.2.1.3.7.3 Example

dsl definitions:
ubuntu image props: &ubuntu image props
architecture: x86_ 64
type: linux
distribution: ubuntu
os_version: 14.04

redhat image props: &redhat image props
architecture: x86 64
type: linux
distribution: rhel
os_version: 6.6

3.2.1.3.8 repositories

This optional keyname provides a section to define external repositories which may contain artifacts or
other TOSCA Service Templates which might be referenced or imported by the TOSCA Service Template
definition.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 28 of 165

3.2.1.3.8.1 Keyname

repositories

3.2.1.3.8.2 Grammar

repositories:
<repository definition 1>

<repository definition n>

3.2.1.3.8.3 Example

repositories:
my project artifact repo:
description: development repository for TAR archives and Bash scripts
url: http://mycompany.com/repository/myproject/

3.2.1.3.9 imports

This optional keyname provides a way to import a block sequence of one or more TOSCA Definitions
documents. TOSCA Definitions documents can contain reusable TOSCA type definitions (e.g., Node
Types, Relationship Types, Artifact Types, etc.) defined by other authors. This mechanism provides an
effective way for companies and organizations to define normative types and/or describe their software
applications for reuse in other TOSCA Service Templates.

3.2.1.3.9.1 Keyname

imports

3.2.1.3.9.2 Grammar

imports:
- <import definition 1>

- <import definition n>

3.2.1.3.9.3 Example

An example import of definitions files from a location relative to the
file location of the service template declaring the import.
imports:
- some definitions: relative path/my defns/my typesdefs 1.yaml
- file: my defns/my typesdefs n.yaml
repository: my company repo
namespace prefix: mycompany

3.2.1.3.10 artifact_types

This optional keyname lists the Artifact Types that are defined by this Service Template.

3.2.1.3.10.1 Keyname

artifact types

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 29 of 165

3.2.1.3.10.2 Grammar

artifact types:
<artifact type defn 1>

<artifact type defn n>

3.2.1.3.10.3 Example

artifact types:
mycompany.artifacttypes.myFileType:
derived from: tosca.artifacts.File

3.2.1.3.11 data_types

This optional keyname provides a section to define new data types in TOSCA.

3.2.1.3.11.1 Keyname

data types

3.2.1.3.11.2 Grammar

data types:
<tosca_datatype def 1>

<tosca_datatype def n>

3.2.1.3.11.3 Example

data types:
A complex datatype definition
simple contactinfo type:
properties:
name:
type: string
email:
type: string
phone:
type: string

datatype definition derived from an existing type
full contact info:
derived from: simple contact info
properties:
street address:
type: string

city:

type: string
state:

type: string
postalcode:

type: string

3.2.1.3.12 capability_types

This optional keyname lists the Capability Types that provide the reusable type definitions that can be

used to describe features Node Templates or Node Types can declare they support.

TOSCA-v2.0-csd01
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 30 of 165

3.2.1.3.12.1 Keyname

capability types

3.2.1.3.12.2 Grammar

capability types:
<capability type defn 1>

<capability type defn n>

3.2.1.3.12.3 Example

capability_types:

mycompany.mytypes.myCustomEndpoint:
derived from: tosca.capabilities.Endpoint
properties:
more details

mycompany.mytypes.myCustomFeature:
derived from: tosca.capabilities.Feature
properties:
more details

3.2.1.3.13 interface_types

This optional keyname lists the Interface Types that provide the reusable type definitions that can be used
to describe operations for on TOSCA entities such as Relationship Types and Node Types.

3.2.1.3.13.1 Keyname

interface types

3.2.1.3.13.2 Grammar

interface types:
<interface type defn 1>

<interface type defn n>

3.2.1.3.13.3 Example

interface types:
mycompany.interfaces.service.Signal:
signal begin receive:
description: Operation to signal start of some message processing.
signal end receive:
description: Operation to signal end of some message processed.

3.2.1.3.14 relationship_types

This optional keyname lists the Relationship Types that provide the reusable type definitions that can be
used to describe dependent relationships between Node Templates or Node Types.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 31 of 165

3.2.1.3.14.1 Keyname

relationship types

3.2.1.3.14.2 Grammar

relationship types:
<relationship type defn 1>

<relationship type defn n>

3.2.1.3.14.3 Example

relationship types:

mycompany.mytypes.myCustomClientServerType:
derived from: tosca.relationships.HostedOn

properties:
more details

mycompany.mytypes.myCustomConnectionType:
derived from: tosca.relationships.ConnectsTo

properties:
more details

3.2.1.3.15 node_types

This optional keyname lists the Node Types that provide the reusable type definitions for software

components that Node Templates can be based upon.

3.2.1.3.15.1 Keyname

node types

3.2.1.3.15.2 Grammar

node types:
<node type defn 1>

<node type defn n>

3.2.1.3.15.3 Example

node types:
my webapp node type:
derived from: WebApplication
properties:
my port:
type: integer

my database node type:
derived from: Database
capabilities:
mytypes.myfeatures.transactSQL

TOSCA-v2.0-csd01

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 32 of 165

3.2.1.3.15.4 Notes

e The node types that are part of the node_types block can be mapped to the NodeType definitions as
described by the TOSCA v1.0 specification.

3.2.1.3.16 group_types

This optional keyname lists the Group Types that are defined by this Service Template.

3.2.1.3.16.1 Keyname

group_ types

3.2.1.3.16.2 Grammar

group_ types:
<group type defn 1>

<group type defn n>

3.2.1.3.16.3 Example

group_ types:
mycompany.mytypes.myScalingGroup:
derived from: tosca.groups.Root

3.2.1.3.17 policy_types

This optional keyname lists the Policy Types that are defined by this Service Template.

3.2.1.3.17.1 Keyname

policy types

3.2.1.3.17.2 Grammar

policy types:
<policy type defn 1>

<policy type defn n>

3.2.1.3.17.3 Example

policy types:
mycompany.mytypes.myScalingPolicy:
derived from: tosca.policies.Scaling

3.2.2 Version and Namespace

3.2.2.1 TOSCA Namespace URI and alias

The following TOSCA Namespace URI alias and TOSCA Namespace Alias are reserved values which
SHALL be used when identifying the TOSCA Version 2.0 specification.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 33 of 165

Namespace Alias Namespace URI Specification Description

tosca_2 0 http://docs.oasis- The TOSCA v2.0 (YAML) target namespace and
open.org/tosca/ns/2.0 namespace alias.

3.2.2.1.1 TOSCA Namespace prefix

The following TOSCA Namespace prefix is a reserved value and SHALL be used to reference the default
TOSCA Namespace URI as declared in TOSCA Service Templates.

Namespace Prefix Specification Description

tosca The reserved TOSCA Specification prefix that can be associated with the default TOSCA
Namespace URI

3.2.2.1.2 TOSCA Namespacing in TOSCA Service Templates

In the TOSCA , TOSCA Service Templates MUST always have, as the first line of YAML, the keyname
“tosca_definitions_version” with an associated TOSCA Namespace Alias value. This single line
accomplishes the following:

Establishes the TOSCA Specification version whose grammar MUST be used to parse and interpret the
contents for the remainder of the TOSCA Service Template.

Establishes the default TOSCA Namespace URI and Namespace Prefix for all types found in the
document that are not explicitly namespaced.

Automatically imports (without the use of an explicit import statement) the normative type definitions (e.g.,
Node, Relationship, Capability, Artifact, etc.) that are associated with the TOSCA Specification the
TOSCA Namespace Alias value identifies.

Associates the TOSCA Namespace URI and Namespace Prefix to the automatically imported TOSCA
type definitions.

3.2.2.1.3 Rules to avoid namespace collisions

TOSCA s allows template authors to declare their own types and templates and assign them simple
names with no apparent namespaces. Since TOSCA Service Templates can import other service
templates to introduce new types and topologies of templates that can be used to provide concrete
implementations (or substitute) for abstract nodes. Rules are needed so that TOSCA Orchestrators know
how to avoid collisions and apply their own hamespaces when import and nesting occur.

3.2.2.1.3.1 Additional Requirements

e The URI value “http://docs.oasis-open.org/tosca”, as well as all (path) extensions to it, SHALL be
reserved for TOSCA approved specifications and work. That means Service Templates that do not
originate from a TOSCA approved work product MUST NOT use it, in any form, when declaring a
(default) Namespace.

e Since TOSCA Service Templates can import (or substitute in) other Service Templates, TOSCA
Orchestrators and tooling will encounter the “tosca_definitions_version” statement for each imported
template. In these cases, the following additional requirements apply:

— Imported type definitions with the same Namespace URI, local name and version SHALL be
equivalent.

— If different values of the “tosca_definitions_version” are encountered, their corresponding type
definitions MUST be uniquely identifiable using their corresponding Namespace URI using a
different Namespace prefix.

e Duplicate local names (i.e., within the same Service Template SHALL be considered an error. These
include, but are not limited to duplicate names found for the following definitions:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 34 of 165

http://docs.oasis-open.org/tosca

— Repositories (repositories)

— Data Types (data_types)

— Node Types (node_types)

— Relationship Types (relationship_types)
— Capability Types (capability_types)

— Artifact Types (artifact_types)

— Interface Types (interface_types)

e Duplicate Template names within a Service Template’'s Topology Template SHALL be considered an
error. These include, but are not limited to duplicate names found for the following template types:

— Node Templates (node_templates)

— Relationship Templates (relationship_templates)
— Inputs (inputs)

— Outputs (outputs)

e Duplicate names for the following keynames within Types or Templates SHALL be considered an
error. These include, but are not limited to duplicate names found for the following keynames:

— Properties (properties)

— Attributes (attributes)

— Artifacts (artifacts)

— Requirements (requirements)
— Capabilities (capabilities)

— Interfaces (interfaces)

— Policies (policies)

— Groups (groups)

3.2.2.2 Using Namespaces

As of TOSCA version 1.2, Service template authors may declare a namespace within a Service Template
that will be used as the default namespace for any types (e.g., Node Type, Relationship Type, Data Type,
etc.) defined within the same Service template.

Specifically, a Service Template’s namespace declaration’s URI will be used to form a unique, fully
qualified Type name when combined with the locally defined, unqualified name of any Type in the same
Service Template. The resulting, fully qualified Type name will be used by TOSCA Orchestrators,
Processors and tooling when that Service Template was imported into another Service Template to avoid
Type name collision.

If a default namespace for the Service Template is declared, then it should be declared immediately after
the “tosca_definitions_version” declaration, to ensure that the namespace is clearly visible.

3.2.2.2.1 Example - Importing a Service Template and Namespaces

For example, let say we have two Service Templates, A and B, both of which define Types and a
Namespace. Service Template B contains a Node Type definition for “MyNode” and declares its (default)
Namespace to be “http://companyB.com/service/namespace/”:

Service Template B

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 35 of 165

tosca definitions version: tosca simple yaml 1 2
description: Service Template B
namespace: http://companyB.com/service/namespace/

node types:
MyNode:
derived from: SoftwareComponent
properties:
omitted here for brevity
capabilities:
omitted here for brevity

Service Template A has its own, completely different, Node Type definition also named “MyNode*.
Service Template A

tosca definitions version: tosca simple yaml 1 2
description: Service Template A
namespace: http://companyA.com/product/ns/

imports:
- file: csar/templates/ServiceTemplateB.yaml
namespace prefix: templateB

node types:
MyNode :
derived from: Root
properties:
omitted here for brevity
capabilities:
omitted here for brevity

As you can see, Service Template A also “imports* Service Template B (i.e., “ServiceTemplateB.yaml|*)
bringing in its Type defintions to the global namespace using the Namespace URI declared in Service
Template B to fully qualify all of its imported types.

In addition, the import includes a “namespace_prefix“ value (i.e., “templateB*), that can be used to qualify
and disambiguate any Type reference from from Service Template B within Service Template A. This
prefix is effectively the local alias for the corresponding Namespace URI declared within Service
Template B (i.e., “http://companyB.com/service/namespace/*).

To illustrate conceptually what a TOSCA Orchestrator, for example, would track for their global
namespace upon processing Service Template A (and by import Service Template B) would be a list of
global Namespace URIs and their associated Namespace prefixes, as well as a list of fully qualified Type
names that comprises the overall global namespace.

3.2.2.2.1.1 Conceptual Global Namespace URI and Namespace Prefix tracking

Entry# | Namespace URI Namespace | Added by Key (Source file)
Prefix

1 http://docs.oasis-open.org/tosca/ns/2.0 tosca e tosca_definitions_version:

- from Service Template A
2 http://companyA.com/product/ns/ <None> ® namespace:

- from Service Template A
3 http://companyB.com/service/namespace/ | templateB ® namespace:

- from Service Template B

® namespace_prefix:
- from Service Template A, during import

In the above table,

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 36 of 165

e Entry 1: is an entry for the default TOSCA namespace, which is required to exist for it to be a valid
Service template. It is established by the “tosca_definitions_version” key’s value. By default, it also
gets assigned the “tosca” Namespace prefix.

o Entry 2: is the entry for the local default namespace for Service Template A as declared by the
“namespace” key.

— Note that no Namespace prefix is needed, any locally defined types that are not qualified (i.e., not
a full URI or using a Namespace Prefix) will default to this namespace if not found first in the
TOSCA namespace.

e Entry 3: is the entry for default Namespace URI for any type imported from Service Template B. The
author of Service Template A has assigned the local Namespace Prefix “templateB” that can be used
to qualify reference to any Type from Service Template B.

As per TOSCA specification, any Type, that is not qualified with the ‘tosca’ prefix or full URI name, should
be first resolved by its unqualified name within the TOSCA namespace. If it not found there, then it may
be resolved within the local Service Template’s default namespace.

3.2.2.2.1.2 Conceptual Global Namespace and Type tracking

Entry# | Namespace URI Unqualified Full Name Unqualified Short | Type

Name Classification
1 http://docs.oasis-open.org/tosca/ns/2.0 tosca.nodes.Compute Compute node
2 http://docs.oasis-open.org/tosca/ns/2.0 tosca.nodes.SoftwareComponent | SoftwareComponent
3 http://docs.oasis-open.org/tosca/ns/2.0 tosca.relationships.ConnectsTo ConnectsTo relationship
100 http://companyA.com/product/ns/ N/A MyNode node
200 http://companyB.com/service/namespace/ | N/A MyNode node

In the above table,

e Entry 1: is an example of one of the TOSCA standard Node Types (i.e., “Compute”) that is brought
into the global namespace via the “tosca_definitions_version” key.

— It also has two forms, full and short that are unique to TOSCA types for historical reasons.
Reference to a TOSCA type by either its unqualified short or full names is viewed as equivalent
as a reference to the same fully qualified Type name (i.e., its full URI).

— Inthis example, use of either “tosca.nodes.Compute” or “Compute” (i.e., an unqualified full and
short name Type) in a Service Template will be treated as its fully qualified URI equivalent of:
o “http://docs.oasis-open.org/tosca/ns/2.0/tosca.nodes.Compute”.
e Entry 2: is an example of a standard TOSCA Relationship Type
e Entry 100: contains the unique Type identifer for the Node Type “MyNode” from Service Template A.
e Entry 200: contains the unique Type identifer for the Node Type “MyNode” from Service Template B.

As you can see, although both templates defined a NodeType with an unqualified name of “MyNode”, the
TOSCA Orchestrator, processor or tool tracks them by their unique fully qualified Type Name (URI).

The classification column is included as an example on how to logically differentiate a “Compute” Node
Type and “Compute” capability type if the table will be used to “search” for a match based upon context in
a Service Template.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 37 of 165

For example, if the short name “Compute” were used in a template on a Requirements clause, then the
matching type will not be the Compute Node Type, but instead the Compute Capability Type based upon
the Requirement clause being the context for Type reference.

3.2.3 Imports and References

3.2.3.1 Import definition

An import definition is used within a TOSCA Service Template to locate and uniquely name another
TOSCA Service Template file which has type and template definitions to be imported (included) and
referenced within another Service Template.

3.2.3.1.1 Keynames

The following is the list of recognized keynames for a TOSCA import definition:

Keyname Required | Type | Constraints Description
file yes string | None The required symbolic name for the imported file.
repository no string [None The optional symbolic name of the repository definition

where the imported file can be found as a string.

namespace_prefix | no string | None The optional namespace prefix (alias) that will be used to
indicate the namespace_uri when forming a qualified
name (i.e., gname) when referencing type definitions
from the imported file.

namespace_uri no string | Deprecated The optional, deprecated namespace URI to that will be
applied to type definitions found within the imported file
as a string.

3.2.3.1.2 Grammar

Import definitions have one the following grammars:

3.2.3.1.2.1 Single-line grammar:

imports:
- <URI 1>
- <URI 2>

3.2.3.1.2.2 Multi-line grammar

imports:
- file: <file URI>
repository: <repository name>
namespace uri: <definition namespace uri> # deprecated
namespace prefix: <definition namespace prefix>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
o file_uri: contains the required name (i.e., URI) of the file to be imported as a string.

e repository_name: represents the optional symbolic name of the repository definition where the
imported file can be found as a string.

e namespace_uri: represents the optional namespace URI to that will be applied to type definitions
found within the imported file as a string.

e namespace_prefix: represents the optional namespace prefix (alias) that will be used to indicate the
default namespace as declared in the imported Service Template when forming a qualified name (i.e.,
gname) when referencing type definitions from the imported file as a string.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 38 of 165

3.2.3.1.2.3 Requirements

The “file” keyname’s viue MAY be an approved TOSCA Namespace alias.

The namespace prefix “tosca” Is reserved and SHALL NOT be used to as a value for
“namespace_prefix” on import.

The imports key “namespace_uri” is now deprecated. It was intended to be able to define a default
namespace for any types that were defined within the Service Template being imported; however,
with version 1.2, Service Templates MAY now declare their own default Namespace which SHALL be
used in place of this key’s value.

— Please note that TOSCA Orchestrators and Processors MAY still use the’'namespace_uri” value if
provided, if the imported Service Template has no declared default Namespace value.
Regardless it is up to the TOSCA Orchestrator or Processor to resolve Namespace collisions
caused by imports as they see fit, for example, they may treat it as an error or dynamically
generate a unigue namepspace themselves on import.

3.2.3.1.2.4 Import URI processing requirements

TOSCA Orchestrators, Processors and tooling SHOULD treat the <file_ URI> of an import as follows:

URI: If the <file_URI> is a known namespace URI (identifier), such as a well-known URI defined by a
TOSCA specification, then it SHOULD cause the corresponding Type defintions to be imported.

— This implies that there may or may not be an actual Service Template, perhaps it is a known set
Types identified by the well-known URI.

— This also implies that internet access is NOT needed to import.

Alias — If the <file_URI> is a reserved TOSCA Namespace alias, then it SHOULD cause the
corresponding Type defintions to be imported, using the associated full, Namespace URI to uniquely
identify the imported types.

URL - If the <file_URI> is a valid URL (i.e., network accessible as a remote resource) and the location
contains a valid TOSCA Service Template, then it SHOULD cause the remote Service Template to be
imported.

Relative path - If the <file_URI> is a relative path URL, perhaps pointing to a Service Template
located in the same CSAR file, then it SHOULD cause the locally accessible Service Template to be
imported.

— If the “repository” key is supplied, this could also mean relative to the repository’s URL in a
remote file system;

— If the importing file located in a CSAR file, it should be treated as relative to the current
document’s location within a CSAR file’s directory structure.

Otherwise, the import SHOULD be considered a failure.

3.2.3.1.3 Example

The following represents how import definitions will be used for the imports keyname within a TOSCA
Service Template:

imports:
- pathl/path2/some defs.yaml
- file: pathl/path2/file2.yaml
repository: my service catalog
namespace uri: http://mycompany.com/tosca/l.0/platform
namespace prefix: mycompany

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 39 of 165

3.2.3.2 Repository definition

A repository definition defines a named external repository which contains deployment and
implementation artifacts that are referenced within the TOSCA Service Template.

3.2.3.2.1 Keynames

The following is the list of recognized keynames for a TOSCA repository definition:

Keyname | Required | Type Constraints | Description

description | no description | None The optional description for the repository.

url yes string None The required URL or network address used to access the
repository.

credential no Credential None The optional Credential used to authorize access to the
repository

3.2.3.2.2 Grammar

Repository definitions have one the following grammars:

3.2.3.2.2.1 Single-line grammar (no credential):

<repository name>: <repository address>

3.2.3.2.2.2 Multi-line grammar

<repository name>:
description: <repository description>
url: <repository address>
credential: <authorization credential>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e repository_name: represents the required symbolic name of the repository as a string.

e repository_description: contains an optional description of the repository.

e repository_address: represents the required URL of the repository as a string.

e authorization_credential: represents the optional credentials (e.g., user ID and password) used to
authorize access to the repository.

3.2.3.2.3 Example

The following represents a repository definition:

repositories:
my code repo:
description: My project’s code repository in GitHub
url: https://github.com/my-project/

3.2.4 Additional information definitions

3.2.4.1 Description definition
This optional element provides a means include single or multiline descriptions within a TOSCA template
as a scalar string value.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 40 of 165

3.2.4.1.1 Keynhame

The following keyname is used to provide a description within the TOSCA specification:

description

3.2.4.1.2 Grammar

Description definitions have the following grammar:

description: <string>

3.2.4.1.3 Examples

Simple descriptions are treated as a single literal that includes the entire contents of the line that
immediately follows the description key:

description: This is an example of a single line description (no folding).

The YAML “folded” style may also be used for multi-line descriptions which “folds” line breaks as space
characters.

description: >

This is an example of a multi-line description using YAML. It permits for
line

breaks for easier readability...

if needed. However, (multiple) line breaks are folded into a single
space
character when processed into a single string value.

3.2.4.1.4 Notes

e Use of “folded” style is discouraged for the YAML string type apart from when used with the
description keyname.

3.2.4.2 Metadata

This optional element provides a means to include optional metadata as a map of strings.

3.2.4.2.1 Keyname

The following keyname is used to provide metadata within the TOSCA specification:

metadata

3.2.4.2.2 Grammar

Metadata definitions have the following grammar:

metadata:
map of <string>

3.2.4.2.3 Examples

metadata:
fool: barl
foo2: bar2

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 41 of 165

3.2.4.2.4 Notes

o Data provided within metadata, wherever it appears, MAY be ignored by TOSCA Orchestrators and
SHOULD NOT affect runtime behavior.

3.2.4.3 DSL Definitions
TBD.

3.2.5 Type definitions

TOSCA provides a type system to describe possible building blocks to construct a topology template (i.e.
for the nodes, relationship, group and policy templates, and the data, capabilities, interfaces, and artifacts
used in the node and relationship templates). TOSCA types are reusable TOSCA entities and are defined
in their specific sections in the service template, see Section 3.2.1 Service Template definition.

Next, in Section 3.2.5.2 Common keynames in type definitions we present the definitions of common
keynames that are used by all TOSCA types. Type-specific definitions for the different TOSCA type
entities are presented further in the document:

e Node Type in Section 3.3.1 Node Type.

e Relationship Type in Section 3.3.3 Relationship Type.

e Interface Type in Section 3.3.6.1 Interface Type.

e Capability Type in Section 3.3.5.1 Capability Type.

e Requirement Type in Section 3.3.5.4 Requirement Type.

e Data Type in Section 3.4.2 Data Type.

o Artifact Type in Section 3.3.7.1 Artifact Type.

e Group Type in Section 3.6.1 Group Type.

e Policy Type in Section 3.6.3 Policy Type.

3.2.5.1 General derivation and refinement rules

To simplify type creation and to promote type extensibility TOSCA allows the definition of a new type (the
derived type) based on another type (the parent type). The derivation process can be applied recursively,
where a type may be derived from a long list of ancestor types (the parent, the parent of the parent, etc).

Unless specifically stated in the derivation rules, when deriving new types from parent types the keyname
definitions are inherited from the parent type. Moreover, the inherited definitions may be refined according
to the derivation rules of that particular type entity.

For definitions that are not inherited, a new definition MUST be provided (if the keyname is required) or
MAY be provided (if the keyname is not required). If not provided, the keyname remains undefined. For
definitions that are inherited, a refinement of the inherited definition is not mandatory even for required
keynames (since it has been inherited). A definition refinement that is exactly the same as the definition in
the parent type does not change in any way the inherited definition. While unnecessary, it is not wrong.

The following are some generic derivation rules used during type derivation (the specific rules of each
TOSCA type entity are presented in their respective sections):
e If not refined, usually a keyname/entity definition, is inherited unchanged from the parent type,
unless explicitly specified in the rules that it is “not inherited”.
o New entities (such as properties, attributes, capabilities, requirements, interfaces, operations,
notification, parameters) may be added during derivation.
e Already defined entities that have a type may be redefined to have a type derived from the
original type.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 42 of 165

o New constraints are added to already defined keynames/entities (i.e. the defined constraints do
not replace the constraints defined in the parent type but are added to them).

¢ Some definitions must be totally flexible, so they will overwrite the definition in the parent type.

¢ Some definitions must not be changed at all once defined (i.e. they represent some sort of

“signature”).

3.2.5.2 Common keynames in type definitions

The following keynames are used by all TOSCA type entities in the same way. This section serves to
define them at once.

3.2.5.2.1 Keynames

The following is the list of recognized keynames used by all TOSCA type definitions:

Keyname Required Type Description

derived_from no string An optional parent type name from which this type derives.
version no version An optional version for the type definition.

metadata no map of string Defines a section used to declare additional metadata information.
description no description An optional description for the type.

3.2.5.2.2 Grammar

The common keynames in type definitions have the following grammar:

<type name>:
derived from: <parent type name>
version: <version number>
metadata:
<metadata map>
description: <type description>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e parent_type_name: represents the optional parent type name.

e version_number: represents the optional TOSCA version nhumber for the type.

e entity_description: represents the optional description string for the type.

e metadata_map: represents the optional metadata map of string.

3.2.5.2.3 Derivation rules

During type derivation the common keyname definitions use the following rules:

e derived_from: obviously, the definition is not inherited from the parent type. If not defined, it remains
undefined and this type does not derive from another type. If defined, then this type derives from
another type, and all its keyname definitions must respect the derivation rules of the type entity.

e version: the definition is not inherited from the parent type. If undefined, it remains undefined.

o metadata: the definition is not inherited from the parent type. If undefined, it remains undefined.

e description: the definition is not inherited from the parent type. If undefined, it remains undefined.

TOSCA-v2.0-csd01
Standards Track Work Product

23 April 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 43 of 165

3.2.6 Topology Template definition

This section defines the topology template of a cloud application. The main ingredients of the topology
template are node templates representing components of the application and relationship templates
representing links between the components. These elements are defined in the nested node_templates
section and the nested relationship_templates sections, respectively. Furthermore, a topology template
allows for defining input parameters, output parameters as well as grouping of node templates.

3.2.6.1 Keynames

The following is the list of recognized keynames for a TOSCA Topology Template:

Keyname Required | Type Description
description no description The optional description for the
Topology Template.
inputs no map of An optional map of input parameters
parameter definitions | (i.e., as parameter definitions) for the
Topology Template.
node_templates no map of An optional map of node template
node templates definitions for the Topology Template.
relationship_templates | no map of An optional map of relationship
relationship templates for the Topology Template.
templates
groups no map of An optional map of Group definitions
group definitions whose members are node templates
defined within this same Topology
Template.
policies no list of An optional list of Policy definitions for
policy definitions the Topology Template.
outputs no map of An optional map of output parameters
parameter definitions | (i.e., as parameter definitions) for the
Topology Template.
substitution_mappings | no substitution_mapping | An optional declaration that exports
the topology template as an
implementation of a Node type.
This also includes the mappings
between the external Node Types
capabilities and requirements to
existing implementations of those
capabilities and requirements on Node
templates declared within the
topology template.
workflows no map of imperative An optional map of imperative
workflow definitions workflow definition for the Topology
Template.

3.2.6.2 Grammar

The overall grammar of the topology_template section is shown below.—Detailed grammar definitions of
the each sub-sections are provided in subsequent subsections.

topology template:
description: <template description>

TOSCA-v2.0-csd01
Standards Track Work Product

23 April 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 44 of 165

inputs: <input parameters>
outputs: <output parameters>
node templates: <node templates>
relationship templates: <relationship templates>
groups: <group definitions>
policies:
- <policy definition list>
workflows: <workflows>
Optional declaration that exports the Topology Template
as an implementation of a Node Type.
substitution mappings:
<substitution mappings>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
o template_description: represents the optional description string for Topology Template.

e input_parameters: represents the optional map of input parameter definitions for the Topology
Template.

e output_parameters: represents the optional map of output parameter definitions for the Topology
Template.

e group_definitions: represents the optional map of group definitions whose members are node
templates that also are defined within this Topology Template.

e policy_definition_list: represents the optional list of sequenced policy definitions for the Topology
Template.

o workflows: represents the optional map of imperative workflow definitions for the Topology Template.
e node_templates: represents the optional map of node template definitions for the Topology Template.

o relationship_templates: represents the optional map of relationship templates for the Topology
Template.

e node_type name: represents the optional name of a Node Type that the Topology Template
implements as part of the substitution_mappings.

¢ map_of_capability_mappings_to_expose: represents the mappings that expose internal capabilities
from node templates (within the topology template) as capabilities of the Node Type definition that is
declared as part of the substitution_mappings.

e map_of requirement_mappings_to_expose: represents the mappings of link requirements of the
Node Type definition that is declared as part of the substitution_mappings to internal requirements
implementations within node templates (declared within the topology template).

More detailed explanations for each of the Topology Template grammar’s keynames appears in the
sections below.

3.2.6.2.1 inputs

The inputs section provides a means to define parameters using TOSCA parameter definitions, their
allowed values via constraints and default values within a TOSCA template. Input parameters defined in
the inputs section of a topology template can be mapped to properties of node templates or relationship
templates within the same topology template and can thus be used for parameterizing the instantiation of
the topology template.

This section defines topology template-level input parameter section.

¢ Inputs here would ideally be mapped to BoundaryDefinitions in TOSCA v1.0.
e Treat input parameters as fixed global variables (not settable within template)
e If notin input take default (nodes use default)

3.2.6.2.1.1 Grammar

The grammar of the inputs section is as follows:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 45 of 165

inputs:
<parameter definitions>

3.2.6.2.1.2 Examples

This section provides a set of examples for the single elements of a topology template.
Simple inputs example without any constraints:

inputs:
fooName:
type: string
description: Simple string typed parameter definition with no
constraints.
default: bar

Example of inputs with constraints:

inputs:
SiteName:
type: string
description: string typed parameter definition with constraints
default: My Site
constraints:
- min length: 9

3.2.6.2.2 node_templates

The node_templates section lists the Node Templates that describe the (software) components that are
used to compose cloud applications.

3.2.6.2.2.1 grammar

The grammar of the node_templates section is a follows:

node templates:
<node template defn 1>

<node template defn n>

3.2.6.2.2.2 Example

Example of node_templates section:

node templates:
my webapp node template:
type: WebApplication

my database node template:
type: Database

3.2.6.2.3 relationship_templates

The relationship_templates section lists the Relationship Templates that describe the relations between
components that are used to compose cloud applications.

Note that in TOSCA, the explicit definition of relationship templates as it was required in TOSCA v1.0 is
optional, since relationships between nodes get implicitly defined by referencing other node templates in
the requirements sections of node templates.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 46 of 165

3.2.6.2.3.1 Grammar

The grammar of the relationship_templates section is as follows:

relationship templates:
<relationship template defn 1>

<relationship template defn n>

3.2.6.2.3.2 Example

Example of relationship_templates section:

relationship templates:
my connectsto relationship:
type: tosca.relationships.ConnectsTo
interfaces:
Configure:
inputs:
speed: { get attribute: [SOURCE, connect speed] }

3.2.6.2.4 outputs

The outputs section provides a means to define the output parameters that are available from a TOSCA
service template. It allows for exposing attributes of node templates or relationship templates within the
containing topology_template to users of a service.

3.2.6.2.4.1 Grammar

The grammar of the outputs section is as follows:

outputs:
<parameter definitions>

3.2.6.2.4.2 Example

Example of the outputs section:

outputs:
server address:
description: The first private IP address for the provisioned server.
value: { get attribute: [HOST, networks, private, addresses, 0] }

3.2.6.2.5 groups

The groups section allows for grouping one or more node templates within a TOSCA Service Template
and for assigning special attributes like policies to the group.

3.2.6.2.5.1 Grammar

The grammar of the groups section is as follows:

groups:
<group defn 1>

<group defn n>

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 47 of 165

3.2.6.2.5.2 Example

The following example shows the definition of three Compute nodes in the node_templates section of a
topology_template as well as the grouping of two of the Compute nodes in a group server_group_1.

node templates:
serverl:
type: tosca.nodes.Compute
more details

server2:
type: tosca.nodes.Compute
more details

server3:
type: tosca.nodes.Compute
more details

groups:
server2 and server3 are part of the same group
server group 1:
type: tosca.groups.Root
members: [server2, server3]

3.2.6.2.6 policies

The policies section allows for declaring policies that can be applied to entities in the topology template.

3.2.6.2.6.1 Grammar

The grammar of the policies section is as follows:

policies:
- <policy defn 1>

- <policy defn n>

3.2.6.2.6.2 Example

The following example shows the definition of a placement policy.

policies:
- my placement policy:
type: mycompany.mytypes.policy.placement

3.2.6.2.7 substitution_mapping

3.2.6.2.7.1 requirement_mapping

The grammar of a requirement_mapping is as follows:

<requirement name>: [<node template name>,
<node_template requirement name>]

The multi-line grammar is as follows :

<requirement name>:
mapping: [<node template name>, <node template capability name>]
properties:
<property name>: <property value>

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 48 of 165

e requirement_name: represents the name of the requirement as it appears in the Node Type definition
for the Node Type (hame) that is declared as the value for on the substitution_mappings’ “node_type
key.

e node_template_name: represents a valid name of a Node Template definition (within the same
topology_template declaration as the substitution_mapping is declared).

e node_template_requirement_name: represents a valid name of a requirement definition within the
<node_template_name> declared in this mapping.

3.2.6.2.7.2 Example

The following example shows the definition of a placement policy.

topology template:

inputs:
cpus:
type: integer
constraints:

less than: 2 # OR use “defaults” key

substitution mappings:
node type: MyService
properties: # Do not care if running or matching (e.g., Compute node)
get from outside? Get from contsraint?
num cpus: cpus # Implied “PUSH”
get from some node in the topology..
num_cpus: [<node>, <cap>, <property>]
1) Running
architecture:
a) Explicit
value: { get property: [some service, architecture] }
b) implicit
value: [some service, <req | cap name>, <property name>
architecture]
default: “amd”
c) INPUT mapping?
277

2) Catalog (Matching)

architecture:
contraints: equals: “x86”
capabilities:
bar: [some service, bar]
requirements:
foo: [some service, foo]

node templates:
some_ service:
type: MyService
properties:
rate: 100
capabilities:
bar:

requirements:
- foo:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 49 of 165

3.2.6.2.8 Notes

e The parameters (properties) that are part of the inputs block can be mapped to PropertyMappings
provided as part of BoundaryDefinitions as described by the TOSCA v1.0 specification.

e The node templates that are part of the node_templates block can be mapped to the NodeTemplate
definitions provided as part of TopologyTemplate of a ServiceTemplate as described by the TOSCA
v1.0 specification.

e The relationship templates that are part of the relationship_templates block can be mapped to the
RelationshipTemplate definitions provided as part of TopologyTemplate of a ServiceTemplate as
described by the TOSCA v1.0 specification.

e The output parameters that are part of the outputs section of a topology template can be mapped to
PropertyMappings provided as part of BoundaryDefinitions as described by the TOSCA v1.0
specification.

— Note, however, that TOSCA v1.0 does not define a direction (input vs. output) for those
mappings, i.e. TOSCA v1.0 PropertyMappings are underspecified in that respect and TOSCA ’s
inputs and outputs provide a more concrete definition of input and output parameters.

3.3 Nodes and Relationships

3.3.1 Node Type

A Node Type is a reusable entity that defines the type of one or more Node Templates. As such, a Node
Type defines the structure of observable properties and attributes, the capabilities and requirements of
the node as well as its supported interfaces and the artifacts it uses.

3.3.1.1 Keynames

The Node Type is a TOSCA type entity and has the common keynames listed Section 3.2.5.2 Common
keynames in type definitions. In addition, the Node Type has the following recognized keynames:

Keyname Required | Type Description

properties no map of An optional map of property definitions for the Node Type.
property
definitions

attributes no map of An optional map of attribute definitions for the Node Type.
attribute
definitions

capabilities no map of An optional map of capability definitions for the Node Type.
capability
definitions

requirements no list of An optional list of requirement definitions for the Node Type.
requirement
definitions

interfaces no map of An optional map of interface definitions supported by the Node
interface Type.
definitions

artifacts no map of An optional map of artifact definitions for the Node Type.
artifact
definitions

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 50 of 165

3.3.1.2 Grammar

Node Types have following grammar:

<node_type name>:
derived from: <parent node type name>
version: <version number>
metadata:
<map of string>
description: <node type description>

properties:

<property definitions>
attributes:

<attribute definitions>
capabilities:

<capability definitions>
requirements:

- <requirement definitions>
interfaces:

<interface definitions>
artifacts:

<artifact definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e node_type name: represents the required symbolic name of the Node Type being declared.

e parent_node_type_name: represents the name (string) of the Node Type this Node Type definition
derives from (i.e. its parent type).

e version_number: represents the optional TOSCA version number for the Node Type.

e node_type_description: represents the optional description string for the corresponding
node_type_name.

e property_definitions: represents the optional map of property definitions for the Node Type.

o attribute_definitions: represents the optional map of attribute definitions for the Node Type.

e capability_definitions: represents the optional map of capability definitions for the Node Type.

e requirement_definitions: represents the optional list of requirement definitions for the Node Type.

o interface_definitions: represents the optional map of one or more interface definitions supported by
the Node Type.

o artifact_definitions: represents the optional map of artifact definitions for the Node Type.

3.3.1.3 Derivation rules
During Node Type derivation the keyname definitions follow these rules:

e properties: existing property definitions may be refined; new property definitions may be added.

o attributes: existing attribute definitions may be refined; new attribute definitions may be added.

e capabilities: existing capability definitions may be refined; new capability definitions may be added.
e requirements: existing requirement definitions may be refined; new requirement definitions may be

added.
o interfaces: existing interface definitions may be refined; new interface definitions may be added.
o artifacts: existing artifact definitions may not be changed; new artifact definitions may be added.
o an artifact is created for a specific purpose, if it cannot meet its purpose in a derived type
then a new artifact should be defined and used.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 51 of 165

3.3.1.4 Additional Requirements

e Requirements are intentionally expressed as a list of TOSCA Requirement definitions which
SHOULD be resolved (processed) in sequence by TOSCA Orchestrators.

3.3.1.5 Example

my company.my types.my app node type:
derived from: tosca.nodes.SoftwareComponent
description: My company’s custom applicaton
properties:
my app password:

my app port:
type:

type:

string
description:
constraints:

- min length: 6
- max_length: 10
attributes:

requirements:

- some database:
capability: EndPoint.Database
node: Database

relationship: ConnectsTo

integer
description:

application password

application port number

3.3.2 Node Template

A Node Template specifies the occurrence of a manageable component as part of an application’s
topology model which is defined in a TOSCA Service Template. A Node Template is an instance of a
specified Node Type and can provide customized properties, constraints, relationships or interfaces which
complement and change the defaults provided by its Node Type.

3.3.2.1 Keynames

The following is the list of recognized keynames for a TOSCA Node Template definition:

Keyname Required | Type Description
type yes string The required name of the Node Type the Node Template is based
upon.
description no description An optional description for the Node Template.
metadata no map of string Defines a section used to declare additional metadata information.
directives no list of string An optional list of directive values to provide processing instructions
to orchestrators and tooling.
properties no map of An optional map of property value assignments for the Node
property Template.
assignments
attributes no map of An optional map of attribute value assignments for the Node
attribute Template.
assignments
requirements | no list of An optional list of requirement assignments for the Node Template.
requirement
assignments

TOSCA-v2.0-csd01

Standards Track Work Product

23 April 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 52 of 165

Keyname Required | Type Description

capabilities no map of An optional map of capability assignments for the Node Template.
capability
assignments

interfaces no map of An optional map of interface assignments for the Node Template.
interface

assignments

artifacts no map of An optional map of artifact definitions for the Node Template.
artifact definitions

node_filter no node filter The optional filter definition that TOSCA orchestrators will use to
select the correct target node.

copy no string The optional (symbolic) name of another node template to copy into
(all keynames and values) and use as a basis for this node template.

3.3.2.2 Grammar

<node template name>:
type: <node type name>
description: <node template description>
directives: [<directives>]

metadata:

<map of string>
properties:

<property assignments>
attributes:

<attribute assignments>
requirements:

- <requirement assignments>
capabilities:

<capability assignments>
interfaces:

<interface assignments>
artifacts:

<artifact definitions>
node filter:
<node filter definition>
copy: <source node template name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

node_template_name: represents the required symbolic name of the Node Template being declared.
node_type_name: represents the name of the Node Type the Node Template is based upon.
node_template_description: represents the optional description string for Node Template.

directives: represents the optional list of processing instruction keywords (as strings) for use by
tooling and orchestrators.

property _assignments: represents the optional map of property assignments for the Node Template
that provide values for properties defined in its declared Node Type.

attribute_assignments: represents the optional map of attribute assignments for the Node Template
that provide values for attributes defined in its declared Node Type.

requirement_assignments: represents the optional list of requirement assignments for the Node
Template for requirement definitions provided in its declared Node Type.

capability _assignments: represents the optional map of capability assignments for the Node Template
for capability definitions provided in its declared Node Type.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 53 of 165

e interface_assignments: represents the optional map of interface assignments for the Node Template
interface definitions provided in its declared Node Type.

o artifact_definitions: represents the optional map of artifact definitions for the Node Template that
augment those provided by its declared Node Type.

e node_filter_definition: represents the optional node filter TOSCA orchestrators will use for selecting a
matching node template.

e source_node_template_name: represents the optional (symbolic) name of another node template to
copy into (all keynames and values) and use as a basis for this node template.

3.3.2.3 Additional requirements

The source node template provided as a value on the copy keyname MUST NOT itself use the copy
keyname (i.e., it must itself be a complete node template description and not copied from another
node template).

3.3.2.4 Example

node templates:

mysql:
type: tosca.nodes.DBMS.MySQL
properties:

root password: { get input: my mysql rootpw }
port: { get input: my mysqgl port }
requirements:
- host: db_server
interfaces:
Standard:
configure: scripts/my own configure.sh

3.3.3 Relationship Type

A Relationship Type is a reusable entity that defines the type of one or more relationships between Node
Types or Node Templates.

3.3.3.1 Keynames

The Relationship Type is a TOSCA type entity and has the common keynames listed in Section 3.2.5.2
Common keynames in type definitions. In addition, the Relationship Type has the following recognized
keynames:

Keyname Required Definition/Type | Description
properties no map of An optional map of property definitions for the
property Relationship Type.
definitions
attributes no map of An optional map of attribute definitions for the
attribute Relationship Type.
definitions
interfaces no map of An optional map of interface definitions supported by the
interface Relationship Type.
definitions
valid_target_types | no list of string An optional list of one or more names of Capability Types
that are valid targets for this relationship. If undefined, all
Capability Types are valid target targets.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 54 of 165

3.3.3.2 Grammar

Relationship Types have following grammar:

<relationship type name>:
derived from: <parent relationship type name>
version: <version number>
metadata:
<map of string>
description: <relationship description>

properties:
<property definitions>
attributes:
<attribute definitions>
interfaces:
<interface definitions>
valid target types: [<capability type names>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

relationship_type name: represents the required symbolic name of the Relationship Type being
declared as a string.

parent_relationship_type name: represents the name (string) of the Relationship Type this
Relationship Type definition derives from (i.e., its “parent” type).

relationship_description: represents the optional description string for the corresponding
relationship_type_name.

version_number: represents the optional TOSCA version number for the Relationship Type.
property_definitions: represents the optional map of property definitions for the Relationship Type.
attribute_definitions: represents the optional map of attribute definitions for the Relationship Type.

interface_definitions: represents the optional map of interface definitions supported by the
Relationship Type.

capability _type names: represents the optional list of valid target Capability Types for the
relationship; if undefined, the valid target types are not restricted at all (i.e. all Capability Types are
valid).

3.3.3.3 Derivation rules

During Relationship Type derivation the keyname definitions follow these rules:

properties: existing property definitions may be refined; new property definitions may be added.
attributes: existing attribute definitions may be refined; new attribute definitions may be added.
interfaces: existing interface definitions may be refined; new interface definitions may be added.
valid_target_types: if valid_target_types is defined in the parent type, each element in this list must
either be in the parent type list or derived from an element in the parent type list; if valid_target_types
is not defined in the parent type then no restrictions are applied.

3.3.3.4 Examples

mycompanytypes.myrelationships.AppDependency:
derived from: tosca.relationships.DependsOn
valid target types: [mycompanytypes.mycapabilities.SomeAppCapability]

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 55 of 165

3.3.4 Relationship Template

A Relationship Template specifies the occurrence of a manageable relationship between node templates
as part of an application’s topology model that is defined in a TOSCA Service Template. A Relationship
template is an instance of a specified Relationship Type and can provide customized properties,
constraints or operations which complement and change the defaults provided by its Relationship Type
and its implementations.

3.3.4.1 Keynames

The following is the list of recognized keynames for a TOSCA Relationship Template definition:

Keyname Required | Type Description
type yes string The required name of the Relationship Type the Relationship
Template is based upon.

description no description An optional description for the Relationship Template.

metadata no map of string Defines a section used to declare additional metadata information.

properties no map of An optional map of property assignments for the Relationship
property Template.
assignments

attributes no map of An optional map of attribute assignments for the Relationship
attribute Template.

assignments

interfaces no map of An optional map of interface assignments for the relationship
interface template.
assignments

copy no string The optional (symbolic) name of another relationship template to
copy into (all keynames and values) and use as a basis for this
relationship template.

3.3.4.2 Grammar

<relationship template name>:
type: <relationship type name>
description: <relationship type description>
metadata:
<map of string>
properties:
<property assignments>
attributes:
<attribute assignments>
interfaces:
<interface_assignments>
copy:
<source_relationship template name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e relationship_template_name: represents the required symbolic name of the Relationship Template
being declared.

e relationship_type_name: represents the name of the Relationship Type the Relationship Template is

based upon.

o relationship_template_description: represents the optional description string for the Relationship
Template.

TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 56 of 165

e property_assignments: represents the optional map of property assignments for the Relationship
Template that provide values for properties defined in its declared Relationship Type.

e attribute_assignments: represents the optional map of attribute assignments for the Relationship
Template that provide values for attributes defined in its declared Relationship Type.

e interface_assignments: represents the optional map of interface assignments for the Relationship
Template for interface definitions provided by its declared Relationship Type.

e source_relationship_template_name: represents the optional (symbolic) name of another relationship
template to copy into (all keynames and values) and use as a basis for this relationship template.

3.3.4.3 Additional requirements

The source relationship template provided as a value on the copy keyname MUST NOT itself use the
copy keyname (i.e., it must itself be a complete relationship template description and not copied from
another relationship template).

3.3.4.4 Example

relationship templates:
storage attachment:
type: AttachesTo
properties:
location: /my mount point

3.3.5 Capabilities and Requirements

3.3.5.1 Capability Type

A Capability Type is a reusable entity that describes a kind of capability that a Node Type can declare to
expose. Requirements (implicit or explicit) that are declared as part of one node can be matched to (i.e.,
fulfilled by) the Capabilities declared by another node.

3.3.5.1.1 Keynames

The Capability Type is a TOSCA type entity and has the common keynames listed in Section 3.2.5.2
Common keynames in type definitions. In addition, the Capability Type has the following recognized
keynames:

Keyname Required | Type Description
properties no map of An optional map of property definitions for the Capability Type.
property
definitions
attributes no map of An optional map of attribute definitions for the Capability Type.
attribute
definitions
valid_source_types | no list of string An optional list of one or more valid names of Node Types that are
supported as valid sources of any relationship established to the
declared Capability Type. If undefined, all Node Types are valid
sources.

3.3.5.1.2 Grammar

Capability Types have following grammar:

<capability type name>:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 57 of 165

derived from: <parent capability type name>
version: <version number>
description: <capability description>
properties:

<property definitions>
attributes:

<attribute definitions>
valid source types: [<node type names>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e capability_type name: represents the required name of the Capability Type being declared as a
string.

e parent_capability_type_name: represents the name of the Capability Type this Capability Type
definition derives from (i.e., its “parent” type).

e version_number: represents the optional TOSCA version number for the Capability Type.

e capability_description: represents the optional description string for the Capability Type.

e property_definitions: represents the optional map of property definitions for the Capability Type.
o attribute_definitions: represents the optional map of attribute definitions for the Capability Type.

¢ node_type_names: represents the optional list of one or more names of Node Types that the
Capability Type supports as valid sources for a successful relationship to be established to itself; if
undefined, the valid source types are not restricted at all (i.e. all Node Types are valid)

3.3.5.1.3 Derivation rules

During Capability Type derivation the keyname definitions follow these rules:

e properties: existing property definitions may be refined; new property definitions may be added.

e attributes: existing attribute definitions may be refined; new attribute definitions may be added.

e valid_source_types: if valid_source_types is defined in the parent type, each element in this list must
either be in the parent type list or derived from an element in the parent type list; if
valid_source_types is not defined in the parent type then no restrictions are applied.

3.3.5.1.4 Example

mycompany.mytypes.myapplication.MyFeature:
derived from: tosca.capabilities.Root
description: a custom feature of my company’s application
properties:
my feature setting:
type: string
my feature value:
type: integer

3.3.5.2 Capability definition

A Capability definition defines a named, typed set of data that a node can expose and is used to describe
a relevant feature of the component described by the node. A Capability is defined part of a Node Type
definition and may be refined during Node Type derivation.

3.3.5.2.1 Keynames

The following is the list of recognized keynames for a TOSCA capability definition:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 58 of 165

[1,UNBOUNDED]

Keyname Required | Type Constraints Description
type yes string N/A The required name of the Capability Type
this capability definition is based upon.
description no description N/A The optional description of the Capability
definition.
properties no map of - refinements apply to | An optional map of property refinements for
property the definitions in the the Capability definition. The referred
refinements | Capability Type properties must have been defined in the
- new properties may Capability Type definition referred by the
not be added type keyword.
attributes no map of - refinements apply to | An optional map of attribute refinements for
attribute the definitions in the the Capability definition. The referred
refinements | Capability Type attributes must have been defined in the
- new attributes may Capability Type definition referred by the
not be added type keyword.
valid_source_types | no list of string | if valid_source_types An optional list of one or more valid names
is defined in the of Node Types that are supported as valid
Capability Type, each sources of any relationship established to the
element in this list declared Capability Type. If undefined, all
must either be in or node types are valid sources.
derived from an
element in the list
defined in the type
occurrences no range of if not defined the The optional minimum and maximum of
integer implied default is occurrences for the capability. The

occurrence represents the maximum number
of relationships that are allowed by the
Capability. By default, an exported Capability
should allow minimum one relationship to be
formed with it and maximum a UNBOUNDED
number of relationships.

3.3.5.2.2 Grammar

Capability definitions have one of the following grammars:

3.3.5.2.2.1 Short notation

The following single-line grammar may be used when only the capability type needs to be declared,

without further refinement of the definitions in the capability type:

<capability definition name>: <capability type>

3.3.5.2.2.2 Extended notation

The following multi-line grammar may be used when additional information on the capability definition is

needed:

<capability definition name>:
type: <capability type>
description: <capability description>
properties:
<property refinements>
attributes:
<attribute refinements>

TOSCA-v2.0-csd01

Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 59 of 165

valid source types: [<node type names>]
occurrences : <range of occurrences>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

e capability_definition_name: represents the symbolic name of the capability as a string.

e capability_type: represents the required name of a capability type the capability definition is based
upon.

e capability_description: represents the optional description of the capability definition.

e property_refinements: represents the optional map of property definitions refinements for properties
already defined in the capability type; new properties may not be added.

e attribute_refinements: represents the optional map of attribute definitions refinements for attributes
already defined in the capability type; new attributes may not be added.

e node_type_names: represents the optional list of one or more names of Node Types that the
Capability definition supports as valid sources for a successful relationship to be established to itself

o if valid_source_types is defined in the capability type, each element in this list MUST either be in
the capability type list or derived from an element in the capability type list; if valid_source_types
is not defined in the capability type then no restrictions are applied.

e range_of_occurrences: represents he optional minimum and maximum occurrences for the capability

e the occurrence represents the maximum number of relationships that are allowed by the
capability; however, it does not restrict a lower number of relationships than the occurrence to be
established.

e in a node template, the occurrences keyname may be assigned to any number within the
range_of occurrences defined here.

o f the occurrences is not assigned in the node template the TOSCA orchestrator may
automatically set the occurrences to a number in the defined range (e.g. the maximum in the
range).

e the minimum in the range prevents the occurrences (during subsequent refinements or during
assignment) to be set below this minimum.

o by default (i.e. if occurrences is undefined here), a capability should allow at least one (1), and at
most an unrestricted number (UNBOUNDED) of relationships to be formed to it.

3.3.5.2.3 Refinement rules
A capability definition within a node type uses the following definition refinement rules when the
containing node type is derived:

e type: must be derived from (or the same as) the type in the capability definition in the parent node
type definition.

e description: a new definition is unrestricted and will overwrite the one inherited from the capability
definition in the parent node type definition.

e occurrences: the new range MUST be within the range defined in the capability definition in the
parent node type definition.

e properties: not applicable to the definitions in the parent node type but to the definitions in the
capability type referred by the type keyname (see grammar above for the rules).

e attributes: not applicable to the definitions in the parent node type but to the definitions in the
capability type referred by the type keyname (see grammar above for the rules).

e valid_source_types: not applicable to the definitions in the parent node type but to the definitions in
the capability type referred by the type keyname (see grammar above for the rules).

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 60 of 165

3.3.5.2.4 Examples

The following examples show capability definitions in both simple and full forms:

3.3.5.2.4.1 Simple notation example

Simple notation, no properties defined or augmented
some capability: mytypes.mycapabilities.MyCapabilityTypeName

3.3.5.2.4.2 Full notation example

Full notation, augmenting properties of the referenced capability type
some capability:
type: mytypes.mycapabilities.MyCapabilityTypeName
properties:
limit:
default: 100

3.3.5.2.5 Additional requirements

e Capability symbolic names SHALL be unique; it is an error if a capability name is found to occur more
than once.

¢ If the occurrences keyname is not present, then a default declaration as follows will be assumed:
- occurrences: [1, UNBOUNDED]

3.3.5.3 Capability assignment

A capability assignment allows node template authors to assign values to properties and attributes for a
named capability definition that is part of a the node templates’ respective type definition, and also to set
the capability occurrences.

3.3.5.3.1 Keynames

The following is the list of recognized keynames for a TOSCA capability assignment:

Keyname Required | Type Description

properties no map of An optional map of property assignments for the Capability definition.
property
assignments

attributes no map of An optional map of attribute assignments for the Capability definition.
attribute

assignments

occurrences no integer An optional integer that sets the number of occurrences. It defines the
maximum number of allowed relationships to this capability. Must be
within the range specified in the corresponding capability definition. If
not defined, the orchestrator uses a suitable value from the range
defined in the corresponding capability definition (e.g. the maximum in
the range).

3.3.5.3.2 Grammar

Capability assignments have one of the following grammars:

<capability definition name>:
properties:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 61 of 165

<property assignments>
attributes:

<attribute assignments>
occurrences: <occurrences value>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:
e capability_definition_name: represents the symbolic name of the capability as a string.

e property_assignments: represents the optional map of property assignments that provide values for
properties defined in the Capability definition.

e attribute_assignments: represents the optional map of attribute assignments that provide values for
attributes defined in the Capability definition.

e occurrences_value: represents the optional integer that sets the number of occurrences

e it represents the maximum number of relationships that are allowed by the capability; note that it
does not restrict a lower number of relationships to be established.

¢ must be within the range specified in the corresponding capability definition.

o if not defined, the orchestrator uses a suitable value from the range defined in the corresponding
capability definition (e.g. the maximum in the range).

3.3.5.3.3 Example

The following example shows a capability assignment:

3.3.5.3.3.1 Notation example

node templates:
some node template:
capabilities:
some capability:
properties:
limit: 100

3.3.5.4 Requirement Type

A Requirement Type is a reusable entity that describes a kind of requirement that a Node Type can
declare to expose.

TOSCA seeks to simplify the modeling by replacing the need for nodes declaring specific Requirement
Types with nodes declaring their features sets using TOSCA Capability Types. So, it suffices that
capabilites are advertised a-priory by Capability Types, while requirement definitions can be directly
created during Node Type design.

Thus, currently the TOSCA specification does not utilize an independently defined Requirement Type.
This is a desired effect as part of the simplification of the TOSCA v1.0 specification.

3.3.5.5 Requirement definition

The Requirement definition describes a named requirement (dependency) of a TOSCA node which needs
to be fulfilled by a matching Capability definition declared by another TOSCA node. A Requirement is
defined part of a Node Type definition and may be refined during Node Type derivation.

The requirement definition may itself include the specific name of the fulfilling entity (explicitly) or provide
an abstract type, along with additional filtering characteristics, that a TOSCA orchestrator can use to fulfill
the capability at runtime (implicitly).

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 62 of 165

3.3.5.5.1 Keynames

The following is the list of recognized keynames for a TOSCA requirement definition:

Keyname Required | Type Constraints | Description
description no string N/A The optional description of the Requirement definition.
capability yes string N/A The required keyname used to provide either the:
e symbolic name of a Capability definition within a
target Node Type that can fulfill the requirement.
e name of a Capability Type that the TOSCA
orchestrator will use to select a type-compatible
target node to fulfill the requirement at runtime.
node no string N/A The optional keyname used to provide the name of a valid
Node Type that contains the capability definition that can be
used to fulfill the requirement.
If a symbolic name of a Capability definition has been used
for the capability keyname, then the node keyname is
mandatory.
relationship no string N/A The optional keyname used to provide the name of a valid
Relationship Type to construct a relationship when fulfilling
the requirement.
node_filter no node N/A The optional filter definition that TOSCA orchestrators will
filter use to select a type-compatible target node that can fulfill
the associated abstract requirement at runtime.
occurrences no range of | implied The optional minimum and maximum occurrences for the
integer default of requirement.
[1,1] Note: the keyword UNBOUNDED is also supported to
represent any positive integer.

3.3.5.5.1.1 Additional Keynames for multi-line relationship grammar

The Requirement definition contains the Relationship Type information needed by TOSCA Orchestrators
to construct relationships to other TOSCA nodes with matching capabilities; however, it is sometimes
recognized that additional parameters may need to be passed to the relationship (perhaps for
configuration). In these cases, additional grammar is provided so that the requirement definition may
declare interface refinements (e.g. changing the implementation definition or declaring additional

parameter definitions to be used as inputs/outputs).

Keyname | Required | Type Constraints Description
type yes string N/A The optional keyname used to provide the name of the
Relationship Type as part of the relationship keyname
definition.
interfaces no map of N/A The optional keyname used to reference declared interface
interface definitions on the corresponding Relationship Type for
refinements refinement.

3.3.5.5.2 Grammar

Requirement definitions have one of the following grammars:

3.3.5.5.2.1 Simple grammar (Capability Type only)

<requirement definition name>: <capability type name>

TOSCA-v2.0-csd01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 63 of 165

3.3.5.5.2.2 Extended grammar (with Node and Relationship Types)

<requirement definition name>:
description: <requirement description>
capability: <capability symbolic name> | <capability type name>
node: <node type name>
relationship: <relationship type name>
node filter:
<node filter definition>
occurrences: [<min occurrences>, <max occurrences>]

3.3.5.5.2.3 Extended grammar for declaring Parameter Definitions on the relationship’s
Interfaces

The following additional multi-line grammar is provided for the relationship keyname in order to declare
new parameter definitions for inputs/outputs of known Interface definitions of the declared Relationship

Type.

<requirement definition name>:
Other keynames omitted for brevity
relationship:
type: <relationship type name>
interfaces:
<interface refinements>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

e requirement_definition_name: represents the required symbolic name of the requirement definition as
a string.

e requirement_description: represents the optional description of the requirement definition.

e capability_symbolic_name: represents the required symbolic name of the Capability definition within
the target Node Type;

e capability_type _name: represents the required name of a Capability Type that can be used to fulfill
the requirement.

e node_type name: represents the name of a Node Type that contains the Capability Type definition
the requirement can be fulfilled by; the node_type name is required if the capability _symbolic_name
was used, and is optional if the capability _type name was used.

e relationship_type_name: represents the optional name of a Relationship Type to be used to construct
a relationship between this requirement definition (i.e. in the source node) to a matching capability
definition (in a target node).

o node_filter_definition: represents the optional node filter TOSCA orchestrators will use to fulfill the
requirement when selecting a target node, or to verify that the specified node template fulfills the
requirement (if a node template was specified during requirement assignment).

e min_occurrences, max_occurrences: represents the optional minimum and maximum range for the
occurrences of the requirement (i.e. its cardinality)

e the requirement occurrences define how many relationships are created from this requirement
towards target capabilities, and its value is set during requirement assignment time to an integer
in the range specified here.

e by default (i.e. if occurrences is undefined here), a requirement shall form exactly one relationship
(i.e. at least one, and at most one).

o interface_refinements: represents refinements for one or more already declared interface definitions
in the Relationship Type (as declared on the type keyname)

¢ allowing for the declaration of new parameter definitions for these interfaces or for specific
operation or notification definitions of these interfaces or for the change of the description or
implementation definitions.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 64 of 165

3.3.5.5.3 Refinement rules

A requirement definition within a node type uses the following definition refinement rules when the
containing node type is derived:

e description: a new definition is unrestricted and will overwrite the one inherited from the requirement
definition in the parent node type definition.

e capability: the type of the capability must be derived from (or the same as) the capability type in the
requirement definition in the parent node type definition

e if the capability was specified using the symbolic name of a capability definition in the target node
type, then the capability keyname definition MUST remain unchanged in any subsequent
refinements or during assignment.

e node: must be derived from (or the same as) the node type in the requirement definition in the parent
node type definition; if node is not defined in the parent type then no restrictions are applied

¢ relationship: must be derived from (or the same as) the relationship type in the requirement definition
in the parent node type definition; if relationship is not defined in the parent type then no restrictions
are applied

¢ node_filter: a new definition is unrestricted and will be considered in addition (i.e. logical and) to the
node_filter definition in the parent node type definition; further refinements may add further node
filtering.

e occurrences: the new range MUST be within the range defined in the requirement definition in the
parent node type definition.

3.3.5.5.4 Additional requirements

¢ Requirement symbolic names SHALL be unique; it is an error if a requirement name is found to occur
more than once.

¢ If the occurrences keyname is not present, then a default declaration as follows will be assumed:
- occurrences: [1,1]

3.3.5.5.5 Notes

e The requirement symbolic name is used for identification of the requirement definition only and not
relied upon for establishing any relationships in the topology.

3.3.5.5.6 Requirement definition is a tuple with a filter

A requirement definition allows type designers to govern which types are allowed (valid) for fulfillment
using three levels of specificity with only the Capability definition or Capability Type being required.

1. Node Type (required/optional)
2. Relationship Type (optional)
3. Capability definition or Capability Type (required)

The first level allows selection, as shown in both the simple or complex grammar, simply providing the
node’s type using the node keyname. The second level allows specification of the relationship type to use
when connecting the requirement to the capability using the relationship keyname. Finally, the specific
Capability definition or Capability Type on the target node is provided using the capability keyname. Note
that if a Capability definition is used, the Node Type definition is required (as it refers to a Capability
definition in that Node Type).

In addition to the node, relationship and capability types, a filter, with the keyname node_filter, may be
provided to constrain the allowed set of potential target nodes based upon their properties and their
capabilities’ properties. This allows TOSCA orchestrators to help find the “best fit” when selecting among
multiple potential target nodes for the expressed requirements. Also, if a Node Template was specified
during requirement assignment it allows TOSCA orchestrators to verify that the specified node template
fulfills the requirement.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 65 of 165

3.3.5.6 Requirement assighment

A Requirement assignment allows Node Template authors to provide assignments for individual and/or
subsets of occurrences of the corresponding Requirement definition (i.e. having the same symbolic
name) in the Node Type definition.

A Requirement assignment provides either names of Node Templates or selection criteria for TOSCA
orchestrators to find matching TOSCA nodes that are used to fulfill the named requirement’s declared
Capability Type and/or Node Type. A Requirement assignment also provides either names of
Relationship Templates (to use) or the name of Relationship Types (to create relationships) for relating
the source node (containing the Requirement) to the target node (containing the Capability).

Note that several Requirement assignments in the Node Template definition can have the same symbolic
name, each referring to different occurrences of the Requirement definition. To how many occurrences a
particular assignment refers to is set via the occurrences keyname. Nevertheless, the sum of the
occurrences’ values for all of the Requirement assignments with the same symbolic name MUST be
within the range of occurrences specified by the corresponding Requirement definition.

3.3.5.6.1 Keynames

The following is the list of recognized keynames for a TOSCA requirement assignment:

Keyname Required | Type Description

capability no string The optional keyname used to provide either the:

e symbolic name of a Capability definition within a target node
that can fulfill the requirement.

e name of a Capability Type that the TOSCA orchestrator will use
to select a type-compatible target node to fulfill the requirement
at runtime.

node no string The optional keyname used to identify the target node of a relationship;
specifically, it is used to provide either the:
e name of a Node Template that can fulfill the target node
requirement.
e name of a Node Type that the TOSCA orchestrator will use to
select a type-compatible target node to fulfill the requirement at
runtime.

relationship no string The optional keyname used to provide either the:

e name of a Relationship Template to use to relate this node to
the target node when fulfilling the requirement.

e name of a Relationship Type that the TOSCA orchestrator will
use to create a relationship to relate this node to the target node
when fulfilling the requirement.

node_filter no node filter The optional filter definition that TOSCA orchestrators will use to select a
type-compatible target node that can fulfill the requirement at runtime.

occurrences no integer An optional keyname that sets the occurrences for this requirement. The
sum of all occurrences’ values for all Requirement assignments with the
same symbolic name must be within the range specified in the
corresponding Requirement definition. If not defined, the assumed
occurrences for an assignment is one (1).

The following is the list of recognized keynames for a TOSCA requirement assignment’s relationship
keyname which is used when property assignments or interface assignments (for e.g. changing the
implementation keyname or declare additional parameter definitions to be used as inputs/outputs) need to
be provided:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 66 of 165

Keyname Required | Type Description

type no string The optional keyname used to provide the name of the Relationship Type
for the Requirement assignment’s relationship.

properties no map of An optional keyname providing property assignments for the relationship.
property
assignments

interfaces no map of The optional keyname providing Interface assignments for the
interface corresponding Interface definitions in the Relationship Type.

assignments

3.3.5.6.2 Grammar

Requirement assignments have one of the following grammars:

3.3.5.6.2.1 Short notation:

The following single-line grammar may be used if only a concrete Node Template for the target node
needs to be declared in the requirement:

<requirement name>: <node template name>

This notation is only valid if the corresponding Requirement definition in the Node Template’s parent
Node Type declares a target capability which can be found in the Node Type of the node identified by
node_template_name. A valid capability definition always needs to be provided in the requirement
declaration of the source node to identify a specific capability definition in the target node the requirement
will form a TOSCA relationship with.

3.3.5.6.2.2 Extended notation:

The following grammar should be used if the requirement assignment needs to provide more information
than just the Node Template name:

<requirement name>:
capability: <capability symbolic name> | <capability type name>
node: <node template name> | <node type name>
relationship: <relationship template name> | <relationship type name>
node filter:
<node filter definition>
occurrences: <occurrences value>

3.3.5.6.2.3 Extended grammar with Property Assignments and Interface Assignments for the
relationship

The following additional multi-line grammar is provided for the relationship keyname in order to provide
new Property assignments and Interface assignments for the created relationship of the declared
Relationship.

<requirement name>:
Other keynames omitted for brevity
relationship:
type: <relationship template name> | <relationship type name>
properties:
<property assignments>
interfaces:
<interface_ assignments>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 67 of 165

requirement_name: represents the symbolic name of a requirement assignment as a string.

capability_symbolic_name: represents the optional name of the Capability definition within the target
Node Type or Node Template;

e if the capability in the Requirement definition was specified using the symbolic name of a
capability definition in a target node type, then the capability keyname definition MUST remain
unchanged in any subsequent refinements or during assignment.

e if the capability in the Requirement definition was specified using the name of a Capabiility Type,
then the Capability definition referred here by capability_symbolic_name must be of a type that is
the same as or derived from the said Capabiility Type in the Requirement definition.

capability _type_name: represents the optional name of a Capability Type definition within the target
Node Type or Node Template this requirement needs to form a relationship with;

e may not be used if the capability in the Requirement definition was specified using the symbolic
name of a capability definition in a target node type.

e otherwise the capability_type name must be of a type that is the same as or derived from the
type defined by the capability keyname in the Requirement definition.

node_template_name: represents the optional name of a Node Template that contains the capability
this requirement will be fulfilled by;

e in addition, the Node Type of the Node Template must be of a type that is the same as or derived
from the type defined by the node keyname (if the node keyname is defined) in the Requirement
definition.

node_type_name: represents the optional name of a Node Type that contains the capability this
Requirement will be fulfilled by;

e in addition, the node_type _name must be of a type that is the same as or derived from the type
defined by the node keyname (if the node keyname is defined) in the Requirement definition.

relationship_template_name: represents the optional name of a Relationship Template to be used
when relating the Requirement to the Capability in the target node.

e in addition, the Relationship Type of the Relationship Template must be of a type that is the same
as or derived from the type defined by the relationship keyname (if the capability keyname is
defined) in the Requirement definition.

relationship_type _name: represents the optional name of a Relationship Type that is compatible with
the Capability Type in the target node; the TOSCA orchestrator will create a relationship of the named
Relationship Type when relating the Requirement to the Capability in the target node.

e in addition, the relationship_type_name must be of a type that is the same as or derived from the
type defined by the relationship keyname (if the relationship keyname is defined) in the
Requirement definition.

property_assignments: represents the optional map of property assignments for the declared
relationship.

interface_assignments: represents the optional map of interface assignments for the declared
relationship used to provide parameter assignments on inputs and outputs of interfaces, operations
and notifications or changing the implementation definition.

node_filter_definition: represents the optional node filter TOSCA orchestrators will use to fulfill the
requirement for selecting a target node; if a node template was specified during requirement
assignment, the TOSCA orchestrator will verify that the specified node template fulfills the node filter.

e this node_filter does not replace the node_filter definition in the Requirement definition, it is
applied in addition to that.

occurrences_value: represents the optional occurrences number that specifies to how many
occurrences within the Requirement definition this particular assignment refers to.

e in addition, the sum of all occurrences_value for all Requirement assignments with the same
symbolic name must be within the range specified in the Requirement definition.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 68 of 165

o if not defined, the assumed occurrences_value for an assignment is one; i.e. the following default
declaration will be assumed:

- occurrences: 1

3.3.5.6.3 Examples
Examples of uses for the extended requirement assignment grammar include:

e The need to allow runtime selection of the target node a Node Type rather than a Node Template.
This may include use of the node_filter keyname to provide node and capability filtering information to
find the “best match” of a node at runtime.

e The need to further specify the Relationship Template or Relationship Type to use when relating the
source node’s requirement to the target node’s capability.

e The need to further specify the capability (symbolic) name or Capability Type in the target node to
form a relationship between.

e The need to specify the number of occurrences the requirement assigns (when greater than 1).

3.3.5.6.3.1 Example 1 - Hosting requirement on a Node Type

A web application node template named ‘my_application_node_template’ of type WebApplication
declares a requirement named ‘host’ that needs to be fulfilled by any node that derives from the node
type WebServer.

Example of a requirement fulfilled by a specific web server node template
node templates:
my application node template:
type: tosca.nodes.WebApplication

requirements:
- host:
node: tosca.nodes.WebServer

In this case, the node template’s type is WebApplication which already declares the Relationship Type
HostedOn to use to relate to the target node and the Capability Type of Container to be the specific target
of the requirement in the target node.

3.3.5.6.3.2 Example 2 - Requirement with Node Template and a custom Relationship Type

This example is similar to the previous example; however, the requirement named ‘database’ describes a
requirement for a connection to a database endpoint (Endpoint.Database) Capability Type in a named
node template (my_database). However, the connection requires a custom Relationship Type
(my.types.CustomDbConnection’) declared on the keyname ‘relationship’.

Example of a (database) requirement that is fulfilled by a node template

named
“my database”, but also requires a custom database connection
relationship
my application node template:
requirements:
- database:

node: my database
capability: Endpoint.Database
relationship: my.types.CustomDbConnection

3.3.5.6.3.3 Example 3 - Requirement for a Compute node with additional selection criteria (filter)

This example shows how to extend an abstract ‘host’ requirement for a Compute node with a filter
definition that further constrains TOSCA orchestrators to include additional properties and capabilities on
the target node when fulfilling the requirement.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 69 of 165

node templates:

mysqgl:
type: tosca.nodes.DBMS.MySQL
properties:
omitted here for brevity
requirements:
- host:

node: tosca.nodes.Compute
node filter:

capabilities:
- host:
properties:
- num cpus: { in range: [1, 4] }
- mem size: { greater or equal: 512 MB }
- 0s:
properties:

- architecture: { equal: x86 64 }
- type: { equal: linux }
- distribution: { equal: ubuntu }
- mytypes.capabilities.compute.encryption:

properties:
- algorithm: { equal: aes }
- keylength: { valid values: [128, 256] }

3.3.5.6.3.4 Example 4 - Requirement assignment for definition with occurrences: [2,2]

This example shows how the assignments can look if the Requirement definition has the occurrences
range different from the default [1,1]. In this case the redundant_database requirement has occurrences:
[2,2]. The Requirement definition is not presented here for brevity. In the Requirement assignment we use
the short notation. Note that the occurrences keyname for each assignment is not declared (i.e. the
default value of 1 is used) and that the sum of the occurrences values of both assignments is 2 which is in
the range of [2,2] as specified in the Requirement definition.

Example of a (redundant database) requirement that is fulfilled by
two node templates named “databasel” and “databasel
my critical application node template:
requirements:
- redundant database: databasel
- redundant database: database2

3.3.5.7 Node Filter definition

A node filter defines criteria for selection of a target node based upon its property values, capabilities and
capability properties.

3.3.5.7.1 Keynames

The following is the list of recognized keynames for a TOSCA node filter definition:

Keyname Required | Type Description
properties no list of An optional list of property filters that will be used to select (filter)
property matching TOSCA entities (e.g., Node Template, Node Type, Capability
filter Types, etc.) based upon their property definitions’ values.
definition
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 70 of 165

Keyname Required | Type Description

capabilities no list of An optional list of capability names or types that will be used to
capability select (filter) matching TOSCA entities based upon their existence.
names or
capability
type names

3.3.5.7.2 Additional filtering on capability properties

Capabilities used as filters often have their own sets of properties which also can be used to construct a
filter.

Keyname Required | Type Description
properties no list of An optional list of property filters that will be used to select (filter)
property matching TOSCA entities (e.g., Node Template, Node Type, Capability
(within a capability filter Types, etc.) based upon their capabilities” property definitions’
name or type definitions values.
name)

3.3.5.7.3 Grammar

Node filter definitions have following grammar:

node filter:
properties:
- <property filter def 1>

- <property filter def n>
capabilities:
- <capability name or type 1>:
properties:
- <cap_1 property filter def 1>

- <cap_1 property filter def n>
- <capability name or type m>:
properties:
- <cap _m property filter def 1>

- <cap _m property filter def n>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

o property filter_def *: represents a property filter definition that will be used to select (filter) matching
TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based upon their property
definitions’ values.

e capability_ name_or_type_ *: represents the type or name of a capability that will be used to select
(filter) matching TOSCA entities based upon their existence.

e cap_* property_def *: represents a property filter definition that will be used to select (filter) matching
TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based upon their
capabilities’ property definitions’ values.

3.3.5.7.4 Additional requirements

e TOSCA orchestrators SHALL search for matching capabilities listed on a target filter by assuming the
capability name is first a symbolic name and secondly it is a type name (in order to avoid namespace
collisions).

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 71 of 165

3.3.5.7.5 Example

The following example is a filter that will be used to select a Compute node based upon the values of its
defined capabilities. Specifically, this filter will select Compute nodes that support a specific range of
CPUs (i.e., num_cpus value between 1 and 4) and memory size (i.e., mem_size of 2 or greater) from its
declared “host” capability.

my node template:
other details omitted for brevity

requirements:
- host:
node filter:
capabilities:
My “host” Compute node needs these properties:
- host:
properties:

- num cpus: { in range: [1, 4] }
- mem size: { greater or equal: 512 MB }

3.3.5.8 Property Filter definition

A property filter definition defines criteria, using constraint clauses, for selection of a TOSCA entity based
on its property values. Constraint clauses are further defined in Section Error! Reference source not f
ound. Error! Reference source not found..

3.3.5.8.1 Grammar

Property filter definitions have one of the following grammars:

3.3.5.8.1.1 Short notation:

The following single-line grammar may be used when only a single constraint is needed on a property:

<property name>: <property constraint clause>

3.3.5.8.1.2 Extended notation:

The following multi-line grammar may be used when multiple constraints are needed on a property:

<property name>:
- <property constraint clause 1>

- <property constraint clause n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

e property_name: represents the name of property that will be used to select a property definition with
the same name (property_name) on a TOSCA entity (e.g., a Node Type, Node Template, Capability
Type, etc.).

e property_constraint_clause_*: represents constraint clause(s) that will be used to filter entities based
upon the named property’s value(s).

3.3.5.8.2 Additional Requirements

e Property constraint clauses must be type compatible with the property definitions (of the same name)
as defined on the target TOSCA entity that the clause will be applied against.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 72 of 165

3.3.6 Interfaces

3.3.6.1 Interface Type

An Interface Type is a reusable entity that describes a set of operations that can be used to interact with
or to manage a node or relationship in a TOSCA topology.

3.3.6.1.1 Keynames

The Interface Type is a TOSCA type entity and has the common keynames listed in Section 3.2.5.2
Common keynames in type definitions. In addition, the Interface Type has the following recognized

keynames:

Keyname Required | Type Description

inputs no map of The optional map of input parameter definitions available to all
parameter operations defined for this interface.
definitions

operations no map of operation | The optional map of operations defined for this interface.
definitions

notifications no map of The optional map of notifications defined for this interface
notification
definitions

3.3.6.1.2 Grammar

Interface Types have following grammar:

<interface type name>:
derived from: <parent interface type name>
version: <version number>
metadata:
<map of string>
description: <interface description>
inputs:
<parameter definitions>
operations:
<operation definitions>
notifications:
<Error! Reference source not found.Error! Reference source not fo
und.notification definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

interface_type _name: represents the required name of the interface as a string.

parent_interface_type name: represents the hame of the Interface Type this Interface Type definition
derives from (i.e. its “parent” type).

version_number: represents the optional TOSCA version number for the Interface Type.
interface_description: represents the optional description for the Interface Type.

parameter_definitions: represents the optional map of parameter definitions which the TOSCA
orchestrator will make available (i.e., or pass) to all implementation artifacts for operations declared
on the interface during their execution.

operation_definitions: represents the optional map of one or more operation definitions.
notification_definitions: represents the optional map of one or more notification definitions.

3.3.6.1.3 Derivation rules

During Interface Type derivation the keyname definitions follow these rules:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 73 of 165

DEFN_ELEMENT_NOTIFICATION_DEF
DEFN_ELEMENT_NOTIFICATION_DEF
DEFN_ELEMENT_NOTIFICATION_DEF
DEFN_ELEMENT_NOTIFICATION_DEF

e inputs: existing parameter definitions may be refined; new parameter definitions may be added.

e operations: existing operation definitions may be refined; new operation definitions may be added.

¢ notifications: existing notification definitions may be refined; new notification definitions may be
added.

3.3.6.1.4 Example

The following example shows a custom interface used to define multiple configure operations.

mycompany.mytypes.myinterfaces.MyConfigure:
derived from: tosca.interfaces.relationship.Root
description: My custom configure Interface Type
inputs:
mode:
type: string
operations:
pre configure service:
description: pre-configure operation for my service
post configure service:
description: post-configure operation for my service

3.3.6.1.5 Additional Requirements

¢ Interface Types MUST NOT include any implementations for defined operations or notifications; that
is, the implementation keyname is invalid in this context.

3.3.6.1.6 Notes

e Starting with Version 1.3 of this specification, interface type definition grammar was changed to
support notifications as well as operations. As a result, operations must now be specified under the
newly introduced operations keyname and the notifications under the new notifications keyname. For
backward compatibility if neither the operations nor notifications are specified then we assume the
symbolic names in the interface definition to mean operations, but this use is deprecated. Operations
and notifications names should not overlap.

3.3.6.2 Interface definition

An Interface definition defines a named interface (containing operations and notifications definitions) that
can be associated with (i.e. defined within) a Node or Relationship Type definition (including Interface
definitions in Requirements definitions). An Interface definition may be refined in subsequent Node or
Relationship Type derivations.

3.3.6.2.1 Keynames

The following is the list of recognized keynames for a TOSCA interface definition:

Keyname Required | Type Description
type yes string The required name of the Interface Type this interface definition is
based upon.

description no description The optional description for this interface definition.

inputs no map of The optional map of input parameter refinements and new definitions
parameter available to all operations defined for this interface. The inputs to be
definitions and refined have been defined in the Interface Type definition.
refinements

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 74 of 165

Keyname Required | Type Description
operations no map of operation | The optional map of operations refinements for this interface. The
refinements referred operations must have been defined in the Interface Type
definition.
notifications | no map of The optional map of notifications refinements for this interface. The
notification referred operations must have been defined in the Interface Type
refinements definition.

3.3.6.2.2 Grammar

Interface definitions in Node or Relationship Type definitions have the following grammar:

<interface definition name>:
type: <interface type name>
description: <interface description>
inputs:
<parameter definitions and refinements>
operations:
<operation refinements>
notifications:
<Error! Reference source not found.Error! Reference source not fo
und.notification refinements>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e interface_definition_name: represents the required symbolic name of the interface as a string.

e interface_type_name: represents the required name of the Interface Type for the interface definition.
e interface_description: represents the optional description string for the interface.

o parameter_definitions_and_refinements: represents the optional map of input parameters which the
TOSCA orchestrator will make available (i.e. pass) to all defined operations. This means these
parameters and their values will be accessible to the implementation artifacts (e.g., scripts)
associated to each operation during their execution

o the map represents a mix of parameter refinements (for parameters already defined in the
Interface Type) and new parameter definitions.

o with the new parameter definitions, we can flexibly add new parameters when changing the
implementation of operations and notifications during refinements or assignments.

e operation_refinements: represents the optional map of operation definition refinements for this
interface; the referred operations must have been previously defined in the Interface Type.

e notification_refinements: represents the optional map of notification definition refinements for this
interface; the referred notifications must have been previously defined in the Interface Type.

3.3.6.2.3 Refinement rules
An interface definition within a node or relationship type (including interface definitions in requirements
definitions) uses the following definition refinement rules when the containing entity type is derived:

e type: must be derived from (or the same as) the type in the interface definition in the parent entity
type definition.

e description: a new definition is unrestricted and will overwrite the one inherited from the interface
definition in the parent entity type definition.

e inputs: not applicable to the definitions in the parent entity type but to the definitions in the interface
type referred by the type keyname (see grammar above for the rules).

e operations: not applicable to the definitions in the parent entity type but to the definitions in the
interface type referred by the type keyname (see grammar above for the rules).

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 75 of 165

DEFN_ELEMENT_NOTIFICATION_DEF
DEFN_ELEMENT_NOTIFICATION_DEF
DEFN_ELEMENT_NOTIFICATION_DEF
DEFN_ELEMENT_NOTIFICATION_DEF

¢ notifications: not applicable to the definitions in the parent entity type but to the definitions in the
interface type referred by the type keyname (see grammar above for the rules).

3.3.6.3 Interface assignment

An Interface assignment is used to specify assignments for the inputs, operations and natifications
defined in the Interface. Interface assignments may be used within a Node or Relationship Template
definition (including when Interface assignments are referenced as part of a Requirement assignment in a
Node Template).

3.3.6.3.1 Keynames

The following is the list of recognized keynames for a TOSCA interface definition:

Keyname Required | Type Description
inputs no map of parameter The optional map of input parameter assignments. Template
value assignments authors MAY provide parameter assignments for interface inputs

that are not defined in their corresponding Interface Type.

operations no map of operation The optional map of operations assignments specified for this
assignments interface.

notifications | no map of notification The optional map of notifications assignments specified for this
assignments interface.

3.3.6.3.2 Grammar

Interface assignments have the following grammar:

<interface definition name>:
inputs:
<parameter value assignments>
operations:
<operation assignments>
notifications:
<notification assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e interface_definition_name: represents the required symbolic hame of the interface as a string.

e parameter_value_assignments: represents the optional map of parameter value assignments for
passing input parameter values to all interface operations

o template authors MAY provide new parameter assignments for interface inputs that are not
defined in the Interface definition.

e operation_assignments: represents the optional map of operation assignments for operations defined
in the Interface definition.

e notification_assignments: represents the optional map of notification assignments for notifications
defined in the Interface definition.

3.3.6.4 Operation definition

An operation definition defines a named function or procedure to which an operation implementation can
be bound.

A new operation definition may be declared only inside interface type definitions (this is the only place
where new operations can be defined). In interface type, node type, or relationship type definitions

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 76 of 165

(including operation definitions as part of a requirement definition) we may further refine operations
already defined in an interface type.

An operation definition or refinement inside an interface type definition may not contain an operation
implementation definition and it may not contain an attribute mapping as part of its output definition (as
both these keynames are node/relationship specific).

3.3.6.4.1 Keynames

The following is the list of recognized keynames for a TOSCA operation definition (including definition
refinement)

Keyname Required | Type Description
description no description The optional description string for the associated
operation.
implementation no operation The optional definition of the operation implementation.
implementation | May not be used in an interface type definition (i.e. where
definition an operation is initially defined), but only during

refinements.

inputs no map of The optional map of parameter definitions for operation
parameter input values.
definitions

outputs no map of The optional map of parameter definitions for operation
parameter output values.
definitions Only as part of node and relationship type definitions, the

output definitions may include mappings onto attributes
of the node or relationship type that contains the
definition.

3.3.6.4.2 Grammar

Operation definitions have the following grammar:

3.3.6.4.2.1 Short notation

The following single-line grammar may be used when the operation’s implementation definition is the only
keyname that is needed, and when the operation implementation definition itself can be specified using a
single line grammar:

<operation name>: <operation implementation definition>

3.3.6.4.2.2 Extended notation

The following multi-line grammar may be used when additional information about the operation is needed:

<operation name>:
description: <operation description>
implementation: <operation implementation definition>
inputs:
<parameter definitions>
outputs:
<parameter definitions>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:
e operation_name: represents the required symbolic name of the operation as a string.
e operation_description: represents the optional description string for the operation.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 77 of 165

e operation_implementation_definition: represents the optional specification of the operation’s
implementation).

e parameter_definitions: represents the optional map of parameter definitions which the TOSCA
orchestrator will make available as inputs to or receive as outputs from the corresponding
implementation artifact during its execution.

3.3.6.4.3 Refinement rules

An operation definition within an interface, node, or relationship type (including interface definitions in
requirements definitions) uses the following refinement rules when the containing entity type is derived:

e description: a new definition is unrestricted and will overwrite the one inherited from the operation
definition in the parent entity type definition.

e implementation: a new definition is unrestricted and will overwrite the one inherited from the operation
definition in the parent entity type definition.

e inputs: parameter definitions inherited from the parent entity type may be refined; new parameter
definitions may be added.

e outputs: parameter definitions inherited from the parent entity type may be refined; new parameter
definitions may be added.

3.3.6.4.4 Additional requirements

e The definition of implementation is not allowed in interface type definitions (as a node or node type
context is missing at that point). Thus, it can be part only of an operation refinement and not of the
original operation definition.

e The default refinement behavior for implementations SHALL be overwrite. That is, implementation
definitions in a derived type overwrite any defined in its parent type.

o Defining a fixed value for an input parameter (as part of its definition) may only use a
parameter_value_expression that is meaningful in the scope of the context. For example, within
the context of an Interface Type definition functions such as get_propery or get_attribute cannot be
used. Within the context of Node or Relationship Type definitions, these functions may only reference
properties and attributes of the same node (i.e. SELF), respectively same relationship or its target
(i.e. SELF or TARGET). For example, value: { get_property: [SELF, propertyl] }

¢ Defining attribute mapping as part of the output parameter definition is not allowed in interface type
definitions (i.e. as part of operation definitions). It is allowed only in node and relationship type
definitions (as part of operation refinements) and has to be meaningful in the scope of the context (i.e.
SELF in node types and SELF or TARGET in relationship types).

¢ Implementation artifact file names (e.g., script filenames) may include file directory path names that
are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud Service
Archive (CSAR) file.

3.3.6.4.5 Examples

3.3.6.4.5.1 Single-line example

interfaces:
Standard:
start: scripts/start server.sh

3.3.6.4.5.2 Multi-line example with shorthand implementation definitions

interfaces:
Configure:
pre configure source:
implementation:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 78 of 165

primary: scripts/pre configure source.sh
dependencies:

- scripts/setup.sh

- binaries/library.rpm

- scripts/register.py

3.3.6.4.5.3 Multi-line example with extended implementation definitions

interfaces:
Configure:
pre configure source:
implementation:
primary:

file: scripts/pre configure source.sh
type: tosca.artifacts.Implementation.Bash
repository: my service catalog

dependencies:
- file : scripts/setup.sh
type : tosca.artifacts.Implementation.Bash

repository : my service catalog

3.3.6.5 Operation assignment

An operation assignment may be used to assign values for input parameters, specify attribute mappings
for output parameters, and define/redefine the implementation definition of an already defined operation
in the interface definition. An operation assignment may be used inside interface assignments inside node
template or relationship template definitions (this includes when operation assignments are part of a
requirement assignment in a node template).

An operation assignment may add or change the implementation and description definition of the
operation. Assigning a value to an input parameter that had a fixed value specified during operation
definition or refinement is not allowed. Providing an attribute mapping for an output parameter that was
mapped during an operation refinement is also not allowed.

Note also that in the operation assignment we can use inputs and outputs that have not been previously
defined in the operation definition. This is equivalent to an ad-hoc definition of a parameter, where the
type is inferred from the assigned value (for input parameters) or from the attribute to map to (for output
parameters).

3.3.6.5.1 Keynames

The following is the list of recognized keynames for an operation assignment:

Keyname Required Type Description
implementation no operation The optional definition of the operation
implementation implementation. Overrides implementation provided
definition at operation definition.
inputs no map of parameter The optional map of parameter value assignments for
value assignments assigning values to operation inputs.
outputs no map of parameter The optional map of parameter mapping assignments
mapping assignments | that specify how operation outputs are mapped onto
attributes of the node or relationship that contains the
operation definition.

3.3.6.5.2 Grammar

Operation assignments have the following grammar:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 79 of 165

3.3.6.5.2.1 Short notation

The following single-line grammar may be used when the operation’s implementation definition is the only
keyname that is needed, and when the operation implementation definition itself can be specified using a
single line grammar:

<operation name>: <operation implementation definition>

3.3.6.5.2.2 Extended notation

The following multi-line grammar may be used in Node or Relationship Template definitions when
additional information about the operation is needed:

<operation name>:
implementation: <operation implementation definition>
inputs:
<parameter value assignments>
outputs:
<parameter mapping assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e operation_name: represents the required symbolic name of the operation as a string.

e operation_implementation_definition: represents the optional specification of the operation’s
implementation

e the implementation declared here overrides the implementation provided at operation definition.

e parameter_value_assignments: represents the optional map of parameter value assignments for
passing input parameter values to operations.

e assignments for operation inputs that are not defined in the operation definition may be provided

e parameter_mapping_assignments: represents the optional map of parameter mapping assignments
that consists of named output values returned by operation implementations (i.e. artifacts) and
associated attributes into which this output value must be stored

e assignments for operation outputs that are not defined in the operation definition may be
provided.

3.3.6.5.3 Additional requirements
e The behavior for implementation of operations SHALL be override. That is, implementation definitions
assigned in an operation assignment override any defined in the operation definition.

e Template authors MAY provide parameter assignments for operation inputs that are not defined in the
operation definition.

e Template authors MAY provide attribute mappings for operation outputs that are not defined in the
operation definition.

e Implementation artifact file names (e.g., script filenames) may include file directory path names that
are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud Service
Archive (CSAR) file.

3.3.6.5.4 Examples
TBD

3.3.6.6 Notification definition

A notification definition defines a named asynchronous notification or incoming message that can be
associated with an interface. The notification is a way for an external event to be transmitted to the
TOSCA orchestrator. Values can be sent with a notification as notification outputs and we can map them

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 80 of 165

to node/relationship attributes similarly to the way operation outputs are mapped to attributes. The artifact
that the orchestrator is registering with in order to receive the notification is specified using the
implementation keyname in a similar way to operations. As opposed to an operation definition, a
notification definition does not include an inputs keyname since natifications are not invoked from the
orchestrator.

When the notification is received an event is generated within the orchestrator that can be associated to
triggers in policies to call other internal operations and workflows. The notification name (the unqualified
full name) itself identifies the event type that is generated and can be textually used when defining the
associated triggers.

A notification definition may be used only inside interface type definitions (this is the only place where
new notifications can be defined). Inside interface type, node type, or relationship type definitions
(including notifications definitions as part of a requirement definition) we may further refine a notification
already defined in the interface type.

A notification definition or refinement inside an interface type definition may not contain a notification
implementation definition and it may not contain an attribute mapping as part of its output definition (as
both these keynames are node/relationship specific).

3.3.6.6.1 Keynames

The following is the list of recognized keynames for a TOSCA notification definition:

Keyname Required | Type Description
description no description The optional description string for the associated notification
implementation | no notification The optional definition of the notification implementation.
implementation
definition
outputs no map of parameter The optional map of parameter definitions that specify
definitions notification output values.
Only as part of node and relationship type definitions, the output
definitions may include their mappings onto attributes of the node
type or relationship type that contains the definition.

3.3.6.6.2 Grammar

Notification definitions have the following grammar:

3.3.6.6.2.1 Short notation

The following single-line grammar may be used when the notification’s implementation definition is the
only keyname that is needed and when the notification implementation definition itself can be specified
using a single line grammar:

<notification name>: <notification implementation definition>

3.3.6.6.2.2 Extended notation

The following multi-line grammar may be used when additional information about the notification is
needed:

<notification name>:
description: <notification description>
implementation: <notification implementation definition>
outputs:
<parameter definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 81 of 165

e notification_name: represents the required symbolic name of the notification as a string.
¢ notification_description: represents the optional description string for the notification.

e notification_implementation_definition: represents the optional specification of the notification
implementation (i.e. the external artifact that may send notifications)

e parameter_definitions: represents the optional map of parameter definitions for parameters that the
orchestrator will receive as outputs from the corresponding implementation artifact during its
execution.

3.3.6.6.3 Refinement rules

A notification definition within an interface, node, or relationship type (including interface definitions in
requirements definitions) uses the following refinement rules when the containing entity type is derived:

e description: a new definition is unrestricted and will overwrite the one inherited from the natification
definition in the parent entity type definition.

e implementation: a new definition is unrestricted and will overwrite the one inherited from the
notification definition in the parent entity type definition.

e outputs: parameter definitions inherited from the parent entity type may be refined; new parameter
definitions may be added.

3.3.6.6.4 Additional requirements

e The definition of implementation is not allowed in interface type definitions (as a node or node
type context is missing at that point). Thus, it can be part only of a notification refinement and not
of the original notification definition.

e The default sub-classing (i.e. refinement) behavior for implementations of notifications SHALL be
overwrite. That is, implementation artifacts definitions in a derived type overwrite any defined in
its parent type.

¢ Defining attribute mapping as part of the output parameter definition is not allowed in interface
type definitions (i.e. as part of operation definitions). It is allowed only in node and relationship
type definitions (as part of operation refinements).

¢ Defining a mapping in an output parameter definition may use an attribute target that is
meaningful in the scope of the context. Within the context of Node Type definitions these
functions may only reference attributes of the same node (i.e. SELF). Within the context of
Relationship Type definitions, they may reference attributes of the relationship itself or its target
node (i.e. SELF or TARGET).

e Implementation artifact file names (e.g., script filenames) may include file directory path names
that are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud
Service Archive (CSAR) file.

3.3.6.6.5 Examples
TBD

3.3.6.7 Notification assignment

A notification assignment may be used to specify attribute mappings for output parameters and to
define/redefine the implementation definition and description definition of an already defined notification in
the interface definition. A notification assignment may be used inside interface assignments inside node
or relationship template definitions (this includes when notification assignments are part of a requirement
assignment in a node template).

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 82 of 165

Providing an attribute mapping for an output parameter that was mapped during a previous refinement is
not allowed. Note also that in the notification assignment we can use outputs that have not been
previously defined in the operation definition. This is equivalent to an ad-hoc definition of an output
parameter, where the type is inferred from the attribute to map to.

3.3.6.7.1 Keynames

The following is the list of recognized keynames for a TOSCA notification assignment:

Keyname Required | Type Description

implementation | no notification The optional definition of the notification implementation.
implementation Overrides implementation provided at notification definition.
definition

outputs no map of parameter The optional map of parameter mapping assignments that specify
mapping how notification outputs values are mapped onto attributes of the
assignments node or relationship type that contains the notification definition.

3.3.6.7.2 Grammar

Notification assignments have the following grammar:

3.3.6.7.2.1 Short notation

The following single-line grammar may be used when the natification’s implementation definition is the
only keyname that is needed, and when the notification implementation definition itself can be specified
using a single line grammatr:

<notification name>: <notification implementation definition>

3.3.6.7.2.2 Extended notation

The following multi-line grammar may be used in Node or Relationship Template definitions when
additional information about the notification is needed:

<notification name>:
implementation: <notification implementation definition>
outputs:
<parameter mapping assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e notification_name: represents the required symbolic name of the notification as a string.

e notification_implementation_definition: represents the optional specification of the notification
implementation (i.e. the external artifact that is may send notifications)

e the implementation declared here overrides the implementation provided at notification definition.

e parameter_mapping_assignments: represents the optional map of parameter_mapping_assignments
that consists of named output values returned by operation implementations (i.e. artifacts) and
associated attributes into which this output value must be stored

e assignments for notification outputs that are not defined in the operation definition may be
provided.

3.3.6.7.3 Additional requirements

e The behavior for implementation of notifications SHALL be override. That is, implementation
definitions assigned in a notification assignment override any defined in the notification definition.

e Template authors MAY provide attribute mappings for notification outputs that are not defined in the
corresponding notification definition.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 83 of 165

¢ Implementation artifact file names (e.g., script filenames) may include file directory path names that
are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud Service
Archive (CSAR) file.

3.3.6.7.4 Examples
TBD

3.3.6.8 Operation and notification implementation definition

An operation implementation definition specifies one or more artifacts (e.g. scripts) to be used as the
implementation for an operation in an interface.

A natification implementation definition specifies one or more artifacts to be used by the orchestrator to
subscribe and receive a particular notification (i.e. the artifact implements the notification).

The operation implementation definition and the notification implementation definition share the same
keynames and grammar, with the exception of the timeout keyname that has no meaning in the context of
a notification implementation definition and should not be used in such.

3.3.6.8.1 Keynames

The following is the list of recognized keynames for an operation implementation definition or a
notification implementation definition:

Keyname Required | Type Description
primary no artifact The optional implementation artifact (i.e., the primary script file
definition within a TOSCA CSAR file).
dependencies no list of The optional list of one or more dependent or secondary
artifact implementation artifacts which are referenced by the primary
definition implementation artifact (e.g., a library the script installs or a
secondary script).
timeout no integer Timeout value in seconds. Has no meaning and should not be used
within a notification implementation definition.

3.3.6.8.2 Grammar

Operation implementation definitions and notification implementation definitions have the following
grammar:

3.3.6.8.2.1 Short notation for use with single artifact

The following single-line grammar may be used when only a primary implementation artifact name is
needed:

implementation: <primary artifact name>

This notation can be used when the primary artifact name uniquely identifies the artifact, either because it
refers to an artifact specified in the artifacts section of a type or template, or because it represents the
name of a script in the CSAR file that contains the definition.

3.3.6.8.2.2 Short notation for use with multiple artifacts

The following multi-line short-hand grammar may be used when multiple artifacts are needed, but each of
the artifacts can be uniquely identified by name as before:

implementation:
primary: <primary artifact name>

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 84 of 165

dependencies:
- <list of dependent artifact names>
timeout : 60

3.3.6.8.2.3 Extended notation for use with single artifact

The following multi-line grammar may be used in Node or Relationship Type or Template definitions when
only a single artifact is used but additional information about the primary artifact is needed (e.qg. to specify
the repository from which to obtain the artifact, or to specify the artifact type when it cannot be derived
from the artifact file extension):

implementation:
primary:
<primary artifact definition>
timeout : 100

3.3.6.8.2.4 Extended notation for use with multiple artifacts

The following multi-line grammar may be used in Node or Relationship Type or Template definitions when
there are multiple artifacts that may be needed for the operation to be implemented and additional
information about each of the artifacts is required:

implementation:
primary:
<primary artifact definition>
dependencies:
- <list of dependent artifact definitions>
timeout: 120

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

e primary_artifact_name: represents the optional name (string) of an implementation artifact definition
(defined elsewhere), or the direct name of an implementation artifact’s relative filename (e.g., a
service template-relative, path-inclusive filename or absolute file location using a URL).

e primary_artifact_definition: represents a full inline definition of an implementation artifact.

o list_of dependent_artifact_names: represents the optional ordered list of one or more dependent or
secondary implementation artifact names (as strings) which are referenced by the primary
implementation artifact. TOSCA orchestrators will copy these files to the same location as the
primary artifact on the target node so as to make them accessible to the primary implementation
artifact when it is executed.

o list_of dependent_artifact_definitions: represents the ordered list of one or more inline definitions of
dependent or secondary implementation artifacts. TOSCA orchestrators will copy these artifacts to
the same location as the primary artifact on the target node so as to make them accessible to the
primary implementation artifact when it is executed.

3.3.7 Artifacts

3.3.7.1 Artifact Type

An Artifact Type is a reusable entity that defines the type of one or more files that are used to define
implementation or deployment artifacts that are referenced by nodes or relationships.

3.3.7.1.1 Keynames

The Artifact Type is a TOSCA type entity and has the common keynames listed in Section 3.2.5.2
Common keynames in type definitions. In addition, the Artifact Type has the following recognized
keynames:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 85 of 165

Keyname | Required | Type Constraints Description

mime_type | no string None The required mime type property for the Artifact Type.

file_ext no list of None The required file extension property for the Artifact Type.
string

properties no map of No An optional map of property definitions for the Artifact
property Type.
definitions

3.3.7.1.2 Grammar

Artifact Types have following grammar:

<artifact type name>:

derived from: <parent artifact type name>

version: <version number>
metadata:
<map of string>

description: <artifact description>

mime type: <mime type string>
file ext: [<file extensions>]
properties:

<property definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

o artifact_type_name: represents the name of the Artifact Type being declared as a string.
e parent_artifact_type name: represents the hame of the Artifact Type this Artifact Type definition

derives from (i.e., its “parent” type).

e version_number: represents the optional TOSCA version number for the Artifact Type.

e artifact_description: represents the optional description string for the Artifact Type.

e mime_type_string: represents the optional Multipurpose Internet Mail Extensions (MIME) standard
string value that describes the file contents for this type of Artifact Type as a string.

+ file_extensions: represents the optional list of one or more recognized file extensions for this type of

artifact type as strings.

e property_definitions: represents the optional map of property definitions for the artifact type.

3.3.7.1.3 Examples

my artifact type:

description: Java Archive artifact type

derived from: tosca.artifact.Root
mime type: application/java-archive

file ext: [jar]
properties:
id:

description: Identifier of the jar

type: string
required: true
creator:

description: Vendor of the java implementation on which the jar is

based
type: string
required: false

TOSCA-v2.0-csd01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 86 of 165

3.3.7.1.4 Additional Requirements

e The ‘mime_type’ keyname is meant to have values that are Apache mime types such as those
defined here: http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

3.3.7.1.5 Notes

Information about artifacts can be broadly classified in two categories that serve different purposes:

Selection of artifact processor — This category includes informational elements such as artifact version,
checksum, checksum algorithm etc. and s used by TOSCA Orchestrator to select the correct artifact
processor for the artifact. These informational elements are captured in TOSCA as keywords for the
artifact.

Properties processed by artifact processor - Some properties are not processed by the Orchestrator, but
passed on to the artifact processor to assist with proper processing of the artifact. These informational
elements are described through artifact properties.

3.3.7.2 Artifact definition

An artifact definition defines a named, typed file that can be associated with Node Type or Node
Template and used by orchestration engine to facilitate deployment and implementation of interface
operations.

3.3.7.2.1 Keynames

The following is the list of recognized keynames for a TOSCA artifact definition when using the extended
notation:

Keyname Required | Type Description
type yes string The required artifact type for the artifact definition.
file yes string The required URI string (relative or absolute) which can be used to

locate the artifact’s file.

repository no string The optional name of the repository definition which contains the
location of the external repository that contains the artifact. The
artifact is expected to be referenceable by its file URI within the

repository.
description no description The optional description for the artifact definition.
deploy_path no string The file path the associated file will be deployed on within the target

node’s container.

artifact_version no string The version of this artifact. One use of this artifact_version is to
declare the particular version of this artifact type, in addition to its
mime_type (that is declared in the artifact type definition). Together
with the mime_type it may be used to select a particular artifact
processor for this artifact. For example a python interpreter that can
interpret python version 2.7.0

checksum no string The checksum used to validate the integrity of the artifact.

checksum_algorithm | no string Algorithm used to calculate the artifact checksum (e.g. MD5, SHA
[Ref]). Shall be specified if checksum is specified for an artifact.

properties no map of The optional map of property assignments associated with the
property artifact.
assignments

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 87 of 165

http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

3.3.7.2.2 Grammar

Artifact definitions have one of the following grammars:

3.3.7.2.2.1 Short notation

The following single-line grammar may be used when the artifact’s type and mime type can be inferred
from the file URI:

<artifact name>: <artifact file URI>

3.3.7.2.2.2 Extended notation:

The following multi-line grammar may be used when the artifact's definition’s type and mime type need to
be explicitly declared:

<artifact name>:
description: <artifact description>
type: <artifact type name>
file: <artifact file URI>
repository: <artifact repository name>
deploy path: <file deployment path>
version: <artifact version>
checksum: <artifact checksum>
checksum algorithm: <artifact checksum algorithm>
properties: <property assignments>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

e artifact_name: represents the required symbolic name of the artifact as a string.

o artifact_description: represents the optional description for the artifact.

o artifact_type name: represents the required artifact type the artifact definition is based upon.

o artifact_file_URI: represents the required URI string (relative or absolute) which can be used to
locate the artifact’s file.

e artifact_repository_name: represents the optional name of the repository definition to use to retrieve
the associated artifact (file) from.

o file_deployement_path: represents the optional path the artifact_file_ URI will be copied into within the
target node’s container.

e artifact_version: represents the version of artifact
o artifact_checksum: represents the checksum of the Artifact

o artifact_checksum_algorithm:represents the algorithm for verifying the checksum. Shall be specified if
checksum is specified

e properties: represents an optional map of property assignments associated with the artifact

3.3.7.2.3 Examples

The following represents an artifact definition:

my file artifact: ../my apps files/operation artifact.txt

The following example represents an artifact definition with property assignments:

artifacts:
Sw_image:
description: Image for virtual machine
type: tosca.artifacts.Deployment.Image.VM

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 88 of 165

file:
http://10.10.86.141/images/Juniper vSRX 15.1x49 D80 preconfigured.gcow2

checksum: bad4llcafee2f0£702572369dalb765e2
version: 3.2
checksum algorithm: MD5
properties:

name: VSRX

container format: BARE

disk format: QCOW2

min disk: 1 GB

size: 649 MB

3.4 Properties, Attributes, and Parameters

This section presents data handling in TOSCA via properties, attributes and parameters. The type of the
values they contain can be divided in primitive types (either referenced from YAML or defined in TOSCA)
or complex data types that can be defined themselves in the TOSCA service template.

3.4.1 Primitive types

This clause describes the primitive types that are used for declaring normative properties, parameters
and grammar elements throughout this specification.

3.4.1.1 Referenced YAML Types
Many of the types we use in this profile are built-in types from the YAML 1.2 specification (i.e., those
identified by the “tag:yaml.org,2002" version tag) [YAML-1.2].

The following table declares the valid YAML type URIs and aliases that SHALL be used when possible
when defining parameters or properties within TOSCA Service Templates using this specification:

Valid aliases Type URI

string tag:yaml.org,2002:str (default)

integer tag:yaml.org,2002:int

float tag:yaml.org,2002:float

boolean tag:yaml.org,2002:bool (i.e., a value either ‘true’ or ‘false’)
timestamp tag:yaml.org,2002:timestamp [YAML-TS-1.1]

null tag:yaml.org,2002:null

3.4.1.1.1 Notes

e The “string” type is the default type when not specified on a parameter or property declaration.

e While YAML supports further type aliases, such as “str” for “string”, the TOSCA specification
promotes the fully expressed alias name for clarity.

3.4.1.2 TOSCA version

TOSCA supports the concept of “reuse” of type definitions, as well as template definitions which could be
version and change over time. It is important to provide a reliable, normative means to represent a
version string which enables the comparison and management of types and templates over time.
Therefore, the TOSCA TC intends to provide a normative version type (string) for this purpose in future
Working Drafts of this specification.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 89 of 165

http://10.10.86.141/images/Juniper_vSRX_15.1x49_D80_preconfigured.qcow2
http://www.yaml.org/spec/1.2/spec.html

Shorthand Name version

Type Qualified tosca:version
Name

3.4.1.2.1 Grammar

TOSCA version strings have the following grammar:
<major_version>.<minor_version>[.<fix_version>[.<qualifier>[-<build_version]]]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e major_version: is a required integer value greater than or equal to 0 (zero)

e minor_version: is a required integer value greater than or equal to O (zero).

o fix_version: is an optional integer value greater than or equal to 0 (zero).

e qualifier; is an optional string that indicates a named, pre-release version of the associated code that
has been derived from the version of the code identified by the combination major_version,
minor_version and fix_version numbers.

e build_version: is an optional integer value greater than or equal to O (zero) that can be used to further
qualify different build versions of the code that has the same qualifer_string.

3.4.1.2.2 Version Comparison

e When comparing TOSCA versions, all component versions (i.e., major, minor and fix) are compared
in sequence from left to right.

e TOSCA versions that include the optional qualifier are considered older than those without a qualifier.

e TOSCA versions with the same major, minor, and fix versions and have the same qualifier string, but
with different build versions can be compared based upon the build version.

e Qualifier strings are considered domain-specific. Therefore, this specification makes no
recommendation on how to compare TOSCA versions with the same major, minor and fix versions,
but with different qualifiers strings and simply considers them different named branches derived from
the same code.

3.4.1.2.3 Examples

Examples of valid TOSCA version strings:

basic version strings
6.1
2.0.1

version string with optional qualifier
.1.0.beta

w

version string with optional qualifier and build version
.0.0.alpha-10

=

3.4.1.2.4 Notes

o [Maven-Version] The TOSCA version type is compatible with the Apache Maven versioning policy.

3.4.1.2.5 Additional Requirements

e Aversion value of zero (i.e., ‘0’, ‘0.0", or ‘0.0.0") SHALL indicate there no version provided.
e A version value of zero used with any qualifiers SHALL NOT be valid.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 90 of 165

3.4.1.3 TOSCA range type

The range type can be used to define numeric ranges with a lower and upper boundary. For example, this
allows for specifying a range of ports to be opened in a firewall.

Shorthand Name range
Type Qualified tosca:range
Name

3.4.1.3.1 Grammar

TOSCA range values have the following grammar:
[<lower_bound>, <upper_bound>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e lower_bound: is a required integer value that denotes the lower boundary of the range.

e upper_bound: is a required integer value that denotes the upper boundary of the range. This value
MUST be greater than or equal to lower_bound.

3.4.1.3.2 Keywords
The following Keywords may be used in the TOSCA range type:

Keyword Applicable | Description
Types

UNBOUNDED | scalar Used to represent an unbounded upper bounds (positive) value in a set for a scalar type.

3.4.1.3.3 Examples

Example of a node template property with a range value:

numeric range between 1 and 100
a range property: [1, 100]

a property that has allows any number 0 or greater
num_connections: [0, UNBOUNDED]

3.4.1.4 TOSCA list type

The list type allows for specifying multiple values for a parameter of property. For example, if an
application allows for being configured to listen on multiple ports, a list of ports could be configured using
the list data type.

Note that entries in a list for one property or parameter must be of the same type. The type (for simple
entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective
property definition, attribute definitions, or input or output parameter definitions.

Shorthand Name list
Type Qualified tosca:list
Name

3.4.1.4.1 Grammar

TOSCA lists are essentially normal YAML lists with the following grammars:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 91 of 165

3.4.1.4.1.1 Square bracket notation

[<list_entry 1>, <list_entry 2>, ...]

3.4.1.4.1.2 Bulleted list notation

- <list entry 1>

- <list entry n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:
e <list_entry *>: represents one entry of the list.

3.4.1.4.2 Declaration Examples

3.4.1.4.2.1 List declaration using a simple type

The following example shows a list declaration with an entry schema based upon a simple integer type
(which has additional constraints):

<some entity>:

properties:
listen ports:

type: list

entry schema:
description: listen port entry (simple integer type)
type: integer
constraints:

- max_ length: 128

3.4.1.4.2.2 List declaration using a complex type

The following example shows a list declaration with an entry schema based upon a complex type:

<some entity>:

properties:
products:
type: list
entry schema:
description: Product information entry (complex type) defined
elsewhere
type: ProductInfo

3.4.1.4.3 Definition Examples
These examples show two notation options for defining lists:

e Asingle-line option which is useful for only short lists with simple entries.

e A multi-line option where each list entry is on a separate line; this option is typically useful or more
readable if there is a large number of entries, or if the entries are complex.

3.4.1.4.3.1 Square bracket notation

listen ports: [80, 8080]

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 92 of 165

3.4.1.4.3.2 Bulleted list notation

listen ports:
- 80
- 8080

3.4.1.5 TOSCA map type

The map type allows for specifying multiple values for a parameter of property as a map. In contrast to
the list type, where each entry can only be addressed by its index in the list, entries in a map are named
elements that can be addressed by their keys.

Note that entries in a map for one property or parameter must be of the same type. The type (for simple
entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective
property definition, attribute definition, or input or output parameter definition. In addition, the keys that
identify entries in a map must be of the same type as well. The type of these keys is defined by the
key_schema attribute of the respective property_definition, attribute_definition, or input or output
parameter_definition. If the key_schema is not specified, keys are assumed to be of type string.

Shorthand Name map
Type Qualified tosca:map
Name

3.4.1.5.1 Grammar

TOSCA maps are normal YAML dictionaries with following grammar:

3.4.1.5.1.1 Single-line grammar

{ <entry key 1>: <entry value 1>, ..., <entry key n>: <entry value n> }

3.4.1.5.1.2 Multi-line grammar

<entry key 1>: <entry value 1>

<entry key n>: <entry value n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

e entry_key *: is the required key for an entry in the map
e entry_value_*: is the value of the respective entry in the map

3.4.1.5.2 Declaration Examples

3.4.1.5.2.1 Map declaration using a simple type

The following example shows a map with an entry schema definition based upon an existing string type
(which has additional constraints):

<some_entity>:

properties:
emails:
type: map
entry schema:
description: basic email address
type: string
constraints:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 93 of 165

- max length: 128

3.4.1.5.2.2 Map declaration using a complex type

The following example shows a map with an entry schema definition for contact information:

<some_entity>:

properties:
contacts:
type: map
entry schema:
description: simple contact information
type: ContactInfo

3.4.1.5.3 Definition Examples

These examples show two notation options for defining maps:
e A single-line option which is useful for only short maps with simple entries.

¢ A multi-line option where each map entry is on a separate line; this option is typically useful or more
readable if there is a large number of entries, or if the entries are complex.

3.4.1.5.3.1 Single-line notation

notation option for shorter maps
user name to id map: { userl: 1001, user2: 1002 }

3.4.1.5.3.2 Multi-line notation

notation for longer maps
user name to id map:
userl: 1001
user2: 1002

3.4.1.6 TOSCA scalar-unit type

The scalar-unit type can be used to define scalar values along with a unit from the list of recognized units
provided below.

3.4.1.6.1 Grammar

TOSCA scalar-unit typed values have the following grammar:
<scalar> <unit>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e scalar: is a required scalar value.
e unit: is a required unit value. The unit value MUST be type-compatible with the scalar.

3.4.1.6.2 Additional requirements
o Whitespace: any number of spaces (including zero or none) SHALL be allowed between the scalar
value and the unit value.

e |t SHALL be considered an error if either the scalar or unit portion is missing on a property or attribute
declaration derived from any scalar-unit type.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 94 of 165

When performing constraint clause evaluation on values of the scalar-unit type, both the scalar value
portion and unit value portion SHALL be compared together (i.e., both are treated as a single value).
For example, if we have a property called storage_size (which is of type scalar-unit) a valid range
constraint would appear as follows:

— storage_size: in_range [4 GB, 20 GB]

where storage_size’s range will be evaluated using both the numeric and unit values (combined
together), in this case ‘4 GB’ and 20 GB’.

3.4.1.6.3 Concrete Types

Shorthand Names scalar-unit.size, scalar-unit.time, scalar-unit.frequency, scalar-unit.bitrate
Type Qualified tosca:scalar-unit.size, tosca:scalar-unit.time
Names

The scalar-unit type grammar is abstract and has four recognized concrete types in TOSCA.:

scalar-unit.size — used to define properties that have scalar values measured in size units.
scalar-unit.time — used to define properties that have scalar values measured in size units.

scalar-unit.frequency — used to define properties that have scalar values measured in units per
second.

scalar-unit.bitrate — used to define properties that have scalar values measured in bits or bytes per
second

These types and their allowed unit values are defined below.

3.4.1.6.4 scalar-unit.size

3.4.1.6.4.1 Recognized Units

Unit Usage Description

B size byte

kB size kilobyte (1000 bytes)

KiB size kibibytes (1024 bytes)

MB size megabyte (1000000 bytes)

MiB size mebibyte (1048576 bytes)

GB size gigabyte (1000000000 bytes)
GiB size gibibytes (1073741824 bytes)
TB size terabyte (1000000000000 bytes)
TiB size tebibyte (1099511627776 bytes)

3.4.1.6.4.2 Examples

TOSCA-v2.0-csd01

Storage size in Gigabytes

23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 95 of 165

properties:
storage size: 10 GB

3.4.1.6.4.3 Notes

The unit values recognized by TOSCA for size-type units are based upon a subset of those defined
by GNU at http://www.gnu.org/software/parted/manual/html|_node/unit.html, which is a non-normative
reference to this specification.

TOSCA treats these unit values as case-insensitive (e.g., a value of ‘kB’, ‘KB’ or ‘kb’ is equivalent),
but it is considered best practice to use the case of these units as prescribed by GNU.

Some cloud providers may not support byte-level granularity for storage size allocations. In those
cases, these values could be treated as desired sizes and actual allocations will be based upon
individual provider capabilities.

3.4.1.6.5 scalar-unit.time

3.4.1.6.5.1 Recoghnized Units

Unit Usage Description
d time days

h time hours

m time minutes

s time seconds

ms time milliseconds
us time microseconds
ns time nanoseconds

3.4.1.6.5.2 Examples

Response time in milliseconds
properties:
respone time: 10 ms

3.4.1.6.5.3 Notes

The unit values recognized by TOSCA for time-type units are based upon a subset of those defined
by International System of Units whose recognized abbreviations are defined within the following
reference:

— http://mww.ewh.ieee.org/soclias/pub-dept/abbreviation.pdf

— This document is a non-normative reference to this specification and intended for publications or
grammars enabled for Latin characters which are not accessible in typical programming
languages

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 96 of 165

http://www.gnu.org/software/parted/manual/html_node/unit.html
http://www.ewh.ieee.org/soc/ias/pub-dept/abbreviation.pdf

3.4.1.6.6 scalar-unit.frequency

3.4.1.6.6.1 Recognized Units

Unit Usage Description

Hz frequency Hertz, or Hz. equals one cycle per second.

kHz frequency Kilohertz, or kHz, equals to 1,000 Hertz

MHz frequency Megahertz, or MHz, equals to 1,000,000 Hertz or 1,000 kHz

GHz frequency Gigahertz, or GHz, equals to 1,000,000,000 Hertz, or 1,000,000 kHz, or 1,000 MHz.

3.4.1.6.6.2 Examples

Processor raw clock rate
properties:

clock rate:

2.4 GHz

3.4.1.6.6.3 Notes

e The value for Hertz (Hz) is the International Standard Unit (ISU) as described by the Bureau
International des Poids et Mesures (BIPM) in the “SI Brochure: The International System of Units (Sl)

[8th edition, 2006, updated in 2014]", http://www.bipm.org/en/publications/si-brochure/

3.4.1.6.7 scalar-unit.bitrate

3.4.1.6.7.1 Recognized Units

Unit Usage Description

bps bitrate bit per second

Kbps bitrate kilobit (1000 bits) per second

Kibps bitrate kibibits (1024 bits) per second

Mbps bitrate megabit (1000000 bits) per second
Mibps bitrate mebibit (1048576 bits) per second

Gbps bitrate gigabit (1000000000 bits) per second
Gibps bitrate gibibits (1073741824 bits) per second
Thps bitrate terabit (1000000000000 bits) per second
Tibps bitrate tebibits (1099511627776 bits) per second
Bps bitrate byte per second

KBps bitrate kilobyte (1000 bytes) per second

KiBps bitrate kibibytes (1024 bytes) per second

MBps bitrate megabyte (1000000 bytes) per second
MiBps bitrate mebibyte (1048576 bytes) per second
GBps bitrate gigabyte (1000000000 bytes) per second
GiBps bitrate gibibytes (1073741824 bytes) per second

TOSCA-v2.0-csd01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 97 of 165

http://www.bipm.org/en/publications/si-brochure/

Unit Usage Description

TBps bitrate terabytes (1000000000000 bits) per second

TiBps bitrate tebibytes (1099511627776 bits) per second

3.4.1.6.7.2 Examples

Somewhere in a node template definition
requirements:
- link:
node filter:
capabilities:
- myLinkable
properties:
bitrate:
- greater or equal: 10 Kbps # 10 * 1000 bits per second

at least

3.4.1.6.7.3 Notes

e Unlike with the scalar-unit.size type, TOSCA treats scalar-unit.bitrate values as case-sensitive (e.g., a
value of ‘KBs’ means kilobyte per second, whereas ‘Kb’ means kilobit per second).

e For comparison purposes, 1 byte is the same as 8 bits.

3.4.2 Data Type

A Data Type definition defines the schema for new named datatypes in TOSCA.

3.4.2.1 Keynames

The Data Type is a TOSCA type entity and has the common keynames listed in Section 3.2.5.2 Common
keynames in type definitions. In addition, the Data Type has the following recognized keynames:

Keyname Required | Type Description

constraints no list of The optional list of sequenced constraint clauses for the Data
constraint clauses | Type.

properties no map of property The optional map property definitions that comprise the schema
definitions for a complex Data Type in TOSCA.
key_schema no schema definition | For data types that derive from the TOSCA map data type, the

optional schema definition for the keys used to identify entries in
properties of this data type.

entry_schema no schema definition | For data types that derive from the TOSCA map or list data types,
the optional schema definition for the entries in properties of this
data type.

3.4.2.2 Grammar

Data Types have the following grammar:

<data type name>:
derived from: <existing type name>
version: <version number>
metadata:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 98 of 165

<map of string>
description: <datatype description>
constraints:

- <type constraints>
properties:

<property definitions>
key schema: <key schema definition>
entry schema: <entry schema definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e data_type_name: represents the required symbolic name of the data type as a string.

e version_number: represents the optional TOSCA version number for the data type.

e datatype_description: represents the optional description for the data type.

e existing_type name: represents the optional name of a valid TOSCA primitive type or data type this
new data type derives from.

e type_constraints: represents the optional list of one or more type-compatible constraint clauses that
restrict the data type.

e property_definitions: represents the optional map of one or more property definitions that provide the
schema for the data type

e property_definitions may not be added to data types derived_from TOSCA primitive types.

o key schema_definition: if the data type derives from the TOSCA map type (i.e existing_type_name is
a map or derives from a map), it represents the optional schema definition for the keys used to
identify entry properties of this type.

e entry_schema_definition: if the data type derives from the TOSCA map or list types (i.e. existing_type
name is a map or list or derives from a map or list), it represents the optional schema definition for the
entries in properties of this type.

3.4.2.3 Derivation rules

During data type derivation the keyname definitions follow these rules:

e constraints: new constraints may be defined; these constraints do not replace the constraints defined
in the parent type but are considered in addition to them.

e properties: existing property definitions may be refined; new property definitions may be added.

e key schema: the key_schema definition may be refined according to schema refinement rules.

e entry_schema: the entry_schema definition may be refined according to schema refinement rules.

3.4.2.4 Additional Requirements

¢ A valid datatype definition MUST have either a valid derived_from declaration or at least one valid
property definition.

e Any constraint clauses SHALL be type-compatible with the type declared by the derived_from
keyname.

o If a properties keyname is provided, it SHALL contain one or more valid property definitions.
e Property definitions may not be added to data types derived from TOSCA primitive types.

3.4.2.5 Examples

The following example represents a Data Type definition based upon an existing string type:

3.4.2.5.1 Defining a complex datatype

define a new complex datatype
mytypes.phonenumber:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 99 of 165

description: my phone number datatype
properties:
countrycode:
type: integer
areacode:
type: integer
number:
type: integer

3.4.2.5.2 Defining a datatype derived from an existing datatype

define a new datatype that derives from existing type and extends it
mytypes.phonenumber.extended:
derived from: mytypes.phonenumber
description: custom phone number type that extends the basic phonenumber
type
properties:
phone description:
type: string
constraints:
- max_ length: 128

3.4.3 Schema definition

All entries in a map or list for one property or parameter must be of the same type. Similarly, all keys for
map entries for one property or parameter must be of the same type as well. A TOSCA schema definition
specifies the type (for simple entries) or schema (for complex entries) for keys and entries in TOSCA set
types such as the TOSCA list or map.

If the schema definition specifies a map key, then the type of the schema must be derived originally from
the string type (which basically ensures that the schema type is a string with additional constraints). As
there is little need for complex keys this caters to more straight-forward and clear specifications.

Schema definitions appear in data type definitions when derived_from a map or list type or in parameter,
property, or attribute definitions of a map or list type.

3.4.3.1 Keynames

The following is the list of recognized keynames for a TOSCA schema definition:

Keyname Required Type Description
type yes string The required data type for the key or entry
If this schema definition is for a map key, then the referred type must
be derived originally from string.
description no description The optional description for the schema.
constraints no list of The optional list of sequenced constraint clauses for the property.
constraint
clauses
key_schema no schema When the schema itself is of type map, the optional schema definition
definition that is used to specify the type of the keys of that map’s entries.
entry_schema no schema When the schema itself is of type map or list, the optional schema
definition definition that is used to specify the type of the entries in that map or
list
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 100 of 165

3.4.3.2 Grammar

Schema definitions have the following grammar:

<schema definition>:
type: <schema type>
description: <schema description>
constraints:
- <schema constraints>
key schema : <key schema definition>
entry schema: <entry schema definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

schema_description: represents the optional description of the schema definition
schema_type: represents the required type name for entries of the specified schema.

schema_constraints: represents the optional list of one or more constraint clauses on on entries of
the specified schema.

key _schema_definition: if the schema_type is map, it represents the optional schema definition for
the keys of that map’s entries.

entry_schema_definition: if the schema_type is map or list, it represents the optional schema
definition for the entries in that map or list.

3.4.3.3 Refinement rules

A schema definition uses the following definition refinement rules when the containing entity type is
derived:

type: must be derived from (or the same as) the type in the schema definition in the parent entity type
definition.

description: a new definition is unrestricted and will overwrite the one inherited from the schema
definition in the parent entity type definition.

constraints: a new definition is unrestricted; these constraints do not replace the constraints defined in
the schema definition in the parent entity type but are considered in addition to them.

key_schema: may be refined (recursively) according to schema refinement rules.
entry_schema: may be refined (recursively) according to schema refinement rules.

3.4.4 Constraint clause definition

A constraint clause defines an operation along with one or more compatible values that can be used to
define a constraint on a property or parameter’s allowed values when it is defined in a TOSCA Service
Template or one of its entities.

3.4.4.1 Operator keynames

The following is the list of recognized operators (keynames) when defining constraint clauses:

Operator Type Value Type Description

equal scalar any Constrains a property or parameter to a value equal to (‘=") the value
declared.

greater_than scalar comparable Constrains a property or parameter to a value greater than (*>’) the

value declared.

greater_or_equal | scalar comparable Constrains a property or parameter to a value greater than or equal to
(>=") the value declared.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 101 of 165

Operator Type Value Type Description

less_than scalar comparable Constrains a property or parameter to a value less than (‘<’) the value
declared.
less_or_equal scalar comparable Constrains a property or parameter to a value less than or equal to

(‘<=") the value declared.

in_range dual comparable, Constrains a property or parameter to a value in range of (inclusive)
scalar range the two values declared.

Note: subclasses or templates of types that declare a property with the
in_range constraint MAY only further restrict the range specified by
the parent type.

valid_values list any Constrains a property or parameter to a value that is in the list of
declared values.

length scalar string, list, Constrains the property or parameter to a value of a given length.
map

min_length scalar string, list, Constrains the property or parameter to a value to a minimum length.
map

max_length scalar string, list, Constrains the property or parameter to a value to a maximum length.
map

pattern regex string Constrains the property or parameter to a value that is allowed by the

provided regular expression.

Note: Future drafts of this specification will detail the use of regular
expressions and reference an appropriate standardized grammar.

schema string string Constrains the property or parameter to a value that is allowed by the
referenced schema.

3.4.4.1.1 Comparable value types

In the Value Type column above, an entry of “comparable” includes integer, float, timestamp, string,
version, and scalar-unit types while an entry of “any” refers to any type allowed in the TOSCA.

3.4.4.2 Schema Constraint purpose

TOSCA recognizes that there are external data-interchange formats that are widely used within Cloud
service APIs and messaging (e.g., JSON, XML, etc.).

The ‘schema’ Constraint was added so that, when TOSCA types utilize types from these externally
defined data (interchange) formats on Properties or Parameters, their corresponding Property definitions’
values can be optionally validated by TOSCA Orchestrators using the schema string provided on this
operator.

3.4.4.3 Additional Requirements

e If no operator is present for a simple scalar-value on a constraint clause, it SHALL be interpreted as
being equivalent to having the “equal”’ operator provided; however, the “equal’ operator may be used
for clarity when expressing a constraint clause.

e The “length” operator SHALL be interpreted mean “size” for set types (i.e., list, map, etc.).

e Values provided by the operands (i.e., values and scalar values) SHALL be type-compatible with
their associated operations.

e Future drafts of this specification will detail the use of regular expressions and reference an
appropriate standardized grammar.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 102 of 165

e The value for the keyname ‘schema’ SHOULD be a string that contains a valid external schema

definition that matches the corresponding Property definitions type.

— When a valid ‘schema’ value is provided on a Property definition, a TOSCA Orchestrator MAY

choose to use the contained schema definition for validation.

3.4.4.4 Grammar

Constraint clauses have one of the following grammars:

Scalar grammar
<operator>: <scalar value>

Dual scalar grammar
<operator>: [<scalar value 1>, <scalar value 2>]

List grammar
<operator>: [<value 1>, <value 2>, ..., <value n>]

Regular expression (regex) grammar
pattern: <regular expression value>

Schema grammar
schema: <schema definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e operator: represents a required operator from the specified list shown above in section “Operator

keynames”.

e scalar_value, scalar_value_*: represents a required scalar (or atomic quantity) that can hold only one
value at a time. This will be a value of a primitive type, such as an integer or string that is allowed by

this specification.

e value_*: represents a required value of the operator that is not limited to scalars.
e reqular_expression_value: represents a regular expression (string) value.

e schema_definition: represents a schema definition as a string.

3.4.4.5 Examples

Constraint clauses used on parameter or property definitions:

equal
equal: 2

greater than
greater than: 1

greater or equal
greater or equal: 2

less_ than
less than: 5

less or equal
less or equal: 4

in range
in range: [1, 4]

valid values
valid values: [1, 2, 4]
specific length (in characters)

TOSCA-v2.0-csd01
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 103 of 165

length: 32

min length (in characters)
min length: 8

max length (in characters)
max length: 64

schema
schema: <
{
Some schema syntax that matches corresponding property or parameter.

}

3.4.5 Property definition

A property definition defines a named, typed value and related data that can be associated with an entity
defined in this specification (e.g., Node Types, Relationship Types, Capability Types, etc.). Properties are
used by template authors to provide input values to TOSCA entities which indicate their “desired state”
when they are instantiated. The value of a property can be retrieved using the get_property function
within TOSCA Service Templates.

3.4.5.1 Attribute and Property reflection

The actual state of the entity, at any point in its lifecycle once instantiated, is reflected by an attribute.
TOSCA orchestrators automatically create an attribute for every declared property (with the same
symbolic name) to allow introspection of both the desired state (property) and actual state (attribute). If an
attribute is reflected from a property, its initial value is the value of the reflected property.

3.4.5.2 Keynames

The following is the list of recognized keynames for a TOSCA property definition:

Keyname Required | Type Constraints Description
type yes string None The required data type for the property.
description no description None The optional description for the property.
required no boolean default: true An optional key that declares a property as required
(true) or not (false).
default no <any> None An optional key that may provide a value to be used
as a default if not provided by another means.
value no <any> None An optional key that may provide a fixed value to be
used. A property that has a fixed value provided (as
part of a definition or refinement) cannot be subject
to a further refinement or assignment. That is, a fixed
value cannot be changed.
status no string default: The optional status of the property relative to the
supported specification or implementation. See table below for
valid values.
constraints no list of None The optional list of sequenced constraint clauses for
constraint the property.
clauses

TOSCA-v2.0-csd01
Standards Track Work Product

23 April 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 104 of 165

Keyname Required | Type Constraints | Description
key_schema no schema None The optional schema definition for the keys used to
definition identify entries in properties of type TOSCA map.
entry_schema | no schema None The optional schema definition for the entries in
definition properties of TOSCA set types such as list or map.
external- no string None The optional key that contains a schema definition
schema that TOSCA Orchestrators MAY use for validation
when the “type” key’s value indicates an External
schema (e.g., “json”).
See section “External schema” below for further
explanation and usage.
metadata no map of string | None Defines a section used to declare additional metadata
information.

3.4.5.3 Status values

The following property status values are supported:

Value Description
supported Indicates the property is supported. This is the default value for all property definitions.
unsupported Indicates the property is not supported.

experimental

Indicates the property is experimental and has no official standing.

deprecated

Indicates the property has been deprecated by a new specification version.

3.4.5.4 Grammar

Property definitions have the following grammar:

<property name>:

type:

<property type>

description: <property description>
required: <property required>
default: <default value>

value: <fixed value>

status: <status value>

constraints:

- <property constraints>
key schema <key schema definition>
entry schema: <entry schema definition>
metadata:

<metadata map>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e property_name: represents the required symbolic name of the property as a string.

e property_description: represents the optional description of the property.
e property_type: represents the required data type of the property.

e property_required: represents an optional boolean value (true or false) indicating whether or not the
property is required. If this keyname is not present on a property definition, then the property SHALL

be considered required (i.e., true) by default.

TOSCA-v2.0-csd01
Standards Track Work Product

default_value: contains a type-compatible value that is used as a default value if a value is not
provided by another means (via the fixed_value definition or via property assignment);

23 April 2020
Page 105 of 165

Copyright © OASIS Open 2020. All Rights Reserved.

o the default_value is irrelevant for properties that are not required (i.e. property_required is “false”)
as they will stay undefined.

fixed_value: contains a type-compatible value that may be defined during property definition or
refinement to set and fix the value of the property

e note that a fixed value cannot be changed; once defined, the property cannot be further refined or
assigned. Thus, fixed value definitions should be avoided in data_type definitions.

status_value: a string that contains a keyword that indicates the status of the property relative to the
specification or implementation.

property_constraints: represents the optional list of one or more sequenced constraint clauses on the
property definition.

key_ schema_definition: if the property type is map, represents the optional schema definition for the
keys used to identify entries in that map.

entry_schema_definition: if the property_type is map or list, represents the optional schema definition
for the entries in that map or list.

metadata_map: represents the optional map of string.

3.4.5.5 Additional Requirements

Implementations of TOSCA SHALL automatically reflect (i.e., make available) any property defined
on an entity as an attribute of the entity with the same name as the property.

A property SHALL be considered required by default (i.e., as if the required keyname on the definition
is set to true) unless the definition’s required keyname is explicitly set to false.

The value provided on a property definition’s default keyname SHALL be type compatible with the
type declared on the definition’s type keyname.

Constraints of a property definition SHALL be type-compatible with the type defined for that definition.

If a key_schema or entry_schema keyname is provided, its value (string) MUST represent a valid
schema definition that matches the property type (i.e. the property type as defined by the type
keyword must be the same as or derived originally from map (for key_schema) or map or list (for
entry_schema).

TOSCA Orchestrators MAY choose to validate the value of the ‘'schema’ keyname in accordance with
the corresponding schema specifcation for any recognized external types.

3.4.5.6 Refinement rules

A property definition within data, capability, node, relationship, group, policy, and artifact types (including
capability definitions in node types) uses the following refinement rules when the containing entity type is
derived:

type: must be derived from (or the same as) the type in the property definition in the parent entity type
definition.

description: a new definition is unrestricted and will overwrite the one inherited from the property
definition in the parent entity type definition.

required: if defined to “false” in the property definition parent entity type it may be redefined to “true”;
note that if undefined it is automatically considered as being defined to “true”.

default: a new definition is unrestricted and will overwrite the one inherited from the property definition
in the parent entity type definition.

value: if undefined in the property definition in the parent entity type, it may be defined to any type-
compatible value; once defined, the property cannot be further refined or assigned.

status: a new definition is unrestricted and will overwrite the one inherited from the property definition
in the parent entity type definition.

constraints: a new definition is unrestricted; these constraints do not replace the constraints defined in
the property definition in the parent entity type but are considered in addition to them.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 106 of 165

o key schema: if defined in the property definition in the parent entity type it may be refined according
to schema refinement rules.

e entry_schema: if defined in the property definition in the parent entity type it may be refined according
to schema refinement rules.

e metadata: a new definition is unrestricted and will overwrite the one inherited from the property
definition in the parent entity type definition.

3.4.5.7 Examples

The following represents an example of a property definition with constraints:

properties:
num_cpus:
type: integer
description: Number of CPUs requested for a software node instance.
default: 1
required: true
constraints:
- valid values: [1, 2, 4, 8]

The following shows an example of a property refinement. Consider the definition of an Endpoint
capability type:

tosca.capabilities.Endpoint:
derived from: tosca.capabilities.Root
properties:
protocol:
type: string
required: true
default: tcp
port:
type: PortDef
required: false
secures
type: boolean
required: false
default: false
Other property definitions omitted for brevity

The Endpoint. Admin capability type refines the secure property of the Endpoint capability type from which
it derives by forcing its value to always be true:

tosca.capabilities.Endpoint.Admin:
derived from: tosca.capabilities.Endpoint
Change Endpoint secure indicator to true from its default of false
properties:
secure: true

3.4.6 Property assignment

This section defines the grammar for assigning values to named properties within TOSCA templates.
3.4.6.1 Keynames

The TOSCA property assignment has no keynames.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 107 of 165

3.4.6.2 Grammar

Property assignments have the following grammar:

3.4.6.2.1 Short notation:

The following single-line grammar may be used when a simple value assignment is needed:

<property name>: <property value> | { <property value expression> }

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e property_name: represents the name of a property that will be used to select a property definition with
the same name within on a TOSCA entity (e.g., Node Template, Relationship Template, etc.) which is
declared in its declared type (e.g., a Node Type, Node Template, Capability Type, etc.).

e property_value, property_value_expression: represent the type-compatible value to assign to the
property. Property values may be provided as the result from the evaluation of an expression or a
function.

3.4.6.3 Additional Requirements

o Properties that have a (fixed) value defined during their definition or during a subsequent refinement
may not be assigned (as their value is already set).

o If arequired property has no value defined or assigned, its default value is assigned

¢ A non-required property that is not assigned it stays undefined, thus the default keyname is irrelevant
for a non-required property.

3.4.7 Attribute definition

An attribute definition defines a named, typed value that can be associated with an entity defined in this
specification (e.g., a Node, Relationship or Capability Type). Specifically, it is used to expose the “actual
state” of some property of a TOSCA entity after it has been deployed and instantiated (as set by the
TOSCA orchestrator). Attribute values can be retrieved via the get_attribute function from the instance
model and used as values to other entities within TOSCA Service Templates.

3.4.7.1 Attribute and Property reflection

The actual state of the entity, at any point in its lifecycle once instantiated, is reflected by an attribute.
TOSCA orchestrators automatically create an attribute for every declared property (with the same
symbolic name) to allow introspection of both the desired state (property) and actual state (attribute). If an
attribute is reflected from a property, its initial value is the value of the reflected property.

3.4.7.2 Keynames

The following is the list of recognized keynames for a TOSCA attribute definition:

Keyname Required | Type Constraints Description
type yes string None The required data type for the
attribute.
description no description None The optional description for the
attribute.
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 108 of 165

Keyname Required | Type Constraints Description

default no <any> None An optional key that may provide a
value to be used as a default if not
provided by another means.

This value SHALL be type compatible
with the type declared by the property
definition’s type keyname.

status no string default: The optional status of the attribute
supported relative to the specification or
implementation. See supported status
values .
key_schema No schema None The optional schema definition for the
definition keys used to identify entries in

attributes of type TOSCA map.

entry_schema no schema None The optional schema definition for the
definition entries in attributes of TOSCA set types
such as list or map.

metadata no map of string None Defines a section used to declare
additional metadata information.

3.4.7.3 Grammar

Attribute definitions have the following grammar:

attributes:
<attribute name>:
type: <attribute type>
description: <attribute description>
default: <default value>
status: <status value>
key schema : <key schema definition>
entry schema: <entry schema definition>
metadata:
<metadata map>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

attribute_name: represents the required symbolic name of the attribute as a string.
attribute_type: represents the required data type of the attribute.
attribute_description: represents the optional description of the attribute.

default_value: contains a type-compatible value that may be used as a default if not provided by
another means.

status_value: contains a value indicating the attribute’s status relative to the specification version
(e.g., supported, deprecated, etc.); supported status values for this keyname are defined in the
property definition section.

key schema_definition: if the attribute_type is map, represents the optional schema definition for the
keys used to identify entries in that map.

entry_schema_definition: if the attribute_type is map or list, represents the optional schema definition
for the entries in that map or list.

metadata_map: represents the optional map of string.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 109 of 165

3.4.7.4 Refinement rules

An attribute definition within data, capability, node, relationship, and group types (including capability
definitions in node types) uses the following refinement rules when the containing entity type is derived:

e type: must be derived from (or the same as) the type in the property definition in the parent entity type
definition.

e description: a new definition is unrestricted and will overwrite the one inherited from the property
definition in the parent entity type definition.

e default: a new definition is unrestricted and will overwrite the one inherited from the property definition
in the parent entity type definition.

e status: a new definition is unrestricted and will overwrite the one inherited from the property definition
in the parent entity type definition.

e key schema: if defined in the property definition in the parent entity type it may be refined according
to schema refinement rules.

e entry_schema: if defined in the property definition in the parent entity type it may be refined according
to schema refinement rules.

¢ metadata: a new definition is unrestricted and will overwrite the one inherited from the property
definition in the parent entity type definition

3.4.7.5 Additional Requirements

e |n addition to any explicitly defined attributes on a TOSCA entity (e.g., Node Type, Relationship Type,
etc.), implementations of TOSCA MUST automatically reflect (i.e., make available) any property
defined on an entity as an attribute of the entity with the same name as the property.

¢ Values for the default keyname MUST be derived or calculated from other attribute or operation
output values (that reflect the actual state of the instance of the corresponding resource) and not
hard-coded or derived from a property settings or inputs (i.e., desired state).

3.4.7.6 Notes

o Attribute definitions are very similar to Property definitions; however, properties of entities reflect an
input that carries the template author’s requested or desired value (i.e., desired state) which the
orchestrator (attempts to) use when instantiating the entity whereas attributes reflect the actual value
(i.e., actual state) that provides the actual instantiated value.

e For example, a property can be used to request the IP address of a node using a property
(setting); however, the actual IP address after the node is instantiated may by different and made
available by an attribute.

3.4.7.7 Example

The following represents a required attribute definition:

actual cpus:
type: integer
description: Actual number of CPUs allocated to the node instance.

3.4.8 Attribute assignment

This section defines the grammar for assigning values to named attributes within TOSCA templates.

3.4.8.1 Keynames

The TOSCA attribute assignment has no keynames.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 110 of 165

3.4.8.2 Grammar

Attribute assignments have the following grammar:

3.4.8.2.1 Short notation:

The following single-line grammar may be used when a simple value assignment is needed:

<attribute name>: <attribute value> | { <attribute value expression> }

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e attribute_name: represents the name of an attribute that will be used to select an attribute definition
with the same name within on a TOSCA entity (e.g., Node Template, Relationship Template, etc.)
which is declared (or reflected from a Property definition) in its declared type (e.g., a Node Type,
Node Template, Capability Type, etc.).

e attribute_value, attribute_value_expresssion: represent the type-compatible value to assign to the
attribute. Attribute values may be provided as the result from the evaluation of an expression or a
function.

3.4.8.3 Additional requirements

e Attribute values MAY be provided by the underlying implementation at runtime when requested by the
get_attribute function or it MAY be provided through the evaluation of expressions and/or functions
that derive the values from other TOSCA attributes (also at runtime).

3.4.9 Parameter definition

A parameter definition defines a named, typed value and related data and may be used to exchange
values between the TOSCA orchestrator and the external world. Such values may be

e inputs and outputs of interface operations and notifications
e inputs and outputs of workflows
e inputs and outputs of service templates

From the perspective of the TOSCA orchestrator such parameters are either “incoming” (i.e. transferring a
value from the external world to the orchestrator) or “outgoing” (transferring a value from the orchestrator
to the external world). Thus:

e outgoing parameters are:
— template outputs
— internal workflow outputs
— external workflow inputs
— operation inputs

e incoming parameters are:

template inputs

internal workflow inputs

external workflow outputs

operation outputs

notification outputs

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 111 of 165

An “outgoing” parameter definition is essentially the same as a TOSCA property definition, however it
may optionally inherit the data type of the value assigned to it rather than have an explicit data type
defined.

An “incoming” parameter definition may define an attribute mapping of the parameter value to an attribute
of a node. Optionally, it may inherit the data type of the attribute it is mapped to, rather than have an
explicit data type defined for it.

3.4.9.1 Keynames

The TOSCA parameter definition has all the keynames of a TOSCA property definition with the following
additional or changed keynames:

Keyname Required | Type Description

type no string The data type of the parameter.

Note: This keyname is required for a TOSCA Property definition but is not
required for a TOSCA Parameter definition.

value no <any> The type-compatible value to assign to the parameter. Parameter values
may be provided as the result from the evaluation of an expression or a
function. May only be defined for outgoing parameters. Mutually
exclusive with the “mapping” keyname.

mapping no attribute A mapping that specifies the node or relationship attribute into which the
selection returned output value must be stored. May only be defined for incoming
format parameters. Mutually exclusive with the “value” keyname.

3.4.9.2 Grammar

Parameter definitions have the following grammar:

<parameter name>:
type: <parameter type>
description: <parameter description>
value: <parameter value> | { <parameter value expression> }
required: <parameter required>
default: <parameter default value>
status: <status_ value>
constraints:

- <parameter constraints>

key schema : <key schema definition>
entry schema: <entry schema definition>
mapping: <attribute selection form>

In addition, the following single-line grammar is supported when only a fixed value needs to be provided:

<parameter name>: <parameter value> | { <parameter value expression> }

This single-line grammar is equivalent to the following:

<parameter name>:
value : <parameter value> | { <parameter value expression> }

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e parameter_name: represents the required symbolic name of the parameter as a string.
e parameter_description: represents the optional description of the parameter.

e parameter_type: represents the optional data type of the parameter. Note, this keyname is required
for a TOSCA Property definition, but is not for a TOSCA Parameter definition.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 112 of 165

e parameter_value, parameter_value_expresssion: represent the type-compatible value to assign to the
parameter. Parameter values may be provided as the result from the evaluation of an expression or
a function.

e once the value keyname is defined, the property cannot be further refined or assigned.

e the value keyname is relevant only for “outgoing” parameter definitions and SHOULD NOT be
defined in “incoming” parameter definitions.

e parameter_required: represents an optional boolean value (true or false) indicating whether or not the
parameter is required. If this keyname is not present on a parameter definition, then the property
SHALL be considered required (i.e., true) by default.

e default_value: contains a type-compatible value that may be used as a default if not provided by other
means.

e the default keyname is irrelevant for properties that are not required (i.e. property_required is
“false”) as they will stay undefined.

e status_value: a string that contains a keyword that indicates the status of the parameter relative to the
specification or implementation.

e parameter_constraints: represents the optional list of one or more sequenced constraint clauses on
the parameter definition.

o key schema_definition: if the parameter_type is map, represents the optional schema definition for
the keys used to identify entries in that map.

o entry_schema_definition: if the parameter_type is map or list, represents the optional schema
definition for the entries in that map or list.

o attribute_selection_form: a list that corresponds to a valid attribute_selection_format; the parameter is
mapped onto an attribute of the containing entity

¢ the mapping keyname is relevant only for “incoming” parameter definitions and SHOULD NOT be
defined in “outgoing” parameter definitions.

3.4.9.3 Additional Requirements
e A parameter SHALL be considered required by default (i.e., as if the required keyname on the
definition is set to true) unless the definition’s required keyname is explicitly set to false.

e The value provided on a parameter definition’s default keyname SHALL be type compatible with the
type declared on the definition’s type keyname.

e Constraints of a parameter definition SHALL be type-compatible with the type defined for that
definition.

3.4.9.4 Example

The following represents an example of an input parameter definition with constraints:

inputs:
cpus:
type: integer
description: Number of CPUs for the server.
constraints:
- valid values: [1, 2, 4, 8]

The following represents an example of an (untyped) output parameter definition:

outputs:
server ip:
description: The private IP address of the provisioned server.
value: { get attribute: [my server, private address] }

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 113 of 165

3.4.9.5 Refinement rules
A parameter definition within interface types, interface definitions in node and relationship types, uses the
following refinement rules when the containing entity type is derived:

e type: must be derived from (or the same as) the type in the parameter definition in the parent entity
type definition.

e description: a new definition is unrestricted and will overwrite the one inherited from the parameter
definition in the parent entity type definition.

e required: if defined to “false” in the parameter definition parent entity type it may be redefined to
“true”; note that if undefined it is automatically considered as being defined to “true”.

e default: a new definition is unrestricted and will overwrite the one inherited from the parameter
definition in the parent entity type definition.

e value: if undefined in the parameter definition in the parent entity type, it may be defined to any type-
compatible value; once defined, the parameter cannot be further refined or assigned

¢ the value keyname should be defined only for “outgoing” parameters.

o mapping: if undefined in the parameter definition in the parent entity type, it may be defined to any
type-compatible attribute mapping; once defined, the parameter cannot be further refined or mapped

¢ the value keyname should be defined only for “incoming” parameters.

e status: a new definition is unrestricted and will overwrite the one inherited from the parameter
definition in the parent entity type definition.

e constraints: a new definition is unrestricted; these constraints do not replace the constraints defined in
the parameter definition in the parent entity type but are considered in addition to them.

o key schema: if defined in the parameter definition in the parent entity type it may be refined
according to schema refinement rules.

e entry_schema: if defined in the parameter definition in the parent entity type it may be refined
according to schema refinement rules.

e metadata: a new definition is unrestricted and will overwrite the one inherited from the parameter
definition in the parent entity type definition

3.4.10 Parameter value assignment

This section defines the grammar for assigning values to named “outgoing” parameters in TOSCA
templates.

3.4.10.1 Keynames

The TOSCA parameter value assignment has no keynames.

3.4.10.2 Grammar

Parameter value assignments have the following grammar:

3.4.10.2.1 Short notation:

The following single-line grammar may be used when a simple value assignment is needed:

<parameter name>: <parameter value> | { <parameter value expression> }

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e parameter_name: represents the symbolic name of the parameter to assign; note that in some cases,
even parameters that do not have a corresponding definition in the entity type of the entity containing
them may be assigned (see interface inputs and outputs).

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 114 of 165

e parameter_value, parameter_value_expression: represent the type-compatible value to assign to the
parameter. Parameter values may be provided as the result from the evaluation of an expression or
a function.

3.4.10.3 Additional Requirements

e Parameters that have a (fixed) value defined during their definition or during a subsequent refinement
may not be assigned (as their value is already set).

e If arequired parameter has no value defined or assigned, its default value is assigned

e A non-required parameter that is not assigned it stays undefined, thus the default keyname is
irrelevant for a non-required parameter.

3.4.11 Parameter mapping assignment

A parameter to attribute mapping defines a named “incoming” parameter value (e.g. an output value that
is expected to be returned by an operation implementation) and a mapping that specifies the node or
relationship attribute into which the returned “incoming” parameter value must be stored.

3.4.11.1 Keynames

The TOSCA parameter mapping assignment has no keynames.

3.4.11.2 Grammar

Parameter mapping assignments have the following grammar:

<parameter name>: <attribute selection format>

3.4.11.3 Attribute selection format

The attribute_selection_format is a list of the following format:

[<SELF | SOURCE | TARGET >, <optional capability name>,
<attribute name>, <nested attribute name or index 1>, ...,
<nested attribute name or index or key n>]

The various entities in this grammar are defined as follows:

Parameter Required | Type Description

SELF | SOURCE | TARGET yes string For operation outputs in interfaces on node templates,
the only allowed keyname is SELF: output values must
always be stored into attributes that belong to the node
template that has the interface for which the output
values are returned.

For operation outputs in interfaces on relationship
templates, allowable keynames are SELF, SOURCE, or
TARGET.

<optional_capability_name> no string The optional name of the capability within the specified
node template that contains the attribute into which the
output value must be stored.

<attribute_name> yes string The name of the attribute into which the output value
must be stored.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 115 of 165

Parameter Required | Type Description
<nested_attribute_name_or_index | no string| Some TOSCA attributes are complex (i.e., composed as
_or_key_*> integer | nested structures). These parameters are used to

dereference into the names of these nested structures
when needed.

Some attributes represent list or map types. In these
cases, an index or key may be provided to reference a
specific entry in the list or map (identified by the previous
parameter).

Note that it is possible for multiple operations to define outputs that map onto the same attribute value.
For example, a create operation could include an output value that sets an attribute to an initial value, and
the subsequence configure operation could then update that same attribute to a new value.

It is also possible that a node template assigns a value to an attribute that has an operation output
mapped to it (including a value that is the result of calling an intrinsic function). Orchestrators could use
the assigned value for the attribute as its initial value. After the operation runs that maps an output value
onto that attribute, the orchestrator must then use the updated value, and the value specified in the node
template will no longer be used.

3.5 Substitution

3.5.1 Substitution mapping

A substitution mapping allows a given topology template to be used as an implementation of abstract
node templates of a specific node type. This allows the consumption of complex systems using a
simplified vision.

3.5.1.1 Keynames

Keyname Required | Type Description
node_type yes string The required name of the Node Type the Topology Template is
providing an implementation for.
substitution_filter | no node filter The optional filter that further constrains the abstract node
templates for which this topology template can provide an
implementation.
properties no map of property The optional map of properties mapping allowing to map
mappings properties of the node_type to inputs of the topology template.
attributes no map of attribute The optional map of attribute mappings allowing to map outputs
mappings from the topology template to attributes of the node_type.
capabilities no map of capability | The optional map of capabilities mapping.
mappings
requirements no map of The optional map of requirements mapping.
requirement
mappings
interfaces no map of interfaces | The optional map of interface mapping allows to map an interface
mappings and operations of the node type to implementations that could be
either workflows or node template interfaces/operations.

TOSCA-v2.0-csd01
Standards Track Work Product

23 April 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 116 of 165

3.5.1.2 Grammar

The grammar of the substitution_mapping section is as follows:

node type: <node type name>
substitution filter : <node filter>
properties:

<property mappings>
capabilities:

<capability mappings>
requirements:

<requirement mappings>
attributes:

<attribute mappings>
interfaces:

<interface mappings>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e node_type_name: represents the required Node Type name that the Service Template’s topology is
offering an implementation for.

¢ node_filter: represents the optional node filter that reduces the set of abstract node templates for
which this topology template is an implementation by only substituting for those node templates
whose properties and capabilities satisfy the constraints specified in the node filter.

e properties: represents the <optional> map of properties mappings.

e capability_mappings: represents the <optional> map of capability mappings.

e requirement_mappings: represents the <optional> map of requirement mappings.
o attributes: represents the <optional> map of attributes mappings.

¢ interfaces: represents the <optional> map of interfaces mappings.

3.5.1.3 Examples

3.5.1.4 Additional requirements

e The substitution mapping MUST provide mapping for every property, capability and requirement
defined in the specified <node_type>

3.5.1.5 Notes

e The node_type specified in the substitution mapping SHOULD be abstract (does not provide
implementation for normative operations).

3.5.2 Property mapping

A property mapping allows to map the property of a substituted node type an input of the topology
template.

3.5.2.1 Keynames
The following is the list of recognized keynames for a TOSCA property mapping:

Keyname Required | Type Description
mapping no list of strings An array with 1 string element that references an input of the
topology.
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 117 of 165

Keyname Required | Type Description

value no matching the type This deprecated keyname allows to explicitly assigne a value to this
of this property property. This field is mutually exclusive with the mapping keyname.

3.5.2.2 Grammar

The single-line grammar of a property_mapping is as follows:

<property name>: <property value> # This use is deprecated
<property name>: [<input name>]

The multi-line grammar is as follows :

<property name>:
mapping: [< input name >]
<property name>:
value: <property value> # This use is deprecated

3.5.2.3 Notes

e Single line grammar for a property value assignment is not allowed for properties of type in order to
avoid collision with the mapping single line grammar.

e The property_value mapping grammar has been deprecated. The original intent of the property-to-
constant-value mapping was not to provide a mapping, but rather to present a matching mechanism
to drive selection of the appropriate substituting template when more than one template was available
as a substitution for the abstract node. In that case, a topology template was only a valid candidate
for substitution if the property value in the abstract node template matched the constant value
specified in the property_value mapping for that property. With the introduction of substitution filter
syntax to drive matching, there is no longer a need for the property-to-constant-value mapping
functionality.

e The previous version of the specification allowed direct mappings from properties of the abstract node
template to properties of node templates in the substituting topology template. Support for these
mappings has been deprecated since they would have resulted in unpredictable behavior, for the
following reason. If the substituting template is a valid TOSCA template, then all the (required)
properties of all its node templates must have valid property assignments already defined. If the
substitution mappings of the substituting template include direct property-to-property mappings, the
the substituting template ends up with two conflicting property assignments: one defined in the
substituting template itself, and one defined by the substitution mappings. These conflicting
assignments lead to unpredictable behavior.

3.5.2.4 Additional constraints

e When Input mapping it may be referenced by multiple nodes in the topologies with resulting attributes
values that may differ later on in the various nodes. In any situation, the attribute reflecting the
property of the substituted type will remain a constant value set to the one of the input at deployment
time.

3.5.3 Attribute mapping

An attribute mapping allows to map the attribute of a substituted node type an output of the topology
template.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 118 of 165

3.5.3.1 Keynames

The following is the list of recognized keynames for a TOSCA attribute mapping:

Keyname Required | Type Description
mapping no list of strings An array with 1 string element that references an output of the
topology..

3.5.3.2 Grammar

The single-line grammar of an attribute_mapping is as follows:

<attribute_name>: [<output_name> |

3.5.4 Capability mapping

A capability mapping allows to map the capability of one of the node of the topology template to the
capability of the node type the service template offers an implementation for.

3.5.4.1 Keynames

The following is the list of recognized keynames for a TOSCA capability mapping:

Keyname Required | Type Description

mapping no list of A list of strings with 2 members, the first one being the name of a node
strings (with | template, the second the name of a capability of the specified node
2 members) | template.

properties no map of This field is mutually exclusive with the mapping keyname and allows to
property provide a capability assignment for the template and specify it’s related
assignments | properties.

attributes no map of This field is mutually exclusive with the mapping keyname and allows to
attributes provide a capability assignment for the template and specify it’s related
assignments | attributes.

3.5.4.2 Grammar

The single-line grammar of a capability_mapping is as follows:

<capability name>: [<node template name>, <node template capability name>

]

The multi-line grammar is as follows :

<capability name>:

mapping: [<node template name>, <node template capability name>]
properties:

<property name>: <property value>
attributes:

<attribute name>: <attribute value>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e capability_name: represents the name of the capability as it appears in the Node Type definition for
the Node Type (name) that is declared as the value for on the substitution_mappings’ “node_type”
key.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 119 of 165

e node_template_name: represents a valid name of a Node Template definition (within the same
topology_template declaration as the substitution_mapping is declared).

o node_template_capability_name: represents a valid name of a capability definition within the
<node_template_name> declared in this mapping.

e property_name: represents the name of a property of the capability.

e property_value: represents the value to assign to a property of the capability.
e attribute_name: represents the name a an attribute of the capability.

e attribute_value: represents the value to assign to an attribute of the capability.

3.5.4.3 Additional requirements

¢ Definition of capability assignment in a capability mapping (through properties and attribute
keynames) SHOULD be prohibited for connectivity capabilities as tosca.capabilities.Endpoint.

3.5.5 Requirement mapping

A requirement mapping allows to map the requirement of one of the node of the topology template to the
requirement of the node type the service template offers an implementation for.

3.5.5.1 Keynames

The following is the list of recognized keynames for a TOSCA requirement mapping:

Keyname Required | Type Description

mapping no list of strings | A list of strings with 2 elements, the first one being the name of a node
(2 members) | template, the second the name of a requirement of the specified node

template.

properties no List of This field is mutually exclusive with the mapping keyname and allow to
property provide a requirement for the template and specify it’s related
assignment properties.

attributes no List of This field is mutually exclusive with the mapping keyname and allow to
attributes provide a requirement for the template and specify it’s related
assignment attributes.

3.5.5.2 Grammar

The single-line grammar of a requirement_mapping is as follows:

<requirement name>:

[<node_template name>,
<node template requirement name>]

The multi-line grammar is as follows :

<requirement name>:

mapping: [<node template name>, <node template requirement name>]
properties:

<property name>: <property value>
attributes:

<attribute name>: <attribute value>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

TOSCA-v2.0-csd01
Standards Track Work Product

23 April 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 120 of 165

e requirement_name: represents the name of the requirement as it appears in the Node Type definition
for the Node Type (name) that is declared as the value for on the substitution_mappings’ “node_type”
key.

e node_template_name: represents a valid name of a Node Template definition (within the same
topology_template declaration as the substitution_mapping is declared).

e node_template_requirement_name: represents a valid name of a requirement definition within the
<node_template_name> declared in this mapping.

e property_name: represents the name of a property of the requirement.

e property_value: represents the value to assign to a property of the requirement.
e attribute_name: represents the name of an attribute of the requirement.

e attribute_value: represents the value to assign to an attribute of the requirement.

3.5.5.3 Additional requirements

o Definition of capability assignment in a capability mapping (through properties and attribute
keynames) SHOULD be prohibited for connectivity capabilities as tosca.capabilities.Endpoint.

3.5.6 Interface mapping

An interface mapping allows to map a workflow of the topology template to an operation of the node type
the service template offers an implementation for.

3.5.6.1 Grammar

The grammar of an interface_mapping is as follows:

<interface name>:
<operation name>: <workflow name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

o interface_name: represents the name of the interface as it appears in the Node Type definition for
the Node Type (name) that is declared as the value for on the substitution_mappings’ “node_type”
key. Or the name of a new management interface to add to the generated type.

e operation_name: represents the name of the operation as it appears in the interface type definition.

o workflow_name: represents the name of a workflow of the template to map to the specified
operation.

3.5.6.2 Notes

o Declarative workflow generation will be applied by the TOSCA orchestrator after the topology
template have been substituted. Unless one of the normative operation of the standard interface is
mapped through an interface mapping. In that case the declarative workflow generation will consider
the substitution node as any other node calling the create, configure and start mapped workflows as if
they where single operations.

e Operation implementation being TOSCA workflows the TOSCA orchestrator replace the usual
operation_call activity by an inline activity using the specified workflow.

3.6 Groups and Policies

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 121 of 165

3.6.1 Group Type

A Group Type defines logical grouping types for nodes, typically for different management purposes.
Conceptually, group definitions allow the creation of logical “membership” relationships to nodes in a
service template that are not a part of the application’s explicit requirement dependencies in the topology
template (i.e. those required to actually get the application deployed and running). Instead, such logical
membership allows for the introduction of things such as group management and uniform application of
policies (i.e., requirements that are also not bound to the application itself) to the group’s members.

3.6.1.1 Keynames

The Group Type is a TOSCA type entity and has the common keynames listed in Section 3.2.5.2
Common keynames in type definitions. In addition, the Group Type has the following recognized
keynames:

Keyname Required | Type Description

attributes no map of An optional map of attribute definitions for the Group
attribute definitions Type.

properties no map of An optional map of property definitions for the Group
property definitions Type.

members no list of string An optional list of one or more names of Node Types
that are valid (allowed) as members of the Group
Type.

Note: This can be viewed by TOSCA Orchestrators as
an implied relationship from the listed members
nodes to the group, but one that does not have
operational lifecycle considerations. For example, if
we were to name this as an explicit Relationship Type
we might call this “MemberOf” (group).

3.6.1.2 Grammar

Group Types have one the following grammars:

<group_ type name>:
derived from: <parent group type name>
version: <version number>
metadata:
<map of string>
description: <group description>
attributes
<attribute_definitions>
properties:
<property definitions>
members: [<list of valid member types>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e group_type_name: represents the required symbolic name of the Group Type being declared as a
string.

e parent_group_type_name: represents the name (string) of the Group Type this Group Type definition
derives from (i.e., its “parent” type).

e version_number: represents the optional TOSCA version number for the Group Type.

e group_description: represents the optional description string for the corresponding group_type_name.
o attribute_definitions: represents the optional map of attribute_definitions for the Group Type.

e property_definitions: represents the optional map of property definitions for the Group Type.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 122 of 165

o list_of valid_member_types: represents the optional list of TOSCA types (e.g.,., Node, Capability or
even other Group Types) that are valid member types for being added to (i.e., members of) the Group

Type.

3.6.1.3 Notes

Note that earlier versions of this specification support interface definitions, capability definitions, and
requirement definitions in group types. These definitions have been deprecated in this version based on
the realization that groups in TOSCA only exist for purposes of uniform application of policies to
collections of nodes. Consequently, groups do not have a lifecycle of their own that is independent of the
lifeycle of their members.

3.6.1.4 Additional Requirements

e Group definitions SHOULD NOT be used to define or redefine relationships (dependencies) between
nodes that can be expressed using normative TOSCA Relationships (e.g., HostedOn, ConnectsTo,
etc.) within a TOSCA topology template.

e The list of values associated with the “members” keyname MUST only contain types that or
homogenous (i.e., derive from the same type hierarchy).

3.6.1.5 Example

The following represents a Group Type definition:

group_ types:
mycompany.mytypes.groups.placement:
description: My company’s group type for placing nodes of type Compute
members: [tosca.nodes.Compute]

3.6.2 Group definition
A group definition defines a logical grouping of node templates, typically for management purposes, but is
separate from the application’s topology template.

3.6.2.1 Keynames

The following is the list of recognized keynames for a TOSCA group definition:

Keyname Required | Type Description

type yes string The required name of the group type the group
definition is based upon.

description no description The optional description for the group definition.

metadata no map of string Defines a section used to declare additional

metadata information.

properties no map of An optional map of property value assignments
property for the group definition.
assignments

members no list of string The optional list of one or more node template
names that are members of this group definition.

3.6.2.2 Grammar

Group definitions have one the following grammars:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 123 of 165

<group_ name>:
type: <group type name>
description: <group description>

metadata:
<map of string>
attributes
<attribute_assignments>
properties:
<property assignments>
members: [<list of node templates>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e group_name: represents the required symbolic name of the group as a string.

e group_type_name: represents the name of the Group Type the definition is based upon.

e group_description: contains an optional description of the group.

e attribute_assigments: represents the optional map of attribute_assignments for the group definition
that provide values for attributes defined in its declared Group Type.

e property_assignments: represents the optional map of property assignments for the group definition
that provide values for properties defined in its declared Group Type.

o list_of node_templates: contains the required list of one or more node template names (within the
same topology template) that are members of this logical group.
3.6.2.3 Notes

Note that earlier versions of this specification support interface definitions in group definitions. These
definitions have been deprecated in this version based on the realization that groups in TOSCA only exist
for purposes of uniform application of policies to collections of nodes. Consequently, groups do not have
a lifecycle of their own that is independent of the lifeycle of their members.

3.6.2.4 Additional Requirements

e Group definitions SHOULD NOT be used to define or redefine relationships (dependencies) for an
application that can be expressed using normative TOSCA Relationships within a TOSCA topology
template.

3.6.2.5 Example

The following represents a group definition:

groups:
my app_placement group:
type: tosca.groups.Root
description: My application’s logical component grouping for placement
members: [my web server, my sql database]

3.6.3 Policy Type

A Policy Type defines a type of requirement that affects or governs an application or service’s topology at
some stage of its lifecycle, but is not explicitly part of the topology itself (i.e., it does not prevent the
application or service from being deployed or run if it did not exist).

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 124 of 165

3.6.3.1 Keynames

The Policy Type is a TOSCA type entity and has the common keynames listed in Section 3.2.5.2
Common keynames in type definitions. In addition, the Policy Type has the following recognized
keynames:

Keyname Required | Type Description

properties no map of An optional map of property definitions for the Policy Type.
property
definitions

targets no list of string An optional list of valid Node Types or Group Types the Policy

Type can be applied to.

Note: This can be viewed by TOSCA Orchestrators as an implied
relationship to the target nodes, but one that does not have
operational lifecycle considerations. For example, if we were to
name this as an explicit Relationship Type we might call this
“AppliesTo” (node or group).

triggers no map of trigger An optional map of policy triggers for the Policy Type.
definitions

3.6.3.2 Grammar

Policy Types have the following grammar:

<policy type name>:
derived from: <parent policy type name>
version: <version number>
metadata:
<map of string>
description: <policy description>

properties:

<property definitions>
targets: [<list of valid target types>]
triggers:

<trigger definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e policy_type name: represents the required symbolic name of the Policy Type being declared as a
string.

e parent_policy_type_name: represents the name (string) of the Policy Type this Policy Type definition
derives from (i.e., its “parent” type).

e version_number: represents the optional TOSCA version number for the Policy Type.
e policy_description: represents the optional description string for the corresponding policy_type_name.
e property_definitions: represents the optional map of property definitions for the Policy Type.

o list_of_valid_target_types: represents the optional list of TOSCA types (i.e., Group or Node Types)
that are valid targets for this Policy Type.

o trigger_definitions: represents the optional map of trigger definitions for the policy.

3.6.3.3 Example

The following represents a Policy Type definition:

policy types:
mycompany.mytypes.policies.placement.Container.Linux:
description: My company’s placement policy for linux

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 125 of 165

derived from: tosca.policies.Root

3.6.4 Policy definition

A policy definition defines a policy that can be associated with a TOSCA topology or top-level entity
definition (e.g., group definition, node template, etc.).

3.6.4.1 Keynames

The following is the list of recognized keynames for a TOSCA policy definition:

Keyname Required | Type Description

type yes string The required name of the policy type the policy
definition is based upon.

description no description The optional description for the policy definition.

metadata no map of string Defines a section used to declare additional

metadata information.

properties no map of An optional map of property value assignments
property for the policy definition.
assignments

targets no list of string An optional list of valid Node Templates or Groups
the Policy can be applied to.

triggers no map of trigger An optional map of trigger definitions to invoke
definitions when the policy is applied by an orchestrator
against the associated TOSCA entity.

3.6.4.2 Grammar

Policy definitions have one the following grammars:

<policy name>:

type: <policy type name>
description: <policy description>
metadata:

<map of string>
properties:

<property assignments>
targets: [<list of policy targets>]
triggers:

<trigger definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e policy_name: represents the required symbolic name of the policy as a string.

e policy type name: represents the name of the policy the definition is based upon.

e policy_description: contains an optional description of the policy.

e property_assignments: represents the optional map of property assignments for the policy definition
that provide values for properties defined in its declared Policy Type.

e list_of policy targets: represents the optional list of names of node templates or groups that the
policy is to applied to.

e trigger_definitions: represents the optional map of trigger definitions for the policy.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 126 of 165

3.6.4.3 Example

The following represents a policy definition:

policies:

- my compute placement policy:

tosca.policies.placement

description: Apply my placement policy to my application’s servers
[my server 1, my server 2]

remainder of policy definition left off for brevity

type:

targets:

3.6.5 Trigger definition

A trigger definition defines the event, condition and action that is used to “trigger” a policy it is associated

with.

3.6.5.1 Keynames

The following is the list of recognized keynames for a TOSCA trigger definition:

Keyname Required | Type Description
description no description The optional description string for the trigger.
event yes string The required name of the event that activates the trigger’s
action. A deprecated form of this keyname is “event_type”.
schedule no Timelnterval The optional time interval during which the trigger is valid (i.e.,
during which the declared actions will be processed).
target_filter no event filter The optional filter used to locate the attribute to monitor for
the trigger’s defined condition. This filter helps locate the
TOSCA entity (i.e., node or relationship) or further a specific
capability of that entity that contains the attribute to monitor.
condition no condition clause The optional condition which contains a condition clause
definition definition specifying one or multiple attribute constraint that
can be monitored. Note: this is optional since sometimes the
event occurrence itself is enough to trigger the action.
action yes list of activity The list of sequential activities to be performed when the event
definition is triggered, and the condition is met (i.e. evaluates to true).

3.6.5.2 Additional keynames for the extended condition notation

Keyname Required | Type Description
constraint no condition clause The optional condition which contains a condition clause definition
definition specifying one or multiple attribute constraint that can be

monitored. Note: this is optional since sometimes the event
occurrence itself is enough to trigger the action.

period no scalar-unit.time The optional period to use to evaluate for the condition.

evaluations no integer The optional number of evaluations that must be performed over
the period to assert the condition exists.

method no string The optional statistical method name to use to perform the
evaluation of the condition.

TOSCA-v2.0-csd01

Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 127 of 165

3.6.5.3 Grammar

Trigger definitions have the following grammars:

3.6.5.3.1 Short notation

<trigger name>:
description: <trigger description>
event: <event name>
schedule: <time interval for trigger>
target filter:
<event filter definition>
condition:
<condition clause definition>
action:
- <list of activity definition>

3.6.5.3.2 Extended notation:

<trigger name>:

description: <trigger description>

event: <event name>

schedule: <time interval for trigger>

target filter:
<event filter definition>

condition:
constraint: <condition clause definition>
period: <scalar-unit.time> # e.g., 60 sec

evaluations: <integer> # e.g., 1
method: <string> # e.g., average
action:

- <list of activity definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

trigger_name: represents the required symbolic name of the trigger as a string.
trigger_description: represents the optional description string for the corresponding trigger_name.

event_name: represents the required name of an event associated with an interface notification on
the identified resource (node).

time_interval_for_trigger: represents the optional time interval that the trigger is valid for.

event_filter_definition: represents the optional filter to use to locate the resource (node) or capability
attribute to monitor.

condition_clause_definition: represents one or multiple attribute constraints that can be monitored,
and that used to test for a specific condition on the monitored resource.

list_of activity definition: represents the list of activities that are performed if the event and
(optionally) condition are met. The activity definitions are the same as the ones used in a workflow
step. One could regard these activities as an anonymous workflow that is invoked by this trigger and
is applied to the target(s) of this trigger’s policy.

3.6.6 Event Filter definition

An event filter definition defines criteria for selection of an attribute, for the purpose of monitoring it, within
a TOSCA entity, or one its capabilities.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 128 of 165

3.6.6.1 Keynames

The following is the list of recognized keynames for a TOSCA event filter definition:

Keyname Required | Type Description

node yes string The required name of the node type or template that contains either
the attribute to be monitored or contains the requirement that
references the node that contains the attribute to be monitored.

requirement no string The optional name of the requirement within the filter’s node that
can be used to locate a referenced node that contains an attribute to
monitor.

capability no string The optional name of a capability within the filter’s node or within the

node referenced by its requirement that contains the attribute to
monitor.

3.6.6.2 Grammar

Event filter definitions have following grammar:

node: <node type name> | <node template name>
requirement: <requirement name>
capability: <capability name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e node_type name: represents the required name of the node type that will be used to select (filter) the
node that contains the attribute to monitor or contains the requirement that references another node
that contains the attribute to monitor.

e node_template_name: represents the required name of the node template that will be used to select
(filter) the node that contains the attribute to monitor or contains the requirement that references
another node that contains the attribute to monitor.

e requirement_name: represents the optional name of the requirement that will be used to select (filter)
a referenced node that contains the attribute to monitor.

e capability_name: represents the optional name of a capability that will be used to select (filter) the
attribute to monitor. If a requirement_name is specified, then the capability_name refers to a
capability of the node that is targeted by the requirement.

3.6.7 Condition clause definition

A workflow condition clause definition is used to specify a condition that can be used within a workflow
precondition or workflow filter.

3.6.7.1 Keynames

The following is the list of recognized keynames for a TOSCA workflow condition definition:

Keyname Required | Type Description

and no list of condition An and clause allows to define sub-filter clause definitions that
clause definition must all be evaluated truly so the and clause is considered as true.

or no list of condition An or clause allows to define sub-filter clause definitions where
clause definition one of them must all be evaluated truly so the or clause is
considered as true.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 129 of 165

Keyname Required | Type Description

not no list of condition A not clause allows to define sub-filter clause definitions where
clause definition one or more of them must be evaluated as false.

assert no list of assertion An assert clause defines a list of assertions that are evaluated on
definition entity attributes. Assert acts as an and clause, i.e. every defined
(deprecated) constraint clause must be true for the assertion to be true.

Because assert and and (applied to several direct assertion
clauses) are logically identical, the assert keyname has been
deprecated.

Note: It is allowed to add direct assertion definitions directly to the condition clause definition without
using any of the supported keynames. In that case, an and clause is performed for all direct assertion
definition.

3.6.7.2 Grammar

Condition clause definitions have the following grammars:

3.6.7.2.1 And clause

and: <list of condition clause definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

o list_of_condition_clause_definition: represents the list of condition clauses. All condition clauses
MUST be asserted to true so that the and clause is asserted to true.

3.6.7.2.2 Or clause

or: <list of condition clause definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

o list_of_condition_clause_definition: represents the list of condition clauses. One of the condition
clause have to be asserted to true so that the or clause is asserted to true.

3.6.7.2.3 Not clause

not: <list of condition clause definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

o list_of_condition_clause_definition: represents the list of condition clauses. One of the condition
clause have to be asserted to false so that the not clause is asserted to true.

3.6.7.3 Direct assertion definition

<attribute name>: <list of constraint clauses>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

o attribute_name: represents the name of an attribute defined on the assertion context entity (node
instance, relationship instance, group instance) and from which value will be evaluated against the
defined constraint clauses.

o list_of_constraint_clauses: represents the list of constraint clauses that will be used to validate the
attribute assertion.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 130 of 165

3.6.7.4 Additional Requirement

e Keynames are mutually exclusive, i.e. a filter definition can define only one of the and, or, or not
keynames.

3.6.7.5 Notes

e The TOSCA processor SHOULD perform assertion in the order of the list for every defined condition
clause or direct assertion definition.

3.6.7.6 Example

Following represents a workflow condition clause with a single direct assertion definition:

condition:
- my attribute: [{equal: my value}]

Following represents a workflow condition clause with a direct assertion definition with multiple
constraints:

condition:
- my attribute:
- min length: 8
- max length: 11

Following represents a workflow condition clause with single equals constraints on two different attributes.

condition:
- my attribute: [{equal: my value}]
- my other attribute: [{equal: my other value}]

Note that these two direct assertion constraints are logically and-ed. This means that the following is
logically identical to the previous example:

condition:
- and:
- my attribute: [{equal: my value}]
- my other attribute: [{equal: my other value}]

Following represents a workflow condition clause with an or constraint on two different assertions:

condition:
= @F3
- my attribute: [{equal: my value}]
- my other attribute: [{equal: my other value}]

The following shows an example of the not operator. The condition yields TRUE when the attribute
my_attributel takes any value other than valuel:

condition:
- not:
- my attributel: [{equal: valuel}]}

The following condition yields TRUE when none of the attributes my_attributel and my_attribute2 is equal
to valuel.

condition:
- not:
- and:
- my attributel: [{equal: valuel}]
- my attribute2: [{equal: valuel}]

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 131 of 165

The following condition is a functional equivalent of the previous example:

condition:
= @F3
- not:
- my attributel: [{equal: valuel}]
- not:
- my attribute2: [{equal: valuel}]

Following represents multiple levels of condition clauses with direct assertion definitions to build the
following logic: use http on port 80 or https on port 431;

condition:
= ©I3g

= and:
- protocol: { equal: http }
- port: { equal: 80 }

= and:
- protocol: { equal: https }
- port: { equal: 431 }

3.6.8 Assertion definition

A workflow assertion is used to specify a single condition on a workflow filter definition. The assertion
allows to assert the value of an attribute based on TOSCA constraints.

3.6.8.1 Keynames

The TOSCA workflow assertion definition has no keynames.

3.6.8.2 Grammar

Workflow assertion definitions have the following grammar:
<attribute_name>: <list_of constraint_clauses>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

o attribute_name: represents the name of an attribute defined on the assertion context entity (node
instance, relationship instance, group instance) and from which value will be evaluated against the
defined constraint clauses.

o list_of_constraint_clauses: represents the list of constraint clauses that will be used to validate the
attribute assertion.

3.6.8.3 Example

Following represents a workflow assertion with a single equals constraint:

my attribute: [{equal : my value}]

Following represents a workflow assertion with multiple constraints:

my attribute:
- min length: 8
- max length : 10

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 132 of 165

3.6.9 Activity definitions

An activity defines an operation to be performed in a TOSCA workflow step or in an action body of a
policy trigger. Activity definitions can be of the following types:

o Delegate workflow activity definition:

o Defines the name of the delegate workflow and optional input assignments. This activity requires
the target to be provided by the orchestrator (no-op node or relationship).

e Set state activity definition:
e Sets the state of a node.
e Call operation activity definition:

e Calls an operation defined on a TOSCA interface of a node, relationship or group. The operation
name uses the <interface_name>.<operation_name> notation. Optionally, assignments for the
operation inputs can also be provided. If provided, they will override for this operation call the
operation inputs assignment in the node template.

¢ Inline workflow activity definition:

¢ Inlines another workflow defined in the topology (allowing reusability). The definition includes the
name of a workflow to be inlined and optional workflow input assignments.

3.6.9.1 Delegate workflow activity definition

3.6.9.1.1 Keynames

The following is a list of recognized keynames for a delegate activity definition.

Keyname Required Type Description

Defines the name of the delegate workflow and optional

delegate yes string or empty) .
input assignments.

(see grammar below)) o) .
This activity requires the target to be provided by the

orchestrator (no-op node or relationship).

workflow no string The name of the delegate workflow. Required in the
extended notation.

inputs no map of parameter The optional map of input parameter assignments for the
assignments delegate workflow.

3.6.9.1.2 Grammar

A delegate activity definition has the following grammar. The short notation can be used if no input
assignments are provided.

3.6.9.1.2.1 Short notation

- delegate: <delegate workflow name>

3.6.9.1.2.2 Extended notation

- delegate:
workflow: <delegate workflow name>
inputs:

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 133 of 165

<parameter assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e delegate_workflow_name: represents the name of the workflow of the node provided by the TOSCA
orchestrator

e parameter_assignments: represents the optional map of parameter assignments for passing
parameters as inputs to this workflow delegation.

3.6.9.2 Set state activity definition

Sets the state of the target node.

3.6.9.2.1 Keynames

The following is a list of recognized keynames for a set state activity definition.

Keyname Required Type Description
set_state yes string Value of the node state.

3.6.9.2.2 Grammar

A set state activity definition has the following grammar.
- set_state: <new_node_state>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e new_node_state: represents the state that will be affected to the node once the activity is performed.

3.6.9.3 Call operation activity definition

This activity is used to call an operation on the target node. Operation input assignments can be
optionally provided.

3.6.9.3.1 Keynames

The following is a list of recognized keynames for a call operation activity definition.

Keyname Required Type Description

Defines the opration call. The operation name uses the

call_operation yes string or empty . . .
<interface_name>.<operation_name> notation.

(see grammar below))) o
Optionally, assignments for the operation inputs can also be
provided. If provided, they will override for this operation
call the operation inputs assignment in the node template.

operation no string The name of the operation to call, using the
<interface_name>.<operation_name> notation.

Required in the extended notation.

inputs no map of parameter The optional map of input parameter assignments for the
assignments called operation. Any provided input assignments will
override the operation input assignment in the target node
template for this operation call.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 134 of 165

3.6.9.3.2 Grammar

A call operation activity definition has the following grammar. The short notation can be used if no input
assignments are provided.

3.6.9.3.2.1 Short notation

- call operation: <operation name>

3.6.9.3.2.2 Extended notation

- call operation:
operation: <operation name>
inputs:
<parameter assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e operation_name: represents the name of the operation that will be called during the workflow
execution. The notation used is <interface_sub_name>.<operation_sub_name>, where
interface_sub_name is the interface name and the operation_sub_name is the name of the operation
whitin this interface.

e parameter_assignments: represents the optional map of parameter assignments for passing
parameters as inputs to this workflow delegation.
3.6.9.4 Inline workflow activity definition

This activity is used to inline a workflow in the activities sequence. The definition includes the name of the
inlined workflow and optional input assignments.

3.6.9.4.1 Keynames

The following is a list of recognized keynames for an inline workflow activity definition.

Keyname Required Type Description

inline yes string or empty The definition includes the name of a workflow to be inlined

(see grammar below) and optional workflow input assignments.

workflow no string The name of the inlined workflow. Required in the extended
notation.
inputs no map of The optional map of input parameter assignments for the

parameter inlined workflow.

assignments

3.6.9.4.2 Grammar

An inline workflow activity definition has the following grammar. The short notation can be used if no input
assignments are provided.

3.6.9.4.2.1 Short notation

- inline: <inlined workflow name>

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 135 of 165

3.6.9.4.2.2 Extended notation

- inline:
workflow:

<inlined workflow name>

inputs:
<parameter assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

o inlined_workflow_name: represents the name of the workflow to inline.

e parameter_assignments: represents the optional map of parameter assignments for passing
parameters as inputs to this workflow delegation.

3.6.9.5 Example

The following represents a list of activity definitions (using the short notation):

- delegate:
- set state:

deploy
started

- call operation: tosca.interfaces.node.lifecycle.Standard.start
- inline: my workflow

3.7 Workflows

3.7.1 Imperative Workflow definition

A workflow definition defines an imperative workflow that is associated with a TOSCA topology. A
workflow definition can either include the steps that make up the workflow, or it can refer to an artifact that
expresses the workflow using an external workflow language.

3.7.1.1 Keynames

The following is the list of recognized keynames for a TOSCA workflow definition:

Keyname Required | Type Description

description no description The optional description for the workflow definition.

metadata no map of string Defines a section used to declare additional metadata information.

inputs no map of The optional map of input parameter definitions.
parameter
definitions

preconditions no list of List of preconditions to be validated before the workflow can be
precondition processed.
definitions

steps no map of step An optional map of valid imperative workflow step definitions.
definitions

implementation | no operation The optional definition of an external workflow definition. This
implementation keyname is mutually exclusive with the steps keyname above.
definition

outputs no map of The optional map of attribute mappings that specify workflow
attribute output values and their mappings onto attributes of a node or
mappings relationship defined in the topology.

TOSCA-v2.0-csd01

Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 136 of 165

3.7.1.2 Grammar

Imperative workflow definitions have the following grammar;

<workflow name>:

description: <workflow description>
metadata:

<map of string>
inputs:

<parameter definitions>
preconditions:

- <workflow precondition definition>
steps:

<workflow steps>
implementation:

<operation implementation definitions>
outputs:

<attribute mappings>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

workflow_name:

workflow_description:

parameter_definitions:

workflow_precondition_definition:

workflow_steps:

operation_implementation_definition: represents a full inline definition of an implementation artifact

attribute_mappings: represents the optional map of of attribute_mappings that consists of named
output values returned by operation implementations (i.e. artifacts) and associated mappings that
specify the attribute into which this output value must be stored.

3.7.2 Workflow precondition definition

A workflow condition can be used as a filter or precondition to check if a workflow can be processed or
not based on the state of the instances of a TOSCA topology deployment. When not met, the workflow
will not be triggered.

3.7.2.1 Keynames

The following is the list of recognized keynames for a TOSCA workflow condition definition:

Keyname Required | Type Description

target yes string The target of the precondition (this can be a node template name,
a group name)

target_relationship | no string The optional name of a requirement of the target in case the
precondition has to be processed on a relationship rather than a
node or group. Note that this is applicable only if the target is a

node.
condition no list of condition A list of workflow condition clause definitions. Assertion between
clause elements of the condition are evaluated as an AND condition.
definitions
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 137 of 165

3.7.2.2 Grammar

Workflow precondition definitions have the following grammars:

- target: <target name>
target relationship: <target requirement name>
condition:
<list of condition clause definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e target _name: represents the name of a node template or group in the topology.

e target _requirement_name: represents the name of a requirement of the node template (in case
target_name refers to a node template.

o list_of condition_clause_definition: represents the list of condition clauses to be evaluated. The value
of the resulting condition is evaluated as an AND clause between the different elements.

3.7.3 Workflow step definition

A workflow step allows to define one or multiple sequenced activities in a workflow and how they are

connected to other steps in the workflow. They are the building blocks of a declarative workflow.

3.7.3.1 Keynames

The following is the list of recognized keynames for a TOSCA workflow step definition:

Keyname Required | Type Description

target yes string The target of the step (this can be a node template name, a group
name)

target_relationship | no string The optional name of a requirement of the target in case the step

refers to a relationship rather than a node or group. Note that this
is applicable only if the target is a node.

operation_host no string The node on which operations should be executed (for TOSCA
call_operation activities).
This element is required only for relationships and groups target.

If target is a relationships operation_host is required and
valid_values are SOURCE or TARGET — referring to the relationship
source or target node.

If target is a group operation_host is optional.
If not specified the operation will be triggered on every node of

the group.
If specified the valid_value is a node_type or the name of a node
template.
filter no list of constraint | Filter is a map of attribute name, list of constraint clause that
clauses allows to provide a filtering logic.
activities yes list of activity The list of sequential activities to be performed in this step.
definition
on_success no list of string The optional list of step names to be performed after this one has
been completed with success (all activities has been correctly
processed).
on_failure no list of string The optional list of step names to be called after this one in case
one of the step activity failed.
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 138 of 165

3.7.3.2 Grammar

Workflow step definitions have the following grammars:

steps:

<step name>

target:

<target name>

target relationship: <target requirement name>
operation host: <operation host name>
filter:

activities:

on_success:

on_ failure:

- <list_of_condition_clause_definition>
- <list_of_activity_definition>
- <target step name>

- <target step name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

target_name: represents the name of a node template or group in the topology.

target_requirement_name: represents the name of a requirement of the node template (in case
target_name refers to a node template.

operation_host: the node on which the operation should be executed

list_of _condition_clause_definition: represents a list of condition clause definition.
list_of_activity_definition: represents a list of activity definition

target_step_name: represents the name of another step of the workflow.

3.8 Normative values

3.8.1 Node States

As components (i.e. nodes) of TOSCA applications are deployed, instantiated and orchestrated over their
lifecycle using normative lifecycle operations (see section 5.8 for normative lifecycle definitions) it is
important define normative values for communicating the states of these components normatively
between orchestration and workflow engines and any managers of these applications.

The following table provides the list of recognized node states for TOSCA that will be set by the
orchestrator to describe a node instance’s state:

Node State

Value Transitional | Description

initial no Node is not yet created. Node only exists as a template definition.
creating yes Node is transitioning from initial state to created state.

created no Node software has been installed.

configuring | yes Node is transitioning from created state to configured state.
configured | no Node has been configured prior to being started.

starting yes Node is transitioning from configured state to started state.

TOSCA-v2.0-csd01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 139 of 165

Node State

Value Transitional | Description

started no Node is started.

stopping yes Node is transitioning from its current state to a configured state.

deleting yes Node is transitioning from its current state to one where it is deleted and its state
is no longer tracked by the instance model.

error no Node is in an error state.

3.8.2 Relationship States
Similar to the Node States described in the previous section, Relationships have state relative to their
(normative) lifecycle operations.

The following table provides the list of recognized relationship states for TOSCA that will be set by the
orchestrator to describe a node instance’s state:

Node State
Value Transitional | Description
initial no Relationship is not yet created. Relationship only exists as a template definition.

3.8.2.1 Notes

e Additional states may be defined in future versions of the TOSCA specification.

3.8.3 Directives

The following directive values are defined for this version of TOSCA :

Directive Description

substitute Marks a node template as abstract and instructs the TOSCA Orchestrator to substitute this
node template with an appropriate substituting template.

substitutable This deprecated directive is synonymous to the substitute directive.

select Marks a node template as abstract and instructs the TOSCA Orchestrator to select a node
of this type from its inventory (based on constraints specified in the optional node_filter in
the node template)

selectable This deprecated directive is synonymous to the select directive.

3.8.4 Network Name aliases

The following are recognized values that may be used as aliases to reference types of networks within an
application model without knowing their actual name (or identifier) which may be assigned by the
underlying Cloud platform at runtime.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 140 of 165

Alias value Description

PRIVATE An alias used to reference the first private network within a property or attribute of a Node or
Capability which will be assigned to them by the underlying platform at runtime.

A private network contains IP addresses and ports typically used to listen for incoming traffic
to an application or service from the Intranet and not accessible to the public internet.

PUBLIC An alias used to reference the first public network within a property or attribute of a Node or
Capability which will be assigned to them by the underlying platform at runtime.

A public network contains IP addresses and ports typically used to listen for incoming traffic
to an application or service from the Internet.

3.8.4.1 Usage

These aliases will be used in the tosca.capabilities.Endpoint Capability type (and types derived from it)
within the network_name field for template authors to use to indicate the type of network the Endpoint is
supposed to be assigned an IP address from.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 141 of 165

4 TOSCA functions

Except for the examples, this section is hormative and includes functions that are supported for use
within a TOSCA Service Template.

4.1 Reserved Function Keywords

The following keywords MAY be used in some TOSCA function in place of a TOSCA Node or
Relationship Template name. A TOSCA orchestrator will interpret them at the time the function will be
evaluated (e.g. at runtime) as described in the table below. Note that some keywords are only valid in the
context of a certain TOSCA entity as also denoted in the table.

Keyword | Valid Contexts Description
SELF Node Template or A TOSCA orchestrator will interpret this keyword as the Node or Relationship
Relationship Template Template instance that contains the function at the time the function is
evaluated.

SOURCE Relationship Template only. | A TOSCA orchestrator will interpret this keyword as the Node Template
instance that is at the source end of the relationship that contains the
referencing function.

TARGET Relationship Template only. | A TOSCA orchestrator will interpret this keyword as the Node Template
instance that is at the target end of the relationship that contains the
referencing function.

HOST Node Template only A TOSCA orchestrator will interpret this keyword to refer to the all nodes that
“host” the node using this reference (i.e., as identified by its HostedOn
relationship).

Specifically, TOSCA orchestrators that encounter this keyword when
evaluating the get_attribute or get_property functions SHALL search each
node along the “HostedOn” relationship chain starting at the immediate
node that hosts the node where the function was evaluated (and then that
node’s host node, and so forth) until a match is found or the “HostedOn”
relationship chain ends.

4.2 Environment Variable Conventions

4.2.1 Reserved Environment Variable Names and Usage

TOSCA orchestrators utilize certain reserved keywords in the execution environments that
implementation artifacts for Node or Relationship Templates operations are executed in. They are used to
provide information to these implementation artifacts such as the results of TOSCA function evaluation or
information about the instance model of the TOSCA application

The following keywords are reserved environment variable names in any TOSCA supported execution
environment:

Keyword Valid Contexts Description
TARGETS Relationship Template e For an implementation artifact that is executed in the context of a
only. relationship, this keyword, if present, is used to supply a list of

Node Template instances in a TOSCA application’s instance
model that are currently target of the context relationship.

¢ The value of this environment variable will be a comma-separated
list of identifiers of the single target node instances (i.e., the
tosca_id attribute of the node).

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 142 of 165

Keyword Valid Contexts Description

TARGET Relationship Template e For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, identifies a Node Template
instance in a TOSCA application’s instance model that is a target
of the context relationship, and which is being acted upon in the
current operation.

¢ The value of this environment variable will be the identifier of the
single target node instance (i.e., the tosca_id attribute of the
node).

only.

SOURCES Relationship Template e For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, is used to supply a list of
Node Template instances in a TOSCA application’s instance
model that are currently source of the context relationship.
e The value of this environment variable will be a comma-separated
list of identifiers of the single source node instances (i.e., the
tosca_id attribute of the node).

only.

SOURCE Relationship Template ¢ For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, identifies a Node Template
instance in a TOSCA application’s instance model that is a source
of the context relationship, and which is being acted upon in the
current operation.

¢ The value of this environment variable will be the identifier of the
single source node instance (i.e., the tosca_id attribute of the
node).

only.

For scripts (or implementation artifacts in general) that run in the context of relationship operations, select
properties and attributes of both the relationship itself as well as select properties and attributes of the
source and target node(s) of the relationship can be provided to the environment by declaring respective
operation inputs.

Declared inputs from mapped properties or attributes of the source or target node (selected via the
SOURCE or TARGET keyword) will be provided to the environment as variables having the exact same
name as the inputs. In addition, the same values will be provided for the complete set of source or target
nodes, however prefixed with the ID if the respective nodes. By means of the SOURCES or TARGETS
variables holding the complete set of source or target node IDs, scripts will be able to iterate over
corresponding inputs for each provided ID prefix.

The following example snippet shows an imaginary relationship definition from a load-balancer node to
worker nodes. A script is defined for the add_target operation of the Configure interface of the
relationship, and the ip_address attribute of the target is specified as input to the script:

node templates:
load balancer:
type: some.vendor.LoadBalancer
requirements:
- member:
relationship: some.vendor.LoadBalancerToMember
interfaces:
Configure:
add target:
inputs:
member ip: { get attribute: [TARGET, ip_address] }
implementation: scripts/configure members.py

The add_target operation will be invoked, whenever a new target member is being added to the load-
balancer. With the above inputs declaration, a member_ip environment variable that will hold the IP
address of the target being added will be provided to the configure_members.py script. In addition, the IP
addresses of all current load-balancer members will be provided as environment variables with a naming
scheme of <target node ID>_member_ip. This will allow, for example, scripts that always just write the

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 143 of 165

complete list of load-balancer members into a configuration file to do so instead of updating existing list,
which might be more complicated.

Assuming that the TOSCA application instance includes five load-balancer members, nodel through
node5, where nodeb5 is the current target being added, the following environment variables (plus
potentially more variables) will be provided to the script:

the ID of the current target and the IDs of all targets
TARGET=nodeb
TARGETS=nodel, node2, node3, node4, node5

the input for the current target and the inputs of all targets
member ip=10.0.0.5
nodel member ip=10.
node2 member ip=10.
node3 member ip=10.
node4 member ip=10.
node5 member ip=10.

O O O O o
O O O O o
g W N

With code like shown in the snippet below, scripts could then iterate of all provided member_ip inputs:

#!/usr/bin/python
import os

targets = os.environ['TARGETS'].split(',")
for t in targets:

target ip = os.environ.get('%s member ip' % t)
do something with target ip ...

4.2.2 Prefixed vs. Unprefixed TARGET names

The list target node types assigned to the TARGETS key in an execution environment will have names
prefixed by unique IDs that distinguish different instances of a node in a running model Future drafts of
this specification will show examples of how these names/IDs will be expressed.

4.2.2.1 Notes

e Target of interest is always un-prefixed. Prefix is the target opaque ID. The IDs can be used to find
the environment var. for the corresponding target. Need an example here.

¢ If you have one node that contains multiple targets this would also be used (add or remove target
operations would also use this you would get set of all current targets).

4.3 Intrinsic functions

These functions are supported within the TOSCA template for manipulation of template data.

4.3.1 concat

The concat function is used to concatenate two or more string values within a TOSCA service template.
4.3.1.1 Grammar

concat: [<string_value_expressions_*>]

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 144 of 165

4.3.1.2 Parameters

Parameter Required | Type Description
<string_value_expressions_*> | yes list of A list of one or more strings (or expressions that result in a
string or string value) which can be concatenated together into a

string value | single string.
expressions

4.3.1.3 Examples

outputs:
description: Concatenate the URL for a server from other template values
server url:

value: { concat: ['http://',
get attribute: [server, public address],
T
- 7
get attribute: [server, port]] }
4.3.2 join

The join function is used to join an array of strings into a single string with optional delimiter.
4.3.2.1 Grammar

join: [<list of string_value_expressions_*> [<delimiter>]]

4.3.2.2 Parameters

Parameter Required | Type Description
<list of yes list of A list of one or more strings (or expressions that result in a list
string_value_expressions_*> string or of string values) which can be joined together into a single

string value | string.
expressions

<delimiter> no string An optional delimiter used to join the string in the provided
list.

4.3.2.3 Examples

outputs:
examplel:
Result: prefix 1111 suffix
value: { join: [["prefix", 1111, "suffix"], " "] }
example?2:

Result: 9.12.1.10,9.12.1.20
value: { join: [{ get input: my IPs }, “,” 1 }

4.3.3 token

The token function is used within a TOSCA service template on a string to parse out (tokenize) substrings
separated by one or more token characters within a larger string.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 145 of 165

4.3.3.1 Grammar

token: [<string with tokens>, <string of token chars>, <substring index>]

4.3.3.2 Parameters

Parameter Required | Type Description

string_with_tokens yes string The composite string that contains one or more substrings
separated by token characters.

string_of_token_chars yes string The string that contains one or more token characters that
separate substrings within the composite string.

substring_index yes integer | The integer indicates the index of the substring to return from
the composite string. Note that the first substring is denoted by
using the ‘0’ (zero) integer value.

4.3.3.3 Examples

outputs:
webserver port:
description: the port provided at the end of my server’s endpoint’s IP
address
value: { token: [get attribute: [my server, data endpoint,
ip address],

4.4 Property functions

The get_input function is used within a service template to obtain template input parameter values. The
get_property function is used to get property values from property definitions declared in the same service
template (e.g. node or relationship templates).

Note that the get_input and get_property functions may only retrieve the static values of parameter or
property definitions of a TOSCA application as defined in the TOSCA Service Template. The
get_attribute function should be used to retrieve values for attribute definitions (or property definitions
reflected as attribute definitions) from the runtime instance model of the TOSCA application (as realized
by the TOSCA orchestrator).

4.4.1 get_input

The get_input function is used to retrieve the values of parameters declared within the inputs section of a
TOSCA Service Template.

4.4.1.1 Grammar

get input: <input parameter name>

or
get input: [<input parameter name>,
<nested input parameter name or_ index 1>, ...,
<nested input parameter name or index n>]
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 146 of 165

4.4.1.2 Parameters

Parameter Required | Type Description

<input_parameter_name> yes string The name of the parameter as defined in the inputs section of
the service template.

<nested_input_paratmer_n | no string| Some TOSCA input parameters are complex (i.e., composed as

ame_or_index_*> integer nested structures). These parameters are used to dereference

into the names of these nested structures when needed.

Some parameters represent list types. In these cases, an index
may be provided to reference a specific entry in the list (as
identified by the previous parameter) to return.

4.4.1.3 Examples

The following snippet shows an example of the simple get_input grammar:

inputs:
cpus:
type: integer

node templates:
my server:
type: tosca.nodes.Compute
capabilities:
host:
properties:

num cpus: { get input: cpus }

The following template shows an example of the nested get_input grammar. The template expects two
input values, each of which has a complex data type. The get_input function is used to retrieve individual

fields from the complex input data.

data types:
NetworkInfo:
derived from: tosca.Data.Root
properties:
name:
type: string
gateway:
type: string

RouterInfo:
derived from: tosca.Data.Root
properties:
ip:
type: string
external:
type: string

topology template:
inputs:
management network:
type: NetworkInfo
router:
type: RouterInfo

node templates:
Bono Main:
type: vRouter.Cisco
directives: [substitutable

TOSCA-v2.0-csd01

]

23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 147 of 165

properties:
mgmt net name: { get input: [management network, name]}
mgmt cp v4 fixed ip: { get input: [router, ip]}
mgmt cp gateway ip: { get input: [management network, gateway]}
mgmt cp external ip: { get input: [router, external]}
requirements:
- lan port:
node: host with net
capability: virtualBind
- mgmt net: mgmt net

4.4.2 get_property

The get_property function is used to retrieve property values between modelable entities defined in the
same service template.

4.4.2.1 Grammar

get property: [<modelable entity name>, <optional req or cap name>,
<property name>, <nested property name or index 1>, ...,
<nested property name or index n>]

4.4.2.2 Parameters

Parameter Required | Type Description

<modelable entity name> | | yes string The required name of a modelable entity (e.g., Node Template or

SELF | SOURCE | TARGET | Relationship Template name) as declared in the service template

HOST that contains the property definition the function will return the
value from. See section B.1 for valid keywords.

<optional_req_or_cap_na no string The optional name of the requirement or capability name within

me> the modelable entity (i.e., the <modelable_entity_name> which
contains the property definition the function will return the value
from.

Note: If the property definition is located in the modelable entity
directly, then this parameter MAY be omitted.

<property_name> yes string The name of the property definition the function will return the
value from.

<nested_property_name_o | no string| Some TOSCA properties are complex (i.e., composed as nested

r_index_*> integer structures). These parameters are used to dereference into the

names of these nested structures when needed.

Some properties represent list types. In these cases, an index
may be provided to reference a specific entry in the list (as
identified by the previous parameter) to return.

4.4.2.3 Examples

The following example shows how to use the get_property function with an actual Node Template name:

node templates:

mysql database:
type: tosca.nodes.Database
properties:
name: sgl databasel

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 148 of 165

wordpress:
type: tosca.nodes.WebApplication.WordPress

interfaces:
Standard:
configure:
inputs:
wp db name: { get property: [mysgl database, name] }

The following example shows how to use the get_property function using the SELF keyword:

node templates:

mysgl database:
type: tosca.nodes.Database

capabilities:
database endpoint:
properties:
port: 3306

wordpress:
type: tosca.nodes.WebApplication.WordPress
requirements:

- database endpoint: mysgl database
interfaces:
Standard:
create: wordpress install.sh
configure:
implementation: wordpress configure.sh
inputs:

wp db port: { get property: [SELF, database endpoint, port] }

The following example shows how to use the get_property function using the TARGET keyword:

relationship templates:
my connection:
type: ConnectsTo
interfaces:
Configure:
inputs:
targets value: { get property: [TARGET, value] }

4.5 Attribute functions

These functions (attribute functions) are used within an instance model to obtain attribute values from
instances of nodes and relationships that have been created from an application model described in a
service template. The instances of nodes or relationships can be referenced by their name as assigned
in the service template or relative to the context where they are being invoked.

4.5.1 get_attribute

The get_attribute function is used to retrieve the values of named attributes declared by the
referenced node or relationship template name.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 149 of 165

4.5.1.1 Grammar

get attribute: [<modelable entity name>, <optional reg or cap name>,
<attribute name>, <nested attribute name or index 1>, ...,
<nested attribute name or index n>]

4.5.1.2 Parameters

Parameter Required | Type Description

<modelable entity name> | | yes string The required name of a modelable entity (e.g., Node Template

SELF | SOURCE | TARGET | or Relationship Template name) as declared in the service

HOST template that contains the attribute definition the function will
return the value from. See section B.1 for valid keywords.

<optional_req_or_cap_na no string The optional name of the requirement or capability name within

me> the modelable entity (i.e., the <modelable_entity_name> which
contains the attribute definition the function will return the
value from.

Note: If the attribute definition is located in the modelable
entity directly, then this parameter MAY be omitted.

<attribute_name> yes string The name of the attribute definition the function will return the
value from.

<nested_attribute_name_o | no string| Some TOSCA attributes are complex (i.e., composed as nested

r_index_*> integer structures). These parameters are used to dereference into the

names of these nested structures when needed.

Some attributes represent list types. In these cases, an index
may be provided to reference a specific entry in the list (as
identified by the previous parameter) to return.

4.5.1.3 Examples:

The attribute functions are used in the same way as the equivalent Property functions described above.
Please see their examples and replace “get_property” with “get_attribute” function name.

4.5.1.4 Notes

These functions are used to obtain attributes from instances of node or relationship templates by the
names they were given within the service template that described the application model (pattern).

e These functions only work when the orchestrator can resolve to a single node or relationship instance
for the named node or relationship. This essentially means this is acknowledged to work only when
the node or relationship template being referenced from the service template has a cardinality of 1
(i.e., there can only be one instance of it running).

4.6 Operation functions

These functions are used within an instance model to obtain values from interface operations. These can
be used in order to set an attribute of a node instance at runtime or to pass values from one operation to
another.

4.6.1 get_operation_output

The get_operation_output function is used to retrieve the values of variables exposed / exported from
an interface operation.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 150 of 165

4.6.1.1 Grammar

get operation output: <modelable entity name>, <interface name>,
<operation name>, <output variable name>

4.6.1.2 Parameters

Parameter Required | Type Description

<modelable entity name> yes string The required name of a modelable entity (e.g., Node Template or

| SELF | SOURCE | Relationship Template name) as declared in the service template

TARGET that implements the interface and operation.

<interface_name> Yes string The required name of the interface which defines the operation.

<operation_name> yes string The required name of the operation whose value we would like to
retrieve.

<output_variable_name> Yes string The required name of the variable that is exposed / exported by
the operation.

4.6.1.3 Notes

e If operation failed, then ignore its outputs. Orchestrators should allow orchestrators to continue
running when possible past deployment in the lifecycle. For example, if an update fails, the
application should be allowed to continue running and some other method will be used to alert
administrators of the failure.

4.7 Navigation functions

e This version of TOSCA does not define any model navigation functions.

4.7.1 get_nodes_of type

The get_nodes_of_type function can be used to retrieve a list of all known instances of nodes of the
declared Node Type.

4.7.1.1 Grammar

get nodes of type: <node type name>

4.7.1.2 Parameters

Parameter Required | Type Description

<node_type_name> yes string The required name of a Node Type that a TOSCA orchestrator will
use to search a running application instance in order to return all
unique, named node instances of that type.

4.7.1.3 Returns

Return Key Type Description
TARGETS <see The list of node instances from the current application instance that match
above> the node_type_name supplied as an input parameter of this function.
TOSCA-v2.0-csd01 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 151 of 165

4.8 Artifact functions

4.8.1 get_artifact

The get_artifact function is used to retrieve artifact location between modelable entities defined in the
same service template.

4.8.1.1 Grammar

get_artifact: [<modelable entity name>, <artifact name>, <location>,
<remove>]

4.8.1.2 Parameters

Parameter Required Type Description

<modelable entity yes string The required name of a modelable entity (e.g., Node Template or

name> | SELF | SOURCE Relationship Template name) as declared in the service template

| TARGET | HOST that contains the named property definition the function will
return the value from. See section B.1 for valid keywords.

<artifact_name> yes string The name of the artifact definition the function will return the
value from.

<location> | LOCAL_FILE | no string Location value must be either a valid path e.g. ‘/etc/var/my_file’

or ‘LOCAL_FILE’.

If the value is LOCAL_FILE the orchestrator is responsible for
providing a path as the result of the get_artifact call where the
artifact file can be accessed. The orchestrator will also remove the
artifact from this location at the end of the operation.

If the location is a path specified by the user the orchestrator is
responsible to copy the artifact to the specified location. The
orchestrator will return the path as the value of the get_artifact
function and leave the file here after the execution of the
operation.

remove no boolean | Boolean flag to override the orchestrator default behavior so it
will remove or not the artifact at the end of the operation
execution.

If not specified the removal will depends of the location e.g.
removes it in case of ‘LOCAL_FILE’ and keeps it in case of a path.

If true the artifact will be removed by the orchestrator at the end
of the operation execution, if false it will not be removed.

4.8.1.3 Examples

The following example uses a snippet of a WordPress [WordPress] web application to show how to use
the get_artifact function with an actual Node Template name:

4.8.1.3.1 Example: Retrieving artifact without specified location

node templates:

wordpress:
type: tosca.nodes.WebApplication.WordPress

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 152 of 165

interfaces:
Standard:
configure:
create:
implementation: wordpress install.sh
inputs
wp zip: { get artifact: [SELF, zip] }
artifacts:
zip: /data/wordpress.zip

In such implementation the TOSCA orchestrator may provide the wordpress.zip archive as

o alocal URL (example: file://home/user/wordpress.zip) or
e aremote one (example: http://cloudrepo:80/files/wordpress.zip) where some orchestrator may indeed

provide some global artifact repository management features.
4.8.1.3.2 Example: Retrieving artifact as a local path

The following example explains how to force the orchestrator to copy the file locally before calling the
operation’s implementation script:

node templates:

wordpress:
type: tosca.nodes.WebApplication.WordPress

interfaces:
Standard:
configure:
CIRERILE ¢
implementation: wordpress install.sh
inputs
wp zip: { get artifact: [SELF, zip, LOCAL FILE] }
artifacts:
zip: /data/wordpress.zip

In such implementation the TOSCA orchestrator must provide the wordpress.zip archive as a local path
(example: /tmp/wordpress.zip) and will remove it after the operation is completed.

4.8.1.3.3 Example: Retrieving artifact in a specified location

The following example explains how to force the orchestrator to copy the file locally to a specific location
before calling the operation’s implementation script :

node templates:

wordpress:
type: tosca.nodes.WebApplication.WordPress

interfaces:
Standard:
configure:
create:
implementation: wordpress_ install.sh
inputs
wp_zip: { get artifact: [SELF, zip, C:/wpdata/wp.zip] }
artifacts:
zip: /data/wordpress.zip

In such implementation the TOSCA orchestrator must provide the wordpress.zip archive as a local path
(example: C:/wpdata/wp.zip) and will let it after the operation is completed.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 153 of 165

file://///home/user/wordpress.zip
http://cloudrepo/files/wordpress.zip
file://///home/user/wordpress.zip

4.9 Context-based Entity names (global)

Future versions of this specification will address methods to access entity names based upon the context
in which they are declared or defined.

4.9.1.1 Goals

e Using the full paths of modelable entity names to qualify context with the future goal of a more

robust get_attribute function: e.g., get_attribute(<context-based-entity-name>, <attribute name>)

TOSCA-v2.0-csd01

23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

Page 154 of 165

5 TOSCA Cloud Service Archive (CSAR) format

This section defines the metadata of a cloud service archive as well as its overall structure. Except for the
examples, this section is hormative.

5.1 Overall Structure of a CSAR

A CSAR is a zip file where TOSCA definitions along with all accompanying artifacts (e.g. scripts, binaries,
configuration files) can be packaged together. A CSAR zip file MUST contain one of the following:

e A TOSCA.meta metadata file that provides entry information for a TOSCA orchestrator processing the
CSAR file. The TOSCA.meta file may be located either at the root of the archive or inside a TOSCA-
Metadata directory (the directory being at the root of the archive). The CSAR may contain only one
TOSCA.meta file.

o ayaml (.yml or .yaml) file at the root of the archive, the yaml file being a valid tosca definition
template.

The CSAR file MAY contain other directories and files with arbitrary names and contents.

5.2 TOSCA Meta File

A TOSCA meta file consists of name/value pairs. The name-part of a name/value pair is followed by a
colon, followed by a blank, followed by the value-part of the name/value pair. The name MUST NOT
contain a colon. Values that represent binary data MUST be base64 encoded. Values that extend beyond
one line can be spread over multiple lines if each subsequent line starts with at least one space. Such
spaces are then collapsed when the value string is read.

<name>: <value>

Each name/value pair is in a separate line. A list of related name/value pairs, i.e. a list of consecutive
name/value pairs is called a block. Blocks are separated by an empty line. The first block, called block_0,
contains metadata about the CSAR itself and is further defined below. Other blocks may be used to
represent custom generic metadata or metadata pertaining to files in the CSAR. A TOSCA.meta file is only
required to include block_0. The structure of block_0 in the TOSCA meta file is as follows:

CSAR-Version: digit.digit
Created-By: string

Entry-Definitions: string
Other-Definitions: string

The name/value pairs are as follows:

e CSAR-Version: This is the version number of the CSAR specification. It defines the structure of the
CSAR and the format of the TOSCA.meta file. The value MUST be “2.0” for this version of the CSAR
specification.

e Created-By: The person or organization that created the CSAR.

e Entry-Definitions: This references the TOSCA definitions file that SHOULD be used as entry
point for processing the contents of the CSAR (i.e. the main TOSCA service template).

e Other-Definitions: This references an unambiguous set of files containing substitution templates
that can be used to implement nodes defined in the main template (i.e. the file declared in Entry-
Definitions). Thus, all the topology templates defined in files listed under the Other-Definitions
key are to be used only as substitution templates, and not as standalone services. If such a topology
template cannot act as a substitution template, it will be ignored by the orchestrator. The value of the
Other-Definitions key is a string containing a list of filenames (relative to the root of the CSAR

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 155 of 165

archive) delimited by a blank space. If the filenames contain blank spaces, the filename should be
enclosed by double quotation marks (*)

Note that any further TOSCA definitions files required by the definitions specified by Entry-Definitions
or Other-Definitions can be found by a TOSCA orchestrator by processing respective imports
statements. Note also that artifact files (e.g. scripts, binaries, configuration files) used by the TOSCA
definitions and included in the CSAR are fully described and referred via relative path names in artifact
definitions in the respective TOSCA definitions files contained in the CSAR.

5.2.1 Custom keynames in the TOSCA.meta file

Besides using the normative keynames in block_0 (i.e. CSAR-Version, Created-By, Entry-Definitions,
Other-Definitions) users can populate further blocks in the TOSCA.meta file with custom key-value pairs
that follow the entry syntax of the TOSCA.meta file, but which are outside the scope of the TOSCA
specification.

Nevertheless, future versions of the TOSCA specification may add definitions of new keynames to be
used in the TOSCA.meta file. In case of a keyname collision (with a custom keyname) the TOSCA
specification definitions take precedence.

To minimize such keyname collisions the specification reserves the use of keynames starting with
TOSCA and tosca. It is recommended as a good practice to use a specific prefix (e.g. identifying the
organization, scope, etc.) when using custom keynames.

5.2.2 Example

The following listing represents a valid TOSCA.meta file according to this TOSCA specification.

CSAR-Version: 2.0

Created-By: OASIS TOSCA TC

Entry-Definitions: tosca elk.yaml

Other-Definitions: definitions/tosca moose.yaml definitions/tosca deer.yaml

This TOSCA.meta file indicates its structure (as well as the overall CSAR structure) by means of the CSAR-
Version keyname with value 2.0. The Entry-Definitions keyname points to a TOSCA definitions
YAML file with the name tosca_elk.yaml which is contained in the root of the CSAR file. Additionally, it
specifies that substitution templates can be found in the files tosca_moose.yaml and tosca_deer.yaml
found in the directory called definitions in the root of the CSAR file.

5.3 Archive without TOSCA-Metadata

In case the archive doesn’t contains a TOSCA.meta file the archive is required to contains a single YAML
file at the root of the archive (other templates may exist in sub-directories).

TOSCA processors should recognize this file as being the CSAR Entry-Definitions file. The CSAR-
Version is inferred from the tosca_definitions_version keyname in the Entry-Definitions file. For
tosca_definitions_version: tosca_2_ 0 and onwards, the corresponding CSAR-version is 2.0 unless further
defined.

Note that in a CSAR without TOSCA-metadata it is not possible to unambiguously include definitions for
substitution templates as we can have only one topology template defined in a yaml file.
5.3.1 Example

The following represents a valid TOSCA template file acting as the CSAR Entry-Definitions file in an
archive without TOSCA-Metadata directory.

tosca definitions version: tosca 2 0

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 156 of 165

metadata:
template name: my template
template author: OASIS TOSCA TC
template version: 1.0

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 157 of 165

6 Security Considerations

(Note: OASIS strongly recommends that Technical Committees consider issues that could affect security
when implementing their specification and document them for implementers and adopters. For some
purposes, you may find it required, e.g. if you apply for IANA registration.

While it may not be immediately obvious how your specification might make systems vulnerable to attack,
most specifications, because they involve communications between systems, message formats, or
system settings, open potential channels for exploit. For example, IETF [RFC3552] lists “eavesdropping,
replay, message insertion, deletion, modification, and man-in-the-middle” as well as potential denial of
service attacks as threats that must be considered and, if appropriate, addressed in IETF RFCs.

In addition to considering and describing foreseeable risks, this section should include guidance on how
implementers and adopters can protect against these risks.

We encourage editors and TC members concerned with this subject to read Guidelines for Writing RFC
Text on Security Considerations, |IETF [RFC3552], for more information.)

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 158 of 165

7 Conformance

(Note: The OASIS TC Process requires that a specification approved by the TC at the Committee
Specification Public Review Draft, Committee Specification or OASIS Standard level must include a
separate section, listing a set of numbered conformance clauses, to which any implementation of the
specification must adhere in order to claim conformance to the specification (or any optional portion
thereof). This is done by listing the conformance clauses here.

For the definition of "conformance clause," see OASIS Defined Terms.

See "Guidelines to Writing Conformance Clauses":
http://docs.oasis-open.org/templates/TCHandbook/ConformanceGuidelines.html.

Remove this note before submitting for publication.)

7.1 Conformance Targets

The implementations subject to conformance are those introduced in Section 11.3 “Implementations”.
They are listed here for convenience:

e TOSCA YAML service template

e TOSCA processor

e TOSCA orchestrator (also called orchestration engine)
e TOSCA generator

e TOSCA archive

7.2 Conformance Clause 1: TOSCA YAML service template

A document conforms to this specification as TOSCA YAML service template if it satisfies all the
statements below:

1. Itis valid according to the grammar, rules and requirements defined in section 3 “TOSCA definitions
in YAML”.

2. When using functions defined in section 4 “TOSCA functions”, it is valid according to the grammar
specified for these functions.

3. When using or referring to data types, artifact types, capability types, interface types, node types,
relationship types, group types, policy types defined in section 5 “TOSCA normative type definitions”,
it is valid according to the definitions given in section 5.

7.3 Conformance Clause 2: TOSCA processor

A processor or program conforms to this specification as TOSCA processor if it satisfies all the
statements below:

1. It can parse and recognize the elements of any conforming TOSCA YAML service template, and
generates errors for those documents that fail to conform as TOSCA YAML service template while
clearly intending to.

2. Itimplements the requirements and semantics associated with the definitions and grammar in section
3 “TOSCA definitions in YAML”, including those listed in the “additional requirements” subsections.

3. ltresolves the imports, either explicit or implicit, as described in section 3 “TOSCA definitions in
YAML”.

4. It generates errors as required in error cases described in sections 3.1 (TOSCA Namespace URI and
alias), 3.2 (Parameter and property type) and 3.6 (Type-specific definitions).

5. It normalizes string values as described in section 5.4.9.3 (Additional Requirements)

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 159 of 165

https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsConfClause
https://www.oasis-open.org/policies-guidelines/oasis-defined-terms-2017-05-26#dConformanceClause
http://docs.oasis-open.org/templates/TCHandbook/ConformanceGuidelines.html

7.4 Conformance Clause 3: TOSCA orchestrator

A processor or program conforms to this specification as TOSCA orchestrator if it satisfies all the
statements below:

1.
2.

3.

It is conforming as a TOSCA Processor as defined in conformance clause 2: TOSCA Processor.

It can process all types of artifact described in section 5.3 “Artifact types” according to the rules and
grammars in this section.

It can process TOSCA archives as intended in section 6 “TOSCA Cloud Service Archive (CSAR)
format” and other related normative sections.

It can understand and process the functions defined in section 4 “TOSCA functions” according to their
rules and semantics.

It can understand and process the normative type definitions according to their semantics and
requirements as described in section 5 “TOSCA normative type definitions”.

It can understand and process the networking types and semantics defined in section 7 “TOSCA
Networking”.

It generates errors as required in error cases described in sections 2.10 (Using node template
substitution for chaining subsystems), 5.4 (Capabilities Types) and 5.7 (Interface Types).).

7.5 Conformance Clause 4: TOSCA generator

A processor or program conforms to this specification as TOSCA generator if it satisfies at least one of
the statements below:

1.

2.

When requested to generate a TOSCA service template, it always produces a conforming TOSCA
service template, as defined in Clause 1: TOSCA YAML service template,

When requested to generate a TOSCA archive, it always produces a conforming TOSCA archive, as
defined in Clause 5: TOSCA archive.

7.6 Conformance Clause 5: TOSCA archive

A package artifact conforms to this specification as TOSCA archive if it satisfies all the statements below:

1.

It is valid according to the structure and rules defined in section 6 “TOSCA Cloud Service Archive
(CSAR) format”.

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 160 of 165

Appendix A. Acknowledgments

(Note: A Work Product approved by the TC must include a list of people who participated in the
development of the Work Product. This is generally done by collecting the list of names in this appendix.
This list shall be initially compiled by the Chair, and any Member of the TC may add or remove their

names from the list by request.
Remove this note before submitting for publication.)

The following individuals have participated in the creation of this specification and are gratefully

acknowledged:

Participants:

Alex Vul (alex.vul@intel.com), Intel

Anatoly Katzman (anatoly.katzman@att.com), AT&T

Arturo Martin De Nicolas (arturo.martin-de-nicolas@ericsson.com), Ericsson
Avi Vachnis (avi.vachnis@alcatel-lucent.com), Alcatel-Lucent
Calin Curescu (calin.curescu@ericsson.com), Ericsson

Chris Lauwers (lauwers@ubicity.com)

Claude Noshpitz (claude.noshpitz@att.com), AT&T

Derek Palma (dpalma@vnomic.com), Vnomic

Dmytro Gassanov (dmytro.gassanov@netcracker.com), NetCracker
Frank Leymann (Frank.Leymann@informatik.uni-stuttgart.de), Univ. of Stuttgart
Gabor Marton (gabor.marton@nokia.com), Nokia

Gerd Breiter (gbreiter@de.ibm.com), IBM

Hemal Surti (hsurti@cisco.com), Cisco

Ifat Afek (ifat.afek@alcatel-lucent.com), Alcatel-Lucent

Idan Moyal, (idan@gigaspaces.com), Gigaspaces

Jacques Durand (jdurand@us.fujitsu.com), Fujitsu

Jin Qin, (chin.ginjin@huawei.com), Huawei

Jeremy Hess, (jeremy@gigaspaces.com), Gigaspaces

John Crandall, (mailto:jcrandal@brocade.com), Brocade
Juergen Meynert (juergen.meynert@ts.fujitsu.com), Fujitsu
Kapil Thangavelu (kapil.thangavelu@canonical.com), Canonical
Karsten Beins (karsten.beins@ts.fujitsu.com), Fujitsu

Kevin Wilson (kevin.l.wilson@hp.com), HP

Krishna Raman (kraman@redhat.com), Red Hat

Luc Boutier (luc.boutier@fastconnect.fr), FastConnect

Luca Gioppo, (luca.gioppo@csi.it), CSI-Piemonte

Matej Artag, (matej.artac@xlab.si), XLAB

Matt Rutkowski (mrutkows@us.ibm.com), IBM

Moshe Elisha (moshe.elisha@alcatel-lucent.com), Alcatel-Lucent
Nate Finch (nate.finch@canonical.com), Canonical

Nikunj Nemani (nnemani@vmware.com), Wmware

Priya TG (priya.g@netcracker.com) NetCracker

Richard Probst (richard.probst@sap.com), SAP AG

Sahdev Zala (spzala@us.ibm.com), IBM

Shitao li (lishitao@huawei.com), Huawei

Simeon Monov (sdmonov@us.ibm.com), IBM

Sivan Barzily, (sivan@gigaspaces.com), Gigaspaces

Sridhar Ramaswamy (sramasw@brocade.com), Brocade
Stephane Maes (stephane.maes@hp.com), HP

Steve Baillargeon (steve.baillargeon@ericsson.com), Ericsson
Thinh Nguyenphu (thinh.nguyenphu@nokia.com), Nokia
Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM

Ton Ngo (ton@us.ibm.com), IBM

Travis Tripp (travis.tripp@hp.com), HP

TOSCA-v2.0-csd01
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 161 of 165

mailto:alex.vul@intel.com
mailto:anatoly.katzman@att.com
mailto:arturo.martin-de-nicolas@ericsson.com
mailto:avi.vachnis@alcatel-lucent.com
mailto:calin.curescu@ericsson.com
mailto:lauwers@ubicity.com)
mailto:claude.noshpitz@att.com
mailto:dpalma@vnomic.com
mailto:dmytro.gassanov@netcracker.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/Frank.Leymann@informatik.uni-stuttgart.de
mailto:gabor.marton@nokia.com
mailto:gbreiter@de.ibm.com
mailto:hsurti@cisco.com
mailto:ifat.afek@alcatel-lucent.com
mailto:idan@gigaspaces.com
mailto:jdurand@us.fujitsu.com
mailto:chin.qinjin@huawei.com
mailto:jeremy@gigaspaces.com
mailto:jcrandal@brocade.com
mailto:juergen.meynert@ts.fujitsu.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/kapil.thangavelu@canonical.com
mailto:karsten.beins@ts.fujitsu.com
mailto:kevin.l.wilson@hp.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/kraman@redhat.com
mailto:luc.boutier@fastconnect.fr
mailto:luca.gioppo@csi.it
mailto:matej.artac@xlab.si
mailto:mrutkows@us.ibm.com
mailto:moshe.elisha@alcatel-lucent.com
mailto:nate.finch@canonical.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/nnemani@vmware.com
mailto:priya.g@netcracker.com)
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/richard.probst@sap.com
mailto:spzala@us.ibm.com
mailto:lishitao@huawei.com
mailto:sdmonov@us.ibm.com
mailto:sivan@gigaspaces.com
mailto:sramasw@brocade.com
mailto:stephane.maes@hp.com
mailto:steve.baillargeon@ericsson.com
mailto:thinh.nguyenphu@nokia.com
mailto:thomas.spatzier@de.ibm.com
mailto:ton@us.ibm.com
mailto:travis.tripp@hp.com

Vahid Hashemian (vahidhashemian@us.ibm.com), IBM
Wayne Witzel (wayne.witzel@canonical.com), Canonical
Yaron Parasol (yaronpa@gigaspaces.com), Gigaspaces

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 162 of 165

mailto:vahidhashemian@us.ibm.com
mailto:wayne.witzel@canonical.com
mailto:yaronpa@gigaspaces.com

Appendix B. Example Title

text

B.1 Subsidiary section

text

B.1.1 Sub-subsidiary section
Text

B.1.1.1 Sub-sub-subsidiary section
text

B.1.1.1.1 Sub-sub-sub-subsidiary section

text

TOSCA-v2.0-csd01 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 163 of 165

Appendix C. Revision History

Revision

Date

Editor

Changes Made

WDO01, Rev01

2019-04-01

Chris Lauwers

Initial WDO1, Revision 01 baseline for TOSCA v2.0

WDO01, Rev02

2019-04-22

Chris Lauwers

Split of introductory chapters into the Introduction to
TOSCA Version 2.0 document.

WDO01, Rev03

2019-05-08

Calin Curescu

Incorporate fixes from latest v1.3 specification

WDO01, Rev04

2019-05-10

Chris Lauwers

Fix syntax of schema constraint examples (Sections
5.3.2and 5.3.4)

WDO01, Rev05

2019-08-30

Chris Lauwers

Cleanup formatting. No content changes.

WDO01, Rev06

2019-08-30

Chris Lauwers

¢ Remove 3.6.20.3 since it is no longer relevant.

e Separate out new Operation Assignment section 3.8.3
from the original Operation Definition section 3.6.17

¢ Separate out new Notification Assignment section 3.8.4
from the original Notification Definition section 3.6.19

e Separate out new Interface Assignment section 3.8.5
from the original Interface Definition section 3.6.20

¢ Update the Interface Type definitions in section 5.8 to
show the (now mandatory) ‘operations’ keyname.

e Remove erroneous interface definition in
tosca.groups.Root type (section 5.10.1)

¢ Added ‘description’ keyname to Requirement definition
(section 3.7.3)

WDO01, Rev07

2019-09-08

Calin Curescu

¢ Added the “value” keyname to property definition
(Section 3.6.10 Property Definition),

e Updated the refinement rules for property definitions
(Section 3.6.10.6 Refining Property Definitions).

¢ Added the refinement rules for attribute definitions
(Section 3.6.12.7 Refining Attribute Definitions)

* Made the difference between outgoing and incoming
parameters in the parameter definition (Section 3.6.14
Parameter definition)

¢ Added the “mapping” keyname to the parameter
definition, for mapping the incoming parameter to an
attribute (Section 3.6.14 Parameter definition)

¢ Added refinement rules for parameter definitions
(Section 3.6.14.5 Refining Parameter Definitions)

e Changed the wrong usage of “property definitions” and
“property assignments” instead of “parameter
definitions” and “parameter assignments” throughout
the document. For example, a larger impact can be
seen in the definition of the get_input function (Section
4.4.1 get_input).

e Changed Section “3.6.16 Operation implementation
definition” to include notification implementation
definition (Section 3.6.16 Operation implementation
definition and notification implementation definition).

¢ Deleted Section “3.6.18 Notification implementation
definition” since it was redundant and all relevant
information has been transferred to Section “3.6.16
Operation implementation definition and notification

TOSCA-v2.0-csd01

Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 164 of 165

implementation definition”. The “Notification definition”
section becomes the new Section 3.6.18.

¢ Added operation refinement rules to the operation
definition section (Section 3.6.17 Operation definition).

¢ Added operation assignment rules to the operation
assignment section (Section 3.8.3 Operation
Assignment).

¢ Added notification refinement rules to the notification
definition section (Section 3.6.18 Notification definition)

¢ Added notification assignment rules to the notification
assignment section (Section 3.8.4 Notification
assignment).

¢ Added interface refinement rules to the interface
definition section (Section 3.6.19 Interface definition)

¢ Added interface assignment rules to the interface
assignment section (Section 3.8.5 Interface
assignment).

e Changed “interface definitions” with “interface
assignments” in the node template specification, given
that we have split interface assignments from interface
definitions (Section 3.8.6 Node Template)

e Changed “interface definitions” with “interface
assignments” in the relationship template specification,
given that we have split interface assignments from
interface definitions (Section 3.8.7 Relationship
Template)

Fix error in Timelnterval example (Section 5.3.7.3.1)

WDO01, Rev08 2019-09-30 Chris Lauwers
WDO01, Rev09 2020-02-20 Chris Lauwers ¢ Move normative type definitions to the “Intro to
TOSCA” document
¢ Move non-normative type definitions to the “Intro
to TOSCA” document
e Move “CSAR” specification from the “intro to
TOSCA” document into this document
WDO01, Rev10 2020-04-15 Calin Curescu e Reorganized sections into a new layout (starting

with the main concepts).

TOSCA-v2.0-csd01

Standards Track Work Product

23 April 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 165 of 165

