OASIS 9

Topology and Orchestration
Specification for Cloud Applications
Version 1.0

Committee Specification Draft 07

18 March 2013

Specification URIs

This version:
http://docs.oasis-open.org/tosca/ TOSCA/N1.0/csd07/TOSCA-v1.0-csd07.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA/V1.0/csd07/TOSCA-v1.0-csd07.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd07/TOSCA-v1.0-csd07.doc

Previous version:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd0l1.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd0l.doc

Latest version:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA/V1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/V1.0/TOSCA-v1.0.doc

Technical Committee:
OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC

Chairs:
Paul Lipton (paul.lipton@ca.com), CA Technologies
Simon Moser (smoser@de.ibm.com), IBM

Editors:
Derek Palma (dpalma@vnomic.com), Vnomic
Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM

Additional artifacts:
This prose specification is one component of a Work Product which also includes:
e XML schema: http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd07/schemas/

Declared XML namespace:
e http://docs.oasis-open.org/tosca/ns/2011/12

Abstract:
The concept of a “service template” is used to specify the “topology” (or structure) and
“orchestration” (or invocation of management behavior) of IT services. Typically, services are
provisioned in an IT infrastructure and their management behavior must be orchestrated in
accordance with constraints or policies from there on, for example in order to achieve service
level objectives.

This specification introduces the formal description of Service Templates, including their
structure, properties, and behavior.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 1 of 114

http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd07/TOSCA-v1.0-csd07.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd07/TOSCA-v1.0-csd07.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd07/TOSCA-v1.0-csd07.doc
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.doc
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.doc
http://www.oasis-open.org/committees/tosca/
mailto:paul.lipton@ca.com
http://www.ca.com/
mailto:smoser@de.ibm.com
http://www.ibm.com/
mailto:dpalma@vnomic.com
http://www.vnomic.com/
mailto:thomas.spatzier@de.ibm.com
http://www.ibm.com/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd07/schemas/
http://docs.oasis-open.org/tosca/ns/2011/12

Status:
This document was last revised or approved by the OASIS Topology and Orchestration
Specification for Cloud Applications (TOSCA) TC on the above date. The level of approval is also
listed above. Check the “Latest version” location noted above for possible later revisions of this
document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/tosca/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/toscalipr.php).

Citation format:
When referencing this specification the following citation format should be used:

[TOSCA-v1.0]

Topology and Orchestration Specification for Cloud Applications Version 1.0. 18 March 2013.
OASIS Committee Specification Draft 07. http://docs.oasis-
open.org/tosca/TOSCA/N1.0/csd07/TOSCA-v1.0-csd07.html.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 2 of 114

http://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
http://www.oasis-open.org/committees/tosca/
http://www.oasis-open.org/committees/tosca/
http://www.oasis-open.org/committees/tosca/ipr.php
http://www.oasis-open.org/committees/tosca/ipr.php
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd07/TOSCA-v1.0-csd07.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd07/TOSCA-v1.0-csd07.html

Notices

Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 3 of 114

http://www.oasis-open.org/policies-guidelines/ipr
http://www.oasis-open.org/
http://www.oasis-open.org/policies-guidelines/trademark

Table of Contents

1 T Lo o [1 o 1o T o PP RRRRTT 7
2 [T aTo TN F= o TN I T o | o SO PEERR 8
2.1 Dependencies on Other SPECIfiCALIONScciiitiiiiiiiiiee e e e snreee e 8
AV N\ To] c= 14 (o] g F= LN @Xo] 0 1Y/=T o 1[0] LS URRP R UOPPPRRP 8
2.3 NOIMALIVE REFEIENCES ...ttt ettt e e sttt e e s bt e e e snbbe e e e anbbeeeesbbeeeesnnteeeeans 8
2.4 NON-NOIMALIVE REFEIEINCESceiiiiiiieeie ettt e e e e e s et e e e e e e e st ebeeeeaaeeeanns 8
2.5 TypographiCal CONVENTIONScciiiiiiiiiieee e e ceci e e e e s e e e e e s s st e e e e e e s santateeeeaeeesssnrnnreeeeaensaanns 9
2.6 NAIMESPACESeureeiiiie ettt e et e e e st e e e e e et e b b e e et e e e e e sa b e e et e e e e e sa b ar e e et e e e e e ne e nr et e e e e e e nae 9
2.7 Language EXIENSIDIITYuuieiiiie i a e e e s rraaeaeaaans 10

3 Core Concepts and USAge Patternuueiiieeiiiiiiiieiiee e et e e e e s st e e e e e e s e s nnaeae e e e e e e s e snnrrneeeeaes 11
T R 0o] (- @0 s (o1 =T o &= PP PTT PR PPPTUPPPPR 11
Bi2 USE CBSES ..o 12
3.2.1 Services as Marketable ENLItIEScouiiiiiiiiiiiie e 12
3.2.2 Portability of Service TemMPIateS......coc i 13
3.2.3 SErViCE COMPOSITIONiveiieiiitiiee ettt ettt e ettt e e e sa b et e e e st e e e e e aab e e e e e anbe e e e e anbreeeeneee 13
3.2.4 Relation t0 VirtUal IMAGESeeiiiiiiieeiiite ettt s et e e neee 13

3.3 Service Templates and ArtifaCtScccoeieiiii i ——————— 13
3.4 Requirements and CapabilitIeSc..uiiiiiuiiieiiie e 14
3.5 Composition Of Service TeMPIALEScccooe i 15
3.6 POlCIES IN TOSCA .ottt e e et e et e e e s e st e e e e eeeesa s asbeeeaeaeeesaanssbaeeaeaeeesanntsbneeaeeeseannns 15
3.7 Archive Format for Cloud APPLICALIONSooiiiiiiiiiiiiiie it e e aenee s 16

4 The TOSCA DefinitioNS DOCUMENT.coiiiiiiiiiiei ettt e e e e e b e e e e e e e s nenenees 18
A1 XML SYNEAX.¢ettettiiiiiteeet ettt e e e e o4t et e e e e et e et e e e e e o e e et e e e e e e e et e e e a e e eeee s 18
N e 0] 0 1= U= S PP 19
.3 EXAMPIE bbbt bt e e b e e e et e e e e nbae e e e e 22

5 S IVICE TN D A ... e ———————— 23
N A | IS} o] 7 G PP PUT PR OUPTUPPPPP 23
VA S (0] o T= T4 (1T S PP PRURU PP PPI 26
B XA P e ——————————— 37

6 N [oT0 Lo Y7o =T T PP PPRPPPPPO 39
Lo A Y| IS} o] 7 G PP PTT PR OTPTUPPPPPN 39
S o (0] o T= T4 (1T S PP PRUPTPROP 40
LRSI 1= Y= LT TN][RR 43
B4 XA I e ———————————— 43

7 Node Type IMPIEMENTALIONSciuiiiieiiiiii ettt e e st e e s snb e e s e nnbeeeeeneee 45
T L XML SYNEBX oo 45
A = (o] o T= T4 (LT S PP PRPROP 46
7.3 DENVALION RUIBS ...ttt ettt e e e oo ettt et e e e e e e e ababeeee e e e e e sannbbbneeaaaeaeanns 48
A = a1 o [TP PPTT U OUTUPPRPP 49

8 REIALONSNIP TYPES ..ttt ettt e sttt e e e a bt e e e et e e e enb b e e s ensbe e e e enbeeeeennees 50
8L XML Sy NEBX et 50
S o (0] o T= T4 (1T S USRI 51
8.3 DErVALION RUIES ...ttt e e e e e bbbttt e e e e e e e aba b e e e e e e e e e sannbbbneeaaeeaeannns 52
TOSCA-v1.0-csd07 18 March 2013

Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 4 of 114

S = 1o [SRR 53

9 Relationship Type IMPIEMENTALIONSoiiiiiiiie i 54
0.1 XML SYNEAX..+tetteeeteeesitee st ss ettt ss et e st e st e s s e e bt e bt e s Rt e e Re e e e R et e e R et e nR e e e R e e E e e e nnre e nne e 54
LS I (0] 1= (- SR SERRR 54
9.3 DENVALION RUIES ...ttt ekttt e skt e e s bbbt e e skt e e e e s bbbt e e s nbe e e e s annneeas 56
LS = T T o L= USRS 57
10 REQUIFEMENT TYPES .oiiitiiiiiiiiite ettt ettt e ettt ettt e s s et e a4 a bt e s ok b e e e e aa b b et e e aan b e e e e aasbe e e e anb e e e e anbneeeannees 58
L0.1 XML SYNEAX 1.rtteeitiieriiee et esie et et sie e st ss e e e e ek et e s R e e e sa s e e eabe e e b et e sa R e e e nbn e e nnn e e s n e e e nnre e e nn e e e 58
O o o] 1= =S PO PO PP PO PP PP PPPPRPRPPPPRPN 58
10.3 DEriVALION RUIES ...ttt e e st e e e st e e e e e st e e e e sbneeeesnbreeeeaa 59
OB e T o o] = SRR 60
R 0= T o = o 114 A I 1T OO P PP PU PP PPPPPO 61
N Y | S - O OO PSPPSR 61
R o o] 1= =S PO PP PP PP PPPPRTRPPPPRP 61
11.3 DEeriVatioN RUIESoeiiiiieiie ittt et e e s e e e ra e e e sn e e e s sn e e e e nnneeenaa 62
B T o o = S 62
N 1] = ot A Y/ 0 1S PP P PP OPPPP 64
I Y IS Y = O TSP T PP PP PPROPRP 64
A e o] 1= =S PO PO PP PP POPPPTRPPPPRP 64
12.3 DeriVatION RUIES .. oottt et e e st e e sn e e e s sn e e e e nnreeenaa 65
L2.4 EXBMPIE ..ttt e e bt oo bt e e e b et e e e e b b et e e e b bt e e e abb e e e e aba e e e e abreeeeaa 65
13 ArFACE TEMPIALES.....oo ittt e e st e s e e e s aab bt e e e bt e e e anbee e e enees 67
G T Y | IS Y] = O OO TSRO PR PPRPRP 67
R T o o] 1= =S PP PO P PP POPPRTTRPPPPRP 67
RS R T = 0] o = S 69
R o] oY I o1 PP PPPRP 70
T4 L XML SYNEBX .ettettteeeeiiiit ettt ettt e sttt e e o4 e ettt e e e a4 s R ettt e e e e e e s R e et et e e e a e e n e n e e e e e e e n s 70
B (0T o= 4 1T 70
14.3 DEriVALION RUIES .. .ottt ettt ettt e e e st bt e e e aabb e e e e sbbeeeesnbneeaean 71
T 0] o = 72
ST o] oY =T 1 4] o] = 1 (=T PP OTPRP 73
15,1 XML SYNEAX 1.tttiiutiteiitie ettt sit ettt ettt eh e sttt sh bt e ekt ek st e 4a ket e sh bt e eab et e ket e sm b e e e sb bt e eab e e e be e e nnbe e e nneenane 73
ST o (0T o 1= 4 1 T= S 73
TR =T 101 o] [PO PTPPPPRTPPPRP 74
16 Cloud Service ArChIVE (CSAR)....uuuuiiiiiitiieiiit e e e e e e e e et ateeseeteesreesssenssrssssnsnsssnsnsnnnnns 75
16.1 Overall SIrUCLUre Of & CSARoi ittt e et e e e sba e e e e e nbreeeeaa 75
16.2 TOSCA MELA FlB...cciiiiiiiieeie ettt sttt ettt e e b et e st e e st e e snb e e e nnne e e 75
TR =T 1 o1 o O RUUPPRUTPPRTTPPPRP 76
ST 0 A A O 0] 4 LS To [T 1 1 o] L PRSP 80
S B 0o o1 {0] 110 F= 1 g (o7 T TP PTTPRPN 81
Appendix A. Portability and Interoperability Considerationscccccviiiieiiiiiie e 82
Appendix B. ACKNOWIEAGEMENTS ...t e e et e e e e e s et e e e e e e e e e e nneeees 83
Appendix C. Complete TOSCA GIaMIMIAcccoiuiiieiiiiie e etiee e rtee e et e e e abr e e e e sbeee e e sbeeeeessbeeeeasnbeeeesnnnes 85
APPENTIX D. TOSCA SCNEMA@.... ittt e ettt e e st e e e s be e e e e sbe e e e e snbbeeeesbneeeeans 93
Appendix E. S T= 00T o] (= TP PT TR 109
TOSCA-v1.0-csd07 18 March 2013

Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 5 of 114

E.1 Sample Service Topology DEfiNItIONcccuuiiiiiiee i e e e e e e e snnrrrrr e e e e e e e anns 109
Appendix F. REVISION HISTOIYeiiiiiie et e e 112

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 6 of 114

=Y

QOWO~NOOUILAWN B

1 Introduction

Cloud computing can become more valuable if the semi-automatic creation and management of
application layer services can be ported across alternative cloud implementation environments so that the
services remain interoperable. This core TOSCA specification provides a language to describe service
components and their relationships using a service topology, and it provides for describing the
management procedures that create or modify services using orchestration processes. The combination
of topology and orchestration in a Service Template describes what is needed to be preserved across
deployments in different environments to enable interoperable deployment of cloud services and their
management throughout the complete lifecycle (e.g. scaling, patching, monitoring, etc.) when the
applications are ported over alternative cloud environments.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 7 of 114

11

12
13
14
15

16
17

18

19
20

21

22
23
24

25
26
27

28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45

46

47
48
49
50
51
52

2 Language Design

The TOSCA language introduces a grammar for describing service templates by means of Topology
Templates and plans. The focus is on design time aspects, i.e. the description of services to ensure their
exchange. Runtime aspects are addressed by providing a container for specifying models of plans which
support the management of instances of services.

The language provides an extension mechanism that can be used to extend the definitions with additional
vendor-specific or domain-specific information.

2.1 Dependencies on Other Specifications

TOSCA utilizes the following specifications:
e XML Schema 1.0

2.2 Notational Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

This specification follows XML naming and design rules as described in Error! Reference source not
found., i.e. uses upper camel-case notation for XML element names and lower camel-case notation for
XML attribute names.

2.3 Normative References

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.t1xt, IETF RFC 2119, March 1997.

[RFC 2396] Uniform Resource Identifiers (URI): Generic Syntax, RFC 2396, available via
http://www.fags.org/rfcs/rfc2396.html

[XML Base] XML Base (Second Edition), W3C Recommendation,
http://www.w3.0rg/TR/xmlbase/

[XML Infoset] XML Information Set, W3C Recommendation, http://www.w3.0org/TR/2001/REC-
xml-infoset-20011024/

[XML Namespaces] Namespaces in XML 1.0 (Second Edition), W3C Recommendation,
http://mwww.w3.0org/TR/REC-xml-names/

[XML Schema Part 1] XML Schema Part 1: Structures, W3C Recommendation, October 2004,
http://www.w3.org/TR/xmlschema-1/

[XML Schema Part 2] XML Schema Part 2: Datatypes, W3C Recommendation, October 2004,
http://lwww.w3.0rg/TR/xmlschema-2/

[XMLSpec] XML Specification, W3C Recommendation, February 1998,

http://www.w3.0rg/TR/1998/REC-xmI-19980210

2.4 Non-Normative References

[BPEL 2.0] Web Services Business Process Execution Language Version 2.0. OASIS
Standard. 11 April 2007. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

[BPMN 2.0] OMG Business Process Model and Notation (BPMN) Version 2.0,
http://www.omg.org/spec/BPMN/2.0/

[OVF] Open Virtualization Format Specification Version 1.1.0,

http://www.dmtf.org/standards/published_documents/DSP0243_1.1.0.pdf

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 8 of 114

http://www.ietf.org/rfc/rfc2119.txt
http://www.faqs.org/rfcs/rfc2396.html
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/1998/REC-xml-19980210
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.omg.org/spec/BPMN/2.0/
http://www.dmtf.org/standards/published_documents/DSP0243_1.1.0.pdf

53
54

55
56
57
58

59

60

61

62
63

64
65
66
67
68
69
70
71
72

73
74

75

76
77
78
79
80

81

82
83
84

85
86

[XPATH 1.0] XML Path Language (XPath) Version 1.0, W3C Recommendation, November
1999, http://www.w3.0rg/TR/1999/REC-xpath-19991116

[UNCEFACT XMLNDR] UN/CEFACT XML Naming and Design Rules Technical Specification,
Version 3.0,
http://www.unece.org/fileadmin/DAM/cefact/xml/UNCEFACT+XML+NDR+V3p0.p
df

2.5 Typographical Conventions

This specification uses the following conventions inside tables describing the resource data model:
e Resource names, and any other name that is usable as a type (i.e., names of embedded

structures as well as atomic types such as "integer", "string"), are in italic.
e Attribute names are in regular font.

In addition, this specification uses the following syntax to define the serialization of resources:
e Values in italics indicate data types instead of literal values.

Characters are appended to items to indicate cardinality:
o ""(@Oorl)
o ™" (0ormore)
o "+"(1or more)
e Vertical bars, "|", denote choice. For example, "a|b" means a choice between "a" and "b".
e Parentheses, "(" and ")", are used to indicate the scope of the operators "?", "*", "+" and "|".

e Ellipses (i.e., "...") indicate points of extensibility. Note that the lack of an ellipses does not mean
no extensibility point exists, rather it is just not explicitly called out - usually for the sake of brevity.

2.6 Namespaces

This specification uses a number of namespace prefixes throughout; they are listed in Table 1. Note that
the choice of any nhamespace prefix is arbitrary and not semantically significant (see [XML Namespaces]).
Furthermore, the namespace http://docs.oasis-open.org/tosca/ns/2011/12 is assumed to be the default
namespace, i.e. the corresponding namespace name ste is omitted in this specification to improve
readability.

Prefix Namespace
tosca http://docs.oasis-open.org/tosca/ns/2011/12
XS http://www.w3.0rg/2001/XMLSchema

Table 1: Prefixes and namespaces used in this specification

All information items defined by TOSCA are identified by one of the XML namespace URIs above [XML
Namespaces]. A normative XML Schema ([XML Schema Part 1][XML Schema Part 2]) document for
TOSCA can be obtained by dereferencing one of the XML namespace URIs.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 9 of 114

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.unece.org/fileadmin/DAM/cefact/xml/UNCEFACT+XML+NDR+V3p0.pdf
http://www.unece.org/fileadmin/DAM/cefact/xml/UNCEFACT+XML+NDR+V3p0.pdf

87

88
89

90

91
92

93
94
95
96

2.7 Language Extensibility

The TOSCA extensibility mechanism allows:
e Attributes from other namespaces to appear on any TOSCA element

¢ Elements from other namespaces to appear within TOSCA elements

e Extension attributes and extension elements MUST NOT contradict the semantics of any attribute
or element from the TOSCA namespace

The specification differentiates between mandatory and optional extensions (the section below explains
the syntax used to declare extensions). If a mandatory extension is used, a compliant implementation
MUST understand the extension. If an optional extension is used, a compliant implementation MAY
ignore the extension.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 10 of 114

97

98
99

100

101
102
103
104
105

106

107
108
109
110
111
112
113

114

115
116

117
118
119
120
121
122
123
124

3 Core Concepts and Usage Pattern

The main concepts behind TOSCA are described and some usage patterns of Service Templates are
sketched.

3.1 Core Concepts

This specification defines a metamodel for defining IT services. This metamodel defines both the
structure of a service as well as how to manage it. A Topology Template (also referred to as the topology
model of a service) defines the structure of a service. Plans define the process models that are used to
create and terminate a service as well as to manage a service during its whole lifetime. The major
elements defining a service are depicted in Figure 1.

A Topology Template consists of a set of Node Templates and Relationship Templates that together
define the topology model of a service as a (not necessarily connected) directed graph. A node in this
graph is represented by a Node Template. A Node Template specifies the occurrence of a Node Type as
a component of a service. A Node Type defines the properties of such a component (via Node Type
Properties) and the operations (via Interfaces) available to manipulate the component. Node Types are
defined separately for reuse purposes and a Node Template references a Node Type and adds usage
constraints, such as how many times the component can occur.

Service Template

/ Topology Template Node Types \
4 Node Type N\
/ \ Capability Definitions
____________] =)
: type for < 8
GJ -
Relationship 2 g
Template /' N\, - E Requirement Definitions V'/
Relationship Types
| (., Relationship Type)
| |typefor [£ Ez% g
1 E 2\
[oN o)
Node \a_? § y
Template Blans
r~ j N\
L)

Figure 1: Structural Elements of a Service Template and their Relations

For example, consider a service that consists of an application server, a process engine, and a process
model. A Topology Template defining that service would include one Node Template of Node Type
“application server”, another Node Template of Node Type “process engine”, and a third Node Template
of Node Type “process model”. The application server Node Type defines properties like the IP address
of an instance of this type, an operation for installing the application server with the corresponding IP
address, and an operation for shutting down an instance of this application server. A constraint in the
Node Template can specify a range of IP addresses available when making a concrete application server
available.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 11 of 114

125
126
127
128
129
130
131

132
133
134

135
136
137
138
139
140
141
142

143
144
145
146
147
148

149
150
151
152
153
154
155
156
157
158
159
160
161

162
163

164

165
166
167
168
169
170
171
172

173
174
175

A Relationship Template specifies the occurrence of a relationship between nodes in a Topology
Template. Each Relationship Template refers to a Relationship Type that defines the semantics and any
properties of the relationship. Relationship Types are defined separately for reuse purposes. The
Relationship Template indicates the elements it connects and the direction of the relationship by defining
one source and one target element (in nested SourceElement and TargetElement elements). The
Relationship Template also defines any constraints with the OPTIONAL
RelationshipConstraints element.

For example, a relationship can be established between the process engine Node Template and
application server Node Template with the meaning “hosted by”, and between the process model Node
Template and process engine Node Template with meaning “deployed on”.

A deployed service is an instance of a Service Template. More precisely, the instance is derived by
instantiating the Topology Template of its Service Template, most often by running a special plan defined
for the Service Template, often referred to as build plan. The build plan will provide actual values for the
various properties of the various Node Templates and Relationship Templates of the Topology Template.
These values can come from input passed in by users as triggered by human interactions defined within
the build plan, by automated operations defined within the build plan (such as a directory lookup), or the
templates can specify default values for some properties. The build plan will typically make use of
operations of the Node Types of the Node Templates.

For example, the application server Node Template will be instantiated by installing an actual application
server at a concrete IP address considering the specified range of IP addresses. Next, the process
engine Node Template will be instantiated by installing a concrete process engine on that application
server (as indicated by the “hosted by” relationship template). Finally, the process model Node Template
will be instantiated by deploying the process model on that process engine (as indicated by the “deployed
on” relationship template).

Plans defined in a Service Template describe the management aspects of service instances, especially
their creation and termination. These plans are defined as process models, i.e. a workflow of one or more
steps. Instead of providing another language for defining process models, the specification relies on
existing languages like BPMN or BPEL. Relying on existing standards in this space facilitates portability
and interoperability, but any language for defining process models can be used. The TOSCA metamodel
provides containers to either refer to a process model (via Plan Model Reference) or to include the actual
model in the plan (via Plan Model). A process model can contain tasks (using BPMN terminology) that
refer to operations of Interfaces of Node Templates (or operations defined by the Node Types specified in
the type attribute of the Node Templates, respectively), operations of Interfaces of Relationship
Templates (or operations defined by the Relationship Types specified in the t ype attribute of the
Relationship Templates, respectively), or any other interface (e.g. the invocation of an external service for
licensing); in doing so, a plan can directly manipulate nodes of the topology of a service or interact with
external systems.

3.2 Use Cases

The specification supports at least the following major use cases.

3.2.1 Services as Marketable Entities

Standardizing Service Templates will support the creation of a market for hosted IT services. Especially, a
standard for specifying Topology Templates (i.e. the set of components a service consists of as well as
their mutual dependencies) enables interoperable definitions of the structure of services. Such a service
topology model could be created by a service developer who understands the internals of a particular
service. The Service Template could then be published in catalogs of one or more service providers for
selection and use by potential customers. Each service provider would map the specified service topology
to its available concrete infrastructure in order to support concrete instances of the service and adapt the
management plans accordingly.

Making a concrete instance of a Topology Template can be done by running a corresponding Plan (so-
called instantiating management plan, a.k.a. build plan). This build plan could be provided by the service
developer who also creates the Service Template. The build plan can be adapted to the concrete

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 12 of 114

176
177
178

179
180
181
182
183
184
185

186

187
188
189

190
191
192
193
194

195

196
197
198
199
200
201

202

203
204
205
206
207
208

209
210
211
212
213
214

215

216
217
218
219
220
221

222
223

environment of a particular service provider. Other management plans useful in various states of the
whole lifecycle of a service could be specified as part of a Service Template. Similar to build plans such
management plans can be adapted to the concrete environment of a particular service provider.

Thus, not only the structure of a service can be defined in an interoperable manner, but also its
management plans. These Plans describe how instances of the specified service are created and
managed. Defining a set of management plans for a service will significantly reduce the cost of hosting a
service by providing reusable knowledge about best practices for managing each service. While the
modeler of a service can include deep domain knowledge into a plan, the user of such a service can use
a plan by simply “invoking” it. This hides the complexity of the underlying service behavior. This is very
similar to the situation resulting in the specification of ITIL.

3.2.2 Portability of Service Templates

Standardizing Service Templates supports the portability of definitions of IT Services. Here, portability
denotes the ability of one cloud provider to understand the structure and behavior of a Service Template
created by another party, e.g. another cloud provider, enterprise IT department, or service developer.

Note that portability of a service does not imply portability of its encompassed components. Portability of
a service means that its definition can be understood in an interoperable manner, i.e. the topology model
and corresponding plans are understood by standard compliant vendors. Portability of the individual
components themselves making up a particular service has to be ensured by other means —if it is
important for the service.

3.2.3 Service Composition

Standardizing Service Templates facilitates composing a service from components even if those
components are hosted by different providers, including the local IT department, or in different automation
environments, often built with technology from different suppliers. For example, large organizations could
use automation products from different suppliers for different data centers, e.g., because of geographic
distribution of data centers or organizational independence of each location. A Service Template provides
an abstraction that does not make assumptions about the hosting environments.

3.2.4 Relation to Virtual Images

A cloud provider can host a service based on virtualized middleware stacks. These middleware stacks
might be represented by an image definition such as an OVF [OVF] package. If OVF is used, a node in a
Service Template can correspond to a virtual system or a component (OVF's "product") running in a
virtual system, as defined in an OVF package. If the OVF package defines a virtual system collection
containing multiple virtual systems, a sub-tree of a Service Template could correspond to the OVF virtual
system collection.

A Service Template provides a way to declare the association of Service Template elements to OVF
package elements. Such an association expresses that the corresponding Service Template element can
be instantiated by deploying the corresponding OVF package element. These associations are not limited
to OVF packages. The associations could be to other package types or to external service interfaces.
This flexibility allows a Service Template to be composed from various virtualization technologies, service
interfaces, and proprietary technology.

3.3 Service Templates and Artifacts

An artifact represents the content needed to realize a deployment such as an executable (e.g. a script, an
executable program, an image), a configuration file or data file, or something that might be needed so that
another executable can run (e.g. a library). Artifacts can be of different types, for example EJBs or python
scripts. The content of an artifact depends on its type. Typically, descriptive metadata will also be
provided along with the artifact. This metadata might be needed to properly process the artifact, for
example by describing the appropriate execution environment.

TOSCA distinguishes two kinds of artifacts: implementation artifacts and deployment artifacts. An
implementation artifact represents the executable of an operation of a node type, and a deployment

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 13 of 114

224
225
226

227
228
229

230
231
232
233
234
235
236

237
238
239
240

241

242
243
244
245

246
247
248
249
250
251

252

253
254

255

artifact represents the executable for materializing instances of a node. For example, a REST operation
to store an image can have an implementation artifact that is a WAR file. The node type this REST
operation is associated with can have the image itself as a deployment artifact.

The fundamental difference between implementation artifacts and deployment artifacts is twofold, namely
1. the point in time when the artifact is deployed, and
2. by what entity and to where the artifact is deployed.

The operations of a node type perform management actions on (instances of) the node type. The
implementations of such operations can be provided as implementation artifacts. Thus, the
implementation artifacts of the corresponding operations have to be deployed in the management
environment before any management operation can be started. In other words, “a TOSCA supporting
environment” (i.e. a so-called TOSCA container) MUST be able to process the set of implementation
artifacts types needed to execute those management operations. One such management operation could
be the instantiation of a node type.

The instantiation of a node type can require providing deployment artifacts in the target managed
environment. For this purpose, a TOSCA container supports a set of types of deployment artifacts that it
can process. A service template that contains (implementation or deployment) artifacts of non-supported
types cannot be processed by the container (resulting in an error during import).

3.4 Requirements and Capabilities

TOSCA allows for expressing requirements and capabilities of components of a service. This can be
done, for example, to express that one component depends on (requires) a feature provided by another
component, or to express that a component has certain requirements against the hosting environment
such as for the allocation of certain resources or the enablement of a specific mode of operation.

Requirements and capabilities are modeled by annotating Node Types with Requirement Definitions and
Capability Definitions of certain types. Requirement Types and Capability Types are defined as reusable
entities so that those definitions can be used in the context of several Node Types. For example, a
Requirement Type “DatabaseConnectionRequirement” might be defined to describe the requirement of a
client for a database connection. This Requirement Type can then be reused for all kinds of Node Types
that represent, for example, application with the need for a database connection.

—_—— ——

Requirement N\ S Capability ™
Type ,/ p Type 4

sl SR

Node Requirement
Tvpe Definition

Capability Node
Definition Type

type for type for i
]

i
—=P»Capability
emplate

Figure 2: Requirements and Capabilities

\
1
1
1

Node
Template

Requirement - X
Relationship Template

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 14 of 114

256
257
258
259
260
261
262

263
264
265
266
267

268

269
270
271
272
273
274
275

276
277

278
279
280
281
282
283
284
285
286
287

288

289
290
201

Node Templates which have corresponding Node Types with Requirement Definitions or Capability
Definitions will include representations of the respective Requirements and Capabilities with content
specific to the respective Node Template. For example, while Requirement Types just represent
Requirement metadata, the Requirement represented in a Node Template can provide concrete values
for properties defined in the Requirement Type. In addition, Requirements and Capabilities of Node
Templates in a Topology Template can optionally be connected via Relationship Templates to indicate
that a specific requirement of one node is fulfilled by a specific capability provided by another node.

Requirements can be matched in two ways as briefly indicated above: (1) requirements of a Node
Template can be matched by capabilities of another Node Template in the same Service Template by
connecting the respective requirement-capability-pairs via Relationship Templates; (2) requirements of a
Node Template can be matched by the general hosting environment (or the TOSCA container), for
example by allocating needed resources for a Node Template during instantiation.

3.5 Composition of Service Templates

Service Templates can be based on and built on-top of other Service Templates based on the concept of
Requirements and Capabilities introduced in the previous section. For example, a Service Template for a
business application that is hosted on an application server tier might focus on defining the structure and
manageability behavior of the application itself. The structure of the application server tier hosting the
application can be provided in a separate Service Template built by another vendor specialized in
deploying and managing application servers. This approach enables separation of concerns and re-use of
common infrastructure templates.

Service Template 1

Service Template 2

Node
Template

f

|

|

|

.

sub‘-»“‘wte AL

can |
/ I
|

|

- — e — — — o —
-\ boundary definitions

Figure 3: Service Template Composition

Node
Template

From the point of view of a Service Template (e.g. the business application Service Template from the
example above) that uses another Service Template, the other Service Template (e.g. the application
server tier) “looks” like just a Node Template. During deployment, however, this Node Template can be
substituted by the second Service Template if it exposes the same boundaries (i.e. properties,
capabilities, etc.) as the Node Template. Thus, a substitution with any Service Template that has the
same boundary definitions as a certain Node Template in one Service Template becomes possible,
allowing for a flexible composition of different Service Templates. This concept also allows for providing
substitutable alternatives in the form of Service Templates. For example, a Service Template for a single
node application server tier and a Service Template for a clustered application server tier might exist, and
the appropriate option can be selected per deployment.

3.6 Policies in TOSCA

Non-functional behavior or quality-of-services are defined in TOSCA by means of policies. A Policy can
express such diverse things like monitoring behavior, payment conditions, scalability, or continuous
availability, for example.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 15 of 114

292
293
294
295

296
297
298
299

300
301
302
303
304
305

306

307
308
309
310
311

312
313

314
315
316
317

318
319
320
321
322

A Node Template can be associated with a set of Policies collectively expressing the non-functional
behavior or quality-of-services that each instance of the Node Template will expose. Each Policy specifies
the actual properties of the non-functional behavior, like the concrete payment information (payment
period, currency, amount etc) about the individual instances of the Node Template.

These properties are defined by a Policy Type. Policy Types might be defined in hierarchies to properly
reflect the structure of non-functional behavior or quality-of-services in particular domains. Furthermore, a
Policy Type might be associated with a set of Node Types the non-functional behavior or quality-of-
service it describes.

Policy Templates provide actual values of properties of the types defined by Policy Types. For example, a
Policy Template for monthly payments for US customers will set the “payment period” property to
“monthly” and the “currency” property to “US$”, leaving the “amount” property open. The “amount”
property will be set when the corresponding Policy Template is used for a Policy within a Node Template.
Thus, a Policy Template defines the invariant properties of a Policy, while the Policy sets the variant
properties resulting from the actual usage of a Policy Template in a Node Template.

3.7 Archive Format for Cloud Applications

In order to support in a certain environment the execution and management of the lifecycle of a cloud
application, all corresponding artifacts have to be available in that environment. This means that beside
the service template of the cloud application, the deployment artifacts and implementation artifacts have
to be available in that environment. To ease the task of ensuring the availability of all of these, this
specification defines a corresponding archive format called CSAR (Cloud Service ARchive).

/TOSCA-Metadata
/Definitions

/Types
/Plans
/...

/VirtualImages

/JARs 7

Figure 4: Structure of the CSAR

A CSAR is a container file, i.e. it contains multiple files of possibly different file types. These files are
typically organized in several subdirectories, each of which contains related files (and possibly other
subdirectories etc). The organization into subdirectories and their content is specific for a particular cloud
application. CSARs are zip files, typically compressed.

Each CSAR MUST contain a subdirectory called TOSCA-Metadata. This subdirectory MUST contain a
so-called TOSCA meta file. This file is named TOSCA and has the file extension .meta. It represents
metadata of the other files in the CSAR. This metadata is given in the format of name/value pairs. These
name/value pairs are organized in blocks. Each block provides metadata of a certain artifact of the CSAR.
An empty line separates the blocks in the TOSCA meta file.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 16 of 114

323
324
325
326
327
328
329

330
331

332

/TOSCA-Metadata

[TOSCA.meta

Block 0

s

Figure 5: Structure of the TOSCA Meta File

The first block of the TOSCA meta file (Block_0 in Figure 5) provides metadata of the CSAR itself (e.qg. its
version, creator etc). Each other block begins with a name/value pair that points to an artifact within the
CSAR by means of a pathname. The remaining name/value pairs in a block are the proper metadata of
the pointed to artifact. For example, a corresponding name/value pair specifies the MIME-type of the
artifact.

TOSCA.meta

on/vnd. m;'l‘ype

/MyArtifactTypes

—| Artifact i llf

Figure 6: Providing Metadata for Artifacts

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 17 of 114

333

334
335
336
337
338
339

340

341

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

4 The TOSCA Definitions Document

All elements needed to define a TOSCA Service Template — such as Node Type definitions, Relationship
Type definitions, etc. — as well as Service Templates themselves are provided in TOSCA Definitions
documents. This section explains the overall structure of a TOSCA Definitions document, the extension
mechanism, and import features. Later sections describe in detail Service Templates, Node Types, Node
Type Implementations, Relationship Types, Relationship Type Implementations, Requirement Types,

Capability Types, Artifact Types, Artifact Templates, Policy Types and Policy Templates.

4.1 XML Syntax

The following pseudo schema defines the XML syntax of a Definitions document:

01 <Definitions id="xs:ID"

02 name="xs:string"?

03 targetNamespace="xs:anyURI">

04

05 <Extensions>

06 <Extension namespace="xs:anyURI"

07 mustUnderstand="yes|no"?/> +

08 </Extensions> ?

09

10 <Import namespace="xs:anyURI"?

11 location="xs:anyURI"?

12 importType="xs:anyURI" /> *

13

14 <Types>

15 <xs:schema .../> *

16 </Types> ?

17

18 (

19 <ServiceTemplate> ... </ServiceTemplate>
20 \

21 <NodeType> ... </NodeType>

22 \

23 <NodeTypeImplementation> ... </NodeTypelmplementation>
24 |

25 <RelationshipType> ... </RelationshipType>
26 \

27 <RelationshipTypeImplementation> ... </RelationshipTypeImplementation>
28 \

29 <RequirementType> ... </RequirementType>
30 \

31 <CapabilityType> ... </CapabilityType>

32 \

33 <ArtifactType> ... </ArtifactType>

34 |

35 <ArtifactTemplate> ... </ArtifactTemplate>
36 \

37 <PolicyType> ... </PolicyType>

38 \

39 <PolicyTemplate> ... </PolicyTemplate>

40) +

41

42 </Definitions>

TOSCA-v1.0-csd07
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved.

18 March 2013
Page 18 of 114

384

385

386
387

388

389
390
391
392

393
394
395
396

397
398

399
400
401
402
403
404
405
406
407
408
409
410

411
412
413
414

415
416
417
418
419
420
421
422

423
424
425
426
427
428
429

4.2 Properties

The Definitions element has the following properties:

id: This attribute specifies the identifier of the Definitions document which MUST be unique
within the target namespace.

name: This OPTIONAL attribute specifies a descriptive name of the Definitions document.

targetNamespace: The value of this attribute specifies the target namespace for the
Definitions document. All elements defined within the Definitions document will be added to this
namespace unless they override this attribute by means of their own targetNamespace
attributes.

Extensions: This OPTIONAL element specifies namespaces of TOSCA extension attributes
and extension elements. If present, the Extensions element MUST include at least one
Extension element.

The Extension element has the following properties:

o namespace: This attribute specifies the namespace of TOSCA extension attributes and
extension elements.

o mustUnderstand: This OPTIONAL attribute specifies whether the extension MUST
be understood by a compliant implementation. If the mustUnderstand attribute has
value “yes” (which is the default value for this attribute) the extension is mandatory.
Otherwise, the extension is optional.

If a TOSCA implementation does not support one or more of the mandatory extensions,
then the Definitions document MUST be rejected. Optional extensions MAY be ignored. It
is not necessary to declare optional extensions.

The same extension URI MAY be declared multiple times in the Extensions element.
If an extension URI is identified as mandatory in one Extension element and optional
in another, then the mandatory semantics have precedence and MUST be enforced. The
extension declarations in an Extensions element MUST be treated as an unordered
set.

Import: This element declares a dependency on external TOSCA Definitions, XML Schema
definitions, or WSDL definitions. Any number of Import elements MAY appear as children of
the Definitions element.

The Import element has the following properties:

o namespace: This OPTIONAL attribute specifies an absolute URI that identifies the
imported definitions. An Import element without a name space attribute indicates that
external definitions are in use, which are not namespace-qualified. If a namespace
attribute is specified then the imported definitions MUST be in that namespace. If no
namespace is specified then the imported definitions MUST NOT contain a
targetNamespace specification. The namespace
http://lwww.w3.0rg/2001/XMLSchema is imported implicitly. Note, however, that there is
no implicit XML Namespace prefix defined for http://www.w3.0rg/2001/XMLSchema.

o location: This OPTIONAL attribute contains a URI indicating the location of a
document that contains relevant definitions. The location URI MAY be a relative URI,
following the usual rules for resolution of the URI base [XML Base, RFC 2396]. An
Import element without a 1ocation attribute indicates that external definitions are
used but makes no statement about where those definitions might be found. The
location attribute is a hint and a TOSCA compliant implementation is not obliged to
retrieve the document being imported from the specified location.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 19 of 114

430
431
432
433
434
435

436
437
438
439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

456
457
458
459
460
461
462
463

464
465
466

467
468
469
470
471

472
473

474
475
476

477
478

o importType: This REQUIRED attribute identifies the type of document being imported
by providing an absolute URI that identifies the encoding language used in the document.
The value of the importType attribute MUST be set to http://docs.oasis-
open.org/tosca/ns/2011/12 when importing Service Template documents, to
http://schemas.xmlsoap.org/wsdl/ when importing WSDL 1.1 documents, and to
http://www.w3.0rg/2001/XMLSchema when importing an XSD document.

According to these rules, it is permissible to have an Import element without namespace and
location attributes, and only containing an importType attribute. Such an Import
element indicates that external definitions of the indicated type are in use that are not
namespace-qualified, and makes no statement about where those definitions might be found.

A Definitions document MUST define or import all Node Types, Node Type Implementations,
Relationship Types, Relationship Type Implementations, Requirement Type, Capability Types,
Artifact Types, Policy Types, WSDL definitions, and XML Schema documents it uses. In order to
support the use of definitions from namespaces spanning multiple documents, a Definitions
document MAY include more than one import declaration for the same namespace and
importType. Where a Definitions document has more than one import declaration for a given
namespace and importType, each declaration MUST include a different 1ocation value.
Import elements are conceptually unordered. A Definitions document MUST be rejected if the
imported documents contain conflicting definitions of a component used by the importing
Definitions document.

Documents (or namespaces) imported by an imported document (or namespace) are not
transitively imported by a TOSCA compliant implementation. In particular, this means that if an
external item is used by an element enclosed in the Definitions document, then a document (or
namespace) that defines that item MUST be directly imported by the Definitions document. This
requirement does not limit the ability of the imported document itself to import other documents or
namespaces.

Types: This element specifies XML definitions introduced within the Definitions document. Such
definitions are provided within one or more separate Schema definitions (usually xs : schema
elements). The Types element defines XML definitions within a Definitions document without
having to define these XML definitions in separate files and importing them. Note, that an

xs : schema element nested in the Types element MUST be a valid XML schema definition. In
case the targetNamespace attribute of a nested xs : schema element is not specified, all
definitions within this element become part of the target namespace of the encompassing
Definitions element.

Note: The specification supports the use of any type system nested in the Types element.
Nevertheless, only the support of xs : schema is REQUIRED from any compliant
implementation.

ServiceTemplate: This element specifies a complete Service Template for a cloud
application. A Service Template contains a definition of the Topology Template of the cloud
application, as well as any number of Plans. Within the Service Template, any type definitions
(e.g. Node Types, Relationship Types, etc.) defined in the same Definitions document or in
imported Definitions document can be used.

NodeType: This element specifies a type of Node that can be referenced as a type for Node
Templates of a Service Template.

NodeTypeImplementation: This element specifies the implementation of the manageability
behavior of a type of Node that can be referenced as a type for Node Templates of a Service
Template.

RelationshipType: This element specifies a type of Relationship that can be referenced as
a type for Relationship Templates of a Service Template.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 20 of 114

479
480
481

482
483

484
485

486
487
488

489
490
491

492
493
494

495
496
497
498

499
500
501
502
503

504
505
506
507
508

509
510
511

512
513
514

515

516
517
518
519
520
521
522
523
524
525
526

e RelationshipTypeImplementation: This element specifies the implementation of the
manageability behavior of a type of Relationship that can be referenced as a type for Relationship
Templates of a Service Template.

e RequirementType: This element specifies a type of Requirement that can be exposed by
Node Types used in a Service Template.

e CapabilityType: This element specifies a type of Capability that can be exposed by Node
Types used in a Service Template.

e ArtifactType: This element specifies a type of artifact used within a Service Template.
Artifact Types might be, for example, application modules such as .war files or .ear files,
operating system packages like RPMs, or virtual machine images like .ova files.

e ArtifactTemplate: This element specifies a template describing an artifact referenced by
parts of a Service Template. For example, the installable artifact for an application server node
might be defined as an artifact template.

e PolicyType: This element specifies a type of Policy that can be associated to Node Templates
defined within a Service Template. For example, a scaling policy for nodes in a web server tier
might be defined as a Policy Type, which specifies the attributes the scaling policy can have.

e PolicyTemplate: This element specifies a template of a Policy that can be associated to
Node Templates defined within a Service Template. Other than a Policy Type, a Policy Template
can define concrete values for a policy according to the set of attributes specified by the Policy
Type the Policy Template refers to.

A TOSCA Definitions document MUST define at least one of the elements ServiceTemplate,
NodeType, NodeTypeImplementation, RelationshipType,
RelationshipTypeImplementation, RequirementType, CapabilityType,
ArtifactType, ArtifactTemplate, PolicyType, or PolicyTemplate, butit can define any
number of those elements in an arbitrary order.

This technique supports a modular definition of Service Templates. For example, one Definitions
document can contain only Node Type and Relationship Type definitions that can then be imported into
another Definitions document that only defines a Service Template using those Node Types and
Relationship Types. Similarly, Node Type Properties can be defined in separate XML Schema Definitions
that are imported and referenced when defining a Node Type.

All TOSCA elements MAY use the documentation element to provide annnotation for users. The
content could be a plain text, HTML, and so on. The documentation elementis OPTIONAL and has
the following syntax:

01 <documentation source="xs:anyURI"? xml:lang="xs:language"?>

02

03 </documentation>

Example of use of a documentation element:

01 <Definitions id="MyDefinitions" name="My Definitions" ...>

02

03 <documentation xml:lang="EN">

04 This is a simple example of the usage of the documentation

05 element nested under a Definitions element. It could be used,

06 for example, to describe the purpose of the Definitions document

07 or to give an overview of elements contained within the Definitions
08 document.

09 </documentation>

10

11 </Definitions>

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 21 of 114

527

528
529
530
531

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

4.3 Example

The following Definitions document defines two Node Types, “Application” and “ApplicationServer”, as
well as one Relationship Type “ApplicationHostedOnApplicationServer”. The properties definitions for the
two Node Types are specified in a separate XML schema definition file which is imported into the
Definitions document by means of the Import element.

01 <Definitions id="MyDefinitions" name="My Definitions"

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

targetNamespace="http://www.example.com/MyDefinitions"
xmlns:my="http://www.example.com/MyDefinitions">

<Import importType="http://www.w3.0rg/2001/XMLSchema"
namespace="http://www.example.com/MyDefinitions">

<NodeType name="Application">
<PropertiesDefinition element="my:ApplicationProperties"/>
</NodeType>

<NodeType name="ApplicationServer">
<PropertiesDefinition element="my:ApplicationServerProperties"/>
</NodeType>

<RelationshipType name="ApplicationHostedOnApplicationServer">
<ValidSource typeRef="my:Application"/>
<ValidTarget typeRef="my:ApplicationServer"/>
</RelationshipTemplate>

21 </Definitions>

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 22 of 114

553

554
555
556

557
558
559

560
561

562

563

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

5 Service Templates

This chapter specifies how Service Templates are defined. A Service Template describes the structure of
a cloud application by means of a Topology Template, and it defines the manageability behavior of the
cloud application in the form of Plans.

Elements within a Service Template, such as Node Templates defined in the Topology Template, refer to
other TOSCA element, such as Node Types that can be defined in the same Definitions document
containing the Service Template, or that can be defined in separate, imported Definitions documents.

Service Templates can be defined for being directly used for the deployment and management of a cloud
application, or they can be used for composition into larger Service Template (see section 3.5 for details).

5.1 XML Syntax

The following pseudo schema defines the XML syntax of a Service Template:
01 <ServiceTemplate id="xs:ID"

02 name="xs:string"?

03 targetNamespace="xs:anyURI"

04 substitutableNodeType="xs:0OName" ?>

05

06 <Tags>

07 <Tag name="xs:string" value="xs:string"/> +

08 </Tags> ?

09

10 <BoundaryDefinitions>

11 <Properties>

12 XML fragment

13 <PropertyMappings>

14 <PropertyMapping serviceTemplatePropertyRef="xs:string"
15 targetObjectRef="xs:IDREF"

16 targetPropertyRef="xs:string"/> +
17 </PropertyMappings/> ?

18 </Properties> ?

19

20 <PropertyConstraints>

21 <PropertyConstraint property="xs:string"

22 constraintType="xs:anyURI"> +
23 constraint ?

24 </PropertyConstraint>

25 </PropertyConstraints> ?

26

277 <Requirements>

28 <Requirement name="xs:string"? ref="xs:IDREF"/> +
29 </Requirements> ?

30

31 <Capabilities>

32 <Capability name="xs:string"? ref="xs:IDREF"/> +
33 </Capabilities> ?

34

35 <Policies>

36 <Policy name="xs:string"? policyType="xs:QName"
37 policyRef="xs:QName" ?>

38 policy specific content ?

39 </Policy> +

40 </Policies> ?

TOSCA-v1.0-csd07 18 March 2013

Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 23 of 114

604 41

605 42 <Interfaces>

606 43 <Interface name="xs:NCName">

607 44 <Operation name="xs:NCName">

608 45 (

609 46 <NodeOperation nodeRef="xs:IDREF"

610 47 interfaceName="xs:anyURI"

611 48 operationName="xs :NCName" />

612 49

613 50 <RelationshipOperation relationshipRef="xs:IDREF"

614 51 interfaceName="xs:anyURI"

615 52 operationName="xs :NCName" />

616 53

617 54 <Plan planRef="xs:IDREF"/>

618 55)

619 56 </Operation> +

620 57 </Interface> +

621 58 </Interfaces> ?

622 59

623 60 </BoundaryDefinitions> ?

624 61

625 62 <TopologyTemplate>

626 63 (

627 64 <NodeTemplate id="xs:ID" name="xs:string"? type="xs:0OName"

628 65 minInstances="xs:integer"?

629 66 maxInstances="xs:integer | xs:string"?>

630 67 <Properties>

631 68 XML fragment

632 69 </Properties> ?

633 70

634 71 <PropertyConstraints>

635 72 <PropertyConstraint property="xs:string"

636 73 constraintType="xs:anyURI">

637 74 constraint ?

638 75 </PropertyConstraint> +

639 76 </PropertyConstraints> ?

640 77

641 78 <Requirements>

642 79 <Requirement i1d="xs:ID" name="xs:string" type="xs:QOName"> +

643 80 <Properties>

644 81 XML fragment

645 82 <Properties> ?

646 83 <PropertyConstraints>

647 84 <PropertyConstraint property="xs:string"

648 85 constraintType="xs:anyURI"> +

649 86 constraint ?

650 87 </PropertyConstraint>

651 88 </PropertyConstraints> ?

652 89 </Requirement>

653 90 </Requirements> ?

654 91

655 92 <Capabilities>

656 93 <Capability id="xs:ID" name="xs:string" type="xs:QOName"> +

657 94 <Properties>

658 95 XML fragment

659 96 <Properties> ?

660 97 <PropertyConstraints>

661 98 <PropertyConstraint property="xs:string"
TOSCA-v1.0-csd07 18 March 2013

Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 24 of 114

662 99 constraintType="xs:anyURI">

663 100 constraint ?
664 101 </PropertyConstraint> +
665 102 </PropertyConstraints> ?
666 103 </Capability>
667 104 </Capabilities> ?
668 105
669 106 <Policies>
670 107 <Policy name="xs:string"? policyType="xs:QName"
671 108 policyRef="xs:QName" 2>
672 109 policy specific content ?
673 110 </Policy> +
674 111 </Policies> ?
675 112
676 113 <DeploymentArtifacts>
677 114 <DeploymentArtifact name="xs:string" artifactType="xs:QName"
678 115 artifactRef="xs:0OName" ?>
679 116 artifact specific content ?
680 117 </DeploymentArtifact> +
681 118 </DeploymentArtifacts> ?
682 119 </NodeTemplate>
683 120 \
684 121 <RelationshipTemplate id="xs:ID" name="xs:string"?
685 122 type="xs:0OName">
686 123 <Properties>
687 124 XML fragment
688 125 </Properties> ?
689 126
690 127 <PropertyConstraints>
691 128 <PropertyConstraint property="xs:string"
692 129 constraintType="xs:anyURI">
693 130 constraint ?
694 131 </PropertyConstraint> +
695 132 </PropertyConstraints> ?
696 133
697 134 <SourceElement ref="xs:IDREF"/>
698 135 <TargetElement ref="xs:IDREF"/>
699 136
700 137 <RelationshipConstraints>
701 138 <RelationshipConstraint constraintType="xs:anyURI">
702 139 constraint ?
703 140 </RelationshipConstraint> +
704 141 </RelationshipConstraints> ?
705 142
706 143 </RelationshipTemplate>
707 144) +
708 145 </TopologyTemplate>
709 146
710 147 <Plans>
711 148 <Plan id="xs:ID"
712 149 name="xs:string"?
713 150 planType="xs:anyURI"
714 151 planLanguage="xs:anyURI">
715 152
716 153 <Precondition expressionlLanguage="xs:anyURI">
717 154 condition
718 155 </Precondition> ?
719 156
TOSCA-v1.0-csd07 18 March 2013

Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 25 of 114

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

742

743

744
745

746

747
748
749

750
751
752
753
754

755
756
757
758

759

760
761
762

763
764
765

766
767
768

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

<InputParameters>
<InputParameter name="xs:string" type="xs:string"
required="yes|no"?/> +
</InputParameters> ?

<OutputParameters>
<OutputParameter name="xs:string" type="xs:string"
required="yes|no"?/> +
</OutputParameters> ?

(
<PlanModel>

actual plan
</PlanModel>
\

<PlanModelReference reference="xs:anyURI"/>

)

</Plan> +
</Plans> ?

</ServiceTemplate>

5.2 Properties

The ServiceTemplate element has the following properties:

id: This attribute specifies the identifier of the Service Template which MUST be unique within
the target namespace.

name: This OPTIONAL attribute specifies a descriptive name of the Service Template.

targetNamespace: The value of this OPTIONAL attribute specifies the target namespace for
the Service Template. If not specified, the Service Template will be added to the namespace
declared by the targetNamespace attribute of the enclosing Definitions element.

substitutableNodeType: This OPTIONAL attribute specifies a Node Type that can be
substituted by this Service Template. If another Service Template contains a Node Template of
the specified Node Type (or any Node Type this Node Type is derived from), this Node Template
can be substituted by an instance of this Service Template that then provides the functionality of
the substituted node. See section 3.5 for more details.

Tags: This OPTIONAL element allows the definition of any number of tags which can be used by
the author to describe the Service Template. Each tag is defined by a separate, nested Tag
element.

The Tag element has the following properties:

o name: This attribute specifies the name of the tag.

o wvalue: This attribute specifies the value of the tag.

Note: The name/value pairs defined in tags have no normative interpretation.

BoundaryDefinitions: This OPTIONAL element specifies the properties the Service
Template exposes beyond its boundaries, i.e. properties that can be observed from outside the
Service Template. The BoundaryDefinitions element has the following properties.

o Properties: This OPTIONAL element specifies global properties of the Service
Template in the form of an XML fragment contained in the body of the Properties
element. Those properties MAY be mapped to properties of components within the

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 26 of 114

769
770

771
772
773
774
775

776
77
778
779

780
781
782
783
784

785
786
787
788
789
790
791
792
793
794
795
796
797

798
799
800
801

802
803
804
805
806
807

808
809
810

811
812
813
814
815

816
817
818
819
820

Service Template to make them visible to the outside.
The Properties element has the following properties:

* PropertyMappings: This OPTIONAL element specifies mappings of one or
more of the Service Template’s properties to properties of components within the
Service Template (e.g. Node Templates, Relationship Templates, etc.). Each
property mapping is defined by a separate, nested PropertyMapping
element. The PropertyMapping element has the following properties:

e serviceTemplatePropertyRef:This attribute identifies a property
of the Service Template by means of an XPath expression to be
evaluated on the XML fragment defining the Service Template’s
properties.

e targetObjectRef: This attribute specifies the object that provides
the property to which the respective Service Template property is
mapped. The referenced target object MUST be one of Node Template,
Requirement of a Node Template, Capability of a Node Template, or
Relationship Template.

e targetPropertyRef: This attribute identifies a property of the target
object by means of an XPath expression to be evaluated on the XML
fragment defining the target object’s properties.

Note: If a Service Template property is mapped to a property of a
component within the Service Template, the XML schema type of the
Service Template property and the mapped property MUST be
compatible.

Note: If a Service Template property is mapped to a property of a
component within the Service Template, reading the Service Template
property corresponds to reading the mapped property, and writing the
Service Template property corresponds to writing the mapped property.

o PropertyConstraints: This OPTIONAL element specifies constraints on one or
more of the Service Template’s properties. Each constraint is specified by means of a
separate, nested PropertyConstraint element.

The PropertyConstraint element has the following properties:

» property: This attribute identifies a property by means of an XPath expression
to be evaluated on the XML fragment defining the Service Template’s properties.

Note: If the property affected by the property constraint is mapped to a property
of a component within the Service Template, the property constraint SHOULD be
compatible with any property constraint defined for the mapped property.

» constraintType: This attribute specifies the type of constraint by means of a
URI, which defines both the semantic meaning of the constraint as well as the
format of the content.

= The body of the PropertyConstraint element provides the actual
constraint.
Note: The body MAY be empty in case the constraintType URI already
specifies the constraint appropriately. For example, a “read-only” constraint could
be expressed solely by the constraintType URI.

o Requirements: This OPTIONAL element specifies Requirements exposed by the
Service Template. Those Requirements correspond to Requirements of Node Templates
within the Service Template that are propagated beyond the boundaries of the Service
Template. Each Requirement is defined by a separate, nested Requirement element.
The Requirement element has the following properties:

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 27 of 114

821
822

823
824

825
826
827
828
829

830
831

832
833

834
835
836
837
838

839
840
841

842
843
844
845
846
847
848

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865

866
867
868

869
870
871

= name: This OPTIONAL attribute allows for specifying a name of the Requirement
other than that specified by the referenced Requirement of a Node Template.

» ref: This attribute references a Requirement element of a Node Template
within the Service Template.

o Capabilities: This OPTIONAL element specifies Capabilities exposed by the
Service Template. Those Capabilities correspond to Capabilities of Node Templates
within the Service Template that are propagated beyond the boundaries of the Service
Template. Each Capability is defined by a separate, nested Capability element. The
Capability element has the following properties:

= name: This OPTIONAL attribute allows for specifying a name of the Capability
other than that specified by the referenced Capability of a Node Template.

» ref: This attribute references a Capability element of a Node Template
within the Service Template.

o Policies: This OPTIONAL element specifies global policies of the Service Template
related to a particular management aspect. All Policies defined within the Policies
element MUST be enforced by a TOSCA implementation, i.e. Policies are AND-
combined. Each policy is defined by a separate, nested Pol1icy element.

The Policy element has the following properties:

= name: This OPTIONAL attribute allows for the definition of a name for the Policy.
If specified, this name MUST be unique within the containing Policies
element.

» policyType: This attribute specifies the type of this Policy. The QName value
of this attribute SHOULD correspond to the QName of a PolicyType defined
in the same Definitions document or in an imported document.

The policyType attribute specifies the artifact type specific content of the
Policy element body and indicates the type of Policy Template referenced by
the Policy via the policyRef attribute.

= policyRef: The QName value of this OPTIONAL attribute references a Policy
Template that is associated to the Service Template. This Policy Template can
be defined in the same TOSCA Definitions document, or it can be defined in a
separate document that is imported into the current Definitions document. The
type of Policy Template referenced by the policyRef attribute MUST be the
same type or a sub-type of the type specified in the policyType attribute.

Note: if no Policy Template is referenced, the policy specific content of the
Policy element alone is assumed to represent sufficient policy specific
information in the context of the Service Template.

Note: while Policy Templates provide invariant information about a non-functional
behavior (i.e. information that is context independent, such as the availability
class of an availability policy), the Policy element defined in a Service
Template can provide variant information (i.e. information that is context specific,
such as a specific heartbeat frequency for checking availability of a service) in
the policy specific body of the Policy element.

o Interfaces: This OPTIONAL element specifies the interfaces with operations that can
be invoked on complete service instances created from the Service Template.
The Interfaces element has the following properties:

= Interface: This element specifies one interfaces exposed by the Service
Template.
The Interface element has the following properties:

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 28 of 114

872
873
874

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891

892
893

894
895
896
897
898
899
900
901
902
903
904

905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923

TOSCA-v1.0-csd07
Standards Track Work Product

name: This attribute specifies the name of the interfaces as either a URI
or an NCName that MUST be unique in the scope of the Service
Template’s boundary definitions.

Operation: This element specifies one exposed operation of an
interface exposed by the Service Template.

An operation exposed by a Service Template maps to an internal
component of the Service Template which actually provides the
operation: it can be mapped to an operation provided by a Node
Template (i.e. an operation defined by the Node Type specified in the
type attribute of the Node Template), it can be mapped to an operation
provided by a Relationship Template (i.e. an operation defined by the
Relationship Type specified in the t ype attribute of the Relationship
Template), or it can be mapped to a Plan of the Service Template.

When an exposed operation is invoked on a service instance created
from the Service Template, the operation or Plan mapped to the exposed
operation will actually be invoked.

The Operation element has the following properties:

o name: This attribute specifies the name of the operation, which
MUST be unigue within the containing interface.

o NodeOperation: This element specifies a reference to an
operation of a Node Template.
The nodeRef attribute of this element specifies a reference to
the respective Node Template. The specific interface and
operation to be mapped to the operation exposed by the Service
Template are specified by means of the interfaceName and
operationName attributes, respectively.

Note: An interface and operation with the specified names MUST
be defined by the Node Type (or one of its super types) defined
in the type attribute of the referenced Node Template.

o RelationshipOperation: This element specifies a
reference to an operation of a Relationship Template.
The relationshipRef attribute of this element specifies a
reference to the respective Relationship Template. The specific
interface and operation to be mapped to the operation exposed
by the Service Template are specified by means of the
interfaceName and operationName attributes,
respectively.

Note: An interface and operation with the specified names MUST
be defined by the Relationship Type (or one of its super types)
defined in the type attribute of the referenced Relationship
Template.

o Plan: This element specifies by means of its planRef
attribute a reference to a Plan that provides the implementation
of the operation exposed by the Service Template.

One of NodeOperation, RelationshipOperation or

Plan MUST be specified within the Operation element.

18 March 2013
Copyright © OASIS Open 2013. All Rights Reserved. Page 29 of 114

924
925
926
927
928

929
930
931

932
933

934

935
936
937
938
939
940
941
942

943
944
945

946
947
948
949
950

951
952
953
954
955
956
957
958
959
960
961
962
963
964

965
966
967
968
969

e TopologyTemplate: This element specifies the overall structure of the cloud application
defined by the Service Template, i.e. the components it consists of, and the relations between
those components. The components of a service are referred to as Node Templates, the relations
between the components are referred to as Relationship Templates.

The TopologyTemplate element has the following properties:

o NodeTemplate: This element specifies a kind of a component making up the cloud
application.
The NodeTemplate element has the following properties:

= id: This attribute specifies the identifier of the Node Template. The identifier of
the Node Template MUST be unique within the target namespace.

= name: This OPTIONAL attribute specifies the name of the Node Template.

= type: The QName value of this attribute refers to the Node Type providing the
type of the Node Template.

Note: If the Node Type referenced by the type attribute of a Node Template is
declared as abstract, no instances of the specific Node Template can be created.
Instead, a substitution of the Node Template with one having a specialized,
derived Node Type has to be done at the latest during the instantiation time of
the Node Template.

* minInstances: This integer attribute specifies the minimun number of
instances to be created when instantiating the Node Template. The default value
of this attribute is 1.The value of minInstances MUST NOT be less than 0.

* maxInstances: This attribute specifies the maximum number of instances that
can be created when instantiating the Node Template. The default value of this
attribute is 1. If the string is set to “unbounded”, an unbouded number of
instances can be created. The value of maxInstances MUST be 1 or greater
and MUST NOT be less than the value specified forminInstances.

» Properties: Specifies initial values for one or more of the Node Type
Properties of the Node Type providing the property definitions in the concrete
context of the Node Template.

The initial values are specified by providing an instance document of the XML
schema of the corresponding Node Type Properties. This instance document
considers the inheritance structure deduced by the DerivedFrom property of
the Node Type referenced by the t ype attribute of the Node Template.

The instance document of the XML schema might not validate against the
existence constraints of the corresponding schema: not all Node Type properties
might have an initial value assigned, i.e. mandatory elements or attributes might
be missing in the instance provided by the Properties element. Once the
defined Node Template has been instantiated, any XML representation of the
Node Type properties MUST validate according to the associated XML schema
definition.

» PropertyConstraints: Specifies constraints on the use of one or more of
the Node Type Properties of the Node Type providing the property definitions for
the Node Template. Each constraint is specified by means of a separate nested
PropertyConstraint element.

The PropertyConstraint element has the following properties:

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 30 of 114

970
971
972
973

974
975
976
977
978
979
980
981
982
983

984
985
986
987
988

989
990
901

992
993
994
995

996
997
998

999
1000
1001
1002
1003

1004
1005
1006
1007
1008
1009

1010
1011
1012
1013
1014

property: The string value of this property is an XPath expression
pointing to the property within the Node Type Properties document that is
constrained within the context of the Node Template. More than one
constraint MUST NOT be defined for each property.

constraintType: The constraint type is specified by means of a URI,
which defines both the semantic meaning of the constraint as well as the
format of the content.

For example, a constraint type of
http://www.example.com/PropertyConstraints/unique could denote that
the reference property of the node template under definition has to be
unigue within a certain scope. The constraint type specific content of the
respective PropertyConstraint element could then define the
actual scope in which uniqueness has to be ensured in more detail.

» Requirements: This element contains a list of requirements for the Node
Template, according to the list of requirement definitions of the Node Type
specified in the t ype attribute of the Node Template. Each requirement is
specified in a separate nested Requirement element.

The Requirement Element has the following properties:

id: This attribute specifies the identifier of the Requirement. The
identifier of the Requirement MUST be unique within the target
namespace.

name: This attribute specifies the name of the Requirement. The name
and type of the Requirement MUST match the name and type of a
Requirement Definition in the Node Type specified in the t ype attribute
of the Node Template.

type: The QName value of this attribute refers to the Requirement Type
definition of the Requirement. This Requirement Type denotes the
semantics and well as potential properties of the Requirement.

Properties: This element specifies initial values for one or more of
the Requirement Properties according to the Requirement Type
providing the property definitions. Properties are provided in the form of
an XML fragment. The same rules as outlined for the Properties
element of the Node Template apply.

PropertyConstraints: This element specifies constraints on the
use of one or more of the Properties of the Requirement Type providing
the property definitions for the Requirement. Each constraint is specified
by means of a separate nested PropertyConstraint element. The
same rules as outlined for the PropertyConstraints element of
the Node Template apply.

» Capabilities: This element contains a list of capabilities for the Node
Template, according to the list of capability definitions of the Node Type specified
in the type attribute of the Node Template. Each capability is specified in a
separate nested Capability element.
The Capability Element has the following properties:

TOSCA-v1.0-csd07
Standards Track Work Product

18 March 2013

Copyright © OASIS Open 2013. All Rights Reserved. Page 31 of 114

1015
1016

1017
1018
1019
1020

1021
1022
1023

1024
1025
1026
1027
1028

1029
1030
1031
1032
1033
1034

1035
1036
1037
1038
1039

1040
1041
1042

1043
1044
1045
1046
1047
1048
1049
1050

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

id: This attribute specifies the identifier of the Capability. The identifier
of the Capability MUST be unique within the target namespace.

name: This attribute specifies the name of the Capability. The name and
type of the Capability MUST match the name and t ype of a Capability
Definition in the Node Type specified in the t ype attribute of the Node
Template.

type: The QName value of this attribute refers to the Capability Type
definition of the Capability. This Capability Type denotes the semantics
and well as potential properties of the Capability.

Properties: This element specifies initial values for one or more of
the Capability Properties according to the Capability Type providing the
property definitions. Properties are provided in the form of an XML
fragment. The same rules as outlined for the Properties element of
the Node Template apply.

PropertyConstraints: This element specifies constraints on the
use of one or more of the Properties of the Capability Type providing the
property definitions for the Capability. Each constraint is specified by
means of a separate nested PropertyConstraint element. The
same rules as outlined for the PropertyConstraints element of
the Node Template apply.

» Policies: This OPTIONAL element specifies policies associated with the
Node Template. All Policies defined within the Policies element MUST be
enforced by a TOSCA implementation, i.e. Policies are AND-combined. Each
policy is specified by means of a separate nested Policy element.

The Policy element has the following properties:

TOSCA-v1.0-csd07
Standards Track Work Product

name: This OPTIONAL attribute allows for the definition of a name for
the Policy. If specified, this name MUST be unique within the containing
Policies element.

policyType: This attribute specifies the type of this Policy. The
QName value of this attribute SHOULD correspond to the QName of a
PolicyType defined in the same Definitions document or in an
imported document.

The policyType attribute specifies the artifact type specific content of
the Policy element body and indicates the type of Policy Template
referenced by the Policy via the policyRef attribute.

policyRef: The QName value of this OPTIONAL attribute references
a Policy Template that is associated to the Node Template. This Policy
Template can be defined in the same TOSCA Definitions document, or it
can be defined in a separate document that is imported into the current
Definitions document. The type of Policy Template referenced by the
policyRef attribute MUST be the same type or a sub-type of the type
specified in the policyType attribute.

Note: if no Policy Template is referenced, the policy specific content of
the Policy element alone is assumed to represent sufficient policy
specific information in the context of the Node Template.

18 March 2013
Copyright © OASIS Open 2013. All Rights Reserved. Page 32 of 114

1062
1063
1064
1065
1066
1067
1068
1069

1070
1071
1072
1073
1074

1075
1076
1077

1078
1079
1080
1081
1082
1083
1084
1085
1086

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

1108
1109

Note: while Policy Templates provide invariant information about a non-
functional behavior (i.e. information that is context independent, such as
the availability class of an availability policy), the Policy element
defined in a Node Template can provide variant information (i.e.
information that is context specific, such as a specific heartbeat
frequency for checking availability of a component) in the policy specific
body of the Policy element.

= DeploymentArtifacts: This element specifies the deployment artifacts
relevant for the Node Template under definition. Its nested
DeploymentArtifact elements specify details about individual deployment
artifacts.
The DeploymentArtifact element has the following properties:

e name: This attribute specifies the name of the artifact. Uniqueness of the
name within the scope of the encompassing Node Template SHOULD
be guaranteed by the definition.

e artifactType: This attribute specifies the type of this artifact. The
QName value of this attribute SHOULD correspond to the QName of an
ArtifactType defined in the same Definitions document or in an
imported document.

The artifactType attribute specifies the artifact type specific content
of the DeploymentArtifact element body and indicates the type of
Artifact Template referenced by the Deployment Artifact via the
artifactRef attribute.

e artifactRef: This OPTIONAL attribute contains a QName that
identifies an Artifact Template to be used as deployment artifact. This
Artifact Template can be defined in the same Definitions document or in
a separate, imported document.

The type of Artifact Template referenced by the artifactRef attribute
MUST be the same type or a sub-type of the type specified in the
artifactType attribute.

Note: if no Artifact Template is referenced, the artifact type specific
content of the DeploymentArtifact element alone is assumed to
represent the actual artifact. For example, the contents of a simple config
file could be defined in place within the DeploymentArtifact
element.

Note, that a deployment artifact specified with the Node Template under
definition overrides any deployment artifact of the same name and the
same artifactType (or any Artifact Type it is derived from) specified
with the Node Type Implementation implementing the Node Type given
as value of the type attribute of the Node Template under definition.
Otherwise, the deployment artifacts of Node Type Implementations and
the deployment artifacts defined with the Node Template are combined.

o RelationshipTemplate: This element specifies a kind of relationship between the
components of the cloud application. For each specified Relationship Template the

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 33 of 114

1110
1111

1112
1113
1114

1115
1116

1117
1118
1119
1120
1121
1122
1123
1124

1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139

1140
1141
1142
1143
1144

1145
1146
1147
1148
1149

1150
1151
1152
1153
1154
1155
1156

TOSCA-v1.0-csd07
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 34 of 114

source element and target element MUST be specified in the Topology Template.
The RelationshipTemplate element has the following properties:

id: This attribute specifies the identifier of the Relationship Template. The
identifier of the Relationship Template MUST be unique within the target
namespace.

name: This OPTIONAL attribute specifies the name of the Relationship
Template.

type: The QName value of this property refers to the Relationship Type
providing the type of the Relationship Template.

Note: If the Relationship Type referenced by the type attribute of a Relationship
Template is declared as abstract, no instances of the specific Relationship
Template can be created. Instead, a substitution of the Relationship Template
with one having a specialized, derived Relationship Type has to be done at the
latest during the instantiation time of the Relationship Template.

Properties: Specifies initial values for one or more of the Relationship Type
Properties of the Relationship Type providing the property definitions in the
concrete context of the Relationship Template.

The initial values are specified by providing an instance document of the XML
schema of the corresponding Relationship Type Properties. This instance
document considers the inheritance structure deduced by the DerivedFrom
property of the Relationship Type referenced by the t ype attribute of the
Relationship Template.

The instance document of the XML schema might not validate against the
existence constraints of the corresponding schema: not all Relationship Type
properties might have an initial value assigned, i.e. mandatory elements or
attributes might be missing in the instance provided by the Properties
element. Once the defined Relationship Template has been instantiated, any
XML representation of the Relationship Type properties MUST validate according
to the associated XML schema definition.

PropertyConstraints: Specifies constraints on the use of one or more of
the Relationship Type Properties of the Relationship Type providing the property
definitions for the Relationship Template. Each constraint is specified by means
of a separate nested PropertyConstraint element.

The PropertyConstraint element has the following properties:

e property: The string value of this property is an XPath expression
pointing to the property within the Relationship Type Properties
document that is constrained within the context of the Relationship
Template. More than one constraint MUST NOT be defined for each

property.
e constraintType: The constraint type is specified by means of a URI,

which defines both the semantic meaning of the constraint as well as the
format of the content.

For example, a constraint type of
http://www.example.com/PropertyConstraints/unique could denote that
the reference property of the node template under definition has to be

18 March 2013

1157
1158
1159

1160
1161
1162

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180

1181
1182
1183

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

1201
1202
1203
1204

unique within a certain scope. The constraint type specific content of the
respective PropertyConstraint element could then define the
actual scope in which uniqueness has to be ensured in more detail.

= SourceElement: This element specifies the origin of the relationship
represented by the current Relationship Template.
The SourceElement element has the following property:

e ref: This attribute references by ID a Node Template or a Requirement
of a Node Template within the same Service Template document that is
the source of the Relationship Template.

If the Relationship Type referenced by the type attribute defines a
constraint on the valid source of the relationship by means of its
ValidSource element, the ref attribute of SourceElement MUST
reference an object the type of which complies with the valid source
constraint of the respective Relationship Type.

In the case where a Node Type is defined as valid source in the
Relationship Type definition, the ref attribute MUST reference a Node
Template of the corresponding Node Type (or of a sub-type).

In the case where a Requirement Type is defined a valid source in the
Relationship Type definition, the re f attribute MUST reference a
Requirement of the corresponding Requirement Type within a Node
Template.

» TargetElement: This element specifies the target of the relationship
represented by the current Relationship Template.
The TargetElement element has the following property:

e ref: This attribute references by ID a Node Template or a Capability of
a Node Template within the same Service Template document that is the
target of the Relationship Template.

If the Relationship Type referenced by the type attribute defines a
constraint on the valid source of the relationship by means of its
ValidTarget element, the ref attribute of TargetElement MUST
reference an object the type of which complies with the valid source
constraint of the respective Relationship Type.

In case a Node Type is defined as valid target in the Relationship Type
definition, the ref attribute MUST reference a Node Template of the
corresponding Node Type (or of a sub-type).

In case a Capability Type is defined a valid target in the Relationship
Type definition, the ref attribute MUST reference a Capability of the
corresponding Capability Type within a Node Template.

» RelationshipConstraints: This element specifies a list of constraints on
the use of the relationship in separate nested RelationshipConstraint
elements.

The RelationshipConstraint element has the following properties:

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 35 of 114

1205
1206
1207
1208

1209
1210
1211

1212
1213

1214

1215
1216
1217
1218
1219

1220
1221
1222

1223
1224
1225
1226
1227
1228

1229
1230
1231
1232
1233
1234
1235
1236
1237

1238
1239
1240
1241
1242
1243
1244
1245

1246
1247
1248
1249

e constraintType: This attribute specifies the type of relationship
constraint by means of a URI. Depending on the type, the body of the
RelationshipConstraint element might contain type specific
content that further details the actual constraint.

e Plans: This element specifies the operational behavior of the service. A P1an contained in the
Plans element can specify how to create, terminate or manage the service.
The P1lan element has the following properties:

o

TOSCA-v1.0-csd07
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 36 of 114

id: This attribute specifies the identifier of the Plan. The identifier of the Plan MUST be
unique within the target namespace.

name: This OPTIONAL attribute specifies the name of the Plan.

planType: The value of the attribute specifies the type of the plan as an indication on
what the effect of executing the plan on a service will have. The plan type is specified by
means of a URI, allowing for an extensibility mechanism for authors of service templates
to define new plan types over time.

The following plan types are defined as part of the TOSCA specification.

» http://docs.oasis-open.org/tosca/ns/2011/12/PlanTypes/BuildPlan - This URI
defines the build plan plan type for plans used to initially create a new instance of
a service from a Service Template.

= http://docs.oasis-open.org/tosca/ns/2011/12/PlanTypes/TerminationPlan - This
URI defines the termination plan plan type for plans used to terminate the
existence of a service instance.

Note that all other plan types for managing service instances throughout their life
time will be considered and referred to as modification plans in general.

planLanguage: This attribute denotes the process modeling language (or metamodel)
used to specify the plan. For example,
“http://www.omg.org/spec/BPMN/20100524/MODEL” would specify that BPMN 2.0 has
been used to model the plan.

TOSCA does not specify a separate metamodel for defining plans. Instead, it is assumed
that a process modelling language (a.k.a. metamodel) like BPEL [BPEL 2.0] or BPMN
[BPMN 2.0] is used to define plans. The specification favours the use of BPMN for
modeling plans.

Precondition: This OPTIONAL element specifies a condition that needs to be
satisfied in order for the plan to be executed. The expressionLanguage attribute of
this element specifies the expression language the nested condition is provided in.

Typically, the precondition will be an expression in the instance state attribute of some of
the node templates or relationship templates of the topology template. It will be evaluated
based on the actual values of the corresponding attributes at the time the plan is
requested to be executed. Note, that any other kind of pre-condition is allowed.

InputParameters: This OPTIONAL property contains a list of one or more input
parameter definitions for the Plan, each defined in a nested, separate
InputParameter element.

The InputParameter element has the following properties:

18 March 2013

1250
1251

1252

1253
1254
1255

1256
1257
1258
1259

1260
1261

1262

1263
1264
1265

1266

1267
1268
1269
1270
1271

1272

1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283

1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297

*» name: This attribute specifies the name of the input parameter, which MUST be
unique within the set of input parameters defined for the operation.

= type: This attribute specifies the type of the input parameter.

= required: This OPTIONAL attribute specifies whether or not the input
parameter is REQUIRED (required attribute with a value of “yes” — default) or
OPTIONAL (required attribute with a value of “no”).

o OutputParameters: This OPTIONAL property contains a list of one or more output
parameter definitions for the Plan, each defined in a nested, separate
OutputParameter element.

The OutputParameter element has the following properties:

* name: This attribute specifies the name of the output parameter, which MUST be
unique within the set of output parameters defined for the operation.

= type: This attribute specifies the type of the output parameter.

» required: This OPTIONAL attribute specifies whether or not the output
parameter is REQUIRED (required attribute with a value of “yes” — default) or
OPTIONAL (required attribute with a value of “no”).

o PlanModel: This property contains the actual model content.

o PlanModelReference: This property points to the model content. Its reference
attribute contains a URI of the model of the plan.

An instance of the P1an element MUST either contain the actual plan as instance of the
PlanModel element, or point to the model via the P1anModelReference element.

5.3 Example

The following Service Template defines a Topology Template containing two Node Templates called
“MyApplication” and “MyAppServer”. These Node Templates have the node types “Application” and
“ApplicationServer”. The Node Template “MyApplication” is instantiated exactly once. Two of its Node
Type Properties are initialized by a corresponding Properties element. The Node Template
“MyAppServer” can be instantiated as many times as needed. The “MyApplication” Node Template is
connected with the “MyAppServer’ Node Template via the Relationship Template named
“MyHostedRelationship”; the behavior and semantics of the Relationship Template is defined in the
Relationship Type “HostedOn”, saying that “MyApplication” is hosted on “MyAppServer”. The Service
Template further defines a Plan “UpdateApplication” for performing an update of the “MyApplication”
application hosted on the application server. This Plan refers to a BPMN 2.0 process definition contained
in a separate file.

01 <ServiceTemplate id="MyService"

02 name="My Service">

03

04 <TopologyTemplate>

05

06 <NodeTemplate id="MyApplication"

07 name="My Application"

08 type="my:Application">

09 <Properties>

10 <ApplicationProperties>

11 <Owner>Frank</Owner>

12 <InstanceName>Thomas’ favorite application</InstanceName>
13 </ApplicationProperties>

14 </Properties>

TOSCA-v1.0-csd07 18 March 2013

Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 37 of 114

1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

</NodeTemplate>

<NodeTemplate id="MyAppServer"
name="My Application Server"
type="my:ApplicationServer"
minInstances="0"
maxInstances="unbounded" />

<RelationshipTemplate id="MyDeploymentRelationship"
type="my:deployedOn">
<SourceElement ref="MyApplication"/>
<TargetElement ref="MyAppServer"/>
</RelationshipTemplate>

</TopologyTemplate>
<Plans>

<Plan id="UpdateApplication"
planType="http://www.example.com/UpdatePlan"

planLanguage="http://www.omg.org/spec/BPMN/20100524 /MODEL" >

<PlanModelReference reference="plans:UpdateApp"/>
</Plan>
</Plans>

39 </ServiceTemplate>

TOSCA-v1.0-csd07
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved.

18 March 2013
Page 38 of 114

1323

1324
1325
1326
1327

1328
1329
1330
1331
1332

1333
1334

1335
1336

1337

1338

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

6 Node Types

This chapter specifies how Node Types are defined. A Node Type is a reusable entity that defines the
type of one or more Node Templates. As such, a Node Type defines the structure of observable
properties via a Properties Definition, i.e. the names, data types and allowed values the properties
defined in Node Templates using a Node Type or instances of such Node Templates can have.

A Node Type can inherit properties from another Node Type by means of the DerivedFrom element.
Node Types might be declared as abstract, meaning that they cannot be instantiated. The purpose of
such abstract Node Types is to provide common properties and behavior for re-use in specialized,

derived Node Types. Node Types might also be declared as final, meaning that they cannot be derived by
other Node Types.

A Node Type can declare to expose certain requirements and capabilities (see section 3.4) by means of
RequirementDefinition elements or CapabilityDefinition elements, respectively.

The functions that can be performed on (an instance of) a corresponding Node Template are defined by

the Interfaces of the Node Type. Finally, management Policies are defined for a Node Type.

6.1 XML Syntax

The following pseudo schema defines the XML syntax of Node Types:

01 <NodeType name="xs:NCName" targetNamespace="xs:anyURI"?

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

abstract="yes|no"? final="yes|no"?>

<Tags>
<Tag name="xs:string" value="xs:string"/> +
</Tags> ?

<DerivedFrom typeRef="xs:QOName"/> ?
<PropertiesDefinition element="xs:QOName"? type="xs:QOName"?/> ?

<RequirementDefinitions>
<RequirementDefinition name="xs:string"
requirementType="xs:QOName"
lowerBound="xs:integer"?
upperBound="xs:integer | xs:string"?>
<Constraints>
<Constraint constraintType="xs:anyURI">
constraint type specific content
</Constraint> +
</Constraints> ?
</RequirementDefinition> +
</RequirementDefinitions> ?

<CapabilityDefinitions>
<CapabilityDefinition name="xs:string"
capabilityType="xs:0OName"
lowerBound="xs:integer"?
upperBound="xs:integer | xs:string"?>
<Constraints>
<Constraint constraintType="xs:anyURI">
constraint type specific content
</Constraint> +
</Constraints> ?

TOSCA-v1.0-csd07
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved.

18 March 2013
Page 39 of 114

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

1396

1397

1398
1399

1400
1401
1402

1403
1404
1405
1406
1407
1408
1409
1410
1411
1412

1413
1414
1415
1416

1417
1418
1419

1420

1421
1422
1423

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

</CapabilityDefinition> +
</CapabilityDefinitions>

<InstanceStates>
<InstanceState state="xs:anyURI"> +
</InstanceStates> ?

<Interfaces>
<Interface name="xs:NCName | xs:anyURI">
<Operation name="xs:NCName">
<InputParameters>
<InputParameter name="xs:string" type="xs:string"
required="yes|no"?/> +
</InputParameters> ?
<OutputParameters>
<OutputParameter name="xs:string" type="xs:string"
required="yes|no"?/> +
</OutputParameters> ?
</Operation> +
</Interface> +
</Interfaces> ?

57 </NodeType>

6.2 Properties

The NodeType element has the following properties:

name: This attribute specifies the name or identifier of the Node Type, which MUST be unique
within the target namespace.

targetNamespace: This OPTIONAL attribute specifies the target namespace to which the
definition of the Node Type will be added. If not specified, the Node Type definition will be added
to the target namespace of the enclosing Definitions document.

abstract: This OPTIONAL attribute specifies that no instances can be created from Node
Templates that use this Node Type as their type. If a Node Type includes a Requirement
Definition or Capability Definition of an abstract Requirement Type or Capability Type,
respectively, the Node Type MUST be declared as abstract as well.

As a consequence, the corresponding abstract Node Type referenced by any Node Template has
to be substituted by a Node Type derived from the abstract Node Type at the latest during the
instantiation time of a Node Template.

Note: an abstract Node Type MUST NOT be declared as final.

final: This OPTIONAL attribute specifies that other Node Types MUST NOT be derived from
this Node Type.

Note: a final Node Type MUST NOT be declared as abstract.

Tags: This OPTIONAL element allows the definition of any number of tags which can be used by
the author to describe the Node Type. Each tag is defined by a separate, nested Tag element.
The Tag element has the following properties:

o name: This attribute specifies the name of the tag.

o wvalue: This attribute specifies the value of the tag.

Note: The name/value pairs defined in tags have no normative interpretation.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 40 of 114

1424
1425
1426
1427

1428
1429

1430
1431
1432

1433
1434

1435
1436

1437
1438
1439
1440

1441
1442
1443
1444
1445
1446
1447
1448

1449
1450

1451
1452
1453
1454

1455
1456
1457
1458
1459
1460
1461
1462

1463
1464
1465

1466
1467
1468
1469

1470
1471
1472

DerivedFrom: This is an OPTIONAL reference to another Node Type from which this Node
Type derives. Conflicting definitions are resolved by the rule that local new definitions always
override derived definitions. See section 6.3 Derivation Rules for details.

The DerivedFrom element has the following properties:

o typeRef: The QName specifies the Node Type from which this Node Type derives its
definitions.

PropertiesDefinition: This element specifies the structure of the observable properties
of the Node Type, such as its configuration and state, by means of XML schema.
The PropertiesDefinition element has one but not both of the following properties:

o element: This attribute provides the QName of an XML element defining the structure
of the Node Type Properties.

o type: This attribute provides the QName of an XML (complex) type defining the
structure of the Node Type Properties.

RequirementDefinitions: This OPTIONAL element specifies the requirements that the
Node Type exposes (see section 3.4 for details). Each requirement is defined in a nested
RequirementDefinition element.

The RequirementDefinition element has the following properties:

o name: This attribute specifies the name of the defined requirement and MUST be unique
within the RequirementsDefinitions of the current Node Type.

Note that one Node Type might define multiple requirements of the same Requirement
Type, in which case each occurrence of a requirement definition is uniquely identified by
its name. For example, a Node Type for an application might define two requirements for
a database (i.e. of the same Requirement Type) where one could be named
“customerDatabase” and the other one could be named “productsDatabase”.

o requirementType: This attribute identifies by QName the Requirement Type that is
being defined by the current RequirementDefinition.

o lowerBound: This OPTIONAL attribute specifies the lower boundary by which a
requirement MUST be matched for Node Templates according to the current Node Type,
or for instances created for those Node Templates. The default value for this attribute is
one. A value of zero would indicate that matching of the requirement is optional.

o upperBound: This OPTIONAL attribute specifies the upper boundary by which a
requirement MUST be matched for Node Templates according to the current Node Type,
or for instances created for those Node Templates. The default value for this attribute is
one. A value of “unbounded” indicates that there is no upper boundary.
Constraints: This OPTIONAL element contains a list of Constraint elements that
specify additional constraints on the requirement definition. For example, if a database is
needed a constraint on supported SQL features might be expressed.

The nested Constraint element has the following properties:

= constraintType: This attribute specifies the type of constraint. According to
this type, the body of the Constraint element will contain type specific
content.

CapabilityDefinitions: This OPTIONAL element specifies the capabilities that the Node
Type exposes (see section 3.4 for details). Each capability is defined in a nested
CapabilityDefinition element.

The CapabilityDefinition element has the following properties:

o name: This attribute specifies the name of the defined capability and MUST be unique
within the CapabilityDefinitions of the current Node Type.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 41 of 114

1473
1474

1475
1476

1477
1478
1479
1480

1481
1482
1483

1484
1485
1486

1487
1488
1489

1490
1491
1492

1493

1494
1495
1496
1497

1498
1499

1500
1501
1502
1503

1504
1505

1506
1507
1508
1509

1510
1511
1512

1513

1514
1515
1516

1517
1518
1519
1520

Note that one Node Type might define multiple capabilities of the same Capability Type,
in which case each occurrence of a capability definition is uniquely identified by its name.

capabilityType: This attribute identifies by QName the Capability Type of capability
that is being defined by the current CapabilityDefinition.

lowerBound: This OPTIONAL attribute specifies the lower boundary of requiring nodes
that the defined capability can serve. The default value for this attribute is one. A value of
zero is invalid, since this would mean that the capability cannot actually satisfy any
requiring nodes.

upperBound: This OPTIONAL attribute specifies the upper boundary of client

requirements the defined capability can serve. The default value for this attribute is one.
A value of “unbounded” indicates that there is no upper boundary.

Constraints: This OPTIONAL element contains a list of Constraint elements that
specify additional constraints on the capability definition.
The nested Constraint element has the following properties:

» constraintType: This attribute specifies the type of constraint. According to
this type, the body of the Constraint element will contain type specific
content.

e TInstanceStates: This OPTIONAL element lists the set of states an instance of this Node
Type can occupy. Those states are defined in nested InstanceState elements.
The InstanceState element has the following nested properties:

@)

state: This attribute specifies a URI that identifies a potential state.

e TInterfaces: This element contains the definitions of the operations that can be performed on
(instances of) this Node Type. Such operation definitions are given in the form of nested
Interface elements.

The Interface element has the following properties:

@)

TOSCA-v1.0-csd07

name: The name of the interface. This name is either a URI or it is an NCName that
MUST be unique in the scope of the Node Type being defined.

Operation: This element defines an operation available to manage particular aspects
of the Node Type.

The Operation element has the following properties:

* name: This attribute defines the name of the operation and MUST be unique
within the containing Interface of the Node Type.

» TInputParameters: This OPTIONAL property contains a list of one or more
input parameter definitions, each defined in a nested, separate
InputParameter element.

The InputParameter element has the following properties:

e name: This attribute specifies the name of the input parameter, which
MUST be unigue within the set of input parameters defined for the
operation.

e type: This attribute specifies the type of the input parameter.

e required: This OPTIONAL attribute specifies whether or not the input
parameter is REQUIRED (required attribute with a value of “yes” —
default) or OPTIONAL (required attribute with a value of “no”).

* QutputParameters: This OPTIONAL property contains a list of one or more
output parameter definitions, each defined in a nested, separate
OutputParameter element.

The OutputParameter element has the following properties:

18 March 2013

Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 42 of 114

1521 e name: This attribute specifies the name of the output parameter, which

1522 MUST be unique within the set of output parameters defined for the
1523 operation.

1524 e type: This attribute specifies the type of the output parameter.

1525 e reqguired: This OPTIONAL attribute specifies whether or not the

1526 output parameter is REQUIRED (required attribute with a value of
1527 “yes” — default) or OPTIONAL (required attribute with a value of “no”).

1528 6.3 Derivation Rules

1529 The following rules on combining definitions based on DerivedFrom apply:

1530 e Node Type Properties: It is assumed that the XML element (or type) representing the Node Type
1531 Properties extends the XML element (or type) of the Node Type Properties of the Node Type
1532 referenced in the DerivedFrom element.

1533 e Requirements and capabilities: The set of requirements or capabilities of the Node Type under
1534 definition consists of the set union of requirements or capabilities defined by the Node Type
1535 derived from and the requirements or capabilities defined by the Node Type under definition.
1536

1537 In cases where the Node Type under definition defines a requirement or capability with a certain
1538 name where the Node Type derived from already contains a respective definition with the same
1539 name, the definition in the Node Type under definition overrides the definition of the Node Type
1540 derived from. In such a case, the requirement definition or capability definition, respectively,
1541 MUST reference a Requirement Type or Capability Type that is derived from the one in the
1542 corresponding requirement definition or capability definition of the Node Type derived from.
1543 e Instance States: The set of instance states of the Node Type under definition consists of the set
1544 union of the instances states defined by the Nodes Type derived from and the instance states
1545 defined by the Node Type under definition. A set of instance states of the same name will be
1546 combined into a single instance state of the same name.

1547 e Interfaces: The set of interfaces of the Node Type under definition consists of the set union of
1548 interfaces defined by the Node Type derived from and the interfaces defined by the Node Type
1549 under definition.

1550 Two interfaces of the same name will be combined into a single, derived interface with the same
1551 name. The set of operations of the derived interface consists of the set union of operations

1552 defined by both interfaces. An operation defined by the Node Type under definition substitutes an
1553 operation with the same name of the Node Type derived from.

1554 6.4 Example

1555 The following example defines the Node Type “Project”. It is defined in a Definitions document

1556 “MyDefinitions” within the target namespace “http://www.example.com/sample”. Thus, by importing the
1557 corresponding namespace in another Definitions document, the Project Node Type is available for use in
1558 the other document.

1559 01 <Definitions id="MyDefinitions" name="My Definitions"

1560 02 targetNamespace="http://www.example.com/sample">
1561 03
1562 04 <NodeType name="Project">
1563 05
1564 06 <documentation xml:lang="EN">
1565 07 A reusable definition of a node type supporting
1566 08 the creation of new projects.
TOSCA-v1.0-csd07 18 March 2013

Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 43 of 114

1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592

1593
1594
1595
1596
1597
1598
1599
1600
1601

09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

</documentation>
<PropertiesDefinition element="ProjectProperties"/>

<InstanceStates>
<InstanceState state="www.example.com/active"/>
<InstanceState state="www.example.com/onHold"/>
</InstanceStates>

<Interfaces>
<Interface name="ProjectInterface">
<Operation name="CreateProject">
<InputParameters>
<InputParamter name="ProjectName"
type="xs:string"/>
<InputParamter name="Owner"
type="xs:string" />
<InputParamter name="AccountID"
type="xs:string"/>
</InputParameters>
</Operation>
</Interface>
</Interfaces>
</NodeType>

34 </Definitions>

The Node Type “Project” has three Node Type Properties defined as an XML elelment in the Types
element definition of the Service Template document: Owner, ProjectName and AccountID which are all
of type “xs:string”. An instance of the Node Type “Project” could be “active” (more precise in state
www.example.com/active) or “on hold” (more precise in state “www.example.com/onHold”). A single
Interface is defined for this Node Type, and this Interface is defined by an Operation, i.e. its actual
implementation is defined by the definition of the Operation. The Operation has the name CreateProject
and three Input Parameters (exploiting the default value “yes” of the attribute required of the
InputParameter element). The names of these Input Parameters are ProjectName, Owner and
AccountlD, all of type “xs:string”.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 44 of 114

1602

1603
1604
1605
1606
1607
1608

1609
1610
1611
1612

1613
1614
1615

1616

1617

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

7 Node Type Implementations

This chapter specifies how Node Type Implementations are defined. A Node Type Implementation
represents the executable code that implements a specific Node Type. It provides a collection of
executables implementing the interface operations of a Node Type (aka implementation artifacts) and the
executables needed to materialize instances of Node Templates referring to a particular Node Type (aka
deployment artifacts). The respective executables are defined as separate Artifact Templates and are
referenced from the implementation artifacts and deployment artifacts of a Node Type Implementation.

While Artifact Templates provide invariant information about an artifact — i.e. information that is context
independent like the file name of the artifact — implementation or deployment artifacts can provide variant
(or context specific) information, such as authentication data or deployment paths for a specific
environment.

Node Type Implementations can specify hints for a TOSCA container that enable proper selection of an
implementation that fits into a particular environment by means of Required Container Features
definitions.

7.1 XML Syntax

The following pseudo schema defines the XML syntax of Node Type Implementations:

01 <NodeTypelImplementation name="xs:NCName" targetNamespace="xs:anyURI"?

02 nodeType="xs:0OName"

03 abstract="yes|no"?

04 final="yes|no"?>

05

06 <Tags>

07 <Tag name="xs:string" value="xs:string"/> +

08 </Tags> ?

09

10 <DerivedFrom nodeTypelmplementationRef="xs:QName" /> ?
11

12 <RequiredContainerFeatures>

13 <RequiredContainerFeature feature="xs:anyURI"/> +
14 </RequiredContainerFeatures> ?

15

16 <ImplementationArtifacts>

17 <ImplementationArtifact interfaceName="xs:NCName | xs:anyURI"?
18 operationName="xs:NCName"?
19 artifactType="xs:QOName"

20 artifactRef="xs:0Name" ?>

21 artifact specific content ?

22 <ImplementationArtifact> +

23 </ImplementationArtifacts> ?

24

25 <DeploymentArtifacts>

26 <DeploymentArtifact name="xs:string" artifactType="xs:0OName"
27 artifactRef="xs:0OName" ?>

28 artifact specific content ?

29 <DeploymentArtifact> +

30 </DeploymentArtifacts> ?

31

32 </NodeTypelImplementation>

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 45 of 114

1650

1651

1652
1653

1654
1655
1656

1657
1658

1659
1660
1661
1662
1663
1664
1665
1666
1667

1668
1669
1670
1671

1672
1673
1674
1675

1676

1677
1678
1679

1680
1681
1682
1683

1684
1685

1686
1687
1688
1689
1690
1691
1692
1693
1694
1695

1696
1697

7.2 Properties

The NodeTypeImplementation element has the following properties:

name: This attribute specifies the name or identifier of the Node Type Implementation, which
MUST be unique within the target namespace.

targetNamespace: This OPTIONAL attribute specifies the target namespace to which the
definition of the Node Type Implementation will be added. If not specified, the Node Type
Implementation will be added to the target namespace of the enclosing Definitions document.

nodeType: The QName value of this attribute specifies the Node Type implemented by this
Node Type Implementation.

abstract: This OPTIONAL attribute specifies that this Node Type Implementation cannot be
used directly as an implementation for the Node Type specified in the nodeType attribute.

For example, a Node Type implementer might decide to deliver only part of the implementation of
a specific Node Type (i.e. for only some operations) for re-use purposes and require the
implementation for specific operations to be delivered in a more concrete, derived Node Type
Implementation.

Note: an abstract Node Type Implementation MUST NOT be declared as final.

final: This OPTIONAL attribute specifies that other Node Type Implementations MUST NOT
be derived from this Node Type Implementation.

Note: a final Node Type Implementation MUST NOT be declared as abstract.

Tags: This OPTIONAL element allows the definition of any number of tags which can be used by
the author to describe the Node Type Implementation. Each tag is defined by a separate, nested
Tag element.

The Tag element has the following properties:

o name: This attribute specifies the name of the tag.
o value: This attribute specifies the value of the tag.

Note: The name/value pairs defined in tags have no normative interpretation.

DerivedFrom: This is an OPTIONAL reference to another Node Type Implementation from
which this Node Type Implementation derives. See section 7.3 Derivation RulesError! Reference
source not found. for details.

The DerivedFrom element has the following properties:

o nodeTypelmplementationRef: The QName specifies the Node Type
Implementation from which this Node Type Implementation derives.

RequiredContainerFeatures: Animplementation of a Node Type might depend on
certain features of the environment it is executed in, such as specific (potentially proprietary) APIs
of the TOSCA container. For example, an implementation to deploy a virtual machine based on
an image could require access to some API provided by a public cloud, while another
implementation could require an API of a vendor-specific virtual image library. Thus, the contents
of the RequiredContainerFeatures element provide “hints” to the TOSCA container
allowing it to select the appropriate Node Type Implementation if multiple alternatives are
provided.

Each such dependency is defined by a separate RequiredContainerFeature element.
The RequiredContainerFeature element has the following properties:

o feature: The value of this attribute is a URI that denotes the corresponding needed
feature of the environment.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 46 of 114

1698
1699
1700

1701
1702
1703
1704
1705
1706
1707
1708
1709
1710

1711
1712

1713
1714
1715
1716
1717

1718
1719
1720
1721
1722
1723

1724
1725
1726
1727
1728
1729
1730
1731
1732

1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744

1745
1746
1747

1748
1749

e TImplementationArtifacts: This element specifies a set of implementation artifacts for
interfaces or operations of a Node Type.
The ImplementationArtifacts element has the following properties:

o

ImplementationArtifact: This element specifies one implementation artifact of
an interface or an operation.

Note: Multiple implementation artifacts might be needed to implement a Node Type
according to the attributes defined below. An implementation artifact MAY serve as
implementation for all interfaces and all operations defined for the Node Type, it MAY
serve as implementation for one interface (and all its operations), or it MAY serve as
implementation for only one specific operation.

The ImplementationArtifact element has the following properties:

name: This attribute specifies the name of the artifact, which SHOULD be unique
within the scope of the encompassing Node Type Implementation.

interfaceName: This OPTIONAL attribute specifies the name of the interface
that is implemented by the actual implementation artifact. If not specified, the
implementation artifact is assumed to provide the implementation for all
interfaces defined by the Node Type referred to by the nodeType attribute of
the containing NodeTypeImplementation

operationName: This OPTIONAL attribute specifies the name of the
operation that is implemented by the actual implementation artifact. If specified,
the interfaceName MUST be specified and the specified operationName
MUST refer to an operation of the specified interface. If not specified, the
implementation artifact is assumed to provide the implementation for all
operations defined within the specified interface.

artifactType: This attribute specifies the type of this artifact. The QName
value of this attribute SHOULD correspond to the QName of an
ArtifactType defined in the same Definitions document or in an imported
document.

The artifactType attribute specifies the artifact type specific content of the
ImplementationArtifact element body and indicates the type of Artifact
Template referenced by the Implementation Artifact via the artifactRef
attribute.

artifactRef: This OPTIONAL attribute contains a QName that identifies an
Artifact Template to be used as implementation artifact. This Artifact Template
can be defined in the same Definitions document or in a separate, imported
document.

The type of Artifact Template referenced by the artifactRef attribute MUST
be the same type or a sub-type of the type specified in the artifactType
attribute.

Note: if no Artifact Template is referenced, the artifact type specific content of the
ImplementationArtifact element alone is assumed to represent the
actual artifact. For example, a simple script could be defined in place within the
ImplementationArtifact element.

e DeploymentArtifacts: This element specifies a set of deployment artifacts relevant for
materializing instances of nodes of the Node Type being implemented.
The DeploymentArtifacts element has the following properties:

o

TOSCA-v1.0-csd07

DeploymentArtifact: This element specifies one deployment artifact.

18 March 2013

Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 47 of 114

1750
1751
1752
1753
1754
1755
1756

1757
1758

1759
1760
1761
1762
1763
1764
1765
1766
1767

1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779

1780
1781

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797

Note: Multiple deployment artifacts MAY be defined in a Node Type Implementation. One
reason could be that multiple artifacts (maybe of different types) are needed to
materialize a node as a whole. Another reason could be that alternative artifacts are
provided for use in different contexts (e.g. different installables of a software for use in
different operating systems).

The DeploymentArtifact element has the following properties:

* name: This attribute specifies the name of the artifact, which SHOULD be unique
within the scope of the encompassing Node Type Implementation.

» artifactType: This attribute specifies the type of this artifact. The QName
value of this attribute SHOULD correspond to the QName of an
ArtifactType defined in the same Definitions document or in an imported
document.

The artifactType attribute specifies the artifact type specific content of the
DeploymentArtifact element body and indicates the type of Artifact
Template referenced by the Deployment Artifact via the artifactRef
attribute.

» artifactRef: This OPTIONAL attribute contains a QName that identifies an
Artifact Template to be used as deployment artifact. This Artifact Template can
be defined in the same Definitions document or in a separate, imported
document.

The type of Artifact Template referenced by the artifactRef attribute MUST
be the same type or a sub-type of the type specified in the artifactType
attribute.

Note: if no Artifact Template is referenced, the artifact type specific content of the
DeploymentArtifact element alone is assumed to represent the actual
artifact. For example, the contents of a simple config file could be defined in
place within the DeploymentArtifact element.

7.3 Derivation Rules

The following rules on combining definitions based on DerivedFrom apply:

Implementation Artifacts: The set of implementation artifacts of a Node Type Implementation
consists of the set union of implementation artifacts defined by the Node Type Implementation
itself and the implementation artifacts defined by any Node Type Implemenation the Node Type
Implementation is derived from.

An implementation artifact defined by a Node Type Implementation overrides an implementation
artifact having the same interface name and operation name of a Node Type Implementation the
Node Type Implementation is derived from.

If an implementation artifact defined in a Node Type Implementation specifies only an interface
name, it substitutes implementation artifacts having the same interface name (with or without an
operation name defined) of any Node Type Implementation the Node Type Implementation is
derived from. In this case, the implementation of a complete interface of a Node Type is
overridden.

If an implementation artifact defined in a Node Type Implementation neither defines an interface
name nor an operation name, it overrides all implementation artifacts of any Node Type
Implementation the Node Type Implementation is derived from. In this case, the complete
implementation of a Node Type is overridden.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 48 of 114

1798 o Deployment Artifacts: The set of deployment artifacts of a Node Type Implementation consists of

1799 the set union of the deployment artifacts defined by the Nodes Type Implementation itself and the
1800 deployment artifacts defined by any Node Type Implementation the Node Type Implementation is
1801 derived from. A deployment artifact defined by a Node Type Implementation overrides a

1802 deployment artifact with the same name and type (or any type it is derived from) of any Node
1803 Type Implementation the Node Type Implementation is derived from.

1804 7.4 Example

1805 The following example defines the Node Type Implementation “MyDBMSImplementation”. This is an
1806 implementation of a Node Type “DBMS”.

1807 01 <Definitions id="MyImpls" name="My Implementations"

1808 02 targetNamespace="http://www.example.com/SampleImplementations"
1809 03 xmlns:bn="http://www.example.com/BaseNodeTypes"

1810 04 xmlns:ba="http://www.example.com/BaseArtifactTypes"

1811 05 xmlns:sa="http://www.example.com/SampleArtifacts">

1812 06

1813 07 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
1814 08 namespace="http://www.example.com/BaseArtifactTypes"/>
1815 09

1816 10 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
1817 11 namespace="http://www.example.com/BaseNodeTypes" />

1818 12

1819 13 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
1820 14 namespace="http://www.example.com/SampleArtifacts"/>
1821 15

1822 16 <NodeTypelImplementation name="MyDBMSImplementation"

1823 17 nodeType="bn:DBMS">

1824 18

1825 19 <ImplementationArtifacts>

1826 20 <ImplementationArtifact interfaceName="MgmtInterface"

1827 21 artifactType="ba:WARFile"

1828 22 artifactRef="sa:MyMgmtWebApp">

1829 23 </ImplementationArtifact>

1830 24 </ImplementationArtifacts>

1831 25

1832 26 <DeploymentArtifacts>

1833 27 <DeploymentArtifact name="MyDBMS"

1834 28 artifactType="ba:ZipFile"

1835 29 artifactRef="sa:MyInstallable">

1836 30 </DeploymentArtifact>

1837 31 </DeploymentArtifacts>

1838 32

1839 33 </NodeTypeImplementation>

1840 34

1841 35 </Definitions>

1842 The Node Type Implementation contains the “MyDBMSManagement” implementation artifact, which is an
1843 artifact for the “Mgmtinterface” Interface that has been defined for the “DBMS” base Node Type. The type
1844 of this artifact is a “WARFile” that has been defined as base Artifact Type. The implementation artifact
1845 refers to the “MyMgmtWebApp” Artifact Template that has been defined before.

1846 The Node Type Implementation further contains the “MyDBMS” deployment artifact, which is a software
1847 installable used for instantiating the “DBMS” Node Type. This software installable is a “ZipFile” that has
1848 been separately defined as the “Mylnstallable” Artifact Template before.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 49 of 114

1849

1850
1851
1852
1853
1854

1855
1856
1857

1858
1859
1860
1861
1862

1863

1864

1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898

8 Relationship Types

This chapter specifies how Relationship Types are defined. A Relationship Type is a reusable entity that
defines the type of one or more Relationship Templates between Node Templates. As such, a
Relationship Type can define the structure of observable properties via a Properties Definition, i.e. the
names, data types and allowed values the properties defined in Relationship Templates using a
Relationship Type or instances of such Relationship Templates can have.

The operations that can be performed on (an instance of) a corresponding Relationship Template are
defined by the Interfaces of the Relationship Type. Furthermore, a Relationship Type defines the potential
states an instance of it might reveal at runtime.

A Relationship Type can inherit the definitions defined in another Relationship Type by means of the
DerivedFrom element. Relationship Types might be declared as abstract, meaning that they cannot be
instantiated. The purpose of such abstract Relationship Types is to provide common properties and
behavior for re-use in specialized, derived Relationship Types. Relationship Types might also be declared
as final, meaning that they cannot be derived by other Relationship Types.

8.1 XML Syntax

The following pseudo schema defines the XML syntax of Relationship Types:
01 <RelationshipType name="xs:NCName"

02 targetNamespace="xs:anyURI"?
03 abstract="yes|no"?

04 final="yes|no"?> +

05

06 <Tags>

07 <Tag name="xs:string" value="xs:string"/> +
08 </Tags> ?

09

10 <DerivedFrom typeRef="xs:QOName"/> ?

11

12 <PropertiesDefinition element="xs:QOName"? type="xs:QName"?/> ?
13

14 <InstanceStates>

15 <InstanceState state="xs:anyURI"> +

16 </InstanceStates> ?

17

18 <Sourcelnterfaces>

19 <Interface name="xs:NCName | xs:anyURI">
20 ...

21 </Interface> +

22 </Sourcelnterfaces> ?

23

24 <TargetInterfaces>

25 <Interface name="xs:NCName | xs:anyURI">
26 ce

27 </Interface> +

28 </TargetInterfaces> ?

29

30 <ValidSource typeRef="xs:0OName"/> 2

31

32 <ValidTarget typeRef="xs:QName"/> ?

33

34 </RelationshipType>

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 50 of 114

1899

1900

1901
1902

1903
1904
1905

1906
1907
1908
1909
1910
1911
1912
1913

1914
1915
1916
1917

1918
1919
1920
1921

1922

1923
1924
1925

1926
1927
1928
1929

1930
1931

1932
1933
1934

1935
1936

1937
1938

1939
1940
1941
1942

1943

1944
1945
1946

8.2 Properties

The RelationshipType element has the following properties:

name: This attribute specifies the name or identifier of the Relationship Type, which MUST be
unique within the target namespace.

targetNamespace: This OPTIONAL attribute specifies the target namespace to which the
definition of the Relationship Type will be added. If not specified, the Relationship Type definition
will be added to the target namespace of the enclosing Definitions document.

abstract: This OPTIONAL attribute specifies that no instances can be created from
Relationship Templates that use this Relationship Type as their type.

As a consequence, the corresponding abstract Relationship Type referenced by any Relationship
Template has to be substituted by a Relationship Type derived from the abstract Relationship
Type at the latest during the instantiation time of a Relationship Template.

Note: an abstract Relationship Type MUST NOT be declared as final.

final: This OPTIONAL attribute specifies that other Relationship Types MUST NOT be derived
from this Relationship Type.

Note: a final Relationship Type MUST NOT be declared as abstract.

Tags: This OPTIONAL element allows the definition of any number of tags which can be used by
the author to describe the Relationship Type. Each tag is defined by a separate, nested Tag
element.

The Tag element has the following properties:

o name: This attribute specifies the name of the tag.
o value: This attribute specifies the value of the tag.

Note: The name/value pairs defined in tags have no normative interpretation.

DerivedFrom: This is an OPTIONAL reference to another Relationship Type from which this
Relationship Type is derived. Conflicting definitions are resolved by the rule that local new
definitions always override derived definitions. See section 8.3 Derivation Rules for details.
The DerivedFrom element has the following properties:

o typeRef: The QName specifies the Relationship Type from which this Relationship
Type derives its definitions.

PropertiesDefinition: This element specifies the structure of the observable properties
of the Relationship Type, such as its configuration and state, by means of XML schema.
The PropertiesDefinition element has one but not both of the following properties:

o element: This attribute provides the QName of an XML element defining the structure
of the Relationship Type Properties.

o type: This attribute provides the QName of an XML (complex) type defining the
structure of the Relationship Type Properties.

InstanceStates: This OPTIONAL element lists the set of states an instance of this
Relationship Type can occupy at runtime. Those states are defined in nested InstanceState
elements.

The InstanceState element has the following nested properties:

o state: This attribute specifies a URI that identifies a potential state.

SourceInterfaces: This OPTIONAL element contains definitions of manageability interfaces
that can be performed on the source of a relationship of this Relationship Type to actually
establish the relationship between the source and the target in the deployed service.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 51 of 114

1947
1948

1949
1950
1951
1952
1953

1954
1955
1956
1957

1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970

1971
1972
1973
1974

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

1988

1989

1990
1991
1992
1993

1994
1995

Those interface definitions are contained in nested Interface elements, the content of which
is that described for Node Type interfaces (see section 6.2).

TargetInterfaces: This OPTIONAL element contains definitions of manageability interfaces
that can be performed on the target of a relationship of this Relationship Type to actually
establish the relationship between the source and the target in the deployed service.

Those interface definitions are contained in nested Interface elements, the content of which
is that described for Node Type interfaces (see section 6.2).

ValidSource: This OPTIONAL element specifies the type of object that is allowed as a valid
origin for relationships defined using the Relationship Type under definition. If not specified, any
Node Type is allowed to be the origin of the relationship.

The ValidSource element has the following properties:

o typeRef: This attribute specifies the QName of a Node Type or Requirement Type that
is allowed as a valid source for relationships defined using the Relationship Type under
definition. Node Types or Requirements Types derived from the specified Node Type or
Requirement Type, respectively, MUST also be accepted as valid relationship source.

Note: If ValidSource specifies a Node Type, the ValidTarget element (if present)
of the Relationship Type under definition MUST also specify a Node Type.

If ValidSource specifies a Requirement Type, the ValidTarget element (if
present) of the Relationship Type under definition MUST specify a Capability Type. This
Capability Type MUST match the requirement defined in ValidSource, i.e. it MUST
be of the type (or a sub-type of) the capability specified in the
requiredCapabilityType attribute of the respective RequirementType
definition.

ValidTarget: This OPTIONAL element specifies the type of object that is allowed as a valid
target for relationships defined using the Relationship Type under definition. If not specified, any
Node Type is allowed to be the origin of the relationship.

The ValidTarget element has the following properties:

o typeRef: This attribute specifies the QName of a Node Type or Capability Type that is
allowed as a valid target for relationships defined using the Relationship Type under
definition. Node Types or Capability Types derived from the specified Node Type or
Capability Type, respectively, MUST also be accepted as valid targets of relationships.

Note: If ValidTarget specifies a Node Type, the ValidSource element (if present)
of the Relationship Type under definition MUST also specify a Node Type.

If validTarget specifies a Capability Type, the ValidSource element (if present)
of the Relationship Type under definition MUST specify a Requirement Type. This
Requirement Type MUST declare it requires the capability defined in ValidTarget,
i.e. it MUST declare the type (or a super-type of) the capability in the
requiredCapabilityType attribute of the respective RequirementType
definition.

8.3 Derivation Rules

The following rules on combining definitions based on DerivedFrom apply:

Relationship Type Properties: It is assumed that the XML element (or type) representing the
Relationship Type properties of the Relationship Type under definition extends the XML element
(or type) of the Relationship Type properties of the Relationship Type referenced in the
DerivedFrom element.

Instance States: The resulting set of instance states of the Relationship Type under definition
consists of the set union of the instances states defined by the Relationship Type derived from

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 52 of 114

1996
1997
1998

1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

2010
2011
2012
2013
2014
2015
2016

2017

2018
2019
2020
2021
2022
2023

2024
2025
2026
2027
2028
2029
2030
2031
2032
2033

and the instance states explicitly defined by the Relationship Type under definition. Instance
states with the same state attribute will be combined into a single instance state of the same
state.

Valid source and target: An object specified as a valid source or target, respectively, of the
Relationship Type under definition MUST be of a subtype defined as valid source or target,
respectively, of the Relationship Type derived from.

If the Relationship Type derived from has no valid source or target defined, the types of object
being defined in the ValidSource or ValidTarget elements of the Relationship Type
under definition are not restricted.

If the Relationship Type under definition has no source or target defined, only the types of objects
defined as source or target of the Relationship Type derived from are valid origins or destinations
of the Relationship Type under definition.

Interfaces: The set of interfaces (both source and target interfaces) of the Relationship Type
under definition consists of the set union of interfaces defined by the Relationship Type derived
from and the interfaces defined by the Relationship Type under definition.

Two interfaces of the same name will be combined into a single, derived interface with the same
name. The set of operations of the derived interface consists of the set union of operations
defined by both interfaces. An operation defined by the Relationship Type under definition
substitutes an operation with the same name of the Relationship Type derived from.

8.4 Example

The following example defines the Relationship Type “processDeployedOn”. The meaning of this
Relationship Type is that “a process is deployed on a hosting environment”. When the source of an
instance of a Relationship Template refering to this Relationship Type is deleted, its target is
automatically deleted as well. The Relationship Type has Relationship Type Properties defined in the
Types section of the same Definitions document as the “ProcessDeployedOnProperties” element. The
states an instance of this Relationship Type can be in are also listed.

01 <RelationshipType name="processDeployedOn">

02
03
04
05
06
07
08
09

<RelationshipTypeProperties element="ProcessDeployedOnProperties"/>

<InstanceStates>

<InstanceState state="www.example.com/successfullyDeployed"/>
<InstanceState state="www.example.com/failed"/>

</InstanceStates>

10 </RelationshipType>

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 53 of 114

2034 9 Relationship Type Implementations

2035 This chapter specifies how Relationship Type Implementations are defined. A Relationship Type

2036 Implementation represents the runnable code that implements a specific Relationship Type. It provides a
2037 collection of executables implementing the interface operations of a Relationship Type (aka

2038 implementation artifacts). The particular executables are defined as separate Artifact Templates and are
2039 referenced from the implementation artifacts of a Relationship Type Implementation.

2040 While Artifact Templates provide invariant information about an artifact — i.e. information that is context
2041 independent like the file name of the artifact — implementation artifacts can provide variant (or context
2042 specific) information, e.g. authentication data for a specific environment.

2043 Relationship Type Implementations can specify hints for a TOSCA container that enable proper selection
2044 of an implementation that fits into a particular environment by means of Required Container Features
2045 definitions.

2046 Note that there MAY be Relationship Types that do not define any interface operations, i.e. that also do
2047 not require any implementation artifacts. In such cases, no Relationship Type Implementation is needed
2048 but the respective Relationship Types can be used by a TOSCA implementation as is.

2049 9.1 XML Syntax

2050 The following pseudo schema defines the XML syntax of Relationship Type Implementations:
2051 01 <RelationshipTypeImplementation name="xs:NCName"

2052 02 targetNamespace="xs:anyURI"?
2053 03 relationshipType="xs:0OName"
2054 04 abstract="yes|no"?

2055 05 final="yes|no"?>

2056 06

2057 07 <Tags>

2058 08 <Tag name="xs:string" value="xs:string"/> +

2059 09 </Tags> ?

2060 10

2061 11 <DerivedFrom relationshipTypeImplementationRef="xs:QOName"/> ?
2062 12
2063 13 <RequiredContainerFeatures>

2064 14 <RequiredContainerFeature feature="xs:anyURI"/> +
2065 15 </RequiredContainerFeatures> ?

2066 16

2067 17 <ImplementationArtifacts>

2068 18 <ImplementationArtifact interfaceName="xs:NCName | xs:anyURI"?
2069 19 operationName="xs:NCName"?
2070 20 artifactType="xs:0OName"
2071 21 artifactRef="xs:0OName" ?>
2072 22 artifact specific content ?

2073 23 <ImplementationArtifact> +

2074 24 </ImplementationArtifacts> ?

2075 25

2076 26 </RelationshipTypeImplementation>

2077 9.2 Properties

2078 TheRelationshipTypeImplementation element has the following properties:

2079 e name: This attribute specifies the name or identifier of the Relationship Type Implementation,
2080 which MUST be unique within the target namespace.
TOSCA-v1.0-csd07 18 March 2013

Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 54 of 114

2081
2082
2083
2084

2085
2086

2087
2088
2089
2090
2091
2092
2093
2094
2095
2096

2097
2098
2099
2100

2101
2102
2103
2104

2105

2106
2107
2108

2109
2110
2111
2112

2113
2114

2115
2116
2117
2118
2119
2120
2121
2122

2123
2124

2125
2126
2127

2128
2129
2130

targetNamespace: This OPTIONAL attribute specifies the target namespace to which the
definition of the Relationship Type Implementation will be added. If not specified, the Relationship
Type Implementation will be added to the target namespace of the enclosing Definitions
document.

relationshipType: The QName value of this attribute specifies the Relationship Type
implemented by this Relationship Type Implementation.

abstract: This OPTIONAL attribute specifies that this Relationship Type Implementation
cannot be used directly as an implementation for the Relationship Type specified in the
relationshipType attribute.

For example, a Relationship Type implementer might decide to deliver only part of the
implementation of a specific Relationship Type (i.e. for only some operations) for re-use purposes
and require the implementation for speficic operations to be delivered in a more concrete, derived
Relationship Type Implementation.

Note: an abstract Relationship Type Implementation MUST NOT be declared as final.

final: This OPTIONAL attribute specifies that other Relationship Type Implementations MUST
NOT be derived from this Relationship Type Implementation.

Note: a final Relationship Type Implementation MUST NOT be declared as abstract.

Tags: This OPTIONAL element allows the definition of any number of tags which can be used by
the author to describe the Relationship Type Implementation. Each tag is defined by a separate,
nested Tag element.

The Tag element has the following properties:

o name: This attribute specifies the name of the tag.
o wvalue: This attribute specifies the value of the tag.

Note: The name/value pairs defined in tags have no normative interpretation.

DerivedFrom: This is an OPTIONAL reference to another Relationship Type Implementation
from which this Relationship Type Implementation derives. See section 9.3 Derivation Rules or
details.

The DerivedFrom element has the following properties:

o relationshipTypelImplementationRef: The QName specifies the Relationship
Type Implementation from which this Relationship Type Implementation derives.

RequiredContainerFeatures: Animplementation of a Relationship Type might depend
on certain features of the environment it is executed in, such as specific (potentially proprietary)
APIs of the TOSCA container.

Thus, the contents of the RequiredContainerFeatures element provide “hints” to the
TOSCA container allowing it to select the appropriate Relationship Type Implementation if
multiple alternatives are provided.

Each such dependency is defined by a separate RequiredContainerFeature element.
The RequiredContainerFeature element has the following properties:

o feature: The value of this attribute is a URI that denotes the corresponding needed
feature of the environment.

ImplementationArtifacts: This element specifies a set of implementation artifacts for
interfaces or operations of a Relationship Type.
The ImplementationArtifacts element has the following properties:

o ImplementationArtifact: This element specifies one implementation artifact of
an interface or an operation.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 55 of 114

2131
2132
2133
2134
2135
2136
2137

2138
2139

2140
2141
2142
2143
2144
2145
2146
2147
2148
2149

2150
2151
2152
2153
2154
2155

2156
2157
2158
2159
2160
2161
2162
2163
2164

2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176

2177

2178

2179
2180

Note: Multiple implementation artifacts might be needed to implement a Relationship
Type according to the attributes defined below. An implementation artifact MAY serve as
implementation for all interfaces and all operations defined for the Relationship Type, it
MAY serve as implementation for one interface (and all its operations), or it MAY serve
as implementation for only one specific operation.

The ImplementationArtifact element has the following properties:

name: This attribute specifies the name of the artifact, which SHOULD be unique
within the scope of the encompassing Node Type Implementation.

interfaceName: This OPTIONAL attribute specifies the name of the interface
that is implemented by the actual implementation artifact. If not specified, the
implementation artifact is assumed to provide the implementation for all
interfaces defined by the Relationship Type referred to by the
relationshipType attribute of the containing
RelationshipTypeImplementation

Note that the referenced interface can be defined in either the
SourceInterfaces elementorthe TargetInterfaces element of the
Relationship Type implemented by this Relationship Type Implementation.

operationName: This OPTIONAL attribute specifies the name of the
operation that is implemented by the actual implementation artifact. If specified,
the interfaceName MUST be specified and the specified operationName
MUST refer to an operation of the specified interface. If not specified, the
implementation artifact is assumed to provide the implementation for all
operations defined within the specified interface.

artifactType: This attribute specifies the type of this artifact. The QName
value of this attribute SHOULD correspond to the QName of an
ArtifactType defined in the same Definitions document or in an imported
document.

The artifactType attribute specifies the artifact type specific content of the
ImplementationArtifact element body and indicates the type of Artifact
Template referenced by the Implementation Artifact via the artifactRef
attribute.

artifactRef: This OPTIONAL attribute contains a QName that identifies an
Artifact Template to be used as implementation artifact. This Artifact Template
can be defined in the same Definitions document or in a separate, imported
document.

The type of Artifact Template referenced by the artifactRef attribute MUST
be the same type or a sub-type of the type specified in the artifactType
attribute.

Note: if no Artifact Template is referenced, the artifact type specific content of the
ImplementationArtifact element alone is assumed to represent the
actual artifact. For example, a simple script could be defined in place within the
ImplementationArtifact element.

9.3 Derivation Rules

The following rules on combining definitions based on DerivedFrom apply:

e Implementation Artifacts: The set of implementation artifacts of a Relationship Type
Implementation consists of the set union of implementation artifacts defined by the Relationship

TOSCA-v1.0-csd07

18 March 2013

Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 56 of 114

2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194

2195

2196
2197

2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226

2227
2228
2229
2230
2231

Type Implementation itself and the implementation artifacts defined by any Relationship Type
Implemenation the Relationship Type Implementation is derived from.

An implementation artifact defined by a Node Type Implementation overrides an implementation
artifact having the same interface name and operation name of a Relationship Type
Implementation the Relationship Type Implementation is derived from.

If an implementation artifact defined in a Relationship Type Implementation specifies only an
interface name, it substitutes implementation artifacts having the same interface name (with or
without an operation name defined) of any Relationship Type Implementation the Relationship
Type Implementation is derived from. In this case, the implementation of a complete interface of a
Relationship Type is overridden.

If an implementation artifact defined in a Relationship Type Implementation neither defines an
interface name nor an operation name, it overrides all implementation artifacts of any
Relationship Type Implementation the Relationship Type Implementation is derived from. In this
case, the complete implementation of a Relationship Type is overridden.

9.4 Example

The following example defines the Node Type Implementation “MyDBMSImplementation”. This is an
implementation of a Node Type “DBMS”.

01 <Definitions id="MyImpls" name="My Implementations"

02 targetNamespace="http://www.example.com/SampleImplementations"
03 xmlns:bn="http://www.example.com/BaseRelationshipTypes"

04 xmlns:ba="http://www.example.com/BaseArtifactTypes"

05 xmlns:sa="http://www.example.com/SampleArtifacts">

06

07 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
08 namespace="http://www.example.com/BaseArtifactTypes"/>
09

10 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
11 namespace="http://www.example.com/BaseRelationshipTypes"/>
12

13 <Import importType="http://docs.ocasis-open.org/tosca/ns/2011/12"
14 namespace="http://www.example.com/SampleArtifacts"/>

15

16 <RelationshipTypeImplementation name="MyDBConnectImplementation"
17 relationshipType="bn:DBConnection">
18

19 <ImplementationArtifacts>

20 <ImplementationArtifact interfaceName="ConnectionInterface"
21 operationName="connectTo"

22 artifactType="ba:ScriptArtifact"

23 artifactRef="sa:MyConnectScript">
24 <ImplementationArtifact>

25 </ImplementationArtifacts>

26

27 </RelationshipTypeImplementation>

28

29 </Definitions>

The Relationship Type Implementation contains the “MyDBConnectionimpl” implementation artifact,
which is an artifact for the “Connectioninterface” interface that has been defined for the “DBConnection”
base Relationship Type. The type of this artifact is a “ScriptArtifact” that has been defined as base Artifact
Type. The implementation artifact refers to the “MyConnectScript” Artifact Template that has been defined
before.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 57 of 114

2232

2233
2234
2235
2236

2237
2238
2239
2240

2241
2242
2243
2244
2245

2246

2247

2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262

2263

2264

2265
2266

2267
2268
2269

2270
2271
2272
2273
2274
2275
2276
2277
2278

10Requirement Types

This chapter specifies how Requirement Types are defined. A Requirement Type is a reusable entity that
describes a kind of requirement that a Node Type can declare to expose. For example, a Requirement
Type for a database connection can be defined and various Node Types (e.g. a Node Type for an
application) can declare to expose (or “to have”) a requirement for a database connection.

A Requirement Type defines the structure of observable properties via a Properties Definition, i.e. the
names, data types and allowed values the properties defined in Requirements of Node Templates of a
Node Type can have in cases where the Node Type defines a requirement of the respective Requirement
Type.

A Requirement Type can inherit properties and semantics from another Requirement Type by means of
the DerivedFrom element. Requirement Types might be declared as abstract, meaning that they
cannot be instantiated. The purpose of such abstract Requirement Types is to provide common
properties for re-use in specialized, derived Requirement Types. Requirement Types might also be
declared as final, meaning that they cannot be derived by other Requirement Types.

10.1 XML Syntax

The following pseudo schema defines the XML syntax of Requirement Types:

01 <RequirementType name="xs:NCName"

02 targetNamespace="xs:anyURI"?

03 abstract="yes|no"?

04 final="yes|no"?

05 requiredCapabilityType="xs:0OName" ?>
06

07 <Tags>

08 <Tag name="xs:string" value="xs:string"/> +

09 </Tags> ?

10

11 <DerivedFrom typeRef="xs:QName"/> ?

12

13 <PropertiesDefinition element="xs:0OName"? type='"xs:QOName"?/> ?
14

15 </RequirementType>

10.2 Properties
The RequirementType element has the following properties:

e name: This attribute specifies the name or identifier of the Requirement Type, which MUST be
unique within the target namespace.

e targetNamespace: This OPTIONAL attribute specifies the target namespace to which the
definition of the Requirement Type will be added. If not specified, the Requirement Type definition
will be added to the target namespace of the enclosing Definitions document.

e abstract: This OPTIONAL attribute specifies that no instances can be created from Node
Templates of a Node Type that defines a requirement of this Requirement Type.

As a consequence, a Node Type with a Requirement Definition of an abstract Requirement Type
MUST be declared as abstract as well and a derived Node Type that defines a requirement of a
type derived from the abstract Requirement Type has to be defined. For example, an abstract
Node Type “Application” might be defined having a requirement of the abstract type “Container”.
A derived Node Type “Web Application” can then be defined with a more concrete requirement of
type “Web Application Container” which can then be used for defining Node Templates that can

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 58 of 114

2279
2280
2281

2282
2283
2284
2285

2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299

2300
2301
2302
2303

2304

2305
2306
2307

2308
2309
2310

2311
2312

2313
2314
2315

2316
2317

2318
2319

2320

2321

2322
2323
2324

be instantiated during the creation of a service according to a Service Template.

Note: an abstract Requirement Type MUST NOT be declared as final.

e final: This OPTIONAL attribute specifies that other Requirement Types MUST NOT be derived
from this Requirement Type.

Note: a final Requirement Type MUST NOT be declared as abstract.

e requiredCapabilityType; This OPTIONAL attribute specifies the type of capability
needed to match the defined Requirement Type. The QName value of this attribute refers to the
QName of a CapabilityType element defined in the same Definitions document or in a
separate, imported document.

Note: The following basic match-making for Requirements and Capabilities MUST be supported
by each TOSCA implementation. Each Requirement is defined by a Requirement Definition,
which in turn refers to a Requirement Type that specifies the needed Capability Type by means of
its requiredCapabilityType attribute. The value of this attribute is used for basic type-
based match-making: a Capability matches a Requirement if the Requirement’s Requirement
Type has a requiredCapabilityType value that corresponds to the Capability Type of the
Capability or one of its super-types.

Any domain-specific match-making semantics (e.g. based on constraints or properties) has to be
defined in the cause of specifying the corresponding Requirement Types and Capability Types.

e Tags: This OPTIONAL element allows the definition of any number of tags which can be used by
the author to describe the Requirement Type. Each tag is defined by a separate, nested Tag
element.

The Tag element has the following properties:

o name: This attribute specifies the name of the tag.
o value: This attribute specifies the value of the tag.

Note: The name/value pairs defined in tags have no normative interpretation.

e DerivedFrom: Thisis an OPTIONAL reference to another Requirement Type from which this
Requirement Type derives. See section 10.3 Derivation Rules for details.
The DerivedFrom element has the following properties:

o typeRef: The QName specifies the Requirement Type from which this Requirement
Type derives its definitions and semantics.

e PropertiesDefinition: This element specifies the structure of the observable properties
of the Requirement Type, such as its configuration and state, by means of XML schema.
The PropertiesDefinition element has one but not both of the following properties:

o element: This attribute provides the QName of an XML element defining the structure
of the Requirement Type Properties.

o type: This attribute provides the QName of an XML (complex) type defining the
structure of the Requirement Type Properties.

10.3 Derivation Rules

The following rules on combining definitions based on DerivedFrom apply:

e Requirement Type Properties: It is assumed that the XML element (or type) representing the
Requirement Type Properties extends the XML element (or type) of the Requirement Type
Properties of the Requirement Type referenced in the DerivedFrom element.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 59 of 114

2325

2326
2327
2328
2329
2330

2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348

2349
2350
2351
2352

2353
2354
2355
2356

2357

10.4 Example

The following example defines the Requirement Type “DatabaseClientEndpoint” that expresses the
requirement of a client for a database connection. It is defined in a Definitions document
“MyRequirements” within the target namespace “http://www.example.com/SampleRequirements”. Thus,
by importing the corresponding namespace into another Definitions document, the
“DatabaseClientEndpoint” Requirement Type is available for use in the other document.

01 <Definitions id="MyRequirements" name="My Requirements"

02 targetNamespace="http://www.example.com/SampleRequirements"

03 xmlns:br="http://www.example.com/BaseRequirementTypes"

04 xmlns:mrp="http://www.example.com/SampleRequirementProperties>
05

06 <Import importType="http://docs.ocasis-open.org/tosca/ns/2011/12"
07 namespace="http://www.example.com/BaseRequirementTypes" />

08

09 <Import importType="http://www.w3.0rg/2001/XMLSchema"

10 namespace="http://www.example.com/SampleRequirementProperties" />
11

12 <RequirementType name="DatabaseClientEndpoint">

13 <DerivedFrom typeRef="br:ClientEndpoint"/>

14 <PropertiesDefinition

15 element="mrp:DatabaseClientEndpointProperties" />

16 </RequirementType>

17

18 </Definitions>

The Requirement Type “DatabaseClientEndpoint” defined in the example above is derived from another
generic “ClientEndpoint” Requirement Type defined in a separate file by means of the DerivedFrom
element. The definitions in that separate Definitions file are imported by means of the first Import
element and the namespace of those imported definitions is assigned the prefix “br” in the current file.

The “DatabaseClientEndpoint” Requirement Type defines a set of properties through an XML schema
element definition “DatabaseClientEndpointProperties”. For example, those properties might include the
definition of a port number to be used for client connections. The XML schema definition is stored in a
separate XSD file that is imported by means of the second Import element. The namespace of the XML

schema definitions is assigned the prefix “mrp” in the current file.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 60 of 114

2358

2359
2360
2361
2362

2363
2364
2365

2366
2367
2368
2369
2370

2371

2372

2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386

2387

2388

2389
2390

2391
2392
2393

2394
2395
2396
2397
2398
2399
2400
2401
2402
2403

11 Capability Types

This chapter specifies how Capability Types are defined. A Capability Type is a reusable entity that
describes a kind of capability that a Node Type can declare to expose. For example, a Capability Type for
a database server endpoint can be defined and various Node Types (e.g. a Node Type for a database)
can declare to expose (or to “provide”) the capability of serving as a database server endpoint.

A Capability Type defines the structure of observable properties via a Properties Definition, i.e. the
names, data types and allowed values the properties defined in Capabilities of Node Templates of a Node
Type can have in cases where the Node Type defines a capability of the respective Capability Type.

A Capability Type can inherit properties and semantics from another Capability Type by means of the
DerivedFrom element. Capability Types might be declared as abstract, meaning that they cannot be
instantiated. The purpose of such abstract Capability Types is to provide common properties for re-use in
specialized, derived Capability Types. Capability Types might also be declared as final, meaning that they
cannot be derived by other Capability Types.

11.1 XML Syntax

The following pseudo schema defines the XML syntax of Capability Types:
01l <CapabilityType name="xs:NCName"

02 targetNamespace="xs:anyURI"?

03 abstract="yes|no"?

04 final="yes|no"?>

05

06 <Tags>

07 <Tag name="xs:string" value="xs:string"/> +
08 </Tags> ?

09

10 <DerivedFrom typeRef="xs:QName"/> 2

11

12 <PropertiesDefinition element="xs:QOName"? type="xs:QName"?/> ?
13

14 </CapabilityType>

11.2 Properties

The CapabilityType element has the following properties:

e name: This attribute specifies the name or identifier of the Capability Type, which MUST be
unique within the target namespace.

e targetNamespace: This OPTIONAL attribute specifies the target namespace to which the
definition of the Capability Type will be added. If not specified, the Capability Type definition will
be added to the target namespace of the enclosing Definitions document.

e abstract: This OPTIONAL attribute specifies that no instances can be created from Node
Templates of a Node Type that defines a capability of this Capability Type.

As a consequence, a Node Type with a Capability Definition of an abstract Capability Type MUST
be declared as abstract as well and a derived Node Type that defines a capability of a type
derived from the abstract Capability Type has to be defined. For example, an abstract Node Type
“Server” might be defined having a capability of the abstract type “Container”. A derived Node
Type “Web Server” can then be defined with a more concrete capability of type “Web Application
Container” which can then be used for defining Node Templates that can be instantiated during
the creation of a service according to a Service Template.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 61 of 114

2404
2405

2406
2407
2408
2409

2410
2411
2412
2413

2414

2415
2416
2417

2418
2419
2420

2421
2422

2423
2424
2425

2426
2427

2428
2429

2430
2431

2432
2433
2434

2435

2436
2437
2438
2439
2440

2441
2442
2443
2444
2445
2446
2447
2448
2449
2450

Note: an abstract Capability Type MUST NOT be declared as final.

e final: This OPTIONAL attribute specifies that other Capability Types MUST NOT be derived
from this Capability Type.

Note: a final Capability Type MUST NOT be declared as abstract.

e Tags: This OPTIONAL element allows the definition of any number of tags which can be used by
the author to describe the Capability Type. Each tag is defined by a separate, nested Tag
element.

The Tag element has the following properties:

o name: This attribute specifies the name of the tag.
o wvalue: This attribute specifies the value of the tag.

Note: The name/value pairs defined in tags have no normative interpretation.

e DerivedFrom: Thisis an OPTIONAL reference to another Capability Type from which this
Capability Type derives. See section 11.3 Derivation Rules for details.
The DerivedFrom element has the following properties:

o typeRef: The QName specifies the Capability Type from which this Capability Type
derives its definitions and semantics.

e PropertiesDefinition: This element specifies the structure of the observable properties
of the Capability Type, such as its configuration and state, by means of XML schema.
The PropertiesDefinition element has one but not both of the following properties:

o element: This attribute provides the QName of an XML element defining the structure
of the Capability Type Properties.

o type: This attribute provides the QName of an XML (complex) type defining the
structure of the Capability Type Properties.

11.3 Derivation Rules

The following rules on combining definitions based on DerivedFrom apply:

e Capability Type Properties: It is assumed that the XML element (or type) representing the
Capability Type Properties extends the XML element (or type) of the Capability Type Properties
of the Capability Type referenced in the DerivedFrom element.

11.4 Example

The following example defines the Capability Type “DatabaseServerEndpoint” that expresses the
capability of a component to serve database connections. It is defined in a Definitions document
“MyCapabilities” within the target namespace “http://www.example.com/SampleCapabilities”. Thus, by
importing the corresponding hamespace into another Definitions document, the
“DatabaseServerEndpoint” Capability Type is available for use in the other document.

01 <Definitions id="MyCapabilities" name="My Capabilities"

02 targetNamespace="http://www.example.com/SampleCapabilities"

03 xmlns:bc="http://www.example.com/BaseCapabilityTypes"

04 xmlns:mcp="http://www.example.com/SampleCapabilityProperties>

05

06 <Import importType="http://docs.ocasis-open.org/tosca/ns/2011/12"

07 namespace="http://www.example.com/BaseCapabilityTypes" />

08

09 <Import importType="http://www.w3.0rg/2001/XMLSchema"

10 namespace="http://www.example.com/SampleCapabilityProperties"/>
TOSCA-v1.0-csd07 18 March 2013

Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 62 of 114

2451
2452
2453
2454
2455
2456
2457
2458

2459
2460
2461
2462

2463
2464
2465
2466
2467
2468

11

12 <CapabilityType name="DatabaseServerEndpoint">

13 <DerivedFrom typeRef="bc:ServerEndpoint"/>

14 <PropertiesDefinition

15 element="mcp:DatabaseServerEndpointProperties" />
16 </CapabilityType>

17

18 </Definitions>

The Capability Type “DatabaseServerEndpoint” defined in the example above is derived from another
generic “ServerEndpoint” Capability Type defined in a separate file by means of the DerivedFrom
element. The definitions in that separate Definitions file are imported by means of the first Import
element and the namespace of those imported definitions is assigned the prefix “bc” in the current file.

The “DatabaseServerEndpoint” Capability Type defines a set of properties through an XML schema
element definition “DatabaseServerEndpointProperties”. For example, those properties might include the
definition of a port number where the server listens for client connections, or credentials to be used by
clients. The XML schema definition is stored in a separate XSD file that is imported by means of the
second Import element. The namespace of the XML schema definitions is assigned the prefix “mcp”
in the current file.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 63 of 114

2469

2470
2471
2472
2473
2474
2475

2476
2477
2478
2479
2480
2481
2482
2483

2484
2485
2486
2487
2488

2489

2490

2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504

2505

2506

2507
2508

2509
2510
2511

2512
2513
2514
2515

12 Artifact Types

This chapter specifies how Artifact Types are defined. An Artifact Type is a reusable entity that defines
the type of one or more Artifact Templates which in turn serve as deployment artifacts for Node
Templates or implementation artifacts for Node Type and Relationship Type interface operations. For
example, an Artifact Type “WAR File” might be defined for describing web application archive files. Based
on this Artifact Type, one or more Artifact Templates representing concrete WAR files can be defined and
referenced as deployment or implementation artifacts.

An Artifact Type can define the structure of observable properties via a Properties Definition, i.e. the
names, data types and allowed values the properties defined in Artifact Templates using an Artifact Type
or instances of such Artifact Templates can have. Note that properties defined by an Artifact Type are
assummed to be invariant across the contexts in which corresponding artifacts are used — as opposed to
properties that can vary depending on the context. As an example of such an invariant property, an
Artifact Type for a WAR file could define a “signature” property that can hold a hash for validating the
actual artifact proper. In contrast, the path where the web application contained in the WAR file gets
deployed can vary for each place where the WAR file is used.

An Artifact Type can inherit definitions and semantics from another Artifact Type by means of the
DerivedFrom element. Artifact Types can be declared as abstract, meaning that they cannot be
instantiated. The purpose of such abstract Artifact Types is to provide common properties for re-use in
specialized, derived Artifact Types. Artifact Types can also be declared as final, meaning that they cannot
be derived by other Artifact Types.

12.1 XML Syntax

The following pseudo schema defines the XML syntax of Artifact Types:
01 <ArtifactType name="xs:NCName"

02 targetNamespace="xs:anyURI"?

03 abstract="yes|no"?

04 final="yes|no"?>

05

06 <Tags>

07 <Tag name="xs:string" value="xs:string"/> +
08 </Tags> ?

09

10 <DerivedFrom typeRef="xs:QName"/> ?

11

12 <PropertiesDefinition element="xs:0OName"? type='"xs:QOName"?/> ?
13

14 </ArtifactType>

12.2 Properties

The ArtifactType element has the following properties:

e name: This attribute specifies the name or identifier of the Artifact Type, which MUST be unique
within the target namespace.

e targetNamespace: This OPTIONAL attribute specifies the target namespace to which the
definition of the Artifact Type will be added. If not specified, the Artifact Type definition will be
added to the target namespace of the enclosing Definitions document.

e abstract: This OPTIONAL attribute specifies that no instances can be created from Artifact
Templates of that abstract Artifact Type, i.e. the respective artifacts cannot be used directly as
deployment or implementation artifact in any context.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 64 of 114

2516
2517
2518
2519
2520

2521
2522
2523
2524

2525
2526
2527

2528

2529
2530
2531

2532
2533
2534

2535
2536

2537
2538
2539

2540
2541

2542
2543

2544

2545

2546
2547
2548

2549

2550
2551
2552
2553
2554

2555
2556
2557
2558
2559
2560
2561
2562

As a consequence, an Artifact Template of an abstract Artifact Type MUST be replaced by an
artifact of a derived Artifact Type at the latest during deployment of the element that uses the
artifact (i.e. a Node Template or Relationship Template).

Note: an abstract Artifact Type MUST NOT be declared as final.

e final: This OPTIONAL attribute specifies that other Artifact Types MUST NOT be derived from
this Artifact Type.

Note: a final Artifact Type MUST NOT be declared as abstract.

e Tags: This OPTIONAL element allows the definition of any number of tags which can be used by
the author to describe the Artifact Type. Each tag is defined by a separate, nested Tag element.
The Tag element has the following properties:

o name: This attribute specifies the name of the tag.
o wvalue: This attribute specifies the value of the tag.

Note: The name/value pairs defined in tags have no normative interpretation.

e DerivedFrom: Thisis an OPTIONAL reference to another Artifact Type from which this Artifact
Type derives. See section 12.3 Derivation Rules for details.
The DerivedFrom element has the following properties:

o typeRef: The QName specifies the Artifact Type from which this Artifact Type derives
its definitions and semantics.

e PropertiesDefinition: This element specifies the structure of the observable properties
of the Artifact Type, such as its configuration and state, by means of XML schema.
The PropertiesDefinition element has one but not both of the following properties:

o element: This attribute provides the QName of an XML element defining the structure
of the Artifact Type Properties.

o type: This attribute provides the QName of an XML (complex) type defining the
structure of the Artifact Type Properties.

12.3 Derivation Rules

The following rules on combining definitions based on DerivedFrom apply:

o Artifact Type Properties: It is assumed that the XML element (or type) representing the Artifact
Type Properties extends the XML element (or type) of the Artifact Type Properties of the Artifact
Type referenced in the DerivedFrom element.

12.4 Example

The following example defines the Artifact Type “RPMPackage” that can be used for describing RPM
packages as deployable artifacts on various Linux distributions. It is defined in a Definitions document
“MyArtifacts” within the target namespace “http://www.example.com/SampleArtifacts”. Thus, by importing
the corresponding namespace into another Definitions document, the “RPMPackage” Artifact Type is
available for use in the other document.

01 <Definitions id="MyArtifacts" name="My Artifacts"

02 targetNamespace="http://www.example.com/SampleArtifacts"

03 xmlns:ba="http://www.example.com/BaseArtifactTypes"

04 xmlns:map="http://www.example.com/SampleArtifactProperties>

05

06 <Import importType="http://docs.ocasis-open.org/tosca/ns/2011/12"
07 namespace="http://www.example.com/BaseArtifactTypes"/>
08

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 65 of 114

2563
2564
2565
2566
2567
2568
2569
2570
2571

2572
2573
2574
2575

2576
2577
2578
2579
2580

09
10
11
12
13
14
15
16

<Import importType="http://www.w3.0rg/2001/XMLSchema"
namespace="http://www.example.com/SampleArtifactProperties" />

<ArtifactType name="RPMPackage">
<DerivedFrom typeRef="ba:0SPackage"/>
<PropertiesDefinition element="map:RPMPackageProperties"/>
</ArtifactType>

17 </Definitions>

The Artifact Type “RPMPackage” defined in the example above is derived from another generic
“OSPackage” Artifact Type defined in a separate file by means of the DerivedFrom element. The
definitions in that separate Definitions file are imported by means of the first Import element and the
namespace of those imported definitions is assigned the prefix “ba” in the current file.

The “RPMPackage” Artifact Type defines a set of properties through an XML schema element definition
“‘RPMPackageProperties”. For example, those properties might include the definition of the name or
names of one or more RPM packages. The XML schema definition is stored in a separate XSD file that is
imported by means of the second Import element. The namespace of the XML schema definitions is

assigned the prefix “map” in the current file.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 66 of 114

2581

2582
2583
2584
2585
2586
2587

2588
2589
2590
2591
2592

2593
2594
2595

2596

2597

2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621

2622
2623

2624
2625

2626

13Artifact Templates

This chapter specifies how Artifact Templates are defined. An Artifact Template represents an artifact that
can be referenced from other objects in a Service Template as a deployment artifact or implementation
artifact. For example, from Node Types or Node Templates, an Artifact Template for some software
installable could be referenced as a deployment artifact for materializing a specific software component.
As another example, from within interface definitions of Node Types or Relationship Types, an Artifact
Template for a WAR file could be referenced as implementation artifact for a REST operation.

An Artifact Template refers to a specific Artifact Type that defines the structure of observable properties
(metadata) or the artifact. The Artifact Template then typically defines values for those properties inside
the Properties element. Note that properties defined by an Artifact Type are asumed to be invariant
across the contexts in which corresponding artifacts are used — as opposed to properties that can vary
depending on the context.

Furthermore, an Artifact Template typically provides one or more references to the actual artifact itself
that can be contained as a file in the CSAR (see section 3.7 and section 14) containing the overall
Service Template or that can be available at a remote location such as an FTP server.

13.1 XML Syntax

The following pseudo schema defines the XML syntax of Artifact Templates:

01l <ArtifactTemplate id="xs:ID" name="xs:string"? type="xs:0OName">
02
03 <Properties>

04 XML fragment

05 </Properties> ?

06

07 <PropertyConstraints>

08 <PropertyConstraint property="xs:string"
09 constraintType="xs:anyURI"> +
10 constraint ?

11 </PropertyConstraint>

12 </PropertyConstraints> ?

13

14 <ArifactReferences>

15 <ArtifactReference reference="xs:anyURI">
16 (

17 <Include pattern="xs:string"/>

18 \

19 <Exclude pattern="xs:string"/>

20) *

21 </ArtifactReference> +

22 </ArtifactReferences> ?

23

24 </ArtifactTemplate>

13.2 Properties

The ArtifactTemplate element has the following properties:

e 1d: This attribute specifies the identifier of the Artifact Template. The identifier of the Artifact
Template MUST be unique within the target namespace.

e name: This OPTIONAL attribute specifies the name of the Artifact Template.

TOSCA-v1.0-csd07 18 March 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 67 of 114

2627
2628
2629
2630
2631
2632
2633
2634

2635
2636
2637
2638
2639
2640
2641
2642

2643
2644
2645
2646
2647

2648
2649
2650
2651

2652
2653
2654
2655
2656
2657
2658
2659

2660
2661
2662

2663
2664
2665

2666
2667
2668

2669
2670
2671

2672
2673
2674
2675

type: The QName value of this attribute refers to the Artifact Type providing the type of the
Artifact Template.

Note: If the Artifact Type referenced by the t ype attribute of an Artifact Template is declared as
abstract, no instances of the specific Artifact Template can be created, i.e. the artifact cannot be
used directly as deployment or implementation artifact. Instead, a substitution of the Artifact
Template with one having a specialized, derived Artifact Type has to be done at the latest during
the instantiation time of a Service Template.

Properties: This OPTIONAL element specifies the inva