JOASIS

TOSCAm®Blie Profile 1 n YAML
OASI' S Standard
17 January 2019

Specification URIs

This version :
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/1.2/0s/TOSCA-Simple-Profile-
YAML-v1.2-0s.pdf (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/0s/TOSCA-Simple-Profile-
YAML-v1.2-0s.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/0s/TOSCA-Simple-Profile-
YAML-v1.2-0s.docx

Previous version:
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-
Profile-YAML-v1.2-csd01.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/V1.2/csd01/TOSCA-Simple-
Profile-YAML-v1.2-csd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/V1.2/csd01/TOSCA-Simple-
Profile-YAML-v1.2-csd01.docx

Latest version:
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/V1.2/TOSCA-Simple-Profile-
YAML-v1.2.pdf (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-
YAML-v1.2.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-
YAML-v1.2.docx

Technical Committee:
OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC

Chairs:
Paul Lipton (paul.lipton@ca.com), CA Technologies
Simon Moser (smoser@de.ibm.com), IBM

Editors:
Matt Rutkowski (mrutkows@us.ibm.com), IBM
Luc Boutier (luc.boutier@fastconnect.fr), FastConnect
Chris Lauwers (lauwers@ubicity.com), Individual Member

Related work:
This specification replaces or supersedes:

1 TOSCA Simple Profile in YAML Version 1.1. Edited by Matt Rutkowski and Luc Boutier.
Latest version: http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-
Simple-Profile-YAML-v1.1.html.

1 TOSCA Simple Profile in YAML Version 1.0. Edited by Derek Palma, Matt Rutkowski, and
Thomas Spatzier. Latest version: http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/V1.0/TOSCA-Simple-Profile-YAML-v1.0.html.

This specification is related to:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 1 of 354

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.docx
https://www.oasis-open.org/committees/tosca/
mailto:paul.lipton@ca.com
http://www.ca.com/
mailto:smoser@de.ibm.com
http://www.ibm.com/
mailto:mrutkows@us.ibm.com
http://www.ibm.com/
mailto:luc.boutier@fastconnect.fr
http://www.fastconnect.fr/
mailto:lauwers@ubicity.com
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html

1 Topology and Orchestration Specification for Cloud Applications Version 1.0. Edited by Derek
Palma and Thomas Spatzier. 25 November 2013. OASIS Standard. http://docs.oasis-
open.org/tosca/ TOSCA/N1.0/0s/ TOSCA-v1.0-0s.html.

Declared XML namespace :
1 http://docs.oasis-open.org/tosca/ns/simple/yaml/1.2

Abstract:
This document defines a simplified profile of the TOSCA version 1.0 specification in a YAML
rendering which is intended to simplify the authoring of TOSCA service templates. This profile
defines a less verbose and more human-readable YAML rendering, reduced level of indirection
between different modeling artifacts as well as the assumption of a base type system.

Status:
This document was last revised or approved by the membership of OASIS on the above date.
The | evel of approval is also |listed above. Check t
possible later revisions of this document. Any other numbered Versions and other technical work
produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca#technical.

TC members should send comments on this specificat i on t o the TCb6s email I i st
send comments to the TCés public comment |ist, afte
instruct iSendé Canmentoh ebufi t on on t hehttps@dvev.oasis-b page at
open.org/committees/tosca/.

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the
mode chosen when the Technical Committee was established. For information on whether any
patents have been disclosed that may be essential to implementing this specification, and any
offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC 6 s
web page (https://www.oasis-open.org/committees/toscalipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for
this Work Product is provided in separate plain text files. In the event of a discrepancy between
any such plain text file and display content in the Work Product's prose narrative document(s),

the content in the separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[TOSCA-Simple -Profile -YAML-v1.2]

TOSCA Simple Profile in YAML Version 1.2. Edited by Matt Rutkowski, Luc Boutier, and Chris
Lauwers. 17 January 2019. OASIS Standard. https://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.2/0s/TOSCA-Simple-Profile-YAML-v1.2-0s.html. Latest version:
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-
YAML-v1.2.html.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 2 of 354

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/ns/simple/yaml/1.2
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html

Noti ces

Copyright © OASIS Open 2019. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 3 of 354

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

Tabl e of Content s

JLIE= Lo (=01 =T] o] =SSR PRESRRR 7
TADIE Of FIGUIES ..ot e ekt e e ekt e e ek b et e e e a b et e e ek et e e e b be e e e e bbe e e e anbneeeennne 7
1 1] (o o (U Tt o o H PP PPRPRRPRPN 8
O 1o O = o [T Y PSR PSR 8
R @ o =Tt 11V OO PP PP SRR PPPPPON 8
1.2 SuMmMary of KEY TOSCA CONCEPLS ...uviiiiiiiiiiiiiiiie e e e e e ettt e e e e e s s s e e e e e e e s s et eereaeeesesnnnbaeeeaaeessnnsenreees 8
1.3 IMPIEMENTALIONS ...ttt ettt e e et e e ek bt e e ekt et e e et b et e e e an b e e e e e nbe e e e enbeeeeannees 9
R =T g V] oo Y/ SRR 9
1.5 NOtatioNAl CONVENTIONSeiiiiie ittt e e e e e et e e e e e s e st e e e e ea e e s e aanebeeeeeaeessasnnbeeeeaaaeesaansnrnees 9
1.6 NOrMALIVE REFEIENCESeeiiiiie it e e e e e s et e e e e e e st eeeaaeeesaneneeees 9
1.7 NON-NOrmMative REFEIENCES ... e e e e e e s 10
L8 GlOSSANY ...ttt ettt ettt ettt ettt ekt e et e e eh bt e e eh bt e ek b et e e e e b et e e e e b bt e e e aab et e e e anbn e e e e abreeeean 10
2 TOSCA DY @XamPIe....cc o, 12
2.1 A Ahello worldo template.f.or. . TQOSCA..Simpl.el2Profil e
2.2 TOSCA template for a simple software installationcoooooeii e, 14
2.3 Overriding behavior of predefined NOAE tYPES......cccoeie e 16
2.4 TOSCA template for database content deploYMENtooiiiiiiiiiiiiien e 17
2.5 TOSCA template for a two-tier apPliCALIONccooie e 19
2.6 Using a custom script to establish a relationship in atemplate............ccooiiiii e, 22
2.7 Using custom relationship types in a TOSCA template...........coooo oo, 23
2.8 Defining generic dependencies between nodes in atemplate...........ccooeee e, 25
2.9 Describing abstract requirements for nodes and capabilities in a TOSCA template........................ 26
2.10 Using node template substitution for model compositionccoooeiiiiii i, 30
2.11 Using node template substitution for chaining SUDSYStEMS..........ooiiiiiiiiiiiie 34
2.12 Grouping NOAE tEMPIALESccoeieie i ——— 40
2.13 Using YAML Macros to Simplify teMPIAtesoooiiiiiiiiiiiie e 43
2.14 Passing information as inputs to Nodes and Relationships ... 44
2.15 Topology Template Model versus Instance Modelcocooiiiiiiiiii i 45
2.16 Using attributes implicitly reflected from properties ... 46
3 TOSCA Simple Profile definitions in YAMLcoooiiiiiiii 48
3.1 TOSCA Namespace URI @nd @liaScueeiiiiiiiiiiiiiie ettt 48
G T2 8] 1 o N =T 1= 0= T = 49
3.3 Parameter and ProPerty tYPES ..o ———————— 52
G0 O N\ g g o VUV IR 7= 1TSS 61
3.5 TOSCA MELAMOEL.......eeeeeeeeiee ettt ettt e e e e ettt e e e e e e s n bbb e e e e e e e e e sannbebeeeaeeeaaaanes 63
3.6 Reusable modeling defiNitiONSc..iii e 63
3.7 Type-SPeCifiC AEFINITIONSeiiiiiiii e e et e e e e e e e s bbb e ee e e e e e aanes 96
3.8 Template-specific dEfiNIIONScooiiiiiiiii e s e 114
3.9 Topology Template defiNitiON..........ooouiiiiiii e e 132
3.10 Service Template defiNITIONooieiiiiiiie e e e e e e e e e s anerbeeeeaaeas 140
4 JLIL© 15O AN U T 1o S 153
4.1 Reserved FUNCLION KEYWOITS.....c..iiiiiiiiiiiiie ettt ettt e ettt e e e e e e st e e e e e e e s e sanbbeeneeaaeas 153
4.2 Environment Variable CONVENLIONSoiiiiiiiiiiiiiiiie e r e e s e e e e e s ennteer e e e e e s e snnranreeeees 153
TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 4 of 354

G L] T (o U To 1 0] 1 156

e (o 01T 4 Y/ 101 1 o 1SS 158
4.5 ADULE FUNCHIONS ...ttt e e e e ettt et e e e e e s s nnb b et e e e e e e e s e annsbaeeaaaeeas 160
4.6 OPEIAtiON TUNCHIONSeiieiiiiie etttk e e et e e e e aa b et e e ek e e e e bb et e e e anbe e e e e anbeeeeannnes 162
o N F- AV o T o o 1 10 1 o T SRR 162
4.8 ArtifaCt TUNCLIONSeeiiiii ettt e e e e e sttt e e e e e e e e snnbabe e e e e e e e e snnnraaeeaaeeas 163
4.9 Context-based Entity Names (GIODal)ooeeeiiiiiiiiiiic e 165
5 TOSCA normative type definitionNSocueeeiiiiiiieiie e 166
L T 01T 1SR 166
5.2 TOSCA NOrMALiVE tYPE NAMES ...ccci i ieiiiiiiiee e e i ettt e et e e e s s st e e e e e e s s s aaataeereeeaeesaasntaaeeeeeeesannnnranrereees 166
RGN DL L= B I 1< OO PO U TR POTTPPPI 166
L N 11 = Vo A Y/ 1= TSP 178
5.5 CapabilitiES TYPES ...ueieieiiiiite ettt ettt e s e et e bt e et bt e e et e e e e abre e e enres 181
LT = Lo [T =T 0 0= LA 1Y/ 01T 192
5.7 RelatiONSNIP TYPES ...ttt s et s b e e s et e e e b e 192
RS 1 (=T g r= ot Y o= P PP PSP OT PR 195
LR Ao o (= IV o 1= 201
5.10 GrOUP TYPES .. eiiteeiitee ettt ettt e e e s e et e e e e 44 e e ettt e e e s e e e e et e e e e e s e e e r et e e e n e e e e s 213
B 0L POl CY Ty DS it ——————————— 214
6 TOSCA Cloud Service Archive (CSAR) fOIMAL.........ceiiiiiiiiiiiiie et 216
6.1 Overall StruCtUre 0f @ CSARoiii e s e s e e 216
5.2 TOSCA MELA FllE.....eeiiiieeiieie ettt ettt e bt s s b e et e e e st e e be e e snre e e nnneennneas 216
6.3 Archive WithOUt TOSCA-METATALA.ueiiieeiiiiiiiiie e e e e s reeeeeae s 217
7 TOSCA WOTKFIOWS ...ttt ettt s et s et e s e e e s s e e e s nnn e e e nnrne s 218
7.1 NOrMaAtivVe WOTKFIOWS ...t e e e e e e s e e e e e e e e s s snnraeeeeaee s 218
7.2 DeClarative WOTKFIOWSoiiiiiiiiiiiie ettt s e e e e e 218
7.3 IMperative WOTKFIOWSo 222
7.4 Making declarative more flexible and imperative more genericccccovveeeiiiiii e 237
8 TOSCA NEIWOIKING ...cc e, 240
8.1 Networking and Service Template POrtability............cccooiiiiiiiiiie e 240
ST o] 1 1= Tox 1171 AT o =V 240
8.3 EXPressing CONNECHIVILY SEMANTICSciiiuiiiiiiiiiie ettt e 241
8.4 NEIWOIK PrOVISIONING ...eeiiiiiiiieiiiiie ettt ettt ettt e s ab e e s asbb e e s e et e e e e anbe e e e e nnes 243
LS TR VL= Y0 4 G I8/ =, 247
8.6 Network modeling @pPrOBCRESouuiiiiiiie et e e 253
9 Non-normative type defiNitiONSuuuuiiiiiiiiieiiieie e e e s e e ere e e rsrsrsrsrsrseernrnrnnes 258
S N 4 1) - Yot A N =T PSPPSR 258
1S I 02 T =1 o] 1Y I8/ =2 T U TT PP 258
1 RS oo [I o 1= T PSR UOT PP 260
10 Component MOAElNG USE CASES.....ccoiuiiieiiiiieeiiiiee ettt ettt et e e e ribe e e e e st e e e e nbeee e e nneee 264
11 Application MOelNG USE CaASES......cuiiiiiiiiiieiiie ettt ettt e et e e e e e e s e bbb e e e e e e e enneneeees 271
N R U LT o= S <L PP P TP 271
12 TOSCA POHCIES. ..ottt ettt ettt ettt ettt e sh e et e e ket e shbe e e ebbe e sabeesbe e e snbe e e abeeennreas 319
12.1 A declarative @pPIOBCKc.ooii ittt e e e e e e e e e e e e ab bbb eeaeeaeaaa 319
12.2 Consideration of Event, Condition and ACLIONuueiiiiiiiiiieee e e e 319
TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 5 of 354

12.3 TYPES OF POICIES ...ttt e e e ettt e e e e e s bbbt e e e e e e e e e snnbebeeeeaeeaeaann 319

12.4 Policy relationship CONSIAEIAtiONSc.oociiiiiiiee e e e e e e e s s snnraaeeeeeeesenanes 320
D2.5 USE CABSES ..ututuuuuuuuuutunttntunnnteuntsntatetetesaeebetesstesese s s se s e s st st st s ks b8t s 5555t 8 5555555555558t 5 8558k e kst e et n et e bnbnnnnes 321
13 Artifact Processing and creating portable Service TemMPIatescccooceveeiiiiie i 324
R B0 Y 1) = Lod (3 o o Yo =11 o RS PRERR 324
13.2 DYNAIMIC AITIFACTSeeiiiitiieeit ettt ettt e e st et e e st e e e s nbn e e e snneee s 328
13.3 DIiSCUSSION Of EXAMPIES....cciiiii it e e s e e e e s s st e e e e e e s s snnrnreeeeaeeeeanns 328
13.4 Artifact TYpes and MELATATAeeiiiiiiie ettt e e e eneeeees 335
14 Abstract nodes and target node filters MatChing.........ccveeveeiiiiiiiiee e 336
0 = =T 0 T o [=T o) 1Y 1= R SRRRR 336
14.2 OrCheSIrator CAAIOUSeeiiieiiieiiii ittt ettt e skt e e s bt e e s bt e e st et e e s annn e e e s annneeas 336
14.3 Abstract node template MatChiNGcccooiiiiiiiii e e e e e 337
14.4 Target Node filter MACHINGoooiuiiiii et e e 342
N o 1S g oY (ol T T o o] 01T 1[N 347
ST 0o o1 0] 12 0 =1 o7 2R 348
15.1 CONFOIMANCE TANGELS .. .veiiiiiitiiee ettt ettt ettt e s bbbt e e sbb et e e sbb et e e sabb et e e s anbneeesannneeas 348
15.2 Conformance Clause 1: TOSCA YAML service templateccuvevvvviiiiimieieininininieieieinnninn. 348
15.3 Conformance Clause 2: TOSCA PrOCESSONcciiuuiteiiirieeaitieeeeatteeeeaiereeesineeeesbaeeeesanneeesnneeeeas 348
15.4 Conformance Clause 3: TOSCA OFCNESIIALONocuuiiiiiie ettt e e 348
15.5 Conformance Clause 4: TOSCA ENEIALONccoiiuuiiiiiiiiie et ettt et e e e e eeeneeas 349
15.6 Conformance Clause 5: TOSCA @rChIVEeciiiiiiiiiiiieti e e 349
Appendix A. Known EXteNSIioNS t0 TOSCA V1.0 ..uuuuiiiiiiiiieiiieieieieeereiseeusrererernrersesrsrerererer——————. 350
F N R T To [=T @1 g F= T o =T O PO P PP PPP PR OPPPP 350
N N Lo .= Y7 T I8/ 01T PP 350
AppendiX B. ACKNOWIEAGMENTScooiiiiiiiiiiiie ettt e e st e e s anb e e e e nnbne e e e nnees 352
Y o] o1=T g o [O oAV 1S3 (o o I o 11 (o] Y2 354
TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 6 of 354

Tabl e of Exampl es

Example 1 - TOSCA Simple "Hello WOrIA" ...t e e e e e e e e e s naees 12
Example 2 - Template with input and output parameter SECHONScuvveiiiiiieiiiee e 13
Example 3 - Simple (MySQL) software installation on a TOSCA Compute NOJecoccvvvieereeeeriiinnnnn. 15
Example 4 - Node Template overriding its Node Type's "configure" interfaceccccoeevviiieiniiieeenn 16
Example 5 - Template for deploying database content on-top of MySQL DBMS middleware.................... 17
Example 6 - Basic two-tier application (web application and database server tiers).........ccocveeeveeeeiiiiiveneen. 20
Example 7 - Providing a custom relationship script to establish a connectionccccoeccveeveeee i, 22
Example 8 - A web application Node Template requiring a custom database connection type................. 24
Example 9 - Defining a custom relationShip tYPe......uevie oo 25
Example 10 - Simple dependency relationship between two NOAES..........ceeeeiiiiiiiiiiiee e, 25
Example 11 - An abstract "host" requirement using a node filterccccceve i, 27
Example 12 - An abstract Compute node template with a node filter..........cccooov i, 28
Example 13 - An abstract database requirement using a Node filter..........ccccovviiiiiiee i, 29
Example 14 - An abstract database node temMpPlate ..o 30
Example 15 - Referencing an abstract database node template...........cccceveeiiiii e 32
Example 16 - Using substitution mappings to export a database implementationcccccccceeeeiiiiinnnee. 33
Example 17 - Declaring a transaction subsystem as a chain of substitutable node templates................... 35
Example 18 - Defining a TransactionSubSYStem NOUE tYPEuuuvuiuiuiiiiiiiiiiiiiiieieieieieieierernrerereree. 37
Example 19 - Implementation of a TransactionSubsytem node type using substitution mappings............ 38
Example 20 - Grouping Node Templates for possible policy applicationcccccccvvveveveieiiiniiinininininnn. 40
Example 21 - Grouping nodes for anti-colocation policy applicationeuvueiiiiiiiiriieieieiei. 41
Example 22 - Using YAML anchors in TOSCA teMPIaeScooiiuiiiiiiiiiieiiiiee e 43
Example 23 - Properties reflected as attribDULESooiiiiiiiii e 46

Tabl e of Figures

Figure 1: Using template substitution to implement a database tier............uuvvvviviiiiieiiiiiiieiii. 31
Figure 2: SUDSHIULION MEAPPINGS ...uvuvutiiiiuiiiiriiiieieieeeree e rers e retsrereretsrsrersrsrsnnnnrnrnrnnnrnnns 33
Figure 3: Chaining of subsystems in @ ServiCe teMPIAteuuuuiiiiiiiiiiiiiiiiiiiei . 35
Figure 4: Defining subsystem details in @ service temMplate..............uuuuuiiiiiiiiiiiiiiiniiiiieieieeee .. 38
Figure-5: Typical 3-TIer NEIWOIK.......ccoiiiiieiiiiie ettt e bbe e e rnb e e e 244
Figure-6: GeneriC SErviCe TEMPIALEoiiiiiiie ettt b e e b e e e 253
Figure-7: Service template with network template A ... 254
Figure-8: Service template with network template Booceviiiiiiiii e 254
TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 7 of 354

=

~Noobh~h,w N

10
11
12

13
14
15
16

17
18
19
20

21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38

39
40
41
42
43
44
45

11 ntroducti on

1.0 IPR Policy

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC 6 web page (https://www.oasis-
open.org/committees/toscalipr.php).

1.1 Objective

The TOSCA Simple Profile in YAML specifies a rendering of TOSCA which aims to provide a more
accessible syntax as well as a more concise and incremental expressiveness of the TOSCA DSL in order
to minimize the learning curve and speed the adoption of the use of TOSCA to portably describe cloud
applications.

This proposal describes a YAML rendering for TOSCA. YAML is a human friendly data serialization
standard (http://yaml.org/) with a syntax much easier to read and edit than XML. As there are a number of
DSLs encoded in YAML, a YAML encoding of the TOSCA DSL makes TOSCA more accessible by these
communities.

This proposal prescribes an isomorphic rendering in YAML of a subset of the TOSCA v1.0 XML
specification ensuring that TOSCA semantics are preserved and can be transformed from XML to YAML
or from YAML to XML. Additionally, in order to streamline the expression of TOSCA semantics, the YAML
rendering is sought to be more concise and compact through the use of the YAML syntax.

1.2 Summary of key TOSCA concepts

The TOSCA metamodel uses the concept of service templates to describe cloud workloads as a topology

template, which is a graph of node templates modeling the components a workload is made up of and as

relationship templates modeling the relations between those components. TOSCA further provides a type

system of node types to describe the possible building blocks for constructing a service template, as well

as relationship type to describe possible kinds of relations. Both node and relationship types may define

lifecycle operations to implement the behavior an orchestration engine can invoke when instantiating a

service template. For example, a node type for some sof
to handle the creation of an instance of a component ai
start or stop event triggered by an orchestration engine. Those lifecycle operations are backed by

implementation artifacts such as scripts or Chef recipes that implement the actual behavior.

An orchestration engine processing a TOSCA service template uses the mentioned lifecycle operations to

instantiate single components at runtime, and it uses the relationship between components to derive the

order of component instantiation. For example, during the instantiation of a two-tier application that

includes a web application that depends on a database, an orchestration engine would first invoke the

6createbd6 operation on the database component to install
invoke the écreated operation of ethéappligagtoh (whigh pdludesat i on t
configuration of the database connection).

The TOSCA simple profile assumes a number of base types (node types and relationship types) to be

supported by each compliant environmen® sodb hgpa O0Coam
generic O0Databased node type. Furthermore, it is envisi
in service templates will be defined by a community over time. Therefore, template authors in many cases

will not have to define types themselves but can simply start writing service templates that use existing

types. In addition, the simple profile will provide means for easily customizing and extending existing

types, for example by providing fawareust omi zed 6createb

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 8 of 354

https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/committees/tosca/ipr.php
http://yaml.org/

46 1.3 Implementations

47 Different kinds of processors and artifacts qualify as implementations of the TOSCA simple profile. Those
48 that this specification is explicitly mentioning or referring to fall into the following categories:

49 1 TOSCA YAML servicetemplat e (or HAservice templated): A YAML doc
50 (TOSCA) service template (see sections 3.9 fAService
51 application. (see sections 3.8 fATopology template d
52 T TOSCA processorr o)ar Ampreamge smeo or tool that is capabl
53 TOSCA service template for a particular purpose. For example, the purpose could be validation,

54 translation or visual rendering.

55 1 TOSCA orchestrator (also called orchestration engine): A TOSCA processor that interprets a

56 TOSCA service template or a TOSCA CSAR in order to instantiate and deploy the described

57 application in a Cloud.

58 1 TOSCA generator: A tool that generates a TOSCA service template. An example of generator is

59 a modeling tool capable of generating or editing a TOSCA service template (often such a tool

60 would also be a TOSCA processor).

61 T TOSCA archive (or TOSCA Cloud Service Archive, or 0
62 TOSCA service template and other artifacts usable by a TOSCA orchestrator to deploy an

63 application.

64 The above list is not exclusive. The above definitions should be understood as referring to and
65 i mpl ementing the TOSCA simple profile as described in
66 simplicity).

67 1.4 Terminology

68 The TOSCA language introduces a YAML grammar for describing service templates by means of

69 Topology Templates and towards enablement of interaction with a TOSCA instance model perhaps by
70 external APIs or plans. The primary currently is on design time aspects, i.e. the description of services to
71 ensure their exchange between Cloud providers, TOSCA Orchestrators and tooling.

72

73 The language provides an extension mechanism that can be used to extend the definitions with additional
74 vendor-specific or domain-specific information.

75 1.5 Notational Conventions

7% The key words AMUSTO, AMUST NOTO, AREQUI REDO0, #ASHALLO,
77 NOTO, ARECOMMENDEDOG, i MAYO, and AOPTI ONALO in this doc
78 in [RFC2119].
79 1.5.1 Notes
80 f Sections that are titled AExampl ed tnormatweghout t hi's

g1 1.6 Normative References

Ref erence Tag Description

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
[TOSCA-1.0] Topology and Orchestration Topology and Orchestration Specification for

Cloud Applications (TOSCA) Version 1.0, an OASIS Standard, 25

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 9 of 354

http://www.ietf.org/rfc/rfc2119.txt

November 2013, http://docs.oasis-open.org/tosca/TOSCA/v1.0/0s/TOSCA-

v1.0-0s.pdf
[YAML-1.2] YAML, Version 1.2, 3rd Edition, Patched at 2009-10-01, Oren Ben-Kiki,
Clark Evans, Ingy doét Net http://www.yaml.org/spec/1.2/spec.html
[YAML-TS-1.1] Timestamp Language-Independent Type for YAML Version 1.1, Working

Draft 2005-01-18, http://yaml.org/type/timestamp.html

g2 1.7 Non-Normative References

Ref erence Description

[Apache] Apache Server, https://httpd.apache.org/

[Chef] Chef, https://wiki.opscode.com/display/chef/Home

[NodeJS] Node.js, https://nodejs.org/

[Puppet] Puppet, http://puppetlabs.com/

[WordPress] WordPress, https://wordpress.org/

[Maven - Apache Maven version policy draft:

Version] https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy

[JSON-Spec] The JSON Data Interchange Format (ECMA and IETF versions):
1 http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-
404.pdf
9 https://tools.ietf.org/html/rfc7158

[JSON-Schema] JSON Schema specification:
1 http://json-schema.org/documentation.html

[XMLSpec] XML Specification, W3C Recommendation, February 1998,
http://www.w3.0rg/TR/1998/REC-xmI-19980210

[XML Schema XML Schema Part 1: Structures, W3C Recommendation, October 2004,

Part 1] http://www.w3.org/TR/xmlschema-1/

[XML Schema XML Schema Part 2: Datatypes, W3C Recommendation, October 2004,

Part 2] http://www.w3.org/TR/xmlschema-2/

83 1.8 Glossary

84 The following terms are used throughout this specification and have the following definitions when used in
85 context of this document.

Ter m Def i mint

Instance Model A deployed service is a running instance of a Service Template. More precisely,
the instance is derived by instantiating the Topology Template of its Service
Template, most often by running a special plan defined for the Service
Template, often referred to as build plan.

Node Template A Node Template specifies the occurrence of a software component node as
part of a Topology Template. Each Node Template refers to a Node Type that
defines the semantics of the node (e.g., properties, attributes, requirements,
capabilities, interfaces). Node Types are defined separately for reuse purposes.

Relationship A Relationship Template specifies the occurrence of a relationship between
Template nodes in a Topology Template. Each Relationship Template refers to a
Relationship Type that defines the semantics relationship (e.g., properties,

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 10 of 354

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://www.yaml.org/spec/1.2/spec.html
http://yaml.org/type/timestamp.html
https://httpd.apache.org/
https://wiki.opscode.com/display/chef/Home
https://nodejs.org/
http://puppetlabs.com/
https://wordpress.org/
https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://tools.ietf.org/html/rfc7158

attributes, interfaces, etc.). Relationship Types are defined separately for reuse
purposes.

Service Template

A Service Template is typically used
forchestrationodo (or invocation of ma
they can be provisioned and managed in accordance with constraints and
policies.

Specifically, TOSCA Service Templates optionally allow definitions of a TOSCA
Topology Template, TOSCA types (e.g., Node, Relationship, Capability, Artifact,
etc.), groupings, policies and constraints along with any input or output
declarations.

Topology Model

The term Topology Model is often used synonymously with the term Topology
Templatewi t h t he use o fval@éntwhehednsidermga Sergicep r
Templ atebs topology definition as an
service to facilitate understanding of its functional components and by
eliminating unnecessary details.

Topology Template

A Topology Template defines the structure of a service in the context of a
Service Template. A Topology Template consists of a set of Node Template

and Relationship Template definitions that together define the topology model of
a service as a (not necessarily connected) directed graph.

The term Topology Template is often used synonymously with the term
Topology Model. The distinction is that a topology template can be used to
instantiate and orchestrate the model as a reusable patt ern and includes all
details necessary to accomplish it.

Abstract Node An abstract node template is a node
Template artifact for the create operation of the TOSCA lifecycle.
The create operation can be delegated to the TOSCA Orchestrator.
Being delegated an abstract node may not be able to execute user provided
implementation artifacts for operations post create (for example configure, start
etc.).
No-Op Node A No-Op node template is a specific abstract node template that does not
Template specify any implementation for any operation.
TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 11 of 354

86

87
88
89

90

91
92
93
94
95
96
97

98

99
100
101
102
103
104

2 TOSCA by exampl e

This non -normative section contains several sections that show how to model applications with TOSCA
Simple Profile using YAML by example starting with a 0l
show complex composition modeling.

21A Ahell o worldo template for TOSCA Si

As mentioned before, the TOSCA simple profile assumes the existence of a small set of pre-defined,

nor mative set of node types (e.g., a O0Computed node) al
through the course of this document, for creating TOSCA Service Templates. It is envisioned that many

additional node types for building service templates will be created by communities some may be

published as profiles that build upon the TOSCA Simple Profile specification. Using the normative TOSCA

Compute node type, a Vver ytemhphte forcdepfoyihg judt asingleoservedwouldT OS C A

look as follows:

Example 1 - TOSCA Simple "Hello World"

tosca_definitions_version: tosca_simple_yaml_1 0
description: Template for deploying a single server with predefined properties.

topology_template:
node_templates:
my_server:
type: tosca.nodes.Compute
capabilities:
Host container properties
host:
properties:
num_cpus: 1
disk_size: 10 GB
mem_size: 4096 MB
Guest Operating System properties
0S:
properties:
host Operating System image properties
architecture: x86_64
type: linux
distribution: rhel
version: 6.5

The templ ate above contains a very simple topology tem
that declares some basic values for properties within two of the several capabilities that are built into the

Compute node type definition. All TOSCA Orchestrators are expected to know how to instantiate a

Compute node since it is normative and expected to represent a well-known function that is portable

across TOSCA implementations. This expectation is true for all normative TOSCA Node and

Relationshipt ypes that are defined in the Simple Profile spec

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 12 of 354

105
106
107
108

109
110
111
112
113

114
115

116
117

118
119
120
121
122
123
124
125
126
127
128

129

130
131
132
133
134

135

approach, that the application developer does not need to provide any deployment or implementation
artifacts that contain code or logic to orchestrate these common software components. TOSCA
orchestrators simply select or allocate the correct node (resource) type that fulfills the application
topologies requirements using the properties declared in the node and its capabilities.

I n the above hastba nemlpeontaispepgfties that allow application developers to
optionally supply the number of CPUs, memory size and disk size they believe they need when the

Compute node is instantiated in or o®r ctagp arbudtotthyeiirs

provide values to indicate what host operating system the Compute node should have when it is
instantiated.

The | ogical diagram of the fAhell o worldd Comput e

my_server
Compute

Attributes Capabilities ™y

= private address

= public_address Container

= networks Properties

= ports + num_cpus: 1

+ disk_size: 10 GB
* mem_size: 512 MB

——
OperatingSystem
Properties

+ architecture: x86_64
* type: linux

+ distribution: rhel

* version: 6.5

\ Endpaint
\ \ v

As you can see, the Computenode also has attributes and other built-in capabilities, such as Bindable
and Endpoint, each with additional properties that will be discussed in other examples later in this
document. Although the Compute node has no direct properties apart from those in its capabilities, other
TOSCA node type definitions may have properties that are part of the node type itself in addition to
having Capabilities. TOSCA orchestration engines are expected to validate all property values provided
in a node template against the property definitions in their respective node type definitions referenced in
the service template. The tosca_definitions_version keyname in the TOSCA service template
identifies the versioned set of normative TOSCA type definitions to use for validating those types defined
in the TOSCA Simple Profile including the Compute node type. Specifically, the value
tosca_simple_yaml_1 0 indicates Simple Profile v1.0.0 definitions would be used for validation. Other
type definitions may be imported from other service templates using the impor t keyword discussed later.

2.1.1 Requesting input parameters and providing output

Typically, one would want to allow users to customize deployments by providing input parameters instead
of using hardcoded values inside a template. In addition, output values are provided to pass information
that perhaps describes the state of the deployed template to the user who deployed it (such as the private
IP address of the deployed server). A refined service template with corresponding inputs and outputs
sections is shown below.

Example 2 - Template with input and output parameter sections

tosca_definitions_version: tosca_simple_yaml|_1 0

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 13 of 354

node

aps el

\

136
137
138
139
140

141
142
143
144

145

146
147
148
149

description: Template for deploying a single server with predefined properties.

topology_template:
inputs :
cpus:
type: integer
description: Number of CPUs for the server.
constraints:
- valid_values: [1, 2, 4, 8]

node_templates:
my_server:
type: tosca.nodes.Compute
capabilities:
Host container properties
host:
properties:
Compute properties
num_cpus: { get_input: cpus }
mem_size: 2048 MB
disk_size: 10 GB

outputs :
server_ip:
description: The private IP address of the provisioned server.
value: { get_attribute: [my_server, private_address] }

The inputs and outputs sections are contained in the topology template element of the TOSCA
template, meaning that they are scoped to node templates within the topology template. Input parameters
defined in the inputs section can be assigned to properties of node template within the containing
topology template; output parameters can be obtained from attributes of node templates within the
containing topology template.

Note that the inputs section of a TOSCA template allows for defining optional constraints on each input
parameter to restrict possible user input. Further note that TOSCA provides for a set of intrinsic functions
like get_input , get_property or get_attribute to reference elements within the template or to
retrieve runtime values.

2.2 TOSCA template for a simple software installation

Software installations can be modeled in TOSCA as node templates that get related to the node template
for a server on which the software would be installed. With a number of existing software node types (e.g.
either created by the TOSCA work group or a community) template authors can just use those node types
for writing service templates as shown below.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 14 of 354

150

151
152
153
154
155
156

157
158
159
160
161
162
163

Example 3 - Simple (MySQL) software installation on a TOSCA Compute node

tosca_definitions_version: tosca_simple_yaml|_1 0
description: Template for deploying a single server with MySQL software on top.

topology_template:
inputs:
omitted here for brevity

node_templates:
mysql:

type: tosca.nodes.DBMS.MySQL

properties:
root_password: { get_input: my_mysql_rootpw }
port: { get_input: my_mysql_port }

requirements:
- host: db_server

db_server:
type: tosca.nodes.Compute
capabilities:
omitted here for brevity

The example above makes use of a node type tosca.nodes.DBMS.MyS QLfor the mysgl node template to
install MySQL on a server. This node type allows for setting a property root_password to adapt the
password of the MySQL root user at deployment. The set of properties and their schema has been
defined in the node type definition. By means of the get_input function, a value provided by the user at
deployment time is used as value for the root_password property. The same is true for the port

property.

The mysql node template is related to the db_server node template (of type tosca.nodes.Compute) via
the requirements section to indicate where MySQL is to be installed. In the TOSCA metamodel, nodes
get related to each other when one node has a requirement against some feature provided by another
node. What kinds of requirements exist is defined by the respective node type. In case of MySQL, which
is software that needs to be installed or hosted on a compute resource, the underlying node type named
DBM®as a predefined requirement called host , which needs to be fulfilled by pointing to a node template
of type tosca.nodes.Compute .

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 15 of 354

164

165

166
167
168
169
170
171
172
173
174

175

176
177
178
179

180
181
182
183
184

185

The logical relationship between the mysqgl node and its host db_server node would appear as follows:

mysql

DEMS.MyS0L

Properties
* root_password

- n R .
i Capabilities |

Container I

Requirement |
Container
host db_seneer

. - i

HostedOn

db _server

=)
o
Compute (S

_Capami'r&es |

Container |

Within the requirements section, all entries simple entries are a map which contains the symbolic name
of a requirement definition as the key and the identifier of the fulfilling node as the value. The value is
essentially the symbolic name of the other node template; specifically, or the example above, the host
requirement is fulfilled by referencing the db_server node template. The underlying TOSCA DBM®iode
type already defines a complete requirement definition for the host requirement of type Container and
assures that a HostedOn TOSCA relationship will automatically be created and will only allow a valid
target host node is of type Compute This approach allows the template author to simply provide the
name of a valid Computenode (i.e., db_server) as the value for the mysd n o d édsts requirement and
not worry about defining anything more complex if they do not want to.

2.3 Overriding behavior of predefined node types

Node types in TOSCA have associated implementations that provide the automation (e.g. in the form of
scripts such as Bash, Chef or Python) for the normative lifecycle operations of a node. For example, the
node type implementation for a MySQL database would associate scripts to TOSCA node operations like
configure , start , or stop to manage the state of MySQL at runtime.

Many node types may already come with a set of operational scripts that contain basic commands that
can manage the state of that specific node. If it is desired, template authors can provide a custom script
for one or more of the operation defined by a node type in their node template which will override the
default implementation in the type. The following example shows a mysgl node template where the
template author provides their own configure script:

Example 4 - Node Template overriding its Node Type's "configure" interface

tosca_definitions_version: tosca_simple_yaml|_1 0

description: Template for deploying a single server with MySQL software on top.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 16 of 354

topology_template:
inputs:
omitted here for brevity

node_templates:
mysql:
type: tosca.nodes.DBMS.MySQL
properties:
root_password: { get_input: my_mysql_rootpw }
port: { get_input: my_mysql_port }
requirements:
- host: db_server
interfaces:
Standard:
configure : scripts/my_own_configure.sh

db_server:
type: tosca.nodes.Compute
capabilities:
omitted here for brevity

186 In the example above, the my_own_configure.sh script is provided for the configure operation of the

187 My SQL nod Standaydpleibfsecycl e interface. The path given in tfF
188 interpreted relative to the template file, but it would also be possible to provide an absolute URI to the

189 location of the script.

190 I n other words, operations defined by node types can b
191 be injected. Typically, node type implementations provi
192 within a template, custom automation can be injected to run in a hook in the context of the one, specific

193 node template (i.e. without changing the node type).

194 2.4 TOSCA template for database content deployment

195 In the Example 4, shown above, the deployment of the MySQL middleware only, i.e. without actual
196 database content was shown. The following example shows how such a template can be extended to
197 also contain the definition of custom database content on-top of the MySQL DBMS software.

198 Example 5 - Template for deploying database content on-top of MySQL DBMS middleware

tosca_definitions_version: tosca_simple_yaml_1 0
description: Template for deploying MySQL and database content.

topology_template:
inputs:
omitted here for brevity

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 17 of 354

199
200
201
202

203
204

node_templates:
my_db:
type: tosca.nodes.Database.MySQL
properties:
name: { get_input: database_name }
user: { get_input: database_user }
password: { get_input: database password }
port: { get_input: database port }
artifacts:
db_content :
file: files/my_db_content.txt
type: tosca.artifacts.File
requirements:
- host: mysq|l
interfaces:
Standard:
create:
implementation: db_create.sh
inputs:
¢ #I1DBU $" AEEI A AOOCEZAAO OI OAOOAORO 0O
db_data:{ get artifact :[SELF, db_content]}

mysql:
ty pe: tosca.nodes.DBMS.MySQL
properties:
root_password: { get_input: mysql_rootpw }
port: { get_input: mysql_port }
requirements:
- host: db_server

db_server:
type: tosca.nodes.Compute
capabilities:
omitted here for brevity

In the example above, the my_dbnode template or type tosca.nodes.Database.MySQL represents an
actual MySQL database instance managed by a MySQL DBMS installation. The requirements section of
the my_dbnode template expresses that the database it represents is to be hosted on a MySQL DBMS
node template named mysqgl which is also declared in this template.

In its artifacts section of the my_dbthe node template, there is an artifact definition named db_content
which represents a text file my_db_content.txt which in turn will be used to add content to the SQL

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 18 of 354

205
206

207
208
209
210
211
212
213
214

215

216
217
218
219
220
221
222

223

224
225
226
227
228
229

database as part of the crea te operation. The requirements section of the my_db node template
expresses that the database is hosted on a MySQL DBMS represented by the mysgl node.

As you can see above, a script is associated with the create operation with the name db_create.sh

The TOSCA Or chestrator
instead a filename for a normative TOSCA implementation artifact script type (i.e.,
). Since this is an implementation type for TOSCA, the

tosca.artifacts.Implementation.Bash
orchestrator will execute the script automatically to create the node on db_server , but first it will prepare
the local environment with the declared inputs for the operation. In this case, the orchestrator would see
function to retrieve the file (my_db_content.txt)
which is associated with the db_content artifact name prior to executing the db_create.sh script.

that the db_data input is using the get_artifact

sees

t hat

The logical diagram for this example would appear as follows:

Artifacts:

* db_content

get_artifact()

my_db

Database.MySQL

Lifecycle.Standard

Properties
+ password
+ user

« port

+ name

"""""" > create: db _create sh

Container
host: mysgl

this i

Capabilities
Endpoint DB |
- m

Requirements |

mysql

DEMS.MySQL

Properties

* root_password
* port BT

-
———————

Container

" Capabilities |

5 _Requi rements 0

Container
haost: db_server

HostedOn

=

db_server

HostedOn

Compute

(.Capabiliﬁeﬁ ik
‘ | Container |

By

o
s
o

S

not

a named

Note that while it would be possible to define one node type and corresponding node templates that
represent both the DBMS middleware and actual database content as one entity, TOSCA normative node
types distinguish between middleware (container) and application (containee) node types. This allows on
one hand to have better re-use of generic middleware node types without binding them to content running
on top of them, and on the other hand this allows for better substitutability of, for example, middleware
components like a DBMS during the deployment of TOSCA models.

2.5 TOSCA template for a two -tier application

The definition of multi-tier applications in TOSCA is quite similar to the example shown in section 2.2, with
the only difference that multiple software node stacks (i.e., node templates for middleware and application
layer components), typically hosted on different servers, are defined and related to each other. The

example below defines a web application stack hosted on the web_server i c o mput e 0

resour ce

database software stack similar to the one shown earlier in section 6 hosted on the db_server compute

resource.

TOSCA-Simple-Profile-YAML-v1.2-0s

Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 19 of 354

arti

3

a

230 Example 6 - Basic two-tier application (web application and database server tiers)

tosca_definitions_version: tosca_simple_yaml|_1 0

description: Template for deploying a two

topology_template:

inputs:

Admin user name and password to use with the WordPress application

wp_admin_username:

type: string
wp_admin_password:

type: string
wp_db_name:

type: string
wp_db_user:

type: string

wp_db_password:

typ e: string
wp_db_port:
type: integer

mysql_root_password:

type: string
mysgl_port:
type: integer

context_root:

type: string

node_templates:

wordpress:
type: tosca.nodes.WebApplication.WordPress
prop erties:

context_root: { get_input: context_root }

admin_user: { get_input: wp_admin_username }
admin_password: { get_input: wp_admin_password }
db_host : { get_attribute: [db_server, private_address] }

requirements:

- host: apache
- database_endpoint: wordpress_db

interfaces:

Standard:
inputs:

TOSCA-Simple-Profile-YAML-v1.2-0s

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved.

- tier application servers on two

17 January 2019
Page 20 of 354

db_host: { get_attribute: [db_server, private_address] }
db_port: { get_property: [wordpre ss_db, port]}
db_name: { get_property: [wordpress_db, name] }
db_user: { get_property: [wordpress_db, user] }

db_password: { get_property: [wordpress_db, password] }

apache:
type: tosca.nodes.WebSer ver.Apache
properties:
omitted here for brevity
requirements:
- host: web_server

web_server:
type: tosca.nodes.Compute
capabilities:
omitted here for brevity

wordpress_db:
type: tosca.node s.Database.MySQL
properties:
name: { get_input: wp_db_name }
user: { get_input: wp_db_user }
password: { get_input: wp_db_password }
port: { get_input: wp_db_port }
requirements:
- host: mysq|

mysql:
type: tosca.nodes.DBMS.MySQL
properties:
root_password: { get_input: mysql_root_password }
port: { get_input: mysql_port }
requirements:
- host: db_server

db_server:
typ e: tosca.nodes.Compute
capabilities:
omitted here for brevity

TOSCA-Simple-Profile-YAML-v1.2-0s

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 21 of 354

231
232
233
234
235
236

237
238
239
240

241
242
243
244
245
246
247
248
249

250

251
252
253
254
255

256
257
258
259
260
261

262

The web application stack consists of the wordpress [WordPress], the apache [Apache] and the
web_server node templates. The wordpress node template represents a custom web application of type
tosca.nodes.WebApplication.WordPress which is hosted on an Apache web server represented by the
apache node template. This hosting relationship is expressed via the host entry in the requirements
section of the wordpress node template. The apache node template, finally, is hosted on the
web_server compute node.

The database stack consists of the wordpress_db , the mysql and the db_server node templates. The
wordpress_db node represents a custom database of type tosca.nodes.Database.MySQL which is
hosted on a MySQL DBMS represented by the mysql node template. This node, in turn, is hosted on the
db_server compute node.

The wordpress node requires a connection to the wordpress_db node, since the WordPress application
needs a database to store its data in. This relationship is established through the database _endpoint
entry in the requirements section of the wordpress n o d e t e meclarad nede s/pedFor configuring
the WordPress web application, information about the database to connect to is required as input to the
configure operation. Therefore, the input parameters are defined and values for them are retrieved from
the properties and attributes of the wordpress_db node via the get_property and get_attribute
functions. In the above example, these inputs are defined at the interface-level and would be available to
all operations of the Standard interface (i.e., the tosca.interfaces .node.lifecycle.Standard

interface) within the wordpress node template and not just the configure operation.

2.6 Using a custom script to establish a relationship in a template

In previous examples, the template author did not have to think about explicit relationship types to be
used to link a requirement of a node to another node of a model, nor did the template author have to think
about special logic to establish those links. For example, the host requirement in previous examples just
pointed to another node template and based on metadata in the corresponding node type definition the
relationship type to be established is implicitly given.

In some cases, it might be necessary to provide special processing logic to be executed when
establishing relationships between nodes at runtime. For example, when connecting the WordPress
application from previous examples to the MySQL database, it might be desired to apply custom
configuration logic in addition to that already implemented in the application node type. In such a case, it
is possible for the template author to provide a custom script as implementation for an operation to be
executed at runtime as shown in the following example.

Example 7 - Providing a custom relationship script to establish a connection

tosca_definitions_version: tosca_simple_yaml_1_0
description: Template for deploying a two - tier application on two servers.

topology_template:
inputs:
omitted here for brevity

node_templates:
wordpress:
type: tosca.nodes.WebApplication.WordPress
properties:
omitted here for brevity
requirements:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 22 of 354

263
264
265
266
267
268
269

270
271
272
273
274
275
276

277

278
279
280
281
282

283

- host: apache
- database_endpoint:
node: wordpress_db
relationship @ my_custom_database_conne ction

wordpress_db:
type: tosca.nodes.Database.MySQL
properties:
omitted here for the brevity
requirements:
- host: mysq|l

relationship_templates:
my_custom_database_connection
type: ConnectsTo
in terfaces:
Configure:
pre_configure_source: scripts/wp_db_configure.sh

other resources not shown for this example ...

The node type definition for the wordpress node template is WordPress which declares the complete
database_endpoint requirement definition. This database_endpoint declaration indicates it must be
fulfilled by any node template that provides an Endpoint.Database Capability Type using a ConnectsTo
relationship. The wordpress_dbnode t empl at eV§glypenddfiaitioh igdiead grovides the
Endpoint.Database Capability type. In this example however, no explicit relationship template is
declared; therefore, TOSCA orchestrators would automatically create a ConnectsTo relationship to
establish the link between the wordpress node and the wordpress_db node at runtime.

The ConnectsTo relationship (see 5.7.4) also provides a default Configure interface with operations that
optionally get executed when the orchestrator establishes the relationship. In the above example, the
author has provided the custom script wp_db_configure.sh to be executed for the operation called
pre_configure_source . The script file is assumed to be located relative to the referencing service
template such as a relative directory within the TOSCA Cloud Service Archive (CSAR) packaging format.
This approach allows for conveniently hooking in custom behavior without having to define a completely
new derived relationship type.

2.7 Using custom relationship types in a TOSCA template

In the previous section it was shown how custom behavior can be injected by specifying scripts inline in
the requirements section of node templates. When the same custom behavior is required in many
templates, it does make sense to define a new relationship type that encapsulates the custom behavior in
a re-usable way instead of repeating the same reference to a script (or even references to multiple
scripts) in many places.

Such a custom relationship type can then be used in templates as shown in the following example.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 23 of 354

284

285
286
287
288
289
290

291

292
293
294
295
296
297

Example 8 - A web application Node Template requiring a custom database connection type

tosca_definitions_version: tosca_simple_yaml|_1 0

description: Template for deploying a two - tier application on two servers.

topology_template:
inputs:

omitted here for brevity

node_templates:
wordpress:

type: tosca.nodes.WebApplication.WordPress

properties:

omitted here for brevity

requirements:
- host: apache

- database_endpoint:

node: wordpress_db
my.types.WordpressDbConnection

relationship

wordpress_db:

type: tosca.nodes.Database.MySQL

properties:

omitted here for the brevity

requirements:
- host: mysq|

other resources not s

hown here ...

In the example above, a special relationship type my.types.WordpressDbConnection is specified for
establishing the link between the wordpress node and the wordpress_db node through the use of the
relationship (keyword) attribute in the database reference. It is assumed, that this special relationship
type provides some extra behavior (e.g., an operation with a script) in addition to what a generic
relati onshi p sxostoin telatpnstipwyipelieshowiintte def i ni t i

Afconnects too
following section.

2.7.1 Definition of a custom relationship type

The following YAML snippet shows the definition of the custom relationship type used in the previous

section. Thi s

type

deri vesarnd oonvdrhrei bas eomMe€CommercadtsiTmn

relationship type. For the pre_configure_source operation defined in the Configure interface of the
ConnectsTo relationship type, a script implementation is provided. It is again assumed that the custom
configure script is located at a location relative to the referencing service template, perhaps provided in
some application packaging format (e.g., the TOSCA Cloud Service Archive (CSAR) format).

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

17 January 2019

Copyright © OASIS Open 2019. All Rights Reserved. Page 24 of 354

C

298 Example 9 - Defining a custom relationship type

tosca_definitions_version: tosca_simple_yaml|_1 0
description: Definition of custom WordpressDbConnection relationship type

relationship_types
my.types.WordpressDbConnection
derived_from: tosca.relationships. ConnectsTo
interfaces:
Configure:
pre_configure_source: scripts/wp_db_configure.sh

299 In the above example, the Configure interface is the specified alias or shorthand name for the TOSCA
300 interface type with the full name of tosca.interfaces .relationship.Configure which is defined in
301 the appendix.

302 2.8 Defining generic dependencies between nodes in a template

303 In some cases, it can be necessary to define a generic dependency between two nodes in a template to
304 influence orchestration behavior, i.e. to first have one node processed before another dependent node
305 gets processed. This can be done by using the generic dependency requirement which is defined by the
306 TOSCA Root Node Type and thus gets inherited by all other node types in TOSCA (see section 5.9.1).

307 Example 10 - Simple dependency relationship between two nodes

tosca_definitions_version: tosca_simple_yaml_1 0
description: Template with a generic dependency between two nodes.

topology_template:
inputs :
omitted here for brevity

node_templates:
my_app:
type: my.types.MyApplication
properties:
omitted here for brevity
requirements
- dependency: some_service

some_service :
type: some.nodetype.Some Service
properties:
omitted here for brevity

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 25 of 354

308
309
310
311
312
313

314
315

316

317
318
319
320
321

322
323
324
325
326
327
328

329

330
331

332
333
334
335
336
337
338
339
340
341

342

343
344
345

346

347
348
349

350
351

352
353

As in previous examples, the relation that one node depends on another node is expressed in the
requirements section using the built-in requirement named dependency that exists for all node types in

TOSCA. Even if the creator of the MyApplication

node type did not define a specific requirement for

SomeService (similar to the database requirement in the example in section 2.6), the template author
who knows that there is a timing dependency and can use the generic dependency requirement to
express that constraint using the very same syntax as used for all other references.

2.9 Describing abstract requirements for nodes and capabil

TOSCA template

In TOSCA templates, nodes are either:

ities in a

1 Concrete : meaning that they have a deployment and/or one or more implementation artifacts that

are declared on the ficreated operation of the

1 Abstract : where the template describes the node type along with its required capabilities and
properties that must be satisfied.

TOSCA Orchestrators, by default, when finding an abstract node in TOSCA Service Template during
deployment wilkttataemphctetBsempl ementation for
matches and fulfills the requirements and property constraints the template author provided for that
abstract node. The concrete implementation of the node could be provided by another TOSCA Service
Template (perhaps located in a catalog or repository known to the TOSCA Orchestrator) or by an existing
rvice available withi

resource or se
already has knowledge of.

n t

he target

TOSCA supports two methods for template authors to express requirements for an abstract node within a

TOSCA service template.

1. Using a target node_filter

: where a node template can describe a requirement (relationship) for

another node without including it in the topology. Instead, the node provides a node_filter to
describe the target node type along with its capabilities and property constrains

2. Using an abstract nodetemplate : t hat descri bes

the abstract
constraints and any requirements and capabilities it also exports. This first method you have
already seen in examples from previous chapters where the Compute node is abstract and
selectable by the TOSCA Orchestrator using the supplied Container and OperatingSystem
capabilities property constraints.

These approaches allow architects and developers to create TOSCA service templates that are
ng f laenxoitbhleer 6msat c |

composabl e and

can be reused by al

capabilities. Examples of both these approaches are shown below.

owi

The following section describe how a user can define a requirement for an orchestrator to select an
implementation and replace a node. For more details on how an orchestrator may perform matching and

sel ect a node

from itds catalog(s)

you

may | ook

2.9.1 Using a node_filter to define hosting infrastructure requirements for a

software

Using TOSCA, it is possible to define only the software components of an application in a template and
just express constrained requirements against the hosting infrastructure. At deployment time, the provider

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 26 of 354

t he

Cl o

nodeod

ab.

ud |

nodebo

at

sec

354
355

356
357
358

359

360
361
362
363
364

365
366
367
368

can then do a late binding and dynamically allocate or assign the required hosting infrastructure and
place software components on top.

This example shows how a single software component (i.e., the mysql node template) can define its host
requirements that the TOSCA Orchestrator and provider will use to select or allocate an appropriate host
Computenode by using matching criteria provided on a node_filter

Example 11 - An abstract "host" requirement using a node filter

tosca_definitions_version: tosca_simple_yaml| 1 0

description: Template with requirements against hosting infrastructure.

topology_template:
inputs:
omitted here for brevity

node_templates:
mysql:
type: tosca.nodes.DBMS.MySQL
properties:
omitted here for brevity
requirements:

- host:
node_filter
capabilities:
¢ #1171 OOOAET OO &I O OAlI AAGEI ¢ 2ET 002 s #
- host:
properties:

- num_cpus: {in_range: [1,4]}

- mem_size: { greater_or_equal: 2 GB }
¢ #1171 OOOAET OO0 A& O OAI AAGET ¢ 21 0z s/ DA
- 0s:

properties:

- architecture: { equal: x86_64 }

- type: linux

- distribution: ubuntu

In the example above, the mysql component contains a host requirement for a node of type Compute
which it inherits from its parent DBMS node type definition; however, there is no declaration or reference

to any node template of type Compute Instead, themysginode t empl at e aug mastot s
requirement with a node_filter ~ which contains additional selection criteria (in the form of property
constraints that the provider must use when selecting or allocating a host Computenode.

Some of the constraints shown above narrow down the boundaries of allowed values for certain

properties such as mem_sizeor num_cpusf or hoshée diapabi l ity by means of
as greater_or_equal . Other constraints, express specific values such as for the architecture or
distribution propertieé o&pahel frequire thé provider tovfind a precise match.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 27 of 354

t

he al

gual.i

369
370

371
372

373
374
375
376
377

378

379
380
381
382

383
384
385
386
387

Note that when no qualifier function is provided for a property (filter), such as for the distribution
property, it is interpreted to mean the equal operator as shown on the architecture property.

2.9.2 Using an ab stract node template to define infrastructure requirements
for software

This previous approach works well if no other component (i.e., another node template) other than mysq|l
node template wants to reference the same Computenode the orchestrator would instantiate. However,
perhaps another component wants to also be deployed on the same host, yet still allow the flexible
matching achieved using a node-filter. The alternative to the above approach is to create an abstract
node template that represents the Compute node in the topology as follows:

Example 12 - An abstract Compute node template with a node filter

tosca_definitions_version: tosca_simple_yaml|_1 0
description: Template with requirements against hosting infrastructure.
topology_template:

inputs:

omitted here for brevity

node_templates:

mysql:
type: tosca.nodes.DBMS.MySQL
properties:

omitted here for brevity
requireme nts:
- host: mysgl_compute

Abstract node template (placeholder) to be selected by provider
mysql_compute:
type: Compute

node_filter
capabilities:
- host:
properties:
num_cpus: {equal: 2}
mem_size: { greater_or_equal: 2 GB }
- 0S:
properties:
architecture: { equal: x86_64 }
type: linux
distribution: ubuntu
As you can see the resulting mysql_ compute node templ ate | ooks very much | i ke

template as shown in Chapter 2.1 (where the Computenode template was abstract), but this one also
all ows the TOSCA orchestrator mdongputénbde Ryiptoviding flexblewh en @ s
constraints for properties like mem_size

As we proceed, you will see that TOSCA provides many normative node types like Computefor
commonly found services (e.g., BlockStorage , WebServer, Network, etc.). When these TOSCA

normative node types are used in your applicationés t o
by TOSCA Orchestrators which work with target infrastructure providers to find or allocate the best match
for them based upon your applicationbés requirements an:
TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 28 of 354

file:///C:/Users/Chris/Downloads/hello_world%23_A_

388
389

390
391
392
393

394

395
396

397
398
399
400
401
402
403

404
405

2.9.3 Using a node_filter to define requirements on a database for an

application

In the same way requirements can be defined on the hosting infrastructure (as shown above) for an
application, it is possible to express requirements against application or middleware components such as
a database that is not defined in the same template. The provider may then allocate a database by any
means, (e.g. using a database-as-a-service solution).

Example 13 - An abstract database requirement using a node filter

tosca_definitions_version: tosca_simple_yaml|_1 0

description: Template with a TOSCA Orchestrator selectable dat

using a node _filter.

topology_template:
inputs:

omitted here for brevity

node_templates:
my_app:

type: my.types.MyApplication

properties:

admin_user: { get_|

input: admin_username }

admin_password: { get_input: admin_password }

db_endpoint_url: { get_property: [SELF,

requirements:

- database_endpoint
node: my.types.nodes.MyDatabase

node_filter:
properties:

- db_version: { greater_or_equal: 5.5 }

abase requirement

database_endpoint

, url_path]}

In the example above, the application my_apprequires a database node of type MyDatabase which has a
db_version property value of greater_or_equal to the value 5.5.

This example also shows how the get_property

intrinsic function can be used to retrieve the url_path

property from the database node that will be selected by the provider and connected to my_appat runtime
due to fulfillment of the database_endpoint r equi r ement .
argument is set to the keyword SELFwhich indicates the property is being referenced from something in
the node itself. The second parameter is the name of the requirement named database_endpoint which
contains the property we are looking for. The last argument is the name of the property itself (i.e.,
url_path) which contains the value we want to retrieve and assign to db_endpoint_url

To

ocate the

The alternative representation, which includes a node template in the topology for database that is still
selectable by the TOSCA orchestrator for the above example, is as follows:

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 29 of 354

propert:

406 Example 14 - An abstract database node template

tosca_definitions_version: tosca_simple_yaml|_1 0

description: Template with a TOSCA Orchestrator selectable database using node
template.

topology_template:
input s:
omitted here for brevity

node_templates:
my_app:

type: my.types.MyApplication

properties:
admin_user: { get_input: admin_username }
admin_password: { get_input: admin_password }
db_endpoint_url: { get_pro perty: [SELF, database_endpoint , url_path]}

requirements:
- database_endpoint : my_abstract _database

my_abstract_database:
type: my.types.nodes.MyDatabase
properties:
- db_version: { greater_or_equal: 5.5}

407 2.10 Using node template substitution for model composition

408 From an application perspective, it is often not necessary or desired to dive into platform details, but the
409 platform/runtime for an application is abstracted. In such cases, the template for an application can use
410 generic representations of platform components. The details for such platform components, such as the
411 underlying hosting infrastructure at its configuration, can then be defined in separate template files that

412 can be used for substituting the more abstract representations in the application level template file.

413 2.10.1 Understanding node template instantiation through a TOSCA
414 Orchestrator

415 When a topology template is instantiated by a TOSCA Orchestrator, the orchestrator has to look for

416 realizations of abstract nodes in the topology template according to the node types specified for each
417 abstract node template. Such realizations can either be node types that include the appropriate

418 implementation artifacts and deployment artifacts that can be used by the orchestrator to bring to life the
419 real-world resource modeled by a node template. Alternatively, separate topology templates may be
420 annotated as being suitable for realizing a node template in the top-level topology template.

421

422 In the latter case, a TOSCA Orchestrator will use additional substitution mapping information provided as

423 part of the substituting topology templates to derive |
424 deployment, for example, how capabilities of a node template in the top-level topology template get

425 bound to capabilities of node templates in the substituting topology template.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 30 of 354

426

427 Thus, in cases where no Anormal 06 node type implementat |
428 a whole subsystem that cannot be implemented as a single node, additional topology templates can be
429 used for filling in more abstract placeholders in top level application templates.

430 2.10.2 Definition of the top -level service template

431 The following sample defines a web applicatieb_app connected to a databasdb. In this example, the

432 complete hosting stack for the application is defined within the same topology template: the web

433 application is hosted on a web server web_server , which in turn is installed (hosted) on a compute node
434 serv er.

435 The hosting stack for the database db, in contrast, is not defined within the same file but only the

436 database is represented as a node template of type tosca.nodes.Database . The underlying hosting
437 stack for the database is defined in a separate template file, which is shown later in this section. Within
438 the current template, only a number of properties (user , password, namg are assigned to the database
439 using hardcoded values in this simple example.

diy

with_app b v |Database|
Req C g
[We bhpp::;b_/%“_tinnru:umr

"":}Eap ™y database
"—C;ﬂ.lhmﬂ

web_server

[WebServer] [DBMS]

bay

serverl
|Compate]

SETVEr
|Comparte]

440
441 Figure 1: Using template substitution to implement a database tier

442 When a node template is to be substituted by another service template, this has to be indicated to an

443 orchestrator by substitutableco fd iar escpteicviea.l Thi s directive cause
444 processing behavior when validating the left-hand service template in Figure 1. The hosting requirement

445 of the db node template is not bound to any capability defined within the service template, which would

446 normally cause a Vv al sulsttitdbleon deirrreocrt.i Weh eins tphreesfient , t he o
447 however first try to perform substitution of the respective node template and after that validate if all

448 mandatory requirements of all nodes in the resulting graph are fulfilled.

449

450 Note that in contrast to the use case described in section 2.9.2 (where a database was abstractly referred
451 tointhe requirements section of a node and the database itself was not represented as a node

452 template), the approach shown here allows for some additional modeling capabilities in cases where this
453 is required.

454
455 For example, if multiple components need to use the same database (or any other sub-system of the

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 31 of 354

456
457

458

459

460
461
462

463
464
465

overall service), this can be expressed by means of normal relations between node templates, whereas
such modeling would not be possible in requirements sections of disjoint node templates.

Example 15 - Referencing an abstract database node template

tosca_definitions_version: tosca_simple_yaml|_1 0

topology_template:
description: Template of an application connecting to a datab ase.

node_templates:
web_app:
type: tosca.nodes.WebApplication.MyWebApp
requirements:
- host: web_server
- database_endpoint : db

web_server:
type: tosca.nodes.WebServer
requirements:
- host: serve r

server:
type: tosca.nodes.Compute
details omitted for brevity

db:

This node is abstract (no Deployment or Implementation artifacts on
create)

and can be substituted with a topology provided by another template
¢ OEAO Aobi 0600 A $AOAAAOCA OUPARO AADPAAEI EOE
type: tosca.nodes.Database
properties:
user: my_db_user
password: secret

name: my_db_name

2.10.3 Definition of the database stack in a service template

The following sample defines a template for a database including its complete hosting stack, i.e. the
template includes a database node template, a template for the database management system (dbmg
hosting the database, as well as a computer node server on which the DBMS is installed.

This service template can be used standalone for deploying just a database and its hosting stack. In the
context of the current use case, though, this template can also substitute the database node template in
the previous snippet and thus fill in the details of how to deploy the database.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 32 of 354

466
467
468
469
470

471

472
473

474
475
476

477
478
479

480
481
482
483

484
485

486

In order to enable such a substitution, an additional metadata section substitution_mappings is added
to the topology template to tell a TOSCA Orchestrator how exactly the topology template will fit into the
context where it gets used. For example, requirements or capabilities of the node that gets substituted by
the topology template have to be mapped to requirements or capabilities of internal node templates for
allow for a proper wiring of the resulting overall graph of node templates.

In short, the substitution_mappings section provides the following information:

1. It defines what node templates, i.e. node templates of which type, can be substituted by the
topology template.

2. It defines how capabilities of the substituted node (or the capabilities defined by the node type of
the substituted node template, respectively) are bound to capabilities of node templates defined
in the topology template.

3. It defines how requirements of the substituted node (or the requirements defined by the node type
of the substituted node template, respectively) are bound to requirements of node templates
defined in the topology template.

Database

|Databasa]

Eap}"'*"“""*“""*}Cap * database

-]
b

aerver
[Compute]

Figure 2: Substitution mappings

The substitution_mappings section in the sample below denotes that this topology template can be
used for substituting node templates of type tosca.nodes.Database . It further denotes that the
database_endpoint capability of the substituted node gets fulfilled by the database_endpoint
capability of the database node contained in the topology template.

Example 16 - Using substitution mappings to export a database implementation

tosca_definitions_version: tosca_simple_yaml|_1 0

topology_templ ate:
description: Template of a database including its hosting stack.

inputs:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 33 of 354

487
488
489
490

491
492
493
494
495

496

497
498
499
500
501
502

db_user:
type: string
db_password:
type: string
other inputs omitted for brevity

substitution_mappings
node_type: tosca.nodes.Database
capabilities:
database_endpoint: [database, database_endpoint]

node_templates:
database:
type: tosca.nodes.Database
properties:
user: { get_input: db_user }
other properties omitted for brevity
requirements:
- host: dbms

dbms:
type: tosca.nodes.DBMS
details omitted for brevity

server:
type: tosca.nodes.Compute
details omitted for brevity

Note that the substitution_mappings section does not define any mappings for requirements of the
Database node type, since all requirements are fulfilled by other nodes templates in the current topology
template. In cases where a requirement of a substituted node is bound in the top-level service template
as well as in the substituting topology template, a TOSCA Orchestrator should raise a validation error.

Further note that no mappings for properties or attributes of the substituted node are defined. Instead, the
inputs and outputs defined by the topology template are mapped to the appropriate properties and
attributes or the substituted node. If there are more inputs than the substituted node has properties,
default values must be defined for those inputs, since no values can be assigned through properties in a
substitution case.

2.11 Using node template substitution for chaining subsystems

A common use case when providing an end-to-end service is to define a chain of several subsystems that
together implement the overall service. Those subsystems are typically defined as separate service
templates to (1) keep the complexity of the end-to-end service template at a manageable level and to (2)
allow for the re-use of the respective subsystem templates in many different contexts. The type of
subsystems may be specific to the targeted workload, application domain, or custom use case. For
example, a company or a certain industry might define a subsystem type for company- or industry specific

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 34 of 354

503
504

505

506
507
508
509
510
511
512
513
514

515
516

517
518
519
520
521
522

523
524

data processing and then use that subsystem type for various end-user services. In addition, there might
be generic subsystem types like a database subsystem that are applicable to a wide range of use cases.

2.11.1 Defining the overall subsystem chain

Figure 3 shows the chaining of three subsystem types i a message queuing subsystem, a transaction
processing subsystem, and a databank subsystem i that support, for example, an online booking
application. On the front end, this chain provides a capability of receiving messages for handling in the
message queuing subsystem. The message queuing subsystem in turn requires a number of receivers,
which in the current example are two transaction processing subsystems. The two instances of the
transaction processing subsystem might be deployed on two different hosting infrastructures or
datacenters for high-availability reasons. The transaction processing subsystems finally require a
database subsystem for accessing and storing application specific data. The database subsystem in the
backend does not require any further component and is therefore the end of the chain in this example.

prianil
[Transaction
Subsystem]

substitutable

Req

L m

Cap |Queuing Req
Swbsystem)|
substitutable

dhsys
[Database
Subsystem]
substitutable

trans2
[Transaction
Subsystem]

substitutable

4

All of the node templates in the service template shown above are abstract and considered substitutable
where each can be treated as their own subsystem; therefore, when instantiating the overall service, the
orchestrator would realize each substitutable node template using other TOSCA service templates.
These service templates would include more nodes and relationships that include the details for each
subsystem. A simplified version of a TOSCA service template for the overall service is given in the
following listing.

Figure 3: Chaining of subsystems in a service template

Example 17 - Declaring a transaction subsystem as a chain of substitutable node templates

tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:
description: Template of online transaction processing service.

node_templates:
mq:
type: example.QueuingSubsystem
properties:
properties omitted for brevity
capabilities:
message_queue_endpoint:
details omitted for brevity

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

17 January 2019

Copyright © OASIS Open 2019. All Rights Reserved. Page 35 of 354

525

526
527
528
529

530
531
532
533

requirements:
- receiver: transl
- receiver: trans2

trans1:
type: example.TransactionSubsystem
properties:
mq_service_ip: { get_attribute : [mqg, service_ip]}
receiver_port: 8080
capabilities:
message_receiver:
details omitted for brevity
requirements:
- database_endpoint: dbsys

trans2:
type: example.TransactionSubsystem
prop erties:
mqg_service_ip: { get_attribute: [mq, service_ip]}
receiver_port: 8080
capabilities:
message_receiver:
details omitted for brevity
requirements:
- database_endpoint: dbsys

dbsys:
type: example.DatabaseSubsystem
properties:
properties omitted for brevity
capabilities:
database_endpoint:
details omitted for brevity

As can be seen in the example above, the subsystems are chained to each other by binding requirements
of one subsystem node template to other subsystem node templates that provide the respective
capabilities. For example, the receiver requirement of the message queuing subsystem node template
mgqjis bound to transaction processing subsystem node templates transl and trans2 .

Subsystems can be parameterized by providing properties. In the listing above, for example, the IP
address of the message queuing server is provided as property mg_service_ip to the transaction
processing subsystems and the desired port for receiving messages is specified by means of the
receiver_port property.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 36 of 354

534
535

536

537
538
539
540

541
542

543
544

545

546
547
548

549
550
551

552

553
554
555
556
557

If attributes of the instantiated subsystems need to be obtained, this would be possible by using the
get_attribute intrinsic function on the respective subsystem node templates.

2.11.2 Defining a subsystem (node) type

The types of subsystems that are required for a certain end-to-end service are defined as TOSCA node
types as shown in the following example. Node templates of those node types can then be used in the
end-to-end service template to define subsystems to be instantiated and chained for establishing the end-
to-end service.

The realization of the defined node type will be given in the form of a whole separate service template as
outlined in the following section.

Example 18 - Defining a TransactionSubsystem node type

tosca_definitions_version: tosca_simple_yaml|_1 0

node_types:
example.TransactionSubsystem
properties:
mq_service_ip:
type: string
receiver_port:
type: integer
attributes:
receiver_ip:
type: string
receiver_port:
type: integer
capabilities:
message_receiver: tosca.capabilities.Endpoint
requirements:
- database_endpoint: tosca.capabilities.Endpoint. Database

Configuration parameters that would be allowed for customizing the instantiation of any subsystem are
defined as properties of the node type. In the current example, those are the properties mq_service_ip
and receiver_port that had been used in the end-to-end service template in section 2.11.1.

Observable attributes of the resulting subsystem instances are defined as attributes of the node type. In
the current case, those are the IP address of the message receiver as well as the actually allocated port
of the message receiver endpoint.

2.11.3 Defining the details of a subsystem

The details of a subsystem, i.e. the software components and their hosting infrastructure, are defined as
node templates and relationships in a service template. By means of substitution mappings that have
been introduced in section 2.10.2, the service template is annotated to indicate to an orchestrator that it
can be used as realization of a node template of certain type, as well as how characteristics of the node
type are mapped to internal elements of the service template.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 37 of 354

558

559
560

561
562
563

564
565
566
567

568
569
570
571
572
573
574

575
576
577
578

579
580
581
582

583
584

TransacHonSubsystem

Wansny

|WebSenaer]

BRIV
[Compute]

Figure 4: Defining subsystem details in a service template

Figure 1 illustrates how a transaction processing subsystem as outlined in the previous section could be
defined in a service template. In this example, it simply consists of a custom application app of type
SomeApghat is hosted on a web server websrv, which in turn is running on a compute node.

The application named app provides a capability to receive messages, which is bound to the
message_receiver capability of the substitutable node type. It further requires access to a database, so
t he app ldatabaske iermpoiits requirement is mapped to the database_endpoint requirement of
the TransactionSubsystem node type.

Properties of the TransactionSubsystem node type are used to customize the instantiation of a
subsystem. Those properties can be mapped to any node template for which the author of the subsystem
service template wants to expose configurability. In the current example, the application app and the web
server middleware websrv get configured through properties of the TransactionSubsystem node type.
All properties of that node type are defined as inputs of the service template. The input parameters in
turn get mapped to node templates by means of get_input function calls in the respective sections of
the service template.

Similarly, attributes of the whole subsystem can be obtained from attributes of particular node templates.
In the current example, attributes of the web server and the hosting compute node will be exposed as
subsystem attributes. All exposed attributes that are defined as attributes of the substitutable
TransactionSubsystem node type are defined as outputs of the subsystem service template.

An outline of the subsystem service template is shown in the listing below. Note that this service template
could be used for stand-alone deployment of a transaction processing system as well, i.e. it is not
restricted just for use in substitution scenarios. Only the presence of the substitution_mappings
metadata section in the topology template enables the service template for substitution use cases.

Example 19 - Implementation of a TransactionSubsytem node type using substitution mappings

tosca_definitions_version: tosca_simple_yaml|_1 0

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 38 of 354

topology_template:
description: Template of a database including its hosting stack.

inputs:
mq_service_ip:
type: string

description: IP address of the message queuing server to receive messages

from
receiver_port:
type: string
description : Port to be used for receiving messages
other inputs omitted for brevity

substitution_mappings
node_type: example.TransactionSubsystem
capabilities:
message_receiver: [app, message_receiver |
requirements:
database_endpo int: [app, database |

node_templates:
app:
type: example.SomeApp
properties:
properties omitted for brevity
capabilities:
message_receiver :
properties:
service_ip: { get_input: mq_service_ip }
other properties omitted for brevity
requirements:
- database :
details omitted for brevity
- host: websrv

websrv:
type: tosca.nodes.WebServer
properties:
properties omitted for brevity
capabilities:
data_endpoint:

TOSCA-Simple-Profile-YAML-v1.2-0s

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 39 of 354

585

586
587
588
589

590
591
592
593

594

properties:
port_name: { get_input: receiver_port }
other properties omitted for brevity
requirements:
- host: server

server:
type: tosca.nodes.Compute
details omitted for brevity

outputs:
receiver_ip:
description: private IP address of the message receiver application
value: { get_attribute: [server, private_address] }
receiver_port:
description: Port of the message receiver endpoint
value: { get_attribute: [app, app_endpo int, port] }

2.12 Grouping node templates

In designing applications composed of several interdependent software components (or nodes) it is often
desirable to manage these components as a named group. This can provide an effective way of
associating policies (e.qg., scaling, placement, security or other) that orchestration tools can apply to all
the components of group during deployment or during other lifecycle stages.

In many realistic scenarios it is desirable to include scaling capabilities into an application to be able to
react on load variations at runtime. The example below shows the definition of a scaling web server stack,
where a variable number of servers with apache installed on them can exist, depending on the load on
the servers.

Example 20 - Grouping Node Templates for possible policy application

tosca_definitions_version: tosca_simple_yaml_1 0
description: Template for a scaling web server.

topology_template:
inputs:
omitted here for brevity

node_templates:
apache:
type: tosca.nodes.WebServer.Apache
properties:
Details omitted for brevity

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 40 of 354

595
596
597
598

599
600
601

602
603
604
605

606
607
608

609

requirements:
- host: server

server:
type: tosca.nodes.Compute
details omitted for brevity

groups :
webserver_group:
type: tosca.groups.Root
members: [apache, server]

The example first of all uses the concept of grouping to express which components (node templates)
need to be scaled as a uniti i.e. the compute nodes and the software on-top of each compute node. This
is done by defining the webserver_group in the groups section of the template and by adding both the
apache node template and the server node template as a member to the group.

Furthermore, a scaling policy is defined for the group to express that the group as a whole (i.e. pairs of
server node and the apache component installed on top) should scale up or down under certain
conditions.

In cases where no explicit binding between software components and their hosting compute resources is
defined in a template, but only requirements are defined as has been shown in section 2.9, a provider
could decide to place software components on the same host if their hosting requirements match, or to
place them onto different hosts.

It is often desired, though, to influence placement at deployment time to make sure components get
collocation or anti-collocated. This can be expressed via grouping and policies as shown in the example
below.

Example 21 - Grouping nodes for anti-colocation policy application

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template hosting requirements and placement policy.

topology_template:
inputs:
omitted here for brevity

node_templates:
wordpress_server:
type: tosca.nodes.WebServer
properties:
omitted here for brevity
requirements:
- host:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 41 of 354

Find a Compute node that fulfills these additional filter regs.
node _filter:
capabilities:
- host:
properties:
- mem_size: { greater_or_equal: 512 MB }
- disk_size: { greater_or_equal: 2 GB }
- 0S:
properties:
- architecture: x86_64
- type: linux

mysql:
type: tosca.nodes.DBMS.MySQL
properties:
omitted here for brevity
requirements:
- host:
node: tosca.nodes.Compute
node_filter:
capabilities:
- host:
properties:
- disk_size: { greater_or_equal: 1 GB }
- 0s:
properties:
- architecture: x86_64
- type: linux

groups :
my_co_location_group:
type: tosca.groups.Root
members: [wordpress_server, mysql |

policies:
- my_anti_collocation_policy:
type: my.policies.anticolocateion
targets: [my_co_location_group]
For this examp le, specific policy definitions are considered
domain specific and are not included here

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 42 of 354

610
611
612
613
614

615

616
617
618
619
620
621

622

623
624
625
626

627
628
629

630

In the example above, both software components wordpress_server

and mysgl have similar hosting

requirements. Therefore, a provider could decide to put both on the same server as long as both their
respective requirements can be fulfilled. By defining a group of the two components and attaching an anti-
collocation policy to the group it can be made sure, though, that both components are put onto different

hosts at deployment time.

2.13 Using YAML Macros to simplify templates

The YAML 1.2 specification allows for defining of aliases, which allow for authoring a block of YAML (or
indicating it is an fianchoro and
Afali aso. Effectively, YAML parsers
is referenced. Use of this feature is especially helpful when authoring TOSCA Service Templates where
similar definitions and property settings may be repeated multiple times when describing a multi-tier

node) once and

application.

t hen

t r eadtowhéréveritas a

For example, an application that has a web server and database (i.e., a two-tier application) may be
described using two Computenodes (one to host the web server and another to host the database). The
author may want both Compute nodes to be instantiated with similar properties such as operating system,

distribution, version, etc.

To accomplish this, the author would describe the reusable properties using a hamed anchor in the
fdsl_definitions 0 section of the TOSCA Servi
in any Computenode templates where these properties may need to be reused. For example:

Example 22 - Using YAML anchors in TOSCA templates

tosca_definitions_version: tosca_simple_yaml_1 0

description: >
TOSCA simple profile th
properties.

dsl_definitions

ce

Templ at e

at just defines a YAML macro for commonly reused Compute

my_compute_node_props: &my_compute_node_props

disk_size: 10 GB
num_cpus: 1
mem_size: 2 GB

topology_template:
node_templates:
my_server:
type: Compute
capabilities:
- host:
properties: *

my_database:
type: Compute

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

my_compute_node_props

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 43 of 354

and

r
fi m

re

http://yaml.org/spec/1.2/spec.html#id2786196

capabilities:
- host:
properties: * my_compute_node_props

631 2.14 Passing information as inputs to Nodes and Relationships

632 It is possible for type and template authors to declare input variables within an inputs block on interfaces
633 to nodes or relationships in order to pass along information needed by their operations (scripts). These
634 declarations can be scoped such as to make these variable values available to all operations on a node
635 or relationships interfaces or to individual operations. TOSCA orchestrators will make these values

636 available as environment variables within the execution environments in which the scripts associated with
637 lifecycle operations are run.

638 2.14.1 Example: declaring input variables for all operations on a single
639 interface

node_templates:
wordpress:
type: tosca.nodes.WebApplication.WordPress
requirements:

- database_endpoint: mysql_database
interfaces:
Standard:
inputs :
wp_db_port: { get_property: [SELF, database_endpoint, port] }

640 2.14.2 Example: declari ng input variables for a single operation

node_templates:
wordpress:
type: tosca.nodes.WebApplication.WordPress
requirements:

- database_endpoint: mysql_database
interfaces:
Standard:
create: wordpress_install.sh
configure:
implementation: wordpress_configure.sh
inputs :
wp_db_port: { get_property: [SELF, database_endpoint, port] }

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 44 of 354

641
642
643

644

645

646
647

648

649
650

651

652
653
654
655
656
657
658
659
660
661

In the case where an input variable name is defined at more than one scope within the same interfaces
section of a node or template definition, the lowest (or innermost) scoped declaration would override
those declared at higher (or more outer) levels of the definition.

2.14.3 Example: setting output vari ables to an attribute

node_templates:
frontend:

type: MyTypes.SomeNodeType

attributes:

url; { get_operation_output : [SELF, Standard, create, generated _url] }

interfaces:
Standard:
create:

implementat ion: scripts/frontend/create.sh

In this example, the Standard create operation exposes / exports an environment variable named
iCAT AOAOAAMOOI bute which will be asudiayibued

2.14.4 Example: passing output variables betwe en operations

node_templates:

to the

frontend:
type: MyTypes.SomeNodeType
interfaces:
Standard:
create:
implementation: scripts/frontend/create.sh
configure:
implementation: scripts/frontend/configure.sh
inputs:
data_dir: { get_operation_output : [SELF, Standard, create, data_dir
1}
In this example, the Standard | i f e ccyeaté @gemtion exposes / exports an environment variable
namedatafir 6 which will be paStandaid laisf e arprdijom Gicperation. t

2.15 Topology Template Model versus Instance Model

A TOSCA service template contains a topology template,

which models the components of an

application, their relationships and dependencies (a.k.a., a topology model) that get interpreted and
instantiated by TOSCA Orchestrators. The actual node and relationship instances that are created
represent a set of resources distinct from the template itself, called a topology instance (model) . The
direction of this specification is to provide access to the instances of these resources for management
and operational control by external administrators. This model can also be accessed by an orchestration
engine during deployment i i.e. during the actual process of instantiating the template in an incremental
fashion, That is, the orchestrator can choose the order of resources to instantiate (i.e., establishing a
partial set of node and relationship instances) and have the ability, as they are being created, to access
them in order to facilitate instantiating the remaining resources of the complete topology template.

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 45 of 354

Wor dPr

he

662

663
664
665
666
667

668
669

670

671
672
673
674
675
676
677

678
679

2.16 Using attributes implicitly reflected from properties

Most entity types in TOSCA (e.g., Node, Relationship, Capability Types, etc.) have property definitions,
which allow template authors to set the values for as inputs when these entities are instantiated by an
orchestrator. These property values are considered to reflect the desired state of the entity by the author.
Once instantiated, the actual values for these properties on the realized (instantiated) entity are

obtainable via attributes on the entity with the same name as the corresponding property.

In other words, TOSCA orchestrators will automatically reflect (i.e., make available) any property defined
on an entity making it available as an attribute of the entity with the same name as the property.

Use of this feature is shown in the example below where a source node named my_client , of type
ClientNode , requires a connection to another node named my_server of type ServerNode. As you can

see, the ServerNode type defines a property named notification_port

which defines a dedicated port

number which instances of my_client may use to post asynchronous natifications to it during runtime. In

this case, the TOSCA Simple Profile assures that the notification_port
as an attribute in the my_server node (also with the name notific

is instantiated.

Example 23 - Properties reflected as attributes

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

TOSCA simple profile that shows how the (notification_port) property is
reflected as an attribute and can be referenced elsewhere.

node_types:
ServerNode:
derived_from: SoftwareComponent
properties:
notification_port
type: integer
capabilities:
omitted here for brevity

ClientNode:
derived_from: SoftwareComponent
properties:
omitted here for brevity
requirements:
- server:
capability: Endpoint
node: ServerNode
relationship: ConnectsTo

TOSCA-Simple-Profile-YAML-v1.2-0s

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved.

property is implicitly reflected
) when its node template

17 January 2019
Page 46 of 354

680

681
682
683
684
685

686

687
688
689

topology_template:
node_templates:

my_server:
type: ServerNode
properties:
notification_port: 8000

my_client:
type: ClientNode
requirements:
- server:

node: my_server
relationship: my_connection

relationship_templates:
my_connection:
type: ConnectsTo
interfaces:
Configure:
inputs:
targ_notify_port: { get_attribute: [TARGET, notification_port 1}
other operation definitions omitted here for brevity

Specifically, the above example shows that the ClientNode type needs the notification_port value
anytime a node of ServerType is connected to it using the ConnectsTo relationship in order to make it
available to its Configure operations (scripts). It does this by using the get_attribute function to
retrieve the notification_port attribute from the TARGETode of the ConnectsTo relationship (which is
a node of type ServerNode) and assigning it to an environment variable named targ_notify_port

It should be noted that the actual port value of the notification_port attribute may or may not be the
value 8000 as requested on the property; therefore, any node that is dependent on knowing its actual
Arunti med val uget attributel d functoomrinstedd ®f the get_property function.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 47 of 354

so0o 3 TOSCA Simple Profile definitd:i

691 Except for the examples, this section is hormative and describes all of the YAML grammar, definitions
692 and block structure for all keys and mappings that are defined for the TOSCA Version 1.2 Simple Profile
693 specification that are needed to describe a TOSCA Service Template (in YAML).

694 3.1 TOSCA Namespace URI and alias

695 The following TOSCA Namespace URI alias and TOSCA Namespace Alias are reserved values which
696 SHALL be used when identifying the TOSCA Simple Profile version 1.2 specification.

Namespace Al|Namespace URI Speci f iDceastciroinpt i on
tosca_simple_yaml_2_ http://docs.oasis- The TOSCA Simple Profile2(¥.AML) target
open.org/tosca/ns/simple/yaml/1.2 namespace and namespace alias.

697 3.1.1 TOSCA Namespace prefix

698 The following TOSCA Namespace prefix is a reserved value and SHALL be used to reference the default
699 TOSCA Namespace URI as declared in TOSCA Service Templates.

Namespace Pr|Specification Description

tosca The reserved TOSCA Simple Profile Specification prefix that can be associated with t
default TOSCA Namesge URI

700 3.1.2 TOSCA Namespacing in TOSCA Service Templates

701 In the TOSCA Simple Profile, TOSCA Service Templates MUST always have, as the first line of YAML,
702 t he k e tosca definitidns_version 0 with an associated TOSCA Namespac
703 single line accomplishes the following:

704 1. Establishes the TOSCA Simple Profile Specification version whose grammar MUST be used to
705 parse and interpret the contents for the remainder of the TOSCA Service Template.

706 2. Establishes the default TOSCA Namespace URI and Namespace Prefix for all types found in the
707 document that are not explicitly namespaced.

708 3. Automatically imports (without the use of an explicit import statement) the normative type

709 definitions (e.g., Node, Relationship, Capability, Artifact, etc.) that are associated with the TOSCA
710 Simple Profile Specification the TOSCA Namespace Alias value identifies.

711 4. Associates the TOSCA Namespace URI and Namespace Prefix to the automatically imported
712 TOSCA type definitions.

713 3.1.3 Rules to avoid namespace collisions

714 TOSCA Simple Profiles allows template authors to declare their own types and templates and assign
715 them simple names with no apparent namespaces. Since TOSCA Service Templates can import other
716 service templates to introduce new types and topologies of templates that can be used to provide

717 concrete implementations (or substitute) for abstract nodes. Rules are needed so that TOSCA

718 Orchestrators know how to avoid collisions and apply their own namespaces when import and nesting
719 occur.

720 3.1.3.1 Additional Requirements

721 1 The URI v ahttpi//docsioasis-open.org/toscad, as wel |l as all (path) exter
722 reserved for TOSCA approved specifications and work. That means Service Templates that do
TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 48 of 354

http://docs.oasis-open.org/tosca

723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758

759

760
761
762

763

764
765
766
767
768

769

not originate from a TOSCA approved work product MUST NOT use it, in any form, when
declaring a (default) Namespace.
1 Since TOSCA Service Templates can import (or substitute in) other Service Templates, TOSCA
Orchestrators and t otodca definitions _befsiore n c® ustt &tre ménret Af or e
imported template. In these cases, the following additional requirements apply:
o Imported type definitions with the same Namespace URI, local name and version SHALL

be equivalent.

o | f diff er en tosca definitiens veosion t h @aref@ncountered, their
corresponding type definitions MUST be uniquely identifiable using their corresponding
Namespace URI using a different Namespace prefix.

1 Duplicate local names (i.e., within the same Service Template SHALL be considered an error.
These include, but are not limited to duplicate names found for the following definitions:
0 Repositories (repositories)

O O O O o

Data Types (data_types)

Node Types (node_types)

Relationship Types (relationship_types)
Capability Types (capability_types)
Artifact Types (artifact_types)

o Interface Types (interface_types)

1T Duplicate

Templ ate names within

a Service Templ at ebd

an error. These include, but are not limited to duplicate names found for the following template

types:

o Node Templates (node_templates)
0 Relationship Templates (relationship_templates)

0 Inputs (inputs)

o Outputs (outputs)
1 Duplicate names for the following keynames within Types or Templates SHALL be considered an
error. These include, but are not limited to duplicate names found for the following keynames:

O O 0O O o0 o oo

Properties (properties)
Attributes (attributes)
Artifacts (artifacts)
Requirements (requirements)
Capabilities (capabilities)
Interfaces (interfaces)
Policies (policies)

Groups (groups)

3.2 Using Namespaces

As of TOSCA version 1.2, Service template authors may declare a namespace within a Service Template
that would be used as the default namespace for any types (e.g., Node Type, Relationship Type, Data
Type, etc.) defined within the same Service template.

Speci fically,

a Service Templ ateds

namespace decl arati

qualified Type name when combined with the locally defined, unqualified name of any Type in the same
Service Template. The resulatant, fully qualified Type name would be used by TOSCA Orchestrators,
Processors and tooling when that Service Template was imported into another Service Template to avoid

Type name collision.

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 49 of 354

770 3.2.1.1.1.1 Example i Importing a Service Template and Namespaces

771 For example, let say we have two Service Templates, A and B, both of which define Types and a
772 Namespace. Service Template B contains a Node Type definitonfora- U. & Adnd decl ares its (
773 Na me s p a c ehttpt//compaayB.Gom/service/namespace/ 0:

774 Service Template B
775

tosca_definitions_version: tosca_simple yaml_1 2
description: Service Template B
namespace: http://companyB.com/service/namespace/

node_types:
MyNode
derived_from: SoftwareComponent
properties:
omitted here for br evity
capabilities:
omitted here for brevity

776

777 Service Template A has its own, completely different, Node Type definitona | s 0 nMyNedd . i
778

779 Service Template A

780

tosca_definitions_version: tosca_simple_ yaml_1 2
description: Service Template A
namespace: http://companyA.com/product/ns/

imports:
- file: csar/templates/ServiceTemplateB.yaml
namespace_prefix: templateB

node_types:
MyNode
derived_from: Root
properties:
omitted here for brevity
capabilities:
omitted here for brevity

781 As you can see, Service Template A also fiimportsf Ser v
782 bringing in its Type defintions to the global namespace using the Namespace URI declared in Service
783 Template B to fully qualify all of its imported types.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 50 of 354

784

785
786
787
788

789

790
791
792
793

794
795

796
797
798
799
800
801
802
803
804
805
806
807
808

809

810
811
812

813
814
815

I n addition, the import includes a) thataambesugedto qualifyr ef i x fi
and disambiguate any Type reference from from Service Template B within Service Template A. This

prefix is effectively the local alias for the corresponding Namespace URI declared within Service

Templ at e httB:/compangB.com/service/namespace/ i) .

To illustrate conceptually what a TOSCA Orchestrator, for example, would track for their global
namespace upon processing Service Template A (and by import Service Template B) would be a list of
global Namespace URIs and their associated Namespace prefixes, as well as a list of fully qualified Type
names that comprises the overall global namespace.

Conceptual Global Namespace URI and Namespace Prefix tracking

Enti1Fully Qualifed URI NamespeAdded bfyS&Keyce file)
Prefix
1 http://open.org/tosca/ns/simple/lyaml/1.2/ tosca fitosca_definitions_version
- from Service Template A
2 http://companyA.com/product/ns/ <None> f namespace
- from Service Template A
3 http://companyB.com/service/namespace/ templateB f'namespace:

- from Service Template B

fTnamespace_prefix :
- from Service Template, Aluring import

In the above table,

1 Entry 1:is an entry for the default TOSCA namespace, which is required to exist for it to be a
valid Service templ at ¢osca ddfiitions srersjos t a bk ¢ yh® dBydblyu é he 0
defaul t, it also gets assigned the Atoscad Namespac
1 Entry 2: is the entry for the local default namespace for Service Template A as declared by the
fnamespaced k ey .
o Note that no Namespace prefix is needed; any locally defined types that are not qualified
(i.e., not a full URI or using a Namespace Prefix) will default to this namespace if not
found first in the TOSCA namespace.
1 Entry 3:is the entry for default Namespace URI for any type imported from Service Template B.
The aut hor of Service Template A has assigned the |
be used to qualify reference to any Type from Service Template B.

AsperTOSCA specification, any Type, that is not qualifie
be first resolved by its unqualified name within the TOSCA namespace. If it not found there, then it may
be resolved within t heefaulonanzespacB.er vi ce Templ atebs

Conceptual Global Namespace and Type tracking

Entry# Owning Namespace URI Full Name Short Name Type
Classification
1 http://open.org/tosca/ns/simple/yaml/1.2/ tosca.nodes.Compute Compute node
2 tosca.nodes.SoftwareComponer SoftwareComponent
TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 51 of 354

816
817

818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

833

834
835
836
837
838
839
840
841
842
843
844

845

846
847

848

849
850

851
852

3 tosca.relationships.ConnectsTo ConnectsTo relationship
100 http://companyA.com/product/ns/ N/A MyNode node
200 http://companyB.com/service/namespace/ N/A MyNode node

In the above table,

T Entry 1, is an example of one of the TOSCA standard
brought into the global namespace viathefit osca_def initions_versiono key.
o Italso has two forms, full and short that are unique to TOSCA types for historical
reasons. Reference to a TOSCA type by either its unqualified short or full names is
viewed as equivalent as a reference to the same fully qualified Type name (i.e., its full
URI).
o I n this exampltascanades€onplite @i €Compited (i . e., an unqua
full and short name Type) in a Service Template would be treated as its fully qualified
URI equivalent of:
A fhttp://docs.oasis - open.org/tosca/ns/simple/lyaml/1.2/tosca.nodes.Compute 0.
1 Entry 2, is an example of a standard TOSCA Relationship Type
T Entry 100, contains the unique Type indentifer for
Template A.
1 Entry 200, contains the unique Typei ndent i fer for the Node Type fAMyNO:«
Template B.
As you can see, although both templates defined a Noc
the TOSCA Orchestrator, processor or tool tracks them by their unique fully qualified Type Name
(URI).
The classification column is included as an exampl e ¢
Node Type and AComputeo capability type if the table

upon context in a Service Template.

Forexample,i f t he

short name AComputed were used in a
the matching type would not be the Compute Node Type, but instead the Compute Capability Type
based upon the Requirement clause being the context for Type reference.

3.3 Parameter and property types

This clause describes the primitive types that are used for declaring normative properties, parameters
and grammar elements throughout this specification.

3.3.1 Referenced YAML Types

Many of the types we use in this profile are built-in types from the YAML 1.2 specification (i.e., those

identified by

the fAtag¥YAVLMR]. org, 20020

version tag)

The following table declares the valid YAML type URIs and aliases that SHALL be used when possible
when defining parameters or properties within TOSCA Service Templates using this specification:

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 52 of 354

t emj

[

http://www.yaml.org/spec/1.2/spec.html

853

854
855
856

857

858
859
860
861
862

863
864

865

866
867
868
869
870
871
872
873

874

875
876
877
878

Valid alia{Type URI
string tag:yaml.org,2002:str (default)
integer tag:yaml.org,2002:int
float tag:yaml.org,2002:float
boolean GFr3Yealr Yt ®2NBZHANHYO022f OA®S
timestamp tag:yaml.org,2002:timestampYAMLTS1.1]
null tag:yaml.org,2002:null
3.3.1.1 Notes

T The fistringdo type is the default
T While YAML supports further type
specification promotes the fully expressed alias hame for clarity.

3.3.2 TOSCA version

TOSCA supports the concept of HAreusedod

type when not

al

of

ases, such

type defi

version and change over time. It is important to provide a reliable, normative means to represent a
version string which enables the comparison and management of types and templates over time.
Therefore, the TOSCA TC intends to provide a normative version type (string) for this purpose in future

Working Drafts of this specification.

Shor t Namde version

Type Qual i f|tosca:version
Name

3.3.2.1 Grammar

TOSCA version strings have the following grammar:

<major_version>.<minor_version>[.<fix_version>[.<qualifier>[

- <build_version] 1]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1 major_version :is arequired integer value greater than or equal to O (zero)

1 minor_version :is arequired integer value greater than or equal to O (zero).

9 fix_version :is an optional integer value greater than or equal to O (zero).

1 qualifier :is an optional string that indicates a named, pre-release version of the associated
code that has been derived from the version of the code identified by the combination

major_version , minor_version and fix_version numbers.

91 build_ve rsion :is an optional integer value greater than or equal to O (zero) that can be used to
further qualify different build versions of the code that has the same qualifer_string

3.3.2.2 Version Comparison

1 When comparing TOSCA versions, all component versions (i.e., major, minor and fix) are

compared in sequence from left to right.

1 TOSCA versions that include the optional qualifier are considered older than those without a

qualifier.

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 53 of 354

spec
as i
ni ti

879
880
881
882
883
884

885
886

887

888
889

890

891
892

893

894
895

896
897

898

899
900
901

1 TOSCA versions with the same major, minor, and fix versions and have the same qualifier string,
but with different build versions can be compared based upon the build version.

1 Qualifier strings are considered domain-specific. Therefore, this specification makes no
recommendation on how to compare TOSCA versions with the same major, minor and fix
versions, but with different qualifiers strings and simply considers them different named branches
derived from the same code.

3.3.2.3 Examples

Examples of valid TOSCA version strings:

basic version strings
6.1
2.0.1

version string with optional qualifier
3.1.0.beta

version string with optional qualifier and build version
1.0.0.alpha -10

3.3.2.4 Notes
1 [Maven-Version] The TOSCA version type is compatible with the Apache Maven versioning
policy.

3.3.2.5 Additional Requirements

T A version value of zero (i.e., 606, 60.06, or 060.
1 A version value of zero used with any qualifiers SHALL NOT be valid.

3.3.3 TOSCA range type

The range type can be used to define numeric ranges with a lower and upper boundary. For example, this
allows for specifying a range of ports to be opened in a firewall.

Short hand [range

Type Qual i f[toscarange
Name

3.3.3.1 Grammar

TOSCA range values have the following grammar:
[<lower_bound>, <upper_bound>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1 lower_bound : is a required integer value that denotes the lower boundary of the range.
1 upper_bound: is a required integer value that denotes the upper boundary of the range. This
value MUST be greater than lower_bound .

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 54 of 354

902
903

904
905

906

907

908
909
910

911
912
913

914
915

916

917

918
919

3.3.3.2 Keywords
The following Keywords may be used in the TOSCA range type:

Keywor {Applic/Description
Types

UNBOUNDEL scalar Used torepresent an unbounded upper bounds (positive) value in a set for a scalar ty

3.3.3.3 Examples

Example of a node template property with a range value:

numeric range between 1 and 100
a_range_property: [1, 100]

a property that has allows any number 0 or greater
num_connections: [0, UNBOUNDED]

3.3.4 TOSCA list type

The list type allows for specifying multiple values for a parameter of property. For example, if an
application allows for being configured to listen on multiple ports, a list of ports could be configured using
the list data type.

Note that entries in a list for one property or parameter must be of the same type. The type (for simple
entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective
property definition, attribute definitions, or input or output parameter definitions.

Short hand | list

TypRual i fi el toscalist
Na me

3.3.4.1 Grammar

TOSCA lists are essentially normal YAML lists with the following grammars:
3.3.4.1.1 Square bracket notation

[<list_entry 1>, <list_entry_ 2>, ...]

3.3.4.1.2 Bulleted (sequenced) list notation

- <list_entry_1>

- <list_entry_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

1 <list_entry *> :represents one entry of the list.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 55 of 354

920

921

922
923

924
925

926
927

928
929
930

931

932

3.3.4.2 Declaration Examples

3.3.4.2.1 List declaration using a simple type

The following example shows a list declaration with an entry schema based upon a simple integer type
(which has additional constraints):

<some_entity>:

properties:
listen_ports:

type: list

entry_schema :
description: list en port entry (simple integer type)
type: integer
constraints:

- max_length: 128

3.3.4.2.2 List declaration using a complex type

The following example shows a list declaration with an entry schema based upon a complex type:

<some_entity>:

properties:
products:
type: list
entry_schema :
description: Product information entry (complex type) defined elsewhere
type: Productinfo

3.3.4.3 Definition Examples

These examples show two notation options for defining lists:

1 A single-line option which is useful for only short lists with simple entries.
1 A multi-line option where each list entry is on a separate line; this option is typically useful or
more readable if there is a large number of entries, or if the entries are complex.

3.3.4.3.1 Square bracket notation

listen_ports: [80, 8080]

3.3.4.3.2 Bulleted list notation

listen_ports:
- 80
- 8080

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 56 of 354

933

934
935
936

937
938
939

940
941

942

943

944

945
946

947

948

949
950

3.3.5 TOSCA map type

The map type allows for specifying multiple values for a parameter of property as a map. In contrast to
the list type, where each entry can only be addressed by its index in the list, entries in a map are named
elements that can be addressed by their keys.

Note that entries in a map for one property or parameter must be of the same type. The type (for simple
entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective
property definition, attribute definition, or input or output parameter definition.

Shorthand I map

Type Qual i fltoscamap
Name

3.3.5.1 Grammar

TOSCA maps are normal YAML dictionaries with following grammar:
3.3.5.1.1 Single -line grammar

{ <entry_key_ 1>: <entry_value_1>, ..., <entry_key n>: <entry_value_n>}
<entry_key n>: <entry_value_n>

3.3.5.1.2 Multi -line grammar

<entry_key_ 1>: <entry_value_1>

<entry_key_n>: <entry_value_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

1 entry_key * :isthe required key for an entry in the map
1 entry_value * :is the value of the respective entry in the map

3.3.5.2 Declaration Examples

3.3.5.2.1 Map declaration using a simpl e type

The following example shows a map with an entry schema definition based upon an existing string type
(which has additional constraints):

<some_entity>:

properties:
emails:
type: map
entry_schema :
description: basic email address
type: string
constraints:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 57 of 354

951
952

953
954
955
956
957

958

959

960
961
962
963
964

965

966
967

- max_length: 128

3.3.5.2.2 Map declaration using a complex type

The following example shows a map with an entry schema definition for contact information:

<some_entity>:

properties:
contacts:
type: map
entry_schema :
description: simple contact information
type: Contactinfo

3.3.5.3 Definition Examples
These examples show two notation options for defining maps:
1 A single-line option which is useful for only short maps with simple entries.
1 A multi-line option where each map entry is on a separate line; this option is typically useful or
more readable if there is a large number of entries, or if the entries are complex.

3.3.5.3.1 Single -line notation

notation option for shorter maps
user_name_to_id_map: { userl: 1001, user2: 1002 }

3.3.5.3.2 Multi -line notation

notation for longer maps
user_name_to_id_map:
userl: 1001
user2: 1002

3.3.6 TOSCA scalar -unit type

The scalar-unit type can be used to define scalar values along with a unit from the list of recognized units
provided below.

3.3.6.1 Grammar

TOSCA scalar-unit typed values have the following grammar:
<scalar> <unit>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

9 scalar :is arequired scalar value.
9 unit :is arequired unit value. The unit value MUST be type-compatible with the scalar.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 58 of 354

968 3.3.6.2 Additional requirements

969 1 Whitespace : any number of spaces (including zero or none) SHALL be allowed between the

970 scalar value and the unit value.

971 1 It SHALL be considered an error if either the scalar or unit portion is missing on a property or

972 attribute declaration derived from any scalar-unit type.

973 1 When performing constraint clause evaluation on values of the scalar-unit type, both the scalar

974 value portion and unit value portion SHALL be compared together (i.e., both are treated as a

975 single value). For example, if we have a property called storage_size . which is of type scalar-

976 unit, a valid range constraint would appear as follows:

977 0 storage_size: in_range [4 GB, 20 GB]

978 where storage size 6 s range would be evaluated using both th
979 (combined together), in this case 64 GB6 and 0620 GB

980 3.3.6.3 Concrete Types

Short hand N| scalarunit.size, scalaunit.size

Type Qual i f| tosca:scalaunit.size, tosca:scalamit.time
Na me s
981
982 The scalar-unit type grammar is abstract and has two recognized concrete types in TOSCA:
983 9 scalar-unit.size T used to define properties that have scalar values measured in size units.
984 1 scalar-unit.time i used to define properties that have scalar values measured in size units.
985 1 scalar -unit.frequency 1 used to define properties that have scalar values measured in units per
986 second.

987 These types and their allowed unit values are defined below.
988 3.3.6.4 scalar -unit.size

989 3.3.6.4.1 Recognized Units

Uni t Usage Description

B size byte

kB size kilobyte (1000 bytes)

KiB size kibibytes (1024 bytes)

MB size megabyte (1000000 bytes)

MiB size mebibyte (1048576 bytes)

GB size gigabyte (1000000000 bytes)

GiB size gibibytes (1073741824 bytes)

B size terabyte (1000000000000 bytes)

TiB size tebibyte (1099511627776 bytes)
TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 59 of 354

990

991

992
993
994
995
996
997
998
999
1000
1001

1002

1003

1004

1005

1006
1007
1008
1009

3.3.6.4.2 Examples

Storage size in Gigabytes
properties:
storage_size: 10 GB

3.3.6.4.3 Notes

91 The unit values recognized by TOSCA Simple Profile for size-type units are based upon a
subset of those defined by GNU at
http://www.gnu.org/software/parted/manual/html_node/unit.html, which is a non-normative
reference to this specification.

1 TOSCA treats these unitvaluesascase-i nsensi tive (e.g., a value of 0
equivalent), but it is considered best practice to use the case of these units as prescribed by
GNU.

1 Some Cloud providers may not support byte-level granularity for storage size allocations. In
those cases, these values could be treated as desired sizes and actual allocations would be
based upon individual provider capabilities.

3.3.6.5 scalar -unit.time

3.3.6.5.1 Recognized Units

Uni t Usage [Description
d time days

h time hours

m time minutes

S time seconds

ms time milliseconds

us time microseconds

ns time nanoseconds

3.3.6.5.2 Examples

Response time in milliseconds
properties:
respone_time: 10 ms

3.3.6.5.3 Notes

1 The unit values recognized by TOSCA Simple Profile for time-type units are based upon a subset
of those defined by International System of Units whose recognized abbreviations are defined
within the following reference:

o http://www.ewh.ieee.org/soc/ias/pub-dept/abbreviation.pdf

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 60 of 354

http://www.gnu.org/software/parted/manual/html_node/unit.html
http://www.ewh.ieee.org/soc/ias/pub-dept/abbreviation.pdf

1010
1011
1012

1013

1014

1015

1016

1017
1018
1019

1020

1021

1022
1023
1024
1025

1026
1027

o0 This document is a non-normative reference to this specification and intended for publications
or grammars enabled for Latin characters which are not accessible in typical programming
languages

3.3.6.6 scalar -unit.frequency

3.3.6.6.1 Recognized Units

Uni t Usage |Description

Hz frequency Hertz, or Hz. equals one cycle per second.

kHz frequency Kilohertz, or kHz, equals to 1,000 Hertz

MHz frequency Megahertz, or MHzequals to 1,000,000 Hertz or 1,000 kHz

GHz frequency Gigahertz, or GHz, equals to 1,000,000,000 Hertz, or 1,000,000 kHz, or 1,000 MHz.

3.3.6.6.2 Examples

Processor raw clock rate

properties:

clock rate: 2.4 GHz

3.3.6.6.3 Notes

1 The value for Hertz (Hz) is the International Standard Unit (ISU) as described by the Bureau
I nternat.i
(SI) [8th edition, 2006; updated in 201410 http://www.bipm.org/en/publications/si-brochure/

onal des

3.4 Normative values

3.4.1 Node States

As components (i.e., nodes) of TOSCA applications are deployed, instantiated and orchestrated over
their lifecycle using normative lifecycle operations (see section 5.8 for normative lifecycle definitions) it is
important define normative values for communicating the states of these components normatively
between orchestration and workflow engines and any managers of these applications.

P o i d Sl Beothur® &he interaationdl Bystdm\bj Uniis n

The following table provides the list of recognized node states for TOSCA Simple Profile that would be set

by the orchestrator to describe a node instancebs
Node State
Val ue [Transi f§fDescription
initial no Node is not yet created. Node only exists as a template definition.
creating yes Node is transitioning from initial state to created state.
created no Node software has been installed.
configuring | yes Node is transitioning from created state to configured state.

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 61 of 354

t

he i

stat

http://www.bipm.org/en/publications/si-brochure/

1028

1029
1030

1031
1032

1033

1034
1035

1036
1037

1038

1039
1040
1041

Node State

Val ue [Transi fDescription

configured | no Node has been configured prior to being started.

starting yes Node is transitioning from configured state to started state.

started no Node is started.

stopping yes Node is transitioning from its current state to a configured state.

deleting yes Node is transitioning from its current state to one where it is deleted and its state
is no longer tracked by the instance model.

error no Node is in an error state.

3.4.2 Relationship States

Similar to the Node States described in the previous section, Relationships have state relative to their
(normative) lifecycle operations.

The following table provides the list of recognized relationship states for TOSCA Simple Profile that would

be set by the orchestrator to describe a node i
Node State
Val ue [Transi §fDescription
initial no Relationship is not yet created. Relationship only exists as a template definition.
3.4.2.1 Notes
1 Additional states may be defined in future versions of the TOSCA Simple Profile in YAML
specification.

3.4.3 Directives

There are currently no directive values defined for this version of the TOSCA Simple Profile.

3.4.4 Network Name aliases

The following are recognized values that may be used as aliases to reference types of networks within an
application model without knowing their actual name (or identifier) which may be assigned by the
underlying Cloud platform at runtime.

Ali as val|Description
PRIVATE An alias used to reference the first private network within a property or attribute of a Node or
Capability which would be assigned to them by the underlying platform at runtime.
A private network contains IP addresses and ports typically used to listen for incoming traffic
to an application or service from the Intranet and not accessible to the public internet.
TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 62 of 354

nstance

1042

1043
1044
1045

1046

1047
1048

1049

1050
1051
1052
1053
1054

1055

1056
1057
1058
1059
1060

1061
1062

1063

1064
1065

1066
1067

Al i as val|Description
PUBLIC An alias used to reference the first public network within a property or attribute of a Node or
Capability which would be assigned to them by the underlying platform at runtime.
A public network contains IP addresses and ports typically used to listen for incoming traffic
to an application or service from the Internet.
3.4.4.1 Usage
These aliases would be used in the tosca.capabili ties.Endpoint Capability type (and types derived

from it) within the network_name field for template authors to use to indicate the type of network the
Endpoint is supposed to be assigned an IP address from.

3.5 TOSCA Metamodel

This section defines all modelable entities that comprise the TOSCA Version 1.0 Simple Profile
specification along with their keynames, grammar and requirements.

3.5.1 Required Keynames

The TOSCA metamodel includes complex types (e.g., Node Types, Relationship Types, Capability Types,
Data Types, etc.) each of which include their own list of reserved keynames that are sometimes marked
as required . These types may be used to derive other types. These derived types (e.g., child types) do
not have to provide required keynames as long as they have been specified in the type they have been
derived from (i.e., their parent type).

3.6 Reusable modeling definitions

3.6.1 Description definition

This optional element provides a means include single or multiline descriptions within a TOSCA Simple
Profile template as a scalar string value.

3.6.1.1 Keyname

The following keyname is used to provide a description within the TOSCA Simple Profile specification:

description

3.6.1.2 Grammar

Description definitions have the following grammar:

description: <

string >

3.6.1.3 Examples

Simple descriptions are treated as a single literal that includes the entire contents of the line that
immediately follows the description key:

description : This is an example of a single line descriptio n (no folding).

The YAML
characters.

Afoldedd styledlmag desorbetusaed fwarcmuhRftbl dso

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 63 of 354

1068
1069
1070
1071
1072

1073
1074

1075
1076

1077

1078
1079
1080
1081

1082
1083
1084
1085

1086

description : >

This is an example of a multi

breaks for easier readability...

- line description using YAML. It permits for line

if needed. However, (multiple) line breaks are folded into a single space
character when processed into a single string value.

3.6.1.4 Notes

T Use of fAfoldedodo style is discouraged for the
description keyname.

3.6.2 Metadata

This optional element provides a means to include optional metadata as a map of strings.

3.6.2.1 Keyname

The following keyname is used to provide metadata within the TOSCA Simple Profile specification:

metadata

3.6.2.2 Grammar

Metadata definitions have the following grammar;

metadata :
map of <string >

3.6.2.3 Examples

metadata:
fool: barl
foo2: bar2

3.6.2.4 Notes

1 Data provided within metadata, wherever it appears, MAY be ignored by TOSCA Orchestrators
and SHOULD NOT affect runtime behavior.

3.6.3 Constraint clause

A constraint clause defines an operation along with one or more compatible values that can be used to
defnrea constraint on a property or

Template or one of its entities.

3.6.3.1 Operator keynames

parameteroés al

The following is the list of recognized operators (keynames) when defining constraint clauses:

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 64 of 354

YAML

owed

\Y

S

1087

1088
1089
1090

1091

1092
1093

1094
1095
1096
1097

Operator|Type Val ue T Description

equal scalar any [2yaGNFAya | LINBLISNI&@ 2N LI NI Y
declared.

greater_than scalar comparable |/ 2y &GNI Aya | LINBLISNI& 2NJ LI NI Y
value declared.

greater_or_equal| scalar comparable Constrains a property or parameter to a value greater than or equa
OWHIQu G(KS @IfdzS§ RSOt NBR®

less_than scalar comparable |/ 2y &GNI Aya | LINBLISNI& 2NJ LI NI Y
declared.

less_or_equal scalar comparable Constrains a property or parameter to a value less than or equal to
OWFI'Q0 GKS @I tdzS RSOt NBRO®

in_range dual comparable, | Constrains a property or parameter to a value in rog (inclusive)

scalar range the two values declared.

Note: subclasses or templates of types that declare a property with
in_range constraint MAY only further restrict the range specified
the parent type.

valid_values list any Constrains a property grarameter to a value that is in the list of
declared values.

length scalar string, list, Constrains the property or parameter to a value of a gilength.
map

min_length scalar string, list, Constrains the property or parameter to a value to a minimum leng
map

max_length scalar string, list, Constrains the property or parameter to a value to a maximum leng
map

pattern regex string Constrais the property or parameter to a value that is allowed by tH

provided regular expression.

Note: Future drafts of this specification will detail the use of regular
expressions and reference an appropriate standardized grammar.

schema string string Constrains the property or parameter to a value that is allowed by t
referenced schema.

3.6.3.1.1 Comparable value types

I n the Value Type col umn abov e jntegemfloa, timestygmp,cstringfi c ompar ab |

version, and scalar-unitt y pes whi | eanyn r e 1 aaytype dldowvediin the TOSCA simple
profile in YAML.

3.6.3.2 Schema Constraint purpose

TOSCA recognizes that there are external data-interchange formats that are widely used within Cloud
service APIs and messaging (e.g., JSON, XML, etc.).

The 0sche mativas@diedsd thhag when TOSCA types utilize types from these externally
defined data (interchange) formats on Properties or
values can be optionally validated by TOSCA Orchestrators using the schema string provided on this

operator.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 65 of 354

1098

1099
1100
1101
1102

1103
1104
1105
1106
1107
1108
1109
1110

1111
1112

1113

1114
1115
1116
1117
1118
1119
1120
1121

1122
1123

3.6.3.3 Additional Requirements

1 If no operator is present for a simple scalar-value on a constraint clause, it SHALL be interpreted
as being equivaleguald® bpehavobngptbeiejuald; opewaver,
be used for clarity when expressing a constraint clause.

T Thdength 6 o peSHAlLdDre i nterpreted mean fisizedo for set

1 Values provided by the operands (i.e., values and scalar values) SHALL be type-compatible with
their associated operations.

1 Future drafts of this specification will detail the use of regular expressions and reference an
appropriate standardized grammar.

T The value for the keyname 6éschemad SHOULD be a stri

definition that matches the corresponding Property definitions type.
o When a valid 6schemadé value is provided on a
MAY choose use the contained schema definition for validation.

3.6.3.4 Grammar

Constraint clauses have one of the following grammars:

Scalar grammar
<operator>: <scalar_value>

Dual scalar grammar
<operator>: [<scalar_value_1>, <scalar_value_2>]

List grammar
<operator> [<value_1>, <value_2>, ..., <value_n>]

Regular expression (regex) grammar
pattern: <regular_expression_value>

Schema grammar
schema: <schema_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1 operator : represents a required operator from the specified list shown above (see section
36.3.1A0perator keynameso) .

I scalar_value, scalar_valu e_*:represents a required scalar (or atomic quantity) that can
hold only one value at a time. This will be a value of a primitive type, such as an integer or string
that is allowed by this specification.

1 value_* :represents a required value of the operator that is not limited to scalars.

1 reqular_expression_value :represents a regular expression (string) value.

1 schema_definition : represents a schema definition as a string.

3.6.3.5 Examples

Constraint clauses used on parameter or property definitions:

equal

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 66 of 354

1124
1125
1126
1127
1128

equal : 2

greater_than
greater_than: 1

greater_or_equal
greater_or_equal: 2

less_than
less_than: 5

less_or_equal
less_or_equal: 4

#in_range
in_range: [1, 4]

valid_values

valid_values: [1, 2, 4]

specific length (in characters)

length: 32

min_length (in characters)

min_length: 8

max_length (in characters)

max_length: 64

schema
schema: <

{

Some schema syntax that matches corresponding property or parameter.

3.6.4 Property Filter definition

A property filter definition defines criteria, using constraint clauses, for selection of a TOSCA entity based

upon it property values.

3.6.4.1 Grammar

Property filter definitions have one of the following grammars:

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 67 of 354

1129 3.6.4.1.1 Short notation:

1130 The following single-line grammar may be used when only a single constraint is needed on a property:

<property_name>: < property constraint clause >

1131 3.6.4.1.2 Extended notation:

1132 The following multi-line grammar may be used when multiple constraints are needed on a property:

<property_name>:
- <property constraint clause 1 >

- <property constraint clause n >

1133 In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

1134 1 property_name: represents the name of property that would be used to select a property

1135 definition with the same name (property_name) on a TOSCA entity (e.g., a Node Type, Node

1136 Template, Capability Type, etc.).

1137 9 property_constraint_clause_*: represents constraint clause(s) that would be used to filter

1138 entities based upon the named propertybds value(s).

1139 3.6.4.2 Additional Requirements

1140 1 Property constraint clauses must be type compatible with the property definitions (of the same
1141 name) as defined on the target TOSCA entity that the clause would be applied against.

1142 3.6.5 Node Filter definition

1143 A node filter definition defines criteria for selection of a TOSCA Node Template based upon the
1144 t emp | at ety wlugs,rcapabiities and capability properties.

1145 3.6.5.1 Keynames

1146 The following is the list of recognized keynames for a TOSCA node filter definition:

Keyname Requi|Type Description

properties no list of An optional sequenced list of property filters that would be used to
property filter | select (filter) matching TOSCA entities (e.g., Node Template, Nods
definition Type, Capability Types, etc.) based ugérStA NJ LINE LIS NI ¢

values.

capabilities no list of An optional sequenced list of capability names or types that would
capability used to select (filterinatching TOSCA entities based upon their
names or existence.
capability type
names

1147 3.6.5.2 Additional filtering on named Capability properties

1148 Capabilities used as filters often have their own sets of properties which also can be used to construct a
1149 filter.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 68 of 354

Keyname Requi|[Type Description

<capability no list of An optional sequenced list of property filters that would be used to

name_or_type> property filter | select (filter) matching TEBCA entities (e.g., Node Template, Node
name>: definitions ¢3S /LI oAfAGE ¢eL)Saz SGOdU
properties RSTAYAGAZ2YaQ @FfdsSao

1150 3.6.5.3 Grammar

1151 Node filter definitions have following grammar:

<filter_name>:
properties:
- <property filter def 1 >

- <property filter def n >

capabilities:
- <capability_name_or_type 1>:
properties:

- <cap 1 property filter def 1 >

- <cap m property filter def n >

- <capability_name_or_type n>:
properties:
- <cap 1 property filter def 1 >

- <cap m property filter de f n>

1152 In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1153 1 property_filter_def_*: represents a property filter definition that would be used to select

1154 (filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based

1155 upon their property definitionsd values.

1156 1 capability name_or_type_*: represents the type or name of a capability that would be used

1157 to select (filter) matching TOSCA entities based upon their existence.

1158 1 cap_*_property_d ef *: represents a property filter definition that would be used to select

1159 (filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based

1160 upon their capabilitiesd property definitionsdé val

1161 3.6.5.4 Additional requirements

1162 1 TOSCA orchestrators SHALL search for matching capabilities listed on a target filter by assuming
1163 the capability name is first a symbolic name and secondly it is a type name (in order to avoid
1164 namespace collisions).

1165 3.6.5.5 Example
1166 The following example is a filter that would be used to select a TOSCA Compute node based upon the
1167 values of its defined capabilities. Specifically, this filter would select Compute nodes that supported a

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 69 of 354

1168 specific range of CPUs (i.e., num_cpusvalue between 1 and 4) and memory size (i.e., mem_sizeof 2 or
1169 greater) from its declared fAhostodo capability.

1170

my_node_template:
other details omitted for brevity
requirements:

- host:
node_filter:
capabilities:
¢ -U 2ET 00Oz #1iDOOA T1TAA TAAAO OEAOGA DO
- host:
properties:

- num_cpus: {in_range:[1,4]}
- mem_size: { greater_or_equal: 512 MB }

1171 3.6.6 Repository definition
1172 A repository definition defines a named external repository which contains deployment and
1173 implementation artifacts that are referenced within the TOSCA Service Template.

1174 3.6.6.1 Keynames

1175 The following is the list of recognized keynames for a TOSCA repository definition:

Keynarnf Requi|Type ConstrgDescription

description | no description | None The optional description for the repository.

url yes string None The required URL or network address used to access the
repository.

credential | no Credential | None The optional Credential used to authorize access to the
repository.

1176 3.6.6.2 Grammar

1177 Repository definitions have one the following grammars:
1178 3.6.6.2.1 Single -line grammar (no credential):

<repository name >: <repository address>

1179 3.6.6.2.2 Multi -line grammar

<repository name >:

description: < repository description >

url: < repository address >

credential: < authorization credential >

1180 In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 70 of 354

1181 1 repository_name : represents the required symbolic name of the repository as a string

1182 1 repository_description : contains an optional description of the repository.

1183 1 repository_address :represents the required URL of the repository as a string.

1184 91 authorization_credential : represents the optional credentials (e.g., user ID and password)
1185 used to authorize access to the repository.

1186 3.6.6.3 Example

1187 The following represents a repository definition:

repositories:
my_code_repo:
AAOAOEPOEI Tk -U DPOI EAAORO AT AA OADPI GEOI OU EIT
url: https://github.com/my - project/

1188 3.6.7 Artifact definition

1189 An artifact definition defines a named, typed file that can be associated with Node Type or Node
1190 Template and used by orchestration engine to facilitate deployment and implementation of interface
1191 operations.

1192 3.6.7.1 Keynames

1193 The following is the list of recognized keynames for a TOSCA artifact definition when using the extended
1194 notation:

Keyname |Requir|{Type Description
type yes string The required artifact typéor the artifact definition.
file yes string The required URI string (relative or absolute) which can be used tg

f20FGS GKS I NIGATIEOGQa TAf SO

repository no string The optional name of the repository definition which contains the
location of the external repository that contains the artifact. The
artifact is expected to be referenceable byfile URI within the

repository.
description no description The optional description for the artifact definition.
deploy_path no string The file path the associated file would be deployed into within the

GFNBSG y2RSQa O2yil AySN®

1195 3.6.7.2 Grammar

1196 Artifact definitions have one of the following grammars:

1197 3.6.7.2.1 Short notation

1198 Thefollowing single-l i ne gr ammar may be used wheypecanbeinfared i f act 0s
1199 from the file URI:

<artifact name >: < artifact file URI >

1200 3.6.7.2.2 Extended notation:

1201 The following multi-l i ne gr ammar may be udseefdi nwhteino ntéhse tayrptei faancdt 6nsi m
1202 be explicitly declared:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 71 of 354

1203

1204
1205
1206
1207
1208

1209
1210
1211
1212

1213
1214

1215

1216
1217
1218
1219

1220

1221
1222

<artifact name >:

description; <

type: < artifact ty

artifact description >

pe _name>

file:< artifact file URI

>

repository: <

artifact repository name >

deploy path : < file deployment path >

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

9 artifact_nam

e :represents the required symbolic name of the artifact as a string.

artifact_description

artifact_file_
dza SR

copi ed

3.6.7.3 Example

i : represents the optional description for the artifact.
1 artifact_ type_name :represents the required artifact type the artifact definition is based upon.
1 URI: represents the required URdkring (relative or absolute) which can be

G2 t20FLGS GKS
9 artifact_repository_name

retrieve the associated artifact (file) from.
1 file_deployement_path

into

NGATFEFEOGQa TAf SO

represents the optional name of the repository definition to use to

: represents the optional path the artifact_file_URI would be

within the target nodeds container.

The following represents an artifact definition:

my_file_artifact: ../my_apps_files/operation_artifact.txt

3.6.8 Import def

inition

An import definition is used within a TOSCA Service Template to locate and uniquely name another
TOSCA Service Template file which has type and template definitions to be imported (included) and
referenced within another Service Template.

3.6.8.1 Keynames

The following is the list of recognized keynames for a TOSCA import definition:

Keyname Requi |[Typ{ConstrailDescription

file yes string | None The required symbolic name for the imported file.

repository no string | None The optional symbolic name of the repository definition
where the imported file can be found asstring.

namespace_prefiy no string | None The optional namespace prefix (alias) that will be used
indicate thenamespace_uri when forming a qualified
name (i.e., gname) when referencing type definitions
from the impated file.

namespace_uri no string | Deprecated The optional deprecatechamespace URI to that will be
applied to type definitions found within the imported file
as a string.

3.6.8.2 Grammar

Import definitions have one the following grammars:

TOSCA-Simple-Profile-YAML-v1.2-0s

Standards Track Work Product

17 January 2019

Copyright © OASIS Open 2019. All Rights Reserved. Page 72 of 354

1223

1224

1225

1226
1227
1228
1229
1230
1231
1232
1233

1234

1235
1236
1237
1238
1239
1240
1241
1242
1243

1244

1245

1246
1247
1248
1249
1250
1251
1252
1253
1254

3.6.8.2.1 Single -line grammar:

imports:
- <URI_1>
- <URI_2>

3.6.8.2.2 Multi -line grammar

imports:
- file: <file_URI>
repository: <repository _name>
namespace_uri: <definition_namespace_uri> # deprecated
namespace_prefix: <definition_namespace_prefix>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

91 file_uri : contains the required name (i.e., URI) of the file to be imported as a string.

1 repository_name : represents the optional symbolic name of the repository definition where the
imported file can be found as a string.

1 namespace_uri : represents the optional namespace URI to that will be applied to type
definitions found within the imported file as a string.

1 namespace_prefi x: represents the optional namespace prefix (alias) that will be used to
indicate the default namespace as declared in the imported Service Template when forming a
qualified name (i.e., gname) when referencing type definitions from the imported file as a string.

3.6.8.2.3 Requirements

T The imports key finamespace_uri o is now deprecated.
default namespace for any types that were defined within the Service Template being imported;
however, with version 1.2, Service Templates MAY now declare their own default Namespace

which SHALL be used in place of this keybs value.
o0 Please note that TOSCA Orchestrators and Processors MAY still use
thednamespace_uri 0 val ea&Seivite Template hasino declaredf t he i m

default Namespace value. Regardless it is up to the TOSCA Orchestrator or Processor
to resolve Namespace collisions caused by imports as they see fit, for example, they may
treat it as an error or dynamically generate a unique namepspace themselves on import.

3.6.8.2.4 Import URI processing requirements
TOSCA Orchestrators, Processors and tooling SHOULD treat the <file_URI> of an import as follows:

1 URL If the <file_URI> is a known namespace URI (identifier), such as a well-known URI defined
by a TOSCA specification, then it SHOULD cause the corresponding Type defintions to be
imported.

0 This implies that there may or may not be an actual Service Template, perhaps it is a
known set Types identified by the well-known URI.
0 This also implies that internet access is NOT needed to import.

1 Alias T If the <file_URI> is a reserved TOSCA Namespace alias, then it SHOULD cause the
corresponding Type defintions to be imported, using the associated full, Namespace URI to
uniquely identify the imported types.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 73 of 354

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

1266

1267
1268

1269

1270
1271
1272
1273
1274

1275

1276
1277
1278
1279

1280
1281

f URL - If the <file_URI

> js a valid URL (i.e., network accessible as a remote resource) and the

location contains a valid TOSCA Service Template, then it SHOULD cause the remote Service
Template to be imported.
1 Relative path - If the <file_UR | > is a relative path URL, perhaps pointing to a Service Template
located in the same CSAR file, then it SHOULD cause the locally accessible Service Template to
be imported.

(0]

(0]

| f

tegostoni o

key

in a remote file system;
If the importing file located in a CSAR file, it should be treated as relative to the current

document
1 Otherwise, the import SHOULD be considered a failure.

3.6.8.3 Example

The following represents how import definitions would be used for the imports keyname within a TOSCA
Service Template:

imports:

(O]

|l ocat.

i s thiscoyidmlsoi meah relative tot h e

on

- some_definition_file: pathl/path2/some_defs.yaml
- another_definition_file:
file: pathl/path2/file2.yaml
repository: my_service_catalog
namespace_uri: http://mycompany.com/tosca/1.0/pla

namespace_prefix: mycompany

3.6.9 Property definition

A property definition defines a named, typed value and related data that can be associated with an entity
defined in this specification (e.g., Node Types, Relationship Types, Capability Types, etc.). Properties
are used by template authors to provide input

stateo

when

they

ar e

function within TOSCA Service Templates.

val ues
nstant.i

3.6.9.1.1 Attribute and Property reflection

The actual state of the entity, at any point in its lifecycle once instantiated, is reflected by Attribute
definitions. TOSCA orchestrators automatically create an attribute for every declared property (with the
same symbolic name) to allow introspection of both the desired state (property) and actual state

(attribute).

3.6.9.2 Keynames

The following is the list of recognized keynames for a TOSCA property definition:

reptRL t oryods

KeynamegRequi | Type Constra Description

type yes string None The required data type for the property.

description no description None The optional description for the property.

required no boolean default: true An optional key that declares a property as required
(true) or not false).

TOSCA-Simple-Profile-YAML-v1.2-0s

Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 74 of 354

within a CSAR filebs di
tform

to TOSCA entities whi

ated. Thget propdrty e of a

rect

ch ir
pr o]

KeynamegRequi | Type Constra Description

default no <any> None An optional key that may provide a value to be useo
as a default if not provided by another means.

status no string default: The optional status of the property relative to the

supported specification or implementation. See table below for

valid values.

constraints no list of None The optional list of sequenced constraint clauses fo

constraint the property.
clauses

entry_schema| no string None The optional key that is used to declare the name o
the Datatype definitiorfor entries of set types such a
the TOSCAst or map.

external no string None The optional key that contains a schema definition

schema that TOSCA Orchestrators MAY use for validation
gKSy GKS aaeliSe 15eqa @
A0KSYlI o60So3dr a2az2y£u
Seeda SOUGAZ2Y GO9EGSNYIf &O0OK
explanation and usage.

metadata no mapof string | N/A Defines a section used to declare additional metada
information.

1282 3.6.9.3 Status values
1283 The following property status values are supported:
Val ue Description
supported Indicates the property is supported. This is thefault value for all property definitions.
unsupported Indicates the property is not supported.
experimental Indicates the property is experimental and has no official standing.
deprecated Indicates the property has been deprecated by a new specification version.
1284 3.6.9.4 Grammar
1285 Named property definitions have the following grammar:

<property name >:

type: < property type >
description: < property description >

required: < property required >
default: <default_value>
status: <

status value >
constraints:
- <property constraints >
entry_schema:
description: <

type: < entry type >

entry description >

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 75 of 354

1286

1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305

1306

1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

1320

1321
1322

1323
1324
1325

constraints:
- <entry constraints >

metadata:

<metadata_map>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

=a =4 =4 =4

E]

property_name : represents the required symbolic name of the property as a string.
property_description : represents the optional description of the property.

property_type :represents the required data type of the property.

property_required :represents an optional boolean value (true or false) indicating whether or
not the property is required. If this keyname is not present on a property definition, then the
property SHALL be considered required (i.e., true) by default .

default_value : contains a type-compatible value that may be used as a default if not provided
by another means.

status_value : a string that contains a keyword that indicates the status of the property relative
to the specification or implementation.

property_constraints : represents the optional sequenced list of one or more constraint
clauses on the property definition.

schema_definition : represents the optional string that contains schema grammar (from an
external specifi cati on) that OUPARgpamdéstwvathe. o

entry_description : represents the optional description of the entry schema.
entry type: represents the required type name for entries in a list or map property type.
entry_constraints : represents the optional sequenced list of one or more constraint clauses

on entries in a list or map property type.
metadata_map: represents the optional map of string.

3.6.9.5 Additional Requirements

1 Implementations of the TOSCA Simple Profile SHALL automatically reflect (i.e., make available)
any property defined on an entity as an attribute of the entity with the same name as the property.

1 A property SHALL be considered required by default (i.e., as if the required keyname on the
definition is set to true)unlessth e d e f irgguiredi &eayr@ame is explicitly set to false .

T The value provi ded o defaalt pgaympeSHALL beltypé dompatible with 6 s
the type decl ar e typeokaynamb.e def i ni ti onds

1 Constraints of a property definition SHALL be type-compatible with the type defined for that
definition.

T I'f a 6schemad keyname is provided, its wvalue
t hat matches the recognized ext etympedl kteymea mer awi ded
described by its correspondig schema specification.

T TOSCA Orchestrators MAY choose to validate the
with the corresponding schema specifcation for any recognized external types.

3.6.9.6 Notes

9 This element directly maps to the PropertiesDe finition element defined as part of the
schema for most type and entities defined in the TOSCA v1.0 specification.

1 Inthe TOSCA v1.0 specification constraints are expressed in the XML Schema definitions of
Node Type properties referenced in the PropertiesDefinition element of NodeType
definitions.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 76 of 354

(strin

v al

u

1326
1327

1328
1329
1330
1331
1332

1333
1334

1335
1336

1337

1338
1339
1340
1341
1342
1343
1344

1345

1346
1347
1348
1349
1350

1351

1352
1353
1354

3.6.9.7 Example

The following represents an example of a property definition with constraints:

properties:
num_cpus:
type: integer

description: Number of CPUs requested for a software node instance.

default: 1
required: true
constraints:

- valid_values: [1, 2, 4, 8]

3.6.10 Property assignment

This section defines the grammar for assigning values to named properties within TOSCA Node and

Relationship templates that are defined in their corresponding named types.

3.6.10.1 Keynames

The TOSCA property assignment has no keynames.

3.6.10.2 Grammar

Property assignments have the following grammar:

3.6.10.2.1 Short notation:

The following single-line grammar may be used when a simple value assignment is needed:

<property _name>: <property_value> | { <property_ value_expression> }

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

1 property_name: represents the name of a property that would be used to select a property
definition with the same name within on a TOSCA entity (e.g., Node Template, Relationship
Template, etc.,) which is declared in its declared type (e.g., a Node Type, Node Template,

Capability Type, etc.).

9 property_value , property value_ expression:

represent the type-compatible value to

assign to the named property. Property values may be provided as the result from the
evaluation of an expression or a function.

3.6.11 Attribute definition

An attribute definition defines a named, typed value that can be associated with an entity defined in this
(e.g., a Node, Rel ationship or Capabilit:
p r dity aftertit has lbebn daploye@@Cidstatiated (as set by the

specification
stateo of some

TOSCA orchestrator). Attribute values can be retrieved via the get_attribute

function from the

instance model and used as values to other entities within TOSCA Service Templates.

3.6.11.1 Attribute an d Property reflection

TOSCA orchestrators automatically create Attribute definitions for any Property definitions declared on
the same TOSCA entity (e.g., nodes, node capabilities and relationships) in order to make accessible the
actual (i.e., the current state) value from the running instance of the entity.

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 77 of 354

1355 3.6.11.2 Keynames
1356 The following is the list of recognized keynames for a TOSCA attribute definition:

KeynamgRequd | Type Constr{Description

type yes string None The required data type for the attribute.
description no description | None The optional description for thattribute.
default no <any> None An optional key that may provide a value to be used as a|

default if not provided by another means.

This value SHALL be type compatible with the type declq
08 0KS LINE LISys keynRBeT A Y A G A 2

status no string default: The optional status of the attribute relative to the
supported specification or implementation. See supportdtus
valuesdefined under theProperty definitionsection.
entry_schema| no string None The optional key that is used to declare the name of the
Datatype definitiorfor entries of set types such as the
TOSCAst or map.

1357 3.6.11.3 Grammar

1358 Attribute definitions have the following grammar:

attributes:
<attribute name >:

type: < attribute type >
description: < attribute description >
default: <default_value>

status: < status value >

1359 In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1360 1 attribute_name : represents the required symbolic name of the attribute as a string.

1361 1 attribute_type :represents the required data type of the attribute.

1362 9 attribute_description : represents the optional description of the attribute.

1363 I default value : contains a type-compatible value that may be used as a default if not provided

1364 by another means.

1365 I status_value : contains a valwue indicating the attributeo
1366 version (e.g., supported, deprecated, etc.). Supported status values for this keyname are defined

1367 under Property definition.

1368 3.6.11.4 Additional Requirements

1369 1 In addition to any explicitly defined attributes on a TOSCA entity (e.g., Node Type,

1370 RelationshipType, etc.), implementations of the TOSCA Simple Profile MUST automatically

1371 reflect (i.e., make available) any property defined on an entity as an attribute of the entity with the

1372 same name as the property.

1373 1 Values for the default keyname MUST be derived or calculated from other attribute or operation

1374 output values (that reflect the actual state of the instance of the corresponding resource) and not

1375 hard-coded or derived from a property settings or inputs (i.e., desired state).
TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 78 of 354

1376

1377
1378
1379
1380
1381
1382
1383

1384
1385

1386
1387
1388
1389
1390

1391
1392

1393
1394

1395

1396
1397

1398

1399
1400
1401
1402
1403
1404
1405

3.6.11.5 Notes

1 Attribute definitions are very similar to Property definitions; however, properties of entities reflect
hat <car r i e sestedoedediredvgiue @d., desived stateowhiéhs
the orchestrator (attempts to) use when instantiating the entity whereas attributes reflect the

an input t

actual value (i.e., actual state) that provides the actual instantiated value.

o For example, a property can be used to request the IP address of a node using a
property (setting); however, the actual IP address after the node is instantiated may by
different and made available by an attribute.

3.6.11.6 Example

The following represents a req

act ual_cpus:
type: integer

uired attribute definition:

description: Actual number of CPUs allocated to the node instance.

3.6.12 Attribute assignment

This section defines the grammar for assigning values to named attributes within TOSCA Node and

Relationship templates which are defined in their corresponding named types.

3.6.12.1 Keynames

The TOSCA attribute assignment has no keynames.

3.6.12.2 Grammar

Attribute assignments have the following grammar:

3.6.12.2.1 Short notation:

The following single-line grammar may be used when a simple value assignment is needed:

<attribute_name>: <attribute_value> | { <attribute_value_expression> }

3.6.12.2.2 Extended notation:

The following multi-line grammar may be used when a value assignment requires keys in addition to a

simple value assignment:

<attribute_name>:

description: < attribute_description >
value: <attribute_value> | { <attribute_value_expression> }

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

i attribute_name: represents the name of an attribute that would be used to select an attribute
definition with the same name within on a TOSCA entity (e.g., Node Template, Relationship
Template, etc.) which is declared (or reflected from a Property definition) in its declared type
(e.g., a Node Type, Node Template, Capability Type, etc.).

attribute_value_expresssion: represent the type-compatible value to

assign to the named attribute. Attribute values may be provided as the result from the
evaluation of an expression or a function.

1 attribute_value ,

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 79 of 354

requ

1406

1407

1408
1409
1410

1411

1412
1413
1414
1415
1416

1417
1418

1419
1420

1421

1 attribute_description : represents the optional description of the attribute.

3.6.12.3 Additional requirements

1 Attribute values MAY be provided by the underlying implementation at runtime when requested
by the get_attribute function or it MAY be provided through the evaluation of expressions and/or
functions that derive the values from other TOSCA attributes (also at runtime).

3.6.13 Parameter definition

A parameter definition is essentially a TOSCA property definition; however, it also allows a value to be
assigned to it (as for a TOSCA property assignment). In addition, in the case of output parameters, it can
optionally inherit the data type of the value assigned to it rather than have an explicit data type defined for
it.

3.6.13.1 Keynames

The TOSCA parameter definition has all the keynames of a TOSCA Property definition, but in addition
includes the following additional or changed keynames:

KeynanmRequi|[Type ConstraDescription

type no string None The required data type for the parameter.

Note: This keyname is required for a TOSCA Prope
definition, but is not for a TOSCA Parameter definitio

value no <any> N/A The typecompatible value t@ssign to the named
parameter. Parameter values may be provided as th
result from the evaluation of an expression or a
function.

3.6.13.2 Grammar

Named parameter definitions have the following grammar:

<parameter name>:
type: < parameter type >
description: < parameter _description >

value: <parameter_value> | { <parameter_value_expression> }
required: < parameter required >

default: <parameter_default_value>
status: < status value >
constraints:

- <parameter_constraints >

entry_schema:
description: < entry description >

type: < entry type >
constraints:

- <entry constraints >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 80 of 354

1422 1 parameter_name: represents the required symbolic name of the parameter as a string.

1423 1 parameter_description :represents the optional description of the parameter.

1424 1 parameter_type : represents the optional data type of the parameter. Note, this keyname is
1425 required for a TOSCA Property definition, but is not for a TOSCA Parameter definition.

1426 1 parameter_value , parameter_value_expresssion: represent the type-compatible value to
1427 assign to the named parameter. Parameter values may be provided as the result from the
1428 evaluation of an expression or a function.

1429 1 parameter_required :represents an optional boolean value (true or false) indicating whether or
1430 not the parameter is required. If this keyname is not present on a parameter definition, then the
1431 property SHALL be considered required (i.e., true) by default .

1432 1 default_value : contains a type-compatible value that may be used as a default if not provided
1433 by another means.

1434 i status_value : a string that contains a keyword that indicates the status of the parameter

1435 relative to the specification or implementation.

1436 1 parameter_cons traints : represents the optional sequenced list of one or more constraint
1437 clauses on the parameter definition.

1438 1 entry_description : represents the optional description of the entry schema.

1439 1 entry type: represents the required type name for entries in a list or map parameter type.
1440 1 entry_constraints : represents the optional sequenced list of one or more constraint clauses
1441 on entries in a list or map parameter type.

1442 3.6.13.3 Additional Requirements

1443 1 A parameter SHALL be considered required by default (i.e., as if the required keyname on the

1444 definitionis settotrue) unl es s t hrequirdde keymaing i eapticélysset to false .

1445 T The value provided o ndetaultp geynamesSHALL bedypd compatible o n 6 s
1446 withthe type decl ar ed typenkeyndme. def i ni ti onds

1447 I Constraints of a parameter definition SHALL be type-compatible with the type defined for that

1448 definition.

1449 3.6.13.4 Example

1450 The following represents an example of an input parameter definition with constraints:

input s:
Cpus:
type: integer
description: Number of CPUs for the server.
constraints:
- valid values: [1, 2, 4, 8]

1451 The following represents an example of an (untyped) output parameter definition:

outputs:
server_ip:
description: The private IP address of the provisioned server.
value: { get_attribute: [my_server, private_address | }

1452

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 81 of 354

1453
1454
1455
1456
1457

1458
1459

1460

1461
1462

1463
1464
1465

1466

1467
1468

3.6.14 Operation implementation definition

An operation implementation definition specifies one or more artifacts (e.g. scripts) to be used as the
implementation for an operation in an interface.

3.6.14.1 Keynames

The following is the list of recognized keynames for a TOSCA operation implementation definition;

Keyname Reg Type Description
uir
d
primary no Artifact definition The optional implementation artifact (i.e., the primary script file
within a TOSCA CSAR file).
dependencies no list of The optional ordered list of one or more dependent ocaedary
Artifact definition implementation artifactsvhich are referenced by the primary

implementation artifat (e.g., a library the script installs or a
secondary script).

timeout No integer Timeout value in seconds

operation_host | no string The node on which operations should be executed (for TOSCA
call_operation activities).

If the operation is associated with an interface on a node type or
relationship templateyalid_values arSELIBr HOS referring to
the node itself or to the node that is the target of the HostedOn
relationship forthat node.

If the operation is associated with a relationship type or a
relationship templateyalid_values are SOURCE or TARGET
referring to the relationship source or target node.

In both cases, the value can also be set to ORCHESTRATOR to
indicatedthat the operation must be executed in the orchestrator
environment rather than within the context of the service being
orchestrated.

3.6.14.2 Grammar

Operation implementation definitions have the following grammars:

3.6.14.2.1 Short notation for use with single artifact

The following single-line grammar may be used when only a primary implementation artifact name is
needed:

implementation : < primary artifact name >

This notation can be used when the primary artifact name uniquely identifies the artifact, either because it
refers to a named artifact specified in the artifacts section of a type or template, or because it represents
the name of a script in the CSAR file that contains the definition.

3.6.14.2.2 Short notation for use with multiple artifact

The following multi-line short-hand grammar may be used when multiple artifacts are needed, but each of
the artifacts can be uniquely identified by name as before:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 82 of 354

1469

1470
1471
1472
1473

1474

1475
1476
1477

1478

1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489

i mplementation:
primary: <primary _artifact name>

dependencies:

- <list of dependent artifact names>
operation_host : SELF
timeout : 60

3.6.14.2.3 Extended notation for use with single artifact

The following multi-line grammar may be used in Node or Relationship Type or Template definitions when
only a single artifact is used but additional information about the primary artifact is needed (e.g. to specify
the repository from which to obtain the artifact, or to specify the artifact type when it cannot be derived
from the artifact file extension):

i mplementation:
primary:
<primary _artifact definition >
operation_host : HOST
timeout : 100

3.6.14.2.4 Extended notation for use with multiple artifacts

The following multi-line grammar may be used in Node or Relationship Type or Template definitions when
there are multiple artifacts that may be needed for the operation to be implemented and additional
information about each of the artifacts is required:

implementation:

primary:
<primary _artifact definition >

dependencies:

- <list of dependent artifact definitions >
operation_host: HOST
timeout: 120

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

1 primary _artifact name :represents the optional name (string) of an implementation artifact
definition (defined elsewhere), or the direct name of an implementationar t i f act 6s rel ati ve
(e.g., a service template-relative, path-inclusive filename or absolute file location using a URL).

1 primary _artifact definition : represents a full inline definition of an implementation artifact.

91 list_of dependent_artifact_name S: represents the optional ordered list of one or more
dependent or secondary implementation artifact names (as strings) which are referenced by the
primary implementation artifact. TOSCA orchestrators will copy these files to the same location
as the primary artifact on the target node so as to make them accessible to the primary
implementation artifact when it is executed.

91 list_of dependent_artifact definitions : represents the ordered list of one or more inline
definitions of dependent or secondary implementation artifacts. TOSCA orchestrators will copy

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 83 of 354

1490 these artifacts to the same location as the primary artifact on the target node so as to make them
1491 accessible to the primary implementation artifact when it is executed.

1492 3.6.15 Operation definition

1493 An operation definition defines a named function or procedure that can be bound to an operation
1494 implementation.

1495 3.6.15.1 Keynames

1496 The following is the list of recognized keynames for a TOSCA operation definition:

Keyname Requi|[Type Description
description no description The optional description string for the associated named
operation.

implementation no Operation The optionabefinition of the operation implementation
implementation
definition

inputs no list of The optional list of input properties definitions (i.e., paraere
parameter definitions) for operation definitions that are within TOSCA
definitions Node or Relationship Type definitions. This includes when

operation definitions are included as part of a Requirement
definition in a Node Type.

no list of The optional list of input property assignments (i.e., parametg
property assignments) for operation definitions that are within TOSCA
assignments Node or Relationship Template definitions. Thisuidek when
operation definitions are included as part of a Requirement
assignment in a Node Template.

1497 3.6.15.2 Grammar

1498 Operation definitions have the following grammars:

1499 3.6.15.2.1 Short notation

1500 The following single-line grammar may be used whentheoper at i on 6 s idefiptioreisiieeonlyat i on

1501 keyname that is needed, and when the operation implementation definition itself can be specified using a
1502 single line grammar

<operation name >: < implementation artifact name >

1503 Extended notation The following multi-line grammar may be used in Node or Relationship Template or
1504 Type definitions when additional information about the operation is needed:

<operation name >:

description: < operation description >
implementation: < Operation implementation definitionOperation implementation definition>

inputs:
<property definitions >

1505 In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

1506 1 operation_name : represents the required symbolic name of the operation as a string.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 84 of 354

1507
1508
1509
1510
1511
1512
1513
1514
1515
1516

1517

1518
1519
1520
1521
1522
1523
1524

1525

1526

1527

1528

1 operation_description : represents the optional description string for the corresponding
operation_name .

1 operation_ implementation_ definition : represents the optional specification of the
0 p e r a timplenmedtation).

1 property_definitions : represents the optional list of property definitions which the TOSCA
orchestrator would make available (i.e., or pass) to the corresponding implementation artifact
during its execution.

1 property_assignments : represents the optional list of property assignments for passing
parameters to Node or Relationship Template operations providing values for properties defined
in their respective type definitions.

3.6.15.3 Additional requirements

1 The default sub-classing behavior for implementations of operations SHALL be override. That is,
implementation artifacts assigned in subclasses override any defined in its parent class.

1 Template authors MAY provide property assignments on operation inputs on templates that do
not necessarily have a property definition defined in its corresponding type.

1 Implementation artifact file names (e.g., script filenames) may include file directory path names
that are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud
Service ARchive (CSAR) file.

3.6.15.4 Examples

3.6.15.4.1 Single -line example

interfaces:
Standard:
start: scripts/start_server.sh

3.6.15.4.2 Multi -line example with shorthand implementation definitions

interfaces:
Configure:
pre_configure_source:
implementation:

primary: scripts/pre_configure_source.sh

dependencies:
- scripts/setup.sh
- binaries/library.rpm
- scripts/register.py

3.6.15.4.3 Multi -line example with extended implementation definitions

interfaces:
Configure:
pre_configure_source:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 85 of 354

1529
1530

1531
1532

1533
1534

1535
1536

1537
1538

implementation:
primary:
file: scripts/pre_configure_source.sh
type: tosca.artifacts.Implementation.Bash
repository: my_service_catalog
dependencies: - file :scripts/setup.sh
type :tosca.artifacts.Implementation.Bash
Repository : my_service_catalog

3.6.16 Interface definition

An interface definition defines a named interface that can be associated with a Node or Relationship Type

3.6.16.1 Keynames

The following is the list of recognized keynames for a TOSCA interface definition:

KeynafnRequi|Type Description

inputs no list of The optional list of input property definitions available to all defin
property definitions operations for interface definitions that are within TOSCA Node
Relationship Typdefinitions. This includes when interface
definitions are included as part of a Requirement definition in a
Node Type.

no list of The optional list of input propertgssignments (i.e., parameters
property assignments | assignments) for interface definitions that are within TOSCA Noq
or Relationship Template definitions. This includes when interfag
definitions are referenced as part of a Requirement assignment
Node Template.

3.6.16.2 Grammar

Interface definitions have the following grammar:

3.6.16.2.1 Extended notation for use in Type definitions

The following multi-line grammar may be used in Node or Relationship Type definitions:

<interface definition name >:

type: < interface type name >

inputs:
<property definitions >
<operation definitions >

3.6.16.2.2 Extended notation for use in Template definitions

The following multi-line grammar may be used in Node or Relationship Template definitions:

<interface definition name >:

inputs:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 86 of 354

1539
1540
1541
1542
1543

1544
1545
1546
1547
1548
1549
1550
1551

1552
1553
1554
1555
1556

1557
1558

1559

1560
1561
1562

<property assignments >
<operation definitions >

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

1 interface_definition_name: represents the required symbolic name of the interface as a
string.

9 interface_type_name : represents the required name of the Interface Type for tinterface
definition.

1 property_definitions : represents the optional list of property definitions (i.e., parameters)

which the TOSCA orchestrator would make available (i.e., or pass) to all defined operations.
- This means these properties and their values would be accessible to the implementation
artifacts (e.g., scripts) associated to each operation during their execution.

1 property_assignments : represents the optional list of property assignments for passing
parameters to Node or Relationship Template operations providing values for properties defined
in their respective type definitions.

1 operation_definitions . represents the required name of one or more operation definitions.

3.6.17 Event Filter definition

An event filter definition defines criteria for selection of an attribute, for the purpose of monitoring it, within
a TOSCA entity, or one its capabilities.

3.6.17.1 Keynames

The following is the list of recognized keynames for a TOSCA event filter definition:

Keyname Requi|Type Description

node yes string The required name of the node type or template that contains eithg
the attribute to bemonitored or contains the requirement that
references the node that contains the attribute to be monitored.

requirement no string ¢tKS 2LXWA2yIE yIFEYS 2F (KS NXBI| dz
can be used to locate a referenced node that containattuibute to
monitor.

capability no string ¢KS 2LXA2y Lt yIFEYS 2F | OF LI 0Af{
node referenced by its requirement that contains the attribute to
monitor.

3.6.17.2 Grammar

Event filter definitions have following grammar:

node: <node_type_name> | <node_template_name>
requirement: <requirement_name>
capability: <capability _name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

9 node_type_name: represents the required name of the node type that would be used to select
(filter) the node that contains the attribute to monitor or contains the requirement that references
another node that contains the attribute to monitor.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 87 of 354

1563 1 node_template_name: represents the required name of the node template that would be used to

1564 select (filter) the node that contains the attribute to monitor or contains the requirement that
1565 references another node that contains the attribute to monitor.

1566 1 requirement_name: represents the optional name of the requirement that would be used to
1567 select (filter) a referenced node that contains the attribute to monitor.

1568 9 capability_name: represents the optional name of a capability that would be used to select
1569 (filter) the attribute to monitor.

1570 3.6.18 Trigger definition
1571 A trigger definition defines the event, condition and
1572 with.

1573 3.6.18.1 Keynames
1574 The following is the list of recognized keynames for a TOSCA trigger definition:

Keyname Requi |[Tye Description

description no description The optional description string for the named trigger.

event_type no string The required name of the event type thatO G A @I G S &
action.

schedule no Timelnterval The optional time interval during which the trigger is valid (i.e

during which the declared actions will be processed).

target_filter no event filter The optional filter used to locate the attribute to monitor for

GKS GNAIISNDRaE RSTAYSR O2yRA
TOSCA entity (i.e., node or relationship) or further a specific
capability of that entity that contains the attribute to monitor.

condition no List ofcondition The optional condition which contairscondition clause

clause definition definition specifying one or multiplattribute constraint that
can be monitored. Note: this is optional since sometimes thg
event occurrence itself is enough to trigger the action.

action yes string oroperation | The f of the workflow to be invoked when the event is triggerg
and the condition is met (i.e, evaluates to true). Or

The required operation to invoke when the event is triggered
and the condition is met (i.e., evaluates to true).

1575 3.6.18.2 Additional keynames for the extended condition notation

KeynamqgRequi|Type Description

constraint no List ofcondition The optional condition which contaimscondition clause definition
clause definition specifying one or multiplattribute constraint that can be
monitored. Note: this is optional since sometimes the event
occurrence itself is enough to trigger the action.

period no scalarunit.time Theoptional period to use to evaluate for the condition.

evaluations no integer The optional number of evaluations that must be performed over
the period to assert the condition exists.

method no string The optional statistical method name to use to perform the
evaluation of the condition.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 88 of 354

1576
1577

1578
1579

1580
1581

1582
1583

1584
1585
1586
1587
1588
1589

1590

3.6.18.3 Grammar

Trigger definitions have the following grammars:

3.6.18.3.1 Short notation

<trigger name >:
description: < trigger description >
event: <event_type name>
schedule: <time_interval_for_trigger>
target _filter:

<event_filter_definition >
condition:

<condition_clause_definition >
action:

<operation_definition >

3.6.18.3.2 Extended notation:

<trigger name >:
description: < trigger_description >

event:

type: <event_type_name>
schedule: <time_interval_for_trigger>
target_filter:

<event_filter_definition >
condition:
constraint: < condition_clause_definition >

period: <scalar - unit.time> # e.g., 60 sec
evaluations: <integer> # e.g., 1
method: <string> # e.g., average
action:
<operation_definition >

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

9 trigger_name: represents the required symbolic name of the trigger as a string.

9 trigger_description : represents the optional description string for the corresponding

trigger _name

1 event_type_name: represents the required name of the TOSCA Event Type that would be

monitored on the identified resource (node).

9 time_interval_for_trigger : represents the optional time interval that the trigger is valid

for.

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 89 of 354

1591
1592
1593
1594
1595
1596

1597

1598
1599

1600
1601
1602
1603

1604

1605
1606

1607
1608

1609

1610
1611
1612

1613

1614

1615
1616

1 event filter_definition: represents the optional filter to use to locate the resource (node)
or capability attribute to monitor.

9 attribute_constraint_clause: represents the optional attribute constraint that would be
used to test for a specific condition on the monitored resource.
1 operation_definition: represents the required action to take if the event and (optionally)

condition are met.

3.6.19 Workflow activity definition

A workflow activity defines an operation to be performed in a TOSCA workflow. Activities allows to:

Delegate the workflow for a node expected to be provided by the orchestrator
Set the state of a node

Call an operation defined on a TOSCA interface of a node, relationship or group
Inline another workflow defined in the topology (to allow reusability)

=A =4 =4 =4

3.6.19.1 Keynames

The following is the list of recognized keynames for a TOSCA workflow activity definition. Note that while
each of the key is not required, one and only one of them is required (mutualy exclusive).

Keyname Requi|[Type Description

delegate no string The name of the delegate workflow.

This activity requires the target to be provided by the orchestra
(no-op node or relationship)

set_state no string Value of the node state.

call_operation no string A string that defines the name of the interface and operation to
be called on the node using the
<interface_name>.<operation_name> notation.

inline no string The name of a workflow to be inlined.

3.6.19.2 Grammar

Workflow activity definitions have one of the following grammars:
3.6.19.2.1 Delegate activity
- delegate: < delegate_workflow_name >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
1 delegate_workflow_name: represents the name of the workflow of the node
provided by the TOSCA orchestrator.
3.6.19.2.2 Set state activity

- set_state: <new_node_state>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1 new_node_state: represents the state that will be affected to the node once
the activity is performed.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 90 of 354

1617 3.6.19.2.3 Call operation activity:
- call _operation: <interface_name>.<operation_name>

1618 In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1619 1 interface_name: represents the name of the in terface in which the operation to
1620 be called is defined.

1621 1 operation_name: represents the name of the operation of the interface that

1622 will be called during the workflow execution.

1623 3.6.19.2.4 Inline activity
- inlin e: <workflow_name>

1624 In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1625 1 workflow_name: represents the name of the workflow to inline.

1626 3.6.19.3 Additional Requirements
1627 1 Keynames are mutually exclusive, i.e. an activity MUST define only one of delegate, set_state,
1628 call_operation or inline keyname.

1629 3.6.19.4 Example

1630 following represents a list of workflow activity definitions:

- delegate: deploy

- set_state: started

- call_operation: tosca.interfaces.node.lifecycle.Standard.start
- inline: my_workflow

1631

1632 3.6.20 Assertion definition

1633 A workflow assertion is used to specify a single condition on a workflow filter definition. The assertion
1634 allows to assert the value of an attribute based on TOSCA constraints.

1635 3.6.20.1 Keynames

1636 The TOSCA workflow assertion definition has no keynames.

1637 3.6.20.2 Grammar

1638 Workflow assertion definitions have the following grammar:
<attribute_name>: <list_of constraint_clauses>

1639 In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

1640 91 attribute_name: represents the name of an attribute defined on the assertion context entity
1641 (node instance, relationship instance, group instance) and from which value will be evaluated
1642 against the defined constraint clauses.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 91 of 354

1643
1644

1645
1646

1647

1648
1649
1650
1651
1652

1653

1654
1655

1656
1657

1658

1659

1660
1661

1662

1 list_of constraint_clauses: represents the list of constraint clauses that will be used to validate
the attribute assertion.

3.6.20.3 Example

Following represents a workflow assertion with a single equals constraint:
my_attribute: [{equal : my_value}]
Following represents a workflow assertion with mutliple constraints:

my_ attribute:
- min_length: 8
- max_length :10

3.6.21 Condition clause definition

A workflow condition clause definition is used to specify a condition that can be used within a workflow
precondition or workflow filter.

3.6.21.1 Keynames

The following is the list of recognized keynames for a TOSCA workflow condition definition:

Keyname Requi|[Type Description

and no list of condition Anand clause allows to define stfiiter clause definitions that
clause definition | must all be evaluated truly so the and clause is considered as {

or no list of condition Anor clause allows to define stfifter clause definitions where
clause definition | one of them must all be evaluated truly so the or clause is
considered as true

assert no list ofassertion | A list of filter assrtions to be evaluated on entity attributes.
definition Assert acts as and clause, i.e. every defined filter assertion
must be true so the assertion is considered as true.

Note : It is allowed to add assertion definition directly as keynames of the condition clause definition. An
and clause is performed for all direct assertion definition.

3.6.21.2 Grammar

Workflow assertion definitions have the following grammars:

3.6.21.2.1 And clause
and: <list_of condition_clause_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

9 list_of condition_clause_definition : represents the list of condition clauses. All
condition clauses MUST be asserted to true so that the and clause is asserted to true.

3.6.21.2.2 Or clause

or: <list_of _condition_ clause_definition>

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 92 of 354

1663

1664
1665

1666

1667

1668
1669

1670

1671

1672
1673
1674
1675
1676
1677

1678
1679

1680

1681
1682

1683
1684

1685
1686

1687

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

9 list_of condition_clause_definition : represents the list of condition clauses. One of the
condition clause have to be asserted to true so that the or clause is asserted to true.

3.6.21.2.3 Assert clause
assert: <list_of assertion_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

91 list_of assertion_definition . represents the list of assertions. All assertions MUST be
asserted to true so that the assert clause is asserted to true.

3.6.21.3 Direct assertion definition
<attribute_name>: <list_of constraint_clauses>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

9 attribute_name: represents the name of an attribute defined on the assertion context entity
(node instance, relationship instance, group instance) and from which value will be evaluated
against the defined constraint clauses.

1 list_of con straint_clauses: represents the list of constraint clauses that will be used to validate
the attribute assertion.

3.6.21.4 Additional Requirement

1 Keynames are mutually exclusive, i.e. a filter definition can define only one of and, or, or assert
keyname.

3.6.21.5 Notes
1 The TOSCA processor SHOULD perform assertion in the order of the list for every defined

condition clause or assertion definition.

3.6.21.6 Example

Following represents a workflow condition clause with a single equals constraint:

condition:
- assert:
- my_attribut e: [{equal: my_value}]

Following represents a workflow condition clause with a single equals constraints on two different
attributes:

condition:
- assert:
- my_attribute: [{equal: my_value}]}
- my_other_attribute: [{equal: my_other_value}]}

Following represents a workflow condition clause with a or constraint on two different assertions:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 93 of 354

condition:
- or
- assert:
- my_attribute: [{equal: my_value}]}
- assert:
- my_other_attribute: [{equal: my_other_value}]}

1688 Following represents multiple levels of condition clauses with direct assertion definition usage to build the
1689 following logic: one_attribute equal one_value AND (my_attribute equal my_value OR my_other_attribute
1690 equal my_other_value):

condition:
- one_attribute: [{equal: one_value }]
- or
- assert:
- my_attribute: [{equal: my_value}]}
- assert:
- my_other_attribute: [{equal: my_other_value}]}

1691 3.6.22 Workflow precondition definition

1692 A workflow condition can be used as a filter or precondition to check if a workflow can be processed or
1693 not based on the state of the instances of a TOSCA topology deployment. When not met, the workflow
1694 will not be triggered.

1695 3.6.22.1 Keynames

1696 The following is the list of recognized keynames for a TOSCA workflow condition definition:

Keyname Requi|[Type Description

target yes string The target of the precondition (this can be a node template nal
a group name)

target_relationship| no string The optional name of a requirement of the target in cése
precondition has to be processed on a relationship rather than
node or group. Note that this is applicable only if the target is g

node.
condition no list of condition A list of workflow condition clause definitions. Assertion betweq
clause elements of the condition are evaluated as an AND condition.

definitions

1697 3.6.22.2 Grammar

1698 Workflow precondition definitions have the following grammars:

- target: < target_name >
target_relationship: <target_requirement_name>
condition:
<list_of condition_clause_definition>

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 94 of 354

1699

1700
1701
1702
1703
1704
1705

1706
1707
1708
1709
1710

1711
1712

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1 target_name: represents the name of a node template or group in the topology.

1 target_requirement_name :represents the name of a requirement of the node template (in case
target_name refers to a node template.

1 list_of condition_clause_definition: represents the list of condition clauses
to be evaluated. The value of the resulting condition is evaluated as an AND
clause between the different elements.

3.6.23 Workflow step definition

A workflow step allows to define one or multiple sequenced activities in a workflow and how they are
connected to other steps in the workflow. They are the building blocks of a declarative workflow.

3.6.23.1 Keynames

The following is the list of recognized keynames for a TOSCA workflow step definition:

Keyname Requi|[Type Description

target yes string The target of the step (this can be a node template name, a
group name)

target_relationship| no string The optional name of a requirement of the target in case the
step refers to a relationship rather than a node or group. Note
that this is applicable only if the target is a node.

operation_host | no string The node on which operations should be executed (for TOSC|
call_operation activities).
This element is required only for relationships and groups targ

If target is a relationships operation_host is required and
valid_values are SOURCE or TARG&Erring to the
relationship source or target node.

If target is a group operation_host is optional.
If not specified the operation will be triggered on every node g

the group.
If specified the valid_value ismde_type or the name of a nodg
template.
filter no list of constraint Filter is a map of attribute name, list of constraint clause that
clauses allows to provide a filtering logic.
activities yes list of The list of sequential activities to be performed in this step.
activity _definition
on_success no list of string The optional list of step names to performed after this one
has been completed with success (all activities has been corr
processed).
on_failure no list of string The optional list of step hames to be called after this one in cg

one of the step aivity failed.

3.6.23.2 Grammar

Workflow step definitions have the following grammars:

steps:
<step_name>

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 95 of 354

1713

1714
1715
1716
1717
1718
1719
1720

1721

1722

1723
1724
1725
1726
1727

1728

1729
1730

target: < target name >
target_relationship: <target_requirement_name>
operation_host: <operation_host_name>
filter:

- <list_of condition_clause_definition
activities:

- <list_of activity_definition >
ON_SUCCESS:

- <target_step_name>
on_failure:

- <target_step_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1 target_name: represents the name of a node template or group in the topology.
1 target_requirement_name : represents the name of a requirement of the node template (in case

target_name refers to a node template.

9 operation_host : the node on which the operation should be executed

1 <list_of_condition_clause_definition>: represents a list of condition clause definition.
1 list_of_activity definition : represents a list of activity definition

9 target_step_name :represents the name of another step of the workflow.

3.7 Type-specific definitions

3.7.1 Entity Type Schema

An Entity Type is the common, base, polymorphic schema type which is extended by TOSCA base entity
type schemas (e.g., Node Type, Relationship Type, Artifact Type, etc.) and serves to define once all the
commonly shared keynames and their types. This

instantiatable.

3.7.1.1 Keynames

The following is the list of recognized keynames for a TOSCA Entity Type definition:

Keynam(Requi|Type Constrain(Descrnptio
derived_from | no string Yh2ySQ An optional parent Entity Type name the Entity Typ
is the only allowed | derives from.
value
version no version N/A An optional version for th&ntity Type definition.
metadata no map of N/A Defines a section used to declare additional metad
string information.
description no description | N/A An optional description for the Entity Type.

3.7.1.2 Grammar

Entity Types have following grammar:

<entity _keyname>:

TOSCA-Simple-Profile-YAML-v1.2-0s

17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 96 of 354

ot

1731

1732
1733
1734

1735

1736
1737
1738
1739

1740
1741
1742
1743
1744

¢ 4EA
derived_from: None
version: <version_number>
metadata:
<metadata_map>
description:

<interface description

>

ITT1Tu AliliT xAA OAI OA EO p.11TAR

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1 version_number : represents the optional TOSCA version number for the entity.

1 entity_description

: represents the optional description string for the entity.

1 metadata_map: represents the optional map of string.

3.7.1.3 Additional Requirements

1 The TOSCA Entity Type SHALL be the common base type used to derive all other top-level base

TOSCA Types.

1 The TOSCA Entity Type SHALL NOT be used to derive or create new base types apart from
those defined in this specification or a profile of this specification.

3.7.2 Capability definition

A capability definition defines a named, typed set of data that can be associated with Node Type or Node
Template to describe a transparent capability or feature of the software component the node describes.

3.7.2.1 Keynames

The following is the list of recognized keynames for a TOSCA capability definition:

Keyname Requi|[Type ConstrailDescription
type yes string N/A The required name of th€apability Type the
capability definition is based upon.
description no description | N/A The optional description of the Capability definitio
properties no list of N/A An optional list of property definitions for the
property Capability definition.
definitions
attributes no list of N/A An optional list of attribute definitions for the
attribute Capability definition.
definitions
valid_source_typeg no string] N/A An optional list of one or more valid names of No(
Types that are supported as valid sources of any
relationship established to the declaré&hpability
Type.
occurrences no rangeof implied default | The optional minimum and maximum occurrence
integer of for the capability. By default, an export&hpability
[1,UNBOUNDED should allow at least one relationship to be forme
with it with a maximum of UNBOUNDED
relationships.
Note: the keywordJNBOUNDE[RIso supported
to represent any positive integer.

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 97 of 354

1745
1746

1747
1748

1749

1750
1751

1752

1753
1754
1755

1756
1757
1758
1759
1760

1761
1762
1763

1764
1765

1766

1767

3.7.2.2 Grammar

Capability definitions have one of the following grammars:

3.7.2.2.1 Short notation

The following grammar may be used when only a list of capability definition names needs to be declared:

<capability definition name >: < capability type >

3.7.2.2.2 Extended notation

The following multi-line grammar may be used when additional information on the capability definition is
needed:

<capability definition name >:
type: < capability type >
description: < capability description >
properties:
<property definitions >
attributes:

<attribute definitions >

valid_source_types: [< node type names >]

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

1 capability_definition_name : represents the symbolic name of the capability as a string.

1 capability_type :represents the required name of a capability type the capability definition is
based upon.

1 capability_description : represents the optional description of the capability definition.

1 property_definitions : represents the optional list of property definitions for the capability
definition.

91 attribute_definitions : represents the optional list of attribute definitions for the capability
definition.

1 node_type_names: represents the optional list of one or more names of Node Types that the
Capability definition supports as valid sources for a successful relationship to be established to
itself.

3.7.2.3 Examples

The following examples show capability definitions in both simple and full forms:
3.7.2.3.1 Simple notation example

Simple notation, no properties defined or augmented
some_capability: mytypes.mycapabilities.MyCapability TypeName

3.7.2.3.2 Full notation example

Full notation, augmenting properties of the referenced capability type

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 98 of 354

1768

1769
1770
1771
1772
1773

1774

1775
1776
1777
1778

1779

1780
1781
1782
1783
1784

1785
1786

some_capability:
type: mytypes.mycapabilities.MyCapabilityTypeName
properties:
limit:
type: integer
default: 100

3.7.2.4 Additional requirements

1 Any Node Type (names) provides as values for the valid_source_types keyname SHALL be
type-compatible (i.e., derived from the same parent Node Type) with any Node Types defined
using the same keyname in the parent Capability Type.

1 Capability symbolic names SHALL be unique; it is an error if a capability name is found to occur
more than once.

3.7.2.5 Notes

9 The Capability Type, in this example MyCapabilityTypeName , would be defined
elsewhere and have an integer property named limit.

9 This definition directly maps to the CapabilitiesDefinition of the Node Type entity as defined
in the TOSCA v1.0 specification.

3.7.3 Requirement definition

The Requirement definition describes a named requirement (dependencies) of a TOSCA Node Type or
Node template which needs to be fulfilled by a matching Capability definition declared by another TOSCA
modelable entity. The requirement definition may itself include the specific name of the fulfilling entity
(explicitly) or provide an abstract type, along with additional filtering characteristics, that a TOSCA
orchestrator can use to fulfill the capability at runtime (implicitly).

3.7.3.1 Keynames

The following is the list of recognized keynames for a TOSCA requirement definition:

Keynam|Requi nType |Constral|Description

capability yes string N/A The required reserved keyname used that can be used t
provide the name of a vali@apability Typehat can fulfill
the requirement.

node no string N/A The optional reserved keyname used to provide the nam
of a validNode Typehat contains the capability definition
that can be used to fulfill the requirement.

relationship | no string N/A The optional reserved keyname used to provide the nam
of a validRelationship Typ® construct when fulfilling the
requirement.

occurrences | no rangeof | implied default | The optional minimum and maximum occurrences for the
integer of [1,1] requirement.

Note: the keywordJNBOUNDE[RIso supported to
represent any positive integer.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 99 of 354

1787

1788
1789
1790
1791
1792
1793

1794
1795

1796

1797

1798
1799

1800
1801

1802

3.7.3.1.1 Additional Keynames for multi

-line relationship grammar

The Requirement definition contains the Relationship Type information needed by TOSCA Orchestrators
to construct relationships to other TOSCA nodes with matching capabilities; however, it is sometimes
recognized that additional properties may need to be passed to the relationship (perhaps for
configuration). In these cases, additional grammar is provided so that the Node Type may declare

def i

addi ti

onal

specific operations of those interfaces).

Property

nitions to be used

do8 i

Keyna|Requi [Type Constra Description
type yes string N/A The optional reserved keyname used to provide the nam
2F GKS wStflLiGA2yaKAL ¢@&Lis
relationship keyname.
interfaces | no list of N/A The optional reserved kemme used to reference declared
interface (named) interface definitions of the corresponding
definitions Relationship Type in order to declare additional Property

definitions for these interfaces or operations of these
interfaces.

3.7.3.2 Grammar

Requirement definitions have one of the following grammars:

3.7.3.2.1 Simple grammar (Capability Type only)

<requirement definition name

>: <capability_type name>

3.7.3.2.2 Extended grammar (with Node and Relationship Types)

<requirement definition name

capability: <

>

capability type name

node: < node type name>

relationship: <

>

rela tionship type name >

occurrences: [<min_occurrences>, <max_occurrences> |

3.7.3.2.3 Extended grammar for declaring Property Definitions on the

relationshipods

nterfaces

The following additional multi-line grammar is provided for the relationship keyname in order to declare
new Property definitions for inputs of known Interface definitions of the declared Relationship Type.

<requirement definition name

>

Other keynames omitted for brevity
relationship:

type: <

relationship type name

interfaces:

<interface definitions

>

>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 100 of 354

nput s

t

1803 1 requirement_definition_name: represents the required symbolic name of the requirement
1804 definition as a string.

1805 1 capability_type_name : represents the required name of a Capability type that can be used to
1806 fulfill the requirement.

1807 1 node_type name: represents the optional name of a TOSCA Node Type that contains the
1808 Capability Type definition the requirement can be fulfilled by.

1809 1 relationship_type name :represents the optional name of a Relationship Type to be used to
1810 construct a relationship between this requirement definition (i.e., in the source node) to a

1811 matching capability definition (in a target node).

1812 1 min_occurrences, max_occurrences :represents the optional minimum and maximum

1813 occurrences of the requirement (i.e., its cardinality).

1814 1 interface_definitions : represents one or more already declared interface definitions in the
1815 Relationship Type (as declared on the type keyname) allowing for the declaration of new
1816 Property definition for these interfaces or for specific Operation definitions of these interfaces.

1817 3.7.3.3 Additional Requirements

1818 1 Requirement symbolic names SHALL be unique; it is an error if a requirement name is found to
1819 occur more than once.

1820 1 If the occurrence s keyname is not present, then the occurrence of the requirement SHALL be
1821 one and only one; that is a default declaration as follows would be assumed:

1822 0 occurrences: [1,1]

1823 3.7.3.4 Notes

1824 I This element directly maps to the RequirementsDefinition of the Node Type entity as defined
1825 in the TOSCA v1.0 specification.

1826 1 The requirement symbolic name is used for identification of the requirement definition only and
1827 not relied upon for establishing any relationships in the topology.

1828 3.7.3.5 Requirement Type definition is a tuple

1829 A requirement definition allows type designers to govern which types are allowed (valid) for fulfillment
1830 using three levels of specificity with only the Capability Type being required.

1831 1. Node Type (optional)
1832 2. Relationship Type (optional)
1833 3. Capability Type (required)

1834 The first level allows selection, as shown in both the simple or complex grammar, simply providing the
1835 nodeb6s t ypmdekeynama The $eeond level allows specification of the relationship type to use
1836 when connecting the requirement to the capability using the relationship keyname. Finally, the

1837 specific named capability type on the target node is provided using the capability keyname.

1838 3.7.3.5.1 Property filter

1839 In addition to the node, relationship and capability types, a filter, with the keyname node_filter , may be

1840 provided to constrain the allowed set of potential target nodes based upon their properties and their

1841 capabilitiesd properties. This all ows nBéestBgamongc hestr a
1842 multiple potential target nodes for the expressed requirements.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 101 of 354

1843

1844
1845

1846

1847
1848

1849

1850
1851

1852

1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

1863

3.7.4 Artifact Type

An Artifact Type is a reusable entity that defines the type of one or more files that are used to define
implementation or deployment artifacts that are referenced by nodes or relationships on their operations.

3.7.4.1 Keynames

The Artifact Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA Entity
Schema.

In addition, the Artifact Type has the following recognized keynames:

KeynamRequir|[Type Description
mime_type | no string The required mime type property for the Artifact Type.
file_ext no string] The required file extension property for the Artifact Type.
properties no list of An optional list of property definitions for the Artifact Type
property
definitions

3.7.4.2 Grammar

Artifa

ct Types have following grammar:

<artifact type name >:

derived_from: < parent artifact type name

version: < version number >

metadata:

<map of string >
description: < artifact description >
mime_type: < mime type string >

file_ext: [< file_extensions >]
properties:
<property definitions >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

|l

artifact_type_name : represents the name of the Artifact Type being declared as a string.
parent_artifact_type_name : represents the name of the Artifact Type this Artifact Type

definition derives

from

(i . e.

ts

Aparent O

version_number : represents the optional TOSCA version number for the Artifact Type.

artifact_description

: represents the optional description string for the Artifact Type.

mime_type_string : represents the optional Multipurpose Internet Mail Extensions (MIME)
standard string value that describes the file contents for this type of Artifact Type as a string.
file_extensions : represents the optional list of one or more recognized file extensions for this

type of artifact type as strings.
property_definitions

3.7.4.3 Examples

my_artifact_type:

TOSCA-Simple-Profile-YAML-v1.2-0s

Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

: represents the optional list of property definitions for the artifact type.

17 January 2019
Page 102 of 354

type) .

1864

1865
1866

1867

1868
1869

1870

1871
1872

1873

1874
1875

1876

1877
1878
1879
1880
1881
1882
1883
1884

description: Java Archive artifact type
derived_from: tosca.artifact.Root
mime_type: application/java - archive
file_ext: [jar]

3.7.4.4 Notes

T The 6mi me_ _typed keyn amesthatare Apatheamnie types suthavtleosev al u
defined here: http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

3.7.5 Interface Type

An Interface Type is a reusable entity that describes a set of operations that can be used to interact with
or manage a node or relationship in a TOSCA topology.

3.7.5.1 Keynames

The Interface Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA
Entity Schema.

In addition, the Interface Type has the following recognized keynames:

Keyname |Requi|Type Description

inputs no list of The optional list of inpuparameter definitions.
property
definitions

3.7.5.2 Grammar

Interface Types have following grammar:

<interface type name >:

derived_from: < parent interface type name >

version: <version_number>

metadata:
<map of string >
description: <interface description >
inputs:
<property definitions >
<operation definitions >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

i1 interface_type name :represents the required name of the interface as a string.
1 parent_interface_type name :represents the name of the Interface Type this Interface Type

definition derivesfrom (i . e. , its fAparento type).
1 version_number : represents the optional TOSCA version number for the Interface Type.
91 interface_description : represents the optional description string for the Interface Type.
1 property_definitions : represents the optional list of property definitions (i.e., parameters)

which the TOSCA orchestrator would make available (i.e., or pass) to all implementation artifacts
for operations declared on the interface during their execution.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 103 of 354

1885 1 operation_definitions : represents the required list of one or more operation definitions.

1886 3.7.5.3 Example

1887 The following example shows a custom interface used to define multiple configure operations.

mycompany.mytypes.myinterfaces.MyConfigure:

derived_from: tosca.interfaces.relationship.Root
description: My custom configure Interface Type
inputs:

mode:

type: string

pre_configure_service:

description: pre - configure operation for my service
post_configure_service:

description: post - configure operation for my service

1888 3.7.5.4 Additional Requirements

1889 1 Interface Types MUST NOT include any implementations for defined operations; that is, the
1890 implementation keyname is invalid.
1891 1 Theinputs keyname is reserved and SHALL NOT be used for an operation name.

1892 3.7.6 Data Type
1893 A Data Type definition defines the schema for new named datatypes in TOSCA.

1894 3.7.6.1 Keynames

1895 The Data Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA Entity
1896 Schema.

1897 In addition, the Data Type has the following recognized keynames:

Keyname Requi|[Type Description
constraints no list of The optional list ofequencedonstraint clauses for the Data

constraint clauses| Type.

properties no list of The optional list property definitions that comprise the schema
property for a complex Data Type in TOSCA.
definitions

1898 3.7.6.2 Grammar

1899 Data Types have the following grammar:

<data type name >:

derived_from: < existing type name >

version: < version number >

metadata:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 104 of 354

1900

1901
1902
1903
1904
1905
1906
1907
1908
1909

1910

1911
1912
1913
1914
1915

1916
1917

1918

1919

<map of string >
description: < datatype description >

constraints:

- <type constraints >
properties:

<property definitions >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

data_type name : represents the required symbolic name of the Data Type as a string.

version_number : represents the optional TOSCA version number for the Data Type.

datatype_description: represents the optional description for the Data Type.

existing_type_name: represents the optional name of a valid TOSCA type this new Data

Type would derive from.

1 type_constraints :represents the optional sequenced list of one or more type-compatible
constraint clauses that restrict the Data Type.

1 property_definitions : represents the optional list of one or more property definitions that

provide the schema for the Data Type.

=A =4 =4 =4

3.7.6.3 Additional Requirements

1 A valid datatype definition MUST have either a valid derived_from declaration or at least one
valid property definition.

1 Anyconstraint clauses SHALL be type-compatible with the type declared by the
derived_from keyname.

1 If aproperties keyname is provided, it SHALL contain one or more valid property definitions.

3.7.6.4 Examples

The following example represents a Data Type definition based upon an existing string type:
3.7.6.4.1 Defining a complex datatype

define a new complex datatype
mytypes.phonenumber:
description: my phone number datatype
properties:
countrycode:
type: integer
areacode:
type: integer
number:
type: integer

3.7.6.4.2 Defining a datatype derived from an existing datatype

define a new datatype that derives from existing type and extends it
mytypes.phonenumber.extended:
derived_from: mytypes.phonenumber

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 105 of 354

description: custom phone number type that extends the basic phonenumber type
properties:
phone_description:
type: string
constraints:
- max_length: 128

1920 3.7.7 Capability Type

1921 A Capability Type is a reusable entity that describes a kind of capability that a Node Type can declare to
1922 expose. Requirements (implicit or explicit) that are declared as part of one node can be matched to (i.e.,
1923 fulfilled by) the Capabilities declared by another node.

1924 3.7.7.1 Keynames

1925 The Capability Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA
1926 Entity Schema.

1927 In addition, the Capability Type has the following recognized keynames:

Keyname Requi|[Type Description
properties no list of An optional list of propertylefinitions for the Capability Type.
property
definitions
attributes no list of An optional list of attribute definitions for the Capability Type.
attribute
definitions
valid_source_typeg no strind] An optional list of one or more valid names of Node Types that
supported as valid sources of any relationship established to th
declared Capability Type.

1928 3.7.7.2 Grammar
1929 Capability Types have following grammar:

<capability type name >:
derived_from: < parent capability type name >

version: < version number >

description: < capability description >
properties:

<property definitions >
attributes:

<attribute definitions >

valid_source _types:[< nodetype names > |

1930 In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1931 1 capability_type_name : represents the required name of the Capability Type being declared as

1932 a string.

1933 1 parent_capability type _name : represents the name of the Capability Type this Capability

1934 Type definition derives from (i.e., its fAparento ty
TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 106 of 354

1935
1936
1937
1938
1939
1940
1941
1942
1943

1944

1945

1946
1947
1948
1949

1950
1951
1952

1953

1954
1955
1956

1957

1958
1959

1960

1 version_number : represents the optional TOSCA version number for the Capability Type.

1 capability_description : represents the optional description string for the corresponding
capability_type_name

1 property_definitions : represents an optional list of property definitions that the Capability
type exports.

1 attribute_definitions : represents the optional list of attribute definitions for the Capability
Type.

1 node_type names: represents the optional list of one or more names of Node Types that the
Capability Type supports as valid sources for a successful relationship to be established to itself.

3.7.7.3 Example

mycompany.mytypes.myapplication.MyFeature:
derived_from: tosca.capabilities.Root
AAOAOEDPOET Tk A AOOOI I ~EAAOOOA T &£ T U ATiPATURC
properties:
my feature_setting:
type: string
my_feature_value:
type: integer

3.7.8 Requirement Type

A Requirement Type is a reusable entity that describes a kind of requirement that a Node Type can
declare to expose. The TOSCA Simple Profile seeks to simplify the need for declaring specific
Requirement Types from nodes and instead rely upon nodes declaring their features sets using TOSCA
Capability Types along with a named Feature notation.

Currently, there are no use cases in this TOSCA Simple Profile in YAML specification that utilize an
independently defined Requirement Type. This is a desired effect as part of the simplification of the
TOSCA v1.0 specification.

3.7.9 Node Type

A Node Type is a reusable entity that defines the type of one or more Node Templates. As such, a Node
Type defines the structure of observable properties via a Properties Definition, the Requirements and
Capabilities of the node as well as its supported interfaces.

3.7.9.1 Keynames

The Node Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA Entity
Schema.

In addition, the Node Type has the following recognized keynames:

Keynam{Requi|[Type Description

attributes no list of An optional list of attribute definitions for the Node Type.
attribute definitions

properties no list of An optional list oproperty definitions for the Node Type.
property definitions

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 107 of 354

1961
1962

1963

1964
1965
1966
1967
1968
1969
1970
1971
1972
1973

Keynam{Requi|Type Description

requirements | no list of An optionalsequencedist of requirement definitions for the Node
requirement Type.
definitions

capabilities no list of An optional list of capability definitions for the Node Type.
capability
definitions

interfaces no list of An optional list of interface defitions supported by the Node Type
interface definitions

artifacts no list of An optional list of named artifact definitions for the Node Type.
artifact definitions

3.7.9.2 Grammar

Node Types have following grammar:

<n

ode type name>:

derived_from: <

version: < version number >

metadata:

<map of string >

description: <

node type description

>

attributes:

<attribute definitions >
properties:

<property definitions >
requirements:

- <requirement definitions >
capabilities:

<capability definitions >
interfaces:

<interface definitions >
artifacts:

<artifact definitions >

parent node type name >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

=

node_type_name: represents the required symbolic name of the Node Type being declared.
parent _node_type_name: represents the name (string) of the Node Type this Node Type

definiti

on deri

vV es

from

(i .e.

ts

Aparento

version_number : represents the optional TOSCA version humber for the Node Type.

node_type_description
node_type_name.
property_definitions
attribute_definitions
requirement_definitions

the Node Type.

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

: represents the optional description string for the corresponding

: represents the optional list of property definitions for the Node Type.
: represents the optional list of attribute definitions for the Node Type.
: represents the optional sequenced list of requirement definitions for

17 January 2019
Page 108 of 354

type) .

1974 1 capability_definitions : represents the optional list of capability definitions for the Node
1975 Type.

1976 1 interface_definitions : represents the optional list of one or more interface definitions
1977 supported by the Node Type.
1978 1 artifact_definitions : represents the optional list of artifact definitions for the Node Type.

1979 3.7.9.3 Additional Requirements

1980 1 Requirements are intentionally expressed as a sequenced list of TOSCA Requirement definitions
1981 which SHOULD be resolved (processed) in sequence order by TOSCA Orchestrators. .

1982 3.7.9.4 Best Practices
1983 91 Itis recommended that all Node Types SHOULD derive directly (as a parent) or indirectly (as an

1984 ancestor) of the TOSCA Root Node Type (i.e., tosca.nodes.Root) to promote compatibility and
1985 portability. However, it is permitted to author Node Types that do not do so.

1986 1 TOSCA Orchestrators, having a full view of the complete application topology template and its

1987 resultant dependency graph of nodes and relationships, MAY prioritize how they instantiate the nodes
1988 and relationships for the application (perhaps in parallel where possible) to achieve the greatest

1989 efficiency

1990 3.7.9.5 Example

my_company.ny_types.my_app_node_type:
derived_from: tosca.nodes.SoftwareComponent
AAOGAOEDPOET Tk -U Aii DATURO AOOOI I AbBPDBPI EAAOTI
properties:
my_app_password:
type: string
description: application password
constraints:
- min_length: 6
- max_length: 10
attributes:
my_app_port:
type: integer
description: application port number
requirements:
- some_database:
capability: EndPoint.Database
node: Database
relationship: ConnectsTo

1991 3.7.10 Relationship Type
1992 A Relationship Type is a reusable entity that defines the type of one or more relationships between Node
1993 Types or Node Templates.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 109 of 354

1994

1995
1996

1997

1998
1999

2000

2001
2002
2003
2004
2005
2006
2007
2008
2009

3.7.10.1 Keynames

The Relationship Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA
Entity Schema.

In addition, the Relationship Type has the following recognized keynames:

Keyname Require{Definiti|Description

properties no list of An optional list of property definitions for the Relationshiy
property Type.
definitions

attributes no list of An optional list ofattribute definitions for the Relationship
attribute Type.
definitions

interfaces no list of An optional list of interface definitions interfaces supportg
interface by the Relationship Type.
definitions

valid_target_types| no strind] An optional list of one or more names of Capability Type

that are valid targets for this relationship.

3.7.10.2 Grammar

Relationship Types have following grammar:

<relationship type name >:

derived_from: <

parent relationship type name >

version: < version number >

metadata:

<map of string >

description: < relationship description
properties:

<property definitions >
attributes:

<attribute definitions >
interfaces:

<interface definitions >

valid_target_types: [<

capability type

>

names> |

91 relationship_type name

being declared as a string.
1 parent_relationship_type name
ati

Rel

onship

1 relationship_description
relationship_type_name
1 version_number : represents the optional TOSCA version number for the Relationship Type.

1 property_definitions

Type.

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

: represents the required symbolic name of the Relationship Type

Type

: represents the name (string) of the Relationship Type this
definiti

on derives from (i

: represents the optional description string for the corresponding

Copyright © OASIS Open 2019. All Rights Reserved.

: represents the optional list of property definitions for the Relationship

17 January 2019
Page 110 of 354

2010
2011
2012
2013
2014
2015

2016

2017
2018
2019
2020
2021
2022
2023

2024

2025

2026
2027
2028
2029

2030

2031
2032
2033
2034
2035

2036

2037
2038

2039

9 attribute_definitions

Type.

1 interface_definitions

1 capability_type_names

: represents the optional list of attribute definitions for the Relationship

: represents the optional list of one or more names of valid interface
definitions supported by the Relationship Type.

relationship (i.e., Capability Types).

3.7.10.3 Best Practices

1 For TOSCA application portability, it is recommended that designers use the normative
Relationship types defined in this specification where possible and derive from them for
customization purposes.

1 The TOSCA Root Relationship Type (tosca.relationships.Root) SHOULD be used to derive
new types where possible when defining new relationships types. This assures that its normative

configuration interface (tosca.interfaces.relationship.Configur

: represents one or more names of valid target types for the

e) can be used in a

deterministic way by TOSCA orchestrators.

3.7.10.4 Examples

mycompanytypes.myrelationships.AppDependency:
derived_from: tosca.relationships.DependsOn
valid_target_types: [mycompanytypes.mycapabilities.SomeAppCapability]

3.7.11 Group Type

A Group Type defines logical grouping types for nodes, typically for different management purposes.
Groups can effectively be viewed as logical nodes that are not part of the physical deployment topology of
an application, yet can have capabilities and the ability to attach policies and interfaces that can be
applied (depending on the group type) to its member nodes.

Conceptu

ally,

service template that are not a part oft h e

template (i.e. those required to actually get the application deployed and running). Instead, such logical
membership allows for the introduction of things such as group management and uniform application of

policies

(i .e.

3.7.11.1 Keynames

group definitions allow the creation of |
applicationés explicit requirement
rements that are also not bound t

, requi

The Group Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA Entity

Schema.

In addition, the Group Type has the following recognized keynames:

KeynamqRequi|[Type Description

attributes no list of An optional list of attribute definitions for the Group
attribute definitions Type.

properties no list of An optional list of propertylefinitions for the Group
property definitions Type.

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

17 January 2019

Copyright © OASIS Open 2019. All Rights Reserved. Page 111 of 354

2040
2041

2042

2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053

KeynamqgRequi|[Type Description

members no strind]

An optional list of one or more names of Node Types
that are valid (allowed) as members of the Group Typ

Note: This can be viewed by TOSCA Orchestrators as
implied relationship from the listed members nodes to
the group, but one that does not have operational
lifecycle considerations. For example, if we were to
name this as an explicit Relationship Type we might c
GKAE daSYOSNhTE O3INRAzLIO @

requirements | no list of An optionalsequencedist of requirement definitions for

requirement definitions | the Group Type.

capabilities no list of An optional list of capability definitions for the Group
capability efinitions Type.

interfaces no list of An optional list of interface definitions supported by the
interface definitions Group Type.

3.7.11.2 Grammar

Group Types have one the following grammars:

<group type name >.

derived_from: < parent group type name >
version: < version _number >

metadata:

<map of string >

description: < group description >
properties:

<property definitions >

members: [<list_of valid_member_types>]
requirements:

- <requirement definitions >

capabilities:

<capability definitions >

interfaces:

<interface definitions >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1 group_type_name : represents the required symbolic name of the Group Type being declared as
a string.

1 parent_group_type_name : represents the name (string) of the Group Type this Group Type
definition derives from (i.e., its Aparento

1 version_number : represents the optional TOSCA version number for the Group Type.

1 group_descri ption : represents the optional description string for the corresponding
group_type_name.

1 property_definitions : represents the optional list of property definitions for the Group Type.

1 list_of valid_member_types : represents the optional list of TOSCA types (e.g.,., Node,
Capability or even other Group Types) that are valid member types for being added to (i.e.,
members of) the Group Type.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 112 of 354

type) .

2054
2055
2056

2057
2058
2059
2060
2061

2062
2063

2064

2065
2066
2067

2068

2069
2070

2071

2072
2073

1 interface_definitions : represents the optional list of one or more interface definitions
supported by the Group Type.

3.7.11.3 Additional Requirements

1 Group definitions SHOULD NOT be used to define or redefine relationships (dependencies)
between nodes that can be expressed using normative TOSCA Relationships (e.g., HostedOn,
ConnectsTo, etc.) within a TOSCA topology template.

T The list of values associ aMESTonyicontain tydesthafiome mber s o ke

homogenous (i.e., derive from the same type hierarchy).

3.7.11.4 Example

The following represents a Group Type definition:

group_types:
mycompany.mytypes.groups.placement:
AAOAOEPOEIT Kk -U Al i PATURO CcOi OPD OUDPA &£ O bl #
members: [tosca.nodes.Compute]

3.7.12 Policy Type

A Policy Type defines a type of requirement that
some stage of its lifecycle, but is not explicitly part of the topology itself (i.e., it does not prevent the
application or service from being deployed or run if it did not exist).

3.7.12.1 Keynames

The Policy Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA Entity
Schema.

In addition, the Policy Type has the following recognized keynames:

KeynamqgRequi|[Type Description

properties no list of An optional list of property definitions for the Policy Type.
property
definitions

targets no strind] An optional list of valid Node Types or Group Types the Polid

Type can be applied to.

Note: This can be viewed by TOSCA Orchestrators as an im
relationship to the target nodes, but one that @® not have

operational lifecycle considerations. For example, if we were
name this as an explicit Relationship Type we might call this
G! LILX ASac2é 6y2RS 2NJ INE dzZLI0

triggers no list oftrigger An optional st of policy triggers for the Policy Type.

3.7.12.2 Grammar

Policy Types have the following grammar:

<policy type name >:

derived_from: < parent policy type name >

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 113 of 354

af f ec

2074

2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085

2086
2087

2088

2089
2090

2091
2092
2093
2094
2095

version: < version number >

metadata:

<map of string >

description: < policy description >
properties:

<property definitions >

targets: [<list_of valid_target types>]
triggers:

<list of trigger definitions >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

1 policy_type_name : represents the required symbolic name of the Policy Type being declared
as a string.
1 parent_policy_type name : represents the name (string) of the Policy Type this Policy Type
definition derives from (i .e., its fiparentodo type).
1 version_number : represents the optional TOSCA version number for the Policy Type.
1 policy_descrip tion :represents the optional description string for the corresponding
policy_type name .
1 property_definitions : represents the optional list of property definitions for the Policy Type.
1 list_of valid_target_types : represents the optional list of TOSCA types (i.e., Group or
Node Types) that are valid targets for this Policy Type.
1 list_of trigger_definitions : represents the optional list of trigger definitions for the policy.
3.7.12.3 Example
The following represents a Policy Type definition:
policy_types:
mycompany.mytypes.policies.placement.Container.Linux:
AAOAOEDPOEIT Kk -U AliPATURO bpiI AAAT AT O PI Il EAU ¢
derived_from: tosca.policies.Root
3.8 Template -specific definitions
The definitions in this section provide reusable modeling element grammars that are specific to the Node
or Relationship templates.
3.8.1 Capability assignment
A capability assignment allows node template authors to assign values to properties and attributes for a
named capability definition that is part of a Node Tem

3.8.1.1 Keynames

The following is the list of recognized keynames for a TOSCA capability assignment:

Keyname|[Requi|[Type Description

properties no list of An optional list of property definitions for the Capability definition.
property
assignments|

TOSCA-Simple-Profile-YAML-v1.2-0s

17 January 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 114 of 354

2096
2097

2098

2099
2100
2101
2102
2103

2104
2105

2106

2107

2108
2109
2110
2111

2112

Keyname|[Requi|[Type Description

attributes no list of An optional list of attribute definitions for the Capability definition.
attribute
assignments|

3.8.1.2 Grammar

Capability assignments have one of the following grammars:

<capability definition name >:
properties:
<property assignments >
attributes:

<attribute assignments >

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

9 capability_definition_name: represents the symbolic name of the capability as a string.

9 property_assignments : represents the optional list of property assignments for the capability
definition.

9 attribute_assignments : represents the optional list of attribute assignments for the capability
definition.

3.8.1.3 Example

The following example shows a capability assignment:
3.8.1.3.1 Notation example

node_templates:
some_node_tenplate:
capabilities:
some_capability:
properties:
limit: 100

3.8.2 Requirement assignment

A Requirement assignment allows template authors to provide either concrete names of TOSCA

templates or provide abstract selection criteria for providers to use to find matching TOSCA templates

that are used to fulfild]l a named requirementos decl ar e
3.8.2.1 Keynames

The following is the list of recognized keynames for a TOSCA requirement assignment:

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 115 of 354

2113
2114
2115

2116
2117

2118

2119
2120

2121
2122
2123
2124
2125

KeynamlRequi | Type Desrd pti on

capability no string The optional reserved keyname used to provide the name of either a:

1 Capability definitionwithin atarget node template that can
fulfill the requirement.

1 Capability Typehat the provider will use to select a type
compatibletarget node template to fulfill the requirement at
runtime.

node no string The optional reserved keyname used to identify the target node of a
relationship. specifically, it is used to provide either a:
1 Node Templatename that can fulfill the target node
requirement.
1 Node Typename that he provider will use to select a type
compatible node template to fulfill the requirement at runtime.

relationship | no string The optional reserved keyname used to provide the name of either a:

1 RelationshipTemplateto use to relate thesourcenode to the
(capability in the}arget node when fulfilling the requirement.

1 Relationship Typéhat the provider will use to select a type
compatible relationship template to relate treurcenode to
the target node atruntime.

node_filter no node filter The optional filter definition that TOSCA orchestrators or providers woy
use to select a typeompatibletarget node that can fulfill the associated
abstract requirement at runtime.

The following is the list of recognized keynames for a TOSCA requirement a s s i grelaienshipd s
keyname which is used when Property assignments need to be provided to inputs of declared interfaces
or their operations:

Keynam|lRequi | Type Description
type no string The optional reserved keyname used to provide the name of the
wSt A2y AaKALI ¢& L) T2 Nralatidhshiyas |j dzi
keyname.
properties no list of The optional reserved keyname used to reference declared (hamed)
interface interface definitions of the corresponding Relationship Type in order to
definitions provide Property assignments for these interface®perations of these
interfaces.

3.8.2.2 Grammar

Named requirement assignments have one of the following grammars:

3.8.2.2.1 Short notation:

The following single-line grammar may be used if only a concrete Node Template for the target node
needs to be declared in the requirement:

<requirement name >: < node template name >

This notation is only valid if the corresponding Requi |l
Node Type declares (at a minimum) a valid Capability Type which can be found in the declared target

Node Template. A valid capability definition always needs to be provided in the requirement declaration of

the source node to identify a specific capability definition in the target node the requirement will form a

TOSCA relationship with.

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 116 of 354

2126

2127
2128

2129
2130

2131
2132

2133

2134
2135
2136
2137
2138
2139
2140
2141
2142

2143

2144
2145
2146
2147
2148
2149
2150

3.8.2.2.2 Extended notation:

The following grammar would be used if the requirement assignment needs to provide more information
than just the Node Template name:

<requirement name >:

node: < node template name >| < node type name>

relationship: < relationship template name > | < relationship type name

>

capability: < capability symbolic nhame > | < capability type name >

node_filter:
<node filter definition

>

occurrences: [min_occurrences , max_occurrences |

38223Extended grammar with Property Assignment

Interfaces

The following additional multi-line grammar is provided for the relationship keyname in order to provide
new Property assignments for inputs of known Interface definitions of the declared Relationship Type.

<requirement_name >:
Other keynames omitte
relationship:

d for brevity

type: <relationship template name > | < relationship type name >

properties:

<property assignments >

interfaces:

<interface assignments >

Examples of uses for the extended requirement assignment grammar include:

1 The need to allow runtime selection of the target node based upon an abstract Node Type rather
than a concrete Node Template. This may include use of the node_filter keyname to provide
apability filtering information to fi

node and c
runtime.

1 The need to further clarify the concrete Relationship Template or abstract Relationship Type to

use when r

elating the source nodeods

requirement

1 The need to further clarify the concrete capability (symbolic) name or abstract Capability Type in
the target node to form a relationship between.
1 The need to (further) constrain the occurrences of the requirement in the instance model.

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

1 requirement_name:
1 node_template_name:

when relating the requ

1 capability_symbolic_name

represents the symbolic name of a requirement assignment as a string.
represents the optional name of a Node Template that contains the

capability this requirement will be fulfilled by.

1 relationship_template_name : represents the optional name of a Relationship Type to be used

irement appears to the capability in the target node.

type or named capability definition within the target Node Type or Template.

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

: represents the optional ordered list of specific, required capability

17 January 2019
Page 117 of 354

nd

t

(0]

t

2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165

2166

2167

2168
2169
2170

2171
2172
2173

2174
2175

2176
2177
2178
2179

1 node_type name: represents the optional name of a TOSCA Node Type the associated named
requirement can be fulfilled by. This must be a type that is compatible with the Node Type

declaredonthemat ching requirement (same symbolic

is based upon.

1 relationship_type name

compatible with the Capability Type in the target node.
: represents the optional list of property value assignments for the

1 property_assignments
declared relationship.
1 interface_assignments

1 capability_type_name

1 node_filter_definition

3.8.2.3 Examples

: represents the optional name of a Relationship Type that is

: represents the optional list of interface definitions for the declared
relationship used to provide property assignments on inputs of interfaces and operations.

: represents the optional name of a Capability Type definition within the
target Node Type this requirement needs to form a relationship with.
: represents the optional node filter TOSCA orchestrators would use
to fulfill the requirement for selecting a target node. Note that this SHALL only be valid if the node
k e yname éisaNodelType and is invalid if it is a Node Template.

3.8.2.3.1 Example 1 T Abstract hosting requirement on a Node Type

A web applicat

type WebServer.

i on my dcgplicatiennrmode aamplaten a dne a f VdabApplieation
decl ares a r eq hdstrbe mréeat to bedulfiled by any node that derives from the node

Example of a requirement fulfilled by a specific web server node template

node_templates:

my_application_node_template:
type: tosca.nodes.WebApplication

requirements:
- host:

node: tosca.nodes.WebServer

In this case,

target of the requirement in the

t he Webdpplicatiam mphicladreadysleclargspghe Relatonship Type
HostedOn to use to relate to the target node and the Capability Type of Container to be the

target node.

specific

3.8.2.3.2 Example 2 - Requirement with Node Template and a custom Relatio nship

Type

This exampl e i

s similar to the previ ofMAOAKADGBS ;

a requirement for a connection to a database endpoint (Endpoint.Database) Capability Type in a named
node template (my_database). However, the connection requires a custom Relationship Type
(my.types.CustomDbConnection 6) decl ar ed orelatienship ey name

Example of a (database) requirement that is fulfilled by a node template named

¢ 2i UmMAAOAAAOA:t

my_application_node_template:

requirements:

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

0

AOO Al OldatabadsdcdribézodreldiondhpO OT |

17 January 2019
Page 118 of 354

name) t}

howev

2180
2181

2182
2183
2184

2185

2186
2187
2188
2189

2190
2191

- database:

node: my_database
capability: Endpoint.Database
relationship: my.types.CustomDbConnection

3.8.2.3.3 Example 3 - Requirement for a Compute node wi

criteria (filter)
¢CKAE SEFYLXS aKz2ga
definition that further constrains TOSCA orchestrators to include additional properties and capabilities
on the target node when fulfilling the requirement.

node_templates:

mysql:

type: tosc a.nodes.DBMS.MySQL

properties:

omitted here for brevity

requirements:
- host:

node: tosca.nodes.Compute
node_filter:
capabilities:
- host:
properties:
- 0S:
properties:

Knase (NSS lj SIEA iNSyiugigle Thbnafiftend O i

- num_cpus: {in_range:[1,4]}
- mem_size: { greater_or_equal: 512 MB }

- architecture: {

equal: x86_64 }

- type: { equal: linux }
- distribution: { equal: ubuntu }
- mytypes.capabilities.compute.encryption:

properties:

- algorithm: { equal: aes }

- keylength: {

3.8.3 Node Template

A Node Template specifies the occurrence of a manageable software component as part of an

applicationos

valid_values: [128, 256] }

th additional selection

topology model which i s demplateriseamn i

instance of a specified Node Type and can provide customized properties, constraints or operations
which override the defaults provided by its Node Type and its implementations.

3.8.3.1 Keynames

The following is the list of recognized keynames for a TOSCA Node Template definition:

n

Keynam{Requi|[Type Description

type yes string The required name of the Node Type the Node Template is base
upon.

description no description An optional description for the Node Template.

metadata no mapof string Defines a section used to declare additional metadataritdion.

TOSCA-Simple-Profile-YAML-v1.2-0s
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

17 January 2019
Page 119 of 354

a

W

TOS

2192

Keynam{Requi|Type Description
directives no stringd] An optional list of directive values to provide processing instructi
to orchestrators and tooling.
properties no list of An optional list of property value assignments for the Node
property Template.
assignments
attributes no list of Anoptional list of attribute value assignments for the Node
attribute Template.
assignments
requirements | no list of An optionalsequencedist of requirement assignments for the Nod
requirement Template.
assignments
capabilities no list of An optional list of capability assignments for the Node Template.
capability
assignments
interfaces no list of An optional list of named interface definitions for the Node
interface definitions | Template.
artifacts no list of An optional list of namedrtifact definitions for the Node Template
artifact definitions
node_filter no node filter The optional filter definition that TOSCA orchestrators would use|
select the correct target node. This keyname is only valid if the
directive KF & GKS @I tdz2S 2F aasStsSo
copy no string The optional (symbolic) name of another node template to copy i

(all keynames and values) and use as a basis for this node temp

3.8.3.2 Grammar

<node template name >:

type: < node type name>

description: <
directives: [<

metadata:

<map of string >

properties:

node template description >

directives >]

<property assignments >

attributes:

<attribute assignments >

requirements:
- <requirement assignments

capabilities:
<capability assignments >

interfaces:

<interface definitions >

artifacts:

TOSCA-Simple-Profile-YAML-v1.2-0s

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved.

>

17 January 2019
Page 120 of 354

<artifact definitions >

node_filter:
<node filter definition >

copy: <source_node_template_name>

2193 In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

2194 1 node_template_name : represents the required symbolic name of the Node Template being
2195 declared.

2196 1 node_type name: represents the name of the Node Type the Node Template is based upon.
2197 1 node_template_description : represents the optional description string for Node Template.
2198 91 directives :represents the optional list of processing instruction keywords (as strings) for use by
2199 tooling and orchestrators.

2200 1 property_assignments : represents the optional list of property assignments for the Node

2201 Template that provide values for properties defined in its declared Node Type.

2202 9 attribute_assignments : represents the optional list of attribute assignments for the Node
2203 Template that provide values for attributes defined in its declared Node Type.

2204 1 requirement_assignments : represents the optional sequenced list of requirement assignments
2205 for the Node Template that allow assignment of type-compatible capabilities, target nodes,

2206 relationships and target (node filters) for use when fulfilling the requirement at runtime.

2207 1 capability_assignments : represents the optional list of capability assignments for the Node
2208 Template that augment those provided by its declared Node Type.

2209 1 interface_definitions : represents the optional list of interface definitions for the Node

2210 Template that augment those provided by its declared Node Type.

2211 9 artifact_definitions : represents the optional list of artifact definitions for the Node Template
2212 that augment those provided by its declared Node Type.

2213 1 node_filter_definition : represents the optional node filter TOSCA orchestrators would use
2214 for selecting a matching node template.

2215 1 source_node_template_name : represents the optional (symbolic) name of another node

2216 template to copy into (all keynames and values) and use as a basis for this node template.

2217 3.8.3.3 Additional requirements

2218 1 The node_filter keyword (and supporting grammar) SHALL only be valid if the Node Template
2219 has adirective keyname wi t h sdlebtableva |l sieet 0of A

2220 1 The source node template provided as a value on the copy keyname MUST NOT itself use the
2221 copy keyname (i.e., it must itself be a complete node template description and not copied from
2222 another node template).

2223 3.8.3.4 Example

node_templates:
mysq|l:
type: tosca.nodes.DBMS.MySQL
properties:
root_password: { get_input: my_mysql_rootpw }
port: { get_input: my_mysql_port }

TOSCA-Simple-Profile-YAML-v1.2-0s 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 121 of 354

