
TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 1 of 354

TOSCA Simple Profile in YAML Version 1.2

OASIS Standard

17 January 2019

Specification URIs
This version :

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-
YAML-v1.2-os.pdf (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-
YAML-v1.2-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-
YAML-v1.2-os.docx

Previous version:
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-
Profile-YAML-v1.2-csd01.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-
Profile-YAML-v1.2-csd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-
Profile-YAML-v1.2-csd01.docx

Latest version:
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-
YAML-v1.2.pdf (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-
YAML-v1.2.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-
YAML-v1.2.docx

Technical Committee:
OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC

Chairs:
Paul Lipton (paul.lipton@ca.com), CA Technologies
Simon Moser (smoser@de.ibm.com), IBM

Editors:
Matt Rutkowski (mrutkows@us.ibm.com), IBM
Luc Boutier (luc.boutier@fastconnect.fr), FastConnect
Chris Lauwers (lauwers@ubicity.com), Individual Member

Related work:
This specification replaces or supersedes:

¶ TOSCA Simple Profile in YAML Version 1.1. Edited by Matt Rutkowski and Luc Boutier.
Latest version: http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-
Simple-Profile-YAML-v1.1.html.

¶ TOSCA Simple Profile in YAML Version 1.0. Edited by Derek Palma, Matt Rutkowski, and
Thomas Spatzier. Latest version: http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html.

This specification is related to:

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.docx
https://www.oasis-open.org/committees/tosca/
mailto:paul.lipton@ca.com
http://www.ca.com/
mailto:smoser@de.ibm.com
http://www.ibm.com/
mailto:mrutkows@us.ibm.com
http://www.ibm.com/
mailto:luc.boutier@fastconnect.fr
http://www.fastconnect.fr/
mailto:lauwers@ubicity.com
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 2 of 354

¶ Topology and Orchestration Specification for Cloud Applications Version 1.0. Edited by Derek
Palma and Thomas Spatzier. 25 November 2013. OASIS Standard. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html.

Declared XML namespace :

¶ http://docs.oasis-open.org/tosca/ns/simple/yaml/1.2

Abstract:
This document defines a simplified profile of the TOSCA version 1.0 specification in a YAML
rendering which is intended to simplify the authoring of TOSCA service templates. This profile
defines a less verbose and more human-readable YAML rendering, reduced level of indirection
between different modeling artifacts as well as the assumption of a base type system.

Status:
This document was last revised or approved by the membership of OASIS on the above date.
The level of approval is also listed above. Check the ñLatest versionò location noted above for
possible later revisions of this document. Any other numbered Versions and other technical work
produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca#technical.

TC members should send comments on this specification to the TCôs email list. Others should
send comments to the TCôs public comment list, after subscribing to it by following the
instructions at the ñSend A Commentò button on the TCôs web page at https://www.oasis-
open.org/committees/tosca/.

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the
mode chosen when the Technical Committee was established. For information on whether any
patents have been disclosed that may be essential to implementing this specification, and any
offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TCôs
web page (https://www.oasis-open.org/committees/tosca/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for
this Work Product is provided in separate plain text files. In the event of a discrepancy between
any such plain text file and display content in the Work Product's prose narrative document(s),
the content in the separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[TOSCA-Simple -Profile -YAML-v1.2]

TOSCA Simple Profile in YAML Version 1.2. Edited by Matt Rutkowski, Luc Boutier, and Chris
Lauwers. 17 January 2019. OASIS Standard. https://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html. Latest version:
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-
YAML-v1.2.html.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/ns/simple/yaml/1.2
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 3 of 354

Notices

Copyright © OASIS Open 2019. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 4 of 354

Table of Contents

Table of Examples .. 7

Table of Figures .. 7

1 Introduction ... 8

1.0 IPR Policy ... 8

1.1 Objective ... 8

1.2 Summary of key TOSCA concepts ... 8

1.3 Implementations ... 9

1.4 Terminology .. 9

1.5 Notational Conventions ... 9

1.6 Normative References .. 9

1.7 Non-Normative References .. 10

1.8 Glossary .. 10

2 TOSCA by example .. 12

2.1 A ñhello worldò template for TOSCA Simple Profile in YAML ... 12

2.2 TOSCA template for a simple software installation .. 14

2.3 Overriding behavior of predefined node types.. 16

2.4 TOSCA template for database content deployment ... 17

2.5 TOSCA template for a two-tier application ... 19

2.6 Using a custom script to establish a relationship in a template .. 22

2.7 Using custom relationship types in a TOSCA template .. 23

2.8 Defining generic dependencies between nodes in a template ... 25

2.9 Describing abstract requirements for nodes and capabilities in a TOSCA template........................ 26

2.10 Using node template substitution for model composition ... 30

2.11 Using node template substitution for chaining subsystems .. 34

2.12 Grouping node templates ... 40

2.13 Using YAML Macros to simplify templates ... 43

2.14 Passing information as inputs to Nodes and Relationships ... 44

2.15 Topology Template Model versus Instance Model ... 45

2.16 Using attributes implicitly reflected from properties .. 46

3 TOSCA Simple Profile definitions in YAML .. 48

3.1 TOSCA Namespace URI and alias .. 48

3.2 Using Namespaces ... 49

3.3 Parameter and property types .. 52

3.4 Normative values .. 61

3.5 TOSCA Metamodel ... 63

3.6 Reusable modeling definitions .. 63

3.7 Type-specific definitions ... 96

3.8 Template-specific definitions .. 114

3.9 Topology Template definition.. 132

3.10 Service Template definition .. 140

4 TOSCA functions .. 153

4.1 Reserved Function Keywords ... 153

4.2 Environment Variable Conventions .. 153

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 5 of 354

4.3 Intrinsic functions .. 156

4.4 Property functions ... 158

4.5 Attribute functions ... 160

4.6 Operation functions ... 162

4.7 Navigation functions ... 162

4.8 Artifact functions ... 163

4.9 Context-based Entity names (global) ... 165

5 TOSCA normative type definitions ... 166

5.1 Assumptions ... 166

5.2 TOSCA normative type names ... 166

5.3 Data Types.. 166

5.4 Artifact Types .. 178

5.5 Capabilities Types .. 181

5.6 Requirement Types .. 192

5.7 Relationship Types ... 192

5.8 Interface Types ... 195

5.9 Node Types... 201

5.10 Group Types ... 213

5.11 Policy Types ... 214

6 TOSCA Cloud Service Archive (CSAR) format .. 216

6.1 Overall Structure of a CSAR ... 216

6.2 TOSCA Meta File .. 216

6.3 Archive without TOSCA-Metadata .. 217

7 TOSCA workflows .. 218

7.1 Normative workflows ... 218

7.2 Declarative workflows ... 218

7.3 Imperative workflows .. 222

7.4 Making declarative more flexible and imperative more generic ... 237

8 TOSCA networking ... 240

8.1 Networking and Service Template Portability ... 240

8.2 Connectivity semantics ... 240

8.3 Expressing connectivity semantics ... 241

8.4 Network provisioning .. 243

8.5 Network Types .. 247

8.6 Network modeling approaches ... 253

9 Non-normative type definitions ... 258

9.1 Artifact Types .. 258

9.2 Capability Types ... 258

9.3 Node Types... 260

10 Component Modeling Use Cases ... 264

11 Application Modeling Use Cases .. 271

11.1 Use cases ... 271

12 TOSCA Policies .. 319

12.1 A declarative approach ... 319

12.2 Consideration of Event, Condition and Action .. 319

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 6 of 354

12.3 Types of policies ... 319

12.4 Policy relationship considerations .. 320

12.5 Use Cases .. 321

13 Artifact Processing and creating portable Service Templates ... 324

13.1 Artifacts Processing .. 324

13.2 Dynamic Artifacts .. 328

13.3 Discussion of Examples .. 328

13.4 Artifact Types and Metadata ... 335

14 Abstract nodes and target node filters matching .. 336

14.1 Reminder on types .. 336

14.2 Orchestrator catalogs ... 336

14.3 Abstract node template matching ... 337

14.4 Target node filter matching ... 342

14.5 Post matching properties .. 347

15 Conformance .. 348

15.1 Conformance Targets ... 348

15.2 Conformance Clause 1: TOSCA YAML service template .. 348

15.3 Conformance Clause 2: TOSCA processor .. 348

15.4 Conformance Clause 3: TOSCA orchestrator .. 348

15.5 Conformance Clause 4: TOSCA generator .. 349

15.6 Conformance Clause 5: TOSCA archive .. 349

Appendix A. Known Extensions to TOSCA v1.0 ... 350

A.1 Model Changes .. 350

A.2 Normative Types .. 350

Appendix B. Acknowledgments .. 352

Appendix C. Revision History.. 354

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 7 of 354

Table of Examples

Example 1 - TOSCA Simple "Hello World" ... 12
Example 2 - Template with input and output parameter sections ... 13
Example 3 - Simple (MySQL) software installation on a TOSCA Compute node 15
Example 4 - Node Template overriding its Node Type's "configure" interface ... 16
Example 5 - Template for deploying database content on-top of MySQL DBMS middleware 17
Example 6 - Basic two-tier application (web application and database server tiers) 20
Example 7 - Providing a custom relationship script to establish a connection ... 22
Example 8 - A web application Node Template requiring a custom database connection type 24
Example 9 - Defining a custom relationship type .. 25
Example 10 - Simple dependency relationship between two nodes... 25
Example 11 - An abstract "host" requirement using a node filter ... 27
Example 12 - An abstract Compute node template with a node filter ... 28
Example 13 - An abstract database requirement using a node filter .. 29
Example 14 - An abstract database node template .. 30
Example 15 - Referencing an abstract database node template .. 32
Example 16 - Using substitution mappings to export a database implementation 33
Example 17 - Declaring a transaction subsystem as a chain of substitutable node templates 35
Example 18 - Defining a TransactionSubsystem node type ... 37
Example 19 - Implementation of a TransactionSubsytem node type using substitution mappings............ 38
Example 20 - Grouping Node Templates for possible policy application ... 40
Example 21 - Grouping nodes for anti-colocation policy application .. 41
Example 22 - Using YAML anchors in TOSCA templates .. 43
Example 23 - Properties reflected as attributes .. 46

Table of Figures

Figure 1: Using template substitution to implement a database tier ... 31
Figure 2: Substitution mappings ... 33
Figure 3: Chaining of subsystems in a service template .. 35
Figure 4: Defining subsystem details in a service template .. 38
Figure-5: Typical 3-Tier Network ... 244
Figure-6: Generic Service Template ... 253
Figure-7: Service template with network template A .. 254
Figure-8: Service template with network template B .. 254

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 8 of 354

1 Introduction 1

1.0 IPR Policy 2

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode 3
chosen when the Technical Committee was established. For information on whether any patents have 4
been disclosed that may be essential to implementing this specification, and any offers of patent licensing 5
terms, please refer to the Intellectual Property Rights section of the TCôs web page (https://www.oasis-6
open.org/committees/tosca/ipr.php). 7

1.1 Objective 8

The TOSCA Simple Profile in YAML specifies a rendering of TOSCA which aims to provide a more 9
accessible syntax as well as a more concise and incremental expressiveness of the TOSCA DSL in order 10
to minimize the learning curve and speed the adoption of the use of TOSCA to portably describe cloud 11
applications. 12

This proposal describes a YAML rendering for TOSCA. YAML is a human friendly data serialization 13
standard (http://yaml.org/) with a syntax much easier to read and edit than XML. As there are a number of 14
DSLs encoded in YAML, a YAML encoding of the TOSCA DSL makes TOSCA more accessible by these 15
communities. 16

This proposal prescribes an isomorphic rendering in YAML of a subset of the TOSCA v1.0 XML 17
specification ensuring that TOSCA semantics are preserved and can be transformed from XML to YAML 18
or from YAML to XML. Additionally, in order to streamline the expression of TOSCA semantics, the YAML 19
rendering is sought to be more concise and compact through the use of the YAML syntax. 20

1.2 Summary of key TOSCA concepts 21

The TOSCA metamodel uses the concept of service templates to describe cloud workloads as a topology 22
template, which is a graph of node templates modeling the components a workload is made up of and as 23
relationship templates modeling the relations between those components. TOSCA further provides a type 24
system of node types to describe the possible building blocks for constructing a service template, as well 25
as relationship type to describe possible kinds of relations. Both node and relationship types may define 26
lifecycle operations to implement the behavior an orchestration engine can invoke when instantiating a 27
service template. For example, a node type for some software product might provide a ócreateô operation 28
to handle the creation of an instance of a component at runtime, or a óstartô or óstopô operation to handle a 29
start or stop event triggered by an orchestration engine. Those lifecycle operations are backed by 30
implementation artifacts such as scripts or Chef recipes that implement the actual behavior. 31

An orchestration engine processing a TOSCA service template uses the mentioned lifecycle operations to 32
instantiate single components at runtime, and it uses the relationship between components to derive the 33
order of component instantiation. For example, during the instantiation of a two-tier application that 34
includes a web application that depends on a database, an orchestration engine would first invoke the 35
ócreateô operation on the database component to install and configure the database, and it would then 36
invoke the ócreateô operation of the web application to install and configure the application (which includes 37
configuration of the database connection). 38

The TOSCA simple profile assumes a number of base types (node types and relationship types) to be 39
supported by each compliant environment such as a óComputeô node type, a óNetworkô node type or a 40
generic óDatabaseô node type. Furthermore, it is envisioned that a large number of additional types for use 41
in service templates will be defined by a community over time. Therefore, template authors in many cases 42
will not have to define types themselves but can simply start writing service templates that use existing 43
types. In addition, the simple profile will provide means for easily customizing and extending existing 44
types, for example by providing a customized ócreateô script for some software. 45

https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/committees/tosca/ipr.php
http://yaml.org/

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 9 of 354

1.3 Implementations 46

Different kinds of processors and artifacts qualify as implementations of the TOSCA simple profile. Those 47
that this specification is explicitly mentioning or referring to fall into the following categories: 48

¶ TOSCA YAML service template (or ñservice templateò): A YAML document artifact containing a 49

(TOSCA) service template (see sections 3.9 ñService template definitionò) that represents a Cloud 50

application. (see sections 3.8 ñTopology template definitionò) 51

¶ TOSCA processor (or ñprocessorò): An engine or tool that is capable of parsing and interpreting a 52

TOSCA service template for a particular purpose. For example, the purpose could be validation, 53

translation or visual rendering. 54

¶ TOSCA orchestrator (also called orchestration engine): A TOSCA processor that interprets a 55

TOSCA service template or a TOSCA CSAR in order to instantiate and deploy the described 56

application in a Cloud. 57

¶ TOSCA generator: A tool that generates a TOSCA service template. An example of generator is 58

a modeling tool capable of generating or editing a TOSCA service template (often such a tool 59

would also be a TOSCA processor). 60

¶ TOSCA archive (or TOSCA Cloud Service Archive, or ñCSARò): a package artifact that contains a 61

TOSCA service template and other artifacts usable by a TOSCA orchestrator to deploy an 62

application. 63

The above list is not exclusive. The above definitions should be understood as referring to and 64
implementing the TOSCA simple profile as described in this document (abbreviated here as ñTOSCAò for 65
simplicity). 66

1.4 Terminology 67

The TOSCA language introduces a YAML grammar for describing service templates by means of 68
Topology Templates and towards enablement of interaction with a TOSCA instance model perhaps by 69
external APIs or plans. The primary currently is on design time aspects, i.e. the description of services to 70
ensure their exchange between Cloud providers, TOSCA Orchestrators and tooling. 71

 72

The language provides an extension mechanism that can be used to extend the definitions with additional 73
vendor-specific or domain-specific information. 74

1.5 Notational Conventions 75

The key words ñMUSTò, ñMUST NOTò, ñREQUIREDò, ñSHALLò, ñSHALL NOTò, ñSHOULDò, ñSHOULD 76
NOTò, ñRECOMMENDEDò, ñMAYò, and ñOPTIONALò in this document are to be interpreted as described 77
in [RFC2119]. 78

1.5.1 Notes 79

¶ Sections that are titled ñExampleò throughout this document are considered non-normative. 80

1.6 Normative References 81

Reference Tag Description

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[TOSCA-1.0] Topology and Orchestration Topology and Orchestration Specification for
Cloud Applications (TOSCA) Version 1.0, an OASIS Standard, 25

http://www.ietf.org/rfc/rfc2119.txt

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 10 of 354

November 2013, http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-
v1.0-os.pdf

[YAML -1.2] YAML, Version 1.2, 3rd Edition, Patched at 2009-10-01, Oren Ben-Kiki,
Clark Evans, Ingy döt Net http://www.yaml.org/spec/1.2/spec.html

[YAML -TS-1.1] Timestamp Language-Independent Type for YAML Version 1.1, Working
Draft 2005-01-18, http://yaml.org/type/timestamp.html

1.7 Non-Normative References 82

Reference Tag Description

[Apache] Apache Server, https://httpd.apache.org/

[Chef] Chef, https://wiki.opscode.com/display/chef/Home

[NodeJS] Node.js, https://nodejs.org/

[Puppet] Puppet, http://puppetlabs.com/

[WordPress] WordPress, https://wordpress.org/

[Maven -
Version]

Apache Maven version policy draft:

https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy

[JSON-Spec] The JSON Data Interchange Format (ECMA and IETF versions):

¶ http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-
404.pdf

¶ https://tools.ietf.org/html/rfc7158

[JSON-Schema] JSON Schema specification:

¶ http://json-schema.org/documentation.html

[XMLSpec]

XML Specification, W3C Recommendation, February 1998,

http://www.w3.org/TR/1998/REC-xml-19980210

[XML Schema
Part 1]

XML Schema Part 1: Structures, W3C Recommendation, October 2004,

http://www.w3.org/TR/xmlschema-1/

[XML Schema
Part 2]

XML Schema Part 2: Datatypes, W3C Recommendation, October 2004,

http://www.w3.org/TR/xmlschema-2/

1.8 Glossary 83

The following terms are used throughout this specification and have the following definitions when used in 84
context of this document. 85

Term Definition

Instance Model A deployed service is a running instance of a Service Template. More precisely,
the instance is derived by instantiating the Topology Template of its Service
Template, most often by running a special plan defined for the Service
Template, often referred to as build plan.

Node Template A Node Template specifies the occurrence of a software component node as
part of a Topology Template. Each Node Template refers to a Node Type that
defines the semantics of the node (e.g., properties, attributes, requirements,
capabilities, interfaces). Node Types are defined separately for reuse purposes.

Relationship
Template

A Relationship Template specifies the occurrence of a relationship between
nodes in a Topology Template. Each Relationship Template refers to a
Relationship Type that defines the semantics relationship (e.g., properties,

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://www.yaml.org/spec/1.2/spec.html
http://yaml.org/type/timestamp.html
https://httpd.apache.org/
https://wiki.opscode.com/display/chef/Home
https://nodejs.org/
http://puppetlabs.com/
https://wordpress.org/
https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://tools.ietf.org/html/rfc7158

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 11 of 354

attributes, interfaces, etc.). Relationship Types are defined separately for reuse
purposes.

Service Template A Service Template is typically used to specify the ñtopologyò (or structure) and
ñorchestrationò (or invocation of management behavior) of IT services so that
they can be provisioned and managed in accordance with constraints and
policies.

Specifically, TOSCA Service Templates optionally allow definitions of a TOSCA
Topology Template, TOSCA types (e.g., Node, Relationship, Capability, Artifact,
etc.), groupings, policies and constraints along with any input or output
declarations.

Topology Model The term Topology Model is often used synonymously with the term Topology
Template with the use of ñmodelò being prevalent when considering a Service
Templateôs topology definition as an abstract representation of an application or
service to facilitate understanding of its functional components and by
eliminating unnecessary details.

Topology Template A Topology Template defines the structure of a service in the context of a
Service Template. A Topology Template consists of a set of Node Template
and Relationship Template definitions that together define the topology model of
a service as a (not necessarily connected) directed graph.

The term Topology Template is often used synonymously with the term
Topology Model. The distinction is that a topology template can be used to
instantiate and orchestrate the model as a reusable patt ern and includes all
details necessary to accomplish it.

Abstract Node
Template

An abstract node template is a node that doesnôt define an implementation
artifact for the create operation of the TOSCA lifecycle.

The create operation can be delegated to the TOSCA Orchestrator.

Being delegated an abstract node may not be able to execute user provided
implementation artifacts for operations post create (for example configure, start
etc.).

No-Op Node
Template

A No-Op node template is a specific abstract node template that does not
specify any implementation for any operation.

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 12 of 354

2 TOSCA by example 86

This non -normative section contains several sections that show how to model applications with TOSCA 87
Simple Profile using YAML by example starting with a ñHello Worldò template up through examples that 88
show complex composition modeling. 89

2.1 A ñhello worldò template for TOSCA Simple Profile in YAML 90

As mentioned before, the TOSCA simple profile assumes the existence of a small set of pre-defined, 91
normative set of node types (e.g., a óComputeô node) along with other types, which will be introduced 92
through the course of this document, for creating TOSCA Service Templates. It is envisioned that many 93
additional node types for building service templates will be created by communities some may be 94
published as profiles that build upon the TOSCA Simple Profile specification. Using the normative TOSCA 95
Compute node type, a very basic ñHello Worldò TOSCA template for deploying just a single server would 96
look as follows: 97

Example 1 - TOSCA Simple "Hello World" 98

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with predefined properties.

topology_template:

 node_templates:

 my_server:

 type: tosca.nodes.Compute

 capabilities:

 # Host container properties

 host:

 properties:

 num_cpus: 1

 disk_size: 10 GB

 mem_size: 4096 MB

 # Guest Operating System properties

 os:

 properties:

 # host Operating System image properties

 architecture: x86_64

 type: linux

 distribution: rhel

 version: 6.5

The template above contains a very simple topology template with only a single óComputeô node template 99
that declares some basic values for properties within two of the several capabilities that are built into the 100
Compute node type definition. All TOSCA Orchestrators are expected to know how to instantiate a 101
Compute node since it is normative and expected to represent a well-known function that is portable 102
across TOSCA implementations. This expectation is true for all normative TOSCA Node and 103
Relationship types that are defined in the Simple Profile specification. This means, with TOSCAôs 104

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 13 of 354

approach, that the application developer does not need to provide any deployment or implementation 105
artifacts that contain code or logic to orchestrate these common software components. TOSCA 106
orchestrators simply select or allocate the correct node (resource) type that fulfills the application 107
topologies requirements using the properties declared in the node and its capabilities. 108

In the above example, the ñhost ò capability contains properties that allow application developers to 109

optionally supply the number of CPUs, memory size and disk size they believe they need when the 110
Compute node is instantiated in order to run their applications. Similarly, the ñosò capability is used to 111

provide values to indicate what host operating system the Compute node should have when it is 112
instantiated. 113

 114

The logical diagram of the ñhello worldò Compute node would look as follows: 115

 116

 117

As you can see, the Compute node also has attributes and other built-in capabilities, such as Bindable 118

and Endpoint, each with additional properties that will be discussed in other examples later in this 119

document. Although the Compute node has no direct properties apart from those in its capabilities, other 120
TOSCA node type definitions may have properties that are part of the node type itself in addition to 121
having Capabilities. TOSCA orchestration engines are expected to validate all property values provided 122
in a node template against the property definitions in their respective node type definitions referenced in 123
the service template. The tosca_definitions_version keyname in the TOSCA service template 124

identifies the versioned set of normative TOSCA type definitions to use for validating those types defined 125
in the TOSCA Simple Profile including the Compute node type. Specifically, the value 126
tosca_simple_yaml_1_0 indicates Simple Profile v1.0.0 definitions would be used for validation. Other 127

type definitions may be imported from other service templates using the impor t keyword discussed later. 128

2.1.1 Requesting input parameters and providing output 129

Typically, one would want to allow users to customize deployments by providing input parameters instead 130
of using hardcoded values inside a template. In addition, output values are provided to pass information 131
that perhaps describes the state of the deployed template to the user who deployed it (such as the private 132
IP address of the deployed server). A refined service template with corresponding inputs and outputs 133

sections is shown below. 134

Example 2 - Template with input and output parameter sections 135

tosca_definitions_version: tosca_simple_yaml_1_0

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 14 of 354

description: Template for deploying a single server with predefined properties.

topology_template:

 inputs :

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 node_templates:

 my_server:

 type: tosca.nodes.Compute

 capabilities:

 # Host container properties

 host:

 properties:

 # Compute properties

 num_cpus: { get_input: cpus }

 mem_size: 2048 MB

 disk_size: 10 GB

 outputs :

 server_ip:

 description: The private IP address of the provisioned server.

 value: { get_attribute: [my_server, private_address] }

The inputs and outputs sections are contained in the topology_template element of the TOSCA 136

template, meaning that they are scoped to node templates within the topology template. Input parameters 137
defined in the inputs section can be assigned to properties of node template within the containing 138
topology template; output parameters can be obtained from attributes of node templates within the 139
containing topology template. 140

Note that the inputs section of a TOSCA template allows for defining optional constraints on each input 141

parameter to restrict possible user input. Further note that TOSCA provides for a set of intrinsic functions 142
like get_input , get_property or get_attribute to reference elements within the template or to 143

retrieve runtime values. 144

2.2 TOSCA template for a simple software installation 145

Software installations can be modeled in TOSCA as node templates that get related to the node template 146
for a server on which the software would be installed. With a number of existing software node types (e.g. 147
either created by the TOSCA work group or a community) template authors can just use those node types 148
for writing service templates as shown below. 149

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 15 of 354

Example 3 - Simple (MySQL) software installation on a TOSCA Compute node 150

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with MySQL software on top.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 root_password: { get_input: my_mysql_rootpw }

 port: { get_input: my_mysql_port }

 requirements:

 - host: db_server

 db_server:

 type: tosca.nodes.Compute

 capabilities:

 # omitted here for brevity

The example above makes use of a node type tosca.nodes.DBMS.MyS QL for the mysql node template to 151

install MySQL on a server. This node type allows for setting a property root_password to adapt the 152

password of the MySQL root user at deployment. The set of properties and their schema has been 153
defined in the node type definition. By means of the get_input function, a value provided by the user at 154

deployment time is used as value for the root_password property. The same is true for the port 155

property. 156

The mysql node template is related to the db_server node template (of type tosca.nodes.Compute) via 157

the requirements section to indicate where MySQL is to be installed. In the TOSCA metamodel, nodes 158

get related to each other when one node has a requirement against some feature provided by another 159
node. What kinds of requirements exist is defined by the respective node type. In case of MySQL, which 160
is software that needs to be installed or hosted on a compute resource, the underlying node type named 161
DBMS has a predefined requirement called host , which needs to be fulfilled by pointing to a node template 162

of type tosca.nodes.Compute . 163

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 16 of 354

The logical relationship between the mysql node and its host db_server node would appear as follows: 164

 165

Within the requirements section, all entries simple entries are a map which contains the symbolic name 166

of a requirement definition as the key and the identifier of the fulfilling node as the value. The value is 167
essentially the symbolic name of the other node template; specifically, or the example above, the host 168

requirement is fulfilled by referencing the db_server node template. The underlying TOSCA DBMS node 169

type already defines a complete requirement definition for the host requirement of type Container and 170

assures that a HostedOn TOSCA relationship will automatically be created and will only allow a valid 171

target host node is of type Compute. This approach allows the template author to simply provide the 172

name of a valid Compute node (i.e., db_server) as the value for the mysql nodeôs host requirement and 173

not worry about defining anything more complex if they do not want to. 174

2.3 Overriding behavior of predefined node types 175

Node types in TOSCA have associated implementations that provide the automation (e.g. in the form of 176
scripts such as Bash, Chef or Python) for the normative lifecycle operations of a node. For example, the 177
node type implementation for a MySQL database would associate scripts to TOSCA node operations like 178
configure , start , or stop to manage the state of MySQL at runtime. 179

Many node types may already come with a set of operational scripts that contain basic commands that 180
can manage the state of that specific node. If it is desired, template authors can provide a custom script 181
for one or more of the operation defined by a node type in their node template which will override the 182
default implementation in the type. The following example shows a mysql node template where the 183

template author provides their own configure script: 184

Example 4 - Node Template overriding its Node Type's "configure" interface 185

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with MySQL software on top.

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 17 of 354

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 root_password: { get_input: my_mysql_rootpw }

 port: { get_input: my_mysql_port }

 requirements:

 - host: db_server

 interfaces:

 Standard:

 configure : scripts/my_own_configure.sh

 db_server:

 type: tosca.nodes.Compute

 capabilities:

 # omitted here for brevity

In the example above, the my_own_configure.sh script is provided for the configure operation of the 186

MySQL node typeôs Standard lifecycle interface. The path given in the example above (i.e., óscripts/ô) is 187

interpreted relative to the template file, but it would also be possible to provide an absolute URI to the 188
location of the script. 189

In other words, operations defined by node types can be thought of as ñhooksò into which automation can 190
be injected. Typically, node type implementations provide the automation for those ñhooksò. However, 191
within a template, custom automation can be injected to run in a hook in the context of the one, specific 192
node template (i.e. without changing the node type). 193

2.4 TOSCA template for database content deployment 194

In the Example 4, shown above, the deployment of the MySQL middleware only, i.e. without actual 195
database content was shown. The following example shows how such a template can be extended to 196
also contain the definition of custom database content on-top of the MySQL DBMS software. 197

Example 5 - Template for deploying database content on-top of MySQL DBMS middleware 198

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying MySQL and database content.

topology_template:

 inputs:

 # omitted here for brevity

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 18 of 354

 node_templates:

 my_db:

 type: tosca.nodes.Database.MySQL

 properties:

 name: { get_input: database_name }

 user: { get_input: database_user }

 password: { get_input: database_password }

 port: { get_input: database_port }

 artifacts:

 db_content :

 file: files/my_db_content.txt

 type: tosca.artifacts.File

 requirements:

 - host: mysql

 interfaces:

 Standard:

 create:

 implementation: db_create.sh

 inputs:

 ʢ #ÏÐÙ $" ÆÉÌÅ ÁÒÔÉÆÁÃÔ ÔÏ ÓÅÒÖÅÒƦÓ ÓÔÁÇÉÎÇ ÁÒÅÁ

 db_data: { get_artifact : [SELF, db_content] }

 mysql:

 ty pe: tosca.nodes.DBMS.MySQL

 properties:

 root_password: { get_input: mysql_rootpw }

 port: { get_input: mysql_port }

 requirements:

 - host: db_server

 db_server:

 type: tosca.nodes.Compute

 capabilities:

 # omitted here for brevity

In the example above, the my_db node template or type tosca.nodes.Database.MySQL represents an 199

actual MySQL database instance managed by a MySQL DBMS installation. The requirements section of 200

the my_db node template expresses that the database it represents is to be hosted on a MySQL DBMS 201

node template named mysql which is also declared in this template. 202

In its artifacts section of the my_db the node template, there is an artifact definition named db_content 203

which represents a text file my_db_content.txt which in turn will be used to add content to the SQL 204

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 19 of 354

database as part of the crea te operation. The requirements section of the my_db node template 205

expresses that the database is hosted on a MySQL DBMS represented by the mysql node. 206

As you can see above, a script is associated with the create operation with the name db_create.sh . 207

The TOSCA Orchestrator sees that this is not a named artifact declared in the nodeôs artifact section, but 208
instead a filename for a normative TOSCA implementation artifact script type (i.e., 209
tosca.artifacts.Implementation.Bash). Since this is an implementation type for TOSCA, the 210

orchestrator will execute the script automatically to create the node on db_server , but first it will prepare 211

the local environment with the declared inputs for the operation. In this case, the orchestrator would see 212
that the db_data input is using the get_artifact function to retrieve the file (my_db_content.txt) 213

which is associated with the db_content artifact name prior to executing the db_create.sh script. 214

The logical diagram for this example would appear as follows: 215

 216

Note that while it would be possible to define one node type and corresponding node templates that 217
represent both the DBMS middleware and actual database content as one entity, TOSCA normative node 218
types distinguish between middleware (container) and application (containee) node types. This allows on 219
one hand to have better re-use of generic middleware node types without binding them to content running 220
on top of them, and on the other hand this allows for better substitutability of, for example, middleware 221
components like a DBMS during the deployment of TOSCA models. 222

2.5 TOSCA template for a two -tier application 223

The definition of multi-tier applications in TOSCA is quite similar to the example shown in section 2.2, with 224
the only difference that multiple software node stacks (i.e., node templates for middleware and application 225
layer components), typically hosted on different servers, are defined and related to each other. The 226
example below defines a web application stack hosted on the web_server ñcomputeò resource, and a 227

database software stack similar to the one shown earlier in section 6 hosted on the db_server compute 228

resource. 229

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 20 of 354

Example 6 - Basic two-tier application (web application and database server tiers) 230

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a two - tier application servers on two

topology_template:

 inputs:

 # Admin user name and password to use with the WordPress application

 wp_admin_username:

 type: string

 wp_admin_password:

 type: string

 wp_db_name:

 type: string

 wp_db_user:

 type: string

 wp_db_password:

 typ e: string

 wp_db_port:

 type: integer

 mysql_root_password:

 type: string

 mysql_port:

 type: integer

 context_root:

 type: string

 node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 prop erties:

 context_root: { get_input: context_root }

 admin_user: { get_input: wp_admin_username }

 admin_password: { get_input: wp_admin_password }

 db_host : { get_attribute: [db_server, private_address] }

 requirements:

 - host: apache

 - database_endpoint: wordpress_db

 interfaces:

 Standard:

 inputs:

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 21 of 354

 db_host: { get_attribute: [db_server, private_address] }

 db_port: { get_property: [wordpre ss_db, port] }

 db_name: { get_property: [wordpress_db, name] }

 db_user: { get_property: [wordpress_db, user] }

 db_password: { get_property: [wordpress_db, password] }

 apache:

 type: tosca.nodes.WebSer ver.Apache

 properties:

 # omitted here for brevity

 requirements:

 - host: web_server

 web_server:

 type: tosca.nodes.Compute

 capabilities:

 # omitted here for brevity

 wordpress_db:

 type: tosca.node s.Database.MySQL

 properties:

 name: { get_input: wp_db_name }

 user: { get_input: wp_db_user }

 password: { get_input: wp_db_password }

 port: { get_input: wp_db_port }

 requirements:

 - host: mysql

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 root_password: { get_input: mysql_root_password }

 port: { get_input: mysql_port }

 requirements:

 - host: db_server

 db_server:

 typ e: tosca.nodes.Compute

 capabilities:

 # omitted here for brevity

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 22 of 354

The web application stack consists of the wordpress [WordPress], the apache [Apache] and the 231
web_server node templates. The wordpress node template represents a custom web application of type 232
tosca.nodes.WebApplication.WordPress which is hosted on an Apache web server represented by the 233
apache node template. This hosting relationship is expressed via the host entry in the requirements 234
section of the wordpress node template. The apache node template, finally, is hosted on the 235
web_server compute node. 236

The database stack consists of the wordpress_db , the mysql and the db_server node templates. The 237
wordpress_db node represents a custom database of type tosca.nodes.Database.MySQL which is 238
hosted on a MySQL DBMS represented by the mysql node template. This node, in turn, is hosted on the 239
db_server compute node. 240

The wordpress node requires a connection to the wordpress_db node, since the WordPress application 241
needs a database to store its data in. This relationship is established through the database _endpoint 242

entry in the requirements section of the wordpress node templateôs declared node type. For configuring 243
the WordPress web application, information about the database to connect to is required as input to the 244
configure operation. Therefore, the input parameters are defined and values for them are retrieved from 245
the properties and attributes of the wordpress_db node via the get_property and get_attribute 246

functions. In the above example, these inputs are defined at the interface-level and would be available to 247
all operations of the Standard interface (i.e., the tosca.interfaces .node.lifecycle.Standard 248

interface) within the wordpress node template and not just the configure operation. 249

2.6 Using a custom script to establish a relationship in a template 250

In previous examples, the template author did not have to think about explicit relationship types to be 251
used to link a requirement of a node to another node of a model, nor did the template author have to think 252
about special logic to establish those links. For example, the host requirement in previous examples just 253

pointed to another node template and based on metadata in the corresponding node type definition the 254
relationship type to be established is implicitly given. 255

In some cases, it might be necessary to provide special processing logic to be executed when 256
establishing relationships between nodes at runtime. For example, when connecting the WordPress 257
application from previous examples to the MySQL database, it might be desired to apply custom 258
configuration logic in addition to that already implemented in the application node type. In such a case, it 259
is possible for the template author to provide a custom script as implementation for an operation to be 260
executed at runtime as shown in the following example. 261

Example 7 - Providing a custom relationship script to establish a connection 262

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a two - tier application on two servers.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 properties:

 # omitted here for brevity

 requirements:

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 23 of 354

 - host: apache

 - database_endpoint:

 node: wordpress_db

 relationship : my_custom_database_conne ction

 wordpress_db:

 type: tosca.nodes.Database.MySQL

 properties:

 # omitted here for the brevity

 requirements:

 - host: mysql

 relationship_templates:

 my_custom_database_connection :

 type: ConnectsTo

 in terfaces:

 Configure:

 pre_configure_source: scripts/wp_db_configure.sh

 # other resources not shown for this example ...

The node type definition for the wordpress node template is WordPress which declares the complete 263

database_endpoint requirement definition. This database_endpoint declaration indicates it must be 264

fulfilled by any node template that provides an Endpoint.Database Capability Type using a ConnectsTo 265

relationship. The wordpress_ db node templateôs underlying MySQL type definition indeed provides the 266

Endpoint.Database Capability type. In this example however, no explicit relationship template is 267

declared; therefore, TOSCA orchestrators would automatically create a ConnectsTo relationship to 268
establish the link between the wordpress node and the wordpress_db node at runtime. 269

The ConnectsTo relationship (see 5.7.4) also provides a default Configure interface with operations that 270

optionally get executed when the orchestrator establishes the relationship. In the above example, the 271
author has provided the custom script wp_db_configure.sh to be executed for the operation called 272

pre_configure_source . The script file is assumed to be located relative to the referencing service 273

template such as a relative directory within the TOSCA Cloud Service Archive (CSAR) packaging format. 274
This approach allows for conveniently hooking in custom behavior without having to define a completely 275
new derived relationship type. 276

2.7 Using custom relationship types in a TOSCA template 277

In the previous section it was shown how custom behavior can be injected by specifying scripts inline in 278
the requirements section of node templates. When the same custom behavior is required in many 279
templates, it does make sense to define a new relationship type that encapsulates the custom behavior in 280
a re-usable way instead of repeating the same reference to a script (or even references to multiple 281
scripts) in many places. 282

Such a custom relationship type can then be used in templates as shown in the following example. 283

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 24 of 354

Example 8 - A web application Node Template requiring a custom database connection type 284

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a two - tier application on two servers.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 properties:

 # omitted here for brevity

 requirements:

 - host: apache

 - database_endpoint:

 node: wordpress_db
 relationship : my.types.WordpressDbConnection

 wordpress_db:

 type: tosca.nodes.Database.MySQL

 properties:

 # omitted here for the brevity

 requirements:

 - host: mysql

 # other resources not s hown here ...

In the example above, a special relationship type my.types.WordpressDbConnection is specified for 285

establishing the link between the wordpress node and the wordpress_db node through the use of the 286

relationship (keyword) attribute in the database reference. It is assumed, that this special relationship 287

type provides some extra behavior (e.g., an operation with a script) in addition to what a generic 288
ñconnects toò relationship would provide. The definition of this custom relationship type is shown in the 289
following section. 290

2.7.1 Definition of a custom relationship type 291

The following YAML snippet shows the definition of the custom relationship type used in the previous 292
section. This type derives from the base ñConnectsToò and overrides one operation defined by that base 293
relationship type. For the pre_configure_source operation defined in the Configure interface of the 294

ConnectsTo relationship type, a script implementation is provided. It is again assumed that the custom 295
configure script is located at a location relative to the referencing service template, perhaps provided in 296
some application packaging format (e.g., the TOSCA Cloud Service Archive (CSAR) format). 297

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 25 of 354

Example 9 - Defining a custom relationship type 298

tosca_definitions_version: tosca_simple_yaml_1_0

description: Definition of custom WordpressDbConnection relationship type

relationship_types :

 my.types.WordpressDbConnection :

 derived_from: tosca.relationships. ConnectsTo

 interfaces:

 Configure:

 pre_configure_source: scripts/wp_db_configure.sh

In the above example, the Configure interface is the specified alias or shorthand name for the TOSCA 299

interface type with the full name of tosca.interfaces .relationship.Configure which is defined in 300

the appendix. 301

2.8 Defining generic dependencies between nodes in a template 302

In some cases, it can be necessary to define a generic dependency between two nodes in a template to 303
influence orchestration behavior, i.e. to first have one node processed before another dependent node 304
gets processed. This can be done by using the generic dependency requirement which is defined by the 305

TOSCA Root Node Type and thus gets inherited by all other node types in TOSCA (see section 5.9.1). 306

Example 10 - Simple dependency relationship between two nodes 307

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with a generic dependency between two nodes.

topology_template:

 inputs :

 # omitted here for brevity

 node_templates:

 my_app:

 type: my.types.MyApplication

 properties:

 # omitted here for brevity

 requirements :

 - dependency: some_service

 some_service :

 type: some.nodetype.Some Service

 properties:

 # omitted here for brevity

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 26 of 354

As in previous examples, the relation that one node depends on another node is expressed in the 308
requirements section using the built-in requirement named dependency that exists for all node types in 309

TOSCA. Even if the creator of the MyApplication node type did not define a specific requirement for 310

SomeService (similar to the database requirement in the example in section 2.6), the template author 311

who knows that there is a timing dependency and can use the generic dependency requirement to 312

express that constraint using the very same syntax as used for all other references. 313

2.9 Describing abstract requirements for nodes and capabil ities in a 314

TOSCA template 315

In TOSCA templates, nodes are either: 316

¶ Concrete : meaning that they have a deployment and/or one or more implementation artifacts that 317

are declared on the ñcreateò operation of the nodeôs Standard lifecycle interface, or they are 318

¶ Abstract : where the template describes the node type along with its required capabilities and 319

properties that must be satisfied. 320

 321

TOSCA Orchestrators, by default, when finding an abstract node in TOSCA Service Template during 322
deployment will attempt to ñselectò a concrete implementation for the abstract node type that best 323
matches and fulfills the requirements and property constraints the template author provided for that 324
abstract node. The concrete implementation of the node could be provided by another TOSCA Service 325
Template (perhaps located in a catalog or repository known to the TOSCA Orchestrator) or by an existing 326
resource or service available within the target Cloud Providerôs platform that the TOSCA Orchestrator 327
already has knowledge of. 328

 329

TOSCA supports two methods for template authors to express requirements for an abstract node within a 330
TOSCA service template. 331

 332

1. Using a target node_filter : where a node template can describe a requirement (relationship) for 333

another node without including it in the topology. Instead, the node provides a node_filter to 334

describe the target node type along with its capabilities and property constrains 335

 336

2. Using an abstract node template : that describes the abstract nodeôs type along with its property 337

constraints and any requirements and capabilities it also exports. This first method you have 338

already seen in examples from previous chapters where the Compute node is abstract and 339

selectable by the TOSCA Orchestrator using the supplied Container and OperatingSystem 340

capabilities property constraints. 341

 342

These approaches allow architects and developers to create TOSCA service templates that are 343
composable and can be reused by allowing flexible matching of one templateôs requirements to anotherôs 344
capabilities. Examples of both these approaches are shown below. 345

 346

The following section describe how a user can define a requirement for an orchestrator to select an 347
implementation and replace a node. For more details on how an orchestrator may perform matching and 348
select a node from itôs catalog(s) you may look at section 14 of the specification. 349

2.9.1 Using a node_filter to define hosting infrastructure requirements for a 350

software 351

Using TOSCA, it is possible to define only the software components of an application in a template and 352
just express constrained requirements against the hosting infrastructure. At deployment time, the provider 353

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 27 of 354

can then do a late binding and dynamically allocate or assign the required hosting infrastructure and 354
place software components on top. 355

This example shows how a single software component (i.e., the mysql node template) can define its host 356

requirements that the TOSCA Orchestrator and provider will use to select or allocate an appropriate host 357
Compute node by using matching criteria provided on a node_filter . 358

Example 11 - An abstract "host" requirement using a node filter 359

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with requirements against hosting infrastructure.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 # omitted here for brevity

 requirements:

 - host:

 node_filter :

 capabilities:

 ʢ #ÏÎÓÔÒÁÉÎÔÓ ÆÏÒ ÓÅÌÅÃÔÉÎÇ ƧÈÏÓÔƨ ƽ#ÏÎÔÁÉÎÅÒ #ÁÐÁÂÉÌÉÔÙƾ

 - host:

 properties:

 - num_cpus: { in_range: [1, 4] }

 - mem_size: { greater_or_equal: 2 GB }

 ʢ #ÏÎÓÔÒÁÉÎÔÓ ÆÏÒ ÓÅÌÅÃÔÉÎÇ ƧÏÓƨ ƽ/ÐÅÒÁÔÉÎÇ3ÙÓÔÅÍ #ÁÐÁÂÉÌÉÔÙƾ

 - os:

 properties:

 - architecture: { equal: x86_64 }

 - type: linux

 - distribution: ubuntu

In the example above, the mysql component contains a host requirement for a node of type Compute 360

which it inherits from its parent DBMS node type definition; however, there is no declaration or reference 361
to any node template of type Compute. Instead, the mysql node template augments the abstract ñhost ò 362

requirement with a node_filter which contains additional selection criteria (in the form of property 363

constraints that the provider must use when selecting or allocating a host Compute node. 364

Some of the constraints shown above narrow down the boundaries of allowed values for certain 365
properties such as mem_size or num_cpus for the ñhost ò capability by means of qualifier functions such 366

as greater_or_equal . Other constraints, express specific values such as for the architecture or 367

distribution properties of the ñosò capability which will require the provider to find a precise match. 368

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 28 of 354

Note that when no qualifier function is provided for a property (filter), such as for the distribution 369

property, it is interpreted to mean the equal operator as shown on the architecture property. 370

2.9.2 Using an ab stract node template to define infrastructure requirements 371

for software 372

This previous approach works well if no other component (i.e., another node template) other than mysql 373

node template wants to reference the same Compute node the orchestrator would instantiate. However, 374

perhaps another component wants to also be deployed on the same host, yet still allow the flexible 375
matching achieved using a node-filter. The alternative to the above approach is to create an abstract 376
node template that represents the Compute node in the topology as follows: 377

Example 12 - An abstract Compute node template with a node filter 378

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with requirements against hosting infrastructure.

topology_template:
 inputs:
 # omitted here for brevity

 node_templates:
 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 # omitted here for brevity
 requireme nts:
 - host : mysql_compute

 # Abstract node template (placeholder) to be selected by provider
 mysql_compute:
 type: Compute

 node_filter :

 capabilities:
 - host:
 properties:
 num_cpus: { equal: 2 }
 mem_size: { greater_or_equal: 2 GB }
 - os:
 properties:
 architecture: { equal: x86_64 }
 type: linux
 distribution: ubuntu

As you can see the resulting mysql_compute node template looks very much like the ñhello worldò 379

template as shown in Chapter 2.1 (where the Compute node template was abstract), but this one also 380

allows the TOSCA orchestrator more flexibility when ñselectingò a host Compute node by providing flexible 381

constraints for properties like mem_size. 382

As we proceed, you will see that TOSCA provides many normative node types like Compute for 383

commonly found services (e.g., BlockStorage , WebServer, Network , etc.). When these TOSCA 384

normative node types are used in your applicationôs topology they are always assumed to be ñselectableò 385
by TOSCA Orchestrators which work with target infrastructure providers to find or allocate the best match 386
for them based upon your applicationôs requirements and constraints. 387

file:///C:/Users/Chris/Downloads/hello_world%23_A_

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 29 of 354

2.9.3 Using a node_filter to define requirements on a database for an 388

application 389

In the same way requirements can be defined on the hosting infrastructure (as shown above) for an 390
application, it is possible to express requirements against application or middleware components such as 391
a database that is not defined in the same template. The provider may then allocate a database by any 392
means, (e.g. using a database-as-a-service solution). 393

Example 13 - An abstract database requirement using a node filter 394

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with a TOSCA Orchestrator selectable dat abase requirement
using a node_filter.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 my_app:

 type: my.types.MyApplication

 properties:

 admin_user: { get_input: admin_username }

 admin_password: { get_input: admin_password }

 db_endpoint_url: { get_property: [SELF, database_endpoint , url_path] }

 requirements:

 - database_endpoint :

 node: my.types.nodes.MyDatabase

 node_filter:

 properties:

 - db_version: { greater_or_equal: 5.5 }

In the example above, the application my_app requires a database node of type MyDatabase which has a 395

db_version property value of greater_or_equal to the value 5.5. 396

This example also shows how the get_property intrinsic function can be used to retrieve the url_path 397

property from the database node that will be selected by the provider and connected to my_app at runtime 398

due to fulfillment of the database_endpoint requirement. To locate the property, the get_propertyôs first 399

argument is set to the keyword SELF which indicates the property is being referenced from something in 400

the node itself. The second parameter is the name of the requirement named database_endpoint which 401

contains the property we are looking for. The last argument is the name of the property itself (i.e., 402
url_path) which contains the value we want to retrieve and assign to db_endpoint_url . 403

The alternative representation, which includes a node template in the topology for database that is still 404
selectable by the TOSCA orchestrator for the above example, is as follows: 405

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 30 of 354

Example 14 - An abstract database node template 406

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with a TOSCA Orchestrator selectable database using node
template.

topology_template:

 input s:

 # omitted here for brevity

 node_templates:

 my_app:

 type: my.types.MyApplication

 properties:

 admin_user: { get_input: admin_username }

 admin_password: { get_input: admin_password }

 db_endpoint_url: { get_pro perty: [SELF, database_endpoint , url_path] }

 requirements:

 - database_endpoint : my_abstract_database

 my_abstract_database:

 type: my.types.nodes.MyDatabase

 properties:

 - db_version: { greater_or_equal: 5.5 }

2.10 Using node template substitution for model composition 407

From an application perspective, it is often not necessary or desired to dive into platform details, but the 408
platform/runtime for an application is abstracted. In such cases, the template for an application can use 409
generic representations of platform components. The details for such platform components, such as the 410
underlying hosting infrastructure at its configuration, can then be defined in separate template files that 411
can be used for substituting the more abstract representations in the application level template file. 412

2.10.1 Understanding node template instantiation through a TOSCA 413

Orchestrator 414

When a topology template is instantiated by a TOSCA Orchestrator, the orchestrator has to look for 415
realizations of abstract nodes in the topology template according to the node types specified for each 416
abstract node template. Such realizations can either be node types that include the appropriate 417
implementation artifacts and deployment artifacts that can be used by the orchestrator to bring to life the 418
real-world resource modeled by a node template. Alternatively, separate topology templates may be 419
annotated as being suitable for realizing a node template in the top-level topology template. 420

 421

In the latter case, a TOSCA Orchestrator will use additional substitution mapping information provided as 422
part of the substituting topology templates to derive how the substituted part gets ñwiredò into the overall 423
deployment, for example, how capabilities of a node template in the top-level topology template get 424
bound to capabilities of node templates in the substituting topology template. 425

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 31 of 354

 426

Thus, in cases where no ñnormalò node type implementation is available, or the node type corresponds to 427
a whole subsystem that cannot be implemented as a single node, additional topology templates can be 428
used for filling in more abstract placeholders in top level application templates. 429

2.10.2 Definition of the top -level service template 430

The following sample defines a web application web_app connected to a database db. In this example, the 431

complete hosting stack for the application is defined within the same topology template: the web 432
application is hosted on a web server web_server , which in turn is installed (hosted) on a compute node 433

serv er . 434

The hosting stack for the database db, in contrast, is not defined within the same file but only the 435

database is represented as a node template of type tosca.nodes.Database . The underlying hosting 436

stack for the database is defined in a separate template file, which is shown later in this section. Within 437
the current template, only a number of properties (user , password , name) are assigned to the database 438

using hardcoded values in this simple example. 439

 440

Figure 1: Using template substitution to implement a database tier 441

When a node template is to be substituted by another service template, this has to be indicated to an 442
orchestrator by means of a special ñsubstitutableò directive. This directive causes, for example, special 443
processing behavior when validating the left-hand service template in Figure 1. The hosting requirement 444
of the db node template is not bound to any capability defined within the service template, which would 445

normally cause a validation error. When the ñsubstitutableò directive is present, the orchestrator will 446
however first try to perform substitution of the respective node template and after that validate if all 447
mandatory requirements of all nodes in the resulting graph are fulfilled. 448

 449

Note that in contrast to the use case described in section 2.9.2 (where a database was abstractly referred 450
to in the requirements section of a node and the database itself was not represented as a node 451

template), the approach shown here allows for some additional modeling capabilities in cases where this 452
is required. 453

 454
For example, if multiple components need to use the same database (or any other sub-system of the 455

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 32 of 354

overall service), this can be expressed by means of normal relations between node templates, whereas 456
such modeling would not be possible in requirements sections of disjoint node templates. 457

Example 15 - Referencing an abstract database node template 458

tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:

 description: Template of an application connecting to a datab ase.

 node_templates:

 web_app:

 type: tosca.nodes.WebApplication.MyWebApp

 requirements:

 - host: web_server

 - database_endpoint : db

 web_server:

 type: tosca.nodes.WebServer

 requirements:

 - host: serve r

 server:

 type: tosca.nodes.Compute

 # details omitted for brevity

 db:

 # This node is abstract (no Deployment or Implementation artifacts on
create)

 # and can be substituted with a topology provided by another template

 ʢ ÔÈÁÔ ÅØÐÏÒÔÓ Á $ÁÔÁÂÁÓÅ ÔÙÐÅƦÓ ÃÁÐÁÂÉÌÉÔÉÅÓƚ

 type: tosca.nodes.Database

 properties:

 user: my_db_user

 password: secret

 name: my_db_name

2.10.3 Definition of the database stack in a service template 459

The following sample defines a template for a database including its complete hosting stack, i.e. the 460
template includes a database node template, a template for the database management system (dbms) 461

hosting the database, as well as a computer node server on which the DBMS is installed. 462

This service template can be used standalone for deploying just a database and its hosting stack. In the 463
context of the current use case, though, this template can also substitute the database node template in 464
the previous snippet and thus fill in the details of how to deploy the database. 465

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 33 of 354

In order to enable such a substitution, an additional metadata section substitution_mappings is added 466

to the topology template to tell a TOSCA Orchestrator how exactly the topology template will fit into the 467
context where it gets used. For example, requirements or capabilities of the node that gets substituted by 468
the topology template have to be mapped to requirements or capabilities of internal node templates for 469
allow for a proper wiring of the resulting overall graph of node templates. 470

In short, the substitution_mappings section provides the following information: 471

1. It defines what node templates, i.e. node templates of which type, can be substituted by the 472
topology template. 473

2. It defines how capabilities of the substituted node (or the capabilities defined by the node type of 474
the substituted node template, respectively) are bound to capabilities of node templates defined 475
in the topology template. 476

3. It defines how requirements of the substituted node (or the requirements defined by the node type 477
of the substituted node template, respectively) are bound to requirements of node templates 478
defined in the topology template. 479

 480

Figure 2: Substitution mappings 481

The substitution_mappings section in the sample below denotes that this topology template can be 482

used for substituting node templates of type tosca.nodes.Database . It further denotes that the 483

database_endpoint capability of the substituted node gets fulfilled by the database_endpoint 484

capability of the database node contained in the topology template. 485

Example 16 - Using substitution mappings to export a database implementation 486

tosca_definitions_version: tosca_simple_yaml_1_0

topology_templ ate:

 description: Template of a database including its hosting stack.

 inputs:

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 34 of 354

 db_user:

 type: string

 db_password:

 type: string

 # other inputs omitted for brevity

 substitution_mappings :

 node_type: tosca.nodes.Database

 capabilities:

 database_endpoint: [database, database_endpoint]

 node_templates:

 database:

 type: tosca.nodes.Database

 properties:

 user: { get_input: db_user }

 # other properties omitted for brevity

 requirements:

 - host: dbms

 dbms:

 type: tosca.nodes.DBMS

 # details omitted for brevity

 server:

 type: tosca.nodes.Compute

 # details omitted for brevity

Note that the substitution_mappings section does not define any mappings for requirements of the 487

Database node type, since all requirements are fulfilled by other nodes templates in the current topology 488
template. In cases where a requirement of a substituted node is bound in the top-level service template 489
as well as in the substituting topology template, a TOSCA Orchestrator should raise a validation error. 490

Further note that no mappings for properties or attributes of the substituted node are defined. Instead, the 491
inputs and outputs defined by the topology template are mapped to the appropriate properties and 492
attributes or the substituted node. If there are more inputs than the substituted node has properties, 493
default values must be defined for those inputs, since no values can be assigned through properties in a 494
substitution case. 495

2.11 Using node template substitution for chaining subsystems 496

A common use case when providing an end-to-end service is to define a chain of several subsystems that 497
together implement the overall service. Those subsystems are typically defined as separate service 498
templates to (1) keep the complexity of the end-to-end service template at a manageable level and to (2) 499
allow for the re-use of the respective subsystem templates in many different contexts. The type of 500
subsystems may be specific to the targeted workload, application domain, or custom use case. For 501
example, a company or a certain industry might define a subsystem type for company- or industry specific 502

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 35 of 354

data processing and then use that subsystem type for various end-user services. In addition, there might 503
be generic subsystem types like a database subsystem that are applicable to a wide range of use cases. 504

2.11.1 Defining the overall subsystem chain 505

Figure 3 shows the chaining of three subsystem types ï a message queuing subsystem, a transaction 506
processing subsystem, and a databank subsystem ï that support, for example, an online booking 507
application. On the front end, this chain provides a capability of receiving messages for handling in the 508
message queuing subsystem. The message queuing subsystem in turn requires a number of receivers, 509
which in the current example are two transaction processing subsystems. The two instances of the 510
transaction processing subsystem might be deployed on two different hosting infrastructures or 511
datacenters for high-availability reasons. The transaction processing subsystems finally require a 512
database subsystem for accessing and storing application specific data. The database subsystem in the 513
backend does not require any further component and is therefore the end of the chain in this example. 514

 515

Figure 3: Chaining of subsystems in a service template 516

All of the node templates in the service template shown above are abstract and considered substitutable 517
where each can be treated as their own subsystem; therefore, when instantiating the overall service, the 518
orchestrator would realize each substitutable node template using other TOSCA service templates. 519
These service templates would include more nodes and relationships that include the details for each 520
subsystem. A simplified version of a TOSCA service template for the overall service is given in the 521
following listing. 522

 523

Example 17 - Declaring a transaction subsystem as a chain of substitutable node templates 524

tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:

 description: Template of online transaction processing service.

 node_templates:

 mq:

 type: example.QueuingSubsystem

 properties:

 # properties omitted for brevity

 capabilities:

 message_queue_endpoint:

 # details omitted for brevity

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 36 of 354

 requirements:

 - receiver: trans1

 - receiver: trans2

 trans1:

 type: example.TransactionSubsystem

 properties:

 mq_service_ip: { get_attribute : [mq, service_ip] }

 receiver_port: 8080

 capabilities:

 message_receiver:

 # details omitted for brevity

 requirements:

 - database_endpoint: dbsys

 trans2:

 type: example.TransactionSubsystem

 prop erties:

 mq_service_ip: { get_attribute: [mq, service_ip] }

 receiver_port: 8080

 capabilities:

 message_receiver:

 # details omitted for brevity

 requirements:

 - database_endpoint: dbsys

 dbsys:

 type: example.DatabaseSubsystem

 properties:

 # properties omitted for brevity

 capabilities:

 database_endpoint:

 # details omitted for brevity

 525

As can be seen in the example above, the subsystems are chained to each other by binding requirements 526
of one subsystem node template to other subsystem node templates that provide the respective 527
capabilities. For example, the receiver requirement of the message queuing subsystem node template 528

mq is bound to transaction processing subsystem node templates trans1 and trans2 . 529

Subsystems can be parameterized by providing properties. In the listing above, for example, the IP 530
address of the message queuing server is provided as property mq_service_ip to the transaction 531

processing subsystems and the desired port for receiving messages is specified by means of the 532
receiver_port property. 533

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 37 of 354

If attributes of the instantiated subsystems need to be obtained, this would be possible by using the 534
get_attribute intrinsic function on the respective subsystem node templates. 535

2.11.2 Defining a subsystem (node) type 536

The types of subsystems that are required for a certain end-to-end service are defined as TOSCA node 537
types as shown in the following example. Node templates of those node types can then be used in the 538
end-to-end service template to define subsystems to be instantiated and chained for establishing the end-539
to-end service. 540

The realization of the defined node type will be given in the form of a whole separate service template as 541
outlined in the following section. 542

 543

Example 18 - Defining a TransactionSubsystem node type 544

tosca_definitions_version: tosca_simple_yaml_1_0

node_types:

 example.TransactionSubsystem :

 properties:

 mq_service_ip:

 type: string

 receiver_port:

 type: integer

 attributes:

 receiver_ip:

 type: string

 receiver_port:

 type: integer

 capabilities:

 message_receiver: tosca.capabilities.Endpoint

 requirements:

 - database_endpoint: tosca.capabilities.Endpoint.Database

 545

Configuration parameters that would be allowed for customizing the instantiation of any subsystem are 546
defined as properties of the node type. In the current example, those are the properties mq_service_ip 547

and receiver_port that had been used in the end-to-end service template in section 2.11.1. 548

Observable attributes of the resulting subsystem instances are defined as attributes of the node type. In 549
the current case, those are the IP address of the message receiver as well as the actually allocated port 550
of the message receiver endpoint. 551

2.11.3 Defining the details of a subsystem 552

The details of a subsystem, i.e. the software components and their hosting infrastructure, are defined as 553
node templates and relationships in a service template. By means of substitution mappings that have 554
been introduced in section 2.10.2, the service template is annotated to indicate to an orchestrator that it 555
can be used as realization of a node template of certain type, as well as how characteristics of the node 556
type are mapped to internal elements of the service template. 557

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 38 of 354

 558

 559

Figure 4: Defining subsystem details in a service template 560

Figure 1 illustrates how a transaction processing subsystem as outlined in the previous section could be 561
defined in a service template. In this example, it simply consists of a custom application app of type 562

SomeApp that is hosted on a web server websrv , which in turn is running on a compute node. 563

The application named app provides a capability to receive messages, which is bound to the 564

message_receiver capability of the substitutable node type. It further requires access to a database, so 565

the applicationôs database_endpoint requirement is mapped to the database_endpoint requirement of 566

the TransactionSubsystem node type. 567

Properties of the TransactionSubsystem node type are used to customize the instantiation of a 568

subsystem. Those properties can be mapped to any node template for which the author of the subsystem 569
service template wants to expose configurability. In the current example, the application app and the web 570
server middleware websrv get configured through properties of the TransactionSubsystem node type. 571

All properties of that node type are defined as inputs of the service template. The input parameters in 572

turn get mapped to node templates by means of get_input function calls in the respective sections of 573

the service template. 574

Similarly, attributes of the whole subsystem can be obtained from attributes of particular node templates. 575
In the current example, attributes of the web server and the hosting compute node will be exposed as 576
subsystem attributes. All exposed attributes that are defined as attributes of the substitutable 577
TransactionSubsystem node type are defined as outputs of the subsystem service template. 578

An outline of the subsystem service template is shown in the listing below. Note that this service template 579
could be used for stand-alone deployment of a transaction processing system as well, i.e. it is not 580
restricted just for use in substitution scenarios. Only the presence of the substitution_mappings 581

metadata section in the topology_template enables the service template for substitution use cases. 582

 583

Example 19 - Implementation of a TransactionSubsytem node type using substitution mappings 584

tosca_definitions_version: tosca_simple_yaml_1_0

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 39 of 354

topology_template:

 description: Template of a database including its hosting stack.

 inputs:

 mq_service_ip:

 type: string

 description: IP address of the message queuing server to receive messages
from

 receiver_port:

 type: string

 description : Port to be used for receiving messages

 # other inputs omitted for brevity

 substitution_mappings :

 node_type: example.TransactionSubsystem

 capabilities:

 message_receiver: [app, message_receiver]

 requirements:

 database_endpo int: [app, database]

 node_templates:

 app:

 type: example.SomeApp

 properties:

 # properties omitted for brevity

 capabilities:

 message_receiver :

 properties:

 service_ip: { get_input: mq_service_ip }

 # other properties omitted for brevity

 requirements:

 - database :

 # details omitted for brevity

 - host: websrv

 websrv:

 type: tosca.nodes.WebServer

 properties:

 # properties omitted for brevity

 capabilities:

 data_endpoint:

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 40 of 354

 properties:

 port_name: { get_input: receiver_port }

 # other properties omitted for brevity

 requirements:

 - host: server

 server:

 type: tosca.nodes.Compute

 # details omitted for brevity

 outputs:

 receiver_ip:

 description: private IP address of the message receiver application

 value: { get_attribute: [server, private_address] }

 receiver_port:

 description: Port of the message receiver endpoint

 value: { get_attribute: [app, app_endpo int, port] }

2.12 Grouping node templates 585

In designing applications composed of several interdependent software components (or nodes) it is often 586
desirable to manage these components as a named group. This can provide an effective way of 587
associating policies (e.g., scaling, placement, security or other) that orchestration tools can apply to all 588
the components of group during deployment or during other lifecycle stages. 589

In many realistic scenarios it is desirable to include scaling capabilities into an application to be able to 590
react on load variations at runtime. The example below shows the definition of a scaling web server stack, 591
where a variable number of servers with apache installed on them can exist, depending on the load on 592
the servers. 593

Example 20 - Grouping Node Templates for possible policy application 594

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for a scaling web server.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 apache:

 type: tosca.nodes.WebServer.Apache

 properties:

 # Details omitted for brevity

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 41 of 354

 requirements:

 - host: server

 server:

 type: tosca.nodes.Compute

 # details omitted for brevity

 groups :

 webserver_group:

 type: tosca.groups.Root

 members: [apache, server]

The example first of all uses the concept of grouping to express which components (node templates) 595
need to be scaled as a unit ï i.e. the compute nodes and the software on-top of each compute node. This 596
is done by defining the webserver_group in the groups section of the template and by adding both the 597

apache node template and the server node template as a member to the group. 598

Furthermore, a scaling policy is defined for the group to express that the group as a whole (i.e. pairs of 599
server node and the apache component installed on top) should scale up or down under certain 600

conditions. 601

In cases where no explicit binding between software components and their hosting compute resources is 602
defined in a template, but only requirements are defined as has been shown in section 2.9, a provider 603
could decide to place software components on the same host if their hosting requirements match, or to 604
place them onto different hosts. 605

It is often desired, though, to influence placement at deployment time to make sure components get 606
collocation or anti-collocated. This can be expressed via grouping and policies as shown in the example 607
below. 608

Example 21 - Grouping nodes for anti-colocation policy application 609

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template hosting requirements and placement policy.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 wordpress_server:

 type: tosca.nodes.WebServer

 properties:

 # omitted here for brevity

 requirements:

 - host:

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 42 of 354

 # Find a Compute node that fulfills these additional filter reqs.

 node_filter:

 capabilities:

 - host:

 properties:

 - mem_size: { greater_or_equal: 512 MB }

 - disk_size: { greater_or_equal: 2 GB }

 - os:

 properties:

 - architecture: x86_64

 - type: linux

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 # omitted here for brevity

 requirements:

 - host:

 node: tosca.nodes.Compute

 node_filter:

 capabilities:

 - host:

 properties:

 - disk_size: { greater_or_equal: 1 GB }

 - os:

 properties:

 - architecture: x86_64

 - type: linux

 groups :

 my_co_location_group:

 type: tosca.groups.Root

 members: [wordpress_server, mysql]

 policies:

 - my_anti_collocation_policy:

 type: my.policies.anticolocateion

 targets: [my_co_location_group]

 # For this examp le, specific policy definitions are considered

 # domain specific and are not included here

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 43 of 354

In the example above, both software components wordpress_server and mysql have similar hosting 610

requirements. Therefore, a provider could decide to put both on the same server as long as both their 611
respective requirements can be fulfilled. By defining a group of the two components and attaching an anti-612
collocation policy to the group it can be made sure, though, that both components are put onto different 613
hosts at deployment time. 614

2.13 Using YAML Macros to simplify templates 615

The YAML 1.2 specification allows for defining of aliases, which allow for authoring a block of YAML (or 616
node) once and indicating it is an ñanchorò and then referencing it elsewhere in the same document as an 617
ñaliasò. Effectively, YAML parsers treat this as a ñmacroò and copy the anchor blockôs code to wherever it 618
is referenced. Use of this feature is especially helpful when authoring TOSCA Service Templates where 619
similar definitions and property settings may be repeated multiple times when describing a multi-tier 620
application. 621

 622

For example, an application that has a web server and database (i.e., a two-tier application) may be 623
described using two Compute nodes (one to host the web server and another to host the database). The 624

author may want both Compute nodes to be instantiated with similar properties such as operating system, 625
distribution, version, etc. 626

To accomplish this, the author would describe the reusable properties using a named anchor in the 627
ñdsl_definitions ò section of the TOSCA Service Template and reference the anchor name as an alias 628

in any Compute node templates where these properties may need to be reused. For example: 629

Example 22 - Using YAML anchors in TOSCA templates 630

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile th at just defines a YAML macro for commonly reused Compute

 properties.

dsl_definitions :

 my_compute_node_props: &my_compute_node_props

 disk_size: 10 GB

 num_cpus: 1

 mem_size: 2 GB

topology_template:

 node_templates:

 my_server:

 type: Compute

 capabilities:

 - host:

 properties: * my_compute_node_props

 my_database:

 type: Compute

http://yaml.org/spec/1.2/spec.html#id2786196

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 44 of 354

 capabilities:

 - host:

 properties: * my_compute_node_props

2.14 Passing information as inputs to Nodes and Relationships 631

It is possible for type and template authors to declare input variables within an inputs block on interfaces 632

to nodes or relationships in order to pass along information needed by their operations (scripts). These 633
declarations can be scoped such as to make these variable values available to all operations on a node 634
or relationships interfaces or to individual operations. TOSCA orchestrators will make these values 635
available as environment variables within the execution environments in which the scripts associated with 636
lifecycle operations are run. 637

2.14.1 Example: declaring input variables for all operations on a single 638

interface 639

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 requirements:

 ...

 - database_endpoint: mysql_database

 interfaces:

 Standard:

 inputs :

 wp_db_port: { get_property: [SELF, database_endpoint, port] }

2.14.2 Example: declari ng input variables for a single operation 640

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 requirements:

 ...

 - database_endpoint: mysql_database

 interfaces:

 Standard:

 create: wordpress_install.sh

 configure:

 implementation: wordpress_configure.sh

 inputs :

 wp_db_port: { get_property: [SELF, database_endpoint, port] }

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 45 of 354

In the case where an input variable name is defined at more than one scope within the same interfaces 641
section of a node or template definition, the lowest (or innermost) scoped declaration would override 642
those declared at higher (or more outer) levels of the definition. 643

2.14.3 Example: setting output vari ables to an attribute 644

node_templates:

 frontend:
 type: MyTypes.SomeNodeType

 attributes:
 url: { get_operation_output : [SELF, Standard, create, generated_url] }
 interfaces:
 Standard:
 create:
 implementat ion: scripts/frontend/create.sh

 645

In this example, the Standard create operation exposes / exports an environment variable named 646
ñÇÅÎÅÒÁÔÅÄʍÕÒÌƨ attribute which will be assigned to the WordPress nodeôs url attribute. 647

2.14.4 Example: passing output variables betwe en operations 648

node_templates:

 frontend:
 type: MyTypes.SomeNodeType
 interfaces:
 Standard:
 create:
 implementation: scripts/frontend/create.sh

 configure:
 implementation: scripts/frontend/configure.sh
 inputs:
 data_dir: { get_operation_output : [SELF, Standard, create, data_dir
] }

In this example, the Standard lifecycleôs create operation exposes / exports an environment variable 649

named ñdata_dir ò which will be passed as an input to the Standard lifecycleôs configure operation. 650

2.15 Topology Template Model versus Instance Model 651

A TOSCA service template contains a topology template, which models the components of an 652
application, their relationships and dependencies (a.k.a., a topology model) that get interpreted and 653
instantiated by TOSCA Orchestrators. The actual node and relationship instances that are created 654
represent a set of resources distinct from the template itself, called a topology instance (model) . The 655
direction of this specification is to provide access to the instances of these resources for management 656
and operational control by external administrators. This model can also be accessed by an orchestration 657
engine during deployment ï i.e. during the actual process of instantiating the template in an incremental 658
fashion, That is, the orchestrator can choose the order of resources to instantiate (i.e., establishing a 659
partial set of node and relationship instances) and have the ability, as they are being created, to access 660
them in order to facilitate instantiating the remaining resources of the complete topology template. 661

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 46 of 354

2.16 Using attributes implicitly reflected from properties 662

Most entity types in TOSCA (e.g., Node, Relationship, Capability Types, etc.) have property definitions, 663
which allow template authors to set the values for as inputs when these entities are instantiated by an 664
orchestrator. These property values are considered to reflect the desired state of the entity by the author. 665
Once instantiated, the actual values for these properties on the realized (instantiated) entity are 666
obtainable via attributes on the entity with the same name as the corresponding property. 667

In other words, TOSCA orchestrators will automatically reflect (i.e., make available) any property defined 668
on an entity making it available as an attribute of the entity with the same name as the property. 669

 670

Use of this feature is shown in the example below where a source node named my_client , of type 671

ClientNode , requires a connection to another node named my_server of type ServerNode . As you can 672

see, the ServerNode type defines a property named notification_port which defines a dedicated port 673

number which instances of my_client may use to post asynchronous notifications to it during runtime. In 674

this case, the TOSCA Simple Profile assures that the notification_port property is implicitly reflected 675

as an attribute in the my_server node (also with the name notific ation_port) when its node template 676

is instantiated. 677

 678

Example 23 - Properties reflected as attributes 679

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile that shows how the (notification_port) property is
reflected as an attribute and can be referenced elsewhere.

node_types:

 ServerNode:

 derived_from: SoftwareComponent

 properties:

 notification_port :

 type: integer

 capabilities:

 # omitted here for brevity

 ClientNode:

 derived_from: SoftwareComponent

 properties:

 # omitted here for brevity

 requirements:

 - server:

 capability: Endpoint

 node: ServerNode

 relationship: ConnectsTo

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 47 of 354

topology_template:

 node_templates:

 my_server:

 type: ServerNode

 properties:

 notification_port: 8000

 my_client:

 type: ClientNode

 requirements:

 - server:

 node: my_server
 relationship: my_connection

 relationship_templates:
 my_connection:
 type: ConnectsTo
 interfaces:
 Configure:
 inputs:
 targ_notify_port: { get_attribute: [TARGET, notification_port] }
 # other operation definitions omitted here for brevity

 680

Specifically, the above example shows that the ClientNode type needs the notification_port value 681

anytime a node of ServerType is connected to it using the ConnectsTo relationship in order to make it 682

available to its Configure operations (scripts). It does this by using the get_attribute function to 683

retrieve the notification_port attribute from the TARGET node of the ConnectsTo relationship (which is 684

a node of type ServerNode) and assigning it to an environment variable named targ_notify_port . 685

 686

It should be noted that the actual port value of the notification_port attribute may or may not be the 687

value 8000 as requested on the property; therefore, any node that is dependent on knowing its actual 688

ñruntimeò value would use the get_attribute function instead of the get_property function. 689

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 48 of 354

3 TOSCA Simple Profile definitions in YAML 690

Except for the examples, this section is normative and describes all of the YAML grammar, definitions 691
and block structure for all keys and mappings that are defined for the TOSCA Version 1.2 Simple Profile 692
specification that are needed to describe a TOSCA Service Template (in YAML). 693

3.1 TOSCA Namespace URI and alias 694

The following TOSCA Namespace URI alias and TOSCA Namespace Alias are reserved values which 695
SHALL be used when identifying the TOSCA Simple Profile version 1.2 specification. 696

Namespace Alias Namespace URI Specification Description

tosca_simple_yaml_1_2 http://docs.oasis-
open.org/tosca/ns/simple/yaml/1.2

The TOSCA Simple Profile v1.2 (YAML) target
namespace and namespace alias.

3.1.1 TOSCA Namespace prefix 697

The following TOSCA Namespace prefix is a reserved value and SHALL be used to reference the default 698
TOSCA Namespace URI as declared in TOSCA Service Templates. 699

Namespace Prefix Specification Description

tosca The reserved TOSCA Simple Profile Specification prefix that can be associated with the
default TOSCA Namespace URI

3.1.2 TOSCA Namespacing in TOSCA Service Templates 700

In the TOSCA Simple Profile, TOSCA Service Templates MUST always have, as the first line of YAML, 701
the keyword ñtosca_definitions_version ò with an associated TOSCA Namespace Alias value. This 702

single line accomplishes the following: 703

1. Establishes the TOSCA Simple Profile Specification version whose grammar MUST be used to 704

parse and interpret the contents for the remainder of the TOSCA Service Template. 705

2. Establishes the default TOSCA Namespace URI and Namespace Prefix for all types found in the 706

document that are not explicitly namespaced. 707

3. Automatically imports (without the use of an explicit import statement) the normative type 708

definitions (e.g., Node, Relationship, Capability, Artifact, etc.) that are associated with the TOSCA 709

Simple Profile Specification the TOSCA Namespace Alias value identifies. 710

4. Associates the TOSCA Namespace URI and Namespace Prefix to the automatically imported 711

TOSCA type definitions. 712

3.1.3 Rules to avoid namespace collisions 713

TOSCA Simple Profiles allows template authors to declare their own types and templates and assign 714
them simple names with no apparent namespaces. Since TOSCA Service Templates can import other 715
service templates to introduce new types and topologies of templates that can be used to provide 716
concrete implementations (or substitute) for abstract nodes. Rules are needed so that TOSCA 717
Orchestrators know how to avoid collisions and apply their own namespaces when import and nesting 718
occur. 719

3.1.3.1 Additional Requirements 720

¶ The URI value ñhttp://docs.oasis-open.org/toscaò, as well as all (path) extensions to it, SHALL be 721

reserved for TOSCA approved specifications and work. That means Service Templates that do 722

http://docs.oasis-open.org/tosca

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 49 of 354

not originate from a TOSCA approved work product MUST NOT use it, in any form, when 723

declaring a (default) Namespace. 724

¶ Since TOSCA Service Templates can import (or substitute in) other Service Templates, TOSCA 725

Orchestrators and tooling will encounter the ñtosca_definitions_version ò statement for each 726

imported template. In these cases, the following additional requirements apply: 727

o Imported type definitions with the same Namespace URI, local name and version SHALL 728

be equivalent. 729

o If different values of the ñtosca_definitions_version ò are encountered, their 730

corresponding type definitions MUST be uniquely identifiable using their corresponding 731

Namespace URI using a different Namespace prefix. 732

¶ Duplicate local names (i.e., within the same Service Template SHALL be considered an error. 733

These include, but are not limited to duplicate names found for the following definitions: 734

o Repositories (repositories) 735

o Data Types (data_types) 736

o Node Types (node_types) 737

o Relationship Types (relationship_types) 738

o Capability Types (capability_types) 739

o Artifact Types (artifact_types) 740

o Interface Types (interface_types) 741

¶ Duplicate Template names within a Service Templateôs Topology Template SHALL be considered 742

an error. These include, but are not limited to duplicate names found for the following template 743

types: 744

o Node Templates (node_templates) 745

o Relationship Templates (relationship_templates) 746

o Inputs (inputs) 747

o Outputs (outputs) 748

¶ Duplicate names for the following keynames within Types or Templates SHALL be considered an 749

error. These include, but are not limited to duplicate names found for the following keynames: 750

o Properties (properties) 751

o Attributes (attributes) 752

o Artifacts (artifacts) 753

o Requirements (requirements) 754

o Capabilities (capabilities) 755

o Interfaces (interfaces) 756

o Policies (policies) 757

o Groups (groups) 758

3.2 Using Namespaces 759

As of TOSCA version 1.2, Service template authors may declare a namespace within a Service Template 760
that would be used as the default namespace for any types (e.g., Node Type, Relationship Type, Data 761
Type, etc.) defined within the same Service template. 762

 763

Specifically, a Service Templateôs namespace declarationôs URI would be used to form a unique, fully 764
qualified Type name when combined with the locally defined, unqualified name of any Type in the same 765
Service Template. The resulatant, fully qualified Type name would be used by TOSCA Orchestrators, 766
Processors and tooling when that Service Template was imported into another Service Template to avoid 767
Type name collision. 768

 769

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 50 of 354

3.2.1.1.1.1 Example ï Importing a Service Template and Namespaces 770

For example, let say we have two Service Templates, A and B, both of which define Types and a 771
Namespace. Service Template B contains a Node Type definition for Ƨ-Ù.ÏÄÅò and declares its (default) 772

Namespace to be ñhttp://companyB.com/service/namespace/ ò: 773

Service Template B 774

 775

tosca_definitions_version: tosca_simple_ yaml_1_2

description: Service Template B

namespace: http://companyB.com/service/namespace/

node_types:

 MyNode:

 derived_from: SoftwareComponent

 properties:

 # omitted here for br evity

 capabilities:

 # omitted here for brevity

 776

Service Template A has its own, completely different, Node Type definition also named ñMyNodeñ. 777

 778

Service Template A 779

 780

tosca_definitions_version: tosca_simple_ yaml_1_2

description: Service Template A

namespace: http://companyA.com/product/ns/

imports:

 - file: csar/templates/ServiceTemplateB.yaml

 namespace_prefix: templateB

node_types:

 MyNode:

 derived_from: Root

 properties:

 # omitted here for brevity

 capabilities:

 # omitted here for brevity

As you can see, Service Template A also ñimportsñ Service Template B (i.e., ñServiceTemplateB.yamlñ) 781
bringing in its Type defintions to the global namespace using the Namespace URI declared in Service 782
Template B to fully qualify all of its imported types. 783

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 51 of 354

 784

In addition, the import includes a ñnamespace_prefixñ value (i.e., ñtemplateBñ), that can be used to qualify 785
and disambiguate any Type reference from from Service Template B within Service Template A. This 786
prefix is effectively the local alias for the corresponding Namespace URI declared within Service 787
Template B (i.e., ñhttp://companyB.com/service/namespace/ ñ). 788

 789

To illustrate conceptually what a TOSCA Orchestrator, for example, would track for their global 790
namespace upon processing Service Template A (and by import Service Template B) would be a list of 791
global Namespace URIs and their associated Namespace prefixes, as well as a list of fully qualified Type 792
names that comprises the overall global namespace. 793

Conceptual Global Namespace URI and Namespace Prefix tracking 794

 795

Entry

Fully Qualifed URI Namespace
Prefix

Added by Key (Source file)

1 http://open.org/tosca/ns/simple/yaml/1.2/ tosca ¶ tosca_definitions_version :
- from Service Template A

2 http://companyA.com/product/ns/ <None> ¶ namespace:
- from Service Template A

3 http://companyB.com/service/namespace/ templateB ¶ namespace:
- from Service Template B

¶ namespace_prefix :
- from Service Template A, during import

 796

In the above table, 797

¶ Entry 1 : is an entry for the default TOSCA namespace, which is required to exist for it to be a 798

valid Service template. It is established by the ñtosca_definitions_version ƨ keyôs value. By 799

default, it also gets assigned the ñtoscaò Namespace prefix. 800

¶ Entry 2 : is the entry for the local default namespace for Service Template A as declared by the 801

ñnamespaceò key. 802

o Note that no Namespace prefix is needed; any locally defined types that are not qualified 803

(i.e., not a full URI or using a Namespace Prefix) will default to this namespace if not 804

found first in the TOSCA namespace. 805

¶ Entry 3 : is the entry for default Namespace URI for any type imported from Service Template B. 806

The author of Service Template A has assigned the local Namespace Prefix ñtemplateò that can 807

be used to qualify reference to any Type from Service Template B. 808

 809

As per TOSCA specification, any Type, that is not qualified with the ótoscaô prefix or full URI name, should 810
be first resolved by its unqualified name within the TOSCA namespace. If it not found there, then it may 811
be resolved within the local Service Templateôs default namespace. 812

 813

Conceptual Global Namespace and Type tracking 814

 815

Entry# Owning Namespace URI

Full Name

Short Name Type
Classification

1 http://open.org/tosca/ns/simple/yaml/1.2/ tosca.nodes.Compute Compute node

2 tosca.nodes.SoftwareComponent

SoftwareComponent

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 52 of 354

3 tosca.relationships.ConnectsTo ConnectsTo relationship

...

100 http://companyA.com/product/ns/ N/A MyNode node
... ...
200 http://companyB.com/service/namespace/ N/A MyNode node
...

 816

In the above table, 817

¶ Entry 1, is an example of one of the TOSCA standard Node Types (i.e., ñComputeò) that is 818

brought into the global namespace via the ñtosca_definitions_versionò key. 819

o It also has two forms, full and short that are unique to TOSCA types for historical 820

reasons. Reference to a TOSCA type by either its unqualified short or full names is 821

viewed as equivalent as a reference to the same fully qualified Type name (i.e., its full 822

URI). 823

o In this example, use of either ñtosca.nodes.Compute ò or ñComputeò (i.e., an unqualified 824

full and short name Type) in a Service Template would be treated as its fully qualified 825

URI equivalent of: 826

Á ñhttp://docs.oasis - open.org/tosca/ns/simple/yaml/1.2/tosca.nodes.Compute ò. 827

¶ Entry 2, is an example of a standard TOSCA Relationship Type 828

¶ Entry 100, contains the unique Type indentifer for the Node Type ñMyNodeò from Service 829

Template A. 830

¶ Entry 200, contains the unique Type indentifer for the Node Type ñMyNodeò from Service 831

Template B. 832

 833

As you can see, although both templates defined a NodeType with an unqualified name of ñMyNodeò, 834

the TOSCA Orchestrator, processor or tool tracks them by their unique fully qualified Type Name 835

(URI). 836

 837

The classification column is included as an example on how to logically differentiate a ñComputeò 838

Node Type and ñComputeò capability type if the table would be used to ñsearchò for a match based 839

upon context in a Service Template. 840

 841

For example, if the short name ñComputeò were used in a template on a Requirements clause, then 842

the matching type would not be the Compute Node Type, but instead the Compute Capability Type 843

based upon the Requirement clause being the context for Type reference. 844

3.3 Parameter and property types 845

This clause describes the primitive types that are used for declaring normative properties, parameters 846
and grammar elements throughout this specification. 847

3.3.1 Referenced YAML Types 848

Many of the types we use in this profile are built-in types from the YAML 1.2 specification (i.e., those 849
identified by the ñtag:yaml.org,2002ò version tag) [YAML-1.2]. 850

The following table declares the valid YAML type URIs and aliases that SHALL be used when possible 851
when defining parameters or properties within TOSCA Service Templates using this specification: 852

http://www.yaml.org/spec/1.2/spec.html

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 53 of 354

Valid aliases Type URI

string tag:yaml.org,2002:str (default)

integer tag:yaml.org,2002:int

float tag:yaml.org,2002:float

boolean ǘŀƎΥȅŀƳƭΦƻǊƎΣнллнΥōƻƻƭ όƛΦŜΦΣ ŀ ǾŀƭǳŜ ŜƛǘƘŜǊ ΨǘǊǳŜΩ ƻǊ ΨŦŀƭǎŜΩύ

timestamp tag:yaml.org,2002:timestamp [YAML-TS-1.1]

null tag:yaml.org,2002:null

3.3.1.1 Notes 853

¶ The ñstringò type is the default type when not specified on a parameter or property declaration. 854

¶ While YAML supports further type aliases, such as ñstrò for ñstringò, the TOSCA Simple Profile 855

specification promotes the fully expressed alias name for clarity. 856

3.3.2 TOSCA version 857

TOSCA supports the concept of ñreuseò of type definitions, as well as template definitions which could be 858
version and change over time. It is important to provide a reliable, normative means to represent a 859
version string which enables the comparison and management of types and templates over time. 860
Therefore, the TOSCA TC intends to provide a normative version type (string) for this purpose in future 861
Working Drafts of this specification. 862

Shorthand Name version

Type Qualified
Name

tosca:version

3.3.2.1 Grammar 863

TOSCA version strings have the following grammar: 864

<major_version>.<minor_version>[.<fix_version>[.<qualifier>[- <build_version]]]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 865

¶ major_version : is a required integer value greater than or equal to 0 (zero) 866

¶ minor_version : is a required integer value greater than or equal to 0 (zero). 867

¶ fix_version : is an optional integer value greater than or equal to 0 (zero). 868

¶ qualifier : is an optional string that indicates a named, pre-release version of the associated 869

code that has been derived from the version of the code identified by the combination 870

major_version , minor_version and fix_version numbers. 871

¶ build_ve rsion : is an optional integer value greater than or equal to 0 (zero) that can be used to 872

further qualify different build versions of the code that has the same qualifer_string . 873

3.3.2.2 Version Comparison 874

¶ When comparing TOSCA versions, all component versions (i.e., major, minor and fix) are 875

compared in sequence from left to right. 876

¶ TOSCA versions that include the optional qualifier are considered older than those without a 877

qualifier. 878

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 54 of 354

¶ TOSCA versions with the same major, minor, and fix versions and have the same qualifier string, 879

but with different build versions can be compared based upon the build version. 880

¶ Qualifier strings are considered domain-specific. Therefore, this specification makes no 881

recommendation on how to compare TOSCA versions with the same major, minor and fix 882

versions, but with different qualifiers strings and simply considers them different named branches 883

derived from the same code. 884

3.3.2.3 Examples 885

Examples of valid TOSCA version strings: 886

basic version strings

6.1

2.0.1

version string with optional qualifier

3.1.0.beta

version string with optional qualifier and build version

1.0.0.alpha - 10

3.3.2.4 Notes 887

¶ [Maven-Version] The TOSCA version type is compatible with the Apache Maven versioning 888

policy. 889

3.3.2.5 Additional Requirements 890

¶ A version value of zero (i.e., ó0ô, ó0.0ô, or ó0.0.0ô) SHALL indicate there no version provided. 891

¶ A version value of zero used with any qualifiers SHALL NOT be valid. 892

3.3.3 TOSCA range type 893

The range type can be used to define numeric ranges with a lower and upper boundary. For example, this 894
allows for specifying a range of ports to be opened in a firewall. 895

Shorthand Name range

Type Qualified
Name

tosca:range

3.3.3.1 Grammar 896

TOSCA range values have the following grammar: 897

[<lower_bound>, <upper_bound>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 898

¶ lower_bound : is a required integer value that denotes the lower boundary of the range. 899

¶ upper_bound : is a required integer value that denotes the upper boundary of the range. This 900

value MUST be greater than lower_bound . 901

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 55 of 354

3.3.3.2 Keywords 902

The following Keywords may be used in the TOSCA range type: 903

Keyword Applicable
Types

Description

UNBOUNDED scalar Used to represent an unbounded upper bounds (positive) value in a set for a scalar type.

3.3.3.3 Examples 904

Example of a node template property with a range value: 905

numeric range between 1 and 100

a_range_property: [1, 100]

a property that has allows any number 0 or greater

num_connections: [0, UNBOUNDED]

 906

3.3.4 TOSCA list type 907

The list type allows for specifying multiple values for a parameter of property. For example, if an 908
application allows for being configured to listen on multiple ports, a list of ports could be configured using 909
the list data type. 910

Note that entries in a list for one property or parameter must be of the same type. The type (for simple 911
entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective 912

property definition, attribute definitions, or input or output parameter definitions. 913

Shorthand Name list

Type Qualified
Name

tosca:list

3.3.4.1 Grammar 914

TOSCA lists are essentially normal YAML lists with the following grammars: 915

3.3.4.1.1 Square bracket notation 916

 [<list_entry_1>, <list_entry_2>, ...]

3.3.4.1.2 Bulleted (sequenced) list notation 917

- <list_entry_1>

- ...

- <list_entry_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 918

¶ <list_entry_*> : represents one entry of the list. 919

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 56 of 354

3.3.4.2 Declaration Examples 920

3.3.4.2.1 List declaration using a simple type 921

The following example shows a list declaration with an entry schema based upon a simple integer type 922
(which has additional constraints): 923

<some_entity>:

 ...

 properties:

 listen_ports:

 type: list

 entry_schema :

 description: list en port entry (simple integer type)

 type: integer

 constraints:

 - max_length: 128

3.3.4.2.2 List declaration using a complex type 924

The following example shows a list declaration with an entry schema based upon a complex type: 925

<some_entity>:

 ...

 properties:

 products:

 type: list

 entry_schema :

 description: Product information entry (complex type) defined elsewhere

 type: ProductInfo

3.3.4.3 Definition Examples 926

These examples show two notation options for defining lists: 927

¶ A single-line option which is useful for only short lists with simple entries. 928

¶ A multi-line option where each list entry is on a separate line; this option is typically useful or 929

more readable if there is a large number of entries, or if the entries are complex. 930

3.3.4.3.1 Square bracket notation 931

listen_ports: [80, 8080]

3.3.4.3.2 Bulleted list notation 932

listen_ports:

 - 80

 - 8080

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 57 of 354

3.3.5 TOSCA map type 933

The map type allows for specifying multiple values for a parameter of property as a map. In contrast to 934
the list type, where each entry can only be addressed by its index in the list, entries in a map are named 935
elements that can be addressed by their keys. 936

Note that entries in a map for one property or parameter must be of the same type. The type (for simple 937
entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective 938

property definition, attribute definition, or input or output parameter definition. 939

Shorthand Name map

Type Qualified
Name

tosca:map

3.3.5.1 Grammar 940

TOSCA maps are normal YAML dictionaries with following grammar: 941

3.3.5.1.1 Single -line grammar 942

{ <entry_key_1>: <entry_value_1>, ..., <entry_key_n>: <entry_value_n> }

...

<entry_key_n>: <entry_value_n>

3.3.5.1.2 Multi -line grammar 943

<entry_key_1>: <entry_value_1>

...

<entry_key_n>: <entry_value_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 944

¶ entry_key_* : is the required key for an entry in the map 945

¶ entry_value_* : is the value of the respective entry in the map 946

3.3.5.2 Declaration Examples 947

3.3.5.2.1 Map declaration using a simpl e type 948

The following example shows a map with an entry schema definition based upon an existing string type 949
(which has additional constraints): 950

<some_entity>:

 ...

 properties:

 emails:

 type: map

 entry_schema :

 description: basic email address

 type: string

 constraints:

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 58 of 354

 - max_length: 128

3.3.5.2.2 Map declaration using a complex type 951

The following example shows a map with an entry schema definition for contact information: 952

<some_entity>:

 ...

 properties:

 contacts:

 type: map

 entry_schema :

 description: simple contact information

 type: ContactInfo

3.3.5.3 Definition Examples 953

These examples show two notation options for defining maps: 954

¶ A single-line option which is useful for only short maps with simple entries. 955

¶ A multi-line option where each map entry is on a separate line; this option is typically useful or 956
more readable if there is a large number of entries, or if the entries are complex. 957

3.3.5.3.1 Single -line notation 958

notation option for shorter maps

user_name_to_id_map: { user1: 1001, user2: 1002 }

3.3.5.3.2 Multi -line notation 959

notation for longer maps

user_name_to_id_map:

 user1: 1001

 user2: 1002

3.3.6 TOSCA scalar -unit type 960

The scalar-unit type can be used to define scalar values along with a unit from the list of recognized units 961
provided below. 962

3.3.6.1 Grammar 963

TOSCA scalar-unit typed values have the following grammar: 964

<scalar> <unit>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 965

¶ scalar : is a required scalar value. 966

¶ unit : is a required unit value. The unit value MUST be type-compatible with the scalar. 967

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 59 of 354

3.3.6.2 Additional requirements 968

¶ Whitespace : any number of spaces (including zero or none) SHALL be allowed between the 969

scalar value and the unit value. 970

¶ It SHALL be considered an error if either the scalar or unit portion is missing on a property or 971

attribute declaration derived from any scalar-unit type. 972

¶ When performing constraint clause evaluation on values of the scalar-unit type, both the scalar 973

value portion and unit value portion SHALL be compared together (i.e., both are treated as a 974

single value). For example, if we have a property called storage_size . which is of type scalar-975

unit, a valid range constraint would appear as follows: 976

o storage_size: in_range [4 GB, 20 GB] 977

where storage_size ôs range would be evaluated using both the numeric and unit values 978

(combined together), in this case ó4 GBô and ô20 GBô. 979

3.3.6.3 Concrete Types 980

Shorthand Names scalar-unit.size, scalar-unit.size

Type Qualified
Names

tosca:scalar-unit.size, tosca:scalar-unit.time

 981

The scalar-unit type grammar is abstract and has two recognized concrete types in TOSCA: 982

¶ scalar -unit.size ï used to define properties that have scalar values measured in size units. 983

¶ scalar -unit.time ï used to define properties that have scalar values measured in size units. 984

¶ scalar -unit.frequency ï used to define properties that have scalar values measured in units per 985

second. 986

These types and their allowed unit values are defined below. 987

3.3.6.4 scalar -unit.size 988

3.3.6.4.1 Recognized Units 989

Unit Usage Description

B size byte

kB size kilobyte (1000 bytes)

KiB size kibibytes (1024 bytes)

MB size megabyte (1000000 bytes)

MiB size mebibyte (1048576 bytes)

GB size gigabyte (1000000000 bytes)

GiB size gibibytes (1073741824 bytes)

TB size terabyte (1000000000000 bytes)

TiB size tebibyte (1099511627776 bytes)

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 60 of 354

3.3.6.4.2 Examples 990

Storage size in Gigabytes

properties:

 storage_size: 10 GB

3.3.6.4.3 Notes 991

¶ The unit values recognized by TOSCA Simple Profile for size-type units are based upon a 992
subset of those defined by GNU at 993
http://www.gnu.org/software/parted/manual/html_node/unit.html, which is a non-normative 994
reference to this specification. 995

¶ TOSCA treats these unit values as case-insensitive (e.g., a value of ókBô, óKBô or ókbô would be 996
equivalent), but it is considered best practice to use the case of these units as prescribed by 997
GNU. 998

¶ Some Cloud providers may not support byte-level granularity for storage size allocations. In 999
those cases, these values could be treated as desired sizes and actual allocations would be 1000
based upon individual provider capabilities. 1001

3.3.6.5 scalar -unit.time 1002

3.3.6.5.1 Recognized Units 1003

Unit Usage Description

d time days

h time hours

m time minutes

s time seconds

ms time milliseconds

us time microseconds

ns time nanoseconds

3.3.6.5.2 Examples 1004

Response time in milliseconds

properties:

 respone_time: 10 ms

3.3.6.5.3 Notes 1005

¶ The unit values recognized by TOSCA Simple Profile for time-type units are based upon a subset 1006

of those defined by International System of Units whose recognized abbreviations are defined 1007

within the following reference: 1008

o http://www.ewh.ieee.org/soc/ias/pub-dept/abbreviation.pdf 1009

http://www.gnu.org/software/parted/manual/html_node/unit.html
http://www.ewh.ieee.org/soc/ias/pub-dept/abbreviation.pdf

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 61 of 354

o This document is a non-normative reference to this specification and intended for publications 1010

or grammars enabled for Latin characters which are not accessible in typical programming 1011

languages 1012

3.3.6.6 scalar -unit.frequency 1013

3.3.6.6.1 Recognized Units 1014

Unit Usage Description

Hz frequency Hertz, or Hz. equals one cycle per second.

kHz frequency Kilohertz, or kHz, equals to 1,000 Hertz

MHz frequency Megahertz, or MHz, equals to 1,000,000 Hertz or 1,000 kHz

GHz frequency Gigahertz, or GHz, equals to 1,000,000,000 Hertz, or 1,000,000 kHz, or 1,000 MHz.

3.3.6.6.2 Examples 1015

Processor raw clock rate

properties:

 clock_rate: 2.4 GHz

3.3.6.6.3 Notes 1016

¶ The value for Hertz (Hz) is the International Standard Unit (ISU) as described by the Bureau 1017

International des Poids et Mesures (BIPM) in the ñSI Brochure: The International System of Units 1018

(SI) [8th edition, 2006; updated in 2014]ò, http://www.bipm.org/en/publications/si-brochure/ 1019

3.4 Normative values 1020

3.4.1 Node States 1021

As components (i.e., nodes) of TOSCA applications are deployed, instantiated and orchestrated over 1022
their lifecycle using normative lifecycle operations (see section 5.8 for normative lifecycle definitions) it is 1023
important define normative values for communicating the states of these components normatively 1024
between orchestration and workflow engines and any managers of these applications. 1025

The following table provides the list of recognized node states for TOSCA Simple Profile that would be set 1026
by the orchestrator to describe a node instanceôs state: 1027

Node State

Value Transitional Description

initial no Node is not yet created. Node only exists as a template definition.

creating yes Node is transitioning from initial state to created state.

created no Node software has been installed.

configuring yes Node is transitioning from created state to configured state.

http://www.bipm.org/en/publications/si-brochure/

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 62 of 354

Node State

Value Transitional Description

configured no Node has been configured prior to being started.

starting yes Node is transitioning from configured state to started state.

started no Node is started.

stopping yes Node is transitioning from its current state to a configured state.

deleting yes Node is transitioning from its current state to one where it is deleted and its state
is no longer tracked by the instance model.

error no Node is in an error state.

3.4.2 Relationship States 1028

Similar to the Node States described in the previous section, Relationships have state relative to their 1029
(normative) lifecycle operations. 1030

The following table provides the list of recognized relationship states for TOSCA Simple Profile that would 1031
be set by the orchestrator to describe a node instanceôs state: 1032

Node State

Value Transitional Description

initial no Relationship is not yet created. Relationship only exists as a template definition.

3.4.2.1 Notes 1033

¶ Additional states may be defined in future versions of the TOSCA Simple Profile in YAML 1034

specification. 1035

3.4.3 Directives 1036

There are currently no directive values defined for this version of the TOSCA Simple Profile. 1037

3.4.4 Network Name aliases 1038

The following are recognized values that may be used as aliases to reference types of networks within an 1039
application model without knowing their actual name (or identifier) which may be assigned by the 1040
underlying Cloud platform at runtime. 1041

Alias value Description

PRIVATE An alias used to reference the first private network within a property or attribute of a Node or
Capability which would be assigned to them by the underlying platform at runtime.

A private network contains IP addresses and ports typically used to listen for incoming traffic

to an application or service from the Intranet and not accessible to the public internet.

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 63 of 354

Alias value Description

PUBLIC An alias used to reference the first public network within a property or attribute of a Node or
Capability which would be assigned to them by the underlying platform at runtime.

A public network contains IP addresses and ports typically used to listen for incoming traffic
to an application or service from the Internet.

3.4.4.1 Usage 1042

These aliases would be used in the tosca.capabili ties.Endpoint Capability type (and types derived 1043

from it) within the network_name field for template authors to use to indicate the type of network the 1044

Endpoint is supposed to be assigned an IP address from. 1045

3.5 TOSCA Metamodel 1046

This section defines all modelable entities that comprise the TOSCA Version 1.0 Simple Profile 1047
specification along with their keynames, grammar and requirements. 1048

3.5.1 Required Keynames 1049

The TOSCA metamodel includes complex types (e.g., Node Types, Relationship Types, Capability Types, 1050
Data Types, etc.) each of which include their own list of reserved keynames that are sometimes marked 1051
as required . These types may be used to derive other types. These derived types (e.g., child types) do 1052
not have to provide required keynames as long as they have been specified in the type they have been 1053
derived from (i.e., their parent type). 1054

3.6 Reusable modeling definitions 1055

3.6.1 Description definition 1056

This optional element provides a means include single or multiline descriptions within a TOSCA Simple 1057
Profile template as a scalar string value. 1058

3.6.1.1 Keyname 1059

The following keyname is used to provide a description within the TOSCA Simple Profile specification: 1060

description

3.6.1.2 Grammar 1061

Description definitions have the following grammar: 1062

description: < string >

3.6.1.3 Examples 1063

Simple descriptions are treated as a single literal that includes the entire contents of the line that 1064
immediately follows the description key: 1065

description : This is an example of a single line descriptio n (no folding).

The YAML ñfoldedò style may also be used for multi-line descriptions which ñfoldsò line breaks as space 1066
characters. 1067

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 64 of 354

description : >

 This is an example of a multi - line description using YAML. It permits for line

 breaks for easier readability...

 if needed. However, (multiple) line breaks are folded into a single space

 character when processed into a single string value.

3.6.1.4 Notes 1068

¶ Use of ñfoldedò style is discouraged for the YAML string type apart from when used with the 1069
description keyname. 1070

3.6.2 Metadata 1071

This optional element provides a means to include optional metadata as a map of strings. 1072

3.6.2.1 Keyname 1073

The following keyname is used to provide metadata within the TOSCA Simple Profile specification: 1074

metadata

3.6.2.2 Grammar 1075

Metadata definitions have the following grammar: 1076

metadata :

 map of <string >

3.6.2.3 Examples 1077

metadata:

 foo1: bar1

 foo2: bar2

 ...

3.6.2.4 Notes 1078

¶ Data provided within metadata, wherever it appears, MAY be ignored by TOSCA Orchestrators 1079
and SHOULD NOT affect runtime behavior. 1080

3.6.3 Constraint clause 1081

A constraint clause defines an operation along with one or more compatible values that can be used to 1082
define a constraint on a property or parameterôs allowed values when it is defined in a TOSCA Service 1083
Template or one of its entities. 1084

3.6.3.1 Operator keynames 1085

The following is the list of recognized operators (keynames) when defining constraint clauses: 1086

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 65 of 354

Operator Type Value Type Description

equal scalar any /ƻƴǎǘǊŀƛƴǎ ŀ ǇǊƻǇŜǊǘȅ ƻǊ ǇŀǊŀƳŜǘŜǊ ǘƻ ŀ ǾŀƭǳŜ Ŝǉǳŀƭ ǘƻ όΨҐΩύ ǘƘŜ ǾŀƭǳŜ
declared.

greater_than scalar comparable /ƻƴǎǘǊŀƛƴǎ ŀ ǇǊƻǇŜǊǘȅ ƻǊ ǇŀǊŀƳŜǘŜǊ ǘƻ ŀ ǾŀƭǳŜ ƎǊŜŀǘŜǊ ǘƘŀƴ όΨҔΩύ ǘƘŜ
value declared.

greater_or_equal scalar comparable Constrains a property or parameter to a value greater than or equal to
όΨҔҐΩύ ǘƘŜ ǾŀƭǳŜ ŘŜŎƭŀǊŜŘΦ

less_than scalar comparable /ƻƴǎǘǊŀƛƴǎ ŀ ǇǊƻǇŜǊǘȅ ƻǊ ǇŀǊŀƳŜǘŜǊ ǘƻ ŀ ǾŀƭǳŜ ƭŜǎǎ ǘƘŀƴ όΨғΩύ ǘƘŜ ǾŀƭǳŜ
declared.

less_or_equal scalar comparable Constrains a property or parameter to a value less than or equal to
όΨғҐΩύ ǘƘŜ ǾŀƭǳŜ ŘŜŎƭŀǊŜŘΦ

in_range dual
scalar

comparable,
range

Constrains a property or parameter to a value in range of (inclusive)
the two values declared.

Note: subclasses or templates of types that declare a property with the

in_range constraint MAY only further restrict the range specified by
the parent type.

valid_values list any Constrains a property or parameter to a value that is in the list of
declared values.

length scalar string, list,
map

Constrains the property or parameter to a value of a given length.

min_length scalar string, list,
map

Constrains the property or parameter to a value to a minimum length.

max_length scalar string, list,
map

Constrains the property or parameter to a value to a maximum length.

pattern regex string Constrains the property or parameter to a value that is allowed by the
provided regular expression.

Note: Future drafts of this specification will detail the use of regular
expressions and reference an appropriate standardized grammar.

schema string string Constrains the property or parameter to a value that is allowed by the
referenced schema.

3.6.3.1.1 Comparable value types 1087

In the Value Type column above, an entry of ñcomparableò includes integer, float, timestamp, string, 1088
version, and scalar-unit types while an entry of ñanyò refers to any type allowed in the TOSCA simple 1089
profile in YAML. 1090

3.6.3.2 Schema Constraint purpose 1091

TOSCA recognizes that there are external data-interchange formats that are widely used within Cloud 1092
service APIs and messaging (e.g., JSON, XML, etc.). 1093

The óschemaô Constraint was added so that, when TOSCA types utilize types from these externally 1094
defined data (interchange) formats on Properties or Parameters, their corresponding Property definitionsô 1095
values can be optionally validated by TOSCA Orchestrators using the schema string provided on this 1096
operator. 1097

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 66 of 354

3.6.3.3 Additional Requirements 1098

¶ If no operator is present for a simple scalar-value on a constraint clause, it SHALL be interpreted 1099

as being equivalent to having the ñequal ò operator provided; however, the ñequal ò operator may 1100

be used for clarity when expressing a constraint clause. 1101

¶ The ñlength ò operator SHALL be interpreted mean ñsizeò for set types (i.e., list, map, etc.). 1102

¶ Values provided by the operands (i.e., values and scalar values) SHALL be type-compatible with 1103
their associated operations. 1104

¶ Future drafts of this specification will detail the use of regular expressions and reference an 1105
appropriate standardized grammar. 1106

¶ The value for the keyname óschemaô SHOULD be a string that contains a valid external schema 1107
definition that matches the corresponding Property definitions type. 1108

o When a valid óschemaô value is provided on a Property definition, a TOSCA Orchestrator 1109
MAY choose use the contained schema definition for validation. 1110

3.6.3.4 Grammar 1111

Constraint clauses have one of the following grammars: 1112

Scalar grammar

<operator>: <scalar_value>

Dual scalar grammar

<operator>: [<scalar_value_1>, <scalar_value_2>]

List grammar

<operator> [<value_1>, <value_2>, ..., <value_n>]

Regular expression (regex) grammar

pattern: <regular_expression_value>

Schema grammar

schema: <schema_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1113

¶ operator : represents a required operator from the specified list shown above (see section 1114

3.6.3.1 ñOperator keynamesò). 1115

¶ scalar_value, scalar_valu e_* : represents a required scalar (or atomic quantity) that can 1116

hold only one value at a time. This will be a value of a primitive type, such as an integer or string 1117
that is allowed by this specification. 1118

¶ value_* : represents a required value of the operator that is not limited to scalars. 1119

¶ reqular_expression_value : represents a regular expression (string) value. 1120

¶ schema_definition : represents a schema definition as a string. 1121

3.6.3.5 Examples 1122

Constraint clauses used on parameter or property definitions: 1123

equal

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 67 of 354

equal : 2

greater_than

greater_than: 1

greater_or_equal

greater_or_equal: 2

less_than

less_than: 5

less_or_equal

less_or_equal: 4

in_range

in_range: [1, 4]

valid_values

valid_values: [1, 2, 4]

specific length (in characters)

length: 32

min_length (in characters)

min_length: 8

max_length (in characters)

max_length: 64

schema

schema: <

 {

 # Some schema syntax that matches corresponding property or parameter.

 }

3.6.4 Property Filter definition 1124

A property filter definition defines criteria, using constraint clauses, for selection of a TOSCA entity based 1125
upon it property values. 1126

3.6.4.1 Grammar 1127

Property filter definitions have one of the following grammars: 1128

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 68 of 354

3.6.4.1.1 Short notation: 1129

The following single-line grammar may be used when only a single constraint is needed on a property: 1130

<property_name>: < property_constraint_clause >

3.6.4.1.2 Extended notation: 1131

The following multi-line grammar may be used when multiple constraints are needed on a property: 1132

<property_name>:

 - <property_constraint_clause_1 >

 - ...

 - <property_constraint_clause_n >

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1133

¶ property_name: represents the name of property that would be used to select a property 1134

definition with the same name (property_name) on a TOSCA entity (e.g., a Node Type, Node 1135

Template, Capability Type, etc.). 1136

¶ property_constraint_clause_*: represents constraint clause(s) that would be used to filter 1137

entities based upon the named propertyôs value(s). 1138

3.6.4.2 Additional Requirements 1139

¶ Property constraint clauses must be type compatible with the property definitions (of the same 1140
name) as defined on the target TOSCA entity that the clause would be applied against. 1141

3.6.5 Node Filter definition 1142

A node filter definition defines criteria for selection of a TOSCA Node Template based upon the 1143
templateôs property values, capabilities and capability properties. 1144

3.6.5.1 Keynames 1145

The following is the list of recognized keynames for a TOSCA node filter definition: 1146

Keyname Required Type Description

properties no list of

property filter

definition

An optional sequenced list of property filters that would be used to

select (filter) matching TOSCA entities (e.g., Node Template, Node

Type, Capability Types, etc.) based upon tƘŜƛǊ ǇǊƻǇŜǊǘȅ ŘŜŦƛƴƛǘƛƻƴǎΩ

values.

capabilities no list of

capability

names or

capability type

names

An optional sequenced list of capability names or types that would be

used to select (filter) matching TOSCA entities based upon their

existence.

3.6.5.2 Additional filtering on named Capability properties 1147

Capabilities used as filters often have their own sets of properties which also can be used to construct a 1148
filter. 1149

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 69 of 354

Keyname Required Type Description

<capability

name_or_type>

 name>:

 properties

no list of

property filter

definitions

An optional sequenced list of property filters that would be used to

select (filter) matching TOSCA entities (e.g., Node Template, Node

¢ȅǇŜΣ /ŀǇŀōƛƭƛǘȅ ¢ȅǇŜǎΣ ŜǘŎΦύ ōŀǎŜŘ ǳǇƻƴ ǘƘŜƛǊ ŎŀǇŀōƛƭƛǘƛŜǎΩ ǇǊƻǇŜǊǘȅ

ŘŜŦƛƴƛǘƛƻƴǎΩ ǾŀƭǳŜǎΦ

3.6.5.3 Grammar 1150

Node filter definitions have following grammar: 1151

<filter_name>:

 properties:

 - <property_filter_def_1 >

 - ...

 - <property_filter_def_n >

 capabilities:

 - <capability_name_or_type_1>:

 properties:

 - <cap_1_property_filter_def_1 >

 - ...

 - <cap_m_property_filter_def_n >

 - ...

 - <capability_name_or_type_n>:

 properties:

 - <cap_1_property_filter_def_1 >

 - ...

 - <cap_m_property_filter_de f_n >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1152

¶ property_filter_def_*: represents a property filter definition that would be used to select 1153

(filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based 1154
upon their property definitionsô values. 1155

¶ capability_name_or_type_*: represents the type or name of a capability that would be used 1156

to select (filter) matching TOSCA entities based upon their existence. 1157

¶ cap_*_property_d ef_*: represents a property filter definition that would be used to select 1158

(filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based 1159
upon their capabilitiesô property definitionsô values. 1160

3.6.5.4 Additional requirements 1161

¶ TOSCA orchestrators SHALL search for matching capabilities listed on a target filter by assuming 1162

the capability name is first a symbolic name and secondly it is a type name (in order to avoid 1163

namespace collisions). 1164

3.6.5.5 Example 1165

The following example is a filter that would be used to select a TOSCA Compute node based upon the 1166
values of its defined capabilities. Specifically, this filter would select Compute nodes that supported a 1167

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 70 of 354

specific range of CPUs (i.e., num_cpus value between 1 and 4) and memory size (i.e., mem_size of 2 or 1168

greater) from its declared ñhostò capability. 1169

 1170

my_node_template:

 # other details omitted for brevity

 requirements:

 - host:

 node_filter:

 capabilities:

 ʢ -Ù ƧÈÏÓÔƨ #ÏÍÐÕÔÅ ÎÏÄÅ ÎÅÅÄÓ ÔÈÅÓÅ ÐÒÏÐÅÒÔÉÅÓƙ

 - host:

 properties:

 - num_cpus: { in_range: [1, 4] }

 - mem_size: { greater_or_equal: 512 MB }

3.6.6 Repository definition 1171

A repository definition defines a named external repository which contains deployment and 1172
implementation artifacts that are referenced within the TOSCA Service Template. 1173

3.6.6.1 Keynames 1174

The following is the list of recognized keynames for a TOSCA repository definition: 1175

Keyname Required Type Constraints Description

description no description None The optional description for the repository.

url yes string None The required URL or network address used to access the
repository.

credential no Credential None The optional Credential used to authorize access to the
repository.

3.6.6.2 Grammar 1176

Repository definitions have one the following grammars: 1177

3.6.6.2.1 Single -line grammar (no credential): 1178

<repository_name >: <repository_address>

3.6.6.2.2 Multi -line grammar 1179

<repository_name >:

 description: < repository_description >

 url: < repository_address >

 credential: < authorization_credential >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1180

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 71 of 354

¶ repository_name : represents the required symbolic name of the repository as a string. 1181

¶ repository_description : contains an optional description of the repository. 1182

¶ repository_address : represents the required URL of the repository as a string. 1183

¶ authorization_credential : represents the optional credentials (e.g., user ID and password) 1184

used to authorize access to the repository. 1185

3.6.6.3 Example 1186

The following represents a repository definition: 1187

repositories:

 my_code_repo:

 ÄÅÓÃÒÉÐÔÉÏÎƙ -Ù ÐÒÏÊÅÃÔƦÓ ÃÏÄÅ ÒÅÐÏÓÉÔÏÒÙ ÉÎ 'ÉÔ(ÕÂ

 url: https://github.com/my - project/

3.6.7 Artifact definition 1188

An artifact definition defines a named, typed file that can be associated with Node Type or Node 1189
Template and used by orchestration engine to facilitate deployment and implementation of interface 1190
operations. 1191

3.6.7.1 Keynames 1192

The following is the list of recognized keynames for a TOSCA artifact definition when using the extended 1193
notation: 1194

Keyname Required Type Description

type yes string The required artifact type for the artifact definition.

file yes string The required URI string (relative or absolute) which can be used to
ƭƻŎŀǘŜ ǘƘŜ ŀǊǘƛŦŀŎǘΩǎ ŦƛƭŜΦ

repository no string The optional name of the repository definition which contains the
location of the external repository that contains the artifact. The

artifact is expected to be referenceable by its file URI within the
repository.

description no description The optional description for the artifact definition.

deploy_path no string The file path the associated file would be deployed into within the
ǘŀǊƎŜǘ ƴƻŘŜΩǎ ŎƻƴǘŀƛƴŜǊΦ

3.6.7.2 Grammar 1195

Artifact definitions have one of the following grammars: 1196

3.6.7.2.1 Short notation 1197

The following single-line grammar may be used when the artifactôs type and mime type can be inferred 1198
from the file URI: 1199

<artifact_name >: < artifact_file_URI >

3.6.7.2.2 Extended notation: 1200

The following multi-line grammar may be used when the artifactôs definitionôs type and mime type need to 1201
be explicitly declared: 1202

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 72 of 354

<artifact_name >:

 description: < artifact_description >

 type: < artifact_ty pe_name>

 file: < artifact_file_URI >

 repository: < artifact_repository_name >

 deploy_path : < file_deployment_path >

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1203

¶ artifact_name : represents the required symbolic name of the artifact as a string. 1204

¶ artifact_description : represents the optional description for the artifact. 1205

¶ artifact_type_name : represents the required artifact type the artifact definition is based upon. 1206

¶ artifact_file_ URI: represents the required URI string (relative or absolute) which can be 1207

ǳǎŜŘ ǘƻ ƭƻŎŀǘŜ ǘƘŜ ŀǊǘƛŦŀŎǘΩǎ ŦƛƭŜΦ 1208

¶ artifact_repository_name : represents the optional name of the repository definition to use to 1209

retrieve the associated artifact (file) from. 1210

¶ file_deployement_path : represents the optional path the artifact_file_URI would be 1211

copied into within the target nodeôs container. 1212

3.6.7.3 Example 1213

The following represents an artifact definition: 1214

my_file_artifact: ../my_apps_files/operation_artifact.txt

3.6.8 Import definition 1215

An import definition is used within a TOSCA Service Template to locate and uniquely name another 1216
TOSCA Service Template file which has type and template definitions to be imported (included) and 1217
referenced within another Service Template. 1218

3.6.8.1 Keynames 1219

The following is the list of recognized keynames for a TOSCA import definition: 1220

Keyname Required Type Constraints Description

file yes string None The required symbolic name for the imported file.

repository no string None The optional symbolic name of the repository definition
where the imported file can be found as a string.

namespace_prefix no string None The optional namespace prefix (alias) that will be used to

indicate the namespace_uri when forming a qualified
name (i.e., qname) when referencing type definitions
from the imported file.

namespace_uri no string Deprecated The optional, deprecated namespace URI to that will be
applied to type definitions found within the imported file
as a string.

3.6.8.2 Grammar 1221

Import definitions have one the following grammars: 1222

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 73 of 354

3.6.8.2.1 Single -line grammar: 1223

imports:

 - <URI_1>

 - <URI_2>

3.6.8.2.2 Multi -line grammar 1224

imports:

 - file: <file_URI>

 repository: <repository_name>

 namespace_uri: <definition_namespace_uri> # deprecated

 namespace_prefix: <definition_namespace_prefix>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1225

¶ file_uri : contains the required name (i.e., URI) of the file to be imported as a string. 1226

¶ repository_name : represents the optional symbolic name of the repository definition where the 1227

imported file can be found as a string. 1228

¶ namespace_uri : represents the optional namespace URI to that will be applied to type 1229

definitions found within the imported file as a string. 1230

¶ namespace_prefi x: represents the optional namespace prefix (alias) that will be used to 1231

indicate the default namespace as declared in the imported Service Template when forming a 1232
qualified name (i.e., qname) when referencing type definitions from the imported file as a string. 1233

3.6.8.2.3 Requirements 1234

¶ The imports key ñnamespace_uriò is now deprecated. It was intended to be able to define a 1235

default namespace for any types that were defined within the Service Template being imported; 1236

however, with version 1.2, Service Templates MAY now declare their own default Namespace 1237

which SHALL be used in place of this keyôs value. 1238

o Please note that TOSCA Orchestrators and Processors MAY still use 1239

theònamespace_uriò value if provided, if the imported Service Template has no declared 1240

default Namespace value. Regardless it is up to the TOSCA Orchestrator or Processor 1241

to resolve Namespace collisions caused by imports as they see fit, for example, they may 1242

treat it as an error or dynamically generate a unique namepspace themselves on import. 1243

3.6.8.2.4 Import URI processing requirements 1244

TOSCA Orchestrators, Processors and tooling SHOULD treat the <file_URI> of an import as follows: 1245

¶ URI: If the <file_URI> is a known namespace URI (identifier), such as a well-known URI defined 1246

by a TOSCA specification, then it SHOULD cause the corresponding Type defintions to be 1247

imported. 1248

o This implies that there may or may not be an actual Service Template, perhaps it is a 1249

known set Types identified by the well-known URI. 1250

o This also implies that internet access is NOT needed to import. 1251

¶ Alias ï If the <file_URI> is a reserved TOSCA Namespace alias, then it SHOULD cause the 1252

corresponding Type defintions to be imported, using the associated full, Namespace URI to 1253

uniquely identify the imported types. 1254

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 74 of 354

¶ URL - If the <file_URI > is a valid URL (i.e., network accessible as a remote resource) and the 1255

location contains a valid TOSCA Service Template, then it SHOULD cause the remote Service 1256

Template to be imported. 1257

¶ Relative path - If the <file_UR I > is a relative path URL, perhaps pointing to a Service Template 1258

located in the same CSAR file, then it SHOULD cause the locally accessible Service Template to 1259

be imported. 1260

o If the ñrepository ò key is supplied, this could also mean relative to the repositoryôs URL 1261

in a remote file system; 1262

o If the importing file located in a CSAR file, it should be treated as relative to the current 1263

documentôs location within a CSAR fileôs directory structure. 1264

¶ Otherwise, the import SHOULD be considered a failure. 1265

3.6.8.3 Example 1266

The following represents how import definitions would be used for the imports keyname within a TOSCA 1267
Service Template: 1268

imports:

 - some_definition_file: path1/path2/some_defs.yaml

 - another_definition_file:

 file: path1/path2/file2.yaml

 repository: my_service_catalog

 namespace_uri: http://mycompany.com/tosca/1.0/pla tform

 namespace_prefix: mycompany

3.6.9 Property definition 1269

A property definition defines a named, typed value and related data that can be associated with an entity 1270
defined in this specification (e.g., Node Types, Relationship Types, Capability Types, etc.). Properties 1271
are used by template authors to provide input values to TOSCA entities which indicate their ñdesired 1272
stateò when they are instantiated. The value of a property can be retrieved using the get_property 1273

function within TOSCA Service Templates. 1274

3.6.9.1.1 Attribute and Property reflection 1275

The actual state of the entity, at any point in its lifecycle once instantiated, is reflected by Attribute 1276
definitions. TOSCA orchestrators automatically create an attribute for every declared property (with the 1277
same symbolic name) to allow introspection of both the desired state (property) and actual state 1278
(attribute). 1279

3.6.9.2 Keynames 1280

The following is the list of recognized keynames for a TOSCA property definition: 1281

Keyname Required Type Constraints Description

type yes string None The required data type for the property.

description no description None The optional description for the property.

required no

boolean default: true An optional key that declares a property as required

(true) or not (false).

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 75 of 354

Keyname Required Type Constraints Description

default no <any> None An optional key that may provide a value to be used
as a default if not provided by another means.

status no

string default:
supported

The optional status of the property relative to the
specification or implementation. See table below for
valid values.

constraints no list of
constraint
clauses

None The optional list of sequenced constraint clauses for
the property.

entry_schema no string None The optional key that is used to declare the name of
the Datatype definition for entries of set types such as
the TOSCA list or map.

external-
schema

no string None The optional key that contains a schema definition
that TOSCA Orchestrators MAY use for validation
ǿƘŜƴ ǘƘŜ άǘȅǇŜέ ƪŜȅΩǎ ǾŀƭǳŜ ƛƴŘƛŎŀǘŜǎ ŀƴ 9ȄǘŜǊƴŀƭ
ǎŎƘŜƳŀ όŜΦƎΦΣ άƧǎƻƴέύ

See ǎŜŎǘƛƻƴ ά9ȄǘŜǊƴŀƭ ǎŎƘŜƳŀέ ōŜƭƻǿ ŦƻǊ ŦǳǊǘƘŜǊ
explanation and usage.

metadata no map of string N/A Defines a section used to declare additional metadata
information.

3.6.9.3 Status values 1282

The following property status values are supported: 1283

Value Description

supported Indicates the property is supported. This is the default value for all property definitions.

unsupported Indicates the property is not supported.

experimental Indicates the property is experimental and has no official standing.

deprecated Indicates the property has been deprecated by a new specification version.

3.6.9.4 Grammar 1284

Named property definitions have the following grammar: 1285

<property_name >:

 type: < property_type >

 description: < property_description >

 required: < property_required >

 default: <default_value>

 status: < status_value >

 constraints:

 - <property_constraints >

 entry_schema:

 description: < entry_description >

 type: < entry_type >

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 76 of 354

 constraints:

 - <entry_constraints >

 metadata:

 <metadata_map>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1286

¶ property_name : represents the required symbolic name of the property as a string. 1287

¶ property_description : represents the optional description of the property. 1288

¶ property_type : represents the required data type of the property. 1289

¶ property_required : represents an optional boolean value (true or false) indicating whether or 1290

not the property is required. If this keyname is not present on a property definition, then the 1291
property SHALL be considered required (i.e., true) by default . 1292

¶ default_value : contains a type-compatible value that may be used as a default if not provided 1293

by another means. 1294

¶ status_value : a string that contains a keyword that indicates the status of the property relative 1295

to the specification or implementation. 1296

¶ property_constraints : represents the optional sequenced list of one or more constraint 1297

clauses on the property definition. 1298

¶ schema_definition : represents the optional string that contains schema grammar (from an 1299

external specification) that correspinds to the óÔÙÐÅƦ keynameôs value. 1300

¶ entry_description : represents the optional description of the entry schema. 1301

¶ entry_type: represents the required type name for entries in a list or map property type. 1302

¶ entry_constraints : represents the optional sequenced list of one or more constraint clauses 1303

on entries in a list or map property type. 1304

¶ metadata_map: represents the optional map of string. 1305

3.6.9.5 Additional Requirements 1306

¶ Implementations of the TOSCA Simple Profile SHALL automatically reflect (i.e., make available) 1307

any property defined on an entity as an attribute of the entity with the same name as the property. 1308

¶ A property SHALL be considered required by default (i.e., as if the required keyname on the 1309

definition is set to true) unless the definitionôs required keyname is explicitly set to false . 1310

¶ The value provided on a property definitionôs default keyname SHALL be type compatible with 1311

the type declared on the definitionôs type keyname. 1312

¶ Constraints of a property definition SHALL be type-compatible with the type defined for that 1313

definition. 1314

¶ If a óschemaô keyname is provided, its value (string) MUST represent a valid schema definition 1315

that matches the recognized external type provided as the value for the ótype ô keyname as 1316

described by its correspondig schema specification. 1317

¶ TOSCA Orchestrators MAY choose to validate the value of the óschemaô keyname in accordance 1318

with the corresponding schema specifcation for any recognized external types. 1319

3.6.9.6 Notes 1320

¶ This element directly maps to the PropertiesDe finition element defined as part of the 1321

schema for most type and entities defined in the TOSCA v1.0 specification. 1322

¶ In the TOSCA v1.0 specification constraints are expressed in the XML Schema definitions of 1323
Node Type properties referenced in the PropertiesDefinition element of NodeType 1324

definitions. 1325

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 77 of 354

3.6.9.7 Example 1326

The following represents an example of a property definition with constraints: 1327

properties:

 num_cpus:

 type: integer

 description: Number of CPUs requested for a software node instance.

 default: 1

 required: true

 constraints:

 - valid_values: [1, 2, 4, 8]

3.6.10 Property assignment 1328

This section defines the grammar for assigning values to named properties within TOSCA Node and 1329
Relationship templates that are defined in their corresponding named types. 1330

3.6.10.1 Keynames 1331

The TOSCA property assignment has no keynames. 1332

3.6.10.2 Grammar 1333

Property assignments have the following grammar: 1334

3.6.10.2.1 Short notation: 1335

The following single-line grammar may be used when a simple value assignment is needed: 1336

<property_name>: <property_value> | { <property_value_expression> }

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1337

¶ property_name: represents the name of a property that would be used to select a property 1338

definition with the same name within on a TOSCA entity (e.g., Node Template, Relationship 1339
Template, etc.,) which is declared in its declared type (e.g., a Node Type, Node Template, 1340
Capability Type, etc.). 1341

¶ property_value , property_value_expression: represent the type-compatible value to 1342

assign to the named property. Property values may be provided as the result from the 1343
evaluation of an expression or a function. 1344

3.6.11 Attribute definition 1345

An attribute definition defines a named, typed value that can be associated with an entity defined in this 1346
specification (e.g., a Node, Relationship or Capability Type). Specifically, it is used to expose the ñactual 1347
stateò of some property of a TOSCA entity after it has been deployed and instantiated (as set by the 1348
TOSCA orchestrator). Attribute values can be retrieved via the get_attribute function from the 1349

instance model and used as values to other entities within TOSCA Service Templates. 1350

3.6.11.1 Attribute an d Property reflection 1351

TOSCA orchestrators automatically create Attribute definitions for any Property definitions declared on 1352
the same TOSCA entity (e.g., nodes, node capabilities and relationships) in order to make accessible the 1353
actual (i.e., the current state) value from the running instance of the entity. 1354

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 78 of 354

3.6.11.2 Keynames 1355

The following is the list of recognized keynames for a TOSCA attribute definition: 1356

Keyname Required Type Constraints Description

type yes string None The required data type for the attribute.

description no description None The optional description for the attribute.

default no <any> None An optional key that may provide a value to be used as a
default if not provided by another means.

This value SHALL be type compatible with the type declared

ōȅ ǘƘŜ ǇǊƻǇŜǊǘȅ ŘŜŦƛƴƛǘƛƻƴΩǎ type keyname.

status no string default:
supported

The optional status of the attribute relative to the
specification or implementation. See supported status
values defined under the Property definition section.

entry_schema no string None The optional key that is used to declare the name of the
Datatype definition for entries of set types such as the
TOSCA list or map.

3.6.11.3 Grammar 1357

Attribute definitions have the following grammar: 1358

attributes:

 <attribute_name >:

 type: < attribute_type >

 description: < attribute_description >

 default: <default_value>

 status: < status_value >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1359

¶ attribute_name : represents the required symbolic name of the attribute as a string. 1360

¶ attribute_type : represents the required data type of the attribute. 1361

¶ attribute_description : represents the optional description of the attribute. 1362

¶ default_value : contains a type-compatible value that may be used as a default if not provided 1363

by another means. 1364

¶ status_value : contains a value indicating the attributeôs status relative to the specification 1365

version (e.g., supported, deprecated, etc.). Supported status values for this keyname are defined 1366
under Property definition. 1367

3.6.11.4 Additional Requirements 1368

¶ In addition to any explicitly defined attributes on a TOSCA entity (e.g., Node Type, 1369

RelationshipType, etc.), implementations of the TOSCA Simple Profile MUST automatically 1370

reflect (i.e., make available) any property defined on an entity as an attribute of the entity with the 1371

same name as the property. 1372

¶ Values for the default keyname MUST be derived or calculated from other attribute or operation 1373

output values (that reflect the actual state of the instance of the corresponding resource) and not 1374

hard-coded or derived from a property settings or inputs (i.e., desired state). 1375

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 79 of 354

3.6.11.5 Notes 1376

¶ Attribute definitions are very similar to Property definitions; however, properties of entities reflect 1377

an input that carries the template authorôs requested or desired value (i.e., desired state) which 1378

the orchestrator (attempts to) use when instantiating the entity whereas attributes reflect the 1379

actual value (i.e., actual state) that provides the actual instantiated value. 1380

o For example, a property can be used to request the IP address of a node using a 1381

property (setting); however, the actual IP address after the node is instantiated may by 1382

different and made available by an attribute. 1383

3.6.11.6 Example 1384

The following represents a required attribute definition: 1385

act ual_cpus:

 type: integer

 description: Actual number of CPUs allocated to the node instance.

3.6.12 Attribute assignment 1386

This section defines the grammar for assigning values to named attributes within TOSCA Node and 1387
Relationship templates which are defined in their corresponding named types. 1388

3.6.12.1 Keynames 1389

The TOSCA attribute assignment has no keynames. 1390

3.6.12.2 Grammar 1391

Attribute assignments have the following grammar: 1392

3.6.12.2.1 Short notation: 1393

The following single-line grammar may be used when a simple value assignment is needed: 1394

<attribute_name>: <attribute_value> | { <attribute_value_expression> }

3.6.12.2.2 Extended notation: 1395

The following multi-line grammar may be used when a value assignment requires keys in addition to a 1396
simple value assignment: 1397

<attribute_name>:

 description: < attribute_description >

 value: <attribute_value> | { <attribute_value_expression> }

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1398

¶ attribute_name: represents the name of an attribute that would be used to select an attribute 1399

definition with the same name within on a TOSCA entity (e.g., Node Template, Relationship 1400
Template, etc.) which is declared (or reflected from a Property definition) in its declared type 1401
(e.g., a Node Type, Node Template, Capability Type, etc.). 1402

¶ attribute_value , attribute_value_expresssion: represent the type-compatible value to 1403

assign to the named attribute. Attribute values may be provided as the result from the 1404
evaluation of an expression or a function. 1405

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 80 of 354

¶ attribute_description : represents the optional description of the attribute. 1406

3.6.12.3 Additional requirements 1407

¶ Attribute values MAY be provided by the underlying implementation at runtime when requested 1408

by the get_attribute function or it MAY be provided through the evaluation of expressions and/or 1409

functions that derive the values from other TOSCA attributes (also at runtime). 1410

3.6.13 Parameter definition 1411

A parameter definition is essentially a TOSCA property definition; however, it also allows a value to be 1412
assigned to it (as for a TOSCA property assignment). In addition, in the case of output parameters, it can 1413
optionally inherit the data type of the value assigned to it rather than have an explicit data type defined for 1414
it. 1415

3.6.13.1 Keynames 1416

The TOSCA parameter definition has all the keynames of a TOSCA Property definition, but in addition 1417
includes the following additional or changed keynames: 1418

Keyname Required Type Constraints Description

type no string None The required data type for the parameter.

Note : This keyname is required for a TOSCA Property
definition, but is not for a TOSCA Parameter definition.

value no <any> N/A The type-compatible value to assign to the named
parameter. Parameter values may be provided as the
result from the evaluation of an expression or a
function.

3.6.13.2 Grammar 1419

Named parameter definitions have the following grammar: 1420

<parameter_name>:

 type: < parameter_type >

 description: < parameter_description >

 value: <parameter_value> | { <parameter_value_expression> }

 required: < parameter_required >

 default: <parameter_default_value>

 status: < status_value >

 constraints:

 - <parameter_constraints >

 entry_schema:

 description: < entry_description >

 type: < entry_type >

 constraints:

 - <entry_constraints >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1421

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 81 of 354

¶ parameter_name : represents the required symbolic name of the parameter as a string. 1422

¶ parameter_description : represents the optional description of the parameter. 1423

¶ parameter_type : represents the optional data type of the parameter. Note, this keyname is 1424

required for a TOSCA Property definition, but is not for a TOSCA Parameter definition. 1425

¶ parameter_value , parameter_value_expresssion: represent the type-compatible value to 1426

assign to the named parameter. Parameter values may be provided as the result from the 1427
evaluation of an expression or a function. 1428

¶ parameter_required : represents an optional boolean value (true or false) indicating whether or 1429

not the parameter is required. If this keyname is not present on a parameter definition, then the 1430
property SHALL be considered required (i.e., true) by default . 1431

¶ default_value : contains a type-compatible value that may be used as a default if not provided 1432

by another means. 1433

¶ status_value : a string that contains a keyword that indicates the status of the parameter 1434

relative to the specification or implementation. 1435

¶ parameter_cons traints : represents the optional sequenced list of one or more constraint 1436

clauses on the parameter definition. 1437

¶ entry_description : represents the optional description of the entry schema. 1438

¶ entry_type: represents the required type name for entries in a list or map parameter type. 1439

¶ entry_constraints : represents the optional sequenced list of one or more constraint clauses 1440

on entries in a list or map parameter type. 1441

3.6.13.3 Additional Requirements 1442

¶ A parameter SHALL be considered required by default (i.e., as if the required keyname on the 1443

definition is set to true) unless the definitionôs required keyname is explicitly set to false . 1444

¶ The value provided on a parameter definitionôs default keyname SHALL be type compatible 1445

with the type declared on the definitionôs type keyname. 1446

¶ Constraints of a parameter definition SHALL be type-compatible with the type defined for that 1447
definition. 1448

3.6.13.4 Example 1449

The following represents an example of an input parameter definition with constraints: 1450

input s:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

The following represents an example of an (untyped) output parameter definition: 1451

outputs:

 server_ip:

 description: The private IP address of the provisioned server.

 value: { get_attribute: [my_server, private_address] }

 1452

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 82 of 354

3.6.14 Operation implementation definition 1453

An operation implementation definition specifies one or more artifacts (e.g. scripts) to be used as the 1454
implementation for an operation in an interface. 1455

3.6.14.1 Keynames 1456

The following is the list of recognized keynames for a TOSCA operation implementation definition: 1457

Keyname Req
uire
d

Type Description

primary no Artifact definition The optional implementation artifact (i.e., the primary script file
within a TOSCA CSAR file).

dependencies no list of
Artifact definition

The optional ordered list of one or more dependent or secondary
implementation artifacts which are referenced by the primary
implementation artifact (e.g., a library the script installs or a
secondary script).

timeout No integer Timeout value in seconds

operation_host no string The node on which operations should be executed (for TOSCA
call_operation activities).

If the operation is associated with an interface on a node type or a
relationship template, valid_values are SELF or HOST ς referring to
the node itself or to the node that is the target of the HostedOn
relationship for that node.

If the operation is associated with a relationship type or a
relationship template, valid_values are SOURCE or TARGET ς
referring to the relationship source or target node.

In both cases, the value can also be set to ORCHESTRATOR to
indicated that the operation must be executed in the orchestrator
environment rather than within the context of the service being
orchestrated.

3.6.14.2 Grammar 1458

Operation implementation definitions have the following grammars: 1459

3.6.14.2.1 Short notation for use with single artifact 1460

The following single-line grammar may be used when only a primary implementation artifact name is 1461
needed: 1462

implementation : < primary _artifact_name >

This notation can be used when the primary artifact name uniquely identifies the artifact, either because it 1463
refers to a named artifact specified in the artifacts section of a type or template, or because it represents 1464
the name of a script in the CSAR file that contains the definition. 1465

3.6.14.2.2 Short notation for use with multiple artifact 1466

The following multi-line short-hand grammar may be used when multiple artifacts are needed, but each of 1467
the artifacts can be uniquely identified by name as before: 1468

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 83 of 354

i mplementation:

 pr imary: <primary _artifact_ name>

 dependencies:

 - <list of dependent artifact names>

 operation_host : SELF

 timeout : 60

3.6.14.2.3 Extended notation for use with single artifact 1469

The following multi-line grammar may be used in Node or Relationship Type or Template definitions when 1470
only a single artifact is used but additional information about the primary artifact is needed (e.g. to specify 1471
the repository from which to obtain the artifact, or to specify the artifact type when it cannot be derived 1472
from the artifact file extension): 1473

i mplementation:

 primary:

 <primary _artifact_ definition >

 operation_host : HOST

 timeout : 100

3.6.14.2.4 Extended notation for use with multiple artifacts 1474

The following multi-line grammar may be used in Node or Relationship Type or Template definitions when 1475
there are multiple artifacts that may be needed for the operation to be implemented and additional 1476
information about each of the artifacts is required: 1477

implementation:

 primary:

 <primary _artifact_ definition >

 dependencies:

 - <list_of_dependent_artifact definitions >

 operation_host: HOST

 timeout: 120

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1478

¶ primary _artifact_name : represents the optional name (string) of an implementation artifact 1479

definition (defined elsewhere), or the direct name of an implementation artifactôs relative filename 1480

(e.g., a service template-relative, path-inclusive filename or absolute file location using a URL). 1481

¶ primary _artifact_ definition : represents a full inline definition of an implementation artifact. 1482

¶ list_of_dependent_artifact_name s: represents the optional ordered list of one or more 1483

dependent or secondary implementation artifact names (as strings) which are referenced by the 1484

primary implementation artifact. TOSCA orchestrators will copy these files to the same location 1485

as the primary artifact on the target node so as to make them accessible to the primary 1486

implementation artifact when it is executed. 1487

¶ list_of_dependent_artifact_ definitions : represents the ordered list of one or more inline 1488

definitions of dependent or secondary implementation artifacts. TOSCA orchestrators will copy 1489

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 84 of 354

these artifacts to the same location as the primary artifact on the target node so as to make them 1490

accessible to the primary implementation artifact when it is executed. 1491

3.6.15 Operation definition 1492

An operation definition defines a named function or procedure that can be bound to an operation 1493
implementation. 1494

3.6.15.1 Keynames 1495

The following is the list of recognized keynames for a TOSCA operation definition: 1496

Keyname Required Type Description

description no description The optional description string for the associated named
operation.

implementation no Operation
implementation
definition

The optional definition of the operation implementation

inputs no list of
parameter
definitions

The optional list of input properties definitions (i.e., parameter
definitions) for operation definitions that are within TOSCA
Node or Relationship Type definitions. This includes when
operation definitions are included as part of a Requirement
definition in a Node Type.

no list of
property
assignments

The optional list of input property assignments (i.e., parameters
assignments) for operation definitions that are within TOSCA
Node or Relationship Template definitions. This includes when
operation definitions are included as part of a Requirement
assignment in a Node Template.

3.6.15.2 Grammar 1497

Operation definitions have the following grammars: 1498

3.6.15.2.1 Short notation 1499

The following single-line grammar may be used when the operationôs implementation definition is the only 1500
keyname that is needed, and when the operation implementation definition itself can be specified using a 1501
single line grammar 1502

<operation_name >: < implementation_artifact_name >

Extended notation The following multi-line grammar may be used in Node or Relationship Template or 1503
Type definitions when additional information about the operation is needed: 1504

<operation_name >:

 description: < operation_description >

 implementation: < Operation implementation definitionOperation implementation definition>

 inputs:

 <property_definitions >

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1505

¶ operation_name : represents the required symbolic name of the operation as a string. 1506

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 85 of 354

¶ operation_description : represents the optional description string for the corresponding 1507

operation_name . 1508

¶ operation_ implementation_ definition : represents the optional specification of the 1509

operationôs implementation). 1510

¶ property_definitions : represents the optional list of property definitions which the TOSCA 1511

orchestrator would make available (i.e., or pass) to the corresponding implementation artifact 1512

during its execution. 1513

¶ property_assignments : represents the optional list of property assignments for passing 1514

parameters to Node or Relationship Template operations providing values for properties defined 1515

in their respective type definitions. 1516

3.6.15.3 Additional requirements 1517

¶ The default sub-classing behavior for implementations of operations SHALL be override. That is, 1518

implementation artifacts assigned in subclasses override any defined in its parent class. 1519

¶ Template authors MAY provide property assignments on operation inputs on templates that do 1520

not necessarily have a property definition defined in its corresponding type. 1521

¶ Implementation artifact file names (e.g., script filenames) may include file directory path names 1522

that are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud 1523

Service ARchive (CSAR) file. 1524

3.6.15.4 Examples 1525

3.6.15.4.1 Single -line example 1526

interfaces:

 Standard:

 start: scripts/start_server.sh

3.6.15.4.2 Multi -line example with shorthand implementation definitions 1527

interfaces:

 Configure:

 pre_configure_source:

 implementation:

 primary: scripts/pre_configure_source.sh

 dependencies:

 - scripts/setup.sh

 - binaries/library.rpm

 - scripts/register.py

3.6.15.4.3 Multi -line example with extended implementation definitions 1528

interfaces:

 Configure:

 pre_configure_source:

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 86 of 354

 implementation:

 primary:

 file: scripts/pre_configure_source.sh

 type: tosca.artifacts.Implementation.Bash

 repository: my_service_catalog

 dependencies: - file : scripts/setup.sh

 type : tosca.artifacts.Implementation.Bash

 Repository : my_service_catalog

3.6.16 Interface definition 1529

An interface definition defines a named interface that can be associated with a Node or Relationship Type 1530

3.6.16.1 Keynames 1531

The following is the list of recognized keynames for a TOSCA interface definition: 1532

Keyname Required Type Description

inputs no list of
property definitions

The optional list of input property definitions available to all defined
operations for interface definitions that are within TOSCA Node or
Relationship Type definitions. This includes when interface
definitions are included as part of a Requirement definition in a
Node Type.

no list of
property assignments

The optional list of input property assignments (i.e., parameters
assignments) for interface definitions that are within TOSCA Node
or Relationship Template definitions. This includes when interface
definitions are referenced as part of a Requirement assignment in a
Node Template.

3.6.16.2 Grammar 1533

Interface definitions have the following grammar: 1534

3.6.16.2.1 Extended notation for use in Type definitions 1535

The following multi-line grammar may be used in Node or Relationship Type definitions: 1536

<interface_definition_name >:

 type: < interface_type_name >

 inputs:

 <property_definitions >

 <operation_definitions >

3.6.16.2.2 Extended notation for use in Template definitions 1537

The following multi-line grammar may be used in Node or Relationship Template definitions: 1538

<interface_definition_name >:

 inputs:

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 87 of 354

 <property_assignments >

 <operation_definitions >

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1539

¶ interface_definition_name: represents the required symbolic name of the interface as a 1540

string. 1541

¶ interface_type_name : represents the required name of the Interface Type for the interface 1542

definition. 1543

¶ property_definitions : represents the optional list of property definitions (i.e., parameters) 1544

which the TOSCA orchestrator would make available (i.e., or pass) to all defined operations. 1545

- This means these properties and their values would be accessible to the implementation 1546

artifacts (e.g., scripts) associated to each operation during their execution. 1547

¶ property_assignments : represents the optional list of property assignments for passing 1548

parameters to Node or Relationship Template operations providing values for properties defined 1549

in their respective type definitions. 1550

¶ operation_definitions : represents the required name of one or more operation definitions. 1551

3.6.17 Event Filter definition 1552

An event filter definition defines criteria for selection of an attribute, for the purpose of monitoring it, within 1553
a TOSCA entity, or one its capabilities. 1554

3.6.17.1 Keynames 1555

The following is the list of recognized keynames for a TOSCA event filter definition: 1556

Keyname Required Type Description

node yes string The required name of the node type or template that contains either

the attribute to be monitored or contains the requirement that

references the node that contains the attribute to be monitored.

requirement no string ¢ƘŜ ƻǇǘƛƻƴŀƭ ƴŀƳŜ ƻŦ ǘƘŜ ǊŜǉǳƛǊŜƳŜƴǘ ǿƛǘƘƛƴ ǘƘŜ ŦƛƭǘŜǊΩǎ ƴƻŘŜ ǘƘŀǘ

can be used to locate a referenced node that contains an attribute to

monitor.

capability no string ¢ƘŜ ƻǇǘƛƻƴŀƭ ƴŀƳŜ ƻŦ ŀ ŎŀǇŀōƛƭƛǘȅ ǿƛǘƘƛƴ ǘƘŜ ŦƛƭǘŜǊΩǎ ƴƻŘŜ ƻǊ ǿƛǘƘƛƴ ǘƘŜ

node referenced by its requirement that contains the attribute to

monitor.

3.6.17.2 Grammar 1557

Event filter definitions have following grammar: 1558

node: <node_type_name> | <node_template_name>

requirement: <requirement_name>

capability: <capability_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1559

¶ node_type_name: represents the required name of the node type that would be used to select 1560

(filter) the node that contains the attribute to monitor or contains the requirement that references 1561

another node that contains the attribute to monitor. 1562

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 88 of 354

¶ node_template_name: represents the required name of the node template that would be used to 1563

select (filter) the node that contains the attribute to monitor or contains the requirement that 1564

references another node that contains the attribute to monitor. 1565

¶ requirement_name: represents the optional name of the requirement that would be used to 1566

select (filter) a referenced node that contains the attribute to monitor. 1567

¶ capability_name: represents the optional name of a capability that would be used to select 1568

(filter) the attribute to monitor. 1569

3.6.18 Trigger definition 1570

A trigger definition defines the event, condition and action that is used to ñtriggerò a policy it is associated 1571
with. 1572

3.6.18.1 Keynames 1573

The following is the list of recognized keynames for a TOSCA trigger definition: 1574

Keyname Required Type Description

description no description The optional description string for the named trigger.

event_type no string The required name of the event type that ŀŎǘƛǾŀǘŜǎ ǘƘŜ ǘǊƛƎƎŜǊΩǎ
action.

schedule no TimeInterval The optional time interval during which the trigger is valid (i.e.,
during which the declared actions will be processed).

target_filter no event filter The optional filter used to locate the attribute to monitor for
ǘƘŜ ǘǊƛƎƎŜǊΩǎ ŘŜŦƛƴŜŘ ŎƻƴŘƛǘƛƻƴΦ ¢Ƙƛǎ ŦƛƭǘŜǊ ƘŜƭǇǎ ƭƻŎŀǘŜ ǘƘŜ
TOSCA entity (i.e., node or relationship) or further a specific
capability of that entity that contains the attribute to monitor.

condition no List of condition
clause definition

The optional condition which contains a condition clause
definition specifying one or multiple attribute constraint that
can be monitored. Note: this is optional since sometimes the
event occurrence itself is enough to trigger the action.

action yes string or operation The if of the workflow to be invoked when the event is triggered
and the condition is met (i.e, evaluates to true). Or
The required operation to invoke when the event is triggered
and the condition is met (i.e., evaluates to true).

3.6.18.2 Additional keynames for the extended condition notation 1575

Keyname Required Type Description

constraint no List of condition
clause definition

The optional condition which contains a condition clause definition
specifying one or multiple attribute constraint that can be
monitored. Note: this is optional since sometimes the event
occurrence itself is enough to trigger the action.

period no scalar-unit.time The optional period to use to evaluate for the condition.

evaluations no integer The optional number of evaluations that must be performed over
the period to assert the condition exists.

method no string The optional statistical method name to use to perform the
evaluation of the condition.

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 89 of 354

3.6.18.3 Grammar 1576

Trigger definitions have the following grammars: 1577

3.6.18.3.1 Short notation 1578

 1579

<trigger_name >:

 description: < trigger_description >

 event: <event_type_name>

 schedule: <time_interval_for_trigger>

 target_filter:

 <event_filter_definition >

 condition:

 <condition_clause_definition >

 action:

 <operation_definition >

3.6.18.3.2 Extended notation: 1580

 1581

<trigger_name >:

 description: < trigger_description >

 event:

 type: <event_type_name>

 schedule: <time_interval_for_trigger>

 target_filter:

 <event_filter_definition >

 condition:

 constraint: < condition_clause_definition >

 period: <scalar - unit.time> # e.g., 60 sec

 evaluations: <integer> # e.g., 1

 method: <string> # e.g., average

 action:

 <operation_definition >

 1582

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1583

¶ trigger_name: represents the required symbolic name of the trigger as a string. 1584

¶ trigger_description : represents the optional description string for the corresponding 1585

trigger _name. 1586

¶ event_type_name: represents the required name of the TOSCA Event Type that would be 1587

monitored on the identified resource (node). 1588

¶ time_interval_for_trigger : represents the optional time interval that the trigger is valid 1589

for. 1590

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 90 of 354

¶ event_filter_definition: represents the optional filter to use to locate the resource (node) 1591

or capability attribute to monitor. 1592

¶ attribute_constraint_clause: represents the optional attribute constraint that would be 1593

used to test for a specific condition on the monitored resource. 1594

¶ operation_definition: represents the required action to take if the event and (optionally) 1595

condition are met. 1596

3.6.19 Workflow activity definition 1597

A workflow activity defines an operation to be performed in a TOSCA workflow. Activities allows to: 1598

 1599

¶ Delegate the workflow for a node expected to be provided by the orchestrator 1600

¶ Set the state of a node 1601

¶ Call an operation defined on a TOSCA interface of a node, relationship or group 1602

¶ Inline another workflow defined in the topology (to allow reusability) 1603

3.6.19.1 Keynames 1604

The following is the list of recognized keynames for a TOSCA workflow activity definition. Note that while 1605
each of the key is not required, one and only one of them is required (mutualy exclusive). 1606

Keyname Required Type Description

delegate no string The name of the delegate workflow.

This activity requires the target to be provided by the orchestrator
(no-op node or relationship)

set_state no string Value of the node state.

call_operation no string A string that defines the name of the interface and operation to
be called on the node using the
<interface_name>.<operation_name> notation.

inline no string The name of a workflow to be inlined.

3.6.19.2 Grammar 1607

Workflow activity definitions have one of the following grammars: 1608

3.6.19.2.1 Delegate activity 1609

 - delegate: < delegate_workflow_name >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1610

¶ delegate_workflow_name: represents the name of the workflow of the node 1611

provided by the TOSCA orchestrator. 1612

3.6.19.2.2 Set state activity 1613

 - set_state: <new_node_state>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1614

¶ new_node_state: represents the state that will be affected to the node once 1615

the activity is performed. 1616

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 91 of 354

3.6.19.2.3 Call operation activity: 1617

 - call _operation: <interface_name>.<operation_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1618

¶ interface_name: represents the name of the in terface in which the operation to 1619

be called is defined. 1620

¶ operation_name: represents the name of the operation of the interface that 1621

will be called during the workflow execution. 1622

3.6.19.2.4 Inline activity 1623

 - inlin e: <workflow_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1624

¶ workflow_name: represents the name of the workflow to inline. 1625

3.6.19.3 Additional Requirements 1626

¶ Keynames are mutually exclusive, i.e. an activity MUST define only one of delegate, set_state, 1627

call_operation or inline keyname. 1628

3.6.19.4 Example 1629

following represents a list of workflow activity definitions: 1630

 - delegate: deploy

 - set_state: started

 - call_operation: tosca.interfaces.node.lifecycle.Standard.start

 - inline: my_workflow

 1631

3.6.20 Assertion definition 1632

A workflow assertion is used to specify a single condition on a workflow filter definition. The assertion 1633
allows to assert the value of an attribute based on TOSCA constraints. 1634

3.6.20.1 Keynames 1635

The TOSCA workflow assertion definition has no keynames. 1636

3.6.20.2 Grammar 1637

Workflow assertion definitions have the following grammar: 1638

<attribute_name>: <list_of_constraint_clauses>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1639

¶ attribute_name: represents the name of an attribute defined on the assertion context entity 1640
(node instance, relationship instance, group instance) and from which value will be evaluated 1641
against the defined constraint clauses. 1642

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 92 of 354

¶ list_of_constraint_clauses: represents the list of constraint clauses that will be used to validate 1643
the attribute assertion. 1644

3.6.20.3 Example 1645

Following represents a workflow assertion with a single equals constraint: 1646

 my_attribute: [{equal : my_value}]

Following represents a workflow assertion with mutliple constraints: 1647

 my_attribute:

 - min_length: 8

 - max_length : 10

3.6.21 Condition clause definition 1648

A workflow condition clause definition is used to specify a condition that can be used within a workflow 1649
precondition or workflow filter. 1650

3.6.21.1 Keynames 1651

The following is the list of recognized keynames for a TOSCA workflow condition definition: 1652

Keyname Required Type Description

and no list of condition
clause definition

An and clause allows to define sub-filter clause definitions that
must all be evaluated truly so the and clause is considered as true.

or no list of condition
clause definition

An or clause allows to define sub-filter clause definitions where
one of them must all be evaluated truly so the or clause is
considered as true.

assert no list of assertion
definition

A list of filter assertions to be evaluated on entity attributes.

Assert acts as a and clause, i.e. every defined filter assertion
must be true so the assertion is considered as true.

 1653

Note : It is allowed to add assertion definition directly as keynames of the condition clause definition. An 1654
and clause is performed for all direct assertion definition. 1655

3.6.21.2 Grammar 1656

Workflow assertion definitions have the following grammars: 1657

3.6.21.2.1 And clause 1658

and: <list_of_condition_clause_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1659

¶ list_of_condition_clause_definition : represents the list of condition clauses. All 1660

condition clauses MUST be asserted to true so that the and clause is asserted to true. 1661

3.6.21.2.2 Or clause 1662

or: <list_of_condition_ clause_definition>

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 93 of 354

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1663

¶ list_of_condition_clause_definition : represents the list of condition clauses. One of the 1664

condition clause have to be asserted to true so that the or clause is asserted to true. 1665

3.6.21.2.3 Assert clause 1666

assert: <list_of_assertion_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1667

¶ list_of_assertion_definition : represents the list of assertions. All assertions MUST be 1668

asserted to true so that the assert clause is asserted to true. 1669

3.6.21.3 Direct assertion definition 1670

<attribute_name>: <list_of_constraint_clauses>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1671

¶ attribute_name: represents the name of an attribute defined on the assertion context entity 1672
(node instance, relationship instance, group instance) and from which value will be evaluated 1673
against the defined constraint clauses. 1674

¶ list_of_con straint_clauses: represents the list of constraint clauses that will be used to validate 1675
the attribute assertion. 1676

3.6.21.4 Additional Requirement 1677

¶ Keynames are mutually exclusive, i.e. a filter definition can define only one of and, or, or assert 1678

keyname. 1679

3.6.21.5 Notes 1680

¶ The TOSCA processor SHOULD perform assertion in the order of the list for every defined 1681

condition clause or assertion definition. 1682

3.6.21.6 Example 1683

Following represents a workflow condition clause with a single equals constraint: 1684

condition:

 - assert:

 - my_attribut e: [{equal: my_value}]

Following represents a workflow condition clause with a single equals constraints on two different 1685
attributes: 1686

condition:

 - assert:

 - my_attribute: [{equal: my_value}]}

 - my_other_attribute: [{equal: my_other_value}]}

Following represents a workflow condition clause with a or constraint on two different assertions: 1687

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 94 of 354

condition:

 - or:

 - assert:

 - my_attribute: [{equal: my_value}]}

 - assert:

 - my_other_attribute: [{equal: my_other_value}]}

Following represents multiple levels of condition clauses with direct assertion definition usage to build the 1688
following logic: one_attribute equal one_value AND (my_attribute equal my_value OR my_other_attribute 1689
equal my_other_value): 1690

condition:

 - one_attribute: [{equal: one_value }]

 - or:

 - assert:

 - my_attribute: [{equal: my_value}]}

 - assert:

 - my_other_attribute: [{equal: my_other_value}]}

3.6.22 Workflow precondition definition 1691

A workflow condition can be used as a filter or precondition to check if a workflow can be processed or 1692
not based on the state of the instances of a TOSCA topology deployment. When not met, the workflow 1693
will not be triggered. 1694

3.6.22.1 Keynames 1695

The following is the list of recognized keynames for a TOSCA workflow condition definition: 1696

Keyname Required Type Description

target yes string The target of the precondition (this can be a node template name,
a group name)

target_relationship no string The optional name of a requirement of the target in case the
precondition has to be processed on a relationship rather than a
node or group. Note that this is applicable only if the target is a
node.

condition no list of condition
clause
definitions

A list of workflow condition clause definitions. Assertion between
elements of the condition are evaluated as an AND condition.

3.6.22.2 Grammar 1697

Workflow precondition definitions have the following grammars: 1698

 - target: < target_name >

 target_relationship: <target_requirement_name>

 condition:

 <list_of_condition_clause_definition>

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 95 of 354

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1699

¶ target_name: represents the name of a node template or group in the topology. 1700

¶ target_requirement_name : represents the name of a requirement of the node template (in case 1701

target_name refers to a node template. 1702

¶ list_of_condition_clause_definition: represents the list of condition clauses 1703

to be evaluated. The value of the resulting condition is evaluated as an AND 1704

clause between the different elements. 1705

3.6.23 Workflow step definition 1706

A workflow step allows to define one or multiple sequenced activities in a workflow and how they are 1707
connected to other steps in the workflow. They are the building blocks of a declarative workflow. 1708

3.6.23.1 Keynames 1709

The following is the list of recognized keynames for a TOSCA workflow step definition: 1710

Keyname Required Type Description

target yes string The target of the step (this can be a node template name, a
group name)

target_relationship no string The optional name of a requirement of the target in case the
step refers to a relationship rather than a node or group. Note
that this is applicable only if the target is a node.

operation_host no string The node on which operations should be executed (for TOSCA
call_operation activities).
This element is required only for relationships and groups target.

If target is a relationships operation_host is required and
valid_values are SOURCE or TARGET ς referring to the
relationship source or target node.

If target is a group operation_host is optional.
If not specified the operation will be triggered on every node of
the group.
If specified the valid_value is a node_type or the name of a node
template.

filter no list of constraint
clauses

Filter is a map of attribute name, list of constraint clause that
allows to provide a filtering logic.

activities yes list of
activity_definition

The list of sequential activities to be performed in this step.

on_success no list of string The optional list of step names to be performed after this one
has been completed with success (all activities has been correctly
processed).

on_failure no list of string The optional list of step names to be called after this one in case
one of the step activity failed.

3.6.23.2 Grammar 1711

Workflow step definitions have the following grammars: 1712

steps:

 <step_name>

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 96 of 354

 target: < target_name >

 target_relationship: <target_requirement_name>

 operation_host: <operation_host_name>

 filter:

 - <list_of_condition_clause_definition >

 activities:

 - <list_of_activity_definition >

 on_success:

 - <target_step_name>

 on_failure:

 - <target_step_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1713

¶ target_name: represents the name of a node template or group in the topology. 1714

¶ target_requirement_name : represents the name of a requirement of the node template (in case 1715

target_name refers to a node template. 1716

¶ operation_host : the node on which the operation should be executed 1717

¶ <list_of_condition_clause_definition>: represents a list of condition clause definition. 1718

¶ list_of_activity_definition : represents a list of activity definition 1719

¶ target_step_name : represents the name of another step of the workflow. 1720

3.7 Type-specific definitions 1721

3.7.1 Entity Type Schema 1722

An Entity Type is the common, base, polymorphic schema type which is extended by TOSCA base entity 1723
type schemas (e.g., Node Type, Relationship Type, Artifact Type, etc.) and serves to define once all the 1724
commonly shared keynames and their types. This is a ñmetaò type which is abstract and not directly 1725
instantiatable. 1726

3.7.1.1 Keynames 1727

The following is the list of recognized keynames for a TOSCA Entity Type definition: 1728

Keyname Required Type Constraints Description

derived_from no string ΨbƻƴŜΩ
is the only allowed
value

An optional parent Entity Type name the Entity Type
derives from.

version no version N/A An optional version for the Entity Type definition.

metadata no map of
string

N/A Defines a section used to declare additional metadata
information.

description no description N/A An optional description for the Entity Type.

3.7.1.2 Grammar 1729

Entity Types have following grammar: 1730

<entity_keyname>:

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 97 of 354

 ʢ 4ÈÅ ÏÎÌÙ ÁÌÌÏ×ÅÄ ÖÁÌÕÅ ÉÓ ƥ.ÏÎÅƦ

 derived_from: None

 version: <version_number>

 metadata:

 <metadata_map>

 description: <interface_description >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1731

¶ version_number : represents the optional TOSCA version number for the entity. 1732

¶ entity_description : represents the optional description string for the entity. 1733

¶ metadata_map: represents the optional map of string. 1734

3.7.1.3 Additional Requirements 1735

¶ The TOSCA Entity Type SHALL be the common base type used to derive all other top-level base 1736

TOSCA Types. 1737

¶ The TOSCA Entity Type SHALL NOT be used to derive or create new base types apart from 1738

those defined in this specification or a profile of this specification. 1739

3.7.2 Capability definition 1740

A capability definition defines a named, typed set of data that can be associated with Node Type or Node 1741
Template to describe a transparent capability or feature of the software component the node describes. 1742

3.7.2.1 Keynames 1743

The following is the list of recognized keynames for a TOSCA capability definition: 1744

Keyname Required Type Constraints Description

type yes string N/A The required name of the Capability Type the
capability definition is based upon.

description no description N/A The optional description of the Capability definition.

properties no list of
property
definitions

N/A An optional list of property definitions for the
Capability definition.

attributes no list of
attribute
definitions

N/A An optional list of attribute definitions for the
Capability definition.

valid_source_types no string[] N/A An optional list of one or more valid names of Node
Types that are supported as valid sources of any
relationship established to the declared Capability
Type.

occurrences no range of
integer

implied default
of
[1,UNBOUNDED]

The optional minimum and maximum occurrences
for the capability. By default, an exported Capability
should allow at least one relationship to be formed
with it with a maximum of UNBOUNDED
relationships.

Note: the keyword UNBOUNDED is also supported
to represent any positive integer.

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 98 of 354

3.7.2.2 Grammar 1745

Capability definitions have one of the following grammars: 1746

3.7.2.2.1 Short notation 1747

The following grammar may be used when only a list of capability definition names needs to be declared: 1748

<capability_definition_name >: < capability_type >

3.7.2.2.2 Extended notation 1749

The following multi-line grammar may be used when additional information on the capability definition is 1750
needed: 1751

<capability_definition_name >:

 type: < capability_type >

 description: < capability_description >

 properties:

 <property_definitions >

 attributes:

 <attribute_definitions >

 valid_source_types: [< node type_names >]

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1752

¶ capability_definition_name : represents the symbolic name of the capability as a string. 1753

¶ capability_type : represents the required name of a capability type the capability definition is 1754

based upon. 1755

¶ capability_description : represents the optional description of the capability definition. 1756

¶ property_definitions : represents the optional list of property definitions for the capability 1757

definition. 1758

¶ attribute_definitions : represents the optional list of attribute definitions for the capability 1759

definition. 1760

¶ node_type_names: represents the optional list of one or more names of Node Types that the 1761

Capability definition supports as valid sources for a successful relationship to be established to 1762
itself. 1763

3.7.2.3 Examples 1764

The following examples show capability definitions in both simple and full forms: 1765

3.7.2.3.1 Simple notation example 1766

Simple notation, no properties defined or augmented

some_capability: mytypes.mycapabilities.MyCapabilityTypeName

3.7.2.3.2 Full notation example 1767

Full notation, augmenting properties of the referenced capability type

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 99 of 354

some_capability:

 type: mytypes.mycapabilities.MyCapabilityTypeName

 properties:

 limit:

 type: integer

 default: 100

3.7.2.4 Additional requirements 1768

¶ Any Node Type (names) provides as values for the valid_source_types keyname SHALL be 1769

type-compatible (i.e., derived from the same parent Node Type) with any Node Types defined 1770

using the same keyname in the parent Capability Type. 1771

¶ Capability symbolic names SHALL be unique; it is an error if a capability name is found to occur 1772

more than once. 1773

3.7.2.5 Notes 1774

¶ The Capability Type, in this example MyCapabilityTypeName , would be defined 1775

elsewhere and have an integer property named limit. 1776

¶ This definition directly maps to the CapabilitiesDefinition of the Node Type entity as defined 1777

in the TOSCA v1.0 specification. 1778

3.7.3 Requirement definition 1779

The Requirement definition describes a named requirement (dependencies) of a TOSCA Node Type or 1780
Node template which needs to be fulfilled by a matching Capability definition declared by another TOSCA 1781
modelable entity. The requirement definition may itself include the specific name of the fulfilling entity 1782
(explicitly) or provide an abstract type, along with additional filtering characteristics, that a TOSCA 1783
orchestrator can use to fulfill the capability at runtime (implicitly). 1784

3.7.3.1 Keynames 1785

The following is the list of recognized keynames for a TOSCA requirement definition: 1786

Keyname Required Type Constraints Description

capability yes string N/A The required reserved keyname used that can be used to
provide the name of a valid Capability Type that can fulfill
the requirement.

node no string N/A The optional reserved keyname used to provide the name
of a valid Node Type that contains the capability definition
that can be used to fulfill the requirement.

relationship no string N/A The optional reserved keyname used to provide the name
of a valid Relationship Type to construct when fulfilling the
requirement.

occurrences no range of
integer

implied default
of [1,1]

The optional minimum and maximum occurrences for the
requirement.

Note: the keyword UNBOUNDED is also supported to
represent any positive integer.

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 100 of 354

3.7.3.1.1 Additional Keynames for multi -line relationship grammar 1787

The Requirement definition contains the Relationship Type information needed by TOSCA Orchestrators 1788
to construct relationships to other TOSCA nodes with matching capabilities; however, it is sometimes 1789
recognized that additional properties may need to be passed to the relationship (perhaps for 1790
configuration). In these cases, additional grammar is provided so that the Node Type may declare 1791
additional Property definitions to be used as inputs to the Relationship Typeôs declared interfaces (or 1792
specific operations of those interfaces). 1793

Keyname Required Type Constraints Description

type yes string N/A The optional reserved keyname used to provide the name
ƻŦ ǘƘŜ wŜƭŀǘƛƻƴǎƘƛǇ ¢ȅǇŜ ŦƻǊ ǘƘŜ ǊŜǉǳƛǊŜƳŜƴǘ ŘŜŦƛƴƛǘƛƻƴΩǎ

relationship keyname.

interfaces no list of
interface
definitions

N/A The optional reserved keyname used to reference declared
(named) interface definitions of the corresponding
Relationship Type in order to declare additional Property
definitions for these interfaces or operations of these
interfaces.

3.7.3.2 Grammar 1794

Requirement definitions have one of the following grammars: 1795

3.7.3.2.1 Simple grammar (Capability Type only) 1796

<requirement_definition_name >: <capability_type_name>

3.7.3.2.2 Extended grammar (with Node and Relationship Types) 1797

<requirement_definition_name >:

 capability: < capability_type_name >

 node: < node_type_name>

 relationship: < rela tionship_type_name >

 occurrences: [<min_occurrences>, <max_occurrences>]

3.7.3.2.3 Extended grammar for declaring Property Definitions on the 1798

relationshipôs Interfaces 1799

The following additional multi-line grammar is provided for the relationship keyname in order to declare 1800
new Property definitions for inputs of known Interface definitions of the declared Relationship Type. 1801

<requirement_definition_name >:

 # Other keynames omitted for brevity

 relationship:

 type: < relationship_type_name >

 interfaces:

 <interface_definitions >

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1802

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 101 of 354

¶ requirement_definition_name: represents the required symbolic name of the requirement 1803

definition as a string. 1804

¶ capability_type_name : represents the required name of a Capability type that can be used to 1805

fulfill the requirement. 1806

¶ node_type_name: represents the optional name of a TOSCA Node Type that contains the 1807

Capability Type definition the requirement can be fulfilled by. 1808

¶ relationship_type_name : represents the optional name of a Relationship Type to be used to 1809

construct a relationship between this requirement definition (i.e., in the source node) to a 1810

matching capability definition (in a target node). 1811

¶ min_occurrences, max_occurrences : represents the optional minimum and maximum 1812

occurrences of the requirement (i.e., its cardinality). 1813

¶ interface_definitions : represents one or more already declared interface definitions in the 1814

Relationship Type (as declared on the type keyname) allowing for the declaration of new 1815

Property definition for these interfaces or for specific Operation definitions of these interfaces. 1816

3.7.3.3 Additional Requirements 1817

¶ Requirement symbolic names SHALL be unique; it is an error if a requirement name is found to 1818

occur more than once. 1819

¶ If the occurrence s keyname is not present, then the occurrence of the requirement SHALL be 1820

one and only one; that is a default declaration as follows would be assumed: 1821

o occurrences: [1,1] 1822

3.7.3.4 Notes 1823

¶ This element directly maps to the RequirementsDefinition of the Node Type entity as defined 1824

in the TOSCA v1.0 specification. 1825

¶ The requirement symbolic name is used for identification of the requirement definition only and 1826

not relied upon for establishing any relationships in the topology. 1827

3.7.3.5 Requirement Type definition is a tuple 1828

A requirement definition allows type designers to govern which types are allowed (valid) for fulfillment 1829
using three levels of specificity with only the Capability Type being required. 1830

1. Node Type (optional) 1831

2. Relationship Type (optional) 1832

3. Capability Type (required) 1833

The first level allows selection, as shown in both the simple or complex grammar, simply providing the 1834
nodeôs type using the node keyname. The second level allows specification of the relationship type to use 1835

when connecting the requirement to the capability using the relationship keyname. Finally, the 1836

specific named capability type on the target node is provided using the capability keyname. 1837

3.7.3.5.1 Property filter 1838

In addition to the node, relationship and capability types, a filter, with the keyname node_filter , may be 1839

provided to constrain the allowed set of potential target nodes based upon their properties and their 1840
capabilitiesô properties. This allows TOSCA orchestrators to help find the ñbest fitò when selecting among 1841
multiple potential target nodes for the expressed requirements. 1842

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 102 of 354

3.7.4 Artifact Type 1843

An Artifact Type is a reusable entity that defines the type of one or more files that are used to define 1844
implementation or deployment artifacts that are referenced by nodes or relationships on their operations. 1845

3.7.4.1 Keynames 1846

The Artifact Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA Entity 1847
Schema. 1848

In addition, the Artifact Type has the following recognized keynames: 1849

Keyname Required Type Description

mime_type no string The required mime type property for the Artifact Type.

file_ext no string[] The required file extension property for the Artifact Type.

properties no list of
property
definitions

An optional list of property definitions for the Artifact Type.

3.7.4.2 Grammar 1850

Artifact Types have following grammar: 1851

<artifact_type_name >:

 derived_from: < parent_artifact_type_name >

 version: < version_number >

 metadata:

 <map of string >

 description: < artifact_description >

 mime_type: < mime_type_string >

 file_ext: [< file_extensions >]

 properties:

 <property_definitions >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1852

¶ artifact_type_name : represents the name of the Artifact Type being declared as a string. 1853

¶ parent_artifact_type_name : represents the name of the Artifact Type this Artifact Type 1854

definition derives from (i.e., its ñparentò type). 1855

¶ version_number : represents the optional TOSCA version number for the Artifact Type. 1856

¶ artifact_description : represents the optional description string for the Artifact Type. 1857

¶ mime_type_string : represents the optional Multipurpose Internet Mail Extensions (MIME) 1858

standard string value that describes the file contents for this type of Artifact Type as a string. 1859

¶ file_extensions : represents the optional list of one or more recognized file extensions for this 1860

type of artifact type as strings. 1861

¶ property_definitions : represents the optional list of property definitions for the artifact type. 1862

3.7.4.3 Examples 1863

my_artifact_type:

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 103 of 354

 description: Java Archive artifact type

 derived_from: tosca.artifact.Root

 mime_type: application/java - archive

 file_ext: [jar]

3.7.4.4 Notes 1864

¶ The ómime_typeô keyname is meant to have values that are Apache mime types such as those 1865

defined here: http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types 1866

3.7.5 Interface Type 1867

An Interface Type is a reusable entity that describes a set of operations that can be used to interact with 1868
or manage a node or relationship in a TOSCA topology. 1869

3.7.5.1 Keynames 1870

The Interface Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA 1871
Entity Schema. 1872

In addition, the Interface Type has the following recognized keynames: 1873

Keyname Required Type Description

inputs no list of
property
definitions

The optional list of input parameter definitions.

3.7.5.2 Grammar 1874

Interface Types have following grammar: 1875

<interface_type_name >:

 derived_from: < parent_interface_type_name >

 version: <version_number>

 metadata:

 <map of string >

 description: <interface_description >

 inputs:

 <property_definitions >

 <operation_definitions >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1876

¶ interface_type_name : represents the required name of the interface as a string. 1877

¶ parent_interface_type_name : represents the name of the Interface Type this Interface Type 1878

definition derives from (i.e., its ñparentò type). 1879

¶ version_number : represents the optional TOSCA version number for the Interface Type. 1880

¶ interface_description : represents the optional description string for the Interface Type. 1881

¶ property_definitions : represents the optional list of property definitions (i.e., parameters) 1882

which the TOSCA orchestrator would make available (i.e., or pass) to all implementation artifacts 1883

for operations declared on the interface during their execution. 1884

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 104 of 354

¶ operation_definitions : represents the required list of one or more operation definitions. 1885

3.7.5.3 Example 1886

The following example shows a custom interface used to define multiple configure operations. 1887

mycompany.mytypes.myinterfaces.MyConfigure:

 derived_from: tosca.interfaces.relationship.Root

 description: My custom configure Interface Type

 inputs:

 mode:

 type: string

 pre_configure_service:

 description: pre - configure operation for my service

 post_configure_service:

 description: post - configure operation for my service

3.7.5.4 Additional Requirements 1888

¶ Interface Types MUST NOT include any implementations for defined operations; that is, the 1889

implementation keyname is invalid. 1890

¶ The inputs keyname is reserved and SHALL NOT be used for an operation name. 1891

3.7.6 Data Type 1892

A Data Type definition defines the schema for new named datatypes in TOSCA. 1893

3.7.6.1 Keynames 1894

The Data Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA Entity 1895
Schema. 1896

In addition, the Data Type has the following recognized keynames: 1897

Keyname Required Type Description

constraints no list of

constraint clauses

The optional list of sequenced constraint clauses for the Data

Type.

properties no list of

property

definitions

The optional list property definitions that comprise the schema

for a complex Data Type in TOSCA.

3.7.6.2 Grammar 1898

Data Types have the following grammar: 1899

<data_type_name >:

 derived_from: < existing_type_name >

 version: < version_number >

 metadata:

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 105 of 354

 <map of string >

 description: < datatype_description >

 constraints:

 - <type_constraints >

 properties:

 <property_definitions >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1900

¶ data_type_name : represents the required symbolic name of the Data Type as a string. 1901

¶ version_number : represents the optional TOSCA version number for the Data Type. 1902

¶ datatype_description: represents the optional description for the Data Type. 1903

¶ existing_type_name: represents the optional name of a valid TOSCA type this new Data 1904

Type would derive from. 1905

¶ type_constraints : represents the optional sequenced list of one or more type-compatible 1906

constraint clauses that restrict the Data Type. 1907

¶ property_definitions : represents the optional list of one or more property definitions that 1908

provide the schema for the Data Type. 1909

3.7.6.3 Additional Requirements 1910

¶ A valid datatype definition MUST have either a valid derived_from declaration or at least one 1911

valid property definition. 1912

¶ Any constraint clauses SHALL be type-compatible with the type declared by the 1913

derived_from keyname. 1914

¶ If a properties keyname is provided, it SHALL contain one or more valid property definitions. 1915

3.7.6.4 Examples 1916

The following example represents a Data Type definition based upon an existing string type: 1917

3.7.6.4.1 Defining a complex datatype 1918

define a new complex datatype

mytypes.phonenumber:

 description: my phone number datatype

 properties:

 countrycode:

 type: integer

 areacode:

 type: integer

 number:

 type: integer

3.7.6.4.2 Defining a datatype derived from an existing datatype 1919

define a new datatype that derives from existing type and extends it

mytypes.phonenumber.extended:

 derived_from: mytypes.phonenumber

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 106 of 354

 description: custom phone number type that extends the basic phonenumber type

 properties:

 phone_description:

 type: string

 constraints:

 - max_length: 128

3.7.7 Capability Type 1920

A Capability Type is a reusable entity that describes a kind of capability that a Node Type can declare to 1921
expose. Requirements (implicit or explicit) that are declared as part of one node can be matched to (i.e., 1922
fulfilled by) the Capabilities declared by another node. 1923

3.7.7.1 Keynames 1924

The Capability Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA 1925
Entity Schema. 1926

In addition, the Capability Type has the following recognized keynames: 1927

Keyname Required Type Description

properties no list of
property
definitions

An optional list of property definitions for the Capability Type.

attributes no list of
attribute
definitions

An optional list of attribute definitions for the Capability Type.

valid_source_types no string[] An optional list of one or more valid names of Node Types that are
supported as valid sources of any relationship established to the
declared Capability Type.

3.7.7.2 Grammar 1928

Capability Types have following grammar: 1929

<capability_type_name >:

 derived_from: < parent_capability_type_name >

 version: < version_number >

 description: < capability_description >

 properties:

 <property_definitions >

 attributes:

 <attribute_definitions >

 valid_source _types: [< node type_names >]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1930

¶ capability_type_name : represents the required name of the Capability Type being declared as 1931

a string. 1932

¶ parent_capability_type_name : represents the name of the Capability Type this Capability 1933

Type definition derives from (i.e., its ñparentò type). 1934

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 107 of 354

¶ version_number : represents the optional TOSCA version number for the Capability Type. 1935

¶ capability_description : represents the optional description string for the corresponding 1936

capability_type_name . 1937

¶ property_definitions : represents an optional list of property definitions that the Capability 1938

type exports. 1939

¶ attribute_definitions : represents the optional list of attribute definitions for the Capability 1940

Type. 1941

¶ node_type_names: represents the optional list of one or more names of Node Types that the 1942

Capability Type supports as valid sources for a successful relationship to be established to itself. 1943

3.7.7.3 Example 1944

mycompany.mytypes.myapplication.MyFeature:

 derived_from: tosca.capabilities.Root

 ÄÅÓÃÒÉÐÔÉÏÎƙ Á ÃÕÓÔÏÍ ÆÅÁÔÕÒÅ ÏÆ ÍÙ ÃÏÍÐÁÎÙƦÓ ÁÐÐÌÉÃÁÔÉÏÎ

 properties:

 my_feature_setting:

 type: string

 my_feature_value:

 type: integer

3.7.8 Requirement Type 1945

A Requirement Type is a reusable entity that describes a kind of requirement that a Node Type can 1946
declare to expose. The TOSCA Simple Profile seeks to simplify the need for declaring specific 1947
Requirement Types from nodes and instead rely upon nodes declaring their features sets using TOSCA 1948
Capability Types along with a named Feature notation. 1949

Currently, there are no use cases in this TOSCA Simple Profile in YAML specification that utilize an 1950
independently defined Requirement Type. This is a desired effect as part of the simplification of the 1951
TOSCA v1.0 specification. 1952

3.7.9 Node Type 1953

A Node Type is a reusable entity that defines the type of one or more Node Templates. As such, a Node 1954
Type defines the structure of observable properties via a Properties Definition, the Requirements and 1955
Capabilities of the node as well as its supported interfaces. 1956

3.7.9.1 Keynames 1957

The Node Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA Entity 1958
Schema. 1959

In addition, the Node Type has the following recognized keynames: 1960

Keyname Required Type Description

attributes no list of
attribute definitions

An optional list of attribute definitions for the Node Type.

properties no list of
property definitions

An optional list of property definitions for the Node Type.

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 108 of 354

Keyname Required Type Description

requirements no list of
requirement
definitions

An optional sequenced list of requirement definitions for the Node
Type.

capabilities no list of
capability
definitions

An optional list of capability definitions for the Node Type.

interfaces no list of
interface definitions

An optional list of interface definitions supported by the Node Type.

artifacts no list of
artifact definitions

An optional list of named artifact definitions for the Node Type.

3.7.9.2 Grammar 1961

Node Types have following grammar: 1962

<node_type_name>:

 derived_from: < parent_node_type_name >

 version: < version_number >

 metadata:

 <map of string >

 description: < node_type_description >

 attributes:

 <attribute_definitions >

 properties:

 <property_definitions >

 requirements:

 - <requirement_definitions >

 capabilities:

 <capability_definitions >

 interfaces:

 <interface_definitions >

 artifacts:

 <artifact_definitions >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1963

¶ node_type_name: represents the required symbolic name of the Node Type being declared. 1964

¶ parent _node_type_name: represents the name (string) of the Node Type this Node Type 1965

definition derives from (i.e., its ñparentò type). 1966

¶ version_number : represents the optional TOSCA version number for the Node Type. 1967

¶ node_type_description : represents the optional description string for the corresponding 1968

node_type_name. 1969

¶ property_definitions : represents the optional list of property definitions for the Node Type. 1970

¶ attribute_definitions : represents the optional list of attribute definitions for the Node Type. 1971

¶ requirement_definitions : represents the optional sequenced list of requirement definitions for 1972

the Node Type. 1973

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 109 of 354

¶ capability_definitions : represents the optional list of capability definitions for the Node 1974

Type. 1975

¶ interface_definitions : represents the optional list of one or more interface definitions 1976

supported by the Node Type. 1977

¶ artifact_definitions : represents the optional list of artifact definitions for the Node Type. 1978

3.7.9.3 Additional Requirements 1979

¶ Requirements are intentionally expressed as a sequenced list of TOSCA Requirement definitions 1980

which SHOULD be resolved (processed) in sequence order by TOSCA Orchestrators. . 1981

3.7.9.4 Best Practices 1982

¶ It is recommended that all Node Types SHOULD derive directly (as a parent) or indirectly (as an 1983

ancestor) of the TOSCA Root Node Type (i.e., tosca.nodes.Root) to promote compatibility and 1984

portability. However, it is permitted to author Node Types that do not do so. 1985

¶ TOSCA Orchestrators, having a full view of the complete application topology template and its 1986

resultant dependency graph of nodes and relationships, MAY prioritize how they instantiate the nodes 1987

and relationships for the application (perhaps in parallel where possible) to achieve the greatest 1988

efficiency 1989

3.7.9.5 Example 1990

my_company.my_types.my_app_node_type:

 derived_from: tosca.nodes.SoftwareComponent

 ÄÅÓÃÒÉÐÔÉÏÎƙ -Ù ÃÏÍÐÁÎÙƦÓ ÃÕÓÔÏÍ ÁÐÐÌÉÃÁÔÏÎ

 properties:

 my_app_password:

 type: string

 description: application password

 constraints:

 - min_length: 6

 - max_length: 10

 attributes:

 my_app_port:

 type: integer

 description: application port number

 requirements:

 - some_database:

 capability: EndPoint.Database

 node: Database

 relationship: ConnectsTo

3.7.10 Relationship Type 1991

A Relationship Type is a reusable entity that defines the type of one or more relationships between Node 1992
Types or Node Templates. 1993

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 110 of 354

3.7.10.1 Keynames 1994

The Relationship Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA 1995
Entity Schema. 1996

In addition, the Relationship Type has the following recognized keynames: 1997

Keyname Required Definition/Type Description

properties no list of
property
definitions

An optional list of property definitions for the Relationship
Type.

attributes no list of
attribute
definitions

An optional list of attribute definitions for the Relationship
Type.

interfaces no list of
interface
definitions

An optional list of interface definitions interfaces supported
by the Relationship Type.

valid_target_types no string[] An optional list of one or more names of Capability Types
that are valid targets for this relationship.

3.7.10.2 Grammar 1998

Relationship Types have following grammar: 1999

<relationship_type_name >:

 derived_from: < parent_relationship_type_name >

 version: < version_number >

 metadata:

 <map of string >

 description: < relationship_description >

 properties:

 <property_definitions >

 attributes:

 <attribute_definitions >

 interfaces:

 <interface_definitions >

 valid_target_types: [< capability_type_ names>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 2000

¶ relationship_type_name : represents the required symbolic name of the Relationship Type 2001

being declared as a string. 2002

¶ parent_relationship_type_name : represents the name (string) of the Relationship Type this 2003

Relationship Type definition derives from (i.e., its ñparentò type). 2004

¶ relationship_description : represents the optional description string for the corresponding 2005

relationship_type_name . 2006

¶ version_number : represents the optional TOSCA version number for the Relationship Type. 2007

¶ property_definitions : represents the optional list of property definitions for the Relationship 2008

Type. 2009

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 111 of 354

¶ attribute_definitions : represents the optional list of attribute definitions for the Relationship 2010

Type. 2011

¶ interface_definitions : represents the optional list of one or more names of valid interface 2012

definitions supported by the Relationship Type. 2013

¶ capability_type_names : represents one or more names of valid target types for the 2014

relationship (i.e., Capability Types). 2015

3.7.10.3 Best Practices 2016

¶ For TOSCA application portability, it is recommended that designers use the normative 2017

Relationship types defined in this specification where possible and derive from them for 2018

customization purposes. 2019

¶ The TOSCA Root Relationship Type (tosca.relationships.Root) SHOULD be used to derive 2020

new types where possible when defining new relationships types. This assures that its normative 2021

configuration interface (tosca.interfaces.relationship.Configur e) can be used in a 2022

deterministic way by TOSCA orchestrators. 2023

3.7.10.4 Examples 2024

mycompanytypes.myrelationships.AppDependency:

 derived_from: tosca.relationships.DependsOn

 valid_target_types: [mycompanytypes.mycapabilities.SomeAppCapability]

3.7.11 Group Type 2025

A Group Type defines logical grouping types for nodes, typically for different management purposes. 2026
Groups can effectively be viewed as logical nodes that are not part of the physical deployment topology of 2027
an application, yet can have capabilities and the ability to attach policies and interfaces that can be 2028
applied (depending on the group type) to its member nodes. 2029

 2030

Conceptually, group definitions allow the creation of logical ñmembershipò relationships to nodes in a 2031
service template that are not a part of the applicationôs explicit requirement dependencies in the topology 2032
template (i.e. those required to actually get the application deployed and running). Instead, such logical 2033
membership allows for the introduction of things such as group management and uniform application of 2034
policies (i.e., requirements that are also not bound to the application itself) to the groupôs members. 2035

3.7.11.1 Keynames 2036

The Group Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA Entity 2037
Schema. 2038

In addition, the Group Type has the following recognized keynames: 2039

Keyname Required Type Description

attributes no list of
attribute definitions

An optional list of attribute definitions for the Group
Type.

properties no list of
property definitions

An optional list of property definitions for the Group
Type.

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 112 of 354

Keyname Required Type Description

members no string[] An optional list of one or more names of Node Types
that are valid (allowed) as members of the Group Type.

Note: This can be viewed by TOSCA Orchestrators as an
implied relationship from the listed members nodes to
the group, but one that does not have operational
lifecycle considerations. For example, if we were to
name this as an explicit Relationship Type we might call
ǘƘƛǎ άaŜƳōŜǊhŦέ όƎǊƻǳǇύΦ

requirements no list of
requirement definitions

An optional sequenced list of requirement definitions for
the Group Type.

capabilities no list of
capability definitions

An optional list of capability definitions for the Group
Type.

interfaces no list of
interface definitions

An optional list of interface definitions supported by the
Group Type.

3.7.11.2 Grammar 2040

Group Types have one the following grammars: 2041

<group_type_name >:

 derived_from: < parent_group_type_name >

 version: < version_number >

 metadata:

 <map of string >

 description: < group_description >

 properties:

 <property_definitions >

 members: [<list_of_valid_member_types>]

 requirements:

 - <requirement_definitions >

 capabilities:

 <capability_definitions >

 interfaces:

 <interface_definitions >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 2042

¶ group_type_name : represents the required symbolic name of the Group Type being declared as 2043

a string. 2044

¶ parent_group_type_name : represents the name (string) of the Group Type this Group Type 2045

definition derives from (i.e., its ñparentò type). 2046

¶ version_number : represents the optional TOSCA version number for the Group Type. 2047

¶ group_descri ption : represents the optional description string for the corresponding 2048

group_type_name . 2049

¶ property_definitions : represents the optional list of property definitions for the Group Type. 2050

¶ list_of_valid_member_types : represents the optional list of TOSCA types (e.g.,., Node, 2051

Capability or even other Group Types) that are valid member types for being added to (i.e., 2052
members of) the Group Type. 2053

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 113 of 354

¶ interface_definitions : represents the optional list of one or more interface definitions 2054

supported by the Group Type. 2055

3.7.11.3 Additional Requirements 2056

¶ Group definitions SHOULD NOT be used to define or redefine relationships (dependencies) 2057

between nodes that can be expressed using normative TOSCA Relationships (e.g., HostedOn, 2058

ConnectsTo, etc.) within a TOSCA topology template. 2059

¶ The list of values associated with the ñmembersò keyname MUST only contain types that or 2060

homogenous (i.e., derive from the same type hierarchy). 2061

3.7.11.4 Example 2062

The following represents a Group Type definition: 2063

group_types:

 mycompany.mytypes.groups.placement:

 ÄÅÓÃÒÉÐÔÉÏÎƙ -Ù ÃÏÍÐÁÎÙƦÓ ÇÒÏÕÐ ÔÙÐÅ ÆÏÒ ÐÌÁÃÉÎÇ ÎÏÄÅÓ ÏÆ ÔÙÐÅ #ÏÍÐÕÔÅ

 members: [tosca.nodes.Compute]

3.7.12 Poli cy Type 2064

A Policy Type defines a type of requirement that affects or governs an application or serviceôs topology at 2065
some stage of its lifecycle, but is not explicitly part of the topology itself (i.e., it does not prevent the 2066
application or service from being deployed or run if it did not exist). 2067

3.7.12.1 Keynames 2068

The Policy Type is a TOSCA Entity and has the common keynames listed in section 3.7.1 TOSCA Entity 2069
Schema. 2070

In addition, the Policy Type has the following recognized keynames: 2071

Keyname Required Type Description

properties no list of
property
definitions

An optional list of property definitions for the Policy Type.

targets

no string[] An optional list of valid Node Types or Group Types the Policy
Type can be applied to.

Note: This can be viewed by TOSCA Orchestrators as an implied
relationship to the target nodes, but one that does not have
operational lifecycle considerations. For example, if we were to
name this as an explicit Relationship Type we might call this
ά!ǇǇƭƛŜǎ¢ƻέ όƴƻŘŜ ƻǊ ƎǊƻǳǇύΦ

triggers no list of trigger An optional list of policy triggers for the Policy Type.

3.7.12.2 Grammar 2072

Policy Types have the following grammar: 2073

<policy_type_name >:

 derived_from: < parent_policy_type_name >

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 114 of 354

 version: < version_number >

 metadata:

 <map of string >

 description: < policy_description >

 properties:

 <property_definitions >

 targets: [<list_of_valid_target_types>]

 triggers:

 <list_of_trigger_definitions >

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 2074

¶ policy_type_name : represents the required symbolic name of the Policy Type being declared 2075

as a string. 2076

¶ parent_policy_type_name : represents the name (string) of the Policy Type this Policy Type 2077

definition derives from (i.e., its ñparentò type). 2078

¶ version_number : represents the optional TOSCA version number for the Policy Type. 2079

¶ policy_descrip tion : represents the optional description string for the corresponding 2080

policy_type_name . 2081

¶ property_definitions : represents the optional list of property definitions for the Policy Type. 2082

¶ list_of_valid_target_types : represents the optional list of TOSCA types (i.e., Group or 2083

Node Types) that are valid targets for this Policy Type. 2084

¶ list_of_trigger_definitions : represents the optional list of trigger definitions for the policy. 2085

3.7.12.3 Example 2086

The following represents a Policy Type definition: 2087

policy_types:

 mycompany.mytypes.policies.placement.Container.Linux:

 ÄÅÓÃÒÉÐÔÉÏÎƙ -Ù ÃÏÍÐÁÎÙƦÓ ÐÌÁÃÅÍÅÎÔ ÐÏÌÉÃÙ ÆÏÒ ÌÉÎÕØ

 derived_from: tosca.policies.Root

3.8 Template -specific definitions 2088

The definitions in this section provide reusable modeling element grammars that are specific to the Node 2089
or Relationship templates. 2090

3.8.1 Capability assignment 2091

A capability assignment allows node template authors to assign values to properties and attributes for a 2092
named capability definition that is part of a Node Templateôs type definition. 2093

3.8.1.1 Keynames 2094

The following is the list of recognized keynames for a TOSCA capability assignment: 2095

Keyname Required Type Description

properties no list of
property
assignments

An optional list of property definitions for the Capability definition.

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 115 of 354

Keyname Required Type Description

attributes no list of
attribute
assignments

An optional list of attribute definitions for the Capability definition.

3.8.1.2 Grammar 2096

Capability assignments have one of the following grammars: 2097

<capability_definition_name >:

 properties:

 <property_assignments >

 attributes:

 <attribute_assignments >

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 2098

¶ capability_definition_name: represents the symbolic name of the capability as a string. 2099

¶ property_assignments : represents the optional list of property assignments for the capability 2100

definition. 2101

¶ attribute_assignments : represents the optional list of attribute assignments for the capability 2102

definition. 2103

3.8.1.3 Example 2104

The following example shows a capability assignment: 2105

3.8.1.3.1 Notation example 2106

node_templates:

 some_node_template:

 capabilities:

 some_capability:

 properties:

 limit: 100

3.8.2 Requirement assignment 2107

A Requirement assignment allows template authors to provide either concrete names of TOSCA 2108
templates or provide abstract selection criteria for providers to use to find matching TOSCA templates 2109
that are used to fulfill a named requirementôs declared TOSCA Node Type. 2110

3.8.2.1 Keynames 2111

The following is the list of recognized keynames for a TOSCA requirement assignment: 2112

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 116 of 354

Keyname Required Type Description

capability no string The optional reserved keyname used to provide the name of either a:

¶ Capability definition within a target node template that can
fulfill the requirement.

¶ Capability Type that the provider will use to select a type-
compatible target node template to fulfill the requirement at
runtime.

node no string The optional reserved keyname used to identify the target node of a
relationship. specifically, it is used to provide either a:

¶ Node Template name that can fulfill the target node
requirement.

¶ Node Type name that the provider will use to select a type-
compatible node template to fulfill the requirement at runtime.

relationship no string The optional reserved keyname used to provide the name of either a:

¶ Relationship Template to use to relate the source node to the
(capability in the) target node when fulfilling the requirement.

¶ Relationship Type that the provider will use to select a type-
compatible relationship template to relate the source node to
the target node at runtime.

node_filter no node filter The optional filter definition that TOSCA orchestrators or providers would
use to select a type-compatible target node that can fulfill the associated
abstract requirement at runtime.

The following is the list of recognized keynames for a TOSCA requirement assignmentôs relationship 2113

keyname which is used when Property assignments need to be provided to inputs of declared interfaces 2114
or their operations: 2115

Keyname Required Type Description

type no string The optional reserved keyname used to provide the name of the

wŜƭŀǘƛƻƴǎƘƛǇ ¢ȅǇŜ ŦƻǊ ǘƘŜ ǊŜǉǳƛǊŜƳŜƴǘ ŀǎǎƛƎƴƳŜƴǘΩǎ relationship

keyname.

properties no list of
interface
definitions

The optional reserved keyname used to reference declared (named)
interface definitions of the corresponding Relationship Type in order to
provide Property assignments for these interfaces or operations of these
interfaces.

3.8.2.2 Grammar 2116

Named requirement assignments have one of the following grammars: 2117

3.8.2.2.1 Short notation: 2118

The following single-line grammar may be used if only a concrete Node Template for the target node 2119
needs to be declared in the requirement: 2120

<requirement_name >: < node_template_name >

This notation is only valid if the corresponding Requirement definition in the Node Templateôs parent 2121
Node Type declares (at a minimum) a valid Capability Type which can be found in the declared target 2122
Node Template. A valid capability definition always needs to be provided in the requirement declaration of 2123
the source node to identify a specific capability definition in the target node the requirement will form a 2124
TOSCA relationship with. 2125

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 117 of 354

3.8.2.2.2 Extended notation: 2126

The following grammar would be used if the requirement assignment needs to provide more information 2127
than just the Node Template name: 2128

<requirement_name >:

 node: < node_template_name > | < node_type_name>

 relationship: < relationship_template_name > | < relationship_type_name >

 capability: < capability_ symbolic_name > | < capability_type_name >

 node_filter:

 <node_filter_definition >

 occurrences: [min_occurrences , max_occurrences]

3.8.2.2.3 Extended grammar with Property Assignments for the relationshipôs 2129

Interfaces 2130

The following additional multi-line grammar is provided for the relationship keyname in order to provide 2131
new Property assignments for inputs of known Interface definitions of the declared Relationship Type. 2132

<requirement_name >:

 # Other keynames omitted for brevity

 relationship:

 type: <relationship_template_name > | < relationship_type_name >

 properties:

 <property_assignments >

 interfaces:

 <interface_assignments >

Examples of uses for the extended requirement assignment grammar include: 2133

¶ The need to allow runtime selection of the target node based upon an abstract Node Type rather 2134

than a concrete Node Template. This may include use of the node_filter keyname to provide 2135

node and capability filtering information to find the ñbest matchò of a concrete Node Template at 2136

runtime. 2137

¶ The need to further clarify the concrete Relationship Template or abstract Relationship Type to 2138

use when relating the source nodeôs requirement to the target nodeôs capability. 2139

¶ The need to further clarify the concrete capability (symbolic) name or abstract Capability Type in 2140

the target node to form a relationship between. 2141

¶ The need to (further) constrain the occurrences of the requirement in the instance model. 2142

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 2143

¶ requirement_name: represents the symbolic name of a requirement assignment as a string. 2144

¶ node_template_name: represents the optional name of a Node Template that contains the 2145

capability this requirement will be fulfilled by. 2146

¶ relationship_template_name : represents the optional name of a Relationship Type to be used 2147

when relating the requirement appears to the capability in the target node. 2148

¶ capability_symbolic_name : represents the optional ordered list of specific, required capability 2149

type or named capability definition within the target Node Type or Template. 2150

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 118 of 354

¶ node_type_name: represents the optional name of a TOSCA Node Type the associated named 2151

requirement can be fulfilled by. This must be a type that is compatible with the Node Type 2152

declared on the matching requirement (same symbolic name) the requirementôs Node Template 2153

is based upon. 2154

¶ relationship_type_name : represents the optional name of a Relationship Type that is 2155

compatible with the Capability Type in the target node. 2156

¶ property_assignments : represents the optional list of property value assignments for the 2157

declared relationship. 2158

¶ interface_assignments : represents the optional list of interface definitions for the declared 2159

relationship used to provide property assignments on inputs of interfaces and operations. 2160

¶ capability_type_name : represents the optional name of a Capability Type definition within the 2161

target Node Type this requirement needs to form a relationship with. 2162

¶ node_filter_definition : represents the optional node filter TOSCA orchestrators would use 2163

to fulfill the requirement for selecting a target node. Note that this SHALL only be valid if the node 2164

keynameôs value is a Node Type and is invalid if it is a Node Template. 2165

3.8.2.3 Examples 2166

3.8.2.3.1 Example 1 ï Abstract hosting requirement on a Node Type 2167

A web application node template named ómy_application_node_template ô of type WebApplication 2168

declares a requirement named óhost ô that needs to be fulfilled by any node that derives from the node 2169

type WebServer. 2170

Example of a requirement fulfilled by a specific web server node template

node_templates:

 my_application_node_template:

 type: tosca.nodes.WebApplication

 ...

 requirements:

 - host :

 node: tosca.nodes.WebServer

In this case, the node templateôs type is WebApplication which already declares the Relationship Type 2171

HostedOn to use to relate to the target node and the Capability Type of Container to be the specific 2172

target of the requirement in the target node. 2173

3.8.2.3.2 Example 2 - Requirement with Node Template and a custom Relatio nship 2174

Type 2175

This example is similar to the previous example; however, the requirement named óÄÁÔÁÂÁÓÅƦ describes 2176

a requirement for a connection to a database endpoint (Endpoint.Database) Capability Type in a named 2177

node template (my_database). However, the connection requires a custom Relationship Type 2178

(my.types.CustomDbConnection ô) declared on the keyname órelationship ô. 2179

Example of a (database) requirement that is fulfilled by a node template named

ʢ ƧÍÙʍÄÁÔÁÂÁÓÅƨƗ ÂÕÔ ÁÌÓÏ ÒÅÑÕÉÒÅÓ Á ÃÕÓÔÏÍ database connection relationship

my_application_node_template:

 requirements:

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 119 of 354

 - database:

 node: my_database

 capability: Endpoint.Database

 relationship: my.types.CustomDbConnection

3.8.2.3.3 Example 3 - Requirement for a Compute node wi th additional selection 2180

criteria (filter) 2181

¢Ƙƛǎ ŜȄŀƳǇƭŜ ǎƘƻǿǎ Ƙƻǿ ǘƻ ŜȄǘŜƴŘ ŀƴ ŀōǎǘǊŀŎǘ ΨhostΩ ǊŜǉǳƛǊŜƳŜƴǘ ŦƻǊ ŀ Compute node with a filter 2182

definition that further constrains TOSCA orchestrators to include additional properties and capabilities 2183

on the target node when fulfilling the requirement. 2184

node_templates:

 mysql:
 type: tosc a.nodes.DBMS.MySQL
 properties:
 # omitted here for brevity
 requirements:
 - host:
 node: tosca.nodes.Compute
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [1, 4] }
 - mem_size: { greater_or_equal: 512 MB }
 - os:
 properties:
 - architecture: { equal: x86_64 }
 - type: { equal: linux }
 - distribution: { equal: ubuntu }
 - mytypes.capabilities.compute.encryption:
 properties:
 - algorithm: { equal: aes }
 - keylength: { valid_values: [128, 256] }

3.8.3 Node Template 2185

A Node Template specifies the occurrence of a manageable software component as part of an 2186
applicationôs topology model which is defined in a TOSCA Service Template. A Node template is an 2187
instance of a specified Node Type and can provide customized properties, constraints or operations 2188
which override the defaults provided by its Node Type and its implementations. 2189

3.8.3.1 Keynames 2190

The following is the list of recognized keynames for a TOSCA Node Template definition: 2191

Keyname Required Type Description

type yes string The required name of the Node Type the Node Template is based
upon.

description no description An optional description for the Node Template.

metadata no map of string Defines a section used to declare additional metadata information.

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 120 of 354

Keyname Required Type Description

directives no string[] An optional list of directive values to provide processing instructions
to orchestrators and tooling.

properties no list of
property
assignments

An optional list of property value assignments for the Node
Template.

attributes no list of
attribute
assignments

An optional list of attribute value assignments for the Node
Template.

requirements no list of
requirement
assignments

An optional sequenced list of requirement assignments for the Node
Template.

capabilities no list of
capability
assignments

An optional list of capability assignments for the Node Template.

interfaces no list of
interface definitions

An optional list of named interface definitions for the Node
Template.

artifacts no list of
artifact definitions

An optional list of named artifact definitions for the Node Template.

node_filter no node filter The optional filter definition that TOSCA orchestrators would use to
select the correct target node. This keyname is only valid if the

directive Ƙŀǎ ǘƘŜ ǾŀƭǳŜ ƻŦ άǎŜƭŜŎǘŀōƭŜέ ǎŜǘΦ

copy no string The optional (symbolic) name of another node template to copy into
(all keynames and values) and use as a basis for this node template.

3.8.3.2 Grammar 2192

<node_template_name >:

 type: < node_type_name>

 description: < node_template_description >

 directives: [< directives >]

 metadata:

 <map of string >

 properties:

 <property_assignments >

 attributes:

 <attribute_assignments >

 requirements:

 - <requirement_assignments >

 capabilities:

 <capability_assignments >

 interfaces:

 <interface_definitions >

 artifacts:

TOSCA-Simple-Profile-YAML-v1.2-os 17 January 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 121 of 354

 <artifact_definitions >

 node_filter:

 <node_filter_definition >

 copy: <source_node_template_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 2193

¶ node_template_name : represents the required symbolic name of the Node Template being 2194

declared. 2195

¶ node_type_name: represents the name of the Node Type the Node Template is based upon. 2196

¶ node_template_description : represents the optional description string for Node Template. 2197

¶ directives : represents the optional list of processing instruction keywords (as strings) for use by 2198

tooling and orchestrators. 2199

¶ property_assignments : represents the optional list of property assignments for the Node 2200

Template that provide values for properties defined in its declared Node Type. 2201

¶ attribute_assignments : represents the optional list of attribute assignments for the Node 2202

Template that provide values for attributes defined in its declared Node Type. 2203

¶ requirement_assignments : represents the optional sequenced list of requirement assignments 2204

for the Node Template that allow assignment of type-compatible capabilities, target nodes, 2205

relationships and target (node filters) for use when fulfilling the requirement at runtime. 2206

¶ capability_assignments : represents the optional list of capability assignments for the Node 2207

Template that augment those provided by its declared Node Type. 2208

¶ interface_definitions : represents the optional list of interface definitions for the Node 2209

Template that augment those provided by its declared Node Type. 2210

¶ artifact_definitions : represents the optional list of artifact definitions for the Node Template 2211

that augment those provided by its declared Node Type. 2212

¶ node_filter_definition : represents the optional node filter TOSCA orchestrators would use 2213

for selecting a matching node template. 2214

¶ source_node_template_name : represents the optional (symbolic) name of another node 2215

template to copy into (all keynames and values) and use as a basis for this node template. 2216

3.8.3.3 Additional requirements 2217

¶ The node_filter keyword (and supporting grammar) SHALL only be valid if the Node Template 2218

has a directive keyname with the value of ñselectable ò set. 2219

¶ The source node template provided as a value on the copy keyname MUST NOT itself use the 2220

copy keyname (i.e., it must itself be a complete node template description and not copied from 2221

another node template). 2222

3.8.3.4 Example 2223

node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 root_password: { get_input: my_mysql_rootpw }

 port: { get_input: my_mysql_port }

