
TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 1 of 282

TOSCA Simple Profile in YAML Version 1.1

Committee Specification Draft 02 /
Public Review Draft 02

12 January 2017

Specification URIs
This version:

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd02/TOSCA-Simple-
Profile-YAML-v1.1-csprd02.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd02/TOSCA-Simple-
Profile-YAML-v1.1-csprd02.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd02/TOSCA-Simple-
Profile-YAML-v1.1-csprd02.docx

Previous version:
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd01/TOSCA-Simple-
Profile-YAML-v1.1-csprd01.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd01/TOSCA-Simple-
Profile-YAML-v1.1-csprd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd01/TOSCA-Simple-
Profile-YAML-v1.1-csprd01.docx

Latest version:
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-
YAML-v1.1.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-
YAML-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-
YAML-v1.1.docx

Technical Committee:
OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC

Chairs:
Paul Lipton (paul.lipton@ca.com), CA Technologies
John Crandall (jcrandal@brocade.com), Brocade Communications Systems

Editors:
Matt Rutkowski (mrutkows@us.ibm.com), IBM
Luc Boutier (luc.boutier@fastconnect.fr), FastConnect

Related work:
This specification is related to:

 Topology and Orchestration Specification for Cloud Applications Version 1.0. Edited by Derek
Palma and Thomas Spatzier. 25 November 2013. OASIS Standard. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html.

Declared XML namespace:

 http://docs.oasis-open.org/tosca/ns/simple/yaml/1.1

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd02/TOSCA-Simple-Profile-YAML-v1.1-csprd02.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd02/TOSCA-Simple-Profile-YAML-v1.1-csprd02.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd02/TOSCA-Simple-Profile-YAML-v1.1-csprd02.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd02/TOSCA-Simple-Profile-YAML-v1.1-csprd02.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd02/TOSCA-Simple-Profile-YAML-v1.1-csprd02.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd02/TOSCA-Simple-Profile-YAML-v1.1-csprd02.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd01/TOSCA-Simple-Profile-YAML-v1.1-csprd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd01/TOSCA-Simple-Profile-YAML-v1.1-csprd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd01/TOSCA-Simple-Profile-YAML-v1.1-csprd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd01/TOSCA-Simple-Profile-YAML-v1.1-csprd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd01/TOSCA-Simple-Profile-YAML-v1.1-csprd01.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd01/TOSCA-Simple-Profile-YAML-v1.1-csprd01.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.docx
https://www.oasis-open.org/committees/tosca/
mailto:paul.lipton@ca.com
http://www.ca.com/
mailto:jcrandal@brocade.com
http://www.brocade.com/
mailto:mrutkows@us.ibm.com
http://www.ibm.com/
mailto:luc.boutier@fastconnect.fr
http://www.fastconnect.fr/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/ns/simple/yaml/1.1
https://www.oasis-open.org/

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 2 of 282

Abstract:
This document defines a simplified profile of the TOSCA Version 1.0 specification in a YAML
rendering which is intended to simplify the authoring of TOSCA service templates. This profile
defines a less verbose and more human-readable YAML rendering, reduced level of indirection
between different modeling artifacts as well as the assumption of a base type system.

Status:
This document was last revised or approved by the OASIS Topology and Orchestration
Specification for Cloud Applications (TOSCA) TC on the above date. The level of approval is also
listed above. Check the “Latest version” location noted above for possible later revisions of this
document. Any other numbered Versions and other technical work produced by the Technical
Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca#technical.

TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/tosca/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the TC’s web page (https://www.oasis-
open.org/committees/tosca/ipr.php).

Citation format:
When referencing this specification the following citation format should be used:

[TOSCA-Simple-Profile-YAML-v1.1]

TOSCA Simple Profile in YAML Version 1.1. Edited by Matt Rutkowski and Luc Boutier. 12
January 2017. OASIS Committee Specification Draft 02 / Public Review Draft 02.
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd02/TOSCA-Simple-
Profile-YAML-v1.1-csprd02.html. Latest version: http://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/committees/tosca/ipr.php
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd02/TOSCA-Simple-Profile-YAML-v1.1-csprd02.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd02/TOSCA-Simple-Profile-YAML-v1.1-csprd02.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 3 of 282

Notices

Copyright © OASIS Open 2017. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 4 of 282

Table of Contents

Table of Examples ... 7

Table of Figures .. 7

1 Introduction ... 8

1.1 Objective ... 8

1.2 Summary of key TOSCA concepts ... 8

1.3 Implementations .. 8

1.4 Terminology .. 9

1.5 Notational Conventions .. 9

1.6 Normative References ... 9

1.7 Non-Normative References ... 10

1.8 Glossary .. 10

2 TOSCA by example... 12

2.1 A “hello world” template for TOSCA Simple Profile in YAML ... 12

2.2 TOSCA template for a simple software installation ... 14

2.3 Overriding behavior of predefined node types .. 16

2.4 TOSCA template for database content deployment .. 16

2.5 TOSCA template for a two-tier application ... 18

2.6 Using a custom script to establish a relationship in a template ... 20

2.7 Using custom relationship types in a TOSCA template ... 22

2.8 Defining generic dependencies between nodes in a template... 23

2.9 Describing abstract requirements for nodes and capabilities in a TOSCA template 24

2.10 Using node template substitution for model composition .. 28

2.11 Using node template substitution for chaining subsystems ... 32

2.12 Grouping node templates ... 37

2.13 Using YAML Macros to simplify templates .. 39

2.14 Passing information as inputs to Nodes and Relationships ... 40

2.15 Topology Template Model versus Instance Model .. 42

2.16 Using attributes implicitly reflected from properties ... 42

3 TOSCA Simple Profile definitions in YAML .. 44

3.1 TOSCA Namespace URI and alias .. 44

3.2 Parameter and property types .. 45

3.3 Normative values ... 54

3.4 TOSCA Metamodel ... 55

3.5 Reusable modeling definitions ... 55

3.6 Type-specific definitions .. 82

3.7 Template-specific definitions .. 98

3.8 Topology Template definition ... 110

3.9 Service Template definition .. 115

4 TOSCA functions .. 127

4.1 Reserved Function Keywords .. 127

4.2 Environment Variable Conventions .. 127

4.3 Intrinsic functions ... 130

4.4 Property functions .. 131

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 5 of 282

4.5 Attribute functions .. 133

4.6 Operation functions ... 134

4.7 Navigation functions .. 135

4.8 Artifact functions .. 136

4.9 Context-based Entity names (global) ... 138

5 TOSCA normative type definitions ... 139

5.1 Assumptions .. 139

5.2 TOSCA normative type names .. 139

5.3 Data Types .. 139

5.4 Artifact Types .. 147

5.5 Capabilities Types ... 150

5.6 Requirement Types ... 159

5.7 Relationship Types .. 159

5.8 Interface Types .. 162

5.9 Node Types ... 167

5.10 Group Types .. 178

5.11 Policy Types .. 179

6 TOSCA Cloud Service Archive (CSAR) format .. 181

6.1 Overall Structure of a CSAR .. 181

6.2 TOSCA Meta File .. 181

6.3 Archive without TOSCA-Metadata ... 182

7 TOSCA workflows ... 183

7.1 Normative workflows.. 183

7.2 Declarative workflows .. 183

7.3 Imperative workflows ... 187

7.4 Making declarative more flexible and imperative more generic ... 199

8 TOSCA networking ... 202

8.1 Networking and Service Template Portability ... 202

8.2 Connectivity Semantics ... 202

8.3 Expressing connectivity semantics ... 203

8.4 Network provisioning ... 205

8.5 Network Types .. 209

8.6 Network modeling approaches ... 214

9 Non-normative type definitions .. 219

9.1 Artifact Types .. 219

9.2 Capability Types .. 219

9.3 Node Types ... 221

10 Component Modeling Use Cases .. 224

11 Application Modeling Use Cases ... 231

11.1 Use cases ... 231

12 TOSCA Policies .. 271

12.1 A declarative approach .. 271

12.2 Consideration of Event, Condition and Action... 271

12.3 Types of policies .. 271

12.4 Policy relationship considerations .. 272

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 6 of 282

12.5 Use Cases ... 273

13 Conformance .. 276

13.1 Conformance Targets .. 276

13.2 Conformance Clause 1: TOSCA YAML service template .. 276

13.3 Conformance Clause 2: TOSCA processor .. 276

13.4 Conformance Clause 3: TOSCA orchestrator ... 276

13.5 Conformance Clause 4: TOSCA generator .. 277

13.6 Conformance Clause 5: TOSCA archive .. 277

Appendix A. Known Extensions to TOSCA v1.0 ... 278

A.1 Model Changes ... 278

A.2 Normative Types ... 278

Appendix B. Acknowledgments .. 280

Appendix C. Revision History ... 281

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 7 of 282

Table of Examples

Example 1 - TOSCA Simple "Hello World" ... 12
Example 2 - Template with input and output parameter sections .. 13
Example 3 - Simple (MySQL) software installation on a TOSCA Compute node 14
Example 4 - Node Template overriding its Node Type's "configure" interface ... 16
Example 5 - Template for deploying database content on-top of MySQL DBMS middleware 17
Example 6 - Basic two-tier application (web application and database server tiers) 18
Example 7 - Providing a custom relationship script to establish a connection ... 21
Example 8 - A web application Node Template requiring a custom database connection type 22
Example 9 - Defining a custom relationship type .. 23
Example 10 - Simple dependency relationship between two nodes .. 23
Example 11 - An abstract "host" requirement using a node filter ... 24
Example 12 - An abstract Compute node template with a node filter .. 25
Example 13 - An abstract database requirement using a node filter ... 26
Example 14 - An abstract database node template .. 27
Example 15 - Referencing an abstract database node template ... 29
Example 16 - Using substitution mappings to export a database implementation 31
Example 17 - Declaring a transaction subsystem as a chain of substitutable node templates 33
Example 18 - Defining a TransactionSubsystem node type .. 34
Example 19 - Implementation of a TransactionSubsytem node type using substitution mappings 36
Example 20 - Grouping Node Templates for possible policy application ... 37
Example 21 - Grouping nodes for anti-colocation policy application .. 38
Example 22 - Using YAML anchors in TOSCA templates ... 40
Example 23 - Properties reflected as attributes .. 42

Table of Figures

Figure 1: Using template substitution to implement a database tier .. 29
Figure 2: Substitution mappings ... 31
Figure 3: Chaining of subsystems in a service template ... 33
Figure 4: Defining subsystem details in a service template ... 35
Figure-5: Typical 3-Tier Network .. 206
Figure-6: Generic Service Template... 215
Figure-7: Service template with network template A ... 215
Figure-8: Service template with network template B ... 216

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 8 of 282

1 Introduction 1

1.1 Objective 2

The TOSCA Simple Profile in YAML specifies a rendering of TOSCA which aims to provide a more 3
accessible syntax as well as a more concise and incremental expressiveness of the TOSCA DSL in order 4
to minimize the learning curve and speed the adoption of the use of TOSCA to portably describe cloud 5
applications. 6

 7

This proposal describes a YAML rendering for TOSCA. YAML is a human friendly data serialization 8
standard (http://yaml.org/) with a syntax much easier to read and edit than XML. As there are a number of 9
DSLs encoded in YAML, a YAML encoding of the TOSCA DSL makes TOSCA more accessible by these 10
communities. 11

 12

This proposal prescribes an isomorphic rendering in YAML of a subset of the TOSCA v1.0 XML 13
specification ensuring that TOSCA semantics are preserved and can be transformed from XML to YAML 14
or from YAML to XML. Additionally, in order to streamline the expression of TOSCA semantics, the YAML 15
rendering is sought to be more concise and compact through the use of the YAML syntax. 16

1.2 Summary of key TOSCA concepts 17

The TOSCA metamodel uses the concept of service templates to describe cloud workloads as a topology 18
template, which is a graph of node templates modeling the components a workload is made up of and as 19
relationship templates modeling the relations between those components. TOSCA further provides a type 20
system of node types to describe the possible building blocks for constructing a service template, as well 21
as relationship type to describe possible kinds of relations. Both node and relationship types may define 22
lifecycle operations to implement the behavior an orchestration engine can invoke when instantiating a 23
service template. For example, a node type for some software product might provide a ‘create’ operation 24
to handle the creation of an instance of a component at runtime, or a ‘start’ or ‘stop’ operation to handle a 25
start or stop event triggered by an orchestration engine. Those lifecycle operations are backed by 26
implementation artifacts such as scripts or Chef recipes that implement the actual behavior. 27

An orchestration engine processing a TOSCA service template uses the mentioned lifecycle operations to 28
instantiate single components at runtime, and it uses the relationship between components to derive the 29
order of component instantiation. For example, during the instantiation of a two-tier application that 30
includes a web application that depends on a database, an orchestration engine would first invoke the 31
‘create’ operation on the database component to install and configure the database, and it would then 32
invoke the ‘create’ operation of the web application to install and configure the application (which includes 33
configuration of the database connection). 34

The TOSCA simple profile assumes a number of base types (node types and relationship types) to be 35
supported by each compliant environment such as a ‘Compute’ node type, a ‘Network’ node type or a 36
generic ‘Database’ node type. Furthermore, it is envisioned that a large number of additional types for use 37
in service templates will be defined by a community over time. Therefore, template authors in many cases 38
will not have to define types themselves but can simply start writing service templates that use existing 39
types. In addition, the simple profile will provide means for easily customizing and extending existing 40
types, for example by providing a customized ‘create’ script for some software. 41

1.3 Implementations 42

Different kinds of processors and artifacts qualify as implementations of the TOSCA simple profile. Those 43
that this specification is explicitly mentioning or referring to fall into the following categories: 44

http://yaml.org/

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 9 of 282

 TOSCA YAML service template (or “service template”): A YAML document artifact containing a 45

(TOSCA) service template (see sections 3.9 “Service template definition”) that represents a Cloud 46

application. (see sections 3.8 “Topology template definition”) 47

 TOSCA processor (or “processor”): An engine or tool that is capable of parsing and interpreting a 48

TOSCA service template for a particular purpose. For example, the purpose could be validation, 49

translation or visual rendering. 50

 TOSCA orchestrator (also called orchestration engine): A TOSCA processor that interprets a 51

TOSCA service template or a TOSCA CSAR in order to instantiate and deploy the described 52

application in a Cloud. 53

 TOSCA generator: A tool that generates a TOSCA service template. An example of generator is 54

a modeling tool capable of generating or editing a TOSCA service template (often such a tool 55

would also be a TOSCA processor). 56

 TOSCA archive (or TOSCA Cloud Service Archive, or “CSAR”): a package artifact that contains a 57

TOSCA service template and other artifacts usable by a TOSCA orchestrator to deploy an 58

application. 59

The above list is not exclusive. The above definitions should be understood as referring to and 60
implementing the TOSCA simple profile as described in this document (abbreviated here as “TOSCA” for 61
simplicity). 62

1.4 Terminology 63

The TOSCA language introduces a YAML grammar for describing service templates by means of 64
Topology Templates and towards enablement of interaction with a TOSCA instance model perhaps by 65
external APIs or plans. The primary currently is on design time aspects, i.e. the description of services to 66
ensure their exchange between Cloud providers, TOSCA Orchestrators and tooling. 67

 68

The language provides an extension mechanism that can be used to extend the definitions with additional 69
vendor-specific or domain-specific information. 70

1.5 Notational Conventions 71

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 72
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 73
in [RFC2119]. 74

1.5.1 Notes 75

 Sections that are titled “Example” throughout this document are considered non-normative. 76

1.6 Normative References 77

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[TOSCA-1.0] Topology and Orchestration Topology and Orchestration Specification for
Cloud Applications (TOSCA) Version 1.0, an OASIS Standard, 25 November
2013, http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf

[YAML-1.2] YAML, Version 1.2, 3rd Edition, Patched at 2009-10-01, Oren Ben-Kiki, Clark
Evans, Ingy döt Net http://www.yaml.org/spec/1.2/spec.html

[YAML-TS-1.1] Timestamp Language-Independent Type for YAML Version 1.1, Working
Draft 2005-01-18, http://yaml.org/type/timestamp.html

http://www.ietf.org/rfc/rfc2119.txt
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://www.yaml.org/spec/1.2/spec.html
http://yaml.org/type/timestamp.html

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 10 of 282

1.7 Non-Normative References 78

[Apache] Apache Server, https://httpd.apache.org/

[Chef] Chef, https://wiki.opscode.com/display/chef/Home

[NodeJS] Node.js, https://nodejs.org/

[Puppet] Puppet, http://puppetlabs.com/

[WordPress] WordPress, https://wordpress.org/

[Maven-Version]

Apache Maven version policy draft:

https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy

1.8 Glossary 79

The following terms are used throughout this specification and have the following definitions when used in 80
context of this document. 81

Term Definition

Instance Model A deployed service is a running instance of a Service Template. More precisely,
the instance is derived by instantiating the Topology Template of its Service
Template, most often by running a special plan defined for the Service
Template, often referred to as build plan.

Node Template A Node Template specifies the occurrence of a software component node as
part of a Topology Template. Each Node Template refers to a Node Type that
defines the semantics of the node (e.g., properties, attributes, requirements,
capabilities, interfaces). Node Types are defined separately for reuse purposes.

Relationship
Template

A Relationship Template specifies the occurrence of a relationship between
nodes in a Topology Template. Each Relationship Template refers to a
Relationship Type that defines the semantics relationship (e.g., properties,
attributes, interfaces, etc.). Relationship Types are defined separately for reuse
purposes.

Service Template A Service Template is typically used to specify the “topology” (or structure) and
“orchestration” (or invocation of management behavior) of IT services so that
they can be provisioned and managed in accordance with constraints and
policies.

Specifically, TOSCA Service Templates optionally allow definitions of a TOSCA
Topology Template, TOSCA types (e.g., Node, Relationship, Capability, Artifact,
etc.), groupings, policies and constraints along with any input or output
declarations.

Topology Model The term Topology Model is often used synonymously with the term Topology
Template with the use of “model” being prevalent when considering a Service
Template’s topology definition as an abstract representation of an application
or service to facilitate understanding of its functional components and by

eliminating unnecessary details.

Topology Template A Topology Template defines the structure of a service in the context of a
Service Template. A Topology Template consists of a set of Node Template
and Relationship Template definitions that together define the topology model of
a service as a (not necessarily connected) directed graph.

https://httpd.apache.org/
https://wiki.opscode.com/display/chef/Home
https://nodejs.org/
http://puppetlabs.com/
https://wordpress.org/
https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 11 of 282

The term Topology Template is often used synonymously with the term
Topology Model. The distinction is that a topology template can be used to
instantiate and orchestrate the model as a reusable pattern and includes all
details necessary to accomplish it.

Abstract Node
Template

An abstract node template is a node that doesn’t define an implementation
artifact for the create operation of the TOSCA lifecycle.

The create operation can be delegated to the TOSCA Orchestrator.

Being delegated an abstract node may not be able to execute user provided
implementation artifacts for operations post create (for example configure, start
etc.).

No-Op Node
Template

A No-Op node template is a specific abstract node template that does not
specify any implementation for any operation.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 12 of 282

2 TOSCA by example 82

This non-normative section contains several sections that show how to model applications with TOSCA 83
Simple Profile using YAML by example starting with a “Hello World” template up through examples that 84
show complex composition modeling. 85

2.1 A “hello world” template for TOSCA Simple Profile in YAML 86

As mentioned before, the TOSCA simple profile assumes the existence of a small set of pre-defined, 87
normative set of node types (e.g., a ‘Compute’ node) along with other types, which will be introduced 88
through the course of this document, for creating TOSCA Service Templates. It is envisioned that many 89
additional node types for building service templates will be created by communities some may be 90
published as profiles that build upon the TOSCA Simple Profile specification. Using the normative TOSCA 91
Compute node type, a very basic “Hello World” TOSCA template for deploying just a single server would 92
look as follows: 93

Example 1 - TOSCA Simple "Hello World" 94

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with predefined properties.

topology_template:
 node_templates:
 my_server:
 type: tosca.nodes.Compute
 capabilities:
 # Host container properties
 host:
 properties:
 num_cpus: 1
 disk_size: 10 GB
 mem_size: 4096 MB
 # Guest Operating System properties
 os:
 properties:
 # host Operating System image properties
 architecture: x86_64
 type: linux
 distribution: rhel
 version: 6.5

The template above contains a very simple topology template with only a single ‘Compute’ node template 95
that declares some basic values for properties within two of the several capabilities that are built into the 96
Compute node type definition. All TOSCA Orchestrators are expected to know how to instantiate a 97
Compute node since it is normative and expected to represent a well-known function that is portable 98
across TOSCA implementations. This expectation is true for all normative TOSCA Node and 99
Relationship types that are defined in the Simple Profile specification. This means, with TOSCA’s 100
approach, that the application developer does not need to provide any deployment or implementation 101
artifacts that contain code or logic to orchestrate these common software components. TOSCA 102
orchestrators simply select or allocate the correct node (resource) type that fulfills the application 103
topologies requirements using the properties declared in the node and its capabilities. 104

In the above example, the “host” capability contains properties that allow application developers to 105
optionally supply the number of CPUs, memory size and disk size they believe they need when the 106

Compute node is instantiated in order to run their applications. Similarly, the “os” capability is used to 107

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 13 of 282

provide values to indicate what host operating system the Compute node should have when it is 108
instantiated. 109

 110

The logical diagram of the “hello world” Compute node would look as follows: 111

 112

 113

As you can see, the Compute node also has attributes and other built-in capabilities, such as Bindable 114

and Endpoint, each with additional properties that will be discussed in other examples later in this 115
document. Although the Compute node has no direct properties apart from those in its capabilities, other 116
TOSCA node type definitions may have properties that are part of the node type itself in addition to 117
having Capabilities. TOSCA orchestration engines are expected to validate all property values provided 118
in a node template against the property definitions in their respective node type definitions referenced in 119

the service template. The tosca_definitions_version keyname in the TOSCA service template 120
identifies the versioned set of normative TOSCA type definitions to use for validating those types defined 121
in the TOSCA Simple Profile including the Compute node type. Specifically, the value 122
tosca_simple_yaml_1_0 indicates Simple Profile v1.0.0 definitions would be used for validation. Other 123

type definitions may be imported from other service templates using the import keyword discussed later. 124

2.1.1 Requesting input parameters and providing output 125

Typically, one would want to allow users to customize deployments by providing input parameters instead 126
of using hardcoded values inside a template. In addition, output values are provided to pass information 127
that perhaps describes the state of the deployed template to the user who deployed it (such as the private 128

IP address of the deployed server). A refined service template with corresponding inputs and outputs 129

sections is shown below. 130

Example 2 - Template with input and output parameter sections 131

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with predefined properties.

topology_template:
 inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 14 of 282

 constraints:
 - valid_values: [1, 2, 4, 8]

 node_templates:
 my_server:
 type: tosca.nodes.Compute
 capabilities:
 # Host container properties
 host:
 properties:
 # Compute properties
 num_cpus: { get_input: cpus }
 mem_size: 2048 MB
 disk_size: 10 GB

 outputs:
 server_ip:
 description: The private IP address of the provisioned server.
 value: { get_attribute: [my_server, private_address] }

The inputs and outputs sections are contained in the topology_template element of the TOSCA 132
template, meaning that they are scoped to node templates within the topology template. Input parameters 133
defined in the inputs section can be assigned to properties of node template within the containing 134
topology template; output parameters can be obtained from attributes of node templates within the 135
containing topology template. 136

Note that the inputs section of a TOSCA template allows for defining optional constraints on each input 137
parameter to restrict possible user input. Further note that TOSCA provides for a set of intrinsic functions 138

like get_input, get_property or get_attribute to reference elements within the template or to 139
retrieve runtime values. 140

2.2 TOSCA template for a simple software installation 141

Software installations can be modeled in TOSCA as node templates that get related to the node template 142
for a server on which the software would be installed. With a number of existing software node types (e.g. 143
either created by the TOSCA work group or a community) template authors can just use those node types 144
for writing service templates as shown below. 145

Example 3 - Simple (MySQL) software installation on a TOSCA Compute node 146

tosca_definitions_version: tosca_simple_yaml_1_0
description: Template for deploying a single server with MySQL software on top.

topology_template:
 inputs:
 # omitted here for brevity

 node_templates:
 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 root_password: { get_input: my_mysql_rootpw }
 port: { get_input: my_mysql_port }
 requirements:
 - host: db_server

 db_server:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 15 of 282

 type: tosca.nodes.Compute
 capabilities:
 # omitted here for brevity

The example above makes use of a node type tosca.nodes.DBMS.MySQL for the mysql node template to 147

install MySQL on a server. This node type allows for setting a property root_password to adapt the 148
password of the MySQL root user at deployment. The set of properties and their schema has been 149

defined in the node type definition. By means of the get_input function, a value provided by the user at 150

deployment time is used as value for the root_password property. The same is true for the port 151
property. 152

The mysql node template is related to the db_server node template (of type tosca.nodes.Compute) via 153

the requirements section to indicate where MySQL is to be installed. In the TOSCA metamodel, nodes 154
get related to each other when one node has a requirement against some feature provided by another 155
node. What kinds of requirements exist is defined by the respective node type. In case of MySQL, which 156
is software that needs to be installed or hosted on a compute resource, the underlying node type named 157
DBMS has a predefined requirement called host, which needs to be fulfilled by pointing to a node template 158

of type tosca.nodes.Compute. 159

The logical relationship between the mysql node and its host db_server node would appear as follows: 160

 161

Within the requirements section, all entries simple entries are a map which contains the symbolic name 162
of a requirement definition as the key and the identifier of the fulfilling node as the value. The value is 163
essentially the symbolic name of the other node template; specifically, or the example above, the host 164

requirement is fulfilled by referencing the db_server node template. The underlying TOSCA DBMS node 165

type already defines a complete requirement definition for the host requirement of type Container and 166

assures that a HostedOn TOSCA relationship will automatically be created and will only allow a valid 167

target host node is of type Compute. This approach allows the template author to simply provide the 168

name of a valid Compute node (i.e., db_server) as the value for the mysql node’s host requirement and 169

not worry about defining anything more complex if they do not want to. 170

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 16 of 282

2.3 Overriding behavior of predefined node types 171

Node types in TOSCA have associated implementations that provide the automation (e.g. in the form of 172
scripts such as Bash, Chef or Python) for the normative lifecycle operations of a node. For example, the 173
node type implementation for a MySQL database would associate scripts to TOSCA node operations like 174

configure, start, or stop to manage the state of MySQL at runtime. 175

Many node types may already come with a set of operational scripts that contain basic commands that 176
can manage the state of that specific node. If it is desired, template authors can provide a custom script 177
for one or more of the operation defined by a node type in their node template which will override the 178

default implementation in the type. The following example shows a mysql node template where the 179

template author provides their own configure script: 180

Example 4 - Node Template overriding its Node Type's "configure" interface 181

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with MySQL software on top.

topology_template:
 inputs:
 # omitted here for brevity

 node_templates:
 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 root_password: { get_input: my_mysql_rootpw }
 port: { get_input: my_mysql_port }
 requirements:
 - host: db_server
 interfaces:
 Standard:
 configure: scripts/my_own_configure.sh

 db_server:
 type: tosca.nodes.Compute
 capabilities:
 # omitted here for brevity

In the example above, the my_own_configure.sh script is provided for the configure operation of the 182

MySQL node type’s Standard lifecycle interface. The path given in the example above (i.e., ‘scripts/’) is 183

interpreted relative to the template file, but it would also be possible to provide an absolute URI to the 184
location of the script. 185

In other words, operations defined by node types can be thought of as “hooks” into which automation can 186
be injected. Typically, node type implementations provide the automation for those “hooks”. However, 187
within a template, custom automation can be injected to run in a hook in the context of the one, specific 188
node template (i.e. without changing the node type). 189

2.4 TOSCA template for database content deployment 190

In the Example 4, shown above, the deployment of the MySQL middleware only, i.e. without actual 191
database content was shown. The following example shows how such a template can be extended to 192
also contain the definition of custom database content on-top of the MySQL DBMS software. 193

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 17 of 282

Example 5 - Template for deploying database content on-top of MySQL DBMS middleware 194

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying MySQL and database content.

topology_template:
 inputs:
 # omitted here for brevity

 node_templates:
 my_db:
 type: tosca.nodes.Database.MySQL
 properties:
 name: { get_input: database_name }
 user: { get_input: database_user }
 password: { get_input: database_password }
 port: { get_input: database_port }
 artifacts:
 db_content:
 file: files/my_db_content.txt
 type: tosca.artifacts.File
 requirements:
 - host: mysql
 interfaces:
 Standard:
 create:
 implementation: db_create.sh
 inputs:
 # Copy DB file artifact to server’s staging area
 db_data: { get_artifact: [SELF, db_content] }

 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 root_password: { get_input: mysql_rootpw }
 port: { get_input: mysql_port }
 requirements:
 - host: db_server

 db_server:
 type: tosca.nodes.Compute
 capabilities:
 # omitted here for brevity

In the example above, the my_db node template or type tosca.nodes.Database.MySQL represents an 195

actual MySQL database instance managed by a MySQL DBMS installation. The requirements section of 196

the my_db node template expresses that the database it represents is to be hosted on a MySQL DBMS 197

node template named mysql which is also declared in this template. 198

In its artifacts section of the my_db the node template, there is an artifact definition named db_content 199

which represents a text file my_db_content.txt which in turn will be used to add content to the SQL 200

database as part of the create operation. The requirements section of the my_db node template 201

expresses that the database is hosted on a MySQL DBMS represented by the mysql node. 202

As you can see above, a script is associated with the create operation with the name db_create.sh. 203
The TOSCA Orchestrator sees that this is not a named artifact declared in the node’s artifact section, but 204

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 18 of 282

instead a filename for a normative TOSCA implementation artifact script type (i.e., 205

tosca.artifacts.Implementation.Bash). Since this is an implementation type for TOSCA, the 206

orchestrator will execute the script automatically to create the node on db_server, but first it will prepare 207
the local environment with the declared inputs for the operation. In this case, the orchestrator would see 208

that the db_data input is using the get_artifact function to retrieve the file (my_db_content.txt) 209

which is associated with the db_content artifact name prior to executing the db_create.sh script. 210

The logical diagram for this example would appear as follows: 211

 212

Note that while it would be possible to define one node type and corresponding node templates that 213
represent both the DBMS middleware and actual database content as one entity, TOSCA normative node 214
types distinguish between middleware (container) and application (containee) node types. This allows on 215
one hand to have better re-use of generic middleware node types without binding them to content running 216
on top of them, and on the other hand this allows for better substitutability of, for example, middleware 217
components like a DBMS during the deployment of TOSCA models. 218

2.5 TOSCA template for a two-tier application 219

The definition of multi-tier applications in TOSCA is quite similar to the example shown in section 2.2, with 220
the only difference that multiple software node stacks (i.e., node templates for middleware and application 221
layer components), typically hosted on different servers, are defined and related to each other. The 222

example below defines a web application stack hosted on the web_server “compute” resource, and a 223

database software stack similar to the one shown earlier in section 6 hosted on the db_server compute 224

resource. 225

Example 6 - Basic two-tier application (web application and database server tiers) 226

tosca_definitions_version: tosca_simple_yaml_1_0

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 19 of 282

description: Template for deploying a two-tier application servers on two

topology_template:
 inputs:
 # Admin user name and password to use with the WordPress application
 wp_admin_username:
 type: string
 wp_admin_password:
 type: string
 wp_db_name:
 type: string
 wp_db_user:
 type: string
 wp_db_password:
 type: string
 wp_db_port:
 type: integer
 mysql_root_password:
 type: string
 mysql_port:
 type: integer
 context_root:
 type: string

 node_templates:
 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 properties:
 context_root: { get_input: context_root }
 admin_user: { get_input: wp_admin_username }
 admin_password: { get_input: wp_admin_password }
 db_host: { get_attribute: [db_server, private_address] }
 requirements:
 - host: apache
 - database_endpoint: wordpress_db
 interfaces:
 Standard:
 inputs:
 db_host: { get_attribute: [db_server, private_address] }
 db_port: { get_property: [wordpress_db, port] }
 db_name: { get_property: [wordpress_db, name] }
 db_user: { get_property: [wordpress_db, user] }
 db_password: { get_property: [wordpress_db, password] }

 apache:
 type: tosca.nodes.WebServer.Apache
 properties:
 # omitted here for brevity
 requirements:
 - host: web_server

 web_server:
 type: tosca.nodes.Compute
 capabilities:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 20 of 282

 # omitted here for brevity

 wordpress_db:
 type: tosca.nodes.Database.MySQL
 properties:
 name: { get_input: wp_db_name }
 user: { get_input: wp_db_user }
 password: { get_input: wp_db_password }
 port: { get_input: wp_db_port }
 requirements:
 - host: mysql

 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 root_password: { get_input: mysql_root_password }
 port: { get_input: mysql_port }
 requirements:
 - host: db_server

 db_server:
 type: tosca.nodes.Compute
 capabilities:
 # omitted here for brevity

The web application stack consists of the wordpress [WordPress], the apache [Apache] and the 227
web_server node templates. The wordpress node template represents a custom web application of type 228
tosca.nodes.WebApplication.WordPress which is hosted on an Apache web server represented by the 229
apache node template. This hosting relationship is expressed via the host entry in the requirements 230
section of the wordpress node template. The apache node template, finally, is hosted on the 231
web_server compute node. 232

The database stack consists of the wordpress_db, the mysql and the db_server node templates. The 233
wordpress_db node represents a custom database of type tosca.nodes.Database.MySQL which is 234
hosted on a MySQL DBMS represented by the mysql node template. This node, in turn, is hosted on the 235
db_server compute node. 236

The wordpress node requires a connection to the wordpress_db node, since the WordPress application 237

needs a database to store its data in. This relationship is established through the database_endpoint 238
entry in the requirements section of the wordpress node template’s declared node type. For configuring 239
the WordPress web application, information about the database to connect to is required as input to the 240
configure operation. Therefore, the input parameters are defined and values for them are retrieved from 241
the properties and attributes of the wordpress_db node via the get_property and get_attribute 242

functions. In the above example, these inputs are defined at the interface-level and would be available to 243
all operations of the Standard interface (i.e., the tosca.interfaces.node.lifecycle.Standard 244

interface) within the wordpress node template and not just the configure operation. 245

2.6 Using a custom script to establish a relationship in a template 246

In previous examples, the template author did not have to think about explicit relationship types to be 247
used to link a requirement of a node to another node of a model, nor did the template author have to think 248

about special logic to establish those links. For example, the host requirement in previous examples just 249
pointed to another node template and based on metadata in the corresponding node type definition the 250
relationship type to be established is implicitly given. 251

In some cases, it might be necessary to provide special processing logic to be executed when 252
establishing relationships between nodes at runtime. For example, when connecting the WordPress 253

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 21 of 282

application from previous examples to the MySQL database, it might be desired to apply custom 254
configuration logic in addition to that already implemented in the application node type. In such a case, it 255
is possible for the template author to provide a custom script as implementation for an operation to be 256
executed at runtime as shown in the following example. 257

Example 7 - Providing a custom relationship script to establish a connection 258

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a two-tier application on two servers.

topology_template:
 inputs:
 # omitted here for brevity

 node_templates:
 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 properties:
 # omitted here for brevity
 requirements:
 - host: apache
 - database_endpoint:
 node: wordpress_db
 relationship: my_custom_database_connection

 wordpress_db:
 type: tosca.nodes.Database.MySQL
 properties:
 # omitted here for the brevity
 requirements:
 - host: mysql

 relationship_templates:
 my_custom_database_connection:
 type: ConnectsTo
 interfaces:
 Configure:
 pre_configure_source: scripts/wp_db_configure.sh

 # other resources not shown for this example ...

The node type definition for the wordpress node template is WordPress which declares the complete 259

database_endpoint requirement definition. This database_endpoint declaration indicates it must be 260

fulfilled by any node template that provides an Endpoint.Database Capability Type using a ConnectsTo 261

relationship. The wordpress_db node template’s underlying MySQL type definition indeed provides the 262

Endpoint.Database Capability type. In this example however, no explicit relationship template is 263
declared; therefore, TOSCA orchestrators would automatically create a ConnectsTo relationship to 264

establish the link between the wordpress node and the wordpress_db node at runtime. 265

The ConnectsTo relationship (see 5.7.4) also provides a default Configure interface with operations that 266
optionally get executed when the orchestrator establishes the relationship. In the above example, the 267

author has provided the custom script wp_db_configure.sh to be executed for the operation called 268

pre_configure_source. The script file is assumed to be located relative to the referencing service 269
template such as a relative directory within the TOSCA Cloud Service Archive (CSAR) packaging format. 270
This approach allows for conveniently hooking in custom behavior without having to define a completely 271
new derived relationship type. 272

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 22 of 282

2.7 Using custom relationship types in a TOSCA template 273

In the previous section it was shown how custom behavior can be injected by specifying scripts inline in 274
the requirements section of node templates. When the same custom behavior is required in many 275
templates, it does make sense to define a new relationship type that encapsulates the custom behavior in 276
a re-usable way instead of repeating the same reference to a script (or even references to multiple 277
scripts) in many places. 278

Such a custom relationship type can then be used in templates as shown in the following example. 279

Example 8 - A web application Node Template requiring a custom database connection type 280

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a two-tier application on two servers.

topology_template:
 inputs:
 # omitted here for brevity

 node_templates:
 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 properties:
 # omitted here for brevity
 requirements:
 - host: apache
 - database_endpoint:
 node: wordpress_db
 relationship: my.types.WordpressDbConnection

 wordpress_db:
 type: tosca.nodes.Database.MySQL
 properties:
 # omitted here for the brevity
 requirements:
 - host: mysql

 # other resources not shown here ...

In the example above, a special relationship type my.types.WordpressDbConnection is specified for 281

establishing the link between the wordpress node and the wordpress_db node through the use of the 282

relationship (keyword) attribute in the database reference. It is assumed, that this special relationship 283
type provides some extra behavior (e.g., an operation with a script) in addition to what a generic 284
“connects to” relationship would provide. The definition of this custom relationship type is shown in the 285
following section. 286

2.7.1 Definition of a custom relationship type 287

The following YAML snippet shows the definition of the custom relationship type used in the previous 288
section. This type derives from the base “ConnectsTo” and overrides one operation defined by that base 289

relationship type. For the pre_configure_source operation defined in the Configure interface of the 290
ConnectsTo relationship type, a script implementation is provided. It is again assumed that the custom 291
configure script is located at a location relative to the referencing service template, perhaps provided in 292
some application packaging format (e.g., the TOSCA Cloud Service Archive (CSAR) format). 293

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 23 of 282

Example 9 - Defining a custom relationship type 294

tosca_definitions_version: tosca_simple_yaml_1_0

description: Definition of custom WordpressDbConnection relationship type

relationship_types:
 my.types.WordpressDbConnection:
 derived_from: tosca.relationships.ConnectsTo
 interfaces:
 Configure:
 pre_configure_source: scripts/wp_db_configure.sh

In the above example, the Configure interface is the specified alias or shorthand name for the TOSCA 295

interface type with the full name of tosca.interfaces.relationship.Configure which is defined in 296
the appendix. 297

2.8 Defining generic dependencies between nodes in a template 298

In some cases, it can be necessary to define a generic dependency between two nodes in a template to 299
influence orchestration behavior, i.e. to first have one node processed before another dependent node 300
gets processed. This can be done by using the generic dependency requirement which is defined by the 301

TOSCA Root Node Type and thus gets inherited by all other node types in TOSCA (see section 5.9.1). 302

Example 10 - Simple dependency relationship between two nodes 303

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with a generic dependency between two nodes.

topology_template:
 inputs:
 # omitted here for brevity

 node_templates:
 my_app:
 type: my.types.MyApplication
 properties:
 # omitted here for brevity
 requirements:
 - dependency: some_service

 some_service:
 type: some.nodetype.SomeService
 properties:
 # omitted here for brevity

As in previous examples, the relation that one node depends on another node is expressed in the 304

requirements section using the built-in requirement named dependency that exists for all node types in 305

TOSCA. Even if the creator of the MyApplication node type did not define a specific requirement for 306

SomeService (similar to the database requirement in the example in section 2.6), the template author 307

who knows that there is a timing dependency and can use the generic dependency requirement to 308
express that constraint using the very same syntax as used for all other references. 309

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 24 of 282

2.9 Describing abstract requirements for nodes and capabilities in a 310

TOSCA template 311

In TOSCA templates, nodes are either: 312

 Concrete: meaning that they have a deployment and/or one or more implementation artifacts that 313

are declared on the “create” operation of the node’s Standard lifecycle interface, or they are 314

 Abstract: where the template describes the node type along with its required capabilities and 315

properties that must be satisfied. 316

 317

TOSCA Orchestrators, by default, when finding an abstract node in TOSCA Service Template during 318
deployment will attempt to “select” a concrete implementation for the abstract node type that best 319
matches and fulfills the requirements and property constraints the template author provided for that 320
abstract node. The concrete implementation of the node could be provided by another TOSCA Service 321
Template (perhaps located in a catalog or repository known to the TOSCA Orchestrator) or by an existing 322
resource or service available within the target Cloud Provider’s platform that the TOSCA Orchestrator 323
already has knowledge of. 324

 325

TOSCA supports two methods for template authors to express requirements for an abstract node within a 326
TOSCA service template. 327

 328

1. Using a target node_filter: where a node template can describe a requirement (relationship) for 329

another node without including it in the topology. Instead, the node provides a node_filter to 330

describe the target node type along with its capabilities and property constrains 331

 332

2. Using an abstract node template: that describes the abstract node’s type along with its property 333

constraints and any requirements and capabilities it also exports. This first method you have 334

already seen in examples from previous chapters where the Compute node is abstract and 335

selectable by the TOSCA Orchestrator using the supplied Container and OperatingSystem 336

capabilities property constraints. 337

 338

These approaches allow architects and developers to create TOSCA service templates that are 339
composable and can be reused by allowing flexible matching of one template’s requirements to another’s 340
capabilities. Examples of both these approaches are shown below. 341

2.9.1 Using a node_filter to define hosting infrastructure requirements for a 342

software 343

Using TOSCA, it is possible to define only the software components of an application in a template and 344
just express constrained requirements against the hosting infrastructure. At deployment time, the provider 345
can then do a late binding and dynamically allocate or assign the required hosting infrastructure and 346
place software components on top. 347

This example shows how a single software component (i.e., the mysql node template) can define its host 348
requirements that the TOSCA Orchestrator and provider will use to select or allocate an appropriate host 349

Compute node by using matching criteria provided on a node_filter. 350

Example 11 - An abstract "host" requirement using a node filter 351

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with requirements against hosting infrastructure.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 25 of 282

topology_template:
 inputs:
 # omitted here for brevity

 node_templates:
 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 # omitted here for brevity
 requirements:
 - host:
 node_filter:
 capabilities:
 # Constraints for selecting “host” (Container Capability)
 - host:
 properties:
 - num_cpus: { in_range: [1, 4] }
 - mem_size: { greater_or_equal: 2 GB }
 # Constraints for selecting “os” (OperatingSystem Capability)
 - os:
 properties:
 - architecture: { equal: x86_64 }
 - type: linux
 - distribution: ubuntu

In the example above, the mysql component contains a host requirement for a node of type Compute 352
which it inherits from its parent DBMS node type definition; however, there is no declaration or reference 353

to any node template of type Compute. Instead, the mysql node template augments the abstract “host” 354

requirement with a node_filter which contains additional selection criteria (in the form of property 355

constraints that the provider must use when selecting or allocating a host Compute node. 356

Some of the constraints shown above narrow down the boundaries of allowed values for certain 357
properties such as mem_size or num_cpus for the “host” capability by means of qualifier functions such 358

as greater_or_equal. Other constraints, express specific values such as for the architecture or 359

distribution properties of the “os” capability which will require the provider to find a precise match. 360

Note that when no qualifier function is provided for a property (filter), such as for the distribution 361

property, it is interpreted to mean the equal operator as shown on the architecture property. 362

2.9.2 Using an abstract node template to define infrastructure requirements 363

for software 364

This previous approach works well if no other component (i.e., another node template) other than mysql 365

node template wants to reference the same Compute node the orchestrator would instantiate. However, 366
perhaps another component wants to also be deployed on the same host, yet still allow the flexible 367
matching achieved using a node-filter. The alternative to the above approach is to create an abstract 368

node template that represents the Compute node in the topology as follows: 369

Example 12 - An abstract Compute node template with a node filter 370

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with requirements against hosting infrastructure.

topology_template:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 26 of 282

 inputs:
 # omitted here for brevity

 node_templates:
 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 # omitted here for brevity
 requirements:
 - host: mysql_compute

 # Abstract node template (placeholder) to be selected by provider
 mysql_compute:
 type: Compute
 node_filter:

 capabilities:
 - host:
 properties:
 num_cpus: { equal: 2 }
 mem_size: { greater_or_equal: 2 GB }
 - os:
 properties:
 architecture: { equal: x86_64 }
 type: linux
 distribution: ubuntu

As you can see the resulting mysql_compute node template looks very much like the “hello world” 371

template as shown in Chapter 2.1 (where the Compute node template was abstract), but this one also 372

allows the TOSCA orchestrator more flexibility when “selecting” a host Compute node by providing flexible 373

constraints for properties like mem_size. 374

As we proceed, you will see that TOSCA provides many normative node types like Compute for 375

commonly found services (e.g., BlockStorage, WebServer, Network, etc.). When these TOSCA 376
normative node types are used in your application’s topology they are always assumed to be “selectable” 377
by TOSCA Orchestrators which work with target infrastructure providers to find or allocate the best match 378
for them based upon your application’s requirements and constraints. 379

2.9.3 Using a node_filter to define requirements on a database for an 380

application 381

In the same way requirements can be defined on the hosting infrastructure (as shown above) for an 382
application, it is possible to express requirements against application or middleware components such as 383
a database that is not defined in the same template. The provider may then allocate a database by any 384
means, (e.g. using a database-as-a-service solution). 385

Example 13 - An abstract database requirement using a node filter 386

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with a TOSCA Orchestrator selectable database requirement
using a node_filter.

topology_template:
 inputs:

file:///C:/A/Standards%20and%20Open%20Source/CMO/YAML%20Ad%20Hoc/hello_world%23_A_

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 27 of 282

 # omitted here for brevity

 node_templates:
 my_app:
 type: my.types.MyApplication
 properties:
 admin_user: { get_input: admin_username }
 admin_password: { get_input: admin_password }
 db_endpoint_url: { get_property: [SELF, database_endpoint, url_path] }
 requirements:
 - database_endpoint:
 node: my.types.nodes.MyDatabase
 node_filter:
 properties:
 - db_version: { greater_or_equal: 5.5 }

In the example above, the application my_app requires a database node of type MyDatabase which has a 387

db_version property value of greater_or_equal to the value 5.5. 388

This example also shows how the get_property intrinsic function can be used to retrieve the url_path 389

property from the database node that will be selected by the provider and connected to my_app at runtime 390

due to fulfillment of the database_endpoint requirement. To locate the property, the get_property’s first 391

argument is set to the keyword SELF which indicates the property is being referenced from something in 392

the node itself. The second parameter is the name of the requirement named database_endpoint which 393
contains the property we are looking for. The last argument is the name of the property itself (i.e., 394

url_path) which contains the value we want to retrieve and assign to db_endpoint_url. 395

The alternative representation, which includes a node template in the topology for database that is still 396
selectable by the TOSCA orchestrator for the above example, is as follows: 397

Example 14 - An abstract database node template 398

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with a TOSCA Orchestrator selectable database using node
template.

topology_template:
 inputs:
 # omitted here for brevity

 node_templates:
 my_app:
 type: my.types.MyApplication
 properties:
 admin_user: { get_input: admin_username }
 admin_password: { get_input: admin_password }
 db_endpoint_url: { get_property: [SELF, database_endpoint, url_path] }
 requirements:
 - database_endpoint: my_abstract_database

 my_abstract_database:
 type: my.types.nodes.MyDatabase
 properties:
 - db_version: { greater_or_equal: 5.5 }

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 28 of 282

2.10 Using node template substitution for model composition 399

From an application perspective, it is often not necessary or desired to dive into platform details, but the 400
platform/runtime for an application is abstracted. In such cases, the template for an application can use 401
generic representations of platform components. The details for such platform components, such as the 402
underlying hosting infrastructure at its configuration, can then be defined in separate template files that 403
can be used for substituting the more abstract representations in the application level template file. 404

2.10.1 Understanding node template instantiation through a TOSCA 405

Orchestrator 406

When a topology template is instantiated by a TOSCA Orchestrator, the orchestrator has to look for 407
realizations of the single node templates according to the node types specified for each node template. 408
Such realizations can either be node types that include the appropriate implementation artifacts and 409
deployment artifacts that can be used by the orchestrator to bring to life the real-world resource modeled 410
by a node template. Alternatively, separate topology templates may be annotated as being suitable for 411
realizing a node template in the top-level topology template. 412

 413

In the latter case, a TOSCA Orchestrator will use additional substitution mapping information provided as 414
part of the substituting topology templates to derive how the substituted part gets “wired” into the overall 415
deployment, for example, how capabilities of a node template in the top-level topology template get 416
bound to capabilities of node templates in the substituting topology template. 417

 418

Thus, in cases where no “normal” node type implementation is available, or the node type corresponds to 419
a whole subsystem that cannot be implemented as a single node, additional topology templates can be 420
used for filling in more abstract placeholders in top level application templates. 421

2.10.2 Definition of the top-level service template 422

The following sample defines a web application web_app connected to a database db. In this example, the 423

complete hosting stack for the application is defined within the same topology template: the web 424

application is hosted on a web server web_server, which in turn is installed (hosted) on a compute node 425

server. 426

The hosting stack for the database db, in contrast, is not defined within the same file but only the 427

database is represented as a node template of type tosca.nodes.Database. The underlying hosting 428
stack for the database is defined in a separate template file, which is shown later in this section. Within 429

the current template, only a number of properties (user, password, name) are assigned to the database 430

using hardcoded values in this simple example. 431

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 29 of 282

 432

Figure 1: Using template substitution to implement a database tier 433

When a node template is to be substituted by another service template, this has to be indicated to an 434
orchestrator by means of a special “substitutable” directive. This directive causes, for example, special 435
processing behavior when validating the left-hand service template in Figure 1. The hosting requirement 436

of the db node template is not bound to any capability defined within the service template, which would 437
normally cause a validation error. When the “substitutable” directive is present, the orchestrator will 438
however first try to perform substitution of the respective node template and after that validate if all 439
mandatory requirements of all nodes in the resulting graph are fulfilled. 440

 441

Note that in contrast to the use case described in section 2.9.2 (where a database was abstractly referred 442

to in the requirements section of a node and the database itself was not represented as a node 443
template), the approach shown here allows for some additional modeling capabilities in cases where this 444
is required. 445

 446
For example, if multiple components need to use the same database (or any other sub-system of the 447
overall service), this can be expressed by means of normal relations between node templates, whereas 448

such modeling would not be possible in requirements sections of disjoint node templates. 449

Example 15 - Referencing an abstract database node template 450

tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:
 description: Template of an application connecting to a database.

 node_templates:
 web_app:
 type: tosca.nodes.WebApplication.MyWebApp
 requirements:
 - host: web_server
 - database_endpoint: db

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 30 of 282

 web_server:
 type: tosca.nodes.WebServer
 requirements:
 - host: server

 server:
 type: tosca.nodes.Compute
 # details omitted for brevity

 db:
 # This node is abstract (no Deployment or Implementation artifacts
on create)
 # and can be substituted with a topology provided by another
template
 # that exports a Database type’s capabilities.
 type: tosca.nodes.Database
 properties:
 user: my_db_user
 password: secret
 name: my_db_name

2.10.3 Definition of the database stack in a service template 451

The following sample defines a template for a database including its complete hosting stack, i.e. the 452
template includes a database node template, a template for the database management system (dbms) 453

hosting the database, as well as a computer node server on which the DBMS is installed. 454

This service template can be used standalone for deploying just a database and its hosting stack. In the 455
context of the current use case, though, this template can also substitute the database node template in 456
the previous snippet and thus fill in the details of how to deploy the database. 457

In order to enable such a substitution, an additional metadata section substitution_mappings is added 458
to the topology template to tell a TOSCA Orchestrator how exactly the topology template will fit into the 459
context where it gets used. For example, requirements or capabilities of the node that gets substituted by 460
the topology template have to be mapped to requirements or capabilities of internal node templates for 461
allow for a proper wiring of the resulting overall graph of node templates. 462

In short, the substitution_mappings section provides the following information: 463

1. It defines what node templates, i.e. node templates of which type, can be substituted by the 464
topology template. 465

2. It defines how capabilities of the substituted node (or the capabilities defined by the node type of 466
the substituted node template, respectively) are bound to capabilities of node templates defined 467
in the topology template. 468

3. It defines how requirements of the substituted node (or the requirements defined by the node type 469
of the substituted node template, respectively) are bound to requirements of node templates 470
defined in the topology template. 471

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 31 of 282

 472

Figure 2: Substitution mappings 473

The substitution_mappings section in the sample below denotes that this topology template can be 474

used for substituting node templates of type tosca.nodes.Database. It further denotes that the 475

database_endpoint capability of the substituted node gets fulfilled by the database_endpoint 476

capability of the database node contained in the topology template. 477

Example 16 - Using substitution mappings to export a database implementation 478

tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:
 description: Template of a database including its hosting stack.

 inputs:
 db_user:
 type: string
 db_password:
 type: string
 # other inputs omitted for brevity

 substitution_mappings:
 node_type: tosca.nodes.Database
 capabilities:
 database_endpoint: [database, database_endpoint]

 node_templates:
 database:
 type: tosca.nodes.Database
 properties:
 user: { get_input: db_user }
 # other properties omitted for brevity

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 32 of 282

 requirements:
 - host: dbms

 dbms:
 type: tosca.nodes.DBMS
 # details omitted for brevity

 server:
 type: tosca.nodes.Compute
 # details omitted for brevity

Note that the substitution_mappings section does not define any mappings for requirements of the 479
Database node type, since all requirements are fulfilled by other nodes templates in the current topology 480
template. In cases where a requirement of a substituted node is bound in the top-level service template 481
as well as in the substituting topology template, a TOSCA Orchestrator should raise a validation error. 482

Further note that no mappings for properties or attributes of the substituted node are defined. Instead, the 483
inputs and outputs defined by the topology template have to match the properties and attributes or the 484
substituted node. If there are more inputs than the substituted node has properties, default values must 485
be defined for those inputs, since no values can be assigned through properties in a substitution case. 486

2.11 Using node template substitution for chaining subsystems 487

A common use case when providing an end-to-end service is to define a chain of several subsystems that 488
together implement the overall service. Those subsystems are typically defined as separate service 489
templates to (1) keep the complexity of the end-to-end service template at a manageable level and to (2) 490
allow for the re-use of the respective subsystem templates in many different contexts. The type of 491
subsystems may be specific to the targeted workload, application domain, or custom use case. For 492
example, a company or a certain industry might define a subsystem type for company- or industry specific 493
data processing and then use that subsystem type for various end-user services. In addition, there might 494
be generic subsystem types like a database subsystem that are applicable to a wide range of use cases. 495

2.11.1 Defining the overall subsystem chain 496

Figure 3 shows the chaining of three subsystem types – a message queuing subsystem, a transaction 497
processing subsystem, and a databank subsystem – that support, for example, an online booking 498
application. On the front end, this chain provides a capability of receiving messages for handling in the 499
message queuing subsystem. The message queuing subsystem in turn requires a number of receivers, 500
which in the current example are two transaction processing subsystems. The two instances of the 501
transaction processing subsystem might be deployed on two different hosting infrastructures or 502
datacenters for high-availability reasons. The transaction processing subsystems finally require a 503
database subsystem for accessing and storing application specific data. The database subsystem in the 504
backend does not require any further component and is therefore the end of the chain in this example. 505

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 33 of 282

 506

Figure 3: Chaining of subsystems in a service template 507

All of the node templates in the service template shown above are abstract and considered substitutable 508
where each can be treated as their own subsystem; therefore, when instantiating the overall service, the 509
orchestrator would realize each substitutable node template using other TOSCA service templates. 510
These service templates would include more nodes and relationships that include the details for each 511
subsystem. A simplified version of a TOSCA service template for the overall service is given in the 512
following listing. 513

 514

Example 17 - Declaring a transaction subsystem as a chain of substitutable node templates 515

tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:
 description: Template of online transaction processing service.

 node_templates:
 mq:
 type: example.QueuingSubsystem
 properties:
 # properties omitted for brevity
 capabilities:
 message_queue_endpoint:
 # details omitted for brevity
 requirements:
 - receiver: trans1
 - receiver: trans2

 trans1:
 type: example.TransactionSubsystem
 properties:
 mq_service_ip: { get_attribute: [mq, service_ip] }
 receiver_port: 8080
 capabilities:
 message_receiver:
 # details omitted for brevity
 requirements:
 - database_endpoint: dbsys

 trans2:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 34 of 282

 type: example.TransactionSubsystem
 properties:
 mq_service_ip: { get_attribute: [mq, service_ip] }
 receiver_port: 8080
 capabilities:
 message_receiver:
 # details omitted for brevity
 requirements:
 - database_endpoint: dbsys

 dbsys:
 type: example.DatabaseSubsystem
 properties:
 # properties omitted for brevity
 capabilities:
 database_endpoint:
 # details omitted for brevity

 516

As can be seen in the example above, the subsystems are chained to each other by binding requirements 517
of one subsystem node template to other subsystem node templates that provide the respective 518

capabilities. For example, the receiver requirement of the message queuing subsystem node template 519

mq is bound to transaction processing subsystem node templates trans1 and trans2. 520

Subsystems can be parameterized by providing properties. In the listing above, for example, the IP 521

address of the message queuing server is provided as property mq_service_ip to the transaction 522
processing subsystems and the desired port for receiving messages is specified by means of the 523

receiver_port property. 524

If attributes of the instantiated subsystems need to be obtained, this would be possible by using the 525

get_attribute intrinsic function on the respective subsystem node templates. 526

2.11.2 Defining a subsystem (node) type 527

The types of subsystems that are required for a certain end-to-end service are defined as TOSCA node 528
types as shown in the following example. Node templates of those node types can then be used in the 529
end-to-end service template to define subsystems to be instantiated and chained for establishing the end-530
to-end service. 531

The realization of the defined node type will be given in the form of a whole separate service template as 532
outlined in the following section. 533

 534

Example 18 - Defining a TransactionSubsystem node type 535

tosca_definitions_version: tosca_simple_yaml_1_0

node_types:
 example.TransactionSubsystem:
 properties:
 mq_service_ip:
 type: string
 receiver_port:
 type: integer
 attributes:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 35 of 282

 receiver_ip:
 type: string
 receiver_port:
 type: integer
 capabilities:
 message_receiver: tosca.capabilities.Endpoint
 requirements:
 - database_endpoint: tosca.capabilities.Endpoint.Database

 536

Configuration parameters that would be allowed for customizing the instantiation of any subsystem are 537

defined as properties of the node type. In the current example, those are the properties mq_service_ip 538

and receiver_port that had been used in the end-to-end service template in section 2.11.1. 539

Observable attributes of the resulting subsystem instances are defined as attributes of the node type. In 540
the current case, those are the IP address of the message receiver as well as the actually allocated port 541
of the message receiver endpoint. 542

2.11.3 Defining the details of a subsystem 543

The details of a subsystem, i.e. the software components and their hosting infrastructure, are defined as 544
node templates and relationships in a service template. By means of substitution mappings that have 545
been introduced in section 2.10.2, the service template is annotated to indicate to an orchestrator that it 546
can be used as realization of a node template of certain type, as well as how characteristics of the node 547
type are mapped to internal elements of the service template. 548

 549

 550

Figure 4: Defining subsystem details in a service template 551

Figure 1 illustrates how a transaction processing subsystem as outlined in the previous section could be 552

defined in a service template. In this example, it simply consists of a custom application app of type 553

SomeApp that is hosted on a web server websrv, which in turn is running on a compute node. 554

The application named app provides a capability to receive messages, which is bound to the 555

message_receiver capability of the substitutable node type. It further requires access to a database, so 556

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 36 of 282

the application’s database_endpoint requirement is mapped to the database_endpoint requirement of 557

the TransactionSubsystem node type. 558

Properties of the TransactionSubsystem node type are used to customize the instantiation of a 559

subsystem. Those properties can be mapped to any node template for which the author of the subsystem 560
service template wants to expose configurability. In the current example, the application app and the web 561

server middleware websrv get configured through properties of the TransactionSubsystem node type. 562

All properties of that node type are defined as inputs of the service template. The input parameters in 563

turn get mapped to node templates by means of get_input function calls in the respective sections of 564

the service template. 565

Similarly, attributes of the whole subsystem can be obtained from attributes of particular node templates. 566
In the current example, attributes of the web server and the hosting compute node will be exposed as 567
subsystem attributes. All exposed attributes that are defined as attributes of the substitutable 568
TransactionSubsystem node type are defined as outputs of the subsystem service template. 569

An outline of the subsystem service template is shown in the listing below. Note that this service template 570
could be used for stand-alone deployment of a transaction processing system as well, i.e. it is not 571

restricted just for use in substitution scenarios. Only the presence of the substitution_mappings 572

metadata section in the topology_template enables the service template for substitution use cases. 573

 574

Example 19 - Implementation of a TransactionSubsytem node type using substitution mappings 575

tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:
 description: Template of a database including its hosting stack.

 inputs:
 mq_service_ip:
 type: string
 description: IP address of the message queuing server to receive
messages from
 receiver_port:
 type: string
 description: Port to be used for receiving messages
 # other inputs omitted for brevity

 substitution_mappings:
 node_type: example.TransactionSubsystem
 capabilities:
 message_receiver: [app, message_receiver]
 requirements:
 database_endpoint: [app, database]

 node_templates:
 app:
 type: example.SomeApp
 properties:
 # properties omitted for brevity
 capabilities:
 message_receiver:
 properties:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 37 of 282

 service_ip: { get_input: mq_service_ip }
 # other properties omitted for brevity
 requirements:
 - database:
 # details omitted for brevity
 - host: websrv

 websrv:
 type: tosca.nodes.WebServer
 properties:
 # properties omitted for brevity
 capabilities:
 data_endpoint:
 properties:
 port_name: { get_input: receiver_port }
 # other properties omitted for brevity
 requirements:
 - host: server

 server:
 type: tosca.nodes.Compute
 # details omitted for brevity

 outputs:
 receiver_ip:

 description: private IP address of the message receiver application

 value: { get_attribute: [server, private_address] }

 receiver_port:

 description: Port of the message receiver endpoint

 value: { get_attribute: [app, app_endpoint, port] }

2.12 Grouping node templates 576

In designing applications composed of several interdependent software components (or nodes) it is often 577
desirable to manage these components as a named group. This can provide an effective way of 578
associating policies (e.g., scaling, placement, security or other) that orchestration tools can apply to all 579
the components of group during deployment or during other lifecycle stages. 580

In many realistic scenarios it is desirable to include scaling capabilities into an application to be able to 581
react on load variations at runtime. The example below shows the definition of a scaling web server stack, 582
where a variable number of servers with apache installed on them can exist, depending on the load on 583
the servers. 584

Example 20 - Grouping Node Templates for possible policy application 585

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for a scaling web server.

topology_template:
 inputs:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 38 of 282

 # omitted here for brevity

 node_templates:
 apache:
 type: tosca.nodes.WebServer.Apache
 properties:
 # Details omitted for brevity
 requirements:
 - host: server

 server:
 type: tosca.nodes.Compute
 # details omitted for brevity

 groups:
 webserver_group:
 type: tosca.groups.Root
 members: [apache, server]

The example first of all uses the concept of grouping to express which components (node templates) 586
need to be scaled as a unit – i.e. the compute nodes and the software on-top of each compute node. This 587

is done by defining the webserver_group in the groups section of the template and by adding both the 588

apache node template and the server node template as a member to the group. 589

Furthermore, a scaling policy is defined for the group to express that the group as a whole (i.e. pairs of 590

server node and the apache component installed on top) should scale up or down under certain 591

conditions. 592

In cases where no explicit binding between software components and their hosting compute resources is 593
defined in a template, but only requirements are defined as has been shown in section 2.9, a provider 594
could decide to place software components on the same host if their hosting requirements match, or to 595
place them onto different hosts. 596

It is often desired, though, to influence placement at deployment time to make sure components get 597
collocation or anti-collocated. This can be expressed via grouping and policies as shown in the example 598
below. 599

Example 21 - Grouping nodes for anti-colocation policy application 600

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template hosting requirements and placement policy.

topology_template:
 inputs:
 # omitted here for brevity

 node_templates:
 wordpress_server:
 type: tosca.nodes.WebServer
 properties:
 # omitted here for brevity
 requirements:
 - host:
 # Find a Compute node that fulfills these additional filter reqs.
 node_filter:
 capabilities:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 39 of 282

 - host:
 properties:
 - mem_size: { greater_or_equal: 512 MB }
 - disk_size: { greater_or_equal: 2 GB }
 - os:
 properties:
 - architecture: x86_64
 - type: linux

 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 # omitted here for brevity
 requirements:
 - host:
 node: tosca.nodes.Compute
 node_filter:
 capabilities:
 - host:
 properties:
 - disk_size: { greater_or_equal: 1 GB }
 - os:
 properties:
 - architecture: x86_64
 - type: linux

 groups:
 my_co_location_group:
 type: tosca.groups.Root
 members: [wordpress_server, mysql]

 policies:
 - my_anti_collocation_policy:
 type: my.policies.anticolocateion
 targets: [my_co_location_group]
 # For this example, specific policy definitions are considered
 # domain specific and are not included here

In the example above, both software components wordpress_server and mysql have similar hosting 601
requirements. Therefore, a provider could decide to put both on the same server as long as both their 602
respective requirements can be fulfilled. By defining a group of the two components and attaching an anti-603
collocation policy to the group it can be made sure, though, that both components are put onto different 604
hosts at deployment time. 605

2.13 Using YAML Macros to simplify templates 606

The YAML 1.2 specification allows for defining of aliases, which allow for authoring a block of YAML (or 607
node) once and indicating it is an “anchor” and then referencing it elsewhere in the same document as an 608
“alias”. Effectively, YAML parsers treat this as a “macro” and copy the anchor block’s code to wherever it 609
is referenced. Use of this feature is especially helpful when authoring TOSCA Service Templates where 610
similar definitions and property settings may be repeated multiple times when describing a multi-tier 611
application. 612

 613

For example, an application that has a web server and database (i.e., a two-tier application) may be 614

described using two Compute nodes (one to host the web server and another to host the database). The 615

http://yaml.org/spec/1.2/spec.html#id2786196

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 40 of 282

author may want both Compute nodes to be instantiated with similar properties such as operating system, 616
distribution, version, etc. 617

To accomplish this, the author would describe the reusable properties using a named anchor in the 618
“dsl_definitions” section of the TOSCA Service Template and reference the anchor name as an alias 619

in any Compute node templates where these properties may need to be reused. For example: 620

Example 22 - Using YAML anchors in TOSCA templates 621

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile that just defines a YAML macro for commonly reused Compute
 properties.

dsl_definitions:
 my_compute_node_props: &my_compute_node_props
 disk_size: 10 GB
 num_cpus: 1
 mem_size: 2 GB

topology_template:
 node_templates:

 my_server:

 type: Compute

 capabilities:

 - host:

 properties: *my_compute_node_props

 my_database:

 type: Compute

 capabilities:

 - host:

 properties: *my_compute_node_props

2.14 Passing information as inputs to Nodes and Relationships 622

It is possible for type and template authors to declare input variables within an inputs block on interfaces 623
to nodes or relationships in order to pass along information needed by their operations (scripts). These 624
declarations can be scoped such as to make these variable values available to all operations on a node 625
or relationships interfaces or to individual operations. TOSCA orchestrators will make these values 626
available as environment variables within the execution environments in which the scripts associated with 627
lifecycle operations are run. 628

2.14.1 Example: declaring input variables for all operations on a single 629

interface 630

node_templates:
 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 requirements:
 ...

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 41 of 282

 - database_endpoint: mysql_database
 interfaces:
 Standard:
 inputs:
 wp_db_port: { get_property: [SELF, database_endpoint, port] }

2.14.2 Example: declaring input variables for a single operation 631

node_templates:
 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 requirements:
 ...
 - database_endpoint: mysql_database
 interfaces:
 Standard:
 create: wordpress_install.sh
 configure:
 implementation: wordpress_configure.sh
 inputs:
 wp_db_port: { get_property: [SELF, database_endpoint, port] }

In the case where an input variable name is defined at more than one scope within the same interfaces 632
section of a node or template definition, the lowest (or innermost) scoped declaration would override 633
those declared at higher (or more outer) levels of the definition. 634

2.14.3 Example: setting output variables to an attribute 635

node_templates:
 frontend:
 type: MyTypes.SomeNodeType
 attributes:
 url: { get_operation_output: [SELF, Standard, create, generated_url] }
 interfaces:
 Standard:
 create:
 implementation: scripts/frontend/create.sh

 636

In this example, the Standard create operation exposes / exports an environment variable named 637

“generated_url” attribute which will be assigned to the WordPress node’s url attribute. 638

2.14.4 Example: passing output variables between operations 639

node_templates:
 frontend:
 type: MyTypes.SomeNodeType
 interfaces:
 Standard:
 create:
 implementation: scripts/frontend/create.sh
 configure:
 implementation: scripts/frontend/configure.sh
 inputs:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 42 of 282

 data_dir: { get_operation_output: [SELF, Standard, create, data_dir
] }

In this example, the Standard lifecycle’s create operation exposes / exports an environment variable 640

named “data_dir” which will be passed as an input to the Standard lifecycle’s configure operation. 641

2.15 Topology Template Model versus Instance Model 642

A TOSCA service template contains a topology template, which models the components of an 643
application, their relationships and dependencies (a.k.a., a topology model) that get interpreted and 644
instantiated by TOSCA Orchestrators. The actual node and relationship instances that are created 645
represent a set of resources distinct from the template itself, called a topology instance (model). The 646
direction of this specification is to provide access to the instances of these resources for management 647
and operational control by external administrators. This model can also be accessed by an orchestration 648
engine during deployment – i.e. during the actual process of instantiating the template in an incremental 649
fashion, That is, the orchestrator can choose the order of resources to instantiate (i.e., establishing a 650
partial set of node and relationship instances) and have the ability, as they are being created, to access 651
them in order to facilitate instantiating the remaining resources of the complete topology template. 652

2.16 Using attributes implicitly reflected from properties 653

Most entity types in TOSCA (e.g., Node, Relationship, Requirement and Capability Types) have property 654
definitions, which allow template authors to set the values for as inputs when these entities are 655
instantiated by an orchestrator. These property values are considered to reflect the desired state of the 656
entity by the author. Once instantiated, the actual values for these properties on the realized 657
(instantiated) entity are obtainable via attributes on the entity with the same name as the corresponding 658
property. 659

In other words, TOSCA orchestrators will automatically reflect (i.e., make available) any property defined 660
on an entity making it available as an attribute of the entity with the same name as the property. 661

 662

Use of this feature is shown in the example below where a source node named my_client, of type 663

ClientNode, requires a connection to another node named my_server of type ServerNode. As you can 664

see, the ServerNode type defines a property named notification_port which defines a dedicated port 665

number which instances of my_client may use to post asynchronous notifications to it during runtime. In 666

this case, the TOSCA Simple Profile assures that the notification_port property is implicitly reflected 667

as an attribute in the my_server node (also with the name notification_port) when its node template 668

is instantiated. 669

 670

Example 23 - Properties reflected as attributes 671

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile that shows how the (notification_port) property is
reflected as an attribute and can be referenced elsewhere.

node_types:
 ServerNode:
 derived_from: SoftwareComponent
 properties:
 notification_port:
 type: integer
 capabilities:
 # omitted here for brevity

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 43 of 282

 ClientNode:
 derived_from: SoftwareComponent
 properties:
 # omitted here for brevity
 requirements:
 - server:
 capability: Endpoint
 node: ServerNode
 relationship: ConnectsTo

topology_template:
 node_templates:

 my_server:
 type: ServerNode
 properties:
 notification_port: 8000

 my_client:
 type: ClientNode
 requirements:
 - server:

 node: my_server
 relationship: my_connection

 relationship_templates:
 my_connection:
 type: ConnectsTo
 interfaces:
 Configure:
 inputs:
 targ_notify_port: { get_attribute: [TARGET, notification_port
] }
 # other operation definitions omitted here for brevity

 672

Specifically, the above example shows that the ClientNode type needs the notification_port value 673

anytime a node of ServerType is connected to it using the ConnectsTo relationship in order to make it 674

available to its Configure operations (scripts). It does this by using the get_attribute function to 675

retrieve the notification_port attribute from the TARGET node of the ConnectsTo relationship (which is 676

a node of type ServerNode) and assigning it to an environment variable named targ_notify_port. 677

 678

It should be noted that the actual port value of the notification_port attribute may or may not be the 679

value 8000 as requested on the property; therefore, any node that is dependent on knowing its actual 680

“runtime” value would use the get_attribute function instead of the get_property function. 681

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 44 of 282

3 TOSCA Simple Profile definitions in YAML 682

Except for the examples, this section is normative and describes all of the YAML grammar, definitions 683
and block structure for all keys and mappings that are defined for the TOSCA Version 1.0 Simple Profile 684
specification that are needed to describe a TOSCA Service Template (in YAML). 685

3.1 TOSCA Namespace URI and alias 686

The following TOSCA Namespace URI alias and TOSCA Namespace Alias are reserved values which 687
SHALL be used when identifying the TOSCA Simple Profile version 1.0 specification. 688

Namespace Alias Namespace URI Specification Description

tosca_simple_yaml_1_1 http://docs.oasis-
open.org/tosca/ns/simple/yaml/1.1

The TOSCA Simple Profile v1.1 (YAML) target
namespace and namespace alias.

3.1.1 TOSCA Namespace prefix 689

The following TOSCA Namespace prefix is a reserved value and SHALL be used to reference the default 690
TOSCA Namespace URI as declared in TOSCA Service Templates. 691

Namespace Prefix Specification Description

tosca The reserved TOSCA Simple Profile Specification prefix that can be associated with the
default TOSCA Namespace URI

3.1.2 TOSCA Namespacing in TOSCA Service Templates 692

In the TOSCA Simple Profile, TOSCA Service Templates MUST always have, as the first line of YAML, 693

the keyword “tosca_definitions_version” with an associated TOSCA Namespace Alias value. This 694
single line accomplishes the following: 695

1. Establishes the TOSCA Simple Profile Specification version whose grammar MUST be used to 696

parse and interpret the contents for the remainder of the TOSCA Service Template. 697

2. Establishes the default TOSCA Namespace URI and Namespace Prefix for all types found in the 698

document that are not explicitly namespaced. 699

3. Automatically imports (without the use of an explicit import statement) the normative type 700

definitions (e.g., Node, Relationship, Capability, Artifact, etc.) that are associated with the TOSCA 701

Simple Profile Specification the TOSCA Namespace Alias value identifies. 702

4. Associates the TOSCA Namespace URI and Namespace Prefix to the automatically imported 703

TOSCA type definitions. 704

3.1.3 Rules to avoid namespace collisions 705

TOSCA Simple Profiles allows template authors to declare their own types and templates and assign 706
them simple names with no apparent namespaces. Since TOSCA Service Templates can import other 707
service templates to introduce new types and topologies of templates that can be used to provide 708
concrete implementations (or substitute) for abstract nodes. Rules are needed so that TOSCA 709
Orchestrators know how to avoid collisions and apply their own namespaces when import and nesting 710
occur. 711

3.1.3.1 Additional Requirements 712

 Since TOSCA Service Templates can import (or substitute in) other Service Templates, TOSCA 713

Orchestrators and tooling will encounter the “tosca_definitions_version” statement for each 714

imported template. In these cases, the following additional requirements apply: 715

http://docs.oasis-open.org/tosca/ns/simple/yaml/1.1
http://docs.oasis-open.org/tosca/ns/simple/yaml/1.1

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 45 of 282

o Imported type definitions with the same Namespace URI, local name and version SHALL 716

be equivalent. 717

o If different values of the “tosca_definitions_version” are encountered, their 718

corresponding type definitions MUST be uniquely identifiable using their corresponding 719

Namespace URI using a different Namespace prefix. 720

 Duplicate local names (i.e., within the same Service Template SHALL be considered an error. 721

These include, but are not limited to duplicate names found for the following definitions: 722

o Repositories (repositories) 723

o Data Types (data_types) 724

o Node Types (node_types) 725

o Relationship Types (relationship_types) 726

o Capability Types (capability_types) 727

o Artifact Types (artifact_types) 728

o Interface Types (interface_types) 729

 Duplicate Template names within a Service Template’s Topology Template SHALL be considered 730

an error. These include, but are not limited to duplicate names found for the following template 731

types: 732

o Node Templates (node_templates) 733

o Relationship Templates (relationship_templates) 734

o Inputs (inputs) 735

o Outputs (outputs) 736

 Duplicate names for the following keynames within Types or Templates SHALL be considered an 737

error. These include, but are not limited to duplicate names found for the following keynames: 738

o Properties (properties) 739

o Attributes (attributes) 740

o Artifacts (artifacts) 741

o Requirements (requirements) 742

o Capabilities (capabilities) 743

o Interfaces (interfaces) 744

o Policies (policies) 745

o Groups (groups) 746

3.2 Parameter and property types 747

This clause describes the primitive types that are used for declaring normative properties, parameters 748
and grammar elements throughout this specification. 749

3.2.1 Referenced YAML Types 750

Many of the types we use in this profile are built-in types from the YAML 1.2 specification (i.e., those 751
identified by the “tag:yaml.org,2002” version tag) [YAML-1.2]. 752

The following table declares the valid YAML type URIs and aliases that SHALL be used when possible 753
when defining parameters or properties within TOSCA Service Templates using this specification: 754

Valid aliases Type URI

string tag:yaml.org,2002:str (default)

integer tag:yaml.org,2002:int

float tag:yaml.org,2002:float

boolean tag:yaml.org,2002:bool (i.e., a value either ‘true’ or ‘false’)

http://www.yaml.org/spec/1.2/spec.html

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 46 of 282

timestamp tag:yaml.org,2002:timestamp [YAML-TS-1.1]

null tag:yaml.org,2002:null

3.2.1.1 Notes 755

 The “string” type is the default type when not specified on a parameter or property declaration. 756

 While YAML supports further type aliases, such as “str” for “string”, the TOSCA Simple Profile 757

specification promotes the fully expressed alias name for clarity. 758

3.2.2 TOSCA version 759

TOSCA supports the concept of “reuse” of type definitions, as well as template definitions which could be 760
version and change over time. It is important to provide a reliable, normative means to represent a 761
version string which enables the comparison and management of types and templates over time. 762
Therefore, the TOSCA TC intends to provide a normative version type (string) for this purpose in future 763
Working Drafts of this specification. 764

Shorthand Name version

Type Qualified
Name

tosca:version

3.2.2.1 Grammar 765

TOSCA version strings have the following grammar: 766

<major_version>.<minor_version>[.<fix_version>[.<qualifier>[-<build_version]]]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 767

 major_version: is a required integer value greater than or equal to 0 (zero) 768

 minor_version: is a required integer value greater than or equal to 0 (zero). 769

 fix_version: is an optional integer value greater than or equal to 0 (zero). 770

 qualifier: is an optional string that indicates a named, pre-release version of the associated 771

code that has been derived from the version of the code identified by the combination 772

major_version, minor_version and fix_version numbers. 773

 build_version: is an optional integer value greater than or equal to 0 (zero) that can be used to 774

further qualify different build versions of the code that has the same qualifer_string. 775

3.2.2.2 Version Comparison 776

 When comparing TOSCA versions, all component versions (i.e., major, minor and fix) are 777

compared in sequence from left to right. 778

 TOSCA versions that include the optional qualifier are considered older than those without a 779

qualifier. 780

 TOSCA versions with the same major, minor, and fix versions and have the same qualifier string, 781

but with different build versions can be compared based upon the build version. 782

 Qualifier strings are considered domain-specific. Therefore, this specification makes no 783

recommendation on how to compare TOSCA versions with the same major, minor and fix 784

versions, but with different qualifiers strings and simply considers them different named branches 785

derived from the same code. 786

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 47 of 282

3.2.2.3 Examples 787

Examples of valid TOSCA version strings: 788

basic version strings
6.1
2.0.1

version string with optional qualifier
3.1.0.beta

version string with optional qualifier and build version
1.0.0.alpha-10

3.2.2.4 Notes 789

 [Maven-Version] The TOSCA version type is compatible with the Apache Maven versioning 790

policy. 791

3.2.2.5 Additional Requirements 792

 A version value of zero (i.e., ‘0’, ‘0.0’, or ‘0.0.0’) SHALL indicate there no version provided. 793

 A version value of zero used with any qualifiers SHALL NOT be valid. 794

3.2.3 TOSCA range type 795

The range type can be used to define numeric ranges with a lower and upper boundary. For example, this 796
allows for specifying a range of ports to be opened in a firewall. 797

Shorthand Name range

Type Qualified
Name

tosca:range

3.2.3.1 Grammar 798

TOSCA range values have the following grammar: 799

[<lower_bound>, <upper_bound>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 800

 lower_bound: is a required integer value that denotes the lower boundary of the range. 801

 upper_bound: is a required integer value that denotes the upper boundary of the range. This 802

value MUST be greater than lower_bound. 803

3.2.3.2 Keywords 804

The following Keywords may be used in the TOSCA range type: 805

Keyword Applicable
Types

Description

UNBOUNDED scalar Used to represent an unbounded upper bounds (positive) value in a set for a scalar type.

3.2.3.3 Examples 806

Example of a node template property with a range value: 807

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 48 of 282

numeric range between 1 and 100
a_range_property: [1, 100]

a property that has allows any number 0 or greater
num_connections: [0, UNBOUNDED]

 808

3.2.4 TOSCA list type 809

The list type allows for specifying multiple values for a parameter of property. For example, if an 810
application allows for being configured to listen on multiple ports, a list of ports could be configured using 811
the list data type. 812

Note that entries in a list for one property or parameter must be of the same type. The type (for simple 813
entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective 814
property definition, attribute definitions, or input or output parameter definitions. 815

Shorthand Name list

Type Qualified
Name

tosca:list

3.2.4.1 Grammar 816

TOSCA lists are essentially normal YAML lists with the following grammars: 817

3.2.4.1.1 Square bracket notation 818

 [<list_entry_1>, <list_entry_2>, ...]

3.2.4.1.2 Bulleted (sequenced) list notation 819

- <list_entry_1>
- ...
- <list_entry_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 820

 <list_entry_*>: represents one entry of the list. 821

3.2.4.2 Declaration Examples 822

3.2.4.2.1 List declaration using a simple type 823

The following example shows a list declaration with an entry schema based upon a simple integer type 824
(which has additional constraints): 825

<some_entity>:
 ...
 properties:
 listen_ports:
 type: list
 entry_schema:
 description: listen port entry (simple integer type)
 type: integer
 constraints:
 - max_length: 128

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 49 of 282

3.2.4.2.2 List declaration using a complex type 826

The following example shows a list declaration with an entry schema based upon a complex type: 827

<some_entity>:
 ...
 properties:
 products:
 type: list
 entry_schema:
 description: Product information entry (complex type) defined elsewhere
 type: ProductInfo

3.2.4.3 Definition Examples 828

These examples show two notation options for defining lists: 829

 A single-line option which is useful for only short lists with simple entries. 830

 A multi-line option where each list entry is on a separate line; this option is typically useful or 831

more readable if there is a large number of entries, or if the entries are complex. 832

3.2.4.3.1 Square bracket notation 833

listen_ports: [80, 8080]

3.2.4.3.2 Bulleted list notation 834

listen_ports:
 - 80

 - 8080

3.2.5 TOSCA map type 835

The map type allows for specifying multiple values for a parameter of property as a map. In contrast to 836
the list type, where each entry can only be addressed by its index in the list, entries in a map are named 837
elements that can be addressed by their keys. 838

Note that entries in a map for one property or parameter must be of the same type. The type (for simple 839
entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective 840
property definition, attribute definition, or input or output parameter definition. 841

Shorthand Name map

Type Qualified
Name

tosca:map

3.2.5.1 Grammar 842

TOSCA maps are normal YAML dictionaries with following grammar: 843

3.2.5.1.1 Single-line grammar 844

{ <entry_key_1>: <entry_value_1>, ..., <entry_key_n>: <entry_value_n> }
...
<entry_key_n>: <entry_value_n>

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 50 of 282

3.2.5.1.2 Multi-line grammar 845

<entry_key_1>: <entry_value_1>
...
<entry_key_n>: <entry_value_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 846

 entry_key_*: is the required key for an entry in the map 847

 entry_value_*: is the value of the respective entry in the map 848

3.2.5.2 Declaration Examples 849

3.2.5.2.1 Map declaration using a simple type 850

The following example shows a map with an entry schema definition based upon an existing string type 851
(which has additional constraints): 852

<some_entity>:
 ...
 properties:
 emails:
 type: map
 entry_schema:
 description: basic email address
 type: string
 constraints:
 - max_length: 128

3.2.5.2.2 Map declaration using a complex type 853

The following example shows a map with an entry schema definition for contact information: 854

<some_entity>:
 ...
 properties:
 contacts:
 type: map
 entry_schema:
 description: simple contact information
 type: ContactInfo

3.2.5.3 Definition Examples 855

These examples show two notation options for defining maps: 856

 A single-line option which is useful for only short maps with simple entries. 857

 A multi-line option where each map entry is on a separate line; this option is typically useful or 858
more readable if there is a large number of entries, or if the entries are complex. 859

3.2.5.3.1 Single-line notation 860

notation option for shorter maps
user_name_to_id_map: { user1: 1001, user2: 1002 }

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 51 of 282

3.2.5.3.2 Multi-line notation 861

notation for longer maps
user_name_to_id_map:
 user1: 1001
 user2: 1002

3.2.6 TOSCA scalar-unit type 862

The scalar-unit type can be used to define scalar values along with a unit from the list of recognized units 863
provided below. 864

3.2.6.1 Grammar 865

TOSCA scalar-unit typed values have the following grammar: 866

<scalar> <unit>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 867

 scalar: is a required scalar value. 868

 unit: is a required unit value. The unit value MUST be type-compatible with the scalar. 869

3.2.6.2 Additional requirements 870

 Whitespace: any number of spaces (including zero or none) SHALL be allowed between the 871

scalar value and the unit value. 872

 It SHALL be considered an error if either the scalar or unit portion is missing on a property or 873

attribute declaration derived from any scalar-unit type. 874

 When performing constraint clause evaluation on values of the scalar-unit type, both the scalar 875

value portion and unit value portion SHALL be compared together (i.e., both are treated as a 876

single value). For example, if we have a property called storage_size. which is of type scalar-877

unit, a valid range constraint would appear as follows: 878

o storage_size: in_range [4 GB, 20 GB] 879

where storage_size’s range would be evaluated using both the numeric and unit values 880

(combined together), in this case ‘4 GB’ and ’20 GB’. 881

3.2.6.3 Concrete Types 882

Shorthand Names scalar-unit.size, scalar-unit.size

Type Qualified
Names

tosca:scalar-unit.size, tosca:scalar-unit.time

 883

The scalar-unit type grammar is abstract and has two recognized concrete types in TOSCA: 884

 scalar-unit.size – used to define properties that have scalar values measured in size units. 885

 scalar-unit.time – used to define properties that have scalar values measured in size units. 886

 scalar-unit.frequency – used to define properties that have scalar values measured in units per 887

second. 888

These types and their allowed unit values are defined below. 889

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 52 of 282

3.2.6.4 scalar-unit.size 890

3.2.6.4.1 Recognized Units 891

Unit Usage Description

B size byte

kB size kilobyte (1000 bytes)

KiB size kibibytes (1024 bytes)

MB size megabyte (1000000 bytes)

MiB size mebibyte (1048576 bytes)

GB size gigabyte (1000000000 bytes)

GiB size gibibytes (1073741824 bytes)

TB size terabyte (1000000000000 bytes)

TiB size tebibyte (1099511627776 bytes)

3.2.6.4.2 Examples 892

Storage size in Gigabytes
properties:
 storage_size: 10 GB

3.2.6.4.3 Notes 893

 The unit values recognized by TOSCA Simple Profile for size-type units are based upon a 894
subset of those defined by GNU at 895
http://www.gnu.org/software/parted/manual/html_node/unit.html, which is a non-normative 896
reference to this specification. 897

 TOSCA treats these unit values as case-insensitive (e.g., a value of ‘kB’, ‘KB’ or ‘kb’ would be 898
equivalent), but it is considered best practice to use the case of these units as prescribed by 899
GNU. 900

 Some Cloud providers may not support byte-level granularity for storage size allocations. In 901
those cases, these values could be treated as desired sizes and actual allocations would be 902
based upon individual provider capabilities. 903

3.2.6.5 scalar-unit.time 904

3.2.6.5.1 Recognized Units 905

Unit Usage Description

d time days

h time hours

m time minutes

http://www.gnu.org/software/parted/manual/html_node/unit.html

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 53 of 282

Unit Usage Description

s time seconds

ms time milliseconds

us time microseconds

ns time nanoseconds

3.2.6.5.2 Examples 906

Response time in milliseconds
properties:
 respone_time: 10 ms

3.2.6.5.3 Notes 907

 The unit values recognized by TOSCA Simple Profile for time-type units are based upon a subset 908

of those defined by International System of Units whose recognized abbreviations are defined 909

within the following reference: 910

o http://www.ewh.ieee.org/soc/ias/pub-dept/abbreviation.pdf 911

o This document is a non-normative reference to this specification and intended for publications 912

or grammars enabled for Latin characters which are not accessible in typical programming 913

languages 914

3.2.6.6 scalar-unit.frequency 915

3.2.6.6.1 Recognized Units 916

Unit Usage Description

Hz frequency Hertz, or Hz. equals one cycle per second.

kHz frequency Kilohertz, or kHz, equals to 1,000 Hertz

MHz frequency Megahertz, or MHz, equals to 1,000,000 Hertz or 1,000 kHz

GHz frequency Gigahertz, or GHz, equals to 1,000,000,000 Hertz, or 1,000,000 kHz, or 1,000 MHz.

3.2.6.6.2 Examples 917

Processor raw clock rate
properties:
 clock_rate: 2.4 GHz

3.2.6.6.3 Notes 918

 The value for Hertz (Hz) is the International Standard Unit (ISU) as described by the Bureau 919

International des Poids et Mesures (BIPM) in the “SI Brochure: The International System of Units 920

(SI) [8th edition, 2006; updated in 2014]”, http://www.bipm.org/en/publications/si-brochure/ 921

http://www.ewh.ieee.org/soc/ias/pub-dept/abbreviation.pdf
http://www.bipm.org/en/publications/si-brochure/

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 54 of 282

3.3 Normative values 922

3.3.1 Node States 923

As components (i.e., nodes) of TOSCA applications are deployed, instantiated and orchestrated over 924
their lifecycle using normative lifecycle operations (see section 5.8 for normative lifecycle definitions) it is 925
important define normative values for communicating the states of these components normatively 926
between orchestration and workflow engines and any managers of these applications. 927

The following table provides the list of recognized node states for TOSCA Simple Profile that would be set 928
by the orchestrator to describe a node instance’s state: 929

Node State

Value Transitional Description

initial no Node is not yet created. Node only exists as a template definition.

creating yes Node is transitioning from initial state to created state.

created no Node software has been installed.

configuring yes Node is transitioning from created state to configured state.

configured no Node has been configured prior to being started.

starting yes Node is transitioning from configured state to started state.

started no Node is started.

stopping yes Node is transitioning from its current state to a configured state.

deleting yes Node is transitioning from its current state to one where it is deleted and its state
is no longer tracked by the instance model.

error no Node is in an error state.

3.3.2 Relationship States 930

Similar to the Node States described in the previous section, Relationships have state relative to their 931
(normative) lifecycle operations. 932

The following table provides the list of recognized relationship states for TOSCA Simple Profile that would 933
be set by the orchestrator to describe a node instance’s state: 934

Node State

Value Transitional Description

initial no Relationship is not yet created. Relationship only exists as a template definition.

3.3.2.1 Notes 935

 Additional states may be defined in future versions of the TOSCA Simple Profile in YAML 936

specification. 937

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 55 of 282

3.3.3 Directives 938

There are currently no directive values defined for this version of the TOSCA Simple Profile. 939

3.3.4 Network Name aliases 940

The following are recognized values that may be used as aliases to reference types of networks within an 941
application model without knowing their actual name (or identifier) which may be assigned by the 942
underlying Cloud platform at runtime. 943

Alias value Description

PRIVATE An alias used to reference the first private network within a property or attribute of a Node or
Capability which would be assigned to them by the underlying platform at runtime.

A private network contains IP addresses and ports typically used to listen for incoming traffic
to an application or service from the Intranet and not accessible to the public internet.

PUBLIC An alias used to reference the first public network within a property or attribute of a Node or
Capability which would be assigned to them by the underlying platform at runtime.

A public network contains IP addresses and ports typically used to listen for incoming traffic
to an application or service from the Internet.

3.3.4.1 Usage 944

These aliases would be used in the tosca.capabilities.Endpoint Capability type (and types derived 945

from it) within the network_name field for template authors to use to indicate the type of network the 946

Endpoint is supposed to be assigned an IP address from. 947

3.4 TOSCA Metamodel 948

This section defines all modelable entities that comprise the TOSCA Version 1.0 Simple Profile 949
specification along with their keynames, grammar and requirements. 950

3.4.1 Required Keynames 951

The TOSCA metamodel includes complex types (e.g., Node Types, Relationship Types, Capability Types, 952
Data Types, etc.) each of which include their own list of reserved keynames that are sometimes marked 953
as required. These types may be used to derive other types. These derived types (e.g., child types) do 954
not have to provide required keynames as long as they have been specified in the type they have been 955
derived from (i.e., their parent type). 956

3.5 Reusable modeling definitions 957

3.5.1 Description definition 958

This optional element provides a means include single or multiline descriptions within a TOSCA Simple 959
Profile template as a scalar string value. 960

3.5.1.1 Keyname 961

The following keyname is used to provide a description within the TOSCA Simple Profile specification: 962

description

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 56 of 282

3.5.1.2 Grammar 963

Description definitions have the following grammar: 964

description: <string>

3.5.1.3 Examples 965

Simple descriptions are treated as a single literal that includes the entire contents of the line that 966

immediately follows the description key: 967

description: This is an example of a single line description (no folding).

The YAML “folded” style may also be used for multi-line descriptions which “folds” line breaks as space 968
characters. 969

description: >
 This is an example of a multi-line description using YAML. It permits for line
 breaks for easier readability...

 if needed. However, (multiple) line breaks are folded into a single space
 character when processed into a single string value.

3.5.1.4 Notes 970

 Use of “folded” style is discouraged for the YAML string type apart from when used with the 971
description keyname. 972

3.5.2 Constraint clause 973

A constraint clause defines an operation along with one or more compatible values that can be used to 974
define a constraint on a property or parameter’s allowed values when it is defined in a TOSCA Service 975
Template or one of its entities. 976

3.5.2.1 Operator keynames 977

The following is the list of recognized operators (keynames) when defining constraint clauses: 978

Operator Type Value Type Description

equal scalar any Constrains a property or parameter to a value equal to (‘=’) the value
declared.

greater_than scalar comparable Constrains a property or parameter to a value greater than (‘>’) the
value declared.

greater_or_equal scalar comparable Constrains a property or parameter to a value greater than or equal to
(‘>=’) the value declared.

less_than scalar comparable Constrains a property or parameter to a value less than (‘<’) the value
declared.

less_or_equal scalar comparable Constrains a property or parameter to a value less than or equal to
(‘<=’) the value declared.

in_range dual
scalar

comparable,
range

Constrains a property or parameter to a value in range of (inclusive)
the two values declared.

Note: subclasses or templates of types that declare a property with the

in_range constraint MAY only further restrict the range specified by
the parent type.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 57 of 282

Operator Type Value Type Description

valid_values list any Constrains a property or parameter to a value that is in the list of
declared values.

length scalar string, list,
map

Constrains the property or parameter to a value of a given length.

min_length scalar string, list,
map

Constrains the property or parameter to a value to a minimum length.

max_length scalar string, list,
map

Constrains the property or parameter to a value to a maximum length.

pattern regex string Constrains the property or parameter to a value that is allowed by the
provided regular expression.

Note: Future drafts of this specification will detail the use of regular
expressions and reference an appropriate standardized grammar.

3.5.2.1.1 Comparable value types 979

In the Value Type column above, an entry of “comparable” includes integer, float, timestamp, string, 980
version, and scalar-unit types while an entry of “any” refers to any type allowed in the TOSCA simple 981
profile in YAML. 982

3.5.2.2 Additional Requirements 983

 If no operator is present for a simple scalar-value on a constraint clause, it SHALL be interpreted 984

as being equivalent to having the “equal” operator provided; however, the “equal” operator may 985

be used for clarity when expressing a constraint clause. 986

 The “length” operator SHALL be interpreted mean “size” for set types (i.e., list, map, etc.). 987

 Values provided by the operands (i.e., values and scalar values) SHALL be type-compatible with 988
their associated operations. 989

 Future drafts of this specification will detail the use of regular expressions and reference an 990
appropriate standardized grammar. 991

3.5.2.3 Grammar 992

Constraint clauses have one of the following grammars: 993

Scalar grammar
<operator>: <scalar_value>

Dual scalar grammar
<operator>: [<scalar_value_1>, <scalar_value_2>]

List grammar
<operator> [<value_1>, <value_2>, ..., <value_n>]

Regular expression (regex) grammar
pattern: <regular_expression_value>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 994

 operator: represents a required operator from the specified list shown above (see section 995
3.5.2.1 “Operator keynames”). 996

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 58 of 282

 scalar_value, scalar_value_*: represents a required scalar (or atomic quantity) that can 997

hold only one value at a time. This will be a value of a primitive type, such as an integer or string 998
that is allowed by this specification. 999

 value_*: represents a required value of the operator that is not limited to scalars. 1000

 reqular_expression_value: represents a regular expression (string) value. 1001

3.5.2.4 Examples 1002

Constraint clauses used on parameter or property definitions: 1003

equal
equal: 2

greater_than
greater_than: 1

greater_or_equal
greater_or_equal: 2

less_than
less_than: 5

less_or_equal
less_or_equal: 4

in_range
in_range: [1, 4]

valid_values
valid_values: [1, 2, 4]
specific length (in characters)
length: 32

min_length (in characters)
min_length: 8

max_length (in characters)
max_length: 64

3.5.3 Property Filter definition 1004

A property filter definition defines criteria, using constraint clauses, for selection of a TOSCA entity based 1005
upon it property values. 1006

3.5.3.1 Grammar 1007

Property filter definitions have one of the following grammars: 1008

3.5.3.1.1 Short notation: 1009

The following single-line grammar may be used when only a single constraint is needed on a property: 1010

<property_name>: <property_constraint_clause>

3.5.3.1.2 Extended notation: 1011

The following multi-line grammar may be used when multiple constraints are needed on a property: 1012

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 59 of 282

<property_name>:
 - <property_constraint_clause_1>
 - ...
 - <property_constraint_clause_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1013

 property_name: represents the name of property that would be used to select a property 1014

definition with the same name (property_name) on a TOSCA entity (e.g., a Node Type, Node 1015
Template, Capability Type, etc.). 1016

 property_constraint_clause_*: represents constraint clause(s) that would be used to filter 1017

entities based upon the named property’s value(s). 1018

3.5.3.2 Additional Requirements 1019

 Property constraint clauses must be type compatible with the property definitions (of the same 1020
name) as defined on the target TOSCA entity that the clause would be applied against. 1021

3.5.4 Node Filter definition 1022

A node filter definition defines criteria for selection of a TOSCA Node Template based upon the 1023
template’s property values, capabilities and capability properties. 1024

3.5.4.1 Keynames 1025

The following is the list of recognized keynames for a TOSCA node filter definition: 1026

Keyname Required Type Description

properties no list of

property filter

definition

An optional sequenced list of property filters that would be used to

select (filter) matching TOSCA entities (e.g., Node Template, Node

Type, Capability Types, etc.) based upon their property definitions’

values.

capabilities no list of

capability

names or

capability type

names

An optional sequenced list of capability names or types that would be

used to select (filter) matching TOSCA entities based upon their

existence.

3.5.4.2 Additional filtering on named Capability properties 1027

Capabilities used as filters often have their own sets of properties which also can be used to construct a 1028
filter. 1029

Keyname Required Type Description

<capability

name_or_type>

 name>:

 properties

no list of

property filter

definitions

An optional sequenced list of property filters that would be used to

select (filter) matching TOSCA entities (e.g., Node Template, Node

Type, Capability Types, etc.) based upon their capabilities’ property

definitions’ values.

3.5.4.3 Grammar 1030

Node filter definitions have following grammar: 1031

<filter_name>:
 properties:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 60 of 282

 - <property_filter_def_1>
 - ...
 - <property_filter_def_n>
 capabilities:
 - <capability_name_or_type_1>:
 properties:
 - <cap_1_property_filter_def_1>
 - ...
 - <cap_m_property_filter_def_n>
 - ...
 - <capability_name_or_type_n>:
 properties:
 - <cap_1_property_filter_def_1>
 - ...
 - <cap_m_property_filter_def_n>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1032

 property_filter_def_*: represents a property filter definition that would be used to select 1033
(filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based 1034
upon their property definitions’ values. 1035

 capability_name_or_type_*: represents the type or name of a capability that would be used 1036
to select (filter) matching TOSCA entities based upon their existence. 1037

 cap_*_property_def_*: represents a property filter definition that would be used to select 1038

(filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based 1039
upon their capabilities’ property definitions’ values. 1040

3.5.4.4 Additional requirements 1041

 TOSCA orchestrators SHALL search for matching capabilities listed on a target filter by assuming 1042

the capability name is first a symbolic name and secondly it is a type name (in order to avoid 1043

namespace collisions). 1044

3.5.4.5 Example 1045

The following example is a filter that would be used to select a TOSCA Compute node based upon the 1046
values of its defined capabilities. Specifically, this filter would select Compute nodes that supported a 1047

specific range of CPUs (i.e., num_cpus value between 1 and 4) and memory size (i.e., mem_size of 2 or 1048

greater) from its declared “host” capability. 1049

 1050

my_node_template:
 # other details omitted for brevity
 requirements:
 - host:
 node_filter:
 capabilities:
 # My “host” Compute node needs these properties:
 - host:
 properties:
 - num_cpus: { in_range: [1, 4] }
 - mem_size: { greater_or_equal: 512 MB }

3.5.5 Repository definition 1051

A repository definition defines a named external repository which contains deployment and 1052
implementation artifacts that are referenced within the TOSCA Service Template. 1053

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 61 of 282

3.5.5.1 Keynames 1054

The following is the list of recognized keynames for a TOSCA repository definition: 1055

Keyname Required Type Constraints Description

description no description None The optional description for the repository.

url yes string None The required URL or network address used to access the
repository.

credential no Credential None The optional Credential used to authorize access to the
repository.

3.5.5.2 Grammar 1056

Repository definitions have one the following grammars: 1057

3.5.5.2.1 Single-line grammar (no credential): 1058

<repository_name>: <repository_address>

3.5.5.2.2 Multi-line grammar 1059

<repository_name>:
 description: <repository_description>
 url: <repository_address>
 credential: <authorization_credential>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1060

 repository_name: represents the required symbolic name of the repository as a string. 1061

 repository_description: contains an optional description of the repository. 1062

 repository_address: represents the required URL of the repository as a string. 1063

 authorization_credential: represents the optional credentials (e.g., user ID and password) 1064
used to authorize access to the repository. 1065

3.5.5.3 Example 1066

The following represents a repository definition: 1067

repositories:
 my_code_repo:
 description: My project’s code repository in GitHub
 url: https://github.com/my-project/

3.5.6 Artifact definition 1068

An artifact definition defines a named, typed file that can be associated with Node Type or Node 1069
Template and used by orchestration engine to facilitate deployment and implementation of interface 1070
operations. 1071

3.5.6.1 Keynames 1072

The following is the list of recognized keynames for a TOSCA artifact definition when using the extended 1073
notation: 1074

Keyname Required Type Description

type yes string The required artifact type for the artifact definition.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 62 of 282

Keyname Required Type Description

file yes string The required URI string (relative or absolute) which can be used to
locate the artifact’s file.

repository no string The optional name of the repository definition which contains the
location of the external repository that contains the artifact. The

artifact is expected to be referenceable by its file URI within the
repository.

description no description The optional description for the artifact definition.

deploy_path no string The file path the associated file would be deployed into within the
target node’s container.

3.5.6.2 Grammar 1075

Artifact definitions have one of the following grammars: 1076

3.5.6.2.1 Short notation 1077

The following single-line grammar may be used when the artifact’s type and mime type can be inferred 1078
from the file URI: 1079

<artifact_name>: <artifact_file_URI>

3.5.6.2.2 Extended notation: 1080

The following multi-line grammar may be used when the artifact’s definition’s type and mime type need to 1081
be explicitly declared: 1082

<artifact_name>:
 description: <artifact_description>
 type: <artifact_type_name>
 file: <artifact_file_URI>
 repository: <artifact_repository_name>
 deploy_path: <file_deployment_path>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1083

 artifact_name: represents the required symbolic name of the artifact as a string. 1084

 artifact_description: represents the optional description for the artifact. 1085

 artifact_type_name: represents the required artifact type the artifact definition is based upon. 1086

 artifact_file_URI: represents the required URI string (relative or absolute) which can be 1087

used to locate the artifact’s file. 1088

 artifact_repository_name: represents the optional name of the repository definition to use to 1089

retrieve the associated artifact (file) from. 1090

 file_deployement_path: represents the optional path the artifact_file_URI would be 1091

copied into within the target node’s container. 1092

3.5.6.3 Example 1093

The following represents an artifact definition: 1094

my_file_artifact: ../my_apps_files/operation_artifact.txt

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 63 of 282

3.5.7 Import definition 1095

An import definition is used within a TOSCA Service Template to locate and uniquely name another 1096
TOSCA Service Template file which has type and template definitions to be imported (included) and 1097
referenced within another Service Template. 1098

3.5.7.1 Keynames 1099

The following is the list of recognized keynames for a TOSCA import definition: 1100

Keyname Required Type Constraints Description

file yes string None The required symbolic name for the imported file.

repository no string None The optional symbolic name of the repository definition
where the imported file can be found as a string.

namespace_uri no string None The optional namespace URI to that will be applied to type
definitions found within the imported file as a string.

namespace_prefix no string None The optional namespace prefix (alias) that will be used to

indicate the namespace_uri when forming a qualified
name (i.e., qname) when referencing type definitions from
the imported file.

3.5.7.2 Grammar 1101

Import definitions have one the following grammars: 1102

3.5.7.2.1 Single-line grammar: 1103

imports:
 - <file_URI_1>
 - <file_URI_2>

3.5.7.2.2 Multi-line grammar 1104

imports:
 - file: <file_URI>
 repository: <repository_name>
 namespace_uri: <definition_namespace_uri>
 namespace_prefix: <definition_namespace_prefix>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1105

 file_uri: contains the required name (i.e., URI) of the file to be imported as a string. 1106

 repository_name: represents the optional symbolic name of the repository definition where the 1107

imported file can be found as a string. 1108

 namespace_uri: represents the optional namespace URI to that will be applied to type 1109

definitions found within the imported file as a string. 1110

 namespace_prefix: represents the optional namespace prefix (alias) that will be used to 1111

indicate the namespace_uri when forming a qualified name (i.e., qname) when referencing type 1112
definitions from the imported file as a string. 1113

3.5.7.3 Example 1114

The following represents how import definitions would be used for the imports keyname within a TOSCA 1115
Service Template: 1116

imports:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 64 of 282

 - some_definition_file: path1/path2/some_defs.yaml
 - another_definition_file:
 file: path1/path2/file2.yaml
 repository: my_service_catalog
 namespace_uri: http://mycompany.com/tosca/1.0/platform
 namespace_prefix: mycompany

3.5.8 Property definition 1117

A property definition defines a named, typed value and related data that can be associated with an entity 1118
defined in this specification (e.g., Node Types, Relationship Types, Capability Types, etc.). Properties 1119
are used by template authors to provide input values to TOSCA entities which indicate their “desired 1120

state” when they are instantiated. The value of a property can be retrieved using the get_property 1121

function within TOSCA Service Templates. 1122

3.5.8.1.1 Attribute and Property reflection 1123

The actual state of the entity, at any point in its lifecycle once instantiated, is reflected by Attribute 1124
definitions. TOSCA orchestrators automatically create an attribute for every declared property (with the 1125
same symbolic name) to allow introspection of both the desired state (property) and actual state 1126
(attribute). 1127

3.5.8.2 Keynames 1128

The following is the list of recognized keynames for a TOSCA property definition: 1129

Keyname Required Type Constraints Description

type yes string None The required data type for the property.

description no description None The optional description for the property.

required no

boolean default: true An optional key that declares a property as required

(true) or not (false).

default no <any> None An optional key that may provide a value to be used
as a default if not provided by another means.

status no

string default:
supported

The optional status of the property relative to the
specification or implementation. See table below for
valid values.

constraints no list of
constraint
clauses

None The optional list of sequenced constraint clauses for
the property.

entry_schema no string None The optional key that is used to declare the name of
the Datatype definition for entries of set types such as
the TOSCA list or map.

3.5.8.3 Status values 1130

The following property status values are supported: 1131

Value Description

supported Indicates the property is supported. This is the default value for all property definitions.

unsupported Indicates the property is not supported.

experimental Indicates the property is experimental and has no official standing.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 65 of 282

Value Description

deprecated Indicates the property has been deprecated by a new specification version.

3.5.8.4 Grammar 1132

Named property definitions have the following grammar: 1133

<property_name>:

 type: <property_type>
 description: <property_description>
 required: <property_required>
 default: <default_value>
 status: <status_value>
 constraints:
 - <property_constraints>
 entry_schema:
 description: <entry_description>
 type: <entry_type>
 constraints:
 - <entry_constraints>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1134

 property_name: represents the required symbolic name of the property as a string. 1135

 property_description: represents the optional description of the property. 1136

 property_type: represents the required data type of the property. 1137

 property_required: represents an optional boolean value (true or false) indicating whether or 1138

not the property is required. If this keyname is not present on a property definition, then the 1139
property SHALL be considered required (i.e., true) by default. 1140

 default_value: contains a type-compatible value that may be used as a default if not provided 1141

by another means. 1142

 status_value: a string that contains a keyword that indicates the status of the property relative 1143
to the specification or implementation. 1144

 property_constraints: represents the optional sequenced list of one or more constraint 1145

clauses on the property definition. 1146

 entry_description: represents the optional description of the entry schema. 1147

 entry_type: represents the required type name for entries in a list or map property type. 1148

 entry_constraints: represents the optional sequenced list of one or more constraint clauses 1149

on entries in a list or map property type. 1150

3.5.8.5 Additional Requirements 1151

 Implementations of the TOSCA Simple Profile SHALL automatically reflect (i.e., make available) 1152

any property defined on an entity as an attribute of the entity with the same name as the property. 1153

 A property SHALL be considered required by default (i.e., as if the required keyname on the 1154

definition is set to true) unless the definition’s required keyname is explicitly set to false. 1155

 The value provided on a property definition’s default keyname SHALL be type compatible with 1156

the type declared on the definition’s type keyname. 1157

 Constraints of a property definition SHALL be type-compatible with the type defined for that 1158
definition. 1159

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 66 of 282

3.5.8.6 Notes 1160

 This element directly maps to the PropertiesDefinition element defined as part of the 1161

schema for most type and entities defined in the TOSCA v1.0 specification. 1162

 In the TOSCA v1.0 specification constraints are expressed in the XML Schema definitions of 1163
Node Type properties referenced in the PropertiesDefinition element of NodeType 1164
definitions. 1165

3.5.8.7 Example 1166

The following represents an example of a property definition with constraints: 1167

properties:
 num_cpus:
 type: integer
 description: Number of CPUs requested for a software node instance.
 default: 1
 required: true
 constraints:
 - valid_values: [1, 2, 4, 8]

3.5.9 Property assignment 1168

This section defines the grammar for assigning values to named properties within TOSCA Node and 1169
Relationship templates that are defined in their corresponding named types. 1170

3.5.9.1 Keynames 1171

The TOSCA property assignment has no keynames. 1172

3.5.9.2 Grammar 1173

Property assignments have the following grammar: 1174

3.5.9.2.1 Short notation: 1175

The following single-line grammar may be used when a simple value assignment is needed: 1176

<property_name>: <property_value> | { <property_value_expression> }

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1177

 property_name: represents the name of a property that would be used to select a property 1178

definition with the same name within on a TOSCA entity (e.g., Node Template, Relationship 1179
Template, etc.,) which is declared in its declared type (e.g., a Node Type, Node Template, 1180
Capability Type, etc.). 1181

 property_value, property_value_expression: represent the type-compatible value to 1182

assign to the named property. Property values may be provided as the result from the 1183
evaluation of an expression or a function. 1184

3.5.10 Attribute definition 1185

An attribute definition defines a named, typed value that can be associated with an entity defined in this 1186
specification (e.g., a Node, Relationship or Capability Type). Specifically, it is used to expose the “actual 1187
state” of some property of a TOSCA entity after it has been deployed and instantiated (as set by the 1188

TOSCA orchestrator). Attribute values can be retrieved via the get_attribute function from the 1189

instance model and used as values to other entities within TOSCA Service Templates. 1190

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 67 of 282

3.5.10.1 Attribute and Property reflection 1191

TOSCA orchestrators automatically create Attribute definitions for any Property definitions declared on 1192
the same TOSCA entity (e.g., nodes, node capabilities and relationships) in order to make accessible the 1193
actual (i.e., the current state) value from the running instance of the entity. 1194

3.5.10.2 Keynames 1195

The following is the list of recognized keynames for a TOSCA attribute definition: 1196

Keyname Required Type Constraints Description

type yes string None The required data type for the attribute.

description no description None The optional description for the attribute.

default no <any> None An optional key that may provide a value to be used as a
default if not provided by another means.

This value SHALL be type compatible with the type declared

by the property definition’s type keyname.

status no string default:
supported

The optional status of the attribute relative to the
specification or implementation. See supported status
values defined under the Property definition section.

entry_schema no string None The optional key that is used to declare the name of the
Datatype definition for entries of set types such as the
TOSCA list or map.

3.5.10.3 Grammar 1197

Attribute definitions have the following grammar: 1198

attributes:
 <attribute_name>:
 type: <attribute_type>
 description: <attribute_description>
 default: <default_value>
 status: <status_value>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1199

 attribute_name: represents the required symbolic name of the attribute as a string. 1200

 attribute_type: represents the required data type of the attribute. 1201

 attribute_description: represents the optional description of the attribute. 1202

 default_value: contains a type-compatible value that may be used as a default if not provided 1203

by another means. 1204

 status_value: contains a value indicating the attribute’s status relative to the specification 1205
version (e.g., supported, deprecated, etc.). Supported status values for this keyname are defined 1206
under Property definition. 1207

3.5.10.4 Additional Requirements 1208

 In addition to any explicitly defined attributes on a TOSCA entity (e.g., Node Type, 1209

RelationshipType, etc.), implementations of the TOSCA Simple Profile MUST automatically 1210

reflect (i.e., make available) any property defined on an entity as an attribute of the entity with the 1211

same name as the property. 1212

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 68 of 282

 Values for the default keyname MUST be derived or calculated from other attribute or operation 1213

output values (that reflect the actual state of the instance of the corresponding resource) and not 1214

hard-coded or derived from a property settings or inputs (i.e., desired state). 1215

3.5.10.5 Notes 1216

 Attribute definitions are very similar to Property definitions; however, properties of entities reflect 1217

an input that carries the template author’s requested or desired value (i.e., desired state) which 1218

the orchestrator (attempts to) use when instantiating the entity whereas attributes reflect the 1219

actual value (i.e., actual state) that provides the actual instantiated value. 1220

o For example, a property can be used to request the IP address of a node using a 1221

property (setting); however, the actual IP address after the node is instantiated may by 1222

different and made available by an attribute. 1223

3.5.10.6 Example 1224

The following represents a required attribute definition: 1225

actual_cpus:
 type: integer
 description: Actual number of CPUs allocated to the node instance.

3.5.11 Attribute assignment 1226

This section defines the grammar for assigning values to named attributes within TOSCA Node and 1227
Relationship templates which are defined in their corresponding named types. 1228

3.5.11.1 Keynames 1229

The TOSCA attribute assignment has no keynames. 1230

3.5.11.2 Grammar 1231

Attribute assignments have the following grammar: 1232

3.5.11.2.1 Short notation: 1233

The following single-line grammar may be used when a simple value assignment is needed: 1234

<attribute_name>: <attribute_value> | { <attribute_value_expression> }

3.5.11.2.2 Extended notation: 1235

The following multi-line grammar may be used when a value assignment requires keys in addition to a 1236
simple value assignment: 1237

<attribute_name>:
 description: <attribute_description>
 value: <attribute_value> | { <attribute_value_expression> }

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1238

 attribute_name: represents the name of an attribute that would be used to select an attribute 1239

definition with the same name within on a TOSCA entity (e.g., Node Template, Relationship 1240
Template, etc.) which is declared (or reflected from a Property definition) in its declared type 1241
(e.g., a Node Type, Node Template, Capability Type, etc.). 1242

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 69 of 282

 attribute_value, attribute_value_expresssion: represent the type-compatible value to 1243

assign to the named attribute. Attribute values may be provided as the result from the 1244
evaluation of an expression or a function. 1245

 attribute_description: represents the optional description of the attribute. 1246

3.5.11.3 Additional requirements 1247

 Attribute values MAY be provided by the underlying implementation at runtime when requested 1248

by the get_attribute function or it MAY be provided through the evaluation of expressions and/or 1249

functions that derive the values from other TOSCA attributes (also at runtime). 1250

3.5.12 Parameter definition 1251

A parameter definition is essentially a TOSCA property definition; however, it also allows a value to be 1252
assigned to it (as for a TOSCA property assignment). In addition, in the case of output parameters, it can 1253
optionally inherit the data type of the value assigned to it rather than have an explicit data type defined for 1254
it. 1255

3.5.12.1 Keynames 1256

The TOSCA parameter definition has all the keynames of a TOSCA Property definition, but in addition 1257
includes the following additional or changed keynames: 1258

Keyname Required Type Constraints Description

type no string None The required data type for the parameter.

Note: This keyname is required for a TOSCA Property
definition, but is not for a TOSCA Parameter definition.

value no <any> N/A The type-compatible value to assign to the named
parameter. Parameter values may be provided as the
result from the evaluation of an expression or a
function.

3.5.12.2 Grammar 1259

Named parameter definitions have the following grammar: 1260

<parameter_name>:

 type: <parameter_type>
 description: <parameter_description>
 value: <parameter_value> | { <parameter_value_expression> }
 required: <parameter_required>
 default: <parameter_default_value>
 status: <status_value>
 constraints:
 - <parameter_constraints>
 entry_schema:
 description: <entry_description>
 type: <entry_type>
 constraints:
 - <entry_constraints>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1261

 parameter_name: represents the required symbolic name of the parameter as a string. 1262

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 70 of 282

 parameter_description: represents the optional description of the parameter. 1263

 parameter_type: represents the optional data type of the parameter. Note, this keyname is 1264
required for a TOSCA Property definition, but is not for a TOSCA Parameter definition. 1265

 parameter_value, parameter_value_expresssion: represent the type-compatible value to 1266

assign to the named parameter. Parameter values may be provided as the result from the 1267
evaluation of an expression or a function. 1268

 parameter_required: represents an optional boolean value (true or false) indicating whether or 1269
not the parameter is required. If this keyname is not present on a parameter definition, then the 1270
property SHALL be considered required (i.e., true) by default. 1271

 default_value: contains a type-compatible value that may be used as a default if not provided 1272

by another means. 1273

 status_value: a string that contains a keyword that indicates the status of the parameter 1274

relative to the specification or implementation. 1275

 parameter_constraints: represents the optional sequenced list of one or more constraint 1276

clauses on the parameter definition. 1277

 entry_description: represents the optional description of the entry schema. 1278

 entry_type: represents the required type name for entries in a list or map parameter type. 1279

 entry_constraints: represents the optional sequenced list of one or more constraint clauses 1280

on entries in a list or map parameter type. 1281

3.5.12.3 Additional Requirements 1282

 A parameter SHALL be considered required by default (i.e., as if the required keyname on the 1283

definition is set to true) unless the definition’s required keyname is explicitly set to false. 1284

 The value provided on a parameter definition’s default keyname SHALL be type compatible 1285

with the type declared on the definition’s type keyname. 1286

 Constraints of a parameter definition SHALL be type-compatible with the type defined for that 1287
definition. 1288

3.5.12.4 Example 1289

The following represents an example of an input parameter definition with constraints: 1290

inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.
 constraints:
 - valid_values: [1, 2, 4, 8]

The following represents an example of an (untyped) output parameter definition: 1291

outputs:
 server_ip:
 description: The private IP address of the provisioned server.
 value: { get_attribute: [my_server, private_address] }

 1292

3.5.13 Operation definition 1293

An operation definition defines a named function or procedure that can be bound to an implementation 1294
artifact (e.g., a script). 1295

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 71 of 282

3.5.13.1 Keynames 1296

The following is the list of recognized keynames for a TOSCA operation definition: 1297

Keyname Required Type Description

description no description The optional description string for the associated named
operation.

implementation no string The optional implementation artifact name (e.g., a script file
name within a TOSCA CSAR file).

inputs no list of
property
definitions

The optional list of input properties definitions (i.e., parameter
definitions) for operation definitions that are within TOSCA Node
or Relationship Type definitions. This includes when operation
definitions are included as part of a Requirement definition in a
Node Type.

no list of
property
assignments

The optional list of input property assignments (i.e., parameters
assignments) for operation definitions that are within TOSCA
Node or Relationship Template definitions. This includes when
operation definitions are included as part of a Requirement
assignment in a Node Template.

The following is the list of recognized keynames to be used with the implementation keyname within a 1298
TOSCA operation definition: 1299

Keyname Requir
ed

Type Description

primary no string The optional implementation artifact name (i.e., the primary script
file name within a TOSCA CSAR file).

dependencies no list of
string

The optional ordered list of one or more dependent or secondary
implementation artifact name which are referenced by the primary
implementation artifact (e.g., a library the script installs or a
secondary script).

3.5.13.2 Grammar 1300

Operation definitions have the following grammars: 1301

3.5.13.2.1 Short notation 1302

The following single-line grammar may be used when only an operation’s implementation artifact is 1303
needed: 1304

<operation_name>: <implementation_artifact_name>

3.5.13.2.2 Extended notation for use in Type definitions 1305

The following multi-line grammar may be used in Node or Relationship Type definitions when additional 1306
information about the operation is needed: 1307

<operation_name>:
 description: <operation_description>

 implementation: <implementation_artifact_name>
 inputs:
 <property_definitions>

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 72 of 282

3.5.13.2.3 Extended notation for use in Template definitions 1308

The following multi-line grammar may be used in Node or Relationship Template definitions when there 1309
are multiple artifacts that may be needed for the operation to be implemented: 1310

<operation_name>:
 description: <operation_description>
 implementation:
 primary: <implementation_artifact_name>
 dependencies:
 - <list_of_dependent_artifact_names>
 inputs:
 <property_assignments>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1311

 operation_name: represents the required symbolic name of the operation as a string. 1312

 operation_description: represents the optional description string for the corresponding 1313

operation_name. 1314

 implementation_artifact_name: represents the optional name (string) of an implementation 1315

artifact definition (defined elsewhere), or the direct name of an implementation artifact’s relative 1316

filename (e.g., a service template-relative, path-inclusive filename or absolute file location using a 1317

URL). 1318

 property_definitions: represents the optional list of property definitions which the TOSCA 1319

orchestrator would make available (i.e., or pass) to the corresponding implementation artifact 1320

during its execution. 1321

 property_assignments: represents the optional list of property assignments for passing 1322

parameters to Node or Relationship Template operations providing values for properties defined 1323

in their respective type definitions. 1324

 list_of_dependent_artifact_names: represents the optional ordered list of one or more 1325

dependent or secondary implementation artifact names (as strings) which are referenced by the 1326

primary implementation artifact. TOSCA orchestrators will copy these files to the same location 1327

as the primary artifact on the target node so as to make them accessible to the primary 1328

implementation artifact when it is executed. 1329

3.5.13.3 Additional requirements 1330

 The default sub-classing behavior for implementations of operations SHALL be override. That is, 1331

implementation artifacts assigned in subclasses override any defined in its parent class. 1332

 Template authors MAY provide property assignments on operation inputs on templates that do 1333

not necessarily have a property definition defined in its corresponding type. 1334

 Implementation artifact file names (e.g., script filenames) may include file directory path names 1335

that are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud 1336

Service ARchive (CSAR) file. 1337

3.5.13.4 Examples 1338

3.5.13.4.1 Single-line implementation example 1339

interfaces:
 Standard:
 start: scripts/start_server.sh

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 73 of 282

3.5.13.4.2 Multi-line implementation example 1340

interfaces:
 Configure:
 pre_configure_source:
 implementation:
 primary: scripts/pre_configure_source.sh
 dependencies:
 - scripts/setup.sh
 - binaries/library.rpm
 - scripts/register.py

3.5.14 Interface definition 1341

An interface definition defines a named interface that can be associated with a Node or Relationship Type 1342

3.5.14.1 Keynames 1343

The following is the list of recognized keynames for a TOSCA interface definition: 1344

Keyname Required Type Description

inputs no list of
property definitions

The optional list of input property definitions available to all defined
operations for interface definitions that are within TOSCA Node or
Relationship Type definitions. This includes when interface
definitions are included as part of a Requirement definition in a
Node Type.

no list of
property assignments

The optional list of input property assignments (i.e., parameters
assignments) for interface definitions that are within TOSCA Node
or Relationship Template definitions. This includes when interface
definitions are referenced as part of a Requirement assignment in a
Node Template.

3.5.14.2 Grammar 1345

Interface definitions have the following grammar: 1346

3.5.14.2.1 Extended notation for use in Type definitions 1347

The following multi-line grammar may be used in Node or Relationship Type definitions: 1348

<interface_definition_name>:
 type: <interface_type_name>
 inputs:
 <property_definitions>
 <operation_definitions>

3.5.14.2.2 Extended notation for use in Template definitions 1349

The following multi-line grammar may be used in Node or Relationship Template definitions: 1350

<interface_definition_name>:
 inputs:
 <property_assignments>
 <operation_definitions>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1351

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 74 of 282

 interface_definition_name: represents the required symbolic name of the interface as a 1352

string. 1353

 interface_type_name: represents the required name of the Interface Type for the interface 1354

definition. 1355

 property_definitions: represents the optional list of property definitions (i.e., parameters) 1356

which the TOSCA orchestrator would make available (i.e., or pass) to all defined operations. 1357

- This means these properties and their values would be accessible to the implementation 1358

artifacts (e.g., scripts) associated to each operation during their execution. 1359

 property_assignments: represents the optional list of property assignments for passing 1360

parameters to Node or Relationship Template operations providing values for properties defined 1361

in their respective type definitions. 1362

 operation_definitions: represents the required name of one or more operation definitions. 1363

3.5.15 Event Filter definition 1364

An event filter definition defines criteria for selection of an attribute, for the purpose of monitoring it, within 1365
a TOSCA entity, or one its capabilities. 1366

3.5.15.1 Keynames 1367

The following is the list of recognized keynames for a TOSCA event filter definition: 1368

Keyname Required Type Description

node yes string The required name of the node type or template that contains either

the attribute to be monitored or contains the requirement that

references the node that contains the attribute to be monitored.

requirement no string The optional name of the requirement within the filter’s node that

can be used to locate a referenced node that contains an attribute to

monitor.

capability no string The optional name of a capability within the filter’s node or within the

node referenced by its requirement that contains the attribute to

monitor.

3.5.15.2 Grammar 1369

Event filter definitions have following grammar: 1370

node: <node_type_name> | <node_template_name>
requirement: <requirement_name>
capability: <capability_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1371

 node_type_name: represents the required name of the node type that would be used to select 1372

(filter) the node that contains the attribute to monitor or contains the requirement that references 1373

another node that contains the attribute to monitor. 1374

 node_template_name: represents the required name of the node template that would be used to 1375

select (filter) the node that contains the attribute to monitor or contains the requirement that 1376

references another node that contains the attribute to monitor. 1377

 requirement_name: represents the optional name of the requirement that would be used to 1378

select (filter) a referenced node that contains the attribute to monitor. 1379

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 75 of 282

 capability_name: represents the optional name of a capability that would be used to select 1380

(filter) the attribute to monitor. 1381

3.5.16 Trigger definition 1382

A trigger definition defines the event, condition and action that is used to “trigger” a policy it is associated 1383
with. 1384

3.5.16.1 Keynames 1385

The following is the list of recognized keynames for a TOSCA trigger definition: 1386

Keyname Required Type Description

description no description The optional description string for the named trigger.

event_type yes string The required name of the event type that activates the trigger’s
action.

schedule no TimeInterval The optional time interval during which the trigger is valid (i.e.,
during which the declared actions will be processed).

target_filter no event filter The optional filter used to locate the attribute to monitor for the
trigger’s defined condition. This filter helps locate the TOSCA entity
(i.e., node or relationship) or further a specific capability of that
entity that contains the attribute to monitor.

condition no constraint clause The optional condition which contains an attribute constraint that
can be monitored. Note: this is optional since sometimes the event
occurrence itself is enough to trigger the action.

constraint no constraint clause The optional condition which contains an attribute constraint that
can be monitored. Note: this is optional since sometimes the event
occurrence itself is enough to trigger the action.

period no scalar-unit.time The optional period to use to evaluate for the condition.

evaluations no integer The optional number of evaluations that must be performed over
the period to assert the condition exists.

method no string The optional statistical method name to use to perform the
evaluation of the condition.

action yes string or operation The if of the workflow to be invoked when the event is triggered and
the condition is met (i.e, evaluates to true). Or
The required operation to invoke when the event is triggered and
the condition is met (i.e., evaluates to true).

3.5.16.2 Grammar 1387

Trigger definitions have the following grammars: 1388

<trigger_name>:
 description: <trigger_description>
 # TBD: need to separate “simple” and “full” grammar for event type name
 event: <event_type_name>
 type: <event_type_name>
 schedule: <time_interval_for_trigger>
 target_filter:
 <event_filter_definition>
 condition: <attribute_constraint_clause>
 constraint: <constraint_clause>

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 76 of 282

 period: <scalar-unit.time> # e.g., 60 sec
 evaluations: <integer> # e.g., 1
 method: <string> # e.g., average
 action:
 <operation_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1389

 trigger_name: represents the required symbolic name of the trigger as a string. 1390

 trigger_description: represents the optional description string for the corresponding 1391

trigger_name. 1392

 event_type_name: represents the required name of the TOSCA Event Type that would be 1393

monitored on the identified resource (node). 1394

 time_interval_for_trigger: represents the optional time interval that the trigger is valid 1395

for. 1396

 event_filter_definition: represents the optional filter to use to locate the resource (node) 1397

or capability attribute to monitor. 1398

 attribute_constraint_clause: represents the optional attribute constraint that would be 1399

used to test for a specific condition on the monitored resource. 1400

 operation_definition: represents the required action to take if the event and (optionally) 1401

condition are met. 1402

3.5.17 Workflow activity definition 1403

A workflow activity defines an operation to be performed in a TOSCA workflow. Activities allows to: 1404

 1405

 Delegate the workflow for a node expected to be provided by the orchestrator 1406

 Set the state of a node 1407

 Call an operation defined on a TOSCA interface of a node, relationship or group 1408

 Inline another workflow defined in the topology (to allow reusability) 1409

3.5.17.1 Keynames 1410

The following is the list of recognized keynames for a TOSCA workflow activity definition. Note that while 1411
each of the key is not required, one and only one of them is required (mutualy exclusive). 1412

Keyname Required Type Description

delegate no string The name of the delegate workflow.

This activity requires the target to be provided by the orchestrator
(no-op node or relationship)

set_state no string Value of the node state.

call_operation no string A string that defines the name of the interface and operation to
be called on the node using the
<interface_name>.<operation_name> notation.

inline no string The name of a workflow to be inlined.

3.5.17.2 Grammar 1413

Workflow activity definitions have one of the following grammars: 1414

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 77 of 282

3.5.17.2.1 Delegate activity 1415

 - delegate: <delegate_workflow_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1416

 delegate_workflow_name: represents the name of the workflow of the node 1417

provided by the TOSCA orchestrator. 1418

3.5.17.2.2 Set state activity 1419

 - set_state: <new_node_state>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1420

 new_node_state: represents the state that will be affected to the node once 1421

the activity is performed. 1422

3.5.17.2.3 Call operation activity: 1423

 - call_operation: <interface_name>.<operation_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1424

 interface_name: represents the name of the interface in which the operation to 1425

be called is defined. 1426

 operation_name: represents the name of the operation of the interface that 1427

will be called during the workflow execution. 1428

3.5.17.2.4 Inline activity 1429

 - inline: <workflow_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1430

 workflow_name: represents the name of the workflow to inline. 1431

3.5.17.3 Additional Requirements 1432

 Keynames are mutually exclusive, i.e. an activity MUST define only one of delegate, set_state, 1433

call_operation or inline keyname. 1434

3.5.17.4 Example 1435

following represents a list of workflow activity definitions: 1436

 - delegate: deploy
 - set_state: started
 - call_operation: tosca.interfaces.node.lifecycle.Standard.start
 - inline: my_workflow

 1437

3.5.18 Assertion definition 1438

A workflow assertion is used to specify a single condition on a workflow filter definition. The assertion 1439
allows to assert the value of an attribute based on TOSCA constraints. 1440

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 78 of 282

3.5.18.1 Keynames 1441

The TOSCA workflow assertion definition has no keynames. 1442

3.5.18.2 Grammar 1443

Workflow assertion definitions have the following grammar: 1444

<attribute_name>: <list_of_constraint_clauses>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1445

 attribute_name: represents the name of an attribute defined on the assertion context entity 1446
(node instance, relationship instance, group instance) and from which value will be evaluated 1447
against the defined constraint clauses. 1448

 list_of_constraint_clauses: represents the list of constraint clauses that will be used to validate 1449
the attribute assertion. 1450

3.5.18.3 Example 1451

Following represents a workflow assertion with a single equals constraint: 1452

 my_attribute: [{equal : my_value}]

Following represents a workflow assertion with mutliple constraints: 1453

 my_attribute:
 - min_length: 8
 - max_length : 10

3.5.19 Condition clause definition 1454

A workflow condition clause definition is used to specify a condition that can be used within a workflow 1455
precondition or workflow filter. 1456

3.5.19.1 Keynames 1457

The following is the list of recognized keynames for a TOSCA workflow condition definition: 1458

Keyname Required Type Description

and no list of condition
clause definition

An and clause allows to define sub-filter clause definitions that
must all be evaluated truly so the and clause is considered as true.

or no list of condition
clause definition

An or clause allows to define sub-filter clause definitions where
one of them must all be evaluated truly so the or clause is
considered as true.
Note in opposite to assert

assert no list of assertion
definition

A list of filter assertions to be evaluated on entity attributes.

Assert acts as a and clause, i.e. every defined filter assertion
must be true so the assertion is considered as true.

3.5.19.2 Grammar 1459

Workflow assertion definitions have the following grammars: 1460

3.5.19.2.1 And clause 1461

and: <list_of_condition_clause_definition>

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 79 of 282

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1462

 list_of_condition_clause_definition: represents the list of condition clauses. All 1463

condition clauses MUST be asserted to true so that the and clause is asserted to true. 1464

3.5.19.2.2 Or clause 1465

or: <list_of_condition_clause_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1466

 list_of_condition_clause_definition: represents the list of condition clauses. One of the 1467

condition clause have to be asserted to true so that the or clause is asserted to true. 1468

3.5.19.2.3 Assert clause 1469

assert: <list_of_assertion_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1470

 list_of_assertion_definition: represents the list of assertions. All assertions MUST be 1471

asserted to true so that the assert clause is asserted to true. 1472

3.5.19.3 Additional Requirement 1473

 Keynames are mutually exclusive, i.e. a filter definition can define only one of and, or, or assert 1474

keyname. 1475

3.5.19.4 Notes 1476

 The TOSCA processor SHOULD perform assertion in the order of the list for every defined 1477

condition clause or assertion definition. 1478

3.5.19.5 Example 1479

Following represents a workflow condition clause with a single equals constraint: 1480

condition:
 - assert:
 - my_attribute: [{equal: my_value}]

Following represents a workflow condition clause with a single equals constraints on two different 1481
attributes: 1482

condition:
 - assert:
 - my_attribute: [{equal: my_value}]}
 - my_other_attribute: [{equal: my_other_value}]}

Following represents a workflow condition clause with a or constraint on two different assertions: 1483

condition:
 - or:
 - assert:
 - my_attribute: [{equal: my_value}]}
 - assert:
 - my_other_attribute: [{equal: my_other_value}]}

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 80 of 282

Following represents multiple levels of condition clauses to build the following logic: one_attribute equal 1484
one_value AND (my_attribute equal my_value OR my_other_attribute equal my_other_value): 1485

condition:
 - assert:
 - one_attribute: [{equal: one_value }]
 - or:
 - assert:
 - my_attribute: [{equal: my_value}]}
 - assert:
 - my_other_attribute: [{equal: my_other_value}]}

3.5.20 Workflow precondition definition 1486

A workflow condition can be used as a filter or precondition to check if a workflow can be processed or 1487
not based on the state of the instances of a TOSCA topology deployment. When not met, the workflow 1488
will not be triggered. 1489

3.5.20.1 Keynames 1490

The following is the list of recognized keynames for a TOSCA workflow condition definition: 1491

Keyname Required Type Description

target yes string The target of the precondition (this can be a node template name,
a group name)

target_relationship no string The optional name of a requirement of the target in case the
precondition has to be processed on a relationship rather than a
node or group. Note that this is applicable only if the target is a
node.

condition no list of condition
clause
definitions

A list of workflow condition clause definitions. Assertion between
elements of the condition are evaluated as an AND condition.

3.5.20.2 Grammar 1492

Workflow precondition definitions have the following grammars: 1493

 - target: <target_name>
 target_relationship: <target_requirement_name>
 condition:
 <list_of_condition_clause_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1494

 target_name: represents the name of a node template or group in the topology. 1495

 target_requirement_name: represents the name of a requirement of the node template (in case 1496

target_name refers to a node template. 1497

 list_of_condition_clause_definition: represents the list of condition clauses 1498

to be evaluated. The value of the resulting condition is evaluated as an AND 1499

clause between the different elements. 1500

3.5.21 Workflow step definition 1501

A workflow step allows to define one or multiple sequenced activities in a workflow and how they are 1502
connected to other steps in the workflow. They are the building blocks of a declarative workflow. 1503

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 81 of 282

3.5.21.1 Keynames 1504

The following is the list of recognized keynames for a TOSCA workflow step definition: 1505

Keyname Required Type Description

target yes string The target of the step (this can be a node template name, a
group name)

target_relationship no string The optional name of a requirement of the target in case the
step refers to a relationship rather than a node or group. Note
that this is applicable only if the target is a node.

operation_host no string The node on which operations should be executed (for TOSCA
call_operation activities).
This element is required only for relationships and groups target.

If target is a relationships operation_host is required and
valid_values are SOURCE or TARGET – referring to the
relationship source or target node.

If target is a group operation_host is optional.
If not specified the operation will be triggered on every node of
the group.
If specified the valid_value is a node_type or the name of a node
template.

filter no list of constraint
clauses

Filter is a map of attribute name, list of constraint clause that
allows to provide a filtering logic.

activities yes list of
activity_definition

The list of sequential activities to be performed in this step.

on_success no list of string The optional list of step names to be performed after this one
has been completed with success (all activities has been correctly
processed).

on_failure no list of string The optional list of step names to be called after this one in case
one of the step activity failed.

3.5.21.2 Grammar 1506

Workflow step definitions have the following grammars: 1507

steps:
 <step_name>
 target: <target_name>
 target_relationship: <target_requirement_name>
 operation_host: <operation_host_name>
 filter:
 - <list_of_condition_clause_definition>
 activities:
 - <list_of_activity_definition>
 on_success:
 - <target_step_name>
 on_failure:
 - <target_step_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1508

 target_name: represents the name of a node template or group in the topology. 1509

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 82 of 282

 target_requirement_name: represents the name of a requirement of the node template (in case 1510

target_name refers to a node template. 1511

 operation_host: the node on which the operation should be executed 1512

 <list_of_condition_clause_definition>: represents a list of condition clause definition. 1513

 list_of_activity_definition: represents a list of activity definition 1514

 target_step_name: represents the name of another step of the workflow. 1515

3.6 Type-specific definitions 1516

3.6.1 Entity Type Schema 1517

An Entity Type is the common, base, polymorphic schema type which is extended by TOSCA base entity 1518
type schemas (e.g., Node Type, Relationship Type, Artifact Type, etc.) and serves to define once all the 1519
commonly shared keynames and their types. This is a “meta” type which is abstract and not directly 1520
instantiatable. 1521

3.6.1.1 Keynames 1522

The following is the list of recognized keynames for a TOSCA Entity Type definition: 1523

Keyname Required Type Constraints Description

derived_from no string ‘None’
is the only allowed
value

An optional parent Entity Type name the Entity Type
derives from.

version no version N/A An optional version for the Entity Type definition.

metadata no map of
string

N/A Defines a section used to declare additional metadata
information.

description no description N/A An optional description for the Entity Type.

3.6.1.2 Grammar 1524

Entity Types have following grammar: 1525

<entity_keyname>:
 # The only allowed value is ‘None’
 derived_from: None
 version: <version_number>
 metadata:
 <metadata_map>
 description: <description>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1526

 version_number: represents the optional TOSCA version number for the entity. 1527

 entity_description: represents the optional description string for the entity. 1528

 metadata_map: represents the optional map of string. 1529

3.6.1.3 Additional Requirements 1530

 The TOSCA Entity Type SHALL be the common base type used to derive all other top-level base 1531

TOSCA Types. 1532

 The TOSCA Entity Type SHALL NOT be used to derive or create new base types apart from 1533

those defined in this specification or a profile of this specification. 1534

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 83 of 282

3.6.2 Capability definition 1535

A capability definition defines a named, typed set of data that can be associated with Node Type or Node 1536
Template to describe a transparent capability or feature of the software component the node describes. 1537

3.6.2.1 Keynames 1538

The following is the list of recognized keynames for a TOSCA capability definition: 1539

Keyname Required Type Constraints Description

type yes string N/A The required name of the Capability Type the
capability definition is based upon.

description no description N/A The optional description of the Capability definition.

properties no list of
property
definitions

N/A An optional list of property definitions for the
Capability definition.

attributes no list of
attribute
definitions

N/A An optional list of attribute definitions for the
Capability definition.

valid_source_types no string[] N/A An optional list of one or more valid names of Node
Types that are supported as valid sources of any
relationship established to the declared Capability
Type.

occurrences no range of
integer

implied default
of
[1,UNBOUNDED]

The optional minimum and maximum occurrences
for the capability. By default, an exported Capability
should allow at least one relationship to be formed
with it with a maximum of UNBOUNDED
relationships.

Note: the keyword UNBOUNDED is also supported
to represent any positive integer.

3.6.2.2 Grammar 1540

Capability definitions have one of the following grammars: 1541

3.6.2.2.1 Short notation 1542

The following grammar may be used when only a list of capability definition names needs to be declared: 1543

<capability_definition_name>: <capability_type>

3.6.2.2.2 Extended notation 1544

The following multi-line grammar may be used when additional information on the capability definition is 1545
needed: 1546

<capability_definition_name>:
 type: <capability_type>
 description: <capability_description>
 properties:
 <property_definitions>
 attributes:
 <attribute_definitions>
 valid_source_types: [<node type_names>]

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1547

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 84 of 282

 capability_definition_name: represents the symbolic name of the capability as a string. 1548

 capability_type: represents the required name of a capability type the capability definition is 1549
based upon. 1550

 capability_description: represents the optional description of the capability definition. 1551

 property_definitions: represents the optional list of property definitions for the capability 1552

definition. 1553

 attribute_definitions: represents the optional list of attribute definitions for the capability 1554

definition. 1555

 node_type_names: represents the optional list of one or more names of Node Types that the 1556
Capability definition supports as valid sources for a successful relationship to be established to 1557
itself. 1558

3.6.2.3 Examples 1559

The following examples show capability definitions in both simple and full forms: 1560

3.6.2.3.1 Simple notation example 1561

Simple notation, no properties defined or augmented
some_capability: mytypes.mycapabilities.MyCapabilityTypeName

3.6.2.3.2 Full notation example 1562

Full notation, augmenting properties of the referenced capability type
some_capability:
 type: mytypes.mycapabilities.MyCapabilityTypeName
 properties:
 limit:
 type: integer
 default: 100

3.6.2.4 Additional requirements 1563

 Any Node Type (names) provides as values for the valid_source_types keyname SHALL be 1564

type-compatible (i.e., derived from the same parent Node Type) with any Node Types defined 1565

using the same keyname in the parent Capability Type. 1566

 Capability symbolic names SHALL be unique; it is an error if a capability name is found to occur 1567

more than once. 1568

3.6.2.5 Notes 1569

 The Capability Type, in this example MyCapabilityTypeName, would be defined 1570

elsewhere and have an integer property named limit. 1571

 This definition directly maps to the CapabilitiesDefinition of the Node Type entity as defined 1572

in the TOSCA v1.0 specification. 1573

3.6.3 Requirement definition 1574

The Requirement definition describes a named requirement (dependencies) of a TOSCA Node Type or 1575
Node template which needs to be fulfilled by a matching Capability definition declared by another TOSCA 1576
modelable entity. The requirement definition may itself include the specific name of the fulfilling entity 1577
(explicitly) or provide an abstract type, along with additional filtering characteristics, that a TOSCA 1578
orchestrator can use to fulfill the capability at runtime (implicitly). 1579

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 85 of 282

3.6.3.1 Keynames 1580

The following is the list of recognized keynames for a TOSCA requirement definition: 1581

Keyname Required Type Constraints Description

capability yes string N/A The required reserved keyname used that can be used to
provide the name of a valid Capability Type that can fulfill the
requirement.

node no string N/A The optional reserved keyname used to provide the name of
a valid Node Type that contains the capability definition that
can be used to fulfill the requirement.

relationship no string N/A The optional reserved keyname used to provide the name of
a valid Relationship Type to construct when fulfilling the
requirement.

occurrence
s

no range
of
integer

implied default
of [1,1]

The optional minimum and maximum occurrences for the
requirement.

Note: the keyword UNBOUNDED is also supported to
represent any positive integer.

3.6.3.1.1 Additional Keynames for multi-line relationship grammar 1582

The Requirement definition contains the Relationship Type information needed by TOSCA Orchestrators 1583
to construct relationships to other TOSCA nodes with matching capabilities; however, it is sometimes 1584
recognized that additional properties may need to be passed to the relationship (perhaps for 1585
configuration). In these cases, additional grammar is provided so that the Node Type may declare 1586
additional Property definitions to be used as inputs to the Relationship Type’s declared interfaces (or 1587
specific operations of those interfaces). 1588

Keyname Required Type Constraints Description

type yes string N/A The optional reserved keyname used to provide the name
of the Relationship Type for the requirement definition’s

relationship keyname.

interfaces no list of
interface
definitions

N/A The optional reserved keyname used to reference declared
(named) interface definitions of the corresponding
Relationship Type in order to declare additional Property
definitions for these interfaces or operations of these
interfaces.

3.6.3.2 Grammar 1589

Requirement definitions have one of the following grammars: 1590

3.6.3.2.1 Simple grammar (Capability Type only) 1591

<requirement_name>: <capability_type_name>

3.6.3.2.2 Extended grammar (with Node and Relationship Types) 1592

<requirement_name>:
 capability: <capability_type_name>
 node: <node_type_name>
 relationship: <relationship_type_name>
 occurrences: [<min_occurrences>, <max_occurrences>]

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 86 of 282

3.6.3.2.3 Extended grammar for declaring Property Definitions on the 1593

relationship’s Interfaces 1594

The following additional multi-line grammar is provided for the relationship keyname in order to declare 1595
new Property definitions for inputs of known Interface definitions of the declared Relationship Type. 1596

<requirement_name>:
 # Other keynames omitted for brevity
 relationship:
 type: <relationship_type_name>
 interfaces:
 <interface_definitions>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1597

 requirement_name: represents the required symbolic name of the requirement definition as a 1598

string. 1599

 capability_type_name: represents the required name of a Capability type that can be used to 1600

fulfill the requirement. 1601

 node_type_name: represents the optional name of a TOSCA Node Type that contains the 1602

Capability Type definition the requirement can be fulfilled by. 1603

 relationship_type_name: represents the optional name of a Relationship Type to be used to 1604

construct a relationship between this requirement definition (i.e., in the source node) to a 1605

matching capability definition (in a target node). 1606

 min_occurrences, max_occurrences: represents the optional minimum and maximum 1607

occurrences of the requirement (i.e., its cardinality). 1608

 interface_definitions: represents one or more already declared interface definitions in the 1609

Relationship Type (as declared on the type keyname) allowing for the declaration of new 1610

Property definition for these interfaces or for specific Operation definitions of these interfaces. 1611

3.6.3.3 Additional Requirements 1612

 Requirement symbolic names SHALL be unique; it is an error if a requirement name is found to 1613

occur more than once. 1614

 If the occurrences keyname is not present, then the occurrence of the requirement SHALL be 1615

one and only one; that is a default declaration as follows would be assumed: 1616

o occurrences: [1,1] 1617

3.6.3.4 Notes 1618

 This element directly maps to the RequirementsDefinition of the Node Type entity as defined 1619

in the TOSCA v1.0 specification. 1620

 The requirement symbolic name is used for identification of the requirement definition only and 1621

not relied upon for establishing any relationships in the topology. 1622

3.6.3.5 Requirement Type definition is a tuple 1623

A requirement definition allows type designers to govern which types are allowed (valid) for fulfillment 1624
using three levels of specificity with only the Capability Type being required. 1625

1. Node Type (optional) 1626

2. Relationship Type (optional) 1627

3. Capability Type (required) 1628

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 87 of 282

The first level allows selection, as shown in both the simple or complex grammar, simply providing the 1629

node’s type using the node keyname. The second level allows specification of the relationship type to use 1630

when connecting the requirement to the capability using the relationship keyname. Finally, the 1631

specific named capability type on the target node is provided using the capability keyname. 1632

3.6.3.5.1 Property filter 1633

In addition to the node, relationship and capability types, a filter, with the keyname node_filter, may be 1634
provided to constrain the allowed set of potential target nodes based upon their properties and their 1635
capabilities’ properties. This allows TOSCA orchestrators to help find the “best fit” when selecting among 1636
multiple potential target nodes for the expressed requirements. 1637

3.6.4 Artifact Type 1638

An Artifact Type is a reusable entity that defines the type of one or more files that are used to define 1639
implementation or deployment artifacts that are referenced by nodes or relationships on their operations. 1640

3.6.4.1 Keynames 1641

The Artifact Type is a TOSCA Entity and has the common keynames listed in section 3.6.1 TOSCA Entity 1642
Schema. 1643

In addition, the Artifact Type has the following recognized keynames: 1644

Keyname Required Type Description

mime_type no string The required mime type property for the Artifact Type.

file_ext no string[] The required file extension property for the Artifact Type.

properties no list of
property
definitions

An optional list of property definitions for the Artifact Type.

3.6.4.2 Grammar 1645

Artifact Types have following grammar: 1646

<artifact_type_name>:
 derived_from: <parent_artifact_type_name>
 version: <version_number>
 metadata:
 <map of string>
 description: <artifact_description>
 mime_type: <mime_type_string>
 file_ext: [<file_extensions>]
 properties:
 <property_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1647

 artifact_type_name: represents the name of the Artifact Type being declared as a string. 1648

 parent_artifact_type_name: represents the name of the Artifact Type this Artifact Type 1649

definition derives from (i.e., its “parent” type). 1650

 version_number: represents the optional TOSCA version number for the Artifact Type. 1651

 artifact_description: represents the optional description string for the Artifact Type. 1652

 mime_type_string: represents the optional Multipurpose Internet Mail Extensions (MIME) 1653

standard string value that describes the file contents for this type of Artifact Type as a string. 1654

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 88 of 282

 file_extensions: represents the optional list of one or more recognized file extensions for this 1655

type of artifact type as strings. 1656

 property_definitions: represents the optional list of property definitions for the artifact type. 1657

3.6.4.3 Examples 1658

my_artifact_type:
 description: Java Archive artifact type
 derived_from: tosca.artifact.Root
 mime_type: application/java-archive
 file_ext: [jar]

3.6.4.4 Notes 1659

 The ‘mime_type’ keyname is meant to have values that are Apache mime types such as those 1660

defined here: http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types 1661

3.6.5 Interface Type 1662

An Interface Type is a reusable entity that describes a set of operations that can be used to interact with 1663
or manage a node or relationship in a TOSCA topology. 1664

3.6.5.1 Keynames 1665

The Interface Type is a TOSCA Entity and has the common keynames listed in section 3.6.1 TOSCA 1666
Entity Schema. 1667

In addition, the Interface Type has the following recognized keynames: 1668

Keyname Required Type Description

inputs no list of
property
definitions

The optional list of input parameter definitions.

3.6.5.2 Grammar 1669

Interface Types have following grammar: 1670

<interface_type_name>:
 derived_from: <parent_interface_type_name>
 version: <version_number>
 metadata:
 <map of string>
 description: <interface_description>
 inputs:
 <property_definitions>
 <operation_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1671

 interface_type_name: represents the required name of the interface as a string. 1672

 parent_interface_type_name: represents the name of the Interface Type this Interface Type 1673

definition derives from (i.e., its “parent” type). 1674

 version_number: represents the optional TOSCA version number for the Interface Type. 1675

 interface_description: represents the optional description string for the Interface Type. 1676

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 89 of 282

 property_definitions: represents the optional list of property definitions (i.e., parameters) 1677

which the TOSCA orchestrator would make available (i.e., or pass) to all implementation artifacts 1678

for operations declared on the interface during their execution. 1679

 operation_definitions: represents the required list of one or more operation definitions. 1680

3.6.5.3 Example 1681

The following example shows a custom interface used to define multiple configure operations. 1682

mycompany.mytypes.myinterfaces.MyConfigure:
 derived_from: tosca.interfaces.relationship.Root
 description: My custom configure Interface Type
 inputs:
 mode:
 type: string
 pre_configure_service:
 description: pre-configure operation for my service
 post_configure_service:
 description: post-configure operation for my service

3.6.5.4 Additional Requirements 1683

 Interface Types MUST NOT include any implementations for defined operations; that is, the 1684

implementation keyname is invalid. 1685

 The inputs keyname is reserved and SHALL NOT be used for an operation name. 1686

3.6.6 Data Type 1687

A Data Type definition defines the schema for new named datatypes in TOSCA. 1688

3.6.6.1 Keynames 1689

The Data Type is a TOSCA Entity and has the common keynames listed in section 3.6.1 TOSCA Entity 1690
Schema. 1691

In addition, the Data Type has the following recognized keynames: 1692

Keyname Required Type Description

constraints no list of

constraint clauses

The optional list of sequenced constraint clauses for the Data

Type.

properties no list of

property

definitions

The optional list property definitions that comprise the schema

for a complex Data Type in TOSCA.

3.6.6.2 Grammar 1693

Data Types have the following grammar: 1694

<data_type_name>:
 derived_from: <existing_type_name>
 version: <version_number>
 metadata:
 <map of string>
 description: <datatype_description>
 constraints:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 90 of 282

 - <type_constraints>
 properties:
 <property_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1695

 data_type_name: represents the required symbolic name of the Data Type as a string. 1696

 version_number: represents the optional TOSCA version number for the Data Type. 1697

 datatype_description: represents the optional description for the Data Type. 1698

 existing_type_name: represents the optional name of a valid TOSCA type this new Data 1699

Type would derive from. 1700

 type_constraints: represents the optional sequenced list of one or more type-compatible 1701

constraint clauses that restrict the Data Type. 1702

 property_definitions: represents the optional list of one or more property definitions that 1703

provide the schema for the Data Type. 1704

3.6.6.3 Additional Requirements 1705

 A valid datatype definition MUST have either a valid derived_from declaration or at least one 1706
valid property definition. 1707

 Any constraint clauses SHALL be type-compatible with the type declared by the 1708

derived_from keyname. 1709

 If a properties keyname is provided, it SHALL contain one or more valid property definitions. 1710

3.6.6.4 Examples 1711

The following example represents a Data Type definition based upon an existing string type: 1712

3.6.6.4.1 Defining a complex datatype 1713

define a new complex datatype
mytypes.phonenumber:
 description: my phone number datatype
 properties:
 countrycode:
 type: integer
 areacode:
 type: integer
 number:
 type: integer

3.6.6.4.2 Defining a datatype derived from an existing datatype 1714

define a new datatype that derives from existing type and extends it
mytypes.phonenumber.extended:
 derived_from: mytypes.phonenumber
 description: custom phone number type that extends the basic phonenumber type
 properties:
 phone_description:
 type: string
 constraints:
 - max_length: 128

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 91 of 282

3.6.7 Capability Type 1715

A Capability Type is a reusable entity that describes a kind of capability that a Node Type can declare to 1716
expose. Requirements (implicit or explicit) that are declared as part of one node can be matched to (i.e., 1717
fulfilled by) the Capabilities declared by another node. 1718

3.6.7.1 Keynames 1719

The Capability Type is a TOSCA Entity and has the common keynames listed in section 3.6.1 TOSCA 1720
Entity Schema. 1721

In addition, the Capability Type has the following recognized keynames: 1722

Keyname Required Type Description

properties no list of
property
definitions

An optional list of property definitions for the Capability Type.

attributes no list of
attribute
definitions

An optional list of attribute definitions for the Capability Type.

valid_source_types no string[] An optional list of one or more valid names of Node Types that are
supported as valid sources of any relationship established to the
declared Capability Type.

3.6.7.2 Grammar 1723

Capability Types have following grammar: 1724

<capability_type_name>:
 derived_from: <parent_capability_type_name>
 version: <version_number>
 description: <capability_description>
 properties:
 <property_definitions>
 attributes:
 <attribute_definitions>
 valid_source_types: [<node type_names>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1725

 capability_type_name: represents the required name of the Capability Type being declared as 1726

a string. 1727

 parent_capability_type_name: represents the name of the Capability Type this Capability 1728

Type definition derives from (i.e., its “parent” type). 1729

 version_number: represents the optional TOSCA version number for the Capability Type. 1730

 capability_description: represents the optional description string for the corresponding 1731

capability_type_name. 1732

 property_definitions: represents an optional list of property definitions that the Capability 1733

type exports. 1734

 attribute_definitions: represents the optional list of attribute definitions for the Capability 1735

Type. 1736

 node_type_names: represents the optional list of one or more names of Node Types that the 1737

Capability Type supports as valid sources for a successful relationship to be established to itself. 1738

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 92 of 282

3.6.7.3 Example 1739

mycompany.mytypes.myapplication.MyFeature:
 derived_from: tosca.capabilities.Root
 description: a custom feature of my company’s application
 properties:
 my_feature_setting:
 type: string
 my_feature_value:
 type: integer

3.6.8 Requirement Type 1740

A Requirement Type is a reusable entity that describes a kind of requirement that a Node Type can 1741
declare to expose. The TOSCA Simple Profile seeks to simplify the need for declaring specific 1742
Requirement Types from nodes and instead rely upon nodes declaring their features sets using TOSCA 1743
Capability Types along with a named Feature notation. 1744

Currently, there are no use cases in this TOSCA Simple Profile in YAML specification that utilize an 1745
independently defined Requirement Type. This is a desired effect as part of the simplification of the 1746
TOSCA v1.0 specification. 1747

3.6.9 Node Type 1748

A Node Type is a reusable entity that defines the type of one or more Node Templates. As such, a Node 1749
Type defines the structure of observable properties via a Properties Definition, the Requirements and 1750
Capabilities of the node as well as its supported interfaces. 1751

3.6.9.1 Keynames 1752

The Node Type is a TOSCA Entity and has the common keynames listed in section 3.6.1 TOSCA Entity 1753
Schema. 1754

In addition, the Node Type has the following recognized keynames: 1755

Keyname Required Type Description

attributes no list of
attribute definitions

An optional list of attribute definitions for the Node Type.

properties no list of
property definitions

An optional list of property definitions for the Node Type.

requirements no list of
requirement
definitions

An optional sequenced list of requirement definitions for the Node
Type.

capabilities no list of
capability
definitions

An optional list of capability definitions for the Node Type.

interfaces no list of
interface definitions

An optional list of interface definitions supported by the Node Type.

artifacts no list of
artifact definitions

An optional list of named artifact definitions for the Node Type.

3.6.9.2 Grammar 1756

Node Types have following grammar: 1757

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 93 of 282

<node_type_name>:
 derived_from: <parent_node_type_name>
 version: <version_number>
 metadata:
 <map of string>
 description: <node_type_description>
 attributes:
 <attribute_definitions>
 properties:
 <property_definitions>
 requirements:
 - <requirement_definitions>
 capabilities:
 <capability_definitions>
 interfaces:
 <interface_definitions>
 artifacts:
 <artifact_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1758

 node_type_name: represents the required symbolic name of the Node Type being declared. 1759

 parent_node_type_name: represents the name (string) of the Node Type this Node Type 1760

definition derives from (i.e., its “parent” type). 1761

 version_number: represents the optional TOSCA version number for the Node Type. 1762

 node_type_description: represents the optional description string for the corresponding 1763

node_type_name. 1764

 property_definitions: represents the optional list of property definitions for the Node Type. 1765

 attribute_definitions: represents the optional list of attribute definitions for the Node Type. 1766

 requirement_definitions: represents the optional sequenced list of requirement definitions for 1767

the Node Type. 1768

 capability_definitions: represents the optional list of capability definitions for the Node 1769

Type. 1770

 interface_definitions: represents the optional list of one or more interface definitions 1771

supported by the Node Type. 1772

 artifact_definitions: represents the optional list of artifact definitions for the Node Type. 1773

3.6.9.3 Additional Requirements 1774

 Requirements are intentionally expressed as a sequenced list of TOSCA Requirement definitions 1775

which SHOULD be resolved (processed) in sequence order by TOSCA Orchestrators. . 1776

3.6.9.4 Best Practices 1777

 It is recommended that all Node Types SHOULD derive directly (as a parent) or indirectly (as an 1778

ancestor) of the TOSCA Root Node Type (i.e., tosca.nodes.Root) to promote compatibility and 1779

portability. However, it is permitted to author Node Types that do not do so. 1780

 TOSCA Orchestrators, having a full view of the complete application topology template and its 1781

resultant dependency graph of nodes and relationships, MAY prioritize how they instantiate the nodes 1782

and relationships for the application (perhaps in parallel where possible) to achieve the greatest 1783

efficiency 1784

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 94 of 282

3.6.9.5 Example 1785

my_company.my_types.my_app_node_type:
 derived_from: tosca.nodes.SoftwareComponent
 description: My company’s custom applicaton
 properties:
 my_app_password:
 type: string
 description: application password
 constraints:
 - min_length: 6
 - max_length: 10
 attributes:
 my_app_port:
 type: integer
 description: application port number
 requirements:
 - some_database:
 capability: EndPoint.Database
 node: Database
 relationship: ConnectsTo

3.6.10 Relationship Type 1786

A Relationship Type is a reusable entity that defines the type of one or more relationships between Node 1787
Types or Node Templates. 1788

3.6.10.1 Keynames 1789

The Relationship Type is a TOSCA Entity and has the common keynames listed in section 3.6.1 TOSCA 1790
Entity Schema. 1791

In addition, the Relationship Type has the following recognized keynames: 1792

Keyname Required Definition/Type Description

properties no list of
property
definitions

An optional list of property definitions for the Relationship
Type.

attributes no list of
attribute
definitions

An optional list of attribute definitions for the Relationship
Type.

interfaces no list of
interface
definitions

An optional list of interface definitions interfaces supported
by the Relationship Type.

valid_target_types no string[] An optional list of one or more names of Capability Types
that are valid targets for this relationship.

3.6.10.2 Grammar 1793

Relationship Types have following grammar: 1794

<relationship_type_name>:
 derived_from: <parent_relationship_type_name>
 version: <version_number>
 metadata:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 95 of 282

 <map of string>
 description: <relationship_description>
 properties:
 <property_definitions>
 attributes:
 <attribute_definitions>
 interfaces:
 <interface_definitions>
 valid_target_types: [<capability_type_names>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1795

 relationship_type_name: represents the required symbolic name of the Relationship Type 1796

being declared as a string. 1797

 parent_relationship_type_name: represents the name (string) of the Relationship Type this 1798

Relationship Type definition derives from (i.e., its “parent” type). 1799

 relationship_description: represents the optional description string for the corresponding 1800

relationship_type_name. 1801

 version_number: represents the optional TOSCA version number for the Relationship Type. 1802

 property_definitions: represents the optional list of property definitions for the Relationship 1803

Type. 1804

 attribute_definitions: represents the optional list of attribute definitions for the Relationship 1805

Type. 1806

 interface_definitions: represents the optional list of one or more names of valid interface 1807

definitions supported by the Relationship Type. 1808

 capability_type_names: represents one or more names of valid target types for the 1809

relationship (i.e., Capability Types). 1810

3.6.10.3 Best Practices 1811

 For TOSCA application portability, it is recommended that designers use the normative 1812

Relationship types defined in this specification where possible and derive from them for 1813

customization purposes. 1814

 The TOSCA Root Relationship Type (tosca.relationships.Root) SHOULD be used to derive 1815

new types where possible when defining new relationships types. This assures that its normative 1816

configuration interface (tosca.interfaces.relationship.Configure) can be used in a 1817

deterministic way by TOSCA orchestrators. 1818

3.6.10.4 Examples 1819

mycompanytypes.myrelationships.AppDependency:
 derived_from: tosca.relationships.DependsOn
 valid_target_types: [mycompanytypes.mycapabilities.SomeAppCapability]

3.6.11 Group Type 1820

A Group Type defines logical grouping types for nodes, typically for different management purposes. 1821
Groups can effectively be viewed as logical nodes that are not part of the physical deployment topology of 1822
an application, yet can have capabilities and the ability to attach policies and interfaces that can be 1823
applied (depending on the group type) to its member nodes. 1824

 1825

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 96 of 282

Conceptually, group definitions allow the creation of logical “membership” relationships to nodes in a 1826
service template that are not a part of the application’s explicit requirement dependencies in the topology 1827
template (i.e. those required to actually get the application deployed and running). Instead, such logical 1828
membership allows for the introduction of things such as group management and uniform application of 1829
policies (i.e., requirements that are also not bound to the application itself) to the group’s members. 1830

3.6.11.1 Keynames 1831

The Group Type is a TOSCA Entity and has the common keynames listed in section 3.6.1 TOSCA Entity 1832
Schema. 1833

In addition, the Group Type has the following recognized keynames: 1834

Keyname Required Type Description

attributes no list of
attribute definitions

An optional list of attribute definitions for the Group
Type.

properties no list of
property definitions

An optional list of property definitions for the Group
Type.

members no string[] An optional list of one or more names of Node Types
that are valid (allowed) as members of the Group Type.

Note: This can be viewed by TOSCA Orchestrators as an
implied relationship from the listed members nodes to
the group, but one that does not have operational
lifecycle considerations. For example, if we were to
name this as an explicit Relationship Type we might call
this “MemberOf” (group).

requirements no list of
requirement definitions

An optional sequenced list of requirement definitions for
the Group Type.

capabilities no list of
capability definitions

An optional list of capability definitions for the Group
Type.

interfaces no list of
interface definitions

An optional list of interface definitions supported by the
Group Type.

3.6.11.2 Grammar 1835

Group Types have one the following grammars: 1836

<group_type_name>:
 derived_from: <parent_group_type_name>
 version: <version_number>
 metadata:
 <map of string>
 description: <group_description>
 properties:
 <property_definitions>
 members: [<list_of_valid_member_types>]
 requirements:
 - <requirement_definitions>
 capabilities:
 <capability_definitions>
 interfaces:
 <interface_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1837

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 97 of 282

 group_type_name: represents the required symbolic name of the Group Type being declared as 1838

a string. 1839

 parent_group_type_name: represents the name (string) of the Group Type this Group Type 1840
definition derives from (i.e., its “parent” type). 1841

 version_number: represents the optional TOSCA version number for the Group Type. 1842

 group_description: represents the optional description string for the corresponding 1843

group_type_name. 1844

 property_definitions: represents the optional list of property definitions for the Group Type. 1845

 list_of_valid_member_types: represents the optional list of TOSCA types (e.g.,., Node, 1846

Capability or even other Group Types) that are valid member types for being added to (i.e., 1847
members of) the Group Type. 1848

 interface_definitions: represents the optional list of one or more interface definitions 1849
supported by the Group Type. 1850

3.6.11.3 Additional Requirements 1851

 Group definitions SHOULD NOT be used to define or redefine relationships (dependencies) for 1852

an application that can be expressed using normative TOSCA Relationships within a TOSCA 1853

topology template. 1854

 The list of values associated with the “members” keyname MUST only contain types that or 1855

homogenous (i.e., derive from the same type hierarchy). 1856

3.6.11.4 Example 1857

The following represents a Group Type definition: 1858

group_types:
 mycompany.mytypes.groups.placement:
 description: My company’s group type for placing nodes of type Compute
 members: [tosca.nodes.Compute]

3.6.12 Policy Type 1859

A Policy Type defines a type of requirement that affects or governs an application or service’s topology at 1860
some stage of its lifecycle, but is not explicitly part of the topology itself (i.e., it does not prevent the 1861
application or service from being deployed or run if it did not exist). 1862

3.6.12.1 Keynames 1863

The Policy Type is a TOSCA Entity and has the common keynames listed in section 3.6.1 TOSCA Entity 1864
Schema. 1865

In addition, the Policy Type has the following recognized keynames: 1866

Keyname Required Type Description

properties no list of
property
definitions

An optional list of property definitions for the Policy Type.

targets

no string[] An optional list of valid Node Types or Group Types the Policy
Type can be applied to.

Note: This can be viewed by TOSCA Orchestrators as an implied
relationship to the target nodes, but one that does not have
operational lifecycle considerations. For example, if we were to
name this as an explicit Relationship Type we might call this
“AppliesTo” (node or group).

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 98 of 282

Keyname Required Type Description

triggers no list of trigger An optional list of policy triggers for the Policy Type.

3.6.12.2 Grammar 1867

Policy Types have the following grammar: 1868

<policy_type_name>:
 derived_from: <parent_policy_type_name>
 version: <version_number>
 metadata:
 <map of string>
 description: <policy_description>
 properties:
 <property_definitions>
 targets: [<list_of_valid_target_types>]
 triggers:
 <list_of_trigger_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1869

 policy_type_name: represents the required symbolic name of the Policy Type being declared 1870
as a string. 1871

 parent_policy_type_name: represents the name (string) of the Policy Type this Policy Type 1872

definition derives from (i.e., its “parent” type). 1873

 version_number: represents the optional TOSCA version number for the Policy Type. 1874

 policy_description: represents the optional description string for the corresponding 1875

policy_type_name. 1876

 property_definitions: represents the optional list of property definitions for the Policy Type. 1877

 list_of_valid_target_types: represents the optional list of TOSCA types (i.e., Group or 1878
Node Types) that are valid targets for this Policy Type. 1879

 list_of_trigger_definitions: represents the optional list of trigger definitions for the policy. 1880

3.6.12.3 Example 1881

The following represents a Policy Type definition: 1882

policy_types:
 mycompany.mytypes.policies.placement.Container.Linux:
 description: My company’s placement policy for linux
 derived_from: tosca.policies.Root

3.7 Template-specific definitions 1883

The definitions in this section provide reusable modeling element grammars that are specific to the Node 1884
or Relationship templates. 1885

3.7.1 Capability assignment 1886

A capability assignment allows node template authors to assign values to properties and attributes for a 1887
named capability definition that is part of a Node Template’s type definition. 1888

3.7.1.1 Keynames 1889

The following is the list of recognized keynames for a TOSCA capability assignment: 1890

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 99 of 282

Keyname Required Type Description

properties no list of
property
assignments

An optional list of property definitions for the Capability definition.

attributes no list of
attribute
assignments

An optional list of attribute definitions for the Capability definition.

3.7.1.2 Grammar 1891

Capability assignments have one of the following grammars: 1892

<capability_definition_name>:
 properties:
 <property_assignments>
 attributes:
 <attribute_assignments>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1893

 capability_definition_name: represents the symbolic name of the capability as a string. 1894

 property_assignments: represents the optional list of property assignments for the capability 1895

definition. 1896

 attribute_assignments: represents the optional list of attribute assignments for the capability 1897

definition. 1898

3.7.1.3 Example 1899

The following example shows a capability assignment: 1900

3.7.1.3.1 Notation example 1901

node_templates:
 some_node_template:
 capabilities:
 some_capability:
 properties:
 limit: 100

3.7.2 Requirement assignment 1902

A Requirement assignment allows template authors to provide either concrete names of TOSCA 1903
templates or provide abstract selection criteria for providers to use to find matching TOSCA templates 1904
that are used to fulfill a named requirement’s declared TOSCA Node Type. 1905

3.7.2.1 Keynames 1906

The following is the list of recognized keynames for a TOSCA requirement assignment: 1907

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 100 of 282

Keyname Required Type Description

capability no string The optional reserved keyname used to provide the name of either a:

 Capability definition within a target node template that can
fulfill the requirement.

 Capability Type that the provider will use to select a type-
compatible target node template to fulfill the requirement at
runtime.

node no string The optional reserved keyname used to identify the target node of a
relationship. specifically, it is used to provide either a:

 Node Template name that can fulfill the target node
requirement.

 Node Type name that the provider will use to select a type-
compatible node template to fulfill the requirement at runtime.

relationship no string The optional reserved keyname used to provide the name of either a:

 Relationship Template to use to relate the source node to the
(capability in the) target node when fulfilling the requirement.

 Relationship Type that the provider will use to select a type-
compatible relationship template to relate the source node to
the target node at runtime.

node_filter no node filter The optional filter definition that TOSCA orchestrators or providers would
use to select a type-compatible target node that can fulfill the associated
abstract requirement at runtime.

The following is the list of recognized keynames for a TOSCA requirement assignment’s relationship 1908
keyname which is used when Property assignments need to be provided to inputs of declared interfaces 1909
or their operations: 1910

Keyname Required Type Description

type no string The optional reserved keyname used to provide the name of the

Relationship Type for the requirement assignment’s relationship

keyname.

properties no list of
interface
definitions

The optional reserved keyname used to reference declared (named)
interface definitions of the corresponding Relationship Type in order to
provide Property assignments for these interfaces or operations of these
interfaces.

3.7.2.2 Grammar 1911

Named requirement assignments have one of the following grammars: 1912

3.7.2.2.1 Short notation: 1913

The following single-line grammar may be used if only a concrete Node Template for the target node 1914
needs to be declared in the requirement: 1915

<requirement_name>: <node_template_name>

This notation is only valid if the corresponding Requirement definition in the Node Template’s parent 1916
Node Type declares (at a minimum) a valid Capability Type which can be found in the declared target 1917
Node Template. A valid capability definition always needs to be provided in the requirement declaration of 1918
the source node to identify a specific capability definition in the target node the requirement will form a 1919
TOSCA relationship with. 1920

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 101 of 282

3.7.2.2.2 Extended notation: 1921

The following grammar would be used if the requirement assignment needs to provide more information 1922
than just the Node Template name: 1923

<requirement_name>:
 node: <node_template_name> | <node_type_name>
 relationship: <relationship_template_name> | <relationship_type_name>
 capability: <capability_symbolic_name> | <capability_type_name>
 node_filter:
 <node_filter_definition>
 occurrences: [min_occurrences, max_occurrences]

3.7.2.2.3 Extended grammar with Property Assignments for the relationship’s 1924

Interfaces 1925

The following additional multi-line grammar is provided for the relationship keyname in order to provide 1926
new Property assignments for inputs of known Interface definitions of the declared Relationship Type. 1927

<requirement_name>:
 # Other keynames omitted for brevity
 relationship:
 type: <relationship_template_name> | <relationship_type_name>
 properties:
 <property_assignments>
 interfaces:
 <interface_assignments>

Examples of uses for the extended requirement assignment grammar include: 1928

 The need to allow runtime selection of the target node based upon an abstract Node Type rather 1929

than a concrete Node Template. This may include use of the node_filter keyname to provide 1930

node and capability filtering information to find the “best match” of a concrete Node Template at 1931

runtime. 1932

 The need to further clarify the concrete Relationship Template or abstract Relationship Type to 1933

use when relating the source node’s requirement to the target node’s capability. 1934

 The need to further clarify the concrete capability (symbolic) name or abstract Capability Type in 1935

the target node to form a relationship between. 1936

 The need to (further) constrain the occurrences of the requirement in the instance model. 1937

In the above grammars, the pseudo values that appear in angle brackets have the following meaning: 1938

 requirement_name: represents the symbolic name of a requirement assignment as a string. 1939

 node_template_name: represents the optional name of a Node Template that contains the 1940

capability this requirement will be fulfilled by. 1941

 relationship_template_name: represents the optional name of a Relationship Type to be used 1942

when relating the requirement appears to the capability in the target node. 1943

 capability_symbolic_name: represents the optional ordered list of specific, required capability 1944

type or named capability definition within the target Node Type or Template. 1945

 node_type_name: represents the optional name of a TOSCA Node Type the associated named 1946

requirement can be fulfilled by. This must be a type that is compatible with the Node Type 1947

declared on the matching requirement (same symbolic name) the requirement’s Node Template 1948

is based upon. 1949

 relationship_type_name: represents the optional name of a Relationship Type that is 1950

compatible with the Capability Type in the target node. 1951

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 102 of 282

 property_assignments: represents the optional list of property value assignments for the 1952

declared relationship. 1953

 interface_assignments: represents the optional list of interface definitions for the declared 1954

relationship used to provide property assignments on inputs of interfaces and operations. 1955

 capability_type_name: represents the optional name of a Capability Type definition within the 1956

target Node Type this requirement needs to form a relationship with. 1957

 node_filter_definition: represents the optional node filter TOSCA orchestrators would use 1958

to fulfill the requirement for selecting a target node. Note that this SHALL only be valid if the node 1959

keyname’s value is a Node Type and is invalid if it is a Node Template. 1960

3.7.2.3 Examples 1961

3.7.2.3.1 Example 1 – Abstract hosting requirement on a Node Type 1962

A web application node template named ‘my_application_node_template’ of type WebApplication 1963

declares a requirement named ‘host’ that needs to be fulfilled by any node that derives from the node 1964

type WebServer. 1965

Example of a requirement fulfilled by a specific web server node template
node_templates:
 my_application_node_template:
 type: tosca.nodes.WebApplication
 ...
 requirements:
 - host:
 node: tosca.nodes.WebServer

In this case, the node template’s type is WebApplication which already declares the Relationship Type 1966

HostedOn to use to relate to the target node and the Capability Type of Container to be the specific 1967
target of the requirement in the target node. 1968

3.7.2.3.2 Example 2 - Requirement with Node Template and a custom Relationship 1969

Type 1970

This example is similar to the previous example; however, the requirement named ‘database’ describes 1971

a requirement for a connection to a database endpoint (Endpoint.Database) Capability Type in a named 1972

node template (my_database). However, the connection requires a custom Relationship Type 1973

(my.types.CustomDbConnection’) declared on the keyname ‘relationship’. 1974

Example of a (database) requirement that is fulfilled by a node template named
“my_database”, but also requires a custom database connection relationship
my_application_node_template:
 requirements:
 - database:
 node: my_database
 capability: Endpoint.Database
 relationship: my.types.CustomDbConnection

3.7.2.3.3 Example 3 - Requirement for a Compute node with additional selection 1975

criteria (filter) 1976

This example shows how to extend an abstract ‘host’ requirement for a Compute node 1977
with a filter definition that further constrains TOSCA orchestrators to include 1978

additional properties and capabilities on the target node when fulfilling the 1979
requirement. 1980

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 103 of 282

node_templates:
 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 # omitted here for brevity
 requirements:
 - host:
 node: tosca.nodes.Compute
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [1, 4] }
 - mem_size: { greater_or_equal: 512 MB }
 - os:
 properties:
 - architecture: { equal: x86_64 }
 - type: { equal: linux }
 - distribution: { equal: ubuntu }
 - mytypes.capabilities.compute.encryption:
 properties:
 - algorithm: { equal: aes }
 - keylength: { valid_values: [128, 256] }

3.7.3 Node Template 1981

A Node Template specifies the occurrence of a manageable software component as part of an 1982
application’s topology model which is defined in a TOSCA Service Template. A Node template is an 1983
instance of a specified Node Type and can provide customized properties, constraints or operations 1984
which override the defaults provided by its Node Type and its implementations. 1985

3.7.3.1 Keynames 1986

The following is the list of recognized keynames for a TOSCA Node Template definition: 1987

Keyname Required Type Description

type yes string The required name of the Node Type the Node Template is based
upon.

description no description An optional description for the Node Template.

metadata no map of string Defines a section used to declare additional metadata information.

directives no string[] An optional list of directive values to provide processing instructions
to orchestrators and tooling.

properties no list of
property
assignments

An optional list of property value assignments for the Node
Template.

attributes no list of
attribute
assignments

An optional list of attribute value assignments for the Node
Template.

requirements no list of
requirement
assignments

An optional sequenced list of requirement assignments for the Node
Template.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 104 of 282

Keyname Required Type Description

capabilities no list of
capability
assignments

An optional list of capability assignments for the Node Template.

interfaces no list of
interface definitions

An optional list of named interface definitions for the Node
Template.

artifacts no list of
artifact definitions

An optional list of named artifact definitions for the Node Template.

node_filter no node filter The optional filter definition that TOSCA orchestrators would use to
select the correct target node. This keyname is only valid if the

directive has the value of “selectable” set.

copy no string The optional (symbolic) name of another node template to copy into
(all keynames and values) and use as a basis for this node template.

3.7.3.2 Grammar 1988

<node_template_name>:
 type: <node_type_name>
 description: <node_template_description>
 directives: [<directives>]
 metadata:
 <map of string>
 properties:
 <property_assignments>
 attributes:
 <attribute_assignments>
 requirements:
 - <requirement_assignments>
 capabilities:
 <capability_assignments>
 interfaces:
 <interface_definitions>
 artifacts:
 <artifact_definitions>
 node_filter:
 <node_filter_definition>
 copy: <source_node_template_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 1989

 node_template_name: represents the required symbolic name of the Node Template being 1990

declared. 1991

 node_type_name: represents the name of the Node Type the Node Template is based upon. 1992

 node_template_description: represents the optional description string for Node Template. 1993

 directives: represents the optional list of processing instruction keywords (as strings) for use by 1994

tooling and orchestrators. 1995

 property_assignments: represents the optional list of property assignments for the Node 1996

Template that provide values for properties defined in its declared Node Type. 1997

 attribute_assignments: represents the optional list of attribute assignments for the Node 1998

Template that provide values for attributes defined in its declared Node Type. 1999

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 105 of 282

 requirement_assignments: represents the optional sequenced list of requirement assignments 2000

for the Node Template that allow assignment of type-compatible capabilities, target nodes, 2001

relationships and target (node filters) for use when fulfilling the requirement at runtime. 2002

 capability_assignments: represents the optional list of capability assignments for the Node 2003

Template that augment those provided by its declared Node Type. 2004

 interface_definitions: represents the optional list of interface definitions for the Node 2005

Template that augment those provided by its declared Node Type. 2006

 artifact_definitions: represents the optional list of artifact definitions for the Node Template 2007

that augment those provided by its declared Node Type. 2008

 node_filter_definition: represents the optional node filter TOSCA orchestrators would use 2009

for selecting a matching node template. 2010

 source_node_template_name: represents the optional (symbolic) name of another node 2011

template to copy into (all keynames and values) and use as a basis for this node template. 2012

3.7.3.3 Additional requirements 2013

 The node_filter keyword (and supporting grammar) SHALL only be valid if the Node Template 2014

has a directive keyname with the value of “selectable” set. 2015

 The source node template provided as a value on the copy keyname MUST NOT itself use the 2016

copy keyname (i.e., it must itself be a complete node template description and not copied from 2017

another node template). 2018

3.7.3.4 Example 2019

node_templates:
 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 root_password: { get_input: my_mysql_rootpw }
 port: { get_input: my_mysql_port }
 requirements:
 - host: db_server
 interfaces:
 Standard:
 configure: scripts/my_own_configure.sh

3.7.4 Relationship Template 2020

A Relationship Template specifies the occurrence of a manageable relationship between node templates 2021
as part of an application’s topology model that is defined in a TOSCA Service Template. A Relationship 2022
template is an instance of a specified Relationship Type and can provide customized properties, 2023
constraints or operations which override the defaults provided by its Relationship Type and its 2024
implementations. 2025

3.7.4.1 Keynames 2026

The following is the list of recognized keynames for a TOSCA Relationship Template definition: 2027

Keyname Required Type Description

type yes string The required name of the Relationship Type the Relationship
Template is based upon.

description no description An optional description for the Relationship Template.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 106 of 282

Keyname Required Type Description

metadata no map of string Defines a section used to declare additional metadata information.

properties no list of
property
assignments

An optional list of property assignments for the Relationship
Template.

attributes no list of
attribute
assignments

An optional list of attribute assignments for the Relationship
Template.

interfaces no list of
interface definitions

An optional list of named interface definitions for the Node
Template.

copy no string The optional (symbolic) name of another relationship template to
copy into (all keynames and values) and use as a basis for this
relationship template.

3.7.4.2 Grammar 2028

<relationship_template_name>:
 type: <relationship_type_name>
 description: <relationship_type_description>
 metadata:
 <map of string>
 properties:
 <property_assignments>
 attributes:
 <attribute_assignments>
 interfaces:
 <interface_definitions>
 copy:
 <source_relationship_template_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 2029

 relationship_template_name: represents the required symbolic name of the Relationship 2030

Template being declared. 2031

 relationship_type_name: represents the name of the Relationship Type the Relationship 2032

Template is based upon. 2033

 relationship_template_description: represents the optional description string for the 2034

Relationship Template. 2035

 property_assignments: represents the optional list of property assignments for the Relationship 2036

Template that provide values for properties defined in its declared Relationship Type. 2037

 attribute_assignments: represents the optional list of attribute assignments for the 2038

Relationship Template that provide values for attributes defined in its declared Relationship Type. 2039

 interface_definitions: represents the optional list of interface definitions for the Relationship 2040

Template that augment those provided by its declared Relationship Type. 2041

 source_relationship_template_name: represents the optional (symbolic) name of another 2042

relationship template to copy into (all keynames and values) and use as a basis for this 2043

relationship template. 2044

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 107 of 282

3.7.4.3 Additional requirements 2045

 The source relationship template provided as a value on the copy keyname MUST NOT itself use 2046

the copy keyname (i.e., it must itself be a complete relationship template description and not 2047

copied from another relationship template). 2048

3.7.4.4 Example 2049

relationship_templates:
 storage_attachment:
 type: AttachesTo
 properties:
 location: /my_mount_point

3.7.5 Group definition 2050

A group definition defines a logical grouping of node templates, typically for management purposes, but is 2051
separate from the application’s topology template. 2052

3.7.5.1 Keynames 2053

The following is the list of recognized keynames for a TOSCA group definition: 2054

Keyname Required Type Description

type yes string The required name of the group type the group
definition is based upon.

description no description The optional description for the group definition.

metadata no map of string Defines a section used to declare additional
metadata information.

properties no list of
property
assignments

An optional list of property value assignments for
the group definition.

members no list of string The optional list of one or more node template
names that are members of this group definition.

interfaces no list of
interface
definitions

An optional list of named interface definitions for
the group definition.

3.7.5.2 Grammar 2055

Group definitions have one the following grammars: 2056

<group_name>:
 type: <group_type_name>
 description: <group_description>
 metadata:
 <map of string>
 properties:
 <property_assignments>
 members: [<list_of_node_templates>]
 interfaces:
 <interface_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 2057

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 108 of 282

 group_name: represents the required symbolic name of the group as a string. 2058

 group_type_name: represents the name of the Group Type the definition is based upon. 2059

 group_description: contains an optional description of the group. 2060

 property_assignments: represents the optional list of property assignments for the group 2061

definition that provide values for properties defined in its declared Group Type. 2062

 list_of_node_templates: contains the required list of one or more node template names 2063

(within the same topology template) that are members of this logical group. 2064

 interface_definitions: represents the optional list of interface definitions for the group 2065

definition that augment those provided by its declared Group Type. 2066

3.7.5.3 Additional Requirements 2067

 Group definitions SHOULD NOT be used to define or redefine relationships (dependencies) for 2068

an application that can be expressed using normative TOSCA Relationships within a TOSCA 2069

topology template. 2070

3.7.5.4 Example 2071

The following represents a group definition: 2072

groups:
 my_app_placement_group:
 type: tosca.groups.Root
 description: My application’s logical component grouping for placement
 members: [my_web_server, my_sql_database]

3.7.6 Policy definition 2073

A policy definition defines a policy that can be associated with a TOSCA topology or top-level entity 2074
definition (e.g., group definition, node template, etc.). 2075

3.7.6.1 Keynames 2076

The following is the list of recognized keynames for a TOSCA policy definition: 2077

Keyname Required Type Description

type yes string The required name of the policy type the policy
definition is based upon.

description no description The optional description for the policy definition.

metadata no map of string Defines a section used to declare additional
metadata information.

properties no list of
property
assignments

An optional list of property value assignments for
the policy definition.

targets

no string[] An optional list of valid Node Templates or Groups
the Policy can be applied to.

3.7.6.2 Grammar 2078

Policy definitions have one the following grammars: 2079

<policy_name>:
 type: <policy_type_name>

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 109 of 282

 description: <policy_description>
 metadata:
 <map of string>
 properties:
 <property_assignments>
 targets: [<list_of_policy_targets>]
 triggers:
 <list_of_trigger_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 2080

 policy_name: represents the required symbolic name of the policy as a string. 2081

 policy_type_name: represents the name of the policy the definition is based upon. 2082

 policy_description: contains an optional description of the policy. 2083

 property_assignments: represents the optional list of property assignments for the policy 2084

definition that provide values for properties defined in its declared Policy Type. 2085

 list_of_policy_targets: represents the optional list of names of node templates or groups 2086

that the policy is to applied to. 2087

 list_of_trigger_definitions: represents the optional list of trigger definitions for the policy. 2088

3.7.6.3 Example 2089

The following represents a policy definition: 2090

policies:
 - my_compute_placement_policy:
 type: tosca.policies.placement
 description: Apply my placement policy to my application’s servers
 targets: [my_server_1, my_server_2]
 # remainder of policy definition left off for brevity

3.7.7 Imperative Workflow definition 2091

A workflow definition defines an imperative workflow that is associated with a TOSCA topology. 2092

3.7.7.1 Keynames 2093

The following is the list of recognized keynames for a TOSCA workflow definition: 2094

Keyname Required Type Description

description no description The optional description for the workflow definition.

metadata no map of string Defines a section used to declare additional metadata information.

inputs no list of
property
definitions

The optional list of input parameter definitions.

preconditions no list of precondition
definitions

List of preconditions to be validated before the workflow can be
processed.

steps

No list of step
definitions

An optional list of valid Node Templates or Groups the Policy can be
applied to.

 2095

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 110 of 282

3.7.7.2 Grammar 2096

Imperative workflow definitions have the following grammar: 2097

<workflow_name>:
 description: <workflow_description>
 metadata:
 <map of string>
 inputs:
 <property_definitions>
 preconditions:
 - <workflow_precondition_definition>
 steps:
 <workflow_steps>

In the above grammar, the pseudo values that appear in angle 2098

3.8 Topology Template definition 2099

This section defines the topology template of a cloud application. The main ingredients of the topology 2100
template are node templates representing components of the application and relationship templates 2101

representing links between the components. These elements are defined in the nested node_templates 2102

section and the nested relationship_templates sections, respectively. Furthermore, a topology 2103

template allows for defining input parameters, output parameters as well as grouping of node templates. 2104

3.8.1 Keynames 2105

The following is the list of recognized keynames for a TOSCA Topology Template: 2106

Keyname Required Type Description

description no description The optional description for the Topology
Template.

inputs no list of
parameter
definitions

An optional list of input parameters (i.e., as
parameter definitions) for the Topology
Template.

node_templates no list of
node
templates

An optional list of node template definitions
for the Topology Template.

relationship_templates no list of
relationship
templates

An optional list of relationship templates for
the Topology Template.

groups no list of
group
definitions

An optional list of Group definitions whose
members are node templates defined within
this same Topology Template.

policies no list of
policy
definitions

An optional list of Policy definitions for the
Topology Template.

outputs no list of
parameter
definitions

An optional list of output parameters (i.e., as
parameter definitions) for the Topology
Template.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 111 of 282

Keyname Required Type Description

substitution_mappings no N/A An optional declaration that exports the
topology template as an implementation of a
Node type.

This also includes the mappings between the
external Node Types named capabilities and
requirements to existing implementations of
those capabilities and requirements on Node
templates declared within the topology
template.

workflows no list of
imperative
workflow
definitions

An optional map of imperative workflow
definition for the Topology Template.

3.8.2 Grammar 2107

The overall grammar of the topology_template section is shown below.–Detailed grammar definitions 2108
of the each sub-sections are provided in subsequent subsections. 2109

topology_template:
 description: <template_description>
 inputs: <input_parameter_list>
 outputs: <output_parameter_list>
 node_templates: <node_template_list>
 relationship_templates: <relationship_template_list>
 groups: <group_definition_list>
 policies:
 - <policy_definition_list>
 workflows: <workflow_list>
 # Optional declaration that exports the Topology Template
 # as an implementation of a Node Type.
 substitution_mappings:
 node_type: <node_type_name>
 capabilities:
 <map_of_capability_mappings_to_expose>
 requirements:
 <map_of_requirement_mapping_to_expose>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning: 2110

 template_description: represents the optional description string for Topology Template. 2111

 input_parameter_list: represents the optional list of input parameters (i.e., as property 2112

definitions) for the Topology Template. 2113

 output_parameter_list: represents the optional list of output parameters (i.e., as property 2114

definitions) for the Topology Template. 2115

 group_definition_list: represents the optional list of group definitions whose members are 2116

node templates that also are defined within this Topology Template. 2117

 policy_definition_list: represents the optional sequenced list of policy definitions for the 2118

Topology Template. 2119

 workflow_list: represents the optional list of imperative workflow definitions 2120

for the Topology Template. 2121

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 112 of 282

 node_template_list: represents the optional list of node template definitions for the Topology 2122

Template. 2123

 relationship_template_list: represents the optional list of relationship templates for the 2124

Topology Template. 2125

 node_type_name: represents the optional name of a Node Type that the Topology Template 2126

implements as part of the substitution_mappings. 2127

 map_of_capability_mappings_to_expose: represents the mappings that expose internal 2128

capabilities from node templates (within the topology template) as capabilities of the Node Type 2129

definition that is declared as part of the substitution_mappings. 2130

 map_of_requirement_mappings_to_expose: represents the mappings of link requirements of 2131

the Node Type definition that is declared as part of the substitution_mappings to internal 2132

requirements implementations within node templates (declared within the topology template). 2133

 2134

More detailed explanations for each of the Topology Template grammar’s keynames appears in the 2135
sections below. 2136

3.8.2.1 inputs 2137

The inputs section provides a means to define parameters using TOSCA parameter definitions, their 2138

allowed values via constraints and default values within a TOSCA Simple Profile template. Input 2139
parameters defined in the inputs section of a topology template can be mapped to properties of node 2140
templates or relationship templates within the same topology template and can thus be used for 2141
parameterizing the instantiation of the topology template. 2142

 2143

This section defines topology template-level input parameter section. 2144

 Inputs here would ideally be mapped to BoundaryDefinitions in TOSCA v1.0. 2145

 Treat input parameters as fixed global variables (not settable within template) 2146

 If not in input take default (nodes use default) 2147

3.8.2.1.1 Grammar 2148

The grammar of the inputs section is as follows: 2149

inputs:
 <parameter_definition_list>

3.8.2.1.2 Examples 2150

This section provides a set of examples for the single elements of a topology template. 2151

Simple inputs example without any constraints: 2152

inputs:
 fooName:
 type: string
 description: Simple string typed property definition with no constraints.
 default: bar

Example of inputs with constraints: 2153

inputs:
 SiteName:
 type: string
 description: string typed property definition with constraints

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 113 of 282

 default: My Site
 constraints:
 - min_length: 9

3.8.2.2 node_templates 2154

The node_templates section lists the Node Templates that describe the (software) components that are 2155

used to compose cloud applications. 2156

3.8.2.2.1 grammar 2157

The grammar of the node_templates section is a follows: 2158

node_templates:
 <node_template_defn_1>
 ...
 <node_template_defn_n>

3.8.2.2.2 Example 2159

Example of node_templates section: 2160

node_templates:
 my_webapp_node_template:
 type: WebApplication

 my_database_node_template:
 type: Database

3.8.2.3 relationship_templates 2161

The relationship_templates section lists the Relationship Templates that describe the relations 2162

between components that are used to compose cloud applications. 2163

 2164

Note that in the TOSCA Simple Profile, the explicit definition of relationship templates as it was required 2165
in TOSCA v1.0 is optional, since relationships between nodes get implicitly defined by referencing other 2166
node templates in the requirements sections of node templates. 2167

3.8.2.3.1 Grammar 2168

The grammar of the relationship_templates section is as follows: 2169

relationship_templates:
 <relationship_template_defn_1>
 ...
 <relationship_template_defn_n>

3.8.2.3.2 Example 2170

Example of relationship_templates section: 2171

relationship_templates:
 my_connectsto_relationship:
 type: tosca.relationships.ConnectsTo
 interfaces:
 Configure:
 inputs:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 114 of 282

 speed: { get_attribute: [SOURCE, connect_speed] }

3.8.2.4 outputs 2172

The outputs section provides a means to define the output parameters that are available from a TOSCA 2173
Simple Profile service template. It allows for exposing attributes of node templates or relationship 2174

templates within the containing topology_template to users of a service. 2175

3.8.2.4.1 Grammar 2176

The grammar of the outputs section is as follows: 2177

outputs:
 <parameter_def_list>

3.8.2.4.2 Example 2178

Example of the outputs section: 2179

outputs:
 server_address:
 description: The first private IP address for the provisioned server.
 value: { get_attribute: [HOST, networks, private, addresses, 0] }

3.8.2.5 groups 2180

The groups section allows for grouping one or more node templates within a TOSCA Service Template 2181

and for assigning special attributes like policies to the group. 2182

3.8.2.5.1 Grammar 2183

The grammar of the groups section is as follows: 2184

groups:
 <group_defn_1>
 ...
 <group_defn_n>

3.8.2.5.2 Example 2185

The following example shows the definition of three Compute nodes in the node_templates section of a 2186

topology_template as well as the grouping of two of the Compute nodes in a group server_group_1. 2187

node_templates:
 server1:
 type: tosca.nodes.Compute
 # more details ...

 server2:
 type: tosca.nodes.Compute
 # more details ...

 server3:
 type: tosca.nodes.Compute
 # more details ...

groups:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 115 of 282

 # server2 and server3 are part of the same group
 server_group_1:
 type: tosca.groups.Root
 members: [server2, server3]

3.8.2.6 policies 2188

The policies section allows for declaring policies that can be applied to entities in the topology template. 2189

3.8.2.6.1 Grammar 2190

The grammar of the policies section is as follows: 2191

policies:
 - <policy_defn_1>
 - ...
 - <policy_defn_n>

3.8.2.6.2 Example 2192

The following example shows the definition of a placement policy. 2193

policies:
 - my_placement_policy:
 type: mycompany.mytypes.policy.placement

3.8.2.7 Notes 2194

 The parameters (properties) that are listed as part of the inputs block can be mapped to 2195

PropertyMappings provided as part of BoundaryDefinitions as described by the TOSCA v1.0 2196

specification. 2197

 The node templates listed as part of the node_templates block can be mapped to the list of 2198

NodeTemplate definitions provided as part of TopologyTemplate of a ServiceTemplate as 2199

described by the TOSCA v1.0 specification. 2200

 The relationship templates listed as part of the relationship_templates block can be mapped 2201

to the list of RelationshipTemplate definitions provided as part of TopologyTemplate of a 2202

ServiceTemplate as described by the TOSCA v1.0 specification. 2203

 The output parameters that are listed as part of the outputs section of a topology template can 2204

be mapped to PropertyMappings provided as part of BoundaryDefinitions as described by 2205

the TOSCA v1.0 specification. 2206

o Note, however, that TOSCA v1.0 does not define a direction (input vs. output) for those 2207

mappings, i.e. TOSCA v1.0 PropertyMappings are underspecified in that respect and 2208

TOSCA Simple Profile’s inputs and outputs provide a more concrete definition of input 2209

and output parameters. 2210

3.9 Service Template definition 2211

A TOSCA Service Template (YAML) document contains element definitions of building blocks for cloud 2212
application, or complete models of cloud applications. This section describes the top-level structural 2213
elements (TOSCA keynames) along with their grammars, which are allowed to appear in a TOSCA 2214
Service Template document. 2215

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 116 of 282

3.9.1 Keynames 2216

The following is the list of recognized keynames for a TOSCA Service Template definition: 2217

Keyname Required Type Description

tosca_definitions_versio
n

yes string Defines the version of the TOSCA Simple Profile specification
the template (grammar) complies with.

metadata no map of string Defines a section used to declare additional metadata
information. Domain-specific TOSCA profile specifications
may define keynames that are required for their
implementations.

description no description Declares a description for this Service Template and its
contents.

dsl_definitions no N/A Declares optional DSL-specific definitions and conventions.
For example, in YAML, this allows defining reusable YAML
macros (i.e., YAML alias anchors) for use throughout the
TOSCA Service Template.

repositories no list of
Repository
definitions

Declares the list of external repositories which contain
artifacts that are referenced in the service template along
with their addresses and necessary credential information
used to connect to them in order to retrieve the artifacts.

imports no list of
Import
Definitions

Declares import statements external TOSCA Definitions
documents. For example, these may be file location or URIs
relative to the service template file within the same TOSCA
CSAR file.

artifact_types no list of
Artifact Types

This section contains an optional list of artifact type
definitions for use in the service template

data_types no list of
Data Types

Declares a list of optional TOSCA Data Type definitions.

capability_types no list of
Capability
Types

This section contains an optional list of capability type
definitions for use in the service template.

interface_types no list of
Interface
Types

This section contains an optional list of interface type
definitions for use in the service template.

relationship_types no list of
Relationship
Types

This section contains a set of relationship type definitions for
use in the service template.

node_types no list of
Node Types

This section contains a set of node type definitions for use in
the service template.

group_types no list of
Group Types

This section contains a list of group type definitions for use in
the service template.

policy_types no list of
Policy Types

This section contains a list of policy type definitions for use in
the service template.

topology_template no Topology
Template
definition

Defines the topology template of an application or service,
consisting of node templates that represent the application’s
or service’s components, as well as relationship templates
representing relations between the components.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 117 of 282

3.9.1.1 Metadata keynames 2218

The following is the list of recognized metadata keynames for a TOSCA Service Template definition: 2219

Keyname Required Type Description

template_name no string Declares a descriptive name for the template.

template_author no string Declares the author(s) or owner of the template.

template_version no string Declares the version string for the template.

3.9.2 Grammar 2220

The overall structure of a TOSCA Service Template and its top-level key collations using the TOSCA 2221
Simple Profile is shown below: 2222

tosca_definitions_version: # Required TOSCA Definitions version string

Optional metadata keyname: value pairs
metadata:
 template_name: <value> # Optional name of this service template
 template_author: <value> # Optional author of this service template
 template_version: <value> # Optional version of this service template
 # Optional list of domain or profile specific metadata keynames

Optional description of the definitions inside the file.
description: <template_type_description>

dsl_definitions:
 # list of YAML alias anchors (or macros)

repositories:
 # list of external repository definitions which host TOSCA artifacts

imports:
 # ordered list of import definitions

artifact_types:
 # list of artifact type definitions

data_types:
 # list of datatype definitions

capability_types:
 # list of capability type definitions

interface_types
 # list of interface type definitions

relationship_types:
 # list of relationship type definitions

node_types:
 # list of node type definitions

group_types:
 # list of group type definitions

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 118 of 282

policy_types:
 # list of policy type definitions

topology_template:
 # topology template definition of the cloud application or service

3.9.2.1 Notes 2223

 TOSCA Service Templates do not have to contain a topology_template and MAY contain simply 2224

type definitions (e.g., Artifact, Interface, Capability, Node, Relationship Types, etc.) and be 2225

imported for use as type definitions in other TOSCA Service Templates. 2226

3.9.3 Top-level keyname definitions 2227

3.9.3.1 tosca_definitions_version 2228

This required element provides a means to include a reference to the TOSCA Simple Profile specification 2229
within the TOSCA Definitions YAML file. It is an indicator for the version of the TOSCA grammar that 2230
should be used to parse the remainder of the document. 2231

3.9.3.1.1 Keyname 2232

tosca_definitions_version

3.9.3.1.2 Grammar 2233

Single-line form: 2234

tosca_definitions_version: <tosca_simple_profile_version>

3.9.3.1.3 Examples: 2235

TOSCA Simple Profile version 1.0 specification using the defined namespace alias (see Section 3.1): 2236

tosca_definitions_version: tosca_simple_yaml_1_0

TOSCA Simple Profile version 1.0 specification using the fully defined (target) namespace (see Section 2237
3.1): 2238

tosca_definitions_version: http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0

3.9.3.2 metadata 2239

This keyname is used to associate domain-specific metadata with the Service Template. The metadata 2240
keyname allows a declaration of a map of keynames with string values. 2241

3.9.3.2.1 Keyname 2242

metadata

3.9.3.2.2 Grammar 2243

metadata:
 <map_of_string_values>

http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 119 of 282

3.9.3.2.3 Example 2244

metadata:
 creation_date: 2015-04-14
 date_updated: 2015-05-01
 status: developmental

 2245

3.9.3.3 template_name 2246

This optional metadata keyname can be used to declare the name of service template as a single-line 2247
string value. 2248

3.9.3.3.1 Keyname 2249

template_name

3.9.3.3.2 Grammar 2250

template_name: <name string>

3.9.3.3.3 Example 2251

template_name: My service template

3.9.3.3.4 Notes 2252

 Some service templates are designed to be referenced and reused by other service templates. 2253

Therefore, in these cases, the template_name value SHOULD be designed to be used as a 2254

unique identifier through the use of namespacing techniques. 2255

3.9.3.4 template_author 2256

This optional metadata keyname can be used to declare the author(s) of the service template as a single-2257
line string value. 2258

3.9.3.4.1 Keyname 2259

template_author

3.9.3.4.2 Grammar 2260

template_author: <author string>

3.9.3.4.3 Example 2261

template_author: My service template

3.9.3.5 template_version 2262

This optional metadata keyname can be used to declare a domain specific version of the service template 2263
as a single-line string value. 2264

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 120 of 282

3.9.3.5.1 Keyname 2265

template_version

3.9.3.5.2 Grammar 2266

template_version: <version>

3.9.3.5.3 Example 2267

template_version: 2.0.17

3.9.3.5.4 Notes: 2268

 Some service templates are designed to be referenced and reused by other service templates 2269

and have a lifecycle of their own. Therefore, in these cases, a template_version value 2270

SHOULD be included and used in conjunction with a unique template_name value to enable 2271

lifecycle management of the service template and its contents. 2272

3.9.3.6 description 2273

This optional keyname provides a means to include single or multiline descriptions within a TOSCA 2274
Simple Profile template as a scalar string value. 2275

3.9.3.6.1 Keyname 2276

description

3.9.3.7 dsl_definitions 2277

This optional keyname provides a section to define macros (e.g., YAML-style macros when using the 2278
TOSCA Simple Profile in YAML specification). 2279

3.9.3.7.1 Keyname 2280

dsl_definitions

3.9.3.7.2 Grammar 2281

dsl_definitions:
 <dsl_definition_1>
 ...
 <dsl_definition_n>

3.9.3.7.3 Example 2282

dsl_definitions:
 ubuntu_image_props: &ubuntu_image_props
 architecture: x86_64
 type: linux
 distribution: ubuntu
 os_version: 14.04

 redhat_image_props: &redhat_image_props
 architecture: x86_64

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 121 of 282

 type: linux
 distribution: rhel
 os_version: 6.6

3.9.3.8 repositories 2283

This optional keyname provides a section to define external repositories which may contain artifacts or 2284
other TOSCA Service Templates which might be referenced or imported by the TOSCA Service Template 2285
definition. 2286

3.9.3.8.1 Keyname 2287

repositories

3.9.3.8.2 Grammar 2288

repositories:
 <repository_definition_1>
 ...
 <repository_definition_n>

3.9.3.8.3 Example 2289

repositories:
 my_project_artifact_repo:
 description: development repository for TAR archives and Bash scripts
 url: http://mycompany.com/repository/myproject/

3.9.3.9 imports 2290

This optional keyname provides a way to import a block sequence of one or more TOSCA Definitions 2291
documents. TOSCA Definitions documents can contain reusable TOSCA type definitions (e.g., Node 2292
Types, Relationship Types, Artifact Types, etc.) defined by other authors. This mechanism provides an 2293
effective way for companies and organizations to define normative types and/or describe their software 2294
applications for reuse in other TOSCA Service Templates. 2295

3.9.3.9.1 Keyname 2296

imports

3.9.3.9.2 Grammar 2297

imports:
 - <import_definition_1>
 - ...
 - <import_definition_n>

3.9.3.9.3 Example 2298

An example import of definitions files from a location relative to the
file location of the service template declaring the import.
imports:
 - some_definitions: relative_path/my_defns/my_typesdefs_1.yaml
 - file: my_defns/my_typesdefs_n.yaml
 repository: my_company_repo

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 122 of 282

 namespace_uri: http://mycompany.com/ns/tosca/2.0
 namespace_prefix: mycompany

3.9.3.10 artifact_types 2299

This optional keyname lists the Artifact Types that are defined by this Service Template. 2300

3.9.3.10.1 Keyname 2301

artifact_types

3.9.3.10.2 Grammar 2302

artifact_types:
 <artifact_type_defn_1>
 ...
 <artifact type_defn_n>

3.9.3.10.3 Example 2303

artifact_types:
 mycompany.artifacttypes.myFileType:
 derived_from: tosca.artifacts.File

3.9.3.11 data_types 2304

This optional keyname provides a section to define new data types in TOSCA. 2305

3.9.3.11.1 Keyname 2306

data_types

3.9.3.11.2 Grammar 2307

data_types:
 <tosca_datatype_def_1>
 ...
 <tosca_datatype_def_n>

3.9.3.11.3 Example 2308

data_types:
 # A complex datatype definition
 simple_contactinfo_type:
 properties:
 name:
 type: string
 email:
 type: string
 phone:
 type: string

 # datatype definition derived from an existing type
 full_contact_info:
 derived_from: simple_contact_info

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 123 of 282

 properties:
 street_address:
 type: string
 city:
 type: string
 state:
 type: string
 postalcode:
 type: string

3.9.3.12 capability_types 2309

This optional keyname lists the Capability Types that provide the reusable type definitions that can be 2310
used to describe features Node Templates or Node Types can declare they support. 2311

3.9.3.12.1 Keyname 2312

capability_types

3.9.3.12.2 Grammar 2313

capability_types:
 <capability_type_defn_1>
 ...
 <capability type_defn_n>

3.9.3.12.3 Example 2314

capability_types:
 mycompany.mytypes.myCustomEndpoint:
 derived_from: tosca.capabilities.Endpoint
 properties:
 # more details ...

 mycompany.mytypes.myCustomFeature:
 derived_from: tosca.capabilities.Feature
 properties:
 # more details ...

3.9.3.13 interface_types 2315

This optional keyname lists the Interface Types that provide the reusable type definitions that can be used 2316
to describe operations for on TOSCA entities such as Relationship Types and Node Types. 2317

3.9.3.13.1 Keyname 2318

interface_types

3.9.3.13.2 Grammar 2319

interface_types:
 <interface_type_defn_1>
 ...
 <interface type_defn_n>

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 124 of 282

3.9.3.13.3 Example 2320

interface_types:
 mycompany.interfaces.service.Signal:
 signal_begin_receive:
 description: Operation to signal start of some message processing.
 signal_end_receive:
 description: Operation to signal end of some message processed.

3.9.3.14 relationship_types 2321

This optional keyname lists the Relationship Types that provide the reusable type definitions that can be 2322
used to describe dependent relationships between Node Templates or Node Types. 2323

3.9.3.14.1 Keyname 2324

relationship_types

3.9.3.14.2 Grammar 2325

relationship_types:
 <relationship_type_defn_1>
 ...
 <relationship type_defn_n>

3.9.3.14.3 Example 2326

relationship_types:
 mycompany.mytypes.myCustomClientServerType:
 derived_from: tosca.relationships.HostedOn
 properties:
 # more details ...

 mycompany.mytypes.myCustomConnectionType:
 derived_from: tosca.relationships.ConnectsTo
 properties:
 # more details ...

3.9.3.15 node_types 2327

This optional keyname lists the Node Types that provide the reusable type definitions for software 2328
components that Node Templates can be based upon. 2329

3.9.3.15.1 Keyname 2330

node_types

3.9.3.15.2 Grammar 2331

node_types:
 <node_type_defn_1>
 ...
 <node_type_defn_n>

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 125 of 282

3.9.3.15.3 Example 2332

node_types:
 my_webapp_node_type:
 derived_from: WebApplication
 properties:
 my_port:
 type: integer

 my_database_node_type:
 derived_from: Database
 capabilities:
 mytypes.myfeatures.transactSQL

3.9.3.15.4 Notes 2333

 The node types listed as part of the node_types block can be mapped to the list of NodeType 2334

definitions as described by the TOSCA v1.0 specification. 2335

3.9.3.16 group_types 2336

This optional keyname lists the Group Types that are defined by this Service Template. 2337

3.9.3.16.1 Keyname 2338

group_types

3.9.3.16.2 Grammar 2339

group_types:
 <group_type_defn_1>
 ...
 <group type_defn_n>

3.9.3.16.3 Example 2340

group_types:
 mycompany.mytypes.myScalingGroup:
 derived_from: tosca.groups.Root

3.9.3.17 policy_types 2341

This optional keyname lists the Policy Types that are defined by this Service Template. 2342

3.9.3.17.1 Keyname 2343

policy_types

3.9.3.17.2 Grammar 2344

policy_types:
 <policy_type_defn_1>
 ...
 <policy type_defn_n>

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 126 of 282

3.9.3.17.3 Example 2345

policy_types:
 mycompany.mytypes.myScalingPolicy:
 derived_from: tosca.policies.Scaling

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 127 of 282

4 TOSCA functions 2346

Except for the examples, this section is normative and includes functions that are supported for use 2347
within a TOSCA Service Template. 2348

4.1 Reserved Function Keywords 2349

The following keywords MAY be used in some TOSCA function in place of a TOSCA Node or 2350
Relationship Template name. A TOSCA orchestrator will interpret them at the time the function would be 2351
evaluated at runtime as described in the table below. Note that some keywords are only valid in the 2352
context of a certain TOSCA entity as also denoted in the table. 2353

 2354

Keyword Valid Contexts Description

SELF Node Template or
Relationship Template

A TOSCA orchestrator will interpret this keyword as the Node or Relationship
Template instance that contains the function at the time the function is
evaluated.

SOURCE Relationship Template only. A TOSCA orchestrator will interpret this keyword as the Node Template
instance that is at the source end of the relationship that contains the
referencing function.

TARGET Relationship Template only. A TOSCA orchestrator will interpret this keyword as the Node Template
instance that is at the target end of the relationship that contains the
referencing function.

HOST Node Template only A TOSCA orchestrator will interpret this keyword to refer to the all nodes that
“host” the node using this reference (i.e., as identified by its HostedOn
relationship).

Specifically, TOSCA orchestrators that encounter this keyword when

evaluating the get_attribute or get_property functions SHALL
search each node along the “HostedOn” relationship chain starting at the
immediate node that hosts the node where the function was evaluated (and
then that node’s host node, and so forth) until a match is found or the
“HostedOn” relationship chain ends.

 2355

4.2 Environment Variable Conventions 2356

4.2.1 Reserved Environment Variable Names and Usage 2357

TOSCA orchestrators utilize certain reserved keywords in the execution environments that 2358
implementation artifacts for Node or Relationship Templates operations are executed in. They are used to 2359
provide information to these implementation artifacts such as the results of TOSCA function evaluation or 2360
information about the instance model of the TOSCA application 2361

 2362

The following keywords are reserved environment variable names in any TOSCA supported execution 2363
environment: 2364

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 128 of 282

Keyword Valid Contexts Description

TARGETS Relationship Template
only.

 For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, is used to supply a list of
Node Template instances in a TOSCA application’s instance
model that are currently target of the context relationship.

 The value of this environment variable will be a comma-separated
list of identifiers of the single target node instances (i.e., the
tosca_id attribute of the node).

TARGET Relationship Template
only.

 For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, identifies a Node Template
instance in a TOSCA application’s instance model that is a target
of the context relationship, and which is being acted upon in the
current operation.

 The value of this environment variable will be the identifier of the
single target node instance (i.e., the tosca_id attribute of the

node).

SOURCES Relationship Template
only.

 For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, is used to supply a list of
Node Template instances in a TOSCA application’s instance
model that are currently source of the context relationship.

 The value of this environment variable will be a comma-separated
list of identifiers of the single source node instances (i.e., the
tosca_id attribute of the node).

SOURCE Relationship Template
only.

 For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, identifies a Node Template
instance in a TOSCA application’s instance model that is a source
of the context relationship, and which is being acted upon in the
current operation.

 The value of this environment variable will be the identifier of the
single source node instance (i.e., the tosca_id attribute of the

node).

 2365

For scripts (or implementation artifacts in general) that run in the context of relationship operations, select 2366
properties and attributes of both the relationship itself as well as select properties and attributes of the 2367
source and target node(s) of the relationship can be provided to the environment by declaring respective 2368
operation inputs. 2369

 2370

Declared inputs from mapped properties or attributes of the source or target node (selected via the 2371

SOURCE or TARGET keyword) will be provided to the environment as variables having the exact same name 2372
as the inputs. In addition, the same values will be provided for the complete set of source or target nodes, 2373

however prefixed with the ID if the respective nodes. By means of the SOURCES or TARGETS variables 2374
holding the complete set of source or target node IDs, scripts will be able to iterate over corresponding 2375
inputs for each provided ID prefix. 2376

 2377

The following example snippet shows an imaginary relationship definition from a load-balancer node to 2378

worker nodes. A script is defined for the add_target operation of the Configure interface of the 2379

relationship, and the ip_address attribute of the target is specified as input to the script: 2380

 2381

node_templates:
 load_balancer:
 type: some.vendor.LoadBalancer
 requirements:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 129 of 282

 - member:
 relationship: some.vendor.LoadBalancerToMember
 interfaces:
 Configure:
 add_target:
 inputs:
 member_ip: { get_attribute: [TARGET, ip_address] }
 implementation: scripts/configure_members.py

The add_target operation will be invoked, whenever a new target member is being added to the load-2382

balancer. With the above inputs declaration, a member_ip environment variable that will hold the IP 2383

address of the target being added will be provided to the configure_members.py script. In addition, the 2384
IP addresses of all current load-balancer members will be provided as environment variables with a 2385

naming scheme of <target node ID>_member_ip. This will allow, for example, scripts that always just 2386
write the complete list of load-balancer members into a configuration file to do so instead of updating 2387
existing list, which might be more complicated. 2388

Assuming that the TOSCA application instance includes five load-balancer members, node1 through 2389

node5, where node5 is the current target being added, the following environment variables (plus 2390
potentially more variables) would be provided to the script: 2391

the ID of the current target and the IDs of all targets
TARGET=node5
TARGETS=node1,node2,node3,node4,node5

the input for the current target and the inputs of all targets
member_ip=10.0.0.5
node1_member_ip=10.0.0.1
node2_member_ip=10.0.0.2
node3_member_ip=10.0.0.3
node4_member_ip=10.0.0.4
node5_member_ip=10.0.0.5

With code like shown in the snippet below, scripts could then iterate of all provided member_ip inputs: 2392

#!/usr/bin/python
import os

targets = os.environ['TARGETS'].split(',')

for t in targets:
 target_ip = os.environ.get('%s_member_ip' % t)
 # do something with target_ip ...

4.2.2 Prefixed vs. Unprefixed TARGET names 2393

The list target node types assigned to the TARGETS key in an execution environment would have names 2394
prefixed by unique IDs that distinguish different instances of a node in a running model Future drafts of 2395
this specification will show examples of how these names/IDs will be expressed. 2396

4.2.2.1 Notes 2397

 Target of interest is always un-prefixed. Prefix is the target opaque ID. The IDs can be used to 2398

find the environment var. for the corresponding target. Need an example here. 2399

 If you have one node that contains multiple targets this would also be used (add or remove target 2400

operations would also use this you would get set of all current targets). 2401

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 130 of 282

4.3 Intrinsic functions 2402

These functions are supported within the TOSCA template for manipulation of template data. 2403

4.3.1 concat 2404

The concat function is used to concatenate two or more string values within a TOSCA service template. 2405

4.3.1.1 Grammar 2406

concat: [<string_value_expressions_*>]

4.3.1.2 Parameters 2407

Parameter Required Type Description

<string_value_expressions_*> yes list of
string or
string value
expressions

A list of one or more strings (or expressions that
result in a string value) which can be concatenated
together into a single string.

4.3.1.3 Examples 2408

outputs:
 description: Concatenate the URL for a server from other template values
 server_url:
 value: { concat: ['http://',
 get_attribute: [server, public_address],
 ':',
 get_attribute: [server, port]] }

4.3.2 token 2409

The token function is used within a TOSCA service template on a string to parse out (tokenize) 2410

substrings separated by one or more token characters within a larger string. 2411

4.3.2.1 Grammar 2412

token: [<string_with_tokens>, <string_of_token_chars>, <substring_index>]

4.3.2.2 Parameters 2413

Parameter Required Type Description

string_with_tokens yes string The composite string that contains one or more substrings
separated by token characters.

string_of_token_chars yes string The string that contains one or more token characters that
separate substrings within the composite string.

substring_index yes integer The integer indicates the index of the substring to return from
the composite string. Note that the first substring is denoted by
using the ‘0’ (zero) integer value.

4.3.2.3 Examples 2414

outputs:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 131 of 282

 webserver_port:
 description: the port provided at the end of my server’s endpoint’s IP
address
 value: { token: [get_attribute: [my_server, data_endpoint, ip_address],
 ‘:’,
 1] }

4.4 Property functions 2415

These functions are used within a service template to obtain property values from property definitions 2416
declared elsewhere in the same service template. These property definitions can appear either directly in 2417
the service template itself (e.g., in the inputs section) or on entities (e.g., node or relationship templates) 2418
that have been modeled within the template. 2419

 2420

Note that the get_input and get_property functions may only retrieve the static values of property 2421

definitions of a TOSCA application as defined in the TOSCA Service Template. The get_attribute 2422
function should be used to retrieve values for attribute definitions (or property definitions reflected as 2423
attribute definitions) from the runtime instance model of the TOSCA application (as realized by the 2424
TOSCA orchestrator). 2425

4.4.1 get_input 2426

The get_input function is used to retrieve the values of properties declared within the inputs section of 2427

a TOSCA Service Template. 2428

4.4.1.1 Grammar 2429

get_input: <input_property_name>

4.4.1.2 Parameters 2430

Parameter Required Type Description

<input_property_name> yes string The name of the property as defined in the inputs section of the service
template.

4.4.1.3 Examples 2431

inputs:
 cpus:
 type: integer

node_templates:
 my_server:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties:
 num_cpus: { get_input: cpus }

4.4.2 get_property 2432

The get_property function is used to retrieve property values between modelable entities defined in the 2433

same service template. 2434

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 132 of 282

4.4.2.1 Grammar 2435

get_property: [<modelable_entity_name>, <optional_req_or_cap_name>,
<property_name>, <nested_property_name_or_index_1>, ...,
<nested_property_name_or_index_n>]

4.4.2.2 Parameters 2436

Parameter Required Type Description

<modelable entity
name> | SELF |
SOURCE | TARGET |
HOST

yes string The required name of a modelable entity (e.g., Node Template or
Relationship Template name) as declared in the service template
that contains the named property definition the function will
return the value from. See section B.1 for valid keywords.

<optional_req_or_cap
_name>

no string The optional name of the requirement or capability name within

the modelable entity (i.e., the <modelable_entity_name>
which contains the named property definition the function will
return the value from.

Note: If the property definition is located in the modelable entity
directly, then this parameter MAY be omitted.

<property_name> yes string The name of the property definition the function will return the
value from.

<nested_property_nam
e_or_index_*>

no string|
integer

Some TOSCA properties are complex (i.e., composed as nested
structures). These parameters are used to dereference into the
names of these nested structures when needed.

Some properties represent list types. In these cases, an index
may be provided to reference a specific entry in the list (as
named in the previous parameter) to return.

4.4.2.3 Examples 2437

The following example shows how to use the get_property function with an actual Node Template 2438
name: 2439

node_templates:

 mysql_database:
 type: tosca.nodes.Database
 properties:
 name: sql_database1

 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 ...
 interfaces:
 Standard:
 configure:
 inputs:
 wp_db_name: { get_property: [mysql_database, name] }

The following example shows how to use the get_property function using the SELF keyword: 2440

node_templates:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 133 of 282

 mysql_database:
 type: tosca.nodes.Database
 ...
 capabilities:
 database_endpoint:
 properties:
 port: 3306

 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 requirements:
 ...
 - database_endpoint: mysql_database
 interfaces:
 Standard:
 create: wordpress_install.sh
 configure:
 implementation: wordpress_configure.sh
 inputs:
 ...
 wp_db_port: { get_property: [SELF, database_endpoint, port] }

The following example shows how to use the get_property function using the TARGET keyword: 2441

relationship_templates:
 my_connection:
 type: ConnectsTo
 interfaces:
 Configure:
 inputs:
 targets_value: { get_property: [TARGET, value] }

4.5 Attribute functions 2442

These functions (attribute functions) are used within an instance model to obtain attribute values from 2443
instances of nodes and relationships that have been created from an application model described in a 2444
service template. The instances of nodes or relationships can be referenced by their name as assigned 2445
in the service template or relative to the context where they are being invoked. 2446

4.5.1 get_attribute 2447

The get_attribute function is used to retrieve the values of named attributes declared by the 2448

referenced node or relationship template name. 2449

4.5.1.1 Grammar 2450

get_attribute: [<modelable_entity_name>, <optional_req_or_cap_name>,
<attribute_name>, <nested_attribute_name_or_index_1>, ...,
<nested_attribute_name_or_index_n>]

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 134 of 282

4.5.1.2 Parameters 2451

Parameter Required Type Description

<modelable entity
name> | SELF |
SOURCE | TARGET |
HOST

yes string The required name of a modelable entity (e.g., Node Template
or Relationship Template name) as declared in the service
template that contains the named attribute definition the
function will return the value from. See section B.1 for valid
keywords.

<optional_req_or_cap
_name>

no string The optional name of the requirement or capability name within

the modelable entity (i.e., the <modelable_entity_name>
which contains the named attribute definition the function will
return the value from.

Note: If the attribute definition is located in the modelable
entity directly, then this parameter MAY be omitted.

<attribute_name> yes string The name of the attribute definition the function will return the
value from.

<nested_attribute_na
me_or_index_*>

no string|
integer

Some TOSCA attributes are complex (i.e., composed as nested
structures). These parameters are used to dereference into the
names of these nested structures when needed.

Some attributes represent list types. In these cases, an index
may be provided to reference a specific entry in the list (as
named in the previous parameter) to return.

4.5.1.3 Examples: 2452

The attribute functions are used in the same way as the equivalent Property functions described above. 2453
Please see their examples and replace “get_property” with “get_attribute” function name. 2454

4.5.1.4 Notes 2455

These functions are used to obtain attributes from instances of node or relationship templates by the 2456
names they were given within the service template that described the application model (pattern). 2457

 These functions only work when the orchestrator can resolve to a single node or relationship 2458
instance for the named node or relationship. This essentially means this is acknowledged to work 2459
only when the node or relationship template being referenced from the service template has a 2460
cardinality of 1 (i.e., there can only be one instance of it running). 2461

4.6 Operation functions 2462

These functions are used within an instance model to obtain values from interface operations. These can 2463
be used in order to set an attribute of a node instance at runtime or to pass values from one operation to 2464
another. 2465

4.6.1 get_operation_output 2466

The get_operation_output function is used to retrieve the values of variables exposed / exported from 2467

an interface operation. 2468

4.6.1.1 Grammar 2469

get_operation_output: <modelable_entity_name>, <interface_name>,
<operation_name>, <output_variable_name>

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 135 of 282

4.6.1.2 Parameters 2470

Parameter Required Type Description

<modelable entity
name> | SELF |
SOURCE | TARGET

yes string The required name of a modelable entity (e.g., Node Template or
Relationship Template name) as declared in the service template
that implements the named interface and operation.

<interface_name> Yes string The required name of the interface which defines the operation.

<operation_name> yes string The required name of the operation whose value we would like to
retrieve.

<output_variable_na
me>

Yes string The required name of the variable that is exposed / exported by
the operation.

4.6.1.3 Notes 2471

 If operation failed, then ignore its outputs. Orchestrators should allow orchestrators to continue 2472

running when possible past deployment in the lifecycle. For example, if an update fails, the 2473

application should be allowed to continue running and some other method would be used to alert 2474

administrators of the failure. 2475

4.7 Navigation functions 2476

 This version of the TOSCA Simple Profile does not define any model navigation functions. 2477

4.7.1 get_nodes_of_type 2478

The get_nodes_of_type function can be used to retrieve a list of all known instances of nodes of the 2479

declared Node Type. 2480

4.7.1.1 Grammar 2481

get_nodes_of_type: <node_type_name>

4.7.1.2 Parameters 2482

Parameter Required Type Description

<node_type_name> yes string The required name of a Node Type that a TOSCA orchestrator
would use to search a running application instance in order to
return all unique, named node instances of that type.

4.7.1.3 Returns 2483

Return Key Type Description

TARGETS <see
above>

The list of node instances from the current application instance that match

the node_type_name supplied as an input parameter of this function.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 136 of 282

4.8 Artifact functions 2484

4.8.1 get_artifact 2485

The get_artifact function is used to retrieve artifact location between modelable entities defined in the 2486

same service template. 2487

4.8.1.1 Grammar 2488

get_artifact: [<modelable_entity_name>, <artifact_name>, <location>, <remove>]

4.8.1.2 Parameters 2489

Parameter Required Type Description

<modelable entity
name> | SELF |
SOURCE | TARGET |
HOST

yes string The required name of a modelable entity (e.g., Node Template or
Relationship Template name) as declared in the service template
that contains the named property definition the function will
return the value from. See section B.1 for valid keywords.

<artifact_name> yes string The name of the artifact definition the function will return the
value from.

<location> |
LOCAL_FILE

no string Location value must be either a valid path e.g. ‘/etc/var/my_file’

or ‘LOCAL_FILE’.

If the value is LOCAL_FILE the orchestrator is responsible for

providing a path as the result of the get_artifact call where
the artifact file can be accessed. The orchestrator will also remove
the artifact from this location at the end of the operation.

If the location is a path specified by the user the orchestrator is
responsible to copy the artifact to the specified location. The
orchestrator will return the path as the value of the

get_artifact function and leave the file here after the
execution of the operation.

remove no boolean Boolean flag to override the orchestrator default behavior so it
will remove or not the artifact at the end of the operation
execution.

If not specified the removal will depends of the location e.g.

removes it in case of ‘LOCAL_FILE’ and keeps it in case of a
path.

If true the artifact will be removed by the orchestrator at the end
of the operation execution, if false it will not be removed.

4.8.1.3 Examples 2490

The following example uses a snippet of a WordPress [WordPress] web application to show how to use 2491
the get_artifact function with an actual Node Template name: 2492

4.8.1.3.1 Example: Retrieving artifact without specified location 2493

node_templates:

 wordpress:
 type: tosca.nodes.WebApplication.WordPress

file:///C:/Users/IBM_AD~1/AppData/Local/Temp/TOSCA_get_artifact_proposal-1.docx%23TYPE_YAML_STRING
file:///C:/Users/IBM_AD~1/AppData/Local/Temp/TOSCA_get_artifact_proposal-1.docx%23TYPE_YAML_STRING

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 137 of 282

 ...
 interfaces:
 Standard:
 configure:
 create:
 implementation: wordpress_install.sh
 inputs
 wp_zip: { get_artifact: [SELF, zip] }
 artifacts:
 zip: /data/wordpress.zip

In such implementation the TOSCA orchestrator may provide the wordpress.zip archive as 2494

 a local URL (example: file://home/user/wordpress.zip) or 2495

 a remote one (example: http://cloudrepo:80/files/wordpress.zip) where some orchestrator 2496
may indeed provide some global artifact repository management features. 2497

4.8.1.3.2 Example: Retrieving artifact as a local path 2498

The following example explains how to force the orchestrator to copy the file locally before calling the 2499
operation’s implementation script: 2500

 2501

node_templates:

 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 ...
 interfaces:
 Standard:
 configure:
 create:
 implementation: wordpress_install.sh
 inputs
 wp_zip: { get_artifact: [SELF, zip, LOCAL_FILE] }
 artifacts:
 zip: /data/wordpress.zip

In such implementation the TOSCA orchestrator must provide the wordpress.zip archive as a local path 2502
(example: /tmp/wordpress.zip) and will remove it after the operation is completed. 2503

4.8.1.3.3 Example: Retrieving artifact in a specified location 2504

The following example explains how to force the orchestrator to copy the file locally to a specific location 2505
before calling the operation’s implementation script : 2506

 2507

node_templates:

 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 ...
 interfaces:
 Standard:
 configure:
 create:
 implementation: wordpress_install.sh

file://///home/user/wordpress.zip
http://cloudrepo/files/wordpress.zip
file://///home/user/wordpress.zip

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 138 of 282

 inputs
 wp_zip: { get_artifact: [SELF, zip, C:/wpdata/wp.zip] }
 artifacts:
 zip: /data/wordpress.zip

In such implementation the TOSCA orchestrator must provide the wordpress.zip archive as a local path 2508
(example: C:/wpdata/wp.zip) and will let it after the operation is completed. 2509

4.9 Context-based Entity names (global) 2510

Future versions of this specification will address methods to access entity names based upon the context 2511
in which they are declared or defined. 2512

4.9.1.1 Goals 2513

 Using the full paths of modelable entity names to qualify context with the future goal of a more 2514

robust get_attribute function: e.g., get_attribute(<context-based-entity-name>, <attribute name>) 2515

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 139 of 282

5 TOSCA normative type definitions 2516

Except for the examples, this section is normative and contains normative type definitions which 2517

must be supported for conformance to this specification. 2518

 2519

The declarative approach is heavily dependent of the definition of basic types that a declarative 2520

container must understand. The definition of these types must be very clear such that the 2521

operational semantics can be precisely followed by a declarative container to achieve the effects 2522

intended by the modeler of a topology in an interoperable manner. 2523

5.1 Assumptions 2524

 Assumes alignment with/dependence on XML normative types proposal for TOSCA v1.1 2525

 Assumes that the normative types will be versioned and the TOSCA TC will preserve backwards 2526

compatibility. 2527

 Assumes that security and access control will be addressed in future revisions or versions of this 2528

specification. 2529

5.2 TOSCA normative type names 2530

Every normative type has three names declared: 2531

1. Type URI – This is the unique identifying name for the type. 2532

a. These are reserved names within the TOSCA namespace. 2533

2. Shorthand Name – This is the shorter (simpler) name that can be used in place of its 2534

corresponding, full Type URI name. 2535

a. These are reserved names within TOSCA namespace that MAY be used in place of the 2536

full Type URI. 2537

b. Profiles of the OASIS TOSCA Simple Profile specifcaition SHALL assure non-collision of 2538

names for new types when they are introduced. 2539

c. TOSCA type designers SHOULD NOT create new types with names that would collide 2540

with any TOSCA normative type Shorthand Name. 2541

3. Type Qualified Name – This is a modified Shorthand Name that includes the “tosca:” 2542

namespace prefix which clearly qualifies it as being part of the TOSCA namespace. 2543

a. This name MAY be used to assure there is no collision when types are imported from 2544

other (non) TOSCA approved sources. 2545

5.2.1 Additional requirements 2546

 Case sensitivity - TOSCA Type URI, Shorthand and Type Qualified names SHALL be treated as 2547

case sensitive. 2548

o The case of each type name has been carefully selected by the TOSCA working group 2549

and TOSCA orchestrators and processors SHALL strictly recognize the name casing as 2550

specified in this specification or any of its approved profiles. 2551

5.3 Data Types 2552

5.3.1 tosca.datatypes.Root 2553

This is the default (root) TOSCA Root Type definition that all complex TOSCA Data Types derive from. 2554

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 140 of 282

5.3.1.1 Definition 2555

The TOSCA Root type is defined as follows: 2556

tosca.datatypes.Root:
 description: The TOSCA root Data Type all other TOSCA base Data Types derive
from

5.3.2 tosca.datatypes.Credential 2557

The Credential type is a complex TOSCA data Type used when describing authorization credentials used 2558
to access network accessible resources. 2559

Shorthand Name Credential

Type Qualified
Name

tosca:Credential

Type URI tosca.datatypes.Credential

5.3.2.1 Properties 2560

Name Required Type Constraints Description

protocol no string None The optional protocol name.

token_type yes string default:
password

The required token type.

token yes string None The required token used as a credential for
authorization or access to a networked resource.

keys no map of
string

None The optional list of protocol-specific keys or assertions.

user no string None The optional user (name or ID) used for non-token
based credentials.

5.3.2.2 Definition 2561

The TOSCA Credential type is defined as follows: 2562

tosca.datatypes.Credential:
 derived_from: tosca.datatypes.Root
 properties:
 protocol:
 type: string
 required: false
 token_type:
 type: string
 default: password
 token:
 type: string
 keys:
 type: map
 required: false
 entry_schema:
 type: string
 user:
 type: string

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 141 of 282

 required: false

5.3.2.3 Additional requirements 2563

 TOSCA Orchestrators SHALL interpret and validate the value of the token property based upon 2564

the value of the token_type property. 2565

5.3.2.4 Notes 2566

 Specific token types and encoding them using network protocols are not defined or covered in 2567

this specification. 2568

 The use of transparent user names (IDs) or passwords are not considered best practice. 2569

5.3.2.5 Examples 2570

5.3.2.5.1 Provide a simple user name and password without a protocol or 2571

standardized token format 2572

<some_tosca_entity>:
 properties:
 my_credential:
 type: Credential
 properties:
 user: myusername
 token: mypassword

5.3.2.5.2 HTTP Basic access authentication credential 2573

<some_tosca_entity>:
 properties:
 my_credential: # type: Credential
 protocol: http
 token_type: basic_auth
 # Username and password are combined into a string
 # Note: this would be base64 encoded before transmission by any impl.
 token: myusername:mypassword

5.3.2.5.3 X-Auth-Token credential 2574

<some_tosca_entity>:
 properties:
 my_credential: # type: Credential
 protocol: xauth
 token_type: X-Auth-Token
 # token encoded in Base64
 token: 604bbe45ac7143a79e14f3158df67091

5.3.2.5.4 OAuth bearer token credential 2575

<some_tosca_entity>:
 properties:
 my_credential: # type: Credential
 protocol: oauth2
 token_type: bearer

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 142 of 282

 # token encoded in Base64
 token: 8ao9nE2DEjr1zCsicWMpBC

5.3.2.6 OpenStack SSH Keypair 2576

<some_tosca_entity>:
 properties:
 my_ssh_keypair: # type: Credential
 protocol: ssh
 token_type: identifier
 # token is a reference (ID) to an existing keypair (already installed)
 token: <keypair_id>

 2577

5.3.3 tosca.datatypes.TimeInterval 2578

The TimeInterval type is a complex TOSCA data Type used when describing a period of time using the 2579
YAML ISO 8601 format to declare the start and end times. 2580

Shorthand Name TimeInterval

Type Qualified
Name

tosca:TimeInterval

Type URI tosca.datatypes.TimeInterval

5.3.3.1 Properties 2581

Name Required Type Constraints Description

start_time yes timestamp None The inclusive start time for the time interval.

end_time yes timestamp None The inclusive end time for the time interval.

5.3.3.2 Definition 2582

The TOSCA TimeInterval type is defined as follows: 2583

tosca.datatypes.TimeInterval:
 derived_from: tosca.datatypes.Root
 properties:
 start_time:
 type: timestamp
 required: true
 end_time:
 type: timestamp
 required: true

5.3.3.3 Examples 2584

5.3.3.3.1 Multi-day evaluation time period 2585

properties:
 description:
 evaluation_period: Evaluate a service for a 5-day period across time zones
 type: TimeInterval
 start_time: 2016-04-04-15T00:00:00Z

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 143 of 282

 end_time: 2016-04-08T21:59:43.10-06:00

5.3.4 tosca.datatypes.network.NetworkInfo 2586

The Network type is a complex TOSCA data type used to describe logical network information. 2587

Shorthand Name NetworkInfo

Type Qualified
Name

tosca:NetworkInfo

Type URI tosca.datatypes.network.NetworkInfo

5.3.4.1 Properties 2588

Name Type Constraints Description

network_name string None The name of the logical network.
e.g., “public”, “private”, “admin”. etc.

network_id string None The unique ID of for the network generated by the
network provider.

addresses string [] None The list of IP addresses assigned from the underlying
network.

5.3.4.2 Definition 2589

The TOSCA NetworkInfo data type is defined as follows: 2590

tosca.datatypes.network.NetworkInfo:
 derived_from: tosca.datatypes.Root
 properties:
 network_name:
 type: string
 network_id:
 type: string
 addresses:
 type: list
 entry_schema:
 type: string

5.3.4.3 Examples 2591

Example usage of the NetworkInfo data type: 2592

<some_tosca_entity>:
 properties:
 private_network:
 network_name: private
 network_id: 3e54214f-5c09-1bc9-9999-44100326da1b
 addresses: [10.111.128.10]

5.3.4.4 Additional Requirements 2593

 It is expected that TOSCA orchestrators MUST be able to map the network_name from the 2594

TOSCA model to underlying network model of the provider. 2595

 The properties (or attributes) of NetworkInfo may or may not be required depending on usage 2596

context. 2597

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 144 of 282

5.3.5 tosca.datatypes.network.PortInfo 2598

The PortInfo type is a complex TOSCA data type used to describe network port information. 2599

Shorthand Name PortInfo

Type Qualified
Name

tosca:PortInfo

Type URI tosca.datatypes.network.PortInfo

5.3.5.1 Properties 2600

Name Type Constraints Description

port_name string None The logical network port name.

port_id string None The unique ID for the network port generated by
the network provider.

network_id string None The unique ID for the network.

mac_address string None The unique media access control address (MAC
address) assigned to the port.

addresses string [] None The list of IP address(es) assigned to the port.

5.3.5.2 Definition 2601

The TOSCA PortInfo type is defined as follows: 2602

tosca.datatypes.network.PortInfo:
 derived_from: tosca.datatypes.Root
 properties:
 port_name:
 type: string
 port_id:
 type: string
 network_id:
 type: string
 mac_address:
 type: string
 addresses:
 type: list
 entry_schema:
 type: string

5.3.5.3 Examples 2603

Example usage of the PortInfo data type: 2604

ethernet_port:
 properties:
 port_name: port1
 port_id: 2c0c7a37-691a-23a6-7709-2d10ad041467
 network_id: 3e54214f-5c09-1bc9-9999-44100326da1b
 mac_address: f1:18:3b:41:92:1e
 addresses: [172.24.9.102]

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 145 of 282

5.3.5.4 Additional Requirements 2605

 It is expected that TOSCA orchestrators MUST be able to map the port_name from the TOSCA 2606

model to underlying network model of the provider. 2607

 The properties (or attributes) of PortInfo may or may not be required depending on usage context. 2608

5.3.6 tosca.datatypes.network.PortDef 2609

The PortDef type is a TOSCA data Type used to define a network port. 2610

Shorthand Name PortDef

Type Qualified
Name

tosca:PortDef

Type URI tosca.datatypes.network.PortDef

5.3.6.1 Definition 2611

The TOSCA PortDef type is defined as follows: 2612

tosca.datatypes.network.PortDef:
 derived_from: integer
 constraints:
 - in_range: [1, 65535]

5.3.6.2 Examples 2613

Simple usage of a PortDef property type: 2614

properties:
 listen_port: 9090

Example declaration of a property for a custom type based upon PortDef: 2615

properties:
 listen_port:
 type: PortDef
 default: 9000
 constraints:
 - in_range: [9000, 9090]

5.3.7 tosca.datatypes.network.PortSpec 2616

The PortSpec type is a complex TOSCA data Type used when describing port specifications for a 2617
network connection. 2618

Shorthand Name PortSpec

Type Qualified
Name

tosca:PortSpec

Type URI tosca.datatypes.network.PortSpec

5.3.7.1 Properties 2619

Name Required Type Constraints Description

protocol yes string default: tcp The required protocol used on the port.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 146 of 282

Name Required Type Constraints Description

source no PortDef See PortDef The optional source port.

source_range no range in_range: [1, 65536] The optional range for source port.

target no PortDef See PortDef The optional target port.

target_range no range in_range: [1, 65536] The optional range for target port.

5.3.7.2 Definition 2620

The TOSCA PortSpec type is defined as follows: 2621

tosca.datatypes.network.PortSpec:
 derived_from: tosca.datatypes.Root
 properties:
 protocol:
 type: string
 required: true
 default: tcp
 constraints:
 - valid_values: [udp, tcp, igmp]
 target:
 type: PortDef
 required: false
 target_range:
 type: range
 required: false
 constraints:
 - in_range: [1, 65535]
 source:
 type: PortDef
 required: false
 source_range:
 type: range
 required: false
 constraints:
 - in_range: [1, 65535]

5.3.7.3 Additional requirements 2622

 A valid PortSpec MUST have at least one of the following properties: target, target_range, 2623

source or source_range. 2624

 A valid PortSpec MUST have a value for the source property that is within the numeric range 2625

specified by the property source_range when source_range is specified. 2626

 A valid PortSpec MUST have a value for the target property that is within the numeric range 2627

specified by the property target_range when target_range is specified. 2628

5.3.7.4 Examples 2629

Example usage of the PortSpec data type: 2630

example properties in a node template
some_endpoint:
 properties:
 ports:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 147 of 282

 user_port:
 protocol: tcp
 target: 50000
 target_range: [20000, 60000]
 source: 9000
 source_range: [1000, 10000]

5.4 Artifact Types 2631

TOSCA Artifacts Types represent the types of packages and files used by the orchestrator when 2632
deploying TOSCA Node or Relationship Types or invoking their interfaces. Currently, artifacts are 2633
logically divided into three categories: 2634

 2635

 Deployment Types: includes those artifacts that are used during deployment (e.g., referenced 2636

on create and install operations) and include packaging files such as RPMs, ZIPs, or TAR files. 2637

 Implementation Types: includes those artifacts that represent imperative logic and are used to 2638

implement TOSCA Interface operations. These typically include scripting languages such as 2639

Bash (.sh), Chef [Chef] and Puppet [Puppet]. 2640

 Runtime Types: includes those artifacts that are used during runtime by a service or component 2641

of the application. This could include a library or language runtime that is needed by an 2642

application such as a PHP or Java library. 2643

 2644

Note: Additional TOSCA Artifact Types will be developed in future drafts of this specification. 2645

5.4.1 tosca.artifacts.Root 2646

This is the default (root) TOSCA Artifact Type definition that all other TOSCA base Artifact Types derive 2647
from. 2648

5.4.1.1 Definition 2649

tosca.artifacts.Root:
 description: The TOSCA Artifact Type all other TOSCA Artifact Types derive from

5.4.2 tosca.artifacts.File 2650

This artifact type is used when an artifact definition needs to have its associated file simply treated as a 2651
file and no special handling/handlers are invoked (i.e., it is not treated as either an implementation or 2652
deployment artifact type). 2653

Shorthand Name File

Type Qualified
Name

tosca:File

Type URI tosca.artifacts.File

5.4.2.1 Definition 2654

tosca.artifacts.File:
 derived_from: tosca.artifacts.Root

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 148 of 282

5.4.3 Deployment Types 2655

5.4.3.1 tosca.artifacts.Deployment 2656

This artifact type represents the parent type for all deployment artifacts in TOSCA. This class of artifacts 2657
typically represents a binary packaging of an application or service that is used to install/create or deploy 2658
it as part of a node’s lifecycle. 2659

5.4.3.1.1 Definition 2660

tosca.artifacts.Deployment:
 derived_from: tosca.artifacts.Root
 description: TOSCA base type for deployment artifacts

5.4.3.2 Additional Requirements 2661

 TOSCA Orchestrators MAY throw an error if it encounters a non-normative deployment artifact 2662

type that it is not able to process. 2663

5.4.3.3 tosca.artifacts.Deployment.Image 2664

This artifact type represents a parent type for any “image” which is an opaque packaging of a TOSCA 2665
Node’s deployment (whether real or virtual) whose contents are typically already installed and pre-2666
configured (i.e., “stateful”) and prepared to be run on a known target container. 2667

Shorthand Name Deployment.Image

Type Qualified
Name

tosca:Deployment.Image

Type URI tosca.artifacts.Deployment.Image

5.4.3.3.1 Definition 2668

tosca.artifacts.Deployment.Image:
 derived_from: tosca.artifacts.Deployment

5.4.3.4 tosca.artifacts.Deployment.Image.VM 2669

This artifact represents the parent type for all Virtual Machine (VM) image and container formatted 2670
deployment artifacts. These images contain a stateful capture of a machine (e.g., server) including 2671
operating system and installed software along with any configurations and can be run on another 2672
machine using a hypervisor which virtualizes typical server (i.e., hardware) resources. 2673

5.4.3.4.1 Definition 2674

tosca.artifacts.Deployment.Image.VM:
 derived_from: tosca.artifacts.Deployment.Image
 description: Virtual Machine (VM) Image

5.4.3.4.2 Notes 2675

 Future drafts of this specification may include popular standard VM disk image (e.g., ISO, VMI, 2676

VMDX, QCOW2, etc.) and container (e.g., OVF, bare, etc.) formats. These would include 2677

consideration of disk formats such as: 2678

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 149 of 282

5.4.4 Implementation Types 2679

5.4.4.1 tosca.artifacts.Implementation 2680

This artifact type represents the parent type for all implementation artifacts in TOSCA. These artifacts are 2681
used to implement operations of TOSCA interfaces either directly (e.g., scripts) or indirectly (e.g., config. 2682
files). 2683

5.4.4.1.1 Definition 2684

tosca.artifacts.Implementation:
 derived_from: tosca.artifacts.Root
 description: TOSCA base type for implementation artifacts

5.4.4.2 Additional Requirements 2685

 TOSCA Orchestrators MAY throw an error if it encounters a non-normative implementation 2686

artifact type that it is not able to process. 2687

5.4.4.3 tosca.artifacts.Implementation.Bash 2688

This artifact type represents a Bash script type that contains Bash commands that can be executed on 2689
the Unix Bash shell. 2690

Shorthand Name Bash

Type Qualified
Name

tosca:Bash

Type URI tosca.artifacts.Implementation.Bash

5.4.4.3.1 Definition 2691

tosca.artifacts.Implementation.Bash:
 derived_from: tosca.artifacts.Implementation
 description: Script artifact for the Unix Bash shell
 mime_type: application/x-sh
 file_ext: [sh]

5.4.4.4 tosca.artifacts.Implementation.Python 2692

This artifact type represents a Python file that contains Python language constructs that can be executed 2693
within a Python interpreter. 2694

Shorthand Name Python

Type Qualified
Name

tosca:Python

Type URI tosca.artifacts.Implementation.Python

5.4.4.4.1 Definition 2695

tosca.artifacts.Implementation.Python:
 derived_from: tosca.artifacts.Implementation
 description: Artifact for the interpreted Python language
 mime_type: application/x-python
 file_ext: [py]

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 150 of 282

5.5 Capabilities Types 2696

5.5.1 tosca.capabilities.Root 2697

This is the default (root) TOSCA Capability Type definition that all other TOSCA Capability Types derive 2698
from. 2699

5.5.1.1 Definition 2700

tosca.capabilities.Root:
 description: The TOSCA root Capability Type all other TOSCA base Capability
Types derive from

5.5.2 tosca.capabilities.Node 2701

The Node capability indicates the base capabilities of a TOSCA Node Type. 2702

Shorthand Name Node

Type Qualified
Name

tosca:Node

Type URI tosca.capabilities.Node

5.5.2.1 Definition 2703

tosca.capabilities.Node:
 derived_from: tosca.capabilities.Root

5.5.3 tosca.capabilities.Compute 2704

The Compute capability, when included on a Node Type or Template definition, indicates that the node 2705
can provide hosting on a named compute resource. 2706

Shorthand Name Compute

Type Qualified
Name

tosca:Compute

Type URI tosca.capabilities.Compute

5.5.3.1 Properties 2707

Name Required Type Constraints Description

name no string None The otional name (or identifier) of a specific
compute resource for hosting.

num_cpus no integer greater_or_equal:
1

Number of (actual or virtual) CPUs associated
with the Compute node.

cpu_frequency no scalar-
unit.frequency

greater_or_equal:
0.1 GHz

Specifies the operating frequency of CPU's core.
This property expresses the expected frequency
of one (1) CPU as provided by the property

“num_cpus”.

disk_size no scalar-
unit.size

greater_or_equal:
0 MB

Size of the local disk available to applications
running on the Compute node (default unit is
MB).

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 151 of 282

Name Required Type Constraints Description

mem_size no scalar-
unit.size

greater_or_equal:
0 MB

Size of memory available to applications running
on the Compute node (default unit is MB).

5.5.3.2 Definition 2708

tosca.capabilities.Compute:
 derived_from: tosca.capabilities.Root
 properties:
 name:
 type: string
 required: false
 num_cpus:
 type: integer
 required: false
 constraints:
 - greater_or_equal: 1
 cpu_frequency:
 type: scalar-unit.frequency
 required: false
 constraints:
 - greater_or_equal: 0.1 GHz
 disk_size:
 type: scalar-unit.size
 required: false
 constraints:
 - greater_or_equal: 0 MB
 mem_size:
 type: scalar-unit.size
 required: false
 constraints:
 - greater_or_equal: 0 MB

5.5.4 tosca.capabilities.Network 2709

The Storage capability, when included on a Node Type or Template definition, indicates that the node can 2710
provide addressiblity for the resource a named network with the specified ports. 2711

Shorthand Name Network

Type Qualified
Name

tosca:Network

Type URI tosca.capabilities.Network

5.5.4.1 Properties 2712

Name Required Type Constraints Description

name no string None The otional name (or identifier) of a specific network
resource.

5.5.4.2 Definition 2713

tosca.capabilities.Network:
 derived_from: tosca.capabilities.Root

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 152 of 282

 properties:
 name:
 type: string
 required: false

5.5.5 tosca.capabilities.Storage 2714

The Storage capability, when included on a Node Type or Template definition, indicates that the node can 2715
provide a named storage location with specified size range. 2716

Shorthand Name Storage

Type Qualified
Name

tosca:Storage

Type URI tosca.capabilities.Storage

5.5.5.1 Properties 2717

Name Required Type Constraints Description

name no string None The otional name (or identifier) of a specific storage
resource.

5.5.5.2 Definition 2718

tosca.capabilities.Storage:
 derived_from: tosca.capabilities.Root
 properties:
 name:
 type: string
 required: false

5.5.6 tosca.capabilities.Container 2719

The Container capability, when included on a Node Type or Template definition, indicates that the node 2720
can act as a container for (or a host for) one or more other declared Node Types. 2721

Shorthand Name Container

Type Qualified
Name

tosca:Container

Type URI tosca.capabilities.Container

5.5.6.1 Properties 2722

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

5.5.6.2 Definition 2723

tosca.capabilities.Container:
 derived_from: tosca.capabilities.Compute

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 153 of 282

5.5.7 tosca.capabilities.Endpoint 2724

This is the default TOSCA type that should be used or extended to define a network endpoint capability. 2725
This includes the information to express a basic endpoint with a single port or a complex endpoint with 2726
multiple ports. By default the Endpoint is assumed to represent an address on a private network unless 2727
otherwise specified. 2728

Shorthand Name Endpoint

Type Qualified
Name

tosca:Endpoint

Type URI tosca.capabilities.Endpoint

5.5.7.1 Properties 2729

Name Required Type Constraints Description

protocol yes string default: tcp The name of the protocol (i.e., the protocol prefix) that
the endpoint accepts (any OSI Layer 4-7 protocols)

Examples: http, https, ftp, tcp, udp, etc.

port no PortDef greater_or_equal:
1
less_or_equal:
65535

The optional port of the endpoint.

secure no boolean default: false Requests for the endpoint to be secure and use
credentials supplied on the ConnectsTo relationship.

url_path no string None The optional URL path of the endpoint’s address if
applicable for the protocol.

port_name no string None The optional name (or ID) of the network port this
endpoint should be bound to.

network_name no string default: PRIVATE The optional name (or ID) of the network this endpoint
should be bound to.
network_name: PRIVATE | PUBLIC |<network_name> |
<network_id>

initiator no string one of:

 source

 target

 peer

default: source

The optional indicator of the direction of the
connection.

ports no map of
PortSpec

None The optional map of ports the Endpoint supports (if
more than one)

5.5.7.2 Attributes 2730

Name Required Type Constraints Description

ip_address yes string None Note: This is the IP address as propagated up by the
associated node’s host (Compute) container.

5.5.7.3 Definition 2731

tosca.capabilities.Endpoint:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 154 of 282

 derived_from: tosca.capabilities.Root
 properties:
 protocol:
 type: string
 required: true
 default: tcp
 port:
 type: PortDef
 required: false
 secure:
 type: boolean
 required: false
 default: false
 url_path:
 type: string
 required: false
 port_name:
 type: string
 required: false
 network_name:
 type: string
 required: false
 default: PRIVATE
 initiator:
 type: string
 required: false
 default: source
 constraints:
 - valid_values: [source, target, peer]
 ports:
 type: map
 required: false
 constraints:
 - min_length: 1
 entry_schema:
 type: PortSpec
 attributes:
 ip_address:
 type: string

5.5.7.4 Additional requirements 2732

 Although both the port and ports properties are not required, one of port or ports must be 2733

provided in a valid Endpoint. 2734

5.5.8 tosca.capabilities.Endpoint.Public 2735

This capability represents a public endpoint which is accessible to the general internet (and its public IP 2736
address ranges). 2737

This public endpoint capability also can be used to create a floating (IP) address that the underlying 2738
network assigns from a pool allocated from the application’s underlying public network. This floating 2739
address is managed by the underlying network such that can be routed an application’s private address 2740
and remains reliable to internet clients. 2741

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 155 of 282

Shorthand Name Endpoint.Public

Type Qualified
Name

tosca:Endpoint.Public

Type URI tosca.capabilities.Endpoint.Public

5.5.8.1 Definition 2742

tosca.capabilities.Endpoint.Public:
 derived_from: tosca.capabilities.Endpoint
 properties:
 # Change the default network_name to use the first public network found
 network_name:
 type: string
 default: PUBLIC
 constraints:
 - equal: PUBLIC
 floating:
 description: >
 indicates that the public address should be allocated from a pool of
floating IPs that are associated with the network.
 type: boolean
 default: false
 status: experimental
 dns_name:
 description: The optional name to register with DNS
 type: string
 required: false
 status: experimental

5.5.8.2 Additional requirements 2743

 If the network_name is set to the reserved value PRIVATE or if the value is set to the name of 2744

network (or subnetwork) that is not public (i.e., has non-public IP address ranges assigned to it) 2745

then TOSCA Orchestrators SHALL treat this as an error. 2746

 If a dns_name is set, TOSCA Orchestrators SHALL attempt to register the name in the (local) 2747

DNS registry for the Cloud provider. 2748

5.5.9 tosca.capabilities.Endpoint.Admin 2749

This is the default TOSCA type that should be used or extended to define a specialized administrator 2750
endpoint capability. 2751

Shorthand Name Endpoint.Admin

Type Qualified
Name

tosca:Endpoint.Admin

Type URI tosca.capabilities.Endpoint.Admin

5.5.9.1 Properties 2752

Name Required Type Constraints Description

None N/A N/A N/A N/A

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 156 of 282

5.5.9.2 Definition 2753

tosca.capabilities.Endpoint.Admin:
 derived_from: tosca.capabilities.Endpoint
 # Change Endpoint secure indicator to true from its default of false
 properties:
 secure:
 type: boolean
 default: true
 constraints:
 - equal: true

5.5.9.3 Additional requirements 2754

 TOSCA Orchestrator implementations of Endpoint.Admin (and connections to it) SHALL assure 2755

that network-level security is enforced if possible. 2756

5.5.10 tosca.capabilities.Endpoint.Database 2757

This is the default TOSCA type that should be used or extended to define a specialized database 2758
endpoint capability. 2759

Shorthand Name Endpoint.Database

Type Qualified
Name

tosca:Endpoint.Database

Type URI tosca.capabilities.Endpoint.Database

5.5.10.1 Properties 2760

Name Required Type Constraints Description

None N/A N/A N/A N/A

5.5.10.2 Definition 2761

tosca.capabilities.Endpoint.Database:
 derived_from: tosca.capabilities.Endpoint

5.5.11 tosca.capabilities.Attachment 2762

This is the default TOSCA type that should be used or extended to define an attachment capability of a 2763
(logical) infrastructure device node (e.g., BlockStorage node). 2764

Shorthand Name Attachment

Type Qualified
Name

tosca:Attachment

Type URI tosca.capabilities.Attachment

5.5.11.1 Properties 2765

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 157 of 282

5.5.11.2 Definition 2766

tosca.capabilities.Attachment:
 derived_from: tosca.capabilities.Root

5.5.12 tosca.capabilities.OperatingSystem 2767

This is the default TOSCA type that should be used to express an Operating System capability for a 2768
node. 2769

Shorthand Name OperatingSystem

Type Qualified
Name

tosca:OperatingSystem

Type URI tosca.capabilities.OperatingSystem

5.5.12.1 Properties 2770

Name Required Type Constraints Description

architecture no string None The Operating System (OS) architecture.

Examples of valid values include:
x86_32, x86_64, etc.

type no string None The Operating System (OS) type.

Examples of valid values include:
linux, aix, mac, windows, etc.

distribution no string None The Operating System (OS) distribution.

Examples of valid values for an “type” of “Linux” would
include: debian, fedora, rhel and ubuntu.

version no version None The Operating System version.

5.5.12.2 Definition 2771

tosca.capabilities.OperatingSystem:
 derived_from: tosca.capabilities.Root
 properties:
 architecture:
 type: string
 required: false
 type:
 type: string
 required: false
 distribution:
 type: string
 required: false
 version:
 type: version
 required: false

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 158 of 282

5.5.12.3 Additional Requirements 2772

 Please note that the string values for the properties architecture, type and distribution 2773

SHALL be normalized to lowercase by processors of the service template for matching purposes. 2774

For example, if a “type” value is set to either “Linux”, “LINUX” or “linux” in a service template, the 2775

processor would normalize all three values to “linux” for matching purposes. 2776

5.5.13 tosca.capabilities.Scalable 2777

This is the default TOSCA type that should be used to express a scalability capability for a node. 2778

Shorthand Name Scalable

Type Qualified
Name

tosca:Scalable

Type URI tosca.capabilities.Scalable

5.5.13.1 Properties 2779

Name Required Type Constraints Description

min_instances yes integer default: 1 This property is used to indicate the minimum number
of instances that should be created for the associated
TOSCA Node Template by a TOSCA orchestrator.

max_instances yes integer default: 1 This property is used to indicate the maximum number
of instances that should be created for the associated
TOSCA Node Template by a TOSCA orchestrator.

default_instances no integer N/A An optional property that indicates the requested
default number of instances that should be the starting
number of instances a TOSCA orchestrator should
attempt to allocate.

Note: The value for this property MUST be in the range
between the values set for ‘min_instances’ and
‘max_instances’ properties.

5.5.13.2 Definition 2780

tosca.capabilities.Scalable:
 derived_from: tosca.capabilities.Root
 properties:
 min_instances:
 type: integer
 default: 1
 max_instances:
 type: integer
 default: 1
 default_instances:
 type: integer

5.5.13.3 Notes 2781

 The actual number of instances for a node may be governed by a separate scaling policy which 2782

conceptually would be associated to either a scaling-capable node or a group of nodes in which it 2783

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 159 of 282

is defined to be a part of. This is a planned future feature of the TOSCA Simple Profile and not 2784

currently described. 2785

5.5.14 tosca.capabilities.network.Bindable 2786

A node type that includes the Bindable capability indicates that it can be bound to a logical network 2787
association via a network port. 2788

Shorthand Name network.Bindable

Type Qualified
Name

tosca:network.Bindable

Type URI tosca.capabilities.network.Bindable

5.5.14.1 Properties 2789

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

5.5.14.2 Definition 2790

tosca.capabilities.network.Bindable:
 derived_from: tosca.capabilities.Node

5.6 Requirement Types 2791

There are no normative Requirement Types currently defined in this working draft. Typically, 2792
Requirements are described against a known Capability Type 2793

5.7 Relationship Types 2794

5.7.1 tosca.relationships.Root 2795

This is the default (root) TOSCA Relationship Type definition that all other TOSCA Relationship Types 2796
derive from. 2797

5.7.1.1 Attributes 2798

Name Required Type Constraints Description

tosca_id yes string None A unique identifier of the realized instance of a
Relationship Template that derives from any TOSCA
normative type.

tosca_name yes string None This attribute reflects the name of the Relationship
Template as defined in the TOSCA service template. This
name is not unique to the realized instance model of
corresponding deployed application as each template in
the model can result in one or more instances (e.g.,
scaled) when orchestrated to a provider environment.

state yes string default: initial The state of the relationship instance. See section
“Relationship States” for allowed values.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 160 of 282

5.7.1.2 Definition 2799

tosca.relationships.Root:
 description: The TOSCA root Relationship Type all other TOSCA base Relationship
Types derive from
 attributes:
 tosca_id:
 type: string
 tosca_name:
 type: string
 interfaces:
 Configure:
 type: tosca.interfaces.relationship.Configure

5.7.2 tosca.relationships.DependsOn 2800

This type represents a general dependency relationship between two nodes. 2801

Shorthand Name DependsOn

Type Qualified
Name

tosca:DependsOn

Type URI tosca.relationships.DependsOn

5.7.2.1 Definition 2802

tosca.relationships.DependsOn:
 derived_from: tosca.relationships.Root
 valid_target_types: [tosca.capabilities.Node]

5.7.3 tosca.relationships.HostedOn 2803

This type represents a hosting relationship between two nodes. 2804

Shorthand Name HostedOn

Type Qualified
Name

tosca:HostedOn

Type URI tosca.relationships.HostedOn

5.7.3.1 Definition 2805

tosca.relationships.HostedOn:
 derived_from: tosca.relationships.Root
 valid_target_types: [tosca.capabilities.Container]

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 161 of 282

5.7.4 tosca.relationships.ConnectsTo 2806

This type represents a network connection relationship between two nodes. 2807

Shorthand Name ConnectsTo

Type Qualified
Name

tosca:ConnectsTo

Type URI tosca.relationships.ConnectsTo

5.7.4.1 Definition 2808

tosca.relationships.ConnectsTo:
 derived_from: tosca.relationships.Root
 valid_target_types: [tosca.capabilities.Endpoint]
 properties:
 credential:
 type: tosca.datatypes.Credential
 required: false

5.7.4.2 Properties 2809

Name Required Type Constraints Description

credential no Credential None The security credential to use to present to the target
endpoint to for either authentication or authorization
purposes.

5.7.5 tosca.relationships.AttachesTo 2810

This type represents an attachment relationship between two nodes. For example, an AttachesTo 2811
relationship type would be used for attaching a storage node to a Compute node. 2812

Shorthand Name AttachesTo

Type Qualified
Name

tosca:AttachesTo

Type URI tosca.relationships.AttachesTo

5.7.5.1 Properties 2813

Name Required Type Constraints Description

location yes string min_length:
1

The relative location (e.g., path on the file system),
which provides the root location to address an attached
node.
e.g., a mount point / path such as ‘/usr/data’

Note: The user must provide it and it cannot be “root”.

device no string None The logical device name which for the attached device
(which is represented by the target node in the model).
e.g., ‘/dev/hda1’

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 162 of 282

5.7.5.2 Attributes 2814

Name Required Type Constraints Description

device no string None The logical name of the device as exposed to the instance.
Note: A runtime property that gets set when the model
gets instantiated by the orchestrator.

5.7.5.3 Definition 2815

tosca.relationships.AttachesTo:
 derived_from: tosca.relationships.Root
 valid_target_types: [tosca.capabilities.Attachment]
 properties:
 location:
 type: string
 constraints:
 - min_length: 1
 device:
 type: string
 required: false

5.7.6 tosca.relationships.RoutesTo 2816

This type represents an intentional network routing between two Endpoints in different networks. 2817

Shorthand Name RoutesTo

Type Qualified
Name

tosca:RoutesTo

Type URI tosca.relationships.RoutesTo

5.7.6.1 Definition 2818

tosca.relationships.RoutesTo:
 derived_from: tosca.relationships.ConnectsTo
 valid_target_types: [tosca.capabilities.Endpoint]

5.8 Interface Types 2819

Interfaces are reusable entities that define a set of operations that that can be included as part of a Node 2820
type or Relationship Type definition. Each named operations may have code or scripts associated with 2821
them that orchestrators can execute for when transitioning an application to a given state. 2822

5.8.1 Additional Requirements 2823

 Designers of Node or Relationship types are not required to actually provide/associate code or 2824

scripts with every operation for a given interface it supports. In these cases, orchestrators SHALL 2825

consider that a “No Operation” or “no-op”. 2826

 The default behavior when providing scripts for an operation in a sub-type (sub-class) or a 2827

template of an existing type which already has a script provided for that operation SHALL be 2828

override. Meaning that the subclasses’ script is used in place of the parent type’s script. 2829

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 163 of 282

5.8.2 Best Practices 2830

 When TOSCA Orchestrators substitute an implementation for an abstract node in a deployed 2831

service template it SHOULD be able to present a confirmation to the submitter to confirm the 2832

implementation chosen would be acceptable. 2833

5.8.3 tosca.interfaces.Root 2834

This is the default (root) TOSCA Interface Type definition that all other TOSCA Interface Types derive 2835
from. 2836

5.8.3.1 Definition 2837

tosca.interfaces.Root:
 derived_from: tosca.entity.Root
 description: The TOSCA root Interface Type all other TOSCA base Interface Types
derive from

5.8.4 tosca.interfaces.node.lifecycle.Standard 2838

This lifecycle interface defines the essential, normative operations that TOSCA nodes may support. 2839

Shorthand Name Standard

Type Qualified
Name

tosca: Standard

Type URI tosca.interfaces.node.lifecycle.Standard

5.8.4.1 Definition 2840

tosca.interfaces.node.lifecycle.Standard:
 derived_from: tosca.interfaces.Root
 create:
 description: Standard lifecycle create operation.
 configure:
 description: Standard lifecycle configure operation.
 start:
 description: Standard lifecycle start operation.
 stop:
 description: Standard lifecycle stop operation.
 delete:
 description: Standard lifecycle delete operation.

5.8.4.2 Create operation 2841

The create operation is generally used to create the resource or service the node represents in the 2842
topology. TOSCA orchestrators expect node templates to provide either a deployment artifact or an 2843
implementation artifact of a defined artifact type that it is able to process. This specification defines 2844
normative deployment and implementation artifact types all TOSCA Orchestrators are expected to be 2845
able to process to support application portability. 2846

5.8.4.3 TOSCA Orchestrator processing of Deployment artifacts 2847

TOSCA Orchestrators, when encountering a deployment artifact on the create operation; will 2848
automatically attempt to deploy the artifact based upon its artifact type. This means that no 2849

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 164 of 282

implementation artifacts (e.g., scripts) are needed on the create operation to provide commands that 2850
deploy or install the software. 2851

 2852

For example, if a TOSCA Orchestrator is processing an application with a node of type 2853
SoftwareComponent and finds that the node’s template has a create operation that provides a filename 2854
(or references to an artifact which describes a file) of a known TOSCA deployment artifact type such as 2855
an Open Virtualization Format (OVF) image it will automatically deploy that image into the 2856
SoftwareComponent’s host Compute node. 2857

5.8.4.4 Operation sequencing and node state 2858

The following diagrams show how TOSCA orchestrators sequence the operations of the Standard 2859
lifecycle in normal node startup and shutdown procedures. 2860

The following key should be used to interpret the diagrams: 2861

5.8.4.4.1 Normal node startup sequence diagram 2862

The following diagram shows how the TOSCA orchestrator would invoke operations on the Standard 2863
lifecycle to startup a node. 2864

5.8.4.4.2 Normal node shutdown sequence diagram 2865

The following diagram shows how the TOSCA orchestrator would invoke operations on the Standard 2866
lifecycle to shut down a node. 2867

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 165 of 282

 2868

5.8.5 tosca.interfaces.relationship.Configure 2869

The lifecycle interfaces define the essential, normative operations that each TOSCA Relationship Types 2870
may support. 2871

Shorthand Name Configure

Type Qualified
Name

tosca:Configure

Type URI tosca.interfaces.relationship.Configure

5.8.5.1 Definition 2872

tosca.interfaces.relationship.Configure:
 derived_from: tosca.interfaces.Root
 pre_configure_source:
 description: Operation to pre-configure the source endpoint.
 pre_configure_target:
 description: Operation to pre-configure the target endpoint.
 post_configure_source:
 description: Operation to post-configure the source endpoint.
 post_configure_target:
 description: Operation to post-configure the target endpoint.
 add_target:
 description: Operation to notify the source node of a target node being added
via a relationship.
 add_source:
 description: Operation to notify the target node of a source node which is
now available via a relationship.
 description:
 target_changed:
 description: Operation to notify source some property or attribute of the
target changed
 remove_target:
 description: Operation to remove a target node.

 2873

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 166 of 282

5.8.5.2 Invocation Conventions 2874

TOSCA relationships are directional connecting a source node to a target node. When TOSCA 2875
Orchestrator connects a source and target node together using a relationship that supports the Configure 2876
interface it will “interleave” the operations invocations of the Configure interface with those of the node’s 2877
own Standard lifecycle interface. This concept is illustrated below: 2878

5.8.5.3 Normal node start sequence with Configure relationship operations 2879

The following diagram shows how the TOSCA orchestrator would invoke Configure lifecycle operations in 2880
conjunction with Standard lifecycle operations during a typical startup sequence on a node. 2881

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 167 of 282

5.8.5.4 Node-Relationship configuration sequence 2882

Depending on which side (i.e., source or target) of a relationship a node is on, the orchestrator will: 2883

 Invoke either the pre_configure_source or pre_configure_target operation as supplied by 2884

the relationship on the node. 2885

 Invoke the node’s configure operation. 2886

 Invoke either the post_configure_source or post_configure_target as supplied by the 2887

relationship on the node. 2888

Note that the pre_configure_xxx and post_configure_xxx are invoked only once per node instance. 2889

5.8.5.4.1 Node-Relationship add, remove and changed sequence 2890

Since a topology template contains nodes that can dynamically be added (and scaled), removed or 2891
changed as part of an application instance, the Configure lifecycle includes operations that are invoked 2892
on node instances that to notify and address these dynamic changes. 2893

 2894

For example, a source node, of a relationship that uses the Configure lifecycle, will have the relationship 2895

operations add_target, or remove_target invoked on it whenever a target node instance is added or 2896
removed to the running application instance. In addition, whenever the node state of its target node 2897

changes, the target_changed operation is invoked on it to address this change. Conversely, the 2898

add_source and remove_source operations are invoked on the source node of the relationship. 2899

5.8.5.5 Notes 2900

 The target (provider) MUST be active and running (i.e., all its dependency stack MUST be 2901

fulfilled) prior to invoking add_target 2902

 In other words, all Requirements MUST be satisfied before it advertises its capabilities (i.e., 2903

the attributes of the matched Capabilities are available). 2904

 In other words, it cannot be “consumed” by any dependent node. 2905

 Conversely, since the source (consumer) needs information (attributes) about any targets 2906

(and their attributes) being removed before it actually goes away. 2907

 The remove_target operation should only be executed if the target has had add_target 2908

executed. BUT in truth we’re first informed about a target in pre_configure_source, so if we 2909

execute that the source node should see remove_target called to cleanup. 2910

 Error handling: If any node operation of the topology fails processing should stop on that node 2911

template and the failing operation (script) should return an error (failure) code when possible. 2912

5.9 Node Types 2913

5.9.1 tosca.nodes.Root 2914

The TOSCA Root Node Type is the default type that all other TOSCA base Node Types derive from. 2915

This allows for all TOSCA nodes to have a consistent set of features for modeling and management (e.g., 2916
consistent definitions for requirements, capabilities and lifecycle interfaces). 2917

 2918

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 168 of 282

Shorthand Name Root

Type Qualified
Name

tosca:Root

Type URI tosca.nodes.Root

5.9.1.1 Properties 2919

Name Required Type Constraints Description

N/A N/A N/A N/A The TOSCA Root Node type has no specified properties.

5.9.1.2 Attributes 2920

Name Required Type Constraints Description

tosca_id yes string None A unique identifier of the realized instance of a Node
Template that derives from any TOSCA normative type.

tosca_name yes string None This attribute reflects the name of the Node Template as
defined in the TOSCA service template. This name is not
unique to the realized instance model of corresponding
deployed application as each template in the model can
result in one or more instances (e.g., scaled) when
orchestrated to a provider environment.

state yes string default: initial The state of the node instance. See section “Node
States” for allowed values.

5.9.1.3 Definition 2921

tosca.nodes.Root:
 derived_from: tosca.entity.Root
 description: The TOSCA Node Type all other TOSCA base Node Types derive from
 attributes:
 tosca_id:
 type: string
 tosca_name:
 type: string
 state:
 type: string
 capabilities:
 feature:
 type: tosca.capabilities.Node
 requirements:
 - dependency:
 capability: tosca.capabilities.Node
 node: tosca.nodes.Root
 relationship: tosca.relationships.DependsOn
 occurrences: [0, UNBOUNDED]
 interfaces:
 Standard:
 type: tosca.interfaces.node.lifecycle.Standard

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 169 of 282

5.9.1.4 Additional Requirements 2922

 All Node Type definitions that wish to adhere to the TOSCA Simple Profile SHOULD extend from the 2923

TOSCA Root Node Type to be assured of compatibility and portability across implementations. 2924

5.9.2 tosca.nodes.Compute 2925

The TOSCA Compute node represents one or more real or virtual processors of software applications or 2926
services along with other essential local resources. Collectively, the resources the compute node 2927
represents can logically be viewed as a (real or virtual) “server”. 2928

Shorthand Name Compute

Type Qualified
Name

tosca:Compute

Type URI tosca.nodes.Compute

5.9.2.1 Properties 2929

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

5.9.2.2 Attributes 2930

Name Required Type Constraints Description

private_address no string None The primary private IP address assigned by the cloud
provider that applications may use to access the
Compute node.

public_address no string None The primary public IP address assigned by the cloud
provider that applications may use to access the
Compute node.

networks no map of
NetworkI
nfo

None The list of logical networks assigned to the compute
host instance and information about them.

ports no map of
PortInfo

None The list of logical ports assigned to the compute host
instance and information about them.

5.9.2.3 Definition 2931

tosca.nodes.Compute:
 derived_from: tosca.nodes.Root
 attributes:
 private_address:
 type: string
 public_address:
 type: string
 networks:
 type: map
 entry_schema:
 type: tosca.datatypes.network.NetworkInfo
 ports:
 type: map
 entry_schema:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 170 of 282

 type: tosca.datatypes.network.PortInfo
 requirements:
 - local_storage:
 capability: tosca.capabilities.Attachment
 node: tosca.nodes.BlockStorage
 relationship: tosca.relationships.AttachesTo
 occurrences: [0, UNBOUNDED]
 capabilities:
 host:
 type: tosca.capabilities.Container
 valid_source_types: [tosca.nodes.SoftwareComponent]
 endpoint:
 type: tosca.capabilities.Endpoint.Admin
 os:
 type: tosca.capabilities.OperatingSystem
 scalable:
 type: tosca.capabilities.Scalable
 binding:
 type: tosca.capabilities.network.Bindable

5.9.2.4 Additional Requirements 2932

 The underlying implementation of the Compute node SHOULD have the ability to instantiate 2933

guest operating systems (either actual or virtualized) based upon the OperatingSystem capability 2934

properties if they are supplied in the a node template derived from the Compute node type. 2935

5.9.3 tosca.nodes.SoftwareComponent 2936

The TOSCA SoftwareComponent node represents a generic software component that can be managed 2937

and run by a TOSCA Compute Node Type. 2938

Shorthand Name SoftwareComponent

Type Qualified
Name

tosca:SoftwareComponent

Type URI tosca.nodes.SoftwareComponent

5.9.3.1 Properties 2939

Name Required Type Constraints Description

component_version no version None The optional software component’s version.

admin_credential no Credential None The optional credential that can be used to
authenticate to the software component.

5.9.3.2 Attributes 2940

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

5.9.3.3 Definition 2941

tosca.nodes.SoftwareComponent:
 derived_from: tosca.nodes.Root

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 171 of 282

 properties:
 # domain-specific software component version
 component_version:
 type: version
 required: false
 admin_credential:
 type: tosca.datatypes.Credential
 required: false
 requirements:
 - host:
 capability: tosca.capabilities.Container
 node: tosca.nodes.Compute
 relationship: tosca.relationships.HostedOn

5.9.3.4 Additional Requirements 2942

 Nodes that can directly be managed and run by a TOSCA Compute Node Type SHOULD extend 2943

from this type. 2944

5.9.4 tosca.nodes.WebServer 2945

This TOSA WebServer Node Type represents an abstract software component or service that is capable 2946

of hosting and providing management operations for one or more WebApplication nodes. 2947

Shorthand Name WebServer

Type Qualified
Name

tosca:WebServer

Type URI tosca.nodes.WebServer

5.9.4.1 Properties 2948

Name Required Type Constraints Description

None N/A N/A N/A N/A

5.9.4.2 Definition 2949

tosca.nodes.WebServer:
 derived_from: tosca.nodes.SoftwareComponent
 capabilities:
 # Private, layer 4 endpoints
 data_endpoint: tosca.capabilities.Endpoint
 admin_endpoint: tosca.capabilities.Endpoint.Admin
 host:
 type: tosca.capabilities.Container
 valid_source_types: [tosca.nodes.WebApplication]

5.9.4.3 Additional Requirements 2950

 This node SHALL export both a secure endpoint capability (i.e., admin_endpoint), typically for 2951

administration, as well as a regular endpoint (i.e., data_endpoint) for serving data. 2952

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 172 of 282

5.9.5 tosca.nodes.WebApplication 2953

The TOSCA WebApplication node represents a software application that can be managed and run by a 2954

TOSCA WebServer node. Specific types of web applications such as Java, etc. could be derived from 2955
this type. 2956

Shorthand Name WebApplication

Type Qualified
Name

tosca: WebApplication

Type URI tosca.nodes.WebApplication

5.9.5.1 Properties 2957

Name Required Type Constraints Description

context_root no string None The web application’s context root which designates
the application’s URL path within the web server it is
hosted on.

5.9.5.2 Definition 2958

tosca.nodes.WebApplication:

 derived_from: tosca.nodes.Root

 properties:
 context_root:
 type: string
 capabilities:
 app_endpoint:
 type: tosca.capabilities.Endpoint

 requirements:

 - host:

 capability: tosca.capabilities.Container

 node: tosca.nodes.WebServer

 relationship: tosca.relationships.HostedOn

5.9.6 tosca.nodes.DBMS 2959

The TOSCA DBMS node represents a typical relational, SQL Database Management System software 2960

component or service. 2961

5.9.6.1 Properties 2962

Name Required Type Constraints Description

root_password no string None The optional root password for the DBMS server.

port no integer None The DBMS server’s port.

5.9.6.2 Definition 2963

tosca.nodes.DBMS:
 derived_from: tosca.nodes.SoftwareComponent

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 173 of 282

 properties:
 root_password:
 type: string
 required: false
 description: the optional root password for the DBMS service
 port:
 type: integer
 required: false
 description: the port the DBMS service will listen to for data and requests
 capabilities:
 host:
 type: tosca.capabilities.Container
 valid_source_types: [tosca.nodes.Database]

5.9.7 tosca.nodes.Database 2964

The TOSCA Database node represents a logical database that can be managed and hosted by a TOSCA 2965

DBMS node. 2966

Shorthand Name Database

Type Qualified
Name

tosca:Database

Type URI tosca.nodes.Database

5.9.7.1 Properties 2967

Name Required Type Constraints Description

name yes string None The logical database Name

port no integer None The port the database service will use to listen for
incoming data and requests.

user no string None The special user account used for database
administration.

password no string None The password associated with the user account provided
in the ‘user’ property.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 174 of 282

5.9.7.2 Definition 2968

tosca.nodes.Database:
 derived_from: tosca.nodes.Root
 properties:
 name:
 type: string
 description: the logical name of the database
 port:
 type: integer
 description: the port the underlying database service will listen to for
data
 user:
 type: string
 description: the optional user account name for DB administration
 required: false
 password:
 type: string
 description: the optional password for the DB user account
 required: false
 requirements:
 - host:
 capability: tosca.capabilities.Container
 node: tosca.nodes.DBMS

 relationship: tosca.relationships.HostedOn
 capabilities:
 database_endpoint:
 type: tosca.capabilities.Endpoint.Database

5.9.8 tosca.nodes.Storage.ObjectStorage 2969

The TOSCA ObjectStorage node represents storage that provides the ability to store data as objects (or 2970
BLOBs of data) without consideration for the underlying filesystem or devices. 2971

Shorthand Name ObjectStorage

Type Qualified
Name

tosca:ObjectStorage

Type URI tosca.nodes.Storage.ObjectStorage

5.9.8.1 Properties 2972

Name Required Type Constraints Description

name yes string None The logical name of the object store (or
container).

size no scalar-
unit.size

greater_or_equal:
0 GB

The requested initial storage size (default unit is
in Gigabytes).

maxsize no scalar-
unit.size

greater_or_equal:
0 GB

The requested maximum storage size (default
unit is in Gigabytes).

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 175 of 282

5.9.8.2 Definition 2973

tosca.nodes.Storage.ObjectStorage:
 derived_from: tosca.nodes.Root
 properties:
 name:
 type: string
 size:
 type: scalar-unit.size
 constraints:
 - greater_or_equal: 0 GB
 maxsize:
 type: scalar-unit.size
 constraints:
 - greater_or_equal: 0 GB
 capabilities:
 storage_endpoint:
 type: tosca.capabilities.Endpoint

5.9.8.3 Notes: 2974

 Subclasses of the tosca.nodes.ObjectStorage node type may impose further constraints on 2975

properties. For example, a subclass may constrain the (minimum or maximum) length of the 2976

‘name’ property or include a regular expression to constrain allowed characters used in the 2977

‘name’ property. 2978

5.9.9 tosca.nodes.Storage.BlockStorage 2979

The TOSCA BlockStorage node currently represents a server-local block storage device (i.e., not 2980

shared) offering evenly sized blocks of data from which raw storage volumes can be created. 2981

Note: In this draft of the TOSCA Simple Profile, distributed or Network Attached Storage (NAS) are not 2982
yet considered (nor are clustered file systems), but the TC plans to do so in future drafts. 2983

Shorthand Name BlockStorage

Type Qualified
Name

tosca:BlockStorage

Type URI tosca.nodes.Storage.BlockStorage

5.9.9.1 Properties 2984

Name Required Type Constraints Description

size yes * scalar-
unit.size

greater_or_eq
ual: 1 MB

The requested storage size (default unit
is MB).

* Note:

 Required when an existing volume
(i.e., volume_id) is not available.

 If volume_id is provided, size is
ignored. Resize of existing volumes
is not considered at this time.

volume_id no string None ID of an existing volume (that is in the
accessible scope of the requesting
application).

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 176 of 282

Name Required Type Constraints Description

snapshot_id no string None Some identifier that represents an
existing snapshot that should be used
when creating the block storage
(volume).

5.9.9.2 Attributes 2985

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

5.9.9.3 Definition 2986

tosca.nodes.Storage.BlockStorage:
 derived_from: tosca.nodes.Root
 properties:
 size:
 type: scalar-unit.size
 constraints:
 - greater_or_equal: 1 MB
 volume_id:
 type: string
 required: false
 snapshot_id:
 type: string
 required: false
 capabilities:
 attachment:
 type: tosca.capabilities.Attachment

5.9.9.4 Additional Requirements 2987

 The size property is required when an existing volume (i.e., volume_id) is not available. 2988

However, if the property volume_id is provided, the size property is ignored. 2989

5.9.9.5 Notes 2990

 Resize is of existing volumes is not considered at this time. 2991

 It is assumed that the volume contains a single filesystem that the operating system (that is 2992

hosting an associate application) can recognize and mount without additional information (i.e., it 2993

is operating system independent). 2994

 Currently, this version of the Simple Profile does not consider regions (or availability zones) when 2995

modeling storage. 2996

5.9.10 tosca.nodes.Container.Runtime 2997

The TOSCA Container Runtime node represents operating system-level virtualization technology used 2998
to run multiple application services on a single Compute host. 2999

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 177 of 282

Shorthand Name Container.Runtime

Type Qualified
Name

tosca:Container.Runtime

Type URI tosca.nodes.Container.Runtime

5.9.10.1 Definition 3000

tosca.nodes.Container.Runtime:
 derived_from: tosca.nodes.SoftwareComponent
 capabilities:
 host:
 type: tosca.capabilities.Container
 scalable:
 type: tosca.capabilities.Scalable

5.9.11 tosca.nodes.Container.Application 3001

The TOSCA Container Application node represents an application that requires Container-level 3002
virtualization technology. 3003

Shorthand Name Container.Application

Type Qualified
Name

tosca:Container.Application

Type URI tosca.nodes.Container.Application

5.9.11.1 Definition 3004

tosca.nodes.Container.Application:
 derived_from: tosca.nodes.Root

 requirements:

 - host:

 capability: tosca.capabilities.Container

 node: tosca.nodes.Container.Runtime

 relationship: tosca.relationships.HostedOn

 - storage:
 capability: tosca.capabilities.Storage
 - network:
 capability: tosca.capabilities.EndPoint

5.9.12 tosca.nodes.LoadBalancer 3005

The TOSCA Load Balancer node represents logical function that be used in conjunction with a Floating 3006
Address to distribute an application’s traffic (load) across a number of instances of the application (e.g., 3007
for a clustered or scaled application). 3008

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 178 of 282

Shorthand Name LoadBalancer

Type Qualified
Name

tosca:LoadBalancer

Type URI tosca.nodes.LoadBalancer

5.9.12.1 Definition 3009

tosca.nodes.LoadBalancer:
 derived_from: tosca.nodes.Root
 properties:
 algorithm:
 type: string
 required: false
 status: experimental
 capabilities:
 client:
 type: tosca.capabilities.Endpoint.Public
 occurrences: [0, UNBOUNDED]
 description: the Floating (IP) client’s on the public network can connect
to
 requirements:
 - application:
 capability: tosca.capabilities.Endpoint
 relationship: tosca.relationships.RoutesTo
 occurrences: [0, UNBOUNDED]
 description: Connection to one or more load balanced applications

5.9.12.2 Notes: 3010

 A LoadBalancer node can still be instantiated and managed independently of any applications it 3011

would serve; therefore, the load balancer’s application requirement allows for zero 3012

occurrences. 3013

5.10 Group Types 3014

TOSCA Group Types represent logical groupings of TOSCA nodes that have an implied membership 3015
relationship and may need to be orchestrated or managed together to achieve some result. Some use 3016
cases being developed by the TOSCA TC use groups to apply TOSCA policies for software placement 3017
and scaling while other use cases show groups can be used to describe cluster relationships. 3018

 3019

Note: Additional normative TOSCA Group Types and use cases for them will be developed in future 3020
drafts of this specification. 3021

5.10.1 tosca.groups.Root 3022

This is the default (root) TOSCA Group Type definition that all other TOSCA base Group Types derive 3023
from. 3024

5.10.1.1 Definition 3025

tosca.groups.Root:
 description: The TOSCA Group Type all other TOSCA Group Types derive from
 interfaces:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 179 of 282

 Standard:
 type: tosca.interfaces.node.lifecycle.Standard

5.10.1.2 Notes: 3026

 Group operations are not necessarily tied directly to member nodes that are part of a group. 3027

 Future versions of this specification will create sub types of the tosca.groups.Root type that will 3028

describe how Group Type operations are to be orchestrated. 3029

5.11 Policy Types 3030

TOSCA Policy Types represent logical grouping of TOSCA nodes that have an implied relationship and 3031
need to be orchestrated or managed together to achieve some result. Some use cases being developed 3032
by the TOSCA TC use groups to apply TOSCA policies for software placement and scaling while other 3033
use cases show groups can be used to describe cluster relationships. 3034

5.11.1 tosca.policies.Root 3035

This is the default (root) TOSCA Policy Type definition that all other TOSCA base Policy Types derive 3036
from. 3037

5.11.1.1 Definition 3038

tosca.policies.Root:
 description: The TOSCA Policy Type all other TOSCA Policy Types derive from

5.11.2 tosca.policies.Placement 3039

This is the default (root) TOSCA Policy Type definition that is used to govern placement of TOSCA nodes 3040
or groups of nodes. 3041

5.11.2.1 Definition 3042

tosca.policies.Placement:
 derived_from: tosca.policies.Root
 description: The TOSCA Policy Type definition that is used to govern placement
of TOSCA nodes or groups of nodes.

5.11.3 tosca.policies.Scaling 3043

This is the default (root) TOSCA Policy Type definition that is used to govern scaling of TOSCA nodes or 3044
groups of nodes. 3045

5.11.3.1 Definition 3046

tosca.policies.Scaling:
 derived_from: tosca.policies.Root
 description: The TOSCA Policy Type definition that is used to govern scaling of
TOSCA nodes or groups of nodes.

5.11.4 tosca.policies.Update 3047

This is the default (root) TOSCA Policy Type definition that is used to govern update of TOSCA nodes or 3048
groups of nodes. 3049

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 180 of 282

5.11.4.1 Definition 3050

tosca.policies.Update:
 derived_from: tosca.policies.Root
 description: The TOSCA Policy Type definition that is used to govern update of
TOSCA nodes or groups of nodes.

5.11.5 tosca.policies.Performance 3051

This is the default (root) TOSCA Policy Type definition that is used to declare performance requirements 3052
for TOSCA nodes or groups of nodes. 3053

5.11.5.1 Definition 3054

tosca.policies.Performance:
 derived_from: tosca.policies.Root
 description: The TOSCA Policy Type definition that is used to declare
performance requirements for TOSCA nodes or groups of nodes.

 3055

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 181 of 282

6 TOSCA Cloud Service Archive (CSAR) format 3056

Except for the examples, this section is normative and defines changes to the TOSCA archive format 3057
relative to the TOSCA v1.0 XML specification. 3058

 3059

TOSCA Simple Profile definitions along with all accompanying artifacts (e.g. scripts, binaries, 3060
configuration files) can be packaged together in a CSAR file as already defined in the TOSCA version 1.0 3061
specification [TOSCA-1.0]. In contrast to the TOSCA 1.0 CSAR file specification (see chapter 16 in 3062
[TOSCA-1.0]), this simple profile makes a few simplifications both in terms of overall CSAR file structure 3063
as well as meta-file content as described below. 3064

6.1 Overall Structure of a CSAR 3065

A CSAR zip file is required to contain one of the following: 3066

 a TOSCA-Metadata directory, which in turn contains the TOSCA.meta metadata file that provides 3067

entry information for a TOSCA orchestrator processing the CSAR file. 3068

 a yaml (.yml or .yaml) file at the root of the archive. The yaml file being a valid tosca definition 3069

template that MUST define a metadata section where template_name and template_version are 3070

required. 3071

The CSAR file may contain other directories with arbitrary names and contents. Note that in contrast to 3072
the TOSCA 1.0 specification, it is not required to put TOSCA definitions files into a special “Definitions” 3073
directory, but definitions YAML files can be placed into any directory within the CSAR file. 3074

6.2 TOSCA Meta File 3075

The TOSCA.meta file structure follows the exact same syntax as defined in the TOSCA 1.0 specification. 3076

However, it is only required to include block_0 (see section 16.2 in [TOSCA-1.0]) with the Entry-3077

Definitions keyword pointing to a valid TOSCA definitions YAML file that a TOSCA orchestrator should 3078

use as entry for parsing the contents of the overall CSAR file. 3079

Note that it is not required to explicitly list TOSCA definitions files in subsequent blocks of the 3080
TOSCA.meta file, but any TOSCA definitions files besides the one denoted by the Entry-Definitions 3081

keyword can be found by a TOSCA orchestrator by processing respective imports statements in the 3082
entry definitions file (or in recursively imported files). 3083

Note also that any additional artifact files (e.g. scripts, binaries, configuration files) do not have to be 3084

declared explicitly through blocks in the TOSCA.meta file. Instead, such artifacts will be fully described and 3085
pointed to by relative path names through artifact definitions in one of the TOSCA definitions files 3086
contained in the CSAR. 3087

Due to the simplified structure of the CSAR file and TOSCA.meta file compared to TOSCA 1.0, the CSAR-3088

Version keyword listed in block_0 of the meta-file is required to denote version 1.1. 3089

6.2.1 Example 3090

The following listing represents a valid TOSCA.meta file according to this TOSCA Simple Profile 3091

specification. 3092

TOSCA-Meta-File-Version: 1.0
CSAR-Version: 1.1
Created-By: OASIS TOSCA TC
Entry-Definitions: definitions/tosca_elk.yaml

 3093

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 182 of 282

This TOSCA.meta file indicates its simplified TOSCA Simple Profile structure by means of the CSAR-3094

Version keyword with value 1.1. The Entry-Definitions keyword points to a TOSCA definitions 3095

YAML file with the name tosca_elk.yaml which is contained in a directory called definitions within 3096

the root of the CSAR file. 3097

6.3 Archive without TOSCA-Metadata 3098

In case the archive doesn’t contains a TOSCA-Metadata directory the archive is required to contains a 3099
single YAML file at the root of the archive (other templates may exits in sub-directories). 3100

This file must be a valid TOSCA definitions YAML file with the additional restriction that the metadata 3101
section (as defined in 3.9.3.2) is required and template_name and template_version metadata are also 3102
required. 3103

TOSCA processors should recognized this file as being the CSAR Entry-Definitions file. The CSAR-3104
Version is defined by the template_version metadata section. The Created-By value is defined by the 3105
template_author metadata. 3106

6.3.1 Example 3107

The following represents a valid TOSCA template file acting as the CSAR Entry-Definitions file in an 3108
archive without TOSCA-Metadata directory. 3109

tosca_definitions_version: tosca_simple_yaml_1_1

metadata:
 template_name: my_template
 template_author: OASIS TOSCA TC
 template_version: 1.0

 3110

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 183 of 282

7 TOSCA workflows 3111

TOSCA defines two different kinds of workflows that can be used to deploy (instantiate and start), 3112
manage at runtime or undeploy (stop and delete) a TOSCA topology: declarative workflows and 3113
imperative workflows. Declarative workflows are automatically generated by the TOSCA orchestrator 3114
based on the nodes, relationships, and groups defined in the topology. Imperative workflows are manually 3115
specified by the author of the topology and allows the specification of any use-case that has not been 3116
planned in the definition of node and relationships types or for advanced use-case (including reuse of 3117
existing scripts and workflows). 3118

 3119

Workflows can be triggered on deployment of a topology (deploy workflow) on undeployment (undeploy 3120
workflow) or during runtime, manually, or automatically based on policies defined for the topology. 3121

 3122

Note: The TOSCA orchestrators will execute a single workflow at a time on a topology to guarantee that 3123
the defined workflow can be consistent and behave as expected. 3124

7.1 Normative workflows 3125

TOSCA defines several normative workflows that are used to operate a Topology. That is, reserved 3126
names of workflows that should be preserved by TOSCA orchestrators and that, if specified in the 3127
topology will override the workflow generated by the orchestrator : 3128

 deploy: is the workflow used to instantiate and perform the initial deployment of the topology. 3129

 undeploy: is the workflow used to remove all instances of a topology. 3130

7.1.1 Notes 3131

Future versions of the specification will describe the normative naming and declarative generation of 3132
additional workflows used to operate the topology at runtime. 3133

 scaling workflows: defined for every scalable nodes or based on scaling policies 3134

 auto-healing workflows: defined in order to restart nodes that may have failed 3135

7.2 Declarative workflows 3136

Declarative workflows are the result of the weaving of topology’s node, relationships, and groups 3137
workflows. 3138

The weaving process generates the workflow of every single node in the topology, insert operations from 3139
the relationships and groups and finally add ordering consideration. The weaving process will also take 3140
care of the specific lifecycle of some nodes and the TOSCA orchestrator is responsible to trigger errors or 3141
warnings in case the weaving cannot be processed or lead to cycles for example. 3142

This section aims to describe and explain how a TOSCA orchestrator will generate a workflow based on 3143
the topology entities (nodes, relationships and groups). 3144

7.2.1 Notes 3145

This section details specific constraints and considerations that applies during the weaving process. 3146

7.2.1.1 Orchestrator provided nodes lifecycle and weaving 3147

When a node is abstract the orchestrator is responsible for providing a valid matching resources for the 3148
node in order to deploy the topology. This consideration is also valid for dangling requirements (as they 3149
represents a quick way to define an actual node). 3150

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 184 of 282

The lifecycle of such nodes is the responsibility of the orchestrator and they may not answer to the 3151
normative TOSCA lifecycle. Their workflow is considered as "delegate" and acts as a black-box between 3152
the initial and started state in the install workflow and the started to deleted states in the uninstall 3153
workflow. 3154

If a relationship to some of this node defines operations or lifecycle dependency constraint that relies on 3155
intermediate states, the weaving SHOULD fail and the orchestrator SHOULD raise an error. 3156

7.2.2 Relationship impacts on topology weaving 3157

This section explains how relationships impacts the workflow generation to enable the composition of 3158
complex topologies. 3159

7.2.2.1 tosca.relationships.DependsOn 3160

The depends on relationship is used to establish a dependency from a node to another. A source node 3161
that depends on a target node will be created only after the other entity has been started. 3162

7.2.2.2 Note 3163

DependsOn relationship SHOULD not be implemented. Even if the Configure interface can be 3164
implemented this is not considered as a best-practice. If you need specific implementation, please have a 3165
look at the ConnectsTo relationship. 3166

7.2.2.2.1 Example DependsOn 3167

This example show the usage of a generic DependsOn relationship between two custom software 3168
components. 3169

 3170

 3171

In this example the relationship configure interface doesn’t define operations so they don’t appear in the 3172
generated lifecycle. 3173

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 185 of 282

7.2.2.3 tosca.relationships.ConnectsTo 3174

The connects to relationship is similar to the DependsOn relationship except that it is intended to provide 3175
an implementation. The difference is more theoretical than practical but helps users to make an actual 3176
distinction from a meaning perspective. 3177

 3178

7.2.2.4 tosca.relationships.HostedOn 3179

The hosted_on dependency relationship allows to define a hosting relationship between an entity and 3180
another. The hosting relationship has multiple impacts on the workflow and execution: 3181

 The implementation artifacts of the source node is executed on the same host as the one of the 3182

target node. 3183

 The create operation of the source node is executed only once the target node reach the started 3184

state. 3185

 When multiple nodes are hosted on the same host node, the defined operations will not be 3186

executed concurrently even if the theoretical workflow could allow it (actual generated workflow 3187

will avoid concurrency). 3188

7.2.2.4.1 Example Software Component HostedOn Compute 3189

This example explain the TOSCA weaving operation of a custom SoftwareComponent on a 3190
tosca.nodes.Compute instance. The compute node is an orchestrator provided node meaning that it’s 3191
lifecycle is delegated to the orchestrator. This is a black-box and we just expect a started compute node 3192
to be provided by the orchestrator. 3193

The software node lifecycle operations will be executed on the Compute node (host) instance. 3194

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 186 of 282

 3195

 3196

7.2.2.4.2 Example Software Component HostedOn Software Component 3197

Tosca allows some more complex hosting scenarios where a software component could be hosted on 3198
another software component. 3199

 3200

 3201

In such scenarios the software create operation is triggered only once the software_base node has 3202
reached the started state. 3203

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 187 of 282

7.2.2.4.3 Example 2 Software Components HostedOn Compute 3204

This example illustrate concurrency constraint introduced by the management of multiple nodes on a 3205
single compute. 3206

7.2.3 Limitations 3207

7.2.3.1 Hosted nodes concurrency 3208

TOSCA implementation currently does not allow concurrent executions of scripts implementation artifacts 3209
(shell, python, ansible, puppet, chef etc.) on a given host. This limitation is not applied on multiple hosts. 3210
This limitation is expressed through the HostedOn relationship limitation expressing that when multiple 3211
components are hosted on a given host node then their operations will not be performed concurrently 3212
(generated workflow will ensure that operations are not concurrent). 3213

7.2.3.2 Dependent nodes concurrency 3214

When a node depends on another node no operations will be processed concurrently. In some situations, 3215
especially when the two nodes lies on different hosts we could expect the create operation to be executed 3216
concurrently for performance optimization purpose. The current version of the specification will allow to 3217
use imperative workflows to solve this use-case. However, this scenario is one of the scenario that we 3218
want to improve and handle in the future through declarative workflows. 3219

7.2.3.3 Target operations and get_attribute on source 3220

The current ConnectsTo workflow implies that the target node is started before the source node is even 3221
created. This means that pre_configure_target and post_configure_target operations cannot use any 3222
input based on source attribute. It is however possible to refer to get_property inputs based on source 3223
properties. For advanced configurations the add_source operation should be used. 3224

Note also that future plans on declarative workflows improvements aims to solve this kind of issues while 3225
it is currently possible to use imperative workflows. 3226

7.3 Imperative workflows 3227

Imperative workflows are user defined and can define any really specific constraints and ordering of 3228
activities. They are really flexible and powerful and can be used for any complex use-case that cannot be 3229
solved in declarative workflows. However, they provide less reusability as they are defined for a specific 3230
topology rather than being dynamically generated based on the topology content. 3231

7.3.1 Defining sequence of operations in an imperative workflow 3232

Imperative workflow grammar defines two ways to define the sequence of operations in an imperative 3233
workflow: 3234

 Leverage the on_success definition to define the next steps that will be executed in parallel. 3235

 Leverage a sequence of activity in a step. 3236

7.3.1.1 Using on_success to define steps ordering 3237

The graph of workflow steps is build based on the values of on_success elements of the various defined 3238
steps. The graph is built based on the following rules: 3239

 All steps that defines an on_success operation must be executed before the next step can be 3240

executed. So if A and C defines an on_success operation to B, then B will be executed only 3241

when both A and C have been successfully executed. 3242

 The multiple nodes defined by an on_success construct can be executed in parallel. 3243

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 188 of 282

 Every step that doesn’t have any predecessor is considered as an initial step and can run in 3244

parallel. 3245

 Every step that doesn’t define any successor is considered as final. When all the final nodes 3246

executions are completed then the workflow is considered as completed. 3247

7.3.1.1.1 Example 3248

The following example defines multiple steps and the on_success relationship between them. 3249

 3250

topology_template:
 workflows:
 deploy:
 description: Workflow to deploy the application
 steps:
 A:
 on_success:
 - B
 - C
 B:
 on_success:
 - D
 C:
 on_success:
 - D
 D:
 E:
 on_success:
 - C
 - F
 F:

The following schema is the visualization of the above definition in term of sequencing of the steps. 3251

 3252

7.3.1.2 Define a sequence of activity on the same element 3253

The step definition of a TOSCA imperative workflow allows multiple activities to be defined : 3254

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 189 of 282

 3255

 workflows:
 my_workflow:
 steps:
 create_my_node:
 target: my_node
 activities:
 - set_state: creating
 - call_operation: tosca.interfaces.node.lifecycle.Standard.create
 - set_state: created

The sequence defined here defines three different activities that will be performed in a sequential way. 3256
This is just equivalent to writing multiple steps chained by an on_success together : 3257

 3258

 3259

 workflows:
 my_workflow:
 steps:
 creating_my_node:
 target: my_node
 activities:
 - set_state: creating
 on_success: create_my_node
 create_my_node:
 target: my_node
 activities:
 - call_operation: tosca.interfaces.node.lifecycle.Standard.create
 on_success: created_my_node
 created_my_node:
 target: my_node
 activities:
 - set_state: created

 3260

In both situations the resulting workflow is a sequence of activities: 3261

 3262

 3263

7.3.2 Definition of a simple workflow 3264

Imperative workflow allow user to define custom workflows allowing them to add operations that are not 3265
normative, or for example, to execute some operations in parallel when TOSCA would have performed 3266
sequential execution. 3267

 3268

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 190 of 282

As Imperative workflows are related to a topology, adding a workflow is as simple as adding a workflows 3269
section to your topology template and specifying the workflow and the steps that compose it. 3270

7.3.2.1 Example: Adding a non-normative custom workflow 3271

This sample topology add a very simple custom workflow to trigger the mysql backup operation. 3272

topology_template:
 node_templates:
 my_server:
 type: tosca.nodes.Compute
 mysql:
 type: tosca.nodes.DBMS.MySQL
 requirements:
 - host: my_server
 interfaces:
 tosca.interfaces.nodes.custom.Backup:
 operations:
 backup: backup.sh
 workflows:
 backup:
 description: Performs a snapshot of the MySQL data.
 steps:
 my_step:
 target: mysql
 activities:
 - call_operation: tosca.interfaces.nodes.custom.Backup.backup

 3273

In such topology the TOSCA container will still use declarative workflow to generate the deploy and 3274
undeploy workflows as they are not specified and a backup workflow will be available for user to trigger. 3275

7.3.2.2 Example: Creating two nodes hosted on the same compute in parallel 3276

TOSCA declarative workflow generation constraint the workflow so that no operations are called in 3277
parallel on the same host. Looking at the following topology this means that the mysql and tomcat nodes 3278
will not be created in parallel but sequentially. This is fine in most of the situations as packet managers 3279
like apt or yum doesn’t not support concurrency, however if both create operations performs a download 3280
of zip package from a server most of people will hope to do that in parallel in order to optimize throughput. 3281

 3282

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 191 of 282

Imperative workflows can help to solve this issue. Based on the above topology we will design a workflow 3283
that will create tomcat and mysql in parallel but we will also ensure that tomcat is started after mysql is 3284
started even if no relationship is defined between the components: 3285

 3286

 3287

 3288

To achieve such workflow, the following topology will be defined: 3289

 3290

topology_template:
 node_templates:
 my_server:
 type: tosca.nodes.Compute
 mysql:
 type: tosca.nodes.DBMS.MySQL
 requirements:
 - host: my_server
 tomcat:
 type: tosca.nodes.WebServer.Tomcat
 requirements:
 - host: my_server
 workflows:
 deploy:
 description: Override the TOSCA declarative workflow with the following.
 steps:
 compute_install
 target: my_server

 activities:

 - delegate: deploy

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 192 of 282

 on_success:

 - mysql_install

 - tomcat_install

 tomcat_install:

 target: tomcat

 activities:

 - set_state: creating

 - call_operation: tosca.interfaces.node.lifecycle.Standard.create

 - set_state: created

 on_success:

 - tomcat_starting

 mysql_install:

 target: mysql

 activities:

 - set_state: creating

 - call_operation: tosca.interfaces.node.lifecycle.Standard.create

 - set_state: created

 - set_state: starting

 - call_operation: tosca.interfaces.node.lifecycle.Standard.start

 - set_state: started

 on_success:

 - tomcat_starting

 tomcat_starting:

 target: tomcat

 activities:

 - set_state: starting

 - call_operation: tosca.interfaces.node.lifecycle.Standard.start

 - set_state: started

 3291

7.3.3 Specifying preconditions to a workflow 3292

Pre conditions allows the TOSCA orchestrator to determine if a workflow can be executed based on the 3293
states and attribute values of the topology’s node. Preconditions must be added to the initial workflow. 3294

7.3.3.1 Example : adding precondition to custom backup workflow 3295

In this example we will use precondition so that we make sure that the mysql node is in the correct state 3296
for a backup. 3297

topology_template:
 node_templates:
 my_server:
 type: tosca.nodes.Compute
 mysql:
 type: tosca.nodes.DBMS.MySQL
 requirements:
 - host: my_server
 interfaces:
 tosca.interfaces.nodes.custom.Backup:
 operations:
 backup: backup.sh

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 193 of 282

 workflows:
 backup:
 description: Performs a snapshot of the MySQL data.
 preconditions:
 - target: my_server
 condition:
 - assert:
 - state: [{equal: available}]
 - target: mysql
 condition:
 - assert:
 - state: [{valid_values: [started, available]}]
 - my_attribute: [{equal: ready }]
 steps:
 my_step:
 target: mysql
 activities:
 - call_operation: tosca.interfaces.nodes.custom.Backup.backup

When the backup workflow will be triggered (by user or policy) the TOSCA engine will first check that 3298
preconditions are fulfilled. In this situation the engine will check that my_server node is in available state 3299
AND that mysql node is in started OR available states AND that mysql my_attribute value is equal to 3300
ready. 3301

7.3.4 Workflow reusability 3302

TOSCA allows the reusability of a workflow in other workflows. Such concepts can be achieved thanks to 3303
the inline activity. 3304

7.3.4.1 Reusing a workflow to build multiple workflows 3305

The following example show how a workflow can inline an existing workflow and reuse it. 3306

 3307

topology_template:
 node_templates:
 my_server:
 type: tosca.nodes.Compute
 mysql:
 type: tosca.nodes.DBMS.MySQL
 requirements:
 - host: my_server
 interfaces:
 tosca.interfaces.nodes.custom.Backup:
 operations:
 backup: backup.sh
 workflows:
 start_mysql:
 steps:
 start_mysql:
 target: mysql
 activities :
 - set_state: starting
 - call_operation: tosca.interfaces.node.lifecycle.Standard.start
 - set_state: started
 stop_mysql:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 194 of 282

 steps:
 stop_mysql:
 target: mysql
 activities:
 - set_state: stopping
 - call_operation: tosca.interfaces.node.lifecycle.Standard.stop
 - set_state: stopped

 backup:
 description: Performs a snapshot of the MySQL data.
 preconditions:
 - target: my_server
 condition:
 - assert:
 - state: [{equal: available}]
 - target: mysql
 condition:
 - assert:
 - state: [{valid_values: [started, available]}]
 - my_attribute: [{equal: ready }]
 steps:
 backup_step:
 activities:
 - inline: stop
 - call_operation: tosca.interfaces.nodes.custom.Backup.backup
 - inline: start
 restart:
 steps:
 backup_step:
 activities:
 - inline: stop
 - inline: start

 3308

The example above defines three workflows and show how the start_mysql and stop_mysql workflows 3309
are reused in the backup and restart workflows. 3310

Inlined workflows are inlined sequentially in the existing workflow for example the backup workflow would 3311
look like this: 3312

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 195 of 282

 3313

7.3.4.2 Inlining a complex workflow 3314

It is possible of course to inline more complex workflows. The following example defines an inlined 3315
workflows with multiple steps including concurrent steps: 3316

 3317

topology_template:
 workflows:
 inlined_wf:
 steps:
 A:
 target: node_a
 activities:
 - call_operation: a
 on_success:
 - B
 - C
 B:
 target: node_a
 activities:
 - call_operation: b
 on_success:
 - D
 C:
 target: node_a
 activities:
 - call_operation: c
 on_success:
 - D
 D:
 target: node_a
 activities:
 - call_operation: d
 E:
 target: node_a
 activities:
 - call_operation: e

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 196 of 282

 on_success:
 - C
 - F
 F:
 target: node_a
 activities:
 - call_operation: f
 main_workflow:
 steps:
 G:
 target: node_a
 activities:
 - set_state: initial
 - inline: inlined_wf
 - set_state: available

 3318

To describe the following workflow: 3319

 3320

 3321

7.3.5 Defining conditional logic on some part of the workflow 3322

Preconditions are used to validate if the workflow should be executed only for the initial workflow. If a 3323
workflow that is inlined defines some preconditions theses preconditions will be used at the instance level 3324
to define if the operations should be executed or not on the defined instance. 3325

 3326

This construct can be used to filter some steps on a specific instance or under some specific 3327
circumstances or topology state. 3328

 3329

topology_template:
 node_templates:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 197 of 282

 my_server:
 type: tosca.nodes.Compute
 cluster:
 type: tosca.nodes.DBMS.Cluster
 requirements:
 - host: my_server
 interfaces:
 tosca.interfaces.nodes.custom.Backup:
 operations:
 backup: backup.sh
 workflows:
 backup:
 description: Performs a snapshot of the MySQL data.
 preconditions:
 - target: my_server
 condition:
 - assert:
 - state: [{equal: available}]
 - target: mysql
 condition:
 - assert:
 - state: [{valid_values: [started, available]}]
 - my_attribute: [{equal: ready }]
 steps:
 backup_step:
 target: cluster
 filter: # filter is a list of clauses. Matching between clauses is and.
 - or: # only one of sub-clauses must be true.
 - assert:
 - foo: [{equals: true}]
 - assert:
 - bar: [{greater_than: 2}, {less_than: 20}]
 activities:
 - call_operation: tosca.interfaces.nodes.custom.Backup.backup

 3330

7.3.6 Define inputs for a workflow 3331

Inputs can be defined in a workflow and will be provided in the execution context of the workflow. If an 3332
operation defines a get_input function on one of its parameter the input will be retrieved from the workflow 3333
input, and if not found from the topology inputs. 3334

 3335

Workflow inputs will never be configured from policy triggered workflows and SHOULD be used only for 3336
user triggered workflows. Of course operations can still refer to topology inputs or template properties or 3337
attributes even in the context of a policy triggered workflow. 3338

7.3.6.1 Example 3339

topology_template:
 node_templates:
 my_server:
 type: tosca.nodes.Compute
 mysql:
 type: tosca.nodes.DBMS.MySQL
 requirements:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 198 of 282

 - host: my_server
 interfaces:
 tosca.interfaces.nodes.custom.Backup:
 operations:
 backup:
 implementation: backup.sh
 inputs:
 storage_url: { get_input: storage_url }
workflows:
 backup:
 description: Performs a snapshot of the MySQL data.
 preconditions:
 - target: my_server
 valid_states: [available]
 - target: mysql
 valid_states: [started, available]
 attributes:
 my_attribute: [ready]
 inputs:
 storage_url:
 type: string
 steps:
 my_step:
 target: mysql
 activities:
 - call_operation: tosca.interfaces.nodes.custom.Backup.backup

 3340

To trigger such a workflow, the TOSCA engine must allow user to provide inputs that match the given 3341
definitions. 3342

7.3.7 Handle operation failure 3343

By default, failure of any activity of the workflow will result in the failure of the workflow and will results in 3344
stopping the steps to be executed. 3345

 3346

Exception: uninstall workflow operation failure SHOULD not prevent the other operations of the workflow 3347
to run (a failure in an uninstall script SHOULD not prevent from releasing resources from the cloud). 3348

 3349

For any workflow other than install and uninstall failures may leave the topology in an unknown state. In 3350
such situation the TOSCA engine may not be able to orchestrate the deployment. Implementation of 3351

on_failure construct allows to execute rollback operations and reset the state of the affected entities 3352

back to an orchestrator known state. 3353

7.3.7.1 Example 3354

topology_template:
 node_templates:
 my_server:
 type: tosca.nodes.Compute
 mysql:
 type: tosca.nodes.DBMS.MySQL
 requirements:
 - host: my_server

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 199 of 282

 interfaces:
 tosca.interfaces.nodes.custom.Backup:
 operations:
 backup:
 implementation: backup.sh
 inputs:
 storage_url: { get_input: storage_url }
 workflows:
 backup:
 steps:
 backup_step:
 target: mysql
 activities:
 - set_state: backing_up # this state is not a TOSCA known state
 - call_operation: tosca.interfaces.nodes.custom.Backup.backup
 - set_state: available # this state is known by TOSCA orchestrator
 on_failure:
 - rollback_step
 rollback_step:
 target: mysql
 activities:
 - call_operation: tosca.interfaces.nodes.custom.Backup.backup
 - set_state: available # this state is known by TOSCA orchestrator

 3355

 3356

 3357

7.4 Making declarative more flexible and imperative more generic 3358

TOSCA simple profile 1.1 version provides the genericity and reusability of declarative workflows that is 3359
designed to address most of use-cases and the flexibility of imperative workflows to address more 3360
complex or specific use-cases. 3361

 3362

Each approach has some pros and cons and we are working so that the next versions of the specification 3363
can improve the workflow usages to try to allow more flexibility in a more generic way. Two non-exclusive 3364
leads are currently being discussed within the working group and may be included in the future versions 3365
of the specification. 3366

 Improvement of the declarative workflows in order to allow people to extend the weaving logic of 3367

TOSCA to fit some specific need. 3368

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 200 of 282

 Improvement of the imperative workflows in order to allow partial imperative workflows to be 3369

automatically included in declarative workflows based on specific constraints on the topology 3370

elements. 3371

Implementation of the improvements will be done by adding some elements to the specification and will 3372
not break compatibility with the current specification. 3373

7.4.1.1 Notes 3374

 The weaving improvement section is a Work in Progress and is not final in 1.1 version. The 3375

elements in this section are incomplete and may be subject to change in next specification 3376

version. 3377

 Moreover, the weaving improvements is one of the track of improvements. As describe improving 3378

the reusability of imperative workflow is another track (that may both co-exists in next 3379

specifications). 3380

7.4.2 Weaving improvements 3381

Making declarative better experimental option. 3382

7.4.2.1 Node lifecycle definition 3383

Node workflow is defined at the node type level. The node workflow definition is used to generate the 3384
declarative workflow of a given node. 3385

The tosca.nodes.Root type defines workflow steps for both the install workflow (used to instantiate or 3386
deploy a topology) and the uninstall workflow (used to destroy or undeploy a topology). The workflow is 3387
defined as follows: 3388

 3389

node_types:
 tosca.nodes.Root:
 workflows:
 install:
 steps:
 install_sequence:
 activities:
 - set_state: creating
 - call_operation: tosca.interfaces.node.lifecycle.Standard.create
 - set_state: created
 - set_state: configuring
 - call_operation:
tosca.interfaces.node.lifecycle.Standard.configure
 - set_state: configured
 - set_state: starting
 - call_operation: tosca.interfaces.node.lifecycle.Standard.start
 - set_state: started
 uninstall:
 steps:
 uninstall_sequence:
 activities:
 - set_state: stopping
 - call_operation: tosca.interfaces.node.lifecycle.Standard.stop
 - set_state: stopped
 - set_state: deleting
 - call_operation: tosca.interfaces.node.lifecycle.Standard.delete

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 201 of 282

 - set_state: deleted

 3390

7.4.2.2 Relationship lifecycle and weaving 3391

While the workflow of a single node is quite simple the TOSCA weaving process is the real key element of 3392
declarative workflows. The process of weaving consist of the ability to create complex management 3393
workflows including dependency management in execution order between node operations, injection of 3394
operations to process specific instruction related to the connection to other nodes based the relationships 3395
and groups defined in a topology. 3396

 3397

This section describes the relationship weaving and how the description at a template level can be 3398
translated on an instance level. 3399

relationship_types:
 tosca.relationships.ConnectsTo:
 workflow:
 install: # name of the workflow for wich the weaving has to be taken in
account
 source_weaving: # Instruct how to weave some tasks on the source workflow
(executed on SOURCE instance)
 - after: configuring # instruct that this operation should be weaved
after the target reach configuring state
 wait_target: created # add a join from a state of the target
 activity:
tosca.interfaces.relationships.Configure.pre_configure_source
 - before: configured # instruct that this operation should be weaved
before the target reach configured state
 activity:
tosca.interfaces.relationships.Configure.post_configure_source
 - before: starting
 wait_target: started # add a join from a state of the target
 - after: started
 activity: tosca.interfaces.relationships.Configure.add_target
 target_weaving: # Instruct how to weave some tasks on the target workflow
(executed on TARGET instance)
 - after: configuring # instruct that this operation should be weaved
after the target reach configuring state
 after_source: created # add a join from a state of the source
 activity:
tosca.interfaces.relationships.Configure.pre_configure_target
 - before: configured # instruct that this operation should be weaved
before the target reach configured state
 activity:
tosca.interfaces.relationships.Configure.post_configure_target
 - after: started
 activity: tosca.interfaces.relationships.Configure.add_source

 3400

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 202 of 282

8 TOSCA networking 3401

 Except for the examples, this section is normative and describes how to express and control the 3402
application centric network semantics available in TOSCA. 3403

8.1 Networking and Service Template Portability 3404

TOSCA Service Templates are application centric in the sense that they focus on describing application 3405
components in terms of their requirements and interrelationships. In order to provide cloud portability, it is 3406
important that a TOSCA Service Template avoid cloud specific requirements and details. However, at the 3407
same time, TOSCA must provide the expressiveness to control the mapping of software component 3408
connectivity to the network constructs of the hosting cloud. 3409

TOSCA Networking takes the following approach. 3410

1. The application component connectivity semantics and expressed in terms of Requirements and 3411

Capabilities and the relationships between these. Service Template authors are able to express 3412

the interconnectivity requirements of their software components in an abstract, declarative, and 3413

thus highly portable manner. 3414

2. The information provided in TOSCA is complete enough for a TOSCA implementation to fulfill the 3415

application component network requirements declaratively (i.e., it contains information such as 3416

communication initiation and layer 4 port specifications) so that the required network semantics 3417

can be realized on arbitrary network infrastructures. 3418

3. TOSCA Networking provides full control of the mapping of software component interconnectivity 3419

to the networking constructs of the hosting cloud network independently of the Service Template, 3420

providing the required separation between application and network semantics to preserve Service 3421

Template portability. 3422

4. Service Template authors have the choice of specifying application component networking 3423

requirements in the Service Template or completely separating the application component to 3424

network mapping into a separate document. This allows application components with explicit 3425

network requirements to express them while allowing users to control the complete mapping for 3426

all software components which may not have specific requirements. Usage of these two 3427

approaches is possible simultaneously and required to avoid having to re-write components 3428

network semantics as arbitrary sets of components are assembled into Service Templates. 3429

5. Defining a set of network semantics which are expressive enough to address the most common 3430

application connectivity requirements while avoiding dependencies on specific network 3431

technologies and constructs. Service Template authors and cloud providers are able to express 3432

unique/non-portable semantics by defining their own specialized network Requirements and 3433

Capabilities. 3434

8.2 Connectivity Semantics 3435

TOSCA’s application centric approach includes the modeling of network connectivity semantics from an 3436
application component connectivity perspective. The basic premise is that applications contain 3437
components which need to communicate with other components using one or more endpoints over a 3438
network stack such as TCP/IP, where connectivity between two components is expressed as a <source 3439
component, source address, source port, target component, target address, target port> tuple. Note that 3440
source and target components are added to the traditional 4 tuple to provide the application centric 3441
information, mapping the network to the source or target component involved in the connectivity. 3442

 3443

Software components are expressed as Node Types in TOSCA which can express virtually any kind of 3444
concept in a TOSCA model. Node Types offering network based functions can model their connectivity 3445
using a special Endpoint Capability, tosca.capabilities.Endpoint, designed for this purpose. Node Types 3446

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 203 of 282

which require an Endpoint can specify this as a TOSCA requirement. A special Relationship Type, 3447
tosca.relationships.ConnectsTo, is used to implicitly or explicitly relate the source Node Type’s endpoint 3448
to the required endpoint in the target node type. Since tosca.capabilities.Endpoint and 3449
tosca.relationships.ConnectsTo are TOSCA types, they can be used in templates and extended by 3450
subclassing in the usual ways, thus allowing the expression of additional semantics as needed. 3451

The following diagram shows how the TOSCA node, capability and relationship types enable modeling 3452
the application layer decoupled from the network model intersecting at the Compute node using the 3453
Bindable capability type. 3454

As you can see, the Port node type effectively acts a broker node between the Network node description 3455

and a host Compute node of an application. 3456

8.3 Expressing connectivity semantics 3457

This section describes how TOSCA supports the typical client/server and group communication 3458
semantics found in application architectures. 3459

8.3.1 Connection initiation semantics 3460

The tosca.relationships.ConnectsTo expresses that requirement that a source application component 3461
needs to be able to communicate with a target software component to consume the services of the target. 3462
ConnectTo is a component interdependency semantic in the most general sense and does not try imply 3463
how the communication between the source and target components is physically realized. 3464

 3465

Application component intercommunication typically has conventions regarding which component(s) 3466
initiate the communication. Connection initiation semantics are specified in tosca.capabilities.Endpoint. 3467
Endpoints at each end of the tosca.relationships.ConnectsTo must indicate identical connection initiation 3468
semantics. 3469

 3470

The following sections describe the normative connection initiation semantics for the 3471
tosca.relationships.ConnectsTo Relationship Type. 3472

8.3.1.1 Source to Target 3473

The Source to Target communication initiation semantic is the most common case where the source 3474
component initiates communication with the target component in order to fulfill an instance of the 3475
tosca.relationships.ConnectsTo relationship. The typical case is a “client” component connecting to a 3476
“server” component where the client initiates a stream oriented connection to a pre-defined transport 3477
specific port or set of ports. 3478

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 204 of 282

 3479

It is the responsibility of the TOSCA implementation to ensure the source component has a suitable 3480
network path to the target component and that the ports specified in the respective 3481
tosca.capabilities.Endpoint are not blocked. The TOSCA implementation may only represent state of the 3482
tosca.relationships.ConnectsTo relationship as fulfilled after the actual network communication is enabled 3483
and the source and target components are in their operational states. 3484

 3485

Note that the connection initiation semantic only impacts the fulfillment of the actual connectivity and does 3486
not impact the node traversal order implied by the tosca.relationships.ConnectsTo Relationship Type. 3487

8.3.1.2 Target to Source 3488

The Target to Source communication initiation semantic is a less common case where the target 3489
component initiates communication with the source comment in order to fulfill an instance of the 3490
tosca.relationships.ConnectsTo relationship. This “reverse” connection initiation direction is typically 3491
required due to some technical requirements of the components or protocols involved, such as the 3492
requirement that SSH mush only be initiated from target component in order to fulfill the services required 3493
by the source component. 3494

 3495

It is the responsibility of the TOSCA implementation to ensure the source component has a suitable 3496
network path to the target component and that the ports specified in the respective 3497
tosca.capabilities.Endpoint are not blocked. The TOSCA implementation may only represent state of the 3498
tosca.relationships.ConnectsTo relationship as fulfilled after the actual network communication is enabled 3499
and the source and target components are in their operational states. 3500

 3501

Note that the connection initiation semantic only impacts the fulfillment of the actual connectivity and does 3502
not impact the node traversal order implied by the tosca.relationships.ConnectsTo Relationship Type. 3503

8.3.1.3 Peer-to-Peer 3504

The Peer-to-Peer communication initiation semantic allows any member of a group to initiate 3505
communication with any other member of the same group at any time. This semantic typically appears in 3506
clustering and distributed services where there is redundancy of components or services. 3507

 3508

It is the responsibility of the TOSCA implementation to ensure the source component has a suitable 3509
network path between all the member component instances and that the ports specified in the respective 3510
tosca.capabilities.Endpoint are not blocked, and the appropriate multicast communication, if necessary, 3511
enabled. The TOSCA implementation may only represent state of the tosca.relationships.ConnectsTo 3512
relationship as fulfilled after the actual network communication is enabled such that at least one-member 3513
component of the group may reach any other member component of the group. 3514

 3515

Endpoints specifying the Peer-to-Peer initiation semantic need not be related with a 3516
tosca.relationships.ConnectsTo relationship for the common case where the same set of component 3517
instances must communicate with each other. 3518

 3519

Note that the connection initiation semantic only impacts the fulfillment of the actual connectivity and does 3520
not impact the node traversal order implied by the tosca.relationships.ConnectsTo Relationship Type. 3521

8.3.2 Specifying layer 4 ports 3522

TOSCA Service Templates must express enough details about application component 3523
intercommunication to enable TOSCA implementations to fulfill these communication semantics in the 3524
network infrastructure. TOSCA currently focuses on TCP/IP as this is the most pervasive in today’s cloud 3525

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 205 of 282

infrastructures. The layer 4 ports required for application component intercommunication are specified in 3526
tosca.capabilities.Endpoint. The union of the port specifications of both the source and target 3527
tosca.capabilities.Endpoint which are part of the tosca.relationships.ConnectsTo Relationship Template 3528
are interpreted as the effective set of ports which must be allowed in the network communication. 3529

 3530

The meaning of Source and Target port(s) corresponds to the direction of the respective 3531
tosca.relationships.ConnectsTo. 3532

8.4 Network provisioning 3533

8.4.1 Declarative network provisioning 3534

TOSCA orchestrators are responsible for the provisioning of the network connectivity for declarative 3535
TOSCA Service Templates (Declarative TOSCA Service Templates don’t contain explicit plans). This 3536
means that the TOSCA orchestrator must be able to infer a suitable logical connectivity model from the 3537
Service Template and then decide how to provision the logical connectivity, referred to as “fulfillment”, on 3538
the available underlying infrastructure. In order to enable fulfillment, sufficient technical details still must 3539
be specified, such as the required protocols, ports and QOS information. TOSCA connectivity types, such 3540
as tosca.capabilities.Endpoint, provide well defined means to express these details. 3541

8.4.2 Implicit network fulfillment 3542

TOSCA Service Templates are by default network agnostic. TOSCA’s application centric approach only 3543
requires that a TOSCA Service Template contain enough information for a TOSCA orchestrator to infer 3544
suitable network connectivity to meet the needs of the application components. Thus Service Template 3545
designers are not required to be aware of or provide specific requirements for underlying networks. This 3546
approach yields the most portable Service Templates, allowing them to be deployed into any 3547
infrastructure which can provide the necessary component interconnectivity. 3548

8.4.3 Controlling network fulfillment 3549

TOSCA provides mechanisms for providing control over network fulfillment. 3550

This mechanism allows the application network designer to express in service template or network 3551
template how the networks should be provisioned. 3552

 3553

For the use cases described below let’s assume we have a typical 3-tier application which is consisting of 3554
FE (frontend), BE (backend) and DB (database) tiers. The simple application topology diagram can be 3555
shown below: 3556

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 206 of 282

 3557

 3558

Figure-5: Typical 3-Tier Network 3559

8.4.3.1 Use case: OAM Network 3560

When deploying an application in service provider’s on-premise cloud, it’s very common that one or more 3561
of the application’s services should be accessible from an ad-hoc OAM (Operations, Administration and 3562
Management) network which exists in the service provider backbone. 3563

 3564

As an application network designer, I’d like to express in my TOSCA network template (which 3565
corresponds to my TOSCA service template) the network CIDR block, start ip, end ip and segmentation 3566
ID (e.g. VLAN id). 3567

The diagram below depicts a typical 3-tiers application with specific networking requirements for its FE 3568
tier server cluster: 3569

Frontend Tier

Backend Tier

VM
VMVM

VM

VMVM

VM

DB Tier

VM VM

Frontend Tier

Backend Tier

VM
VMVM

VM

VMVM

VM

DB Tier

VM VM

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 207 of 282

 3570

 3571

8.4.3.2 Use case: Data Traffic network 3572

The diagram below defines a set of networking requirements for the backend and DB tiers of the 3-tier 3573
app mentioned above. 3574

OAM Network

(173.10.10.0/24)

Frontend Tier

Backend Tier

VM
VMVM

VM

VMVM

VM

DB Tier

VM VM

1. I need all servers in FE tier

to be connected to an

existing OAM network with

CIDR: 173.10.10.0/24

2. Since OAM network is

shared between several

backbone services I must

bound my FE cluster to a

smaller IP address range

and set:

Start IP: 173.10.10.100

End IP: 173.10.10.150

3. I also want to segment my

traffic by setting a:

SEGEMANTATION ID: 1200

(e.g. VLAN, GRE Tunnel)

Other Backbone Services

S2
S3S1

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 208 of 282

 3575

8.4.3.3 Use case: Bring my own DHCP 3576

The same 3-tier app requires for its admin traffic network to manage the IP allocation by its own DHCP 3577
which runs autonomously as part of application domain. 3578

 3579

For this purpose, the app network designer would like to express in TOSCA that the underlying 3580
provisioned network will be set with DHCP_ENABLED=false. See this illustrated in the figure below: 3581

OAM Network

(173.10.10.0/24)

A
d

m
in

 T
ra

ffic
 N

e
tw

o
rk

(1
1

.2
.2

.0
/1

6
)

Frontend Tier

Backend Tier

Router

VM
VMVM

VM

VMVM

VM

DB Tier

VM VM

4. My BE servers runs a legacy code

(millions of LOC for a network

appliance product) that expects:

- Data network on eth0

- Admin network on eth1

5. As part of a transition to IPv6,

we’ve started to “port” BE and DB

codebase to support IPv6 for the

Data traffic, hence I’d like to create

network with:

- IPv6 CIDR: 2001:db8:92a4:0:0:6b3a:180:abcd/64

D
a

ta
 T

ra
ff

ic
 N

e
tw

o
rk

(2
0

0
1

:d
b

8
:9

2
a

4
:0

:0
:6

b
3
a

:1
8

0
:a

b
c

d
/6

4
)

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 209 of 282

 3582

8.5 Network Types 3583

8.5.1 tosca.nodes.network.Network 3584

The TOSCA Network node represents a simple, logical network service. 3585

Shorthand Name Network

Type Qualified
Name

tosca:Network

Type URI tosca.nodes.network.Network

8.5.1.1 Properties 3586

Name Required Type Constraints Description

ip_version no integer valid_values:
[4, 6]
default: 4

The IP version of the requested network

cidr no string None The cidr block of the requested network

start_ip no string None The IP address to be used as the 1st one in a pool of
addresses derived from the cidr block full IP range

OAM Network

(173.10.10.0/24)

A
d

m
in

 T
ra

ffic
 N

e
tw

o
rk

(1
1
.2

.2
.0

/1
6
)

Frontend Tier

Backend Tier

Router

VM
VMVM

VM

VMVM

VM

DB Tier

VM VM

D
a

ta
 T

ra
ff

ic
 N

e
tw

o
rk

(2
0

0
1

:d
b

8
:9

2
a

4
:0

:0
:6

b
3

a
:1

8
0

:a
b

c
d

/6
4

)

6. The IPAM of the Admin

network is done by internal

DHCP service. Thus, I’d like

to create a segmented

network (broadcast domain)

by setting:

DHCP_ENABLED = false

DHCP

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 210 of 282

Name Required Type Constraints Description

end_ip no
string

None The IP address to be used as the last one in a pool of
addresses derived from the cidr block full IP range

gateway_ip no string None The gateway IP address.

network_name no string None An Identifier that represents an existing Network
instance in the underlying cloud infrastructure – OR – be
used as the name of the new created network.

 If network_name is provided along with

network_id they will be used to uniquely identify
an existing network and not creating a new one,
means all other possible properties are not allowed.

 network_name should be more convenient for
using. But in case that network name uniqueness is
not guaranteed then one should provide a

network_id as well.

network_id no string None An Identifier that represents an existing Network
instance in the underlying cloud infrastructure.
This property is mutually exclusive with all other
properties except network_name.

 Appearance of network_id in network template
instructs the Tosca container to use an existing
network instead of creating a new one.

 network_name should be more convenient for
using. But in case that network name uniqueness is
not guaranteed then one should add a

network_id as well.

 network_name and network_id can be still
used together to achieve both uniqueness and
convenient.

segmentation_id no string None A segmentation identifier in the underlying cloud
infrastructure (e.g., VLAN id, GRE tunnel id). If the

segmentation_id is specified, the

network_type or physical_network properties
should be provided as well.

network_type no string None Optionally, specifies the nature of the physical network
in the underlying cloud infrastructure. Examples are flat,
vlan, gre or vxlan. For flat and vlan types,

physical_network should be provided too.

physical_network no string None Optionally, identifies the physical network on top of
which the network is implemented, e.g. physnet1. This

property is required if network_type is flat or vlan.

dhcp_enabled no boolean default: true Indicates the TOSCA container to create a virtual
network instance with or without a DHCP service.

8.5.1.2 Attributes 3587

Name Required Type Constraints Description

segmentation_i
d

no string None The actual segmentation_id that is been assigned to the
network by the underlying cloud infrastructure.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 211 of 282

8.5.1.3 Definition 3588

 tosca.nodes.network.Network:
 derived_from: tosca.nodes.Root
 properties:
 ip_version:
 type: integer
 required: false
 default: 4
 constraints:
 - valid_values: [4, 6]
 cidr:
 type: string
 required: false
 start_ip:
 type: string
 required: false
 end_ip:
 type: string
 required: false
 gateway_ip:
 type: string
 required: false
 network_name:
 type: string
 required: false
 network_id:
 type: string
 required: false
 segmentation_id:
 type: string
 required: false
 network_type:
 type: string
 required: false
 physical_network:
 type: string
 required: false
 capabilities:
 link:
 type: tosca.capabilities.network.Linkable

8.5.2 tosca.nodes.network.Port 3589

The TOSCA Port node represents a logical entity that associates between Compute and Network 3590

normative types. 3591

The Port node type effectively represents a single virtual NIC on the Compute node instance. 3592

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 212 of 282

Shorthand Name Port

Type Qualified
Name

tosca:Port

Type URI tosca.nodes.network.Port

8.5.2.1 Properties 3593

Name Required Type Constraints Description

ip_address no string None Allow the user to set a fixed IP address.

Note that this address is a request to the provider
which they will attempt to fulfill but may not be able
to dependent on the network the port is associated
with.

order no integer greater_or_equa
l: 0
default: 0

The order of the NIC on the compute instance (e.g.
eth2).

Note: when binding more than one port to a single
compute (aka multi vNICs) and ordering is desired, it is
mandatory that all ports will be set with an order
value and. The order values must represent a positive,
arithmetic progression that starts with 0 (e.g. 0, 1, 2,
…, n).

is_default no boolean default: false Set is_default=true to apply a default gateway
route on the running compute instance to the
associated network gateway.

Only one port that is associated to single compute
node can set as default=true.

ip_range_start no string None Defines the starting IP of a range to be allocated for
the compute instances that are associated by this
Port.
Without setting this property the IP allocation is done
from the entire CIDR block of the network.

ip_range_end no string None Defines the ending IP of a range to be allocated for
the compute instances that are associated by this
Port.
Without setting this property the IP allocation is done
from the entire CIDR block of the network.

8.5.2.2 Attributes 3594

Name Required Type Constraints Description

ip_address no string None The IP address would be assigned to the associated
compute instance.

8.5.2.3 Definition 3595

 tosca.nodes.network.Port:
 derived_from: tosca.nodes.Root
 properties:
 ip_address:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 213 of 282

 type: string
 required: false
 order:
 type: integer
 required: true
 default: 0
 constraints:
 - greater_or_equal: 0
 is_default:
 type: boolean
 required: false
 default: false
 ip_range_start:
 type: string
 required: false
 ip_range_end:
 type: string
 required: false
 requirements:
 - link:
 capability: tosca.capabilities.network.Linkable
 relationship: tosca.relationships.network.LinksTo
 - binding:
 capability: tosca.capabilities.network.Bindable
 relationship: tosca.relationships.network.BindsTo

8.5.3 tosca.capabilities.network.Linkable 3596

A node type that includes the Linkable capability indicates that it can be pointed to by a 3597
tosca.relationships.network.LinksTo relationship type. 3598

Shorthand Name Linkable

Type Qualified
Name

tosca:.Linkable

Type URI tosca.capabilities.network.Linkable

8.5.3.1 Properties 3599

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

8.5.3.2 Definition 3600

tosca.capabilities.network.Linkable:
 derived_from: tosca.capabilities.Node

8.5.4 tosca.relationships.network.LinksTo 3601

This relationship type represents an association relationship between Port and Network node types. 3602

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 214 of 282

Shorthand Name LinksTo

Type Qualified
Name

tosca:LinksTo

Type URI tosca.relationships.network.LinksTo

8.5.4.1 Definition 3603

tosca.relationships.network.LinksTo:
 derived_from: tosca.relationships.DependsOn
 valid_target_types: [tosca.capabilities.network.Linkable]

8.5.5 tosca.relationships.network.BindsTo 3604

This type represents a network association relationship between Port and Compute node types. 3605

Shorthand Name network.BindsTo

Type Qualified
Name

tosca:BindsTo

Type URI tosca.relationships.network.BindsTo

8.5.5.1 Definition 3606

tosca.relationships.network.BindsTo:
 derived_from: tosca.relationships.DependsOn
 valid_target_types: [tosca.capabilities.network.Bindable]

8.6 Network modeling approaches 3607

8.6.1 Option 1: Specifying a network outside the application’s Service 3608

Template 3609

This approach allows someone who understands the application’s networking requirements, mapping the 3610
details of the underlying network to the appropriate node templates in the application. 3611

 3612

The motivation for this approach is providing the application network designer a fine-grained control on 3613
how networks are provisioned and stitched to its application by the TOSCA orchestrator and underlying 3614
cloud infrastructure while still preserving the portability of his service template. Preserving the portability 3615
means here not doing any modification in service template but just “plug-in” the desired network 3616
modeling. The network modeling can reside in the same service template file but the best practice should 3617
be placing it in a separated self-contained network template file. 3618

 3619

This “pluggable” network template approach introduces a new normative node type called Port, capability 3620
called tosca.capabilities.network.Linkable and relationship type called 3621
tosca.relationships.network.LinksTo. 3622

The idea of the Port is to elegantly associate the desired compute nodes with the desired network nodes 3623
while not “touching” the compute itself. 3624

 3625

The following diagram series demonstrate the plug-ability strength of this approach. 3626

Let’s assume an application designer has modeled a service template as shown in Figure 1 that 3627
describes the application topology nodes (compute, storage, software components, etc.) with their 3628

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 215 of 282

relationships. The designer ideally wants to preserve this service template and use it in any cloud 3629
provider environment without any change. 3630

 3631

Figure-6: Generic Service Template 3632

When the application designer comes to consider its application networking requirement they typically call 3633
the network architect/designer from their company (who has the correct expertise). 3634

The network designer, after understanding the application connectivity requirements and optionally the 3635
target cloud provider environment, is able to model the network template and plug it to the service 3636
template as shown in Figure 2: 3637

 3638

Figure-7: Service template with network template A 3639

When there’s a new target cloud environment to run the application on, the network designer is simply 3640
creates a new network template B that corresponds to the new environmental conditions and provide it to 3641
the application designer which packs it into the application CSAR. 3642

Service

Template

Service

Template

Network

Template

A

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 216 of 282

 3643

Figure-8: Service template with network template B 3644

The node templates for these three networks would be defined as follows: 3645

node_templates:
 frontend:
 type: tosca.nodes.Compute
 properties: # omitted for brevity

 backend:
 type: tosca.nodes.Compute
 properties: # omitted for brevity

 database:
 type: tosca.nodes.Compute
 properties: # omitted for brevity

 oam_network:
 type: tosca.nodes.network.Network
 properties: # omitted for brevity

 admin_network:
 type: tosca.nodes.network.Network
 properties: # omitted for brevity

 data_network:
 type: tosca.nodes.network.Network
 properties: # omitted for brevity

 # ports definition
 fe_oam_net_port:
 type: tosca.nodes.network.Port

Service

Template

Network

Template

B

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 217 of 282

 properties:
 is_default: true
 ip_range_start: { get_input: fe_oam_net_ip_range_start }
 ip_range_end: { get_input: fe_oam_net_ip_range_end }
 requirements:
 - link: oam_network
 - binding: frontend

 fe_admin_net_port:
 type: tosca.nodes.network.Port
 requirements:
 - link: admin_network
 - binding: frontend

 be_admin_net_port:
 type: tosca.nodes.network.Port
 properties:
 order: 0
 requirements:
 - link: admin_network
 - binding: backend

 be_data_net_port:
 type: tosca.nodes.network.Port
 properties:
 order: 1
 requirements:
 - link: data_network
 - binding: backend

 db_data_net_port:
 type: tosca.nodes.network.Port
 requirements:
 - link: data_network
 - binding: database

8.6.2 Option 2: Specifying network requirements within the application’s 3646

Service Template 3647

This approach allows the Service Template designer to map an endpoint to a logical network. 3648

The use case shown below examines a way to express in the TOSCA YAML service template a typical 3-3649
tier application with their required networking modeling: 3650

node_templates:
 frontend:
 type: tosca.nodes.Compute
 properties: # omitted for brevity
 requirements:
 - network_oam: oam_network
 - network_admin: admin_network
 backend:
 type: tosca.nodes.Compute
 properties: # omitted for brevity

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 218 of 282

 requirements:
 - network_admin: admin_network
 - network_data: data_network

 database:
 type: tosca.nodes.Compute
 properties: # omitted for brevity
 requirements:
 - network_data: data_network

 oam_network:
 type: tosca.nodes.network.Network
 properties:
 ip_version: { get_input: oam_network_ip_version }
 cidr: { get_input: oam_network_cidr }
 start_ip: { get_input: oam_network_start_ip }
 end_ip: { get_input: oam_network_end_ip }

 admin_network:
 type: tosca.nodes.network.Network
 properties:
 ip_version: { get_input: admin_network_ip_version }
 dhcp_enabled: { get_input: admin_network_dhcp_enabled }

 data_network:
 type: tosca.nodes.network.Network
 properties:
 ip_version: { get_input: data_network_ip_version }
 cidr: { get_input: data_network_cidr }

 3651

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 219 of 282

9 Non-normative type definitions 3652

This section defines non-normative types which are used only in examples and use cases in this 3653
specification and are included only for completeness for the reader. Implementations of this specification 3654
are not required to support these types for conformance. 3655

9.1 Artifact Types 3656

This section contains are non-normative Artifact Types used in use cases and examples. 3657

9.1.1 tosca.artifacts.Deployment.Image.Container.Docker 3658

This artifact represents a Docker “image” (a TOSCA deployment artifact type) which is a binary comprised 3659
of one or more (a union of read-only and read-write) layers created from snapshots within the underlying 3660
Docker Union File System. 3661

9.1.1.1 Definition 3662

tosca.artifacts.Deployment.Image.Container.Docker:
 derived_from: tosca.artifacts.Deployment.Image
 description: Docker Container Image

9.1.2 tosca.artifacts.Deployment.Image.VM.ISO 3663

A Virtual Machine (VM) formatted as an ISO standard disk image. 3664

9.1.2.1 Definition 3665

tosca.artifacts.Deployment.Image.VM.ISO:
 derived_from: tosca.artifacts.Deployment.Image.VM
 description: Virtual Machine (VM) image in ISO disk format
 mime_type: application/octet-stream
 file_ext: [iso]

9.1.3 tosca.artifacts.Deployment.Image.VM.QCOW2 3666

A Virtual Machine (VM) formatted as a QEMU emulator version 2 standard disk image. 3667

9.1.3.1 Definition 3668

tosca.artifacts.Deployment.Image.VM.QCOW2:
 derived_from: tosca.artifacts.Deployment.Image.VM
 description: Virtual Machine (VM) image in QCOW v2 standard disk format
 mime_type: application/octet-stream
 file_ext: [qcow2]

9.2 Capability Types 3669

This section contains are non-normative Capability Types used in use cases and examples. 3670

9.2.1 tosca.capabilities.Container.Docker 3671

The type indicates capabilities of a Docker runtime environment (client). 3672

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 220 of 282

Shorthand Name Container.Docker

Type Qualified
Name

tosca:Container.Docker

Type URI tosca.capabilities.Container.Docker

9.2.1.1 Properties 3673

Name Required Type Constraints Description

version no version[] None The Docker version capability (i.e., the versions
supported by the capability).

publish_all no boolean default: false Indicates that all ports (ranges) listed in the dockerfile

using the EXPOSE keyword be published.

publish_ports no list of
PortSpec

None List of ports mappings from source (Docker container)
to target (host) ports to publish.

expose_ports no list of
PortSpec

None List of ports mappings from source (Docker container)
to expose to other Docker containers (not accessible
outside host).

volumes no list of
string

None The dockerfile VOLUME command which is used to
enable access from the Docker container to a directory
on the host machine.

host_id no string None The optional identifier of an existing host resource that
should be used to run this container on.

volume_id no string None The optional identifier of an existing storage volume
(resource) that should be used to create the container’s
mount point(s) on.

9.2.1.2 Definition 3674

tosca.capabilities.Container.Docker:
 derived_from: tosca.capabilities.Container
 properties:
 version:
 type: list
 required: false
 entry_schema: version
 publish_all:
 type: boolean
 default: false
 required: false
 publish_ports:
 type: list
 entry_schema: PortSpec
 required: false
 expose_ports:
 type: list
 entry_schema: PortSpec
 required: false
 volumes:
 type: list
 entry_schema: string
 required: false

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 221 of 282

9.2.1.3 Notes 3675

 When the expose_ports property is used, only the source and source_range properties of 3676

PortSpec would be valid for supplying port numbers or ranges, the target and target_range 3677

properties would be ignored. 3678

9.3 Node Types 3679

This section contains non-normative node types referenced in use cases and examples. All additional 3680
Attributes, Properties, Requirements and Capabilities shown in their definitions (and are not inherited 3681
from ancestor normative types) are also considered to be non-normative. 3682

9.3.1 tosca.nodes.Database.MySQL 3683

9.3.1.1 Properties 3684

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

9.3.1.2 Definition 3685

tosca.nodes.Database.MySQL:
 derived_from: tosca.nodes.Database
 requirements:
 - host:
 node: tosca.nodes.DBMS.MySQL

9.3.2 tosca.nodes.DBMS.MySQL 3686

9.3.2.1 Properties 3687

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

9.3.2.2 Definition 3688

tosca.nodes.DBMS.MySQL:
 derived_from: tosca.nodes.DBMS
 properties:
 port:
 description: reflect the default MySQL server port
 default: 3306
 root_password:
 # MySQL requires a root_password for configuration
 # Override parent DBMS definition to make this property required
 required: true
 capabilities:
 # Further constrain the ‘host’ capability to only allow MySQL databases
 host:
 valid_source_types: [tosca.nodes.Database.MySQL]

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 222 of 282

9.3.3 tosca.nodes.WebServer.Apache 3689

9.3.3.1 Properties 3690

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

9.3.3.2 Definition 3691

tosca.nodes.WebServer.Apache:
 derived_from: tosca.nodes.WebServer

9.3.4 tosca.nodes.WebApplication.WordPress 3692

This section defines a non-normative Node type for the WordPress [WordPress] application. 3693

9.3.4.1 Properties 3694

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

9.3.4.2 Definition 3695

tosca.nodes.WebApplication.WordPress:
 derived_from: tosca.nodes.WebApplication
 properties:
 admin_user:
 type: string
 admin_password:
 type: string
 db_host:
 type: string
 requirements:
 - database_endpoint:
 capability: tosca.capabilities.Endpoint.Database
 node: tosca.nodes.Database
 relationship: tosca.relationships.ConnectsTo

9.3.5 tosca.nodes.WebServer.Nodejs 3696

This non-normative node type represents a Node.js [NodeJS] web application server. 3697

9.3.5.1 Properties 3698

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

9.3.5.2 Definition 3699

tosca.nodes.WebServer.Nodejs:
 derived_from: tosca.nodes.WebServer
 properties:
 # Property to supply the desired implementation in the Github repository

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 223 of 282

 github_url:
 required: no
 type: string
 description: location of the application on the github.
 default: https://github.com/mmm/testnode.git
 interfaces:
 Standard:
 inputs:
 github_url:
 type: string

9.3.6 tosca.nodes.Container.Application.Docker 3700

9.3.6.1 Properties 3701

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

9.3.6.2 Definition 3702

tosca.nodes.Container.Application.Docker:
 derived_from:
tosca.nodes.Containertosca.nodes.Container.Applicationtosca.nodes.Container.Appli
cation
 requirements:
 - host:
 capability: tosca.capabilities.Container.Docker

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 224 of 282

10 Component Modeling Use Cases 3703

This section is non-normative and includes use cases that explore how to model components and their 3704
relationships using TOSCA Simple Profile in YAML. 3705

10.1.1 Use Case: Exploring the HostedOn relationship using 3706

WebApplication and WebServer 3707

This use case examines the ways TOSCA YAML can be used to express a simple hosting relationship 3708
(i.e., HostedOn) using the normative TOSCA WebServer and WebApplication node types defined in this 3709

specification. 3710

10.1.1.1 WebServer declares its “host” capability 3711

For convenience, relevant parts of the normative TOSCA Node Type for WebServer are shown below: 3712

tosca.nodes.WebServer
 derived_from: SoftwareComponent
 capabilities:
 ...
 host:
 type: tosca.capabilities.Container
 valid_source_types: [tosca.nodes.WebApplication]

As can be seen, the WebServer Node Type declares its capability to “contain” (i.e., host) other nodes 3713

using the symbolic name “host” and providing the Capability Type tosca.capabilities.Container. It 3714

should be noted that the symbolic name of “host” is not a reserved word, but one assigned by the type 3715

designer that implies at or betokens the associated capability. The Container capability definition also 3716

includes a required list of valid Node Types that can be contained by this, the WebServer, Node Type. 3717

This list is declared using the keyname of valid_source_types and in this case it includes only allowed 3718

type WebApplication. 3719

10.1.1.2 WebApplication declares its “host” requirement 3720

The WebApplication node type needs to be able to describe the type of capability a target node would 3721

have to provide in order to “host” it. The normative TOSCA capability type tosca.capabilities.Container is 3722
used to describe all normative TOSCA hosting (i.e., container-containee pattern) relationships. As can be 3723
seen below, the WebApplication accomplishes this by declaring a requirement with the symbolic name 3724
“host” with the capability keyname set to tosca.capabilities.Container. 3725

Again, for convenience, the relevant parts of the normative WebApplication Node Type are shown below: 3726

tosca.nodes.WebApplication:

 derived_from: tosca.nodes.Root

 requirements:

 - host:
 capability: tosca.capabilities.Container

 node: tosca.nodes.WebServer

 relationship: tosca.relationships.HostedOn

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 225 of 282

10.1.1.2.1 Notes 3727

 The symbolic name “host” is not a keyword and was selected for consistent use in TOSCA 3728

normative node types to give the reader an indication of the type of requirement being 3729

referenced. A valid HostedOn relationship could still be established between WebApplicaton and 3730

WebServer in a TOSCA Service Template regardless of the symbolic name assigned to either the 3731

requirement or capability declaration. 3732

10.1.2 Use Case: Establishing a ConnectsTo relationship to WebServer 3733

This use case examines the ways TOSCA YAML can be used to express a simple connection 3734
relationship (i.e., ConnectsTo) between some service derived from the SoftwareComponent Node Type, 3735
to the normative WebServer node type defined in this specification. 3736

The service template that would establish a ConnectsTo relationship as follows: 3737

node_types:

 MyServiceType:

 derived_from: SoftwareComponent

 requirements:

 # This type of service requires a connection to a WebServer’s data_endpoint

 - connection1:

 node: WebServer

 relationship: ConnectsTo

 capability: Endpoint

topology_template:

 node_templates:

 my_web_service:

 type: MyServiceType

 ...

 requirements:

 - connection1:

 node: my_web_server

 my_web_server:

 # Note, the normative WebServer node type declares the “data_endpoint”

 # capability of type tosca.capabilities.Endpoint.

 type: WebServer

Since the normative WebServer Node Type only declares one capability of type 3738

tosca.capabilties.Endpoint (or Endpoint, its shortname alias in TOSCA) using the symbolic name 3739

data_endpoint, the my_web_service node template does not need to declare that symbolic name on its 3740

requirement declaration. If however, the my_web_server node was based upon some other node type 3741

that declared more than one capability of type Endpoint, then the capability keyname could be used 3742

to supply the desired symbolic name if necessary. 3743

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 226 of 282

10.1.2.1 Best practice 3744

 It should be noted that the best practice for designing Node Types in TOSCA should not export two 3745
capabilities of the same type if they truly offer different functionality (i.e., different capabilities) which 3746
should be distinguished using different Capability Type definitions. 3747

10.1.3 Use Case: Attaching (local) BlockStorage to a Compute node 3748

This use case examines the ways TOSCA YAML can be used to express a simple AttachesTo 3749
relationship between a Compute node and a locally attached BlockStorage node. 3750

The service template that would establish an AttachesTo relationship follows: 3751

node_templates:

 my_server:

 type: Compute

 ...

 requirements:

 # contextually this can only be a relationship type

 - local_storage:

 # capability is provided by Compute Node Type

 node: my_block_storage

 relationship:

 type: AttachesTo

 properties:
 location: /path1/path2
 # This maps the local requirement name ‘local_storage’ to the
 # target node’s capability name ‘attachment’

 my_block_storage:

 type: BlockStorage

 properties:
 size: 10 GB

10.1.4 Use Case: Reusing a BlockStorage Relationship using Relationship 3752

Type or Relationship Template 3753

This builds upon the previous use case (10.1.3) to examine how a template author could attach multiple 3754
Compute nodes (templates) to the same BlockStorage node (template), but with slightly different property 3755
values for the AttachesTo relationship. 3756

 3757

Specifically, several notation options are shown (in this use case) that achieve the same desired result. 3758

10.1.4.1 Simple Profile Rationale 3759

Referencing an explicitly declared Relationship Template is a convenience of the Simple Profile that 3760
allows template authors an entity to set, constrain or override the properties and operations as defined in 3761
its declared (Relationship) Type much as allowed now for Node Templates. It is especially useful when a 3762
complex Relationship Type (with many configurable properties or operations) has several logical 3763
occurrences in the same Service (Topology) Template; allowing the author to avoid configuring these 3764
same properties and operations in multiple Node Templates. 3765

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 227 of 282

10.1.4.2 Notation Style #1: Augment AttachesTo Relationship Type directly in 3766

each Node Template 3767

This notation extends the methodology used for establishing a HostedOn relationship, but allowing 3768
template author to supply (dynamic) configuration and/or override of properties and operations. 3769

 3770

Note: This option will remain valid for Simple Profile regardless of other notation (copy or aliasing) options 3771

being discussed or adopted for future versions. 3772

 3773

node_templates:

 my_block_storage:
 type: BlockStorage
 properties:
 size: 10

 my_web_app_tier_1:
 type: Compute
 requirements:
 - local_storage:
 node: my_block_storage
 relationship: MyAttachesTo
 # use default property settings in the Relationship Type definition

 my_web_app_tier_2:
 type: Compute
 requirements:
 - local_storage:
 node: my_block_storage
 relationship:
 type: MyAttachesTo
 # Override default property setting for just the ‘location’ property
 properties:
 location: /some_other_data_location

relationship_types:

 MyAttachesTo:

 derived_from: AttachesTo

 properties:
 location: /default_location

 interfaces:

 Configure:

 post_configure_target:

 implementation: default_script.sh

 3774

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 228 of 282

10.1.4.3 Notation Style #2: Use the ‘template’ keyword on the Node Templates to 3775

specify which named Relationship Template to use 3776

This option shows how to explicitly declare different named Relationship Templates within the Service 3777
Template as part of a relationship_templates section (which have different property values) and can 3778

be referenced by different Compute typed Node Templates. 3779

 3780

node_templates:

 my_block_storage:
 type: BlockStorage
 properties:
 size: 10

 my_web_app_tier_1:
 derived_from: Compute
 requirements:
 - local_storage:
 node: my_block_storage
 relationship: storage_attachesto_1

 my_web_app_tier_2:
 derived_from: Compute
 requirements:
 - local_storage:
 node: my_block_storage
 relationship: storage_attachesto_2

relationship_templates:

 storage_attachesto_1:

 type: MyAttachesTo

 properties:

 location: /my_data_location

 storage_attachesto_2:

 type: MyAttachesTo

 properties:

 location: /some_other_data_location

relationship_types:

 MyAttachesTo:

 derived_from: AttachesTo

 interfaces:

 some_interface_name:

 some_operation:

 implementation: default_script.sh

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 229 of 282

 3781

10.1.4.4 Notation Style #3: Using the “copy” keyname to define a similar 3782

Relationship Template 3783

How does TOSCA make it easier to create a new relationship template that is mostly the same as one 3784
that exists without manually copying all the same information? TOSCA provides the copy keyname as a 3785

convenient way to copy an existing template definition into a new template definition as a starting point or 3786
basis for describing a new definition and avoid manual copy. The end results are cleaner TOSCA Service 3787
Templates that allows the description of only the changes (or deltas) between similar templates. 3788

The example below shows that the Relationship Template named storage_attachesto_1 provides 3789

some overrides (conceptually a large set of overrides) on its Type which the Relationship Template 3790
named storage_attachesto_2 wants to “copy” before perhaps providing a smaller number of overrides. 3791

node_templates:

 my_block_storage:
 type: BlockStorage
 properties:
 size: 10

 my_web_app_tier_1:
 derived_from: Compute
 requirements:
 - attachment:
 node: my_block_storage
 relationship: storage_attachesto_1

 my_web_app_tier_2:
 derived_from: Compute
 requirements:
 - attachment:
 node: my_block_storage
 relationship: storage_attachesto_2

relationship_templates:

 storage_attachesto_1:

 type: MyAttachesTo

 properties:

 location: /my_data_location

 interfaces:

 some_interface_name:

 some_operation_name_1: my_script_1.sh

 some_operation_name_2: my_script_2.sh

 some_operation_name_3: my_script_3.sh

 storage_attachesto_2:

 # Copy the contents of the “storage_attachesto_1” template into this new one

 copy: storage_attachesto_1

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 230 of 282

 # Then change just the value of the location property

 properties:

 location: /some_other_data_location

relationship_types:

 MyAttachesTo:

 derived_from: AttachesTo

 interfaces:

 some_interface_name:

 some_operation:

 implementation: default_script.sh

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 231 of 282

11 Application Modeling Use Cases 3792

This section is non-normative and includes use cases that show how to model Infrastructure-as-a-3793
Service (IaaS), Platform-as-a-Service (PaaS) and complete application uses cases using TOSCA Simple 3794
Profile in YAML. 3795

11.1 Use cases 3796

Many of the use cases listed below can by found under the following link: 3797

https://github.com/openstack/heat-translator/tree/master/translator/tests/data 3798

11.1.1 Overview 3799

Name Description

Compute: Create a
single Compute instance
with a host Operating
System

Introduces a TOSCA Compute node type which is used to stand up a single compute instance
with a host Operating System Virtual Machine (VM) image selected by the platform provider
using the Compute node’s properties.

Software Component 1:
Automatic deployment
of a Virtual Machine
(VM) image artifact

Introduces the SoftwareComponent node type which declares software that is hosted on a

Compute instance. In this case, the SoftwareComponent declares a VM image as a deployment
artifact which includes its own pre-packaged operating system and software. The TOSCA

Orchestrator detects this known deployment artifact type on the SoftwareComponent node
template and automatically deploys it to the Compute node.

BlockStorage-1:
Attaching Block Storage
to a single Compute
instance

Demonstrates how to attach a TOSCA BlockStorage node to a Compute node using the

normative AttachesTo relationship.

BlockStorage-2:
Attaching Block Storage
using a custom
Relationship Type

Demonstrates how to attach a TOSCA BlockStorage node to a Compute node using a

custom RelationshipType that derives from the normative AttachesTo relationship.

BlockStorage-3: Using a
Relationship Template
of type AttachesTo

Demonstrates how to attach a TOSCA BlockStorage node to a Compute node using a

TOSCA Relationship Template that is based upon the normative AttachesTo Relationship
Type.

BlockStorage-4: Single
Block Storage shared by
2-Tier Application with
custom AttachesTo Type
and implied
relationships

This use case shows 2 Compute instances (2 tiers) with one BlockStorage node, and also uses a

custom AttachesTo Relationship that provides a default mount point (i.e., location) which
the 1st tier uses, but the 2nd tier provides a different mount point.

BlockStorage-5: Single
Block Storage shared by
2-Tier Application with
custom AttachesTo Type
and explicit Relationship
Templates

This use case is like the previous BlockStorage-4 use case, but also creates two relationship

templates (one for each tier) each of which provide a different mount point (i.e., location)
which overrides the default location defined in the custom Relationship Type.

BlockStorage-6:
Multiple Block Storage
attached to different
Servers

This use case demonstrates how two different TOSCA BlockStorage nodes can be attached

to two different Compute nodes (i.e., servers) each using the normative AttachesTo

relationship.

Object Storage 1:
Creating an Object
Storage service

Introduces the TOSCA ObjectStorage node type and shows how it can be instantiated.

Network-1: Server
bound to a new network

Introduces the TOSCA Network and Port nodes used for modeling logical networks using the

LinksTo and BindsTo Relationship Types. In this use case, the template is invoked without

an existing network_name as an input property so a new network is created using the
properties declared in the Network node.

https://github.com/openstack/heat-translator/tree/master/translator/tests/data

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 232 of 282

Network-2: Server
bound to an existing
network

Shows how to use a network_name as an input parameter to the template to allow a server to

be associated with (i.e. bound to) an existing Network.

Network-3: Two servers
bound to a single
network

This use case shows how two servers (Compute nodes) can be associated with the same

Network node using two logical network Ports.

Network-4: Server
bound to three
networks

This use case shows how three logical networks (Network nodes), each with its own IP

address range, can be associated with the same server (Compute node).

WebServer-DBMS-1:
WordPress [WordPress]
+ MySQL, single instance

Shows how to host a TOSCA WebServer with a TOSCA WebApplication, DBMS and
Database Node Types along with their dependent HostedOn and ConnectsTo

relationships.

WebServer-DBMS-2:
Nodejs with PayPal
Sample App and
MongoDB on separate
instances

Instantiates a 2-tier application with Nodejs and its (PayPal sample) WebApplication on
one tier which connects a MongoDB database (which stores its application data) using a

ConnectsTo relationship.

Multi-Tier-1:
Elasticsearch, Logstash,
Kibana (ELK)

Shows Elasticsearch, Logstash and Kibana (ELK) being used in a typical manner to
collect, search and monitor/visualize data from a running application.

This use case builds upon the previous Nodejs/MongoDB 2-tier application as the one being

monitored. The collectd and rsyslog components are added to both the WebServer and
Database tiers which work to collect data for Logstash.

In addition to the application tiers, a 3rd tier is introduced with Logstash to collect data from
the application tiers. Finally a 4th tier is added to search the Logstash data with

Elasticsearch and visualize it using Kibana.

Note: This use case also shows the convenience of using a single YAML macro (declared in the

dsl_definitions section of the TOSCA Service Template) on multiple Compute nodes.

Container-1: Containers
using Docker single
Compute instance
(Containers only)

Minimalist TOSCA Service Template description of 2 Docker containers linked to each other.
Specifically, one container runs wordpress and connects to second mysql database container
both on a single server (i.e., Compute instance). The use case also demonstrates how TOSCA
declares and references Docker images from the Docker Hub repository.

Variation 1: Docker Container nodes (only) providing their Docker Requirements allowing
platform (orchestrator) to select/provide the underlying Docker implementation (Capability).

11.1.2 Compute: Create a single Compute instance with a host Operating 3800

System 3801

11.1.2.1 Description 3802

This use case demonstrates how the TOSCA Simple Profile specification can be used to stand up a 3803
single Compute instance with a guest Operating System using a normative TOSCA Compute node. The 3804

TOSCA Compute node is declarative in that the service template describes both the processor and host 3805
operating system platform characteristics (i.e., properties declared on the capability named “os” 3806

sometimes called a “flavor”) that are desired by the template author. The cloud provider would attempt to 3807
fulfill these properties (to the best of its abilities) during orchestration. 3808

11.1.2.2 Features 3809

This use case introduces the following TOSCA Simple Profile features: 3810

 A node template that uses the normative TOSCA Compute Node Type along with showing an 3811

exemplary set of its properties being configured. 3812

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 233 of 282

 Use of the TOSCA Service Template inputs section to declare a configurable value the template 3813

user may supply at runtime. In this case, the “host” property named “num_cpus” (of type integer) 3814

is declared. 3815

o Use of a property constraint to limit the allowed integer values for the “num_cpus” 3816

property to a specific list supplied in the property declaration. 3817

 Use of the TOSCA Service Template outputs section to declare a value the template user may 3818

request at runtime. In this case, the property named “instance_ip” is declared 3819

o The “instance_ip” output property is programmatically retrieved from the Compute 3820

node’s “public_address” attribute using the TOSCA Service Template-level 3821

get_attribute function. 3822

11.1.2.3 Logical Diagram 3823

 3824

11.1.2.4 Sample YAML 3825

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile that just defines a single compute instance and selects a
(guest) host Operating System from the Compute node’s properties. Note, this
example does not include default values on inputs properties.

topology_template:
 inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.
 constraints:
 - valid_values: [1, 2, 4, 8]

 node_templates:
 my_server:
 type: Compute
 capabilities:
 host:
 properties:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 234 of 282

 disk_size: 10 GB

 num_cpus: { get_input: cpus }

 mem_size: 1 GB
 os:
 properties:
 architecture: x86_64
 type: Linux
 distribution: ubuntu
 version: 12.04
 outputs:
 private_ip:
 description: The private IP address of the deployed server instance.
 value: { get_attribute: [my_server, private_address] }

11.1.2.5 Notes 3826

 This use case uses a versioned, Linux Ubuntu distribution on the Compute node. 3827

11.1.3 Software Component 1: Automatic deployment of a Virtual Machine 3828

(VM) image artifact 3829

11.1.3.1 Description 3830

This use case demonstrates how the TOSCA SoftwareComponent node type can be used to declare 3831
software that is packaged in a standard Virtual Machine (VM) image file format (i.e., in this case QCOW2) 3832
and is hosted on a TOSCA Compute node (instance). In this variation, the SoftwareComponent declares 3833
a VM image as a deployment artifact that includes its own pre-packaged operating system and software. 3834
The TOSCA Orchestrator detects this known deployment artifact type on the SoftwareComponent node 3835
template and automatically deploys it to the Compute node. 3836

11.1.3.2 Features 3837

This use case introduces the following TOSCA Simple Profile features: 3838

 A node template that uses the normative TOSCA SoftwareComponent Node Type along with 3839

showing an exemplary set of its properties being configured. 3840

 Use of the TOSCA Service Template artifacts section to declare a Virtual Machine (VM) image 3841

artifact type which is referenced by the SoftwareComponent node template. 3842

 The VM file format, in this case QCOW2, includes its own guest Operating System (OS) and 3843

therefore does not “require” a TOSCA OperatingSystem capability from the TOSCA Compute 3844

node. 3845

11.1.3.3 Assumptions 3846

This use case assumes the following: 3847

 That the TOSCA Orchestrator (working with the Cloud provider’s underlying management 3848

services) is able to instantiate a Compute node that has a hypervisor that supports the Virtual 3849

Machine (VM) image format, in this case QCOW2, which should be compatible with many 3850

standard hypervisors such as XEN and KVM. 3851

 This is not a “bare metal” use case and assumes the existence of a hypervisor on the machine 3852

that is allocated to “host” the Compute instance supports (e.g. has drivers, etc.) the VM image 3853

format in this example. 3854

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 235 of 282

11.1.3.4 Logical Diagram 3855

 3856

11.1.3.5 Sample YAML 3857

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA Simple Profile with a SoftwareComponent node with a declared Virtual
machine (VM) deployment artifact that automatically deploys to its host Compute
node.

topology_template:

 node_templates:
 my_virtual_machine:
 type: SoftwareComponent
 artifacts:
 my_vm_image:
 file: images/fedora-18-x86_64.qcow2
 type: tosca.artifacts.Deployment.Image.VM.QCOW2
 requirements:
 - host: my_server
 # Automatically deploy the VM image referenced on the create operation
 interfaces:
 Standard:
 create: my_vm_image

 # Compute instance with no Operating System guest host
 my_server:
 type: Compute

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 236 of 282

 capabilities:
 # Note: no guest OperatingSystem requirements as these are in the image.
 host:
 properties:
 disk_size: 10 GB

 num_cpus: { get_input: cpus }

 mem_size: 4 GB

 outputs:
 private_ip:
 description: The private IP address of the deployed server instance.
 value: { get_attribute: [my_server, private_address] }

11.1.3.6 Notes 3858

 The use of the type keyname on the artifact definition (within the my_virtual_machine node 3859

template) to declare the ISO image deployment artifact type (i.e., 3860

tosca.artifacts.Deployment.Image.VM.ISO) is redundant since the file extension is “.iso” 3861

which associated with this known, declared artifact type. 3862

 This use case references a filename on the my_vm_image artifact, which indicates a Linux, 3863

Fedora 18, x86 VM image, only as one possible example. 3864

11.1.4 Block Storage 1: Using the normative AttachesTo Relationship Type 3865

11.1.4.1 Description 3866

This use case demonstrates how to attach a TOSCA BlockStorage node to a Compute node using the 3867

normative AttachesTo relationship. 3868

11.1.4.2 Logical Diagram 3869

 3870

11.1.4.3 Sample YAML 3871

tosca_definitions_version: tosca_simple_yaml_1_0

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 237 of 282

description: >
 TOSCA simple profile with server and attached block storage using the normative
AttachesTo Relationship Type.

topology_template:

 inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.
 constraints:
 - valid_values: [1, 2, 4, 8]
 storage_size:
 type: scalar-unit.size
 description: Size of the storage to be created.
 default: 1 GB
 storage_snapshot_id:
 type: string
 description: >
 Optional identifier for an existing snapshot to use when creating
storage.
 storage_location:
 type: string
 description: Block storage mount point (filesystem path).

 node_templates:
 my_server:
 type: Compute
 capabilities:
 host:
 properties:
 disk_size: 10 GB
 num_cpus: { get_input: cpus }
 mem_size: 1 GB
 os:
 properties:
 architecture: x86_64
 type: linux
 distribution: fedora
 version: 18.0
 requirements:
 - local_storage:
 node: my_storage
 relationship:
 type: AttachesTo
 properties:
 location: { get_input: storage_location }

 my_storage:
 type: BlockStorage
 properties:
 size: { get_input: storage_size }
 snapshot_id: { get_input: storage_snapshot_id }

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 238 of 282

 outputs:
 private_ip:
 description: The private IP address of the newly created compute instance.
 value: { get_attribute: [my_server, private_address] }
 volume_id:
 description: The volume id of the block storage instance.
 value: { get_attribute: [my_storage, volume_id] }

11.1.5 Block Storage 2: Using a custom AttachesTo Relationship Type 3872

11.1.5.1 Description 3873

This use case demonstrates how to attach a TOSCA BlockStorage node to a Compute node using a 3874

custom RelationshipType that derives from the normative AttachesTo relationship. 3875

11.1.5.2 Logical Diagram 3876

 3877

11.1.5.3 Sample YAML 3878

 3879

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile with server and attached block storage using a custom
AttachesTo Relationship Type.

relationship_types:
 MyCustomAttachesTo:
 derived_from: AttachesTo

topology_template:
 inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.
 constraints:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 239 of 282

 - valid_values: [1, 2, 4, 8]
 storage_size:
 type: scalar-unit.size
 description: Size of the storage to be created.
 default: 1 GB
 storage_snapshot_id:
 type: string
 description: >
 Optional identifier for an existing snapshot to use when creating
storage.
 storage_location:
 type: string
 description: Block storage mount point (filesystem path).

 node_templates:
 my_server:
 type: Compute
 capabilities:
 host:
 properties:
 disk_size: 10 GB
 num_cpus: { get_input: cpus }
 mem_size: 4 GB
 os:
 properties:
 architecture: x86_64
 type: Linux
 distribution: Fedora
 version: 18.0
 requirements:
 - local_storage:
 node: my_storage
 # Declare custom AttachesTo type using the ‘relationship’ keyword
 relationship:
 type: MyCustomAttachesTo
 properties:
 location: { get_input: storage_location }
 my_storage:
 type: BlockStorage
 properties:
 size: { get_input: storage_size }
 snapshot_id: { get_input: storage_snapshot_id }

 outputs:
 private_ip:
 description: The private IP address of the newly created compute instance.
 value: { get_attribute: [my_server, private_address] }
 volume_id:
 description: The volume id of the block storage instance.
 value: { get_attribute: [my_storage, volume_id] }

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 240 of 282

11.1.6 Block Storage 3: Using a Relationship Template of type AttachesTo 3880

11.1.6.1 Description 3881

This use case demonstrates how to attach a TOSCA BlockStorage node to a Compute node using a 3882

TOSCA Relationship Template that is based upon the normative AttachesTo Relationship Type. 3883

11.1.6.2 Logical Diagram 3884

 3885

11.1.6.3 Sample YAML 3886

 3887

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile with server and attached block storage using a named
Relationship Template for the storage attachment.

topology_template:
 inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.
 constraints:
 - valid_values: [1, 2, 4, 8]
 storage_size:
 type: scalar-unit.size
 description: Size of the storage to be created.
 default: 1 GB
 storage_location:
 type: string
 description: Block storage mount point (filesystem path).

 node_templates:
 my_server:
 type: Compute
 capabilities:
 host:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 241 of 282

 properties:
 disk_size: 10 GB
 num_cpus: { get_input: cpus }
 mem_size: 4 GB
 os:
 properties:
 architecture: x86_64
 type: Linux
 distribution: Fedora
 version: 18.0
 requirements:
 - local_storage:
 node: my_storage
 # Declare template to use with ‘relationship’ keyword
 relationship: storage_attachment

 my_storage:
 type: BlockStorage
 properties:
 size: { get_input: storage_size }

 relationship_templates:
 storage_attachment:
 type: AttachesTo
 properties:
 location: { get_input: storage_location }

 outputs:
 private_ip:
 description: The private IP address of the newly created compute instance.
 value: { get_attribute: [my_server, private_address] }
 volume_id:
 description: The volume id of the block storage instance.
 value: { get_attribute: [my_storage, volume_id] }

11.1.7 Block Storage 4: Single Block Storage shared by 2-Tier Application 3888

with custom AttachesTo Type and implied relationships 3889

11.1.7.1 Description 3890

This use case shows 2 compute instances (2 tiers) with one BlockStorage node, and also uses a custom 3891

AttachesTo Relationship that provides a default mount point (i.e., location) which the 1st tier uses, 3892

but the 2nd tier provides a different mount point. 3893

 3894

Please note that this use case assumes both Compute nodes are accessing different directories within 3895
the shared, block storage node to avoid collisions. 3896

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 242 of 282

11.1.7.2 Logical Diagram 3897

 3898

11.1.7.3 Sample YAML 3899

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile with a Single Block Storage node shared by 2-Tier Application with

custom AttachesTo Type and implied relationships.

relationship_types:
 MyAttachesTo:
 derived_from: tosca.relationships.AttachesTo
 properties:
 location:
 type: string
 default: /default_location

topology_template:
 inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.
 constraints:
 - valid_values: [1, 2, 4, 8]
 storage_size:
 type: scalar-unit.size

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 243 of 282

 default: 1 GB
 description: Size of the storage to be created.
 storage_snapshot_id:
 type: string
 description: >
 Optional identifier for an existing snapshot to use when creating
storage.

 node_templates:
 my_web_app_tier_1:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties:
 disk_size: 10 GB
 num_cpus: { get_input: cpus }
 mem_size: 4096 MB
 os:
 properties:
 architecture: x86_64
 type: Linux
 distribution: Fedora
 version: 18.0
 requirements:
 - local_storage:
 node: my_storage
 relationship: MyAttachesTo

 my_web_app_tier_2:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties:
 disk_size: 10 GB
 num_cpus: { get_input: cpus }
 mem_size: 4096 MB
 os:
 properties:
 architecture: x86_64
 type: Linux
 distribution: Fedora
 version: 18.0
 requirements:
 - local_storage:
 node: my_storage
 relationship:
 type: MyAttachesTo
 properties:
 location: /some_other_data_location

 my_storage:
 type: tosca.nodes.BlockStorage
 properties:
 size: { get_input: storage_size }
 snapshot_id: { get_input: storage_snapshot_id }

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 244 of 282

 outputs:
 private_ip_1:
 description: The private IP address of the application’s first tier.
 value: { get_attribute: [my_web_app_tier_1, private_address] }
 private_ip_2:
 description: The private IP address of the application’s second tier.
 value: { get_attribute: [my_web_app_tier_2, private_address] }
 volume_id:
 description: The volume id of the block storage instance.
 value: { get_attribute: [my_storage, volume_id] }

11.1.8 Block Storage 5: Single Block Storage shared by 2-Tier Application 3900

with custom AttachesTo Type and explicit Relationship Templates 3901

11.1.8.1 Description 3902

This use case is like the Notation1 use case, but also creates two relationship templates (one for each 3903

tier) each of which provide a different mount point (i.e., location) which overrides the default location 3904

defined in the custom Relationship Type. 3905

 3906

Please note that this use case assumes both Compute nodes are accessing different directories within 3907
the shared, block storage node to avoid collisions. 3908

11.1.8.2 Logical Diagram 3909

 3910

11.1.8.3 Sample YAML 3911

tosca_definitions_version: tosca_simple_yaml_1_0

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 245 of 282

description: >
 TOSCA simple profile with a single Block Storage node shared by 2-Tier Application with

custom AttachesTo Type and explicit Relationship Templates.

relationship_types:
 MyAttachesTo:
 derived_from: tosca.relationships.AttachesTo
 properties:
 location:
 type: string
 default: /default_location

topology_template:
 inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.
 constraints:
 - valid_values: [1, 2, 4, 8]
 storage_size:
 type: scalar-unit.size
 default: 1 GB
 description: Size of the storage to be created.
 storage_snapshot_id:
 type: string
 description: >
 Optional identifier for an existing snapshot to use when creating
storage.
 storage_location:
 type: string
 description: >
 Block storage mount point (filesystem path).

 node_templates:

 my_web_app_tier_1:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties:
 disk_size: 10 GB
 num_cpus: { get_input: cpus }
 mem_size: 4096 MB
 os:
 properties:
 architecture: x86_64
 type: Linux
 distribution: Fedora
 version: 18.0
 requirements:
 - local_storage:
 node: my_storage
 relationship: storage_attachesto_1

 my_web_app_tier_2:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 246 of 282

 type: tosca.nodes.Compute
 capabilities:
 host:
 properties:
 disk_size: 10 GB
 num_cpus: { get_input: cpus }
 mem_size: 4096 MB
 os:
 properties:
 architecture: x86_64
 type: Linux
 distribution: Fedora
 version: 18.0
 requirements:
 - local_storage:
 node: my_storage
 relationship: storage_attachesto_2

 my_storage:
 type: tosca.nodes.BlockStorage
 properties:
 size: { get_input: storage_size }
 snapshot_id: { get_input: storage_snapshot_id }

 relationship_templates:
 storage_attachesto_1:
 type: MyAttachesTo
 properties:
 location: /my_data_location

 storage_attachesto_2:
 type: MyAttachesTo
 properties:
 location: /some_other_data_location
 outputs:
 private_ip_1:
 description: The private IP address of the application’s first tier.
 value: { get_attribute: [my_web_app_tier_1, private_address] }
 private_ip_2:
 description: The private IP address of the application’s second tier.
 value: { get_attribute: [my_web_app_tier_2, private_address] }
 volume_id:
 description: The volume id of the block storage instance.
 value: { get_attribute: [my_storage, volume_id] }

11.1.9 Block Storage 6: Multiple Block Storage attached to different Servers 3912

11.1.9.1 Description 3913

This use case demonstrates how two different TOSCA BlockStorage nodes can be attached to two 3914

different Compute nodes (i.e., servers) each using the normative AttachesTo relationship. 3915

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 247 of 282

11.1.9.2 Logical Diagram 3916

 3917

11.1.9.3 Sample YAML 3918

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile with 2 servers each with different attached block storage.

topology_template:
 inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.
 constraints:
 - valid_values: [1, 2, 4, 8]
 storage_size:
 type: scalar-unit.size
 default: 1 GB
 description: Size of the storage to be created.
 storage_snapshot_id:
 type: string
 description: >
 Optional identifier for an existing snapshot to use when creating
storage.
 storage_location:
 type: string
 description: >
 Block storage mount point (filesystem path).

 node_templates:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 248 of 282

 my_server:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties:
 disk_size: 10 GB
 num_cpus: { get_input: cpus }
 mem_size: 4096 MB
 os:
 properties:
 architecture: x86_64
 type: Linux
 distribution: Fedora
 version: 18.0
 requirements:
 - local_storage:
 node: my_storage
 relationship:
 type: AttachesTo
 properties:
 location: { get_input: storage_location }
 my_storage:
 type: tosca.nodes.BlockStorage
 properties:
 size: { get_input: storage_size }
 snapshot_id: { get_input: storage_snapshot_id }

 my_server2:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties:
 disk_size: 10 GB
 num_cpus: { get_input: cpus }
 mem_size: 4096 MB
 os:
 properties:
 architecture: x86_64
 type: Linux
 distribution: Fedora
 version: 18.0
 requirements:
 - local_storage:
 node: my_storage2
 relationship:
 type: AttachesTo
 properties:
 location: { get_input: storage_location }
 my_storage2:
 type: tosca.nodes.BlockStorage
 properties:
 size: { get_input: storage_size }
 snapshot_id: { get_input: storage_snapshot_id }

 outputs:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 249 of 282

 server_ip_1:
 description: The private IP address of the application’s first server.
 value: { get_attribute: [my_server, private_address] }
 server_ip_2:
 description: The private IP address of the application’s second server.
 value: { get_attribute: [my_server2, private_address] }
 volume_id_1:
 description: The volume id of the first block storage instance.
 value: { get_attribute: [my_storage, volume_id] }
 volume_id_2:
 description: The volume id of the second block storage instance.
 value: { get_attribute: [my_storage2, volume_id] }

11.1.10 Object Storage 1: Creating an Object Storage service 3919

11.1.10.1 Description 3920

11.1.10.2 Logical Diagram 3921

 3922

11.1.10.3 Sample YAML 3923

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 Tosca template for creating an object storage service.

topology_template:
 inputs:
 objectstore_name:
 type: string

 node_templates:
 obj_store_server:
 type: tosca.nodes.ObjectStorage
 properties:
 name: { get_input: objectstore_name }
 size: 4096 MB
 maxsize: 20 GB

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 250 of 282

11.1.11 Network 1: Server bound to a new network 3924

11.1.11.1 Description 3925

Introduces the TOSCA Network and Port nodes used for modeling logical networks using the LinksTo and 3926
BindsTo Relationship Types. In this use case, the template is invoked without an existing network_name 3927

as an input property so a new network is created using the properties declared in the Network node. 3928

11.1.11.2 Logical Diagram 3929

 3930

11.1.11.3 Sample YAML 3931

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile with 1 server bound to a new network

topology_template:

 inputs:
 network_name:
 type: string
 description: Network name

 node_templates:
 my_server:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties:
 disk_size: 10 GB
 num_cpus: 1
 mem_size: 4096 MB
 os:
 properties:
 architecture: x86_64
 type: Linux

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 251 of 282

 distribution: CirrOS
 version: 0.3.2

 my_network:
 type: tosca.nodes.network.Network
 properties:
 network_name: { get_input: network_name }
 ip_version: 4
 cidr: '192.168.0.0/24'
 start_ip: '192.168.0.50'
 end_ip: '192.168.0.200'
 gateway_ip: '192.168.0.1'

 my_port:
 type: tosca.nodes.network.Port
 requirements:
 - binding: my_server
 - link: my_network

11.1.12 Network 2: Server bound to an existing network 3932

11.1.12.1 Description 3933

This use case shows how to use a network_name as an input parameter to the template to allow a server 3934

to be associated with an existing network. 3935

11.1.12.2 Logical Diagram 3936

 3937

11.1.12.3 Sample YAML 3938

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile with 1 server bound to an existing network

topology_template:
 inputs:
 network_name:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 252 of 282

 type: string
 description: Network name

 node_templates:
 my_server:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties:
 disk_size: 10 GB
 num_cpus: 1
 mem_size: 4096 MB
 os:
 properties:
 architecture: x86_64
 type: Linux
 distribution: CirrOS
 version: 0.3.2

 my_network:
 type: tosca.nodes.network.Network
 properties:
 network_name: { get_input: network_name }

 my_port:
 type: tosca.nodes.network.Port
 requirements:
 - binding:
 node: my_server
 - link:
 node: my_network

11.1.13 Network 3: Two servers bound to a single network 3939

11.1.13.1 Description 3940

This use case shows how two servers (Compute nodes) can be bound to the same Network (node) using 3941

two logical network Ports. 3942

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 253 of 282

11.1.13.2 Logical Diagram 3943

 3944

11.1.13.3 Sample YAML 3945

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile with 2 servers bound to the 1 network

topology_template:

 inputs:
 network_name:
 type: string
 description: Network name
 network_cidr:
 type: string
 default: 10.0.0.0/24
 description: CIDR for the network
 network_start_ip:
 type: string
 default: 10.0.0.100
 description: Start IP for the allocation pool
 network_end_ip:
 type: string
 default: 10.0.0.150
 description: End IP for the allocation pool

 node_templates:
 my_server:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 254 of 282

 disk_size: 10 GB
 num_cpus: 1
 mem_size: 4096 MB
 os:
 properties:
 architecture: x86_64
 type: Linux
 distribution: CirrOS
 version: 0.3.2

 my_server2:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties:
 disk_size: 10 GB
 num_cpus: 1
 mem_size: 4096 MB
 os:
 properties:
 architecture: x86_64
 type: Linux
 distribution: CirrOS
 version: 0.3.2

 my_network:
 type: tosca.nodes.network.Network
 properties:
 ip_version: 4
 cidr: { get_input: network_cidr }
 network_name: { get_input: network_name }
 start_ip: { get_input: network_start_ip }
 end_ip: { get_input: network_end_ip }

 my_port:
 type: tosca.nodes.network.Port
 requirements:
 - binding: my_server
 - link: my_network

 my_port2:
 type: tosca.nodes.network.Port
 requirements:
 - binding: my_server2
 - link: my_network

11.1.14 Network 4: Server bound to three networks 3946

11.1.14.1 Description 3947

This use case shows how three logical networks (Network), each with its own IP address range, can be 3948
bound to with the same server (Compute node). 3949

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 255 of 282

11.1.14.2 Logical Diagram 3950

 3951

11.1.14.3 Sample YAML 3952

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile with 1 server bound to 3 networks

topology_template:

 node_templates:
 my_server:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties:
 disk_size: 10 GB
 num_cpus: 1
 mem_size: 4096 MB
 os:
 properties:
 architecture: x86_64
 type: Linux
 distribution: CirrOS
 version: 0.3.2

 my_network1:
 type: tosca.nodes.network.Network
 properties:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 256 of 282

 cidr: '192.168.1.0/24'
 network_name: net1

 my_network2:
 type: tosca.nodes.network.Network
 properties:
 cidr: '192.168.2.0/24'
 network_name: net2

 my_network3:
 type: tosca.nodes.network.Network
 properties:
 cidr: '192.168.3.0/24'
 network_name: net3

 my_port1:
 type: tosca.nodes.network.Port
 properties:
 order: 0
 requirements:
 - binding: my_server
 - link: my_network1

 my_port2:
 type: tosca.nodes.network.Port
 properties:
 order: 1
 requirements:
 - binding: my_server
 - link: my_network2

 my_port3:
 type: tosca.nodes.network.Port
 properties:
 order: 2
 requirements:
 - binding: my_server
 - link: my_network3

11.1.15 WebServer-DBMS 1: WordPress + MySQL, single instance 3953

11.1.15.1 Description 3954

TOSCA simple profile service showing the WordPress web application with a MySQL database hosted on 3955
a single server (instance). 3956

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 257 of 282

11.1.15.2 Logical Diagram 3957

 3958

11.1.15.3 Sample YAML 3959

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile with WordPress, a web server, a MySQL DBMS hosting the
application’s database content on the same server. Does not have input defaults
or constraints.

topology_template:
 inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.
 db_name:
 type: string
 description: The name of the database.
 db_user:
 type: string
 description: The username of the DB user.
 db_pwd:
 type: string
 description: The WordPress database admin account password.
 db_root_pwd:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 258 of 282

 type: string
 description: Root password for MySQL.
 db_port:
 type: PortDef
 description: Port for the MySQL database

 node_templates:
 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 properties:
 context_root: { get_input: context_root }
 requirements:
 - host: webserver
 - database_endpoint: mysql_database
 interfaces:
 Standard:
 create: wordpress_install.sh
 configure:
 implementation: wordpress_configure.sh
 inputs:
 wp_db_name: { get_property: [mysql_database, name] }
 wp_db_user: { get_property: [mysql_database, user] }
 wp_db_password: { get_property: [mysql_database, password] }
 # In my own template, find requirement/capability, find port
property
 wp_db_port: { get_property: [SELF, database_endpoint, port] }

 mysql_database:
 type: Database
 properties:
 name: { get_input: db_name }
 user: { get_input: db_user }
 password: { get_input: db_pwd }
 port: { get_input: db_port }
 capabilities:
 database_endpoint:
 properties:
 port: { get_input: db_port }
 requirements:
 - host: mysql_dbms
 interfaces:
 Standard:
 configure: mysql_database_configure.sh

 mysql_dbms:
 type: DBMS
 properties:
 root_password: { get_input: db_root_pwd }
 port: { get_input: db_port }
 requirements:
 - host: server
 interfaces:
 Standard:
 inputs:
 db_root_password: { get_property: [mysql_dbms, root_password] }

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 259 of 282

 create: mysql_dbms_install.sh
 start: mysql_dbms_start.sh
 configure: mysql_dbms_configure.sh

 webserver:
 type: WebServer
 requirements:
 - host: server
 interfaces:
 Standard:
 create: webserver_install.sh
 start: webserver_start.sh

 server:
 type: Compute
 capabilities:
 host:
 properties:
 disk_size: 10 GB
 num_cpus: { get_input: cpus }
 mem_size: 4096 MB
 os:
 properties:
 architecture: x86_64
 type: linux
 distribution: fedora
 version: 17.0

 outputs:
 website_url:
 description: URL for Wordpress wiki.
 value: { get_attribute: [server, public_address] }

11.1.15.4 Sample scripts 3960

Where the referenced implementation scripts in the example above would have the following contents 3961

11.1.15.4.1 wordpress_install.sh 3962

yum -y install wordpress

11.1.15.4.2 wordpress_configure.sh 3963

sed -i "/Deny from All/d" /etc/httpd/conf.d/wordpress.conf
sed -i "s/Require local/Require all granted/" /etc/httpd/conf.d/wordpress.conf
sed -i s/database_name_here/name/ /etc/wordpress/wp-config.php
sed -i s/username_here/user/ /etc/wordpress/wp-config.php
sed -i s/password_here/password/ /etc/wordpress/wp-config.php
systemctl restart httpd.service

11.1.15.4.3 mysql_database_configure.sh 3964

Setup MySQL root password and create user
cat << EOF | mysql -u root --password=db_root_password

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 260 of 282

CREATE DATABASE name;
GRANT ALL PRIVILEGES ON name.* TO "user"@"localhost"
IDENTIFIED BY "password";
FLUSH PRIVILEGES;
EXIT
EOF

11.1.15.4.4 mysql_dbms_install.sh 3965

yum -y install mysql mysql-server
Use systemd to start MySQL server at system boot time
systemctl enable mysqld.service

11.1.15.4.5 mysql_dbms_start.sh 3966

Start the MySQL service (NOTE: may already be started at image boot time)
systemctl start mysqld.service

11.1.15.4.6 mysql_dbms_configure 3967

Set the MySQL server root password
mysqladmin -u root password db_root_password

11.1.15.4.7 webserver_install.sh 3968

yum -y install httpd
systemctl enable httpd.service

11.1.15.4.8 webserver_start.sh 3969

Start the httpd service (NOTE: may already be started at image boot time)
systemctl start httpd.service

11.1.16 WebServer-DBMS 2: Nodejs with PayPal Sample App and MongoDB 3970

on separate instances 3971

11.1.16.1 Description 3972

This use case Instantiates a 2-tier application with Nodejs and its (PayPal sample) WebApplication on 3973
one tier which connects a MongoDB database (which stores its application data) using a ConnectsTo 3974
relationship. 3975

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 261 of 282

11.1.16.2 Logical Diagram 3976

 3977

11.1.16.3 Sample YAML 3978

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile with a nodejs web server hosting a PayPal sample
application which connects to a mongodb database.

imports:
 - custom_types/paypalpizzastore_nodejs_app.yaml

dsl_definitions:
 ubuntu_node: &ubuntu_node
 disk_size: 10 GB
 num_cpus: { get_input: my_cpus }
 mem_size: 4096 MB
 os_capabilities: &os_capabilities
 architecture: x86_64
 type: Linux
 distribution: Ubuntu
 version: 14.04

topology_template:
 inputs:
 my_cpus:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 262 of 282

 type: integer
 description: Number of CPUs for the server.
 constraints:
 - valid_values: [1, 2, 4, 8]
 default: 1
 github_url:
 type: string
 description: The URL to download nodejs.
 default: https://github.com/sample.git

 node_templates:

 paypal_pizzastore:
 type: tosca.nodes.WebApplication.PayPalPizzaStore
 properties:
 github_url: { get_input: github_url }
 requirements:
 - host:nodejs
 - database_connection: mongo_db
 interfaces:
 Standard:
 configure:
 implementation: scripts/nodejs/configure.sh
 inputs:
 github_url: { get_property: [SELF, github_url] }
 mongodb_ip: { get_attribute: [mongo_server, private_address] }
 start: scriptsscripts/nodejs/start.sh

 nodejs:
 type: tosca.nodes.WebServer.Nodejs
 requirements:
 - host: app_server
 interfaces:
 Standard:
 create: scripts/nodejs/create.sh

 mongo_db:
 type: tosca.nodes.Database
 requirements:
 - host: mongo_dbms
 interfaces:
 Standard:
 create: create_database.sh

 mongo_dbms:
 type: tosca.nodes.DBMS
 requirements:
 - host: mongo_server
 properties:
 port: 27017
 interfaces:
 tosca.interfaces.node.lifecycle.Standard:
 create: mongodb/create.sh
 configure:
 implementation: mongodb/config.sh

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 263 of 282

 inputs:
 mongodb_ip: { get_attribute: [mongo_server, private_address] }
 start: mongodb/start.sh

 mongo_server:
 type: tosca.nodes.Compute
 capabilities:
 os:
 properties: *os_capabilities
 host:
 properties: *ubuntu_node

 app_server:
 type: tosca.nodes.Compute
 capabilities:
 os:
 properties: *os_capabilities
 host:
 properties: *ubuntu_node

 outputs:
 nodejs_url:
 description: URL for the nodejs server, http://<IP>:3000
 value: { get_attribute: [app_server, private_address] }
 mongodb_url:
 description: URL for the mongodb server.
 value: { get_attribute: [mongo_server, private_address] }

11.1.16.4 Notes: 3979

 Scripts referenced in this example are assumed to be placed by the TOSCA orchestrator in the 3980

relative directory declared in TOSCA.meta of the TOSCA CSAR file. 3981

11.1.17 Multi-Tier-1: Elasticsearch, Logstash, Kibana (ELK) use case with 3982

multiple instances 3983

11.1.17.1 Description 3984

TOSCA simple profile service showing the Nodejs, MongoDB, Elasticsearch, Logstash, Kibana, rsyslog 3985
and collectd installed on a different server (instance). 3986

 3987

This use case also demonstrates: 3988

 Use of TOSCA macros or dsl_definitions 3989

 Multiple SoftwareComponents hosted on same Compute node 3990

 Multiple tiers communicating to each other over ConnectsTo using Configure interface. 3991

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 264 of 282

11.1.17.2 Logical Diagram 3992

 3993

11.1.17.3 Sample YAML 3994

11.1.17.3.1 Master Service Template application (Entry-Definitions) 3995

TheThe following YAML is the primary template (i.e., the Entry-Definition) for the overall use case. The 3996
imported YAML for the various subcomponents are not shown here for brevity. 3997

 3998

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 This TOSCA simple profile deploys nodejs, mongodb, elasticsearch, logstash and
kibana each on a separate server with monitoring enabled for nodejs server where
a sample nodejs application is running. The syslog and collectd are installed on
a nodejs server.

imports:
 - paypalpizzastore_nodejs_app.yaml
 - elasticsearch.yaml
 - logstash.yaml
 - kibana.yaml
 - collectd.yaml
 - rsyslog.yaml

dsl_definitions:
 host_capabilities: &host_capabilities
 # container properties (flavor)
 disk_size: 10 GB
 num_cpus: { get_input: my_cpus }
 mem_size: 4096 MB
 os_capabilities: &os_capabilities

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 265 of 282

 architecture: x86_64
 type: Linux
 distribution: Ubuntu
 version: 14.04

topology_template:
 inputs:
 my_cpus:
 type: integer
 description: Number of CPUs for the server.
 constraints:
 - valid_values: [1, 2, 4, 8]
 github_url:
 type: string
 description: The URL to download nodejs.
 default: https://github.com/sample.git

 node_templates:
 paypal_pizzastore:
 type: tosca.nodes.WebApplication.PayPalPizzaStore
 properties:
 github_url: { get_input: github_url }
 requirements:
 - host: nodejs
 - database_connection: mongo_db
 interfaces:
 Standard:
 configure:
 implementation: scripts/nodejs/configure.sh
 inputs:
 github_url: { get_property: [SELF, github_url] }
 mongodb_ip: { get_attribute: [mongo_server, private_address] }
 start: scripts/nodejs/start.sh

 nodejs:
 type: tosca.nodes.WebServer.Nodejs
 requirements:
 - host: app_server
 interfaces:
 Standard:
 create: scripts/nodejs/create.sh

 mongo_db:
 type: tosca.nodes.Database
 requirements:
 - host: mongo_dbms
 interfaces:
 Standard:
 create: create_database.sh

 mongo_dbms:
 type: tosca.nodes.DBMS
 requirements:
 - host: mongo_server
 interfaces:

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 266 of 282

 tosca.interfaces.node.lifecycle.Standard:
 create: scripts/mongodb/create.sh
 configure:
 implementation: scripts/mongodb/config.sh
 inputs:
 mongodb_ip: { get_attribute: [mongo_server, ip_address] }
 start: scripts/mongodb/start.sh

 elasticsearch:
 type: tosca.nodes.SoftwareComponent.Elasticsearch
 requirements:
 - host: elasticsearch_server
 interfaces:
 tosca.interfaces.node.lifecycle.Standard:
 create: scripts/elasticsearch/create.sh
 start: scripts/elasticsearch/start.sh
 logstash:
 type: tosca.nodes.SoftwareComponent.Logstash
 requirements:
 - host: logstash_server
 - search_endpoint: elasticsearch
 interfaces:
 tosca.interfaces.relationship.Configure:
 pre_configure_source:
 implementation: python/logstash/configure_elasticsearch.py
 input:
 elasticsearch_ip: { get_attribute: [elasticsearch_server,
ip_address] }
 interfaces:
 tosca.interfaces.node.lifecycle.Standard:
 create: scripts/lostash/create.sh
 configure: scripts/logstash/config.sh
 start: scripts/logstash/start.sh

 kibana:
 type: tosca.nodes.SoftwareComponent.Kibana
 requirements:
 - host: kibana_server
 - search_endpoint: elasticsearch
 interfaces:
 tosca.interfaces.node.lifecycle.Standard:
 create: scripts/kibana/create.sh
 configure:
 implementation: scripts/kibana/config.sh
 input:
 elasticsearch_ip: { get_attribute: [elasticsearch_server,
ip_address] }
 kibana_ip: { get_attribute: [kibana_server, ip_address] }
 start: scripts/kibana/start.sh

 app_collectd:
 type: tosca.nodes.SoftwareComponent.Collectd
 requirements:
 - host: app_server
 - collectd_endpoint: logstash

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 267 of 282

 interfaces:
 tosca.interfaces.relationship.Configure:
 pre_configure_target:
 implementation: python/logstash/configure_collectd.py
 interfaces:
 tosca.interfaces.node.lifecycle.Standard:
 create: scripts/collectd/create.sh
 configure:
 implementation: python/collectd/config.py
 input:
 logstash_ip: { get_attribute: [logstash_server, ip_address] }
 start: scripts/collectd/start.sh

 app_rsyslog:
 type: tosca.nodes.SoftwareComponent.Rsyslog
 requirements:
 - host: app_server
 - rsyslog_endpoint: logstash
 interfaces:
 tosca.interfaces.relationship.Configure:
 pre_configure_target:
 implementation: python/logstash/configure_rsyslog.py
 interfaces:
 tosca.interfaces.node.lifecycle.Standard:
 create: scripts/rsyslog/create.sh
 configure:
 implementation: scripts/rsyslog/config.sh
 input:
 logstash_ip: { get_attribute: [logstash_server, ip_address] }
 start: scripts/rsyslog/start.sh

 app_server:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties: *host_capabilities
 os:
 properties: *os_capabilities

 mongo_server:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties: *host_capabilities
 os:
 properties: *os_capabilities

 elasticsearch_server:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties: *host_capabilities
 os:
 properties: *os_capabilities

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 268 of 282

 logstash_server:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties: *host_capabilities
 os:
 properties: *os_capabilities

 kibana_server:
 type: tosca.nodes.Compute
 capabilities:
 host:
 properties: *host_capabilities
 os:
 properties: *os_capabilities

 outputs:
 nodejs_url:
 description: URL for the nodejs server.
 value: { get_attribute: [app_server, private_address] }
 mongodb_url:
 description: URL for the mongodb server.
 value: { get_attribute: [mongo_server, private_address] }
 elasticsearch_url:
 description: URL for the elasticsearch server.
 value: { get_attribute: [elasticsearch_server, private_address] }
 logstash_url:
 description: URL for the logstash server.
 value: { get_attribute: [logstash_server, private_address] }
 kibana_url:
 description: URL for the kibana server.
 value: { get_attribute: [kibana_server, private_address] }

11.1.17.4 Sample scripts 3999

Where the referenced implementation scripts in the example above would have the following contents 4000

11.1.18 Container-1: Containers using Docker single Compute instance 4001

(Containers only) 4002

11.1.18.1 Description 4003

This use case shows a minimal description of two Container nodes (only) providing their Docker 4004
Requirements allowing platform (orchestrator) to select/provide the underlying Docker implementation 4005
(Capability). Specifically, wordpress and mysql Docker images are referenced from Docker Hub. 4006

 4007

This use case also demonstrates: 4008

 Abstract description of Requirements (i.e., Container and Docker) allowing platform to 4009

dynamically select the appropriate runtime Capabilities that match. 4010

 Use of external repository (Docker Hub) to reference image artifact. 4011

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 269 of 282

11.1.18.2 Logical Diagram 4012

 4013

11.1.18.3 Sample YAML 4014

11.1.18.3.1 Two Docker “Container” nodes (Only) with Docker Requirements 4015

tosca_definitions_version: tosca_simple_yaml_1_0

description: >
 TOSCA simple profile with wordpress, web server and mysql on the same server.

Repositories to retrieve code artifacts from
repositories:
 docker_hub: https://registry.hub.docker.com/

topology_template:

 inputs:
 wp_host_port:
 type: integer
 description: The host port that maps to port 80 of the WordPress container.
 db_root_pwd:
 type: string
 description: Root password for MySQL.

 node_templates:
 # The MYSQL container based on official MySQL image in Docker hub
 mysql_container:
 type: tosca.nodes.Container.Application.Docker
 capabilities:
 # This is a capability that would mimic the Docker –link feature
 database_link: tosca.capabilities.Docker.Link
 artifacts:
 my_image:
 file: mysql

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 270 of 282

 type: tosca.artifacts.Deployment.Image.Container.Docker
 repository: docker_hub
 interfaces:
 Standard:
 create:
 implementation: my_image
 inputs:
 db_root_password: { get_input: db_root_pwd }

 # The WordPress container based on official WordPress image in Docker hub
 wordpress_container:
 type: tosca.nodes.Container.Application.Docker
 requirements:
 - database_link: mysql_container
 artifacts:
 my_image:
 file: wordpress
 type: tosca.artifacts.Deployment.Image.Container.Docker
 repository: docker_hub
 interfaces:
 Standard:
 create:
 implementation: my_image
 inputs:
 host_port: { get_input: wp_host_port }

 4016

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 271 of 282

12 TOSCA Policies 4017

This section is non-normative and describes the approach TOSCA Simple Profile plans to take for policy 4018
description with TOSCA Service Templates. In addition, it explores how existing TOSCA Policy Types 4019
and definitions might be applied in the future to express operational policy use cases. 4020

12.1 A declarative approach 4021

TOSCA Policies are a type of requirement that govern use or access to resources which can be 4022
expressed independently from specific applications (or their resources) and whose fulfillment is not 4023
discretely expressed in the application’s topology (i.e., via TOSCA Capabilities). 4024

 4025

TOSCA deems it not desirable for a declarative model to encourage external intervention for resolving 4026
policy issues (i.e., via imperative mechanisms external to the Cloud). Instead, the Cloud provider is 4027
deemed to be in the best position to detect when policy conditions are triggered, analyze the affected 4028
resources and enforce the policy against the allowable actions declared within the policy itself. 4029

12.1.1 Declarative considerations 4030

 Natural language rules are not realistic, too much to represent in our specification; however, regular 4031

expressions can be used that include simple operations and operands that include symbolic names 4032

for TOSCA metamodel entities, properties and attributes. 4033

 Complex rules can actually be directed to an external policy engine (to check for violation) returns 4034

true|false then policy says what to do (trigger or action). 4035

 Actions/Triggers could be: 4036

 Autonomic/Platform corrects against user-supplied criteria 4037

 External monitoring service could be utilized to monitor policy rules/conditions against metrics, 4038

the monitoring service could coordinate corrective actions with external services (perhaps 4039

Workflow engines that can analyze the application and interact with the TOSCA instance model). 4040

12.2 Consideration of Event, Condition and Action 4041

12.3 Types of policies 4042

Policies typically address two major areas of concern for customer workloads: 4043

 Access Control – assures user and service access to controlled resources are governed by 4044

rules which determine general access permission (i.e., allow or deny) and conditional access 4045

dependent on other considerations (e.g., organization role, time of day, geographic location, etc.). 4046

 Placement – assures affinity (or anti-affinity) of deployed applications and their resources; that is, 4047

what is allowed to be placed where within a Cloud provider’s infrastructure. 4048

 Quality-of-Service (and continuity) - assures performance of software components (perhaps 4049

captured as quantifiable, measure components within an SLA) along with consideration for 4050

scaling and failover. 4051

12.3.1 Access control policies 4052

Although TOSCA Policy definitions could be used to express and convey access control policies, 4053
definitions of policies in this area are out of scope for this specification. At this time, TOSCA encourages 4054
organizations that already have standards that express policy for access control to provide their own 4055
guidance on how to use their standard with TOSCA. 4056

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 272 of 282

12.3.2 Placement policies 4057

There must be control mechanisms in place that can be part of these patterns that accept governance 4058
policies that allow control expressions of what is allowed when placing, scaling and managing the 4059
applications that are enforceable and verifiable in Cloud. 4060

 4061

These policies need to consider the following: 4062

 Regulated industries need applications to control placement (deployment) of applications to 4063

different countries or regions (i.e., different logical geographical boundaries). 4064

12.3.2.1 Placement for governance concerns 4065

In general, companies and individuals have security concerns along with general “loss of control” issues 4066
when considering deploying and hosting their highly valued application and data to the Cloud. They want 4067
to control placement perhaps to ensure their applications are only placed in datacenter they trust or 4068
assure that their applications and data are not placed on shared resources (i.e., not co-tenanted). 4069

 4070

In addition, companies that are related to highly regulated industries where compliance with government, 4071
industry and corporate policies is paramount. In these cases, having the ability to control placement of 4072
applications is an especially significant consideration and a prerequisite for automated orchestration. 4073

12.3.2.2 Placement for failover 4074

Companies realize that their day-to-day business must continue on through unforeseen disasters that 4075
might disable instances of the applications and data at or on specific data centers, networks or servers. 4076
They need to be able to convey placement policies for their software applications and data that mitigate 4077
risk of disaster by assuring these cloud assets are deployed strategically in different physical locations. 4078
Such policies need to consider placement across geographic locations as wide as countries, regions, 4079
datacenters, as well as granular placement on a network, server or device within the same physical 4080
datacenter. Cloud providers must be able to not only enforce these policies but provide robust and 4081
seamless failover such that a disaster’s impact is never perceived by the end user. 4082

12.3.3 Quality-of-Service (QoS) policies 4083

Quality-of-Service (apart from failover placement considerations) typically assures that software 4084
applications and data are available and performant to the end users. This is usually something that is 4085
measurable in terms of end-user responsiveness (or response time) and often qualified in SLAs 4086
established between the Cloud provider and customer. These QoS aspects can be taken from SLAs and 4087
legal agreements and further encoded as performance policies associated with the actual applications 4088
and data when they are deployed. It is assumed that Cloud provider is able to detect high utilization (or 4089
usage load) on these applications and data that deviate from these performance policies and is able to 4090
bring them back into compliance. 4091

 4092

12.4 Policy relationship considerations 4093

 Performance policies can be related to scalability policies. Scalability policies tell the Cloud provider 4094

exactly how to scale applications and data when they detect an application’s performance policy is 4095

(or about to be) violated (or triggered). 4096

 Scalability policies in turn are related to placement policies which govern where the application and 4097

data can be scaled to. 4098

 There are general “tenant” considerations that restrict what resources are available to applications 4099

and data based upon the contract a customer has with the Cloud provider. This includes other 4100

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 273 of 282

constraints imposed by legal agreements or SLAs that are not encoded programmatically or 4101

associated directly with actual application or data.. 4102

12.5 Use Cases 4103

This section includes some initial operation policy use cases that we wish to describe using the TOSCA 4104
metamodel. More policy work will be done in future versions of the TOSCA Simple Profile in YAML 4105
specification. 4106

12.5.1 Placement 4107

12.5.1.1 Use Case 1: Simple placement for failover 4108

12.5.1.1.1 Description 4109

This use case shows a failover policy to keep at least 3 copies running in separate containers. In this 4110
simple case, the specific containers to use (or name is not important; the Cloud provider must assure 4111
placement separation (anti-affinity) in three physically separate containers. 4112

12.5.1.1.2 Features 4113

This use case introduces the following policy features: 4114

 Simple separation on different “compute” nodes (up to discretion of provider). 4115

 Simple separation by region (a logical container type) using an allowed list of region names 4116

relative to the provider. 4117

o Also, shows that set of allowed “regions” (containers) can be greater than the number of 4118

containers requested. 4119

12.5.1.1.3 Logical Diagram 4120

 Sample YAML: Compute separation 4121

failover_policy_1:
 type: tosca.policy.placement.Antilocate
 description: My placement policy for Compute node separation
 properties:
 # 3 diff target containers
 container type: Compute
 container_number: 3

12.5.1.1.4 Notes 4122

 There may be availability (constraints) considerations especially if these policies are applied to 4123

“clusters”. 4124

 There may be future considerations for controlling max # of instances per container. 4125

12.5.1.2 Use Case 2: Controlled placement by region 4126

12.5.1.2.1 Description 4127

This use case demonstrates the use of named “containers” which could represent the following: 4128

 Datacenter regions 4129

 Geographic regions (e.g., cities, municipalities, states, countries, etc.) 4130

 Commercial regions (e.g., North America, Eastern Europe, Asia Pacific, etc.) 4131

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 274 of 282

12.5.1.2.2 Features 4132

This use case introduces the following policy features: 4133

 Separation of resources (i.e., TOSCA nodes) by logical regions, or zones. 4134

12.5.1.2.3 Sample YAML: Region separation amongst named set of regions 4135

failover_policy_2:
 type: tosca.policy.placement
 description: My failover policy with allowed target regions (logical
containers)
 properties:
 container type: region
 container_number: 3
 # If “containers” keyname is provided, they represent the allowed set
 # of target containers to use for placement for .
 containers: [region1, region2, region3, region4]

12.5.1.3 Use Case 3: Co-locate based upon Compute affinity 4136

12.5.1.3.1 Description 4137

Nodes that need to be co-located to achieve optimal performance based upon access to similar 4138
Infrastructure (IaaS) resource types (i.e., Compute, Network and/or Storage). 4139

 4140

This use case demonstrates the co-location based upon Compute resource affinity; however, the same 4141
approach could be taken for Network as or Storage affinity as well. : 4142

12.5.1.3.2 Features 4143

This use case introduces the following policy features: 4144

 Node placement based upon Compute resource affinity. 4145

12.5.1.4 Notes 4146

 The concept of placement based upon IaaS resource utilization is not future-thinking, as Cloud 4147

should guarantee equivalent performance of application performance regardless of placement. 4148

That is, all network access between application nodes and underlying Compute or Storage should 4149

have equivalent performance (e.g., network bandwidth, network or storage access time, CPU 4150

speed, etc.). 4151

12.5.1.4.1 Sample YAML: Region separation amongst named set of regions 4152

keep_together_policy:
 type: tosca.policy.placement.Colocate
 description: Keep associated nodes (groups of nodes) based upon Compute
 properties:
 affinity: Compute

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 275 of 282

12.5.2 Scaling 4153

12.5.2.1 Use Case 1: Simple node autoscale 4154

12.5.2.1.1 Description 4155

Start with X nodes and scale up to Y nodes, capability to do this from a dashboard for example. 4156

12.5.2.1.2 Features 4157

This use case introduces the following policy features: 4158

 Basic autoscaling policy 4159

12.5.2.1.3 Sample YAML 4160

my_scaling_policy_1:
 type: tosca.policy.scaling
 description: Simple node autoscaling
 properties:
 min_instances: <integer>
 max_instances: <integer>
 default_instances: <integer>
 increment: <integer>

12.5.2.1.4 Notes 4161

 Assume horizontal scaling for this use case 4162

o Horizontal scaling, implies “stack-level” control using Compute nodes to define a “stack” 4163

(i.e., The Compute node’s entire HostedOn relationship dependency graph is considered 4164

part of its “stack”) 4165

 Assume Compute node has a SoftwareComponent that represents a VM application. 4166

 Availability Zones (and Regions if not same) need to be considered in further 4167

use cases. 4168

 If metrics are introduced, there is a control-loop (that monitors). Autoscaling is a special concept 4169

that includes these considerations. 4170

 Mixed placement and scaling use cases need to be considered: 4171

o Example: Compute1 and Compute2 are 2 node templates. Compute1 has 10 instances, 5 4172

in one region 5 in other region. 4173

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 276 of 282

13 Conformance 4174

13.1 Conformance Targets 4175

The implementations subject to conformance are those introduced in Section 11.3 “Implementations”. 4176
They are listed here for convenience: 4177

 TOSCA YAML service template 4178

 TOSCA processor 4179

 TOSCA orchestrator (also called orchestration engine) 4180

 TOSCA generator 4181

 TOSCA archive 4182

13.2 Conformance Clause 1: TOSCA YAML service template 4183

A document conforms to this specification as TOSCA YAML service template if it satisfies all the 4184
statements below: 4185

(a) It is valid according to the grammar, rules and requirements defined in section 3 “TOSCA Simple 4186

Profile definitions in YAML”. 4187

(b) When using functions defined in section 4 “TOSCA functions”, it is valid according to the grammar 4188

specified for these functions. 4189

(c) When using or referring to data types, artifact types, capability types, interface types, node types, 4190

relationship types, group types, policy types defined in section 5 “TOSCA normative type 4191

definitions”, it is valid according to the definitions given in section 5. 4192

13.3 Conformance Clause 2: TOSCA processor 4193

A processor or program conforms to this specification as TOSCA processor if it satisfies all the 4194
statements below: 4195

(a) It can parse and recognize the elements of any conforming TOSCA YAML service template, and 4196

generates errors for those documents that fail to conform as TOSCA YAML service template 4197

while clearly intending to. 4198

(b) It implements the requirements and semantics associated with the definitions and grammar in 4199

section 3 “TOSCA Simple Profile definitions in YAML”, including those listed in the “additional 4200

requirements” subsections. 4201

(c) It resolves the imports, either explicit or implicit, as described in section 3 “TOSCA Simple Profile 4202

definitions in YAML”. 4203

(d) It generates errors as required in error cases described in sections 3.1 (TOSCA Namespace URI 4204

and alias), 3.2 (Parameter and property type) and 3.6 (Type-specific definitions). 4205

(e) It normalizes string values as described in section 5.4.9.3 (Additional Requirements) 4206

 4207

13.4 Conformance Clause 3: TOSCA orchestrator 4208

A processor or program conforms to this specification as TOSCA orchestrator if it satisfies all the 4209
statements below: 4210

(a) It is conforming as a TOSCA Processor as defined in conformance clause 2: TOSCA Processor. 4211

(b) It can process all types of artifact described in section 5.3 “Artifact types” according to the rules 4212

and grammars in this section. 4213

(c) It can process TOSCA archives as intended in section 6 “TOSCA Cloud Service Archive (CSAR) 4214

format” and other related normative sections. 4215

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 277 of 282

(d) It can understand and process the functions defined in section 4 “TOSCA functions” according to 4216

their rules and semantics. 4217

(e) It can understand and process the normative type definitions according to their semantics and 4218

requirements as described in section 5 “TOSCA normative type definitions”. 4219

(f) It can understand and process the networking types and semantics defined in section 7 “TOSCA 4220

Networking”. 4221

(g) It generates errors as required in error cases described in sections 2.10 (Using node template 4222

substitution for chaining subsystems), 5.4 (Capabilities Types) and 5.7 (Interface Types).). 4223

13.5 Conformance Clause 4: TOSCA generator 4224

A processor or program conforms to this specification as TOSCA generator if it satisfies at least one of 4225
the statements below: 4226

(a) When requested to generate a TOSCA service template, it always produces a conforming 4227

TOSCA service template, as defined in Clause 1: TOSCA YAML service template, 4228

(b) When requested to generate a TOSCA archive, it always produces a conforming TOSCA archive, 4229

as defined in Clause 5: TOSCA archive. 4230

13.6 Conformance Clause 5: TOSCA archive 4231

A package artifact conforms to this specification as TOSCA archive if it satisfies all the statements below: 4232

(a) It is valid according to the structure and rules defined in section 6 “TOSCA Cloud Service Archive 4233

(CSAR) format”. 4234

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 278 of 282

Appendix A. Known Extensions to TOSCA v1.0 4235

The following items will need to be reflected in the TOSCA (XML) specification to allow for isomorphic 4236
mapping between the XML and YAML service templates. 4237

A.1 Model Changes 4238

 The “TOSCA Simple ‘Hello World’” example introduces this concept in Section 2. Specifically, a VM 4239

image assumed to accessible by the cloud provider. 4240

 Introduce template Input and Output parameters 4241

 The “Template with input and output parameter” example introduces concept in Section 2.1.1. 4242

 “Inputs” could be mapped to BoundaryDefinitions in TOSCA v1.0. Maybe needs some usability 4243

enhancement and better description. 4244

 “outputs” are a new feature. 4245

 Grouping of Node Templates 4246

 This was part of original TOSCA proposal, but removed early on from v1.0 This allows grouping 4247

of node templates that have some type of logically managed together as a group (perhaps to 4248

apply a scaling or placement policy). 4249

 Lifecycle Operation definition independent/separate from Node Types or Relationship types (allows 4250

reuse). For now, we added definitions for “node.lifecycle” and “relationship.lifecycle”. 4251

 Override of Interfaces (operations) in the Node Template. 4252

 Service Template Naming/Versioning 4253

 Should include TOSCA spec. (or profile) version number (as part of namespace) 4254

 Allow the referencing artifacts using a URL (e.g., as a property value). 4255

 Repository definitions in Service Template. 4256

 Substitution mappings for Topology template. 4257

 Addition of Group Type, Policy Type, Group def., Policy def. along with normative TOSCA base types 4258

for policies and groups. 4259

A.2 Normative Types 4260

 Constraints 4261

 constraint clauses, regex 4262

 Types / Property / Parameters 4263

 list, map, range, scalar-unit types 4264

 Includes YAML intrinsic types 4265

 NetworkInfo, PortInfo, PortDef, PortSpec, Credential 4266

 TOSCA Version based on Maven 4267

 Node 4268

 Root, Compute, ObjectStorage, BlockStorage, Network, Port, SoftwareComponent, 4269

WebServer, WebApplicaton, DBMS, Database, Container, and others 4270

 Relationship 4271

 Root, DependsOn, HostedOn, ConnectsTo, AttachesTo, RoutesTo, BindsTo, LinksTo and 4272

others 4273

 Artifact 4274

 Deployment: Image Types (e.g., VM, Container), ZIP, TAR, etc. 4275

 Implementation: File, Bash, Python, etc. 4276

 Requirements 4277

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 279 of 282

 None 4278

 Capabilities 4279

 Container, Endpoint, Attachment, Scalable, … 4280

 Lifecycle 4281

 Standard (for Node Types) 4282

 Configure (for Relationship Types) 4283

 Functions 4284

 get_input, get_attribute, get_property, get_nodes_of_type, get_operation_output and others 4285

 concat, token 4286

 get_artifact 4287

 Groups 4288

 Root 4289

 Policies 4290

 Root, Placement, Scaling, Update, Performance 4291

 Workflow 4292

 4293

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 280 of 282

Appendix B. Acknowledgments 4294

The following individuals have participated in the creation of this specification and are gratefully 4295
acknowledged: 4296

Contributors: 4297

Avi Vachnis (avi.vachnis@alcatel-lucent.com), Alcatel-Lucent 4298

Chris Lauwers (lauwers@ubicity.com) 4299

Derek Palma (dpalma@vnomic.com), Vnomic 4300

Frank Leymann (Frank.Leymann@informatik.uni-stuttgart.de), Univ. of Stuttgart 4301

Gerd Breiter (gbreiter@de.ibm.com), IBM 4302

Hemal Surti (hsurti@cisco.com), Cisco 4303

Ifat Afek (ifat.afek@alcatel-lucent.com), Alcatel-Lucent 4304

Idan Moyal, (idan@gigaspaces.com), Gigaspaces 4305

Jacques Durand (jdurand@us.fujitsu.com), Fujitsu 4306

Jin Qin, (chin.qinjin@huawei.com), Huawei 4307

Jeremy Hess, (jeremy@gigaspaces.com) , Gigaspaces 4308

John Crandall, (mailto:jcrandal@brocade.com), Brocade 4309

Juergen Meynert (juergen.meynert@ts.fujitsu.com), Fujitsu 4310

Kapil Thangavelu (kapil.thangavelu@canonical.com), Canonical 4311

Karsten Beins (karsten.beins@ts.fujitsu.com), Fujitsu 4312

Kevin Wilson (kevin.l.wilson@hp.com), HP 4313

Krishna Raman (kraman@redhat.com), Red Hat 4314

Luc Boutier (luc.boutier@fastconnect.fr), FastConnect 4315

Luca Gioppo, (luca.gioppo@csi.it), CSI-Piemonte 4316

Matt Rutkowski (mrutkows@us.ibm.com), IBM 4317

Moshe Elisha (moshe.elisha@alcatel-lucent.com), Alcatel-Lucent 4318

Nate Finch (nate.finch@canonical.com), Canonical 4319

Nikunj Nemani (nnemani@vmware.com), WMware 4320

Richard Probst (richard.probst@sap.com), SAP AG 4321

Sahdev Zala (spzala@us.ibm.com), IBM 4322

Shitao li (lishitao@huawei.com), Huawei 4323

Simeon Monov (sdmonov@us.ibm.com), IBM 4324

Sivan Barzily, (sivan@gigaspaces.com), Gigaspaces 4325

Sridhar Ramaswamy (sramasw@brocade.com), Brocade 4326

Stephane Maes (stephane.maes@hp.com), HP 4327

Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM 4328

Ton Ngo (ton@us.ibm.com), IBM 4329

Travis Tripp (travis.tripp@hp.com), HP 4330

Vahid Hashemian (vahidhashemian@us.ibm.com), IBM 4331

Wayne Witzel (wayne.witzel@canonical.com), Canonical 4332

Yaron Parasol (yaronpa@gigaspaces.com), Gigaspaces 4333

mailto:avi.vachnis@alcatel-lucent.com
mailto:lauwers@ubicity.com
mailto:dpalma@vnomic.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/Frank.Leymann@informatik.uni-stuttgart.de
mailto:gbreiter@de.ibm.com
mailto:hsurti@cisco.com
mailto:ifat.afek@alcatel-lucent.com
mailto:idan@gigaspaces.com
mailto:jdurand@us.fujitsu.com
mailto:chin.qinjin@huawei.com
mailto:jeremy@gigaspaces.com
mailto:jcrandal@brocade.com
mailto:juergen.meynert@ts.fujitsu.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/kapil.thangavelu@canonical.com
mailto:karsten.beins@ts.fujitsu.com
mailto:kevin.l.wilson@hp.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/kraman@redhat.com
mailto:luc.boutier@fastconnect.fr
mailto:luca.gioppo@csi.it
mailto:mrutkows@us.ibm.com
mailto:moshe.elisha@alcatel-lucent.com
mailto:nate.finch@canonical.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/nnemani@vmware.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/richard.probst@sap.com
mailto:spzala@us.ibm.com
mailto:lishitao@huawei.com
mailto:sdmonov@us.ibm.com
mailto:sivan@gigaspaces.com
mailto:sramasw@brocade.com
mailto:stephane.maes@hp.com
mailto:thomas.spatzier@de.ibm.com
mailto:ton@us.ibm.com
mailto:travis.tripp@hp.com
mailto:vahidhashemian@us.ibm.com
mailto:wayne.witzel@canonical.com
mailto:yaronpa@gigaspaces.com

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 281 of 282

Appendix C. Revision History 4334

Revision Date Editor Changes Made

WD01, Rev01 2016-01-06 Matt Rutkowski, IBM  Initial WD01, Revision 01 baseline for TOSCA Simple Profile in YAML
v1.1

 Cha. 10 Removed URL column for use cases in favor of a single link
to Git directory where they can be found.

 Metadata added to top-level entities

 Policy grammar/schema fully defined.

 Ch5. Defined TOSCA Entity Root type which is now the parent type for
all TOSCA top-level types (i.e., Artifact, Capability, Relationship,
Node, Group, Policy, etc.). Updated all top-level definitions to reflect
in “derived_from” keyname.

 Added TimeInterval Data Type

 3.5.16.1: Added keyname “schedule”.

WD01, Rev02 2016-01-25 Matt Rutkowski, IBM  5: Removed tosca.Root type from chapter 5 until ad-hoc can agree on
use cases likely to come from the TOSCA instance model WG.

 Cleaned up TOSCA Entity Root Reorganization.

WD01, Rev03 2016-03-22 Matt Rutkowski, IBM  3.5.7, 3.9.3: Fixed “import” grammar (section 3.5.7) and reference to it
in repository example (section 3.9.3.9.3)

 3.6.11.2 – Group Type – clarified group types could have members
that were other groups types.

 5.2.5: Fixed NetworkInfo (section 5.2.5) example which was missing
the ‘properties’ keyword.

 5.2.6: Clarified PortDef examples (section 5.2.6)

 5.2.7: Fixed PortSpec (section 5.2.7) definition to assure that target,
target_range, source and source_range properties were not ‘required’
in schema.



 Fixed the following issues raised by TC Admin.:

 Margins should be 1" top, 1" right and left, 0.5" bottom. [this will
center the "new" footer, which is currently offset].

 The footer uses different font size (Arial 10 instead of Arial 8) and
wording ("Standards Track Draft" instead of "Standards Track Work
Product").

 Set the following three styles to use Arial 10:

 "Normal around table"

 "List Paragraph"

 "List Bullet 3"

 Around section 2.10.1, we corrected some text in the wrong font by
re-applying the "normal" style.

 In Section 1.8 Glossary that "Node Template" definition starts off
with "Relationship Template" Is that correct? Also, the paragraph
formatting of the definitions seems to use weird indenting.

 In section 5.7.4.4, the diagram overlays the footer. We fixed this on
our side by setting the preceding paragraph attribute to "keep with
next".

 In section 2.10.2, second paragraph after Figure 1, there is a
reference to "Section 0". The link jumps to 2.9.2. Is this correct?

 The table of examples is labelled Table of Figures. Also, the
paragraph styles of these two titles should be changed from "Body
text" to "Level 1", so they will show up in the TOC.

3.6.5 Interface Type – missing “derived_from” in keyname table,
grammar and example.

WD01, Rev04 2016-03-23 Matt Rutkowski, IBM  5.2: Added section discussing TOSCA normative type names, their
treatment and requirements to respect case (i.e., be case sensitive)
when processing.

TOSCA-Simple-Profile-YAML-v1.1-csprd02 12 January 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 282 of 282

 3.6: All data types that are entity types now have their keyname tables
reference the common keynames listed in section 3.6.1 TOSCA Entity
schema.

 3.6.11: Added attributes, requirements and capabilities keynames to
Group Type making it more like a Node Type (no artifacts, still logical
aggregator of a set of nodes).

 5.9.11: Added the “network” (i.e, Endpoint) and “storage” (i.e.,
Storage) capabilities to the Container.Application node type.

WD01, Rev05 2016-04-20 Matt Rutkowski, IBM  3.1: Bumped version number to 1.1

 5.3.2: typo. ‘userh’ -> ‘user’ in keyname table

 3.6.4.4 Artifact Type - Added a note regarding “mime types” to
reference official list of Apache mime types to give reader a sutiable
reference for expected values.



WDO1, Rev06 2016-17-05 Luc Boutier,
FastConnect

 3.5.14.2.2 replaced Node Type by Node Template.

 3.5.17: Add workflow activity definition

 3.5.18: Add workflow precondition definition

 3.5.19: Add workflow step definition

 3.7.7.: Add Imperative workflow definition

 3.8: Add the workflows keyname to the topology template definition

 6.3: Added a simplified way to declare a CSAR without the meta file.

 7: Added a TOSCA workflows section.

WDO1, Rev07 2016-19-05 Luc Boutier,
FastConnect

 3.5.18: Add assertion definition

 3.5.19: Add condition clause definition

 3.5.20: Leverage condition clause in precondition definition

 3.5.21: Leverage condition clause as filter in step definition

 7.2: Add documentation and example on TOSCA normative weaving

 7.3: Fix examples in imperative workflows definition

WDO1, Rev08 2016-31-05 Luc Boutier,
FastConnect

 7.2: Specifies current expected declarative workflows and limitations.

WD01, Rev09 2016-31-05 Luc Boutier,
FastConnect; Matt
Rutkowski, IBM

 1.8: Add description for abstract nodes and no-op nodes to the
glossary

 Fixed typos, spelling/grammar and fixed numerous broken hyperlinks.

WD01, post-
CSD01

2016-07-11 Matt Rutkowski, IBM  3.5.16 – invalid type for schema period. Correct in table (scalar-
unit.time), incorrect in code schema listing (integer).

 3.1.3.1 – Added namespace collision requirements for policies and
moved “groups” requirements to include types as well.

 4335

