
TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 1 of 267

TOSCA Simple Profile in YAML Version 1.0

Committee Specification Draft 05

04 February 2016

Specification URIs
This version:

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-
Profile-YAML-v1.0-csd05.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-
Profile-YAML-v1.0-csd05.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-
Profile-YAML-v1.0-csd05.docx

Previous version:
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-
Profile-YAML-v1.0-csprd01.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-
Profile-YAML-v1.0-csprd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-
Profile-YAML-v1.0-csprd01.docx

Latest version:
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-
YAML-v1.0.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-
YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-
YAML-v1.0.docx

Technical Committee:

OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC

Chairs:
Paul Lipton (paul.lipton@ca.com), CA Technologies
Simon Moser (smoser@de.ibm.com), IBM

Editors:
Derek Palma (dpalma@vnomic.com), Vnomic
Matt Rutkowski (mrutkows@us.ibm.com), IBM
Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM

Related work:

This specification is related to:

 Topology and Orchestration Specification for Cloud Applications Version 1.0. Edited by Derek
Palma and Thomas Spatzier. 25 November 2013. OASIS Standard. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html.

Declared XML namespaces:

 http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-csd05.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-csd05.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-csd05.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-csd05.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-csd05.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-csd05.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-Profile-YAML-v1.0-csprd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-Profile-YAML-v1.0-csprd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-Profile-YAML-v1.0-csprd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-Profile-YAML-v1.0-csprd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-Profile-YAML-v1.0-csprd01.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-Profile-YAML-v1.0-csprd01.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.docx
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.docx
https://www.oasis-open.org/committees/tosca/
mailto:paul.lipton@ca.com
http://www.ca.com/
mailto:smoser@de.ibm.com
http://www.ibm.com/
mailto:dpalma@vnomic.com
http://www.vnomic.com/
mailto:mrutkows@us.ibm.com
http://www.ibm.com/
mailto:thomas.spatzier@de.ibm.com
http://www.ibm.com/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0
https://www.oasis-open.org/

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 2 of 267

Abstract:
This document defines a simplified profile of the TOSCA version 1.0 specification in a YAML
rendering which is intended to simplify the authoring of TOSCA service templates. This profile
defines a less verbose and more human-readable YAML rendering, reduced level of indirection
between different modeling artifacts as well as the assumption of a base type system.

Status:
This document was last revised or approved by the OASIS Topology and Orchestration
Specification for Cloud Applications (TOSCA) TC on the above date. The level of approval is also
listed above. Check the “Latest version” location noted above for possible later revisions of this
document. Any other numbered Versions and other technical work produced by the Technical
Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca#technical.

TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/tosca/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the TC’s web page (https://www.oasis-
open.org/committees/tosca/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[TOSCA-Simple-Profile-YAML-v1.0]

TOSCA Simple Profile in YAML Version 1.0. Edited by Derek Palma, Matt Rutkowski, and
Thomas Spatzier. 04 February 2016. OASIS Committee Specification Draft 05. http://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-
csd05.html. Latest version: http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/committees/tosca/ipr.php
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-csd05.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-csd05.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-csd05.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 3 of 267

Notices

Copyright © OASIS Open 2016. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 4 of 267

Table of Contents

Table of Examples .. 7

Table of Figures .. 8

1 Introduction ... 9

1.1 Objective ... 9

1.2 Summary of key TOSCA concepts ... 9

1.3 Implementations ... 9

1.4 Terminology .. 10

1.5 Notational Conventions ... 10

1.6 Normative References .. 10

1.7 Non-Normative References .. 10

1.8 Glossary .. 11

2 TOSCA by example .. 12

2.1 A “hello world” template for TOSCA Simple Profile in YAML ... 12

2.2 TOSCA template for a simple software installation .. 14

2.3 Overriding behavior of predefined node types.. 16

2.4 TOSCA template for database content deployment ... 17

2.5 TOSCA template for a two-tier application ... 19

2.6 Using a custom script to establish a relationship in a template .. 22

2.7 Using custom relationship types in a TOSCA template .. 23

2.8 Defining generic dependencies between nodes in a template ... 25

2.9 Describing abstract requirements for nodes and capabilities in a TOSCA template........................ 25

2.10 Using node template substitution for model composition ... 30

2.11 Using node template substitution for chaining subsystems .. 34

2.12 Grouping node templates ... 39

2.13 Using YAML Macros to simplify templates ... 42

2.14 Passing information as inputs to Nodes and Relationships ... 43

2.15 Topology Template Model versus Instance Model ... 44

2.16 Using attributes implicitly reflected from properties .. 45

3 TOSCA Simple Profile definitions in YAML .. 47

3.1 TOSCA Namespace URI and alias .. 47

3.2 Parameter and property types .. 48

3.3 Normative values .. 57

3.4 TOSCA Metamodel ... 59

3.5 Reusable modeling definitions .. 59

3.6 Type-specific definitions ... 78

3.7 Template-specific definitions .. 95

3.8 Topology Template definition.. 105

3.9 Service Template definition .. 111

4 TOSCA functions .. 123

4.1 Reserved Function Keywords ... 123

4.2 Environment Variable Conventions .. 123

4.3 Intrinsic functions .. 125

4.4 Property functions ... 127

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 5 of 267

4.5 Attribute functions ... 129

4.6 Operation functions ... 130

4.7 Navigation functions ... 131

4.8 Artifact functions ... 131

4.9 Context-based Entity names (global) ... 134

5 TOSCA normative type definitions ... 135

5.1 Assumptions ... 135

5.2 Data Types.. 135

5.3 Artifact Types .. 142

5.4 Capabilities Types .. 145

5.5 Requirement Types .. 153

5.6 Relationship Types ... 153

5.7 Interface Types ... 157

5.8 Node Types... 162

5.9 Group Types ... 173

5.10 Policy Types ... 174

6 TOSCA Cloud Service Archive (CSAR) format .. 176

6.1 Overall Structure of a CSAR ... 176

6.2 TOSCA Meta File .. 176

7 TOSCA networking ... 177

7.1 Networking and Service Template Portability ... 177

7.2 Connectivity Semantics .. 177

7.3 Expressing connectivity semantics ... 178

7.4 Network provisioning .. 180

7.5 Network Types .. 184

7.6 Network modeling approaches ... 189

8 Non-normative type definitions ... 195

8.1 Artifact Types .. 195

8.2 Capability Types ... 195

8.3 Node Types... 197

9 Component Modeling Use Cases ... 200

10 Application Modeling Use Cases .. 207

10.1 Use cases ... 207

11 TOSCA Policies .. 253

11.1 A declarative approach ... 253

11.2 Consideration of Event, Condition and Action .. 253

11.3 Types of policies ... 253

11.4 Policy relationship considerations .. 254

11.5 Use Cases .. 255

12 Conformance .. 258

12.1 Conformance Targets ... 258

12.2 Conformance Clause 1: TOSCA YAML service template .. 258

12.3 Conformance Clause 2: TOSCA processor .. 258

12.4 Conformance Clause 3: TOSCA orchestrator .. 258

12.5 Conformance Clause 4: TOSCA generator .. 259

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 6 of 267

12.6 Conformance Clause 5: TOSCA archive .. 259

Appendix A. Known Extensions to TOSCA v1.0 ... 260

A.1 Model Changes .. 260

A.2 Normative Types .. 260

Appendix B. Acknowledgments .. 262

Appendix C. Revision History.. 263

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 7 of 267

Table of Examples

Example 1 - TOSCA Simple "Hello World" ... 12

Example 2 - Template with input and output parameter sections ... 13

Example 3 - Simple (MySQL) software installation on a TOSCA Compute node .. 14

Example 4 - Node Template overriding its Node Type's "configure" interface .. 16

Example 5 - Template for deploying database content on-top of MySQL DBMS middleware 17

Example 6 - Basic two-tier application (web application and database server tiers) 19

Example 7 - Providing a custom relationship script to establish a connection .. 22

Example 8 - A web application Node Template requiring a custom database connection type 23

Example 9 - Defining a custom relationship type ... 24

Example 10 - Simple dependency relationship between two nodes .. 25

Example 11 - An abstract "host" requirement using a node filter .. 26

Example 12 - An abstract Compute node template with a node filter ... 27

Example 13 - An abstract database requirement using a node filter ... 28

Example 14 - An abstract database node template .. 29

Example 15 - Referencing an abstract database node template .. 31

Example 16 - Using substitution mappings to export a database implementation 33

Example 17 - Declaring a transaction subsystem as a chain of substitutable node templates 35

Example 18 - Defining a TransactionSubsystem node type .. 36

Example 19 - Implementation of a TransactionSubsytem node type using substitution mappings 38

Example 20 - Grouping Node Templates for possible policy application ... 40

Example 21 - Grouping nodes for anti-colocation policy application ... 41

Example 22 - Using YAML anchors in TOSCA templates ... 42

Example 23 - Properties reflected as attributes ... 45

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 8 of 267

Table of Figures

Figure 1: Using template substitution to implement a database tier ... 31

Figure 2: Substitution mappings .. 33

Figure 3: Chaining of subsystems in a service template.. 35

Figure 4: Defining subsystem details in a service template .. 37

Figure-5: Typical 3-Tier Network ... 181

Figure-6: Generic Service Template .. 190

Figure-7: Service template with network template A ... 190

Figure-8: Service template with network template B ... 191

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 9 of 267

1 Introduction

1.1 Objective

The TOSCA Simple Profile in YAML specifies a rendering of TOSCA which aims to provide a more accessible
syntax as well as a more concise and incremental expressiveness of the TOSCA DSL in order to minimize the
learning curve and speed the adoption of the use of TOSCA to portably describe cloud applications.

This proposal describes a YAML rendering for TOSCA. YAML is a human friendly data serialization standard
(http://yaml.org/) with a syntax much easier to read and edit than XML. As there are a number of DSLs encoded in
YAML, a YAML encoding of the TOSCA DSL makes TOSCA more accessible by these communities.

This proposal prescribes an isomorphic rendering in YAML of a subset of the TOSCA v1.0 ensuring that TOSCA
semantics are preserved and can be transformed from XML to YAML or from YAML to XML. Additionally, in order
to streamline the expression of TOSCA semantics, the YAML rendering is sought to be more concise and
compact through the use of the YAML syntax.

1.2 Summary of key TOSCA concepts

The TOSCA metamodel uses the concept of service templates to describe cloud workloads as a topology
template, which is a graph of node templates modeling the components a workload is made up of and as
relationship templates modeling the relations between those components. TOSCA further provides a type system
of node types to describe the possible building blocks for constructing a service template, as well as relationship
type to describe possible kinds of relations. Both node and relationship types may define lifecycle operations to
implement the behavior an orchestration engine can invoke when instantiating a service template. For example, a
node type for some software product might provide a ‘create’ operation to handle the creation of an instance of a
component at runtime, or a ‘start’ or ‘stop’ operation to handle a start or stop event triggered by an orchestration
engine. Those lifecycle operations are backed by implementation artifacts such as scripts or Chef recipes that
implement the actual behavior.

An orchestration engine processing a TOSCA service template uses the mentioned lifecycle operations to
instantiate single components at runtime, and it uses the relationship between components to derive the order of
component instantiation. For example, during the instantiation of a two-tier application that includes a web
application that depends on a database, an orchestration engine would first invoke the ‘create’ operation on the
database component to install and configure the database, and it would then invoke the ‘create’ operation of the
web application to install and configure the application (which includes configuration of the database connection).

The TOSCA simple profile assumes a number of base types (node types and relationship types) to be supported
by each compliant environment such as a ‘Compute’ node type, a ‘Network’ node type or a generic ‘Database’
node type. Furthermore, it is envisioned that a large number of additional types for use in service templates will be
defined by a community over time. Therefore, template authors in many cases will not have to define types
themselves but can simply start writing service templates that use existing types. In addition, the simple profile will
provide means for easily customizing and extending existing types, for example by providing a customized
‘create’ script for some software.

1.3 Implementations

Different kinds of processors and artifacts qualify as implementations of the TOSCA simple profile. Those that this
specification is explicitly mentioning or referring to fall into the following categories:

 TOSCA YAML service template (or “service template”): A YAML document artifact containing a (TOSCA)

service template (see sections 3.9 “Service template definition”) that represents a Cloud application.

(see sections 3.8 “Topology template definition”)

 TOSCA processor (or “processor”): An engine or tool that is capable of parsing and interpreting a TOSCA

service template for a particular purpose. For example, the purpose could be validation, translation or

visual rendering.

http://yaml.org/

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 10 of 267

 TOSCA orchestrator (also called orchestration engine): A TOSCA processor that interprets a TOSCA

service template or a TOSCA CSAR in order to instantiate and deploy the described application in a

Cloud.

 TOSCA generator: A tool that generates a TOSCA service template. An example of generator is a

modeling tool capable of generating or editing a TOSCA service template (often such a tool would also

be a TOSCA processor).

 TOSCA archive (or TOSCA Cloud Service Archive, or “CSAR”): a package artifact that contains a TOSCA

service template and other artifacts usable by a TOSCA orchestrator to deploy an application.

The above list is not exclusive. The above definitions should be understood as referring to and implementing the
TOSCA simple profile as described in this document (abbreviated here as “TOSCA” for simplicity).

1.4 Terminology

The TOSCA language introduces a YAML grammar for describing service templates by means of Topology
Templates and towards enablement of interaction with a TOSCA instance model perhaps by external APIs or
plans. The primary currently is on design time aspects, i.e. the description of services to ensure their exchange
between Cloud providers, TOSCA Orchestrators and tooling.

The language provides an extension mechanism that can be used to extend the definitions with additional vendor-
specific or domain-specific information.

1.5 Notational Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

1.5.1 Notes

 Sections that are titled “Example” throughout this document are considered non-normative.

1.6 Normative References

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[TOSCA-1.0] Topology and Orchestration Topology and Orchestration Specification for Cloud
Applications (TOSCA) Version 1.0, an OASIS Standard, 25 November 2013,
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf

[YAML-1.2] YAML, Version 1.2, 3rd Edition, Patched at 2009-10-01, Oren Ben-Kiki, Clark
Evans, Ingy döt Net http://www.yaml.org/spec/1.2/spec.html

[YAML-TS-1.1] Timestamp Language-Independent Type for YAML Version 1.1, Working Draft
2005-01-18, http://yaml.org/type/timestamp.html

1.7 Non-Normative References

[Apache] Apache Server, https://httpd.apache.org/

[Chef] Chef, https://wiki.opscode.com/display/chef/Home

[NodeJS] Node.js, https://nodejs.org/

[Puppet] Puppet, http://puppetlabs.com/

[WordPress] WordPress, https://wordpress.org/

[Maven-Version] Apache Maven version policy draft:

http://www.ietf.org/rfc/rfc2119.txt
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://www.yaml.org/spec/1.2/spec.html
http://yaml.org/type/timestamp.html
https://httpd.apache.org/
https://wiki.opscode.com/display/chef/Home
https://nodejs.org/
http://puppetlabs.com/
https://wordpress.org/

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 11 of 267

 https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy

1.8 Glossary

The following terms are used throughout this specification and have the following definitions when used in

context of this document.

Term Definition

Instance Model A deployed service is a running instance of a Service Template. More precisely,
the instance is derived by instantiating the Topology Template of its Service
Template, most often by running a special plan defined for the Service Template,
often referred to as build plan.

Node Template A Relationship Template specifies the occurrence of a software component node
as part of a Topology Template. Each Node Template refers to a Node Type that
defines the semantics of the node (e.g., properties, attributes, requirements,
capabilities, interfaces). Node Types are defined separately for reuse purposes.

Relationship
Template

A Relationship Template specifies the occurrence of a relationship between nodes
in a Topology Template. Each Relationship Template refers to a Relationship Type
that defines the semantics relationship (e.g., properties, attributes, interfaces, etc.).
Relationship Types are defined separately for reuse purposes.

Service Template A Service Template is typically used to specify the “topology” (or structure) and
“orchestration” (or invocation of management behavior) of
IT services so that they can be provisioned and managed
in accordance with constraints and policies.

Specifically, TOSCA Service Templates optionally allow definitions of a
TOSCA Topology Template, TOSCA types (e.g., Node,
Relationship, Capability, Artifact, etc.), groupings, policies
and constraints along with any input or output
declarations.

Topology Model The term Topology Model is often used synonymously with the term Topology
Template with the use of “model” being prevalent when
considering a Service Template’s topology definition as an
abstract representation of an application or service to
facilitate understanding of its functional components and

by eliminating unnecessary details.

Topology Template A Topology Template defines the structure of a service in the context of a
Service Template. A Topology Template consists of a set
of Node Template and Relationship Template definitions
that together define the topology model of a service as a
(not necessarily connected) directed graph.

The term Topology Template is often used synonymously with the term
Topology Model. The distinction is that a topology
template can be used to instantiate and orchestrate the
model as a reusable pattern and includes all details
necessary to accomplish it.

https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 12 of 267

2 TOSCA by example
This non-normative section contains several sections that show how to model applications with TOSCA Simple
Profile using YAML by example starting with a “Hello World” template up through examples that show complex
composition modeling.

2.1 A “hello world” template for TOSCA Simple Profile in YAML

As mentioned before, the TOSCA simple profile assumes the existence of a small set of pre-defined, normative
set of node types (e.g., a ‘Compute’ node) along with other types, which will be introduced through the course of
this document, for creating TOSCA Service Templates. It is envisioned that many additional node types for
building service templates will be created by communities some may be published as profiles that build upon the
TOSCA Simple Profile specification. Using the normative TOSCA Compute node type, a very basic “Hello World”
TOSCA template for deploying just a single server would look as follows:

Example 1 - TOSCA Simple "Hello World"

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with predefined properties.

topology_template:

 node_templates:

 my_server:

 type: tosca.nodes.Compute

 capabilities:

 # Host container properties

 host:

 properties:

 num_cpus: 1

 disk_size: 10 GB

 mem_size: 4096 MB

 # Guest Operating System properties

 os:

 properties:

 # host Operating System image properties

 architecture: x86_64

 type: linux

 distribution: rhel

 version: 6.5

The template above contains a very simple topology template with only a single ‘Compute’ node template that

declares some basic values for properties within two of the several capabilities that are built into the Compute

node type definition. All TOSCA Orchestrators are expected to know how to instantiate a Compute node since it

is normative and expected to represent a well-known function that is portable across TOSCA implementations.

This expectation is true for all normative TOSCA Node and Relationship types that are defined in the Simple

Profile specification. This means, with TOSCA’s approach, that the application developer does not need to

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 13 of 267

provide any deployment or implementation artifacts that contain code or logic to orchestrate these common

software components. TOSCA orchestrators simply select or allocate the correct node (resource) type that

fulfills the application topologies requirements using the properties declared in the node and its capabilities.

In the above example, the “host” capability contains properties that allow application developers to optionally

supply the number of CPUs, memory size and disk size they believe they need when the Compute node is

instantiated in order to run their applications. Similarly, the “os” capability is used to provide values to indicate

what host operating system the Compute node should have when it is instantiated.

The logical diagram of the “hello world” Compute node would look as follows:

As you can see, the Compute node also has attributes and other built-in capabilities, such as Bindable and

Endpoint, each with additional properties that will be discussed in other examples later in this document.

Although the Compute node has no direct properties apart from those in its capabilities, other TOSCA node type
definitions may have properties that are part of the node type itself in addition to having Capabilities. TOSCA
orchestration engines are expected to validate all property values provided in a node template against the
property definitions in their respective node type definitions referenced in the service template. The
tosca_definitions_version keyname in the TOSCA service template identifies the versioned set of normative

TOSCA type definitions to use for validating those types defined in the TOSCA Simple Profile including the
Compute node type. Specifically, the value tosca_simple_yaml_1_0 indicates Simple Profile v1.0.0 definitions

would be used for validation. Other type definitions may be imported from other service templates using the
import keyword discussed later.

2.1.1 Requesting input parameters and providing output

Typically, one would want to allow users to customize deployments by providing input parameters instead of using
hardcoded values inside a template. In addition, output values are provided to pass information that perhaps
describes the state of the deployed template to the user who deployed it (such as the private IP address of the
deployed server). A refined service template with corresponding inputs and outputs sections is shown below.

Example 2 - Template with input and output parameter sections

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with predefined properties.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 14 of 267

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 node_templates:

 my_server:

 type: tosca.nodes.Compute

 capabilities:

 # Host container properties

 host:

 properties:

 # Compute properties

 num_cpus: { get_input: cpus }

 mem_size: 2048 MB

 disk_size: 10 GB

 outputs:

 server_ip:

 description: The private IP address of the provisioned server.

 value: { get_attribute: [my_server, private_address] }

The inputs and outputs sections are contained in the topology_template element of the TOSCA template,

meaning that they are scoped to node templates within the topology template. Input parameters defined in the

inputs section can be assigned to properties of node template within the containing topology template; output

parameters can be obtained from attributes of node templates within the containing topology template.

Note that the inputs section of a TOSCA template allows for defining optional constraints on each input

parameter to restrict possible user input. Further note that TOSCA provides for a set of intrinsic functions like

get_input, get_property or get_attribute to reference elements within the template or to retrieve runtime

values.

2.2 TOSCA template for a simple software installation

Software installations can be modeled in TOSCA as node templates that get related to the node template for a
server on which the software shall be installed. With a number of existing software node types (e.g. either created
by the TOSCA work group or a community) template authors can just use those node types for writing service
templates as shown below.

Example 3 - Simple (MySQL) software installation on a TOSCA Compute node

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with MySQL software on top.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 15 of 267

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 root_password: { get_input: my_mysql_rootpw }

 port: { get_input: my_mysql_port }

 requirements:

 - host: db_server

 db_server:

 type: tosca.nodes.Compute

 capabilities:

 # omitted here for brevity

The example above makes use of a node type tosca.nodes.DBMS.MySQL for the mysql node template to install

MySQL on a server. This node type allows for setting a property root_password to adapt the password of the

MySQL root user at deployment. The set of properties and their schema has been defined in the node type

definition. By means of the get_input function, a value provided by the user at deployment time is used as

value for the root_password property. The same is true for the port property.

The mysql node template is related to the db_server node template (of type tosca.nodes.Compute) via the

requirements section to indicate where MySQL is to be installed. In the TOSCA metamodel, nodes get related to

each other when one node has a requirement against some feature provided by another node. What kinds of
requirements exist is defined by the respective node type. In case of MySQL, which is software that needs to be
installed or hosted on a compute resource, the underlying node type named DBMS has a predefined requirement

called host, which needs to be fulfilled by pointing to a node template of type tosca.nodes.Compute.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 16 of 267

The logical relationship between the mysql node and its host db_server node would appear as follows:

Within the requirements section, all entries simple entries are a map which contains the symbolic name of a
requirement definition as the key and the identifier of the fulfilling node as the value. The value is essentially the

symbolic name of the other node template; specifically, or the example above, the host requirement is fulfilled by

referencing the db_server node template. The underlying TOSCA DBMS node type already defines a complete

requirement definition for the host requirement of type Container and assures that a HostedOn TOSCA

relationship will automatically be created and will only allow a valid target host node is of type Compute. This

approach allows the template author to simply provide the name of a valid Compute node (i.e., db_server) as the

value for the mysql node’s host requirement and not worry about defining anything more complex if they do not

want to.

2.3 Overriding behavior of predefined node types

Node types in TOSCA have associated implementations that provide the automation (e.g. in the form of scripts
such as Bash, Chef or Python) for the normative lifecycle operations of a node. For example, the node type
implementation for a MySQL database would associate scripts to TOSCA node operations like configure,

start, or stop to manage the state of MySQL at runtime.

Many node types may already come with a set of operational scripts that contain basic commands that can
manage the state of that specific node. If it is desired, template authors can provide a custom script for one or
more of the operation defined by a node type in their node template which will override the default implementation
in the type. The following example shows a mysql node template where the template author provides their own

configure script:

Example 4 - Node Template overriding its Node Type's "configure" interface

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with MySQL software on top.

topology_template:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 17 of 267

 inputs:

 # omitted here for brevity

 node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 root_password: { get_input: my_mysql_rootpw }

 port: { get_input: my_mysql_port }

 requirements:

 - host: db_server

 interfaces:

 Standard:

 configure: scripts/my_own_configure.sh

 db_server:

 type: tosca.nodes.Compute

 capabilities:

 # omitted here for brevity

In the example above, the my_own_configure.sh script is provided for the configure operation of the MySQL

node type’s Standard lifecycle interface. The path given in the example above (i.e., ‘scripts/’) is interpreted

relative to the template file, but it would also be possible to provide an absolute URI to the location of the script.

In other words, operations defined by node types can be thought of as “hooks” into which automation can be
injected. Typically, node type implementations provide the automation for those “hooks”. However, within a
template, custom automation can be injected to run in a hook in the context of the one, specific node template
(i.e. without changing the node type).

2.4 TOSCA template for database content deployment

In the example shown in section 4 the deployment of the MySQL middleware only, i.e. without actual database
content was shown. The following example shows how such a template can be extended to also contain the
definition of custom database content on-top of the MySQL DBMS software.

Example 5 - Template for deploying database content on-top of MySQL DBMS middleware

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying MySQL and database content.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 my_db:

 type: tosca.nodes.Database.MySQL

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 18 of 267

 properties:

 name: { get_input: database_name }

 user: { get_input: database_user }

 password: { get_input: database_password }

 port: { get_input: database_port }

 artifacts:

 db_content:

 file: files/my_db_content.txt

 type: tosca.artifacts.File

 requirements:

 - host: mysql

 interfaces:

 Standard:

 create:

 implementation: db_create.sh

 inputs:

 # Copy DB file artifact to server’s staging area

 db_data: { get_artifact: [SELF, db_content] }

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 root_password: { get_input: mysql_rootpw }

 port: { get_input: mysql_port }

 requirements:

 - host: db_server

 db_server:

 type: tosca.nodes.Compute

 capabilities:

 # omitted here for brevity

In the example above, the my_db node template or type tosca.nodes.Database.MySQL represents an actual

MySQL database instance managed by a MySQL DBMS installation. The requirements section of the my_db

node template expresses that the database it represents is to be hosted on a MySQL DBMS node template

named mysql which is also declared in this template.

In its artifacts section of the my_db the node template, there is an artifact definition named db_content which

represents a text file my_db_content.txt which in turn will be used to add content to the SQL database as part

of the create operation. The requirements section of the my_db node template expresses that the database is

hosted on a MySQL DBMS represented by the mysql node.

As you can see above, a script is associated with the create operation with the name db_create.sh. The

TOSCA Orchestrator sees that this is not a named artifact declared in the node’s artifact section, but instead a
filename for a normative TOSCA implementation artifact script type (i.e.,
tosca.artifacts.Implementation.Bash). Since this is an implementation type for TOSCA, the orchestrator

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 19 of 267

will execute the script automatically to create the node on db_server, but first it will prepare the local environment

with the declared inputs for the operation. In this case, the orchestrator would see that the db_data input is using

the get_artifact function to retrieve the file (my_db_content.txt) which is associated with the db_content

artifact name prior to executing the db_create.sh script.

The logical diagram for this example would appear as follows:

Note that while it would be possible to define one node type and corresponding node templates that represent
both the DBMS middleware and actual database content as one entity, TOSCA normative node types distinguish
between middleware (container) and application (containee) node types. This allows on one hand to have better
re-use of generic middleware node types without binding them to content running on top of them, and on the other
hand this allows for better substitutability of, for example, middleware components like a DBMS during the
deployment of TOSCA models.

2.5 TOSCA template for a two-tier application

The definition of multi-tier applications in TOSCA is quite similar to the example shown in section 2.2, with the
only difference that multiple software node stacks (i.e., node templates for middleware and application layer
components), typically hosted on different servers, are defined and related to each other. The example below
defines a web application stack hosted on the web_server “compute” resource, and a database software stack

similar to the one shown earlier in section 6 hosted on the db_server compute resource.

Example 6 - Basic two-tier application (web application and database server tiers)

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a two-tier application servers on two

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 20 of 267

topology_template:

 inputs:

 # Admin user name and password to use with the WordPress application

 wp_admin_username:

 type: string

 wp_admin_password:

 type: string

 wp_db_name:

 type: string

 wp_db_user:

 type: string

 wp_db_password:

 type: string

 wp_db_port:

 type: integer

 mysql_root_password:

 type: string

 mysql_port:

 type: integer

 context_root:

 type: string

 node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 properties:

 context_root: { get_input: context_root }

 admin_user: { get_input: wp_admin_username }

 admin_password: { get_input: wp_admin_password }

 db_host: { get_attribute: [db_server, private_address] }

 requirements:

 - host: apache

 - database_endpoint: wordpress_db

 interfaces:

 Standard:

 inputs:

 db_host: { get_attribute: [db_server, private_address] }

 db_port: { get_property: [wordpress_db, port] }

 db_name: { get_property: [wordpress_db, name] }

 db_user: { get_property: [wordpress_db, user] }

 db_password: { get_property: [wordpress_db, password] }

 apache:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 21 of 267

 type: tosca.nodes.WebServer.Apache

 properties:

 # omitted here for brevity

 requirements:

 - host: web_server

 web_server:

 type: tosca.nodes.Compute

 capabilities:

 # omitted here for brevity

 wordpress_db:

 type: tosca.nodes.Database.MySQL

 properties:

 name: { get_input: wp_db_name }

 user: { get_input: wp_db_user }

 password: { get_input: wp_db_password }

 port: { get_input: wp_db_port }

 requirements:

 - host: mysql

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 root_password: { get_input: mysql_root_password }

 port: { get_input: mysql_port }

 requirements:

 - host: db_server

 db_server:

 type: tosca.nodes.Compute

 capabilities:

 # omitted here for brevity

The web application stack consists of the wordpress [WordPress], the apache [Apache] and the web_server

node templates. The wordpress node template represents a custom web application of type

tosca.nodes.WebApplication.WordPress which is hosted on an Apache web server represented by the apache

node template. This hosting relationship is expressed via the host entry in the requirements section of the

wordpress node template. The apache node template, finally, is hosted on the web_server compute node.

The database stack consists of the wordpress_db, the mysql and the db_server node templates. The
wordpress_db node represents a custom database of type tosca.nodes.Database.MySQL which is hosted on a
MySQL DBMS represented by the mysql node template. This node, in turn, is hosted on the db_server compute
node.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 22 of 267

The wordpress node requires a connection to the wordpress_db node, since the WordPress application needs a

database to store its data in. This relationship is established through the database_endpoint entry in the

requirements section of the wordpress node template’s declared node type. For configuring the WordPress web

application, information about the database to connect to is required as input to the configure operation.

Therefore, the input parameters are defined and values for them are retrieved from the properties and

attributes of the wordpress_db node via the get_property and get_attribute functions. In the above example,

these inputs are defined at the interface-level and would be available to all operations of the Standard interface

(i.e., the tosca.interfaces.node.lifecycle.Standard interface) within the wordpress node template and

not just the configure operation.

2.6 Using a custom script to establish a relationship in a template

In previous examples, the template author did not have to think about explicit relationship types to be used to link
a requirement of a node to another node of a model, nor did the template author have to think about special logic
to establish those links. For example, the host requirement in previous examples just pointed to another node

template and based on metadata in the corresponding node type definition the relationship type to be established
is implicitly given.

In some cases it might be necessary to provide special processing logic to be executed when establishing
relationships between nodes at runtime. For example, when connecting the WordPress application from previous
examples to the MySQL database, it might be desired to apply custom configuration logic in addition to that
already implemented in the application node type. In such a case, it is possible for the template author to provide
a custom script as implementation for an operation to be executed at runtime as shown in the following example.

Example 7 - Providing a custom relationship script to establish a connection

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a two-tier application on two servers.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 properties:

 # omitted here for brevity

 requirements:

 - host: apache

 - database_endpoint:

 node: wordpress_db

 relationship: my_custom_database_connection

 wordpress_db:

 type: tosca.nodes.Database.MySQL

 properties:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 23 of 267

 # omitted here for the brevity

 requirements:

 - host: mysql

 relationship_templates:

 my_custom_database_connection:

 type: ConnectsTo

 interfaces:

 Configure:

 pre_configure_source: scripts/wp_db_configure.sh

 # other resources not shown for this example ...

The node type definition for the wordpress node template is WordPress which declares the complete

database_endpoint requirement definition. This database_endpoint declaration indicates it must be fulfilled

by any node template that provides an Endpoint.Database Capability Type using a ConnectsTo relationship.

The wordpress_db node template’s underlying MySQL type definition indeed provides the Endpoint.Database

Capability type. In this example however, no explicit relationship template is declared; therefore TOSCA

orchestrators would automatically create a ConnectsTo relationship to establish the link between the

wordpress node and the wordpress_db node at runtime.

The ConnectsTo relationship (see 5.6.4) also provides a default Configure interface with operations that

optionally get executed when the orchestrator establishes the relationship. In the above example, the author has
provided the custom script wp_db_configure.sh to be executed for the operation called
pre_configure_source. The script file is assumed to be located relative to the referencing service template such

as a relative directory within the TOSCA Cloud Service Archive (CSAR) packaging format. This approach allows
for conveniently hooking in custom behavior without having to define a completely new derived relationship type.

2.7 Using custom relationship types in a TOSCA template

In the previous section it was shown how custom behavior can be injected by specifying scripts inline in the
requirements section of node templates. When the same custom behavior is required in many templates, it does
make sense to define a new relationship type that encapsulates the custom behavior in a re-usable way instead
of repeating the same reference to a script (or even references to multiple scripts) in many places.

Such a custom relationship type can then be used in templates as shown in the following example.

Example 8 - A web application Node Template requiring a custom database connection type

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a two-tier application on two servers.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 24 of 267

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 properties:

 # omitted here for brevity

 requirements:

 - host: apache

 - database_endpoint:

 node: wordpress_db
 relationship: my.types.WordpressDbConnection

 wordpress_db:

 type: tosca.nodes.Database.MySQL

 properties:

 # omitted here for the brevity

 requirements:

 - host: mysql

 # other resources not shown here ...

In the example above, a special relationship type my.types.WordpressDbConnection is specified for

establishing the link between the wordpress node and the wordpress_db node through the use of the

relationship (keyword) attribute in the database reference. It is assumed, that this special relationship type

provides some extra behavior (e.g., an operation with a script) in addition to what a generic “connects to”

relationship would provide. The definition of this custom relationship type is shown in the following section.

2.7.1 Definition of a custom relationship type

The following YAML snippet shows the definition of the custom relationship type used in the previous section.
This type derives from the base “ConnectsTo” and overrides one operation defined by that base relationship type.
For the pre_configure_source operation defined in the Configure interface of the ConnectsTo relationship

type, a script implementation is provided. It is again assumed that the custom configure script is located at a
location relative to the referencing service template, perhaps provided in some application packaging format (e.g.,
the TOSCA Cloud Service Archive (CSAR) format).

Example 9 - Defining a custom relationship type

tosca_definitions_version: tosca_simple_yaml_1_0

description: Definition of custom WordpressDbConnection relationship type

relationship_types:

 my.types.WordpressDbConnection:

 derived_from: tosca.relationships.ConnectsTo

 interfaces:

 Configure:

 pre_configure_source: scripts/wp_db_configure.sh

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 25 of 267

In the above example, the Configure interface is the specified alias or shorthand name for the TOSCA interface

type with the full name of tosca.interfaces.relationship.Configure which is defined in the appendix.

2.8 Defining generic dependencies between nodes in a template

In some cases it can be necessary to define a generic dependency between two nodes in a template to influence
orchestration behavior, i.e. to first have one node processed before another dependent node gets processed. This
can be done by using the generic dependency requirement which is defined by the TOSCA Root Node Type and

thus gets inherited by all other node types in TOSCA (see section 5.8.1).

Example 10 - Simple dependency relationship between two nodes

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with a generic dependency between two nodes.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 my_app:

 type: my.types.MyApplication

 properties:

 # omitted here for brevity

 requirements:

 - dependency: some_service

 some_service:

 type: some.nodetype.SomeService

 properties:

 # omitted here for brevity

As in previous examples, the relation that one node depends on another node is expressed in the

requirements section using the built-in requirement named dependency that exists for all node types in TOSCA.

Even if the creator of the MyApplication node type did not define a specific requirement for SomeService

(similar to the database requirement in the example in section 2.6), the template author who knows that there

is a timing dependency and can use the generic dependency requirement to express that constraint using the

very same syntax as used for all other references.

2.9 Describing abstract requirements for nodes and capabilities in a
TOSCA template

In TOSCA templates, nodes are either:

 Concrete: meaning that they have a deployment and/or one or more implementation artifacts that are

declared on the “create” operation of the node’s Standard lifecycle interface, or they are

 Abstract: where the template describes the node type along with its required capabilities and properties

that must be satisfied.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 26 of 267

TOSCA Orchestrators, by default, when finding an abstract node in TOSCA Service Template during deployment
will attempt to “select” a concrete implementation for the abstract node type that best matches and fulfills the
requirements and property constraints the template author provided for that abstract node. The concrete
implementation of the node could be provided by another TOSCA Service Template (perhaps located in a catalog
or repository known to the TOSCA Orchestrator) or by an existing resource or service available within the target
Cloud Provider’s platform that the TOSCA Orchestrator already has knowledge of.

TOSCA supports two methods for template authors to express requirements for an abstract node within a TOSCA
service template.

1. Using a target node_filter: where a node template can describe a requirement (relationship) for

another node without including it in the topology. Instead, the node provides a node_filter to describe

the target node type along with its capabilities and property constrains

2. Using an abstract node template: that describes the abstract node’s type along with its property

constraints and any requirements and capabilities it also exports. This first method you have already

seen in examples from previous chapters where the Compute node is abstract and selectable by the

TOSCA Orchestrator using the supplied Container and OperatingSystem capabilities property

constraints.

These approaches allows architects and developers to create TOSCA service templates that are composable and
can be reused by allowing flexible matching of one template’s requirements to another’s capabilities. Examples of
both these approaches are shown below.

2.9.1 Using a node_filter to define hosting infrastructure requirements for a
software

Using TOSCA, it is possible to define only the software components of an application in a template and just
express constrained requirements against the hosting infrastructure. At deployment time, the provider can then do
a late binding and dynamically allocate or assign the required hosting infrastructure and place software
components on top.

This example shows how a single software component (i.e., the mysql node template) can define its host requirements that

the TOSCA Orchestrator and provider will use to select or allocate an appropriate host Compute node by using matching

criteria provided on a node_filter.

Example 11 - An abstract "host" requirement using a node filter

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with requirements against hosting infrastructure.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 27 of 267

 properties:

 # omitted here for brevity

 requirements:

 - host:

 node_filter:

 capabilities:

 # Constraints for selecting “host” (Container Capability)

 - host:

 properties:

 - num_cpus: { in_range: [1, 4] }

 - mem_size: { greater_or_equal: 2 GB }

 # Constraints for selecting “os” (OperatingSystem Capability)

 - os:

 properties:

 - architecture: { equal: x86_64 }

 - type: linux

 - distribution: ubuntu

In the example above, the mysql component contains a host requirement for a node of type Compute which it

inherits from its parent DBMS node type definition; however, there is no declaration or reference to any node

template of type Compute. Instead, the mysql node template augments the abstract “host” requirement with a

node_filter which contains additional selection criteria (in the form of property constraints that the provider

must use when selecting or allocating a host Compute node.

Some of the constraints shown above narrow down the boundaries of allowed values for certain properties such

as mem_size or num_cpus for the “host” capability by means of qualifier functions such as greater_or_equal.

Other constraints, express specific values such as for the architecture or distribution properties of the

“os” capability which will require the provider to find a precise match.

Note that when no qualifier function is provided for a property (filter), such as for the distribution property, it is

interpreted to mean the equal operator as shown on the architecture property.

2.9.2 Using an abstract node template to define infrastructure requirements for
software

This previous approach works well if no other component (i.e., another node template) other than mysql node

template wants to reference the same Compute node the orchestrator would instantiate. However, perhaps

another component wants to also be deployed on the same host, yet still allow the flexible matching achieved

using a node-filter. The alternative to the above approach is to create an abstract node template that

represents the Compute node in the topology as follows:

Example 12 - An abstract Compute node template with a node filter

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with requirements against hosting infrastructure.

topology_template:
 inputs:
 # omitted here for brevity

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 28 of 267

 node_templates:
 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 # omitted here for brevity
 requirements:
 - host: mysql_compute

 # Abstract node template (placeholder) to be selected by provider
 mysql_compute:
 type: Compute

 node_filter:

 capabilities:
 - host:
 properties:
 num_cpus: { equal: 2 }
 mem_size: { greater_or_equal: 2 GB }
 - os:
 properties:
 architecture: { equal: x86_64 }
 type: linux
 distribution: ubuntu

As you can see the resulting mysql_compute node template looks very much like the “hello world” template as

shown in Chapter 2.1 (where the Compute node template was abstract), but this one also allows the TOSCA

orchestrator more flexibility when “selecting” a host Compute node by providing flexible constraints for

properties like mem_size.

As we proceed, you will see that TOSCA provides many normative node types like Compute for commonly found

services (e.g., BlockStorage, WebServer, Network, etc.). When these TOSCA normative node types are used

in your application’s topology they are always assumed to be “selectable” by TOSCA Orchestrators which work
with target infrastructure providers to find or allocate the best match for them based upon your application’s
requirements and constraints.

2.9.3 Using a node_filter to define requirements on a database for an application

In the same way requirements can be defined on the hosting infrastructure (as shown above) for an application, it
is possible to express requirements against application or middleware components such as a database that is not
defined in the same template. The provider may then allocate a database by any means, (e.g. using a database-
as-a-service solution).

Example 13 - An abstract database requirement using a node filter

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with a TOSCA Orchestrator selectable database requirement
using a node_filter.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

hello_world#_A_

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 29 of 267

 my_app:

 type: my.types.MyApplication

 properties:

 admin_user: { get_input: admin_username }

 admin_password: { get_input: admin_password }

 db_endpoint_url: { get_property: [SELF, database_endpoint, url_path] }

 requirements:

 - database_endpoint:

 node: my.types.nodes.MyDatabase

 node_filter:

 properties:

 - db_version: { greater_or_equal: 5.5 }

In the example above, the application my_app requires a database node of type MyDatabase which has a

db_version property value of greater_or_equal to the value 5.5.

This example also shows how the get_property intrinsic function can be used to retrieve the url_path

property from the database node that will be selected by the provider and connected to my_app at runtime due

to fulfillment of the database_endpoint requirement. To locate the property, the get_property’s first argument

is set to the keyword SELF which indicates the property is being referenced from something in the node itself.

The second parameter is the name of the requirement named database_endpoint which contains the

property we are looking for. The last argument is the name of the property itself (i.e., url_path) which contains

the value we want to retrieve and assign to db_endpoint_url.

The alternative representation, which includes a node template in the topology for database that is still selectable
by the TOSCA orchestrator for the above example, is as follows:

Example 14 - An abstract database node template

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with a TOSCA Orchestrator selectable database using node
template.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 my_app:

 type: my.types.MyApplication

 properties:

 admin_user: { get_input: admin_username }

 admin_password: { get_input: admin_password }

 db_endpoint_url: { get_property: [SELF, database_endpoint, url_path] }

 requirements:

 - database_endpoint: my_abstract_database

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 30 of 267

 my_abstract_database:

 type: my.types.nodes.MyDatabase

 properties:

 - db_version: { greater_or_equal: 5.5 }

2.10 Using node template substitution for model composition

From an application perspective, it is often not necessary or desired to dive into platform details, but the platform/runtime
for an application is abstracted. In such cases, the template for an application can use generic representations of platform
components. The details for such platform components, such as the underlying hosting infrastructure at its configuration,
can then be defined in separate template files that can be used for substituting the more abstract representations in the
application level template file.

2.10.1 Understanding node template instantiation through a TOSCA Orchestrator

When a topology template is instantiated by a TOSCA Orchestrator, the orchestrator has to look for realizations of the
single node templates according to the node types specified for each node template. Such realizations can either be node
types that include the appropriate implementation artifacts and deployment artifacts that can be used by the orchestrator
to bring to life the real-world resource modeled by a node template. Alternatively, separate topology templates may be
annotated as being suitable for realizing a node template in the top-level topology template.

In the latter case, a TOSCA Orchestrator will use additional substitution mapping information provided as part of the
substituting topology templates to derive how the substituted part get “wired” into the overall deployment, for example,
how capabilities of a node template in the top-level topology template get bound to capabilities of node templates in the
substituting topology template.

Thus, in cases where no “normal” node type implementation is available, or the node type corresponds to a whole
subsystem that cannot be implemented as a single node, additional topology templates can be used for filling in more
abstract placeholders in top level application templates.

2.10.2 Definition of the top-level service template

The following sample defines a web application web_app connected to a database db. In this example, the complete

hosting stack for the application is defined within the same topology template: the web application is hosted on a
web server web_server, which in turn is installed (hosted) on a compute node server.

The hosting stack for the database db, in contrast, is not defined within the same file but only the database is

represented as a node template of type tosca.nodes.Database. The underlying hosting stack for the database

is defined in a separate template file, which is shown later in this section. Within the current template, only a
number of properties (user, password, name) are assigned to the database using hardcoded values in this simple

example.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 31 of 267

Figure 1: Using template substitution to implement a database tier

When a node template is to be substituted by another service template, this has to be indicated to an orchestrator
by means of a special “substitutable” directive. This directive causes, for example, special processing behavior
when validating the left-hand service template in Figure 1. The hosting requirement of the db node template is not

bound to any capability defined within the service template, which would normally cause a validation error. When
the “substitutable” directive is present, the orchestrator will however first try to perform substitution of the
respective node template and after that validate if all mandatory requirements of all nodes in the resulting graph
are fulfilled.

Note that in contrast to the use case described in section 0 (where a database was abstractly referred to in the
requirements section of a node and the database itself was not represented as a node template), the approach

shown here allows for some additional modeling capabilities in cases where this is required.
For example, if multiple components shall use the same database (or any other sub-system of the overall
service), this can be expressed by means of normal relations between node templates, whereas such modeling
would not be possible in requirements sections of disjoint node templates.

Example 15 - Referencing an abstract database node template

tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:

 description: Template of an application connecting to a database.

 node_templates:

 web_app:

 type: tosca.nodes.WebApplication.MyWebApp

 requirements:

 - host: web_server

 - database_endpoint: db

 web_server:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 32 of 267

 type: tosca.nodes.WebServer

 requirements:

 - host: server

 server:

 type: tosca.nodes.Compute

 # details omitted for brevity

 db:

 # This node is abstract (no Deploment or Implemenation artifacts on create)

 # and can be substituted with a topology provided by another template

 # that exports a Database type’s capabilities.

 type: tosca.nodes.Database

 properties:

 user: my_db_user

 password: secret

 name: my_db_name

2.10.3 Definition of the database stack in a service template

The following sample defines a template for a database including its complete hosting stack, i.e. the template

includes a database node template, a template for the database management system (dbms) hosting the

database, as well as a computer node server on which the DBMS is installed.

This service template can be used standalone for deploying just a database and its hosting stack. In the context
of the current use case, though, this template can also substitute the database node template in the previous
snippet and thus fill in the details of how to deploy the database.

In order to enable such a substitution, an additional metadata section substitution_mappings is added to the

topology template to tell a TOSCA Orchestrator how exactly the topology template will fit into the context where it
gets used. For example, requirements or capabilities of the node that gets substituted by the topology template
have to be mapped to requirements or capabilities of internal node templates for allow for a proper wiring of the
resulting overall graph of node templates.

In short, the substitution_mappings section provides the following information:

1. It defines what node templates, i.e. node templates of which type, can be substituted by the topology

template.

2. It defines how capabilities of the substituted node (or the capabilities defined by the node type of the

substituted node template, respectively) are bound to capabilities of node templates defined in the

topology template.

3. It defines how requirements of the substituted node (or the requirements defined by the node type of

the substituted node template, respectively) are bound to requirements of node templates defined in

the topology template.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 33 of 267

Figure 2: Substitution mappings

The substitution_mappings section in the sample below denotes that this topology template can be used for

substituting node templates of type tosca.nodes.Database. It further denotes that the database_endpoint

capability of the substituted node gets fulfilled by the database_endpoint capability of the database node

contained in the topology template.

Example 16 - Using substitution mappings to export a database implementation

tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:

 description: Template of a database including its hosting stack.

 inputs:

 db_user:

 type: string

 db_password:

 type: string

 # other inputs omitted for brevity

 substitution_mappings:

 node_type: tosca.nodes.Database

 capabilities:

 database_endpoint: [database, database_endpoint]

 node_templates:

 database:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 34 of 267

 type: tosca.nodes.Database

 properties:

 user: { get_input: db_user }

 # other properties omitted for brevity

 requirements:

 - host: dbms

 dbms:

 type: tosca.nodes.DBMS

 # details omitted for brevity

 server:

 type: tosca.nodes.Compute

 # details omitted for brevity

Note that the substitution_mappings section does not define any mappings for requirements of the Database

node type, since all requirements are fulfilled by other nodes templates in the current topology template. In

cases where a requirement of a substituted node is bound in the top-level service template as well as in the

substituting topology template, a TOSCA Orchestrator should raise a validation error.

Further note that no mappings for properties or attributes of the substituted node are defined. Instead, the inputs
and outputs defined by the topology template have to match the properties and attributes or the substituted node.
If there are more inputs than the substituted node has properties, default values must be defined for those inputs,
since no values can be assigned through properties in a substitution case.

2.11 Using node template substitution for chaining subsystems

A common use case when providing an end-to-end service is to define a chain of several subsystems that
together implement the overall service. Those subsystems are typically defined as separate service templates to
(1) keep the complexity of the end-to-end service template at a manageable level and to (2) allow for the re-use of
the respective subsystem templates in many different contexts. The type of subsystems may be specific to the
targeted workload, application domain, or custom use case. For example, a company or a certain industry might
define a subsystem type for company- or industry specific data processing and then use that subsystem type for
various end-user services. In addition, there might be generic subsystem types like a database subsystem that
are applicable to a wide range of use cases.

2.11.1 Defining the overall subsystem chain

Figure 3 shows the chaining of three subsystem types – a message queuing subsystem, a transaction processing
subsystem, and a databank subsystem – that support, for example, an online booking application. On the front
end, this chain provides a capability of receiving messages for handling in the message queuing subsystem. The
message queuing subsystem in turn requires a number of receivers, which in the current example are two
transaction processing subsystems. The two instances of the transaction processing subsystem might be
deployed on two different hosting infrastructures or datacenters for high-availability reasons. The transaction
processing subsystems finally require a database subsystem for accessing and storing application specific data.
The database subsystem in the backend does not require any further component and is therefore the end of the
chain in this example.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 35 of 267

Figure 3: Chaining of subsystems in a service template

All of the node templates in the service template shown above are abstract and considered substitutable where
each can be treated as their own subsystem; therefore, when instantiating the overall service, the orchestrator
would realize each substitutable node template using other TOSCA service templates. These service templates
would include more nodes and relationships that include the details for each subsystem. A simplified version of a
TOSCA service template for the overall service is given in the following listing.

Example 17 - Declaring a transaction subsystem as a chain of substitutable node templates

tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:

 description: Template of online transaction processing service.

 node_templates:

 mq:

 type: example.QueuingSubsystem

 properties:

 # properties omitted for brevity

 capabilities:

 message_queue_endpoint:

 # details omitted for brevity

 requirements:

 - receiver: trans1

 - receiver: trans2

 trans1:

 type: example.TransactionSubsystem

 properties:

 mq_service_ip: { get_attribute: [mq, service_ip] }

 receiver_port: 8080

 capabilities:

 message_receiver:

 # details omitted for brevity

 requirements:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 36 of 267

 - database_endpoint: dbsys

 trans2:

 type: example.TransactionSubsystem

 properties:

 mq_service_ip: { get_attribute: [mq, service_ip] }

 receiver_port: 8080

 capabilities:

 message_receiver:

 # details omitted for brevity

 requirements:

 - database_endpoint: dbsys

 dbsys:

 type: example.DatabaseSubsystem

 properties:

 # properties omitted for brevity

 capabilities:

 database_endpoint:

 # details omitted for brevity

As can be seen in the example above, the subsystems are chained to each other by binding requirements of one
subsystem node template to other subsystem node templates that provide the respective capabilities. For
example, the receiver requirement of the message queuing subsystem node template mq is bound to transaction

processing subsystem node templates trans1 and trans2.

Subsystems can be parameterized by providing properties. In the listing above, for example, the IP address of the
message queuing server is provided as property mq_service_ip to the transaction processing subsystems and

the desired port for receiving messages is specified by means of the receiver_port property.

If attributes of the instantiated subsystems shall be obtained, this would be possible by using the get_attribute

intrinsic function on the respective subsystem node templates.

2.11.2 Defining a subsystem (node) type

The types of subsystems that are required for a certain end-to-end service are defined as TOSCA node types as
shown in the following example. Node templates of those node types can then be used in the end-to-end service
template to define subsystems to be instantiated and chained for establishing the end-to-end service.

The realization of the defined node type will be given in the form of a whole separate service template as outlined
in the following section.

Example 18 - Defining a TransactionSubsystem node type

tosca_definitions_version: tosca_simple_yaml_1_0

node_types:

 example.TransactionSubsystem:

 properties:

 mq_service_ip:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 37 of 267

 type: string

 receiver_port:

 type: integer

 attributes:

 receiver_ip:

 type: string

 receiver_port:

 type: integer

 capabilities:

 message_receiver: tosca.capabilities.Endpoint

 requirements:

 - database_endpoint: tosca.capabilities.Endpoint.Database

Configuration parameters that shall be allowed for customizing the instantiation of any subsystem are defined as
properties of the node type. In the current example, those are the properties mq_service_ip and receiver_port

that had been used in the end-to-end service template in section 2.11.1.

Observable attributes of the resulting subsystem instances are defined as attributes of the node type. In the
current case, those are the IP address of the message receiver as well as the actually allocated port of the
message receiver endpoint.

2.11.3 Defining the details of a subsystem

The details of a subsystem, i.e. the software components and their hosting infrastructure, are defined as node
templates and relationships in a service template. By means of substitution mappings that have been introduced
in section 2.10.2, the service template is annotated to indicate to an orchestrator that it can be used as realization
of a node template of certain type, as well as how characteristics of the node type are mapped to internal
elements of the service template.

Figure 4: Defining subsystem details in a service template

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 38 of 267

Figure 1 illustrates how a transaction processing subsystem as outlined in the previous section could be defined
in a service template. In this example, it simply consists of a custom application app of type SomeApp that is

hosted on a web server websrv, which in turn is running on a compute node.

The application named app provides a capability to receive messages, which is bound to the message_receiver

capability of the substitutable node type. It further requires access to a database, so the application’s
database_endpoint requirement is mapped to the database_endpoint requirement of the

TransactionSubsystem node type.

Properties of the TransactionSubsystem node type are used to customize the instantiation of a subsystem.

Those properties can be mapped to any node template for which the author of the subsystem service template
wants to expose configurability. In the current example, the application app and the web server middleware
websrv get configured through properties of the TransactionSubsystem node type. All properties of that node

type are defined as inputs of the service template. The input parameters in turn get mapped to node templates

by means of get_input function calls in the respective sections of the service template.

Similarly, attributes of the whole subsystem can be obtained from attributes of particular node templates. In the
current example, attributes of the web server and the hosting compute node will be exposed as subsystem
attributes. All exposed attributes that are defined as attributes of the substitutable TransactionSubsystem node

type are defined as outputs of the subsystem service template.

An outline of the subsystem service template is shown in the listing below. Note that this service template could
be used for stand-alone deployment of a transaction processing system as well, i.e. it is not restricted just for use
in substitution scenarios. Only the presence of the substitution_mappings metadata section in the

topology_template enables the service template for substitution use cases.

Example 19 - Implementation of a TransactionSubsytem node type using substitution mappings

tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:

 description: Template of a database including its hosting stack.

 inputs:

 mq_service_ip:

 type: string

 description: IP address of the message queuing server to receive messages from

 receiver_port:

 type: string

 description: Port to be used for receiving messages

 # other inputs omitted for brevity

 substitution_mappings:

 node_type: example.TransactionSubsystem

 capabilities:

 message_receiver: [app, message_receiver]

 requirements:

 database_endpoint: [app, database]

 node_templates:

 app:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 39 of 267

 type: example.SomeApp

 properties:

 # properties omitted for brevity

 capabilities:

 message_receiver:

 properties:

 service_ip: { get_input: mq_service_ip }

 # other properties omitted for brevity

 requirements:

 - database:

 # details omitted for brevity

 - host: websrv

 websrv:

 type: tosca.nodes.WebServer

 properties:

 # properties omitted for brevity

 capabilities:

 data_endpoint:

 properties:

 port_name: { get_input: receiver_port }

 # other properties omitted for brevity

 requirements:

 - host: server

 server:

 type: tosca.nodes.Compute

 # details omitted for brevity

 outputs:

 receiver_ip:

 description: private IP address of the message receiver application

 value: { get_attribute: [server, private_address] }

 receiver_port:

 description: Port of the message receiver endpoint

 value: { get_attribute: [app, app_endpoint, port] }

2.12 Grouping node templates

In designing applications composed of several interdependent software components (or nodes) it is often
desirable to manage these components as a named group. This can provide an effective way of associating
policies (e.g., scaling, placement, security or other) that orchestration tools can apply to all the components of
group during deployment or during other lifecycle stages.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 40 of 267

In many realistic scenarios it is desirable to include scaling capabilities into an application to be able to react on

load variations at runtime. The example below shows the definition of a scaling web server stack, where a

variable number of servers with apache installed on them can exist, depending on the load on the servers.

Example 20 - Grouping Node Templates for possible policy application

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for a scaling web server.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 apache:

 type: tosca.nodes.WebServer.Apache

 properties:

 # Details omitted for brevity

 requirements:

 - host: server

 server:

 type: tosca.nodes.Compute

 # details omitted for brevity

 groups:

 webserver_group:

 type: tosca.groups.Root

 members: [apache, server]

The example first of all uses the concept of grouping to express which components (node templates) need to be

scaled as a unit – i.e. the compute nodes and the software on-top of each compute node. This is done by

defining the webserver_group in the groups section of the template and by adding both the apache node

template and the server node template as a member to the group.

Furthermore, a scaling policy is defined for the group to express that the group as a whole (i.e. pairs of server

node and the apache component installed on top) should scale up or down under certain conditions.

In cases where no explicit binding between software components and their hosting compute resources is defined
in a template, but only requirements are defined as has been shown in section 2.9, a provider could decide to
place software components on the same host if their hosting requirements match, or to place them onto different
hosts.

It is often desired, though, to influence placement at deployment time to make sure components get collocation or
anti-collocated. This can be expressed via grouping and policies as shown in the example below.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 41 of 267

Example 21 - Grouping nodes for anti-colocation policy application

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template hosting requirements and placement policy.

topology_template:

 inputs:

 # omitted here for brevity

 node_templates:

 wordpress_server:

 type: tosca.nodes.WebServer

 properties:

 # omitted here for brevity

 requirements:

 - host:

 # Find a Compute node that fulfills these additional filter reqs.

 node_filter:

 capabilities:

 - host:

 properties:

 - mem_size: { greater_or_equal: 512 MB }

 - disk_size: { greater_or_equal: 2 GB }

 - os:

 properties:

 - architecture: x86_64

 - type: linux

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 # omitted here for brevity

 requirements:

 - host:

 node: tosca.nodes.Compute

 node_filter:

 capabilities:

 - host:

 properties:

 - disk_size: { greater_or_equal: 1 GB }

 - os:

 properties:

 - architecture: x86_64

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 42 of 267

 - type: linux

 groups:

 my_co_location_group:

 type: tosca.groups.Root

 members: [wordpress_server, mysql]

 policies:

 - my_anti_collocation_policy:

 type: my.policies.anticolocateion

 targets: [my_co_location_group]

 # For this example, specific policy definitions are considered

 # domain specific and are not included here

In the example above, both software components wordpress_server and mysql have similar hosting

requirements. Therefore, a provider could decide to put both on the same server as long as both their respective

requirements can be fulfilled. By defining a group of the two components and attaching an anti-collocation

policy to the group it can be made sure, though, that both components are put onto different hosts at

deployment time.

2.13 Using YAML Macros to simplify templates

The YAML 1.2 specification allows for defining of aliases, which allow for authoring a block of YAML (or node)
once and indicating it is an “anchor” and then referencing it elsewhere in the same document as an “alias”.
Effectively, YAML parsers treat this as a “macro” and copy the anchor block’s code to wherever it is referenced.
Use of this feature is especially helpful when authoring TOSCA Service Templates where similar definitions and
property settings may be repeated multiple times when describing a multi-tier application.

For example, an application that has a web server and database (i.e., a two-tier application) may be described
using two Compute nodes (one to host the web server and another to host the database). The author may want

both Compute nodes to be instantiated with similar properties such as operating system, distribution, version, etc.

To accomplish this, the author would describe the reusable properties using a named anchor in the

“dsl_definitions” section of the TOSCA Service Template and reference the anchor name as an alias in any

Compute node templates where these properties may need to be reused. For example:

Example 22 - Using YAML anchors in TOSCA templates

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile that just defines a YAML macro for commonly reused Compute

 properties.

dsl_definitions:

 my_compute_node_props: &my_compute_node_props

 disk_size: 10 GB

 num_cpus: 1

http://yaml.org/spec/1.2/spec.html#id2786196

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 43 of 267

 mem_size: 2 GB

topology_template:

 node_templates:

 my_server:

 type: Compute

 capabilities:

 - host:

 properties: *my_compute_node_props

 my_database:

 type: Compute

 capabilities:

 - host:

 properties: *my_compute_node_props

2.14 Passing information as inputs to Nodes and Relationships

It is possible for type and template authors to declare input variables within an inputs block on interfaces to

nodes or relationships in order to pass along information needed by their operations (scripts). These declarations
can be scoped such as to make these variable values available to all operations on a node or relationships
interfaces or to individual operations. TOSCA orchestrators will make these values available as environment
variables within the execution environments in which the scripts associated with lifecycle operations are run.

2.14.1 Example: declaring input variables for all operations on a single interface

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 requirements:

 ...

 - database_endpoint: mysql_database

 interfaces:

 Standard:

 inputs:

 wp_db_port: { get_property: [SELF, database_endpoint, port] }

2.14.2 Example: declaring input variables for a single operation

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 requirements:

 ...

 - database_endpoint: mysql_database

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 44 of 267

 interfaces:

 Standard:

 create: wordpress_install.sh

 configure:

 implementation: wordpress_configure.sh

 inputs:

 wp_db_port: { get_property: [SELF, database_endpoint, port] }

In the case where an input variable name is defined at more than one scope within the same interfaces section

of a node or template definition, the lowest (or innermost) scoped declaration would override those declared at

higher (or more outer) levels of the definition.

2.14.3 Example: setting output variables to an attribute

node_templates:

 frontend:
 type: MyTypes.SomeNodeType

 attributes:
 url: { get_operation_output: [SELF, Standard, create, generated_url] }
 interfaces:
 Standard:
 create:
 implementation: scripts/frontend/create.sh

In this example, the Standard create operation exposes / exports an environment variable named
“generated_url” attribute which will be assigned to the WordPress node’s url attribute.

2.14.4 Example: passing output variables between operations

node_templates:

 frontend:
 type: MyTypes.SomeNodeType
 interfaces:
 Standard:
 create:
 implementation: scripts/frontend/create.sh

 configure:
 implementation: scripts/frontend/configure.sh
 inputs:
 data_dir: { get_operation_output: [SELF, Standard, create, data_dir] }

In this example, the Standard lifecycle’s create operation exposes / exports an environment variable named

“data_dir” which will be passed as an input to the Standard lifecycle’s configure operation.

2.15 Topology Template Model versus Instance Model

A TOSCA service template contains a topology template, which models the components of an application, their
relationships and dependencies (a.k.a., a topology model) that get interpreted and instantiated by TOSCA
Orchestrators. The actual node and relationship instances that are created represent a set of resources distinct
from the template itself, called a topology instance (model). The direction of this specification is to provide
access to the instances of these resources for management and operational control by external administrators.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 45 of 267

This model can also be accessed by an orchestration engine during deployment – i.e. during the actual process of
instantiating the template in an incremental fashion, That is, the orchestrator can choose the order of resources to
instantiate (i.e., establishing a partial set of node and relationship instances) and have the ability, as they are
being created, to access them in order to facilitate instantiating the remaining resources of the complete topology
template.

2.16 Using attributes implicitly reflected from properties

Most entity types in TOSCA (e.g., Node, Relationship, Requirement and Capability Types) have property
definitions, which allow template authors to set the values for as inputs when these entities are instantiated by an
orchestrator. These property values are considered to reflect the desired state of the entity by the author. Once
instantiated, the actual values for these properties on the realized (instantiated) entity are obtainable via attributes
on the entity with the same name as the corresponding property.

In other words, TOSCA orchestrators will automatically reflect (i.e., make available) any property defined on an

entity making it available as an attribute of the entity with the same name as the property.

Use of this feature is shown in the example below where a source node named my_client, of type ClientNode,

requires a connection to another node named my_server of type ServerNode. As you can see, the ServerNode

type defines a property named notification_port which defines a dedicated port number which instances of

my_client may use to post asynchronous notifications to it during runtime. In this case, the TOSCA Simple

Profile assures that the notification_port property is implicitly reflected as an attribute in the my_server node

(also with the name notification_port) when its node template is instantiated.

Example 23 - Properties reflected as attributes

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile that shows how the (notification_port) property is reflected
as an attribute and can be referenced elsewhere.

node_types:

 ServerNode:

 derived_from: SoftwareComponent

 properties:

 notification_port:

 type: integer

 capabilities:

 # omitted here for brevity

 ClientNode:

 derived_from: SoftwareComponent

 properties:

 # omitted here for brevity

 requirements:

 - server:

 capability: Endpoint

 node: ServerNode

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 46 of 267

 relationship: ConnectsTo

topology_template:

 node_templates:

 my_server:

 type: ServerNode

 properties:

 notification_port: 8000

 my_client:

 type: ClientNode

 requirements:

 - server:

 node: my_server
 relationship: my_connection

 relationship_templates:
 my_connection:
 type: ConnectsTo
 interfaces:
 Configure:
 inputs:
 targ_notify_port: { get_attribute: [TARGET, notification_port] }
 # other operation definitions omitted here for brevity

Specifically, the above example shows that the ClientNode type needs the notification_port value anytime a

node of ServerType is connected to it using the ConnectsTo relationship in order to make it available to its

Configure operations (scripts). It does this by using the get_attribute function to retrieve the

notification_port attribute from the TARGET node of the ConnectsTo relationship (which is a node of type

ServerNode) and assigning it to an environment variable named targ_notify_port.

It should be noted that the actual port value of the notification_port attribute may or may not be the value

8000 as requested on the property; therefore, any node that is dependent on knowing its actual “runtime” value

would use the get_attribute function instead of the get_property function.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 47 of 267

3 TOSCA Simple Profile definitions in YAML
Except for the examples, this section is normative and describes all of the YAML grammar, definitions and block
structure for all keys and mappings that are defined for the TOSCA Version 1.0 Simple Profile specification that
are needed to describe a TOSCA Service Template (in YAML).

3.1 TOSCA Namespace URI and alias

The following TOSCA Namespace URI alias and TOSCA Namespace Alias are reserved values which SHALL be

used when identifying the TOSCA Simple Profile version 1.0 specification.

Namespace Alias Namespace URI Specification Description

tosca_simple_yaml_1_0 http://docs.oasis-
open.org/tosca/ns/simple/yaml/1.0

The TOSCA Simple Profile v1.0 (YAML) target
namespace and namespace alias.

3.1.1 TOSCA Namespace prefix

The following TOSCA Namespace prefix is a reserved value and SHALL be used to reference the default TOSCA

Namespace URI as declared in TOSCA Service Templates.

Namespace Prefix Specification Description

tosca The reserved TOSCA Simple Profile Specification prefix that can be associated with the default
TOSCA Namespace URI

3.1.2 TOSCA Namespacing in TOSCA Service Templates

In the TOSCA Simple Profile, TOSCA Service Templates MUST always have, as the first line of YAML, the
keyword “tosca_definitions_version” with an associated TOSCA Namespace Alias value. This single line

accomplishes the following:

1. Establishes the TOSCA Simple Profile Specification version whose grammar MUST be used to parse and

interpret the contents for the remainder of the TOSCA Service Template.

2. Establishes the default TOSCA Namespace URI and Namespace Prefix for all types found in the

document that are not explicitly namespaced.

3. Automatically imports (without the use of an explicit import statement) the normative type definitions

(e.g., Node, Relationship, Capability, Artifact, etc.) that are associated with the TOSCA Simple Profile

Specification the TOSCA Namespace Alias value identifies.

4. Associates the TOSCA Namespace URI and Namespace Prefix to the automatically imported TOSCA type

definitions.

3.1.3 Rules to avoid namespace collisions

TOSCA Simple Profiles allows template authors to declare their own types and templates and assign them simple
names with no apparent namespaces. Since TOSCA Service Templates can import other service templates to
introduce new types and topologies of templates that can be used to provide concrete implementations (or
substitute) for abstract nodes. Rules are needed so that TOSCA Orchestrators know how to avoid collisions and
apply their own namespaces when import and nesting occur.

http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0
http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 48 of 267

3.1.3.1 Additional Requirements

 Since TOSCA Service Templates can import (or substitute in) other Service Templates, TOSCA

Orchestrators and tooling will encounter the “tosca_definitions_version” statement for each

imported template. In these cases, the following additional requirements apply:

o Imported type definitions with the same Namespace URI, local name and version SHALL be

equivalent.

o If different values of the “tosca_definitions_version” are encountered, their corresponding

type definitions MUST be uniquely identifiable using their corresponding Namespace URI using a

different Namespace prefix.

 Duplicate local names (i.e., within the same Service Template SHALL be considered an error. These

include, but are not limited to duplicate names found for the following definitions:

o Repositories (repositories)

o Data Types (data_types)

o Node Types (node_types)

o Relationship Types (relationship_types)

o Capability Types (capability_types)

o Artifact Types (artifact_types)

o Interface Types (interface_types)

 Duplicate Template names within a Service Template’s Topology Template SHALL be considered an

error. These include, but are not limited to duplicate names found for the following template types:

o Node Templates (node_templates)

o Relationship Templates (relationship_templates)

o Inputs (inputs)

o Outputs (outputs)

o Groups (groups)

 Duplicate names for the following keynames within Types or Templates SHALL be considered an error.

These include, but are not limited to duplicate names found for the following keynames:

o Properties (properties)

o Attributes (attributes)

o Artifacts (artifacts)

o Requirements (requirements)

o Capabilities (capabilities)

o Interfaces (interfaces)

3.2 Parameter and property types

This clause describes the primitive types that are used for declaring normative properties, parameters and
grammar elements throughout this specification.

3.2.1 Referenced YAML Types

Many of the types we use in this profile are built-in types from the YAML 1.2 specification (i.e., those identified

by the “tag:yaml.org,2002” version tag) [YAML-1.2].

The following table declares the valid YAML type URIs and aliases that SHALL be used when possible when

defining parameters or properties within TOSCA Service Templates using this specification:

http://www.yaml.org/spec/1.2/spec.html

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 49 of 267

Valid aliases Type URI

string tag:yaml.org,2002:str (default)

integer tag:yaml.org,2002:int

float tag:yaml.org,2002:float

boolean tag:yaml.org,2002:bool (i.e., a value either ‘true’ or ‘false’)

timestamp tag:yaml.org,2002:timestamp [YAML-TS-1.1]

null tag:yaml.org,2002:null

3.2.1.1 Notes

 The “string” type is the default type when not specified on a parameter or property declaration.

 While YAML supports further type aliases, such as “str” for “string”, the TOSCA Simple Profile

specification promotes the fully expressed alias name for clarity.

3.2.2 TOSCA version

TOSCA supports the concept of “reuse” of type definitions, as well as template definitions which could be

version and change over time. It is important to provide a reliable, normative means to represent a version

string which enables the comparison and management of types and templates over time. Therefore, the TOSCA

TC intends to provide a normative version type (string) for this purpose in future Working Drafts of this

specification.

Shorthand Name version

Type Qualified Name tosca:version

3.2.2.1 Grammar

TOSCA version strings have the following grammar:

<major_version>.<minor_version>[.<fix_version>[.<qualifier>[-<build_version]]]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 major_version: is a required integer value greater than or equal to 0 (zero)

 minor_version: is a required integer value greater than or equal to 0 (zero).

 fix_version: is an optional integer value greater than or equal to 0 (zero).

 qualifier: is an optional string that indicates a named, pre-release version of the associated code that

has been derived from the version of the code identified by the combination major_version,

minor_version and fix_version numbers.

 build_version: is an optional integer value greater than or equal to 0 (zero) that can be used to further

qualify different build versions of the code that has the same qualifer_string.

3.2.2.2 Version Comparison

 When comparing TOSCA versions, all component versions (i.e., major, minor and fix) are compared in

sequence from left to right.

 TOSCA versions that include the optional qualifier are considered older than those without a qualifier.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 50 of 267

 TOSCA versions with the same major, minor, and fix versions and have the same qualifier string, but

with different build versions can be compared based upon the build version.

 Qualifier strings are considered domain-specific. Therefore, this specification makes no

recommendation on how to compare TOSCA versions with the same major, minor and fix versions, but

with different qualifiers strings and simply considers them different named branches derived from the

same code.

3.2.2.3 Examples

Example of a version with

basic version strings

6.1

2.0.1

version string with optional qualifier

3.1.0.beta

version string with optional qualifier and build version

1.0.0.alpha-10

3.2.2.4 Notes

 [Maven-Version] The TOSCA version type is compatible with the Apache Maven versioning policy.

3.2.2.5 Additional Requirements

 A version value of zero (i.e., ‘0’, ‘0.0’, or ‘0.0.0’) SHALL indicate there no version provided.

 A version value of zero used with any qualifiers SHALL NOT be valid.

3.2.3 TOCSA range type

The range type can be used to define numeric ranges with a lower and upper boundary. For example, this allows

for specifying a range of ports to be opened in a firewall.

Shorthand Name range

Type Qualified Name tosca:range

3.2.3.1 Grammar

TOSCA range values have the following grammar:

[<lower_bound>, <upper_bound>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 lower_bound: is a required integer value that denotes the lower boundary of the range.

 upper_bound: is a required integer value that denotes the upper boundary of the range. This value

MUST be greater than lower_bound.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 51 of 267

3.2.3.2 Keywords

The following Keywords may be used in the TOSCA range type:

Keyword Applicable
Types

Description

UNBOUNDED scalar Used to represent an unbounded upper bounds (positive) value in a set for a
scalar type.

3.2.3.3 Examples

Example of a node template property with a range value:

numeric range between 1 and 100

a_range_property: [1, 100]

a property that has allows any number 0 or greater

num_connections: [0, UNBOUNDED]

3.2.4 TOSCA list type

The list type allows for specifying multiple values for a parameter of property. For example, if an application allows
for being configured to listen on multiple ports, a list of ports could be configured using the list data type.

Note that entries in a list for one property or parameter must be of the same type. The type (for simple entries)

or schema (for complex entries) is defined by the entry_schema attribute of the respective property definition,

attribute definitions, or input or output parameter definitions.

Shorthand Name list

Type Qualified Name tosca:list

3.2.4.1 Grammar

TOSCA lists are essentially normal YAML lists with the following grammars:

3.2.4.1.1 Square bracket notation

 [<list_entry_1>, <list_entry_2>, ...]

3.2.4.1.2 Bulleted (sequenced) list notation

- <list_entry_1>

- ...

- <list_entry_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

 <list_entry_*>: represents one entry of the list.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 52 of 267

3.2.4.2 Declaration Examples

3.2.4.2.1 List declaration using a simple type

The following example shows a list declaration with an entry schema based upon a simple integer type (which

has additional constraints):

<some_entity>:

 ...

 properties:

 listen_ports:

 type: list

 entry_schema:

 description: listen port entry (simple integer type)

 type: integer

 constraints:

 - max_length: 128

3.2.4.2.2 List declaration using a complex type

The following example shows a list declaration with an entry schema based upon a complex type:

<some_entity>:

 ...

 properties:

 products:

 type: list

 entry_schema:

 description: Product information entry (complex type) defined elsewhere

 type: ProductInfo

3.2.4.3 Definition Examples

These examples show two notation options for defining lists:

 A single-line option which is useful for only short lists with simple entries.

 A multi-line option where each list entry is on a separate line; this option is typically useful or more

readable if there is a large number of entries, or if the entries are complex.

3.2.4.3.1 Square bracket notation

listen_ports: [80, 8080]

3.2.4.3.2 Bulleted list notation

listen_ports:

 - 80

 - 8080

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 53 of 267

3.2.5 TOSCA map type

The map type allows for specifying multiple values for a parameter of property as a map. In contrast to the list
type, where each entry can only be addressed by its index in the list, entries in a map are named elements that
can be addressed by their keys.

Note that entries in a map for one property or parameter must be of the same type. The type (for simple

entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective property

definition, attribute definition, or input or output parameter definition.

Shorthand Name map

Type Qualified Name tosca:map

3.2.5.1 Grammar

TOSCA maps are normal YAML dictionaries with following grammar:

3.2.5.1.1 Single-line grammar

{ <entry_key_1>: <entry_value_1>, ..., <entry_key_n>: <entry_value_n> }

...

<entry_key_n>: <entry_value_n>

3.2.5.1.2 Multi-line grammar

<entry_key_1>: <entry_value_1>

...

<entry_key_n>: <entry_value_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

 entry_key_*: is the required key for an entry in the map

 entry_value_*: is the value of the respective entry in the map

3.2.5.2 Declaration Examples

3.2.5.2.1 Map declaration using a simple type

The following example shows a map with an entry schema definition based upon an existing string type (which

has additional constraints):

<some_entity>:

 ...

 properties:

 emails:

 type: map

 entry_schema:

 description: basic email address

 type: string

 constraints:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 54 of 267

 - max_length: 128

3.2.5.2.2 Map declaration using a complex type

The following example shows a map with an entry schema definition for contact information:

<some_entity>:

 ...

 properties:

 contacts:

 type: map

 entry_schema:

 description: simple contact information

 type: ContactInfo

3.2.5.3 Definition Examples

These examples show two notation options for defining maps:

 A single-line option which is useful for only short maps with simple entries.

 A multi-line option where each map entry is on a separate line; this option is typically useful or more

readable if there is a large number of entries, or if the entries are complex.

3.2.5.3.1 Single-line notation

notation option for shorter maps

user_name_to_id_map: { user1: 1001, user2: 1002 }

3.2.5.3.2 Multi-line notation

notation for longer maps

user_name_to_id_map:

 user1: 1001

 user2: 1002

3.2.6 TOCSA scalar-unit type

The scalar-unit type can be used to define scalar values along with a unit from the list of recognized units
provided below.

3.2.6.1 Grammar

TOSCA scalar-unit typed values have the following grammar:

<scalar> <unit>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 scalar: is a required scalar value.

 unit: is a required unit value. The unit value MUST be type-compatible with the scalar.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 55 of 267

3.2.6.2 Additional requirements

 Whitespace: any number of spaces (including zero or none) SHALL be allowed between the scalar

value and the unit value.

 It SHALL be considered an error if either the scalar or unit portion is missing on a property or attribute

declaration derived from any scalar-unit type.

 When performing constraint clause evaluation on values of the scalar-unit type, both the scalar value

portion and unit value portion SHALL be compared together (i.e., both are treated as a single value). For

example, if we have a property called storage_size. which is of type scalar-unit, a valid range constraint

would appear as follows:

o storage_size: in_range [4 GB, 20 GB]

where storage_size’s range would be evaluated using both the numeric and unit values (combined

together), in this case ‘4 GB’ and ’20 GB’.

3.2.6.3 Concrete Types

Shorthand Names scalar-unit.size, scalar-unit.size

Type Qualified Names tosca:scalar-unit.size, tosca:scalar-unit.time

The scalar-unit type grammar is abstract and has two recognized concrete types in TOSCA:

 scalar-unit.size – used to define properties that have scalar values measured in size units.

 scalar-unit.time – used to define properties that have scalar values measured in size units.

 scalar-unit.frequency – used to define properties that have scalar values measured in units per second.

These types and their allowed unit values are defined below.

3.2.6.4 scalar-unit.size

3.2.6.4.1 Recognized Units

Unit Usage Description

B size byte

kB size kilobyte (1000 bytes)

KiB size kibibytes (1024 bytes)

MB size megabyte (1000000 bytes)

MiB size mebibyte (1048576 bytes)

GB size gigabyte (1000000000 bytes)

GiB size gibibytes (1073741824 bytes)

TB size terabyte (1000000000000 bytes)

TiB size tebibyte (1099511627776 bytes)

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 56 of 267

3.2.6.4.2 Examples

Storage size in Gigabytes

properties:

 storage_size: 10 GB

3.2.6.4.3 Notes

 The unit values recognized by TOSCA Simple Profile for size-type units are based upon a subset of those defined by
GNU at http://www.gnu.org/software/parted/manual/html_node/unit.html, which is a non-normative reference
to this specification.

 TOSCA treats these unit values as case-insensitive (e.g., a value of ‘kB’, ‘KB’ or ‘kb’ would be equivalent), but it is
considered best practice to use the case of these units as prescribed by GNU.

 Some Cloud providers may not support byte-level granularity for storage size allocations. In those cases, these
values could be treated as desired sizes and actual allocations would be based upon individual provider
capabilities.

3.2.6.5 scalar-unit.time

3.2.6.5.1 Recognized Units

Unit Usage Description

d time days

h time hours

m time minutes

s time seconds

ms time milliseconds

us time microseconds

ns time nanoseconds

3.2.6.5.2 Examples

Response time in milliseconds

properties:

 respone_time: 10 ms

3.2.6.5.3 Notes

 The unit values recognized by TOSCA Simple Profile for time-type units are based upon a subset of those defined
by International System of Units whose recognized abbreviations are defined within the following reference:

o http://www.ewh.ieee.org/soc/ias/pub-dept/abbreviation.pdf
o This document is a non-normative reference to this specification and intended for publications or

grammars enabled for Latin characters which are not accessible in typical programming languages

http://www.gnu.org/software/parted/manual/html_node/unit.html
http://www.ewh.ieee.org/soc/ias/pub-dept/abbreviation.pdf

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 57 of 267

3.2.6.6 scalar-unit.frequency

3.2.6.6.1 Recognized Units

Unit Usage Description

Hz frequency Hertz, or Hz. equals one cycle per second.

kHz frequency Kilohertz, or kHz, equals to 1,000 Hertz

MHz frequency Megahertz, or MHz, equals to 1,000,000 Hertz or 1,000 kHz

GHz frequency Gigahertz, or GHz, equals to 1,000,000,000 Hertz, or 1,000,000 kHz, or 1,000 MHz.

3.2.6.6.2 Examples

Processor raw clock rate

properties:

 clock_rate: 2.4 GHz

3.2.6.6.3 Notes

 The value for Hertz (Hz) is the International Standard Unit (ISU) as described by the Bureau International

des Poids et Mesures (BIPM) in the “SI Brochure: The International System of Units (SI) [8th edition,

2006; updated in 2014]”, http://www.bipm.org/en/publications/si-brochure/

3.3 Normative values

3.3.1 Node States

As components (i.e., nodes) of TOSCA applications are deployed, instantiated and orchestrated over their
lifecycle using normative lifecycle operations (see section 5.7 for normative lifecycle definitions) it is important
define normative values for communicating the states of these components normatively between orchestration
and workflow engines and any managers of these applications.

The following table provides the list of recognized node states for TOSCA Simple Profile that would be set by the

orchestrator to describe a node instance’s state:

Node State

Value Transitional Description

initial no Node is not yet created. Node only exists as a template definition.

creating yes Node is transitioning from initial state to created state.

created no Node software has been installed.

configuring yes Node is transitioning from created state to configured state.

configured no Node has been configured prior to being started.

http://www.bipm.org/en/publications/si-brochure/

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 58 of 267

Node State

Value Transitional Description

starting yes Node is transitioning from configured state to started state.

started no Node is started.

stopping yes Node is transitioning from its current state to a configured state.

deleting yes Node is transitioning from its current state to one where it is deleted and its state is no
longer tracked by the instance model.

error no Node is in an error state.

3.3.2 Relationship States

Similar to the Node States described in the previous section, Relationships have state relative to their

(normative) lifecycle operations.

The following table provides the list of recognized relationship states for TOSCA Simple Profile that would be set

by the orchestrator to describe a node instance’s state:

Node State

Value Transitional Description

initial no Relationship is not yet created. Relationship only exists as a template definition.

3.3.2.1 Notes

 Additional states may be defined in future versions of the TOSCA Simple Profile in YAML specification.

3.3.3 Directives

There are currently no directive values defined for this version of the TOSCA Simple Profile.

3.3.4 Network Name aliases

The following are recognized values that may be used as aliases to reference types of networks within an

application model without knowing their actual name (or identifier) which may be assigned by the underlying

Cloud platform at runtime.

Alias value Description

PRIVATE An alias used to reference the first private network within a property or attribute of a Node or
Capability which would be assigned to them by the underlying platform at runtime.

A private network contains IP addresses and ports typically used to listen for incoming traffic to an
application or service from the Intranet and not accessible to the public internet.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 59 of 267

Alias value Description

PUBLIC An alias used to reference the first public network within a property or attribute of a Node or Capability
which would be assigned to them by the underlying platform at runtime.

A public network contains IP addresses and ports typically used to listen for incoming traffic to an
application or service from the Internet.

3.3.4.1 Usage

These aliases would be used in the tosca.capabilities.Endpoint Capability type (and types derived from it)

within the network_name field for template authors to use to indicate the type of network the Endpoint is

supposed to be assigned an IP address from.

3.4 TOSCA Metamodel

This section defines all modelable entities that comprise the TOSCA Version 1.0 Simple Profile specification
along with their keynames, grammar and requirements.

3.4.1 Required Keynames

The TOSCA metamodel includes complex types (e.g., Node Types, Relationship Types, Capability Types, Data
Types, etc.) each of which include their own list of reserved keynames that are sometimes marked as required.
These types may be used to derive other types. These derived types (e.g., child types) do not have to provide
required keynames as long as they have been specified in the type they have been derived from (i.e., their parent
type).

3.5 Reusable modeling definitions

3.5.1 Description definition

This optional element provides a means include single or multiline descriptions within a TOSCA Simple Profile
template as a scalar string value.

3.5.1.1 Keyname

The following keyname is used to provide a description within the TOSCA Simple Profile specification:

description

3.5.1.2 Grammar

Description definitions have the following grammar:

description: <string>

3.5.1.3 Examples

Simple descriptions are treated as a single literal that includes the entire contents of the line that immediately

follows the description key:

description: This is an example of a single line description (no folding).

The YAML “folded” style may also be used for multi-line descriptions which “folds” line breaks as space

characters.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 60 of 267

description: >

 This is an example of a multi-line description using YAML. It permits for line

 breaks for easier readability...

 if needed. However, (multiple) line breaks are folded into a single space

 character when processed into a single string value.

3.5.1.4 Notes

 Use of “folded” style is discouraged for the YAML string type apart from when used with the description

keyname.

3.5.2 Constraint clause

A constraint clause defines an operation along with one or more compatible values that can be used to define a
constraint on a property or parameter’s allowed values when it is defined in a TOSCA Service Template or one of
its entities.

3.5.2.1 Operator keynames

The following is the list of recognized operators (keynames) when defining constraint clauses:

Operator Type Value Type Description

equal scalar any Constrains a property or parameter to a value equal to (‘=’) the value declared.

greater_than scalar comparable Constrains a property or parameter to a value greater than (‘>’) the value
declared.

greater_or_equal scalar comparable Constrains a property or parameter to a value greater than or equal to (‘>=’)
the value declared.

less_than scalar comparable Constrains a property or parameter to a value less than (‘<’) the value declared.

less_or_equal scalar comparable Constrains a property or parameter to a value less than or equal to (‘<=’) the
value declared.

in_range dual scalar comparable,
range

Constrains a property or parameter to a value in range of (inclusive) the two
values declared.

Note: subclasses or templates of types that declare a property with the

in_range constraint MAY only further restrict the range specified by the
parent type.

valid_values list any Constrains a property or parameter to a value that is in the list of declared
values.

length scalar string, list, map Constrains the property or parameter to a value of a given length.

min_length scalar string, list, map Constrains the property or parameter to a value to a minimum length.

max_length scalar string, list, map Constrains the property or parameter to a value to a maximum length.

pattern regex string Constrains the property or parameter to a value that is allowed by the provided
regular expression.

Note: Future drafts of this specification will detail the use of regular
expressions and reference an appropriate standardized grammar.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 61 of 267

3.5.2.1.1 Comparable value types

In the Value Type column above, an entry of “comparable” includes integer, float, timestamp, string, version,

and scalar-unit types while an entry of “any” refers to any type allowed in the TOSCA simple profile in YAML.

3.5.2.2 Additional Requirements

 If no operator is present for a simple scalar-value on a constraint clause, it SHALL be interpreted as

being equivalent to having the “equal” operator provided; however, the “equal” operator may be used

for clarity when expressing a constraint clause.

 The “length” operator SHALL be interpreted mean “size” for set types (i.e., list, map, etc.).

 Values provided by the operands (i.e., values and scalar values) SHALL be type-compatible with their

associated operations.

 Future drafts of this specification will detail the use of regular expressions and reference an appropriate

standardized grammar.

3.5.2.3 Grammar

Constraint clauses have one of the following grammars:

Scalar grammar

<operator>: <scalar_value>

Dual scalar grammar

<operator>: [<scalar_value_1>, <scalar_value_2>]

List grammar

<operator> [<value_1>, <value_2>, ..., <value_n>]

Regular expression (regex) grammar

pattern: <regular_expression_value>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 operator: represents a required operator from the specified list shown above (see section 3.5.2.1

“Operator keynames”).

 scalar_value, scalar_value_*: represents a required scalar (or atomic quantity) that can hold only

one value at a time. This will be a value of a primitive type, such as an integer or string that is allowed
by this specification.

 value_*: represents a required value of the operator that is not limited to scalars.

 reqular_expression_value: represents a regular expression (string) value.

3.5.2.4 Examples

Constraint clauses used on parameter or property definitions:

equal

equal: 2

greater_than

greater_than: 1

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 62 of 267

greater_or_equal

greater_or_equal: 2

less_than

less_than: 5

less_or_equal

less_or_equal: 4

in_range

in_range: [1, 4]

valid_values

valid_values: [1, 2, 4]

specific length (in characters)

length: 32

min_length (in characters)

min_length: 8

max_length (in characters)

max_length: 64

3.5.3 Property Filter definition

A property filter definition defines criteria, using constraint clauses, for selection of a TOSCA entity based upon it
property values.

3.5.3.1 Grammar

Property filter definitions have one of the following grammars:

3.5.3.1.1 Short notation:

The following single-line grammar may be used when only a single constraint is needed on a property:

<property_name>: <property_constraint_clause>

3.5.3.1.2 Extended notation:

The following multi-line grammar may be used when multiple constraints are needed on a property:

<property_name>:

 - <property_constraint_clause_1>

 - ...

 - <property_constraint_clause_n>

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 63 of 267

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

 property_name: represents the name of property that would be used to select a property definition
with the same name (property_name) on a TOSCA entity (e.g., a Node Type, Node Template, Capability
Type, etc.).

 property_constraint_clause_*: represents constraint clause(s) that would be used to filter entities
based upon the named property’s value(s).

3.5.3.2 Additional Requirements

 Property constraint clauses must be type compatible with the property definitions (of the same name)
as defined on the target TOSCA entity that the clause would be applied against.

3.5.4 Node Filter definition

A node filter definition defines criteria for selection of a TOSCA Node Template based upon the template’s
property values, capabilities and capability properties.

3.5.4.1 Keynames

The following is the list of recognized keynames for a TOSCA node filter definition:

Keyname Required Type Description

properties no list of

property filter

definition

An optional sequenced list of property filters that would be used to select

(filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability

Types, etc.) based upon their property definitions’ values.

capabilities no list of capability

names or

capability type

names

An optional sequenced list of capability names or types that would be used to

select (filter) matching TOSCA entities based upon their existence.

3.5.4.2 Additional filtering on named Capability properties

Capabilities used as filters often have their own sets of properties which also can be used to construct a filter.

Keyname Required Type Description

<capability

name_or_type>

 name>:

 properties

no list of

property filter

definitions

An optional sequenced list of property filters that would be used to select

(filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability

Types, etc.) based upon their capabilities’ property definitions’ values.

3.5.4.3 Grammar

Node filter definitions have following grammar:

<filter_name>:

 properties:

 - <property_filter_def_1>

 - ...

 - <property_filter_def_n>

 capabilities:

 - <capability_name_or_type_1>:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 64 of 267

 properties:

 - <cap_1_property_filter_def_1>

 - ...

 - <cap_m_property_filter_def_n>

 - ...

 - <capability_name_or_type_n>:

 properties:

 - <cap_1_property_filter_def_1>

 - ...

 - <cap_m_property_filter_def_n>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 property_filter_def_*: represents a property filter definition that would be used to select (filter)
matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based upon their
property definitions’ values.

 capability_name_or_type_*: represents the type or name of a capability that would be used to
select (filter) matching TOSCA entities based upon their existence.

 cap_*_property_def_*: represents a property filter definition that would be used to select (filter)
matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based upon their
capabilities’ property definitions’ values.

3.5.4.4 Additional requirements

 TOSCA orchestrators SHALL search for matching capabilities listed on a target filter by assuming the

capability name is first a symbolic name and secondly it is a type name (in order to avoid namespace

collisions).

3.5.4.5 Example

The following example is a filter that would be used to select a TOSCA Compute node based upon the values of
its defined capabilities. Specifically, this filter would select Compute nodes that supported a specific range of
CPUs (i.e., num_cpus value between 1 and 4) and memory size (i.e., mem_size of 2 or greater) from its declared

“host” capability.

my_node_template:

 # other details omitted for brevity

 requirements:

 - host:

 node_filter:

 capabilities:

 # My “host” Compute node needs these properties:

 - host:

 properties:

 - num_cpus: { in_range: [1, 4] }

 - mem_size: { greater_or_equal: 512 MB }

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 65 of 267

3.5.5 Repository definition

A repository definition defines a named external repository which contains deployment and implementation
artifacts that are referenced within the TOSCA Service Template.

3.5.5.1 Keynames

The following is the list of recognized keynames for a TOSCA repository definition:

Keyname Required Type Constraints Description

description no description None The optional description for the repository.

url yes string None The required URL or network address used to access the repository.

credential no Credential None The optional Credential used to authorize access to the repository.

3.5.5.2 Grammar

Repository definitions have one the following grammars:

3.5.5.2.1 Single-line grammar (no credential):

<repository_name>: <repository_address>

3.5.5.2.2 Multi-line grammar

<repository_name>:

 description: <repository_description>

 url: <repository_address>

 credential: <authorization_credential>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 repository_name: represents the required symbolic name of the repository as a string.

 repository_description: contains an optional description of the repository.

 repository_address: represents the required URL of the repository as a string.

 authorization_credential: represents the optional credentials (e.g., user ID and password) used to

authorize access to the repository.

3.5.5.3 Example

The following represents a repository definition:

repositories:

 my_code_repo:

 description: My project’s code repository in GitHub

 url: https://github.com/my-project/

3.5.6 Artifact definition

An artifact definition defines a named, typed file that can be associated with Node Type or Node Template and
used by orchestration engine to facilitate deployment and implementation of interface operations.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 66 of 267

3.5.6.1 Keynames

The following is the list of recognized keynames for a TOSCA artifact definition when using the extended

notation:

Keyname Required Type Description

type yes string The required artifact type for the artifact definition.

file yes string The required URI string (relative or absolute) which can be used to locate the
artifact’s file.

repository no string The optional name of the repository definition which contains the location of
the external repository that contains the artifact. The artifact is expected to be

referenceable by its file URI within the repository.

description no description The optional description for the artifact definition.

deploy_path no string The file path the associated file would be deployed into within the target node’s
container.

3.5.6.2 Grammar

Artifact definitions have one of the following grammars:

3.5.6.2.1 Short notation

The following single-line grammar may be used when the artifact’s type and mime type can be inferred from the

file URI:

<artifact_name>: <artifact_file_URI>

3.5.6.2.2 Extended notation:

The following multi-line grammar may be used when the artifact’s definition’s type and mime type need to be

explicitly declared:

<artifact_name>:

 description: <artifact_description>

 type: <artifact_type_name>

 file: <artifact_file_URI>

 repository: <artifact_repository_name>

 deploy_path: <file_deployment_path>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

 artifact_name: represents the required symbolic name of the artifact as a string.

 artifact_description: represents the optional description for the artifact.

 artifact_type_name: represents the required artifact type the artifact definition is based upon.

 artifact_file_URI: represents the required URI string (relative or absolute) which can

be used to locate the artifact’s file.

 artifact_repository_name: represents the optional name of the repository definition to use to

retrieve the associated artifact (file) from.

 file_deployement_path: represents the optional path the artifact_file_URI would be copied into

within the target node’s container.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 67 of 267

3.5.6.3 Example

The following represents an artifact definition:

my_file_artifact: ../my_apps_files/operation_artifact.txt

3.5.7 Import definition

An import definition is used within a TOSCA Service Template to locate and uniquely name another TOSCA
Service Template file which has type and template definitions to be imported (included) and referenced within
another Service Template.

3.5.7.1 Keynames

The following is the list of recognized keynames for a TOSCA import definition:

Keyname Required Type Constraints Description

file yes string None The required symbolic name for the imported file.

repository no string None The optional symbolic name of the repository definition where the
imported file can be found as a string.

namespace_uri no string None The optional namespace URI to that will be applied to type
definitions found within the imported file as a string.

namespace_prefix no string None The optional namespace prefix (alias) that will be used to indicate

the namespace_uri when forming a qualified name (i.e., qname)
when referencing type definitions from the imported file.

3.5.7.2 Grammar

Import definitions have one the following grammars:

3.5.7.2.1 Single-line grammar:

<import_name>: <file_URI>

3.5.7.2.2 Multi-line grammar

<import_name>:

 file: <file_URI>

 repository: <repository_name>

 namespace_uri: <definition_namespace_uri>

 namespace_prefix: <definition_namespace_prefix>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 import_name: represents the required symbolic name for the imported file as a string.

 file_uri: contains the required name (i.e., URI) of the file to be imported as a string.

 repository_name: represents the optional symbolic name of the repository definition where the

imported file can be found as a string.

 namespace_uri: represents the optional namespace URI to that will be applied to type definitions found

within the imported file as a string.

 namespace_prefix: represents the optional namespace prefix (alias) that will be used to indicate the

namespace_uri when forming a qualified name (i.e., qname) when referencing type definitions from the

imported file as a string.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 68 of 267

3.5.7.3 Example

The following represents how import definitions would be used for the imports keyname within a TOSCA Service

Template:

imports:

 - some_definition_file: path1/path2/some_defs.yaml

 - another_definition_file:

 file: path1/path2/file2.yaml

 repository: my_service_catalog

 namespace_uri: http://mycompany.com/tosca/1.0/platform

 namespace_prefix: mycompany

3.5.8 Property definition

A property definition defines a named, typed value and related data that can be associated with an entity defined
in this specification (e.g., Node Types, Relationship Types, Capability Types, etc.). Properties are used by
template authors to provide input values to TOSCA entities which indicate their “desired state” when they are
instantiated. The value of a property can be retrieved using the get_property function within TOSCA Service

Templates.

3.5.8.1.1 Attribute and Property reflection

The actual state of the entity, at any point in its lifecycle once instantiated, is reflected by Attribute definitions.
TOSCA orchestrators automatically create an attribute for every declared property (with the same symbolic name)
to allow introspection of both the desired state (property) and actual state (attribute).

3.5.8.2 Keynames

The following is the list of recognized keynames for a TOSCA property definition:

Keyname Required Type Constraints Description

type yes string None The required data type for the property.

description no description None The optional description for the property.

required no

boolean default: true An optional key that declares a property as required

(true) or not (false).

default no <any> None An optional key that may provide a value to be used as a
default if not provided by another means.

status no

string default: supported The optional status of the property relative to the
specification or implementation. See table below for valid
values.

constraints no list of
constraint clauses

None The optional list of sequenced constraint clauses for the
property.

entry_schema no string None The optional key that is used to declare the name of the
Datatype definition for entries of set types such as the
TOSCA list or map.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 69 of 267

3.5.8.3 Status values

The following property status values are supported:

Value Description

supported Indicates the property is supported. This is the default value for all property definitions.

unsupported Indicates the property is not supported.

experimental Indicates the property is experimental and has no official standing.

deprecated Indicates the property has been deprecated by a new specification version.

3.5.8.4 Grammar

Named property definitions have the following grammar:

<property_name>:

 type: <property_type>

 description: <property_description>

 required: <property_required>

 default: <default_value>

 status: <status_value>

 constraints:

 - <property_constraints>

 entry_schema:

 description: <entry_description>

 type: <entry_type>

 constraints:

 - <entry_constraints>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 property_name: represents the required symbolic name of the property as a string.

 property_description: represents the optional description of the property.

 property_type: represents the required data type of the property.

 property_required: represents an optional boolean value (true or false) indicating whether or not the

property is required. If this keyname is not present on a property definition, then the property SHALL be
considered required (i.e., true) by default.

 default_value: contains a type-compatible value that may be used as a default if not provided by

another means.

 status_value: a string that contains a keyword that indicates the status of the property relative to the

specification or implementation.

 property_constraints: represents the optional sequenced list of one or more constraint clauses on

the property definition.

 entry_description: represents the optional description of the entry schema.

 entry_type: represents the required type name for entries in a list or map property type.

 entry_constraints: represents the optional sequenced list of one or more constraint clauses on

entries in a list or map property type.

3.5.8.5 Additional Requirements

 Implementations of the TOSCA Simple Profile SHALL automatically reflect (i.e., make available) any

property defined on an entity as an attribute of the entity with the same name as the property.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 70 of 267

 A property SHALL be considered required by default (i.e., as if the required keyname on the definition

is set to true) unless the definition’s required keyname is explicitly set to false.

 The value provided on a property definition’s default keyname SHALL be type compatible with the type

declared on the definition’s type keyname.

 Constraints of a property definition SHALL be type-compatible with the type defined for that definition.

3.5.8.6 Notes

 This element directly maps to the PropertiesDefinition element defined as part of the schema for

most type and entities defined in the TOSCA v1.0 specification.

 In the TOSCA v1.0 specification constraints are expressed in the XML Schema definitions of Node Type

properties referenced in the PropertiesDefinition element of NodeType definitions.

3.5.8.7 Example

The following represents an example of a property definition with constraints:

properties:

 num_cpus:

 type: integer

 description: Number of CPUs requested for a software node instance.

 default: 1

 required: true

 constraints:

 - valid_values: [1, 2, 4, 8]

3.5.9 Property assignment

This section defines the grammar for assigning values to named properties within TOSCA Node and Relationship
templates that are defined in their corresponding named types.

3.5.9.1 Keynames

The TOSCA property assignment has no keynames.

3.5.9.2 Grammar

Property assignments have the following grammar:

3.5.9.2.1 Short notation:

The following single-line grammar may be used when a simple value assignment is needed:

<property_name>: <property_value> | { <property_value_expression> }

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

 property_name: represents the name of a property that would be used to select a property definition
with the same name within on a TOSCA entity (e.g., Node Template, Relationship Template, etc.,)
which is declared in its declared type (e.g., a Node Type, Node Template, Capability Type, etc.).

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 71 of 267

 property_value, property_value_expression: represent the type-compatible value to assign to
the named property. Property values may be provided as the result from the evaluation of an
expression or a function.

3.5.10 Attribute definition

An attribute definition defines a named, typed value that can be associated with an entity defined in this
specification (e.g., a Node, Relationship or Capability Type). Specifically, it is used to expose the “actual state” of
some property of a TOSCA entity after it has been deployed and instantiated (as set by the TOSCA orchestrator).
Attribute values can be retrieved via the get_attribute function from the instance model and used as values to

other entities within TOSCA Service Templates.

3.5.10.1 Attribute and Property reflection

TOSCA orchestrators automatically create Attribute definitions for any Property definitions declared on the same
TOSCA entity (e.g., nodes, node capabilities and relationships) in order to make accessible the actual (i.e., the
current state) value from the running instance of the entity.

3.5.10.2 Keynames

The following is the list of recognized keynames for a TOSCA attribute definition:

Keyname Required Type Constraints Description

type yes string None The required data type for the attribute.

description no description None The optional description for the attribute.

default no <any> None An optional key that may provide a value to be used as a default if not
provided by another means.

This value SHALL be type compatible with the type declared by the

property definition’s type keyname.

status no string default:
supported

The optional status of the attribute relative to the specification or
implementation. See supported status values defined under the
Property definition section.

entry_schema no string None The optional key that is used to declare the name of the Datatype
definition for entries of set types such as the TOSCA list or map.

3.5.10.3 Grammar

Attribute definitions have the following grammar:

attributes:

 <attribute_name>:

 type: <attribute_type>

 description: <attribute_description>

 default: <default_value>

 status: <status_value>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 attribute_name: represents the required symbolic name of the attribute as a string.

 attribute_type: represents the required data type of the attribute.

 attribute_description: represents the optional description of the attribute.

 default_value: contains a type-compatible value that may be used as a default if not provided by

another means.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 72 of 267

 status_value: contains a value indicating the attribute’s status relative to the specification version (e.g.,

supported, deprecated, etc.). Supported status values for this keyname are defined under Property
definition.

3.5.10.4 Additional Requirements

 In addition to any explicitly defined attributes on a TOSCA entity (e.g., Node Type, RelationshipType,

etc.), implementations of the TOSCA Simple Profile MUST automatically reflect (i.e., make available) any

property defined on an entity as an attribute of the entity with the same name as the property.

 Values for the default keyname MUST be derived or calculated from other attribute or operation output

values (that reflect the actual state of the instance of the corresponding resource) and not hard-coded

or derived from a property settings or inputs (i.e., desired state).

3.5.10.5 Notes

 Attribute definitions are very similar to Property definitions; however, properties of entities reflect an

input that carries the template author’s requested or desired value (i.e., desired state) which the

orchestrator (attempts to) use when instantiating the entity whereas attributes reflect the actual value

(i.e., actual state) that provides the actual instantiated value.

o For example, a property can be used to request the IP address of a node using a property

(setting); however, the actual IP address after the node is instantiated may by different and

made available by an attribute.

3.5.10.6 Example

The following represents a required attribute definition:

actual_cpus:

 type: integer

 description: Actual number of CPUs allocated to the node instance.

3.5.11 Attribute assignment

This section defines the grammar for assigning values to named attributes within TOSCA Node and Relationship
templates which are defined in their corresponding named types.

3.5.11.1 Keynames

The TOSCA attribute assignment has no keynames.

3.5.11.2 Grammar

Attribute assignments have the following grammar:

3.5.11.2.1 Short notation:

The following single-line grammar may be used when a simple value assignment is needed:

<attribute_name>: <attribute_value> | { <attribute_value_expression> }

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 73 of 267

3.5.11.2.2 Extended notation:

The following multi-line grammar may be used when a value assignment requires keys in addition to a simple

value assignment:

<attribute_name>:

 description: <attribute_description>

 value: <attribute_value> | { <attribute_value_expression> }

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

 attribute_name: represents the name of an attribute that would be used to select an attribute
definition with the same name within on a TOSCA entity (e.g., Node Template, Relationship Template,
etc.) which is declared (or reflected from a Property definition) in its declared type (e.g., a Node Type,
Node Template, Capability Type, etc.).

 attribute_value, attribute_value_expresssion: represent the type-compatible value to assign
to the named attribute. Attribute values may be provided as the result from the evaluation of an
expression or a function.

 attribute_description: represents the optional description of the attribute.

3.5.11.3 Additional requirements

 Attribute values MAY be provided by the underlying implementation at runtime when requested by the

get_attribute function or it MAY be provided through the evaluation of expressions and/or functions

that derive the values from other TOSCA attributes (also at runtime).

3.5.12 Parameter definition

A parameter definition is essentially a TOSCA property definition; however, it also allows a value to be assigned
to it (as for a TOSCA property assignment). In addition, in the case of output parameters, it can optionally inherit
the data type of the value assigned to it rather than have an explicit data type defined for it.

3.5.12.1 Keynames

The TOSCA parameter definition has all the keynames of a TOSCA Property definition, but in addition includes

the following additional or changed keynames:

Keyname Required Type Constraints Description

type no string None The required data type for the parameter.

Note: This keyname is required for a TOSCA Property
definition, but is not for a TOSCA Parameter definition.

value no <any> N/A The type-compatible value to assign to the named
parameter. Parameter values may be provided as the
result from the evaluation of an expression or a function.

3.5.12.2 Grammar

Named parameter definitions have the following grammar:

<parameter_name>:

 type: <parameter_type>

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 74 of 267

 description: <parameter_description>

 value: <parameter_value> | { <parameter_value_expression> }

 required: <parameter_required>

 default: <parameter_default_value>

 status: <status_value>

 constraints:

 - <parameter_constraints>

 entry_schema:

 description: <entry_description>

 type: <entry_type>

 constraints:

 - <entry_constraints>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 parameter_name: represents the required symbolic name of the parameter as a string.

 parameter_description: represents the optional description of the parameter.

 parameter_type: represents the optional data type of the parameter. Note, this keyname is required for

a TOSCA Property definition, but is not for a TOSCA Parameter definition.

 parameter_value, parameter_value_expresssion: represent the type-compatible value to assign
to the named parameter. Parameter values may be provided as the result from the evaluation of an
expression or a function.

 parameter_required: represents an optional boolean value (true or false) indicating whether or not the

parameter is required. If this keyname is not present on a parameter definition, then the property SHALL
be considered required (i.e., true) by default.

 default_value: contains a type-compatible value that may be used as a default if not provided by

another means.

 status_value: a string that contains a keyword that indicates the status of the parameter relative to the

specification or implementation.

 parameter_constraints: represents the optional sequenced list of one or more constraint clauses on

the parameter definition.

 entry_description: represents the optional description of the entry schema.

 entry_type: represents the required type name for entries in a list or map parameter type.

 entry_constraints: represents the optional sequenced list of one or more constraint clauses on

entries in a list or map parameter type.

3.5.12.3 Additional Requirements

 A parameter SHALL be considered required by default (i.e., as if the required keyname on the definition

is set to true) unless the definition’s required keyname is explicitly set to false.

 The value provided on a parameter definition’s default keyname SHALL be type compatible with the

type declared on the definition’s type keyname.

 Constraints of a parameter definition SHALL be type-compatible with the type defined for that definition.

3.5.12.4 Example

The following represents an example of an input parameter definition with constraints:

inputs:

 cpus:

 type: integer

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 75 of 267

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

The following represents an example of an (untyped) output parameter definition:

outputs:

 server_ip:

 description: The private IP address of the provisioned server.

 value: { get_attribute: [my_server, private_address] }

3.5.13 Operation definition

An operation definition defines a named function or procedure that can be bound to an implementation artifact
(e.g., a script).

3.5.13.1 Keynames

The following is the list of recognized keynames for a TOSCA operation definition:

Keyname Required Type Description

description no description The optional description string for the associated named operation.

implementation no string The optional implementation artifact name (e.g., a script file name within a
TOSCA CSAR file).

inputs no list of
property definitions

The optional list of input properties definitions (i.e., parameter definitions)
for operation definitions that are within TOSCA Node or Relationship Type
definitions. This includes when operation definitions are included as part of a
Requirement definition in a Node Type.

no list of
property assignments

The optional list of input property assignments (i.e., parameters
assignments) for operation definitions that are within TOSCA Node or
Relationship Template definitions. This includes when operation definitions
are included as part of a Requirement assignment in a Node Template.

The following is the list of recognized keynames to be used with the implementation keyname within a TOSCA

operation definition:

Keyname Required Type Description

primary no string The optional implementation artifact name (i.e., the primary script file name
within a TOSCA CSAR file).

dependencies no list of
string

The optional ordered list of one or more dependent or secondary
implementation artifact name which are referenced by the primary
implementation artifact (e.g., a library the script installs or a secondary
script).

3.5.13.2 Grammar

Operation definitions have the following grammars:

3.5.13.2.1 Short notation

The following single-line grammar may be used when only an operation’s implementation artifact is needed:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 76 of 267

<operation_name>: <implementation_artifact_name>

3.5.13.2.2 Extended notation for use in Type definitions

The following multi-line grammar may be used in Node or Relationship Type definitions when additional

information about the operation is needed:

<operation_name>:

 description: <operation_description>

 implementation: <implementation_artifact_name>

 inputs:

 <property_definitions>

3.5.13.2.3 Extended notation for use in Template definitions

The following multi-line grammar may be used in Node or Relationship Template definitions when there are

multiple artifacts that may be needed for the operation to be implemented:

<operation_name>:

 description: <operation_description>

 implementation:

 primary: <implementation_artifact_name>

 dependencies:

 - <list_of_dependent_artifact_names>

 inputs:

 <property_assignments>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

 operation_name: represents the required symbolic name of the operation as a string.

 operation_description: represents the optional description string for the corresponding

operation_name.

 implementation_artifact_name: represents the optional name (string) of an implementation artifact

definition (defined elsewhere), or the direct name of an implementation artifact’s relative filename (e.g.,

a service template-relative, path-inclusive filename or absolute file location using a URL).

 property_definitions: represents the optional list of property definitions which the TOSCA

orchestrator would make available (i.e., or pass) to the corresponding implementation artifact during its

execution.

 property_assignments: represents the optional list of property assignments for passing parameters to

Node or Relationship Template operations providing values for properties defined in their respective

type definitions.

 list_of_dependent_artifact_names: represents the optional ordered list of one or more dependent

or secondary implementation artifact names (as strings) which are referenced by the primary

implementation artifact. TOSCA orchestrators will copy these files to the same location as the primary

artifact on the target node so as to make them accessible to the primary implementation artifact when

it is executed.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 77 of 267

3.5.13.3 Additional requirements

 The default sub-classing behavior for implementations of operations SHALL be override. That is,

implementation artifacts assigned in subclasses override any defined in its parent class.

 Template authors MAY provide property assignments on operation inputs on templates that do not

necessarily have a property definition defined in its corresponding type.

 Implementation artifact file names (e.g., script filenames) may include file directory path names that are

relative to the TOSCA service template file itself when packaged within a TOSCA Cloud Service ARchive

(CSAR) file.

3.5.13.4 Examples

3.5.13.4.1 Single-line implementation example

interfaces:

 Standard:

 start: scripts/start_server.sh

3.5.13.4.2 Multi-line implementation example

interfaces:

 Configure:

 pre_configure_source:

 implementation:

 primary: scripts/pre_configure_source.sh

 dependencies:

 - scripts/setup.sh

 - binaries/library.rpm

 - scripts/register.py

3.5.14 Interface definition

An interface definition defines a named interface that can be associated with a Node or Relationship Type

3.5.14.1 Keynames

The following is the list of recognized keynames for a TOSCA interface definition:

Keyname Required Type Description

inputs no list of
property definitions

The optional list of input property definitions available to all defined
operations for interface definitions that are within TOSCA Node or
Relationship Type definitions. This includes when interface definitions are
included as part of a Requirement definition in a Node Type.

no list of
property assignments

The optional list of input property assignments (i.e., parameters
assignments) for interface definitions that are within TOSCA Node or
Relationship Template definitions. This includes when interface definitions
are referenced as part of a Requirement assignment in a Node Template.

3.5.14.2 Grammar

Interface definitions have the following grammar:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 78 of 267

3.5.14.2.1 Extended notation for use in Type definitions

The following multi-line grammar may be used in Node or Relationship Type definitions:

<interface_definition_name>:

 type: <interface_type_name>

 inputs:

 <property_definitions>

 <operation_definitions>

3.5.14.2.2 Extended notation for use in Template definitions

The following multi-line grammar may be used in Node or Relationship Type definitions:

<interface_definition_name>:

 inputs:

 <property_assignments>

 <operation_definitions>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

 interface_definition_name: represents the required symbolic name of the interface as a string.

 interface_type_name: represents the required name of the Interface Type for the

interface definition.

 property_definitions: represents the optional list of property definitions (i.e., parameters) which the

TOSCA orchestrator would make available (i.e., or pass) to all defined operations.

- This means these properties and their values would be accessible to the implementation artifacts

(e.g., scripts) associated to each operation during their execution.

 property_assignments: represents the optional list of property assignments for passing parameters to

Node or Relationship Template operations providing values for properties defined in their respective

type definitions.

 operation_definitions: represents the required name of one or more operation definitions.

3.6 Type-specific definitions

3.6.1 Capability definition

A capability definition defines a named, typed set of data that can be associated with Node Type or Node
Template to describe a transparent capability or feature of the software component the node describes.

3.6.1.1 Keynames

The following is the list of recognized keynames for a TOSCA capability definition:

Keyname Required Type Constraints Description

type yes string N/A The required name of the Capability Type the capability
definition is based upon.

description no description N/A The optional description of the Capability definition.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 79 of 267

Keyname Required Type Constraints Description

properties no list of
property
definitions

N/A An optional list of property definitions for the Capability
definition.

attributes no list of
attribute
definitions

N/A An optional list of attribute definitions for the Capability
definition.

valid_source_types no string[] N/A An optional list of one or more valid names of Node Types that
are supported as valid sources of any relationship established to
the declared Capability Type.

occurrences no range of
integer

implied default
of
[1,UNBOUNDED]

The optional minimum and maximum occurrences for the
capability. By default, an exported Capability should allow at
least one relationship to be formed with it with a maximum of
UNBOUNDED relationships.

Note: the keyword UNBOUNDED is also supported to represent
any positive integer.

3.6.1.2 Grammar

Capability definitions have one of the following grammars:

3.6.1.2.1 Short notation

The following grammar may be used when only a list of capability definition names needs to be declared:

<capability_definition_name>: <capability_type>

3.6.1.2.2 Extended notation

The following multi-line grammar may be used when additional information on the capability definition is

needed:

<capability_definition_name>:

 type: <capability_type>

 description: <capability_description>

 properties:

 <property_definitions>

 attributes:

 <attribute_definitions>

 valid_source_types: [<node type_names>]

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

 capability_definition_name: represents the symbolic name of the capability as a string.

 capability_type: represents the required name of a capability type the capability definition is based

upon.

 capability_description: represents the optional description of the capability definition.

 property_definitions: represents the optional list of property definitions for the capability

definition.

 attribute_definitions: represents the optional list of attribute definitions for the capability

definition.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 80 of 267

 node_type_names: represents the optional list of one or more names of Node Types that the Capability
definition supports as valid sources for a successful relationship to be established to itself.

3.6.1.3 Examples

The following examples show capability definitions in both simple and full forms:

3.6.1.3.1 Simple notation example

Simple notation, no properties defined or augmented

some_capability: mytypes.mycapabilities.MyCapabilityTypeName

3.6.1.3.2 Full notation example

Full notation, augmenting properties of the referenced capability type

some_capability:

 type: mytypes.mycapabilities.MyCapabilityTypeName

 properties:

 limit:

 type: integer

 default: 100

3.6.1.4 Additional requirements

 Any Node Type (names) provides as values for the valid_source_types keyname SHALL be type-

compatible (i.e., derived from the same parent Node Type) with any Node Types defined using the same

keyname in the parent Capability Type.

 Capability symbolic names SHALL be unique; it is an error if a capability name is found to occur more

than once.

3.6.1.5 Notes

 The Capability Type, in this example MyCapabilityTypeName, would be defined elsewhere and

have an integer property named limit.

 This definition directly maps to the CapabilitiesDefinition of the Node Type entity as defined in the

TOSCA v1.0 specification.

3.6.2 Requirement definition

The Requirement definition describes a named requirement (dependencies) of a TOSCA Node Type or Node
template which needs to be fulfilled by a matching Capability definition declared by another TOSCA modelable
entity. The requirement definition may itself include the specific name of the fulfilling entity (explicitly) or provide
an abstract type, along with additional filtering characteristics, that a TOSCA orchestrator can use to fulfill the
capability at runtime (implicitly).

3.6.2.1 Keynames

The following is the list of recognized keynames for a TOSCA requirement definition:

Keyname Required Type Constraints Description

capability yes string N/A The required reserved keyname used that can be used to provide the
name of a valid Capability Type that can fulfill the requirement.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 81 of 267

Keyname Required Type Constraints Description

node no string N/A The optional reserved keyname used to provide the name of a valid
Node Type that contains the capability definition that can be used to
fulfill the requirement.

relationship no string N/A The optional reserved keyname used to provide the name of a valid
Relationship Type to construct when fulfilling the requirement.

occurrences no range of
integer

implied
default of
[1,1]

The optional minimum and maximum occurrences for the requirement.

Note: the keyword UNBOUNDED is also supported to represent any
positive integer.

3.6.2.1.1 Additional Keynames for multi-line relationship grammar

The Requirement definition contains the Relationship Type information needed by TOSCA Orchestrators to

construct relationships to other TOSCA nodes with matching capabilities; however, it is sometimes recognized

that additional properties may need to be passed to the relationship (perhaps for configuration). In these cases,

additional grammar is provided so that the Node Type may declare additional Property definitions to be used as

inputs to the Relationship Type’s declared interfaces (or specific operations of those interfaces).

Keyname Required Type Constraints Description

type yes string N/A The optional reserved keyname used to provide the name of the

Relationship Type for the requirement definition’s relationship

keyname.

interfaces no list of
interface
definitions

N/A The optional reserved keyname used to reference declared (named)
interface definitions of the corresponding Relationship Type in order to
declare additional Property definitions for these interfaces or
operations of these interfaces.

3.6.2.2 Grammar

Requirement definitions have one of the following grammars:

3.6.2.2.1 Simple grammar (Capability Type only)

<requirement_name>: <capability_type_name>

3.6.2.2.2 Extended grammar (with Node and Relationship Types)

<requirement_name>:

 capability: <capability_type_name>

 node: <node_type_name>

 relationship: <relationship_type_name>

 occurrences: [<min_occurrences>, <max_occurrences>]

3.6.2.2.3 Extended grammar for declaring Property Definitions on the relationship’s
Interfaces

The following additional multi-line grammar is provided for the relationship keyname in order to declare new

Property definitions for inputs of known Interface definitions of the declared Relationship Type.

<requirement_name>:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 82 of 267

 # Other keynames omitted for brevity

 relationship:

 type: <relationship_type_name>

 interfaces:

 <interface_definitions>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

 requirement_name: represents the required symbolic name of the requirement definition as a string.

 capability_type_name: represents the required name of a Capability type that can be used to fulfill

the requirement.

 node_type_name: represents the optional name of a TOSCA Node Type that contains the Capability

Type definition the requirement can be fulfilled by.

 relationship_type_name: represents the optional name of a Relationship Type to be used to construct

a relationship between this requirement definition (i.e., in the source node) to a matching capability

definition (in a target node).

 min_occurrences, max_occurrences: represents the optional minimum and maximum occurrences of

the requirement (i.e., its cardinality).

 interface_definitions: represents one or more already declared interface definitions in the

Relationship Type (as declared on the type keyname) allowing for the declaration of new Property

definition for these interfaces or for specific Operation definitions of these interfaces.

3.6.2.3 Additional Requirements

 Requirement symbolic names SHALL be unique; it is an error if a requirement name is found to occur

more than once.

 If the occurrences keyname is not present, then the occurrence of the requirement SHALL be one and

only one; that is a default declaration as follows would be assumed:

o occurrences: [1,1]

3.6.2.4 Notes

 This element directly maps to the RequirementsDefinition of the Node Type entity as defined in the

TOSCA v1.0 specification.

 The requirement symbolic name is used for identification of the requirement definition only and not

relied upon for establishing any relationships in the topology.

3.6.2.5 Requirement Type definition is a tuple

A requirement definition allows type designers to govern which types are allowed (valid) for fulfillment using three
levels of specificity with only the Capability Type being required.

1. Node Type (optional)

2. Relationship Type (optional)

3. Capability Type (required)

The first level allows selection, as shown in both the simple or complex grammar, simply providing the node’s

type using the node keyname. The second level allows specification of the relationship type to use when

connecting the requirement to the capability using the relationship keyname. Finally, the specific named

capability type on the target node is provided using the capability keyname.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 83 of 267

3.6.2.5.1 Property filter

In addition to the node, relationship and capability types, a filter, with the keyname node_filter, may be

provided to constrain the allowed set of potential target nodes based upon their properties and their capabilities’
properties. This allows TOSCA orchestrators to help find the “best fit” when selecting among multiple potential
target nodes for the expressed requirements.

3.6.3 Artifact Type

An Artifact Type is a reusable entity that defines the type of one or more files that are used to define
implementation or deployment artifacts that are referenced by nodes or relationships on their operations.

3.6.3.1 Keynames

The following is the list of recognized keynames for a TOSCA Artifact Type definition:

Keyname Required Type Description

derived_from no string An optional parent Artifact Type name the Artifact Type derives from.

version no version An optional version for the Artifact Type definition.

description no description An optional description for the Artifact Type.

mime_type no string The required mime type property for the Artifact Type.

file_ext no string[] The required file extension property for the Artifact Type.

properties no list of
property definitions

An optional list of property definitions for the Artifact Type.

3.6.3.2 Grammar

Artifact Types have following grammar:

<artifact_type_name>:

 derived_from: <parent_artifact_type_name>

 version: <version_number>

 description: <artifact_description>

 mime_type: <mime_type_string>

 file_ext: [<file_extensions>]

 properties:

 <property_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 artifact_type_name: represents the name of the Artifact Type being declared as a string.

 parent_artifact_type_name: represents the name of the Artifact Type this Artifact Type definition

derives from (i.e., its “parent” type).

 version_number: represents the optional TOSCA version number for the Artifact Type.

 artifact_description: represents the optional description string for the Artifact Type.

 mime_type_string: represents the optional Multipurpose Internet Mail Extensions (MIME) standard

string value that describes the file contents for this type of Artifact Type as a string.

 file_extensions: represents the optional list of one or more recognized file extensions for this type of

artifact type as strings.

 property_definitions: represents the optional list of property definitions for the artifact type.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 84 of 267

3.6.3.3 Examples

my_artifact_type:

 description: Java Archive artifact type

 derived_from: tosca.artifact.Root

 mime_type: application/java-archive

 file_ext: [jar]

3.6.4 Interface Type

An Interface Type is a reusable entity that describes a set of operations that can be used to interact with or

manage a node or relationship in a TOSCA topology.

3.6.4.1 Keynames

The following is the list of recognized keynames for a TOSCA Interface Type definition:

Keyname Required Type Description

derived_from no string An optional parent Interface Type name this new Interface Type derives
from.

version no version An optional version for the Interface Type definition.

description no description An optional description for the Interface Type.

inputs no list of
property definitions

The optional list of input parameter definitions.

3.6.4.2 Grammar

Interface Types have following grammar:

<interface_type_name>:

 derived_from: <parent_interface_type_name>

 version: <version_number>

 description: <interface_description>

 inputs:

 <property_definitions>

 <operation_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 interface_type_name: represents the required name of the interface as a string.

 parent_interface_type_name: represents the name of the Interface Type this Interface Type

definition derives from (i.e., its “parent” type).

 version_number: represents the optional TOSCA version number for the Interface Type.

 interface_description: represents the optional description string for the Interface Type.

 property_definitions: represents the optional list of property definitions (i.e., parameters) which the

TOSCA orchestrator would make available (i.e., or pass) to all implementation artifacts for operations

declared on the interface during their execution.

 operation_definitions: represents the required list of one or more operation definitions.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 85 of 267

3.6.4.3 Example

The following example shows a custom interface used to define multiple configure operations.

mycompany.mytypes.myinterfaces.MyConfigure:

 derived_from: tosca.interfaces.Root

 description: My custom configure Interface Type

 inputs:

 mode:

 type: string

 pre_configure_service:

 description: pre-configure operation for my service

 post_configure_service:

 description: post-configure operation for my service

3.6.4.4 Additional Requirements

 Interface Types MUST NOT include any implementations for defined operations; that is, the

implementation keyname is invalid.

 The inputs keyname is reserved and SHALL NOT be used for an operation name.

3.6.4.5 Notes

 The TOSCA Simple Profile specification does not yet provide a means to derive or extend an Interface

Type from another Interface Type.

3.6.5 Data Type

A Data Type definition defines the schema for new named datatypes in TOSCA.

3.6.5.1 Keynames

The following is the list of recognized keynames for a TOSCA Data Type definition:

Keyname Required Type Description

derived_from no string The optional key used when a datatype is derived from an existing TOSCA

Data Type.

version no version An optional version for the Data Type definition.

description no description The optional description for the Data Type.

constraints no list of

constraint clauses

The optional list of sequenced constraint clauses for the Data Type.

properties no list of

property definitions

The optional list property definitions that comprise the schema for a

complex Data Type in TOSCA.

3.6.5.2 Grammar

Data Types have the following grammar:

<data_type_name>:

file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/TOSCA-Simple-Profile-YAML-v1.0-wd04-Rev04.docx%23TYPE_YAML_STRING

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 86 of 267

 derived_from: <existing_type_name>

 version: <version_number>

 description: <datatype_description>

 constraints:

 - <type_constraints>

 properties:

 <property_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 data_type_name: represents the required symbolic name of the Data Type as a string.

 version_number: represents the optional TOSCA version number for the Data Type.
 datatype_description: represents the optional description for the Data Type.

 existing_type_name: represents the optional name of a valid TOSCA type this new Data Type would
derive from.

 type_constraints: represents the optional sequenced list of one or more type-compatible constraint

clauses that restrict the Data Type.

 property_definitions: represents the optional list of one or more property definitions that provide
the schema for the Data Type.

3.6.5.3 Additional Requirements

 A valid datatype definition MUST have either a valid derived_from declaration or at least one valid
property definition.

 Any constraint clauses SHALL be type-compatible with the type declared by the derived_from
keyname.

 If a properties keyname is provided, it SHALL contain one or more valid property definitions.

3.6.5.4 Examples

The following example represents a Data Type definition based upon an existing string type:

3.6.5.4.1 Defining a complex datatype

define a new complex datatype

mytypes.phonenumber:

 description: my phone number datatype

 properties:

 countrycode:

 type: integer

 areacode:

 type: integer

 number:

 type: integer

3.6.5.4.2 Defining a datatype derived from an existing datatype

define a new datatype that derives from existing type and extends it

mytypes.phonenumber.extended:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 87 of 267

 derived_from: mytypes.phonenumber

 description: custom phone number type that extends the basic phonenumber type

 properties:

 phone_description:

 type: string

 constraints:

 - max_length: 128

3.6.6 Capability Type

A Capability Type is a reusable entity that describes a kind of capability that a Node Type can declare to expose.

Requirements (implicit or explicit) that are declared as part of one node can be matched to (i.e., fulfilled by) the

Capabilities declared by another node.

3.6.6.1 Keynames

The following is the list of recognized keynames for a TOSCA Capability Type definition:

Keyname Required Type Description

derived_from no string An optional parent capability type name this new Capability Type derives
from.

version no version An optional version for the Capability Type definition.

description no description An optional description for the Capability Type.

properties no list of
property definitions

An optional list of property definitions for the Capability Type.

attributes no list of
attribute definitions

An optional list of attribute definitions for the Capability Type.

valid_source_types no string[] An optional list of one or more valid names of Node Types that are
supported as valid sources of any relationship established to the declared
Capability Type.

3.6.6.2 Grammar

Capability Types have following grammar:

<capability_type_name>:

 derived_from: <parent_capability_type_name>

 version: <version_number>

 description: <capability_description>

 properties:

 <property_definitions>

 attributes:

 <attribute_definitions>

 valid_source_types: [<node type_names>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 capability_type_name: represents the required name of the Capability Type being declared as a

string.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 88 of 267

 parent_capability_type_name: represents the name of the Capability Type this Capability Type

definition derives from (i.e., its “parent” type).

 version_number: represents the optional TOSCA version number for the Capability Type.

 capability_description: represents the optional description string for the corresponding

capability_type_name.

 property_definitions: represents an optional list of property definitions that the Capability type

exports.

 attribute_definitions: represents the optional list of attribute definitions for the Capability Type.

 node_type_names: represents the optional list of one or more names of Node Types that the Capability

Type supports as valid sources for a successful relationship to be established to itself.

3.6.6.3 Example

mycompany.mytypes.myapplication.MyFeature:

 derived_from: tosca.capabilities.Root

 description: a custom feature of my company’s application

 properties:

 my_feature_setting:

 type: string

 my_feature_value:

 type: integer

3.6.7 Requirement Type

A Requirement Type is a reusable entity that describes a kind of requirement that a Node Type can declare to

expose. The TOSCA Simple Profile seeks to simplify the need for declaring specific Requirement Types from

nodes and instead rely upon nodes declaring their features sets using TOSCA Capability Types along with a

named Feature notation.

Currently, there are no use cases in this TOSCA Simple Profile in YAML specification that utilize an independently
defined Requirement Type. This is a desired effect as part of the simplification of the TOSCA v1.0 specification.

3.6.8 Node Type

A Node Type is a reusable entity that defines the type of one or more Node Templates. As such, a Node Type
defines the structure of observable properties via a Properties Definition, the Requirements and Capabilities of the
node as well as its supported interfaces.

3.6.8.1 Keynames

The following is the list of recognized keynames for a TOSCA Node Type definition:

Keyname Required Definition/Type Description

derived_from no string An optional parent Node Type name this new Node Type derives from.

version no version An optional version for the Node Type definition.

description no description An optional description for the Node Type.

properties no list of
property definitions

An optional list of property definitions for the Node Type.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 89 of 267

Keyname Required Definition/Type Description

attributes no list of
attribute definitions

An optional list of attribute definitions for the Node Type.

requirements no list of
requirement definitions

An optional sequenced list of requirement definitions for the Node Type.

capabilities no list of
capability definitions

An optional list of capability definitions for the Node Type.

interfaces no list of
interface definitions

An optional list of interface definitions supported by the Node Type.

artifacts no list of
artifact definitions

An optional list of named artifact definitions for the Node Type.

3.6.8.2 Grammar

Node Types have following grammar:

<node_type_name>:

 derived_from: <parent_node_type_name>

 version: <version_number>

 description: <node_type_description>

 properties:

 <property_definitions>

 attributes:

 <attribute_definitions>

 requirements:

 - <requirement_definitions>

 capabilities:

 <capability_definitions>

 interfaces:

 <interface_definitions>

 artifacts:

 <artifact_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 node_type_name: represents the required symbolic name of the Node Type being declared.

 parent_node_type_name: represents the name (string) of the Node Type this Node Type definition

derives from (i.e., its “parent” type).

 version_number: represents the optional TOSCA version number for the Node Type.

 node_type_description: represents the optional description string for the corresponding

node_type_name.

 property_definitions: represents the optional list of property definitions for the Node Type.

 attribute_definitions: represents the optional list of attribute definitions for the Node Type.

 requirement_definitions: represents the optional sequenced list of requirement definitions for the

Node Type.

 capability_definitions: represents the optional list of capability definitions for the Node Type.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 90 of 267

 interface_definitions: represents the optional list of one or more interface definitions supported by

the Node Type.

 artifact_definitions: represents the optional list of artifact definitions for the Node Type.

3.6.8.3 Additional Requirements

 Requirements are intentionally expressed as a sequenced list of TOSCA Requirement definitions which

SHOULD be resolved (processed) in sequence order by TOSCA Orchestrators. .

3.6.8.4 Best Practices

 It is recommended that all Node Types SHOULD derive directly (as a parent) or indirectly (as an ancestor) of

the TOSCA Root Node Type (i.e., tosca.nodes.Root) to promote compatibility and portability. However, it is

permitted to author Node Types that do not do so.

 TOSCA Orchestrators, having a full view of the complete application topology template and its resultant

dependency graph of nodes and relationships, MAY prioritize how they instantiate the nodes and

relationships for the application (perhaps in parallel where possible) to achieve the greatest efficiency

3.6.8.5 Example

my_company.my_types.my_app_node_type:

 derived_from: tosca.nodes.SoftwareComponent

 description: My company’s custom applicaton

 properties:

 my_app_password:

 type: string

 description: application password

 constraints:

 - min_length: 6

 - max_length: 10

 attributes:

 my_app_port:

 type: integer

 description: application port number

 requirements:

 - some_database:

 capability: EndPoint.Database

 node: Database

 relationship: ConnectsTo

3.6.9 Relationship Type

A Relationship Type is a reusable entity that defines the type of one or more relationships between Node Types
or Node Templates.

3.6.9.1 Keynames

The following is the list of recognized keynames for a TOSCA Relationship Type definition:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 91 of 267

Keyname Required Definition/Type Description

derived_from no string An optional parent Relationship Type name the Relationship Type derives
from.

version no version An optional version for the Relationship Type definition.

description no description An optional description for the Relationship Type.

properties no list of
property definitions

An optional list of property definitions for the Relationship Type.

attributes no list of
attribute definitions

An optional list of attribute definitions for the Relationship Type.

interfaces no list of
interface definitions

An optional list of interface definitions interfaces supported by the
Relationship Type.

valid_target_types no string[] An optional list of one or more names of Capability Types that are valid
targets for this relationship.

3.6.9.2 Grammar

Relationship Types have following grammar:

<relationship_type_name>:

 derived_from: <parent_relationship_type_name>

 version: <version_number>

 description: <relationship_description>

 properties:

 <property_definitions>

 attributes:

 <attribute_definitions>

 interfaces:

 <interface_definitions>

 valid_target_types: [<capability_type_names>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 relationship_type_name: represents the required symbolic name of the Relationship Type being

declared as a string.

 parent_relationship_type_name: represents the name (string) of the Relationship Type this

Relationship Type definition derives from (i.e., its “parent” type).

 relationship_description: represents the optional description string for the corresponding

relationship_type_name.

 version_number: represents the optional TOSCA version number for the Relationship Type.

 property_definitions: represents the optional list of property definitions for the Relationship Type.

 attribute_definitions: represents the optional list of attribute definitions for the Relationship Type.

 interface_definitions: represents the optional list of one or more names of valid interface

definitions supported by the Relationship Type.

 capability_type_names: represents one or more names of valid target types for the relationship (i.e.,

Capability Types).

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 92 of 267

3.6.9.3 Best Practices

 For TOSCA application portability, it is recommended that designers use the normative Relationship

types defined in this specification where possible and derive from them for customization purposes.

 The TOSCA Root Relationship Type (tosca.relationships.Root) SHOULD be used to derive new types

where possible when defining new relationships types. This assures that its normative configuration

interface (tosca.interfaces.relationship.Configure) can be used in a deterministic way by TOSCA

orchestrators.

3.6.9.4 Examples

mycompanytypes.myrelationships.AppDependency:

 derived_from: tosca.relationships.DependsOn

 valid_target_types: [mycompanytypes.mycapabilities.SomeAppCapability]

3.6.10 Group Type

A Group Type defines logical grouping types for nodes, typically for different management purposes. Groups can
effectively be viewed as logical nodes that are not part of the physical deployment topology of an application, yet
can have capabilities and the ability to attach policies and interfaces that can be applied (depending on the group
type) to its member nodes.

Conceptually, group definitions allow the creation of logical “membership” relationships to nodes in a service
template that are not a part of the application’s explicit requirement dependencies in the topology template (i.e.
those required to actually get the application deployed and running). Instead, such logical membership allows for
the introduction of things such as group management and uniform application of policies (i.e., requirements that
are also not bound to the application itself) to the group’s members.

3.6.10.1 Keynames

The following is the list of recognized keynames for a TOSCA Group Type definition:

Keyname Required Type Description

derived_from no string An optional parent Group Type name the Group Type derives from.

version no version An optional version for the Group Type definition.

description no description The optional description for the Group Type.

properties no list of
property definitions

An optional list of property definitions for the Group Type.

members no string[] An optional list of one or more names of Node Types that are valid
(allowed) as members of the Group Type.

Note: This can be viewed by TOSCA Orchestrators as an implied
relationship from the listed members nodes to the group, but one that
does not have operational lifecycle considerations. For example, if we
were to name this as an explicit Relationship Type we might call this
“MemberOf” (group).

interfaces no list of
interface definitions

An optional list of interface definitions supported by the Group Type.

3.6.10.2 Grammar

Group Types have one the following grammars:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 93 of 267

<group_type_name>:

 derived_from: <parent_group_type_name>

 version: <version_number>

 description: <group_description>

 properties:

 <property_definitions>

 members: [<list_of_valid_member_types>]

 interfaces:

 <interface_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 group_type_name: represents the required symbolic name of the Group Type being declared as a
string.

 parent_group_type_name: represents the name (string) of the Group Type this Group Type definition
derives from (i.e., its “parent” type).

 version_number: represents the optional TOSCA version number for the Group Type.

 group_description: represents the optional description string for the corresponding
group_type_name.

 property_definitions: represents the optional list of property definitions for the Group Type.
 list_of_valid_member_types: represents the optional list of TOSCA types (i.e., Node or Capability

Types) that are valid member types for being added to (i.e., members of) the Group Type.

 interface_definitions: represents the optional list of one or more interface definitions supported
by the Group Type.

3.6.10.3 Additional Requirements

 Group definitions SHOULD NOT be used to define or redefine relationships (dependencies) for an

application that can be expressed using normative TOSCA Relationships within a TOSCA topology

template.

 The list of values associated with the “members” keyname MUST only contain types that or

homogenous (i.e., derive from the same type hierarchy).

3.6.10.4 Example

The following represents a Group Type definition:

group_types:

 mycompany.mytypes.groups.placement:

 description: My company’s group type for placing nodes of type Compute

 members: [tosca.nodes.Compute]

3.6.11 Policy Type

A Policy Type defines a type of requirement that affects or governs an application or service’s topology at some
stage of its lifecycle, but is not explicitly part of the topology itself (i.e., it does not prevent the application or
service from being deployed or run if it did not exist).

3.6.11.1 Keynames

The following is the list of recognized keynames for a TOSCA Policy Type definition:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 94 of 267

Keyname Required Type Description

derived_from no string An optional parent Policy Type name the Policy Type derives from.

version no version An optional version for the Policy Type definition.

description no description The optional description for the Policy Type.

properties no list of
property definitions

An optional list of property definitions for the Policy Type.

targets

no string[] An optional list of valid Node Types or Group Types the Policy Type can
be applied to.

Note: This can be viewed by TOSCA Orchestrators as an implied
relationship to the target nodes, but one that does not have
operational lifecycle considerations. For example, if we were to name
this as an explicit Relationship Type we might call this “AppliesTo”
(node or group).

3.6.11.2 Grammar

Policy Types have one the following grammars:

<policy_type_name>:

 derived_from: <parent_policy_type_name>

 version: <version_number>

 description: <policy_description>

 properties:

 <property_definitions>

 targets: [<list_of_valid_target_types>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 policy_type_name: represents the required symbolic name of the Policy Type being declared as a
string.

 parent_policy_type_name: represents the name (string) of the Policy Type this Policy Type definition
derives from (i.e., its “parent” type).

 version_number: represents the optional TOSCA version number for the Policy Type.

 policy_description: represents the optional description string for the corresponding
policy_type_name.

 property_definitions: represents the optional list of property definitions for the Policy Type.

 list_of_valid_target_types: represents the optional list of TOSCA types (i.e., Group or Node Types)
that are valid targets for this Policy Type.

3.6.11.3 Additional Requirements

 None

3.6.11.4 Example

The following represents a Policy Type definition:

policy_types:

 mycompany.mytypes.policies.placement.Container.Linux:

 description: My company’s placement policy for linux

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 95 of 267

 derived_from: tosca.policies.Root

3.7 Template-specific definitions

The definitions in this section provide reusable modeling element grammars that are specific to the Node or
Relationship templates.

3.7.1 Capability assignment

A capability assignment allows node template authors to assign values to properties and attributes for a named
capability definition that is part of a Node Template’s type definition.

3.7.1.1 Keynames

The following is the list of recognized keynames for a TOSCA capability assignment:

Keyname Required Type Description

properties no list of
property
assignments

An optional list of property definitions for the Capability definition.

attributes no list of
attribute
assignments

An optional list of attribute definitions for the Capability definition.

3.7.1.2 Grammar

Capability assignments have one of the following grammars:

<capability_definition_name>:

 properties:

 <property_assignments>

 attributes:

 <attribute_assignments>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

 capability_definition_name: represents the symbolic name of the capability as a string.

 property_assignments: represents the optional list of property assignments for the capability

definition.

 attribute_assignments: represents the optional list of attribute assignments for the capability

definition.

3.7.1.3 Example

The following example shows a capability assignment:

3.7.1.3.1 Notation example

node_templates:

 some_node_template:

 capabilities:

 some_capability:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 96 of 267

 properties:

 limit: 100

3.7.2 Requirement assignment

A Requirement assignment allows template authors to provide either concrete names of TOSCA templates or
provide abstract selection criteria for providers to use to find matching TOSCA templates that are used to fulfill a
named requirement’s declared TOSCA Node Type.

3.7.2.1 Keynames

The following is the list of recognized keynames for a TOSCA requirement assignment:

Keyname Required Type Description

capability no string The optional reserved keyname used to provide the name of either a:

 Capability definition within a target node template that can fulfill the
requirement.

 Capability Type that the provider will use to select a type-compatible
target node template to fulfill the requirement at runtime.

node no string The optional reserved keyname used to identify the target node of a relationship.
specifically, it is used to provide either a:

 Node Template name that can fulfill the target node requirement.

 Node Type name that the provider will use to select a type-compatible
node template to fulfill the requirement at runtime.

relationship no string The optional reserved keyname used to provide the name of either a:

 Relationship Template to use to relate the source node to the (capability
in the) target node when fulfilling the requirement.

 Relationship Type that the provider will use to select a type-compatible
relationship template to relate the source node to the target node at
runtime.

node_filter no node filter The optional filter definition that TOSCA orchestrators or providers would use to
select a type-compatible target node that can fulfill the associated abstract
requirement at runtime.

The following is the list of recognized keynames for a TOSCA requirement assignment’s relationship keyname

which is used when Property assignments need to be provided to inputs of declared interfaces or their

operations:

Keyname Required Type Description

type no string The optional reserved keyname used to provide the name of the Relationship Type

for the requirement assignment’s relationship keyname.

properties no list of
interface
definitions

The optional reserved keyname used to reference declared (named) interface
definitions of the corresponding Relationship Type in order to provide Property
assignments for these interfaces or operations of these interfaces.

3.7.2.2 Grammar

Named requirement assignments have one of the following grammars:

3.7.2.2.1 Short notation:

The following single-line grammar may be used if only a concrete Node Template for the target node needs to

be declared in the requirement:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 97 of 267

<requirement_name>: <node_template_name>

This notation is only valid if the corresponding Requirement definition in the Node Template’s parent Node Type

declares (at a minimum) a valid Capability Type which can be found in the declared target Node Template. A

valid capability definition always needs to be provided in the requirement declaration of the source node to

identify a specific capability definition in the target node the requirement will form a TOSCA relationship with.

3.7.2.2.2 Extended notation:

The following grammar would be used if the requirement assignment needs to provide more information than

just the Node Template name:

<requirement_name>:

 node: <node_template_name> | <node_type_name>

 relationship: <relationship_template_name> | <relationship_type_name>

 capability: <capability_symbolic_name> | <capability_type_name>

 node_filter:

 <node_filter_definition>

 occurrences: [min_occurrences, max_occurrences]

3.7.2.2.3 Extended grammar with Property Assignments for the relationship’s Interfaces

The following additional multi-line grammar is provided for the relationship keyname in order to provide new

Property assignments for inputs of known Interface definitions of the declared Relationship Type.

<requirement_name>:

 # Other keynames omitted for brevity

 relationship:

 type: <relationship_template_name> | <relationship_type_name>

 properties:

 <property_assignments>

 interfaces:

 <interface_assignments>

Examples of uses for the extended requirement assignment grammar include:

 The need to allow runtime selection of the target node based upon an abstract Node Type rather than a

concrete Node Template. This may include use of the node_filter keyname to provide node and

capability filtering information to find the “best match” of a concrete Node Template at runtime.

 The need to further clarify the concrete Relationship Template or abstract Relationship Type to use

when relating the source node’s requirement to the target node’s capability.

 The need to further clarify the concrete capability (symbolic) name or abstract Capability Type in the

target node to form a relationship between.

 The need to (further) constrain the occurrences of the requirement in the instance model.

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

 requirement_name: represents the symbolic name of a requirement assignment as a string.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 98 of 267

 node_template_name: represents the optional name of a Node Template that contains the capability

this requirement will be fulfilled by.

 relationship_template_name: represents the optional name of a Relationship Type to be used when

relating the requirement appears to the capability in the target node.

 capability_symbolic_name: represents the optional ordered list of specific, required capability type or

named capability definition within the target Node Type or Template.

 node_type_name: represents the optional name of a TOSCA Node Type the associated named

requirement can be fulfilled by. This must be a type that is compatible with the Node Type declared on

the matching requirement (same symbolic name) the requirement’s Node Template is based upon.

 relationship_type_name: represents the optional name of a Relationship Type that is compatible with

the Capability Type in the target node.

 property_assignments: represents the optional list of property value assignments for the declared

relationship.

 interface_assignments: represents the optional list of interface definitions for the declared

relationship used to provide property assignments on inputs of interfaces and operations.

 capability_type_name: represents the optional name of a Capability Type definition within the target

Node Type this requirement needs to form a relationship with.

 node_filter_definition: represents the optional node filter TOSCA orchestrators would use to fulfill

the requirement for selecting a target node. Note that this SHALL only be valid if the node keyname’s

value is a Node Type and is invalid if it is a Node Template.

3.7.2.3 Examples

3.7.2.3.1 Example 1 – Abstract hosting requirement on a Node Type

A web application node template named ‘my_application_node_template’ of type WebApplication declares

a requirement named ‘host’ that needs to be fulfilled by any node that derives from the node type WebServer.

Example of a requirement fulfilled by a specific web server node template

node_templates:

 my_application_node_template:

 type: tosca.nodes.WebApplication

 ...

 requirements:

 - host:

 node: tosca.nodes.WebServer

In this case, the node template’s type is WebApplication which already declares the Relationship Type

HostedOn to use to relate to the target node and the Capability Type of Container to be the specific target of

the requirement in the target node.

3.7.2.3.2 Example 2 - Requirement with Node Template and a custom Relationship Type

This example is similar to the previous example; however, the requirement named ‘database’ describes a

requirement for a connection to a database endpoint (Endpoint.Database) Capability Type in a named node

template (my_database). However, the connection requires a custom Relationship Type

(my.types.CustomDbConnection’) declared on the keyname ‘relationship’.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 99 of 267

Example of a (database) requirement that is fulfilled by a node template named

“my_database”, but also requires a custom database connection relationship

my_application_node_template:

 requirements:

 - database:

 node: my_database

 capability: Endpoint.Database

 relationship: my.types.CustomDbConnection

3.7.2.3.3 Example 3 - Requirement for a Compute node with additional selection criteria
(filter)

This example shows how to extend an abstract ‘host’ requirement for a Compute node with a

filter definition that further constrains TOSCA orchestrators to include additional

properties and capabilities on the target node when fulfilling the requirement.

node_templates:

 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 # omitted here for brevity
 requirements:
 - host:
 node: tosca.nodes.Compute
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [1, 4] }
 - mem_size: { greater_or_equal: 512 MB }
 - os:
 properties:
 - architecture: { equal: x86_64 }
 - type: { equal: linux }
 - distribution: { equal: ubuntu }
 - mytypes.capabilities.compute.encryption:
 properties:
 - algorithm: { equal: aes }
 - keylength: { valid_values: [128, 256] }

3.7.3 Node Template

A Node Template specifies the occurrence of a manageable software component as part of an application’s
topology model which is defined in a TOSCA Service Template. A Node template is an instance of a specified
Node Type and can provide customized properties, constraints or operations which override the defaults provided
by its Node Type and its implementations.

3.7.3.1 Keynames

The following is the list of recognized keynames for a TOSCA Node Template definition:

Keyname Required Type Description

type yes string The required name of the Node Type the Node Template is based upon.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 100 of 267

Keyname Required Type Description

description no description An optional description for the Node Template.

directives no string[] An optional list of directive values to provide processing instructions to
orchestrators and tooling.

properties no list of
property assignments

An optional list of property value assignments for the Node Template.

attributes no list of
attribute assignments

An optional list of attribute value assignments for the Node Template.

requirements no list of
requirement
assignments

An optional sequenced list of requirement assignments for the Node
Template.

capabilities no list of
capability assignments

An optional list of capability assignments for the Node Template.

interfaces no list of
interface definitions

An optional list of named interface definitions for the Node Template.

artifacts no list of
artifact definitions

An optional list of named artifact definitions for the Node Template.

node_filter no node filter The optional filter definition that TOSCA orchestrators would use to select

the correct target node. This keyname is only valid if the directive has
the value of “selectable” set.

copy no string The optional (symbolic) name of another node template to copy into (all
keynames and values) and use as a basis for this node template.

3.7.3.2 Grammar

<node_template_name>:

 type: <node_type_name>

 description: <node_template_description>

 directives: [<directives>]

 properties:

 <property_assignments>

 attributes:

 <attribute_assignments>

 requirements:

 - <requirement_assignments>

 capabilities:

 <capability_assignments>

 interfaces:

 <interface_definitions>

 artifacts:

 <artifact_definitions>

 node_filter:

 <node_filter_definition>

 copy: <source_node_template_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 101 of 267

 node_template_name: represents the required symbolic name of the Node Template being declared.

 node_type_name: represents the name of the Node Type the Node Template is based upon.

 node_template_description: represents the optional description string for Node Template.

 directives: represents the optional list of processing instruction keywords (as strings) for use by

tooling and orchestrators.

 property_assignments: represents the optional list of property assignments for the Node Template

that provide values for properties defined in its declared Node Type.

 attribute_assignments: represents the optional list of attribute assignments for the Node Template

that provide values for attributes defined in its declared Node Type.

 requirement_assignments: represents the optional sequenced list of requirement assignments for the

Node Template that allow assignment of type-compatible capabilities, target nodes, relationships and

target (node filters) for use when fulfilling the requirement at runtime.

 capability_assignments: represents the optional list of capability assignments for the Node Template

that augment those provided by its declared Node Type.

 interface_definitions: represents the optional list of interface definitions for the Node Template

that augment those provided by its declared Node Type.

 artifact_definitions: represents the optional list of artifact definitions for the Node Template that

augment those provided by its declared Node Type.

 node_filter_definition: represents the optional node filter TOSCA orchestrators would use for

selecting a matching node template.

 source_node_template_name: represents the optional (symbolic) name of another node template to

copy into (all keynames and values) and use as a basis for this node template.

3.7.3.3 Additional requirements

 The node_filter keyword (and supporting grammar) SHALL only be valid if the Node Template has a

directive keyname with the value of “selectable” set.

 The source node template provided as a value on the copy keyname MUST NOT itself use the copy

keyname (i.e., it must itself be a complete node template description and not copied from another node

template).

3.7.3.4 Example

node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 root_password: { get_input: my_mysql_rootpw }

 port: { get_input: my_mysql_port }

 requirements:

 - host: db_server

 interfaces:

 Standard:

 configure: scripts/my_own_configure.sh

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 102 of 267

3.7.4 Relationship Template

A Relationship Template specifies the occurrence of a manageable relationship between node templates as part
of an application’s topology model that is defined in a TOSCA Service Template. A Relationship template is an
instance of a specified Relationship Type and can provide customized properties, constraints or operations which
override the defaults provided by its Relationship Type and its implementations.

3.7.4.1 Keynames

The following is the list of recognized keynames for a TOSCA Relationship Template definition:

Keyname Required Type Description

type yes string The required name of the Relationship Type the Relationship Template is
based upon.

description no description An optional description for the Relationship Template.

properties no list of
property assignments

An optional list of property assignments for the Relationship Template.

attributes no list of
attribute assignments

An optional list of attribute assignments for the Relationship Template.

interfaces no list of
interface definitions

An optional list of named interface definitions for the Node Template.

copy no string The optional (symbolic) name of another relationship template to copy into
(all keynames and values) and use as a basis for this relationship template.

3.7.4.2 Grammar

<relationship_template_name>:

 type: <relationship_type_name>

 description: <relationship_type_description>

 properties:

 <property_assignments>

 attributes:

 <attribute_assignments>

 interfaces:

 <interface_definitions>

 copy:

 <source_relationship_template_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 relationship_template_name: represents the required symbolic name of the Relationship Template

being declared.

 relationship_type_name: represents the name of the Relationship Type the Relationship Template is

based upon.

 relationship_template_description: represents the optional description string for the Relationship

Template.

 property_assignments: represents the optional list of property assignments for the Relationship

Template that provide values for properties defined in its declared Relationship Type.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 103 of 267

 attribute_assignments: represents the optional list of attribute assignments for the Relationship

Template that provide values for attributes defined in its declared Relationship Type.

 interface_definitions: represents the optional list of interface definitions for the Relationship

Template that augment those provided by its declared Relationship Type.

 source_relationship_template_name: represents the optional (symbolic) name of another

relationship template to copy into (all keynames and values) and use as a basis for this relationship

template.

3.7.4.3 Additional requirements

 The source relationship template provided as a value on the copy keyname MUST NOT itself use the

copy keyname (i.e., it must itself be a complete relationship template description and not copied from

another relationship template).

3.7.4.4 Example

relationship_templates:

 storage_attachment:

 type: AttachesTo

 properties:

 location: /my_mount_point

3.7.5 Group definition

A group definition defines a logical grouping of node templates, typically for management purposes, but is
separate from the application’s topology template.

3.7.5.1 Keynames

The following is the list of recognized keynames for a TOSCA group definition:

Keyname Required Type Description

type yes string The required name of the group type the group
definition is based upon.

description no description The optional description for the group definition.

properties no list of
property assignments

An optional list of property value assignments for the
group definition.

members no list of string The optional list of one or more node template names
that are members of this group definition.

interfaces no list of
interface definitions

An optional list of named interface definitions for the
group definition.

3.7.5.2 Grammar

Group definitions have one the following grammars:

<group_name>:

 type: <group_type_name>

 description: <group_description>

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 104 of 267

 properties:

 <property_assignments>

 members: [<list_of_node_templates>]

 interfaces:

 <interface_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 group_name: represents the required symbolic name of the group as a string.

 group_type_name: represents the name of the Group Type the definition is based upon.
 group_description: contains an optional description of the group.

 property_assignments: represents the optional list of property assignments for the group definition
that provide values for properties defined in its declared Group Type.

 list_of_node_templates: contains the required list of one or more node template names (within the

same topology template) that are members of this logical group.

 interface_definitions: represents the optional list of interface definitions for the group definition
that augment those provided by its declared Group Type.

3.7.5.3 Additional Requirements

 Group definitions SHOULD NOT be used to define or redefine relationships (dependencies) for an

application that can be expressed using normative TOSCA Relationships within a TOSCA topology

template.

3.7.5.4 Example

The following represents a group definition:

groups:

 my_app_placement_group:

 type: tosca.groups.Root

 description: My application’s logical component grouping for placement

 members: [my_web_server, my_sql_database]

3.7.6 Policy definition

A policy definition defines a policy that can be associated with a TOSCA topology or top-level entity definition
(e.g., group definition, node template, etc.).

3.7.6.1 Keynames

The following is the list of recognized keynames for a TOSCA policy definition:

Keyname Required Type Description

type yes string The required name of the policy type the policy
definition is based upon.

description no description The optional description for the policy definition.

properties no list of
property assignments

An optional list of property value assignments for the
policy definition.

targets

no string[] An optional list of valid Node Templates or Groups the
Policy can be applied to.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 105 of 267

3.7.6.2 Grammar

Policy definitions have one the following grammars:

<policy_name>:

 type: <policy_type_name>

 description: <policy_description>

 properties:

 <property_assignments>

 targets: [<list_of_policy_targets>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 policy_name: represents the required symbolic name of the policy as a string.

 policy_type_name: represents the name of the policy the definition is based upon.
 policy_description: contains an optional description of the policy.

 property_assignments: represents the optional list of property assignments for the policy definition
that provide values for properties defined in its declared Policy Type.

 list_of_policy_targets: represents the optional list of names of node templates or groups that the
policy is to applied to.

3.7.6.3 Example

The following represents a policy definition:

policies:

 - my_compute_placement_policy:

 type: tosca.policies.placement

 description: Apply my placement policy to my application’s servers

 targets: [my_server_1, my_server_2]

3.8 Topology Template definition

This section defines the topology template of a cloud application. The main ingredients of the topology template
are node templates representing components of the application and relationship templates representing links
between the components. These elements are defined in the nested node_templates section and the nested

relationship_templates sections, respectively. Furthermore, a topology template allows for defining input

parameters, output parameters as well as grouping of node templates.

3.8.1 Keynames

The following is the list of recognized keynames for a TOSCA Topology Template:

Keyname Required Type Description

description no description The optional description for the Topology Template.

inputs no list of
parameter
definitions

An optional list of input parameters (i.e., as
parameter definitions) for the Topology Template.

node_templates no list of
node templates

An optional list of node template definitions for the
Topology Template.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 106 of 267

Keyname Required Type Description

relationship_templates no list of
relationship
templates

An optional list of relationship templates for the
Topology Template.

groups no list of
group definitions

An optional list of Group definitions whose members
are node templates defined within this same
Topology Template.

policies no list of
policy definitions

An optional list of Policy definitions for the Topology
Template.

outputs no list of
parameter
definitions

An optional list of output parameters (i.e., as
parameter definitions) for the Topology Template.

substitution_mappings no N/A An optional declaration that exports the topology
template as an implementation of a Node type.

This also includes the mappings between the
external Node Types named capabilities and
requirements to existing implementations of those
capabilities and requirements on Node templates
declared within the topology template.

3.8.2 Grammar

The overall grammar of the topology_template section is shown below.–Detailed grammar definitions of the

each sub-sections are provided in subsequent subsections.

topology_template:

 description: <template_description>

 inputs: <input_parameter_list>

 outputs: <output_parameter_list>

 node_templates: <node_template_list>

 relationship_templates: <relationship_template_list>

 groups: <group_definition_list>

 policies:

 - <policy_definition_list>

 # Optional declaration that exports the Topology Template

 # as an implementation of a Node Type.

 substitution_mappings:

 node_type: <node_type_name>

 capabilities:

 <map_of_capability_mappings_to_expose>

 requirements:

 <map_of_requirement_mapping_to_expose>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

 template_description: represents the optional description string for Topology Template.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 107 of 267

 input_parameter_list: represents the optional list of input parameters (i.e., as property definitions)

for the Topology Template.

 output_parameter_list: represents the optional list of output parameters (i.e., as property

definitions) for the Topology Template.

 group_definition_list: represents the optional list of group definitions whose members are node

templates that also are defined within this Topology Template.

 policy_definition_list: represents the optional sequenced list of policy definitions for the Topology

Template.

 node_template_list: represents the optional list of node template definitions for the Topology

Template.

 relationship_template_list: represents the optional list of relationship templates for the Topology

Template.

 node_type_name: represents the optional name of a Node Type that the Topology Template implements

as part of the substitution_mappings.

 map_of_capability_mappings_to_expose: represents the mappings that expose internal capabilities

from node templates (within the topology template) as capabilities of the Node Type definition that is

declared as part of the substitution_mappings.

 map_of_requirement_mappings_to_expose: represents the mappings of link requirements of the

Node Type definition that is declared as part of the substitution_mappings to internal requirements

implementations within node templates (declared within the topology template).

More detailed explanations for each of the Topology Template grammar’s keynames appears in the sections
below.

3.8.2.1 inputs

The inputs section provides a means to define parameters using TOSCA parameter definitions, their allowed

values via constraints and default values within a TOSCA Simple Profile template. Input parameters defined in the
inputs section of a topology template can be mapped to properties of node templates or relationship templates

within the same topology template and can thus be used for parameterizing the instantiation of the topology
template.

This section defines topology template-level input parameter section.

 Inputs here would ideally be mapped to BoundaryDefinitions in TOSCA v1.0.

 Treat input parameters as fixed global variables (not settable within template)

 If not in input take default (nodes use default)

3.8.2.1.1 Grammar

The grammar of the inputs section is as follows:

inputs:

 <parameter_definition_list>

3.8.2.1.2 Examples

This section provides a set of examples for the single elements of a topology template.

Simple inputs example without any constraints:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 108 of 267

inputs:

 fooName:

 type: string

 description: Simple string typed property definition with no constraints.

 default: bar

Example of inputs with constraints:

inputs:

 SiteName:

 type: string

 description: string typed property definition with constraints

 default: My Site

 constraints:

 - min_length: 9

3.8.2.2 node_templates

The node_templates section lists the Node Templates that describe the (software) components that are used to

compose cloud applications.

3.8.2.2.1 grammar

The grammar of the node_templates section is a follows:

node_templates:

 <node_template_defn_1>

 ...

 <node_template_defn_n>

3.8.2.2.2 Example

Example of node_templates section:

node_templates:

 my_webapp_node_template:

 type: WebApplication

 my_database_node_template:

 type: Database

3.8.2.3 relationship_templates

The relationship_templates section lists the Relationship Templates that describe the relations between

components that are used to compose cloud applications.

Note that in the TOSCA Simple Profile, the explicit definition of relationship templates as it was required in
TOSCA v1.0 is optional, since relationships between nodes get implicitly defined by referencing other node
templates in the requirements sections of node templates.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 109 of 267

3.8.2.3.1 Grammar

The grammar of the relationship_templates section is as follows:

relationship_templates:

 <relationship_template_defn_1>

 ...

 <relationship_template_defn_n>

3.8.2.3.2 Example

Example of relationship_templates section:

relationship_templates:

 my_connectsto_relationship:

 type: tosca.relationships.ConnectsTo

 interfaces:

 Configure:

 inputs:

 speed: { get_attribute: [SOURCE, connect_speed] }

3.8.2.4 outputs

The outputs section provides a means to define the output parameters that are available from a TOSCA Simple

Profile service template. It allows for exposing attributes of node templates or relationship templates within the
containing topology_template to users of a service.

3.8.2.4.1 Grammar

The grammar of the outputs section is as follows:

outputs:

 <parameter_def_list>

3.8.2.4.2 Example

Example of the outputs section:

outputs:

 server_address:

 description: The first private IP address for the provisioned server.

 value: { get_attribute: [HOST, networks, private, addresses, 0] }

3.8.2.5 groups

The groups section allows for grouping one or more node templates within a TOSCA Service Template and for

assigning special attributes like policies to the group.

3.8.2.5.1 Grammar

The grammar of the groups section is as follows:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 110 of 267

groups:

 <group_defn_1>

 ...

 <group_defn_n>

3.8.2.5.2 Example

The following example shows the definition of three Compute nodes in the node_templates section of a

topology_template as well as the grouping of two of the Compute nodes in a group server_group_1.

node_templates:

 server1:

 type: tosca.nodes.Compute

 # more details ...

 server2:

 type: tosca.nodes.Compute

 # more details ...

 server3:

 type: tosca.nodes.Compute

 # more details ...

groups:

 # server2 and server3 are part of the same group

 server_group_1:

 type: tosca.groups.Root

 members: [server2, server3]

3.8.2.6 policies

The policies section allows for declaring policies that can be applied to entities in the topology template.

3.8.2.6.1 Grammar

The grammar of the policies section is as follows:

policies:

 - <policy_defn_1>

 - ...

 - <policy_defn_n>

3.8.2.6.2 Example

The following example shows the definition of a placement policy.

policies:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 111 of 267

 - my_placement_policy:

 type: mycompany.mytypes.policy.placement

3.8.2.7 Notes

 The parameters (properties) that are listed as part of the inputs block can be mapped to

PropertyMappings provided as part of BoundaryDefinitions as described by the TOSCA v1.0

specification.

 The node templates listed as part of the node_templates block can be mapped to the list of

NodeTemplate definitions provided as part of TopologyTemplate of a ServiceTemplate as described

by the TOSCA v1.0 specification.

 The relationship templates listed as part of the relationship_templates block can be mapped to the

list of RelationshipTemplate definitions provided as part of TopologyTemplate of a

ServiceTemplate as described by the TOSCA v1.0 specification.

 The output parameters that are listed as part of the outputs section of a topology template can be

mapped to PropertyMappings provided as part of BoundaryDefinitions as described by the TOSCA

v1.0 specification.

o Note, however, that TOSCA v1.0 does not define a direction (input vs. output) for those

mappings, i.e. TOSCA v1.0 PropertyMappings are underspecified in that respect and TOSCA

Simple Profile’s inputs and outputs provide a more concrete definition of input and output

parameters.

3.9 Service Template definition

A TOSCA Service Template (YAML) document contains element definitions of building blocks for cloud
application, or complete models of cloud applications. This section describes the top-level structural elements
(TOSCA keynames) along with their grammars, which are allowed to appear in a TOSCA Service Template
document.

3.9.1 Keynames

The following is the list of recognized keynames for a TOSCA Service Template definition:

Keyname Required Type Description

tosca_definitions_version yes string Defines the version of the TOSCA Simple Profile specification the
template (grammar) complies with.

metadata no map of string Defines a section used to declare additional metadata information.
Domain-specific TOSCA profile specifications may define keynames
that are required for their implementations.

description no description Declares a description for this Service Template and its contents.

dsl_definitions no N/A Declares optional DSL-specific definitions and conventions. For
example, in YAML, this allows defining reusable YAML macros (i.e.,
YAML alias anchors) for use throughout the TOSCA Service
Template.

repositories no list of
Repository
definitions

Declares the list of external repositories which contain artifacts that
are referenced in the service template along with their addresses
and necessary credential information used to connect to them in
order to retrieve the artifacts.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 112 of 267

Keyname Required Type Description

imports no list of
Import Definitions

Declares import statements external TOSCA Definitions documents.
For example, these may be file location or URIs relative to the
service template file within the same TOSCA CSAR file.

artifact_types no list of
Artifact Types

This section contains an optional list of artifact type definitions for
use in the service template

data_types no list of
Data Types

Declares a list of optional TOSCA Data Type definitions.

capability_types no list of
Capability Types

This section contains an optional list of capability type definitions
for use in the service template.

interface_types no list of
Interface Types

This section contains an optional list of interface type definitions for
use in the service template.

relationship_types no list of
Relationship Types

This section contains a set of relationship type definitions for use in
the service template.

node_types no list of
Node Types

This section contains a set of node type definitions for use in the
service template.

group_types no list of
Group Types

This section contains a list of group type definitions for use in the
service template.

policy_types no list of
Policy Types

This section contains a list of policy type definitions for use in the
service template.

topology_template no Topology Template
definition

Defines the topology template of an application or service,
consisting of node templates that represent the application’s or
service’s components, as well as relationship templates
representing relations between the components.

3.9.1.1 Metadata keynames

The following is the list of recognized metadata keynames for a TOSCA Service Template definition:

Keyname Required Type Description

template_name no string Declares a descriptive name for the template.

template_author no string Declares the author(s) or owner of the template.

template_version no string Declares the version string for the template.

3.9.2 Grammar

The overall structure of a TOSCA Service Template and its top-level key collations using the TOSCA Simple
Profile is shown below:

tosca_definitions_version: # Required TOSCA Definitions version string

Optional metadata keyname: value pairs

metadata:

 template_name: # Optional name of this service template

 template_author: # Optional author of this service template

 template_version: # Optional version of this service template

 # Optional list of domain or profile specific metadata keynames

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 113 of 267

Optional description of the definitions inside the file.

description: <template_type_description>

dsl_definitions:

 # list of YAML alias anchors (or macros)

repositories:

 # list of external repository definitions which host TOSCA artifacts

imports:

 # ordered list of import definitions

artifact_types:

 # list of artifact type definitions

data_types:

 # list of datatype definitions

capability_types:

 # list of capability type definitions

interface_types

 # list of interface type definitions

relationship_types:

 # list of relationship type definitions

node_types:

 # list of node type definitions

group_types:

 # list of group type definitions

policy_types:

 # list of policy type definitions

topology_template:

 # topology template definition of the cloud application or service

3.9.2.1 Notes

 TOSCA Service Templates do not have to contain a topology_template and MAY contain simply type

definitions (e.g., Artifact, Interface, Capability, Node, Relationship Types, etc.) and be imported for use

as type definitions in other TOSCA Service Templates.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 114 of 267

3.9.3 Top-level keyname definitions

3.9.3.1 tosca_definitions_version

This required element provides a means to include a reference to the TOSCA Simple Profile specification within
the TOSCA Definitions YAML file. It is an indicator for the version of the TOSCA grammar that should be used to
parse the remainder of the document.

3.9.3.1.1 Keyname

tosca_definitions_version

3.9.3.1.2 Grammar

Single-line form:

tosca_definitions_version: <tosca_simple_profile_version>

3.9.3.1.3 Examples:

TOSCA Simple Profile version 1.0 specification using the defined namespace alias (see Section 3.1):

tosca_definitions_version: tosca_simple_yaml_1_0

TOSCA Simple Profile version 1.0 specification using the fully defined (target) namespace (see Section 3.1):

tosca_definitions_version: http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0

3.9.3.2 metadata

This keyname is used to associate domain-specific metadata with the Service Template. The metadata keyname
allows a declaration of a map of keynames with string values.

3.9.3.2.1 Keyname

metadata

3.9.3.2.2 Grammar

metadata:

 <map_of_string_values>

3.9.3.2.3 Example

metadata:

 creation_date: 2015-04-14

 date_updated: 2015-05-01

 status: developmental

http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 115 of 267

3.9.3.3 template_name

This optional metadata keyname can be used to declare the name of service template as a single-line string
value.

3.9.3.3.1 Keyname

template_name

3.9.3.3.2 Grammar

template_name: <name string>

3.9.3.3.3 Example

template_name: My service template

3.9.3.3.4 Notes

 Some service templates are designed to be referenced and reused by other service templates.

Therefore, in these cases, the template_name value SHOULD be designed to be used as a unique

identifier through the use of namespacing techniques.

3.9.3.4 template_author

This optional metadata keyname can be used to declare the author(s) of the service template as a single-line
string value.

3.9.3.4.1 Keyname

template_author

3.9.3.4.2 Grammar

template_author: <author string>

3.9.3.4.3 Example

template_author: My service template

3.9.3.5 template_version

This optional metadata keyname can be used to declare a domain specific version of the service template as a
single-line string value.

3.9.3.5.1 Keyname

template_version

3.9.3.5.2 Grammar

template_version: <version>

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 116 of 267

3.9.3.5.3 Example

template_version: 2.0.17

3.9.3.5.4 Notes:

 Some service templates are designed to be referenced and reused by other service templates and have

a lifecycle of their own. Therefore, in these cases, a template_version value SHOULD be included and

used in conjunction with a unique template_name value to enable lifecycle management of the service

template and its contents.

3.9.3.6 description

This optional keyname provides a means to include single or multiline descriptions within a TOSCA Simple Profile
template as a scalar string value.

3.9.3.6.1 Keyname

description

3.9.3.7 dsl_definitions

This optional keyname provides a section to define macros (e.g., YAML-style macros when using the TOSCA
Simple Profile in YAML specification).

3.9.3.7.1 Keyname

dsl_definitions

3.9.3.7.2 Grammar

dsl_definitions:

 <dsl_definition_1>

 ...

 <dsl_definition_n>

3.9.3.7.3 Example

dsl_definitions:

 ubuntu_image_props: &ubuntu_image_props

 architecture: x86_64

 type: linux

 distribution: ubuntu

 os_version: 14.04

 redhat_image_props: &redhat_image_props

 architecture: x86_64

 type: linux

 distribution: rhel

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 117 of 267

 os_version: 6.6

3.9.3.8 repositories

This optional keyname provides a section to define external repositories which may contain artifacts or other
TOSCA Service Templates which might be referenced or imported by the TOSCA Service Template definition.

3.9.3.8.1 Keyname

repositories

3.9.3.8.2 Grammar

repositories:

 <repository_definition_1>

 ...

 <repository_definition_n>

3.9.3.8.3 Example

repositories:

 my_project_artifact_repo:

 description: development repository for TAR archives and Bash scripts

 url: http://mycompany.com/repository/myproject/

3.9.3.9 imports

This optional keyname provides a way to import a block sequence of one or more TOSCA Definitions documents.
TOSCA Definitions documents can contain reusable TOSCA type definitions (e.g., Node Types, Relationship
Types, Artifact Types, etc.) defined by other authors. This mechanism provides an effective way for companies
and organizations to define normative types and/or describe their software applications for reuse in other TOSCA
Service Templates.

3.9.3.9.1 Keyname

imports

3.9.3.9.2 Grammar

imports:

 - <import_definition_1>

 - ...

 - <import_definition_n>

3.9.3.9.3 Example

An example import of definitions files from a location relative to the

file location of the service template declaring the import.

imports:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 118 of 267

 - some_definitions: relative_path/my_defns/my_typesdefs_1.yaml

 - more_definitions:

 file: my_defns/my_typesdefs_n.yaml

 repository: my_company_repo

 namespace_uri: http://mycompany.com/ns/tosca/2.0

 namespace_prefix: mycompany

3.9.3.10 artifact_types

This optional keyname lists the Artifact Types that are defined by this Service Template.

3.9.3.10.1 Keyname

artifact_types

3.9.3.10.2 Grammar

artifact_types:

 <artifact_type_defn_1>

 ...

 <artifact type_defn_n>

3.9.3.10.3 Example

artifact_types:

 mycompany.artifacttypes.myFileType:

 derived_from: tosca.artifacts.File

3.9.3.11 data_types

This optional keyname provides a section to define new data types in TOSCA.

3.9.3.11.1 Keyname

data_types

3.9.3.11.2 Grammar

data_types:

 <tosca_datatype_def_1>

 ...

 <tosca_datatype_def_n>

3.9.3.11.3 Example

data_types:

 # A complex datatype definition

 simple_contactinfo_type:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 119 of 267

 properties:

 name:

 type: string

 email:

 type: string

 phone:

 type: string

 # datatype definition derived from an existing type

 full_contact_info:

 derived_from: simple_contact_info

 properties:

 street_address:

 type: string

 city:

 type: string

 state:

 type: string

 postalcode:

 type: string

3.9.3.12 capability_types

This optional keyname lists the Capability Types that provide the reusable type definitions that can be used to
describe features Node Templates or Node Types can declare they support.

3.9.3.12.1 Keyname

capability_types

3.9.3.12.2 Grammar

capability_types:

 <capability_type_defn_1>

 ...

 <capability type_defn_n>

3.9.3.12.3 Example

capability_types:

 mycompany.mytypes.myCustomEndpoint:

 derived_from: tosca.capabilities.Endpoint

 properties:

 # more details ...

 mycompany.mytypes.myCustomFeature:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 120 of 267

 derived_from: tosca.capabilities.Feature

 properties:

 # more details ...

3.9.3.13 interface_types

This optional keyname lists the Interface Types that provide the reusable type definitions that can be used to
describe operations for on TOSCA entities such as Relationship Types and Node Types.

3.9.3.13.1 Keyname

interface_types

3.9.3.13.2 Grammar

interface_types:

 <interface_type_defn_1>

 ...

 <interface type_defn_n>

3.9.3.13.3 Example

interface_types:

 mycompany.interfaces.service.Signal:

 signal_begin_receive:

 description: Operation to signal start of some message processing.

 signal_end_receive:

 description: Operation to signal end of some message processed.

3.9.3.14 relationship_types

This optional keyname lists the Relationship Types that provide the reusable type definitions that can be used to
describe dependent relationships between Node Templates or Node Types.

3.9.3.14.1 Keyname

relationship_types

3.9.3.14.2 Grammar

relationship_types:

 <relationship_type_defn_1>

 ...

 <relationship type_defn_n>

3.9.3.14.3 Example

relationship_types:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 121 of 267

 mycompany.mytypes.myCustomClientServerType:

 derived_from: tosca.relationships.HostedOn

 properties:

 # more details ...

 mycompany.mytypes.myCustomConnectionType:

 derived_from: tosca.relationships.ConnectsTo

 properties:

 # more details ...

3.9.3.15 node_types

This optional keyname lists the Node Types that provide the reusable type definitions for software components
that Node Templates can be based upon.

3.9.3.15.1 Keyname

node_types

3.9.3.15.2 Grammar

node_types:

 <node_type_defn_1>

 ...

 <node_type_defn_n>

3.9.3.15.3 Example

node_types:

 my_webapp_node_type:

 derived_from: WebApplication

 properties:

 my_port:

 type: integer

 my_database_node_type:

 derived_from: Database

 capabilities:

 mytypes.myfeatures.transactSQL

3.9.3.15.4 Notes

 The node types listed as part of the node_types block can be mapped to the list of NodeType definitions

as described by the TOSCA v1.0 specification.

3.9.3.16 group_types

This optional keyname lists the Group Types that are defined by this Service Template.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 122 of 267

3.9.3.16.1 Keyname

group_types

3.9.3.16.2 Grammar

group_types:

 <group_type_defn_1>

 ...

 <group type_defn_n>

3.9.3.16.3 Example

group_types:

 mycompany.mytypes.myScalingGroup:

 derived_from: tosca.groups.Root

3.9.3.17 policy_types

This optional keyname lists the Policy Types that are defined by this Service Template.

3.9.3.17.1 Keyname

policy_types

3.9.3.17.2 Grammar

policy_types:

 <policy_type_defn_1>

 ...

 <policy type_defn_n>

3.9.3.17.3 Example

policy_types:

 mycompany.mytypes.myScalingPolicy:

 derived_from: tosca.policies.Scaling

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 123 of 267

4 TOSCA functions
Except for the examples, this section is normative and includes functions that are supported for use within a

TOSCA Service Template.

4.1 Reserved Function Keywords

The following keywords MAY be used in some TOSCA function in place of a TOSCA Node or Relationship
Template name. A TOSCA orchestrator will interpret them at the time the function would be evaluated at runtime
as described in the table below. Note that some keywords are only valid in the context of a certain TOSCA entity
as also denoted in the table.

Keyword Valid Contexts Description

SELF Node Template or Relationship
Template

A TOSCA orchestrator will interpret this keyword as the Node or Relationship Template
instance that contains the function at the time the function is evaluated.

SOURCE Relationship Template only. A TOSCA orchestrator will interpret this keyword as the Node Template instance that is
at the source end of the relationship that contains the referencing function.

TARGET Relationship Template only. A TOSCA orchestrator will interpret this keyword as the Node Template instance that is
at the target end of the relationship that contains the referencing function.

HOST Node Template only A TOSCA orchestrator will interpret this keyword to refer to the all nodes that “host”
the node using this reference (i.e., as identified by its HostedOn relationship).

Specifically, TOSCA orchestrators that encounter this keyword when evaluating the
get_attribute or get_property functions SHALL search each node along the
“HostedOn” relationship chain starting at the immediate node that hosts the node
where the function was evaluated (and then that node’s host node, and so forth) until
a match is found or the “HostedOn” relationship chain ends.

4.2 Environment Variable Conventions

4.2.1 Reserved Environment Variable Names and Usage

TOSCA orchestrators utilize certain reserved keywords in the execution environments that implementation
artifacts for Node or Relationship Templates operations are executed in. They are used to provide information to
these implementation artifacts such as the results of TOSCA function evaluation or information about the instance
model of the TOSCA application

The following keywords are reserved environment variable names in any TOSCA supported execution
environment:

Keyword Valid Contexts Description

TARGETS Relationship Template
only.

 For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, is used to supply a list of Node
Template instances in a TOSCA application’s instance model that are
currently target of the context relationship.

 The value of this environment variable will be a comma-separated list of
identifiers of the single target node instances (i.e., the tosca_id attribute

of the node).

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 124 of 267

Keyword Valid Contexts Description

TARGET Relationship Template
only.

 For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, identifies a Node Template instance
in a TOSCA application’s instance model that is a target of the context
relationship, and which is being acted upon in the current operation.

 The value of this environment variable will be the identifier of the single
target node instance (i.e., the tosca_id attribute of the node).

SOURCES Relationship Template
only.

 For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, is used to supply a list of Node
Template instances in a TOSCA application’s instance model that are
currently source of the context relationship.

 The value of this environment variable will be a comma-separated list of
identifiers of the single source node instances (i.e., the tosca_id attribute

of the node).

SOURCE Relationship Template
only.

 For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, identifies a Node Template instance
in a TOSCA application’s instance model that is a source of the context
relationship, and which is being acted upon in the current operation.

 The value of this environment variable will be the identifier of the single
source node instance (i.e., the tosca_id attribute of the node).

For scripts (or implementation artifacts in general) that run in the context of relationship operations, select
properties and attributes of both the relationship itself as well as select properties and attributes of the source and
target node(s) of the relationship can be provided to the environment by declaring respective operation inputs.

Declared inputs from mapped properties or attributes of the source or target node (selected via the SOURCE or

TARGET keyword) will be provided to the environment as variables having the exact same name as the inputs. In

addition, the same values will be provided for the complete set of source or target nodes, however prefixed with
the ID if the respective nodes. By means of the SOURCES or TARGETS variables holding the complete set of source

or target node IDs, scripts will be able to iterate over corresponding inputs for each provided ID prefix.

The following example snippet shows an imaginary relationship definition from a load-balancer node to worker
nodes. A script is defined for the add_target operation of the Configure interface of the relationship, and the

ip_address attribute of the target is specified as input to the script:

node_templates:

 load_balancer:

 type: some.vendor.LoadBalancer

 requirements:

 - member:

 relationship: some.vendor.LoadBalancerToMember

 interfaces:

 Configure:

 add_target:

 inputs:

 member_ip: { get_attribute: [TARGET, ip_address] }

 implementation: scripts/configure_members.py

The add_target operation will be invoked, whenever a new target member is being added to the load-balancer.

With the above inputs declaration, a member_ip environment variable that will hold the IP address of the target

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 125 of 267

being added will be provided to the configure_members.py script. In addition, the IP addresses of all current

load-balancer members will be provided as environment variables with a naming scheme of <target node

ID>_member_ip. This will allow, for example, scripts that always just write the complete list of load-balancer

members into a configuration file to do so instead of updating existing list, which might be more complicated.

Assuming that the TOSCA application instance includes five load-balancer members, node1 through node5,

where node5 is the current target being added, the following environment variables (plus potentially more

variables) would be provided to the script:

the ID of the current target and the IDs of all targets

TARGET=node5

TARGETS=node1,node2,node3,node4,node5

the input for the current target and the inputs of all targets

member_ip=10.0.0.5

node1_member_ip=10.0.0.1

node2_member_ip=10.0.0.2

node3_member_ip=10.0.0.3

node4_member_ip=10.0.0.4

node5_member_ip=10.0.0.5

With code like shown in the snippet below, scripts could then iterate of all provided member_ip inputs:

#!/usr/bin/python

import os

targets = os.environ['TARGETS'].split(',')

for t in targets:

 target_ip = os.environ.get('%s_member_ip' % t)

 # do something with target_ip ...

4.2.2 Prefixed vs. Unprefixed TARGET names

The list target node types assigned to the TARGETS key in an execution environment would have names prefixed
by unique IDs that distinguish different instances of a node in a running model Future drafts of this specification
will show examples of how these names/IDs will be expressed.

4.2.2.1 Notes

 Target of interest is always un-prefixed. Prefix is the target opaque ID. The IDs can be used to find the

environment var. for the corresponding target. Need an example here.

 If you have one node that contains multiple targets this would also be used (add or remove target

operations would also use this you would get set of all current targets).

4.3 Intrinsic functions

These functions are supported within the TOSCA template for manipulation of template data.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 126 of 267

4.3.1 concat

The concat function is used to concatenate two or more string values within a TOSCA service template.

4.3.1.1 Grammar

concat: [<string_value_expressions_*>]

4.3.1.2 Parameters

Parameter Required Type Description

<string_value_expressions_*> yes list of
string or
string value
expressions

A list of one or more strings (or expressions that result in a
string value) which can be concatenated together into a single
string.

4.3.1.3 Examples

outputs:

 description: Concatenate the URL for a server from other template values

 server_url:

 value: { concat: ['http://',

 get_attribute: [server, public_address],

 ':',

 get_attribute: [server, port]] }

4.3.2 token

The token function is used within a TOSCA service template on a string to parse out (tokenize) substrings

separated by one or more token characters within a larger string.

4.3.2.1 Grammar

token: [<string_with_tokens>, <string_of_token_chars>, <substring_index>]

4.3.2.2 Parameters

Parameter Required Type Description

string_with_tokens yes string The composite string that contains one or more substrings separated by
token characters.

string_of_token_chars yes string The string that contains one or more token characters that separate
substrings within the composite string.

substring_index yes integer The integer indicates the index of the substring to return from the
composite string. Note that the first substring is denoted by using the
‘0’ (zero) integer value.

4.3.2.3 Examples

outputs:

 webserver_port:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 127 of 267

 description: the port provided at the end of my server’s endpoint’s IP address

 value: { token: [get_attribute: [my_server, data_endpoint, ip_address],

 ‘:’,

 1] }

4.4 Property functions

These functions are used within a service template to obtain property values from property definitions declared
elsewhere in the same service template. These property definitions can appear either directly in the service
template itself (e.g., in the inputs section) or on entities (e.g., node or relationship templates) that have been
modeled within the template.

Note that the get_input and get_property functions may only retrieve the static values of property definitions of

a TOSCA application as defined in the TOSCA Service Template. The get_attribute function should be used

to retrieve values for attribute definitions (or property definitions reflected as attribute definitions) from the runtime
instance model of the TOSCA application (as realized by the TOSCA orchestrator).

4.4.1 get_input

The get_input function is used to retrieve the values of properties declared within the inputs section of a

TOSCA Service Template.

4.4.1.1 Grammar

get_input: <input_property_name>

4.4.1.2 Parameters

Parameter Required Type Description

<input_property_name> yes string
The name of the property as defined in the inputs section of the

service template.

4.4.1.3 Examples

inputs:

 cpus:

 type: integer

node_templates:

 my_server:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties:

 num_cpus: { get_input: cpus }

4.4.2 get_property

The get_property function is used to retrieve property values between modelable entities defined in the same

service template.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 128 of 267

4.4.2.1 Grammar

get_property: [<modelable_entity_name>, <optional_req_or_cap_name>,
<property_name>, <nested_property_name_or_index_1>, ...,
<nested_property_name_or_index_n>]

4.4.2.2 Parameters

Parameter Required Type Description

<modelable entity
name> | SELF |
SOURCE | TARGET |
HOST

yes string The required name of a modelable entity (e.g., Node Template or
Relationship Template name) as declared in the service template that
contains the named property definition the function will return the value
from. See section B.1 for valid keywords.

<optional_req_or_cap
_name>

no string The optional name of the requirement or capability name within the

modelable entity (i.e., the <modelable_entity_name> which
contains the named property definition the function will return the value
from.

Note: If the property definition is located in the modelable entity directly,
then this parameter MAY be omitted.

<property_name> yes string The name of the property definition the function will return the value
from.

<nested_property_nam
e_or_index_*>

no string|
integer

Some TOSCA properties are complex (i.e., composed as nested structures).
These parameters are used to dereference into the names of these nested
structures when needed.

Some properties represent list types. In these cases, an index may be
provided to reference a specific entry in the list (as named in the previous
parameter) to return.

4.4.2.3 Examples

The following example shows how to use the get_property function with an actual Node Template name:

node_templates:

 mysql_database:

 type: tosca.nodes.Database

 properties:

 name: sql_database1

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 ...

 interfaces:

 Standard:

 configure:

 inputs:

 wp_db_name: { get_property: [mysql_database, name] }

The following example shows how to use the get_property function using the SELF keyword:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 129 of 267

node_templates:

 mysql_database:

 type: tosca.nodes.Database

 ...

 capabilities:

 database_endpoint:

 properties:

 port: 3306

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 requirements:

 ...

 - database_endpoint: mysql_database

 interfaces:

 Standard:

 create: wordpress_install.sh

 configure:

 implementation: wordpress_configure.sh

 inputs:

 ...

 wp_db_port: { get_property: [SELF, database_endpoint, port] }

The following example shows how to use the get_property function using the TARGET keyword:

relationship_templates:
 my_connection:
 type: ConnectsTo
 interfaces:
 Configure:
 inputs:
 targets_value: { get_property: [TARGET, value] }

4.5 Attribute functions

These functions (attribute functions) are used within an instance model to obtain attribute values from instances of
nodes and relationships that have been created from an application model described in a service template. The
instances of nodes or relationships can be referenced by their name as assigned in the service template or
relative to the context where they are being invoked.

4.5.1 get_attribute

The get_attribute function is used to retrieve the values of named attributes declared by the referenced node

or relationship template name.

4.5.1.1 Grammar

get_attribute: [<modelable_entity_name>, <optional_req_or_cap_name>,
<attribute_name>, <nested_attribute_name_or_index_1>, ...,

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 130 of 267

<nested_attribute_name_or_index_n>]

4.5.1.2 Parameters

Parameter Required Type Description

<modelable entity
name> | SELF |
SOURCE | TARGET |
HOST

yes string The required name of a modelable entity (e.g., Node Template or
Relationship Template name) as declared in the service template that
contains the named attribute definition the function will return the value
from. See section B.1 for valid keywords.

<optional_req_or_cap
_name>

no string The optional name of the requirement or capability name within the

modelable entity (i.e., the <modelable_entity_name> which
contains the named attribute definition the function will return the value
from.

Note: If the attribute definition is located in the modelable entity directly,
then this parameter MAY be omitted.

<attribute_name> yes string The name of the attribute definition the function will return the value from.

<nested_attribute_na
me_or_index_*>

no string|
integer

Some TOSCA attributes are complex (i.e., composed as nested structures).
These parameters are used to dereference into the names of these nested
structures when needed.

Some attributes represent list types. In these cases, an index may be
provided to reference a specific entry in the list (as named in the previous
parameter) to return.

4.5.1.3 Examples:

The attribute functions are used in the same way as the equivalent Property functions described above. Please
see their examples and replace “get_property” with “get_attribute” function name.

4.5.1.4 Notes

These functions are used to obtain attributes from instances of node or relationship templates by the names they
were given within the service template that described the application model (pattern).

 These functions only work when the orchestrator can resolve to a single node or relationship instance for

the named node or relationship. This essentially means this is acknowledged to work only when the node

or relationship template being referenced from the service template has a cardinality of 1 (i.e., there can

only be one instance of it running).

4.6 Operation functions

These functions are used within an instance model to obtain values from interface operations. These can be used
in order to set an attribute of a node instance at runtime or to pass values from one operation to another.

4.6.1 get_operation_output

The get_operation_output function is used to retrieve the values of variables exposed / exported from an

interface operation.

4.6.1.1 Grammar

get_operation_output: <modelable_entity_name>, <interface_name>, <operation_name>,
<output_variable_name>

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 131 of 267

4.6.1.2 Parameters

Parameter Required Type Description

<modelable entity
name> | SELF |
SOURCE | TARGET

yes string The required name of a modelable entity (e.g., Node Template or
Relationship Template name) as declared in the service template that
implements the named interface and operation.

<interface_name> Yes string The required name of the interface which defines the operation.

<operation_name> yes string The required name of the operation whose value we would like to
retrieve.

<output_variable_na
me>

Yes string The required name of the variable that is exposed / exported by the
operation.

4.6.1.3 Notes

 If operation failed, then ignore its outputs. Orchestrators should allow orchestrators to continue

running when possible past deployment in the lifecycle. For example, if an update fails, the application

should be allowed to continue running and some other method would be used to alert administrators of

the failure.

4.7 Navigation functions

 This version of the TOSCA Simple Profile does not define any model navigation functions.

4.7.1 get_nodes_of_type

The get_nodes_of_type function can be used to retrieve a list of all known instances of nodes of the declared

Node Type.

4.7.1.1 Grammar

get_nodes_of_type: <node_type_name>

4.7.1.2 Parameters

Parameter Required Type Description

<node_type_name> yes string The required name of a Node Type that a TOSCA orchestrator would use
to search a running application instance in order to return all unique,
named node instances of that type.

4.7.1.3 Returns

Return Key Type Description

TARGETS <see
above>

The list of node instances from the current application instance that match the

node_type_name supplied as an input parameter of this function.

4.8 Artifact functions

4.8.1 get_artifact

The get_artifact function is used to retrieve artifact location between modelable entities defined in the same

service template.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 132 of 267

4.8.1.1 Grammar

get_artifact: [<modelable_entity_name>, <artifact_name>, <location>, <remove>]

4.8.1.2 Parameters

Parameter Required Type Description

<modelable entity
name> | SELF |
SOURCE | TARGET |
HOST

yes string The required name of a modelable entity (e.g., Node Template or
Relationship Template name) as declared in the service template that
contains the named property definition the function will return the value
from. See section B.1 for valid keywords.

<artifact_name> yes string The name of the artifact definition the function will return the value from.

<location> |
LOCAL_FILE

no string Location value must be either a valid path e.g. ‘/etc/var/my_file’ or

‘LOCAL_FILE’.

If the value is LOCAL_FILE the orchestrator is responsible for providing a

path as the result of the get_artifact call where the artifact file can
be accessed. The orchestrator will also remove the artifact from this
location at the end of the operation.

If the location is a path specified by the user the orchestrator is
responsible to copy the artifact to the specified location. The orchestrator

will return the path as the value of the get_artifact function and
leave the file here after the execution of the operation.

remove no boolean Boolean flag to override the orchestrator default behavior so it will
remove or not the artifact at the end of the operation execution.

If not specified the removal will depends of the location e.g. removes it in

case of ‘LOCAL_FILE’ and keeps it in case of a path.

If true the artifact will be removed by the orchestrator at the end of the
operation execution, if false it will not be removed.

4.8.1.3 Examples

The following example uses a snippet of a WordPress [WordPress] web application to show how to use the

get_artifact function with an actual Node Template name:

4.8.1.3.1 Example: Retrieving artifact without specified location:

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 ...

 interfaces:

 Standard:

 configure:

 create:

 implementation: wordpress_install.sh

 inputs

file:///C:/Users/IBM_AD~1/AppData/Local/Temp/TOSCA_get_artifact_proposal-1.docx%23TYPE_YAML_STRING
file:///C:/Users/IBM_AD~1/AppData/Local/Temp/TOSCA_get_artifact_proposal-1.docx%23TYPE_YAML_STRING

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 133 of 267

 wp_zip: { get_artifact: [SELF, zip] }

 artifacts:

 zip: /data/wordpress.zip

In such implementation the TOSCA orchestrator may provide the wordpress.zip archive as a local URL (example:

file://home/user/wordpress.zip) or a remote one (example: http://cloudrepo:80/files/wordpress.zip) (some

orchestrator may indeed provide some global artifact repository management features)

4.8.1.3.2 Example: Retrieving artifact as a local path :

The following example explains how to force the orchestrator to copy the file locally before calling the operation’s
implementation script:

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 ...

 interfaces:

 Standard:

 configure:

 create:

 implementation: wordpress_install.sh

 inputs

 wp_zip: { get_artifact: [SELF, zip, LOCAL_FILE] }

 artifacts:

 zip: /data/wordpress.zip

In such implementation the TOSCA orchestrator must provide the wordpress.zip archive as a local path

(example: /tmp/wordpress.zip) and will remove it after the operation is completed.

4.8.1.3.3 Example: Retrieving artifact in a specified location:

The following example explains how to force the orchestrator to copy the file locally to a specific location before
calling the operation’s implementation script :

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 ...

 interfaces:

 Standard:

 configure:

 create:

 implementation: wordpress_install.sh

file://///home/user/wordpress.zip
http://cloudrepo/files/wordpress.zip
file://///home/user/wordpress.zip

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 134 of 267

 inputs

 wp_zip: { get_artifact: [SELF, zip, C:/wpdata/wp.zip] }

 artifacts:

 zip: /data/wordpress.zip

In such implementation the TOSCA orchestrator must provide the wordpress.zip archive as a local path

(example: C:/wpdata/wp.zip) and will let it after the operation is completed.

4.9 Context-based Entity names (global)

Future versions of this specification will address methods to access entity names based upon the context in which
they are declared or defined.

4.9.1.1 Goals

 Using the full paths of modelable entity names to qualify context with the future goal of a more robust

get_attribute function: e.g., get_attribute(<context-based-entity-name>, <attribute name>)

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 135 of 267

5 TOSCA normative type definitions
Except for the examples, this section is normative and contains normative type definitions which must be
supported for conformance to this specification.

The declarative approach is heavily dependent of the definition of basic types that a declarative container
must understand. The definition of these types must be very clear such that the operational semantics can
be precisely followed by a declarative container to achieve the effects intended by the modeler of a
topology in an interoperable manner.

5.1 Assumptions

 Assumes alignment with/dependence on XML normative types proposal for TOSCA v1.1

 Assumes that the normative types will be versioned and the TOSCA TC will preserve backwards

compatibility.

 Assumes that security and access control will be addressed in future revisions or versions of this

specification.

5.2 Data Types

5.2.1 tosca.datatypes.Root

This is the default (root) TOSCA Root Type definition that all complex TOSCA Data Types derive from.

5.2.1.1 Definition

The TOSCA Credential type is defined as follows:

tosca.datatypes.Root:

 description: The TOSCA root Data Type all other TOSCA base Data Types derive from

5.2.2 tosca.datatypes.Credential

The Credential type is a complex TOSCA data Type used when describing authorization credentials used to

access network accessible resources.

Shorthand Name Credential

Type Qualified Name tosca:Credential

Type URI tosca.datatypes.Credential

5.2.2.1 Properties

Name Required Type Constraints Description

protocol no string None The optional protocol name.

token_type yes string default: password The required token type.

token yes string None The required token used as a credential for authorization or
access to a networked resource.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 136 of 267

Name Required Type Constraints Description

keys no map of
string

None The optional list of protocol-specific keys or assertions.

userh no string None The optional user (name or ID) used for non-token based
credentials.

5.2.2.2 Definition

The TOSCA Credential type is defined as follows:

tosca.datatypes.Credential:

 derived_from: tosca.datatypes.Root

 properties:

 protocol:

 type: string

 required: false

 token_type:

 type: string

 default: password

 token:

 type: string

 keys:

 type: map

 required: false

 entry_schema:

 type: string

 user:

 type: string

 required: false

5.2.2.3 Additional requirements

 TOSCA Orchestrators SHALL interpret and validate the value of the token property based upon the value

of the token_type property.

5.2.2.4 Notes

 Specific token types and encoding them using network protocols are not defined or covered in this

specification.

 The use of transparent user names (IDs) or passwords are not considered best practice.

5.2.2.5 Examples

5.2.2.5.1 Provide a simple user name and password without a protocol or standardized
token format

<some_tosca_entity>:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 137 of 267

 properties:

 my_credential:

 type: Credential

 properties:

 user: myusername

 token: mypassword

5.2.2.5.2 HTTP Basic access authentication credential

<some_tosca_entity>:

 properties:

 my_credential: # type: Credential

 protocol: http

 token_type: basic_auth

 # Username and password are combined into a string

 # Note: this would be base64 encoded before transmission by any impl.

 token: myusername:mypassword

5.2.2.5.3 X-Auth-Token credential

<some_tosca_entity>:

 properties:

 my_credential: # type: Credential

 protocol: xauth

 token_type: X-Auth-Token

 # token encoded in Base64

 token: 604bbe45ac7143a79e14f3158df67091

5.2.2.5.4 OAuth bearer token credential

<some_tosca_entity>:

 properties:

 my_credential: # type: Credential

 protocol: oauth2

 token_type: bearer

 # token encoded in Base64

 token: 8ao9nE2DEjr1zCsicWMpBC

5.2.3 tosca.datatypes.network.NetworkInfo

The Network type is a complex TOSCA data type used to describe logical network information.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 138 of 267

Shorthand Name NetworkInfo

Type Qualified Name tosca:NetworkInfo

Type URI tosca.datatypes.network.NetworkInfo

5.2.3.1 Properties

Name Type Constraints Description

network_name string None The name of the logical network.
e.g., “public”, “private”, “admin”. etc.

network_id string None The unique ID of for the network generated by the network
provider.

addresses string [] None The list of IP addresses assigned from the underlying
network.

5.2.3.2 Definition

The TOSCA NetworkInfo data type is defined as follows:

tosca.datatypes.network.NetworkInfo:

 derived_from: tosca.datatypes.Root

 properties:

 network_name:

 type: string

 network_id:

 type: string

 addresses:

 type: list

 entry_schema:

 type: string

5.2.3.3 Examples

Example usage of the NetworkInfo data type:

private_network:

 network_name: private

 network_id: 3e54214f-5c09-1bc9-9999-44100326da1b

 addresses: [10.111.128.10]

5.2.3.4 Additional Requirements

 It is expected that TOSCA orchestrators MUST be able to map the network_name from the TOSCA model

to underlying network model of the provider.

 The properties (or attributes) of NetworkInfo may or may not be required depending on usage context.

5.2.4 tosca.datatypes.network.PortInfo

The PortInfo type is a complex TOSCA data type used to describe network port information.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 139 of 267

Shorthand Name PortInfo

Type Qualified Name tosca:PortInfo

Type URI tosca.datatypes.network.PortInfo

5.2.4.1 Properties

Name Type Constraints Description

port_name string None The logical network port name.

port_id string None The unique ID for the network port generated by the
network provider.

network_id string None The unique ID for the network.

mac_address string None The unique media access control address (MAC address)
assigned to the port.

addresses string [] None The list of IP address(es) assigned to the port.

5.2.4.2 Definition

The TOSCA PortInfo type is defined as follows:

tosca.datatypes.network.PortInfo:

 derived_from: tosca.datatypes.Root

 properties:

 port_name:

 type: string

 port_id:

 type: string

 network_id:

 type: string

 mac_address:

 type: string

 addresses:

 type: list

 entry_schema:

 type: string

5.2.4.3 Examples

Example usage of the PortInfo data type:

ethernet_port:

 port_name: port1

 port_id: 2c0c7a37-691a-23a6-7709-2d10ad041467

 network_id: 3e54214f-5c09-1bc9-9999-44100326da1b

 mac_address: f1:18:3b:41:92:1e

 addresses: [172.24.9.102]

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 140 of 267

5.2.4.4 Additional Requirements

 It is expected that TOSCA orchestrators MUST be able to map the port_name from the TOSCA model to

underlying network model of the provider.

 The properties (or attributes) of PortInfo may or may not be required depending on usage context.

5.2.5 tosca.datatypes.network.PortDef

The PortDef type is a TOSCA data Type used to define a network port.

Shorthand Name PortDef

Type Qualified Name tosca:PortDef

Type URI tosca.datatypes.network.PortDef

5.2.5.1 Definition

The TOSCA PortDef type is defined as follows:

tosca.datatypes.network.PortDef:
 derived_from: integer

 constraints:

 - in_range: [1, 65535]

5.2.5.2 Examples

Example use of a PortDef property type:

listen_port:

 type: PortDef

 default: 9000

 constraints:

 - in_range: [9000, 9090]

5.2.6 tosca.datatypes.network.PortSpec

The PortSpec type is a complex TOSCA data Type used when describing port specifications for a network

connection.

Shorthand Name PortSpec

Type Qualified Name tosca:PortSpec

Type URI tosca.datatypes.network.PortSpec

5.2.6.1 Properties

Name Required Type Constraints Description

protocol yes string default: tcp The required protocol used on the port.

source no PortDef See PortDef The optional source port.

source_range no range in_range: [1, 65536] The optional range for source port.

target no PortDef See PortDef The optional target port.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 141 of 267

Name Required Type Constraints Description

target_range no range in_range: [1, 65536] The optional range for target port.

5.2.6.2 Definition

The TOSCA PortSpec type is defined as follows:

tosca.datatypes.network.PortSpec:

 derived_from: tosca.datatypes.Root

 properties:

 protocol:

 type: string

 required: true

 default: tcp

 constraints:

 - valid_values: [udp, tcp, igmp]

 target:

 type: PortDef

 target_range:

 type: range

 constraints:

 - in_range: [1, 65535]

 source:

 type: PortDef

 source_range:

 type: range

 constraints:

 - in_range: [1, 65535]

5.2.6.3 Additional requirements

 A valid PortSpec must have at least one of the following properties: target, target_range, source

or source_range.

5.2.6.4 Examples

Example usage of the PortSpec data type:

example properties in a node template

some_endpoint:

 properties:

 ports:

 user_port:

 protocol: tcp

 target: 50000

 target_range: [20000, 60000]

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 142 of 267

 source: 9000

 source_range: [1000, 10000]

5.3 Artifact Types

TOSCA Artifacts Types represent the types of packages and files used by the orchestrator when deploying
TOSCA Node or Relationship Types or invoking their interfaces. Currently, artifacts are logically divided into
three categories:

 Deployment Types: includes those artifacts that are used during deployment (e.g., referenced on create

and install operations) and include packaging files such as RPMs, ZIPs, or TAR files.

 Implementation Types: includes those artifacts that represent imperative logic and are used to

implement TOSCA Interface operations. These typically include scripting languages such as Bash (.sh),

Chef [Chef] and Puppet [Puppet].

 Runtime Types: includes those artifacts that are used during runtime by a service or component of the

application. This could include a library or language runtime that is needed by an application such as a

PHP or Java library.

Note: Additional TOSCA Artifact Types will be developed in future drafts of this specification.

5.3.1 tosca.artifacts.Root

This is the default (root) TOSCA Artifact Type definition that all other TOSCA base Artifact Types derive from.

5.3.1.1 Definition

tosca.artifacts.Root:

 description: The TOSCA Artifact Type all other TOSCA Artifact Types derive from

5.3.2 tosca.artifacts.File

This artifact type is used when an artifact definition needs to have its associated file simply treated as a file and

no special handling/handlers are invoked (i.e., it is not treated as either an implementation or deployment

artifact type).

Shorthand Name File

Type Qualified Name tosca:File

Type URI tosca.artifacts.File

5.3.2.1 Definition

tosca.artifacts.File:

 derived_from: tosca.artifacts.Root

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 143 of 267

5.3.3 Deployment Types

5.3.3.1 tosca.artifacts.Deployment

This artifact type represents the parent type for all deployment artifacts in TOSCA. This class of artifacts typically

represents a binary packaging of an application or service that is used to install/create or deploy it as part of a

node’s lifecycle.

5.3.3.1.1 Definition

tosca.artifacts.Deployment:

 derived_from: tosca.artifacts.Root

 description: TOSCA base type for deployment artifacts

5.3.3.2 Additional Requirements

 TOSCA Orchestrators MAY throw an error if it encounters a non-normative deployment artifact type that

it is not able to process.

5.3.3.3 tosca.artifacts.Deployment.Image

This artifact type represents a parent type for any “image” which is an opaque packaging of a TOSCA Node’s

deployment (whether real or virtual) whose contents are typically already installed and pre-configured (i.e.,

“stateful”) and prepared to be run on a known target container.

Shorthand Name Deployment.Image

Type Qualified Name tosca:Deployment.Image

Type URI tosca.artifacts.Deployment.Image

5.3.3.3.1 Definition

tosca.artifacts.Deployment.Image:

 derived_from: tosca.artifacts.Deployment

5.3.3.4 tosca.artifacts.Deployment.Image.VM

This artifact represents the parent type for all Virtual Machine (VM) image and container formatted deployment
artifacts. These images contain a stateful capture of a machine (e.g., server) including operating system and
installed software along with any configurations and can be run on another machine using a hypervisor which
virtualizes typical server (i.e., hardware) resources.

5.3.3.4.1 Definition

tosca.artifacts.Deployment.Image.VM:

 derived_from: tosca.artifacts.Deployment.Image

 description: Virtual Machine (VM) Image

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 144 of 267

5.3.3.4.2 Notes

 Future drafts of this specification may include popular standard VM disk image (e.g., ISO, VMI, VMDX,

QCOW2, etc.) and container (e.g., OVF, bare, etc.) formats. These would include consideration of disk

formats such as:

5.3.4 Implementation Types

5.3.4.1 tosca.artifacts.Implementation

This artifact type represents the parent type for all implementation artifacts in TOSCA. These artifacts are used

to implement operations of TOSCA interfaces either directly (e.g., scripts) or indirectly (e.g., config. files).

5.3.4.1.1 Definition

tosca.artifacts.Implementation:

 derived_from: tosca.artifacts.Root

 description: TOSCA base type for implementation artifacts

5.3.4.2 Additional Requirements

 TOSCA Orchestrators MAY throw an error if it encounters a non-normative implementation artifact type

that it is not able to process.

5.3.4.3 tosca.artifacts.Implementation.Bash

This artifact type represents a Bash script type that contains Bash commands that can be executed on the Unix

Bash shell.

Shorthand Name Bash

Type Qualified Name tosca:Bash

Type URI tosca.artifacts.Implementation.Bash

5.3.4.3.1 Definition

tosca.artifacts.Implementation.Bash:

 derived_from: tosca.artifacts.Implementation

 description: Script artifact for the Unix Bash shell

 mime_type: application/x-sh

 file_ext: [sh]

5.3.4.4 tosca.artifacts.Implementation.Python

This artifact type represents a Python file that contains Python language constructs that can be executed within

a Python interpreter.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 145 of 267

Shorthand Name Python

Type Qualified Name tosca:Python

Type URI tosca.artifacts.Implementation.Python

5.3.4.4.1 Definition

tosca.artifacts.Implementation.Python:

 derived_from: tosca.artifacts.Implementation

 description: Artifact for the interpreted Python language

 mime_type: application/x-python

 file_ext: [py]

5.4 Capabilities Types

5.4.1 tosca.capabilities.Root

This is the default (root) TOSCA Capability Type definition that all other TOSCA Capability Types derive from.

5.4.1.1 Definition

tosca.capabilities.Root:

 description: The TOSCA root Capability Type all other TOSCA base Capability Types
derive from

5.4.2 tosca.capabilities.Node

The Node capability indicates the base capabilities of a TOSCA Node Type.

Shorthand Name Node

Type Qualified Name tosca:Node

Type URI tosca.capabilities.Node

5.4.2.1 Definition

tosca.capabilities.Node:

 derived_from: tosca.capabilities.Root

5.4.3 tosca.capabilities.Container

The Container capability, when included on a Node Type or Template definition, indicates that the node can act

as a container for (or a host for) one or more other declared Node Types.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 146 of 267

Shorthand Name Container

Type Qualified Name tosca:Container

Type URI tosca.capabilities.Container

5.4.3.1 Properties

Name Required Type Constraints Description

num_cpus no integer greater_or_equal:
1

Number of (actual or virtual) CPUs associated with the
Compute node.

cpu_frequency no scalar-
unit.frequency

greater_or_equal:
0.1 GHz

Specifies the operating frequency of CPU's core. This
property expresses the expected frequency of one (1) CPU

as provided by the property “num_cpus”.

disk_size no scalar-
unit.size

greater_or_equal:
0 MB

Size of the local disk available to applications running on the
Compute node (default unit is MB).

mem_size no scalar-
unit.size

greater_or_equal:
0 MB

Size of memory available to applications running on the
Compute node (default unit is MB).

5.4.3.2 Definition

tosca.capabilities.Container:

 derived_from: tosca.capabilities.Root

 properties:

 num_cpus:

 type: integer

 required: false

 constraints:

 - greater_or_equal: 1

 cpu_frequency:

 type: scalar-unit.frequency

 required: false

 constraints:

 - greater_or_equal: 0.1 GHz

 disk_size:

 type: scalar-unit.size

 required: false

 constraints:

 - greater_or_equal: 0 MB

 mem_size:

 type: scalar-unit.size

 required: false

 constraints:

 - greater_or_equal: 0 MB

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 147 of 267

5.4.4 tosca.capabilities.Endpoint

This is the default TOSCA type that should be used or extended to define a network endpoint capability. This

includes the information to express a basic endpoint with a single port or a complex endpoint with multiple

ports. By default the Endpoint is assumed to represent an address on a private network unless otherwise

specified.

Shorthand Name Endpoint

Type Qualified Name tosca:Endpoint

Type URI tosca.capabilities.Endpoint

5.4.4.1 Properties

Name Required Type Constraints Description

protocol yes string default: tcp The name of the protocol (i.e., the protocol prefix) that the
endpoint accepts (any OSI Layer 4-7 protocols)

Examples: http, https, ftp, tcp, udp, etc.

port no PortDef greater_or_equal: 1
less_or_equal:
65535

The optional port of the endpoint.

secure no boolean default: false Requests for the endpoint to be secure and use credentials
supplied on the ConnectsTo relationship.

url_path no string None The optional URL path of the endpoint’s address if applicable
for the protocol.

port_name no string None The optional name (or ID) of the network port this endpoint
should be bound to.

network_name no string default: PRIVATE The optional name (or ID) of the network this endpoint should
be bound to.
network_name: PRIVATE | PUBLIC |<network_name> |
<network_id>

initiator no string one of:

 source

 target

 peer

default: source

The optional indicator of the direction of the connection.

ports no map of
PortSpec

None The optional map of ports the Endpoint supports (if more than
one)

5.4.4.2 Attributes

Name Required Type Constraints Description

ip_address yes string None Note: This is the IP address as propagated up by the associated
node’s host (Compute) container.

5.4.4.3 Definition

tosca.capabilities.Endpoint:

 derived_from: tosca.capabilities.Root

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 148 of 267

 properties:

 protocol:

 type: string

 default: tcp

 port:

 type: PortDef

 required: false

 secure:

 type: boolean

 default: false

 url_path:

 type: string

 required: false

 port_name:

 type: string

 required: false

 network_name:

 type: string

 required: false

 default: PRIVATE

 initiator:

 type: string

 default: source

 constraints:

 - valid_values: [source, target, peer]

 ports:

 type: map

 required: false

 constraints:

 - min_length: 1

 entry_schema:

 type: PortSpec

 attributes:

 ip_address:

 type: string

5.4.4.4 Additional requirements

 Although both the port and ports properties are not required, one of port or ports must be provided in a

valid Endpoint.

5.4.5 tosca.capabilities.Endpoint.Public

This capability represents a public endpoint which is accessible to the general internet (and its public IP address

ranges).

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 149 of 267

This public endpoint capability also can be used to create a floating (IP) address that the underlying network

assigns from a pool allocated from the application’s underlying public network. This floating address is managed

by the underlying network such that can be routed an application’s private address and remains reliable to

internet clients.

Shorthand Name Endpoint.Public

Type Qualified Name tosca:Endpoint.Public

Type URI tosca.capabilities.Endpoint.Public

5.4.5.1 Definition

tosca.capabilities.Endpoint.Public:

 derived_from: tosca.capabilities.Endpoint

 properties:

 # Change the default network_name to use the first public network found

 network_name:

 type: string

 default: PUBLIC

 constraints:

 - equal: PUBLIC

 floating:

 description: >

 indicates that the public address should be allocated from a pool of
floating IPs that are associated with the network.

 type: boolean

 default: false

 status: experimental

 dns_name:

 description: The optional name to register with DNS

 type: string

 required: false

 status: experimental

5.4.5.2 Additional requirements

 If the network_name is set to the reserved value PRIVATE or if the value is set to the name of network

(or subnetwork) that is not public (i.e., has non-public IP address ranges assigned to it) then TOSCA

Orchestrators SHALL treat this as an error.

 If a dns_name is set, TOSCA Orchestrators SHALL attempt to register the name in the (local) DNS registry

for the Cloud provider.

5.4.6 tosca.capabilities.Endpoint.Admin

This is the default TOSCA type that should be used or extended to define a specialized administrator endpoint

capability.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 150 of 267

Shorthand Name Endpoint.Admin

Type Qualified Name tosca:Endpoint.Admin

Type URI tosca.capabilities.Endpoint.Admin

5.4.6.1 Properties

Name Required Type Constraints Description

None N/A N/A N/A N/A

5.4.6.2 Definition

tosca.capabilities.Endpoint.Admin:

 derived_from: tosca.capabilities.Endpoint

 # Change Endpoint secure indicator to true from its default of false

 properties:

 secure:

 type: boolean

 default: true

 constraints:

 - equal: true

5.4.6.3 Additional requirements

 TOSCA Orchestrator implementations of Endpoint.Admin (and connections to it) SHALL assure that

network-level security is enforced if possible.

5.4.7 tosca.capabilities.Endpoint.Database

This is the default TOSCA type that should be used or extended to define a specialized database endpoint

capability.

Shorthand Name Endpoint.Database

Type Qualified Name tosca:Endpoint.Database

Type URI tosca.capabilities.Endpoint.Database

5.4.7.1 Properties

Name Required Type Constraints Description

None N/A N/A N/A N/A

5.4.7.2 Definition

tosca.capabilities.Endpoint.Database:

 derived_from: tosca.capabilities.Endpoint

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 151 of 267

5.4.8 tosca.capabilities.Attachment

This is the default TOSCA type that should be used or extended to define an attachment capability of a (logical)

infrastructure device node (e.g., BlockStorage node).

Shorthand Name Attachment

Type Qualified Name tosca:Attachment

Type URI tosca.capabilities.Attachment

5.4.8.1 Properties

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

5.4.8.2 Definition

tosca.capabilities.Attachment:

 derived_from: tosca.capabilities.Root

5.4.9 tosca.capabilities.OperatingSystem

This is the default TOSCA type that should be used to express an Operating System capability for a node.

Shorthand Name OperatingSystem

Type Qualified Name tosca:OperatingSystem

Type URI tosca.capabilities.OperatingSystem

5.4.9.1 Properties

Name Required Type Constraints Description

architecture no string None The Operating System (OS) architecture.

Examples of valid values include:
x86_32, x86_64, etc.

type no string None The Operating System (OS) type.

Examples of valid values include:
linux, aix, mac, windows, etc.

distribution no string None The Operating System (OS) distribution.

Examples of valid values for an “type” of “Linux” would
include: debian, fedora, rhel and ubuntu.

version no version None The Operating System version.

5.4.9.2 Definition

tosca.capabilities.OperatingSystem:

 derived_from: tosca.capabilities.Root

 properties:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 152 of 267

 architecture:

 type: string

 required: false

 type:

 type: string

 required: false

 distribution:

 type: string

 required: false

 version:

 type: version

 required: false

5.4.9.3 Additional Requirements

 Please note that the string values for the properties architecture, type and distribution SHALL be

normalized to lowercase by processors of the service template for matching purposes. For example, if a

“type” value is set to either “Linux”, “LINUX” or “linux” in a service template, the processor would

normalize all three values to “linux” for matching purposes.

5.4.10 tosca.capabilities.Scalable

This is the default TOSCA type that should be used to express a scalability capability for a node.

Shorthand Name Scalable

Type Qualified Name tosca:Scalable

Type URI tosca.capabilities.Scalable

5.4.10.1 Properties

Name Required Type Constraints Description

min_instances yes integer default: 1 This property is used to indicate the minimum number of
instances that should be created for the associated TOSCA
Node Template by a TOSCA orchestrator.

max_instances yes integer default: 1 This property is used to indicate the maximum number of
instances that should be created for the associated TOSCA
Node Template by a TOSCA orchestrator.

default_instances no integer N/A An optional property that indicates the requested default
number of instances that should be the starting number of
instances a TOSCA orchestrator should attempt to allocate.

Note: The value for this property MUST be in the range
between the values set for ‘min_instances’ and
‘max_instances’ properties.

5.4.10.2 Definition

tosca.capabilities.Scalable:

 derived_from: tosca.capabilities.Root

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 153 of 267

 properties:

 min_instances:

 type: integer

 default: 1

 max_instances:

 type: integer

 default: 1

 default_instances:

 type: integer

5.4.10.3 Notes

 The actual number of instances for a node may be governed by a separate scaling policy which

conceptually would be associated to either a scaling-capable node or a group of nodes in which it is

defined to be a part of. This is a planned future feature of the TOSCA Simple Profile and not currently

described.

5.4.11 tosca.capabilities.network.Bindable

A node type that includes the Bindable capability indicates that it can be bound to a logical network association

via a network port.

Shorthand Name network.Bindable

Type Qualified Name tosca:network.Bindable

Type URI tosca.capabilities.network.Bindable

5.4.11.1 Properties

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

5.4.11.2 Definition

tosca.capabilities.network.Bindable:

 derived_from: tosca.capabilities.Node

5.5 Requirement Types

There are no normative Requirement Types currently defined in this working draft. Typically, Requirements are

described against a known Capability Type

5.6 Relationship Types

5.6.1 tosca.relationships.Root

This is the default (root) TOSCA Relationship Type definition that all other TOSCA Relationship Types derive

from.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 154 of 267

5.6.1.1 Attributes

Name Required Type Constraints Description

tosca_id yes string None A unique identifier of the realized instance of a Relationship
Template that derives from any TOSCA normative type.

tosca_name yes string None This attribute reflects the name of the Relationship Template as
defined in the TOSCA service template. This name is not unique
to the realized instance model of corresponding deployed
application as each template in the model can result in one or
more instances (e.g., scaled) when orchestrated to a provider
environment.

state yes string default: initial The state of the relationship instance. See section “Relationship
States” for allowed values.

5.6.1.2 Definition

tosca.relationships.Root:

 description: The TOSCA root Relationship Type all other TOSCA base Relationship
Types derive from

 attributes:

 tosca_id:

 type: string

 tosca_name:

 type: string

 interfaces:

 Configure:

 type: tosca.interfaces.relationship.Configure

5.6.2 tosca.relationships.DependsOn

This type represents a general dependency relationship between two nodes.

Shorthand Name DependsOn

Type Qualified Name tosca:DependsOn

Type URI tosca.relationships.DependsOn

5.6.2.1 Definition

tosca.relationships.DependsOn:

 derived_from: tosca.relationships.Root

 valid_target_types: [tosca.capabilities.Node]

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 155 of 267

5.6.3 tosca.relationships.HostedOn

This type represents a hosting relationship between two nodes.

Shorthand Name HostedOn

Type Qualified Name tosca:HostedOn

Type URI tosca.relationships.HostedOn

5.6.3.1 Definition

tosca.relationships.HostedOn:

 derived_from: tosca.relationships.Root

 valid_target_types: [tosca.capabilities.Container]

5.6.4 tosca.relationships.ConnectsTo

This type represents a network connection relationship between two nodes.

Shorthand Name ConnectsTo

Type Qualified Name tosca:ConnectsTo

Type URI tosca.relationships.ConnectsTo

5.6.4.1 Definition

tosca.relationships.ConnectsTo:

 derived_from: tosca.relationships.Root

 valid_target_types: [tosca.capabilities.Endpoint]

 properties:

 credential:

 type: tosca.datatypes.Credential

 required: false

5.6.4.2 Properties

Name Required Type Constraints Description

credential no Credential None The security credential to use to present to the target endpoint to
for either authentication or authorization purposes.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 156 of 267

5.6.5 tosca.relationships.AttachesTo

This type represents an attachment relationship between two nodes. For example, an AttachesTo relationship

type would be used for attaching a storage node to a Compute node.

Shorthand Name AttachesTo

Type Qualified Name tosca:AttachesTo

Type URI tosca.relationships.AttachesTo

5.6.5.1 Properties

Name Required Type Constraints Description

location yes string min_length: 1 The relative location (e.g., path on the file system), which
provides the root location to address an attached node.
e.g., a mount point / path such as ‘/usr/data’

Note: The user must provide it and it cannot be “root”.

device no string None The logical device name which for the attached device (which
is represented by the target node in the model).
e.g., ‘/dev/hda1’

5.6.5.2 Attributes

Name Required Type Constraints Description

device no string None The logical name of the device as exposed to the instance.
Note: A runtime property that gets set when the model gets
instantiated by the orchestrator.

5.6.5.3 Definition

tosca.relationships.AttachesTo:

 derived_from: tosca.relationships.Root

 valid_target_types: [tosca.capabilities.Attachment]

 properties:

 location:

 type: string

 constraints:

 - min_length: 1

 device:

 type: string

 required: false

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 157 of 267

5.6.6 tosca.relationships.RoutesTo

This type represents an intentional network routing between two Endpoints in different networks.

Shorthand Name RoutesTo

Type Qualified Name tosca:RoutesTo

Type URI tosca.relationships.RoutesTo

5.6.6.1 Definition

tosca.relationships.RoutesTo:

 derived_from: tosca.relationships.ConnectsTo

 valid_target_types: [tosca.capabilities.Endpoint]

5.7 Interface Types

Interfaces are reusable entities that define a set of operations that that can be included as part of a Node type or
Relationship Type definition. Each named operations may have code or scripts associated with them that
orchestrators can execute for when transitioning an application to a given state.

5.7.1 Additional Requirements

 Designers of Node or Relationship types are not required to actually provide/associate code or scripts

with every operation for a given interface it supports. In these cases, orchestrators SHALL consider that

a “No Operation” or “no-op”.

 The default behavior when providing scripts for an operation in a sub-type (sub-class) or a template of

an existing type which already has a script provided for that operation SHALL be override. Meaning that

the subclasses’ script is used in place of the parent type’s script.

5.7.2 Best Practices

 When TOSCA Orchestrators substitute an implementation for an abstract node in a deployed service

template it SHOULD be able to present a confirmation to the submitter to confirm the implementation

chosen would be acceptable.

5.7.3 tosca.interfaces.Root

This is the default (root) TOSCA Interface Type definition that all other TOSCA Interface Types derive from.

5.7.3.1 Definition

tosca.interfaces.Root:

 description: The TOSCA root Interface Type all other TOSCA base Interface Types
derive from

5.7.4 tosca.interfaces.node.lifecycle.Standard

This lifecycle interface defines the essential, normative operations that TOSCA nodes may support.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 158 of 267

Shorthand Name Standard

Type Qualified Name tosca: Standard

Type URI tosca.interfaces.node.lifecycle.Standard

5.7.4.1 Definition

tosca.interfaces.node.lifecycle.Standard:

 derived_from: tosca.interfaces.Root

 create:

 description: Standard lifecycle create operation.

 configure:

 description: Standard lifecycle configure operation.

 start:

 description: Standard lifecycle start operation.

 stop:

 description: Standard lifecycle stop operation.

 delete:

 description: Standard lifecycle delete operation.

5.7.4.2 Create operation

The create operation is generally used to create the resource or service the node represents in the topology.
TOSCA orchestrators expect node templates to provide either a deployment artifact or an implementation artifact
of a defined artifact type that it is able to process. This specification defines normative deployment and
implementation artifact types all TOSCA Orchestrators are expected to be able to process to support application
portability.

5.7.4.3 TOSCA Orchestrator processing of Deployment artifacts

TOSCA Orchestrators, when encountering a deployment artifact on the create operation; will automatically
attempt to deploy the artifact based upon its artifact type. This means that no implementation artifacts (e.g.,
scripts) are needed on the create operation to provide commands that deploy or install the software.

For example, if a TOSCA Orchestrator is processing an application with a node of type SoftwareComponent and
finds that the node’s template has a create operation that provides a filename (or references to an artifact which
describes a file) of a known TOSCA deployment artifact type such as an Open Virtualization Format (OVF) image
it will automatically deploy that image into the SoftwareComponent’s host Compute node.

5.7.4.4 Operation sequencing and node state

The following diagrams show how TOSCA orchestrators sequence the operations of the Standard lifecycle in
normal node startup and shutdown procedures.

The following key should be used to interpret the diagrams:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 159 of 267

5.7.4.4.1 Normal node startup sequence diagram

The following diagram shows how the TOSCA orchestrator would invoke operations on the Standard lifecycle to
startup a node.

5.7.4.4.2 Normal node shutdown sequence diagram

The following diagram shows how the TOSCA orchestrator would invoke operations on the Standard lifecycle to
shut down a node.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 160 of 267

5.7.5 tosca.interfaces.relationship.Configure

The lifecycle interfaces define the essential, normative operations that each TOSCA Relationship Types may

support.

Shorthand Name Configure

Type Qualified Name tosca:Configure

Type URI tosca.interfaces.relationship.Configure

5.7.5.1 Definition

tosca.interfaces.relationship.Configure:

 derived_from: tosca.interfaces.Root

 pre_configure_source:

 description: Operation to pre-configure the source endpoint.

 pre_configure_target:

 description: Operation to pre-configure the target endpoint.

 post_configure_source:

 description: Operation to post-configure the source endpoint.

 post_configure_target:

 description: Operation to post-configure the target endpoint.

 add_target:

 description: Operation to notify the source node of a target node being added
via a relationship.

 add_source:

 description: Operation to notify the target node of a source node which is now
available via a relationship.

 description:

 target_changed:

 description: Operation to notify source some property or attribute of the target
changed

 remove_target:

 description: Operation to remove a target node.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 161 of 267

5.7.5.2 Invocation Conventions

TOSCA relationships are directional connecting a source node to a target node. When TOSCA Orchestrator
connects a source and target node together using a relationship that supports the Configure interface it will
“interleave” the operations invocations of the Configure interface with those of the node’s own Standard lifecycle
interface. This concept is illustrated below:

5.7.5.3 Normal node start sequence with Configure relationship operations

The following diagram shows how the TOSCA orchestrator would invoke Configure lifecycle operations in

conjunction with Standard lifecycle operations during a typical startup sequence on a node.

5.7.5.4 Node-Relationship configuration sequence

Depending on which side (i.e., source or target) of a relationship a node is on, the orchestrator will:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 162 of 267

Invoke either the pre_configure_source or pre_configure_target operation as supplied by the

relationship on the node.

Invoke the node’s configure operation.

Invoke either the post_configure_source or post_configure_target as supplied by the relationship

on the node.

Note that the pre_configure_xxx and post_configure_xxx are invoked only once per node instance.

5.7.5.4.1 Node-Relationship add, remove and changed sequence

Since a topology template contains nodes that can dynamically be added (and scaled), removed or changed as
part of an application instance, the Configure lifecycle includes operations that are invoked on node instances that
to notify and address these dynamic changes.

For example, a source node, of a relationship that uses the Configure lifecycle, will have the relationship
operations add_target, or remove_target invoked on it whenever a target node instance is added or removed

to the running application instance. In addition, whenever the node state of its target node changes, the
target_changed operation is invoked on it to address this change. Conversely, the add_source and

remove_source operations are invoked on the source node of the relationship.

5.7.5.5 Notes

 The target (provider) MUST be active and running (i.e., all its dependency stack MUST be fulfilled) prior

to invoking add_target

 In other words, all Requirements MUST be satisfied before it advertises its capabilities (i.e., the

attributes of the matched Capabilities are available).

 In other words, it cannot be “consumed” by any dependent node.

 Conversely, since the source (consumer) needs information (attributes) about any targets (and their

attributes) being removed before it actually goes away.

 The remove_target operation should only be executed if the target has had add_target executed. BUT

in truth we’re first informed about a target in pre_configure_source, so if we execute that the source

node should see remove_target called to cleanup.

 Error handling: If any node operation of the topology fails processing should stop on that node template

and the failing operation (script) should return an error (failure) code when possible.

5.8 Node Types

5.8.1 tosca.nodes.Root

The TOSCA Root Node Type is the default type that all other TOSCA base Node Types derive from. This allows

for all TOSCA nodes to have a consistent set of features for modeling and management (e.g., consistent
definitions for requirements, capabilities and lifecycle interfaces).

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 163 of 267

Shorthand Name Root

Type Qualified Name tosca:Root

Type URI tosca.nodes.Root

5.8.1.1 Properties

Name Required Type Constraints Description

N/A N/A N/A N/A The TOSCA Root Node type has no specified properties.

5.8.1.2 Attributes

Name Required Type Constraints Description

tosca_id yes string None A unique identifier of the realized instance of a Node Template
that derives from any TOSCA normative type.

tosca_name yes string None This attribute reflects the name of the Node Template as
defined in the TOSCA service template. This name is not unique
to the realized instance model of corresponding deployed
application as each template in the model can result in one or
more instances (e.g., scaled) when orchestrated to a provider
environment.

state yes string default: initial The state of the node instance. See section “Node States” for
allowed values.

5.8.1.3 Definition

tosca.nodes.Root:

 description: The TOSCA Node Type all other TOSCA base Node Types derive from

 attributes:

 tosca_id:

 type: string

 tosca_name:

 type: string

 state:

 type: string

 capabilities:

 feature:

 type: tosca.capabilities.Node

 requirements:

 - dependency:

 capability: tosca.capabilities.Node

 node: tosca.nodes.Root

 relationship: tosca.relationships.DependsOn

 occurrences: [0, UNBOUNDED]

 interfaces:

 Standard:

 type: tosca.interfaces.node.lifecycle.Standard

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 164 of 267

5.8.1.4 Additional Requirements

 All Node Type definitions that wish to adhere to the TOSCA Simple Profile SHOULD extend from the TOSCA

Root Node Type to be assured of compatibility and portability across implementations.

5.8.2 tosca.nodes.Compute

The TOSCA Compute node represents one or more real or virtual processors of software applications or services

along with other essential local resources. Collectively, the resources the compute node represents can logically

be viewed as a (real or virtual) “server”.

Shorthand Name Compute

Type Qualified Name tosca:Compute

Type URI tosca.nodes.Compute

5.8.2.1 Properties

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

5.8.2.2 Attributes

Name Required Type Constraints Description

private_address no string None The primary private IP address assigned by the cloud provider
that applications may use to access the Compute node.

public_address no string None The primary public IP address assigned by the cloud provider
that applications may use to access the Compute node.

networks no map of
NetworkInfo

None The list of logical networks assigned to the compute host
instance and information about them.

ports no map of
PortInfo

None The list of logical ports assigned to the compute host instance
and information about them.

5.8.2.3 Definition

tosca.nodes.Compute:

 derived_from: tosca.nodes.Root

 attributes:

 private_address:

 type: string

 public_address:

 type: string

 networks:

 type: map

 entry_schema:

 type: tosca.datatypes.network.NetworkInfo

 ports:

 type: map

 entry_schema:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 165 of 267

 type: tosca.datatypes.network.PortInfo

 requirements:

 - local_storage:

 capability: tosca.capabilities.Attachment

 node: tosca.nodes.BlockStorage

 relationship: tosca.relationships.AttachesTo

 occurrences: [0, UNBOUNDED]

 capabilities:

 host:

 type: tosca.capabilities.Container

 valid_source_types: [tosca.nodes.SoftwareComponent]

 endpoint:

 type: tosca.capabilities.Endpoint.Admin

 os:

 type: tosca.capabilities.OperatingSystem

 scalable:

 type: tosca.capabilities.Scalable

 binding:

 type: tosca.capabilities.network.Bindable

5.8.2.4 Additional Requirements

 The underlying implementation of the Compute node SHOULD have the ability to instantiate guest

operating systems (either actual or virtualized) based upon the OperatingSystem capability properties if

they are supplied in the a node template derived from the Compute node type.

5.8.3 tosca.nodes.SoftwareComponent

The TOSCA SoftwareComponent node represents a generic software component that can be managed and run

by a TOSCA Compute Node Type.

Shorthand Name SoftwareComponent

Type Qualified Name tosca:SoftwareComponent

Type URI tosca.nodes.SoftwareComponent

5.8.3.1 Properties

Name Required Type Constraints Description

component_version no version None The optional software component’s version.

admin_credential no Credential None The optional credential that can be used to authenticate to the
software component.

5.8.3.2 Attributes

Name Requi
red

Type Constraints Description

N/A N/A N/A N/A N/A

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 166 of 267

5.8.3.3 Definition

tosca.nodes.SoftwareComponent:

 derived_from: tosca.nodes.Root

 properties:

 # domain-specific software component version

 component_version:

 type: version

 required: false

 admin_credential:

 type: tosca.datatypes.Credential

 required: false

 requirements:

 - host:

 capability: tosca.capabilities.Container

 node: tosca.nodes.Compute

 relationship: tosca.relationships.HostedOn

5.8.3.4 Additional Requirements

 Nodes that can directly be managed and run by a TOSCA Compute Node Type SHOULD extend from this

type.

5.8.4 tosca.nodes.WebServer

This TOSA WebServer Node Type represents an abstract software component or service that is capable of

hosting and providing management operations for one or more WebApplication nodes.

Shorthand Name WebServer

Type Qualified Name tosca:WebServer

Type URI tosca.nodes.WebServer

5.8.4.1 Properties

Name Required Type Constraints Description

None N/A N/A N/A N/A

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 167 of 267

5.8.4.2 Definition

tosca.nodes.WebServer:

 derived_from: tosca.nodes.SoftwareComponent

 capabilities:

 # Private, layer 4 endpoints

 data_endpoint: tosca.capabilities.Endpoint

 admin_endpoint: tosca.capabilities.Endpoint.Admin

 host:

 type: tosca.capabilities.Container

 valid_source_types: [tosca.nodes.WebApplication]

5.8.4.3 Additional Requirements

 This node SHALL export both a secure endpoint capability (i.e., admin_endpoint), typically for

administration, as well as a regular endpoint (i.e., data_endpoint) for serving data.

5.8.5 tosca.nodes.WebApplication

The TOSCA WebApplication node represents a software application that can be managed and run by a TOSCA

WebServer node. Specific types of web applications such as Java, etc. could be derived from this type.

Shorthand Name WebApplication

Type Qualified Name tosca: WebApplication

Type URI tosca.nodes.WebApplication

5.8.5.1 Properties

Name Required Type Constraints Description

context_root no string None The web application’s context root which designates the
application’s URL path within the web server it is hosted
on.

5.8.5.2 Definition

tosca.nodes.WebApplication:

 derived_from: tosca.nodes.Root

 properties:

 context_root:

 type: string

 capabilities:

 app_endpoint:

 type: tosca.capabilities.Endpoint

 requirements:

 - host:

 capability: tosca.capabilities.Container

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 168 of 267

 node: tosca.nodes.WebServer

 relationship: tosca.relationships.HostedOn

5.8.6 tosca.nodes.DBMS

The TOSCA DBMS node represents a typical relational, SQL Database Management System software component

or service.

5.8.6.1 Properties

Name Required Type Constraints Description

root_password no string None The optional root password for the DBMS server.

port no integer None The DBMS server’s port.

5.8.6.2 Definition

tosca.nodes.DBMS:

 derived_from: tosca.nodes.SoftwareComponent

 properties:

 root_password:

 type: string

 required: false

 description: the optional root password for the DBMS service

 port:

 type: integer

 required: false

 description: the port the DBMS service will listen to for data and requests

 capabilities:

 host:

 type: tosca.capabilities.Container

 valid_source_types: [tosca.nodes.Database]

5.8.7 tosca.nodes.Database

The TOSCA Database node represents a logical database that can be managed and hosted by a TOSCA DBMS

node.

Shorthand Name Database

Type Qualified Name tosca:Database

Type URI tosca.nodes.Database

5.8.7.1 Properties

Name Required Type Constraints Description

name yes string None The logical database Name

port no integer None The port the database service will use to listen for incoming
data and requests.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 169 of 267

Name Required Type Constraints Description

user no string None The special user account used for database administration.

password no string None The password associated with the user account provided in the
‘user’ property.

5.8.7.2 Definition

tosca.nodes.Database:

 derived_from: tosca.nodes.Root

 properties:

 name:

 type: string

 description: the logical name of the database

 port:

 type: integer

 description: the port the underlying database service will listen to for data

 user:

 type: string

 description: the optional user account name for DB administration

 required: false

 password:

 type: string

 description: the optional password for the DB user account

 required: false

 requirements:

 - host:

 capability: tosca.capabilities.Container

 node: tosca.nodes.DBMS

 relationship: tosca.relationships.HostedOn

 capabilities:

 database_endpoint:

 type: tosca.capabilities.Endpoint.Database

5.8.8 tosca.nodes.ObjectStorage

The TOSCA ObjectStorage node represents storage that provides the ability to store data as objects (or BLOBs

of data) without consideration for the underlying filesystem or devices.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 170 of 267

Shorthand Name ObjectStorage

Type Qualified Name tosca:ObjectStorage

Type URI tosca.nodes.ObjectStorage

5.8.8.1 Properties

Name Required Type Constraints Description

name yes string None The logical name of the object store (or container).

size no scalar-
unit.size

greater_or_equal:
0 GB

The requested initial storage size (default unit is in
Gigabytes).

maxsize no scalar-
unit.size

greater_or_equal:
0 GB

The requested maximum storage size (default unit is in
Gigabytes).

5.8.8.2 Definition

tosca.nodes.ObjectStorage:

 derived_from: tosca.nodes.Root

 properties:

 name:

 type: string

 size:

 type: scalar-unit.size

 constraints:

 - greater_or_equal: 0 GB

 maxsize:

 type: scalar-unit.size

 constraints:

 - greater_or_equal: 0 GB

 capabilities:

 storage_endpoint:

 type: tosca.capabilities.Endpoint

5.8.8.3 Notes:

 Subclasses of the tosca.nodes.ObjectStorage node type may impose further constraints on

properties. For example, a subclass may constrain the (minimum or maximum) length of the ‘name’

property or include a regular expression to constrain allowed characters used in the ‘name’ property.

5.8.9 tosca.nodes.BlockStorage

The TOSCA BlockStorage node currently represents a server-local block storage device (i.e., not shared)

offering evenly sized blocks of data from which raw storage volumes can be created.

Note: In this draft of the TOSCA Simple Profile, distributed or Network Attached Storage (NAS) are not yet

considered (nor are clustered file systems), but the TC plans to do so in future drafts.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 171 of 267

Shorthand Name BlockStorage

Type Qualified Name tosca:BlockStorage

Type URI tosca.nodes.BlockStorage

5.8.9.1 Properties

Name Required Type Constraints Description

size yes * scalar-
unit.size

greater_or_equal
: 1 MB

The requested storage size (default unit is MB).

* Note:

 Required when an existing volume
(i.e., volume_id) is not available.

 If volume_id is provided, size is
ignored. Resize of existing volumes is
not considered at this time.

volume_id no string None ID of an existing volume (that is in the
accessible scope of the requesting application).

snapshot_id no string None Some identifier that represents an existing
snapshot that should be used when creating
the block storage (volume).

5.8.9.2 Attributes

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

5.8.9.3 Definition

tosca.nodes.BlockStorage:

 derived_from: tosca.nodes.Root

 properties:

 size:

 type: scalar-unit.size

 constraints:

 - greater_or_equal: 1 MB

 volume_id:

 type: string

 required: false

 snapshot_id:

 type: string

 required: false

 capabilities:

 attachment:

 type: tosca.capabilities.Attachment

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 172 of 267

5.8.9.4 Additional Requirements

 The size property is required when an existing volume (i.e., volume_id) is not available. However, if the

property volume_id is provided, the size property is ignored.

5.8.9.5 Notes

 Resize is of existing volumes is not considered at this time.

 It is assumed that the volume contains a single filesystem that the operating system (that is hosting an

associate application) can recognize and mount without additional information (i.e., it is operating

system independent).

 Currently, this version of the Simple Profile does not consider regions (or availability zones) when

modeling storage.

5.8.10 tosca.nodes.Container.Runtime

The TOSCA Container Runtime node represents operating system-level virtualization technology used to run

multiple application services on a single Compute host.

Shorthand Name Container.Runtime

Type Qualified Name tosca:Container.Runtime

Type URI tosca.nodes.Container.Runtime

5.8.10.1 Definition

tosca.nodes.Container.Runtime:

 derived_from: tosca.nodes.SoftwareComponent

 capabilities:

 host:

 type: tosca.capabilities.Container

 scalable:

 type: tosca.capabilities.Scalable

5.8.11 tosca.nodes.Container.Application

The TOSCA Container Application node represents an application that requires Container-level virtualization

technology.

Shorthand Name Container.Application

Type Qualified Name tosca:Container.Application

Type URI tosca.nodes.Container.Application

5.8.11.1 Definition

tosca.nodes.Container.Application:

 derived_from: tosca.nodes.Root

 requirements:

 - host:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 173 of 267

 capability: tosca.capabilities.Container

 node: tosca.nodes.Container

 relationship: tosca.relationships.HostedOn

5.8.12 tosca.nodes.LoadBalancer

The TOSCA Load Balancer node represents logical function that be used in conjunction with a Floating Address

to distribute an application’s traffic (load) across a number of instances of the application (e.g., for a clustered or

scaled application).

Shorthand Name LoadBalancer

Type Qualified Name tosca:LoadBalancer

Type URI tosca.nodes.LoadBalancer

5.8.12.1 Definition

tosca.nodes.LoadBalancer:

 derived_from: tosca.nodes.Root

 properties:

 algorithm:

 type: string

 required: false

 status: experimental

 capabilities:

 client:

 type: tosca.capabilities.Endpoint.Public

 occurrences: [0, UNBOUNDED]

 description: the Floating (IP) client’s on the public network can connect to

 requirements:

 - application:

 capability: tosca.capabilities.Endpoint

 relationship: tosca.relationships.RoutesTo

 occurrences: [0, UNBOUNDED]

 description: Connection to one or more load balanced applications

5.8.12.2 Notes:

 A LoadBalancer node can still be instantiated and managed independently of any applications it would

serve; therefore, the load balancer’s application requirement allows for zero occurrences.

5.9 Group Types

TOSCA Group Types represent logical groupings of TOSCA nodes that have an implied membership relationship
and may need to be orchestrated or managed together to achieve some result. Some use cases being developed
by the TOSCA TC use groups to apply TOSCA policies for software placement and scaling while other use cases
show groups can be used to describe cluster relationships.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 174 of 267

Note: Additional normative TOSCA Group Types and use cases for them will be developed in future drafts of this
specification.

5.9.1 tosca.groups.Root

This is the default (root) TOSCA Group Type definition that all other TOSCA base Group Types derive from.

5.9.1.1 Definition

tosca.groups.Root:

 description: The TOSCA Group Type all other TOSCA Group Types derive from

 interfaces:

 Standard:

 type: tosca.interfaces.node.lifecycle.Standard

5.9.1.2 Notes:

 Group operations are not necessarily tied directly to member nodes that are part of a group.

 Future versions of this specification will create sub types of the tosca.groups.Root type that will

describe how Group Type operations are to be orchestrated.

5.10 Policy Types

TOSCA Policy Types represent logical grouping of TOSCA nodes that have an implied relationship and need to
be orchestrated or managed together to achieve some result. Some use cases being developed by the TOSCA
TC use groups to apply TOSCA policies for software placement and scaling while other use cases show groups
can be used to describe cluster relationships.

5.10.1 tosca.policies.Root

This is the default (root) TOSCA Policy Type definition that all other TOSCA base Policy Types derive from.

5.10.1.1 Definition

tosca.policies.Root:

 description: The TOSCA Policy Type all other TOSCA Policy Types derive from

5.10.2 tosca.policies.Placement

This is the default (root) TOSCA Policy Type definition that is used to govern placement of TOSCA nodes or

groups of nodes.

5.10.2.1 Definition

tosca.policies.Placement:

 derived_from: tosca.policies.Root

 description: The TOSCA Policy Type definition that is used to govern placement of
TOSCA nodes or groups of nodes.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 175 of 267

5.10.3 tosca.policies.Scaling

This is the default (root) TOSCA Policy Type definition that is used to govern scaling of TOSCA nodes or groups of

nodes.

5.10.3.1 Definition

tosca.policies.Scaling:

 derived_from: tosca.policies.Root

 description: The TOSCA Policy Type definition that is used to govern scaling of
TOSCA nodes or groups of nodes.

5.10.4 tosca.policies.Update

This is the default (root) TOSCA Policy Type definition that is used to govern update of TOSCA nodes or groups of

nodes.

5.10.4.1 Definition

tosca.policies.Update:

 derived_from: tosca.policies.Root

 description: The TOSCA Policy Type definition that is used to govern update of
TOSCA nodes or groups of nodes.

5.10.5 tosca.policies.Performance

This is the default (root) TOSCA Policy Type definition that is used to declare performance requirements for

TOSCA nodes or groups of nodes.

5.10.5.1 Definition

tosca.policies.Performance:

 derived_from: tosca.policies.Root

 description: The TOSCA Policy Type definition that is used to declare performance
requirements for TOSCA nodes or groups of nodes.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 176 of 267

6 TOSCA Cloud Service Archive (CSAR) format
Except for the examples, this section is normative and defines changes to the TOSCA archive format relative to

the TOSCA v1.0 XML specification.

TOSCA Simple Profile definitions along with all accompanying artifacts (e.g. scripts, binaries, configuration files)
can be packaged together in a CSAR file as already defined in the TOSCA version 1.0 specification [TOSCA-1.0].
In contrast to the TOSCA 1.0 CSAR file specification (see chapter 16 in [TOSCA-1.0]), this simple profile makes a
few simplifications both in terms of overall CSAR file structure as well as meta-file content as described below.

6.1 Overall Structure of a CSAR

A CSAR zip file is required to contain a TOSCA-Metadata directory, which in turn contains the TOSCA.meta

metadata file that provides entry information for a TOSCA orchestrator processing the CSAR file.

The CSAR file may contain other directories with arbitrary names and contents. Note that in contrast to the
TOSCA 1.0 specification, it is not required to put TOSCA definitions files into a special “Definitions” directory, but
definitions YAML files can be placed into any directory within the CSAR file.

6.2 TOSCA Meta File

The TOSCA.meta file structure follows the exact same syntax as defined in the TOSCA 1.0 specification. However,

it is only required to include block_0 (see section 16.2 in [TOSCA-1.0]) with the Entry-Definitions keyword

pointing to a valid TOSCA definitions YAML file that a TOSCA orchestrator should use as entry for parsing the
contents of the overall CSAR file.

Note that it is not required to explicitly list TOSCA definitions files in subsequent blocks of the TOSCA.meta file, but

any TOSCA definitions files besides the one denoted by the Entry-Definitions keyword can be found by a

TOSCA orchestrator by processing respective imports statements in the entry definitions file (or in recursively

imported files).

Note also that any additional artifact files (e.g. scripts, binaries, configuration files) do not have to be declared
explicitly through blocks in the TOSCA.meta file. Instead, such artifacts will be fully described and pointed to by

relative path names through artifact definitions in one of the TOSCA definitions files contained in the CSAR.

Due to the simplified structure of the CSAR file and TOSCA.meta file compared to TOSCA 1.0, the CSAR-Version

keyword listed in block_0 of the meta-file is required to denote version 1.1.

6.2.1 Example

The following listing represents a valid TOSCA.meta file according to this TOSCA Simple Profile specification.

TOSCA-Meta-File-Version: 1.0

CSAR-Version: 1.1

Created-By: OASIS TOSCA TC

Entry-Definitions: definitions/tosca_elk.yaml

This TOSCA.meta file indicates its simplified TOSCA Simple Profile structure by means of the CSAR-Version

keyword with value 1.1. The Entry-Definitions keyword points to a TOSCA definitions YAML file with the

name tosca_elk.yaml which is contained in a directory called definitions within the root of the CSAR file.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 177 of 267

7 TOSCA networking
 Except for the examples, this section is normative and describes how to express and control the application

centric network semantics available in TOSCA.

7.1 Networking and Service Template Portability

TOSCA Service Templates are application centric in the sense that they focus on describing application
components in terms of their requirements and interrelationships. In order to provide cloud portability, it is
important that a TOSCA Service Template avoid cloud specific requirements and details. However, at the same
time, TOSCA must provide the expressiveness to control the mapping of software component connectivity to the
network constructs of the hosting cloud.

TOSCA Networking takes the following approach.

1. The application component connectivity semantics and expressed in terms of Requirements and

Capabilities and the relationships between these. Service Template authors are able to express the

interconnectivity requirements of their software components in an abstract, declarative, and thus highly

portable manner.

2. The information provided in TOSCA is complete enough for a TOSCA implementation to fulfill the

application component network requirements declaratively (i.e., it contains information such as

communication initiation and layer 4 port specifications) so that the required network semantics can be

realized on arbitrary network infrastructures.

3. TOSCA Networking provides full control of the mapping of software component interconnectivity to the

networking constructs of the hosting cloud network independently of the Service Template, providing

the required separation between application and network semantics to preserve Service Template

portability.

4. Service Template authors have the choice of specifying application component networking requirements

in the Service Template or completely separating the application component to network mapping into a

separate document. This allows application components with explicit network requirements to express

them while allowing users to control the complete mapping for all software components which may not

have specific requirements. Usage of these two approaches is possible simultaneously and required to

avoid having to re-write components network semantics as arbitrary sets of components are assembled

into Service Templates.

5. Defining a set of network semantics which are expressive enough to address the most common

application connectivity requirements while avoiding dependencies on specific network technologies

and constructs. Service Template authors and cloud providers are able to express unique/non-portable

semantics by defining their own specialized network Requirements and Capabilities.

7.2 Connectivity Semantics

TOSCA’s application centric approach includes the modeling of network connectivity semantics from an
application component connectivity perspective. The basic premise is that applications contain components which
need to communicate with other components using one or more endpoints over a network stack such as TCP/IP,
where connectivity between two components is expressed as a <source component, source address, source port,
target component, target address, target port> tuple. Note that source and target components are added to the
traditional 4 tuple to provide the application centric information, mapping the network to the source or target
component involved in the connectivity.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 178 of 267

Software components are expressed as Node Types in TOSCA which can express virtually any kind of concept in
a TOSCA model. Node Types offering network based functions can model their connectivity using a special
Endpoint Capability, tosca.capabilities.Endpoint, designed for this purpose. Node Types which require an
Endpoint can specify this as a TOSCA requirement. A special Relationship Type, tosca.relationships.ConnectsTo,
is used to implicitly or explicitly relate the source Node Type’s endpoint to the required endpoint in the target node
type. Since tosca.capabilities.Endpoint and tosca.relationships.ConnectsTo are TOSCA types, they can be used
in templates and extended by subclassing in the usual ways, thus allowing the expression of additional semantics
as needed.

The following diagram shows how the TOSCA node, capability and relationship types enable modeling the

application layer decoupled from the network model intersecting at the Compute node using the Bindable

capability type.

As you can see, the Port node type effectively acts a broker node between the Network node description and a

host Compute node of an application.

7.3 Expressing connectivity semantics

This section describes how TOSCA supports the typical client/server and group communication semantics found
in application architectures.

7.3.1 Connection initiation semantics

The tosca.relationships.ConnectsTo expresses that requirement that a source application component needs to be
able to communicate with a target software component to consume the services of the target. ConnectTo is a
component interdependency semantic in the most general sense and does not try imply how the communication
between the source and target components is physically realized.

Application component intercommunication typically has conventions regarding which component(s) initiate the
communication. Connection initiation semantics are specified in tosca.capabilities.Endpoint. Endpoints at each
end of the tosca.relationships.ConnectsTo must indicate identical connection initiation semantics.

The following sections describe the normative connection initiation semantics for the
tosca.relationships.ConnectsTo Relationship Type.

7.3.1.1 Source to Target

The Source to Target communication initiation semantic is the most common case where the source component
initiates communication with the target component in order to fulfill an instance of the
tosca.relationships.ConnectsTo relationship. The typical case is a “client” component connecting to a “server”

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 179 of 267

component where the client initiates a stream oriented connection to a pre-defined transport specific port or set of
ports.

It is the responsibility of the TOSCA implementation to ensure the source component has a suitable network path
to the target component and that the ports specified in the respective tosca.capabilities.Endpoint are not blocked.
The TOSCA implementation may only represent state of the tosca.relationships.ConnectsTo relationship as
fulfilled after the actual network communication is enabled and the source and target components are in their
operational states.

Note that the connection initiation semantic only impacts the fulfillment of the actual connectivity and does not
impact the node traversal order implied by the tosca.relationships.ConnectsTo Relationship Type.

7.3.1.2 Target to Source

The Target to Source communication initiation semantic is a less common case where the target component
initiates communication with the source comment in order to fulfill an instance of the
tosca.relationships.ConnectsTo relationship. This “reverse” connection initiation direction is typically required due
to some technical requirements of the components or protocols involved, such as the requirement that SSH mush
only be initiated from target component in order to fulfill the services required by the source component.

It is the responsibility of the TOSCA implementation to ensure the source component has a suitable network path
to the target component and that the ports specified in the respective tosca.capabilities.Endpoint are not blocked.
The TOSCA implementation may only represent state of the tosca.relationships.ConnectsTo relationship as
fulfilled after the actual network communication is enabled and the source and target components are in their
operational states.

Note that the connection initiation semantic only impacts the fulfillment of the actual connectivity and does not
impact the node traversal order implied by the tosca.relationships.ConnectsTo Relationship Type.

7.3.1.3 Peer-to-Peer

The Peer-to-Peer communication initiation semantic allows any member of a group to initiate communication with
any other member of the same group at any time. This semantic typically appears in clustering and distributed
services where there is redundancy of components or services.

It is the responsibility of the TOSCA implementation to ensure the source component has a suitable network path
between all the member component instances and that the ports specified in the respective
tosca.capabilities.Endpoint are not blocked, and the appropriate multicast communication, if necessary, enabled.
The TOSCA implementation may only represent state of the tosca.relationships.ConnectsTo relationship as
fulfilled after the actual network communication is enabled such that at least one member component of the group
may reach any other member component of the group.

Endpoints specifying the Peer-to-Peer initiation semantic need not be related with a
tosca.relationships.ConnectsTo relationship for the common case where the same set of component instances
must communicate with each other.

Note that the connection initiation semantic only impacts the fulfillment of the actual connectivity and does not
impact the node traversal order implied by the tosca.relationships.ConnectsTo Relationship Type.

7.3.2 Specifying layer 4 ports

TOSCA Service Templates must express enough details about application component intercommunication to
enable TOSCA implementations to fulfill these communication semantics in the network infrastructure. TOSCA
currently focuses on TCP/IP as this is the most pervasive in today’s cloud infrastructures. The layer 4 ports

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 180 of 267

required for application component intercommunication are specified in tosca.capabilities.Endpoint. The union of
the port specifications of both the source and target tosca.capabilities.Endpoint which are part of the
tosca.relationships.ConnectsTo Relationship Template are interpreted as the effective set of ports which must be
allowed in the network communication.

The meaning of Source and Target port(s) corresponds to the direction of the respective
tosca.relationships.ConnectsTo.

7.4 Network provisioning

7.4.1 Declarative network provisioning

TOSCA orchestrators are responsible for the provisioning of the network connectivity for declarative TOCSA
Service Templates (Declarative TOCSA Service Templates don’t contain explicit plans). This means that the
TOSCA orchestrator must be able to infer a suitable logical connectivity model from the Service Template and
then decide how to provision the logical connectivity, referred to as “fulfillment”, on the available underlying
infrastructure. In order to enable fulfillment, sufficient technical details still must be specified, such as the required
protocols, ports and QOS information. TOSCA connectivity types, such as tosca.capabilities.Endpoint, provide
well defined means to express these details.

7.4.2 Implicit network fulfillment

TOSCA Service Templates are by default network agnostic. TOSCA’s application centric approach only requires
that a TOSCA Service Template contain enough information for a TOSCA orchestrator to infer suitable network
connectivity to meet the needs of the application components. Thus Service Template designers are not required
to be aware of or provide specific requirements for underlying networks. This approach yields the most portable
Service Templates, allowing them to be deployed into any infrastructure which can provide the necessary
component interconnectivity.

7.4.3 Controlling network fulfillment

TOSCA provides mechanisms for providing control over network fulfillment.

This mechanism allows the application network designer to express in service template or network template how
the networks should be provisioned.

For the use cases described below let’s assume we have a typical 3-tier application which is consisting of FE
(frontend), BE (backend) and DB (database) tiers. The simple application topology diagram can be shown below:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 181 of 267

Figure-5: Typical 3-Tier Network

7.4.3.1 Use case: OAM Network

When deploying an application in service provider’s on-premise cloud, it’s very common that one or more of the
application’s services should be accessible from an ad-hoc OAM (Operations, Administration and Management)
network which exists in the service provider backbone.

As an application network designer, I’d like to express in my TOSCA network template (which corresponds to my
TOSCA service template) the network CIDR block, start ip, end ip and segmentation ID (e.g. VLAN id).

The diagram below depicts a typical 3-tiers application with specific networking requirements for its FE tier server
cluster:

Frontend Tier

Backend Tier

VM
VMVM

VM

VMVM

VM

DB Tier

VM VM

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 182 of 267

7.4.3.2 Use case: Data Traffic network

The diagram below defines a set of networking requirements for the backend and DB tiers of the 3-tier app
mentioned above.

OAM Network

(173.10.10.0/24)

Frontend Tier

Backend Tier

VM
VMVM

VM

VMVM

VM

DB Tier

VM VM

1. I need all servers in FE tier

to be connected to an

existing OAM network with

CIDR: 173.10.10.0/24

2. Since OAM network is

shared between several

backbone services I must

bound my FE cluster to a

smaller IP address range

and set:

Start IP: 173.10.10.100

End IP: 173.10.10.150

3. I also want to segment my

traffic by setting a:

SEGEMANTATION ID: 1200

(e.g. VLAN, GRE Tunnel)

Other Backbone Services

S2
S3S1

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 183 of 267

7.4.3.3 Use case: Bring my own DHCP

The same 3-tier app requires for its admin traffic network to manage the IP allocation by its own DHCP which runs
autonomously as part of application domain.

For this purpose, the app network designer would like to express in TOSCA that the underlying provisioned
network will be set with DHCP_ENABLED=false. See this illustrated in the figure below:

OAM Network

(173.10.10.0/24)

A
d

m
in

 T
ra

ffic
 N

e
tw

o
rk

(1
1

.2
.2

.0
/1

6
)

Frontend Tier

Backend Tier

Router

VM
VMVM

VM

VMVM

VM

DB Tier

VM VM

4. My BE servers runs a legacy code

(millions of LOC for a network

appliance product) that expects:

- Data network on eth0

- Admin network on eth1

5. As part of a transition to IPv6,

we’ve started to “port” BE and DB

codebase to support IPv6 for the

Data traffic, hence I’d like to create

network with:

- IPv6 CIDR: 2001:db8:92a4:0:0:6b3a:180:abcd/64
D

a
ta

 T
ra

ff
ic

 N
e

tw
o

rk

(2
0

0
1

:d
b

8
:9

2
a

4
:0

:0
:6

b
3
a

:1
8

0
:a

b
c

d
/6

4
)

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 184 of 267

7.5 Network Types

7.5.1 tosca.nodes.network.Network

The TOSCA Network node represents a simple, logical network service.

Shorthand Name Network

Type Qualified Name tosca:Network

Type URI tosca.nodes.network.Network

7.5.1.1 Properties

Name Required Type Constraints Description

ip_version no integer valid_values: [4, 6]
default: 4

The IP version of the requested network

cidr no string None The cidr block of the requested network

start_ip no string None The IP address to be used as the 1
st

 one in a pool of addresses
derived from the cidr block full IP range

end_ip no
string

None The IP address to be used as the last one in a pool of addresses
derived from the cidr block full IP range

gateway_ip no string None The gateway IP address.

OAM Network

(173.10.10.0/24)

A
d

m
in

 T
ra

ffic
 N

e
tw

o
rk

(1
1
.2

.2
.0

/1
6
)

Frontend Tier

Backend Tier

Router

VM
VMVM

VM

VMVM

VM

DB Tier

VM VM

D
a

ta
 T

ra
ff

ic
 N

e
tw

o
rk

(2
0

0
1

:d
b

8
:9

2
a

4
:0

:0
:6

b
3

a
:1

8
0

:a
b

c
d

/6
4

)

6. The IPAM of the Admin

network is done by internal

DHCP service. Thus, I’d like

to create a segmented

network (broadcast domain)

by setting:

DHCP_ENABLED = false

DHCP

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 185 of 267

Name Required Type Constraints Description

network_name no string None An Identifier that represents an existing Network instance in
the underlying cloud infrastructure – OR – be used as the name
of the new created network.

 If network_name is provided along with network_id
they will be used to uniquely identify an existing network
and not creating a new one, means all other possible
properties are not allowed.

 network_name should be more convenient for using. But
in case that network name uniqueness is not guaranteed

then one should provide a network_id as well.

network_id no string None An Identifier that represents an existing Network instance in
the underlying cloud infrastructure.
This property is mutually exclusive with all other properties
except network_name.

 Appearance of network_id in network template
instructs the Tosca container to use an existing network
instead of creating a new one.

 network_name should be more convenient for using. But
in case that network name uniqueness is not guaranteed

then one should add a network_id as well.

 network_name and network_id can be still used
together to achieve both uniqueness and convenient.

segmentation_id no string None A segmentation identifier in the underlying cloud infrastructure

(e.g., VLAN id, GRE tunnel id). If the segmentation_id is

specified, the network_type or physical_network
properties should be provided as well.

network_type no string None Optionally, specifies the nature of the physical network in the
underlying cloud infrastructure. Examples are flat, vlan, gre or

vxlan. For flat and vlan types, physical_network should
be provided too.

physical_network no string None Optionally, identifies the physical network on top of which the
network is implemented, e.g. physnet1. This property is

required if network_type is flat or vlan.

dhcp_enabled no boolean default: true Indicates the TOSCA container to create a virtual network
instance with or without a DHCP service.

7.5.1.2 Attributes

Name Required Type Constraints Description

segmentation_id no string None The actual segmentation_id that is been assigned
to the network by the underlying cloud
infrastructure.

7.5.1.3 Definition

 tosca.nodes.network.Network:

 derived_from: tosca.nodes.Root

 properties:

 ip_version:

 type: integer

 required: false

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 186 of 267

 default: 4

 constraints:

 - valid_values: [4, 6]

 cidr:

 type: string

 required: false

 start_ip:

 type: string

 required: false

 end_ip:

 type: string

 required: false

 gateway_ip:

 type: string

 required: false

 network_name:

 type: string

 required: false

 network_id:

 type: string

 required: false

 segmentation_id:

 type: string

 required: false

 network_type:

 type: string

 required: false

 physical_network:

 type: string

 required: false

 capabilities:

 link:

 type: tosca.capabilities.network.Linkable

7.5.2 tosca.nodes.network.Port

The TOSCA Port node represents a logical entity that associates between Compute and Network normative

types.

The Port node type effectively represents a single virtual NIC on the Compute node instance.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 187 of 267

Shorthand Name Port

Type Qualified Name tosca:Port

Type URI tosca.nodes.network.Port

7.5.2.1 Properties

Name Required Type Constraints Description

ip_address no string None Allow the user to set a fixed IP address.

Note that this address is a request to the provider which they
will attempt to fulfill but may not be able to dependent on the
network the port is associated with.

order no integer greater_or_equal: 0
default: 0

The order of the NIC on the compute instance (e.g. eth2).

Note: when binding more than one port to a single compute
(aka multi vNICs) and ordering is desired, it is *mandatory*
that all ports will be set with an order value and. The order
values must represent a positive, arithmetic progression that
starts with 0 (e.g. 0, 1, 2, …, n).

is_default no boolean default: false Set is_default=true to apply a default gateway route on
the running compute instance to the associated network
gateway.

Only one port that is associated to single compute node can
set as default=true.

ip_range_start no string None Defines the starting IP of a range to be allocated for the
compute instances that are associated by this Port.
Without setting this property the IP allocation is done from
the entire CIDR block of the network.

ip_range_end no string None Defines the ending IP of a range to be allocated for the
compute instances that are associated by this Port.
Without setting this property the IP allocation is done from
the entire CIDR block of the network.

7.5.2.2 Attributes

Name Required Type Constraints Description

ip_address no string None The IP address would be assigned to the associated
compute instance.

7.5.2.3 Definition

 tosca.nodes.network.Port:

 derived_from: tosca.nodes.Root

 properties:

 ip_address:

 type: string

 required: false

 order:

 type: integer

 required: true

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 188 of 267

 default: 0

 constraints:

 - greater_or_equal: 0

 is_default:

 type: boolean

 required: false

 default: false

 ip_range_start:

 type: string

 required: false

 ip_range_end:

 type: string

 required: false

 requirements:

 - link:

 capability: tosca.capabilities.network.Linkable

 relationship: tosca.relationships.network.LinksTo

 - binding:

 capability: tosca.capabilities.network.Bindable

 relationship: tosca.relationships.network.BindsTo

7.5.3 tosca.capabilities.network.Linkable

A node type that includes the Linkable capability indicates that it can be pointed by

tosca.relationships.network.LinksTo relationship type.

Shorthand Name Linkable

Type Qualified Name tosca:.Linkable

Type URI tosca.capabilities.network.Linkable

7.5.3.1 Properties

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

7.5.3.2 Definition

tosca.capabilities.network.Linkable:

 derived_from: tosca.capabilities.Node

7.5.4 tosca.relationships.network.LinksTo

This relationship type represents an association relationship between Port and Network node types.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 189 of 267

Shorthand Name LinksTo

Type Qualified Name tosca:LinksTo

Type URI tosca.relationships.network.LinksTo

7.5.4.1 Definition

tosca.relationships.network.LinksTo:

 derived_from: tosca.relationships.DependsOn

 valid_target_types: [tosca.capabilities.network.Linkable]

7.5.5 tosca.relationships.network.BindsTo

This type represents a network association relationship between Port and Compute node types.

Shorthand Name network.BindsTo

Type Qualified Name tosca:BindsTo

Type URI tosca.relationships.network.BindsTo

7.5.5.1 Definition

tosca.relationships.network.BindsTo:

 derived_from: tosca.relationships.DependsOn

 valid_target_types: [tosca.capabilities.network.Bindable]

7.6 Network modeling approaches

7.6.1 Option 1: Specifying a network outside the application’s Service Template

This approach allows someone who understands the application’s networking requirements, mapping the details
of the underlying network to the appropriate node templates in the application.

The motivation for this approach is providing the application network designer a fine-grained control on how
networks are provisioned and stitched to its application by the TOSCA orchestrator and underlying cloud
infrastructure while still preserving the portability of his service template. Preserving the portability means here not
doing any modification in service template but just “plug-in” the desired network modeling. The network modeling
can reside in the same service template file but the best practice should be placing it in a separated self-
contained network template file.

This “pluggable” network template approach introduces a new normative node type called Port, capability called
tosca.capabilities.network.Linkable and relationship type called tosca.relationships.network.LinksTo.

The idea of the Port is to elegantly associate the desired compute nodes with the desired network nodes while not
“touching” the compute itself.

The following diagram series demonstrate the plug-ability strength of this approach.

Let’s assume an application designer has modeled a service template as shown in Figure 1 that describes the

application topology nodes (compute, storage, software components, etc.) with their relationships. The

designer ideally wants to preserve this service template and use it in any cloud provider environment without

any change.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 190 of 267

Figure-6: Generic Service Template

When the application designer comes to consider its application networking requirement they typically call the

network architect/designer from their company (who has the correct expertise).

The network designer, after understanding the application connectivity requirements and optionally the target

cloud provider environment, is able to model the network template and plug it to the service template as shown

in Figure 2:

Figure-7: Service template with network template A

When there’s a new target cloud environment to run the application on, the network designer is simply creates

a new network template B that corresponds to the new environmental conditions and provide it to the

application designer which packs it into the application CSAR.

Service

Template

 Service

Template

Network

Template

A

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 191 of 267

Figure-8: Service template with network template B

The node templates for these three networks would be defined as follows:

node_templates:

 frontend:

 type: tosca.nodes.Compute

 properties: # omitted for brevity

 backend:

 type: tosca.nodes.Compute

 properties: # omitted for brevity

 database:

 type: tosca.nodes.Compute

 properties: # omitted for brevity

 oam_network:

 type: tosca.nodes.network.Network

 properties: # omitted for brevity

 admin_network:

 type: tosca.nodes.network.Network

 properties: # omitted for brevity

 data_network:

Service

Template

Network

Template

B

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 192 of 267

 type: tosca.nodes.network.Network

 properties: # omitted for brevity

 # ports definition

 fe_oam_net_port:

 type: tosca.nodes.network.Port

 properties:

 is_default: true

 ip_range_start: { get_input: fe_oam_net_ip_range_start }

 ip_range_end: { get_input: fe_oam_net_ip_range_end }

 requirements:

 - link: oam_network

 - binding: frontend

 fe_admin_net_port:

 type: tosca.nodes.network.Port

 requirements:

 - link: admin_network

 - binding: frontend

 be_admin_net_port:

 type: tosca.nodes.network.Port

 properties:

 order: 0

 requirements:

 - link: admin_network

 - binding: backend

 be_data_net_port:

 type: tosca.nodes.network.Port

 properties:

 order: 1

 requirements:

 - link: data_network

 - binding: backend

 db_data_net_port:

 type: tosca.nodes.network.Port

 requirements:

 - link: data_network

 - binding: database

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 193 of 267

7.6.2 Option 2: Specifying network requirements within the application’s Service
Template

This approach allows the Service Template designer to map an endpoint to a logical network.

The use case shown below examines a way to express in the TOSCA YAML service template a typical 3-tier

application with their required networking modeling:

node_templates:

 frontend:

 type: tosca.nodes.Compute

 properties: # omitted for brevity

 requirements:

 - network_oam: oam_network

 - network_admin: admin_network

 backend:

 type: tosca.nodes.Compute

 properties: # omitted for brevity

 requirements:

 - network_admin: admin_network

 - network_data: data_network

 database:

 type: tosca.nodes.Compute

 properties: # omitted for brevity

 requirements:

 - network_data: data_network

 oam_network:

 type: tosca.nodes.network.Network

 properties:

 ip_version: { get_input: oam_network_ip_version }

 cidr: { get_input: oam_network_cidr }

 start_ip: { get_input: oam_network_start_ip }

 end_ip: { get_input: oam_network_end_ip }

 admin_network:

 type: tosca.nodes.network.Network

 properties:

 ip_version: { get_input: admin_network_ip_version }

 dhcp_enabled: { get_input: admin_network_dhcp_enabled }

 data_network:

 type: tosca.nodes.network.Network

 properties:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 194 of 267

 ip_version: { get_input: data_network_ip_version }

 cidr: { get_input: data_network_cidr }

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 195 of 267

8 Non-normative type definitions
This section defines non-normative types which are used only in examples and use cases in this specification
and are included only for completeness for the reader. Implementations of this specification are not required to
support these types for conformance.

8.1 Artifact Types

This section contains are non-normative Artifact Types used in use cases and examples.

8.1.1 tosca.artifacts.Deployment.Image.Container.Docker

This artifact represents a Docker “image” (a TOSCA deployment artifact type) which is a binary comprised of one
or more (a union of read-only and read-write) layers created from snapshots within the underlying Docker Union
File System.

8.1.1.1 Definition

tosca.artifacts.Deployment.Image.Container.Docker:

 derived_from: tosca.artifacts.Deployment.Image

 description: Docker Container Image

8.1.2 tosca.artifacts.Deployment.Image.VM.ISO

A Virtual Machine (VM) formatted as an ISO standard disk image.

8.1.2.1 Definition

tosca.artifacts.Deployment.Image.VM.ISO:

 derived_from: tosca.artifacts.Deployment.Image.VM

 description: Virtual Machine (VM) image in ISO disk format

 mime_type: application/octet-stream

 file_ext: [iso]

8.1.3 tosca.artifacts.Deployment.Image.VM.QCOW2

A Virtual Machine (VM) formatted as a QEMU emulator version 2 standard disk image.

8.1.3.1 Definition

tosca.artifacts.Deployment.Image.VM.QCOW2:

 derived_from: tosca.artifacts.Deployment.Image.VM

 description: Virtual Machine (VM) image in QCOW v2 standard disk format

 mime_type: application/octet-stream

 file_ext: [qcow2]

8.2 Capability Types

This section contains are non-normative Capability Types used in use cases and examples.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 196 of 267

8.2.1 tosca.capabilities.Container.Docker

The type indicates capabilities of a Docker runtime environment (client).

Shorthand Name Container.Docker

Type Qualified Name tosca:Container.Docker

Type URI tosca.capabilities.Container.Docker

8.2.1.1 Properties

Name Required Type Constraints Description

version no version[] None The Docker version capability (i.e., the versions supported by
the capability).

publish_all no boolean default: false Indicates that all ports (ranges) listed in the dockerfile using

the EXPOSE keyword be published.

publish_ports no list of
PortSpec

None List of ports mappings from source (Docker container) to
target (host) ports to publish.

expose_ports no list of
PortSpec

None List of ports mappings from source (Docker container) to
expose to other Docker containers (not accessible outside
host).

volumes no list of
string

None The dockerfile VOLUME command which is used to enable
access from the Docker container to a directory on the host
machine.

host_id no string None The optional identifier of an existing host resource that should
be used to run this container on.

volume_id no string None The optional identifier of an existing storage volume
(resource) that should be used to create the container’s
mount point(s) on.

8.2.1.2 Definition

tosca.capabilities.Container.Docker:

 derived_from: tosca.capabilities.Container

 properties:

 version:

 type: list

 required: false

 entry_schema: version

 publish_all:

 type: boolean

 default: false

 required: false

 publish_ports:

 type: list

 entry_schema: PortSpec

 required: false

 expose_ports:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 197 of 267

 type: list

 entry_schema: PortSpec

 required: false

 volumes:

 type: list

 entry_schema: string

 required: false

8.2.1.3 Notes

 When the expose_ports property is used, only the source and source_range properties of PortSpec would

be valid for supplying port numbers or ranges, the target and target_range properties would be ignored.

8.3 Node Types

This section contains non-normative node types referenced in use cases and examples. All additional Attributes,
Properties, Requirements and Capabilities shown in their definitions (and are not inherited from ancestor
normative types) are also considered to be non-normative.

8.3.1 tosca.nodes.Database.MySQL

8.3.1.1 Properties

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

8.3.1.2 Definition

tosca.nodes.Database.MySQL:

 derived_from: tosca.nodes.Database

 requirements:

 - host:

 node: tosca.nodes.DBMS.MySQL

8.3.2 tosca.nodes.DBMS.MySQL

8.3.2.1 Properties

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

8.3.2.2 Definition

tosca.nodes.DBMS.MySQL:

 derived_from: tosca.nodes.DBMS

 properties:

 port:

 description: reflect the default MySQL server port

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 198 of 267

 default: 3306

 root_password:

 # MySQL requires a root_password for configuration

 # Override parent DBMS definition to make this property required

 required: true

 capabilities:

 # Further constrain the ‘host’ capability to only allow MySQL databases

 host:

 valid_source_types: [tosca.nodes.Database.MySQL]

8.3.3 tosca.nodes.WebServer.Apache

8.3.3.1 Properties

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

8.3.3.2 Definition

tosca.nodes.WebServer.Apache:

 derived_from: tosca.nodes.WebServer

8.3.4 tosca.nodes.WebApplication.WordPress

This section defines a non-normative Node type for the WordPress [WordPress] application.

8.3.4.1 Properties

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

8.3.4.2 Definition

tosca.nodes.WebApplication.WordPress:

 derived_from: tosca.nodes.WebApplication

 properties:

 admin_user:

 type: string

 admin_password:

 type: string

 db_host:

 type: string

 requirements:

 - database_endpoint:

 capability: tosca.capabilities.Endpoint.Database

 node: tosca.nodes.Database

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 199 of 267

 relationship: tosca.relationships.ConnectsTo

8.3.5 tosca.nodes.WebServer.Nodejs

This non-normative node type represents a Node.js [NodeJS] web application server.

8.3.5.1 Properties

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

8.3.5.2 Definition

tosca.nodes.WebServer.Nodejs:

 derived_from: tosca.nodes.WebServer

 properties:

 # Property to supply the desired implementation in the Github repository

 github_url:

 required: no

 type: string

 description: location of the application on the github.

 default: https://github.com/mmm/testnode.git

 interfaces:

 Standard:

 inputs:

 github_url:

 type: string

8.3.6 tosca.nodes.Container.Application.Docker

8.3.6.1 Properties

Name Required Type Constraints Description

N/A N/A N/A N/A N/A

8.3.6.2 Definition

tosca.nodes.Container.Application.Docker:

 derived_from: tosca.nodes.Container.Application

 requirements:

 - host:

 capability: tosca.capabilities.Container.Docker

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 200 of 267

9 Component Modeling Use Cases
This section is non-normative and includes use cases that explore how to model components and their

relationships using TOSCA Simple Profile in YAML.

9.1.1 Use Case: Exploring the HostedOn relationship using WebApplication and
WebServer

This use case examines the ways TOSCA YAML can be used to express a simple hosting relationship (i.e.,
HostedOn) using the normative TOSCA WebServer and WebApplication node types defined in this specification.

9.1.1.1 WebServer declares its “host” capability

For convenience, relevant parts of the normative TOSCA Node Type for WebServer are shown below:

tosca.nodes.WebServer

 derived_from: SoftwareComponent

 capabilities:

 ...

 host:

 type: tosca.capabilities.Container

 valid_source_types: [tosca.nodes.WebApplication]

As can be seen, the WebServer Node Type declares its capability to “contain” (i.e., host) other nodes using the

symbolic name “host” and providing the Capability Type tosca.capabilities.Container. It should be noted

that the symbolic name of “host” is not a reserved word, but one assigned by the type designer that implies at

or betokens the associated capability. The Container capability definition also includes a required list of valid

Node Types that can be contained by this, the WebServer, Node Type. This list is declared using the keyname of

valid_source_types and in this case it includes only allowed type WebApplication.

9.1.1.2 WebApplication declares its “host” requirement

The WebApplication node type needs to be able to describe the type of capability a target node would have to

provide in order to “host” it. The normative TOSCA capability type tosca.capabilities.Container is used to
describe all normative TOSCA hosting (i.e., container-containee pattern) relationships. As can be seen below, the
WebApplication accomplishes this by declaring a requirement with the symbolic name “host” with the capability

keyname set to tosca.capabilities.Container.

Again, for convenience, the relevant parts of the normative WebApplication Node Type are shown below:

tosca.nodes.WebApplication:

 derived_from: tosca.nodes.Root

 requirements:

 - host:

 capability: tosca.capabilities.Container

 node: tosca.nodes.WebServer

 relationship: tosca.relationships.HostedOn

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 201 of 267

9.1.1.2.1 Notes

 The symbolic name “host” is not a keyword and was selected for consistent use in TOSCA normative

node types to give the reader an indication of the type of requirement being referenced. A valid

HostedOn relationship could still be established between WebApplicaton and WebServer in a TOSCA

Service Template regardless of the symbolic name assigned to either the requirement or capability

declaration.

9.1.2 Use Case: Establishing a ConnectsTo relationship to WebServer

This use case examines the ways TOSCA YAML can be used to express a simple connection relationship (i.e.,
ConnectsTo) between some service derived from the SoftwareComponent Node Type, to the normative
WebServer node type defined in this specification.

The service template that would establish a ConnectsTo relationship as follows:

node_types:

 MyServiceType:

 derived_from: SoftwareComponent

 requirements:

 # This type of service requires a connection to a WebServer’s data_endpoint

 - connection1:

 node: WebServer

 relationship: ConnectsTo

 capability: Endpoint

topology_template:

 node_templates:

 my_web_service:

 type: MyServiceType

 ...

 requirements:

 - connection1:

 node: my_web_server

 my_web_server:

 # Note, the normative WebServer node type declares the “data_endpoint”

 # capability of type tosca.capabilities.Endpoint.

 type: WebServer

Since the normative WebServer Node Type only declares one capability of type tosca.capabilties.Endpoint

(or Endpoint, its shortname alias in TOSCA) using the symbolic name data_endpoint, the my_web_service

node template does not need to declare that symbolic name on its requirement declaration. If however, the

my_web_server node was based upon some other node type that declared more than one capability of type

Endpoint, then the capability keyname could be used to supply the desired symbolic name if necessary.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 202 of 267

9.1.2.1 Best practice

 It should be noted that the best practice for designing Node Types in TOSCA should not export two capabilities

of the same type if they truly offer different functionality (i.e., different capabilities) which should be

distinguished using different Capability Type definitions.

9.1.3 Use Case: Attaching (local) BlockStorage to a Compute node

This use case examines the ways TOSCA YAML can be used to express a simple AttachesTo relationship
between a Compute node and a locally attached BlockStorage node.

The service template that would establish an AttachesTo relationship follows:

node_templates:

 my_server:

 type: Compute

 ...

 requirements:

 # contextually this can only be a relationship type

 - local_storage:

 # capability is provided by Compute Node Type

 node: my_block_storage

 relationship:

 type: AttachesTo

 properties:

 location: /path1/path2

 # This maps the local requirement name ‘local_storage’ to the

 # target node’s capability name ‘attachment’

 my_block_storage:

 type: BlockStorage

 properties:

 size: 10 GB

9.1.4 Use Case: Reusing a BlockStorage Relationship using Relationship Type or
Relationship Template

This builds upon the previous use case (9.1.3) to examine how a template author could attach multiple Compute
nodes (templates) to the same BlockStorage node (template), but with slightly different property values for the
AttachesTo relationship.

Specifically, several notation options are shown (in this use case) that achieve the same desired result.

9.1.4.1 Simple Profile Rationale

Referencing an explicitly declared Relationship Template is a convenience of the Simple Profile that allows
template authors an entity to set, constrain or override the properties and operations as defined in its declared
(Relationship) Type much as allowed now for Node Templates. It is especially useful when a complex
Relationship Type (with many configurable properties or operations) has several logical occurrences in the same
Service (Topology) Template; allowing the author to avoid configuring these same properties and operations in
multiple Node Templates.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 203 of 267

9.1.4.2 Notation Style #1: Augment AttachesTo Relationship Type directly in each Node
Template

This notation extends the methodology used for establishing a HostedOn relationship, but allowing template
author to supply (dynamic) configuration and/or override of properties and operations.

Note: This option will remain valid for Simple Profile regardless of other notation (copy or aliasing) options being
discussed or adopted for future versions.

node_templates:

 my_block_storage:

 type: BlockStorage

 properties:

 size: 10

 my_web_app_tier_1:

 type: Compute

 requirements:

 - local_storage:

 node: my_block_storage

 relationship: MyAttachesTo

 # use default property settings in the Relationship Type definition

 my_web_app_tier_2:

 type: Compute

 requirements:

 - local_storage:

 node: my_block_storage

 relationship:

 type: MyAttachesTo

 # Override default property setting for just the ‘location’ property

 properties:

 location: /some_other_data_location

relationship_types:

 MyAttachesTo:

 derived_from: AttachesTo

 properties:

 location: /default_location

 interfaces:

 Configure:

 post_configure_target:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 204 of 267

 implementation: default_script.sh

9.1.4.3 Notation Style #2: Use the ‘template’ keyword on the Node Templates to specify
which named Relationship Template to use

This option shows how to explicitly declare different named Relationship Templates within the Service Template
as part of a relationship_templates section (which have different property values) and can be referenced by

different Compute typed Node Templates.

node_templates:

 my_block_storage:

 type: BlockStorage

 properties:

 size: 10

 my_web_app_tier_1:

 derived_from: Compute

 requirements:

 - local_storage:

 node: my_block_storage

 relationship: storage_attachesto_1

 my_web_app_tier_2:

 derived_from: Compute

 requirements:

 - local_storage:

 node: my_block_storage

 relationship: storage_attachesto_2

relationship_templates:

 storage_attachesto_1:

 type: MyAttachesTo

 properties:

 location: /my_data_location

 storage_attachesto_2:

 type: MyAttachesTo

 properties:

 location: /some_other_data_location

relationship_types:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 205 of 267

 MyAttachesTo:

 derived_from: AttachesTo

 interfaces:

 some_interface_name:

 some_operation:

 implementation: default_script.sh

9.1.4.4 Notation Style #3: Using the “copy” keyname to define a similar Relationship
Template

How does TOSCA make it easier to create a new relationship template that is mostly the same as one that exists
without manually copying all the same information? TOSCA provides the copy keyname as a convenient way to

copy an existing template definition into a new template definition as a starting point or basis for describing a new
definition and avoid manual copy. The end results are cleaner TOSCA Service Templates that allows the
description of only the changes (or deltas) between similar templates.

The example below shows that the Relationship Template named storage_attachesto_1 provides some

overrides (conceptually a large set of overrides) on its Type which the Relationship Template named

storage_attachesto_2 wants to “copy” before perhaps providing a smaller number of overrides.

node_templates:

 my_block_storage:

 type: BlockStorage

 properties:

 size: 10

 my_web_app_tier_1:

 derived_from: Compute

 requirements:

 - attachment:

 node: my_block_storage

 relationship: storage_attachesto_1

 my_web_app_tier_2:

 derived_from: Compute

 requirements:

 - attachment:

 node: my_block_storage

 relationship: storage_attachesto_2

relationship_templates:

 storage_attachesto_1:

 type: MyAttachesTo

 properties:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 206 of 267

 location: /my_data_location

 interfaces:

 some_interface_name:

 some_operation_name_1: my_script_1.sh

 some_operation_name_2: my_script_2.sh

 some_operation_name_3: my_script_3.sh

 storage_attachesto_2:

 # Copy the contents of the “storage_attachesto_1” template into this new one

 copy: storage_attachesto_1

 # Then change just the value of the location property

 properties:

 location: /some_other_data_location

relationship_types:

 MyAttachesTo:

 derived_from: AttachesTo

 interfaces:

 some_interface_name:

 some_operation:

 implementation: default_script.sh

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 207 of 267

10 Application Modeling Use Cases
This section is non-normative and includes use cases that show how to model Infrastructure-as-a-Service

(IaaS), Platform-as-a-Service (PaaS) and complete application uses cases using TOSCA Simple Profile in YAML.

10.1 Use cases

The actual source for many of the use cases listed below can by found under the following link:

https://github.com/openstack/heat-translator/tree/master/translator/tests/data

10.1.1 Overview

Name Description

Compute: Create a single
Compute instance with a
host Operating System

Introduces a TOSCA Compute node type which is used to stand up a single compute instance with a host
Operating System Virtual Machine (VM) image selected by the platform provider using the Compute node’s
properties.

Software Component 1:
Automatic deployment of a
Virtual Machine (VM) image
artifact

Introduces the SoftwareComponent node type which declares software that is hosted on a Compute

instance. In this case, the SoftwareComponent declares a VM image as a deployment artifact which
includes its own pre-packaged operating system and software. The TOSCA Orchestrator detects this known

deployment artifact type on the SoftwareComponent node template and automatically deploys it to
the Compute node.

BlockStorage-1: Attaching
Block Storage to a single
Compute instance

Demonstrates how to attach a TOSCA BlockStorage node to a Compute node using the normative

AttachesTo relationship.

BlockStorage-2: Attaching
Block Storage using a
custom Relationship Type

Demonstrates how to attach a TOSCA BlockStorage node to a Compute node using a custom

RelationshipType that derives from the normative AttachesTo relationship.

BlockStorage-3: Using a
Relationship Template of
type AttachesTo

Demonstrates how to attach a TOSCA BlockStorage node to a Compute node using a TOSCA

Relationship Template that is based upon the normative AttachesTo Relationship Type.

BlockStorage-4: Single Block
Storage shared by 2-Tier
Application with custom
AttachesTo Type and
implied relationships

This use case shows 2 Compute instances (2 tiers) with one BlockStorage node, and also uses a custom

AttachesTo Relationship that provides a default mount point (i.e., location) which the 1
st

 tier uses,
but the 2

nd
 tier provides a different mount point.

BlockStorage-5: Single Block
Storage shared by 2-Tier
Application with custom
AttachesTo Type and explicit
Relationship Templates

This use case is like the previous BlockStorage-4 use case, but also creates two relationship templates (one

for each tier) each of which provide a different mount point (i.e., location) which overrides the default
location defined in the custom Relationship Type.

BlockStorage-6: Multiple
Block Storage attached to
different Servers

This use case demonstrates how two different TOSCA BlockStorage nodes can be attached to two

different Compute nodes (i.e., servers) each using the normative AttachesTo relationship.

Object Storage 1: Creating
an Object Storage service

Introduces the TOSCA ObjectStorage node type and shows how it can be instantiated.

Network-1: Server bound to
a new network

Introduces the TOSCA Network and Port nodes used for modeling logical networks using the LinksTo

and BindsTo Relationship Types. In this use case, the template is invoked without an existing

network_name as an input property so a new network is created using the properties declared in the
Network node.

Network-2: Server bound to
an existing network

Shows how to use a network_name as an input parameter to the template to allow a server to be

associated with (i.e. bound to) an existing Network.

https://github.com/openstack/heat-translator/tree/master/translator/tests/data

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 208 of 267

Network-3: Two servers
bound to a single network

This use case shows how two servers (Compute nodes) can be associated with the same Network node

using two logical network Ports.

Network-4: Server bound to
three networks

This use case shows how three logical networks (Network nodes), each with its own IP address range,

can be associated with the same server (Compute node).

WebServer-DBMS-1:
WordPress [WordPress] +
MySQL, single instance

Shows how to host a TOSCA WebServer with a TOSCA WebApplication, DBMS and Database

Node Types along with their dependent HostedOn and ConnectsTo relationships.

WebServer-DBMS-2: Nodejs
with PayPal Sample App and
MongoDB on separate
instances

Instantiates a 2-tier application with Nodejs and its (PayPal sample) WebApplication on one tier

which connects a MongoDB database (which stores its application data) using a ConnectsTo
relationship.

Multi-Tier-1: Elasticsearch,
Logstash, Kibana (ELK)

Shows Elasticsearch, Logstash and Kibana (ELK) being used in a typical manner to collect,
search and monitor/visualize data from a running application.

This use case builds upon the previous Nodejs/MongoDB 2-tier application as the one being monitored.

The collectd and rsyslog components are added to both the WebServer and Database tiers which
work to collect data for Logstash.

In addition to the application tiers, a 3
rd

 tier is introduced with Logstash to collect data from the

application tiers. Finally a 4
th

 tier is added to search the Logstash data with Elasticsearch and

visualize it using Kibana.

Note: This use case also shows the convenience of using a single YAML macro (declared in the

dsl_definitions section of the TOSCA Service Template) on multiple Compute nodes.

Container-1: Containers
using Docker single
Compute instance
(Containers only)

Minimalist TOSCA Service Template description of 2 Docker containers linked to each other. Specifically,
one container runs wordpress and connects to second mysql database container both on a single server
(i.e., Compute instance). The use case also demonstrates how TOSCA declares and references Docker
images from the Docker Hub repository.

Variation 1: Docker Container nodes (only) providing their Docker Requirements allowing platform
(orchestrator) to select/provide the underlying Docker implementation (Capability).

10.1.2 Compute: Create a single Compute instance with a host Operating System

10.1.2.1 Description

This use case demonstrates how the TOSCA Simple Profile specification can be used to stand up a single
Compute instance with a guest Operating System using a normative TOSCA Compute node. The TOSCA

Compute node is declarative in that the service template describes both the processor and host operating system
platform characteristics (i.e., properties declared on the capability named “os” sometimes called a “flavor”) that

are desired by the template author. The cloud provider would attempt to fulfill these properties (to the best of its
abilities) during orchestration.

10.1.2.2 Features

This use case introduces the following TOSCA Simple Profile features:

 A node template that uses the normative TOSCA Compute Node Type along with showing an exemplary

set of its properties being configured.

 Use of the TOSCA Service Template inputs section to declare a configurable value the template user

may supply at runtime. In this case, the “host” property named “num_cpus” (of type integer) is

declared.

o Use of a property constraint to limit the allowed integer values for the “num_cpus” property to a

specific list supplied in the property declaration.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 209 of 267

 Use of the TOSCA Service Template outputs section to declare a value the template user may request at

runtime. In this case, the property named “instance_ip” is declared

o The “instance_ip” output property is programmatically retrieved from the Compute node’s

“public_address” attribute using the TOSCA Service Template-level get_attribute function.

10.1.2.3 Logical Diagram

10.1.2.4 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile that just defines a single compute instance and selects a
(guest) host Operating System from the Compute node’s properties. Note, this example
does not include default values on inputs properties.

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 node_templates:

 my_server:

 type: Compute

 capabilities:

 host:

 properties:

 disk_size: 10 GB

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 210 of 267

 num_cpus: { get_input: cpus }

 mem_size: 1 GB

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: ubuntu

 version: 12.04

 outputs:

 private_ip:

 description: The private IP address of the deployed server instance.

 value: { get_attribute: [my_server, private_address] }

10.1.2.5 Notes

 This use case uses a versioned, Linux Ubuntu distribution on the Compute node.

10.1.3 Software Component 1: Automatic deployment of a Virtual Machine (VM)
image artifact

10.1.3.1 Description

This use case demonstrates how the TOSCA SoftwareComponent node type can be used to declare software
that is packaged in a standard Virtual Machine (VM) image file format (i.e., in this case QCOW2) and is hosted on
a TOSCA Compute node (instance). In this variation, the SoftwareComponent declares a VM image as a
deployment artifact that includes its own pre-packaged operating system and software. The TOSCA Orchestrator
detects this known deployment artifact type on the SoftwareComponent node template and automatically deploys
it to the Compute node.

10.1.3.2 Features

This use case introduces the following TOSCA Simple Profile features:

 A node template that uses the normative TOSCA SoftwareComponent Node Type along with showing

an exemplary set of its properties being configured.

 Use of the TOSCA Service Template artifacts section to declare a Virtual Machine (VM) image artifact

type which is referenced by the SoftwareComponent node template.

 The VM file format, in this case QCOW2, includes its own guest Operating System (OS) and therefore

does not “require” a TOSCA OperatingSystem capability from the TOSCA Compute node.

10.1.3.3 Assumptions

This use case assumes the following:

 That the TOSCA Orchestrator (working with the Cloud provider’s underlying management services) is

able to instantiate a Compute node that has a hypervisor that supports the Virtual Machine (VM) image

format, in this case QCOW2, which should be compatible with many standard hypervisors such as XEN

and KVM.

 This is not a “bare metal” use case and assumes the existence of a hypervisor on the machine that is

allocated to “host” the Compute instance supports (e.g. has drivers, etc.) the VM image format in this

example.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 211 of 267

10.1.3.4 Logical Diagram

10.1.3.5 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA Simple Profile with a SoftwareComponent node with a declared Virtual machine
(VM) deployment artifact that automatically deploys to its host Compute node.

topology_template:

 node_templates:

 my_virtual_machine:

 type: SoftwareComponent

 artifacts:

 my_vm_image:

 file: images/fedora-18-x86_64.qcow2

 type: tosca.artifacts.Deployment.Image.VM.QCOW2

 requirements:

 - host: my_server

 # Automatically deploy the VM image referenced on the create operation

 interfaces:

 Standard:

 create: my_vm_image

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 212 of 267

 # Compute instance with no Operating System guest host

 my_server:

 type: Compute

 capabilities:

 # Note: no guest OperatingSystem requirements as these are in the image.

 host:

 properties:

 disk_size: 10 GB

 num_cpus: { get_input: cpus }

 mem_size: 4 GB

 outputs:

 private_ip:

 description: The private IP address of the deployed server instance.

 value: { get_attribute: [my_server, private_address] }

10.1.3.6 Notes

 The use of the type keyname on the artifact definition (within the my_virtual_machine node

template) to declare the ISO image deployment artifact type (i.e.,

tosca.artifacts.Deployment.Image.VM.ISO) is redundant since the file extension is “.iso” which

associated with this known, declared artifact type.

 This use case references a filename on the my_vm_image artifact, which indicates a Linux, Fedora 18, x86

VM image, only as one possible example.

10.1.4 Block Storage 1: Using the normative AttachesTo Relationship Type

10.1.4.1 Description

This use case demonstrates how to attach a TOSCA BlockStorage node to a Compute node using the

normative AttachesTo relationship.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 213 of 267

10.1.4.2 Logical Diagram

10.1.4.3 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile with server and attached block storage using the normative
AttachesTo Relationship Type.

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 storage_size:

 type: scalar-unit.size

 description: Size of the storage to be created.

 default: 1 GB

 storage_snapshot_id:

 type: string

 description: >

 Optional identifier for an existing snapshot to use when creating storage.

 storage_location:

 type: string

 description: Block storage mount point (filesystem path).

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 214 of 267

 node_templates:

 my_server:

 type: Compute

 capabilities:

 host:

 properties:

 disk_size: 10 GB

 num_cpus: { get_input: cpus }

 mem_size: 1 GB

 os:

 properties:

 architecture: x86_64

 type: linux

 distribution: fedora

 version: 18.0

 requirements:

 - local_storage:

 node: my_storage

 relationship:

 type: AttachesTo

 properties:

 location: { get_input: storage_location }

 my_storage:

 type: BlockStorage

 properties:

 size: { get_input: storage_size }

 snapshot_id: { get_input: storage_snapshot_id }

 outputs:

 private_ip:

 description: The private IP address of the newly created compute instance.

 value: { get_attribute: [my_server, private_address] }

 volume_id:

 description: The volume id of the block storage instance.

 value: { get_attribute: [my_storage, volume_id] }

10.1.5 Block Storage 2: Using a custom AttachesTo Relationship Type

10.1.5.1 Description

This use case demonstrates how to attach a TOSCA BlockStorage node to a Compute node using a custom

RelationshipType that derives from the normative AttachesTo relationship.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 215 of 267

10.1.5.2 Logical Diagram

10.1.5.3 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile with server and attached block storage using a custom
AttachesTo Relationship Type.

relationship_types:

 MyCustomAttachesTo:

 derived_from: AttachesTo

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 storage_size:

 type: scalar-unit.size

 description: Size of the storage to be created.

 default: 1 GB

 storage_snapshot_id:

 type: string

 description: >

 Optional identifier for an existing snapshot to use when creating storage.

 storage_location:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 216 of 267

 type: string

 description: Block storage mount point (filesystem path).

 node_templates:

 my_server:

 type: Compute

 capabilities:

 host:

 properties:

 disk_size: 10 GB

 num_cpus: { get_input: cpus }

 mem_size: 4 GB

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: Fedora

 version: 18.0

 requirements:

 - local_storage:

 node: my_storage

 # Declare custom AttachesTo type using the ‘relationship’ keyword

 relationship:

 type: MyCustomAttachesTo

 properties:

 location: { get_input: storage_location }

 my_storage:

 type: BlockStorage

 properties:

 size: { get_input: storage_size }

 snapshot_id: { get_input: storage_snapshot_id }

 outputs:

 private_ip:

 description: The private IP address of the newly created compute instance.

 value: { get_attribute: [my_server, private_address] }

 volume_id:

 description: The volume id of the block storage instance.

 value: { get_attribute: [my_storage, volume_id] }

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 217 of 267

10.1.6 Block Storage 3: Using a Relationship Template of type AttachesTo

10.1.6.1 Description

This use case demonstrates how to attach a TOSCA BlockStorage node to a Compute node using a TOSCA
Relationship Template that is based upon the normative AttachesTo Relationship Type.

10.1.6.2 Logical Diagram

10.1.6.3 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile with server and attached block storage using a named
Relationship Template for the storage attachment.

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 storage_size:

 type: scalar-unit.size

 description: Size of the storage to be created.

 default: 1 GB

 storage_location:

 type: string

 description: Block storage mount point (filesystem path).

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 218 of 267

 node_templates:

 my_server:

 type: Compute

 capabilities:

 host:

 properties:

 disk_size: 10 GB

 num_cpus: { get_input: cpus }

 mem_size: 4 GB

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: Fedora

 version: 18.0

 requirements:

 - local_storage:

 node: my_storage

 # Declare template to use with ‘relationship’ keyword

 relationship: storage_attachment

 my_storage:

 type: BlockStorage

 properties:

 size: { get_input: storage_size }

 relationship_templates:

 storage_attachment:

 type: AttachesTo

 properties:

 location: { get_input: storage_location }

 outputs:

 private_ip:

 description: The private IP address of the newly created compute instance.

 value: { get_attribute: [my_server, private_address] }

 volume_id:

 description: The volume id of the block storage instance.

 value: { get_attribute: [my_storage, volume_id] }

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 219 of 267

10.1.7 Block Storage 4: Single Block Storage shared by 2-Tier Application with
custom AttachesTo Type and implied relationships

10.1.7.1 Description

This use case shows 2 compute instances (2 tiers) with one BlockStorage node, and also uses a custom

AttachesTo Relationship that provides a default mount point (i.e., location) which the 1
st
 tier uses, but the 2

nd

tier provides a different mount point.

Please note that this use case assumes both Compute nodes are accessing different directories within the
shared, block storage node to avoid collisions.

10.1.7.2 Logical Diagram

10.1.7.3 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile with a Single Block Storage node shared by 2-Tier Application with custom

AttachesTo Type and implied relationships.

relationship_types:

 MyAttachesTo:

 derived_from: tosca.relationships.AttachesTo

 properties:

 location:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 220 of 267

 type: string

 default: /default_location

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 storage_size:

 type: scalar-unit.size

 default: 1 GB

 description: Size of the storage to be created.

 storage_snapshot_id:

 type: string

 description: >

 Optional identifier for an existing snapshot to use when creating storage.

 node_templates:

 my_web_app_tier_1:

 type: tosca.nodes.Compute

 capabilities:
 host:

 properties:

 disk_size: 10 GB

 num_cpus: { get_input: cpus }

 mem_size: 4096 MB

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: Fedora

 version: 18.0

 requirements:

 - local_storage:

 node: my_storage

 relationship: MyAttachesTo

 my_web_app_tier_2:

 type: tosca.nodes.Compute

 capabilities:

 host:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 221 of 267

 properties:

 disk_size: 10 GB

 num_cpus: { get_input: cpus }

 mem_size: 4096 MB

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: Fedora

 version: 18.0

 requirements:

 - local_storage:

 node: my_storage

 relationship:

 type: MyAttachesTo

 properties:

 location: /some_other_data_location

 my_storage:

 type: tosca.nodes.BlockStorage

 properties:

 size: { get_input: storage_size }

 snapshot_id: { get_input: storage_snapshot_id }

 outputs:

 private_ip_1:

 description: The private IP address of the application’s first tier.

 value: { get_attribute: [my_web_app_tier_1, private_address] }

 private_ip_2:

 description: The private IP address of the application’s second tier.

 value: { get_attribute: [my_web_app_tier_2, private_address] }

 volume_id:

 description: The volume id of the block storage instance.

 value: { get_attribute: [my_storage, volume_id] }

10.1.8 Block Storage 5: Single Block Storage shared by 2-Tier Application with
custom AttachesTo Type and explicit Relationship Templates

10.1.8.1 Description

This use case is like the Notation1 use case, but also creates two relationship templates (one for each tier) each

of which provide a different mount point (i.e., location) which overrides the default location defined in the

custom Relationship Type.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 222 of 267

Please note that this use case assumes both Compute nodes are accessing different directories within the
shared, block storage node to avoid collisions.

10.1.8.2 Logical Diagram

10.1.8.3 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile with a single Block Storage node shared by 2-Tier Application with custom

AttachesTo Type and explicit Relationship Templates.

relationship_types:

 MyAttachesTo:

 derived_from: tosca.relationships.AttachesTo

 properties:

 location:

 type: string

 default: /default_location

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 223 of 267

 storage_size:

 type: scalar-unit.size

 default: 1 GB

 description: Size of the storage to be created.

 storage_snapshot_id:

 type: string

 description: >

 Optional identifier for an existing snapshot to use when creating storage.

 storage_location:

 type: string

 description: >

 Block storage mount point (filesystem path).

 node_templates:

 my_web_app_tier_1:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties:

 disk_size: 10 GB

 num_cpus: { get_input: cpus }

 mem_size: 4096 MB

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: Fedora

 version: 18.0

 requirements:

 - local_storage:

 node: my_storage

 relationship: storage_attachesto_1

 my_web_app_tier_2:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties:

 disk_size: 10 GB

 num_cpus: { get_input: cpus }

 mem_size: 4096 MB

 os:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 224 of 267

 properties:

 architecture: x86_64

 type: Linux

 distribution: Fedora

 version: 18.0

 requirements:

 - local_storage:

 node: my_storage

 relationship: storage_attachesto_2

 my_storage:

 type: tosca.nodes.BlockStorage

 properties:

 size: { get_input: storage_size }

 snapshot_id: { get_input: storage_snapshot_id }

 relationship_templates:

 storage_attachesto_1:

 type: MyAttachesTo

 properties:

 location: /my_data_location

 storage_attachesto_2:

 type: MyAttachesTo

 properties:

 location: /some_other_data_location

 outputs:

 private_ip_1:

 description: The private IP address of the application’s first tier.

 value: { get_attribute: [my_web_app_tier_1, private_address] }

 private_ip_2:

 description: The private IP address of the application’s second tier.

 value: { get_attribute: [my_web_app_tier_2, private_address] }

 volume_id:

 description: The volume id of the block storage instance.

 value: { get_attribute: [my_storage, volume_id] }

10.1.9 Block Storage 6: Multiple Block Storage attached to different Servers

10.1.9.1 Description

This use case demonstrates how two different TOSCA BlockStorage nodes can be attached to two different

Compute nodes (i.e., servers) each using the normative AttachesTo relationship.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 225 of 267

10.1.9.2 Logical Diagram

10.1.9.3 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile with 2 servers each with different attached block storage.

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 storage_size:

 type: scalar-unit.size

 default: 1 GB

 description: Size of the storage to be created.

 storage_snapshot_id:

 type: string

 description: >

 Optional identifier for an existing snapshot to use when creating storage.

 storage_location:

 type: string

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 226 of 267

 description: >

 Block storage mount point (filesystem path).

 node_templates:

 my_server:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties:

 disk_size: 10 GB

 num_cpus: { get_input: cpus }

 mem_size: 4096 MB

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: Fedora

 version: 18.0

 requirements:

 - local_storage:

 node: my_storage

 relationship:

 type: AttachesTo

 properties:

 location: { get_input: storage_location }

 my_storage:

 type: tosca.nodes.BlockStorage

 properties:

 size: { get_input: storage_size }

 snapshot_id: { get_input: storage_snapshot_id }

 my_server2:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties:

 disk_size: 10 GB

 num_cpus: { get_input: cpus }

 mem_size: 4096 MB

 os:

 properties:

 architecture: x86_64

 type: Linux

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 227 of 267

 distribution: Fedora

 version: 18.0

 requirements:

 - local_storage:

 node: my_storage2

 relationship:

 type: AttachesTo

 properties:

 location: { get_input: storage_location }

 my_storage2:

 type: tosca.nodes.BlockStorage

 properties:

 size: { get_input: storage_size }

 snapshot_id: { get_input: storage_snapshot_id }

 outputs:

 server_ip_1:

 description: The private IP address of the application’s first server.

 value: { get_attribute: [my_server, private_address] }

 server_ip_2:

 description: The private IP address of the application’s second server.

 value: { get_attribute: [my_server2, private_address] }

 volume_id_1:

 description: The volume id of the first block storage instance.

 value: { get_attribute: [my_storage, volume_id] }

 volume_id_2:

 description: The volume id of the second block storage instance.

 value: { get_attribute: [my_storage2, volume_id] }

10.1.10 Object Storage 1: Creating an Object Storage service

10.1.10.1 Description

10.1.10.2 Logical Diagram

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 228 of 267

10.1.10.3 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 Tosca template for creating an object storage service.

topology_template:

 inputs:

 objectstore_name:

 type: string

 node_templates:

 obj_store_server:

 type: tosca.nodes.ObjectStorage

 properties:

 name: { get_input: objectstore_name }

 size: 4096 MB

 maxsize: 20 GB

10.1.11 Network 1: Server bound to a new network

10.1.11.1 Description

Introduces the TOSCA Network and Port nodes used for modeling logical networks using the LinksTo and BindsTo

Relationship Types. In this use case, the template is invoked without an existing network_name as an input
property so a new network is created using the properties declared in the Network node.

10.1.11.2 Logical Diagram

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 229 of 267

10.1.11.3 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile with 1 server bound to a new network

topology_template:

 inputs:

 network_name:

 type: string

 description: Network name

 node_templates:

 my_server:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties:

 disk_size: 10 GB

 num_cpus: 1

 mem_size: 4096 MB

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: CirrOS

 version: 0.3.2

 my_network:

 type: tosca.nodes.network.Network

 properties:

 network_name: { get_input: network_name }

 ip_version: 4

 cidr: '192.168.0.0/24'

 start_ip: '192.168.0.50'

 end_ip: '192.168.0.200'

 gateway_ip: '192.168.0.1'

 my_port:

 type: tosca.nodes.network.Port

 requirements:

 - binding: my_server

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 230 of 267

 - link: my_network

10.1.12 Network 2: Server bound to an existing network

10.1.12.1 Description

This use case shows how to use a network_name as an input parameter to the template to allow a server to be

associated with an existing network.

10.1.12.2 Logical Diagram

10.1.12.3 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile with 1 server bound to an existing network

topology_template:

 inputs:

 network_name:

 type: string

 description: Network name

 node_templates:

 my_server:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties:

 disk_size: 10 GB

 num_cpus: 1

 mem_size: 4096 MB

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 231 of 267

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: CirrOS

 version: 0.3.2

 my_network:

 type: tosca.nodes.network.Network

 properties:

 network_name: { get_input: network_name }

 my_port:

 type: tosca.nodes.network.Port

 requirements:

 - binding:

 node: my_server

 - link:

 node: my_network

10.1.13 Network 3: Two servers bound to a single network

10.1.13.1 Description

This use case shows how two servers (Compute nodes) can be bound to the same Network (node) using two

logical network Ports.

10.1.13.2 Logical Diagram

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 232 of 267

10.1.13.3 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile with 2 servers bound to the 1 network

topology_template:

 inputs:

 network_name:

 type: string

 description: Network name

 network_cidr:

 type: string

 default: 10.0.0.0/24

 description: CIDR for the network

 network_start_ip:

 type: string

 default: 10.0.0.100

 description: Start IP for the allocation pool

 network_end_ip:

 type: string

 default: 10.0.0.150

 description: End IP for the allocation pool

 node_templates:

 my_server:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties:

 disk_size: 10 GB

 num_cpus: 1

 mem_size: 4096 MB

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: CirrOS

 version: 0.3.2

 my_server2:

 type: tosca.nodes.Compute

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 233 of 267

 capabilities:

 host:

 properties:

 disk_size: 10 GB

 num_cpus: 1

 mem_size: 4096 MB

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: CirrOS

 version: 0.3.2

 my_network:

 type: tosca.nodes.network.Network

 properties:

 ip_version: 4

 cidr: { get_input: network_cidr }

 network_name: { get_input: network_name }

 start_ip: { get_input: network_start_ip }

 end_ip: { get_input: network_end_ip }

 my_port:

 type: tosca.nodes.network.Port

 requirements:

 - binding: my_server

 - link: my_network

 my_port2:

 type: tosca.nodes.network.Port

 requirements:

 - binding: my_server2

 - link: my_network

10.1.14 Network 4: Server bound to three networks

10.1.14.1 Description

This use case shows how three logical networks (Network), each with its own IP address range, can be bound to
with the same server (Compute node).

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 234 of 267

10.1.14.2 Logical Diagram

10.1.14.3 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile with 1 server bound to 3 networks

topology_template:

 node_templates:

 my_server:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties:

 disk_size: 10 GB

 num_cpus: 1

 mem_size: 4096 MB

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: CirrOS

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 235 of 267

 version: 0.3.2

 my_network1:

 type: tosca.nodes.network.Network

 properties:

 cidr: '192.168.1.0/24'

 network_name: net1

 my_network2:

 type: tosca.nodes.network.Network

 properties:

 cidr: '192.168.2.0/24'

 network_name: net2

 my_network3:

 type: tosca.nodes.network.Network

 properties:

 cidr: '192.168.3.0/24'

 network_name: net3

 my_port1:

 type: tosca.nodes.network.Port

 properties:

 order: 0

 requirements:

 - binding: my_server

 - link: my_network1

 my_port2:

 type: tosca.nodes.network.Port

 properties:

 order: 1

 requirements:

 - binding: my_server

 - link: my_network2

 my_port3:

 type: tosca.nodes.network.Port

 properties:

 order: 2

 requirements:

 - binding: my_server

 - link: my_network3

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 236 of 267

10.1.15 WebServer-DBMS 1: WordPress + MySQL, single instance

10.1.15.1 Description

TOSCA simple profile service showing the WordPress web application with a MySQL database hosted on a single
server (instance).

10.1.15.2 Logical Diagram

10.1.15.3 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile with WordPress, a web server, a MySQL DBMS hosting the
application’s database content on the same server. Does not have input defaults or
constraints.

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 db_name:

 type: string

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 237 of 267

 description: The name of the database.

 db_user:

 type: string

 description: The username of the DB user.

 db_pwd:

 type: string

 description: The WordPress database admin account password.

 db_root_pwd:

 type: string

 description: Root password for MySQL.

 db_port:

 type: PortDef

 description: Port for the MySQL database

 node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 properties:

 context_root: { get_input: context_root }

 requirements:

 - host: webserver

 - database_endpoint: mysql_database

 interfaces:

 Standard:

 create: wordpress_install.sh

 configure:

 implementation: wordpress_configure.sh

 inputs:

 wp_db_name: { get_property: [mysql_database, name] }

 wp_db_user: { get_property: [mysql_database, user] }

 wp_db_password: { get_property: [mysql_database, password] }

 # In my own template, find requirement/capability, find port property

 wp_db_port: { get_property: [SELF, database_endpoint, port] }

 mysql_database:

 type: Database

 properties:

 name: { get_input: db_name }

 user: { get_input: db_user }

 password: { get_input: db_pwd }

 port: { get_input: db_port }

 capabilities:

 database_endpoint:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 238 of 267

 properties:

 port: { get_input: db_port }

 requirements:

 - host: mysql_dbms

 interfaces:

 Standard:

 configure: mysql_database_configure.sh

 mysql_dbms:

 type: DBMS

 properties:

 root_password: { get_input: db_root_pwd }

 port: { get_input: db_port }

 requirements:

 - host: server

 interfaces:

 Standard:

 inputs:

 db_root_password: { get_property: [mysql_dbms, root_password] }

 create: mysql_dbms_install.sh

 start: mysql_dbms_start.sh

 configure: mysql_dbms_configure.sh

 webserver:

 type: WebServer

 requirements:

 - host: server

 interfaces:

 Standard:

 create: webserver_install.sh

 start: webserver_start.sh

 server:

 type: Compute

 capabilities:

 host:

 properties:

 disk_size: 10 GB

 num_cpus: { get_input: cpus }

 mem_size: 4096 MB

 os:

 properties:

 architecture: x86_64

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 239 of 267

 type: linux

 distribution: fedora

 version: 17.0

 outputs:

 website_url:

 description: URL for Wordpress wiki.

 value: { get_attribute: [server, public_address] }

10.1.15.4 Sample scripts

Where the referenced implementation scripts in the example above would have the following contents

10.1.15.4.1 wordpress_install.sh

yum -y install wordpress

10.1.15.4.2 wordpress_configure.sh

sed -i "/Deny from All/d" /etc/httpd/conf.d/wordpress.conf

sed -i "s/Require local/Require all granted/" /etc/httpd/conf.d/wordpress.conf

sed -i s/database_name_here/name/ /etc/wordpress/wp-config.php

sed -i s/username_here/user/ /etc/wordpress/wp-config.php

sed -i s/password_here/password/ /etc/wordpress/wp-config.php

systemctl restart httpd.service

10.1.15.4.3 mysql_database_configure.sh

Setup MySQL root password and create user

cat << EOF | mysql -u root --password=db_root_password

CREATE DATABASE name;

GRANT ALL PRIVILEGES ON name.* TO "user"@"localhost"

IDENTIFIED BY "password";

FLUSH PRIVILEGES;

EXIT

EOF

10.1.15.4.4 mysql_dbms_install.sh

yum -y install mysql mysql-server

Use systemd to start MySQL server at system boot time

systemctl enable mysqld.service

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 240 of 267

10.1.15.4.5 mysql_dbms_start.sh

Start the MySQL service (NOTE: may already be started at image boot time)

systemctl start mysqld.service

10.1.15.4.6 mysql_dbms_configure

Set the MySQL server root password

mysqladmin -u root password db_root_password

10.1.15.4.7 webserver_install.sh

yum -y install httpd

systemctl enable httpd.service

10.1.15.4.8 webserver_start.sh

Start the httpd service (NOTE: may already be started at image boot time)

systemctl start httpd.service

10.1.16 WebServer-DBMS 2: Nodejs with PayPal Sample App and MongoDB on
separate instances

10.1.16.1 Description

This use case Instantiates a 2-tier application with Nodejs and its (PayPal sample) WebApplication on one tier
which connects a MongoDB database (which stores its application data) using a ConnectsTo relationship.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 241 of 267

10.1.16.2 Logical Diagram

10.1.16.3 Sample YAML

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile with a nodejs web server hosting a PayPal sample application
which connects to a mongodb database.

imports:

 - custom_types/paypalpizzastore_nodejs_app.yaml

dsl_definitions:

 ubuntu_node: &ubuntu_node

 disk_size: 10 GB

 num_cpus: { get_input: my_cpus }

 mem_size: 4096 MB

 os_capabilities: &os_capabilities

 architecture: x86_64

 type: Linux

 distribution: Ubuntu

 version: 14.04

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 242 of 267

topology_template:

 inputs:

 my_cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 default: 1

 github_url:

 type: string

 description: The URL to download nodejs.

 default: https://github.com/sample.git

 node_templates:

 paypal_pizzastore:

 type: tosca.nodes.WebApplication.PayPalPizzaStore

 properties:

 github_url: { get_input: github_url }

 requirements:

 - host:nodejs

 - database_connection: mongo_db

 interfaces:

 Standard:

 configure:

 implementation: scripts/nodejs/configure.sh

 inputs:

 github_url: { get_property: [SELF, github_url] }

 mongodb_ip: { get_attribute: [mongo_server, private_address] }

 start: scripts/nodejs/start.sh

 nodejs:

 type: tosca.nodes.WebServer.Nodejs

 requirements:

 - host: app_server

 interfaces:

 Standard:

 create: scripts/nodejs/create.sh

 mongo_db:

 type: tosca.nodes.Database

 requirements:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 243 of 267

 - host: mongo_dbms

 interfaces:

 Standard:

 create: create_database.sh

 mongo_dbms:

 type: tosca.nodes.DBMS

 requirements:

 - host: mongo_server

 properties:

 port: 27017

 interfaces:

 tosca.interfaces.node.lifecycle.Standard:

 create: mongodb/create.sh

 configure:

 implementation: mongodb/config.sh

 inputs:

 mongodb_ip: { get_attribute: [mongo_server, private_address] }

 start: mongodb/start.sh

 mongo_server:

 type: tosca.nodes.Compute

 capabilities:

 os:

 properties: *os_capabilities

 host:

 properties: *ubuntu_node

 app_server:

 type: tosca.nodes.Compute

 capabilities:

 os:

 properties: *os_capabilities

 host:

 properties: *ubuntu_node

 outputs:

 nodejs_url:

 description: URL for the nodejs server, http://<IP>:3000

 value: { get_attribute: [app_server, private_address] }

 mongodb_url:

 description: URL for the mongodb server.

 value: { get_attribute: [mongo_server, private_address] }

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 244 of 267

10.1.16.4 Notes:

 Scripts referenced in this example are assumed to be placed by the TOSCA orchestrator in the relative

directory declared in TOSCA.meta of the TOSCA CSAR file.

10.1.17 Multi-Tier-1: Elasticsearch, Logstash, Kibana (ELK) use case with
multiple instances

10.1.17.1 Description

TOSCA simple profile service showing the Nodejs, MongoDB, Elasticsearch, Logstash, Kibana, rsyslog and
collectd installed on a different server (instance).

This use case also demonstrates:

 Use of TOSCA macros or dsl_definitions

 Multiple SoftwareComponents hosted on same Compute node

 Multiple tiers communicating to each other over ConnectsTo using Configure interface.

10.1.17.2 Logical Diagram

10.1.17.3 Sample YAML

10.1.17.3.1 Master Service Template application (Entry-Definitions)

The following YAML is the primary template (i.e., the Entry-Definition) for the overall use case. The imported
YAML for the various subcomponents are not shown here for brevity.

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 This TOSCA simple profile deploys nodejs, mongodb, elasticsearch, logstash and

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 245 of 267

kibana each on a separate server with monitoring enabled for nodejs server where a
sample nodejs application is running. The syslog and collectd are installed on a
nodejs server.

imports:

 - paypalpizzastore_nodejs_app.yaml

 - elasticsearch.yaml

 - logstash.yaml

 - kibana.yaml

 - collectd.yaml

 - rsyslog.yaml

dsl_definitions:

 host_capabilities: &host_capabilities

 # container properties (flavor)

 disk_size: 10 GB

 num_cpus: { get_input: my_cpus }

 mem_size: 4096 MB

 os_capabilities: &os_capabilities

 architecture: x86_64

 type: Linux

 distribution: Ubuntu

 version: 14.04

topology_template:

 inputs:

 my_cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 github_url:

 type: string

 description: The URL to download nodejs.

 default: https://github.com/sample.git

 node_templates:

 paypal_pizzastore:

 type: tosca.nodes.WebApplication.PayPalPizzaStore

 properties:

 github_url: { get_input: github_url }

 requirements:

 - host: nodejs

 - database_connection: mongo_db

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 246 of 267

 interfaces:

 Standard:

 configure:

 implementation: scripts/nodejs/configure.sh

 inputs:

 github_url: { get_property: [SELF, github_url] }

 mongodb_ip: { get_attribute: [mongo_server, private_address] }

 start: scripts/nodejs/start.sh

 nodejs:

 type: tosca.nodes.WebServer.Nodejs

 requirements:

 - host: app_server

 interfaces:

 Standard:

 create: scripts/nodejs/create.sh

 mongo_db:

 type: tosca.nodes.Database

 requirements:

 - host: mongo_dbms

 interfaces:

 Standard:

 create: create_database.sh

 mongo_dbms:

 type: tosca.nodes.DBMS

 requirements:

 - host: mongo_server

 interfaces:

 tosca.interfaces.node.lifecycle.Standard:

 create: scripts/mongodb/create.sh

 configure:

 implementation: scripts/mongodb/config.sh

 inputs:

 mongodb_ip: { get_attribute: [mongo_server, ip_address] }

 start: scripts/mongodb/start.sh

 elasticsearch:

 type: tosca.nodes.SoftwareComponent.Elasticsearch

 requirements:

 - host: elasticsearch_server

 interfaces:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 247 of 267

 tosca.interfaces.node.lifecycle.Standard:

 create: scripts/elasticsearch/create.sh

 start: scripts/elasticsearch/start.sh

 logstash:

 type: tosca.nodes.SoftwareComponent.Logstash

 requirements:

 - host: logstash_server

 - search_endpoint: elasticsearch

 interfaces:

 tosca.interfaces.relationship.Configure:

 pre_configure_source:

 implementation: python/logstash/configure_elasticsearch.py

 input:

 elasticsearch_ip: { get_attribute: [elasticsearch_server,
ip_address] }

 interfaces:

 tosca.interfaces.node.lifecycle.Standard:

 create: scripts/lostash/create.sh

 configure: scripts/logstash/config.sh

 start: scripts/logstash/start.sh

 kibana:

 type: tosca.nodes.SoftwareComponent.Kibana

 requirements:

 - host: kibana_server

 - search_endpoint: elasticsearch

 interfaces:

 tosca.interfaces.node.lifecycle.Standard:

 create: scripts/kibana/create.sh

 configure:

 implementation: scripts/kibana/config.sh

 input:

 elasticsearch_ip: { get_attribute: [elasticsearch_server, ip_address]
}

 kibana_ip: { get_attribute: [kibana_server, ip_address] }

 start: scripts/kibana/start.sh

 app_collectd:

 type: tosca.nodes.SoftwareComponent.Collectd

 requirements:

 - host: app_server

 - collectd_endpoint: logstash

 interfaces:

 tosca.interfaces.relationship.Configure:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 248 of 267

 pre_configure_target:

 implementation: python/logstash/configure_collectd.py

 interfaces:

 tosca.interfaces.node.lifecycle.Standard:

 create: scripts/collectd/create.sh

 configure:

 implementation: python/collectd/config.py

 input:

 logstash_ip: { get_attribute: [logstash_server, ip_address] }

 start: scripts/collectd/start.sh

 app_rsyslog:

 type: tosca.nodes.SoftwareComponent.Rsyslog

 requirements:

 - host: app_server

 - rsyslog_endpoint: logstash

 interfaces:

 tosca.interfaces.relationship.Configure:

 pre_configure_target:

 implementation: python/logstash/configure_rsyslog.py

 interfaces:

 tosca.interfaces.node.lifecycle.Standard:

 create: scripts/rsyslog/create.sh

 configure:

 implementation: scripts/rsyslog/config.sh

 input:

 logstash_ip: { get_attribute: [logstash_server, ip_address] }

 start: scripts/rsyslog/start.sh

 app_server:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties: *host_capabilities

 os:

 properties: *os_capabilities

 mongo_server:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties: *host_capabilities

 os:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 249 of 267

 properties: *os_capabilities

 elasticsearch_server:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties: *host_capabilities

 os:

 properties: *os_capabilities

 logstash_server:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties: *host_capabilities

 os:

 properties: *os_capabilities

 kibana_server:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties: *host_capabilities

 os:

 properties: *os_capabilities

 outputs:

 nodejs_url:

 description: URL for the nodejs server.

 value: { get_attribute: [app_server, private_address] }

 mongodb_url:

 description: URL for the mongodb server.

 value: { get_attribute: [mongo_server, private_address] }

 elasticsearch_url:

 description: URL for the elasticsearch server.

 value: { get_attribute: [elasticsearch_server, private_address] }

 logstash_url:

 description: URL for the logstash server.

 value: { get_attribute: [logstash_server, private_address] }

 kibana_url:

 description: URL for the kibana server.

 value: { get_attribute: [kibana_server, private_address] }

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 250 of 267

10.1.17.4 Sample scripts

Where the referenced implementation scripts in the example above would have the following contents

10.1.18 Container-1: Containers using Docker single Compute instance
(Containers only)

10.1.18.1 Description

This use case shows a minimal description of two Container nodes (only) providing their Docker Requirements
allowing platform (orchestrator) to select/provide the underlying Docker implementation (Capability). Specifically,
wordpress and mysql Docker images are referenced from Docker Hub.

This use case also demonstrates:

 Abstract description of Requirements (i.e., Container and Docker) allowing platform to dynamically

select the appropriate runtime Capabilities that match.

 Use of external repository (Docker Hub) to reference image artifact.

10.1.18.2 Logical Diagram

10.1.18.3 Sample YAML

10.1.18.3.1 Two Docker “Container” nodes (Only) with Docker Requirements

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile with wordpress, web server and mysql on the same server.

Repositories to retrieve code artifacts from

repositories:

 docker_hub: https://registry.hub.docker.com/

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 251 of 267

topology_template:

 inputs:

 wp_host_port:

 type: integer

 description: The host port that maps to port 80 of the WordPress container.

 db_root_pwd:

 type: string

 description: Root password for MySQL.

 node_templates:

 # The MYSQL container based on official MySQL image in Docker hub

 mysql_container:

 type: tosca.nodes.Container.Application.Docker

 capabilities:

 # This is a capability that would mimic the Docker –link feature

 database_link: tosca.capabilities.Docker.Link

 artifacts:

 my_image:

 file: mysql

 type: tosca.artifacts.Deployment.Image.Container.Docker

 repository: docker_hub

 interfaces:

 Standard:

 create:

 implementation: my_image

 inputs:

 db_root_password: { get_input: db_root_pwd }

 # The WordPress container based on official WordPress image in Docker hub

 wordpress_container:

 type: tosca.nodes.Container.Application.Docker

 requirements:

 - database_link: mysql_container

 artifacts:

 my_image:

 file: wordpress

 type: tosca.artifacts.Deployment.Image.Container.Docker

 repository: docker_hub

 interfaces:

 Standard:

 create:

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 252 of 267

 implementation: my_image

 inputs:

 host_port: { get_input: wp_host_port }

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 253 of 267

11 TOSCA Policies
This section is non-normative and describes the approach TOSCA Simple Profile plans to take for policy
description with TOSCA Service Templates. In addition, it explores how existing TOSCA Policy Types and
definitions might be applied in the future to express operational policy use cases.

11.1 A declarative approach

TOSCA Policies are a type of requirement that govern use or access to resources which can be expressed
independently from specific applications (or their resources) and whose fulfillment is not discretely expressed in
the application’s topology (i.e., via TOSCA Capabilities).

TOSCA deems it not desirable for a declarative model to encourage external intervention for resolving policy
issues (i.e., via imperative mechanisms external to the Cloud). Instead, the Cloud provider is deemed to be in the
best position to detect when policy conditions are triggered, analyze the affected resources and enforce the policy
against the allowable actions declared within the policy itself.

11.1.1 Declarative considerations

 Natural language rules are not realistic, too much to represent in our specification; however, regular

expressions can be used that include simple operations and operands that include symbolic names for

TOSCA metamodel entities, properties and attributes.

 Complex rules can actually be directed to an external policy engine (to check for violation) returns true|false

then policy says what to do (trigger or action).

 Actions/Triggers could be:

 Autonomic/Platform corrects against user-supplied criteria

 External monitoring service could be utilized to monitor policy rules/conditions against metrics, the

monitoring service could coordinate corrective actions with external services (perhaps Workflow engines

that can analyze the application and interact with the TOSCA instance model).

11.2 Consideration of Event, Condition and Action

11.3 Types of policies

Policies typically address two major areas of concern for customer workloads:

 Access Control – assures user and service access to controlled resources are governed by rules which

determine general access permission (i.e., allow or deny) and conditional access dependent on other

considerations (e.g., organization role, time of day, geographic location, etc.).

 Placement – assures affinity (or anti-affinity) of deployed applications and their resources; that is, what is

allowed to be placed where within a Cloud provider’s infrastructure.

 Quality-of-Service (and continuity) - assures performance of software components (perhaps captured as

quantifiable, measure components within an SLA) along with consideration for scaling and failover.

11.3.1 Access control policies

Although TOSCA Policy definitions could be used to express and convey access control policies, definitions of
policies in this area are out of scope for this specification. At this time, TOSCA encourages organizations that
already have standards that express policy for access control to provide their own guidance on how to use their
standard with TOSCA.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 254 of 267

11.3.2 Placement policies

There must be control mechanisms in place that can be part of these patterns that accept governance policies
that allow control expressions of what is allowed when placing, scaling and managing the applications that are
enforceable and verifiable in Cloud.

These policies need to consider the following:

 Regulated industries need applications to control placement (deployment) of applications to different

countries or regions (i.e., different logical geographical boundaries).

11.3.2.1 Placement for governance concerns

In general, companies and individuals have security concerns along with general “loss of control” issues when
considering deploying and hosting their highly valued application and data to the Cloud. They want to control
placement perhaps to ensure their applications are only placed in datacenter they trust or assure that their
applications and data are not placed on shared resources (i.e., not co-tenanted).

In addition, companies that are related to highly regulated industries where compliance with government, industry
and corporate policies is paramount. In these cases, having the ability to control placement of applications is an
especially significant consideration and a prerequisite for automated orchestration.

11.3.2.2 Placement for failover

Companies realize that their day-to-day business must continue on through unforeseen disasters that might
disable instances of the applications and data at or on specific data centers, networks or servers. They need to
be able to convey placement policies for their software applications and data that mitigate risk of disaster by
assuring these cloud assets are deployed strategically in different physical locations. Such policies need to
consider placement across geographic locations as wide as countries, regions, datacenters, as well as granular
placement on a network, server or device within the same physical datacenter. Cloud providers must be able to
not only enforce these policies but provide robust and seamless failover such that a disaster’s impact is never
perceived by the end user.

11.3.3 Quality-of-Service (QoS) policies

Quality-of-Service (apart from failover placement considerations) typically assures that software applications and
data are available and performant to the end users. This is usually something that is measurable in terms of end-
user responsiveness (or response time) and often qualified in SLAs established between the Cloud provider and
customer. These QoS aspects can be taken from SLAs and legal agreements and further encoded as
performance policies associated with the actual applications and data when they are deployed. It is assumed that
Cloud provider is able to detect high utilization (or usage load) on these applications and data that deviate from
these performance policies and is able to bring them back into compliance.

11.4 Policy relationship considerations

 Performance policies can be related to scalability policies. Scalability policies tell the Cloud provider exactly

how to scale applications and data when they detect an application’s performance policy is (or about to be)

violated (or triggered).

 Scalability policies in turn are related to placement policies which govern where the application and data can

be scaled to.

 There are general “tenant” considerations that restrict what resources are available to applications and data

based upon the contract a customer has with the Cloud provider. This includes other constraints imposed by

legal agreements or SLAs that are not encoded programmatically or associated directly with actual application

or data..

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 255 of 267

11.5 Use Cases

This section includes some initial operation policy use cases that we wish to describe using the TOSCA
metamodel. More policy work will be done in future versions of the TOSCA Simple Profile in YAML specification.

11.5.1 Placement

11.5.1.1 Use Case 1: Simple placement for failover

11.5.1.1.1 Description

This use case shows a failover policy to keep at least 3 copies running in separate containers. In this simple case,
the specific containers to use (or name is not important; the Cloud provider must assure placement separation
(anti-affinity) in three physically separate containers.

11.5.1.1.2 Features

This use case introduces the following policy features:

 Simple separation on different “compute” nodes (up to discretion of provider).

 Simple separation by region (a logical container type) using an allowed list of region names relative to

the provider.

o Also, shows that set of allowed “regions” (containers) can be greater than the number of

containers requested.

11.5.1.1.3 Logical Diagram

 Sample YAML: Compute separation

failover_policy_1:

 type: tosca.policy.placement.Antilocate

 description: My placement policy for Compute node separation

 properties:

 # 3 diff target containers

 container type: Compute

 container_number: 3

11.5.1.1.4 Notes

 There may be availability (constraints) considerations especially if these policies are applied to

“clusters”.

 There may be future considerations for controlling max # of instances per container.

11.5.1.2 Use Case 2: Controlled placement by region

11.5.1.2.1 Description

This use case demonstrates the use of named “containers” which could represent the following:

 Datacenter regions

 Geographic regions (e.g., cities, municipalities, states, countries, etc.)

 Commercial regions (e.g., North America, Eastern Europe, Asia Pacific, etc.)

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 256 of 267

11.5.1.2.2 Features

This use case introduces the following policy features:

 Separation of resources (i.e., TOSCA nodes) by logical regions, or zones.

11.5.1.2.3 Sample YAML: Region separation amongst named set of regions

failover_policy_2:

 type: tosca.policy.placement

 description: My failover policy with allowed target regions (logical containers)

 properties:

 container type: region

 container_number: 3

 # If “containers” keyname is provided, they represent the allowed set

 # of target containers to use for placement for .

 containers: [region1, region2, region3, region4]

11.5.1.3 Use Case 3: Co-locate based upon Compute affinity

11.5.1.3.1 Description

Nodes that need to be co-located to achieve optimal performance based upon access to similar Infrastructure
(IaaS) resource types (i.e., Compute, Network and/or Storage).

This use case demonstrates the co-location based upon Compute resource affinity; however, the same approach
could be taken for Network as or Storage affinity as well. :

11.5.1.3.2 Features

This use case introduces the following policy features:

 Node placement based upon Compute resource affinity.

11.5.1.4 Notes

 The concept of placement based upon IaaS resource utilization is not future-thinking, as Cloud should

guarantee equivalent performance of application performance regardless of placement. That is, all

network access between application nodes and underlying Compute or Storage should have equivalent

performance (e.g., network bandwidth, network or storage access time, CPU speed, etc.).

11.5.1.4.1 Sample YAML: Region separation amongst named set of regions

keep_together_policy:

 type: tosca.policy.placement.Colocate

 description: Keep associated nodes (groups of nodes) based upon Compute

 properties:

 affinity: Compute

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 257 of 267

11.5.2 Scaling

11.5.2.1 Use Case 1: Simple node autoscale

11.5.2.1.1 Description

Start with X nodes and scale up to Y nodes, capability to do this from a dashboard for example.

11.5.2.1.2 Features

This use case introduces the following policy features:

 Basic autoscaling policy

11.5.2.1.3 Sample YAML

my_scaling_policy_1:

 type: tosca.policy.scaling

 description: Simple node autoscaling

 properties:

 min_instances: <integer>

 max_instances: <integer>

 default_instances: <integer>

 increment: <integer>

11.5.2.1.4 Notes

 Assume horizontal scaling for this use case

o Horizontal scaling, implies “stack-level” control using Compute nodes to define a “stack” (i.e.,

The Compute node’s entire HostedOn relationship dependency graph is considered part of its

“stack”)

 Assume Compute node has a SoftwareComponent that represents a VM application.

 Availability Zones (and Regions if not same) need to be considered in further use

cases.

 If metrics are introduced, there is a control-loop (that monitors). Autoscaling is a special concept that

includes these considerations.

 Mixed placement and scaling use cases need to be considered:

o Example: Compute1 and Compute2 are 2 node templates. Compute1 has 10 instances, 5 in one

region 5 in other region.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 258 of 267

12 Conformance

12.1 Conformance Targets

The implementations subject to conformance are those introduced in Section 1.3 “Implementations”. They are
listed here for convenience:

 TOSCA YAML service template

 TOSCA processor

 TOSCA orchestrator (also called orchestration engine)

 TOSCA generator

 TOSCA archive

12.2 Conformance Clause 1: TOSCA YAML service template

A document conforms to this specification as TOSCA YAML service template if it satisfies all the statements
below:

(a) It is valid according to the grammar, rules and requirements defined in section 3 “TOSCA Simple Profile

definitions in YAML”.

(b) When using functions defined in section 4 “TOSCA functions”, it is valid according to the grammar

specified for these functions.

(c) When using or referring to data types, artifact types, capability types, interface types, node types,

relationship types, group types, policy types defined in section 5 “TOSCA normative type definitions”, it

is valid according to the definitions given in section 5.

12.3 Conformance Clause 2: TOSCA processor

A processor or program conforms to this specification as TOSCA processor if it satisfies all the statements below:

(a) It can parse and recognize the elements of any conforming TOSCA YAML service template, and

generates errors for those documents that fail to conform as TOSCA YAML service template while clearly

intending to.

(b) It implements the requirements and semantics associated with the definitions and grammar in section 3

“TOSCA Simple Profile definitions in YAML”, including those listed in the “additional requirements”

subsections.

(c) It resolves the imports, either explicit or implicit, as described in section 3 “TOSCA Simple Profile

definitions in YAML”.

(d) It generates errors as required in error cases described in sections 3.1 (TOSCA Namespace URI and

alias), 3.2 (Parameter and property type) and 3.6 (Type-specific definitions).

(e) It normalizes string values as described in section 5.4.9.3 (Additional Requirements)

12.4 Conformance Clause 3: TOSCA orchestrator

A processor or program conforms to this specification as TOSCA orchestrator if it satisfies all the statements
below:

(a) It is conforming as a TOSCA Processor as defined in conformance clause 2: TOSCA Processor.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 259 of 267

(b) It can process all types of artifact described in section 5.3 “Artifact types” according to the rules and

grammars in this section.

(c) It can process TOSCA archives as intended in section 6 “TOSCA Cloud Service Archive (CSAR) format” and

other related normative sections.

(d) It can understand and process the functions defined in section 4 “TOSCA functions” according to their

rules and semantics.

(e) It can understand and process the normative type definitions according to their semantics and

requirements as described in section 5 “TOSCA normative type definitions”.

(f) It can understand and process the networking types and semantics defined in section 7 “TOSCA

Networking”.

(g) It generates errors as required in error cases described in sections 2.10 (Using node template

substitution for chaining subsystems), 5.4 (Capabilities Types) and 5.7 (Interface Types).

12.5 Conformance Clause 4: TOSCA generator

A processor or program conforms to this specification as TOSCA generator if it satisfies at least one of the
statements below:

(a) When requested to generate a TOSCA service template, it always produces a conforming TOSCA service

template, as defined in Clause 1: TOSCA YAML service template,

(b) When requested to generate a TOSCA archive, it always produces a conforming TOSCA archive, as

defined in Clause 5: TOSCA archive.

12.6 Conformance Clause 5: TOSCA archive

A package artifact conforms to this specification as TOSCA archive if it satisfies all the statements below:

(a) It is valid according to the structure and rules defined in section 6 “TOSCA Cloud Service Archive (CSAR)

format”.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 260 of 267

Appendix A. Known Extensions to TOSCA v1.0

The following items will need to be reflected in the TOSCA (XML) specification to allow for isomorphic mapping
between the XML and YAML service templates.

A.1 Model Changes

 The “TOSCA Simple ‘Hello World’” example introduces this concept in Section 2. Specifically, a VM image

assumed to accessible by the cloud provider.

 Introduce template Input and Output parameters

 The “Template with input and output parameter” example introduces concept in Section 2.1.1.

 “Inputs” could be mapped to BoundaryDefinitions in TOSCA v1.0. Maybe needs some usability

enhancement and better description.

 “outputs” are a new feature.

 Grouping of Node Templates

 This was part of original TOSCA proposal, but removed early on from v1.0 This allows grouping of node

templates that have some type of logically managed together as a group (perhaps to apply a scaling or

placement policy).

 Lifecycle Operation definition independent/separate from Node Types or Relationship types (allows reuse).

For now we added definitions for “node.lifecycle” and “relationship.lifecycle”.

 Override of Interfaces (operations) in the Node Template.

 Service Template Naming/Versioning

 Should include TOSCA spec. (or profile) version number (as part of namespace)

 Allow the referencing artifacts using a URL (e.g., as a property value).

 Repository definitions in Service Template.

 Substitution mappings for Topology template.

 Addition of Group Type, Policy Type, Group def., Policy def. along with normative TOSCA base types for

policies and groups.

A.2 Normative Types

 Constraints

 constraint clauses, regex

 Types / Property / Parameters

 list, map, range, scalar-unit types

 Includes YAML intrinsic types

 NetworkInfo, PortInfo, PortDef, PortSpec, Credential

 TOSCA Version based on Maven

 Node

 Root, Compute, ObjectStorage, BlockStorage, Network, Port, SoftwareComponent, WebServer,

WebApplicaton, DBMS, Database, Container, and others

 Relationship

 Root, DependsOn, HostedOn, ConnectsTo, AttachesTo, RoutesTo, BindsTo, LinksTo and others

 Artifact

 Deployment: Image Types (e.g., VM, Container), ZIP, TAR, etc.

 Implementation: File, Bash, Python, etc.

 Requirements

 None

 Capabilities

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 261 of 267

 Container, Endpoint, Attachment, Scalable, …

 Lifecycle

 Standard (for Node Types)

 Configure (for Relationship Types)

 Functions

 get_input, get_attribute, get_property, get_nodes_of_type, get_operation_output and others

 concat, token

 get_artifact

 Groups

 Root

 Policies

 Root, Placement, Scaling, Update, Performance

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 262 of 267

Appendix B. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Contributors:

Avi Vachnis (avi.vachnis@alcatel-lucent.com), Alcatel-Lucent

Chris Lauwers (lauwers@ubicity.com)

Derek Palma (dpalma@vnomic.com), Vnomic

Frank Leymann (Frank.Leymann@informatik.uni-stuttgart.de), Univ. of Stuttgart

Gerd Breiter (gbreiter@de.ibm.com), IBM

Hemal Surti (hsurti@cisco.com), Cisco

Ifat Afek (ifat.afek@alcatel-lucent.com), Alcatel-Lucent

Idan Moyal, (idan@gigaspaces.com), Gigaspaces

Jacques Durand (jdurand@us.fujitsu.com), Fujitsu

Jin Qin, (chin.qinjin@huawei.com), Huawei

Juergen Meynert (juergen.meynert@ts.fujitsu.com), Fujitsu

Kapil Thangavelu (kapil.thangavelu@canonical.com), Canonical

Karsten Beins (karsten.beins@ts.fujitsu.com), Fujitsu

Kevin Wilson (kevin.l.wilson@hp.com), HP

Krishna Raman (kraman@redhat.com), Red Hat

Luc Boutier (luc.boutier@fastconnect.fr), FastConnect

Matt Rutkowski (mrutkows@us.ibm.com), IBM

Moshe Elisha (moshe.elisha@alcatel-lucent.com), Alcatel-Lucent

Nate Finch (nate.finch@canonical.com), Canonical

Nikunj Nemani (nnemani@vmware.com), WMware

Richard Probst (richard.probst@sap.com), SAP AG

Sahdev Zala (spzala@us.ibm.com), IBM

Shitao li (lishitao@huawei.com), Huawei

Simeon Monov (sdmonov@us.ibm.com), IBM

Stephane Maes (stephane.maes@hp.com), HP

Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM

Ton Ngo (ton@us.ibm.com), IBM

Travis Tripp (travis.tripp@hp.com), HP

Vahid Hashemian (vahidhashemian@us.ibm.com), IBM

Wayne Witzel (wayne.witzel@canonical.com), Canonical

Yaron Parasol (yaronpa@gigaspaces.com), Gigaspaces

mailto:avi.vachnis@alcatel-lucent.com
mailto:lauwers@ubicity.com
mailto:dpalma@vnomic.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/Frank.Leymann@informatik.uni-stuttgart.de
mailto:gbreiter@de.ibm.com
mailto:hsurti@cisco.com
mailto:ifat.afek@alcatel-lucent.com
mailto:idan@gigaspaces.com
mailto:jdurand@us.fujitsu.com
mailto:chin.qinjin@huawei.com
mailto:juergen.meynert@ts.fujitsu.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/kapil.thangavelu@canonical.com
mailto:karsten.beins@ts.fujitsu.com
mailto:kevin.l.wilson@hp.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/kraman@redhat.com
mailto:luc.boutier@fastconnect.fr
mailto:mrutkows@us.ibm.com
mailto:moshe.elisha@alcatel-lucent.com
mailto:nate.finch@canonical.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/nnemani@vmware.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/richard.probst@sap.com
mailto:spzala@us.ibm.com
mailto:lishitao@huawei.com
mailto:sdmonov@us.ibm.com
mailto:stephane.maes@hp.com
mailto:thomas.spatzier@de.ibm.com
mailto:ton@us.ibm.com
mailto:travis.tripp@hp.com
mailto:vahidhashemian@us.ibm.com
mailto:wayne.witzel@canonical.com
mailto:yaronpa@gigaspaces.com

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 263 of 267

Appendix C. Revision History

Revision Date Editor Changes Made

WD06, Rev01 2015-06-02 Matt Rutkowski, IBM Initial WD06, Revision 01 baseline.

 Ch. 3: Changed Hello World example to use 512 MB instead of 4 MB which
was not a realistic value.

 C.8.4: Fixed incorrect Heading number (indent)

 C.8.1: added “version” property to tosca.artifacts.Root to allow template
authors the ability to declare the artifact’s version (i.e., the file itself and its
contents).

 H.1.2: Adjusted description of Compute 1 use case to be more accurate

 H.1.3: Added new SoftwareComponent use case to show how an existing
VM image can be used as a deployment artifact.

 H.1.19: Container 1: Fixed incorrect YAML which did not use the artifact
definition grammar correctly

 A.5.5: Artifact def.: Added missing “repository” keyname to grammar and
renamed “implementation” keyname to “file” to simplify and to not confuse
template authors since this keyname is also used for deployment artifacts.

 C.2.1: Added tosca.datatypes.Root that all TOSCA complex datatypes derive
from

 C.2.2, C.2.3, C.2.4, C.2.6: Credential, NetworkInfo, PortInfo, PortSpec now
derive from tosca.datatypes.Root.

 A.6.3, A.6.4, A.6.5, A.6.6, A.6.8, A.6.9: Added optional “version” keyname to
all TOSCA type grammars (i.e., Artifact, Interface, Data, Capability, Node and
Relationship).

 A.6.4: Interface Type: Added optional “description” keyname.

 A.1.1, A.1.2: Added Namespace prefix, Namespacing in TOSCA Service
Templates sections.

 A.1.1.3: Updated namespace requirements/rules.

 A.9.1: Removed keyname “tosca_default_namespace” since it was
redundant to the one indicated by the “tosca_definitions_version”
keyname.

 A.9.3.1: Fixed namespace errors in Service Template examples.

 A.7.4: Removed “alias” keyname from Relationship Template as we had no
use cases for it. Also, fixed copy to be a “string” type.

 A.5.7: Added “import definition” section with keynames, grammars and
example.

 A.9: Service Template: Fixed “imports” grammar and example.

WD06, Rev02 2015-06-02 Matt Rutkowski, IBM D.1.3: Added QCOW2 as non-normative VM image format

 D.1.2, D.1.3: Added “mime_type” and “file_ext” values to the ISO and
QCOW2 non-normative artifact types.

 H.1.3: Changed use case example to use QCOW2 (which is testable on
various hypervisors such as XEN and KVM).

 H.1.3: Added assumptions to the use case to assure that this is qualified as a
non-bare metal use case and that VM management services (including
hypervisors) are in place that support the VM image format.

 Fixed all hyperlinks to any tosca.capabilities.Endpoint.* capability
definitions.

 C.8.3, C.8.4: Added “Additional Requirements” to allow orchestrators to
throw an error if they encounter non-normative deployment or
implementation artifacts they cannot process.

WD06, Rev03 2015-06-22 Matt Rutkowski, IBM A.5.7.4: import def.: fixed example to have real sample values for repository,
namespace URI and namespace prefix.

 A.6.10: Added Group Type definition, grammar and example

 A.7.5: Added Group Definition and example

 14: Fixed example in group chapter to use latest grammar.

 A.7.4: Added missing Relationship Def. example

 C.8: Artifact Type: Fixed description to be more accurate

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 264 of 267

 11.3: Included example of how to reference an abstract database without a
node filter (to show alternative using an abstract node template in the
topology).

 A.5: removed redundant word “recognized” from all keyname table
introductions.

 A.8: Adjusted topology definition to reference new Group definition
grammar.

 A.9: Service Template: Added support for “group_types” element and listing
Group Type definitions.

 Appendix I: Policies: Added official prologue on TOSCA’s declarative
approach stated the areas of policy we acknowledge include Access Control,
Governance (placement) and Quality-of-Service (QoS).

WD06, Rev04 2015-07-01 Matt Rutkowski, IBM A.6.10: Group Type: Added up-front discussion of the distinction between a
group and a node In TOSCA.

 A.6.10, A.7.5: Group Type, Group definition: Added “interfaces”

 C.9: Developed the normative Group Type section more.

 C.9: Added Standard interface to tosca.groups.Root Type.

 I3: Lots of prose to discuss types of policies and considerations (and
overlap).

 I.5: Policy Use Cases: Added use cases section and started to organize our
policy use cases by policy type (e.g., placement, QoS, scaling, etc.)

 I.5.1, I.5.2: Worked on separating out individual Placement and scaling use
cases for policies.

WD06, Rev05 2015-07-08 Matt Rutkowski, IBM 11.2: Simple Profile WG agreed to add back the “node_filter” keyword and
ordered lists for capabilities for “abstract” nodes; otherwise, ordering was
lost for requirement fulfillment. Additionally, we agreed that the grammar
needs to support “constraints” wherever they appear on abstract nodes.

 A.5.4.5: Removed the portion of the example that hinted at the use of a
capability “decorator” in the form of requesting encryption in the CPU. We
kept the removed capability as a comment to address in v1.1.

 D.3.1.2: Database.MySQL: does not need “root_password” property. This
was likely a copy/paste error from DBMS type that no one caught until now.

 A.5.5.1 Artifact def. – prose in table still used old “implementation”
keyname; change it to current keyname of “file”.

 Ch. 6: Changed artifact definition example to use “file” keyname to match
grammar.

 A.5.12: Added comment to Operation Def. to discuss using “file” keyname
instead of “implementation” which would be simpler.

 A.5.12.2.3: Fixed Operation Def. grammar when multiple files are needed to
implement the operation (i.e., “implementation” keyname has its own map
of keynames).

 11.1: Missing colon after “host” capability

 11.3: Missing colon after “my_abstract_database”

 14: Removed “policies” from “group” example as this is not specified and
will not be how we associate policies with groups.

 A.2.4.2: typo on constraint in example.

 A.5.5: Artifact def. – “file” is now a required keyname, resolves issue TOSCA-
249.

 A.5.5.2: Fixed typos for repository definition and fixed font as well.

 A.5.12.4.1: Fixed single-line example for start operation def.

 A.5.12.4.2: Fixed example so that secondary artifacts are in a valid YAML
ordered list format.

 A.6.3: Fixed description for Artifact Type to be coherent.

 A.6.8.2: Fixed copy/paste error for artifact def. description below grammar.

 A.6.10, A.7.5: Added “properties” keyname to Group Type and Group
definition along with their respective property definitions and assignments.

 A.8: Topology Template: formalized grammar so it is like all other
definitions. Clarified use of groups within topology. Comments to create a
new parameter definition for inputs and outputs.

 A.9.3: Added subsections under Service Template to describe
“group_types”, “artifact_types”, “relationships” and “interface_types”.

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 265 of 267

 A.9.10: Renamed “datatype_definitions” to “data_types”

 A.9.1: Changed Service Template grammar to use the new Import Definition
(no longer only a list of simple strings).

 C.2.2: Credential: Table had listed the “protocol” as required property which
it is not.

 C.2.2: Credential: Fixed examples to remove “type” and “properties” keys
that are not valid for a property assignment (only property def.).

 C.2.5.2: Missing colon from example for “in_range” constraint

 C.2.6: PortSpec: “target” and “source” grammars are not maps but a single
PortDef.

 C.8.1: tosca.artifacts.Root: Does not need a version property as it is now
part of the metamodel.

 C.9.1: tosca.groups.Root: Does not need a version property as it is now part
of the metamodel.

 D.1.3: QCOW2 artifact type had “ISO” in type name; a cut/paste error.

 H.1.3.5: Use case YAML had an artifact as an ordered list; and “host”
requirement was not ordered list. Fixed both.

 G.1.4, H.1.4, H.1.5, H.1.7, H.1.8, and H.1.9: BlockStorage use cases should
use “local_storage” requirement already pre-defined in the Compute node
not “attachment” which is not normative.

 H.1.5, H.1.6: Compute node needs to reference “my_storage” node.

 H.1.6: Indentation error on one of the output parameters.

 H.1.9: Incorrect YAML on “local_storage” relationship, AttachesTo type
needs to be indented on a new line with “type” from Extended Grammar as
explained in section A.7.2.

 H.1.12: Added “host” capability and moved its properties that were directly
under Compute node (old grammar) to be under “host”. Also added units to
property values.

 H.1.19: “inputs” definitions were not inside topology template (old
grammar). Fixed that the image artifacts were defined as ordered lists,
normal unordered list now. Also, only need interface name “Standard” not
redeclared the normative type definition.

WD06, Rev06 2015-07-28 Matt Rutkowski, IBM Changed all examples to use a host container mem_size of either 512 MB
(i.e., “tiny”) or 4096 MB (i.e., medium) to be more realistic to typical
production public cloud values.

 A.5.12: Added Parameter def. which is used by Input and Output
parameters for the topology template and Inputs for Interfaces

 A.6.10: Added Policy Type section, grammar and examples

 A.7.6: Added Policy Def. section, grammar and examples

 C.10 Policy Types: Added normative policy type (families) which will be
expanded in future versions. The goal in v1.0 was to establish the type
families acknowledged in Appendix I. These include Root, Placement,
Scaling, Performance and Update.

 C.6.6: RoutesTo relationship type: Removed empty grammar and example
sections.

 A.8.2: Topology Template: Fixed grammar issues with group definitions.
Added policy definitions to grammar. Changed grammar to reference
Parameter def. for both Inputs and Outputs.

 A.8.2.1: Topology Template: Changed Inputs section to reference Parameter
def.

 A.8.2.4: Topology Template: Changed Outputs section to reference
Parameter def.

 A.8.2.6: Topology Template: Added policies section.

 A.9.1: Service Template: Added “policies” keyname section to allow policy
types to be declared.

 H.1.15.4.3: Changed legacy “postconfigure” operations to current
“configure” operation.

WD06, Rev07 2015-08-20 Matt Rutkowski, IBM A.9.1: Service Template: Added metadata keyname “mime_type” to declare
the type of TOSCA file’s Mime Type string (i.e. grammar, information) the
.yaml file holds.

 A.6.10, A.6.11: Added the keyname “targets” to both Group Type and Policy

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 266 of 267

Type as a new “shortcut” for describing a relationship between a logical
entity (i.e. a Group or Policy) and concrete entities in TOSCA models (i.e.,
ones that are part of the actual application topology and deployment such
as Nodes).

 I.3.2.1: Placement policy: corrected incomplete sentence.

 C.6.1: Relationship Types: added “state” attribute to Root type

 A.3.2, C.6.1: Relationship States: Placeholder created to define states once
TOSCA-272 is addressed.

 I.5.1.3: Filled out “co-locate” placement policy use case removing TBD
placeholders.

 D.3: Non-normative Node Types: Added text to clearly state these are non-
normative for use in examples and use cases and any Attributes, properties,
requirements or capabilities they introduce are also non-normative. Fixed
Properties tables to show “N/A” and opened TOSCA-273 if in the future we
wish to document non-normative properties.

 H.1, H.1.16: Removed the placeholder for the WebServer-DBMS 2 use case
(will renumber use case WebServer-DBMS 3 to be 2) As it was a legacy AWS
Cloud formation (CFN) [AWS-CFN] use case that used explicit Floating IPs
which is not the approach we use in TOSCA.

WD06, Rev08 2015-08-26 Matt Rutkowski, IBM
Jacques Durand,
Fujitsu

 Reorganization of chapters and appendices to conform to OASIS staff
directions and to accommodate addition of a new Conformance section.
o Created new Chapter 1 “Introduction”.

 Moved former Chapter 1 “Objective” to Chapter 1.1.
 Moved former Chapter 2 “Summary of key TOSCA Concepts” to

Chapter 1.2.
 Created Chapter 1.3 “Implementations” to introduce key terms used

to identify conformance targets for the new Conformance Chapter
(12).

 Moved former Appendix J.2 “Terminology” to Chapter 1.4.
 Moved RFC 2119 text formerly under Appendix J.2 under a new

Chapter 1.5 “Notational Conventions” adding a normative reference
to RFC 2119.

 Moved former Appendix J.3, J.4 “Normative References” and “Non-
normative References” to Chapters 1.6 and 1.7 respectively.

 Moved former Appendix J.5 “Glossary” to Chapter 1.8.
o Created new Chapter 2 “TOSCA by example”.

 Moved former Chapters 3 through 18 under new Chapter 2. This
effectively made these chapters subchapters/subsections under the
new chapter (which demotes all former Header levels by one decimal
point). For example former Chapter 3 ‘A “hello world” template for
TOSCA’ became Chapter 2.1 ‘A “hello world” template for TOSCA’ and
so on.

o Renumbered former Appendix A “TOSCA Simple Profile definitions in
YAML” to now be Chapter 3.
 Note: This chapter begins the group of normative chapters.

o Renumbered former Appendix B “Functions” to now be Chapter 4.
 Changed title to “TOSCA functions” for consistency.

o Renumbered former Appendix C “TOSCA normative type definitions” to
now be Chapter 5.

o Renumbered former Appendix D “Non-normative type definitions” to
now be Chapter 8.
 Note: This new Chapter 8 locates (groups) this section with the other

sections that are non-normative. This was done to accommodate the
new “Conformance” section (Chapter 12) and its referential contents.

o Renumbered former Appendix E “TOSCA Cloud Service Archive (CSAR)”
to now be Chapter 6.

o Renumbered former Appendix F “Networking” to now be Chapter 7.
 Changed title to “TOSCA networking” for consistency.

o Renumbered former Appendix G “Component modeling use cases” to
now be Chapter 9.
 Note: This chapter begins the group of non-normative chapters.

o Renumbered former Appendix H “Complete application modeling use

TOSCA-Simple-Profile-YAML-v1.0-csd05 04 February 2016
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 267 of 267

cases” to now be Chapter 10.
 Changed title to “Application modeling use cases” for consistency.

o Renumbered former Appendix I “TOSCA Policies” to now be Chapter 11.
o Moved contents of former Appendix J.1 “Known extensions to TOSCA

v1.0” to now be Appendix A contents.
o Former Appendix K “Issues list” was removed by consensus as it was

outdated and should not appear in the final CSD 04 contents and be
carried as the spec. is taken through the OASIS standards track process.
 Note: The “Issues List” will be added back for the first working draft of

v1.1 of Simple Profile and updated to reflect the TOSCA JIRA status of
issues against this work product.

o Former Appendix L “Acknowledgments” was automatically renumbered
to be Appendix B.

o Former Appendix M “Revision history” was automatically renumbered to
be Appendix C.

 Chapter 1.4: Jacques authored “Implementations” section to reflect terms
we use later in the Conformance section

 Chapter 1.5: Authored “Terminology” introductory paragraph to explain the
domain of TOSCA.

 Chapter 12: “Conformance”: Jacques authored this section which is a new
OASIS requirement for standards-track documents. It establishes the Simple
Profile in YAML conformance clauses relative to the Terms established in
Section 1.5 and also by referencing the Chapters’ contents.

 Added a sentence at the top (i.e., first sentence) of every Chapter stating
whether to Chapter contents was “normative” or “non-normative”.

 Section 10.1.18: Container-1 example: Fixed requirements and capability for
“linking” Docker containers.
o Added logical diagram.

 Section 3: Assured all Examples had captions (and that they appear in Table
of Figures).

 Section 4.4.2.3: Added get_property with TARGET parameter.

 Section 2.10.3: Changed ‘SHOULD’ to ‘should’.

 Section 3.8.2: Topology template: Policies should be a sequenced list.

 Section 3.5.13.2: Operation def.: Fixed extended grammar which was
missing ‘primary’ keyword.

 Section 3.6.10.3: Group Type: Fixed example to use ‘targets’.

 Section 3.6.11: Policy Type: Updated description for ‘target’ keyname to
include Group types.

 Section 3.7.5: Group def.: Changed ‘members’ to ‘targets’ as agreed by work
group.

 Section 2.12: Example 21: Fixed group example to adhere to latest grammar.

 Section 3.7.6: Policy def.: Added ‘targets’ keyname as agreed by work group.

 Section 3.8.1: Topology Template: Fixed description for ‘inputs’ and ‘output’
to reference parameter def. instead of property def.

 Section 3.8.2.5.2: Topology Template: Fixed example to adhere to latest
Group def. grammar.

 Section 3.9.3.17: Added missing Policy Type definitions from Service
Template definition grammar.

 Fixed hyperlinks throughout document

 Chapter H.1:Filled in missing links to BlockStorage use cases. Fixed Table
width to be 100% not 115%.

 Incorporated several copy/paste errors, typos and such reported by Luc B.

 5.4.5.1, 5.4.6.2: Luc B. provided fixes for errors in how the PUBLIC
network_name was being set as the only allowed value. Similarly, the
“secure” boolean was not defined properly to ensure it was the only allowed
value.

