
[image: image21.png]ConnectsTo

I

TOSCA Simple Profile in YAML Version 1.0

Committee Specification Draft 02

11 December 2014

Specification URIs

This version:

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd02/TOSCA-Simple-Profile-YAML-v1.0-csd02.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd02/TOSCA-Simple-Profile-YAML-v1.0-csd02.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd02/TOSCA-Simple-Profile-YAML-v1.0-csd02.doc
Previous version:

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.doc
Latest version:

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.doc
Technical Committee:

OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC
Chairs:

Paul Lipton (paul.lipton@ca.com), CA Technologies
Simon Moser (smoser@de.ibm.com), IBM
Editors:

Derek Palma (dpalma@vnomic.com), Vnomic
Matt Rutkowski (mrutkows@us.ibm.com), IBM
Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM
Related work:

This specification is related to:
· Topology and Orchestration Specification for Cloud Applications Version 1.0. Edited by Derek Palma and Thomas Spatzier. 25 November 2013. OASIS Standard. Latest version: http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html.
Declared XML namespaces:

· http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0
Abstract:

This document defines a simplified profile of the TOSCA version 1.0 specification in a YAML rendering which is intended to simplify the authoring of TOSCA service templates. This profile defines a less verbose and more human-readable YAML rendering, reduced level of indirection between different modeling artifacts as well as the assumption of a base type system.
Status:

This document was last revised or approved by the Topology and Orchestration Specification for Cloud Applications (TOSCA) TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical.

TC members should send comments on this specification to the TC’s email list. Others should send comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/tosca/.
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-open.org/committees/tosca/ipr.php).
Citation format:

When referencing this specification the following citation format should be used:

[TOSCA-Simple-Profile-YAML-v1.0]
TOSCA Simple Profile in YAML Version 1.0. Edited by Derek Palma, Matt Rutkowski, and Thomas Spatzier. 11 December 2014. OASIS Committee Specification Draft 02. http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd02/TOSCA-Simple-Profile-YAML-v1.0-csd02.html. Latest version: http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html.
Notices
Copyright © OASIS Open 2015. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.
Table of Contents
71
Objective

82
Summary of key TOSCA concepts

93
A “hello world” template for TOSCA Simple Profile in YAML

103.1 Requesting input parameters and providing output

114
TOSCA template for a simple software installation

135
Overriding behavior of predefined node types

146
TOSCA template for database content deployment

167
TOSCA template for a two-tier application

198
Using a custom script to establish a relationship in a template

219
Using custom relationship types in a TOSCA template

229.1 Definition of a custom relationship type

2310
Defining generic dependencies between nodes in a template

2411
Defining requirements on the hosting infrastructure for a software installation

2612
Defining requirements on a database for an application

2713
Using node template substitution for model composition

2713.1 Understanding node template instantiation through a TOSCA Orchestrator

2713.2 Definition of the top-level service template

2813.3 Definition of the database stack in a service template

3114
Grouping node templates

3415
Using YAML Macros to simplify templates

3516
Passing information as inputs to Nodes and Relationships

3516.1 Example: declaring input variables for all operations in all interfaces

3516.2 Example: declaring input variables for all operations on a single interface

3516.3 Example: declaring input variables for a single operation

3616.4 Example: setting output variables to an attribute

3616.5 Example: passing output variables between operations

3817
Topology Template Model versus Instance Model

3918
Using attributes implicitly reflected from properties

41Appendix A. TOSCA Simple Profile definitions in YAML

41A.1 TOSCA namespace and alias

41A.2 Parameter and property types

46A.3 Normative values

47A.4 TOSCA entity and element definitions (meta-model)

84A.5 Service Template

92A.6 topology_template

97Appendix B. Functions

97B.1 Reserved Function Keywords

97B.2 Environment Variable Conventions

100B.3 Property functions

103B.4 Attribute functions

104B.5 Operation functions

104B.6 Navigation functions

105B.7 Context-based Entity name (global)

106Appendix C. TOSCA normative type definitions

106C.1 Assumptions

106C.2 Data Types

112C.3 Capabilities Types

118C.4 Requirement Types

119C.5 Relationship Types

121C.6 Interface Types

127C.7 Node Types

139C.8 Artifact Types

141Appendix D. Non-normative type definitions

141D.1 Capability Types

141D.2 Node Types

145Appendix E. Networking

145E.1 Networking and Service Template Portability

145E.2 Connectivity Semantics

146E.3 Expressing connectivity semantics

148E.4 Network provisioning

152E.5 Network Types

157E.6 Network modeling approaches

163Appendix F. Component Modeling Use Cases

172Appendix G. Application Modeling Use Cases

172G.1 Application Modeling Use Cases:

194Appendix H. References

194H.1 Known Extensions to TOSCA v1.0

195H.2 Terminology

195H.3 Normative References

195H.4 Non-Normative References

195H.5 Glossary

197Appendix I. Acknowledgments

198Appendix J. Revision History

200Appendix K. Issues List

Table of Figures

9Example 1 - TOSCA Simple "Hello World"

10Example 2 - Template with input and output parameter sections

11Example 3 - Simple (MySQL) software installation on a TOSCA Compute node

13Example 4 - Node Template overriding its Node Type's "configure" interface

14Example 5 - Template for deploying database content on-top of MySQL DBMS middleware

16Example 6 - Basic two-tier application (web application and database server tiers)

19Example 7 – Providing a custom script to establish a connection

21Example 8 – A web application Node Template requiring a custom database connection type

22Example 9 - Defining a custom relationship type

23Example 10 - Simple dependency relationship between two nodes

31Example 11 - Grouping Node Templates with same scaling policy

1 Objective

The TOSCA Simple Profile in YAML specifies a rendering of TOSCA which aims to provide a more accessible syntax as well as a more concise and incremental expressiveness of the TOSCA DSL in order to minimize the learning curve and speed the adoption of the use of TOSCA to portably describe cloud applications.

This proposal describes a YAML rendering for TOSCA. YAML is a human friendly data serialization standard (http://yaml.org/) with a syntax much easier to read and edit than XML. As there are a number of DSLs encoded in YAML, a YAML encoding of the TOSCA DSL makes TOSCA more accessible by these communities.

This proposal prescribes an isomorphic rendering in YAML of a subset of the TOSCA v1.0 ensuring that TOSCA semantics are preserved and can be transformed from XML to YAML or from YAML to XML. Additionally, in order to streamline the expression of TOSCA semantics, the YAML rendering is sought to be more concise and compact through the use of the YAML syntax.
2 Summary of key TOSCA concepts

The TOSCA metamodel uses the concept of service templates to describe cloud workloads as a topology template, which is a graph of node templates modeling the components a workload is made up of and as relationship templates modeling the relations between those components. TOSCA further provides a type system of node types to describe the possible building blocks for constructing a service template, as well as relationship type to describe possible kinds of relations. Both node and relationship types may define lifecycle operations to implement the behavior an orchestration engine can invoke when instantiating a service template. For example, a node type for some software product might provide a ‘create’ operation to handle the creation of an instance of a component at runtime, or a ‘start’ or ‘stop’ operation to handle a start or stop event triggered by an orchestration engine. Those lifecycle operations are backed by implementation artifacts such as scripts or Chef recipes that implement the actual behavior.

An orchestration engine processing a TOSCA service template uses the mentioned lifecycle operations to instantiate single components at runtime, and it uses the relationship between components to derive the order of component instantiation. For example, during the instantiation of a two-tier application that includes a web application that depends on a database, an orchestration engine would first invoke the ‘create’ operation on the database component to install and configure the database, and it would then invoke the ‘create’ operation of the web application to install and configure the application (which includes configuration of the database connection).

The TOSCA simple profile assumes a number of base types (node types and relationship types) to be supported by each compliant environment such as a ‘Compute’ node type, a ‘Network’ node type or a generic ‘Database’ node type (see Appendix C). Furthermore, it is envisioned that a large number of additional types for use in service templates will be defined by a community over time. Therefore, template authors in many cases will not have to define types themselves but can simply start writing service templates that use existing types. In addition, the simple profile will provide means for easily customizing existing types, for example by providing a customized ‘create’ script for some software.

3 A “hello world” template for TOSCA Simple Profile in YAML

As mentioned before, the TOSCA simple profile assumes the existence of a base set of node types (e.g., a ‘Compute’ node) and other types for creating TOSCA Service Templates. It is envisioned that many additional node types for building service templates will be created by communities. Consequently, a most basic TOSCA template for deploying just a single server would look like the following:

Example 1 - TOSCA Simple "Hello World"

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template for deploying a single server with predefined properties.

topology_template:

 node_templates:

 my_server:

 type: tosca.nodes.Compute

 properties:

 # Compute properties

 num_cpus: 2

 disk_size: 10 GB

 mem_size: 4 MB

 capabilities:

 os:

 properties:

 # host Operating System image properties

 architecture: x86_64

 type: linux

 distribution: rhel

 version: 6.5

The template above contains a very simple topology template with only the definition of one single ‘Compute’ node template with predefined (hardcoded) values for number of CPUs, memory size, etc. When instantiated in a provider environment, the provider would allocate a physical or virtual server that meets those specifications. The set of properties of any node type, as well as their schema definition, is defined by the respective node type definitions, which a TOSCA orchestration engine can resolve to validate the properties provided in a template. The Compute node also has built-in TOSCA Capabilities; one is named “os”, which is used to provide values to indicate what host operating system the Compute node should have when it is instantiated.
3.1 Requesting input parameters and providing output

Typically, one would want to allow users to customize deployments by providing input parameters instead of using hardcoded values inside a template. In addition, output values are provided to pass information that perhaps describes the state of the deployed template to the user who deployed it (such as the IP address of the deployed server). A refined service template with corresponding inputs and outputs sections is shown below.
Example 2 - Template with input and output parameter sections

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template for deploying a single server with predefined properties.

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 node_templates:

 my_server:

 type: tosca.nodes.Compute

 properties:

 # Compute properties

 num_cpus: { get_input: cpus }

 mem_size: 4 MB

 disk_size: 10 GB

 outputs:

 server_ip:

 description: The IP address of the provisioned server.

 value: { get_attribute: [my_server, ip_address] }

The inputs and outputs sections are contained in the topology_template element of the TOSCA template, meaning that they are scoped to node templates within the topology template. Input parameters defined in the inputs section can be assigned to properties of node template within the containing topology template; output parameters can be obtained from attributes of node templates within the containing topology template.

Note that the inputs section of a TOSCA template allows for defining optional constraints on each input parameter to restrict possible user input. Further note that TOSCA provides for a set of intrinsic functions like get_input, get_property or get_attribute to reference elements within the template or to retrieve runtime values.

4 TOSCA template for a simple software installation

Software installations can be modeled in TOSCA as node templates that get related to the node template for a server on which the software shall be installed. With a number of existing software node types (e.g. either created by the TOSCA work group or a community) template authors can just use those node types for writing service templates as shown below.

Example 3 - Simple (MySQL) software installation on a TOSCA Compute node

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template for deploying a single server with MySQL software on top.

topology_template:

 inputs:

 # omitted here for sake of brevity

 node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 dbms_root_password: { get_input: my_mysql_rootpw }

 dbms_port: { get_input: my_mysql_port }

 requirements:

 - host: db_server

 db_server:

 type: tosca.nodes.Compute

 properties:

 # omitted here for sake of brevity

The example above makes use of a node type tosca.nodes.DBMS.MySQL for the mysql node template to install MySQL on a server. This node type allows for setting a property dbms_root_password to adapt the password of the MySQL root user at deployment. The set of properties and their schema has been defined in the node type definition. By means of the get_input function, a value provided by the user at deployment time is used as value for the dbms_root_password property. The same is true for the dbms_port property.

The mysql node template is related to the db_server node template (of type tosca.nodes.Compute) via the requirements section to indicate where MySQL is to be installed. In the TOSCA metamodel, nodes get related to each other when one node has a requirement against some feature provided by another node. What kinds of requirements exist is defined by the respective node type. In case of MySQL, which is software that needs to be installed or hosted on a compute resource, the node type defines a requirement called host, which needs to be fulfilled by pointing to a node template of type tosca.nodes.Compute.

Within the requirements section, all entries contain the name of a requirement as key and the identifier of the fulfilling entity as value, expressing basically a named reference to some other node. In the example above, the host requirement is fulfilled by referencing the db_server node template.

5 Overriding behavior of predefined node types

Node types in TOSCA have associated implementations that provide the automation (e.g. in the form of scripts or Chef recipes) for lifecycle operations of a node. For example, the node type implementation for MySQL will provide the scripts to configure, start, or stop MySQL at runtime.

If it is desired to use a custom script for one of the operation defined by a node type in the context of a specific template, the default implementation can be easily overridden by providing a reference to the own automation in the template as shown in the following example:
Example 4 - Node Template overriding its Node Type's "configure" interface
	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template for deploying a single server with MySQL software on top.

topology_template:

 inputs:

 # omitted here for sake of brevity

 node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 dbms_root_password: { get_input: my_mysql_rootpw }

 dbms_port: { get_input: my_mysql_port }

 requirements:

 - host: db_server

 interfaces:

 Standard:

 configure: scripts/my_own_configure.sh

 db_server:

 type: tosca.nodes.Compute

 properties:

 # omitted here for sake of brevity

In the example above, an own script for the configure operation of the MySQL node type’s lifecycle interface is provided. The path given in the example above is interpreted relative to the template file, but it would also be possible to provide an absolute URI to the location of the script.
Operations defined by node types can be thought of as hooks into which automation can be injected. Typically, node type implementations provide the automation for those hooks. However, within a template, custom automation can be injected to run in a hook in the context of the one, specific node template (i.e. without changing the node type).

6 TOSCA template for database content deployment

In the example shown in section 4 the deployment of the MySQL middleware only, i.e. without actual database content was shown. The following example shows how such a template can be extended to also contain the definition of custom database content on-top of the MySQL DBMS software.
Example 5 - Template for deploying database content on-top of MySQL DBMS middleware
	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template for deploying MySQL and database content.

topology_template:

 inputs:

 # omitted here for sake of brevity

 node_templates:

 my_db:

 type: tosca.nodes.Database.MySQLDatabase

 properties:

 db_name: { get_input: database_name }

 db_user: { get_input: database_user }

 db_password: { get_input: database_password }

 db_port: { get_input: database_port }

 artifacts:

 - db_content: files/my_db_content.txt

 type: tosca.artifacts.File

 requirements:

 - host: mysql

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 dbms_root_password: { get_input: mysql_rootpw }

 dbms_port: { get_input: mysql_port }

 requirements:

 - host: db_server

 db_server:

 type: tosca.nodes.Compute

 properties:

 # omitted here for sake of brevity

In the example above, the my_db node template or type tosca.nodes.Database.MySQL represents an actual MySQL database instance managed by a MySQL DBMS installation. In its artifacts section, the node template points to a text file (i.e., my_db_content.txt) which can be used to help create the database content during deployment time. The requirements section of the my_db node template expresses that the database is hosted on a MySQL DBMS represented by the mysql node.

Note that while it would be possible to define one node type and corresponding node templates that represent both the DBMS middleware and actual database content as one entity, TOSCA distinguishes between middleware node types and application layer node types. This allows at the one hand to have better re-use of generic middleware node types without binding them to content running on top, and on the other hand this allows for better substitutability of, for example, middleware components during the deployment of TOSCA models.
7 TOSCA template for a two-tier application
The definition of multi-tier applications in TOSCA is quite similar to the example shown in section 4, with the only difference that multiple software node stacks (i.e., node templates for middleware and application layer components), typically hosted on different servers, are defined and related to each other. The example below defines a web application stack hosted on the web_server “compute” resource, and a database software stack similar to the one shown earlier in section 6 hosted on the db_server compute resource.

Example 6 - Basic two-tier application (web application and database server tiers)
	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template for deploying a two-tier application servers on two

topology_template:

 inputs:

 # Admin user name and password to use with the WordPress application

 wp_admin_username:

 type: string

 wp_admin_password:

 type string

 wp_db_name:

 type: string

 wp_db_user:

 type: string

 wp_db_password:

 type: string

 wp_db_port:

 type: integer

 mysql_root_password:

 type string

 mysql_port:

 type integer

 node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 properties:

 admin_user: { get_input: wp_admin_username }

 admin_password: { get_input: wp_admin_password }

 db_host: { get_property: [db_server, ip_address] }

 requirements:

 - host: apache

 - database_endpoint: wordpress_db

 interfaces:

 Standard:

 inputs:

 db_host: { get_property: [db_server, ip_address] }

 db_port: { get_property: [wordpress_db, db_port] }

 db_name: { get_property: [wordpress_db, db_name] }

 db_user: { get_property: [wordpress_db, db_user] }

 db_password: { get_property: [wordpress_db, db_password] }

 apache:

 type: tosca.nodes.WebServer.Apache

 properties:

 # omitted here for sake of brevity

 requirements:

 - host: web_server

 web_server:

 type: tosca.nodes.Compute

 properties:

 # omitted here for sake of brevity

 wordpress_db:

 type: tosca.nodes.Database.MySQL

 properties:

 db_name: { get_input: wp_db_name }

 db_user: { get_input: wp_db_user }

 db_password: { get_input: wp_db_password }

 db_port: { get_input: wp_db_port }

 requirements:

 - host: mysql

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 dbms_root_password: { get_input: mysql_rootpw }

 dbms_port: { get_input: mysql_port }

 requirements:

 - host: db_server

 db_server:

 type: tosca.nodes.Compute

 properties:

 # omitted here for sake of brevity

The web application stack consists of the wordpress, the apache and the web_server node templates. The wordpress node template represents a custom web application of type tosca.nodes.WebApplication.WordPress which is hosted on an Apache web server represented by the apache node template. This hosting relationship is expressed via the host entry in the requirements section of the wordpress node template. The apache node template, finally, is hosted on the web_server compute node.

The database stack consists of the wordpress_db, the mysql and the db_server node templates. The wordpress_db node represents a custom database of type tosca.nodes.Database.MySQL which is hosted on a MySQL DBMS represented by the mysql node template. This node, in turn, is hosted on the db_server compute node.
The wordpress node requires a connection to the wordpress_db node, since the WordPress application needs a database to store its data in. This relationship is established through the database_endpoint entry in the requirements section of the wordpress node template’s declared node type. For configuring the WordPress web application, information about the database to connect to is required as input to the configure operation. Therefore, the respective input parameters (as defined for the configure operation of node type tosca.nodes.WebApplication.WordPress – see section 6) are mapped to properties of the wordpress_db node via the get_property function.

Note: besides the configure lifecycle operation (i.e., from the tosca.interfaces.node.lifecycle.Standard interface) of the wordpress node template, more operations would be listed in a complete TOSCA template. Those other operations have been omitted for the sake of brevity.

8 Using a custom script to establish a relationship in a template

In previous examples, the template author did not have to think about explicit relationship types to be used to link a requirement of a node to another node of a model, nor did the template author have to think about special logic to establish those links. For example, the host requirement in previous examples just pointed to another node template and based on metadata in the corresponding node type definition the relationship type to be established is implicitly given.

In some cases it might be necessary to provide special processing logic to be executed when establishing relationships between nodes at runtime. For example, when connecting the WordPress application from previous examples to the MySQL database, it might be desired to apply custom configuration logic in addition to that already implemented in the application node type. In such a case, it is possible for the template author to provide a custom script as implementation for an operation to be executed at runtime as shown in the following example.

Example 7 – Providing a custom script to establish a connection

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template for deploying a two-tier application on two servers.

topology_template:

 inputs:

 # omitted here for sake of brevity

 node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 properties:

 # omitted here for sake of brevity

 requirements:

 - host: apache

 - database_endpoint:

 node: wordpress_db

 relationship:
 interfaces:

 tosca.interfaces.relationships.Configure:

 pre_configure_source: scripts/wp_db_configure.sh

 wordpress_db:

 type: tosca.nodes.Database.MySQL

 properties:

 # omitted here for the sake of brevity

 requirements:

 - host: mysql

 # other resources not shown for this example ...

The node type definition for the wordpress node template is WordPress which declares the complete database_endpoint requirement definition. This database_endpoint declaration indicates it must be fulfilled by any node template that provides a DatabaseEndpoint Capability Type using a ConnectsTo relationship. The wordpress_db node template’s underlying MySQL type definition indeed provides the DatabaseEndpoint Capability type. In this example however, no explicit relationship template is declared; therefore TOSCA orchestrators would automatically create a ConnectsTo relationship to establish the link between the wordpress node and the wordpress_db node at runtime.
The ConnectsTo relationship (see C.5.4) also provides a default Configure interface with operations that optionally get executed when the orchestrator establishes the relationship. In the above example, the author has provided the custom script wp_db_configure.sh to be executed for the operation called pre_configure_source. The script file is assumed to be located relative to the referencing service template such as a relative directory within the TOSCA Cloud Service Archive (CSAR) packaging format. This approach allows for conveniently hooking in custom behavior without having to define a completely new derived relationship type.

9 Using custom relationship types in a TOSCA template

In the previous section it was shown how custom behavior can be injected by specifying scripts inline in the requirements section of node templates. When the same custom behavior is required in many templates, it does make sense to define a new relationship type that encapsulates the custom behavior in a re-usable way instead of repeating the same reference to a script (or even references to multiple scripts) in many places.

Such a custom relationship type can then be used in templates as shown in the following example.
Example 8 – A web application Node Template requiring a custom database connection type

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template for deploying a two-tier application on two servers.

topology_template:

 inputs:

 # omitted here for sake of brevity

 node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 properties:

 # omitted here for sake of brevity

 requirements:

 - host: apache

 - database_endpointase:

 node: wordpress_db
 relationship: my.types.WordpressDbConnection

 wordpress_db:

 type: tosca.nodes.Database.MySQL

 properties:

 # omitted here for the sake of brevity

 requirements:

 - host: mysql

 # other resources not shown here ...

In the example above, a special relationship type my.types.WordpressDbConnection is specified for establishing the link between the wordpress node and the wordpress_db node through the use of the relationship (keyword) attribute in the database reference. It is assumed, that this special relationship type provides some extra behavior (e.g., an operation with a script) in addition to what a generic “connects to” relationship would provide. The definition of this custom relationship type is shown in the following section.

9.1 Definition of a custom relationship type

The following YAML snippet shows the definition of the custom relationship type used in the previous section. This type derives from the base “ConnectsTo” and overrides one operation defined by that base relationship type. For the pre_configure_source operation defined in the Configure interface of the ConnectsTo relationship type, a script implementation is provided. It is again assumed that the custom configure script is located at a location relative to the referencing service template, perhaps provided in some application packaging format (e.g., the TOSCA Cloud Service Archive (CSAR) format).
Example 9 - Defining a custom relationship type

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Definition of custom WordpressDbConnection relationship type

relationship_types:

 my.types.WordpressDbConnection:

 derived_from: tosca.relationships.ConnectsTo

 interfaces:

 Configure:

 pre_configure_source: scripts/wp_db_configure.sh

In the above example, the Configure interface is the specified alias or shorthand name for the TOSCA interface type with the full name of tosca.interfaces.relationship.Configure which is defined in the appendix.

10 Defining generic dependencies between nodes in a template

In some cases it can be necessary to define a generic dependency between two nodes in a template to influence orchestration behavior, i.e. to first have one node processed before another dependent node gets processed. This can be done by using the generic dependency requirement which is defined by the TOSCA Root Node Type and thus gets inherited by all other node types in TOSCA (see section C.7.1).
Example 10 - Simple dependency relationship between two nodes

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template with a generic dependency between two nodes.

topology_template:

 inputs:

 # omitted here for sake of brevity

 node_templates:

 my_app:

 type: my.types.MyApplication

 properties:

 # omitted here for sake of brevity

 requirements:

 - dependency: some_service

 some_service:

 type: some.type.SomeService

 properties:

 # omitted here for sake of brevity

As in previous examples, the relation that one node depends on another node is expressed in the requirements section using the built-in requirement named dependency that exists for all node types in TOSCA. Even if the creator of the MyApplication node type did not define a specific requirement for SomeService (similar to the database requirement in the example in section 8), the template author who knows that there is a timing dependency and can use the generic dependency requirement to express that constraint using the very same syntax as used for all other references.

11 Defining requirements on the hosting infrastructure for a software installation

Instead of defining software installations and the hosting infrastructure (the servers) in the same template, it is also possible to define only the software components of an application in a template and just express constrained requirements against the hosting infrastructure. At deployment time, the provider can then do a late binding and dynamically allocate or assign the required hosting infrastructure and place software components on top.

The following example shows how such generic hosting requirements can be expressed in the requirements section of node templates.
	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template with requirements against hosting infrastructure.

topology_template:

 inputs:

 # omitted here for sake of brevity

 node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 # omitted here for sake of brevity

 requirements:

 - host:

 node: tosca.nodes.Compute

 target_filter:

 properties:

 - num_cpus: { in_range: [1, 4] }

 - mem_size: { greater_or_equal: 2 }

 capabilities:

 - os:

 properties:

 - architecture: x86_64

 - type: linux

 - distribution: ubuntu

In the example above, it is expressed that the mysql component requires a host of type Compute. In contrast to previous examples, there is no reference to any node template but just a specification of the type of required node. At deployment time, the provider will thus have to allocate or assign a resource of the given type.

In the constraints section, the characteristics of the required compute node can be narrowed down by defining boundaries for the memory size, number of CPUs, etc. Those constraints can either be expressed by means of concrete values (e.g. for the architecture attribute) which will require a perfect match, or by means of qualifier functions such as greater_or_equal.

12 Defining requirements on a database for an application

In the same way requirements can be defined on the hosting infrastructure for an application, it is possible to express requirements against application or middleware components such as a database that is not defined in the same template. The provider may then allocate a database by any means, e.g. using a database-as-a-service solution.
	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template with a database requirement.

topology_template:

 inputs:

 # omitted here for sake of brevity

 node_templates:

 my_app:

 type: my.types.MyApplication

 properties:

 admin_user: { get_input: admin_username }

 admin_password: { get_input: admin_password }

 db_endpoint_url: { get_property: [SELF, database, db_endpoint_url] }

 requirements:

 - database_endpoint:

 node: tosca.nodes.DBMS.MySQL

 target_filter:

 properties:

 - mysql_version: { greater_or_equal: 5.5 }

In the example above, the application my_app needs a MySQL database, where the version of MySQL must be 5.5 or higher. The example shows an additional feature of referencing a property of the database to get the database connection endpoint URL at runtime via the get_property intrinsic function. The get_property function allows for getting a property via a reference expressed in the requirements section. The first argument is a keyword (SELF) to indicate the requirement is in the current node, the second parameter is the name of a reference to another node, in this case as described by the requirement named database in the example above – and the last argument is the name of the property of the referenced node, which must be defined by the respective node type tosca.nodes.DBMS.MySQL.

13 Using node template substitution for model composition
From an application perspective, it is often not necessary or desired to dive into platform details, but the platform/runtime for an application is abstracted. In such cases, the template for an application can use generic representations of platform components. The details for such platform components, such as the underlying hosting infrastructure at its configuration, can then be defined in separate template files that can be used for substituting the more abstract representations in the application level template file.

13.1 Understanding node template instantiation through a TOSCA Orchestrator

When a topology template is instantiated by a TOSCA Orchestrator, the orchestrator has to look for realizations of the single node templates according to the node types specified for each node template. Such realizations can either be node types that include the appropriate implementation artifacts and deployment artifacts that can be used by the orchestrator to bring to life the real-world resource modeled by a node template. Alternatively, separate topology templates may be annotated as being suitable for realizing a node template in the top-level topology template.

In the latter case, a TOSCA Orchestrator will use additional substitution mapping information provided as part of the substituting topology templates to derive how the substituted part get “wired” into the overall deployment, for example, how capabilities of a node template in the top-level topology template get bound to capabilities of node templates in the substituting topology template.

Thus, in cases where no “normal” node type implementation is available, or the node type corresponds to a whole subsystem that cannot be implemented as a single node, additional topology templates can be used for filling in more abstract placeholders in top level application templates.
13.2 Definition of the top-level service template

The following sample defines a web application web_app connected to a database db. In this example, the complete hosting stack for the application is defined within the same topology template: the web application is hosted on a web server web_server, which in turn is installed (hosted) on a compute node server.

The hosting stack for the database db, in contrast, is not defined within the same file but only the database is represented as a node template of type tosca.nodes.Database. The underlying hosting stack for the database is defined in a separate template file, which is shown later in this section. Within the current template, only a number of properties (db_user, db_password, db_name) are assigned to the database using hardcoded values in this simple example.

Note that in contrast to the use case described in section 12 where a database was abstractly referred to in the requirements section of a node and the database itself was not represented as a node template, the approach shown here allows for some additional modeling capabilities in cases where this is required.
For example, if multiple components shall use the same database (or any other sub-system of the overall service), this can be expressed by means of normal relations between node templates, whereas such modeling would not be possible in requirements sections of disjoint node templates.
	tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:

 description: Template of an application connecting to a database.

 node_templates:

 web_app:

 type: tosca.nodes.WebApplication.MyWebApp

 requirements:

 - host: web_server

 - database_endpoint: db

 web_server:

 type: tosca.nodes.WebServer

 requirements:

 - host: server

 server:

 type: tosca.nodes.Compute

 db:

 type: tosca.nodes.Database

 properties:

 db_user: my_db_user

 db_password: secret

 db_name: my_db_name

13.3 Definition of the database stack in a service template
The following sample defines a template for a database including its complete hosting stack, i.e. the template includes a database node template, a template for the database management system (dbms) hosting the database, as well as a computer node server on which the DBMS is installed.

This service template can be used standalone for deploying just a database and its hosting stack. In the context of the current use case, though, this template can also substitute the database node template in the previous snippet and thus fill in the details of how to deploy the database.

In order to enable such a substitution, an additional metadata section substitution_mappings is added to the topology template to tell a TOSCA Orchestrator how exactly the topology template will fit into the context where it gets used. For example, requirements or capabilities of the node that gets substituted by the topology template have to be mapped to requirements or capabilities of internal node templates for allow for a proper wiring of the resulting overall graph of node templates.

In short, the substitution_mappings section provides the following information:
1. It defines what node templates, i.e. node templates of which type, can be substituted by the topology template.

2. It defines how capabilities of the substituted node (or the capabilities defined by the node type of the substituted node template, respectively) are bound to capabilities of node templates defined in the topology template.

3. It defines how requirements of the substituted node (or the requirements defined by the node type of the substituted node template, respectively) are bound to requirements of node templates defined in the topology template.
	tosca_definitions_version: tosca_simple_yaml_1_0

topology_template:

 description: Template of a database including its hosting stack.

 inputs:

 db_user:

 type: string

 db_password:

 type: string

 # other inputs omitted for sake of brevity

 substitution_mappings:

 node_type: tosca.nodes.Database

 capabilities:

 database_endpoint: [database, database_endpoint]

 node_templates:

 database:

 type: tosca.nodes.Database

 properties:

 db_user: { get_input: db_user }

 # other properties omitted for sake of brevity

 requirements:

 - host: dbms

 dbms:

 type: tosca.nodes.DBMS

 # details omitted for sake of brevity

 server:

 type: tosca.nodes.Compute

 # details omitted for sake of brevity

The substitution_mappings section in the sample above denotes that this topology template can be used for substituting node templates of type tosca.nodes.Database. It further denotes that the database_endpoint capability of the substituted node gets fulfilled by the database_endpoint capabilities of the database node contained in the topology template.

Note that the substitution_mappings section does not define any mappings for requirements of the Database node type, since all requirements are fulfilled by other nodes templates in the current topology template. In cases where a requirement of a substituted node is bound in the top-level service template as well as in the substituting topology template, a TOSCA Orchestrator SHOULD raise a validation error.

Further note that no mappings for properties or attributes of the substituted node are defined. Instead, the inputs and outputs defined by the topology template have to match the properties and attributes or the substituted node. If there are more inputs than the substituted node has properties, default values must be defined for those inputs, since no values can be assigned through properties in a substitution case.
14 Grouping node templates

In designing applications composed of several interdependent software components (or nodes) it is often desirable to manage these components as a named group. This can provide an effective way of associating policies (e.g., scaling, placement, security or other) that orchestration tools can apply to all the components of group during deployment or during other lifecycle stages.

In many realistic scenarios it is desirable to include scaling capabilities into an application to be able to react on load variations at runtime. The example below shows the definition of a scaling web server stack, where a variable number of servers with apache installed on them can exist, depending on the load on the servers.
Example 11 - Grouping Node Templates with same scaling policy

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template for a scaling web server.

topology_template:

 inputs:

 # omitted here for sake of brevity

 node_templates:

 apache:

 type: tosca.nodes.WebServer.Apache

 properties:

 http_port: 8080

 https_port: 8443

 requirements:

 - host: server

 server:

 type: tosca.nodes.Compute

 properties:

 # omitted here for sake of brevity

 group:

 webserver_group:

 members: [apache, server]

 policies:

 - my_scaling_policy:

 # Specific policy definitions are considered domain specific and

 # are not included here

The example first of all uses the concept of grouping to express which components (node templates) need to be scaled as a unit – i.e. the compute nodes and the software on-top of each compute node. This is done by defining the webserver_group in the groups section of the template and by adding both the apache node template and the server node template as a member to the group.

Furthermore, a scaling policy is defined for the group to express that the group as a whole (i.e. pairs of server node and the apache component installed on top) should scale up or down under certain conditions.

In cases where no explicit binding between software components and their hosting compute resources is defined in a template, but only requirements are defined as has been shown in section 11, a provider could decide to place software components on the same host if their hosting requirements match, or to place them onto different hosts.

It is often desired, though, to influence placement at deployment time to make sure components get collocation or anti-collocated. This can be expressed via grouping and policies as shown in the example below.

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template hosting requirements and placement policy.

topology_template:

 inputs:

 # omitted here for sake of brevity

 node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.Wordpress

 properties:

 # omitted here for sake of brevity

 requirements:

 - host:

 node: tosca.nodes.Compute

 target_filter:

 properties:

 - mem_size: { greater_or_equal: 2 MB }

 capabilities:

 - os:

 properties:

 - architecture: x86_64

 - type: linux

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 # omitted here for sake of brevity

 requirements:

 - host:

 node: tosca.nodes.Compute

 target_filter:

 properties:

 - disk_size: { greater_or_equal: 10 }

 capabilities:

 - os:

 properties:

 - architecture: x86_64

 - type: linux

 groups:

 my_collocation_group:

 members: [wordpress, mysql]

 policies:

 - my_anti_collocation_policy:

 # Specific policy definitions are considered domain specific and

 # are not included here

In the example above, both software components wordpress and mysql have identical hosting requirements. Therefore, a provider could decide to put both on the same server. By defining a group of the two components and attaching an anti-collocation policy to the group it can be made sure, though, that both components are put onto different hosts at deployment time.
15 Using YAML Macros to simplify templates

The YAML 1.2 specification allows for defining of aliases which allow for authoring a block of YAML (or node) once and indicating it is an “anchor” and then referencing it elsewhere in the same document as an “alias”. Effectively, YAML parsers treat this as a “macro” and copy the anchor block’s code to wherever it is referenced. Use of this feature is especially helpful when authoring TOSCA Service Templates where similar definitions and property settings may be repeated multiple times when describing a multi-tier application.

For example, an application that has a web server and database (i.e., a two-tier application) may be described using two Compute nodes (one to host the web server and another to host the database). The author may want both Compute nodes to be instantiated with similar properties such as operating system, distribution, version, etc..

To accomplish this, the author would describe the reusable properties using a named anchor in the “dsl_definitions” section of the TOSCA Service Template and reference the anchor name as an alias in any Compute node templates where these properties may need to be reused. For example:

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: >

 TOSCA simple profile that just defines a YAML macro for commonly reused Compute

 properties.

dsl_definitions:

 my_compute_node_props: &my_compute_node_props

 disk_size: 10 GB

 num_cpus: 1

 mem_size: 4096 KB

topology_template:

 node_templates:

 my_server:

 type: Compute
 properties: *my_compute_node_props

 my_database:

 type: Compute

 properties: *my_compute_node_props

16 Passing information as inputs to Nodes and Relationships

It is possible for type and template authors to declare input variables within an inputs block on interfaces to nodes or relationships in order to pass along information needed by their operations (scripts). These declarations can be scoped such as to make these variable values available to all operations on a node or relationships interfaces or to individual operations. TOSCA orchestrators will make these values available as environment variables within the execution environments in which the scripts associated with lifecycle operations are run.

16.1 Example: declaring input variables for all operations in all interfaces

	node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 requirements:

 ...

 - database_endpoint: mysql_database

 interfaces:

 inputs:

 wp_db_port: { get_property: [SELF, database_endpoint, port] }

16.2 Example: declaring input variables for all operations on a single interface

	node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 requirements:

 ...

 - database_endpoint: mysql_database

 interfaces:

 Standard:

 inputs:

 wp_db_port: { get_property: [SELF, database_endpoint, port] }

16.3 Example: declaring input variables for a single operation

	node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 requirements:

 ...

 - database_endpoint: mysql_database

 interfaces:

 Standard:

 create: wordpress_install.sh

 configure:

 implementation: wordpress_configure.sh

 inputs:

 wp_db_port: { get_property: [SELF, database_endpoint, port] }

In the case where an input variable name is defined at more than one scope within the same interfaces section of a node or template definition, the lowest (or innermost) scoped declaration would override those declared at higher (or more outer) levels of the definition.

16.4 Example: setting output variables to an attribute

	node_templates:

 frontend:
 type: tosca.nodes.WebApplication.WordPress

 attributes:
 url: { get_operation_output: [SELF, Standard, create, generated_url] }
 interfaces:
 Standard:
 create:
 implementation: scripts/frontend/create.sh

In this example, the Standard create operation exposes / exports an environment variable named “generated_url” attribute which will be assigned to the WordPress node’s url attribute.

16.5 Example: passing output variables between operations

	node_templates:

 frontend:
 type: tosca.nodes.WebApplication.WordPress
 interfaces:
 Standard:
 create:
 implementation: scripts/frontend/create.sh

 configure:
 implementation: scripts/frontend/configure.sh
 inputs:
 data_dir: { get_operation_output: [SELF, Standard, create, data_dir] }

In this example, the Standard lifecycle’s create operation exposes / exports an environment variable named “data_dir” which will be passed as an input to the Standard lifecycle’s configure operation.
17 Topology Template Model versus Instance Model

A TOSCA service template contains a topology template, which models the components of an application, their relationships and dependencies (a.k.a., a topology model) that get interpreted and instantiated by TOSCA Orchestrators. The actual node and relationship instances that are created represent a set of resources distinct from the template itself, called a topology instance (model). The direction of this specification is to provide access to the instances of these resources for management and operational control by external administrators. This model can also be accessed by an orchestration engine during deployment – i.e. during the actual process of instantiating the template in an incremental fashion, That is, the orchestrator can choose the order of resources to instantiate (i.e., establishing a partial set of node and relationship instances) and have the ability, as they are being created, to access them in order to facilitate instantiating the remaining resources of the complete topology template.
18 Using attributes implicitly reflected from properties

Most entity types in TOSCA (e.g., Node, Relationship, Requirement and Capability Types) have property definitions which allow template authors to set the values for as inputs when these entities are instantiated by an orchestrator. These property values are considered to reflect the desired state of the entity by the author. Once instantiated, the actual values for these properties on the realized (instantiated) entity are obtainable via attributes on the entity with the same name as the corresponding property.

In other words, TOSCA orchestrators will automatically reflect (i.e., make available) any property defined on an entity making it available as an attribute of the entity with the same name as the property.

Use of this feature is shown in the example below where a source node named my_client, of type ClientNode, requires a connection to another node named my_server of type ServerNode. As you can see, the ServerNode type defines a property named notification_port which defines a dedicated port number which instances of my_client may use to post asynchronous notifications to it during runtime. In this case, the TOSCA Simple Profile assures that the notification_port property is implicitly reflected as an attribute in the my_server node (also with the name notification_port) when its node template is instantiated.

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: >

 TOSCA simple profile that just defines a YAML macro for commonly reused Compute

 properties.

node_types:

 ServerNode:

 derived_from: SoftwareComponent

 properties:

 notification_port:

 type: integer

 capabilities:

 # omitted here for sake of brevity

 ClientNode:

 derived_from: SoftwareComponent

 properties:

 # omitted here for sake of brevity

 requirements:

 - server:

 node: ServerNode

 relationship:

 type: ConnectsTo

 # Augment resulting Relationship’s interfaces by providing inputs

 interfaces:

 Configure:

 inputs:

 targ_notify_port: { get_attribute: { [TARGET, notification_port } }

 # other operation definitions omitted here for sake of brevity

topology_template:

 node_templates:

 my_server:

 type: ServerNode

 properties:

 notification_port: 8000

 my_client:

 type: ClientNode

 requirements:

 - server: my_server

Specifically, the above example shows that the ClientNode type needs the notification_port value anytime a node of ServerType is connected to it using the ConnectsTo relationship in order to make it available to its Configure operations (scripts). It does this by using the get_attribute function to retrieve the notification_port attribute from the TARGET node of the ConnectsTo relationship (which is a node of type ServerNode) and assigning it to an environment variable named targ_notify_port.
It should be noted that the actual port value of the notification_port attribute may or may not be the value 8000 as requested on the property; therefore, any node that is dependent on knowing its actual “runtime” value would use the get_attribute function instead of the get_property function.

Appendix A. TOSCA Simple Profile definitions in YAML

This section describes all of the YAML block structure for all keys and mappings that are defined for the TOSCA Version 1.0 Simple Profile specification that are needed to describe a TOSCA Service Template (in YAML).
A.1 TOSCA namespace and alias

The following table defines the namespace alias and (target) namespace values that SHALL be used when referencing the TOSCA Simple Profile version 1.0 specification.
	Alias
	Target Namespace
	Specification Description

	tosca_simple_yaml_1_0_0
	http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0
	The TOSCA Simple Profile v1.0 (YAML) target namespace and namespace alias.

A.1.1 Rules to avoid namespace collisions

TOSCA Simple Profiles allows template authors to declare their own types and templates and assign them simple names with no apparent namespaces. Since TOSCA Service Templates can import other service templates and service templates can be “nested” rules are needed so that TOSCA Orchestrators know how to avoid collisions and apply their own namespaces when import and nesting occur.

The following cases are considered:

· Duplicate property names within same entity (e.g., Node Type, Node Template, Relationship Type, etc.)

· Duplicate requirement names within same entity (e.g., Node Type, Node Template, Relationship Type, etc.)

· Duplicate capability names within same entity (e.g., Node Type, Node Template, Relationship Type, etc.)

· Collisions that occurs from “import” for any Type or Template.

· Collision that occurs from “nesting” for any Type or Template.
A.2 Parameter and property types

This clause describes the primitive types that are used for declaring normative properties, parameters and grammar elements throughout this specification.

A.2.1 Referenced YAML Types

Many of the types we use in this profile are built-in types from the YAML 1.2 specification (i.e., those identified by the “tag:yaml.org,2002” version tag).

The following table declares the valid YAML type URIs and aliases that SHALL be used when possible when defining parameters or properties within TOSCA Service Templates using this specification:
	Valid aliases
	Type URI

	string
	tag:yaml.org,2002:str (default)

	integer
	tag:yaml.org,2002:int

	float
	tag:yaml.org,2002:float

	boolean
	tag:yaml.org,2002:bool (i.e., a value either ‘true’ or ‘false’)

	timestamp
	tag:yaml.org,2002:timestamp

	null
	tag:yaml.org,2002:null

A.2.1.1 Notes

· The “string” type is the default type when not specified on a parameter or property declaration.

· While YAML supports further type aliases, such as “str” for “string”, the TOSCA Simple Profile specification promotes the fully expressed alias name for clarity.
A.2.2 TOSCA base types

This specification defines the following types that may be used when defining properties or parameters.

A.2.2.1 TOSCA version
TOSCA supports the concept of “reuse” of type definitions, as well as template definitions which could be version and change over time. It is important to provide a reliable, normative means to represent a version string which enables the comparison and management of types and templates over time. Therefore, the TOSCA TC intends to provide a normative version type (string) for this purpose in future Working Drafts of this specification.

A.2.2.1.1 Grammar
TOSCA version strings have the following grammar:
	<major_version>.<minor_version>.<fix_version>[.<qualifier>[-<build_version]]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· major_version: is a required integer value greater than or equal to 0 (zero)

· minor_version: is a required integer value greater than or equal to 0 (zero).

· fix_version: is a required integer value greater than or equal to 0 (zero).

· qualifier: is an optional string that indicates a named, pre-release version of the associated code that has been derived from the version of the code identified by the combination major_version, minor_version and fix_version numbers.
· build_version: is an optional integer value greater than or equal to 0 (zero) that can be used to further qualify different build versions of the code that has the same qualifer_string.

A.2.2.1.2 Version Comparison

· When comparing TOSCA versions, all component versions (i.e., major, minor and fix) are compared in sequence from left to right.
TOSCA versions that include the optional qualifier are considered older than those without a qualifier.

TOSCA versions with the same major, minor, and fix versions and have the same qualifier string, but with different build versions can be compared based upon the build version.

Qualifier strings are considered domain-specific. Therefore, this specification makes no recommendation on how to compare TOSCA versions with the same major, minor and fix versions, but with different qualifiers strings and simply considers them different named branches derived from the same code.

A.2.2.1.3 Examples
Example of a version with
	# basic version string

2.0.1

version string with optional qualifier

3.1.0.beta

version string with optional qualifier and build version

1.0.0.alpha-10

A.2.2.1.4 Notes

· [Maven-Version] The TOSCA version type is compatible with the Apache Maven versioning policy.
A.2.2.2 TOCSA range type

The range type can be used to define numeric ranges with a lower and upper boundary. For example, this allows for specifying a range of ports to be opened in a firewall.

A.2.2.2.1 Grammar

TOSCA range values have the following grammar:
	[<lower_bound>, <upper_bound>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· lower_bound: is a required integer value that denotes the lower boundary of the range.

· upper_bound: is a required integer value that denotes the upper boundary of the range. This value must be greater than lower_bound.

A.2.2.2.2 Examples

Example of a node template property with a range value:
	# numeric range between 1 and 100

a_range_property: [1, 100]

A.2.2.3 TOCSA scalar-unit type

The scalar-unit type can be used to define scalar values along with a unit from the list of recognized units provided below.

A.2.2.3.1 Recognized Units

	Unit
	Usage
	Description

	B
	size
	byte

	kB
	size
	kilobyte (1000 bytes)

	MB
	size
	megabyte (1000000 bytes)

	GB
	size
	gigabyte (1000000000 bytes)

	TB
	size
	terabyte (1000000000000 bytes)

A.2.2.3.2 Grammar

TOSCA scalar-unit typed values have the following grammar:
	<scalar> <unit>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· scalar: is a required scalar value.

· unit: is a required unit value. The unit value MUST be type-compatible with the scalar.

A.2.2.3.3 Examples

	Storage size in Gigabytes

properties:

 storage_size: 10 GB

A.2.2.3.4 Additional requirements

· Whitespace: any number of spaces (including zero or none) is allowed between the scalar value and the unit value.

· When performing constraint clause evaluation on values of the scalar-unit type, both the scalar value portion and unit value portion MUST be compared together (i.e., both are treated as a single value). For example, if we have a property called storage_size. which is of type scalar-unit, a valid range constraint would appear as follows:

· storage_size: in_range { 4 GB, 20 GB }

where storage_size’s range would be evaluated using both the numeric and unit values (combined together), in this case ‘4 GB’ and ’20 GB’.

A.2.2.3.5 Notes

· The unit values recognized by TOSCA Simple Profile for size-type units are based upon a subset of those defined by GNU at http://www.gnu.org/software/parted/manual/html_node/unit.html , which is a non-normative reference to this specification.
A.2.2.4 TOSCA list type

The list type allows for specifying multiple values for a parameter of property. For example, if an application allows for being configured to listen on multiple ports, a list of ports could be configured using the list data type.

Note that entries in a list for one property or parameter must be of the same type. The type (for simple entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective property definition, attribute definition, or input- or output parameter definition.

A.2.2.4.1 Grammar

TOSCA lists normal YAML lists with the following grammars:

A.2.2.4.2 Square bracket notation
	 [<list_entry_1>, <list_entry_2>, ...]

A.2.2.4.3 Bulleted list notation
	- <list_entry_1>

- ...

- <list_entry_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

· <list_entry_*>: represents one entry of the list

A.2.2.4.4 Examples

Example of node template property with a list value:

A.2.2.4.5 Square bracket notation
	listen_ports: [80, 8080]

A.2.2.4.6 Bulleted list notation
	listen_ports:

 - 80

 - 8080

A.2.2.5 TOSCA map type

The map type allows for specifying multiple values for a parameter of property as a map. In contrast to the list type, where each entry can only be addressed by its index in the list, entries in a map are named elements that can be addressed by their keys.

Note that entries in a map for one property or parameter must be of the same type. The type (for simple entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective property definition, attribute definition, or input or output parameter definition.

A.2.2.5.1 Grammar

TOSCA maps are normal YAML dictionaries with following grammar:

A.2.2.5.2 Single-line grammar
	{ <entry_key_1>: <entry_value_1>, ..., <entry_key_n>: <entry_value_n> }

...

<entry_key_n>: <entry_value_n>

A.2.2.5.3 Multi-line grammar
	<entry_key_1>: <entry_value_1>

...

<entry_key_n>: <entry_value_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

· entry_key_*: is the required key for an entry in the map

· entry_value_*: is the value of the respective entry in the map

A.2.2.5.4 Examples

Example of a node template property with a map value:

A.2.2.5.5 Single-line notation
	# notation option for shorter maps

user_name_to_id_map: { user1: 1001, user2: 1002 }

A.2.2.5.6 Multi-line notation
	# notation for longer maps

user_name_to_id_map:

 user1: 1001

 user2: 1002

In the examples above, two notation options are given: option 1 is using a notation where each map entry is one a separate line; this option is typically useful or more readable if there is a large number of entries, or if the entries are complex. Option 2 is using a notation that is useful for only short maps with simple entries.

A.3 Normative values

A.3.1 Node States

As components (i.e., nodes) of TOSCA applications are deployed, instantiated and orchestrated over their lifecycle using normative lifecycle operations (see section C.6 for normative lifecycle definitions) it is important define normative values for communicating the states of these components normatively between orchestration and workflow engines and any managers of these applications.

The following table provides the list of recognized node states for TOSCA Simple Profile that would be set by the orchestrator to describe a node instance’s state:

	Node State

	Value
	Transitional
	Description

	initial
	no
	Node is not yet created. Node only exists as a template definition.

	creating
	yes
	Node is transitioning from initial state to created state.

	created
	no
	Node software has been installed.

	configuring
	yes
	Node is transitioning from created state to configured state.

	configured
	no
	Node has been configured prior to being started.

	starting
	yes
	Node is transitioning from configured state to started state.

	started
	no
	Node is started.

	stopping
	yes
	Node is transitioning from its current state to a configured state.

	deleting
	yes
	Node is transitioning from its current state to one where it is deleted and its state is no longer tracked by the instance model.

	error
	no
	Node is in an error state.

A.3.1.1 Additional requirements

· None
A.4 TOSCA entity and element definitions (meta-model)

This section defines all modelable entities that comprise the TOSCA Version 1.0 Simple Profile specification along with their key names, grammar and requirements.
A.4.1 Description element

This optional element provides a means include single or multiline descriptions within a TOSCA Simple Profile template as a scalar string value.

A.4.1.1 Keyname

The following keyname is used to provide a description within the TOSCA Simple Profile specification:
	description

A.4.1.2 Grammar

The description element is a YAML string.
	description: <string>

A.4.1.3 Examples

Simple descriptions are treated as a single literal that includes the entire contents of the line that immediately follows the description key:
	description: This is an example of a single line description (no folding).

The YAML “folded” style may also be used for multi-line descriptions which “folds” line breaks as space characters.
	description: >

 This is an example of a multi-line description using YAML. It permits for line

 breaks for easier readability...

 if needed. However, (multiple) line breaks are folded into a single space

 character when processed into a single string value.

A.4.1.4 Notes

· Use of “folded” style is discouraged for the YAML string type apart from when used with the description keyname.
A.4.2 Constraint clause
A constraint clause defines an operation along with one or more compatible values that can be used to define a constraint on a property or parameter’s allowed values when it is defined in a TOSCA Service Template or one of its entities.

A.4.2.1 Operator keynames

The following is the list of recognized operators (keynames) when defining constraint clauses:
	Operator
	Type
	Value Type
	Description

	equal
	scalar
	any
	Constrains a property or parameter to a value equal to (‘=’) the value declared.

	greater_than
	scalar
	comparable
	Constrains a property or parameter to a value greater than (‘>’) the value declared.

	greater_or_equal
	scalar
	comparable
	Constrains a property or parameter to a value greater than or equal to (‘>=’) the value declared.

	less_than
	scalar
	comparable
	Constrains a property or parameter to a value less than (‘<’) the value declared.

	less_or_equal
	scalar
	comparable
	Constrains a property or parameter to a value less than or equal to (‘<=’) the value declared.

	in_range
	dual scalar
	comparable
	Constrains a property or parameter to a value in range of (inclusive) the two values declared.

Note: subclasses or templates of types that declare a property with the in_range constraint MAY only further restrict the range specified by the parent type.

	valid_values
	list
	any
	Constrains a property or parameter to a value that is in the list of declared values.

	length
	scalar
	string
	Constrains the property or parameter to a value of a given length.

	min_length
	scalar
	string
	Constrains the property or parameter to a value to a minimum length.

	max_length
	scalar
	string
	Constrains the property or parameter to a value to a maximum length.

	pattern
	regex
	string
	Constrains the property or parameter to a value that is allowed by the provided regular expression.

Note: Future drafts of this specification will detail the use of regular expressions and reference an appropriate standardized grammar.

In the Value Type column above, an entry of “comparable” includes integer, float, timestamp, string and version types, while an entry of “any” refers to any type allowed in the TOSCA simple profile in YAML.

A.4.2.2 Grammar

Constraint clauses take one of the following forms:
	# Scalar grammar

<operator>: <scalar_value>

Dual scalar grammar

<operator>: { <scalar_value_1>, <scalar_value_2> }

List grammar

<operator> [<value_1>, <value_2>, ..., <value_n>]

Regular expression (regex) grammar

pattern: <regular_expression_value>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· operator: represents a required operator from the specified list shown above (see section A.4.2.1 “Operator keynames”).

· scalar_value, scalar_value_*: represents a required scalar (or atomic quantity) that can hold only one value at a time. This will be a value of a primitive type, such as an integer or string that is allowed by this specification.

· value_*: represents a required value of the operator that is not limited to scalars.

· reqular_expression_value: represents a regular expression (string) value.

A.4.2.3 Examples

Constraint clauses used on parameter or property definitions:
	# equal

equal: 2

greater_than

greater_than: 1

greater_or_equal

greater_or_equal: 2

less_than

less_than: 5

less_or_equal

less_or_equal: 4

in_range

in_range: [1, 4]

valid_values

valid_values: [1, 2, 4]

specific length (in characters)

length: 32

min_length (in characters)

min_length: 8

max_length (in characters)

max_length: 64

A.4.2.4 Notes

· Values provided by the operands (i.e., values and scalar values) SHALL be type-compatible with their associated operations.

· Future drafts of this specification will detail the use of regular expressions and reference an appropriate standardized grammar.
A.4.3 Constraints element

The Constraints element specifies a sequenced list of constraints on one or more of the Service Template’s properties, parameters or other typed elements of the TOSCA Simple Profile. A constraints element is represented as a YAML block collection that contains a sequenced list of nested constraint clauses.

A.4.3.1 Keyname

The following keyname is used to provide a list of constraints within the TOSCA Simple Profile specification:

	constraints

A.4.3.2 Grammar

The constraints element is described as a YAML block collection that contains a sequence of constraint clauses:
	<some_typed_property_name>:

 constraints:

 - <constraint_clause_1>

 - ...

 - <constraint_clause_n>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· some_typed_property_name: represents the required symbolic name of a typed property definition, as a string, which can be associated to a TOSCA entity.

· For example, a property (definition) can be declared as part of a Node Type or Node Template definition or it can be used to define an input or output property (parameter) for a Service Template’s.

· constraint_clause_*: represents constraint clauses for the associated property or parameter.

A.4.3.3 Examples

Constraint on an integer-typed parameter definition:
	# An example input parameter that represents a number of CPUs

and constrains its value to a specific range.

inputs:

 num_cpus:

 type: integer

 constraints:

 - in_range: [2, 4]

Constraints on a string-typed parameter definition:
	# An example input parameter that represents a user ID and constrains its length.

inputs:

 user_id:

 type: string

 constraints:

 - min_length: 8

 - max_length: 16

A.4.3.4 Notes

· Constraints of properties or parameters SHOULD be type-compatible with the type defined for that property or parameter.

· In the TOSCA v1.0 specification constraints are expressed in the XML Schema definitions of Node Type properties referenced in the PropertiesDefinition element of NodeType definitions.

A.4.4 Property definition

A property definition defines a named, typed value and related data that can be associated with an entity defined in this specification. It is used to provide a transparent property or characteristic of that entity which can either be set on or retrieved from it. Properties are used by template authors to provide the “desired state”, as input to TOSCA entities for use when they are instantiated. The value of a property can be retrieved using the get_property function within TOSCA Service Templates.

A.4.4.1 Keynames

The following is the list of recognized keynames recognized for a TOSCA property definition:
	Keyname
	Required
	Type
	Constraints
	Description

	type
	yes
	string
	None
	The required data type for the property.

	description
	no
	description
	None
	The optional description for the property.

	required
	no

	boolean
	default=true
	An optional key that declares a property as required (true) or not (false).

If this key is not declared for property definition, then the property SHALL be considered required by default.

	default
	no
	<any>
	None
	An optional key that may provide a value to be used as a default if not provided by another means.

This value SHALL be type compatible with the type declared by the property definition’s type keyname.

	constraints
	no
	constraints
	None
	The optional list of sequenced constraints for the property.

	status
	no

	string
	default: supported
	The optional status of the property relative to the specification or implementation. See table below for valid values.

	entry_schema
	no
	schema
	None
	The optional key that is used to declare the schema definition for entries of “container” types such as the TOSCA list or map.

A.4.4.2 Status values

The following property status values are supported:
	Value
	Description

	supported
	Indicates the property is supported. This is the default value for all property definitions.

	unsupported
	Indicates the property is not supported.

	experimental
	Indicates the property is experimental and has no official standing.

	deprecated
	Indicates the property has been deprecated by a new specification version.

A.4.4.3 Grammar

Named property definitions have the following grammar:
	<property_name>:

 type: <property_type>

 description: <property_description>

 required: <property_required>

 default: <default_value>

 status: <status_value>

 constraints:

 <property_constraints>

 entry_schema:

 <schema_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· property_name: represents the required symbolic name of the property as a string.

· property_type: represents the required data type of the property.

· property_description: represents the optional description of the property

· property_required: represents an optional boolean value (true or false) indicating whether or not the property is required. If this keyname is not present on a property definition, then the property SHALL be considered required (i.e., true) by default.

· default_value: contains a type-compatible value that may be used as a default if not provided by another means.

· status_value: a string that contains a keyword that indicates the status of the property relative to the specification or implementation.

· property_constraints: represents the optional sequenced list of one or more constraint clauses (as shown in the constraints element) on the property definition.

· schema_definition: represents the optional entry schema used to declare the (anonymous type) schema for set types (e.g., list).
A.4.4.4 Example

The following represents a required property definition:
	num_cpus:

 type: integer

 description: Number of CPUs requested for a Compute node instance.

 default: 1

 required: true

 constraints:

 - valid_values: [1, 2, 4, 8]

A.4.4.5 Additional Requirements

· Implementations of the TOSCA Simple Profile SHALL automatically reflect (i.e., make available) any property defined on an entity as an attribute of the entity with the same name as the property.
A.4.4.6 Notes

· This element directly maps to the PropertiesDefinition element defined as part of the schema for most type and entities defined in the TOSCA v1.0 specification.

A.4.5 Attribute definition

An attribute definition defines a named, typed value that can be associated with an entity defined in this specification (e.g., a Node Type or Relationship Type). Specifically, it is used to expose the “actual state” of some property of a TOSCA entity (set by the orchestrator) after it has been deployed and instantiated. Attribute values can be retrieved via the get_attribute function from the instance model and used as inputs to other entities within TOSCA Service Templates.

A.4.5.1 Keynames

The following is the list of recognized keynames recognized for a TOSCA attribute definition:
	Keyname
	Required
	Type
	Constraints
	Description

	type
	yes
	string
	None
	The required data type for the attribute.

	description
	no
	description
	None
	The optional description for the attribute.

	default
	no
	<any>
	None
	An optional key that may provide a value to be used as a default if not provided by another means.

This value SHALL be type compatible with the type declared by the property definition’s type keyname.

	status
	no
	string
	default: supported
	The optional status of the attribute relative to the specification or implementation.

A.4.5.2 Grammar

Named attribute definitions have the following grammar:
	<attribute_name>:

 type: <attribute_type>

 description: <attribute_description>

 default: <default_value>

 status: <status_value>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· attribute_name: represents the required symbolic name of the attribute as a string.

· attribute_type: represents the required data type of the attribute.

· default_value: contains a type-compatible value that may be used as a default if not provided by another means.

A.4.5.3 Example

The following represents a required attribute definition:
	actual_cpus:

 type: integer

 description: Actual number of CPUs allocated to the node instance.

A.4.5.4 Notes

· Attribute definitions are very similar to Property definitions; however, properties of entities reflect an input that carries the template author’s requested or desired value (i.e., desired state) which the orchestrator (attempts to) use when instantiating the entity whereas attributes reflect the actual value (i.e., actual state) that provides the actual instantiated value.

· For example, a property can be used to request the IP address of a node using a property (setting); however, the actual IP address after the node is instantiated may by different and made available by an attribute.

· In addition to any explicitly defined attributes on a TOSCA entity (e.g., Node Type, RelationshipType, etc.), implementations of the TOSCA Simple Profile MUST automatically reflect (i.e., make available) any property defined on an entity as an attribute of the entity with the same name as the property.

· Values for the default keyname MUST be derived or calculated from other attribute or operation output values (that reflect the actual state of the instance of the corresponding resource) and not hard-coded or derived from a property settings or inputs (i.e., desired state).
A.4.6 Parameter definition

A parameter definition is map used to declare a name for a parameter along with its value to be used as inputs for operations. This value can either be a fixed value or one that is evaluated from a function or expression.

A.4.6.1 Keynames

The following is the list of recognized keynames recognized for a TOSCA parameter definition:
	Keyname
	Required
	Type
	Description

	N/A
	N/A
	N/A
	N/A

A.4.6.2 Grammar

Named property definitions have the following grammar:
	<parameter_name> : <value> | { <value_expression> }

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· parameter_name: represents the required symbolic name of the parameter as a string.

· value: represents the required value to associate with the parameter name.

· value_expression: represents an expression, that when evaluated, provides the required value to associate with the parameter name.

A.4.6.3 Example

The following represents a required property definition:
	...

 interfaces:

 Standard:

 create:

 inputs:

 # Parameter definition

 compute_memory: { get_property: [my_host, mem_size] }

A.4.6.4 Additional Requirements

· Implementations of the TOSCA Simple Profile SHALL automatically reflect (i.e., make available) any property defined on an entity as an attribute of the entity with the same name as the property.
A.4.6.5 Notes

· This element directly maps to the PropertiesDefinition element defined as part of the schema for most type and entities defined in the TOSCA v1.0 specification.

A.4.7 Operation definition

An operation definition defines a named function or procedure that can be bound to an implementation artifact (e.g., a script).

A.4.7.1 Keynames

The following is the list of recognized keynames recognized for a TOSCA operation definition:
	Keyname
	Required
	Type
	Description

	description
	no
	description
	The optional description string for the associated named operation.

	implementation
	no
	string
	The optional implementation artifact name (e.g., a script file name within a TOSCA CSAR file).

	inputs
	no
	list of parameter definitions
	The optional list of input parameter definitions.

A.4.7.2 Grammar

Named operation definitions have the following grammars:
A.4.7.2.1 Short notation

The following single-line grammar may be used when only an operation’s implementation artifact is needed:
	<operation_name>: <implementation_artifact_name>

A.4.7.2.2 Extended notation

The following multi-line grammar may be used when additional information about the operation is needed:
	<operation_name>:

 description: <operation_description>
 implementation: <implementation_artifact_name>

 inputs:

 <parameter_definitions>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:
· operation_name: represents the required symbolic name of the operation as a string.

· operation_description: represents the optional description string for the corresponding operation_name.

· implementation_artifact_name: represents the optional name (string) of an artifact definition (defined elsewhere), or the direct name of an implementation artifact’s relative filename (e.g., a service template-relative, path-inclusive filename or absolute file location using a URL).

· parameter_definitions: represents the optional list of parameter definitions which the TOSCA orchestrator would make available (i.e., or pass) to the corresponding implementation artifact during its execution.

A.4.7.3 Notes

· Implementation artifact file names (e.g., script filenames) may include file directory path names that are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud Service ARchive (CSAR) file.
A.4.8 Interface definition

An interface definition defines a named interface that can be associated with a Node or Relationship Type
A.4.8.1 Keynames

The following is the list of recognized keynames recognized for a TOSCA interface definition:

	Keyname
	Type
	Description

	inputs
	list of parameter definitions
	The optional list of input parameter definitions.

A.4.8.2 Grammar

The following keyname is used to provide a list of properties within the TOSCA Simple Profile specification:
	<interface_definition_name>:

 inputs:

 <parameter_definitions>

 <operation_definition_1>

 ...

 <operation_definition_n>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· interface_definition_name: represents the required symbolic name of the interface definition as a string.
· parameter_definitions: represents the optional list of parameter definitions which the TOSCA orchestrator would make available (i.e., or pass) to all implementation artifacts for operations declared on the interface during their execution.

· operation_definition_*: represents the required name of one or more operation definitions.
A.4.8.3 Example
The following example shows a custom interface used to define multiple configure operations.

	mycompany.mytypes.myinterfaces.MyConfigure:

 configure_service_A:

 description: My application’s custom configuration interface for service A.

 configure_service_B:

 description: My application’s custom configuration interface for service B.

A.4.9 Artifact definition

An artifact definition defines a named, typed file that can be associated with Node Type or Node Template and used by orchestration engine to facilitate deployment and implementation of interface operations.
A.4.9.1 Keynames

The following is the list of recognized keynames recognized for a TOSCA artifact definition:

	Keyname
	Type
	Required
	Description

	type
	string
	no
	The optional data type for the artifact definition.

	description
	description
	no
	The optional description for the artifact definition.

	mime_type
	string
	no
	The optional Mime type for finding the correct artifact definition when it is not clear from the file extension.

	deploy_path
	string
	no
	The file path the associated file would be deployed into within the target node’s container.

A.4.9.2 Grammar

Named artifact definitions have the following grammars:
A.4.9.2.1 Short notation

The following single-line grammar may be used when the artifact’s type and mime type can be inferred from the file URI:
	<artifact_name>: <artifact_file_URI>

A.4.9.2.2 Extended notation:

The following multi-line grammar may be used when the artifact’s definition’s type and mime type need to be explicitly declared:
	<artifact_name>:

 implementation: <artifact_file_URI>

 type: <artifact_type_name>

 description: <artifact_description>

 mime_type: <artifact_mime_type_name>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

· artifact_name: represents the required symbolic name of the artifact definition as a string.
· artifact_file_URI: represents the required URI string (relative or absolute) which can be used to locate the artifact’s file.

· artifact_type_name: represents the required artifact type the artifact definition is based upon.
· artifact_description: represents the optional description string for the corresponding artifact_name.

· artifact_mime_type_name: represents the optional, explicit Mime Type (as a string) for the associated artifact definition when it is not clear from the file description.
A.4.9.3 Example

The following represents an artifact definition:

	my_file_artifact: ../my_apps_files/operation_artifact.txt

A.4.10 Artifacts element
The Artifacts element is used to associate one or more typed artifact definitions with a TOSCA Node Type or Node Template.
A.4.10.1 Keynames

The following keyname is used to declare a list of artifacts within the TOSCA Simple Profile specification:
	artifacts

A.4.10.2 Grammar

The artifacts element is described by a YAML block collection that contains a sequenced list of artifact definitions:
	<some_typed_entity_name>:

 artifacts:

 - <artifact_definition_1>

 - ...

 - <artifact_definition_n>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· some_typed_entity_name: represents the symbolic name (string) of a typed TOSCA entity (e.g., a Node Type, Node Template) that has, as part of its definition, a list of artifacts.

· artifact_definition_*: represents one or more Artifact definitions for the associated entity.

A.4.10.3 Examples

The following examples show artifact definitions in both simple and full forms being associated to Node Types:

	TBD

A.4.11 Interfaces element

The Interfaces element describes a list of one or more interface definitions for a modelable entity (e.g., a Node or Relationship Type) as defined within the TOSCA Simple Profile specification. Each interface definition contains one or more interfaces for operations that can be invoked on the associated entity.

A.4.11.1 Keyname

The following keyname is used to declare a list of interfaces definition names within the TOSCA Simple Profile specification:
	interfaces

The following is the list of recognized keynames recognized for a TOSCA interfaces element:
	Keyname
	Type
	Required
	Description

	inputs
	list of parameter definitions
	no
	The optional list of input parameter definitions

A.4.11.2 Grammar
A.4.11.2.1 Short notation

The following grammar may be used when only a list of interface definition names needs to be declared:

	# Declaration of valid interface (type) names

interfaces: [<interface_defn_name_1>, ..., <interface_defn_name_n>]

A.4.11.2.2 Extended notation

The following multi-line grammar may be used when interface definitions, along with any additional input parameter information, are needed to define a set of interfaces:
	interfaces:

 inputs:

 <parameter_definitions>

 <interface_defn_1>

 ...

 <interface_defn_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

· parameter_definitions: represents one or more names of valid TOSCA parameter definitions.

· interface_defn_*: represents one or more valid TOSCA interface definitions.

A.4.11.3 Examples

A.4.11.3.1 Declaration of valid interface type names
	interfaces: [mytypes.myinterfaces.myOperationsDefn]

A.4.11.3.2 Declaration of interfaces
	interfaces:

 mytypes.myinterfaces.my_node_interfaces:

 my_interface_1:

 # Additional details omitted for brevity

 ...

 my_interface_2:

 # Additional details omitted for brevity

 ...

A.4.12 Properties element
The Properties element describes one or more typed Property definitions that can be associated with modelable TOSCA entities (e.g., Node Types, Node Templates, Relationship Types, Artifact Types, etc.). Properties are used by the author to declare the “desired state” of that entity when initially deployed. The actual state of the entity, at any point in its lifecycle once instantiated, is reflected by Attribute definitions. TOSCA orchestrators automatically create an attribute for every declared property (with the same symbolic name) to allow introspection of both the desired state (property) and actual state (attribute).

A.4.12.1 Keyname

The following keyname is used to declare a list of properties within the TOSCA Simple Profile specification:
	properties

A.4.12.2 Grammar

The properties element is described as a YAML block collection that contains a list of property definitions:
	<some_typed_entity_name>:

 properties:

 <property_defn_1>

 ...

 <property_defn_n>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· some_typed_entity_name: represents the name of a typed TOSCA entity (e.g., a Node Type, Node Template, Relationship Type, etc.) that has, as part of its definition, a list of properties.

· property_defn_*: represents one or more property definitions for the associated entity.

A.4.12.3 Example
The following example shows property definitions being associated to a Node Type:

	my_app_node_type:

 derived_from: tosca.nodes.Root

 properties:

 stylesheet:

 type: string

 default: basic.css

 max_connections:

 type: integer

 required: false

A.4.13 Attributes element
The Attributes element describes one or more typed Attribute definitions that can be associated with a modelable TOSCA entity (e.g., Node Types, Relationship Types, etc.). Attributes are used by the author to provide access the “actual state” of certain properties of TOSCA entities at any point in their lifecycle once instantiated (i.e., post deployment). TOSCA orchestrators automatically create Attribute definitions for any Property definitions declared on the same TOSCA entity in order to make accessible the actual (i.e., the current state) value from the running instance of the entity.

A.4.13.1 Keyname

The following keyname is used to declare a list of attributes within the TOSCA Simple Profile specification:
	attributes

A.4.13.2 Grammar

The attributes element is described as a YAML block collection that contains a list of attribute definitions:
	<some_typed_entity_name>:

 attributes:

 <attribute_defn_1>

 ...

 <attribute_defn_n>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· some_typed_entity_name: represents the name of a typed TOSCA entity (e.g., a Node Type, Relationship Type, etc.) that has, as part of its definition, a list of attributes.

· attribute_defn_*: represents one or more attribute definitions for the associated entity.

A.4.13.3 Example
The following example shows attribute definitions being associated to a Node Type:

	my_app_node_type:

 derived_from: tosca.nodes.Root

 attributes:

 instanceId:

 type: string

 max_connections:

 type: integer

A.4.14 Schema definition

A schema definition defines the schema for a new named or anonymous type in TOSCA. The schema can be derived from an existing type and may provide additional properties or constraints.

A.4.14.1 Keynames
The following is the list of recognized keynames recognized for a TOSCA schema definition:

	Keyname
	Required
	Type
	Description

	description
	no
	string
	The optional description for the schema.

	type
	no
	string
	The optional key used when the schema is based upon, but not extend, an existing TOSCA type.

	derived_from
	no
	string
	The optional key used when a schema is derived from an existing TOSCA type and will be extended with additional properties.

	constraints
	no
	constraints
	The optional list of sequenced constraints for the schema type.

	properties
	no
	properties
	The required key used when the schema definition is used to declare a complex type and comprised of a set of valid property definitions.

A.4.14.2 Grammar
Schema definitions have the following grammar:

	description: <schema_description>

type: <existing_type_name>

derived_from: <existing_type_name>

constraints:

 <type_constraints>

properties:

 <property_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· schema_description: represents the optional description for the schema.
· existing_type_name: represents the optional name of a valid TOSCA type declaration this new schema would be based or derive from.

· type_constraints: represents the optional sequenced list of one or more constraint clauses that restrict the schema’s declared type.

· property_definitions: represents one or more property definitions that (together) comprise the schema for the schema definition.

A.4.14.3 Additional Requirements
· Schema definitions MAY have either the type keyname or derived_from keyname, but not both.

· Any constraint clauses SHALL be type-compatible with the type declared by the schema’s type or derived_from keynames.

· The properties keyname SHALL only be used in conjunction with the derived_from keyname.

· If a properties keyname is provided, it SHALL contain one or more valid property definitions.

A.4.14.4 Examples

A.4.14.4.1 Entry schema based upon a simple type
The following example represents a map entry schema definition based upon an existing string type:
	# Example: Entry schema for a list of emails using an existing string type

<some_entity>:

 ...

 properties:

 emails:

 type: map
 entry_schema:

 description: basic email

 type: string
 constraints:

 - max_length: 128

A.4.14.4.2 Complex entry schema example

The following example represents a list’s entry schema definition for contact information:
	# Example: Contact information described as a complex entry schema

<some_entity>:

 ...

 properties:

 contacts:

 type: list
 entry_schema:

 description: simple contact information

 properties:

 contact_name:

 type: string

 contact_email:

 type: string

 contact_phone:

 type: string

 required: false

A.4.15 Datatype definition

A datatype definition defines the schema for a new named datatype in TOSCA.

A.4.15.1 Grammar

Datatype definitions have the following grammar:

	<datatype_name>:

 <schema_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· datatype_name: represents the required symbolic name of the datatype being declared.

· schema_definition: represents the required schema definition for the datatype.

A.4.15.2 Additional Requirements

· None
A.4.15.3 Examples
The following example represents a datatype definition based upon an existing string type:
A.4.15.3.1 Defining a complex datatype
	# define a new complex datatype

mytypes.phone.number:

 properties:

 countrycode:

 type: int

 areacode:

 type: int

 number:

 type: int

A.4.15.3.2 Defining a datatype derived from an existing datatype
	# define a new datatype that derives from existing type and extends it

mytypes.phone.entry:

 derived from: phonenumber

 properties:

 phone_description:

 type: string

 constraints:

 - max_length: 128

A.4.16 Capability definition

A capability definition defines a named, typed set of data that can be associated with Node Type or Node Template to describe a transparent capability or feature of the software component the node describes.
A.4.16.1 Keynames

The following is the list of recognized keynames recognized for a TOSCA capability definition:

	Keyname
	Type
	Description

	type
	string
	The required name of the Capability Type the capability definition is based upon.

	description
	description
	The optional description of the Capability Type.

	properties
	properties
	An optional list of property definitions for the capability definition.

A.4.16.2 Grammar

Named capability definitions have one of the following grammars:
A.4.16.2.1 Short notation

The following grammar may be used when only a list of capability definition names needs to be declared:

	<capability_defn_name>: <capability_type>

A.4.16.2.2 Extended notation

The following multi-line grammar may be used when additional information on the capability definition is needed:
	<capability_defn_name>:

 type: <capability_type>

 description: <capability_defn_description>

 properties:

 <property_definitions>

 attributes:

 <attribute_definitions>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

· capability_defn_name: represents the name of a capability definition as a string.
· capability_type: represents the required capability type the capability definition is based upon.

· capability_defn_description: represents the optional description of the capability definition.
· property_definitions: represents the optional list of property definitions for the capability definition.

· attribute_definitions: represents the optional list of attribute definitions for the capability definition.

A.4.16.3 Examples
The following examples show capability definitions in both simple and full forms:

A.4.16.3.1 Simple notation example
	# Simple notation, no properties defined or augmented

some_capability: mytypes.mycapabilities.MyCapabilityTypeName

A.4.16.3.2 Full notation example

	# Full notationnotation, augmenting properties of the referenced capability type

some_capability:

 type: mytypes.mycapabilities.MyCapabilityTypeName

 properties:

 limit: 100

A.4.16.4 Notes

· The Capability Type, in this example MyCapabilityTypeName, would be defined elsewhere and have an integer property named limit.
· This definition directly maps to the CapabilitiesDefinition of the Node Type entity as defined in the TOSCA v1.0 specification.

A.4.17 Capabilities element
The Capabilities element is used to associate one or more typed Capability definitions with a TOSCA Node Type or Node Template.
A.4.17.1 Keyname

The following keyname is used to declare a list of capabilities within the TOSCA Simple Profile specification:
	capabilities

A.4.17.2 Grammar

The capabilities element is described by a YAML block collection that contains a list of capability definitions:
	<some_typed_entity_name>:

 capabilities:

 <capability_definition_1>

 ...

 <capability_definition_n>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· some_typed_entity_name: represents the name of a typed TOSCA entity (e.g., a Node Type, Node Template) that has, as part of its definition, a list of capabilities.

· capability_definition_*: represents one or more Capability definitions for the associated entity.
A.4.17.3 Example

The following examples show capability definitions in both simple and full forms being associated to Node Types:

	my_node_type_1:

 # Other keys omitted here for sake of brevity

 capabilities:

 app_container: mytypes.mycapabilities.AppContainer

 app_endpoint:

 type: mytypes.mycapabilities.Endpoint

 properties:

 timeout: 300

A.4.17.4 Notes

· This element directly maps to the Capabilities element defined as part of the schema for the Node Template entity as defined in the TOSCA v1.0 specification.

A.4.18 Requirement definition
The Requirement definition describes a named requirement (dependencies) of a TOSCA Node Type or Node template which needs to be fulfilled by a matching Capability definition declared by another TOSCA modelable entity. The requirement definition may itself include the specific name of the fulfilling entity (explicitly) or provide an abstract type, along with additional filtering characteristics, that a TOSCA orchestrator can use to fulfil the capability at runtime (implicitly).

A.4.18.1 Keynames

The following is the list of recognized keynames for a TOSCA requirement definition:
	Keyname
	Type
	Required
	Description

	node
	string
	no
	The optional reserved keyname used to provide the name of a Node Type or Node Template that can fulfil the target node requirement.

	capability
	string
	no
	The optional reserved keyname used to provide the name of the capability within target node of the relationship that the associated requirement fulfills.

	relationship
	string
	no
	The optional reserved keyname used to provide a named Relationship Type to use when fulfilling the associated named requirement.

Please note that this is the “simple form” for the relationship portion of the requirement. If the relationship needs to be further described or augmented, then the extended form of relationship (described below) MUST be used.

	target_filter
	node filter
	no
	The optional filter definition that TOSCA orchestrators would use to select the correct target node to fulfill the associated requirement.

A.4.18.2 Extended relationship grammar for the requirement definition

The following are recognized keynames that may be used when the relationship keyname of the requirement definition needs to provide extended information (i.e., it cannot be expressed in a simple, one-line grammar):

	Keyname
	Type
	Required
	Description

	type
	string
	no
	The optional reserved keyname used to provide the name of a Relationship Type that should be used to fulfil the target node requirement.

	interfaces
	N/A
	no
	The optional reserved keyname used to declare or augment relationship interfaces, their operations, implementations and properties.

A.4.18.3 Grammar

Named requirement definitions have one of the following grammars:
A.4.18.3.1 Short notation (node only):

The following single-line grammar may be used when only a target node is needed to describe the requirement:
	<requirement_name>: <node_type_or_template_name>

A.4.18.3.2 Short notation (with relationship or capability):

The following grammar would be used if either a relationship or capability is needed to describe the requirement:
	<requirement_name>:

 node: <node_type_or_template_name>

 capability: <capability_type_or_template_name>

 relationship: <relationship_type_or_template_name>

A.4.18.3.3 Extended notation:

The following grammar would be used if additional target node filtering would be needed to further clarify the requirement or if additional information would need to be provided to the relationship.
	<requirement_name>:

 node: <node_type_or_template_name>

 capability: <capability_type_or_template_name>

 relationship:

 type: <relationship_type_or_template_name>
 interfaces:

 <interface_settings>

 target_filter:

 <target_filter_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

· requirement_name: represents the name of a requirement definition as a string.

· node_type_or_template_name: represents the name (a string) of a TOSCA Node Type or Node Template that either, by its definition, has an implicit set of capabilities or contains an explicit Capability Type definition that the associated named requirement can be fulfilled by.
· relationship_type_or_template_name: represents the optional name of an explicit, Relationship Type or Relationship Template definition to be used when relating the node the requirement appears in to another node.
· interface_settings: represents any optional property (input) settings that would be provided to the interfaces on the relationship when it is realized by the orchestrator.
· capability_type_or_template_name: represents the optional name of a specific capability type or template within the target Node Type or Template identified by node_type_or_template_name value to be used when relating it to the source node the requirement appears in.

· Note: This key can be used to assure that when the target node exports more than one capability that could fulfill the requirement the correct capability will be selected by the orchestrator using this name.

· target_filter_definition: represents the optional node filter TOSCA orchestrators would use to fulfill the requirement for selecting a target node.

A.4.18.4 Requirement definition is a tuple

A requirement definition allows fulfillment to be described using three levels of specificity.

1. Node Type or Node Template

2. Capability Type

3. Relationship Type or Template

The first level allows selection, as shown in both the simple or complex grammar, simply providing the node’s type or template name using the node keyname. The second level provides the ability to name the specific capability on the target node that the requirement is seeking using the capability keyname. Finally, the third level is specification of the relationship (type or template) to use when connecting the requirement to the capability using the relationship keyname.

In addition, a filter, with the keyname target_filter, may be provided to allow a flexible description of matching criteria against potential target nodes’ properties, capabilities and capabilities’ properties. This allows TOSCA orchestrators to help find the “best fit” when selecting among multiple potential target nodes for the expressed requirements.
A.4.18.5 Examples

A.4.18.5.1 Example 1 – Explicit hosting requirement on a Node Template
A web application node template named ‘my_webapp_node_template’ declares a requirement named ‘host’ that needs to be fulfilled by the same named capability on a web server node template named ‘my_webserver_node_template’ in the same TOSCA Service Template.

	# Example of a requirement fulfilled by a specific named node template

node_templates:

 my_webapp_node_template:

 ...

 requirements:

 - host: my_webserver_node_template

 my_webserver_node_template:

 ...

 capabilities:

 host:

 type: tosca.capabilities.Container

Please note that in this example, TOSCA orchestrators would relate these two nodes using an implied HostedOn relationship.
A.4.18.5.2 Example 2 – Abstract hosting requirement on a Node Type

A web application node template named ‘my_webapp_node_template’ declares a requirement named ‘host’ that needs to be fulfilled by any node that derives from the node type WebServer.
	# Example of a requirement fulfilled by a specific web server node template

node_templates:

 my_webapp_node_template:

 ...

 requirements:

 - host: tosca.nodes.WebServer

A.4.18.5.3 Example 3 - Requirement on a Capability Type from any node

A web application node template named ‘my_webapp_node_template’ declares a requirement named ‘database’ that needs to be fulfilled by any node that declares a capability of (or derives from) type DatabaseEndpoint.
	node_templates:

 my_webapp_node_template:

 requirements:

 - database:

 capability: tosca.capabilities.DatabaseEndpoint

Please note that in this example, TOSCA orchestrators would relate the two nodes with an implied ConnectsTo relationship type which supports any connections what derive from the Endpoint capability type such as DatabaseEndpoint.
A.4.18.5.4 Example 4:Requirement with Node Template and a custom Relationship Type

This example is similar to the previous example; however, the connection between the web application and a named database node template (my_database) and further requires a custom relationship designated by the keyword ‘relationship’ and having the custom relationship type definition name of ‘my.types.CustomDbConnection’.

	# Example of a (database) requirement that is fulfilled by a node template named

“my_database”, but also requires a custom database connection relationship

my_webapp_node_template:

 requirements:

 - database:

 node: my_database

 capability: DatabaseEndpoint
 relationship: my.types.CustomDbConnection

A.4.18.5.5 Example 5:Requirement for a Compute node with additional selection criteria (filter)

This example shows how to extend an abstract ‘host’ requirement for a Compute node with a filter definition that further constrains TOSCA orchestrators to include additional properties and capabilities on the target node when fulfilling the requirement.
	node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL
 properties:

 # omitted here for sake of brevity

 requirements:

 - host: tosca.nodes.Compute
 target_filter:

 properties:

 - num_cpus: { in_range: [1, 4] }

 - mem_size: { greater_or_equal: 2 }

 capabilities:

 - os:

 properties:

 - architecture: { equal: x86_64 }

 - type: { equal: linux }

 - distribution: { equal: ubuntu }

 - mytypes.capabilities.compute.encryption:

 properties:

 - algorithm: { equal: aes }

 - keylength: { valid_values: [128, 256] }

A.4.18.6 Additional Requirements

· TBD
A.4.18.7 Notes

· This element directly maps to the RequirementsDefinition of the Node Type entity as defined in the TOSCA v1.0 specification.

A.4.19 Requirements element
The Requirements element is used to associate one or more named Requirement definitions with a TOSCA Node Type or Node Template.
A.4.19.1 Keynames

The following keyname is used to declare a list of requirements within the TOSCA Simple Profile specification:
	requirements

A.4.19.2 Grammar

The requirements element is described by a YAML block collection that contains a sequenced list of requirement definitions:
	<some_typed_entity_name>:

 requirements:

 - <requirement_definition_1>

 - ...

 - <requirement_definition_n>

A.4.19.3 Example

	# Example a node template with two named requirements

node_templates:

 my_software_node:

 requirements:

 # Short notation used here for brevity

 - host: tosca.nodes.Compute

 - database: tosca.nodes.Database

 - ...

A.4.19.4 Additional Requirements

· Requirements are intentionally expressed as a sequenced list of TOSCA Requirement definitions which SHOULD be resolved (processed) in sequence order by TOSCA Orchestrators.

· Note: TOSCA Orchestrators, having a full view of the complete application template and its resultant dependency graph of nodes and relationships, MAY prioritize how they instantiate the nodes and relationships for the application (perhaps in parallel where possible) to achieve the greatest efficiency.
A.4.19.5 Notes

· This element directly maps to the Requirements element defined as part of the schema for the Node Templates entity (as part of a Service Template’s Topology Template as defined in the TOSCA v1.0 specification.

A.4.20 Property Filter definition

A property filter definition defines criteria, using constraint clauses, for selection of a TOSCA entity based upon it property values.

A.4.20.1 Grammar
Property filter definitions have the following grammar:

A.4.20.1.1 Short notation:

The following single-line grammar may be used when only a single constraint is needed on a property:
	<property_name>: <property_constraint_clause>

A.4.20.1.2 Extended notation:

The following multi-line grammar may be used when multiple constraints are needed on a property:
	<property_name>:

 - <property_constraint_clause_1>

 - ...

 - <property_constraint_clause_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

· property_name: represents the name of property that would be used to select a property definition with the same name (property_name) on a TOSCA entity (e.g., a Node Type, Node Template, Capability Type, etc.).

· property_constraint_clause_*: represents constraint clause(s) that would be used to filter entities based upon the named property’s value(s).

A.4.20.2 Additional Requirements
· Property constraint clauses must be type compatible with the property definitions (of the same name) as defined on the target TOSCA entity that the clause would be applied against.

A.4.21 Node Filter definition

A node filter definition defines criteria for selection of a TOSCA Node Template based upon the template’s property values, capabilities and capability properties.

A.4.21.1 Keynames

The following is the list of recognized keynames recognized for a TOSCA node filter definition:

	Keyname
	Required
	Type
	Description

	properties
	no
	list of property filter definitions
	An optional sequenced list of property filters that would be used to select (filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based upon their property definitions’ values.

	capabilities
	no
	list of capability names or capability type names
	An optional sequenced list of capability names or types that would be used to select (filter) matching TOSCA entities based upon their existence.

	<capability name_or_type>

 properties
	no
	list of property filter definitions
	An optional sequenced list of property filters that would be used to select (filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based upon their capabilities’ property definitions’ values.

A.4.21.2 Grammar
Node filter definitions have the following grammar:

	<filter_name>:

 properties:

 - <property_filter_def_1>

 - ...

 - <property_filter_def_n>

 capabilities:

 - <capability_name_or_type_1>:

 properties:

 - <cap_1_property_filter_def_1>

 - ...

 - <cap_m_property_filter_def_n>

 - ...

 - <capability_name_or_type_n>:

 properties:

 - <cap_1_property_filter_def_1>

 - ...

 - <cap_m_property_filter_def_n>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· property_filter_def_*: represents a property filter definition that would be used to select (filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based upon their property definitions’ values.

· property_constraint_clause_*: represents constraint clause(s) that would be used to filter entities based upon property values.

· capability_name_or_type_*: represents the type or name of a capability that would be used to select (filter) matching TOSCA entities based upon their existence.
· cap_*_property_def_*: represents a property filter definition that would be used to select (filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based upon their capabilities’ property definitions’ values.

A.4.21.3 Additional Requirements
· None

A.4.21.4 Example

The following example is a filter that would be used to select a TOSCA Compute node based upon the values of its properties and also values on its defined capabilities. Specifically, this filter would select Compute nodes that supported a specific range of CPUs (i.e., num_cpus value between 1 and 4) and memory size (i.e., mem_size of 2 or greater). In addition, the Compute node must support an encryption capability of type mytypes.capabilities.compute.encryption which has properties that support a specific (aes) encryption algorithm and keylength (128).
	target_filter:

 properties:

 - num_cpus: { in_range: [1, 4] }

 - mem_size: { greater_or_equal: 2 }

 capabilities:

 - mytypes.capabilities.compute.encryption:

 properties:

 - algorithm: { equal: aes }

 - keylength: { valid_values: [128, 256] }

A.4.22 Artifact Type

An Artifact Type is a reusable entity that defines the type of one or more files which Node Types or Node Templates can have dependent relationships and used during operations such as during installation or deployment.

A.4.22.1 Keynames

The following is the list of recognized keynames recognized for a TOSCA Artifact Type definition:
	Keyname
	Definition/Type
	Description

	derived_from
	string
	An optional parent Artifact Type name the Artifact Type derives from.

	description
	description
	An optional description for the Artifact Type.

	mime_type
	string
	The required mime type property for the Artifact Type.

	file_ext
	string[]
	The required file extension property for the Artifact Type.

	properties
	properties
	An optional list of property definitions for the Artifact Type.

A.4.22.2 Grammar

	<artifact_type_name>:

 derived_from: <parent_artifact_type_name>

 description: <artifact_description>

 mime_type: <mime_type_string>

 file_ext: [<file_extension_1>, ..., <file_extension_n>]

 properties:

 <property_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· artifact_type_name: represents the name of the Artifact Type being declared as a string.

· parent_artifact_type_name: represents the name of the Artifact Type this Artifact Type definition derives from (i.e., its “parent” type).

· artifact_description: represents the optional description string for the corresponding artifact_type_name.

· mime_type_string: represents the Multipurpose Internet Mail Extensions (MIME) standard string value that describes the file contents for this type of artifact as a string.

· file_extension_*: represents one or more recognized file extensions for this type of artifact as strings.

· property_definitions: represents the optional list of property definitions for the artifact type.

A.4.22.3 Examples

	my_artifact_type:

 description: Java Archive artifact type

 derived_from: tosca.artifact.Root

 mime_type: application/java-archive

 file_ext: [jar]

A.4.23 Requirement Type
A Requirement Type is a reusable entity that describes a kind of requirement that a Node Type can declare to expose. The TOSCA Simple Profile seeks to simplify the need for declaring specific Requirement Types from nodes and instead rely upon nodes declaring their features sets using TOSCA Capability Types along with a named Feature notation.

Currently, there are no use cases in this TOSCA Simple Profile in YAML specification that utilize an independently defined Requirement Type. This is a desired effect as part of the simplification of the TOSCA v1.0 specification.
A.4.24 Capability Type
A Capability Type is a reusable entity that describes a kind of capability that a Node Type can declare to expose. Requirements (implicit or explicit) that are declared as part of one node can be matched to (i.e., fulfilled by) the Capabilities declared by other node.

The following is the list of recognized keynames recognized for a TOSCA Capability Type definition:
	Keyname
	Definition/Type
	Description

	derived_from
	string
	An optional parent capability type name this new capability type derives from.

	description
	description
	An optional description for the capability type.

	properties
	properties
	An optional list of property definitions for the capability type.

A.4.24.1 Grammar
	<capability_type_name>:

 derived_from: <parent_capability_type_name>

 description: <capability_description>

 properties:

 <property_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· capability_type_name: represents the required symbolic name of the Capability Type being declared as a string.

· parent_capability_type_name: represents the name of the Capability Type this Capability Type definition derives from (i.e., its “parent” type).

· capability_description: represents the optional description string for the corresponding capability_type_name.

· property_definitions: represents an optional list of property definitions that the capability type exports.
A.4.24.2 Example
	mycompany.mytypes.myapplication.MyFeature:

 derived_from: tosca.capabilities.Root

 description: a custom feature of my company’s application

 properties:

 my_feature_setting:

 type: string

 my_feature_value:

 type: integer

A.4.25 Relationship Type

A Relationship Type is a reusable entity that defines the type of one or more relationships between Node Types or Node Templates.
A.4.25.1 Keynames

The following is the list of recognized keynames recognized for a TOSCA Relationship Type definition:
	Keyname
	Definition/Type
	Description

	derived_from
	string
	An optional parent Relationship Type name the Relationship Type derives from.

	description
	description
	An optional description for the Relationship Type.

	properties
	properties
	An optional list of property definitions for the Relationship Type.

	attributes
	attributes
	An optional list of attribute definitions for the Relationship Type.

	interfaces
	interfaces
	An optional list of named interfaces for the Relationship Type.

	valid_targets
	string[]
	A required list of one or more valid target entities or entity types (i.e., a Node Types or Capability Types)

A.4.25.2 Grammar

	<relationship_type_name>:

 derived_from: <parent_relationship_type_name>

 description: <relationship_description>

 properties:

 <property_definitions>

 attributes:

 <attribute_definitions>

 interfaces: <interface_definitions>

 valid_targets: [<entity_name_or_type_1>, ..., <entity_name_or_type_n>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· relationship_type_name: represents the required symbolic name of the Relationship Type being declared as a string.

· parent_relationship_type_name: represents the name (string) of the Relationship Type this Relationship Type definition derives from (i.e., its “parent” type).

· relationship_description: represents the optional description string for the corresponding relationship_type_name.

· property_definitions: represents the optional list of property definitions for the Relationship Type.

· attribute_definitions: represents the optional list of attribute definitions for the Relationship Type.

· interface_definitions: represents the optional list of one or more named interface definitions supported by the Relationship Type.

· entity_name_or_type_*: represents one or more valid target (types) for the relationship (e.g., Node Types, Capability Types, etc.).

A.4.25.3 Best Practices

· The TOSCA Root relationship type (tosca.relationships.Root) provides a standard configuration interface (tosca.interfaces.relationship.Configure) that SHOULD be used where possible when defining new relationships types.

A.4.25.4 Examples

	mycompanytypes.myrelationships.AppDependency:

 derived_from: tosca.relationships.DependsOn

 valid_targets: [mycompanytypes.mycapabilities.SomeAppCapability]

A.4.26 Relationship Template definition

A Relationship Template specifies the occurrence of a manageable relationship between node templates as part of an application’s topology model which is defined in a TOSCA Service Template. A Relationship template is an instance of a specified Relationship Type and can provide customized properties, constraints or operations which override the defaults provided by its Relationship Type and its implementations.
The following is the list of keynames recognized for a TOSCA Relationship Template definition:
	Keyname
	Definition/Type
	Description

	type
	string
	The required name of the Relationship Type the Relationship Template is based upon.

	alias
	string
	The optional name of a different Relationship Template definition whose values are (effectively) copied into the definition for this Relationship Template (prior to any other overrides).

	description
	description
	An optional description for the Relationship Template.

	properties
	properties
	An optional list of property definitions for the Relationship Template.

	interfaces
	interfaces
	An optional list of named interfaces for the Node Template.

A.4.26.1 Grammar
	<relationship_template_name>:

 type: <relationship_type_name>

 description: <relationship_type_description>
 properties:

 <property_definitions>

 attributes:

 <attribute_definitions>

 interfaces:

 <interface_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· relationship_template_name: represents the required symbolic name of the Relationship Template being declared.

· relationship_type_name: represents the name of the Relationship Type the Relationship Template is based upon.

· relationship_template_description: represents the optional description string for the Relationship Template.

· property_definitions: represents the optional list of property definitions for the Relationship Template that augment those provided by its declared Relationship Type.

· interface_definitions: represents the optional list of interface definitions for the Relationship Template that augment those provided by its declared Relationship Type.

A.4.26.2 Example
	relationship_templates:

A.4.27 Node Type

A Node Type is a reusable entity that defines the type of one or more Node Templates. As such, a Node Type defines the structure of observable properties via a Properties Definition, the Requirements and Capabilities of the node as well as its supported interfaces.

The following is the list of recognized keynames recognized for a TOSCA Node Type definition:
	Keyname
	Definition/Type
	Description

	derived_from
	string
	An optional parent Node Type name this new Node Type derives from.

	description
	description
	An optional description for the Node Type.

	properties
	properties
	An optional list of property definitions for the Node Type.

	attributes
	attributes
	An optional list of attribute definitions for the Node Type.

	requirements
	requirements
	An optional sequenced list of requirement definitions for the Node Type.

	capabilities
	capabilities
	An optional list of capability definitions for the Node Type.

	interfaces
	interfaces
	An optional list of named interfaces for the Node Type.

	artifacts
	artifacts
	An optional sequenced list of named artifact definitions for the Node Type.

A.4.27.1 Grammar
	<node_type_name>:

 derived_from: <parent_node_type_name>

 description: <node_type_description>

 properties:

 <property_definitions>

 attributes:

 <attribute_definitions>

 requirements:

 <requirement_definitions>

 capabilities:

 <capability_definitions>

 interfaces: <interface_definitions>

 artifacts:

 <artifact_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· node_type_name: represents the required symbolic name of the Node Type being declared.

· parent_node_type_name: represents the name (string) of the Node Type this Node Type definition derives from (i.e., its “parent” type).

· node_type_description: represents the optional description string for the corresponding node_type_name.

· property_definitions: represents the optional list of property definitions for the Node Type.

· attribute_definitions: represents the optional list of attribute definitions for the Node Type.

· requirement_definitions: represents the optional sequenced list of requirement definitions for the Node Type.

· capability_definitions: represents the optional list of capability definitions for the Node Type.

· interface_definitions: represents the optional list of one or more named interface definitions supported by the Node Type.

· artifact_definitions: represents the optional list of artifact definitions for the Node Template that augment those provided by its declared Node Type.

A.4.27.2 Best Practices

· It is recommended that all Node Types SHOULD derive directly (as a parent) or indirectly (as an ancestor) of the TOSCA “Root” Node Type (i.e., tosca.nodes.Root) to promote compatibility and portability. However, it is permitted to author Node Types that do not do so.

A.4.27.3 Example
	my_company.my_types.my_app_node_type:

 derived_from: tosca.nodes.SoftwareComponent

 description: My company’s custom applicaton

 properties:

 my_app_password:

 type: string

 description: application password

 constraints:

 - min_length: 6

 - max_length: 10

 my_app_port:

 type: integer

 description: application port number

 requirements:

 - host: tosca.nodes.Compute

 interfaces: [Standard]

A.4.28 Node Template definition

A Node Template specifies the occurrence of a manageable software component as part of an application’s topology model which is defined in a TOSCA Service Template. A Node template is an instance of a specified Node Type and can provide customized properties, constraints or operations which override the defaults provided by its Node Type and its implementations.
The following is the list of recognized keynames recognized for a TOSCA Node Template definition:
	Keyname
	Definition/Type
	Description

	type
	string
	The required name of the Node Type the Node Template is based upon.

	description
	description
	An optional description for the Node Template.

	properties
	properties
	An optional list of property definitions for the Node Template.

	attributes
	attributes
	An optional list of attribute definitions for the Node Template.

	requirements
	requirements
	An optional sequenced list of requirement definitions for the Node Template.

	capabilities
	capabilities
	An optional list of capability definitions for the Node Template.

	interfaces
	interfaces
	An optional list of named interfaces for the Node Template.

	artifacts
	artifacts
	An optional sequenced list of named artifact definitions for the Node Template.

A.4.28.1 Grammar
	<node_template_name>:

 type: <node_type_name>

 description: <node_template_description>

 properties:

 <property_definitions>

 attributes:

 <attribute_definitions>

 requirements:

 <requirement_definitions>

 capabilities:

 <capability_definitions>

 interfaces:

 <interface_definitions>

 artifacts:

 <artifact_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

· node_template_name: represents the required symbolic name of the Node Template being declared.

· node_type_name: represents the name of the Node Type the Node Template is based upon.

· node_template_description: represents the optional description string for Node Template.
· property_definitions: represents the optional list of property definitions for the Node Template that augment those provided by its declared Node Type.

· requirement_definitions: represents the optional sequenced list of requirement definitions for the Node Template that augment those provided by its declared Node Type.

· capability_definitions: represents the optional list of capability definitions for the Node Template that augment those provided by its declared Node Type.

· interface_definitions: represents the optional list of interface definitions for the Node Template that augment those provided by its declared Node Type.

· artifact_definitions: represents the optional list of artifact definitions for the Node Template that augment those provided by its declared Node Type.
A.4.28.2 Example
	node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 dbms_password: { get_input: my_mysql_rootpw }

 dbms_port: { get_input: my_mysql_port }

 requirements:

 - host: db_server

 interfaces:

 Standard:

 configure: scripts/my_own_configure.sh

A.5 Service Template

A TOSCA Definitions YAML document contains element definitions of building blocks for cloud application, or complete models of cloud applications.

This section describes the top-level structural elements (i.e., YAML keys), which are allowed to appear in a TOSCA Definitions YAML document.

A.5.1 Keynames

A TOSCA Definitions file contains the following element keynames:

	Keyname
	Required
	Description

	tosca_definitions_version
	yes
	Defines the version of the TOSCA Simple Profile specification the template (grammar) complies with.

	tosca_default_namespace
	no
	Defines the namespace of the TOSCA schema to use for validation.

	template_name
	no
	Declares the name of the template.

	template_author
	no
	Declares the author(s) of the template.

	template_version
	no
	Declares the version string for the template.

	description
	no
	Declares a description for this Service Template and its contents.

	imports
	no
	Declares import statements external TOSCA Definitions documents (files).

	dsl_defintions
	no
	Declares optional DSL-specific definitions and conventions. For example, in YAML, this allows defining reusable YAML macros (i.e., YAML alias anchors) for use throughout the TOSCA Service Template.

	datatype_definitions
	no
	Declares a list of optional TOSCA datatype definitions.

	topology_template
	no
	Defines the topology template of an application or service, consisting of node templates that represent the application’s or service’s components, as well as relationship templates representing relations between the components.

	node_types
	no
	This section contains a set of node type definitions for use in service templates. Such type definitions may be used within the node_templates section of the same file, or a TOSCA Definitions file may also just contain node type definitions for use in other files.

	relationship_types
	no
	This section contains a set of relationship type definitions for use in service templates. Such type definitions may be used within the same file, or a TOSCA Definitions file may also just contain relationship type definitions for use in other files.

	capability_types
	no
	This section contains an optional list of capability type definitions for use in service templates. Such type definitions may be used within the same file, or a TOSCA Definitions file may also just contain capability type definitions for use in other files.

	artifact_types
	no
	This section contains an optional list of artifact type definitions for use in service templates. Such type definitions may be used within the same file, or a TOSCA Definitions file may also just contain capability type definitions for use in other files.

A.5.2 Grammar

The overall structure of a TOSCA Service Template and its top-level key collations using the TOSCA Simple Profile is shown below:
	tosca_definitions_version: # Required TOSCA Definitions version string

tosca_default_namespace: # Optional. default namespace (schema, types version)

template_name: # Optional name of this service template

template_author: # Optional author of this service template

template_version: # Optional version of this service template

description: A short description of the definitions inside the file.

imports:

 # list of import statements for importing other definitions files

dsl_definitions:

 # list of YAML alias anchors (or macros)

datatype_definitions:

 # list of TOSCA datatype definitions

topology_template:

 # topology template definition of the cloud application or service

node_types:

 # list of node type definitions

capability_types:

 # list of capability type definitions

relationship_types:

 # list of relationship type definitions

artifact_types:

 # list of artifact type definitions

A.5.2.1 Notes

· None
A.5.3 Top-level key definitions

A.5.3.1 tosca_definitions_version

This required element provides a means to include a reference to the TOSCA Simple Profile specification within the TOSCA Definitions YAML file. It is an indicator for the version of the TOSCA grammar that should be used to parse the remainder of the document.

A.5.3.1.1 Keyword

	tosca_definitions_version

A.5.3.1.2 Grammar

Single-line form:
	tosca_definitions_version: <tosca_simple_profile_version>

A.5.3.1.3 Examples:

TOSCA Simple Profile version 1.0 specification using the defined namespace alias (see Section A.1):
	tosca_definitions_version: tosca_simple_yaml_1_0_0

TOSCA Simple Profile version 1.0 specification using the fully defined (target) namespace (see Section A.1):
	tosca_definitions_version: http://docs.oasis-open.org/tosca/simple/1.0

A.5.3.2 template_name

This optional element declares the optional name of service template as a single-line string value.

A.5.3.2.1 Keyword

	template_name

A.5.3.2.2 Grammar
	template_name: <name string>

A.5.3.2.3 Example

	template_name: My service template

A.5.3.2.4 Notes

· Some service templates are designed to be referenced and reused by other service templates. Therefore, in these cases, the template_name value SHOULD be designed to be used as a unique identifier through the use of namespacing techniques.

A.5.3.3 template_author

This optional element declares the optional author(s) of the service template as a single-line string value.

A.5.3.3.1 Keyword

	template_author

A.5.3.3.2 Grammar
	template_author: <author string>

A.5.3.3.3 Example

	template_author: My service template

A.5.3.4 template_version

This element declares the optional version of the service template as a single-line string value.

A.5.3.4.1 Keyword

	template_version

A.5.3.4.2 Grammar
	template_version: <version>

A.5.3.4.3 Example

	template_version: 2.0.17

A.5.3.4.4 Notes:

· Some service templates are designed to be referenced and reused by other service templates and have a lifecycle of their own. Therefore, in these cases, a template_version value SHOULD be included and used in conjunction with a unique template_name value to enable lifecycle management of the service template and its contents.
A.5.3.5 description

This optional element provides a means to include single or multiline descriptions within a TOSCA Simple Profile template as a scalar string value.

A.5.3.5.1 Keyword

	description

A.5.3.6 imports

This optional element provides a way to import a block sequence of one or more TOSCA Definitions documents. TOSCA Definitions documents can contain reusable TOSCA type definitions (e.g., Node Types, Relationship Types, Artifact Types, etc.) defined by other authors. This mechanism provides an effective way for companies and organizations to define normative types and/or describe their software applications for reuse in other TOSCA Service Templates.
A.5.3.6.1 Keyword

	imports

A.5.3.6.2 Grammar
	imports:

 - <tosca_definitions_file_1>

 - ...

 - <tosca_definitions_file_n>

A.5.3.6.3 Example
	# An example import of definitions files from a location relative to the

file location of the service template declaring the import.

imports:

 - relative_path/my_defns/my_typesdefs_1.yaml

 - ...

 - relative_path/my_defns/my_typesdefs_n.yaml

A.5.3.7 dsl_definitions

This optional element provides a section to define macros (e.g., YAML-style macros when using the TOSCA Simple Profile in YAML specification).
A.5.3.7.1 Keyword

	dsl_definitions

A.5.3.7.2 Grammar
	dsl_definitions:

 <dsl_definitions_1>

 ...

 <dsl_definitions_n>

A.5.3.7.3 Example
	dsl_definitions:

 ubuntu_image_props: &ubuntu_image_props

 architecture: x86_64

 type: linux

 distribution: ubuntu

 os_version: 14.04

 redhat_image_props: &redhat_image_props

 architecture: x86_64

 type: linux

 distribution: rhel

 os_version: 6.6

A.5.3.8 datatype_definitions

This optional element provides a section to define new datatypes in TOSCA.
A.5.3.8.1 Keyword

	datatype_definitions

A.5.3.8.2 Grammar
	datatype_definitions:

 <tosca_datatype_def_1>

 ...

 <tosca_datatype_def_n>

A.5.3.8.3 Example
	datatype_definitions:

 # A complex datatype definition

 simple_contactinfo_type:

 properties:

 name:

 type: string

 email:

 type: string

 phone:

 type: string

 # datatype definition derived from an existing type

 full_contact_info:

 derived_from: simple_contact_info

 properties:

 street_address:

 type: string

 city:

 type: string

 state:

 type: string

 postalcode:

 type: string

A.5.3.9 node_types

This element lists the Node Types that provide the reusable type definitions for software components that Node Templates can be based upon.
A.5.3.9.1 Keyword

	node_types

A.5.3.9.2 Grammar
	node_types:

 <node_types_defn_1>

 ...

 <node_type_defn_n>

A.5.3.9.3 Example
	node_types:

 my_webapp_node_type:

 derived_from: WebApplication

 properties:

 my_port:

 type: integer

 my_database_node_type:

 derived_from: Database

 capabilities:

 mytypes.myfeatures.transactSQL

A.5.3.9.4 Notes

· The node types listed as part of the node_types block can be mapped to the list of NodeType definitions as described by the TOSCA v1.0 specification.
A.5.3.10 relationship_types

This element lists the Relationship Types that provide the reusable type definitions that can be used to describe dependent relationships between Node Templates or Node Types.
A.5.3.10.1 Keyword

	relationship_types

A.5.3.10.2 Grammar
	relationship_types:

 <relationship_type_defn_1>

 ...

 <relationship type_defn_n>

A.5.3.10.3 Example
	relationship_types:

 mycompany.mytypes.myCustomClientServerType:

 derived_from: tosca.relationships.HostedOn

 properties:

 # more details ...

 mycompany.mytypes.myCustomConnectionType:

 derived_from: tosca.relationships.ConnectsTo

 properties:

 # more details ...

A.5.3.11 capability_types

This element lists the Capability Types that provide the reusable type definitions that can be used to describe features Node Templates or Node Types can declare they support.

A.5.3.11.1 Keyword

	capability_types

A.5.3.11.2 Grammar
	capability_types:

 <capability_type_defn_1>

 ...

 <capability type_defn_n>

A.5.3.11.3 Example
	capability_types:

 mycompany.mytypes.myCustomEndpoint:

 derived_from: tosca.capabilities.Endpoint

 properties:

 # more details ...

 mycompany.mytypes.myCustomFeature:

 derived_from: tosca.capabilites.Feature

 properties:

 # more details ...

A.6 topology_template

This section defines the topology template of a cloud application. The main ingredients of the topology template are node templates representing components of the application and relationship templates representing links between the components. These elements are defined in the nested node_templates section and the nested relationship_templates sections, respectively. Furthermore, a topology template allows for defining input parameters, output parameters as well as grouping of elements.

A.6.1 Grammar

The overall grammar of the topology_template section is shown below.–Detailed grammar definitions of the each sub-sections are provided in subsequent subsections.
	topology_template:

 description:

 # a description of the topology template

 inputs:

 # definition of input parameters for the topology template

 node_templates:

 # definition of the node templates of the topology

 relationship_templates:

 # definition of the relationship templates of the topology

 outputs:

 # definition of output parameters for the topology template

A.6.1.1 inputs

The inputs section provides a means to define parameters, their allowed values via constraints and default values within a TOSCA Simple Profile template. Input parameters defined in the inputs section of a topology template can be mapped to properties of node templates or relationship templates within the same topology template and can thus be used for parameterizing the instantiation of the topology template.

This section defines topology template-level input parameter section.
· Inputs here would ideally be mapped to BoundaryDefinitions in TOSCA v1.0.

· Treat input parameters as fixed global variables (not settable within template)

· If not in input take default (nodes use default)

A.6.1.1.1 Grammar

The grammar of the inputs section is as follows:
	inputs:

 <property_definition_1>

 ...

 <property_definition_n>

A.6.1.1.2 Examples

This section provides a set of examples for the single elements of a topology template.

Simple inputs example without any constraints:

	inputs:

 fooName:

 type: string

 description: Simple string typed property definition with no constraints.

 default: bar

Example of inputs with constraints:
	inputs:

 SiteName:

 type: string

 description: string typed property definition with constraints

 default: My Site

 constraints:

 - min_length: 9

A.6.1.2 node_templates

The node_templates section lists the Node Templates that describe the (software) components that are used to compose cloud applications.
A.6.1.2.1 grammar

The grammar of the node_templates section is a follows:

	node_templates:

 <node_template_defn_1>

 ...

 <node_template_defn_n>

A.6.1.2.2 Example

Example of node_templates section:

	node_templates:

 my_webapp_node_template:

 type: WebApplication

 my_database_node_template:

 type: Database

A.6.1.3 relationship_templates

The relationship_templates section lists the Relationship Templates that describe the relations between components that are used to compose cloud applications.
Note that in the TOSCA Simple Profile, the explicit definition of relationship templates as it was required in TOSCA v1.0 is optional, since relationships between nodes get implicitly defined by referencing other node templates in the requirements sections of node templates.
A.6.1.3.1 Grammar

The grammar of the relationship_templates section is as follows:

	relationship_templates:

 <relationship_template_defn_1>

 ...

 <relationship_template_defn_n>

A.6.1.3.2 Example

Example of relationship_templates section:

	relationship_templates:

A.6.1.4 Outputs

The outputs section provides a means to define the output parameters that are available from a TOSCA Simple Profile service template. It allows for exposing attributes of node templates or relationship templates within the containing topology_template to users of a service.

A.6.1.4.1 Grammar

The grammar of the outputs section is as follows:

	outputs:

 <property_definitions>

A.6.1.4.2 Example

Example of ouputs section:

	outputs:

 server_ip:

 description: The IP address of the provisioned server.

 value: { get_attribute: [my_server, ip_address] }

A.6.1.5 Groups

The groups section allows for grouping one or more node templates within a TOSCA Service Template and for assigning special attributes like policies to the group.
A.6.1.5.1 Grammar

The grammar of the groups section is as follows:

	groups:

 <group_name_A>:

 <node_template_defn_A_1>

 ...

 <node_template_defn_A_n>

 <group_name_B>

 <node_template_defn_B_1>

 ...

 <node_template_defn_B_n>

A.6.1.5.2 Example

The following example shows the definition of three Compute nodes in the node_templates section of a topology_template as well as the grouping of two of the Compute nodes in a group server_group_1.

	node_templates:

 server1:

 type: tosca.nodes.Compute

 # more details ...

 server2:

 type: tosca.nodes.Compute

 # more details ...

 server3:

 type: tosca.nodes.Compute

 # more details ...

groups:

 server_group_1:

 members: [server1, server2]

 policies:

 - anti_collocation_policy:

 # specific policy declarations omitted, as this is not yet specified

A.6.2 Notes

· The parameters (properties) that are listed as part of the inputs block can be mapped to PropertyMappings provided as part of BoundaryDefinitions as described by the TOSCA v1.0 specification.
· The node templates listed as part of the node_templates block can be mapped to the list of NodeTemplate definitions provided as part of TopologyTemplate of a ServiceTemplate as described by the TOSCA v1.0 specification.

· The relationship templates listed as part of the relationship_templates block can be mapped to the list of RelationshipTemplate definitions provided as part of TopologyTemplate of a ServiceTemplate as described by the TOSCA v1.0 specification.
· The output parameters that are listed as part of the outputs section of a topology template can be mapped to PropertyMappings provided as part of BoundaryDefinitions as described by the TOSCA v1.0 specification.

· Note, however, that TOSCA v1.0 does not define a direction (input vs. output) for those mappings, i.e. TOSCA v1.0 PropertyMappings are underspecified in that respect and TOSCA Simple Profile’s inputs and outputs provide a more concrete definition of input and output parameters.
Appendix B. Functions

This section includes functions that are supported for use within a TOSCA Service Template.
B.1 Reserved Function Keywords

The following keywords MAY be used in some TOSCA function in place of a TOSCA Node or Relationship Template name. They will be interpreted by a TOSCA orchestrator at the time the function would be evaluated at runtime as described in the table below. Note that some keywords are only valid in the context of a certain TOSCA entity as also denoted in the table.

	Keyword
	Valid Contexts
	Description

	SELF
	Node Template or Relationship Template
	A TOSCA orchestrator will interpret this keyword as the Node or Relationship Template instance that contains the function at the time the function is evaluated.

	SOURCE
	Relationship Template only.
	A TOSCA orchestrator will interpret this keyword as the Node Template instance that is at the source end of the relationship that contains the referencing function.

	TARGET
	Relationship Template only.
	A TOSCA orchestrator will interpret this keyword as the Node Template instance that is at the target end of the relationship that contains the referencing function.

	HOST
	Node Template only
	A TOSCA orchestrator will interpret this keyword to refer to the all nodes that “host” the node using this reference (i.e., as identified by its HostedOn relationship).

Specifically, TOSCA orchestrators that encounter this keyword when evaluating the get_attribute or get_property functions SHALL search each node along the “HostedOn” relationship chain starting at the immediate node that hosts the node where the function was evaluated (and then that node’s host node, and so forth) until a match is found or the “HostedOn” relationship chain ends.

B.2 Environment Variable Conventions

B.2.1 Reserved Environment Variable Names and Usage

TOSCA orchestrators utilize certain reserved keywords in the execution environments that implementation artifacts for Node or Relationship Templates operations are executed in. They are used to provide information to these implementation artifacts such as the results of TOSCA function evaluationl or information about the instance model of the TOSCA application

The following keywords are reserved environment variable names in any TOSCA supported execution environment:

	Keyword
	Valid Contexts
	Description

	TARGETS
	Relationship Template only.
	· For an implementation artifact that is executed in the context of a relationship, this keyword, if present, is used to supply a list of Node Template instances in a TOSCA application’s instance model that are currently target of the context relationship.

· The value of this environment variable will be a comma-separated list of identifiers of the single target node instances.

	TARGET
	Relationship Template only.
	· For an implementation artifact that is executed in the context of a relationship, this keyword, if present, identifies a Node Template instance in a TOSCA application’s instance model that is a target of the context relationship, and which is being acted upon in the current operation.

· The value of this environment variable will be the identifier of the single target node instance.

	SOURCES
	Relationship Template only.
	· For an implementation artifact that is executed in the context of a relationship, this keyword, if present, is used to supply a list of Node Template instances in a TOSCA application’s instance model that are currently source of the context relationship.

· The value of this environment variable will be a comma-separated list of identifiers of the single source node instances.

	SOURCE
	Relationship Template only.
	· For an implementation artifact that is executed in the context of a relationship, this keyword, if present, identifies a Node Template instance in a TOSCA application’s instance model that is a source of the context relationship, and which is being acted upon in the current operation.

· The value of this environment variable will be the identifier of the single source node instance.

For scripts (or implementation artifacts in general) that run in the context of relationship operations, select properties and attributes of both the relationship itself as well as select properties and attributes of the source and target node(s) of the relationship can be provided to the environment by declaring respective operation inputs.
Declared inputs from mapped properties or attributes of the source or target node (selected via the SOURCE or TARGET keyword) will be provided to the environment as variables having the exact same name as the inputs. In addition, the same values will be provided for the complete set of source or target nodes, however prefixed with the ID if the respective nodes. By means of the SOURCES or TARGETS variables holding the complete set of source or target node IDs, scripts will be able to iterate over corresponding inputs for each provided ID prefix.

The following example snippet shows an imaginary relationship definition from a load-balancer node to worker nodes. A script is defined for the add_target operation of the Configure interface of the relationship, and the ip_address attribute of the target is specified as input to the script:

	node_templates:

 load_balancer:

 type: some.vendor.LoadBalancer

 requirements:

 - member:

 relationship: some.vendor.LoadBalancerToMember

 interfaces:

 tosca.interfaces.relationships.Configure:

 add_target:

 inputs:

 member_ip: { get_attribute: [TARGET, ip_address] }

 implementation: scripts/configure_members.py

The add_target operation will be invoked, whenever a new target member is being added to the load-balancer. With the above inputs declaration, a member_ip environment variable that will hold the IP address of the target being added will be provided to the configure_members.py script. In addition, the IP addresses of all current load-balancer members will be provided as environment variables with a naming scheme of <target node ID>_member_ip. This will allow, for example, scripts that always just write the complete list of load-balancer members into a configuration file to do so instead of updating existing list, which might be more complicated.

Assuming that the TOSCA application instance includes five load-balancer members, node1 through node5, where node5 is the current target being added, the following environment variables (plus potentially more variables) would be provided to the script:
	# the ID of the current target and the IDs of all targets

TARGET=node5

TARGETS=node1,node2,node3,node4,node5

the input for the current target and the inputs of all targets

member_ip=10.0.0.5

node1_member_ip=10.0.0.1

node2_member_ip=10.0.0.2

node3_member_ip=10.0.0.3

node4_member_ip=10.0.0.4

node5_member_ip=10.0.0.5

With code like shown in the snippet below, scripts could then iterate of all provided member_ip inputs:

	#!/usr/bin/python

import os

targets = os.environ['TARGETS'].split(',')

for t in targets:

 target_ip = os.environ.get('%s_member_ip' % t)

 # do something with target_ip ...

B.2.2 Prefixed vs. Unprefixed TARGET names

The list target node types assigned to the TARGETS key in an execution environment would have names prefixed by unique IDs that distinguish different instances of a node in a running model Future drafts of this specification will show examples of how these names/IDs will be expressed.
B.2.2.1 Notes

· Target of interest is always un-prefixed. Prefix is the target opaque ID. The IDs can be used to find the environment var. for the corresponding target. Need an example here.

· If you have one node that contains multiple targets this would also be used (add or remove target operations would also use this you would get set of all current targets).
B.3 Property functions

These functions are used within a service template to obtain property values from property definitions declared elsewhere in the same service template. These property definitions can appear either directly in the service template itself (e.g., in the inputs section) or on entities (e.g., node or relationship templates) that have been modeled within the template.

Note that the get_input and get_property functions may only retrieve the static values of property definitions of a TOSCA application as defined in the TOSCA Service Template. The get_attribute function should be used to retrieve values for attribute definitions (or property definitions reflected as attribute definitions) from the runtime instance model of the TOSCA application (as realized by the TOSCA orchestrator).
B.3.1 get_input

The get_input function is used to retrieve the values of properties declared within the inputs section of a TOSCA Service Template.

B.3.1.1 Grammar
	get_input: <input_property_name>

B.3.1.2 Parameters

	Parameter
	Required
	Type
	Description

	<input_property_name>
	yes
	string
	The name of the property as defined in the inputs section of the service template.

B.3.1.3 Examples

	inputs:

 cpus:

 type: integer

node_templates:

 my_server:

 type: tosca.nodes.Compute

 properties:

 num_cpus: { get_input: cpus }

B.3.2 get_property

The get_property function is used to retrieve property values between modelable entities defined in the same service template.

B.3.2.1 Grammar
	get_property: <modelable_entity_name>, [<req_or_cap_name>], <property_name> [, <nested_property_name_1>, ..., <nested_property_name_*>]

B.3.2.2 Parameters
	Parameter
	Required
	Type
	Description

	<modelable entity name> | SELF | SOURCE | TARGET | HOST
	yes
	string
	The required name of a modelable entity (e.g., Node Template or Relationship Template name) as declared in the service template that contains the named property definition the function will return the value from. See section B.1 for valid keywords.

	<req_or_cap_name>
	no
	string
	The optional name of the requirement or capability name within the modelable entity (i.e., the <modelable_entity_name> which contains the named property definition the function will return the value from.

Note: If the property definition is located in the modelable entity directly, then this parameter MAY be omitted.

	<property_name>
	yes
	string
	The name of the property definition the function will return the value from.

	<nested_property_name_1> | nested_property_index_1,, ..., <nested_property_name_m> | nested_property_index_n,
	no
	string | integer
	Some TOSCA properties are complex (i.e., composed as nested structures). These parameters are used to dereference into the names of these nested structures when needed.

Some properties represent list types. In these cases, an index may be provided to reference a specific entry in the list (as named in the previous parameter) to return.

B.3.2.3 Examples

The following example shows how to use the get_property function with an actual Node Template name:
	node_templates:

 mysql_database:

 type: tosca.nodes.Database

 properties:

 db_name: sql_database1

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 ...

 interfaces:

 Standard:

 configure:

 inputs:

 wp_db_name: { get_property: [mysql_database, db_name] }

The following example shows how to use the get_property function using the SELF keyword:
	node_templates:

 mysql_database:

 type: tosca.nodes.Database

 ...

 capabilities:

 database_endpoint:

 properties:

 port: 3306

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 requirements:

 ...

 - database_endpoint: mysql_database

 interfaces:

 Standard:

 create: wordpress_install.sh

 configure:

 implementation: wordpress_configure.sh

 inputs:

 ...

 wp_db_port: { get_property: [SELF, database_endpoint, port] }

The following example shows how to use the get_property function using the TARGET keyword:
	TBD

B.4 Attribute functions

These functions (attribute functions) are used within an instance model to obtain attribute values from instances of nodes and relationships that have been created from an application model described in a service template. The instances of nodes or relationships can be referenced by their name as assigned in the service template or relative to the context where they are being invoked.

B.4.1 get_attribute

The get_attribute function is used to retrieve the values of named attributes declared by the referenced node or relationship template name.
B.4.1.1 Grammar
	get_attribute: <modelable_entity_name>, [<req_or_cap_name>], <attribute_name> [, <nested_attribute_name_1>, ..., <nested_attribute_name_x>]

B.4.1.2 Parameters
	Parameter
	Required
	Type
	Description

	<modelable entity name> | SELF | SOURCE | TARGET | HOST
	yes
	string
	The required name of a modelable entity (e.g., Node Template or Relationship Template name) as declared in the service template that contains the named attribute definition the function will return the value from. See section B.1 for valid keywords.

	<req_or_cap_name>
	no
	string
	The optional name of the requirement or capability name within the modelable entity (i.e., the <modelable_entity_name> which contains the named attribute definition the function will return the value from.

Note: If the attribute definition is located in the modelable entity directly, then this parameter MAY be omitted.

	<attribute_name>
	yes
	string
	The name of the attribute definition the function will return the value from.

	<nested_attribute_name_1> | nested_attribute_index_1, ..., <nested_attribute_name_x> | <nested_attribute_index_x>
	no
	string | integer
	Some TOSCA attributes are complex (i.e., composed as nested structures). These parameters are used to dereference into the names of these nested structures when needed.

Some attributes represent list types. In these cases, an index may be provided to reference a specific entry in the list (as named in the previous parameter) to return.

B.4.1.3 Examples:

The attribute functions are used in the same way as the equivalent Property functions described above. Please see their examples and replace “get_property” with “get_attribute” function name.
B.4.2 Notes
These functions are used to obtain attributes from instances of node or relationship templates by the names they were given within the service template that described the application model (pattern).

Notes:

· These functions only work when the orchestrator can resolve to a single node or relationship instance for the named node or relationship. This essentially means this is acknowledged to work only when the node or relationship template being referenced from the service template has a cardinality of 1 (i.e., there can only be one instance of it running).

B.5 Operation functions

These functions are used within an instance model to obtain values from interface operations. These can be used in order to set an attribute of a node instance at runtime or to pass values from one operation to another.
B.5.1 get_operation_output
The get_operation_output function is used to retrieve the values of variables exposed / exported from an interface operation.
B.5.1.1 Grammar
	get_operation_output: <modelable_entity_name>, <interface_name>, <operation_name>, <output_variable_name>

B.5.1.2 Parameters
	Parameter
	Required
	Type
	Description

	<modelable entity name> | SELF | SOURCE | TARGET
	yes
	string
	The required name of a modelable entity (e.g., Node Template or Relationship Template name) as declared in the service template that implements the named interface and operation.

	<interface_name>
	Yes
	string
	The required name of the interface which defines the operation.

	<operation_name>
	yes
	string
	The required name of the operation whose value we would like to retrieve.

	<output_variable_name>
	Yes
	string
	The required name of the variable that is exposed / exported by the operation.

B.5.1.3 Notes

· If operation failed, then ignore its outputs. Orchestrators should allow orchestrators to continue running when possible past deployment in the lifecycle. For example, if an update fails, the application should be allowed to continue running and some other method would be used to alert administrators of the failure.

B.6 Navigation functions

· This version of the TOSCA Simple Profile does not define any model navigation functions.
B.6.1 get_nodes_of_type

The get_nodes_of_type function can be used to retrieve a list of all known instances of nodes of the declared Node Type.

B.6.1.1 Grammar
	get_nodes_of_type: <node_type_name>

B.6.1.2 Parameters
	Parameter
	Required
	Type
	Description

	<node_type_name>
	yes
	string
	The required name of a Node Type that a TOSCA orchestrator would use to search a running application instance in order to return all unique, named node instances of that type.

B.6.1.3 Returns

	Return Key
	Type
	Description

	TARGETS
	<see above>
	The list of node instances from the current application instance that match the node_type_name supplied as an input parameter of this function.

B.7 Context-based Entity name (global)

TBD

Goal:

· Using the full paths of modelable entity names to qualify context with the future goal of a more robust get_attribute function: e.g., get_attribute(<context-based-entity-name>, <attribute name>)

Appendix C. TOSCA normative type definitions

The declarative approach is heavily dependent of the definition of basic types that a declarative container must understand. The definition of these types must be very clear such that the operational semantics can be precisely followed by a declarative container to achieve the effects intended by the modeler of a topology in an interoperable manner.

C.1 Assumptions

· Assumes alignment with/dependence on XML normative types proposal for TOSCA v1.1

· Assumes that the normative types will be versioned and the TOSCA TC will preserve backwards compatibility.

· Assumes that security and access control will be addressed in future revisions or versions of this specification.

C.2 Data Types

C.2.1 tosca.datatypes.network.NetworkInfo

The Network type is a complex TOSCA data type used to describe logical network information.

	Shorthand Name
	NetworkInfo

	Type Qualified Name
	tosca:NetworkInfo

	Type URI
	tosca.datatypes.network.NetworkInfo

C.2.1.1 Properties

	Name
	Type
	Constraints
	Description

	network_name
	string
	None
	The name of the logical network.

e.g., public private admin

	network_id
	string
	None
	The unique ID of for the network generated by the network provider.

	addresses
	string []
	None
	The list of IP addresses assigned from the underlying network.

C.2.1.2 Definition

The TOSCA NetworkInfo data type is defined as follows:
	tosca.datatypes.network.NetworkInfo:

 properties:

 network_name:

 type: string
 network_id:

 type: string
 addresses:

 type: list
 entry_schema:

 type: string

C.2.1.3 Examples

Example usage of the NetworkInfo data type:
	private_network:

 network_name: private

 network_id: 3e54214f-5c09-1bc9-9999-44100326da1b

 addresses: [10.111.128.10]

C.2.1.4 Additional Requirements

· It is expected that TOSCA orchestrators MUST be able to map the network_name from the TOSCA model to underlying network model of the provider.
· The properties (or attributes) of NetworkInfo may or may not be required depending on usage context.
C.2.2 tosca.datatypes.network.PortInfo

The PortInfo type is a complex TOSCA data type used to describe network port information.

	Shorthand Name
	PortInfo

	Type Qualified Name
	tosca:PortInfo

	Type URI
	tosca.datatypes.network.PortInfo

C.2.2.1 Properties

	Name
	Type
	Constraints
	Description

	port_name
	string
	None
	The logical network port name.

	port_id
	string
	None
	The unique ID for the network port generated by the network provider.

	network_id
	string
	None
	The unique ID for the network.

	mac_address
	string
	None
	The unique media access control address (MAC address) assigned to the port.

	addresses
	string []
	None
	The list of IP address(es) assigned to the port.

C.2.2.2 Definition

The TOSCA Port type is defined as follows:
	tosca.datatypes.network.PortInfo:

 properties:

 port_name:

 type: string

 port_id:

 type: string

 network_id:

 type: string
 network_id:

 type: string
 mac_address:

 type: string
 addresses:

 type: list
 entry_schema:

 type: string

C.2.2.3 Examples

Example usage of the PortInfo data type:
	ethernet_port:

 port_name: port1

 port_id: 2c0c7a37-691a-23a6-7709-2d10ad041467
 network_id: 3e54214f-5c09-1bc9-9999-44100326da1b

 mac_address: f1:18:3b:41:92:1e

 addresses: [172.24.9.102]

C.2.2.4 Additional Requirements

· It is expected that TOSCA orchestrators MUST be able to map the port_name from the TOSCA model to underlying network model of the provider.
· The properties (or attributes) of NetworkInfo may or may not be required depending on usage context.
C.2.3 tosca.datatypes.network.PortDef

The PortDef type is a TOSCA data Type used to define a network port.

	Shorthand Name
	PortDef

	Type Qualified Name
	tosca:PortDef

	Type URI
	tosca.datatypes.network.PortDef

C.2.3.1 Definition

The TOSCA PortDef type is defined as follows:
	tosca.datatypes.network.PortDef:
 type: integer

 constraints:

 - in_range: [1, 65535]

C.2.3.2 Examples

Example use of a PortDef property type:
	listen_port:

 type: PortDef

 default: 9000

 constraints:

 - in_range [9000, 9090]

C.2.4 tosca.datatypes.network.PortSpec

The PortSpec type is a complex TOSCA data Type used when describing port specifications for a network connection.

	Shorthand Name
	PortSpec

	Type Qualified Name
	tosca:PortSpec

	Type URI
	tosca.datatypes.network.PortSpec

C.2.4.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	protocol
	yes
	string
	default: tcp
	The required protocol used on the port.

	source
	no
	list of integer
	integer entries

in_range: [1, 65536]
	The optional list of source ports.

	source_range
	no
	range
	in_range: [1, 65536]
	The optional range for source ports.

	target
	no
	list of integer
	integer entries

in_range: [1, 65536]
	The optional list of target ports.

	target_range
	no
	range
	in_range: [1, 65536]
	The optional range for target ports.

C.2.4.2 Definition

The TOSCA PortSpec type is defined as follows:
	tosca.datatypes.network.PortSpec:

 properties:

 protocol:

 type: string

 required: true

 default: tcp

 constraints:

 - valid_values: [udp, tcp, igmp]

 target:

 type: list

 entry_schema:

 type: PortDef
 target_range:

 type: range

 constraints:

 - in_range: [1, 65535]

 source:

 type: list

 entry_schema:

 type: PortDef
 source_range:

 type: range

 constraints:

 - in_range: [1, 65535]

C.2.4.3 Additional requirements

· A valid PortSpec must have at least one of the following properties: target, target_range, source or source_range.
C.2.4.4 Examples

Example usage of the PortSpec data type:
	# example properties in a node template

some_endpoint:

 properties:

 ports:

 user_port:

 ip_proto: tcp

 target: 50000

 target_range: [20000, 60000]

 source: 9000

 source_range: [1000, 10000]

C.2.5 tosca.datatypes.network.Credential

The PortSpec type is a complex TOSCA data Type used when describing authorization credentials used to access network accessible resources.

	Shorthand Name
	Credential

	Type Qualified Name
	tosca:Credential

	Type URI
	tosca.datatypes.network.Credential

C.2.5.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	protocol
	yes
	string
	None
	The required protocol name.

	token_type
	yes
	string
	None
	The required token type.

	token
	yes
	string
	None
	The required token used as a credential for authorization or access to a networked resource.

	keys
	no
	map of string
	None
	The optional list of protocol-specific keys or assertions.

C.2.5.2 Definition

The TOSCA Credential type is defined as follows:
	tosca.datatypes.network.Credential:

 properties:

 protocol:

 type: string

 token_type:

 type: string

 token:

 type: string

 keys:

 type: map

 entry_schema:

 type: string

C.2.5.3 Notes
· Specific token types and encoding them using network protocols are not defined or covered in this specification.
C.2.5.4 Examples

Example usage of the Credential data type:

C.2.5.4.1 HTTP Basic access authentication credential
	<some_tosca_entity>:

 properties:

 my_credential:

 type: Credential

 properties:

 protocol: http

 token_type: basic_auth

 # Username and password are combined into a string

 # Note: this would be base64 encoded before transmission by any impl.

 token: myusername:mypassword

C.2.5.4.2 X-Auth-Token credential
	<some_tosca_entity>:

 properties:

 my_credential:

 type: Credential

 properties:

 protocol: xauth

 token_type: X-Auth-Token

 # token encoded in Base64

 token: 604bbe45ac7143a79e14f3158df67091

C.2.5.4.3 OAuth bearer token credential
	<some_tosca_entity>:

 properties:

 my_credential:

 type: Credential

 properties:

 protocol: oauth2

 token_type: bearer

 # token encoded in Base64

 token: 8ao9nE2DEjr1zCsicWMpBC

C.3 Capabilities Types

C.3.1 tosca.capabilities.Root

This is the default (root) TOSCA Capability Type definition that all other TOSCA Capability Types derive from.

C.3.1.1 Definition

	tosca.capabilities.Root:

C.3.2 tosca.capabilities.Container

The Container capability, when included on a Node Type or Template definition, indicates that the node can act as a container for (or a host for) one or more other declared Node Types.
	Shorthand Name
	Container

	Type Qualified Name
	tosca:Container

	Type URI
	tosca.capabilities.Container

C.3.2.1 Properties

	Name
	Type
	Constraints
	Description

	valid_node_types
	NodeType[]
	None
	A list of one or more names of Node Types that are supported as containees that declare the Container type as a Capability.

C.3.2.2 Definition
	tosca.capabilities.Container:

 derived_from: tosca.capabilities.Root
 properties:

 valid_node_types: [<node_type_name_1>,..., <node_type_name_n>]

In the above definition, the pseudo values that appear in angle brackets have the following meaning:

· node_type_name_*: represents the name of a Node Type definition as a string.
C.3.3 tosca.capabilities.Endpoint

This is the default TOSCA type that should be used or extended to define a network endpoint capability. This includes the information to express a basic endpoint with a single port or a complex endpoint with multiple ports.

	Shorthand Name
	Endpoint

	Type Qualified Name
	tosca:Endpoint

	Type URI
	tosca.capabilities.Endpoint

C.3.3.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	protocol
	yes
	string
	default: tcp
	The name of the protocol (i.e., the protocol prefix) that the endpoint accepts (any OSI Layer 4-7 protocols)

Examples: http, https, ftp, tcp, udp, etc.

	port
	yes
	integer
	greater_or_equal: 1

less_or_equal: 65535
	The port of the endpoint.

	secure
	no
	boolean
	default: false
	Indicates if the endpoint is a secure endpoint.

	url_path
	no
	string
	None
	The optional URL path of the endpoint’s address if applicable for the protocol.

	port_name
	no
	string
	None
	The optional name (or ID) of the network port this endpoint should be bound to.

	network_name
	no
	string
	None
	The optional name (or ID) of the network this endpoint should be bound to.

	initiator
	no
	string
	one of:

· source

· target

· peer

default: source
	Indicates the direction of the connection.

	ports
	yes
	map of PortSpec
	TBD
	TBD look to change to “virtual network interface” (vnic) or something else.

C.3.3.2 Attributes

	Name
	Required
	Type
	Constraints
	Description

	ip_address
	yes
	string
	None
	Note: This is the IP address as propagated up by the associated node’s host (Compute) container.

C.3.3.3 Definition
	tosca.capabilities.Endpoint:

 derived_from: tosca.capabilities.Root

 properties:

 protocol:

 type: string

 default: tcp

 port:

 type: integer

 constraints:

 - greater_or_equal: 1

 - less_or_equal: 65535

 secure:

 type: boolean

 default: false

 url_path:

 type: string

 required: false

 port_name:

 type: string

 required: false

 network_name

 type: string

 required: false

 initiator:

 type: string

 default: source

 constraints:

 - valid_values: [source, target, peer]

 ports:

 type: map

 required: true

 constraints:

 - min_length: 1

 entry_schema:

 type: PortSpec

 attributes:

 ip_address:

 type: string

C.3.4 tosca.capabilities.DatabaseEndpoint
This is the default TOSCA type that should be used or extended to define a specialized database endpoint capability.
	Shorthand Name
	DatabaseEndpoint

	Type Qualified Name
	tosca:DatabaseEndpoint

	Type URI
	tosca.capabilities.DatabaseEndpoint

C.3.4.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

C.3.4.2 Definition
	tosca.capabilities.DatabaseEndpoint:

 derived_from: tosca.capabilities.Endpoint

C.3.5 tosca.capabilities.Attachment

This is the default TOSCA type that should be used or extended to define an attachment capability of a (logical) infrastructure device node (e.g., BlockStorage node).

	Shorthand Name
	Attachment

	Type Qualified Name
	tosca:Attachment

	Type URI
	tosca.capabilities.Attachment

C.3.5.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	N/A
	N/A
	N/A
	N/A
	N/A

C.3.5.2 Definition
	tosca.capabilities.Attachment:

 derived_from: tosca.capabilities.Root

C.3.6 tosca.capabilities.OperatingSystem

This is the default TOSCA type that should be used to express a scalability capability for a node.

	Shorthand Name
	OperatingSystem

	Type Qualified Name
	tosca:OperatingSystem

	Type URI
	tosca.capabilities.OperatingSystem

C.3.6.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	architecture
	yes
	string
	None
	The Operating System (OS) architecture.

Examples of valid values include:

x86_32, x86_64, etc.

	type
	yes
	string
	None
	The Operating System (OS) type.

Examples of valid values include:

linux, aix, mac, windows, etc.

	distribution
	no
	string
	None
	TheOperating System (OS) distribution.

Examples of valid values for an “type” of “Linux” would include: debian, fedora, rhel and ubuntu.

	version
	no
	string
	None
	The Operating System version.

C.3.6.2 Definition
	tosca.capabilities.OperatingSystem:

 derived_from: tosca.capabilities.Root
 properties:

 min_intances:

 type: integer

 default: 1

 max_intances:

 type: integer

 default: 1

 default_instances:

 type: integer

C.3.6.3 Additional Requirements

· Please note that the string values for the properties architecture, type and distribution SHALL be normalized to lowercase by processors of the service template for matching purposes. For example, if a “type” value is set to either “Linux”, “LINUX” or “linux” in a service template, the processor would normalize all three values to “linux” for matching purposes.
C.3.6.4 Notes

· None
C.3.7 tosca.capabilities.Scalable

This is the default TOSCA type that should be used to express a scalability capability for a node.

	Shorthand Name
	Scalable

	Type Qualified Name
	tosca:Scalable

	Type URI
	tosca.capabilities.Scalable

C.3.7.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	min_instances
	yes
	integer
	default: 1
	This property is used to indicate the minimum number of instances that should be created for the associated TOSCA Node Template by a TOSCA orchestrator.

	max_instances
	yes
	integer
	default: 1
	This property is used to indicate the maximum number of instances that should be created for the associated TOSCA Node Template by a TOSCA orchestrator.

	default_instances
	no
	integer
	N/A
	An optional property that indicates the requested default number of instances that should be the starting number of instances a TOSCA orchestrator should attempt to allocate.

Note: The value for this property MUST be in the range between the values set for ‘min_instances’ and ‘max_instances’ properties.

C.3.7.2 Definition
	tosca.capabilities.Scalable:

 derived_from: tosca.capabilities.Root
 properties:

 min_intances:

 type: integer

 default: 1

 max_intances:

 type: integer

 default: 1

 default_instances:

 type: integer

C.3.7.3 Notes

· The actual number of instances for a node may be governed by a separate scaling policy which conceptually would be associated to either a scaling-capable node or a group of nodes in which it is defined to be a part of. This is a planned future feature of the TOSCA Simple Profile and not currently described.
C.3.8 tosca.capabilities.network.Bindable

A node type that includes the Bindable capability indicates that it can be bound to a logical network association via a network port.

	Shorthand Name
	network.Bindable

	Type Qualified Name
	tosca:network.Bindable

	Type URI
	tosca.capabilities.network.Bindable

C.3.8.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	N/A
	N/A
	N/A
	N/A
	N/A

C.3.8.2 Definition
	tosca.capabilities.network.Bindable:

 derived_from: tosca.capabilities.Root

C.4 Requirement Types
There are no normative Requirement Types currently defined in this working draft. Typically, Requirements are described against a known Capability Type

C.5 Relationship Types

C.5.1 tosca.relationships.Root

This is the default (root) TOSCA Relationship Type definition that all other TOSCA Relationship Types derive from.

C.5.1.1 Attributes

	Name
	Required
	Type
	Constraints
	Description

	tosca_id
	yes
	string
	None
	A unique identifier of the realized instance of a Relationship Template that derives from any TOSCA normative type.

	tosca_name
	yes
	string
	None
	This attribute reflects the name of the Relationship Template as defined in the TOSCA service template. This name is not unique to the realized instance model of corresponding deployed application as each template in the model can result in one or more instances (e.g., scaled) when orchestrated to a provider environment.

C.5.1.2 Definition

	tosca.relationships.Root:

 # The TOSCA root relationship type has no property mappings

 interfaces: [tosca.interfaces.relationship.Configure]

 valid_targets: [tosca.capabilities.Root]

 attributes:

 tosca_id:

 type: string

 tosca_name:

 type: string

C.5.2 tosca.relationships.DependsOn
This type represents a general dependency relationship between two nodes.

	Shorthand Name
	DependsOn

	Type Qualified Name
	tosca:DependsOn

	Type URI
	tosca.relationships.DependsOn

C.5.2.1 Definition

	tosca.relationships.DependsOn:

 derived_from: tosca.relationships.Root

C.5.3 tosca.relationships.HostedOn

This type represents a hosting relationship between two nodes.
	Shorthand Name
	HostedOn

	Type Qualified Name
	tosca:HostedOn

	Type URI
	tosca.relationships.HostedOn

C.5.3.1 Definition

	tosca.relationships.HostedOn:

 derived_from: tosca.relationships.DependsOn
 valid_targets: [tosca.capabilities.Container]

C.5.4 tosca.relationships.ConnectsTo
This type represents a network connection relationship between two nodes.

	Shorthand Name
	ConnectsTo

	Type Qualified Name
	tosca:ConnectsTo

	Type URI
	tosca.relationships.ConnectsTo

C.5.4.1 Definition

	tosca.relationships.ConnectsTo:

 derived_from: tosca.relationships.Root
 valid_targets: [tosca.capabilities.Endpoint]

C.5.4.2 Properties

	Name
	Required
	Type
	Constraints
	Description

	username
	no
	string
	
	

	password
	no
	string
	
	

C.5.5 tosca.relationships.AttachTo

This type represents an attachment relationship between two nodes. For example, an AttachTo relationship type would be used for attaching a storage node to a Compute node.

	Shorthand Name
	AttachTo

	Type Qualified Name
	tosca:AttachTo

	Type URI
	tosca.relationships.AttachTo

C.5.5.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	location
	yes *
	string
	min_length: 1
	The relative location (e.g., path on the file system), which provides the root location to address an attached node.

	device
	no
	string
	None
	The logical device name which for the attached device (which is represented by the target node in the model).

C.5.5.2 Attributes

	Name
	Required
	Type
	Constraints
	Description

	device
	no
	string
	None
	The logical name of the device as exposed to the instance.

Note: A runtime property that gets set when the model gets instantiated by the orchestrator.

C.5.5.3 Definition

	tosca.relationships.AttachTo:

 derived_from: tosca.relationships.Root
 valid_targets: [tosca.capabilities.Attachment]

 properties:

 location:

 type: string

 constraints:

 - min_length: 1

 device:

 type: string

 required: false

C.6 Interface Types

Interfaces are reusable entities that define a set of operations that that can be included as part of a Node type or Relationship Type definition. Each named operations may have code or scripts associated with them that orchestrators can execute for when transitioning an application to a given state.

C.6.1 Requirements

· Designers of Node or Relationship types are not required to actually provide/associate code or scripts with every operation for a given interface it supports. In these cases, orchestrators SHALL consider that a “No Operation” or “no-op”.

· Template designers MAY provide or override code or scripts provided by a type for a specified interface defined for the type (even if the type itself does not provide a script for that operation).

C.6.2 tosca.interfaces.node.lifecycle.Standard

This lifecycle interface defines the essential, normative operations that TOSCA nodes may support.

	Shorthand Name
	 Standard

	Type Qualified Name
	tosca: Standard

	Type URI
	tosca.interfaces.node.lifecycle.Standard

C.6.2.1 Definition
	tosca.interfaces.node.lifecycle.Standard:

 create:

 description: Standard lifecycle create operation.

 configure:

 description: Standard lifecycle configure operation (pre-start).

 start:

 description: Standard lifecycle start operation.

 stop:

 description: Standard lifecycle stop operation.

 delete:

 description: Standard lifecycle delete operation.

C.6.2.2 Operation sequencing and node state

The following diagrams show how TOSCA orchestrators sequence the operations of the Standard lifecycle in normal node startup and shutdown procedures.

[image: image1.png]OASIS)

The following key should be used to interpret the diagrams:

C.6.2.2.1 Normal node startup sequence diagram

[image: image10.png]—+Depends On— -+~ Depends On —

The following diagram shows how the TOSCA orchestrator would invoke operations on the Standard lifecycle to shut down a node.
C.6.2.2.2 Normal node shutdown sequence diagram

[image: image11.emf]Service

Template

The following diagram shows how the TOSCA orchestrator would invoke operations on the Standard lifecycle to shut down a node.

C.6.3 tosca.interfaces.node.lifecycle.Simple

This interface defines the simplest, normative lifecycle operations that TOSCA nodes may support. It can be used when nodes are able to perform create, configure, start and postconfigure operations as defined in the Standard lifecycle as a single deploy operation.

	Shorthand Name
	Simple

	Type Qualified Name
	tosca:Simple

	Type URI
	tosca.interfaces.node.lifecycle.Simple

C.6.3.1 Definition
	tosca.interfaces.node.lifecycle.Simple:

 deploy:

 description: Simple lifecycle deploy operation. This single operation would be used to implement the Standard lifecycle operations of create, configure, start and postconfigure.

 start:

 description: Simple lifecycle start operation.

 stop:

 description: Simple lifecycle stop operation.

 delete:

 description: Simple lifecycle delete operation.

C.6.3.2 Requirements

· Following the execution of the deploy operation; the node MUST be in an active node instance state.

· Implementers of the Simple lifecycle interfaces SHALL code valid start and stop operation implementations.
C.6.4 tosca.interfaces.relationship.Configure

The lifecycle interfaces define the essential, normative operations that each TOSCA Relationship Types may support.

	Shorthand Name
	Configure

	Type Qualified Name
	tosca:Configure

	Type URI
	tosca.interfaces.relationship.Configure

C.6.4.1 Definition

	tosca.interfaces.relationship.Configure:

 pre_configure_source:

 description: Operation to pre-configure the source endpoint.

 pre_configure_target:

 description: Operation to pre-configure the target endpoint.

 post_configure_source:

 description: Operation to post-configure the source endpoint.

 post_configure_target:

 description: Operation to post-configure the target endpoint.

 add_target:

 description: Operation to notify the source node of a target node being added via a relationship.

 add_source:

 description: Operation to notify the target node of a source node which is now available via a relationship.

 description:

 target_changed:

 description: Operation to notify source some property or attribute of the target changed

 remove_target:

 description: Operation to remove a target node.

C.6.4.2 Invocation Conventions

TOSCA relationships are directional connecting a source node to a target node. When TOSCA Orchestrator connects a source and target node together using a relationship that supports the Configure interface it will “interleave” the operations invocations of the Configure interface with those of the node’s own Standard lifecycle interface. This concept is illustrated below:

C.6.4.3 [image: image12.png]! !
® ©)

Admin Data network
network

Normal node start sequence with Configure relationship operations

The following diagram shows how the TOSCA orchestrator would invoke Configure lifecycle operations in conjunction with Standard lifecycle operations during a typical startup sequence on a node.
[image: image13.emf]Network

Template

A

C.6.4.3.1 Node-Relationship configuration sequence

Depending on which side (i.e., source or target) of a relationship a node is on, the orchestrator will:

1. Invoke either the pre_configure_source or pre-configure_target operation as supplied by the relationship on the node.

2. Invoke the node’s configure operation.

3. Invoke either the post_configure_source or post_configure_target as supplied by the relationship on the node.

Note that the The pre_configure_xxx and post_configure_xxx are invoked only once per node instance.

C.6.4.3.2 Node-Relationship add, remove and changed sequence

Since a topology template contains nodes that can dynamically be added (and scaled), removed or changed as part of an application instance, the Configure lifecycle includes operations that are invoked on node instances that to notify and address these dynamic changes.

For example, a source node, of a relationship that uses the Configure lifecycle, will have the relationship operations add_target, or remove target invoked on it whenever a target node instance is added or removed to the running application instance. In addition, whenever the node state of its target node changes, the target_changed operation is invoked on it to address this change. Conversely, the add_source and remove_source operations are invoked on the source node of the relationship.
C.6.4.4 Notes

· The target (provider) MUST be active and running (i.e., all its dependency stack MUST be fulfilled) prior to invoking add_target

· In other words, all Requirements MUST be satisfied before it advertises its capabilities (i.e., the attributes of the matched Capabilities are available).

· In other words, it cannot be “consumed” by any dependent node.

· Conversely, since the source (consumer) needs information (attributes) about any targets (and their attributes) being removed before it actually goes away.

· The remove_target operation should only be executed if the target has had add_target executed. BUT in truth we’re first informed about a target in pre_configure_source, so if we execute that the source node should see remove_target called to cleanup.

· Error handling: If any node operation of the topology fails processing should stop on that node template and the failing operation (script) should return a failure code when possible.

C.7 Node Types
C.7.1 tosca.nodes.Root

The TOSCA Root Node Type is the default type that all other TOSCA base Node Types derive from. This allows for all TOSCA nodes to have a consistent set of features for modeling and management (e.g., consistent definitions for requirements, capabilities and lifecycle interfaces).

C.7.1.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	N/A
	N/A
	N/A
	N/A
	The TOSCA Root Node type has no specified properties.

C.7.1.2 Attributes

	Name
	Required
	Type
	Constraints
	Description

	tosca_id
	yes
	string
	None
	A unique identifier of the realized instance of a Node Template that derives from any TOSCA normative type.

	tosca_name
	yes
	string
	None
	This attribute reflects the name of the Node Template as defined in the TOSCA service template. This name is not unique to the realized instance model of corresponding deployed application as each template in the model can result in one or more instances (e.g., scaled) when orchestrated to a provider environment.

	state
	yes
	string
	default: initial
	The state of the node instance. See section xxx for allowed values.

C.7.1.3 Definition
	tosca.nodes.Root:

 description: The TOSCA Node Type all other TOSCA base Node Types derive from

 attributes:

 tosca_id:

 type: string

 tosca_name:

 type: string

 requirements:

 - dependency:

 node: tosca.capabilities.Root
 interfaces: [tosca.interfaces.node.lifecycle.Standard |

 tosca.interfaces.node.lifecycle.Simple]

C.7.1.4 Additional Requirements

· All Node Type definitions that wish to adhere to the TOSCA Simple Profile SHOULD extend from the TOSCA Root Node Type to be assured of compatibility and portability across implementations.

· Valid Nodes Types or Node Templates MUST implement either the Standard or Simple lifecycle interfaces, but not both.

C.7.2 tosca.nodes.Compute

The TOSCA Compute node represents one or more real or virtual processors of software applications or services along with other essential local resources. Collectively, the resources the compute node represents can logically be viewed as a (real or virtual) “server”.

	Shorthand Name
	Compute

	Type Qualified Name
	tosca:Compute

	Type URI
	tosca.nodes.Compute

C.7.2.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	num_cpus
	no
	integer
	greater_or_equal: 1
	Number of (actual or virtual) CPUs associated with the Compute node.

	disk_size
	no
	scalar-unit
	greater_or_equal: 0 MB
	Size of the local disk available to applications running on the Compute node (default unit is MB).

	mem_size
	no
	scalar-unit
	greater_or_equal: 0 MB
	Size of memory available to applications running on the Compute node (default unit is MB).

C.7.2.2 Attributes

	Name
	Required
	Type
	Constraints
	Description

	ip_address
	no
	string
	status:

deprecated
	The primary IP address assigned by the cloud provider that applications may use to access the Compute node.

Note: This is used by the platform provider to convey the primary address used to access the compute node. Future working drafts will address implementations that support floating or multiple IP addresses.

	networks
	no
	map(string) of NetworkInfo
	None
	The list of logical networks assigned to the compute host instance and information about them.

	ports
	no
	map(string) of PortInfo
	None
	The list of logical ports assigned to the compute host instance and information about them.

C.7.2.3 Definition

	tosca.nodes.Compute:

 derived_from: tosca.nodes.Root
 properties:

 # compute properties

 num_cpus:

 type: integer

 constraints:

 - greater_or_equal: 1

 disk_size:

 type: scalar-unit

 constraints:

 - greater_or_equal: 0 MB

 mem_size:

 type: scalar-unit

 constraints:

 - greater_or_equal: 0 MB

 attributes:

 # DEPRECATED: Compute node’s primary IP address

 ip_address:

 type: string

 status: deprecated

 networks:

 type: map

 entry_schema:

 type: tosca.datatypes.network.NetworkInfo
 ports:

 type: map

 entry_schema:

 type: tosca.datatypes.network.PortInfo
 capabilities:

 host:

 type: tosca.capabilities.Container
 properties:

 valid_node_types: [tosca.nodes.SoftwareComponent]

 endpoint:

 type: tosca.capabilities.Endpoint
 os:

 type: tosca.capabilites.OperatingSystem
 scalable:

 type: tosca.capabilities.Scalable
 binding:

 type: tosca.capabilities.network.Bindable

C.7.3 tosca.nodes.SoftwareComponent
The TOSCA SoftwareComponent node represents a generic software component that can be managed and run by a TOSCA Compute Node Type.

	Shorthand Name
	SoftwareComponent

	Type Qualified Name
	tosca:SoftwareComponent

	Type URI
	tosca.nodes.SoftwareComponent

C.7.3.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	component_version
	no
	version
	None
	The software component’s version.

C.7.3.2 Attributes

	Name
	Required
	Type
	Constraints
	Description

	ip_address
	no
	string
	status: deprecated
	The first public IP address assigned to the host Compute node.

Default: get_attribute (SELF, host, ip_address)

C.7.3.3 Definition

	tosca.nodes.SoftwareComponent:

 derived_from: tosca.nodes.Root
 properties:

 # domain-specific software component version

 component_version:

 type: version
 required: false

 attributes:

 # Deprecated

 ip_address:

 type: string

 status: deprecated

 default: { get_attribute: [SELF, host, ip_address] }

 requirements:

 - host:

 node: tosca.nodes.Compute
 relationship: tosca.relationships.HostedOn

C.7.3.4 Additional Requirements

· Nodes that can directly be managed and run by a TOSCA Compute Node Type SHOULD extend from this type.

C.7.4 tosca.nodes.WebServer

This TOSA WebServer Node Type represents an abstract software component or service that is capable of hosting and providing management operations for one or more WebApplication nodes.
	Shorthand Name
	WebServer

	Type Qualified Name
	tosca:WebServer

	Type URI
	tosca.nodes.WebServer

C.7.4.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

C.7.4.2 Definition

	tosca.nodes.WebServer:

 derived_from: tosca.nodes.SoftwareComponent
 capabilities:

 # Private, layer 4 endpoints

 app_endpoint: tosca.capabilites.Endpoint
 secure_endpoint: tosca.capabilities.Endpoint
 host:

 type: tosca.capabilities.Container
 properties:

 valid_node_types: [tosca.nodes.WebApplication]

C.7.4.3 Notes and Additional Requirements

· This node exports both a secure endpoint capability (i.e., secure_endpoint), typically for administration, as well as a regular endpoint (i.e., app_endpoint)

C.7.5 tosca.nodes.WebApplication
The TOSCA WebApplication node represents a software application that can be managed and run by a TOSCA WebServer node. Specific types of web applications such as Java, etc. could be derived from this type.
	Shorthand Name
	WebApplication

	Type Qualified Name
	tosca: WebApplication

	Type URI
	tosca.nodes.WebApplication

C.7.5.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	context_root
	no
	string
	None
	The web application’s context root which designates the application’s URL path within the web server it is hosted on.

C.7.5.2 Definition

	tosca.nodes.WebApplication:

 derived_from: tosca.nodes.Root
 properties:

 context_root:

 type: string

 capabilities:

 app_endpoint: tosca.capabilities.Endpoint
 requirements:

 - host:

 node: tosca.nodes.WebServer
 relationship: tosca.relationships.HostedOn

C.7.5.3 Additional Requirements

· None

C.7.6 tosca.nodes.DBMS

The TOSCA DBMS node represents a typical relational, SQL Database Management System software component or service.
C.7.6.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	dbms_root_password
	yes
	string
	None
	The DBMS server’s root password.

	dbms_port
	no
	integer
	None
	The DBMS server’s port.

C.7.6.2 Definition

	tosca.nodes.DBMS:

 derived_from: tosca.nodes.SoftwareComponent
 properties:

 dbms_root_password:

 type: string

 description: the root password for the DBMS service

 dbms_port:

 type: integer

 description: the port the DBMS service will listen to for data and requests

 capabilities:

 host:

 type: tosca.capabilities.Container
 properties:

 valid_node_types: [tosca.nodes.Database]

C.7.6.3 Additional Requirements

· None
C.7.7 tosca.nodes.Database

Base type for the schema and content associated with a DBMS.

The TOSCA Database node represents a logical database that can be managed and hosted by a TOSCA DBMS node.
	Shorthand Name
	Database

	Type Qualified Name
	tosca:Database

	Type URI
	tosca.nodes.Database

C.7.7.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	db_user
	yes
	string
	None
	The special user account used for database administration.

	db_password
	yes
	string
	None
	The password associated with the user account provided in the ‘db_user’ property.

	db_port
	yes
	integer
	None
	The port the database service will use to listen for incoming data and requests.

	db_name
	yes
	string
	None
	The logical database Name

C.7.7.2 Definition

	tosca.nodes.Database:

 derived_from: tosca.nodes.Root
 properties:

 db_user:

 type: string

 description: user account name for DB administration

 db_password:

 type: string

 description: the password for the DB user account

 db_port:

 type: integer

 description: the port the underlying database service will listen to data

 db_name:

 type: string

 description: the logical name of the database

 requirements:

 - host:

 node: tosca.nodes.DBMS
 relationship: tosca.relationships.HostedOn
 capabilities:

 database_endpoint: tosca.capabilities.DatabaseEndpoint

C.7.7.3 Additional Requirements

· None
C.7.8 tosca.nodes.ObjectStorage

The TOSCA ObjectStorage node represents storage that provides the ability to store data as objects (or BLOBs of data) without consideration for the underlying filesystem or devices.

	Shorthand Name
	ObjectStorage

	Type Qualified Name
	tosca:ObjectStorage

	Type URI
	tosca.nodes.ObjectStorage

C.7.8.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	store_name
	yes
	string
	None
	The logical name of the object store (or container).

	store_size
	no
	scalar-unit
	greater_or_equal: 0 GB
	The requested initial storage size (default unit is in Gigabytes).

	store_maxsize
	no
	scalar-unit
	greater_or_equal: 0 GB
	The requested maximum storage size (default unit is in Gigabytes).

C.7.8.2 Definition

	tosca.nodes.ObjectStorage:

 derived_from: tosca.nodes.Root
 properties:

 store_name:

 type: string

 store_size:

 type: scalar-unit

 constraints:

 - greater_or_equal: 0 GB

 store_maxsize:

 type: scalar-unit

 constraints:

 - greater_or_equal: 0 GB

C.7.8.3 Additional Requirements

· None

C.7.8.4 Notes:

· Subclasses of the ObjectStorage node may impose further constraints on properties such as store_name, such as minimum and maximum lengths or include regular expressions to constrain allowed characters.
C.7.9 tosca.nodes.BlockStorage

The TOSCA BlockStorage node currently represents a server-local block storage device (i.e., not shared) offering evenly sized blocks of data from which raw storage volumes can be created.

Note: In this draft of the TOSCA Simple Profile, distributed or Network Attached Storage (NAS) are not yet considered (nor are clustered file systems), but the TC plans to do so in future drafts.

	Shorthand Name
	BlockStorage

	Type Qualified Name
	tosca:BlockStorage

	Type URI
	tosca.nodes.BlockStorage

C.7.9.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	size
	yes *
	scalar-unit
	greater_or_equal: 1 MB
	The requested storage size (default unit is MB).

* Note:

· Required when an existing volume (i.e., volume_id) is not available.

· If volume_id is provided, size is ignored. Resize of existing volumes is not considered at this time.

	volume_id
	no
	string
	None
	ID of an existing volume (that is in the accessible scope of the requesting application).

	snapshot_id
	no
	string
	None
	Some identifier that represents an existing snapshot that should be used when creating the block storage (volume).

C.7.9.2 Attributes

	Name
	Required
	Type
	Constraints
	Description

	volumeId
	no
	string
	None
	ID provided by the orchestrator for newly created volumes

C.7.9.3 Definition

	tosca.nodes.BlockStorage:

 derived_from: tosca.nodes.Root
 properties:

 size:

 type: scalar-unit

 constraints:

 - greater_or_equal: 1 MB

 volume_id:

 type: string

 required: false

 snapshot_id:

 type: string

 required: false

 attributes:

 volumeId:

 type: string

 capabilities:

 attachment: tosca.capabilities.Attachment

C.7.9.4 Additional Requirements

· The size property is required when an existing volume (i.e., volume_id) is not available. However, if the property volume_id is provided, the size property is ignored.
C.7.9.5 Notes

· Resize is of existing volumes is not considered at this time.
· It is assumed that the volume contains a single filesystem that the operating system (that is hosting an associate application) can recognize and mount without additional information (i.e., it is operating system independent).

· Currently, this version of the Simple Profile does not consider regions (or availability zones) when modeling storage.
C.7.10 tosca.nodes.Container

The TOSCA Container node represents operating system-level virtualization technology used to run multiple application services on a single Compute host.
	Shorthand Name
	Container

	Type Qualified Name
	tosca:Container

	Type URI
	tosca.nodes.Container

C.7.10.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	ContainerPort
	yes
	integer
	TBD
	The network port the container wishes to be addressed at.

	hostPort
	yes
	integer
	TBD
	The network port of the host.

C.7.10.2 Attributes

	Name
	Required
	Type
	Constraints
	Description

	TBD
	
	
	
	

C.7.10.3 Definition

	tosca.nodes.Container:

 derived_from: tosca.nodes.Root
 properties:

 # TBD

 attributes:

 # TBD

 capabilities:

 host:

 type: tosca.capabilities.Container
 properties:

 valid_node_types: [tosca.nodes.ContainerApp]

 os:

 type: tosca.capabilites.OperatingSystem
 scalable:

 type: tosca.capabilities.Scalable
 endpoint:

 type: tosca.capabilities.Endpoint

C.7.10.4 Additional Requirements

· None
C.8 Artifact Types

TOSCA Artifacts represent the packages and imperative used by the orchestrator when invoking TOSCA Interfaces on Node or Relationship Types. Currently, artifacts are logically divided into three categories:

· Deployment Types: includes those artifacts that are used during deployment (e.g., referenced on create and install operations) and include packaging files such as RPMs, ZIPs, or TAR files.

· Implementation Types: includes those artifacts that represent imperative logic and are used to implement TOSCA Interface operations. These typically include scripting languages such as Bash (.sh), Chef and Puppet.
· Runtime Types: includes those artifacts that are used during runtime by a service or component of the application. This could include a library or language runtime that is needed by an application such as a PHP or Java library.

Note: Normative TOSCA Artifact Types will be developed in future drafts of this specification.
C.8.1 tosca.artifacts.Root

This is the default (root) TOSCA Artifact Type definition that all other TOSCA base Artifact Types derive from.

C.8.1.1 Definition

	tosca.artifacts.Root:

 description: The TOSCA Artifact Type all other TOSCA Artifact Types derive from

C.8.2 tosca.artifacts.File

This artifact type is used when an artifact definition needs to have its associated file simply treated as a file and no special handling/handlers are invoked.

C.8.2.1 Definition

	tosca.artifacts.File:

 derived_from: tosca.artifacts.Root

C.8.3 Implementation Types

C.8.3.1 Script Types
C.8.3.1.1 tosca.artifacts.impl.Bash
This artifact type represents a Bash script type that contains Bash commands that can be executed on the Unix Bash shell.

C.8.3.2 Definition

	tosca.artifacts.impl.Bash:

 derived_from: tosca.artifacts.Root
 description: Script artifact for the Unix Bash shell

 properties:

 mime_type: application/x-sh

 file_ext: [sh]
		

	

Appendix D. Non-normative type definitions

This section defines non-normative types used in examples or use cases within this specification.

D.1 Capability Types

D.1.1 tosca.capabilities.DatabaseEndpoint.MySQL

This type defines a custom MySQL database endpoint capability.

D.1.1.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

D.1.1.2 Definition
	tosca.capabilities.DatabaseEndpoint.MySQL:

 derived_from: tosca.capabilities.DatabaseEndpoint

D.2 Node Types
D.2.1 tosca.nodes.Database.MySQL

D.2.1.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

D.2.1.2 Definition

	tosca.nodes.Database.MySQL:

 derived_from: tosca.nodes.Database
 requirements:

 - host: tosca.nodes.DBMS.MySQL
 capabilities:

 database_endpoint: tosca.capabilities.DatabaseEndpoint.MySQL

D.2.2 tosca.nodes.DBMS.MySQL

D.2.2.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

D.2.2.2 Definition

	tosca.nodes.DBMS.MySQL:

 derived_from: tosca.nodes.DBMS
 properties:

 dbms_port:

 description: reflect the default MySQL server port

 default: 3306

 capabilities:

 host:

 type: Container

 properties:

 valid_node_types: [tosca.nodes.Database.MySQL]

D.2.3 tosca.nodes.WebServer.Apache

D.2.3.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

D.2.3.2 Definition

	tosca.nodes.WebServer.Apache:

 derived_from: tosca.nodes.WebServer

D.2.4 tosca.nodes.WebApplication.WordPress

D.2.4.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

D.2.4.2 Definition

	tosca.nodes.WebApplication.WordPress:

 derived_from: tosca.nodes.WebApplication
 properties:

 admin_user:

 type: string

 admin_password:

 type: string

 db_host:

 type: string

 requirements:

 - database_endpoint: tosca.nodes.Database
 interfaces:

 Standard:

 inputs:

 db_host: string

 db_port: integer

 db_name: string

 db_user: string

 db_password: string

D.2.5 tosca.nodes.WebServer.Nodejs

D.2.5.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	TBD
	N/A
	N/A
	N/A
	N/A

D.2.5.2 Definition

	tosca.nodes.WebServer.Nodejs:

 derived_from: tosca.nodes.WebServer
 properties:

 github_url:

 required: no

 type: string

 description: location of the application on the github.

 default: https://github.com/mmm/testnode.git

 requirements:

 - database_endpoint:

 node: tosca.nodes.Database

 relationship:

 type: tosca.relationships.ConnectsTo

 interfaces:

 tosca.interfaces.relationship.Configure:

 pre_configure_source:

 implementation:

 type: string

 input:

 host:

 type: string

 port:

 type: integer

 interfaces:

 tosca.interfaces.node.Lifecycle:

 input:

 github_url:

 type: string

Appendix E. Networking

This describes how to express and control the application centric network semantics available in TOSCA.

E.1 Networking and Service Template Portability

TOSCA Service Templates are application centric in the sense that they focus on describing application components in terms of their requirements and interrelationships. In order to provide cloud portability, it is important that a TOSCA Service Template avoid cloud specific requirements and details. However, at the same time, TOSCA must provide the expressiveness to control the mapping of software component connectivity to the network constructs of the hosting cloud.

TOSCA Networking takes the following approach.

1. The application component connectivity semantics and expressed in terms of Requirements and Capabilities and the relationships between these. Service Template authors are able to express the interconnectivity requirements of their software components in an abstract, declarative, and thus highly portable manner.

2. The information provided in TOSCA is complete enough for a TOSCA implementation to fulfill the application component network requirements declaratively. i.e. it contains information such as communication initiation and layer 4 port specifications so that the required network semantics can be realized on arbitrary network infrastructures.

3. TOSCA Networking provides full control of the mapping of software component interconnectivity to the networking constructs of the hosting cloud network independently of the Service Template, providing the required separation between application and network semantics to preserve Service Template portability.

4. Service Template authors have the choice of specifying application component networking requirements in the Service Template or completely separating the application component to network mapping into a separate document. This allows application components with explicit network requirements to express them while allowing users to control the complete mapping for all software components which may not have specific requirements. Usage of these two approaches is possible simultaneously and required to avoid having to re-write components network semantics as arbitrary sets of components are assembled into Service Templates.

5. Defining a set of network semantics which are expressive enough to address the most common application connectivity requirements while avoiding dependencies on specific network technologies and constructs. Service Template authors and cloud providers are able to express unique/non-portable semantics by defining their own specialized network Requirements and Capabilities.
E.2 Connectivity Semantics

TOSCA’s application centric approach includes the modeling of network connectivity semantics from an application component connectivity perspective. The basic premise is that applications contain components which need to communicate with other components using one or more endpoints over a network stack such as TCP/IP, where connectivity between two components is expressed as a <source component, source address, source port, target component, target address, target port> tuple. Note that source and target components are added to the traditional 4 tuple to provide the application centric information, mapping the network to the source or target component involved in the connectivity.

Software components are expressed as Node Types in TOSCA which can express virtually any kind of concept in a TOSCA model. Node Types offering network based functions can model their connectivity using a special Endpoint Capability. tosca.capabilities.Endpoint, designed for this purpose. Node Types which require an Endpoint can specify this as a TOSCA requirement. A special Relationship Type, tosca.relationships.ConnectsTo, is used to implicitly or explicitly relate the source Node Type’s endpoint to the required endpoint in the target node type. Since tosca.capabilities.Endpoint and tosca.relationships.ConnectsTo are TOSCA types, they can be used in templates and extended by subclassing in the usual ways, thus allowing the expression of additional semantics as needed.

[image: image14.png]FE Admin
network

BE Admin
network

BE
Data network

Routing

The following diagram shows how the TOSCA node, capability and relationship types enable modeling the application layer decoupled from the network model intersecting at the Compute node using the Bindable capability type.

As you can see, the Port node type effectively acts a broker node between the Network node description and a host Compute node of an application.

E.3 Expressing connectivity semantics

This section describes how TOSCA supports the typical client/server and group communication semantics found in application architectures.
E.3.1 Connection initiation semantics

The tosca.relationships.ConnectsTo expresses that requirement that a source application component needs to be able to communicate with a target software component to consume the services of the target. ConnectTo is a component interdependency semantic in the most general sense and does not try imply how the communication between the source and target components is physically realized.

Application component intercommunication typically has conventions regarding which component(s) initiate the communication. Connection initiation semantics are specified in tosca.capabilities.Endpoint. Endpoints at each end of the tosca.relationships.ConnectsTo must indicate identical connection initiation semantics.

The following sections describe the normative connection initiation semantics for the tosca.relationships.ConnectsTo Relationship Type.
E.3.1.1 Source to Target

The Source to Target communication initiation semantic is the most common case where the source component initiates communication with the target component in order to fulfill an instance of the tosca.relationships.ConnectsTo relationship. The typical case is a “client” component connecting to a “server” component where the client initiates a stream oriented connection to a pre-defined transport specific port or set of ports.

It is the responsibility of the TOSCA implementation to ensure the source component has a suitable network path to the target component and that the ports specified in the respective tosca.capabilities.Endpoint are not blocked. The TOSCA implementation may only represent state of the tosca.relationships.ConnectsTo relationship as fulfilled after the actual network communication is enabled and the source and target components are in their operational states.

Note that the connection initiation semantic only impacts the fulfillment of the actual connectivity and does not impact the node traversal order implied by the tosca.relationships.ConnectsTo Relationship Type.
E.3.1.2 Target to Source

The Target to Source communication initiation semantic is a less common case where the target component initiates communication with the source comment in order to fulfill an instance of the tosca.relationships.ConnectsTo relationship. This “reverse” connection initiation direction is typically required due to some technical requirements of the components or protocols involved, such as the requirement that SSH mush only be initiated from target component in order to fulfill the services required by the source component.

It is the responsibility of the TOSCA implementation to ensure the source component has a suitable network path to the target component and that the ports specified in the respective tosca.capabilities.Endpoint are not blocked. The TOSCA implementation may only represent state of the tosca.relationships.ConnectsTo relationship as fulfilled after the actual network communication is enabled and the source and target components are in their operational states.

Note that the connection initiation semantic only impacts the fulfillment of the actual connectivity and does not impact the node traversal order implied by the tosca.relationships.ConnectsTo Relationship Type.
E.3.1.3 Peer-to-Peer

The Peer-to-Peer communication initiation semantic allows any member of a group to initiate communication with any other member of the same group at any time. This semantic typically appears in clustering and distributed services where there is redundancy of components or services.

It is the responsibility of the TOSCA implementation to ensure the source component has a suitable network path between all the member component instances and that the ports specified in the respective tosca.capabilities.Endpoint are not blocked, and the appropriate multicast communication, if necessary, enabled. The TOSCA implementation may only represent state of the tosca.relationships.ConnectsTo relationship as fulfilled after the actual network communication is enabled such that at least one member component of the group may reach any other member component of the group.

Endpoints specifying the Peer-to-Peer initiation semantic need not be related with a tosca.relationships.ConnectsTo relationship for the common case where the same set of component instances must communicate with each other.

Note that the connection initiation semantic only impacts the fulfillment of the actual connectivity and does not impact the node traversal order implied by the tosca.relationships.ConnectsTo Relationship Type.
E.3.2 Specifying layer 4 ports

TOSCA Service Templates must express enough details about application component intercommunication to enable TOSCA implementations to fulfill these communication semantics in the network infrastructure. TOSCA currently focuses on TCP/IP as this is the most pervasive in today’s cloud infrastructures. The layer 4 ports required for application component intercommunication are specified in tosca.capabilities.Endpoint. The union of the port specifications of both the source and target tosca.capabilities.Endpoint which are part of the tosca.relationships.ConnectsTo Relationship Template are interpreted as the effective set of ports which must be allowed in the network communication.

The meaning of Source and Target port(s) corresponds to the direction of the respective tosca.relationships.ConnectsTo.
E.4 Network provisioning

E.4.1 Declarative network provisioning

TOSCA orchestrators are responsible for the provisioning of the network connectivity for declarative TOCSA Service Templates (Declarative TOCSA Service Templates don’t contain explicit plans). This means that the TOSCA orchestrator must be able to infer a suitable logical connectivity model from the Service Template and then decide how to provision the logical connectivity, referred to as “fulfillment”, on the available underlying infrastructure. In order to enable fulfillment, sufficient technical details still must be specified, such as the required protocols, ports and QOS information. TOSCA connectivity types, such as tosca.capabilities.Endpoint, provide well defined means to express these details.

E.4.2 Implicit network fulfillment

TOSCA Service Templates are by default network agnostic. TOSCA’s application centric approach only requires that a TOSCA Service Template contain enough information for a TOSCA orchestrator to infer suitable network connectivity to meet the needs of the application components. Thus Service Template designers are not required to be aware of or provide specific requirements for underlying networks. This approach yields the most portable Service Templates, allowing them to be deployed into any infrastructure which can provide the necessary component interconnectivity.

E.4.3 Controlling network fulfillment

TOSCA provides mechanisms for providing control over network fulfillment.

This mechanism allows the application network designer to express in service template or network template how the networks should be provisioned.

For the use cases described below let’s assume we have a typical 3-tier application which is consisting of FE (frontend), BE (backend) and DB (database) tiers. The simple application topology diagram can be shown below:

[image: image2.emf]Frontend Tier

Backend Tier

VM

VM

VM

VM

VM

VM

VM

DB Tier

VM VM

Figure‑1: Typical 3-Tier Network

E.4.3.1 Use case: OAM Network

When deploying an application in service provider’s on-premise cloud, it’s very common that one or more of the application’s services should be accessible from an ad-hoc OAM (Operations, Administration and Management) network which exists in the service provider backbone.

As an application network designer, I’d like to express in my TOSCA network template (which corresponds to my TOSCA service template) the network CIDR block, start ip, end ip and segmentation ID (e.g. VLAN id).

The diagram below depicts a typical 3-tiers application with specific networking requirements for its FE tier server cluster:

[image: image3.emf]OAM Network

(173.10.10.0/24)

Frontend Tier

Backend Tier

VM

VM

VM

VM

VM

VM

VM

DB Tier

VM VM

1. I need all servers in FE tier

to be connected to an

existing OAM network with

CIDR: 173.10.10.0/24

2. Since OAM network is

shared between several

backbone services I must

bound my FE cluster to a

smaller IP address range

and set:

Start IP: 173.10.10.100

End IP: 173.10.10.150

3. I also want to segment my

traffic by setting a:

SEGEMANTATION ID: 1200

(e.g. VLAN, GRE Tunnel)

Other Backbone Services

S2

S3

S1

E.4.3.2 Use case: Data Traffic network

The diagram below defines a set of networking requirements for the backend and DB tiers of the 3-tier app mentioned above.

[image: image4.emf]OAM Network

(173.10.10.0/24)

A

d

m

i

n

T

r

a

f

f

i

c

N

e

t

w

o

r

k

(

1

1

.

2

.

2

.

0

/

1

6

)

Frontend Tier

Backend Tier

Router

VM

VM

VM

VM

VM

VM

VM

DB Tier

VM VM

4. My BE servers runs a legacy code

(millions of LOC for a network

appliance product) that expects:

-Data network on eth0

-Admin network on eth1

5. As part of a transition to IPv6,

we’ve started to “port” BE and DB

codebase to support IPv6 for the

Data traffic, hence I’d like to create

network with:

-IPv6 CIDR:

2001:db8:92a4:0:0:6b3a:180:abcd/64

D

a

t

a

T

r

a

f

f

i

c

N

e

t

w

o

r

k

(

2

0

0

1

:

d

b

8

:

9

2

a

4

:

0

:

0

:

6

b

3

a

:

1

8

0

:

a

b

c

d

/

6

4

)

E.4.3.3 Use case: Bring my own DHCP

The same 3-tier app requires for its admin traffic network to manage the IP allocation by its own DHCP which runs autonomously as part of application domain.

For this purpose, the app network designer would like to express in TOSCA that the underlying provisioned network will be set with DHCP_ENABLED=false. See this illustrated in the figure below:

[image: image5.emf]OAM Network

(173.10.10.0/24)

A

d

m

i

n

T

r

a

f

f

i

c

N

e

t

w

o

r

k

(

1

1

.

2

.

2

.

0

/

1

6

)

Frontend Tier

Backend Tier

Router

VM

VM

VM

VM

VM

VM

VM

DB Tier

VM VM

D

a

t

a

T

r

a

f

f

i

c

N

e

t

w

o

r

k

(

2

0

0

1

:

d

b

8

:

9

2

a

4

:

0

:

0

:

6

b

3

a

:

1

8

0

:

a

b

c

d

/

6

4

)

6. The IPAM of the Admin

networkis done by internal

DHCP service. Thus, I’d like

to create a segmented

network (broadcast domain)

by setting:

DHCP_ENABLED = false

DHCP

E.5 Network Types

E.5.1 tosca.nodes.Network

The TOSCA Network node represents a simple, logical network service.

	Shorthand Name
	Network

	Type Qualified Name
	tosca:Network

	Type URI
	tosca.nodes.Network

E.5.1.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	ip_version
	no
	integer
	valid_values: [4 , 6]

default: 4
	The IP version of the requested network

	cidr
	no
	string
	None
	The cidr block of the requested network

	start_ip
	no
	string
	None
	The IP address to be used as the 1st one in a pool of addresses derived from the cidr block full IP range

	end_ip
	no
	string
	None
	The IP address to be used as the last one in a pool of addresses derived from the cidr block full IP range

	gateway_ip
	no
	string
	None
	The gateway IP address.

	network_name
	no
	string
	None
	An Identifier that represents an existing Network instance in the underlying cloud infrastructure – OR – be used as the name of the new created network.

· If network_name is provided along with network_id they will be used to uniquely identify an existing network and not creating a new one, means all other possible properties are not allowed.

· network_name should be more convenient for using. But in case that network name uniqueness is not guaranteed then one should provide a network_id as well.

	network_id
	no
	string
	None
	An Identifier that represents an existing Network instance in the underlying cloud infrastructure.

This property is mutually exclusive with all other properties except network_name.

· Appearance of network_id in network template instructs the Tosca container to use an existing network instead of creating a new one.

· network_name should be more convenient for using. But in case that network name uniqueness is not guaranteed then one should add a network_id as well.

· network_name and network_id can be still used together to achieve both uniqueness and convenient.

	segmentation_id
	no
	string
	None
	A segmentation identifier in the underlying cloud infrastructure. E.g. VLAN id, GRE tunnel id.

	dhcp_enabled
	no
	boolean
	default: true
	Indicates the TOSCA container to create a virtual network instance with or without a DHCP service.

E.5.1.2 Attributes

	Name
	Required
	Type
	Constraints
	Description

	segmentation_id
	no
	string
	None
	The actual segmentation_id that is been assigned to the network by the underlying cloud infrastructure.

E.5.1.3 Definition

	 tosca.nodes.Network:

 derived_from: tosca.nodes.Root
 properties:

 ip_version:

 type: integer

 required: false

 default: 4

 constraints:

 - valid_values: [4, 6]
 cidr:

 type: string

 required: false

 start_ip:

 type: string

 required: false

 end_ip:

 type: string

 required: false

 gateway_ip:

 type: string

 required: false

 network_name:

 type: string

 required: false

 network_id:

 type: string

 required: false

 segmentation_id:

 type: string

 required: false

 capabilities:

 connection:

 type: tosca.capabilities.network.Connectable

E.5.1.4 Additional Requirements

· None
E.5.2 tosca.nodes.Port

The TOSCA Port node represents a logical entity that associates between Compute and Network normative types.

The Port node type effectively represents a single virtual NIC on the Compute node instance.

	Shorthand Name
	Port

	Type Qualified Name
	tosca:Port

	Type URI
	tosca.nodes.Port

E.5.2.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	ip_address
	no
	string
	None
	Allow the user to set a static IP.

	order
	no
	integer
	greater_or_equal: 0

default: 0
	The order of the NIC on the compute instance (e.g. eth2).

Note: when binding more than one port to a single compute (aka multi vNICs) and ordering is desired, it is *mandatory* that all ports will be set with an order value and. The order values must represent a positive, arithmetic progression that starts with 0 (e.g. 0, 1, 2, …, n).

	is_default
	no
	boolean
	default: false
	Set is_default=true to apply a default gateway route on the running compute instance to the associated network gateway.

Only one port that is associated to single compute node can set as default=true.

	ip_range_start
	no
	string
	None
	Defines the starting IP of a range to be allocated for the compute instances that are associated by this Port.

Without setting this property the IP allocation is done from the entire CIDR block of the network.

	ip_range_end
	no
	string
	None
	Defines the ending IP of a range to be allocated for the compute instances that are associated by this Port.

Without setting this property the IP allocation is done from the entire CIDR block of the network.

E.5.2.2 Attributes

	Name
	Required
	Type
	Constraints
	Description

	ip_address
	no
	string
	None
	The IP address which is being assigned to the associated compute instance.

E.5.2.3 Definition

	 tosca.nodes.Port:

 derived_from: tosca.nodes.Root

 properties:

 ip_address:

 type: string

 required: false

 order:

 type: integer

 required: true

 default: 0

 constraints:

 - greater_or_equal: 0

 is_default:

 type: string

 required: false

 default: false

 ip_range_start:

 type: string

 required: false

 ip_range_end:

 type: string

 required: false

 attributes:

 ip_address:

 type: string

 requirements:

 binding:

 type: tosca.capabilities.network.Bindable
 connection:

 type: tosca.capabilities.network.Connectable

E.5.2.4 Additional Requirements

· None
E.5.3 tosca.capabilities.network.Connectable

A node type that includes the Connectable capability indicates that it can be pointed by tosca.relationships.network.ConnectsTo relationship type.

	Shorthand Name
	network.Connectable

	Type Qualified Name
	tosca:network.Connectable

	Type URI
	tosca.capabilities.network.Connectable

E.5.3.1 Properties

	Name
	Required
	Type
	Constraints
	Description

	N/A
	N/A
	N/A
	N/A
	N/A

E.5.3.2 Definition
	tosca.capabilities.network.Connectable:

 derived_from: tosca.capabilities.Root

E.5.4 tosca.relationships.network.ConnectsTo

This relationship type represents an association relationship between Port and Network node types.

	Shorthand Name
	network.ConnectsTo

	Type Qualified Name
	tosca:network.ConnectsTo

	Type URI
	tosca.relationships.network.ConnectsTo

E.5.4.1 Definition

	tosca.relations.network.ConnectsTo:

 derived_from: tosca.relationships.DependsOn
 valid_targets: [tosca.capabilities.network.Connectable]

E.5.5 tosca.relationships.network.BindTo

This type represents a network association relationship between Port and Compute node types.

	Shorthand Name
	network.BindTo

	Type Qualified Name
	tosca:network.BindTo

	Type URI
	tosca.relationships.network.BindTo

E.5.5.1 Definition

	tosca.relations.network.BindTo:

 derived_from: tosca.relationships.DependsOn
 valid_targets: [tosca.capabilities.network.Bindable]

E.6 Network modeling approaches

E.6.1 Option 1: Specifying a network outside the application’s Service Template

This approach allows someone who understands the application’s networking requirements, mapping the details of the underlying network to the appropriate node templates in the application.

The motivation for this approach is providing the application network designer a fine-grained control on how networks are provisioned and stitched to its application by the TOSCA orchestrator and underlying cloud infrastructure while still preserving the portability of his service template. Preserving the portability means here not doing any modification in service template but just “plug-in” the desired network modeling. The network modeling can reside in the same service template file but the best practice should be placing it in a separated self-contained network template file.

This “pluggable” network template approach introduces a new normative node type called Port, capability called tosca.capabilities.network.Connectable and relationship type called tosca.relationships.network.ConnectsTo.

The idea of the Port is to elegantly associate the desired compute nodes with the desired network nodes while not “touching” the compute itself.

The following diagram series demonstrate the plug-ability strength of this approach.

Let’s assume an application designer has modeled a service template as shown in Figure 1 that describes the application topology nodes (compute, storage, software components, etc.) with their relationships. The designer ideally wants to preserve this service template and use it in any cloud provider environment without any change.

[image: image6]
Figure‑2: Generic Service Template

When the application designer comes to consider its application networking requirement they typically call the network architect/designer from their company (who has the correct expertise).

The network designer, after understanding the application connectivity requirements and optionally the target cloud provider environment, is able to model the network template and plug it to the service template as shown in Figure 2:

[image: image7]
Figure‑3: Service template with network template A

When there’s a new target cloud environment to run the application on, the network designer is simply creates a new network template B that corresponds to the new environmental conditions and provide it to the application designer which packs it into the application CSAR.

[image: image8]
Figure‑4: Service template with network template B

The node templates for these three networks would be defined as follows:

	node_templates:

 frontend:

 type: tosca.nodes.Compute

 properties: # omitted for brevity

 backend:

 type: tosca.nodes.Compute

 properties: # omitted for brevity

 database:

 type: tosca.nodes.Compute

 properties: # omitted for brevity

 oam_network:

 type: tosca.nodes.Network

 properties: # omitted for brevity

 admin_network:

 type: tosca.nodes.Network

 properties: # omitted for brevity

 data_network:

 type: tosca.nodes.Network

 properties: # omitted for brevity

 # ports definition

 fe_oam_net_port:

 type: tosca.nodes.Port

 properties:

 is_default: true

 ip_range_start: { get_input: fe_oam_net_ip_range_start }

 ip_range_end: { get_input: fe_oam_net_ip_range_end }

 requirements:

 - binding: frontend

 - connection: oam_network

 fe_admin_net_port:

 type: tosca.nodes.Port

 requirements:

 - binding: frontend

 - connection: admin_network

 be_admin_net_port:

 type: tosca.nodes.Port

 properties:

 order: 0

 requirements:

 - binding: backend

 - connection: admin_network

 be_data_net_port:

 type: tosca.nodes.Port

 properties:

 order: 1

 requirements:

 - binding: backend

 - connection: data_network

 db_data_net_port:

 type: tosca.nodes.Port

 requirements:

 - binding: database

 - connection: data_network

E.6.2 Option 2: Specifying network requirements within the application’s Service Template

This approach allows the Service Template designer to map an endpoint to a logical network.

The use case shown below examines a way to express in the TOSCA YAML service template a typical 3-tier application with their required networking modeling:

	node_templates:

 frontend:

 type: tosca.nodes.Compute

 properties: # omitted for brevity

 requirements:

· network_oam: oam_network

· network_admin: admin_network

 backend:

 type: tosca.nodes.Compute

 properties: # omitted for brevity

 requirements:

· network_admin: admin_network

· network_data: data_network

database:

 type: tosca.nodes.Compute

 properties: # omitted for brevity

 requirements:

· network_data: data _network

oam_network:

 type: tosca.nodes.Network

 properties:

 ip_version: { get_input: oam_network_ip_version }

 cidr: { get_input: oam_network_cidr }

 start_ip: { get_input: oam_network_start_ip }

 end_ip: { get_input: oam_network_end_ip }

admin_network:

 type: tosca.nodes.Network

 properties:

 ip_version: { get_input: admin_network_ip_version }

 dhcp_enabled: { get_input: admin_network_dhcp_enabled }

 data_network:

 type: tosca.nodes.Network

 properties:

ip_version: { get_input: data_network_ip_version }

 cidr: { get_input: data_network_cidr }

Appendix F. Component Modeling Use Cases

F.1.1 Use Case: Establishing a HostedOn relationship using WebApplication and WebServer

This use case examines the ways TOSCA YAML can be used to express a simple hosting relationship (i.e., HostedOn) using the normative WebServer and WebApplication node types defined in this specification.
For convenience, relevant parts of the normative Node Type for Web Server are shown below:
	tosca.nodes.WebServer

 derived_from: SoftwareComponent
 capabilities:

 ...

 host:

 type: tosca.capabilities.Container
 properties:

 valid_node_types: [tosca.nodes.WebApplication]

As can be seen, the WebServer Node Type declares its capability to “contain” other nodes using the logical name “host” and providing the Capability Type tosca.capabilities.Container using its alias Container. It should be noted that the logical name of “host” is not a reserved word, but one assigned by the type designer that implies at or betokens the associated capability. The Container capability definition also includes a required list of valid Node Types that can be contained by this, the WebServer, Node Type. It is given the property name of valid_node_types and in this case it includes only the type WebApplication.

If we wish to establish a HostedOn relationship between a source WebApplication NodeType to a target WebServer Node Type we need to be able to declare a requirement from the source WebApplication that either explicitly declares the relationship or one that allows the relationship to be unambiguously inferred. We will examine three options for declaring this relationship below.
F.1.1.1 Option A: Inferred HostedOn relationship via logical name matching

In this option, the target WebApplication declares a requirement with the logical name “host” which matches the logical name for the declared capability in the WebServer Node Type, also named “host”. By virtue of the logical names matching (via the type designers), the HostedOn Relationship Type can be inferred by an orchestrator.

	tosca.nodes.WebApplication:

 derived_from: tosca.nodes.Root
 requirements:

 - host: tosca.nodes.WebServer

F.1.1.1.1 Notes

· The logical name “host” is not a keyword and was selected for us in TOSCA normative types to give the reader an indication of the type of requirement being referenced.

F.1.1.2 Option B: Explicit HostedOn relationship via ‘relationship’ keyword

In this option, the target WebApplication declares a requirement with the logical name “host” (as in Option A), but also uses the relationship keyword to explicitly declare the Relationship Type HostedOn.

	tosca.nodes.WebApplication:

 derived_from: tosca.nodes.Root
 requirements:

 - host:

 node: tosca.nodes.WebServer
 relationship: HostedOn

F.1.1.3 Option C: Explicit HostedOn relationship with capability keyword

In this option, let us instead declare a different Node Type called CustomWebApplication which declares a requirement with the logical name “bar” for a WebServer Node Type and also uses the type keyword to explicitly declare the Relationship Type HostedOn.

Since there is no implicit logical name match between “host” capability in the WebServer and “bar” requirement in CustomWebApplication, the type designer MUST use the capability keyword on the requirement to indicate to the orchestrator the exact name (i.e., “host”) of the capability in WebServer it should use to create the HostedOn relationship with.

	tosca.nodes.WebApplication:

 derived_from: tosca.nodes.Root
 requirements:

 - bar:

 node: tosca.nodes.WebServer
 relationship: HostedOn

 capability: host

The service template that would reference the hosted on relationship would appear as follows:
	TBD

F.1.2 Use Case: Establishing a ConnectsTo relationship to WebServer

This use case examines the ways TOSCA YAML can be used to express a simple connection relationship (i.e., ConnectsTo) between some service derived from the SoftwareComponent Node Type, to the normative WebServer node type defined in this specification.
The service template that would establish a ConnectsTo relationship as follows:
	node_types:

 MyServiceType:

 derived_from: SoftwareComponent
 requirements:

 - connection1:

 node: WebServer
 relationship: ConnectsTo
 capability: https_endpoint

node_templates:

 my_web_app:

 type: MyServiceType

 ...

 requirements:

 - connection1: my_web_server

 my_web_server:

 type: WebServer

F.1.2.1 Issues

4. How do we know that the requirement labeled “host” is a HostedOn relationship?

1. versus a general “DependsOn” relationship? For example, what if the WebApplication had a different dependency on a WebServer node in addition to a hosting (i.e., HostedOn) dependency?

2. Currently, our normative node uses the same named slot “host” on the requirement and capabilities side. If this were not the case, an ambiguity exists.

3. Should Nodes be restricted to one Container requirement?

5. What capability does the “http_endpoint” export versus the “https_endpoint” from the WebServer?

4. How does a WebApplication provide a Requirement to (one or the other of) them?

6. How do we list additional (sub) capabilities on the WebServer node that are NOT types?

5. How do we reference them as additional requirements from the WebApplication?

F.1.3 Use Case: Attaching (local) BlockStorage to a Compute node

This use case examines the ways TOSCA YAML can be used to express a simple AttachTo relationship between a Compute node and a locally attached BlockStorage node.

The service template that would establish an AttachTo relationship follows:
	node_templates:

 my_server:

 type: Compute
 ...

 requirements:

 # contextually this can only be a relationship type

 - persistant_storage:

 node: my_block_storage

 relationship: AttachTo
 # This maps the local requirement name ‘persistent_storage’ to the

 # target node’s capability name ‘attachment’

 capability: attachment

 properties:

 location: /path1/path2

 my_block_storage:

 type: BlockStorage
 properties:

 size: 10

F.1.3.1 Issues

· TBD
F.1.4 Use Case: Reusing a BlockStorage Relationship using Relationship Type or Relationship Template

This builds upon the previous use case (F.1.3) to examine how a template author could attach multiple Compute nodes (templates) to the same BlockStorage node (template), but with slightly different property values for the AttachTo relationship.

Specifically, several notation options are shown (in this use case) that achieve the same desired result.

F.1.4.1 Simple Profile Rationale

Referencing an explicitly declared Relationship Template is a convenience of the Simple Profile that allows template authors an entity to set, constrain or override the properties and operations as defined in its declared (Relationship) Type much as allowed now for Node Templates. It is especially useful when a complex Relationship Type (with many configurable properties or operations) has several logical occurrences in the same Service (Topology) Template; allowing the author to avoid configuring these same properties and operations in multiple Node Templates.

F.1.4.2 Notation Style #1: Augment AttachTo Relationship Type directly in each Node Template

This notation extends the methodology used for establishing a HostedOn relationship (see previous example, F.1.1.2), but allowing template author to supply (dynamic) configuration and/or override of properties and operations.

Note: This option will remain valid for Simple Profile regardless of other (following) notation (or aliasing) options being discussed or adopted.
	node_templates:

 my_block_storage:

 type: BlockStorage
 properties:

 size: 10

 my_web_app_tier_1:

 type: Compute
 requirements:

 - attachment:

 node: my_block_storage

 relationship: MyAttachTo

 # use default property settings in the Relationship Type definition

 my_web_app_tier_2:

 type: Compute
 requirements:

 - attachment:

 node: my_block_storage

 relationship: MyAttachTo

 # Override default property setting for just the ‘location’ property

 properties:

 location: /some_other_data_location

relationship_types:

 MyAttachTo:

 derived_from: AttachTo
 properties: # follows the syntax of property definitions

 location:

 default: /default_location

 interfaces:

 some_interface_name:

 some_operation:

 implementation: default_script.sh

F.1.4.3 Notation Style #2: Use the ‘template’ keyword on the Node Templates to specify which named Relationship Template to use

This option shows how to explicitly declare different named Relationship Templates within the Service Template as part of a relationship_templates section (which have different property values) and can be referenced by different Compute typed Node Templates.

	node_templates:

 my_block_storage:

 type: BlockStorage

 properties:

 size: 10

 my_web_app_tier_1:

 derived_from: Compute
 requirements:

 - attachment:

 node: my_block_storage

 relationship: storage_attachto_1

 my_web_app_tier_2:

 derived_from: Compute
 requirements:

 - attachment:

 node: my_block_storage

 relationship: storage_attachto_2

relationship_templates:

 storage_attachto_1:

 type: MyAttachTo

 properties:

 location: /my_data_location

 storage_attachto_2:

 type: MyAttachTo

 properties:

 location: /some_other_data_location

relationship_types:

 MyAttachTo:

 derived_from: AttachTo
 properties: # follows the syntax of property definitions

 location:

 default: /default_location

 interfaces:

 some_interface_name:

 some_operation:

 implementation: default_script.sh

F.1.4.4 Notation Style #3: Using an alias which named Relationship Template to use

This option shows a way to alias an existing template from another template to further simplify the definition of named Relationship Templates using aliases to effectively “copy” an existing definition in to avoid repetition.

The example below shows that the Relationship Template named storage_attachto_1 provides some overrides (conceptually a large set of overrides) on its Type which the Relationship Template named storage_attachto_2 wants to “copy” before perhaps providing a smaller number of overrides.
	node_templates:

 my_block_storage:

 type: BlockStorage
 properties:

 size: 10

 my_web_app_tier_1:

 derived_from: Compute
 requirements:

 - attachment:

 node: my_block_storage

 relationship: storage_attachto_1

 my_web_app_tier_2:

 derived_from: Compute
 requirements:

 - attachment:

 node: my_block_storage

 relationship: storage_attachto_2

relationship_templates:

 storage_attachto_1:

 type: MyAttachTo

 properties:

 location: /my_data_location

 interfaces:

 some_interface_name:

 some_operation_name_1: my_script_1.sh

 some_operation_name_2: my_script_2.sh

 some_operation_name_3: my_script_3.sh

 storage_attachto_2:

 alias: storage_attachto_1

 properties:

 location: /some_other_data_location

relationship_types:

 MyAttachTo:

 derived_from: AttachTo
 properties: # follows the syntax of property definitions

 location:

 default: /default_location

 interfaces:

 some_interface_name:

 some_operation:

 implementation: default_script.sh

For reference, here are is the BlockStorage, AttachTo and Attachment definitions:

	tosca.capabilities.Attachment:

 derived_from: tosca.capabilities.Root

tosca.relationships.AttachTo:

 derived_from: tosca.relationships.Root

 valid_targets: [tosca.capabilities.Attachment]

 properties:

 location:

 type: string

 constraints:

 - min_length: 1

 device:

 type: string

 required: false

type: tosca.nodes.BlockStorage

 derived_from: tosca.nodes.Root

 properties:

 size:

 type: integer

 constraints:

 - greater_or_equal: 1

 volumeId:

 type: string

 required: false

 attributes:

 volumeId:

 type: string

 capabilities:

 - attachment: tosca.capabilities.Attachment

type: tosca.nodes.Compute

 derived_from: tosca.nodes.Root

 properties:

 ...

 capabilities:

 host:

 type: Container

 properties:

 valid_node_types: [tosca.nodes.SoftwareComponent]

F.1.5 Usage of add_target, target_changed, remove_target

TODO

Notes:

· These examples would apply the corresponding add_source, remove_source operations as well but in the reverse direction.
Appendix G. Application Modeling Use Cases

G.1 Application Modeling Use Cases:

	Short description
	Interesting Feature
	Description

	Virtual Machine (VM), single instance
	· Introduces the TOSCA base Node Type for “Compute”.
	TOSCA simple profile demonstrates how to stand up a single instance of a Virtual Machine (VM) image using a normative TOSCA Compute node.

	WordPress + MySQL, single instance
	· Introduces the TOSCA base Node Types of: “WebServer”, “WebApplication”, “DBMS” and “Database” along with their dependent hosting and connection relationships.
	TOSCA simple profile service showing the WordPress web application with a MySQL database hosted on a single server (instance).

	WordPress + MySQL + Object Storage, single instance
	· Introduces the TOSCA base Node Type for “ObjectStorage”.
	TOSCA simple profile service showing the WordPress web application hosted on a single server (instance) with attached (Object) storage.

	WordPress + MySQL + Block Storage, single instance
	· Introduces the TOSCA base Node Type for “BlockStorage” (i.e., for Volume-based storage).
	TOSCA simple profile service showing the WordPress web application hosted on a single server (instance) with attached (Block) storage.

	WordPress + MySQL, each on separate instances
	· Instantiates 2 tiers, 1 for WordPress, 1 for DBMS and coordinates both.
	Template installs two instances: one running a WordPress deployment and the other using a specific (local) MySQL database to store the data.

	WordPress + MySQL + Network, single instance
	· Introduces the TOSCA base Node Type for a simple “Network”.
	TOSCA simple profile service showing the WordPress web application and MySQL database hosted on a single server (instance) along with demonstrating how to define associate the instance to a simple named network.

	WordPress + MySQL + Floating IPs, single instance
	· Connects to an external (relational) DBMS service
	TOSCA simple profile service showing the WordPress web application and MySQL database hosted on a single server (instance) along with demonstrating how to create a network for the application with Floating IP addresses.

G.1.1 Virtual Machine (VM), single instance

G.1.1.1 Description

This use case demonstrates how the TOSCA Simple Profile specification can be used to stand up a single instance of a Virtual Machine (VM) image using a normative TOSCA Compute node. The TOSCA Compute node is declarative in that the service template describes both the processor and host operating system platform characteristics (i.e., properties) that are desired by the template author. The cloud provider would attempt to fulfill these properties (to the best of its abilities) during orchestration.
G.1.1.2 Features

This use case introduces the following TOSCA Simple Profile features:

· A node template that uses the normative TOSCA Compute Node Type along with showing an exemplary set of its properties being configured.

· Use of the TOSCA Service Template inputs section to declare a configurable value the template user may supply at runtime. In this case, the property named “cpus” (of type integer) is declared.

· Use of a property constraint to limit the allowed integer values for the “cpus” property to a specific list supplied in the property declaration.

· Use of the TOSCA Service Template outputs section to declare a value the template user may request at runtime. In this case, the property named “instance_ip” is declared

· The “instance_ip” output property is programmatically retrieved from the Compute node’s “ip_address” property using the TOSCA Service Template-level get_property function.
G.1.1.3 Logical Diagram

TBD
G.1.1.4 Sample YAML

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: >

 TOSCA simple profile that just defines a single compute instance. Note, this example does not include default values on inputs properties.

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 node_templates:

 my_server:

 type: Compute
 properties:

 # compute properties

 disk_size: 10 GB

 num_cpus: { get_input: cpus }
 mem_size: 4 MB

 capabilities:

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: ubuntu

 version: 12.04

 outputs:

 instance_ip:

 description: The IP address of the deployed instance.

 value: { get_attribute: [my_server, ip_address] }

G.1.1.5 Notes

· This use case uses a versioned, Linux Ubuntu distribution on the Compute node.
G.1.2 WordPress + MySQL, single instance

G.1.2.1 Description

TOSCA simple profile service showing the WordPress web application with a MySQL database hosted on a single server (instance).

This use case is built upon the following templates from, OpenStack Heat’s Cloud Formation (CFN) template and from an OpenStack Heat-native template:

· https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_With_RDS.template
· https://github.com/openstack/heat-templates/blob/master/hot/F18/WordPress_Native.yaml

However, where the CFN template simply connects to an existing Relational Database Service (RDS) our template below will also install a MySQL database explicitly and connect to it.

G.1.2.2 Logical Diagram

TBD
G.1.2.3 Sample YAML

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: >

 TOSCA simple profile with WordPress, a web server, a MySQL DBMS hosting the application’s database content on the same server. Does not have input defaults or constraints.

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 db_name:

 type: string

 description: The name of the database.

 db_user:

 type: string

 description: The username of the DB user.

 db_pwd:

 type: string

 description: The WordPress database admin account password.

 db_root_pwd:

 type: string

 description: Root password for MySQL.

 db_port:

 type: integer

 description: Port for the MySQL database

 node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 requirements:

 - host: webserver

 - database_endpoint: mysql_database

 interfaces:

 Standard:

 create: wordpress_install.sh
 configure:

 implementation: wordpress_configure.sh

 inputs:

 wp_db_name: { get_property: [mysql_database, db_name] }

 wp_db_user: { get_property: [mysql_database, db_user] }

 wp_db_password: { get_property: [mysql_database, db_password] }

 # goto requirement, goto capability, goto port property

 wp_db_port: { get_property: [SELF, database_endpoint, port] }

 mysql_database:

 type: Database
 properties:

 db_name: { get_input: db_name }

 db_user: { get_input: db_user }

 db_password: { get_input: db_pwd }

 capabilities:

 database_endpoint:

 properties:

 port: { get_input: db_port }

 requirements:

 - host: mysql_dbms

 interfaces:

 Standard:

 postconfigure: mysql_database_postconfigure.sh
 mysql_dbms:

 type: DBMS
 properties:

 dbms_root_password: { get_input: db_root_pwd }

 dbms_port: { get_input: db_port }

 requirements:

 - host: server

 interfaces:

 Standard:

 create: mysql_dbms_install.sh
 start: mysql_dbms_start.sh
 configure: mysql_dbms_configure.sh
 inputs:

 db_root_password: { get_property: [mysql_dbms, dbms_root_password] }

 webserver:

 type: WebServer
 requirements:

 - host: server

 interfaces:

 Standard:

 create: webserver_install.sh
 start: webserver_start.sh
 server:

 type: Compute
 properties:

 # compute properties (flavor)

 disk_size: 10

 num_cpus: { get_input: cpus }

 mem_size: 4096

 capabilities:

 os:

 properties:

 architecture: x86_64

 type: linux

 distribution: fedora

 version: 17

 outputs:

 website_url:

 description: URL for Wordpress wiki.

 value: { get_attribute: [server, ip_address] }

G.1.2.4 Sample scripts

Where the referenced implementation scripts in the example above would have the following contents
G.1.2.4.1 wordpress_install.sh

	yum -y install wordpress

G.1.2.4.2 wordpress_configure.sh

	sed -i "/Deny from All/d" /etc/httpd/conf.d/wordpress.conf

sed -i "s/Require local/Require all granted/" /etc/httpd/conf.d/wordpress.conf

sed -i s/database_name_here/db_name/ /etc/wordpress/wp-config.php

sed -i s/username_here/db_user/ /etc/wordpress/wp-config.php

sed -i s/password_here/db_password/ /etc/wordpress/wp-config.php

systemctl restart httpd.service

G.1.2.4.3 mysql_database_postconfigure.sh
	# Setup MySQL root password and create user

cat << EOF | mysql -u root --password=db_rootpassword

CREATE DATABASE db_name;

GRANT ALL PRIVILEGES ON db_name.* TO "db_user"@"localhost"

IDENTIFIED BY "db_password";

FLUSH PRIVILEGES;

EXIT

EOF

G.1.2.4.4 mysql_dbms_install.sh

	yum -y install mysql mysql-server

Use systemd to start MySQL server at system boot time

systemctl enable mysqld.service

G.1.2.4.5 mysql_dbms_start.sh
	# Start the MySQL service (NOTE: may already be started at image boot time)

systemctl start mysqld.service

G.1.2.4.6 mysql_dbms_configure

	# Set the MySQL server root password

mysqladmin -u root password db_rootpassword

G.1.2.4.7 webserver_install.sh
	yum -y install httpd

systemctl enable httpd.service

G.1.2.4.8 webserver_start.sh

	# Start the httpd service (NOTE: may already be started at image boot time)

systemctl start httpd.service

G.1.3 WordPress + MySQL + Object Storage, single instance

G.1.3.1 Description

This use case shows a WordPress application that makes use of an Object Storage service to application artifacts.

Note: Future drafts of this specification will detail this use case
G.1.3.2 Logical Diagram
TBD
G.1.3.3 Sample YAML

	TBD

G.1.4 WordPress + MySQL + Block Storage, single instance

G.1.4.1 Description

This use case is based upon OpenStack Heat’s Cloud Formation (CFN) template:

· https://s3.amazonaws.com/cloudformation-templates-us-east-1/Gollum_Single_Instance_With_EBS_Volume.template
· https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_Single_Instance_With_EBS.template
Note: Future drafts of this specification will detail this use case.

G.1.4.2 Logical Diagram
TBD
G.1.4.3 Sample YAML: Variant 1: Using the normative AttachTo Relationship Type

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: >

 TOSCA simple profile with server and attached block storage using the normative AttachTo Relationship Type.

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 storage_size:

 type: string

 description: Size of the storage to be created.

 default: 1 GB

 storage_location:

 type: string

 description: Storage mount path.

 node_templates:

 server:

 type: Compute
 properties:

 # compute properties (flavor)

 disk_size: 10

 num_cpus: { get_input: cpus }

 mem_size: 4096

 # host image properties

 capabilities:

 os:

 properties:

 architecture: x86_64

 type: linux

 distribution: fedora

 version: 18

 requirements:

 - persistant_storage:

 node: storage

 # Clarify the requirement as an ‘AttachTo’ Relationship Type

 relationship: AttachTo
 properties:

 location: { get_input: storage_location }

 storage:

 type: BlockStorage
 properties:

 size: { get_input: storage_size }

 outputs:

 public_ip:

 description: Public IP address of the newly created compute instance.

 value: { get_attribute: [server, ip_address] }

G.1.4.4 Sample YAML: Variant 2: Using a custom AttachTo Relationship Type

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: >

 TOSCA simple profile with server and attached block storage using a custom AttachTo Relationship Type.

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 storage_size:

 type: string

 description: Size of the storage to be created.

 default: 1 GB

 storage_location:

 type: string

 description: Storage mount path.

 node_templates:

 server:

 type: Compute
 properties:

 # compute properties (flavor)

 disk_size: 10

 num_cpus: { get_input: cpus }

 mem_size: 4096

 capabilities:

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: Fedora

 version: 18

 requirements:

 - persistant_storage:

 node: storage

 # Declare custom AttachTo type using the ‘type’ keyword

 relationship: MyCustomAttachToType
 storage:

 type: BlockStorage
 properties:

 size: { get_input: storage_size }

outputs:

 public_ip:

 description: Public IP address of the newly created compute instance.

 value: { get_attribute: [server, ip_address] }

G.1.4.5 Sample YAML: Variant 3: using a Relationship Template

	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: >

 TOSCA simple profile with server and attached block storage using a named Relationship Template for the storage attachment.

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 storage_size:

 type: string

 description: Size of the storage to be created.

 default: 1 GB

 storage_location:

 type: string

 description: Storage mount path.

 node_templates:

 server:

 type: Compute
 properties:

 # compute properties (flavor)

 disk_size: 10

 num_cpus: { get_input: cpus }

 mem_size: 4096

 capabilities:

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: Fedora

 version: 18

 requirements:

 - persistant_storage:

 node: storage

 # Declare template to use with ‘relationship’ keyword

 relationship: storage_attachment
 storage:

 type: BlockStorage
 properties:

 size: { get_input: storage_size }

 relationship_templates:

 storage_attachment:

 type: AttachTo
 properties:

 location: { get_input: storage_location }

 outputs:

 public_ip:

 description: Public IP address of the newly created compute instance.

 value: { get_attribute: [server, ip_address] }

relationship_types:

 MyCustomAttachToType:

 derived_from: AttachTo
 properties:

 location: { get_input: storage_location }

G.1.5 WordPress + MySQL, each on separate instances
G.1.5.1 Description

TOSCA simple profile service showing the WordPress web application hosted on one server (instance) and a MySQL database hosted on another server (instance).

This is based upon OpenStack Heat’s Cloud Formation (CFN) template:

· https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_2_Instances.template
Note: Future drafts of this specification will detail this use case.
G.1.5.2 Logical Diagram

TBD

G.1.5.3 Sample YAML

	TBD

G.1.6 WordPress + MySQL + Network, single instance

G.1.6.1 Description

This use case is based upon OpenStack Heat’s Cloud Formation (CFN) template:

· https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_Single_Instance_With_Quantum.template
Note: Future drafts of this specification will detail this use case.

G.1.6.2 Logical Diagram

TBD
G.1.6.3 Sample YAML

	TBD

G.1.7 WordPress + MySQL + Floating IPs, single instance
G.1.7.1 Description

This use case is based upon OpenStack Heat’s Cloud Formation (CFN) template:
· https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_Single_Instance_With_EIP.template
Note: Future drafts of this specification will detail this use case.

G.1.7.2 Logical Diagram

TBD
G.1.7.3 Sample YAML

	TBD

G.1.7.4 Notes

· The Heat/CFN use case also introduces the concept of “Elastic IP” (EIP) addresses which is the Amazon AWS term for floating IPs.

· The Heat/CFN use case provides a “key_name” as input which we will not attempt to show in this use case as this is a future security/credential topic.

· The Heat/CFN use case assumes that the “image” uses the “yum” installer to install Apache, MySQL and Wordpress and installs, starts and configures them all in one script (i.e., under Compute). In TOSCA we represent each of these software components as their own Nodes each with independent scripts.
G.1.8 BlockStorage + Compute

G.1.8.1.1 Description

TOSCA simple profile service showing single BlockStorage attached to Computer node as well as multiple BlockStorage attached to Compute node.

This use case is built upon the following templates from, OpenStack Heat’s Cloud Formation (CFN) template and from an OpenStack Heat-native template:

· https://github.com/openstack/heat-templates/blob/master/hot/F18/NovaInstanceWithCinderVolume_Native.yaml
G.1.8.2 Logical Diagram

TBD
G.1.8.3 Sample YAML

G.1.8.3.1 G1.8.3.1 Single BlockStorage
	tosca_definitions_version: tosca_simple_1.0

description: >

 TOSCA simple profile with server and attached block storage.

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 storage_size:

 type: integer

 default: 1 GB

 description: Size of the storage to be created.

 storage_snapshot_id:

 type: string

 description: Some identifier that represents an existing snapshot that should be used when creating the block storage.

 storage_location:

 type: string

 description: The relative location (e.g., path on the file system), which provides the root location to address an attached node.

 node_templates:

 my_server:

 type: tosca.nodes.Compute

 properties:

 # compute properties (flavor)

 disk_size: 10

 num_cpus: { get_input: cpus }

 mem_size: 4096

 # host image properties

 capabilities:

 os:

 properties:

 architecture: x86_64

 type: linux

 distribution: fedora

 version: 18

 requirements:

 - attachment:

 node: my_storage

 relatonship: AttachTo

 properties:

 location: { get_input: storage_location }

 my_storage:

 type: tosca.nodes.BlockStorage

 properties:

 size: { get_input: storage_size }

 snapshot_id: { get_input: storage_snapshot_id }

 outputs:

 public_ip:

 description: Public IP address of the newly created compute instance.

 value: { get_attribute: [server, ip_address] }

G.1.8.3.2 G1.8.3.2 Multiple BlockStorage
	tosca_definitions_version: tosca_simple_1.0

description: >

 TOSCA simple profile with server and attached block storage.

topology_template:

 inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 storage_size:

 type: integer

 default: 1 GB

 description: Size of the storage to be created.

 storage_snapshot_id:

 type: string

 description: Some identifier that represents an existing snapshot that should be used when creating the block storage.

 storage_location:

 type: string

 description: The relative location (e.g., path on the file system), which provides the root location to address an attached node.

 node_templates:

 my_server:

 type: tosca.nodes.Compute

 properties:

 # compute properties (flavor)

 disk_size: 10

 num_cpus: { get_input: cpus }

 mem_size: 4096

 capabilities:

 os:

 properties:

 architecture: x86_64

 type: linux

 distribution: fedora

 version: 18

 requirements:

 - attachment:

 node: my_storage

 relationship: AttachTo

 properties:

 location: { get_input: storage_location }

 my_storage:

 type: tosca.nodes.BlockStorage

 properties:

 size: { get_input: storage_size }

 snapshot_id: { get_input: storage_snapshot_id }

 my_server2:

 type: tosca.nodes.Compute

 properties:

 # compute properties (flavor)

 disk_size: 10

 num_cpus: { get_input: cpus }

 mem_size: 4096

 capabilities:

 os:

 properties:

 architecture: x86_64

 type: Linux

 distribution: Fedora

 version: 18

 requirements:

 - attachment:

 node: my_storage2

 relationship: AttachTo

 properties:

 location: { get_input: storage_location }

 my_storage2:

 type: tosca.nodes.BlockStorage

 properties:

 size: { get_input: storage_size }

 snapshot_id: { get_input: storage_snapshot_id }

 outputs:

 public_ip:

 description: Public IP address of the newly created compute instance.

 value: { get_attr: [server, ip_address] }

G.1.9 Monitoring use case with multiple instances

G.1.9.1 Description

TOSCA simple profile service showing the nodejs, mongodb, elaasticsearch, logstash, kibana, rsyslog and collectd installed on a different server (instance). This use case also demonstrates a use of TOSCA macros or dsl_definitions. It is a work in progress…

G.1.9.2 Logical Diagram

[image: image9.png]elasticsearch

Elasticsearch
app_rsyslog
Rsyslog
elasticsearch_rsyslog.
app app_collectd Rsyslog
Nodejs Callectd
P e
Compute olle
elasticsearch_server
compute
mongo_db mongodb_rsysiog.
Database.MongoDB Rsysiog logstash_rsyslog
Rsysiog
mongo_dbms mongo_collectd =
gstash_collectd
DBMS.MongoDB Collectd e
logstash
mongo_server Logstash
compute
logstash_server

Compute

kibana_server

G.1.9.3 Sample YAML for application server

	tosca_definitions_version: tosca_simple_1.0

description: >

 TOSCA simple profile with nodejs mongodb, elaasticsearch, logstash, kibana, rsyslog and collectd.

imports:

 - custom_types/nodejs.yaml

dsl_definitions:

 ubuntu_node: &ubuntu_node

 # compute properties (flavor)

 disk_size: 10

 num_cpus: { get_input: my_cpus }

 mem_size: 4096

 # host image properties

 capabilities:

 os:

 properties:

 architecture: x86_64

 type: linux

 distribution: ubuntu

 version: 14.04

topology_template:

 inputs:

 my_cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

 github_url:

 type: string

 description: The URL to download nodejs.

 default: https://github.com/mmm/testnode.git

 node_templates:

 nodejs:

 type: tosca.nodes.Nodejs

 properties:

 github_url: { get_input: github_url }

 requirements:

 - host: app_server

 - database_endpoint:

 node: mongo_db

 interfaces:

 tosca.interfaces.relationship.Configure:

 pre_configure_source:

 implementation: nodejs/pre_configure_source.sh

 input:

 host: { get_attribute: [TARGET, ip_address] }

 port: { get_property: [mongo_dbms, dbms_port] }

 interfaces:

 tosca.interfaces.node.Lifecycle:

 create: nodejs/create.sh

 configure:

 implementation: nodejs/config.sh

 input:

 github_url: { get_property: [SELF, github_url] }

 start: nodejs/start.sh

 mongo_db:

 type: tosca.nodes.Database

 requirements:

 - host: mongo_dbms

 mongo_dbms:

 type: tosca.nodes.DBMS

 requirements:

 - host: mongo_server

 properties:

 dbms_port: 27017

 interfaces:

 tosca.interfaces.node.Lifecycle:

 create: mongodb/create.sh

 configure: mongodb/config.sh

 start: mongodb/start.sh

 mongo_server:

 type: tosca.nodes.Compute

 properties: *ubuntu_node

 app_server:

 type: tosca.nodes.Compute

 properties: *ubuntu_node

 outputs:

 nodejs_url:

 description: URL for the nodejs server.

 value: { get_attribute: [app_server, ip_address] }

 mongodb_url:

 description: URL for the mongodb server.

 value: { get_attribute: [mongo_server, ip_address] }

 mongodb_port:

 description: Port for the mongodb server.

 value: { get_property: [mongo_dbms, dbms_port] }

G.1.9.4 Sample scripts

Where the referenced implementation scripts in the example above would have the following contents
G.1.9.4.1 nodejs_install.sh

	#!/bin/bash

add-apt-repository ppa: chris-lea/node.js

apt-get update

apt-get install -y nodejs build-essential curl git npm

G.1.9.4.2 nodejs_configure.sh

	#!/bin/bash

export app_dir=/opt/app

git clone $github_url /opt/app

if [-f /opt/app/package.json]

 cd /opt/app/ && npm install

fi

cat > /etc/init/nodeapp.conf <<EOS

description "node.js app"

start on (net-device-up

and local-filesystems

and runlevel [2345])

stop on runlevel [!2345]

expect fork

respawn

script

export HOME=/

export NODE_PATH=/usr/lib/node

exec /usr/bin/node ${app_dir}/server.js >> /var/log/nodeapp.log 2>&1 &

end script

EOS

G.1.9.4.3 nodejs_start.sh
	#!/bin/bash

start nodeapp

G.1.9.4.4 nodejs_preconfigure.sh

	#!/bin/bash

cat > /opt/node/config.js<<EOF

{

 "host": "${host}"

 , "port": ${port}

}

EOF

G.1.9.4.5 mongodb_install.sh
	#!/bin/bash

apt-get install -y mongodb

G.1.9.4.6 mongodb_start.sh

	#!/bin/bash

start mongodb

Appendix H. References

H.1 Known Extensions to TOSCA v1.0

The following items will need to be reflected in the TOSCA (XML) specification to allow for isomorphic mapping between the XML and YAML service templates.
H.1.1 Model Changes

· The “TOSCA Simple ‘Hello World’” example introduces this concept in Section 3. Specifically, a VM image assumed to accessible by the cloud provider.

· Introduce template Input and Output parameters

· The “Template with input and output parameter” example introduces concept in Section 3.1.

· “Inputs” could be mapped to BoundaryDefinitions in TOSCA v1.0. Maybe needs some usability enhancement and better description.

· “outputs” are a new feature.

· Grouping of Node Templates

· This was part of original TOSCA proposal, but removed early on from v1.0 This allows grouping of node templates that have some type of logically managed together as a group (perhaps to apply a scaling or placement policy).

· Lifecycle Operation definition independent/separate from Node Types or Relationship types (allows reuse). For now we added definitions for “node.lifecycle” and “relationship.lifecycle”.

· Override of Interfaces (operations) in the Node Template.

· Service Template Naming/Versioning

· Should include TOSCA spec. (or profile) version number (as part of namespace)

· Allow the referencing artifacts using a URL (e.g., as a property value).

H.1.2 Normative Types

· Constraint (addresses TOSCA-117)

· constraint clauses, regex

· Types / Property / Parameters

· list, map, range, scalar-unit

· anonymous types (entity_schema)

· Includes YAML intrinsic types

· NetworkInfo, PortInfo

· Node

· Root, Compute, ObjectStorage, BlockStorage, Network, SoftwareComponent, WebServer, WebApp, DBMS, Database, …

· Relationship

· Root, DependsOn, HostedOn, ConnectsTo, AttachTo, …

· Artifact

· Deployment: Bash (for WD01)

· Requirements

· None

· Capabilities

· Container, Endpoint, Attachment, Scalable

· Lifecycle

· (node) Standard, Simple

· (Relationship) Configure

· Functions

· get_input, get_attribute, get_property, get_nodes_of_type, get_operation_output

· Resource

· In HEAT they have concept of key pairs (an additional resource type in the template).

H.2 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in
	[TOSCA-1.0]
	Topology and Orchestration Topology and Orchestration Specification for Cloud Applications (TOSCA) Version 1.0, an OASIS Standard, 25 November 2013, http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf

	[YAML-1.2]
	YAML, Version 1.2, 3rd Edition, Patched at 2009-10-01, Oren Ben-Kiki, Clark Evans, Ingy döt Net http://www.yaml.org/spec/1.2/spec.html

	[YAML-TS-1.1]
	Timestamp Language-Independent Type for YAML Version 1.1, Working Draft 2005-01-18, http://yaml.org/type/timestamp.html

.

H.3 Normative References

	[TOSCA-1.0]
	Topology and Orchestration Topology and Orchestration Specification for Cloud Applications (TOSCA) Version 1.0, an OASIS Standard, 25 November 2013, http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf

	[YAML-1.2]
	YAML, Version 1.2, 3rd Edition, Patched at 2009-10-01, Oren Ben-Kiki, Clark Evans, Ingy döt Net http://www.yaml.org/spec/1.2/spec.html

	[YAML-TS-1.1]
	Timestamp Language-Independent Type for YAML Version 1.1, Working Draft 2005-01-18, http://yaml.org/type/timestamp.html

H.4 Non-Normative References

	
	

	[AWS-CFN]
	Amazon Cloud Formation (CFN), http://aws.amazon.com/cloudformation/

	[Chef]
	Chef, https://wiki.opscode.com/display/chef/Home

	[OS-Heat]
	OpenStack Project Heat, https://wiki.openstack.org/wiki/Heat

	[Puppet]
	Puppet, http://puppetlabs.com/

	[WordPress]
	WordPress, https://wordpress.org/

	[Maven-Version]

	Apache Maven version policy draft:

https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy

H.5 Glossary

The following terms are used throughout this specification and have the following definitions when used in context of this document.

	Term
	Definition

	Instance Model
	A deployed service is a running instance of a Service Template. More precisely, the instance is derived by instantiating the Topology Template of its Service Template, most often by running a special plan defined for the Service Template, often referred to as build plan.

	Node Template
	A Relationship Template specifies the occurrence of a software component node as part of a Topology Template. Each Node Template refers to a Node Type that defines the semantics of the node (e.g., properties, attributes, requirements, capabilities, interfaces). Node Types are defined separately for reuse purposes.

	Relationship Template
	A Relationship Template specifies the occurrence of a relationship between nodes in a Topology Template. Each Relationship Template refers to a Relationship Type that defines the semantics relationship (e.g., properties, attributes, interfaces, etc.). Relationship Types are defined separately for reuse purposes.

	Service Template
	A Service Template is typically used to specify the “topology” (or structure) and “orchestration” (or invocation of management behavior) of IT services so that they can be provisioned and managed in accordance with constraints and policies.

Specifically, TOSCA Service Templates optionally allow definitions of a TOSCA Topology Template , TOSCA types (e.g., Node, Relationship, Capability, Artifact, etc.), groupings, policies and constraints along with any input or output declarations.

	Topology Model
	The term Topology Model is often used synonymously with the term Topology Template with the use of “model” being prevalent when considering a Service Template’s topology definition as an abstract representation of an application or service to facilitate understanding of its functional components and by eliminating unnecessary details.

	Topology Template
	A Topology Template defines the structure of a service in the context of a Service Template. A Topology Template consists of a set of Node Template and Relationship Template definitions that together define the topology model of a service as a (not necessarily connected) directed graph.
The term Topology Template is often used synonymously with the term Topology Model. The distinction is that a topology template can be used to instantiate and orchestrate the model as a reusable pattern and includes all details necessary to accomplish it.

	
	

Appendix I. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Contributors:

Avi Vachnis (avi.vachnis@alcatel-lucent.com), Alcatel-Lucent

Chris Lauwers (lauwers@ubicity.com)
Derek Palma (dpalma@vnomic.com), Vnomic
Frank Leymann (Frank.Leymann@informatik.uni-stuttgart.de), Univ. of Stuttgart

Gerd Breiter (gbreiter@de.ibm.com), IBM

Hemal Surti (hsurti@cisco.com), Cisco

Idan Moyal, (idan@gigaspaces.com), Gigaspaces

Jacques Durand (jdurand@us.fujitsu.com), Fujitsu

Juergen Meynert (juergen.meynert@ts.fujitsu.com), Fujitsu

Karsten Beins (karsten.beins@ts.fujitsu.com), Fujitsu

Kevin Wilson (kevin.l.wilson@hp.com), HP
Krishna Raman (kraman@redhat.com) , Red Hat

Luc Boutier (luc.boutier@fastconnect.fr), FastConnect
Matt Rutkowski (mrutkows@us.ibm.com), IBM

Moshe Elisha (moshe.elisha@alcatel-lucent.com), Alcatel-Lucent

Nikunj Nemani (nnemani@vmware.com), WMware

Richard Probst (richard.probst@sap.com), SAP AG
Sahdev Zala (spzala@us.ibm.com), IBM
Stephane Maes (stephane.maes@hp.com), HP

Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM
Ton Ngo (ton@us.ibm.com), IBM

Travis Tripp (travis.tripp@hp.com), HP
Yaron Parasol (yaronpa@gigaspaces.com), Gigaspaces
Appendix J. Revision History

	Revision
	Date
	Editor
	Changes Made

	WD04, Rev. 01
	2014-10-13
	Matt Rutkowski, IBM
	· Initial WD04, Revision 01 baseline.

· Imported Ch. 13 “Nested templates” from Thomas Spatzier.

	WD04, Rev 02
	2014-10-20
	Matt Rutkowski, IBM
	· Merged updates to Ch 13 “nested templates” which update the examples/prose to wd03 normative type definitions.

· Merged in Block Storage and Monitoring use cases from Sahdev Zala

	WD04, Rev03
	2014-10-21
	Matt Rutkowski, IBM
	· Broke out Requirement definition grammar from requirements element

· Split up 4 different examples of requirement definition usage

· Added target_filter keyword on requirement defn. and added an example for it.

	WD04, Rev04
	2014-10-22
	Matt Rutkowski, IBM
	· More work clarifying requirements and grammar for the Schema definition.

· Re-authored requirement definition grammar and section (and examples).

· Added datatype definitions

· Added dsl_definitions, datatype_definitions and implements keywords for service template

· Added placeholder for filter definition.

	WD04, Rev05
	2014-10-29
	Matt Rutkowski, IBM
	· Requirement definitions grammar chance and cascade change to ALL examples in document

· Addition of property and node filter grammar, also cascaded to ALL examples in document

	WD04, Rev06
	2014-11-08
	Matt Rutkowski, IBM
	· Added the OperatingSystem Capability Type. changed Compute node to use it and fixed all examples in document.

· Assured all references to target_filter on Requirement definitions where correct in all examples

· Added text to property and attribute (definitions and elements) to better explain usage to retrieve desire or actual state of a Tosca entity’s transparent properties using get_xxx functions.

· Better explained how scalar-unit type is used with constraints, updated properties in Compute, ObjectStorage, etc. to change some memory/storage size values to this type instead of integer and updated their definitions.

· Added a status flag to Property definition with allowed values.

	WD04, Rev07
	2014-11-11
	Matt Rutkowski, IBM
	· Fixed one case where type “number” appeared

· Added clarification to HOST function keyword to indicate entity hosted on chain is to be searched. Updated get_xxx grammars to include HOST.

· Added Credential datatype

· changed namespace for datatypes, to say “datatypes” instead of just “type”

	WD04, Rev08
	2014-11-17
	Matt Rutkowski, IBM
	· Updated issues lost based upon half-day work group review on 2014-11-13

· Fixed a few examples that used old namespaces.

· Fixed prose of one example that used an old keyname “type” for a requirement definition.

· Merged properties from MultiportEndpoint capability to Endpoint capability.

	WD04,

Rev09
	2014-11-17
	Thomas Spatzier, IBM
	· Initial draft for nested template changes (TOSCA-186) in section 13; just edited sample snippets as base for discussion; overall text changes still to be done once discussions settle

	WD04, Rev10
	2014-12-03
	Matt Rutkowski, IBM
	· Fixed type defn. typos in some examples.

· Cleaned up closed and deferred Mantis issue references

· Fixed Port Node Type to have proper Requirements for “link” and “connection” otherwise they could not be wired together.

· Showed simplified Req. Def. grammar versus full (i.e., no need to use “type” keyname in simple cases).

· Opened issue TOSCA-217 for simplified grammar

	WD04, Rev11
	2014-12-05
	Matt Rutkowski, IBM
	· Fixed type defn. typos in some examples.

· Added additional transitional states, removed unnecessary states (stopped, deleted).

· Added diagrams to show normal startup/shutdown sequencing of Standard Lifecycle operations and resulting Node States.

· Created TOSCA-218 to address agreements on how to handle valid_node_types as a part of Capability metamodel and tagged all relevant code/comments with this issue number.

	WD04, Rev12
	2014-12-08
	Thomas Spatzier, IBM
	· Introduction of topology_template throughout the document (except appendixes F and G).

· Rewrite of “nested templates” use case in section 13.

· Introduction of substitution_mapping section for topology_template.

	WD04, Rev13
	2014-12-10
	Matt Rutkowski, IBM
	· Added topology template key for all use cases in Appendix G. Fixed indentation on all use cases.

· Fixed some errors in examples in section 13 as identified during YAML WG review.

· Removed post_configure operation from Standard lifecycle and adjusted diagrams

· Added diagrams showing typical startup and shutdown sequence for Standard lifecycle

· Added illustration to show interleaving of relationship Configure lifecycle and Standard node lifecycle.

· Added diagram to show how Compute-Port-Network relationship is established using new network caps., reqs. and relationship types. Added prose to explain diagram

· After consulting Network WG co-chairs changed network node/Cap/Rel. type names as follows:

· Capabilities.Linkable -> tosca.capabilities.network.Bindable

· Relationships.LinkedTo -> tosca.relationships.network.BindsTo

· Relationships.NetworkTo -> tosca.relationships.network.ConnectsTo

· Capabilities.Connectivity -> tosca.capabilities.network.Connectable

· This allows more app-centric naming for “network binding” and follows the naming paradigms established for Caps and Rels.

· Updated all examples and grammar to reflect these name changes.

Appendix K. Issues List

	Issue #
	Target
	Status
	Owner
	Title

	Notes

	TOSCA-132
	CSD03
	Open
	Palma
	Use "set_property" methods to "push" values from template inputs to nodes
	Feature. Needs new owner.

	TOSCA-135
	CSD02
	Open
	Rutkowski
	Define/reference a Regex language (or subset) we wish to support for constraints
	Feature, Reference a Perl subset.

	TOSCA-136
	CSD03
	Open
	Spatzier
	Need rules to assure non-collision (uniqueness) of requirement or capability names
	None

	TOSCA-137
	CSD03
	Defer
	Palma
	Need to address "optional" and "best can" on node requirements (constraints) for matching/resolution
	None

	TOSCA-138
	CSD02
	Review/ Action
	Palma
	Define a Network topology for L2 Networks along with support for Gateways, Subnets, Floating IPs and Routers
	Luc Boutier has rough proposal in MS Word format.

	TOSCA-140
	CSD03
	Review
	Palma
	Constraining the capabilities of multiple node templates
	

	TOSCA-141
	CSD03
	Review
	Palma
	Specifying Environment Constraints for Node Templates (Policy related)
	

	TOSCA-142
	CSD02
	Review
	Spatzier / Rutkowski
	Define normative Artifact Types (including deployment/packages, impls., and runtime types)
	

	TOSCA-143
	CSD02
	Review
	Rutkowski
	Define normative tosca.nodes.Network Node Type (for simple networks)
	Separate use case as what Luc proposes in TOSCA-138.

	TOSCA-148
	CSD03
	Open
	Palma
	Need a means to express cardinality on relationships (e.g., number of connections allowed)
	

	TOSCA-151
	CSD03
	Defer
	Rutkowski
	Resolve spec. behavior if name collisions occur on named Requirements
	subtask of TOSCA-148

	TOSCA-152
	CSD03
	Open
	Palma
	 Extend Requirement grammar to support "Optional/Best Can" Capability Type matching
	subtask of TOSCA-137

	TOSCA-153
	CSD03
	Open
	Rutkowski
	Define grammar and usage of Service Template keyname (schema namespace) "tosca_default_namespace"
	

	TOSCA-154
	CSD03
	Defer
	Palma
	Decide how security/access control work with Nodes, update grammar, author descriptive text/examples
	

	TOSCA-155
	CSD03
	Open
	Rutkowski
	How do we provide constraints on properties declared as simple YAML lists (sets)
	Need to define constraints for “set” types

	TOSCA-156
	CSD03
	Defer
	Palma
	Are there IPv6 considerations (e.g., new properties) for tosca.capabilities.Endpoint
	

	TOSCA-158
	CSD03
	Defer
	
	Provide prose describing how Feature matching is done by orchestrators
	Subtask of TOSCA-137

	TOSCA-161
	CSD03
	Defer
	Spatzier
	Need examples of using the built-in feature (Capability) and dependency (Requirement) of tosca.nodes.Root
	

	TOSCA-162
	CSD03
	Defer
	Rutkowski
	Provide recognized values for tosca.nodes.compute properties: os_arch
	

	TOSCA-163
	CSD03
	Defer
	Vachnis
	Provide recognized values for tosca.nodes.BlockStorage: store_fs_type
	

	TOSCA-165
	CSD03
	Defer
	Need new owner
	New use case / example: Selection/Replacement of web server type (e.g. Apache, NGinx, Lighttpd, etc.)
	

	TOSCA-166
	CSD03
	Defer
	Unassigned
	New use case / example: Web Server with (one or more) runtimes environments (e.g., PHP, Java, etc.)
	

	TOSCA-167
	CSD03
	Defer
	Unassigned
	New use case / example: Show abstract substitution of Compute node OS with different Node Type Impls.
	

	TOSCA-168
	CSD03
	Defer
	Unassigned
	New use case / example: Show how substitution of IaaS can be accomplished.
	

	TOSCA-170
	CSD02
	Open
	Elisha
	WD02 - Explicit textual mention, and grammar support, for adding (extending) node operations
	

	TOSCA-172
	CSD02
	Review
	Lipton
	2014 March - Public Comment Questions (Plans, Instance Counts, and linking SW Nodes)
	

	TOSCA-176
	CSD03
	Defer
	Elisha
	Add connectivity ability to Compute
	

	TOSCA-179
	CSD03
	Defer
	Elisha
	Add "timeout" and "retry" keynames to an operation
	

	TOSCA-180
	CSD02
	Open / In-progress
	Elisha / Rutkowski
	Support of secured repositories for artifacts
	

	TOSCA-181
	CSD03
	Open
	Boutier
	Dependency requirement type should match any target node.

Dependency requirement type should match any target node.
	Subtask of TOSCA-161

	TOSCA-182
	CSD02
	Open
	Palma
	Document parsing conventions
	

	TOSCA-183
	CSD02
	Open
	Palma
	Composition across multiple yaml documents
	

	TOSCA-184
	CSD02
	Open
	Palma
	Pushing (vs pulling) inputs to templates
	Subtask of TOSCA-132

	TOSCA-185
	CSD03
	Review / Defer
	Durand
	Instance model
	

	TOSCA-186
	CSD03
	Defer
	Spatzier
	model composition
	

	TOSCA-189
	CSD03
	Defer
	Shtilman
	Application Monitoring - Proposal
	Fixed

	TOSCA-191
	CSD02
	Open

In-Progress
	Rutkowski
	Document the “augmentation” behavior after relationship is selected in a requirement
	

	TOSCA-193
	CSD02
	Open
	Spatzier
	“implements” keyword needs its own section/grammar/example in A.5.2
	Subtask of TOSCA-186

	TOSCA-194
	CSD02
	Open
	Lauwers
	Nested Service Templates should be able to define additional operations
	Subtask of TOSCA-186

	TOSCA-196
	CSD02
	Open
	Lauwers
	Enhance "capabilities" section in nested templates
	Subtask of TOSCA-186

	TOSCA-197
	CSD02
	Open
	Lauwers
	Add "requirements" section in nested templates
	Subtask of TOSCA-186

	TOSCA-198
	CSD02
	Open
	Lauwers / Rutkowski
	Simplify “schema” specification
	

	TOSCA-200
	CSD03
	Open
	Parasol
	Query based upon capability
	

	TOSCA-201
	CSD03
	Open
	Lauwers
	Harmonize Properties and Capabilities in Node Types
	

	TOSCA-202
	CSD03
	Open
	Boutier
	Cardinalities for capabilities and requirements
	Subtask of TOSCA-148

	TOSCA-204
	CSD03
	Open
	Boutier
	Parameter definitions on operations should be closer to property definitions
	

	TOSCA-205
	CSD03
	Open
	Boutier
	Add interface type.
	

	TOSCA-206
	CSD03
	Open
	Boutier
	lifecycle.Simple interface and plan/workflow management...
	

	TOSCA-207
	CSD02
	Open
	Boutier
	postconfigure operation on Standard operation should be renamed in poststart
	

	TOSCA-208
	CSD03
	Open
	Boutier
	Add conditional capabilities (enable/disable capabilities on a node)
	

	TOSCA-209
	CSD02
	Open
	Rutkowski
	Fix Grouping example to use correct parameter for WebServer
	

	TOSCA-210
	CSD02
	Open
	Rutkowski
	Need example on get_xxx functions using HOST keyword
	

	TOSCA-211
	CSD02
	Open
	Rutkowski
	Need version on TOSCA Types (Node, Relationship, etc.)
	

	TOSCA-212
	CSD03
	Open
	Boutier
	Allow String concatenation for get_attributes/ properties to create aggregated props/outputs
	

	TOSCA-213
	CSD03
	Open
	Lauwers
	Clarify distinction between declaring properties and assigning property values
	

	TOSCA-214
	CSD02
	Open
	Vachnis / Rutkowski
	New functions for accessing the instance model
	

	TOSCA-217
	CSD02
	Open
	Spatzier / Rutkowski
	Add new simplified, single-line list notation / grammar for Requirement Def.
	

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 5 of 5
TOSCA-Simple-Profile-YAML-v1.0-csd02

11 December 2014

Standards Track Work Product
Copyright © OASIS Open 2015. All Rights Reserved.
Page 1 of 202

[image: image15.emf]Network

Template

B

[image: image16.png]Operation <operation>()
Invocation @-----f-m oy

Node State

Transition State <state>

[image: image17.png]TOSCA TOSCA TOSCA
Orchestrator Lifecycle Operation Node State
: U
stop()

| .
delete

|

P

[image: image18.png]TOSCA
Orchestrator

TOSCA
Lifecycle Operation

TOSCA
Node State

[image: image19.png]TOSCA TOSCA TOSCA
Orchestrator Lifecycle Operation Node State

3

cre&te()

pre_configure_source()

)

post_configure_source() |
_post_configure_target() _ _ \J'(

configuring

stafrt()

add:_target()
addsource()
remove:_target()
target. c‘ﬁanged(}

[image: image20.png]Relationship A-B
T —

Operations Operations
Operations |

Node A

(source)

Node B
(target)

[_create]

o<
| configure | pe_conﬁgure_target F====* |

ol -t - pre_configure_source

pre_configure_target ol
[
add_target

target_changed

create |

pre_configure_source
i

->0

configure |

[Cstart]

o

| S—

_1355579851.vsd

�

�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.

_1355579852.vsd

�

�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.

_1355579853.vsd

�

�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.

_1355579850.vsd
Frontend Tier

Backend Tier

VM

VM

VM

VM

VM

VM

VM

DB Tier

VM

VM

