
TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 1 of 95

TOSCA Simple Profile in YAML Version
1.0

Committee Specification Draft 01

27 March 2014

Specification URIs
This version:

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-
Profile-YAML-v1.0-csd01.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-
Profile-YAML-v1.0-csd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-
Profile-YAML-v1.0-csd01.doc

Previous version:

N/A

Latest version:
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-
YAML-v1.0.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-
YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-
YAML-v1.0.doc

Technical Committee:

OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC

Chairs:
Paul Lipton (paul.lipton@ca.com), CA Technologies
Simon Moser (smoser@de.ibm.com), IBM

Editors:
Derek Palma (dpalma@vnomic.com), Vnomic
Matt Rutkowski (mrutkows@us.ibm.com), IBM
Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM

Related work:

This specification is related to:

 Topology and Orchestration Specification for Cloud Applications Version 1.0. Edited by Derek
Palma and Thomas Spatzier. 25 November 2013. OASIS Standard. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html.

Declared XML namespace:

 http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0

Abstract:
This document defines a simplified profile of the TOSCA version 1.0 specification in a YAML
rendering which is intended to simplify the authoring of TOSCA service templates. This profile
defines a less verbose and more human-readable YAML rendering, reduced level of indirection
between different modeling artifacts as well as the assumption of a base type system.

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.doc
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.doc
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.doc
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.doc
https://www.oasis-open.org/committees/tosca/
mailto:paul.lipton@ca.com
http://www.ca.com/
mailto:smoser@de.ibm.com
http://www.ibm.com/
mailto:dpalma@vnomic.com
http://www.vnomic.com/
mailto:mrutkows@us.ibm.com
http://www.ibm.com/
mailto:thomas.spatzier@de.ibm.com
http://www.ibm.com/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 2 of 95

Status:
This document was last revised or approved by the OASIS Topology and Orchestration
Specification for Cloud Applications (TOSCA) TC on the above date. The level of approval is also
listed above. Check the “Latest version” location noted above for possible later revisions of this
document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at https://www.oasis-
open.org/committees/tosca/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/tosca/ipr.php.

Citation format:

When referencing this specification the following citation format should be used:

[TOSCA-Simple-Profile-YAML-v1.0]

TOSCA Simple Profile in YAML Version 1.0. Edited by Derek Palma, Matt Rutkowski, and
Thomas Spatzier. 27 March 2014. OASIS Committee Specification Draft 01. http://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-
csd01.html. Latest version: http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html.

https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/committees/tosca/ipr.php
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 3 of 95

Notices

Copyright © OASIS Open 2014. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 4 of 95

Table of Contents

1 Objective ... 7

2 Summary of key TOSCA concepts ... 8

3 A “hello world” template for TOSCA Simple Profile in YAML ... 9

3.1 Requesting input parameters and providing output .. 9

4 TOSCA template for a simple software installation .. 11

5 Overriding behavior of predefined node types ... 13

6 TOSCA template for database content deployment ... 14

7 TOSCA template for a two-tier application ... 16

8 Using a custom script to establish a relationship in a template ... 19

9 Using custom relationship types in a TOSCA template ... 21

9.1 Definition of a custom relationship type .. 22

10 Defining generic dependencies between nodes in a template ... 23

11 Defining requirements on the hosting infrastructure for a software installation 24

12 Defining requirements on a database for an application .. 25

13 Grouping node templates ... 26

Appendix A. TOSCA Simple Profile definitions in YAML .. 29

A.1 TOSCA namespace and alias .. 29

A.2 Parameter and property types .. 29

A.2.1 Referenced YAML Types .. 29

A.2.2 TOSCA Types ... 29

A.2.3 version ... 30

A.3 TOSCA Entity and element definitions (meta-model) .. 30

A.3.1 Description element .. 30

A.3.2 Constraint clause .. 31

A.3.3 Constraints element .. 33

A.3.4 Operation definition ... 34

A.3.5 Artifact definition ... 35

A.3.6 Artifacts element ... 36

A.3.7 Interface definition ... 37

A.3.8 Interfaces element .. 38

A.3.9 Property definition ... 38

A.3.10 Properties element .. 39

A.3.11 Capability definition ... 40

A.3.12 Capabilities element .. 41

A.3.13 Requirements element .. 42

A.3.14 Artifact Type .. 44

A.3.15 Capability Type ... 45

A.3.16 Requirement Type .. 46

A.3.17 Relationship Type ... 47

A.3.18 Node Type... 48

A.3.19 Node Template ... 49

A.4 Service Template ... 51

A.4.1 Keynames ... 51

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 5 of 95

A.4.2 Grammar ... 52

A.4.3 Top-level key definitions ... 53

A.5 Service Template-level functions ... 60

A.5.1 Property functions ... 61

A.5.2 Navigation functions .. 61

Appendix B. TOSCA normative type definitions ... 62

B.1 Assumptions ... 62

B.2 Requirement Types .. 62

B.3 Capabilities Types .. 62

B.3.1 tosca.capabilities.Root .. 62

B.3.2 tosca.capabilities.Feature ... 62

B.3.3 tosca.capabilities.Container .. 62

B.3.4 tosca.capabilities.Endpoint ... 63

B.3.5 tosca.capabilities.DatabaseEndpoint .. 64

B.4 Relationship Types ... 64

B.4.1 tosca.relationships.Root .. 64

B.4.2 tosca.relationships.DependsOn .. 64

B.4.3 tosca.relationships.HostedOn ... 65

B.4.4 tosca.relationships.ConnectsTo .. 65

B.5 Interfaces .. 65

B.5.1 Notes ... 66

B.5.2 tosca.interfaces.node.Lifecycle ... 66

B.5.3 tosca.interfaces.relationship.Configure ... 66

B.6 Node Types .. 67

B.6.1 tosca.nodes.Root .. 67

B.6.2 tosca.nodes.Compute ... 68

B.6.3 tosca.nodes.SoftwareComponent ... 69

B.6.4 tosca.nodes.WebServer .. 70

B.6.5 tosca.nodes.WebApplication ... 71

B.6.6 tosca.nodes.DBMS ... 71

B.6.7 tosca.nodes.Database .. 72

B.6.8 tosca.nodes.ObjectStorage ... 73

B.6.9 tosca.nodes.BlockStorage .. 74

B.6.10 tosca.nodes.Network .. 75

B.7 Artifact Types ... 76

B.7.1 tosca.artifacts.Root ... 76

B.7.2 tosca.artifacts.File ... 76

B.7.3 Implementation Types ... 76

Appendix C. Non-normative type definitions ... 78

C.1 Capability Types ... 78

C.1.1 tosca.capabilities.DatabaseEndpoint.MySQL ... 78

C.2 Node Types .. 78

C.2.1 tosca.nodes.Database.MySQL ... 78

C.2.2 tosca.nodes.DBMS.MySQL .. 78

C.2.3 tosca.nodes.WebServer.Apache .. 79

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 6 of 95

C.2.4 tosca.nodes.WebApplication.WordPress ... 79

Appendix D. Use Cases .. 81

D.1 Application Modeling Use Cases: .. 81

D.1.1 Virtual Machine (VM), single instance .. 81

D.1.2 WordPress + MySQL, single instance .. 83

D.1.3 WordPress + MySQL + Object Storage, single instance .. 87

D.1.4 WordPress + MySQL + Block Storage, single instance ... 87

D.1.5 WordPress + MySQL, each on separate instances .. 88

D.1.6 WordPress + MySQL + Network, single instance ... 88

D.1.7 WordPress + MySQL + Floating IPs, single instance ... 88

Appendix E. Notes and Issues .. 90

E.1 Known Extensions to TOSCA v1.0 .. 90

E.1.1 Model Changes ... 90

E.1.2 Normative Types ... 90

E.1.3 Functions ... 91

E.2 Issues to resolve in future drafts .. 91

Appendix F. References .. 93

F.1 Terminology .. 93

F.2 Normative References .. 93

F.3 Non-Normative References .. 93

Appendix G. Acknowledgments .. 94

Appendix H. Revision History.. 95

Table of Figures

Example 1 - TOSCA Simple "Hello World" .. 9

Example 2 - Template with input and output parameter sections .. 9

Example 3 - Simple (MySQL) software installation on a TOSCA Compute node ... 11

Example 4 - Node Template overriding its Node Type's "configure" interface ... 13

Example 5 - Template for deploying database content on-top of MySQL DBMS middleware 14

Example 6 - Basic two-tier application (web application and database server tiers) .. 16

Example 7 – Providing a custom script to establish a connection ... 19

Example 8 – A web application Node Template requiring a custom database connection type 21

Example 9 - Defining a custom relationship type .. 22

Example 10 - Simple dependency relationship between two nodes ... 23

Example 11 - Grouping Node Templates with same scaling policy ... 26

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 7 of 95

1 Objective 1

The TOSCA Simple Profile in YAML specifies a rendering of TOSCA which aims to provide a more 2
accessible syntax as well as a more concise and incremental expressiveness of the TOSCA DSL in order 3
to minimize the learning curve and speed the adoption of the use of TOSCA to portably describe cloud 4
applications. 5

This proposal describes a YAML rendering for TOSCA. YAML is a human friendly data serialization 6
standard (http://yaml.org/) with a syntax much easier to read and edit than XML. As there are a number of 7
DSLs encoded in YAML, a YAML encoding of the TOSCA DSL makes TOSCA more accessible by these 8
communities. 9

This proposal prescribes an isomorphic rendering in YAML of a subset of the TOSCA v1.0 ensuring that 10
TOSCA semantics are preserved and can be transformed from XML to YAML or from YAML to XML. 11
Additionally, in order to streamline the expression of TOSCA semantics, the YAML rendering is sought to 12
be more concise and compact through the use of the YAML syntax. 13

http://yaml.org/

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 8 of 95

2 Summary of key TOSCA concepts 14

The TOSCA metamodel uses the concept of service templates to describe cloud workloads as a graph of 15
node templates modeling the components a workload is made up of and as relationship templates 16
modeling the relations between those components. TOSCA further provides a type system of node types 17
to describe the possible building blocks for constructing a service template, was well as relationship type 18
to describe possible kinds of relations. Both node- and relationship types may define lifecycle operations 19
to implement the behavior an orchestration engine can invoke when instantiating a service template. For 20
example, a node type for some software product might provide a ‘create’ operation to handle the creation 21
of an instance of a component at runtime, or a ‘start’ or ‘stop’ operation to handle a start or stop event 22
triggered by an orchestration engine. Those lifecycle operations are backed by implementation artifacts 23
such as scripts or Chef recipes that implement the actual behavior. 24

An orchestration engine processing a TOSCA service template uses the mentioned lifecycle operations to 25
instantiate single components at runtime, and it uses the relationship between components to derive the 26
order of component instantiation. For example, during the instantiation of a two-tier application that 27
includes a web application that depends on a database, an orchestration engine would first invoke the 28
‘create’ operation on the database component to install and configure the database, and it would then 29
invoke the ‘create’ operation of the web application to install and configure the application (which includes 30
configuration of the database connection). 31

The TOSCA simple profile assumes a number of base types (node types and relationship types) to be 32
supported by each compliant environment such as a ‘Compute’ node type, a ‘Network’ node type or a 33
generic ‘Database’ node type (see Appendix B). Furthermore, it is envisioned that a large number of 34
additional types for use in service templates will be defined by a community over time. Therefore, 35
template authors in many cases will not have to define types themselves but can simply start writing 36
service templates that use existing types. In addition, the simple profile will provide means for easily 37
customizing existing types, for example by providing a customized ‘create’ script for some software. 38

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 9 of 95

3 A “hello world” template for TOSCA Simple Profile 39

in YAML 40

As mentioned before, the TOSCA simple profile assumes the existence of a base set of node types (e.g., 41
a ‘Compute’ node) and other types for creating TOSCA Service Templates. It is envisioned that many 42
additional node types for building service templates will be created by communities. Consequently, a 43
most basic TOSCA template for deploying just a single server would look like the following: 44

Example 1 - TOSCA Simple "Hello World" 45

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with predefined properties.

node_templates:

 my_server:

 type: tosca.nodes.Compute

 properties:

 # compute properties

 disk_size: 10

 num_cpus: 2

 mem_size: 4

 # host image properties

 os_arch: x86_64

 os_type: linux

 os_distribution: rhel

 os_version: 6.5

The template above contains the definition of one single ‘Compute’ node template with predefined 46

(hardcoded) values for number of CPUs, memory size, etc. When instantiated in a provider environment, 47

the provider would allocate a physical or virtual server that meets those specifications. The set of 48

properties of any node type, as well as their schema definition, is defined by the respective node type 49

definitions, which a TOSCA orchestration engine can resolve to validate the properties provided in a 50

template. 51

3.1 Requesting input parameters and providing output 52

Typically, one would want to allow users to customize deployments by providing input parameters instead 53
of using hardcoded values inside a template. In addition, it is useful to pass output that describes the 54
deployed environment (such as the IP address of the deployed server) to the user. A refined service 55
template with corresponding inputs and outputs sections is shown below. 56

Example 2 - Template with input and output parameter sections 57

tosca_definitions_version: tosca_simple_yaml_1_0

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 10 of 95

description: Template for deploying a single server with predefined properties.

inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

node_templates:

 my_server:

 type: tosca.nodes.Compute

 properties:

 # Compute properties

 num_cpus: { get_input: cpus }

 mem_size: 4

 disk_size: 10

 # host image properties

 os_arch: x86_32

 os_type: linux

 os_distribution: ubuntu

 os_version: 12.04

outputs:

 server_ip:

 description: The IP address of the provisioned server.

 value: { get_property: [my_server, ip_address] }

Note that the inputs section of a TOSCA template allows for defining optional constraints on each input 58

parameter to restrict possible user input. Further note that TOSCA provides for a set of intrinsic 59

functions like get_input or get_property to reference elements within the template or to retrieve 60

runtime values. 61

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 11 of 95

4 TOSCA template for a simple software installation 62

Software installations can be modeled in TOSCA as node templates that get related to the node template 63
for a server on which the software shall be installed. With a number of existing software node types (e.g. 64
either created by the TOSCA work group or a community) template authors can just use those node types 65
for writing service templates as shown below. 66

Example 3 - Simple (MySQL) software installation on a TOSCA Compute node 67

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with MySQL software on top.

inputs:

 # omitted here for sake of brevity

node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 dbms_root_password: { get_input: my_mysql_rootpw }

 dbms_port: { get_input: my_mysql_port }

 requirements:

 - host: db_server

 db_server:

 type: tosca.nodes.Compute

 properties:

 # omitted here for sake of brevity

The example above makes use of a node type tosca.nodes.DBMS.MySQL for the mysql node template 68

to install MySQL on a server. This node type allows for setting a property dbms_root_password to 69

adapt the password of the MySQL root user at deployment. The set of properties and their schema has 70

been defined in the node type definition. By means of the get_input function, a value provided by the 71

user at deployment time is used as value for the dbms_root_password property. The same is true for 72

the dbms_port property. 73

The mysql node template is related to the db_server node template (of type tosca.nodes.Compute) via 74

the requirements section to indicate where MySQL is to be installed. In the TOSCA metamodel, nodes 75

get related to each other when one node has a requirement against some feature provided by another 76
node. What kinds of requirements exist is defined by the respective node type. In case of MySQL, which 77
is software that needs to be installed or hosted on a compute resource, the node type defines a 78
requirement called host, which needs to be fulfilled by pointing to a node template of type 79

tosca.nodes.Compute. 80

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 12 of 95

Within the requirements section, all entries contain the name of a requirement as key and the identifier 81

of the fulfilling entity as value, expressing basically a named reference to some other node. In the 82
example above, the host requirement is fulfilled by referencing the db_server node template. 83

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 13 of 95

5 Overriding behavior of predefined node types 84

Node types in TOSCA have associated implementations that provide the automation (e.g. in the form of 85
scripts or Chef recipes) for lifecycle operations of a node. For example, the node type implementation for 86
MySQL will provide the scripts to configure, start, or stop MySQL at runtime. 87

If it is desired to use a custom script for one of the operation defined by a node type in the context of a 88
specific template, the default implementation can be easily overridden by providing a reference to the own 89
automation in the template as shown in the following example: 90

Example 4 - Node Template overriding its Node Type's "configure" interface 91

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with MySQL software on top.

inputs:

 # omitted here for sake of brevity

node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 dbms_root_password: { get_input: my_mysql_rootpw }

 dbms_port: { get_input: my_mysql_port }

 requirements:

 - host: db_server

 interfaces:

 Lifecycle:

 configure: scripts/my_own_configure.sh

 db_server:

 type: tosca.nodes.Compute

 properties:

 # omitted here for sake of brevity

In the example above, an own script for the configure operation of the MySQL node type’s lifecycle 92

interface is provided. The path given in the example above is interpreted relative to the template file, 93

but it would also be possible to provide an absolute URI to the location of the script. 94

Operations defined by node types can be thought of as hooks into which automation can be injected. 95
Typically, node type implementations provide the automation for those hooks. However, within a 96
template, custom automation can be injected to run in a hook in the context of the one, specific node 97
template (i.e. without changing the node type). 98

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 14 of 95

6 TOSCA template for database content deployment 99

In the example shown in section 4 the deployment of the MySQL middleware only, i.e. without actual 100
database content was shown. The following example shows how such a template can be extended to 101
also contain the definition of custom database content on-top of the MySQL DBMS software. 102

Example 5 - Template for deploying database content on-top of MySQL DBMS middleware 103

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying MySQL and database content.

inputs:

 # omitted here for sake of brevity

node_templates:

 my_db:

 type: tosca.nodes.Database.MySQLDatabase

 properties:

 db_name: { get_input: database_name }

 db_user: { get_input: database_user }

 db_password: { get_input: database_password }

 db_port: { get_input: database_port }

 artifacts:

 - db_content: files/my_db_content.txt

 type: tosca.artifacts.File

 requirements:

 - host: mysql

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 dbms_root_password: { get_input: mysql_rootpw }

 dbms_port: { get_input: mysql_port }

 requirements:

 - host: db_server

 db_server:

 type: tosca.nodes.Compute

 properties:

 # omitted here for sake of brevity

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 15 of 95

In the example above, the my_db node template or type tosca.nodes.Database.MySQL represents an 104

actual MySQL database instance managed by a MySQL DBMS installation. In its artifacts section, the 105

node template points to a text file (i.e., my_db_content.txt) which can be used to help create the 106

database content during deployment time. The requirements section of the my_db node template 107

expresses that the database is hosted on a MySQL DBMS represented by the mysql node. 108

Note that while it would be possible to define one node type and corresponding node templates that 109
represent both the DBMS middleware and actual database content as one entity, TOSCA distinguishes 110
between middleware node types and application layer node types. This allows at the one hand to have 111
better re-use of generic middleware node types without binding them to content running on top, and on 112
the other hand this allows for better substitutability of, for example, middleware components during the 113
deployment of TOSCA models. 114

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 16 of 95

7 TOSCA template for a two-tier application 115

The definition of multi-tier applications in TOSCA is quite similar to the example shown in section 4, with 116
the only difference that multiple software node stacks (i.e., node templates for middleware and application 117
layer components), typically hosted on different servers, are defined and related to each other. The 118
example below defines a web application stack hosted on the web_server “compute” resource, and a 119

database software stack similar to the one shown earlier in section 6 hosted on the db_server compute 120

resource. 121

Example 6 - Basic two-tier application (web application and database server tiers) 122

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a two-tier application servers on two

inputs:

 # Admin user name and password to use with the WordPress application

 wp_admin_username:

 type: string

 wp_admin_password:

 type string

 wp_db_name:

 type: string

 wp_db_user:

 type: string

 wp_db_password:

 type: string

 wp_db_port:

 type: integer

 mysql_root_password:

 type string

 mysql_port:

 type integer

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 properties:

 admin_user: { get_input: wp_admin_username }

 admin_password: { get_input: wp_admin_password }

 db_host: { get_property: [db_server, ip_address] }

 requirements:

 - host: apache

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 17 of 95

 - database_endpoint: wordpress_db

 interaces:

 Lifecycle:

 inputs:

 db_host: { get_property: [db_server, ip_address] }

 db_port: { get_property: [wordpress_db, db_port] }

 db_name: { get_property: [wordpress_db, db_name] }

 db_user: { get_property: [wordpress_db, db_user] }

 db_password: { get_property: [wordpress_db, db_password] }

 apache:

 type: tosca.nodes.WebServer.Apache

 properties:

 # omitted here for sake of brevity

 requirements:

 - host: web_server

 web_server:

 type: tosca.nodes.Compute

 properties:

 # omitted here for sake of brevity

 wordpress_db:

 type: tosca.nodes.Database.MySQL

 properties:

 db_name: { get_input: wp_db_name }

 db_user: { get_input: wp_db_user }

 db_password: { get_input: wp_db_password }

 db_port: { get_input: wp_db_port }

 requirements:

 - host: mysql

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 dbms_root_password: { get_input: mysql_rootpw }

 dbms_port: { get_input: mysql_port }

 requirements:

 - host: db_server

 db_server:

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 18 of 95

 type: tosca.nodes.Compute

 properties:

 # omitted here for sake of brevity

The web application stack consists of the wordpress, the apache and the web_server node templates. 123

The wordpress node template represents a custom web application of type 124

tosca.nodes.WebApplication.WordPress which is hosted on an Apache web server represented by the 125

apache node template. This hosting relationship is expressed via the host entry in the requirements 126

section of the wordpress node template. The apache node template, finally, is hosted on the 127

web_server compute node. 128

The database stack consists of the wordpress_db, the mysql and the db_server node templates. The 129
wordpress_db node represents a custom database of type tosca.nodes.Database.MySQL which is 130
hosted on a MySQL DBMS represented by the mysql node template. This node, in turn, is hosted on the 131
db_server compute node. 132

The wordpress node requires the wordpress_db node, since the WordPress application needs a 133

database to store its data in. This relationship is established through the database entry in the 134

requirements section of the wordpress node template. For configuring the WordPress web application, 135

information about the database to connect to is required as input to the configure operation. Therefore, 136

the respective input parameters (as defined for the configure operation of node type 137

tosca.nodes.WebApplication.WordPress – see section 6) are mapped to properties of the 138

wordpress_db node via the get_property function. 139

Note: besides the configure operation of the wordpress node template, more operations would be listed 140

in a complete TOSCA template. Those other operations have been omitted for the sake of brevity. 141

 142

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 19 of 95

8 Using a custom script to establish a relationship in 143

a template 144

In previous examples, the template author did not have to think about explicit relationship types to be 145
used to link a requirement of a node to another node of a model, nor did the template author have to think 146
about special logic to establish those links. For example, the host requirement in previous examples just 147

pointed to another node template and based on metadata in the corresponding node type definition the 148
relationship type to be established is implicitly given. 149

In some cases it might be necessary to provide special processing logic to be executed when establishing 150
relationships between nodes at runtime. For example, when connecting the WordPress application from 151
previous examples to the MySQL database, it might be desired to apply custom configuration logic in 152
addition to that already implemented in the application node type. In such a case, it is possible for the 153
template author to provide a custom script as implementation for an operation to be executed at runtime 154
as shown in the following example. 155

Example 7 – Providing a custom script to establish a connection 156

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a two-tier application on two servers.

inputs:

 # omitted here for sake of brevity

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 properties:

 # omitted here for sake of brevity

 requirements:

 - host: apache

 - database: wordpress_db
 interfaces:

 tosca.interfaces.relationships.Configure:

 pre_configure_source: scripts/wp_db_configure.sh

 wordpress_db:

 type: tosca.nodes.Database.MySQL

 properties:

 # omitted here for the sake of brevity

 requirements:

 - host: mysql

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 20 of 95

 # other resources not shown for this example ...

From metadata in the node type definitions of WordPress and MySQL it is clear that a ConnectsTo 157

relationship will be used to establish the link between the wordpress node and the wordpress_db node 158

at runtime. The ConnectsTo relationship type (see B.4.4) defines an interface with operations that get 159

executed when establishing the relationship. For one of those operations – pre_configure_source – a 160

custom script wp_db_configure.sh is provided. In this example, it is assumed that this script is located 161

at a location relative to the referencing service template, perhaps provided in some application 162

packaging format (e.g., the TOSCA Cloud Service Archive (CSAR) format). 163

This approach allows for conveniently hooking in custom behavior without having to define a completely 164
new derived relationship type. 165

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 21 of 95

9 Using custom relationship types in a TOSCA 166

template 167

In the previous section it was shown how custom behavior can be injected by specifying scripts inline in 168
the requirements section of node templates. When the same custom behavior is required in many 169
templates, it does make sense to define a new relationship type that encapsulates the custom behavior in 170
a re-usable way instead of repeating the same reference to a script (or even references to multiple 171
scripts) in many places. 172

Such a custom relationship type can then be used in templates as shown in the following example. 173

Example 8 – A web application Node Template requiring a custom database connection type 174

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a two-tier application on two servers.

inputs:

 # omitted here for sake of brevity

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 properties:

 # omitted here for sake of brevity

 requirements:

 - host: apache

 - database: wordpress_db
 relationship_type: my.types.WordpressDbConnection

 wordpress_db:

 type: tosca.nodes.Database.MySQL

 properties:

 # omitted here for the sake of brevity

 requirements:

 - host: mysql

 # other resources not shown here ...

In the example above, a special relationship type my.types.WordpressDbConnection is specified for 175

establishing the link between the wordpress node and the wordpress_db node through the use of the 176

relationship_type (keyword) attribute in the database reference. It is assumed, that this special 177

relationship type provides some extra behavior (e.g., an operation with a script) in addition to what a 178

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 22 of 95

generic “connects to” relationship would provide. The definition of this custom relationship type is 179

shown in the following section. 180

9.1 Definition of a custom relationship type 181

The following YAML snippet shows the definition of the custom relationship type used in the previous 182
section. This type derives from the base “ConnectsTo” and overrides one operation defined by that base 183
relationship type. For the pre_configure_source operation defined in the Configure interface of the 184

ConnectsTo relationship type, a script implementation is provided. It is again assumed that the custom 185
configure script is located at a location relative to the referencing service template, perhaps provided in 186
some application packaging format (e.g., the TOSCA Cloud Service Archive (CSAR) format). 187

Example 9 - Defining a custom relationship type 188

tosca_definitions_version: tosca_simple_yaml_1_0

description: Definition of custom WordpressDbConnection relationship type

relationship_types:

 my.types.WordpressDbConnection:

 derived_from: tosca.relations.ConnectsTo

 interfaces:

 Configure:

 pre_configure_source: scripts/wp_db_configure.sh

In the above example, the Configure interface is the specified alias or shorthand name for the TOSCA 189

interface type with the full name of tosca.interfaces.relationship.Configure which is defined in 190

the appendix. 191

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 23 of 95

10 Defining generic dependencies between nodes in a 192

template 193

In some cases it can be necessary to define a generic dependency between two nodes in a template to 194
influence orchestration behavior, i.e. to first have one node processed before another dependent node 195
gets processed. This can be done by using the generic dependency requirement which is defined by the 196

TOSCA Root Node Type and thus gets inherited by all other node types in TOSCA (see section B.6.1). 197

Example 10 - Simple dependency relationship between two nodes 198

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with a generic dependency between two nodes.

inputs:

 # omitted here for sake of brevity

node_templates:

 my_app:

 type: my.types.MyApplication

 properties:

 # omitted here for sake of brevity

 requirements:

 - dependency: some_service

 some_service:

 type: some.type.SomeService

 properties:

 # omitted here for sake of brevity

As in previous examples, the relation that one node depends on another node is expressed in the 199

requirements section using the dependency requirement that exists for all node types in TOSCA. Even if 200

the creator of the MyApplication node type did not define a specific requirement for SomeService 201

(similar to the database requirement in the example in section 8), the template author who knows that 202

there is a timing dependency and can use the generic dependency requirement to express that 203

constraint using the very same syntax as used for all other references. 204

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 24 of 95

11 Defining requirements on the hosting infrastructure 205

for a software installation 206

Instead of defining software installations and the hosting infrastructure (the servers) in the same template, 207
it is also possible to define only the software components of an application in a template and just express 208
constrained requirements against the hosting infrastructure. At deployment time, the provider can then do 209
a late binding and dynamically allocate or assign the required hosting infrastructure and place software 210
components on top. 211

The following example shows how such generic hosting requirements can be expressed in the 212
requirements section of node templates. 213

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with requirements against hosting infrastructure.

inputs:

 # omitted here for sake of brevity

node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 # omitted here for sake of brevity

 requirements:

 - host: tosca.nodes.Compute

 constraints:

 - num_cpus: { in_range: { 1, 4 } }

 - mem_size: { greater_or_equal: 2 }

 - os_arch: x86_64

 - os_type: linux

 - os_distribution: ubuntu

In the example above, it is expressed that the mysql component requires a host of type Compute. In 214

contrast to previous examples, there is no reference to any node template but just a specification of the 215

type of required node. At deployment time, the provider will thus have to allocate or assign a resource 216

of the given type. 217

In the constraints section, the characteristics of the required compute node can be narrowed down by 218

defining boundaries for the memory size, number of CPUs, etc. Those constraints can either be 219
expressed by means of concrete values (e.g. for the os_arch attribute) which will require a perfect match, 220

or by means of qualifier functions such as greater_or_equal. 221

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 25 of 95

12 Defining requirements on a database for an 222

application 223

In the same way requirements can be defined on the hosting infrastructure for an application, it is 224
possible to express requirements against application or middleware components such as a database that 225
is not defined in the same template. The provider may then allocate a database by any means, e.g. using 226
a database-as-a-service solution. 227

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template with a database requirement.

inputs:

 # omitted here for sake of brevity

node_templates:

 my_app:

 type: my.types.MyApplication

 properties:

 admin_user: { get_input: admin_username }

 admin_password: { get_input: admin_password }

 db_endpoint_url: { get_ref_property: [database, db_endpoint_url] }

 requirements:

 - database: tosca.nodes.DBMS.MySQL

 constraints:

 - mysql_version: { greater_or_equal: 5.5 }

In the example above, the application my_app needs a MySQL database, where the version of MySQL 228

must be 5.5 or higher. The example shows an additional feature of referencing a property of the 229

database to get the database connection endpoint URL at runtime via the get_ref_property intrinsic 230

function. In contrast to the get_property function used in earlier examples, which assumes that a node 231

template in the same service template is referenced, the get_ref_property function allows for getting 232

a property via a reference expressed in the requirements section. The first argument is the name of a 233

reference – database in the example above – and the second argument is the name of the property of 234

the referenced node, which must be defined by the respective node type 235

tosca.types.nodes.MySQLDatabase. 236

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 26 of 95

13 Grouping node templates 237

In designing applications composed of several interdependent software components (or nodes) it is often 238
desirable to manage these components as a named group. This can provide an effective way of 239
associating policies (e.g., scaling, placement, security or other) that orchestration tools can apply to all 240
the components of group during deployment or during other lifecycle stages. 241

In many realistic scenarios it is desirable to include scaling capabilities into an application to be able to 242

react on load variations at runtime. The example below shows the definition of a scaling web server 243

stack, where a variable number of servers with apache installed on them can exist, depending on the 244

load on the servers. 245

Example 11 - Grouping Node Templates with same scaling policy 246

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for a scaling web server.

inputs:

 # omitted here for sake of brevity

node_templates:

 apache:

 type: tosca.types.nodes.ApacheWebserver

 properties:

 http_port: 8080

 https_port: 8443

 requirements:

 - host: server

 server:

 type: tosca.nodes.Compute

 properties:

 # omitted here for sake of brevity

group:

 webserver_group:

 members: [apache, server]

 policies:

 - my_scaling_policy:

 # Specific policy definitions are considered domain specific and

 # are not included here

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 27 of 95

The example first of all uses the concept of grouping to express which components (node templates) 247

need to be scaled as a unit – i.e. the compute nodes and the software on-top of each compute node. 248

This is done by defining the webserver_group in the groups section of the template and by adding both 249

the apache node template and the server node template as a member to the group. 250

Furthermore, a scaling policy is defined for the group to express that the group as a whole (i.e. pairs of 251
server node and the apache component installed on top) should scale up or down under certain 252

conditions. 253

In cases where no explicit binding between software components and their hosting compute resources is 254
defined in a template, but only requirements are defined as has been shown in section 11, a provider 255
could decide to place software components on the same host if their hosting requirements match, or to 256
place them onto different hosts. 257

It is often desired, though, to influence placement at deployment time to make sure components get 258
collocation or anti-collocated. This can be expressed via grouping and policies as shown in the example 259
below. 260

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template hosting requirements and placement policy.

inputs:

 # omitted here for sake of brevity

node_templates:

 wordpress:

 type: tosca.types.nodes.Wordpress

 properties:

 # omitted here for sake of brevity

 requirements:

 - host: tosca.nodes.Compute

 constraints:

 mem_size: { greater_or_equal: 2 }

 os_arch: x86_64

 os_type: linux

 mysql:

 type: tosca.types.nodes.MySQL

 properties:

 # omitted here for sake of brevity

 requirements:

 - host: tosca.nodes.Compute

 constraints:

 disk_size: { greater_or_equal: 10 }

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 28 of 95

 arch: x86_64

 os_type: linux

groups:

 my_collocation_group:

 members: [wordpress, mysql]

 policies:

 - my_anti_collocation_policy:

 # Specific policy definitions are considered domain specific and

 # are not included here

In the example above, both software components wordpress and mysql have identical hosting 261

requirements. Therefore, a provider could decide to put both on the same server. By defining a group of 262

the two components and attaching an anti-collocation policy to the group it can be made sure, though, 263

that both components are put onto different hosts at deployment time. 264

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 29 of 95

Appendix A. TOSCA Simple Profile definitions in 265

YAML 266

This section describes all of the YAML block structure for all keys and mappings that are defined for the 267
TOSCA Version 1.0 Simple Profile specification that are needed to describe a TOSCA Service Template 268
(in YAML). 269

A.1 TOSCA namespace and alias 270

The following table defines the namespace alias and (target) namespace values that SHALL be used 271

when referencing the TOSCA Simple Profile version 1.0 specification. 272

Alias Target Namespace Specification Description

tosca_simple_yaml_1_
0

http://docs.oasis-
open.org/tosca/ns/simple/yaml/1.0

The TOSCA Simple Profile v1.0 (YAML)
target namespace and namespace alias.

A.2 Parameter and property types 273

This clause describes the primitive types that are used for declaring normative properties, parameters 274
and grammar elements throughout this specification. 275

A.2.1 Referenced YAML Types 276

Many of the types we use in this profile are built-in types from the YAML 1.2 specification (i.e., 277

tag:yaml.org,2002). 278

The following table declares the valid YAML type URIs and aliases that SHALL be used when possible 279

when defining parameters or properties within TOSCA Service Templates using this specification: 280

Valid aliases Type URI

string tag:yaml.org,2002:str (default)

integer tag:yaml.org,2002:int

float tag:yaml.org,2002:float

boolean tag:yaml.org,2002:bool

timestamp tag:yaml.org,2002:timestamp

null tag:yaml.org,2002:null

A.2.1.1 Notes 281

 The “string” type is the default type when not specified on a parameter or property declaration. 282

 While YAML supports further type aliases, such as “str” for “string”, the TOSCA Simple Profile 283

specification promotes the fully expressed alias name for clarity. 284

A.2.2 TOSCA Types 285

This specification defines the following types that may be used when defining properties or parameters. 286

http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0
http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 30 of 95

A.2.3 version 287

TOSCA supports the concept of “reuse” of type definitions, as well as template definitions which could be 288
version and change over time. It is important to provide a reliable, normative means to represent a 289
version string which enables the comparison and management of types and templates over time. 290
Therefore, the TOSCA TC intends to provide a normative version type (string) for this purpose in future 291
Working Drafts of this specification. 292

A.3 TOSCA Entity and element definitions (meta-model) 293

This section defines all modelable entities that comprise the TOSCA Version 1.0 Simple Profile 294
specification along with their key names, grammar and requirements. 295

A.3.1 Description element 296

This optional element provides a means include single or multiline descriptions within a TOSCA Simple 297
Profile template as a scalar string value. 298

A.3.1.1 Keyname 299

The following keyname is used to provide a description within the TOSCA Simple Profile specification: 300

description

A.3.1.2 Grammar 301

The description element is a YAML string. 302

description: <string>

A.3.1.3 Examples 303

Simple descriptions are treated as a single literal that includes the entire contents of the line that 304

immediately follows the description key: 305

description: This is an example of a single line description (no folding).

The YAML “folded” style may also be used for multi-line descriptions which “folds” line breaks as space 306

characters. 307

description: >

 This is an example of a multi-line description using YAML. It permits for line

 breaks for easier readability...

 if needed. However, (multiple) line breaks are folded into a single space

 character when processed into a single string value.

A.3.1.4 Notes 308

 Use of “folded” style is discouraged for the YAML string type apart from when used with the 309

description keyname. 310

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 31 of 95

A.3.2 Constraint clause 311

A constraint clause defines an operation along with one or more compatible values that can be used to 312
define a constraint on a property or parameter’s allowed values when it is defined in a TOSCA Service 313
Template or one of its entities. 314

A.3.2.1 Operator keynames 315

The following is the list of recognized operators (keynames) when defining constraint clauses: 316

Operator Type Value Type Description

equal scalar any Constrains a property or parameter to a value equal to (‘=’) the value
declared.

greater_than scalar comparable Constrains a property or parameter to a value greater than (‘>’) the value
declared.

greater_or_equal scalar comparable Constrains a property or parameter to a value greater than or equal to
(‘>=’) the value declared.

less_than scalar comparable Constrains a property or parameter to a value less than (‘<’) the value
declared.

less_or_equal scalar comparable Constrains a property or parameter to a value less than or equal to (‘<=’)
the value declared.

in_range dual scalar comparable Constrains a property or parameter to a value in range of (inclusive) the
two values declared.

valid_values list any Constrains a property or parameter to a value that is in the list of
declared values.

length scalar string Constrains the property or parameter to a value of a given length.

min_length scalar string Constrains the property or parameter to a value to a minimum length.

max_length scalar string Constrains the property or parameter to a value to a maximum length.

pattern regex string Constrains the property or parameter to a value that is allowed by the
provided regular expression.

Note: Future drafts of this specification will detail the use of regular
expressions and reference an appropriate standardized grammar.

In the Value Type column above, an entry of “comparable” includes integer, float, timestamp, string and 317

version types, while an entry of “any” refers to any type allowed in the TOSCA simple profile in YAML. 318

A.3.2.2 Grammar 319

Constraint clauses take one of the following forms: 320

Scalar grammar

<operator>: <scalar_value>

Dual scalar grammar

<operator>: { <scalar_value_1>, <scalar_value_2> }

List grammar

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 32 of 95

<operator> [<value_1>, <value_2>, ..., <value_n>]

Regular expression (regex) grammar

pattern: <regular_expression_value>

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 321

 operator: represents a required operator from the specified list shown above (see section 322

A.3.2.1 “Operator keynames”). 323

 scalar_value, scalar_value_x: represents a required scalar (or atomic quantity) that can 324

hold only one value at a time. This will be a value of a primitive type, such as an integer or string 325
that is allowed by this specification. 326

 value_x: represents a required value of the operator that is not limited to scalars. 327

 reqular_expression_value: represents a regular expression (string) value. 328

A.3.2.3 Examples 329

Constraint clauses used on parameter or property definitions: 330

equal

equal: 2

greater_than

greater_than: 1

greater_or_equal

greater_or_equal: 2

less_than

less_than: 5

less_or_equal

less_or_equal: 4

in_range

in_range: { 1, 4 }

valid_values

valid_values: [1, 2, 4]

specific length (in characters)

length: 32

min_length (in characters)

min_length: 8

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 33 of 95

max_length (in characters)

max_length: 64

A.3.2.4 Notes 331

 Values provided by the operands (i.e., values and scalar values) SHALL be type-compatible with 332

their associated operations. 333

 Future drafts of this specification will detail the use of regular expressions and reference an 334

appropriate standardized grammar. 335

A.3.3 Constraints element 336

The Constraints element specifies a sequenced list of constraints on one or more of the Service 337
Template’s properties, parameters or other typed elements of the TOSCA Simple Profile. A constraints 338
element is represented as a YAML block collection that contains a sequenced list of nested constraint 339
clauses. 340

A.3.3.1 Keyname 341

The following keyname is used to provide a list of constraints within the TOSCA Simple Profile 342

specification: 343

constraints

A.3.3.2 Grammar 344

The constraints element is described as a YAML block collection that contains a sequence of constraint 345

clauses: 346

<some_typed_property>:

 constraints:

 - <constraint_clause_1>

 - ...

 - <constraint_clause_n>

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 347

 some_typed_property: represents the name of a typed property definition, as a string, which 348

can be associated to a TOSCA entity. 349
o For example, a property (definition) can be declared as part of a Node Type or Node 350

Template definition or it can be used to define an input or output property (parameter) for 351
a Service Template’s. 352

 constraint_clause_x: represents constraint clauses for the associated property or parameter. 353

A.3.3.3 Examples 354

Constraint on an integer-typed parameter definition: 355

An example input parameter that represents a number of CPUs

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 34 of 95

and constrains its value to a specific range.

inputs:

 num_cpus:

 type: integer

 constraints:

 - in_range: { 2, 4 }

Constraints on a string-typed parameter definition: 356

An example input parameter that represents a user ID and constrains its length.

inputs:

 user_id:

 type: string

 constraints:

 - min_length: 8

 - max_length: 16

A.3.3.4 Notes 357

 Constraints of properties or parameters SHOULD be type-compatible with the type defined for 358

that property or parameter. 359

 In the TOSCA v1.0 specification constraints are expressed in the XML Schema definitions of 360

Node Type properties referenced in the PropertiesDefinition element of NodeType definitions. 361

A.3.4 Operation definition 362

An operation definition defines a named function or procedure that can be bound to an implementation 363
artifact (e.g., a script). 364

A.3.4.1 Keynames 365

The following is the list of recognized keynames recognized for a TOSCA operation definition: 366

Keyname Type Description

description description The optional description string for the associated named operation.

implementation string The optional implementation artifact name (e.g., a script file name within a TOSCA CSAR
file).

A.3.4.2 Grammar 367

The full grammar for expressing an operation is as follows: 368

<operation_name>:

 description: <operation_description>

 implementation: <implementation_artifact_name>

In addition, the following simplified grammar may also be used (where a full definition is not necessary): 369

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 35 of 95

<operation_name>: <implementation_artifact_name>

In the above definitions, the pseudo values that appear in angle brackets have the following meaning: 370

 operation_name: represents the required name of the operation as a string. 371

 operation_description: represents the optional description string for the corresponding 372

operation_name. 373

 implementation_artifact_name: represents the name (string) of artifact definition (defined 374

elsewhere), or the direct name of an implementation artifact’s relative filename (e.g., a service 375

template-relative, path-inclusive filename or absolute file location using a URL). 376

A.3.4.3 Notes 377

 Implementation artifact file names (e.g., script filenames) may include file directory path names 378

that are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud 379

Service ARchive (CSAR) file. 380

A.3.5 Artifact definition 381

An artifact definition defines a named, typed file that can be associated with Node Type or Node 382
Template and used by orchestration engine to facilitate deployment and implementation of interface 383
operations. 384

A.3.5.1 Keynames 385

The following is the list of recognized keynames recognized for a TOSCA property definition: 386

Keyname Type Description

type string The optional data type for the artifact definition.

description description The optional description for the artifact definition.

mime_type string The optional Mime type for finding the correct artifact definition when it is not clear
from the file extension.

A.3.5.2 Grammar 387

Named artifact definitions have the following grammar: 388

Simple form

<artifact_name>: <artifact_file_URI>

Full form

<artifact_name>: <artifact_file_URI>

type: <artifact_type_name>

description: <artifact_description>

mime_type: <artifact_mime_type_name>

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 389

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 36 of 95

 artifact_name: represents the required name of the artifact definition as a string. 390

 artifact_file_URI: represents the required URI string (relative or absolute) which can be used to 391

locate the artifact’s file. 392

 artifact_type_name: represents the required artifact type the artifact definition is based 393

upon. 394

 artifact_description: represents the optional description string for the corresponding 395

artifact_name. 396

 artifact_mime_type_name: represents the optional, explicit Mime Type (as a string) for the 397

associated artifact definition when it is not clear from the file description. 398

A.3.5.3 Example 399

The following represents an artifact definition: 400

my_file_artifact: ../my_apps_files/operation_artifact.txt

A.3.6 Artifacts element 401

The Artifacts element is used to associate one or more typed artifact definitions with a TOSCA Node Type 402
or Node Template. 403

A.3.6.1 Keynames 404

The following keyname is used to declare a list of requirements within the TOSCA Simple Profile 405

specification: 406

artifacts

A.3.6.2 Grammar 407

The requirements element is described by a YAML block collection that contains a sequenced list of 408

artifact definitions: 409

<some_typed_entity_name>:

 artifacts:

 - <artifact_definition_1>

 - ...

 - <artifact_definition_n>

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 410

 some_typed_entity_name: represents the name (string) of a typed TOSCA entity (e.g., a Node 411

Type, Node Template) that has, as part of its definition, a list of artifacts. 412

 artifact_definition_x: represents one or more Artifact definitions for the associated entity. 413

A.3.6.3 Examples 414

The following examples show capability definitions in both simple and full forms being associated to 415

Node Types: 416

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 37 of 95

my_node_type_1:

 # Other keys omitted here for sake of brevity

 capabilities:

 app_container: mytypes.mycapabilities.AppContainer

 app_endpoint:

 type: mytypes.mycapabilities.AppEndpoint

 properties:

 timeout: 300

A.3.7 Interface definition 417

An interface definition defines a named interface that can be associated with a Node or Relationship Type 418

A.3.7.1 Keynames 419

The following is the list of recognized keynames recognized for a TOSCA interface definition: 420

Keyname Type Description

None N/A N/A

A.3.7.2 Grammar 421

The following keyname is used to provide a list of properties within the TOSCA Simple Profile 422

specification: 423

<interface_definition_name>:

 <operation_definition_1>

 ...

 <operation_definition_n>

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 424

 interface_definition_name: represents the required name of the interface definition as a 425

string. 426

 operation_definition_x: represents the required name of one or more operation definitions. 427

A.3.7.3 Examples 428

mycompany.mytypes.myinterfaces.MyConfigure:

 configure_service_A:

 description: My application’s custom configuration interface for service A.

 configure_service_B:

 description: My application’s custom configuration interface for service B.

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 38 of 95

A.3.8 Interfaces element 429

The Interfaces element describes a list of one or more interface definitions for a modelable entity (e.g., a 430
Node or Relationship Type) as defined within the TOSCA Simple Profile specification. Each interface 431
definition contains one or more interfaces for operations that can be invoked on the associated entity. 432

A.3.8.1 Keyname 433

The following keyname is used to declare a list of interfaces definitions within the TOSCA Simple Profile 434

specification: 435

interfaces

A.3.8.2 Grammar 436

interfaces: [<interface_defn_name_1>, ..., <interface_defn_name_n>]

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 437

 interface_defn_name_x: represents one or more names of valid TOSCA interface definitions. 438

A.3.8.3 Example 439

interfaces: [mytypes.myinterfaces.myLifecycleOperationsDefn]

A.3.9 Property definition 440

A property definition defines a named, typed value and related data that can be associated with an entity 441
defined in this specification. It is used to associate a transparent property or characteristic of that entity 442
which can either be set on or retrieved from it. 443

A.3.9.1 Keynames 444

The following is the list of recognized keynames recognized for a TOSCA property definition: 445

Keyname Type Description

type string The required data type for the property.

description description The optional description for the property.

required boolean An optional key that declares a property as required (true) or not (false).

If this key is not declared for property definition, then the property SHALL be considered
required by default.

default Any An optional key that may provide a value to be used as a default if not provided by
another means.

This value SHALL be type compatible with the type declared by the property definition’s

type keyname.

constraints constraints The optional list of sequenced constraints for the property.

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 39 of 95

A.3.9.2 Grammar 446

Named property definitions have the following grammar: 447

<property_name>:

 type: <property_type>

 required: <property_required>

 default: <default_value>

 description: <property_description>

 constraints:

 <property_constraints>

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 448

 property_name: represents the required name of the property as a string. 449

 property_type: represents the required data type of the property. 450

 property_required: represents an optional boolean value (true or false) indicating whether or 451

not the property is required. If this keyname is not present on a property definition, then the 452
property SHALL be considered required (i.e., true) by default. 453

 default_value: contains a type-compatible value that may be used as a default if not provided 454

by another means. 455

 property_description: represents the optional description of the property 456

 property_constraints: represents the optional sequenced list of one or more constraint 457

clauses (as shown in the constraints element) on the property definition. 458

A.3.9.3 Example 459

The following represents a required property definition: 460

num_cpus:

 type: integer

 description: Number of CPUs for a Compute (server) instance.

 default: 1

 constraints:

 - valid_values: [1, 2, 4, 8]

A.3.9.4 Notes 461

 This element directly maps to the PropertiesDefinition element defined as part of the 462

schema for most type and entities defined in the TOSCA v1.0 specification. 463

A.3.10 Properties element 464

The Properties element describes one or more typed properties that can be associated with a modelable 465
TOSCA entity (e.g., Node Types, Node Templates, Artifact Types, etc.). 466

A.3.10.1 Keyname 467

The following keyname is used to declare a list of properties within the TOSCA Simple Profile 468

specification: 469

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 40 of 95

properties

A.3.10.2 Grammar 470

The properties element is described as a YAML block collection that contains a list of property 471

definitions: 472

<some_typed_entity_name>:

 properties:

 <property_defn_1>

 ...

 <property_defn_n>

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 473

 some_typed_entity_name: represents the name of a typed TOSCA entity (e.g., a Node Type, 474

Node Template, Relationship Type, etc.) that has, as part of its definition, a list of properties. 475

 property_defn_x: represents one or more property definitions for the associated entity. 476

A.3.10.3 Examples 477

The following example shows property definitions being associated to a Node Type: 478

my_app_node_type:

 derived_from: tosca.nodes.Root

 properties:

 stylesheet: elegant.css

 type: string

 default: basic.css

 max_connections: 100

 type: integer

 required: no

A.3.11 Capability definition 479

A capability definition defines a named, typed set of data that can be associated with Node Type or Node 480
Template to describe a transparent capability or feature of the software component the node describes. 481

A.3.11.1 Keynames 482

The following is the list of recognized keynames recognized for a TOSCA capability definition: 483

Keyname Type Description

type string The required name of the Capability Type the capability definition is based upon.

properties properties An optional list of property definitions for the capability definition.

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 41 of 95

A.3.11.2 Grammar 484

Named capability definitions have one of the following grammars: 485

Simple definition is as follows:

<capability_defn_name>: <capability_type>

The full definition is as follows:

<capability_defn_name>:

 type: <capability_type>

 properties:

 <property_definitions>

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 486

 capability_defn_name: represents the name of a capability definition as a string. 487

 capability_type: represents the required capability type the capability definition is based upon. 488

 property_definitions: represents the optional list of property definitions for the capability 489

definition. 490

A.3.11.3 Example 491

The following examples show capability definitions in both simple and full forms: 492

Simple form, no properties defined or augmented

app_container: mytypes.mycapabilities.MyAppContainer

Full form, augmenting properties of the referenced capability type

app_container:

 type: mytypes.mycapabilities.MyAppContainer

 my_containee_types: [mytypes.mynodes.myAppType]

A.3.11.4 Notes 493

 This definition directly maps to the CapabilitiesDefinition of the Node Type entity as defined 494

in the TOSCA v1.0 specification. 495

A.3.12 Capabilities element 496

The Capabilities element is used to associate one or more typed capabilities definitions with a TOSCA 497
Node Type or Node Template. 498

A.3.12.1 Keyname 499

The following keyname is used to declare a list of capabilities within the TOSCA Simple Profile 500

specification: 501

capabilities

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 42 of 95

A.3.12.2 Grammar 502

The capabilities element is described by a YAML block collection that contains a list of capability 503

definitions: 504

<some_typed_entity_name>:

 capabilities:

 <capability_definition_1>

 ...

 <capability_definition_n>

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 505

 some_typed_entity_name: represents the name of a typed TOSCA entity (e.g., a Node Type, 506

Node Template) that has, as part of its definition, a list of capabilities. 507

 capability_definition_x: represents one or more Capability definitions for the associated entity. 508

A.3.12.3 Examples 509

The following examples show capability definitions in both simple and full forms being associated to 510

Node Types: 511

my_node_type_1:

 # Other keys omitted here for sake of brevity

 capabilities:

 app_container: mytypes.mycapabilities.AppContainer

 app_endpoint:

 type: mytypes.mycapabilities.AppEndpoint

 properties:

 timeout: 300

A.3.12.4 Notes 512

 This element directly maps to the Capabilities element defined as part of the schema for the 513

Node Template entity as defined in the TOSCA v1.0 specification. 514

 The TOSCA Root node type provides a generic named Feature capability (i.e., 515

tosca.capabilities.Feature) called “feature” that nodes that derive from it may readily 516

extend to export a significant capability the node supplies. 517

A.3.13 Requirements element 518

The Requirements element describes one or more typed requirements (dependencies) of a modelable 519
entity (e.g., Node Types, Node Templates, Artifact Types, etc.) defined within the TOSCA Simple Profile 520
specification. A requirements element is represented as a YAML block collection that contains a 521
sequenced list of nested requirement definitions. 522

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 43 of 95

A.3.13.1 Keynames 523

The following keyname is used to declare a list of requirements within the TOSCA Simple Profile 524

specification: 525

requirements

The following is the list of recognized keynames recognized for a TOSCA requirement definition: 526

Keyname Type Description

relationship_type string The optional reserved keyname used to provide a named relationship to use when
fulfilling the associated named requirement.

A.3.13.2 Grammar 527

The requirements element is described by a YAML block collection that contains a sequenced list of 528

requirement definitions: 529

<some_typed_entity_name>:

 requirements:

 - <requirement_definition_1>

 - ...

 - <requirement_definition_n>

Where each named requirement definition has one of the following forms: 530

Requirement for a specific named entity (e.g., a Node Type or Node Template)

- <requirement_name>: <entity_name>

Requirement clause for a specific named Capability Type

- <requirement_name>: <capability_type_name>

Requirement for a node type with an optional, explicit Relationship type

- <requirement_name>: <node_name>

 relationship_type: <relationship_name>

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 531

 some_typed_entity_name: represents the name (a string) of a typed TOSCA entity (e.g., a 532

Node Type, Node Template) that has, as part of its definition, a sequenced list of requirements. 533

 requirement_name: represents the name of a requirement definition as a string. 534

 capability_type_name: represents the name of a capability type (exported by a Node Type or 535

Template) that the requirement would be fulfilled by. 536

 node_name: represents the name of a Node Type or Node Template as a string. 537

 relationship_name: represents the name of an explicit, relationship type or definition to be 538

used when relating the node the requirement appears in to another node. 539

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 44 of 95

A.3.13.3 Example 540

A web application requires hosting (with the named relationship of ‘host’) on a web server that is 541

defined elsewhere within the Service Template as a node template with the name ‘my_web_server’. 542

Similarly, the web application requires a connection to a database (using the named relationship 543

‘database’) to another node template named ‘my_database’. However, the connection between the 544

web application and the database further requires a custom relationship designated by the keyword 545

‘relationship_type’ and having the custom relationship type definition name of 546

‘my.types.CustomDbConnection’. 547

Example of a requirement that can be fulfilled by any web server node type

my_webapp_node_template:

 requirements:

 - host: tosca.nodes.WebServer

Example of a requirement that is fulfilled by a feature (exported by a Node Type)

my_webapp_node_template:

 requirements:

 - database: tosca.capabilities.DatabaseEndpoint

Example of a (database) requirement that is fulfilled by a node template named

“my_database”, but also requires a custom database connection relationship

my_webapp_node_template:

 requirements:

 - database: my_database

 relationship_type: my.types.CustomDbConnection

A.3.13.4 Notes 548

 This element directly maps to the Requirements element defined as part of the schema for the 549

Node Templates entity (as part of a Service Template’s Topology Template), as well as the 550

matching RequirementsDefinition of the Node Type entity as defined in the TOSCA v1.0 551

specification. 552

A.3.14 Artifact Type 553

An Artifact Type is a reusable entity that defines the type of one or more files which Node Types or Node 554
Templates can have dependent relationships and used during operations such as during installation or 555
deployment. 556

A.3.14.1 Keynames 557

The following is the list of recognized keynames recognized for a TOSCA Artifact Type definition: 558

Keyname Definition/Type Description

derived_from string An optional parent Artifact Type name the Artifact Type derives from.

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 45 of 95

Keyname Definition/Type Description

description description An optional description for the Artifact Type.

mime_type string The required mime type property for the Artifact Type.

file_ext string[] The required file extension property for the Artifact Type.

properties properties An optional list of property definitions for the Artifact Type.

A.3.14.2 Grammar 559

<artifact_type_name>:

 derived_from: <parent_artifact_type_name>

 description: <artifact_description>

 mime_type: <mime_type_string>

 file_ext: [<file_extension_1>, ..., <file_extension_n>]

 properties:

 <property_definitions>

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 560

 artifact_type_name: represents the name of the Artifact Type being declared as a string. 561

 parent_artifact_type_name: represents the name of the Artifact Type this Artifact Type 562

definition derives from (i.e., its “parent” type). 563

 artifact_description: represents the optional description string for the corresponding 564

artifact_type_name. 565

 mime_type_string: represents the Multipurpose Internet Mail Extensions (MIME) standard 566

string value that describes the file contents for this type of artifact as a string. 567

 file_extension_x: represents one or more recognized file extensions for this type of artifact 568

as strings. 569

 property_definitions: represents the optional list of property definitions for the artifact 570

type. 571

A.3.14.3 Examples 572

my_artifact_type:

 description: Java Archive artifact type

 derived_from: tosca.artifact.Root

 mime_type: application/java-archive

 file_ext: [jar]

A.3.15 Capability Type 573

A Capability Type is a reusable entity that describes a kind of capability that a Node Type can declare to 574

expose. Requirements (implicit or explicit) that are declared as part of one node can be matched to (i.e., 575

fulfilled by) the Capabilities declared by other node. 576

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 46 of 95

The following is the list of recognized keynames recognized for a TOSCA Capability Type definition: 577

Keyname Definition/Type Description

derived_from string An optional parent capability type name this new capability type derives from.

description description An optional description for the capability type.

properties properties An optional list of property definitions for the capability type.

A.3.15.1 Grammar 578

<capability_type_name>:

 derived_from: <parent_capability_type_name>

 description: <capability_description>

 properties:

 <property_definitions>

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 579

 capability_type_name: represents the name of the Capability Type being declared as a string. 580

 parent_capability_type_name: represents the name of the Capability Type this Capability 581

Type definition derives from (i.e., its “parent” type). 582

 capability_description: represents the optional description string for the corresponding 583

capability_type_name. 584

 property_definitions: represents an optional list of property definitions that the capability 585

type exports. 586

A.3.15.2 Example 587

mycompany.mytypes.myapplication.MyFeature:

 derived_from: tosca.capabilities.Feature

 description: a custom feature of my company’s application

 properties:

 my_feature_version:

 type: string

 my_feature_value:

 type: integer

A.3.16 Requirement Type 588

A Requirement Type is a reusable entity that describes a kind of requirement that a Node Type can 589

declare to expose. The TOSCA Simple Profile seeks to simplify the need for declaring specific 590

Requirement Types from nodes and instead rely upon nodes declaring their features sets using TOSCA 591

Capability Types along with a named Feature notation. 592

Currently, there are no use cases in this TOSCA Simple Profile in YAML specification that utilize an 593
independently defined Requirement Type. This is a desired effect as part of the simplification of the 594
TOSCA v1.0 specification. 595

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 47 of 95

A.3.17 Relationship Type 596

A Relationship Type is a reusable entity that defines the type of one or more relationships between Node 597
Types or Node Templates. 598

A.3.17.1 Keynames 599

The following is the list of recognized keynames recognized for a TOSCA Relationship Type definition: 600

Keyname Definition/Type Description

derived_from string An optional parent Relationship Type name the Relationship Type derives from.

description description An optional description for the Relationship Type.

properties properties An optional list of property definitions for the Relationship Type.

interfaces interfaces An optional list of named interfaces for the Relationship Type.

valid_targets string[] A required list of one or more valid target entities or entity types (i.e., a Node Types or
Capability Types)

A.3.17.2 Grammar 601

<relationship_type_name>:

 derived_from: <parent_relationship_type_name>

 description: <relationship_description>

 properties:

 <property_definitions>

 interfaces: <interface_definitions>

 valid_targets: [<entity_name_or_type_1>, ..., <entity_name_or_type_n>]

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 602

 relationship_type_name: represents the name of the Relationship Type being declared as a 603

string. 604

 parent_relationship_type_name: represents the name (string) of the Relationship Type this 605

Relationship Type definition derives from (i.e., its “parent” type). 606

 relationship_description: represents the optional description string for the corresponding 607

relationship_type_name. 608

 property_definitions: represents the optional list of property definitions for the Relationship 609

Type. 610

 interface_definitions: represents the optional list of one or more named interface 611

definitions supported by the Relationship Type. 612

 entity_name_or_type_x: represents one or more valid target (types) for the relationship (e.g., 613

Node Types, Capability Types, etc.). 614

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 48 of 95

A.3.17.3 Best Practices 615

 The TOSCA Root relationship type (tosca.relationships.Root) provides a standard configuration 616

interface (tosca.interfaces.relationship.Configure) that SHOULD be used where possible when 617

defining new relationships types. 618

A.3.17.4 Examples 619

mycompanytypes.myrelationships.AppDependency:

 derived_from: tosca.relationships.DependsOn

 valid_targets: [mycompanytypes.mycapabilities.SomeAppCapability]

 620

A.3.18 Node Type 621

A Node Type is a reusable entity that defines the type of one or more Node Templates. As such, a Node 622
Type defines the structure of observable properties via a Properties Definition, the Requirements and 623
Capabilities of the node as well as its supported interfaces. 624

The following is the list of recognized keynames recognized for a TOSCA Node Type definition: 625

Keyname Definition/Type Description

derived_from string An optional parent Node Type name this new Node Type derives from.

description description An optional description for the Node Type.

properties properties An optional list of property definitions for the Node Type.

requirements requirements An optional sequenced list of requirement definitions for the Node Type.

capabilities capabilities An optional list of capability definitions for the Node Type.

interfaces interfaces An optional list of named interfaces for the Node Type.

artifacts artifacts An optional sequenced list of named artifact definitions for the Node Type/

A.3.18.1 Grammar 626

<node_type_name>:

 derived_from: <parent_node_type_name>

 description: <node_type_description>

 properties:

 <property_definitions>

 requirements:

 <requirement_definitions>

 capabilities:

 <capability_definitions>

 interfaces: <interface_definitions>

 artifacts:

 <artifact_definitions>

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 49 of 95

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 627

 node_type_name: represents the name of the Node Type being declared. 628

 parent_node_type_name: represents the name (string) of the Node Type this Node Type 629

definition derives from (i.e., its “parent” type). 630

 node_type_description: represents the optional description string for the corresponding 631

node_type_name. 632

 property_definitions: represents the optional list of property definitions for the Node Type. 633

 requirement_definitions: represents the optional sequenced list of requirement definitions 634

for the Node Type. 635

 capability_definitions: represents the optional list of capability definitions for the Node 636

Type. 637

 interface_definitions: represents the optional list of one or more named interface 638

definitions supported by the Node Type. 639

 artifact_definitions: represents the optional list of artifact definitions for the Node 640

Template that augment those provided by its declared Node Type. 641

A.3.18.2 Best Practices 642

 It is recommended that all Node Types SHOULD derive directly (as a parent) or indirectly (as an 643

ancestor) of the TOSCA “Root” Node Type (i.e., tosca.nodes.Root) to promote compatibility and 644

portability. However, it is permitted to author Node Types that do not do so. 645

A.3.18.3 Example 646

my_company.my_types.my_app_node_type:

 derived_from: tosca.nodes.SoftwareComponent

 description: My company’s custom applicaton

 properties:

 my_app_password:

 type: string

 description: application password

 constraints:

 - length: { min: 6, max: 10 }

 my_app_port:

 type: number

 description: application port number

 requirements:

 host: tosca.nodes.Compute

 interfaces: [Lifecycle]

A.3.19 Node Template 647

A Node Template specifies the occurrence of a manageable software component as part of an 648
application’s topology model which is defined in a TOSCA Service Template. Node template is an 649

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 50 of 95

instance of a specified Node Type and can provide customized properties, constraints or operations 650
which override the defaults provided by its Node Type and its implementations. 651

The following is the list of recognized keynames recognized for a TOSCA Node Template definition: 652

Keyname Definition/Type Description

type string The required name of the Node Type the Node Template is based upon.

description description An optional description for the Node Template.

properties properties An optional list of property definitions for the Node Template.

requirements requirements An optional sequenced list of requirement definitions for the Node Template.

capabilities capabilities An optional list of capability definitions for the Node Template.

interfaces interfaces An optional list of named interfaces for the Node Template.

artifacts artifacts An optional sequenced list of named artifact definitions for the Node Template.

A.3.19.1 Grammar 653

<node_template_name>:

 type: <node_type_name>

 description: <node_template_description>

 properties:

 <property_definitions>

 requirements:

 <requirement_definitions>

 capabilities:

 <capability_definitions>

 interfaces:

 <interface_definitions>

 artifacts:

 <artifact_definitions>

In the above definition, the pseudo values that appear in angle brackets have the following meaning: 654

 node_template_name: represents the name of the Node Template being declared. 655

 node_type_name: represents the name of the Node Type this Node Template is based upon. 656

 node_template_description: represents the optional description string for the corresponding 657

node_template_name. 658

 property_definitons: represents the optional list of property definitions for the Node 659

Template that augment those provided by its declared Node Type. 660

 requirement_definitions: represents the optional sequenced list of requirement definitions 661

for the Node Template that augment those provided by its declared Node Type. 662

 capability_definitions: represents the optional list of capability definitions for the Node 663

Template that augment those provided by its declared Node Type. 664

 interface_definitions: represents the optional list of interface definitions for the Node 665

Template that augment those provided by its declared Node Type. 666

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 51 of 95

 artifact_definitions: represents the optional list of artifact definitions for the Node 667

Template that augment those provided by its declared Node Type. 668

A.3.19.2 Example 669

mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 dbms_password: { get_input: my_mysql_rootpw }

 dbms_port: { get_input: my_mysql_port }

 requirements:

 - host: db_server

 interfaces:

 Lifecycle:

 configure: scripts/my_own_configure.sh

A.4 Service Template 670

A TOSCA Definitions YAML document contains element definitions of building blocks for cloud 671
application, or complete models of cloud applications. 672

This section describes the top-level structural elements (i.e., YAML keys) which are allowed to appear in 673
a TOSCA Definitions YAML document. 674

A.4.1 Keynames 675

A TOSCA Definitions file contains the following element keynames: 676

Keyname Required Description

tosca_definitions_version yes Defines the version of the TOSCA Simple Profile specification the template
(grammar) complies with.

tosca_default_namespace no Defines the namespace of the TOSCA schema to use for validation.

template_name no Declares the name of the template.

template_author no Declares the author(s) of the template.

template_version no Declares the version string for the template.

description no Declares a description for this Service Template and its contents.

imports no Declares import statements external TOSCA Definitions documents (files).

inputs no Defines a set of global input parameters passed to the template when its
instantiated. This provides a means for template authors to provide
points of variability to users of the template in order to customize each
instance within certain constraints.

node_templates no Defines a list of Node Templates that model the components of an
application or service.

node_types no This section contains a set of node type definitions for use in service
templates. Such type definitions may be used within the node_templates
section of the same file, or a TOSCA Definitions file may also just contain
node type definitions for use in other files.

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 52 of 95

Keyname Required Description

relationship_types no This section contains a set of relationship type definitions for use in
service templates. Such type definitions may be used within the same file,
or a TOSCA Definitions file may also just contain relationship type
definitions for use in other files.

capability_types no This section contains an optional list of capability type definitions for use
in service templates. Such type definitions may be used within the same
file, or a TOSCA Definitions file may also just contain capability type
definitions for use in other files.

artifact_types no This section contains an optional list of artifact type definitions for use in
service templates. Such type definitions may be used within the same file,
or a TOSCA Definitions file may also just contain capability type definitions
for use in other files.

outputs no This optional section allows for defining a set of output parameters
provided to users of the template. For example, this can be used for
exposing the URL for logging into a web application that has been set up
during the instantiation of a template.

groups no This is an optional section that contains grouping definition for node
templates.

A.4.2 Grammar 677

The overall structure of a TOSCA Service Template and its top-level key collations using the TOSCA 678
Simple Profile is shown below: 679

tosca_definitions_version: # Required TOSCA Definitions version string

tosca_default_namespace: # Optional. default namespace (schema, types version)

template_name: # Optional name of this service template

template_author: # Optional author of this service template

template_version: # Optional version of this service template

description: A short description of the definitions inside the file.

imports:

 # list of import statements for importing other definitions files

inputs:

 # list of global input parameters

node_templates:

 # list of node templates

node_types:

 # list of node type definitions

capability_types:

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 53 of 95

 # list of capability type definitions

relationship_types:

 # list of relationship type definitions

artifact_types:

 # list of artifact type definitions

groups:

 # list of groups defined in service template

outputs:

 # list of output parameters

A.4.3 Top-level key definitions 680

A.4.3.1 tosca_definitions_version 681

This required element provides a means include a reference to the TOSCA Simple Profile specification 682
within the TOSCA Definitions YAML file. It is an indicator for the version of the TOSCA grammar that 683
should be used to parse the remainder of the document. 684

A.4.3.1.1 Keyword 685

tosca_definitions_version

A.4.3.1.2 Grammar 686

Single-line form: 687

tosca_definitions_version: <tosca_simple_profile_version>

A.4.3.1.3 Examples: 688

TOSCA Simple Profile version 1.0 specification using the defined namespace alias (see Section A.1): 689

tosca_definitions_version: tosca_simple_yaml_1_0

TOSCA Simple Profile version 1.0 specification using the fully defined (target) namespace (see Section 690

A.1): 691

tosca_definitions_version: http://docs.oasis-open.org/tosca/simple/1.0

A.4.3.2 template_name 692

This optional element declares the optional name of service template as a single-line string value. 693

http://docs.oasis-open.org/tosca/simple/1.0

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 54 of 95

A.4.3.2.1 Keyword 694

template_name

A.4.3.2.2 Grammar 695

template_name: <name string>

A.4.3.2.3 Example 696

template_name: My service template

A.4.3.2.4 Notes 697

 Some service templates are designed to be referenced and reused by other service templates. 698

Therefore, in these cases, the template_name value SHOULD be designed to be used as a unique 699

identifier through the use of namespacing techniques. 700

A.4.3.3 template_author 701

This optional element declares the optional author(s) of the service template as a single-line string value. 702

A.4.3.3.1 Keyword 703

template_author

A.4.3.3.2 Grammar 704

template_author: <author string>

A.4.3.3.3 Example 705

template_name: My service template

A.4.3.4 template_version 706

This element declares the optional version of the service template as a single-line string value. 707

A.4.3.4.1 Keyword 708

template_version

A.4.3.4.2 Grammar 709

template_version: <version string>

A.4.3.4.3 Example 710

template_version: v9.17.a

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 55 of 95

A.4.3.4.4 Notes: 711

 Some service templates are designed to be referenced and reused by other service templates 712

and have a lifecycle of their own. Therefore, in these cases, a template_version value SHOULD 713

be included and used in conjunction with a unique template_name value to enable lifecycle 714

management of the service template and its contents. 715

A.4.3.5 Description 716

This optional element provides a means include single or multiline descriptions within a TOSCA Simple 717
Profile template as a scalar string value. 718

A.4.3.5.1 Keyword 719

description

A.4.3.6 imports 720

This optional element provides a way to import a block sequence of one or more TOSCA Definitions 721
documents. TOSCA Definitions documents can contain reusable TOSCA type definitions (e.g., Node 722
Types, Relationship Types, Artifact Types, etc.) defined by other authors. This mechanism provides an 723
effective way for companies and organizations to define normative types and/or describe their software 724
applications for reuse in other TOSCA Service Templates. 725

A.4.3.6.1 Keyword 726

imports

A.4.3.6.2 Grammar 727

imports:

 - <tosca_definitions_file_1>

 - ...

 - <tosca_definitions_file_n>

A.4.3.6.3 Example 728

An example import of definitions files from a location relative to the

file location of the service template declaring the import.

imports:

 - relative_path/my_defns/my_typesdefs_1.yaml

 - ...

 - relative_path/my_defns/my_typesdefs_n.yaml

A.4.3.7 inputs 729

This optional element provides a means to define parameters, their allowed values via constraints and 730
default values within a TOSCA Simple Profile template. 731

 732

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 56 of 95

This section defines template-level input parameter section. 733

 This would require a change to template schema for v1.1 734

 Treat input parameters as fixed global variables (not settable within template) 735

 If not in input take default (nodes use default) 736

A.4.3.7.1 Grammar 737

inputs:

 <property_definition_1>

 ...

 <property_definition_n>

A.4.3.7.2 Examples 738

Simple example without any constraints: 739

inputs:

 fooName:

 type: string

 description: Simple string typed property definition with no constraints.

 default: bar

Example with constraints: 740

inputs:

 SiteName:

 type: string

 description: string typed property definition with constraints

 default: My Site

 constraints:

 - min_length: 9

A.4.3.7.3 Notes 741

 The parameters (properties) that are listed as part of the inputs block could be mapped to 742

PropertyMappings provided as part of BoundaryDefinitions as described by the TOSCA v1.0 743

specification. 744

A.4.3.8 node_templates 745

This element lists the Node Templates that describe the (software) components that are used to compose 746
cloud applications. 747

A.4.3.8.1 Keyword 748

node_templates

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 57 of 95

A.4.3.8.2 Grammar 749

node_templates:

 <node_template_defn_1>

 ...

 <node_template_defn_n>

A.4.3.8.3 Example 750

node_templates:

 my_webapp_node_template:

 type: WebApplication

 my_database_node_template:

 type: Database

A.4.3.8.4 Notes 751

 The node templates listed as part of the node_templates block can be mapped to the list of 752

NodeTemplate definitions provided as part of TopologyTemplate of a ServiceTemplate as 753

described by the TOSCA v1.0 specification. 754

A.4.3.9 node_types 755

This element lists the Node Types that provide the reusable type definitions for software components that 756
Node Templates can be based upon. 757

A.4.3.9.1 Keyword 758

node_types

A.4.3.9.2 Grammar 759

node_types:

 <node_types_defn_1>

 ...

 <node_type_defn_n>

A.4.3.9.3 Example 760

node_types:

 my_webapp_node_type:

 derived_from: WebApplication

 properties:

 my_port:

 type: integer

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 58 of 95

 my_database_node_type:

 derived_from: Database

 capabilities:

 mytypes.myfeatures.transactSQL

A.4.3.9.4 Notes 761

 The node types listed as part of the node_types block can be mapped to the list of NodeType 762

definitions as described by the TOSCA v1.0 specification. 763

A.4.3.10 relationship_types 764

This element lists the Relationship Types that provide the reusable type definitions that can be used to 765
describe dependent relationships between Node Templates or Node Types. 766

A.4.3.10.1 Keyword 767

relationship_types

A.4.3.10.2 Grammar 768

relationship_types:

 <relationship_types_defn_1>

 ...

 <relationship type_defn_n>

A.4.3.10.3 Example 769

relationship_types:

 mycompany.mytypes.myCustomClientServerType:

 derived_from: tosca.relationships.HostedOn

 properties:

 # more details ...

 mycompany.mytypes.myCustomConnectionType:

 derived_from: tosca.relationships.ConnectsTo

 properties:

 # more details ...

A.4.3.11 capability_types 770

This element lists the Capability Types that provide the reusable type definitions that can be used to 771
describe features Node Templates or Node Types can declare they support. 772

A.4.3.11.1 Keyword 773

capability_types

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 59 of 95

A.4.3.11.2 Grammar 774

capability_types:

 <capability_type_defn_1>

 ...

 <capability type_defn_n>

A.4.3.11.3 Example 775

capability_types:

 mycompany.mytypes.myCustomEndpoint

 derived_from: tosca.capabilities.Endpoint

 properties:

 # more details ...

 mycompany.mytypes.myCustomFeature

 derived_from: tosca.capabilites.Feature

 properties:

 # more details ...

A.4.3.12 groups 776

The group construct is a composition element used to group one or more node templates within a TOSCA 777
Service Template. 778

A.4.3.12.1 Keyword 779

groups

A.4.3.12.2 Grammar 780

groups:

 <group_name_A>:

 <node_template_defn_A_1>

 ...

 <node_template_defn_A_n>

 <group_name_B>

 <node_template_defn_B_1>

 ...

 <node_template_defn_B_n>

A.4.3.12.3 Example 781

node_templates:

 server1:

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 60 of 95

 type: tosca.nodes.Compute

 # more details ...

 server2:

 type: tosca.nodes.Compute

 # more details ...

 server3:

 type: tosca.nodes.Compute

 # more details ...

groups:

 server_group_1:

 members: [server1, server2]

 policies:

 - anti_collocation_policy:

 # specific policy declarations omitted, as this is not yet specified

A.4.3.13 outputs 782

This optional element provides a means to define the output parameters that are available from a TOSCA 783
Simple Profile service template. 784

A.4.3.13.1 Keyword 785

outputs

A.4.3.13.2 Grammar 786

outputs:

 <property_definitions>

A.4.3.13.3 Example 787

outputs:

 server_ip:

 description: The IP address of the provisioned server.

 value: { get_property: [my_server, ip_address] }

A.5 Service Template-level functions 788

This section includes functions that are supported for use within a TOSCA Service Template. 789

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 61 of 95

A.5.1 Property functions 790

A.5.1.1 get_input 791

 get_input is used to retrieve the values of properties declared within the inputs section of 792

the a service template. 793

A.5.1.2 get_property 794

 get_property is used to retrieve property values between entities defined in the same service 795

template. 796

A.5.1.3 get_ref_property 797

 get_ref_property is used by an entity defined in one service template to obtain a property 798

value from another entity defined in a second service template. The first entity can reference the 799

name of the other entity (which may be bound at runtime) as declared in its requirements 800

section. 801

A.5.2 Navigation functions 802

 This version of the TOSCA Simple Profile does not define any model navigation functions. 803

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 62 of 95

Appendix B. TOSCA normative type definitions 804

The declarative approach is heavily dependent of the definition of basic types that a declarative 805

container must understand. The definition of these types must be very clear such that the 806

operational semantics can be precisely followed by a declarative container to achieve the effects 807

intended by the modeler of a topology in an interoperable manner. 808

B.1 Assumptions 809

 Assumes alignment with/dependence on XML normative types proposal for TOSCA v1.1 810

 Assumes that the normative types will be versioned and the TOSCA TC will preserve backwards 811

compatibility. 812

 Assumes that security and access control will be addressed in future revisions or versions of this 813

specification. 814

B.2 Requirement Types 815

There are no normative Requirement Types currently defined in this working draft. 816

B.3 Capabilities Types 817

B.3.1 tosca.capabilities.Root 818

This is the default (root) TOSCA Capability Type definition that all other TOSCA Capability Types derive 819
from. 820

B.3.1.1 Definition 821

tosca.capabilities.Root:

B.3.2 tosca.capabilities.Feature 822

This is the default TOSCA type that should be extended to define any named feature of a node. 823

Shorthand Name Feature

Type Qualified Name tosca:Feature

Type URI tosca.capabilities.Feature

B.3.2.1 Definition 824

tosca.capabilities.Feature:

 derived_from: tosca.capabilities.Root

B.3.3 tosca.capabilities.Container 825

The Container capability, when included on a Node Type or Template definition, indicates that the node 826
can act as a container for (or a host for) one or more other declared Node Types. 827

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 63 of 95

 828

Shorthand Name Container

Type Qualified Name tosca:Container

Type URI tosca.capabilities.Container

B.3.3.1 Keynames 829

Name Required Constraints Description

containee_types yes None A list of one or more names of Node Types that are supported as
containees that declare the Container type as a Capability.

B.3.3.2 Definition 830

tosca.capabilities.Container:

 derived_from: tosca.capabilities.Feature

 containee_types: [<node_type_1>,..., <node_type_n>]

B.3.4 tosca.capabilities.Endpoint 831

This is the default TOSCA type that should be used or extended to define a network endpoint capability. 832

Shorthand Name Endpoint

Type Qualified Name tosca:Endpoint

Type URI tosca.capabilities.Endpoint

B.3.4.1 Properties 833

Name Required Type Constraints Description

protocol yes string None The name of the protocol (i.e., the protocol prefix) that
the endpoint accepts.

Examples: http, https, tcp, udp, etc.

port yes integer greater_or_equal:
1
less_or_equal:
65535

The port of the endpoint.

secure no boolean default = false Indicates if the endpoint is a secure endpoint.

B.3.4.2 Definition 834

tosca.capabilities.Endpoint:

 derived_from: tosca.capabilities.Feature

 properties:

 protocol:

 type: string

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 64 of 95

 default: http

 port:

 type: integer

 constraints:

 - greater_or_equal: 1

 - less_or_equal: 65535

 secure:

 type: boolean

 default: false

B.3.5 tosca.capabilities.DatabaseEndpoint 835

This is the default TOSCA type that should be used or extended to define a specialized database 836

endpoint capability. 837

Shorthand Name DatabaseEndpoint

Type Qualified Name tosca:DatabaseEndpoint

Type URI tosca.capabilities.DatabaseEndpoint

B.3.5.1 Properties 838

Name Required Type Constraints Description

None N/A N/A N/A N/A

B.3.5.2 Definition 839

tosca.capabilities.DatabaseEndpoint:

 derived_from: tosca.capabilities.Endpoint

B.4 Relationship Types 840

B.4.1 tosca.relationships.Root 841

This is the default (root) TOSCA Relationship Type definition that all other TOSCA Relationship Types 842

derive from. 843

B.4.1.1 Definition 844

tosca.relationships.Root:

 # The TOSCA root relationship type has no property mappings

 interfaces: [tosca.interfaces.relationship.Configure]

B.4.2 tosca.relationships.DependsOn 845

This type represents a general dependency relationship between two nodes. 846

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 65 of 95

Shorthand Name DependsOn

Type Qualified Name tosca:DependsOn

Type URI tosca.relationships.DependsOn

B.4.2.1 Definition 847

tosca.relationships.DependsOn:

 derived_from: tosca.relationships.Root

 valid_targets: [tosca.capabilities.Feature]

B.4.3 tosca.relationships.HostedOn 848

This type represents a hosting relationship between two nodes. 849

Shorthand Name HostedOn

Type Qualified Name tosca:HostedOn

Type URI tosca.relationships.HostedOn

B.4.3.1 Definition 850

 tosca.relationships.HostedOn:

 derived_from: tosca.relationships.DependsOn

 valid_targets: [tosca.capabilities.Container]

B.4.4 tosca.relationships.ConnectsTo 851

This type represents a network connection relationship between two nodes. 852

Shorthand Name ConnectsTo

Type Qualified Name tosca:ConnectsTo

Type URI tosca.relationships.ConnectsTo

B.4.4.1 Definition 853

tosca.relations.ConnectsTo:

 derived_from: tosca.relationships.DependsOn

 valid_targets: [tosca.capabilities.Endpoint]

B.5 Interfaces 854

Interfaces are reusable entities that define a set of operations that that can be included as part of a Node 855
type or Relationship Type definition. Each named operations may have code or scripts associated with 856
them that orchestrators can execute for when transitioning an application to a given state. 857

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 66 of 95

B.5.1 Notes 858

 Designers of Node or Relationship types are not required to actually provide/associate code or 859

scripts with every operation for a given interface it supports. In these cases, orchestrators 860

SHALL consider that a “No Operation” or “no-op”. 861

 Template designers MAY provide or override code or scripts provided by a type for a specified 862

interface defined for the type (even if the type itself does not provide a script for that 863

operation). 864

B.5.2 tosca.interfaces.node.Lifecycle 865

The lifecycle interfaces define the essential, normative operations that TOSCA nodes may support. 866

Shorthand Name Lifecycle

Type Qualified Name tosca:Lifecycle

Type URI tosca.relationships.node.Lifecycle

B.5.2.1 Definition 867

tosca.interfaces.node.Lifecycle:

 create:

 description: Basic lifecycle create operation.

 configure:

 description: Basic lifecycle configure operation.

 start:

 description: Basic lifecycle start operation.

 stop:

 description: Basic lifecycle stop operation.

 delete:

 description: Basic lifecycle delete operation.

B.5.3 tosca.interfaces.relationship.Configure 868

The lifecycle interfaces define the essential, normative operations that each TOSCA Relationship Types 869

may support. 870

Shorthand Name Configure

Type Qualified Name tosca:Configure

Type URI tosca.interfaces.relationship.Configure

B.5.3.1 Definition 871

tosca.interfaces.relationship.Configure:

 pre_configure_source:

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 67 of 95

 description: Operation to pre-configure the source endpoint.

 pre_configure_target:

 description: Operation to pre-configure the target endpoint.

 post_configure_source:

 description: Operation to post-configure the source endpoint.

 post_configure_target:

 description: Operation to post-configure the target endpoint.

 add_target:

 description: Operation to add a target node.

 remove_target:

 description: Operation to remove a target node.

B.6 Node Types 872

B.6.1 tosca.nodes.Root 873

The TOSCA Root Node Type is the default type that all other TOSCA base Node Types derive from. 874

This allows for all TOSCA nodes to have a consistent set of features for modeling and management (e.g., 875
consistent definitions for requirements, capabilities and lifecycle interfaces). 876

B.6.1.1 Properties 877

Name Required Type Constraints Description

N/A N/A N/A N/A The TOSCA Root Node type has no specified properties.

B.6.1.2 Definition 878

tosca.nodes.Root:

 description: The TOSCA Node Type all other TOSCA base Node Types derive from

 requirements:

 - dependency:

 type: tosca.capabilities.Feature

 lower_bound: 0

 upper_bound: unbounded

 capabilities:

 feature: tosca.capabilities.Feature

 interfaces: [tosca.interfaces.node.Lifecycle]

B.6.1.3 Additional Requirements 879

 All Node Type definitions that wish to adhere to the TOSCA Simple Profile SHOULD extend from the 880

TOSCA Root Node Type to be assured of compatibility and portability across implementations. 881

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 68 of 95

B.6.2 tosca.nodes.Compute 882

The TOSCA Compute node represents one or more real or virtual processors of software applications or 883

services along with other essential local resources. Collectively, the resources the compute node 884

represents can logically be viewed as a (real or virtual) “server”. 885

Shorthand Name Compute

Type Qualified Name tosca:Compute

Type URI tosca.nodes.Compute

B.6.2.1 Properties 886

Name Required Type Constraints Description

num_cpus No integer >= 1 Number of (actual or virtual) CPUs associated with the
Compute node.

disk_size No integer >=0 Size of the local disk, in Gigabytes (GB), available to
applications running on the Compute node.

mem_size No integer >= 0 Size of memory, in Megabytes (MB), available to
applications running on the Compute node.

os_arch Yes string None The host Operating System (OS) architecture.

Examples of valid values include:
x86_32, x86_64, etc.

os_type Yes string None The host Operating System (OS) type.

Examples of valid values include:
linux, aix, mac, windows, etc.

os_distribution No string None The host Operating System (OS) distribution.

Examples of valid values for an “os_type” of “Linux”
would include: debian, fedora, rhel and ubuntu.

os_version No string None The host Operating System version.

ip_address No string None The primary IP address assigned by the cloud provider
that applications may use to access the Compute node.

 Note: This is used by the platform provider to
convey the primary address used to access the
compute node. Future working drafts will
address implementations that support floating
or multiple IP addresses.

 887

B.6.2.2 Definition 888

type: tosca.nodes.Compute

 derived_from: tosca.nodes.Root

 properties:

 # compute properties

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 69 of 95

 num_cpus:

 type: integer

 constraints:

 - greater_or_equal: 1

 disk_size:

 type: integer

 constraints:

 - greater_or_equal: 0

 mem_size:

 type: integer

 constraints:

 - greater_or_equal: 0

 # host image properties

 os_arch:

 type: string

 os_type:

 type: string

 os_distribution:

 type: string

 os_version:

 type: string

 # Compute node’s primary IP address

 ip_address:

 type: string

 capabilities:

 host:

 type: Container

 containee_types: [tosca.nodes.SoftwareComponent]

B.6.2.3 Additional Requirements 889

 Please note that the string values for the properties “os_arch”, “os_type” and “os_distribution” 890

SHALL be normalized to lowercase by processors of the service template for matching purposes. 891

For example, if an “os_type” value is set to either “Linux”, “LINUX” or “linux” in a service template, 892

the processor would normalize all three values to “linux” for matching purposes. 893

B.6.3 tosca.nodes.SoftwareComponent 894

The TOSCA SoftwareComponent node represents a generic software component that can be managed 895

and run by a TOSCA Compute Node Type. 896

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 70 of 95

Shorthand Name SoftwareComponent

Type Qualified Name tosca:SoftwareComponent

Type URI tosca.nodes.SoftwareComponent

B.6.3.1 Properties 897

Name Required Type Constraints Description

version no string None The software component’s version.

B.6.3.2 Definition 898

tosca.nodes.SoftwareComponent:

 derived_from: tosca.nodes.Root

 properties:

 # software component version

 version:

 type: string

 required: false

 requirements:

 - host: tosca.nodes.Compute

B.6.3.3 Additional Requirements 899

 Nodes that can directly be managed and run by a TOSCA Compute Node Type SHOULD extend 900

from this type. 901

B.6.4 tosca.nodes.WebServer 902

This TOSA WebServer Node Type represents an abstract software component or service that is capable 903

of hosting and providing management operations for one or more WebApplication nodes. 904

Shorthand Name WebServer

Type Qualified Name tosca:WebServer

Type URI tosca.nodes.WebServer

B.6.4.1 Properties 905

Name Required Type Constraints Description

None N/A N/A N/A N/A

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 71 of 95

B.6.4.2 Definition 906

tosca.nodes.WebServer

 derived_from: tosca.nodes.SoftwareComponent

 capabilities:

 http_endpoint: tosca.capabilites.Endpoint

 https_endpoint: tosca.capabilities.Endpoint

 host:

 type: Container

 containee_types: [tosca.nodes.WebApplication]

B.6.4.3 Additional Requirements 907

 None 908

B.6.5 tosca.nodes.WebApplication 909

The TOSCA WebApplication node represents a software application that can be managed and run by a 910

TOSCA WebServer node. Specific types of web applications such as Java, etc. could be derived from this 911

type. 912

Shorthand Name WebApplication

Type Qualified Name tosca: WebApplication

Type URI tosca.nodes.WebApplication

B.6.5.1 Properties 913

Name Required Type Constraints Description

None N/A N/A N/A N/A

B.6.5.2 Definition 914

tosca.nodes.WebApplication:

 derived_from: tosca.nodes.Root

 requirements:

 - host: tosca.nodes.WebServer

B.6.5.3 Additional Requirements 915

 None 916

B.6.6 tosca.nodes.DBMS 917

The TOSCA DBMS node represents a typical relational, SQL Database Management System software 918

component or service. 919

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 72 of 95

B.6.6.1 Properties 920

Name Required Type Constraints Description

dbms_root_password yes string None The DBMS server’s root password.

dbms_port no integer None The DBMS server’s port.

B.6.6.2 Definition 921

tosca.nodes.DBMS

 derived_from: tosca.nodes.SoftwareComponent

 properties:

 dbms_root_password:

 type: string

 description: the root password for the DBMS service

 dbms_port:

 type: integer

 description: the port the DBMS service will listen to for data and requests

 capabilities:

 host:

 type: Container

 containee_types: [tosca.nodes.Database]

B.6.6.3 Additional Requirements 922

 None 923

B.6.7 tosca.nodes.Database 924

Base type for the schema and content associated with a DBMS. 925

The TOSCA Database node represents a logical database that can be managed and hosted by a TOSCA 926

DBMS node. 927

 928

Shorthand Name Database

Type Qualified Name tosca:Database

Type URI tosca.nodes.Database

B.6.7.1 Properties 929

Name Required Type Constraints Description

db_user yes string None The special user account used for database administration.

db_password yes string None The password associated with the user account provided in
the ‘db_user’ property.

db_port yes integer None The port the database service will use to listen for incoming
data and requests.

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 73 of 95

Name Required Type Constraints Description

db_name yes string None The logical database Name

B.6.7.2 Definition 930

tosca.nodes.Database:

 derived_from: tosca.nodes.Root

 properties:

 db_user:

 type: string

 description: user account name for DB administration

 db_password:

 type: string

 description: the password for the DB user account

 db_port:

 type: integer

 description: the port the underlying database service will listen to data

 db_name:

 type: string

 description: the logical name of the database

 requirements:

 - host: tosca.nodes.DBMS

 capabilities:

 - database_endpoint: tosca.capabilities.DatabaseEndpoint

B.6.7.3 Additional Requirements 931

 None 932

B.6.8 tosca.nodes.ObjectStorage 933

The TOSCA ObjectStorage node represents storage that provides the ability to store data as objects (or 934

BLOBs of data) without consideration for the underlying filesystem or devices. 935

Shorthand Name ObjectStorage

Type Qualified Name tosca:ObjectStorage

Type URI tosca.nodes.ObjectStorage

B.6.8.1 Properties 936

Name Required Type Constraints Description

store_name yes string None The logical name of the object store (or container).

store_size no integer >=0 The requested initial storage size in Gigabytes.

store_maxsize no integer >=0 The requested maximum storage size in Gigabytes.

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 74 of 95

 937

B.6.8.2 Definition 938

tosca.nodes.ObjectStorage

 derived_from: tosca.nodes.Root

 properties:

 store_name:

 type: string

 store_size:

 type: integer

 constraints:

 - greater_or_equal: 0

 store_maxsize:

 type: integer

 constraints:

 - greater_or_equal: 0

B.6.8.3 Additional Requirements 939

 None 940

B.6.8.4 Notes: 941

 Subclasses of the ObjectStorage node may impose further constraints on properties such as 942

store_name, such as minimum and maximum lengths or include regular expressions to 943

constrain allowed characters. 944

B.6.9 tosca.nodes.BlockStorage 945

The TOSCA BlockStorage node currently represents a server-local block storage device (i.e., not 946

shared) offering evenly sized blocks of data from which raw storage volumes can be created. 947

Note: In this draft of the TOSCA Simple Profile, distributed or Network Attached Storage (NAS) are not 948

yet considered (nor are clustered file systems), but the TC plans to do so in future drafts. 949

Shorthand Name BlockStorage

Type Qualified Name tosca:BlockStorage

Type URI tosca.nodes.BlockStorage

B.6.9.1 Properties 950

Name Required Type Constraints Description

store_mount_path yes string min_length: 1 The relative directory on the file system, which provides
the root directory for the mounted volume.

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 75 of 95

Name Required Type Constraints Description

store_fs_type no string None The type of disk file system.

Examples include: ext2, ext3, reiser, etc.

B.6.9.2 Definition 951

type: tosca.nodes.BlockStorage

 derived_from: tosca.nodes.Root

 properties:

 store_fs_type:

 type: string

 store_mount_path:

 type: string

 constraints:

 - min_length: 1

B.6.9.3 Additional Requirements 952

 None 953

B.6.10 tosca.nodes.Network 954

The TOSCA Network node represents a simple, logical network service. 955

Note: This base Node Type will be further developed in future drafts of this specification. 956

Shorthand Name Network

Type Qualified Name tosca:Network

Type URI tosca.nodes.Network

B.6.10.1 Properties 957

Name Required Type Constraints Description

TBD N/A N/A N/A N/A

B.6.10.2 Definition 958

 tosca.nodes.Network:

 derived_from: tosca.nodes.Root

B.6.10.3 Additional Requirements 959

 TBD 960

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 76 of 95

B.7 Artifact Types 961

TOSCA Artifacts represent the packages and imperative used by the orchestrator when invoking TOSCA 962
Interfaces on Node or Relationship Types. Currently, artifacts are logically divided into three categories: 963

 964

 Deployment Types: includes those artifacts that are used during deployment (e.g., referenced 965

on create and install operations) and include packaging files such as RPMs, ZIPs, or TAR files. 966

 Implementation Types: includes those artifacts that represent imperative logic and are used to 967

implement TOSCA Interface operations. These typically include scripting languages such as Bash 968

(.sh), Chef and Puppet. 969

 Runtime Types: includes those artifacts that are used during runtime by a service or component 970

of the application. This could include a library or language runtime that is needed by an 971

application such as a PHP or Java library. 972

 973

Note: Normative TOSCA Artifact Types will be developed in future drafts of this specification. 974

B.7.1 tosca.artifacts.Root 975

This is the default (root) TOSCA Artifact Type definition that all other TOSCA base Artifact Types derive 976

from. 977

B.7.1.1 Definition 978

tosca.artifacts.Root:

 description: The TOSCA Artifact Type all other TOSCA Artifact Types derive from

B.7.2 tosca.artifacts.File 979

This artifact type is used when an artifact definition needs to have its associated file simply treated as a 980
file and no special handling/handlers are invoked. 981

B.7.2.1 Definition 982

tosca.artifacts.File:

 derived_from: tosca.artifacts.Root

B.7.3 Implementation Types 983

B.7.3.1 Script Types 984

B.7.3.1.1 tosca.artifacts.impl.Bash 985

This artifact type represents a Bash script type that contains Bash commands that can be executed on 986

the Unix Bash shell. 987

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 77 of 95

B.7.3.2 Definition 988

tosca.artifacts.impl.Bash:

 derived_from: tosca.artifacts.Root

 description: Script artifact for the Unix Bash shell

 properties:

 mime_type: application/x-sh

 file_ext: [sh]

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 78 of 95

Appendix C. Non-normative type definitions 989

This section defines non-normative types used in examples or use cases within this specification. 990

C.1 Capability Types 991

C.1.1 tosca.capabilities.DatabaseEndpoint.MySQL 992

This type defines a custom MySQL database endpoint capability. 993

C.1.1.1 Properties 994

Name Required Type Constraints Description

None N/A N/A N/A N/A

C.1.1.2 Definition 995

tosca.capabilities.DatabaseEndpoint.MySQL:

 derived_from: tosca.capabilities.DatabaseEndpoint

C.2 Node Types 996

C.2.1 tosca.nodes.Database.MySQL 997

C.2.1.1 Properties 998

Name Required Type Constraints Description

None N/A N/A N/A N/A

C.2.1.2 Definition 999

tosca.nodes.Database.MySQL:

 derived_from: tosca.nodes.Database

 requirements:

 - host: tosca.nodes.DBMS.MySQL

 capabilities:

 database_endpoint: tosca.capabilities.DatabaseEndpoint.MySQL

C.2.2 tosca.nodes.DBMS.MySQL 1000

C.2.2.1 Properties 1001

Name Required Type Constraints Description

None N/A N/A N/A N/A

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 79 of 95

C.2.2.2 Definition 1002

tosca.nodes.Database.MySQL:

 derived_from: tosca.nodes.DBMS

 properties:

 dbms_port:

 description: reflect the default MySQL server port

 default: 3306

 capabilities:

 host:

 type: Container

 containee_types: [tosca.nodes.Database.MySQL]

C.2.3 tosca.nodes.WebServer.Apache 1003

C.2.3.1 Properties 1004

Name Required Type Constraints Description

None N/A N/A N/A N/A

C.2.3.2 Definition 1005

tosca.nodes.WebServer.Apache:

 derived_from: tosca.nodes.WebServer

C.2.4 tosca.nodes.WebApplication.WordPress 1006

C.2.4.1 Properties 1007

Name Required Type Constraints Description

None N/A N/A N/A N/A

C.2.4.2 Definition 1008

tosca.nodes.WebApplication.WordPress:

 derived_from: tosca.nodes.WebApplication

 properties:

 admin_user:

 type: string

 admin_password:

 type: string

 db_host:

 type: string

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 80 of 95

 requirements:

 - host: tosca.nodes.WebServer

 - database_endpoint: tosca.nodes.Database

 interfaces:

 Lifecycle:

 inputs:

 db_host: string

 db_port: integer

 db_name: string

 db_user: string

 db_password: string

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 81 of 95

Appendix D. Use Cases 1009

D.1 Application Modeling Use Cases: 1010

Short description Interesting Feature Description

Virtual Machine (VM), single
instance

 Introduces the TOSCA base
Node Type for “Compute”.

TOSCA simple profile ates how to stand up a single instance
of a Virtual Machine (VM) image using a normative TOSCA
Compute node.

WordPress + MySQL, single
instance

 Introduces the TOSCA base
Node Types of: “WebServer”,
“WebApplication”, “DBMS”
and “Database” along with
their dependent hosting and
connection relationships.

TOSCA simple profile service showing the WordPress web
application with a MySQL database hosted on a single server
(instance).

WordPress + MySQL + Object
Storage, single instance

 Introduces the TOSCA base
Node Type for
“ObjectStorage”.

TOSCA simple profile service showing the WordPress web
application hosted on a single server (instance) with
attached (Object) storage.

WordPress + MySQL + Block
Storage, single instance

 Introduces the TOSCA base
Node Type for “BlockStorage”
(i.e., for Volume-based
storage).

TOSCA simple profile service showing the WordPress web
application hosted on a single server (instance) with
attached (Block) storage.

WordPress + MySQL, each on
separate instances

 Instantiates 2 tiers, 1 for
WordPress, 1 for DMBS and
coordinates both.

Template installs two instances: one running a WordPress
deployment and the other using a specific (local) MySQL
database to store the data.

WordPress + MySQL +
Network, single instance

 Introduces the TOSCA base
Node Type for a simple
“Network”.

TOSCA simple profile service showing the WordPress web
application and MySQL database hosted on a single server
(instance) along with demonstrating how to define associate
the instance to a simple named network.

WordPress + MySQL +
Floating IPs, single instance

 Connects to an external
(relational) DBMS service

TOSCA simple profile service showing the WordPress web
application and MySQL database hosted on a single server
(instance) along with demonstrating how to create a
network for the application with Floating IP addresses.

D.1.1 Virtual Machine (VM), single instance 1011

D.1.1.1 Description 1012

This use case demonstrates how the TOSCA Simple Profile specification can be used to stand up a 1013
single instance of a Virtual Machine (VM) image using a normative TOSCA Compute node. The TOSCA 1014

Compute node is declarative in that the service template describes both the processor and host operating 1015
system platform characteristics (i.e., properties) that are desired by the template author. The cloud 1016
provider would attempt to fulfill these properties (to the best of its abilities) during orchestration. 1017

D.1.1.2 Features 1018

This use case introduces the following TOSCA Simple Profile features: 1019

 A node template that uses the normative TOSCA Compute Node Type along with showing an 1020

exemplary set of its properties being configured. 1021

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 82 of 95

 Use of the TOSCA Service Template inputs section to declare a configurable value the template 1022

user may supply at runtime. In this case, the property named “cpus” (of type integer) is 1023

declared. 1024

o Use of a property constraint to limit the allowed integer values for the “cpus” property 1025

to a specific list supplied in the property declaration. 1026

 Use of the TOSCA Service Template outputs section to declare a value the template user may 1027

request at runtime. In this case, the property named “instance_ip” is declared 1028

o The “instance_ip” output property is programmatically retrieved from the Compute 1029

node’s “ip_address” property using the TOSCA Service Template-level get_property 1030

function. 1031

D.1.1.3 Logical Diagram 1032

TBD 1033

D.1.1.4 Sample YAML 1034

tosca_definitions_version: tosca_simple_yaml_1_0

description: >

 TOSCA simple profile that just defines a single compute instance. Note, this
example does not include default values on inputs properties.

inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

node_templates:

 my_server:

 type: tosca.nodes.Compute

 properties:

 # compute properties

 disk_size: 10 # in GB

 num_cpus: { get_input: cpus }

 mem_size: 4 # in MB

 # host image properties

 os_arch: x86_64

 os_type: linux

 os_distribution: ubuntu

 os_version: 12.04

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 83 of 95

outputs:

 instance_ip:

 description: The IP address of the deployed instance.

 value: { get_property: [my_server, ip_address] }

D.1.1.5 Notes 1035

 This use case uses a versioned, Linux Ubuntu distribution on the Compute node. 1036

D.1.2 WordPress + MySQL, single instance 1037

D.1.2.1 Description 1038

TOSCA simple profile service showing the WordPress web application with a MySQL database hosted on 1039
a single server (instance). 1040

 1041

This use case is built upon the following templates fro, OpenStack Heat’s Cloud Formation (CFN) 1042
template and from an OpenStack Heat-native template: 1043

 https://github.com/openstack/heat-1044

templates/blob/master/cfn/F17/WordPress_With_RDS.template 1045

 https://github.com/openstack/heat-templates/blob/master/hot/F18/WordPress_Native.yaml 1046

However, where the CFN template simply connects to an existing Relational Database Service (RDS) our 1047

template below will also install a MySQL database explicitly and connect to it. 1048

D.1.2.2 Logical Diagram 1049

TBD 1050

D.1.2.3 Sample YAML 1051

tosca_definitions_version: tosca_simple_1.0

description: >

 TOSCA simple profile with WordPress, a web server, mMySQL DBMS and mysql database
on the same server. Does not have input defaults or constraints.

inputs:

 cpus:

 type: number

 description: Number of CPUs for the server.

 db_name:

 type: string

 description: The name of the database.

 db_user:

https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_With_RDS.template
https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_With_RDS.template

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 84 of 95

 type: string

 description: The username of the DB user.

 db_pwd:

 type: string

 description: The WordPress database admin account password.

 db_root_pwd:

 type: string

 description: Root password for MySQL.

 db_port:

 type:integer

 description: Port for the MySQL database

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 requirements:

 - host: webserver

 - database_endpoint: mysql_database

 interfaces:

 create: wordpress_install.sh

 configure:

 implementation: wordpress_configure.sh

 input:

 wp_db_name: { get_property: [mysql_database, db_name] }

 wp_db_user: { get_property: [mysql_database, db_user] }

 wp_db_password: { get_property: [mysql_database, db_password] }

 # goto requirement, goto capability, goto port property

 wp_db_port: { get_ref_property: [database_endpoint, database_endpoint,
port] }

 mysql_database:

 type: tosca.nodes.Database

 properties:

 db_name: { get_input: db_name }

 db_user: { get_input: db_user }

 db_password: { get_input: db_pwd }

 capabilities:

 database_endpoint:

 properties:

 port: { get_input: db_port }

 requirements:

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 85 of 95

 - host: mysql_dbms

 interfaces:

 configure: mysql_database_configure.sh

 mysql_dbms:

 type: tosca.nodes.DBMS

 properties:

 dbms_root_password: { get_input: db_root_pwd }

 dbms_port: { get_input: db_root_pwd }

 requirements:

 - host: server

 interfaces:

 create: mysql_dbms_install.sh

 start: mysql_dbms_start.sh

 configure: mysql_dbms_configure

 input:

 db_root_password: { get_property: [mysql_dbms, dbms_root_password] }

 webserver:

 type: tosca.nodes.WebServer

 requirements:

 - host: server

 interfaces:

 create: webserver_install.sh

 start: webserver_start.sh

 server:

 type: tosca.nodes.Compute

 properties:

 # compute properties (flavor)

 disk_size: 10

 num_cpus: { get_input: cpus }

 mem_size: 4096

 # host image properties

 os_arch: x86_64

 os_type: Linux

 os_distribution: Fedora

 os_version: 17

outputs:

 website_url:

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 86 of 95

 description: URL for Wordpress wiki.

 value: { get_property: [server, ip_address] }

D.1.2.4 Sample scripts 1052

Where the referenced implementation scripts in the example above would have the following contents 1053

D.1.2.4.1 wordpress_install.sh 1054

yum -y install wordpress

D.1.2.4.2 wordpress_configure.sh 1055

sed -i "/Deny from All/d" /etc/httpd/conf.d/wordpress.conf

sed -i "s/Require local/Require all granted/" /etc/httpd/conf.d/wordpress.conf

sed -i s/database_name_here/db_name/ /etc/wordpress/wp-config.php

sed -i s/username_here/db_user/ /etc/wordpress/wp-config.php

sed -i s/password_here/db_password/ /etc/wordpress/wp-config.php

systemctl restart httpd.service

D.1.2.4.3 mysql_database_configure.sh 1056

Setup MySQL root password and create user

cat << EOF | mysql -u root --password=db_rootpassword

CREATE DATABASE db_name;

GRANT ALL PRIVILEGES ON db_name.* TO "db_user"@"localhost"

IDENTIFIED BY "db_password";

FLUSH PRIVILEGES;

EXIT

EOF

D.1.2.4.4 mysql_dbms_install.sh 1057

yum -y install mysql mysql-server

Use systemd to start MySQL server at system boot time

systemctl enable mysqld.service

D.1.2.4.5 mysql_dbms_start.sh 1058

Start the MySQL service (NOTE: may already be started at image boot time)

systemctl start mysqld.service

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 87 of 95

D.1.2.4.6 mysql_dbms_configure 1059

Set the MySQL server root password

mysqladmin -u root password db_rootpassword

D.1.2.4.7 webserver_install.sh 1060

yum -y install httpd

systemctl enable httpd.service

D.1.2.4.8 webserver_start.sh 1061

Start the httpd service (NOTE: may already be started at image boot time)

systemctl start httpd.service

D.1.3 WordPress + MySQL + Object Storage, single instance 1062

D.1.3.1 Description 1063

This use case shows a WordPress application that makes use of an Object Storage service to application 1064
artifacts. 1065

Note: Future drafts of this specification will detail this use case 1066

D.1.3.2 Logical Diagram 1067

TBD 1068

D.1.3.3 Sample YAML 1069

TBD

D.1.4 WordPress + MySQL + Block Storage, single instance 1070

D.1.4.1 Description 1071

This use case is based upon OpenStack Heat’s Cloud Formation (CFN) template: 1072

 https://github.com/openstack/heat-1073

templates/blob/master/cfn/F17/WordPress_Single_Instance_With_EBS.template 1074

 1075

Note: Future drafts of this specification will detail this use case. 1076

D.1.4.2 Logical Diagram 1077

TBD 1078

D.1.4.3 Sample YAML 1079

TBD

https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_Single_Instance_With_EBS.template
https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_Single_Instance_With_EBS.template

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 88 of 95

D.1.5 WordPress + MySQL, each on separate instances 1080

D.1.5.1 Description 1081

TOSCA simple profile service showing the WordPress web application hosted on one server (instance) 1082
and a MySQL database hosted on another server (instance). 1083

 1084

This is based upon OpenStack Heat’s Cloud Formation (CFN) template: 1085

 https://github.com/openstack/heat-1086

templates/blob/master/cfn/F17/WordPress_2_Instances.template 1087

 1088

Note: Future drafts of this specification will detail this use case. 1089

D.1.5.2 Logical Diagram 1090

TBD 1091

D.1.5.3 Sample YAML 1092

TBD

D.1.6 WordPress + MySQL + Network, single instance 1093

D.1.6.1 Description 1094

This use case is based upon OpenStack Heat’s Cloud Formation (CFN) template: 1095

 https://github.com/openstack/heat-1096

templates/blob/master/cfn/F17/WordPress_Single_Instance_With_Quantum.template 1097

 1098

Note: Future drafts of this specification will detail this use case. 1099

D.1.6.2 Logical Diagram 1100

TBD 1101

D.1.6.3 Sample YAML 1102

TBD

D.1.7 WordPress + MySQL + Floating IPs, single instance 1103

D.1.7.1 Description 1104

This use case is based upon OpenStack Heat’s Cloud Formation (CFN) template: 1105

 https://github.com/openstack/heat-1106

templates/blob/master/cfn/F17/WordPress_Single_Instance_With_EIP.template 1107

Note: Future drafts of this specification will detail this use case. 1108

https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_2_Instances.template
https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_2_Instances.template
https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_Single_Instance_With_Quantum.template
https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_Single_Instance_With_Quantum.template
https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_Single_Instance_With_EIP.template
https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_Single_Instance_With_EIP.template

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 89 of 95

D.1.7.2 Logical Diagram 1109

TBD 1110

D.1.7.3 Sample YAML 1111

TBD

D.1.7.4 Notes 1112

 The Heat/CFN use case also introduces the concept of “Elastic IP” (EIP) addresses which is the 1113

Amazon AWS term for floating IPs. 1114

 The Heat/CFN use case provides a “key_name” as input which we will not attempt to show in 1115

this use case as this is a future security/credential topic. 1116

 The Heat/CFN use case assumes that the “image” uses the “yum” installer to install Apache, 1117

MySQL and Wordpress and installs, starts and configures them all in one script (i.e., under 1118

Compute). In TOSCA we represent each of these software components as their own Nodes each 1119

with independent scripts. 1120

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 90 of 95

Appendix E. Notes and Issues 1121

E.1 Known Extensions to TOSCA v1.0 1122

The following items will need to be reflected in the TOSCA (XML) specification to allow for isomorphic 1123
mapping between the XML and YAML service templates. 1124

E.1.1 Model Changes 1125

 The “TOSCA Simple ‘Hello World’” example introduces this concept in Section 3. Specifically, a VM 1126

image assumed to accessible by the cloud provider. 1127

 Introduce template Input and Output parameters 1128

 The “Template with input and output parameter” example introduces concept in Section 3.1. 1129

 “Inputs” could be mapped to BoundaryDefinitions in TOSCA v1.0. Maybe needs some usability 1130

enhancement and better description. 1131

 “outputs” are a new feature. 1132

 Grouping of Node Templates 1133

 This was part of original TOSCA proposal, but removed early on from v1.0 This allows grouping 1134

of node templates that have some type of logically managed together as a group (perhaps to 1135

apply a scaling or placement policy). 1136

 Lifecycle Operation definition independent/separate from Node Types or Relationship types (allows 1137

reuse). For now we added Lifecycle and Relationship 1138

 Override of Interfaces (operations) in the Node Template. 1139

 Service Template Naming/Versioning 1140

 Should include TOSCA spec. (or profile) version number (as part of namespace) 1141

 Allow the referencing artifacts using a URL (e.g., as a property value). 1142

E.1.2 Normative Types 1143

 Constraint (addresses TOSCA-117) 1144

 Property / Parameter 1145

 Includes YAML intrinsic types. 1146

 Node 1147

 Relationship 1148

 Root, DependsOn, HostedOn, ConnectsTo 1149

 Artifact 1150

 Deployment: Bash (for WD01) 1151

 Requirements 1152

 (TBD), Goal is to rely less upon source defined requirements that point to types, and instead 1153

reference names of features exported by the target nodes. 1154

 Capabilities 1155

 Feature, Container, Endpoint 1156

 Lifecycle 1157

 Lifecycle, Relationship 1158

 Resource 1159

 In HEAT they have concept of key pairs (an additional resource type in the template). 1160

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 91 of 95

E.1.3 Functions 1161

 Intrinsic functions for model navigation, referencing etc. 1162

 get_input 1163

 get_property 1164

 get_ref_property 1165

E.2 Issues to resolve in future drafts 1166

Issue # Target Title Notes

TOSCA-132 WD02 Use "set_property" methods to "push" values from template
inputs to nodes

None

TOSCA-133 WD02 Add text/examples/grammar for defining a nested template
that implements a node type

Proposed draft text exists,
needs review/update.

TOSCA-134 WD02 Define TOSCA version type based upon Apache Maven
versioning

None

TOSCA-135 WD02 Define/reference a Regex language (or subset) we wish to
support for constraints

None

TOSCA-136 WD02 Need rules to assure non-collision (uniqueness) of
requirement or capability names

None

TOSCA-137 WD02 Need to address "optional" and "best can" on node
requirements (constraints) for matching/resolution

None

TOSCA-138 WD02 Define a Network topology for L2 Networks along with
support for Gateways, Subnets, Floating IPs and Routers

Luc Boutier has rough
proposal in MS Word format.

TOSCA-142 WD02 WD02 - Define normative Artifact Types (including
deployment/packages, impls., and runtime types)

None

TOSCA-143 WD02 WD02 - Define normative tosca.nodes.Network Node Type
(for simple networks)

Separate use case as what Luc
proposes in TOSCA-138.

TOSCA-146 WD02 WD02 - Define a grammar for each property function and
provide examples.

None

TOSCA-147 WD02 WD02 - Define grammar for and examples of using
Relationship templates

None

TOSCA-148 WD02 WD02 - Need a means to express cardinality on relationships
(e.g., number of connections allowed)

None

TOSCA-149 WD02 WD02 - Create an independent section to describe a single
requirement definitions’ grammar

Improvement for readability of
grammar.

TOSCA-150 WD02 WD02 - Work towards a common syntax for Requirement
definitions (currently 3 variants)

Related to TOSCA-149

TOSCA-151 WD02 WD02 - Resolve spec. behavior if name collisions occur on
named Requirements

Dale assigned

TOSCA-152 WD02 WD02 - Extend Requirement grammar to support
"Optional/Best Can" Capability Type matching

Derek assgined

TOSCA-153 WD02 WD02 - Define grammar and usage of Service Template
keyname (schema namespace) "tosca_default_namespace"

Need to define what
normative types may be
implied to be automatically
imported as part of the
schema declaration.

TOSCA-154 WD02 WD02 - Decide how security/access control work with Nodes,
update grammar, author descriptive text/examples

TOSCA-155 WD02 WD02 - How do we provide constraints on properties declared
as simple YAML lists (sets)

TOSCA-156 WD02 WD02 - Are there IPv6 considerations (e.g., new properties)
for tosca.capabilities.Endpoint

TOSCA-157 WD02 WD02 - Can/how do we make a property defn. "final" or
"read-only"

TOSCA-158 WD02 WD02 - Provide prose describing how Feature matching is Dependency on TOSCA-137,

https://tools.oasis-open.org/issues/browse/TOSCA-132
https://tools.oasis-open.org/issues/browse/TOSCA-133
https://tools.oasis-open.org/issues/browse/TOSCA-134
https://tools.oasis-open.org/issues/browse/TOSCA-135
https://tools.oasis-open.org/issues/browse/TOSCA-136
https://tools.oasis-open.org/issues/browse/TOSCA-137
https://tools.oasis-open.org/issues/browse/TOSCA-138
https://tools.oasis-open.org/issues/browse/TOSCA-142
https://tools.oasis-open.org/issues/browse/TOSCA-143
https://tools.oasis-open.org/issues/browse/TOSCA-146
https://tools.oasis-open.org/issues/browse/TOSCA-147
https://tools.oasis-open.org/issues/browse/TOSCA-148
https://tools.oasis-open.org/issues/browse/TOSCA-149
https://tools.oasis-open.org/issues/browse/TOSCA-150
https://tools.oasis-open.org/issues/browse/TOSCA-151
https://tools.oasis-open.org/issues/browse/TOSCA-152
https://tools.oasis-open.org/issues/browse/TOSCA-153
https://tools.oasis-open.org/issues/browse/TOSCA-154
https://tools.oasis-open.org/issues/browse/TOSCA-155
https://tools.oasis-open.org/issues/browse/TOSCA-156
https://tools.oasis-open.org/issues/browse/TOSCA-157
https://tools.oasis-open.org/issues/browse/TOSCA-158

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 92 of 95

done by orchestrators Future item, W03 or beyond.

TOSCA-159 WD02 WD02 - Describe how not all interfaces need to supply scripts
(artifacts), it is a no-op behavior

TOSCA-160 WD02 WD02 - Need examples of using the
"tosca.interfaces.relationship.Configure" interface

TOSCA-161 WD02 WD02 - Need examples of using the built-in feature
(Capability) and dependency (Requirement) of
tosca.nodes.Root

TOSCA-162 WD02 WD02 - Provide recognized values for tosca.nodes.compute
properties: os_arch

Could be WD03 item

TOSCA-163 WD02 WD02 - Provide recognized values for
tosca.nodes.BlockStorage: store_fs_type

Could be WD03 item

TOSCA-164 WD02 WD02 - Do we need a restart lifecycle operation for nodes?

TOSCA-165 WD02 WD02 - New use case / example: Selection/Replacement of
web server type (e.g. Apache, NGinx, Lighttpd, etc.)

Could be WD03 item

TOSCA-166 WD02 WD02 - New use case / example: Web Server with (one or
more) runtimes environments (e.g., PHP, Java, etc.)

Could be WD03 item

TOSCA-167 WD03 WD02 - New use case / example: Show abstract substitution
of Compute node OS with different Node Type Impls.

Could be WD03 item

TOSCA-168 WD03 WD02 - New use case / example: Show how substitution of
IaaS can be accomplished.

Could be WD03 item

 1167

https://tools.oasis-open.org/issues/browse/TOSCA-159
https://tools.oasis-open.org/issues/browse/TOSCA-160
https://tools.oasis-open.org/issues/browse/TOSCA-161
https://tools.oasis-open.org/issues/browse/TOSCA-162
https://tools.oasis-open.org/issues/browse/TOSCA-163
https://tools.oasis-open.org/issues/browse/TOSCA-164
https://tools.oasis-open.org/issues/browse/TOSCA-165
https://tools.oasis-open.org/issues/browse/TOSCA-166
https://tools.oasis-open.org/issues/browse/TOSCA-167
https://tools.oasis-open.org/issues/browse/TOSCA-168

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 93 of 95

Appendix F. References 1168

F.1 Terminology 1169

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 1170
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 1171
in [TOSCA-1.0]. 1172

F.2 Normative References 1173

[TOSCA-1.0] Topology and Orchestration Topology and Orchestration Specification for Cloud 1174
Applications (TOSCA) Version 1.0, an OASIS Standard, 25 November 2013, 1175
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf 1176

[YAML-1.2] YAML, Version 1.2, 3rd Edition, Patched at 2009-10-01, Oren Ben-Kiki, Clark 1177
Evans, Ingy döt Net http://www.yaml.org/spec/1.2/spec.html 1178

[YAML-TS-1.1] Timestamp Language-Independent Type for YAML Version 1.1, Working Draft 1179
2005-01-18, http://yaml.org/type/timestamp.html 1180

 1181

F.3 Non-Normative References 1182

[AWS-CFN] Amazon Cloud Formation (CFN), http://aws.amazon.com/cloudformation/ 1183

[Chef] Chef, https://wiki.opscode.com/display/chef/Home 1184

[OS-Heat] OpenStack Project Heat, https://wiki.openstack.org/wiki/Heat 1185

[Puppet] Puppet, http://puppetlabs.com/ 1186

[WordPress] WordPress, https://wordpress.org/ 1187

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://www.yaml.org/spec/1.2/spec.html
http://yaml.org/type/timestamp.html
http://aws.amazon.com/cloudformation/
https://wiki.opscode.com/display/chef/Home
https://wiki.openstack.org/wiki/Heat
http://puppetlabs.com/
https://wordpress.org/

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 94 of 95

Appendix G. Acknowledgments 1188

The following individuals have participated in the creation of this specification and are gratefully 1189
acknowledged: 1190

Contributors: 1191
Derek Palma (dpalma@vnomic.com), Vnomic 1192

Frank Leymann (Frank.Leymann@informatik.uni-stuttgart.de), Univ. of Stuttgart 1193

Gerd Breiter (gbreiter@de.ibm.com), IBM 1194

Jacques Durand (jdurand@us.fujitsu.com), Fujitsu 1195

Juergen Meynert (juergen.meynert@ts.fujitsu.com), Fujitsu 1196

Karsten Beins (karsten.beins@ts.fujitsu.com), Fujitsu 1197

Kevin Wilson (kevin.l.wilson@hp.com), HP 1198

Krishna Raman (kraman@redhat.com) , Red Hat 1199

Luc Boutier (luc.boutier@fastconnect.fr), FastConnect 1200

Matt Rutkowski (mrutkows@us.ibm.com), IBM 1201

Richard Probst (richard.probst@sap.com), SAP AG 1202

Sahdev Zala (spzala@us.ibm.com), IBM 1203

Stephane Maes (stephane.maes@hp.com), HP 1204

Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM 1205

Travis Tripp (travis.tripp@hp.com), HP 1206

mailto:dpalma@vnomic.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/Frank.Leymann@informatik.uni-stuttgart.de
mailto:gbreiter@de.ibm.com
mailto:jdurand@us.fujitsu.com
mailto:juergen.meynert@ts.fujitsu.com
mailto:karsten.beins@ts.fujitsu.com
mailto:kevin.l.wilson@hp.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/kraman@redhat.com
mailto:luc.boutier@fastconnect.fr
mailto:mrutkows@us.ibm.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/richard.probst@sap.com
mailto:spzala@us.ibm.com
mailto:stephane.maes@hp.com
mailto:thomas.spatzier@de.ibm.com
mailto:travis.tripp@hp.com

TOSCA-Simple-Profile-YAML-v1.0-csd01 27 March 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 95 of 95

Appendix H. Revision History 1207

 1208

Revision Date Editor Changes Made

38 2014-03-20 Matt Rutkowski, IBM Updated to OASIS latest template

 1209

 1210

