
Test Assertions Part 1 - Test Assertions
Model Version 1.0

Committee Draft 01

13 February 2010

Specification URIs:

This Version:
http://docs.oasis-open.org/tag/model/v1.0/cd01/testassertionsmodel-1.0-cd-01.html

http://docs.oasis-open.org/tag/model/v1.0/cd01/testassertionsmodel-1.0-cd-01.odt

http://docs.oasis-open.org/tag/model/v1.0/cd01/testassertionsmodel-1.0-cd-01.pdf (Authoritative)

Previous Version:
[N/A]

Latest Version:
http://docs.oasis-open.org/tag/model/v1.0/testassertionsmodel-1.0.html

http://docs.oasis-open.org/tag/model/v1.0/testassertionsmodel-1.0.odt

http://docs.oasis-open.org/tag/model/v1.0/testassertionsmodel-1.0.pdf (Authoritative)

Technical Committee:
OASIS Test Assertions Guidelines (TAG)

Chair(s):
Patrick Curran

Jacques Durand

Editor(s):
Stephen D. Green

Related Work:
This specification is related to:

• OASIS TAG TC - Test Assertions Part 2 - Test Assertion Markup Language Version 1.0

• OASIS TAG TC - Test Assertions Guidelines

Declared XML Namespace(s):
N/A

Abstract:
This document specifies mandatory and optional components of a test assertion model.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 1 of 31

http://docs.oasis-open.org/tag/model/v1.0/cd01/testassertionsmodel-1.0-cd-01.html
http://www.oasis-open.org/committees/tag/
http://docs.oasis-open.org/tag/model/v1.0/testassertionsmodel-1.0.pdf
http://docs.oasis-open.org/tag/model/v1.0/testassertionsmodel-1.0.odt
http://docs.oasis-open.org/tag/model/v1.0/testassertionsmodel-1.0.html
http://docs.oasis-open.org/tag/model/v1.0/cd01/testassertionsmodel-1.0-cd-01.pdf
http://docs.oasis-open.org/tag/model/v1.0/cd01/testassertionsmodel-1.0-cd-01.odt

Status:
 This document was last revised or approved by the Test Assertions Guidelines TC on the above
date. The level of approval is also listed above. Check the "Latest Version" location noted above
for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/tag/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/tag/ipr.php).

The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/tag/.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 2 of 31

http://www.oasis-open.org/committees/tag/
http://www.oasis-open.org/committees/tag/
http://www.oasis-open.org/committees/tag/ipr.php
http://www.oasis-open.org/committees/tag/ipr.php
http://www.oasis-open.org/committees/tag/
http://www.oasis-open.org/committees/tag/

Notices
Copyright © OASIS® 2008-2010. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be
followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The names "OASIS" and “OASIS Test Assertions Model” are trademarks of OASIS, the owner and
developer of this specification, and should be used only to refer to the organization and its official outputs.
OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to
enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for
above guidance.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 3 of 31

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/

Table of Contents

1 Introduction... 5

1.1 Terminology... 5

1.2 Normative References...6

1.3 Non-Normative References... 6

2 Definitions and Rationale ... 7

2.1 Test Assertion.. 7

2.2 Test Assertion Set and Test Assertion Document.. 7

2.3 Benefits of Test Assertions...8

3 Test Assertion..9

3.1 Overview of a Test Assertion Model...9

3.2 Test Assertion Model..10

3.3 Semantics..19

4 Test Assertion Set... 20

5 Conformance.. 30

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 4 of 31

1 Introduction
[All text is normative unless otherwise indicated.]

1.1 Terminology

Within this specification, the key words "shall", "shall not", "should", "should not" and "may" are to be
interpreted as described in Annex H of [ISO/IEC Directives] if they appear in bold letters.

Data Model Formal Definition Terminology

The means of formally defining the model in this specification involves the use of terms “class”, “attribute”,
“datatype” and “association”. These are terms familiar in an object oriented paradigm but shall not be
strictly interpreted as object oriented terms. The terms are used as a means of formally defining the data
structures in the model and do not specify or imply how that data is to be accessed or used. The use of
the object oriented terminology shall not be taken to mean that the implementation is to be object
oriented.

 Class

The term “class” is used when the structure so modeled is a complex grouping of more than one entity
(either “attributes” or “associations” or both).

 Datatype

The term “datatype” is primarily used of a simple, primitive type such as a string or integer. An
implementation may implement a datatype with another datatype such as a more restricted datatype
based on the datatype specified in the model. (For example an entity specified with datatype “string” may
be implemented as a URI.)

 Attribute

The term “attribute” is used to specify an entity that is an instance of a primitive or simple datatype such
as a string or an integer.

 Association

The term “association” is used of an entity which is an instance of a class (i.e. its structure is defined by a
class) and which appears as an element inside another class.

Domain terminology

 Conformance

The fulfillment of specified requirements by a product, document, process, or service.

 Conformance Clause

A statement in the Conformance section of a specification that provides a high-level description of what is
required for an artifact to conform. The conformance clause may, in turn, refer to other parts of the
specification for details. A conformance clause must reference one or more normative statements, directly
or indirectly, and may refer to another conformance clause.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 5 of 31

 Implementation

A product, document, process, or service that is the realization of a specification or part of a specification.

 Normative Statement, Normative Requirement

A statement made in the body of a specification that defines prescriptive requirements on a conformance
target.

 Test Case

A set of a test tools, software or files (data, programs, scripts, or instructions for manual operations) that
verifies the adherence of a test assertion target to one or more normative statements in the specification.
Typically a test case is derived from one or more test assertions. Each test case includes: (1) a
description of the test purpose (what is being tested - the conditions / requirements / capabilities which
are to be addressed by a particular test), (2) the pass/fail criteria, (3) traceability information to the verified
normative statements, either as a reference to a test assertion, or as a direct reference to the normative
statement. They are normally grouped in a test suite.

 Test Metadata

Metadata that is included in test cases to facilitate automation and other processing.

1.2 Normative References

[ISO/IEC Directives] ISO/IEC Directives, Part 2 Rules for the structure and drafting of International
Standards, International Organization for Standardization, 2004

[RFC 2119] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. IETF
RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.

1.3 Non-Normative References

[CONF1] OASIS Committee Specification 01, "Conformance Requirements for
Specifications v1.0", 15 March 2002. http://www.oasis-
open.org/committees/download.php/305/conformance_requirements-v1.pdf

[CONF2] L. Rosenthal, M. Skall, L. Carnahan, "Conformance testing and Certification
Framework ", June 2001(OASIS, white paper)

 http://www.oasis-
open.org/committees/download.php/309/testing_and_certification_framework.pdf

[VAR] Variability in Specifications, WG note (W3C, 2005)

see http://www.w3.org/TR/2005/NOTE-spec-variability-20050831/

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 6 of 31

http://www.w3.org/TR/2005/NOTE-spec-variability-20050831/
http://www.oasis-open.org/committees/download.php/309/testing_and_certification_framework.pdf
http://www.oasis-open.org/committees/download.php/309/testing_and_certification_framework.pdf
http://www.oasis-open.org/committees/download.php/305/conformance_requirements-v1.pdf
http://www.oasis-open.org/committees/download.php/305/conformance_requirements-v1.pdf
http://www.ietf.org/rfc/rfc2119.txt

2 Definitions and Rationale

2.1 Test Assertion

A test assertion is a testable or measurable expression for evaluating the adherence of part of an
implementation to a normative statement in a specification. It describes the expected output or behavior
for the test assertion target within specific operation conditions, in a way that can be measured or tested.

A Test Assertion should not be confused with a Conformance Clause, nor with a Test Case. The
specification will often have one or more conformance clauses [[CONF1]][[CONF2]] which define (one or
more) conformance profiles or levels [[VAR]] . A set of test assertions may be associated with a
conformance clause in order to define more precisely what conformance entails. Test assertions lie
between the specification and any suite of tests to be conducted to determine conformance. Such a test
suite is typically comprised of a set of test cases. These test cases may be derived from test assertions
which address the normative statements of the specification.

2.2 Test Assertion Set and Test Assertion Document

A container may be produced for a complete set of test assertions; often those related to all or part of a
specification or conformance profile. In some cases the container is the specification itself with test

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 7 of 31

assertions included within it. Test assertions can be added to the document, removed or changed using a
change and version management procedure.

2.3 Benefits of Test Assertions

 Improving the Specification

Test assertions may help provide a tighter specification: Any ambiguities, contradictions and statements
which require excessive resources for testing can be noted as they become apparent during test
assertion creation. If there is still an opportunity to correct or improve the specification, these notes can
be the basis of comments to the specification authors. If not developed by the specification authors, test
assertions should be reviewed and approved by them which will improve both the quality and time-to-
deployment of the specification. Therefore, best results are achieved when assertions are developed in
parallel with the specification. An alternative is to have the leader of the team that is writing test suites
write the test assertions as well and to provide feedback to the specification authors.

 Facilitating Testing

Test assertions provide a starting point for writing a conformance test suite or an interoperability test suite
for a specification that can be used during implementation. They simplify the distribution of the test
development effort between different organizations while maintaining consistent test quality. By tying test
output to specification statements, test assertions improve confidence in the resulting test and provide a
basis for coverage analysis (estimating the extent to which the specification is tested).

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 8 of 31

3 Test Assertion

3.1 Overview of a Test Assertion Model

Core Test Assertion Parts

A test assertion shall include, implicitly or explicitly:

 Identifier

This unique identifier facilitates tools development and the mapping of assertions to specification
statements. It is recommended that the identifier be made universally unique.1

 Normative Source

These refer to the precise specification requirements or normative statements that the test assertion
addresses.

 Target

A test assertion target is the implementation or part of an implementation that is the object of a test
assertion or test case. It categorizes an implementation or a part of an implementation of the referred
specification.

 Predicate

A predicate asserts, in the form of an expression, the feature (a behavior or a property) described in the
referred specification statement(s). If the predicate is an expression which evaluates to “true” over the test
assertion target, this means that the target exhibits this feature. “False” means the target does not exhibit
this feature.

Optional Test Assertion Parts

In addition, a test assertion may optionally include:

 Prescription Level

The prescription level is a keyword that indicates how imperative it is that the Normative Statement
referred to in the Normative Source, be met. The test assertion defines a normative statement which may
be mandatory (MUST / REQUIRED / SHALL), permitted (MAY / CAN) or preferred (SHOULD /
RECOMMENDED). This property can be termed the test assertion’s prescription level. NOTE: in the case
of the normative source including keywords 'MUST NOT' the prescription level 'mandatory' is used and
the 'NOT' included in the predicate. There are differences between various conventions of normative
language [ISO/IEC Directives] [RFC 2119]and the above terms may be extended with more specialized
terms for a particular convention and its distinct shades of meaning.

 Prerequisite

A test assertion Prerequisite is a logical expression (similar to a Predicate) which further qualifies the
Target for undergoing the core test (expressed by the Predicate) that addresses the Normative

1 One way to do this is to designate a universally unique name for a set of test assertions and to include
this name along with the identifier when referencing the test assertion from outside of this set.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 9 of 31

Statement. It may include references to the outcome of other test assertions. If the Prerequisite evaluates
to "false" then the Target instance is not qualified for evaluation by the Predicate.

 Tag

Test assertions may be assigned 'tags' or 'keywords', which may in turn be given values. These tags
provide an opportunity to categorize the test assertions. They enable the grouping of the test assertions,
for example based on the type of test they assume or based on their target properties.

 Variable

Test assertions may also include variables for convenience in storing values for reuse and shared use.
Another use of a variable is as parameter or attribute employed by the writer of a test assertion to refer to
a value that is not known at the time the test assertion is written, but which will be determined at some
later stage, possibly as late as the middle of running a set of tests.

Implicit Test Assertion Parts

In an actual test assertion definition, the previously mentioned properties are often explicitly represented
as elements of the test assertion.

A concrete representation of a test assertion may omit elements provided they are implicit. A common
case of implicit test assertion components is the implicit target: When several test assertions relate to the
same target, the latter may be described just once as part of the context where the test assertions are
defined, so that it does not need to be repeated. This calls for further structural components than those
described so far. The more complex structure may include a test assertion set whose model caters for
sharing of test assertion parts among a group of test assertions.

3.2 Test Assertion Model

Table 1. Mapping Section 3.1 test assertion overview to the formal Test Assertions Model

Test Assertion Structures Corresponding Entities in Test Assertions Model

Core Parts

Test Assertion Class: testAssertion

Identifier attribute: testAssertion.id

('id' attribute of testAssertion class)

Normative Source Class: normativeSource

Target Class: target

Predicate Class: predicate

Optional Parts

Prescription Level attribute: prescription.level

('level' attribute of prescription class)

Prerequisite Class: prerequisite

Tag Class: tag

Variable Class: var

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 10 of 31

Convention Used for Formally Defining the Model

The means of formally defining the model in this specification involves the use of terms “class”, “attribute”,
“datatype” and “association”. These are terms familiar in an object oriented paradigm but shall not be
strictly interpreted as object oriented terms. The terms are used as a means of formally defining the data
structures in the model and do not specify or imply how that data is to be accessed or used. The use of
the object oriented terminology shall not be taken to mean that the implementation is to be object
oriented. See section 1.2 for meanings of these terms.

Example Formal Definition:

example {

 content : string (1..1)
 id : string (1..1)
 Child : child (1..*)
 Sibling : sibling (0..*)

}

With the exception of the example above, all of the textual representations in this specification shall be
taken as normative and authoritative. However, some classes in this specification may be extended either
by adding further attributes or by adding further associations or both. This is indicated in the prose
immediately following the representation of the class.

The class name, here called 'example', is shown before the opening curly bracket. The attributes
combine the name of the attribute in lower camel case separated by a colon from the name of the
datatype on which the type of the attribute is based. The associations combine the name of the
association in upper camel case separated by a colon from the name of the class which is associated and
which represents the type of the association. The cardinalities are specified using the notation “(x..y)”
where “x” represents the lower bound and “y” the upper bound of the cardinality. The symbol “*”
represents a limitless upper bound. There are the following cardinalities in the model:

(0..1) specifies an optional, singular entity (lower bound 0, upper bound 1)

(0..*) specifies an optional, multiple entity (lower bound 0, upper bound unlimited)

(1..1) specifies a mandatory, singular entity (lower bound 1, upper bound 1)

(1..*) specifies a mandatory, multiple entity (lower bound 1, upper unlimited)

(x..y) specifies an entity lower bound x, upper y where x and y are positive integers, for example (1..2)

In the example representation above there is a class called “example” (not a real class, just an example
to illustrate the representation convention used in this specification). The class has a mandatory attribute,
shown with “(1..1)” to signify that it is mandatory, called “id” whose content is type “string”. The class
called “example” has another attribute named “content” which is shown to be optional by the notation
(0..1). The “example” class has associations to other classes called “child” and “sibling”. These are
similar to attributes whose types are complex and represented in this model as classes. The (0..*)
notation signifies that the entity named “sibling” has multiple cardinality and is optional. The (1..*) after the
association called “child” signifies that this association is mandatory and multiple.

Any graphic images such as class diagrams included in this specification are non-normative. It is the text
which shall be taken as normative. Any diagrams are to be interpreted loosely as illustrative material and
in the case of any discrepancy with the text it is the text which is to be taken as authoritative.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 11 of 31

testAssertion

Formal Definition of 'testAssertion':

testAssertion {

 id : string (1..1)
 language : string (0..1)
 NormativeSource : normativeSource (1..1)
 Target : target (1..1)
 Prerequisite : prerequisite (0..1)
 Predicate : predicate (1..1)
 Prescription : prescription (0..1)
 Description : description (0..1)
 Tag : tag (0..*)
 Variable : variable (0..*)

}

Other attributes and associations may be added to the testAssertion class.

An implementation instance may have the testAssertion as the top level class.

Each test assertion has an identifier and for this reason the testAssertion class has an 'id' attribute.
A test assertion shall have a test assertion identifier unless the identifier is implicit. So the 'id' attribute
may be implicit (by some special provision in a particular profile or implementation, perhaps using an
expression to derive the identifiers, for example). For this reason the attribute is optional. If no provision is
made for an implicit identifier to be assigned to a test assertion, a test assertion identifier shall be
provided for every test assertion using the 'id' attribute of the testAssertion class.

The test assertion and most other classes in the Test Assertions Model have an optional attribute named
'language' which is used to specify the language used in the test assertion. The string datatype for this
attribute may be further constrained using a language codelist.

Each test assertion declares a normative source, a target and a predicate and for this reason the
testAssertion class has associations with the classes named normativeSource, target and
predicate. A test assertion shall have a normative source, a target and a predicate unless either or all
of these are implicit. The normativeSource, target and predicate associations may be implicit and
also may be declared in a test assertion set (specified later). For this reason these associations are
optional in the Test Assertion Model testAssertion class. Each conforming implementation of the Test
Assertion Model should ensure that a normative source, a target and a predicate are implicitly or
explicitly provided for each test assertion.

A test assertion may also define (a) a prerequisite element, the content of which is a logical expression
which may compose multiple simpler prerequisite conditions, (b) a prescription level and (c) any number
of tags. For this the testAssertion class has optional associations to classes named prerequisite,
prescription and tag. The tag association has optional, multiple occurrence. The model provides a
'variable' component as an association to a class which it calls variable.

In a concrete test assertion representation, mandatory parts could be absent provided that they are
implicitly defined somewhere else (i.e. that their actual representation can be inferred, either from a
container structure like a “test assertion set” or from other rules).

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 12 of 31

Test Assertion (Non-Normative UML-Style Class Diagram)

normativeSource

Formal Definition of 'normativeSource':

normativeSource {

 content : string (0..1)
 Comment : comment (0..1)
 Interpretation : interpretation (0..1)
 RefSourceItem : refSourceItem (0..*)
 TextSourceItem : textSourceItem (0..*)
 DerivedSourceItem : derivedSourceItem (0..*)

}

Other attributes may be added to the normativeSource class.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 13 of 31

The normative source of a test assertion may be provided as a reference using the refSourceItem
class.

Formal Definition of 'refSourceItem':

refSourceItem {

 content : string (0..1)
 name : string (0..1)
 language : string (0..1)
 uri : string (0..1)
 documentId : string (0..1)
 versionId : string (0..1)
 revisionId : string (0..1)
 dateString : string (0..1)
 resourceProvenanceId : string (0..1)
 resourceType : string (0..1)
 resourceTypeVersionId : string (0..1)
 resourceTypeSchemaId : string (0..1)
 resourceTypeSchemaVersionId : string (0..1)
 resourceTypeProvenanceId : string (0..1)

}

Other attributes may be added to the refSourceItem class.

Here there is metadata which may be used to specify the identification of a resource containing the
normative source items. The uri attribute may contain data to help locate the resource but the expected
implementation is one where an identifier or URI is used to point to a repository of some kind which is a
more appropriate container for the specific information needed to make the normative source items
available. The other metadata attributes includes information about the kind of resource involved and
most appropriately its provenance (such as authorship identifiers to certify its authenticity) and version,
etc.

An alternative to using a reference to point to the normative source in a specification is to actually quote
verbatim the source item so the normative source includes an association with a class named
textSourceItem which allows a direct, verbatim quote of the specification text.

Formal Definition of 'textSourceItem':

textSourceItem {

 content : string (0..1)
 name : string (0..1)
 language : string (0..1)

}

Other attributes may be added to the textSourceItem class.

An alternative again to quoting verbatim the source item is to derive a form of words equivalent in
meaning to the source item and for this the normative source includes an association to a class named
derivedSourceItem. This is particularly useful when the source consists of tables, diagrams, graphs or
text spread over several parts of the specification.

Formal Definition of 'derivedSourceItem':

derivedSourceItem {

 content : string (0..1)
 name : string (0..1)

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 14 of 31

 language : string (0..1)
 uri : string (0..1)
 documentId : string (0..1)
 versionId : string (0..1)
 revisionId : string (0..1)
 dateString : string (0..1)
 resourceProvenanceId : string (0..1)
 resourceType : string (0..1)
 resourceTypeVersionId : string (0..1)
 resourceTypeSchemaId : string (0..1)
 resourceTypeSchemaVersionId : string (0..1)
 resourceTypeProvenanceId : string (0..1)

}

Other attributes may be added to the derivedSourceItem class.

Here there is metadata which may be used to specify the identification of a resource containing the
normative source items. The uri attribute may contain data to help locate the resource but the expected
implementation is one where an identifier or URI is used to point to a repository of some kind which is a
more appropriate container for the specific information needed to make the normative source items
available. The other metadata attributes includes information about the kind of resource involved and
most appropriately its provenance (such as authorship identifiers to certify its authenticity) and version,
etc.

Formal Definition of 'comment':

comment {

 content : string (0..1)
 language : string (0..1)

}

Other attributes may be added to the comment class.

The comment class may be used to simply add comments of any kind (or as further specified in a
conformance profile for this markup or a customization thereof) to a normative source test assertion part.

Formal Definition of 'interpretation':

interpretation {

 language : string (0..1)
 content : string (0..1)

}

Other attributes may be added to the interpretation class.

The interpretation class may be used to simply add an alternative description in prose of any kind
(or as further specified in a conformance profile for this markup or a customization thereof) to a normative
source test assertion part. This allows a prose expression to be added to improve human understanding
of its logic. It provides further information about how the predicate (or prerequisite) relates to the
normative source.

target

Formal Definition of 'target':

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 15 of 31

target {

 content : string (0..1)
 type : string (0..1)
 schemeRef : string (0..1)
 language : string (0..1)

}

Other attributes may be added to the target class.

A target can either be a specific item or a category of items. The target class has a 'type' attribute
which should be used to specify the target category, and this may be implemented using a controlled
vocabulary, ontology or other classification or taxonomy system. Where the scheme for listing or
categorizing these types is defined in a document, the identifier, URL or URI for this document may be
associated with the target using the attribute named 'schemeRef'. A target 'schemeRef' attribute or, for a
set of test assertions, a shared target 'schemeRef' attribute may be used in cases where the target type
scheme is defined using an expression or prose definition within the test assertion or set of test
assertions.

The target content is a string. This may be an expression in a specialized formal expression language
which may be specified using the 'language' attribute or using a complete conformance profile for that
particular use of the markup. The target shall be the subject of the test assertion predicate and, during
implementation of the test assertion, it should be the subject (target) of the corresponding test(s). The
predicate may express a condition over more than one object. These objects are either parts of an
implementation or external resources. A unique target object is still required by this model. In such a case,
either the target is defined as the combination of objects that are expected to satisfy the predicate, or one
of these objects may be selected as the target while the other objects are just considered as accessory to
the test. Such objects may be referenced in the predicate or prerequisite using variables.

prerequisite

Formal Definition of 'prerequisite':

prerequisite {

 content : string (1..1)
 language : string (0..1)

}

Other attributes may be added to the prerequisite class.

The prerequisite may be expressed using a specialized formal expression language which may be
specified using the 'language' attribute or using a complete conformance profile for that particular use of
an implementation of the model. The semantics of the test assertion depends on the value of the
prerequisite (see Section 3.3). These semantics require that the prerequisite evaluates to a boolean
logical true or false. The prerequisite class is an optional association of a test assertion (including
where a test assertion prerequisite is inherited from an ancestor test assertion set), unless otherwise
made mandatory using a conformance profile of a customization for an implementation of the test
assertions model. The content of the prerequisite class shall contain an expression which evaluates
to true or false. The prerequisite expression shall be used to determine whether (true) or not (false)
the target qualifies for the test assertion (in particular for the predicate of the test assertion). The
evaluation of the test assertion shall conform to the semantics of the outcome of the test assertion
specified in Section 3.3.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 16 of 31

predicate

Formal Definition of 'predicate':

predicate {

 content : string (1..1)
 language : string (0..1)

}

Other attributes may be added to the predicate class.

The predicate may be expressed using a specialized formal expression language which may be specified
using the 'language' attribute or using a complete conformance profile for that particular use of an
implementation of the model. The semantics of the test assertion depends on the value of the predicate
(see Section 3.3). These semantics require that the predicate evaluates to a boolean logical true or false.

A predicate shall be specified for every test assertion. The manner of its expression shall include where
a test assertion predicate is inherited from an ancestor test assertion set. Therefore the actual
predicate class shall be optional as association of a testAssertion class unless otherwise made
mandatory using a conformance profile of a customization. The content of the predicate class shall
contain an expression which evaluates to true or false. The predicate expression shall be used to
determine whether (true) or not (false) the target passes the test assertion. As already stated (see
'prerequisite' above), the evaluation of the test assertion shall conform to the semantics of the outcome of
the test assertion specified in Section 3.3.

prescription

Formal Definition of 'prescription':

prescription {

 content : string (0..1)
 level : string (0..1) (allowed values = mandatory|preferred|permitted)

}

Other attributes may be added to the prerequisite class.

The allowable values for the attribute 'level' of the class prescription may be extended beyond the built-
in values of mandatory, preferred and permitted. Custom values may be ignored by an
implementation.

The prescription values correspond to the terms used in a specification to denote conformance
requirements. [RFC 2119] terms conveying mandatory nature of a statement such as 'MUST' and 'MUST
NOT' and in Annex H of [ISO/IEC Directives] terms 'shall', etc shall correspond to the prescription level
value 'mandatory'. RFC2119 terms conveying optionality with preference such as 'SHOULD' and
'SHOULD NOT', 'RECOMMENDED', etc and ISO/IEC Directive terms 'should', etc shall correspond to the
prescription level value 'preferred'. RFC2119 terms conveying optionality without preference 'MAY' and
ISO/IEC Directive terms 'may', etc shall correspond to the prescription level value 'permitted'.

The RFC2119 terms for preference do not permit non-conformance without a reason and usually the
same 'preferred' prescription level is acceptable but in some cases implementers may wish to make a
distinction by making use of the extension facility and specify further enumeration values.

The prescription shall not affect the outcome semantics of the test assertion but may determine how the
outcome affects conformance or otherwise of the implementation to a conformance profile or to the
conformance clause of the specification.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 17 of 31

Besides the use of the 'level' attribute, the content (string) may be used to express further information
regarding the prescription level using prose or as a logical expression.

description

Formal Definition of 'description':

description {

 content : string (0..1)
 language : string (0..1)

}

Other attributes may be added to the description class.

The description class may be used to add a description in prose of any kind (or as further specified in
a conformance profile for this markup or a customization thereof) to a test assertion or set of test
assertions. This may be especially useful when a test assertion is otherwise expressed purely in a
specialized, formal, logical language which might not be intended for legibility to human readers; the
description allows a prose expression to be added to such a test assertion to improve human
understanding of its logic. It may also be used to explain the expressions used in a test assertion and to
add comments.

tag

Formal Definition of 'tag':

tag {

 content : string (0..1)
 name : string (0..1)
 language : string (0..1)

}

Other attributes may be added to the tag class.

The use of 'tags' assigned to a test assertion is a means to assign metadata and data of a similar nature
to the test assertion. Special examples are to indicate to which versions of a specification the test
assertion or set of test assertions applies and to specify that a test assertion or set of test assertions exist
to define a particular normative property. The tag class may be used to attach such data to a test
assertion or test assertion set.

Reserved Tag Names

DefinesNormativeProperty and NormativeProperty

A test assertion may be tagged to show that it is a property test assertion using two reserved word tag
names DefinesNormativeProperty and NormativeProperty .

A test assertion having a reserved word property tag DefinesNormativeProperty or
NormativeProperty may have an absence of the prescription element.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 18 of 31

VersionAdd and VersionDrop

tag: VersionAdd: the lowest numerical version to which the test assertion applies.

tag: VersionDrop: the lowest numerical version number to which the test assertion does NOT
 apply.

Both VersionAdd and VersionDrop are optional tags. The absence of both tags shall mean that the
test assertion is valid in all specification versions. If only a VersionAdd tag exists and its value is X, the
test assertion will be valid in version X of the specification and all subsequent versions. If only a
VersionDrop tag exists and its value is Y, the test assertion shall be valid in all versions of the
specification prior to version Y. If both VersionAdd and VersionDrop tags exist, the test assertion
shall be valid in version X and all subsequent versions up to but not including version Y. Based on these
rules, you can easily generate the set of test assertions that apply to a specific version of the
specification.

variable

Formal Definition of 'variable':

variable {

 content : string (0..1)
 name : string (0..1)
 language : string (0..1)

}

Other attributes may be added to the variable class.

The use of variables allows several parts of a test assertion or indeed several test assertions within a set
to share a value between them. Such variables may have their values supplied as parameters at a stage
subsequent to the authoring of the test assertions. The variable class may be used to implement
variables. Their values may be declared with scope across specific test assertions by declaring the
variables in the shared part of a set of test assertions of which all the test assertions in scope are
members (either by reference to the test assertions or by their inclusion explicitly as descendants of the
set or as otherwise specified for test assertion sets (see Section 4 'Test Assertion Set'). The variable value
may be used within a test assertion part expression. The notation used for these variables in the content
of predicates, prerequisite, etc. is left to implementations of this model.

3.3 Semantics

As a test assertion has parts that can be evaluated over a target instance (i.e. the prerequisite, the
predicate, and possibly any variables containing expressions), the following semantics shall apply to a
test assertion:

With regard to a target instance

• "Target not qualified": if the Prerequisite (if any) evaluates to "false" over a Target
instance.

• "Normative statement fulfilled [by the Target]": if the Prerequisite (if any)
evaluates to "true" over a Target instance, and the Predicate evaluates to "true".

• "Normative statement not fulfilled [by the Target]": if the Prerequisite (if any)
evaluates to "true" over a Target instance, and the Predicate evaluates to "false".

A test assertion predicate shall be worded as an assertion, not as a requirement. Any 'MUST' or 'shall'
keyword shall be absent from the predicate but reflected in the prescription level. The predicate has a
clear Boolean value: Either the statement is true, or it is false for a particular target.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 19 of 31

4 Test Assertion Set
The testAssertionSet class may be used to group together test assertions either by inclusion of the
test assertion within the test assertion set of by references to their Ids.

testAssertionSet

Formal Definition of 'testAssertionSet':

testAssertionSet {

 id : string (0..1)
 language : string (0..1)
 date : date (0..1)
 time : time (0..1)
 TestAssertionDocumentHeader : testAssertionDocumentHeader (0..1)
 Shared : shared (0..1)
 TestAssertion : testAssertion (0..*)
 TestAssertionRef : testAssertionRef (0..*)
 TestAssertionSet : testAssertionSet (0..*)
 TestAssertionSelector : testAssertionSelector (0..1)

}

Other attributes and associations may be added to the testAssertionSet class.

Test Assertion Set (Non-Normative UML-Style Class Diagram)

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 20 of 31

An implementation instance may have the testAssertionSet as the top level class.

An implementation conformance profile for the model may include the use of the feature where a
testAssertionSet may include other test assertion sets. The default model defined in this specification
allows a test assertion set to optionally include any number of other test assertion sets. Care shall be
taken to avoid infinite recursion: A test assertion set shall not include itself as an ancestor. The
testAssertionSet may be assigned an identifier using the 'id' attribute. This allows a drill down from
the test assertion set through any ancestor test assertion sets to individual ancestor test assertions when
referencing a test assertion or test assertion set.

A test assertion set may be used to wrap together all the test assertions in, say, a document. In this case
the testAssertionDocumentHeader may be used once within a document either on its own or as a
direct child of the outermost testAssertionSet element. See section later on
testAssertionDocumentHeader.

Another purpose of the test assertion set is that it may be used to provide a set of shared test assertion
parts and their values in the same way to more than one test assertion (either to limit repetition or to
ensure that the values correspond or to provide scope for variables across such test assertions). (See the
section on the 'shared' class below.)

The testAssertionSelector may be used when test assertions are contained within a document but
outside of the test assertion set. One case where this may be used is where such test assertions are
distributed throughout a physical or logical document written in some kind of markup where the
testAssertionSelector may provide an expression which identifies all of the test assertions within
that markup. The language attribute may be used to identify the expression language used.

Formal Definition of 'testAssertionSelector':

testAssertionSelector {

 content : string (0..1)
 language : string (0..1)

}

Other attributes may be added to the testAssertionSelector class.

shared

Formal Definition of 'shared':

shared {

 NormativeSource : normativeSourceShared (0..1)
 Target : targetShared (0..1)
 Prerequisite : prerequisiteShared (0..1)
 Predicate : predicateShared (0..1)
 Prescription : prescriptionShared (0..1)
 Description : descriptionShared (0..1)
 Tag : tagShared (0..*)
 Variable : variableShared (0..*)

}

Other associations may be added to the shared class.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 21 of 31

Shared (Non-Normative UML-Style Class Diagram)

The class 'shared', an association of the testAssertionSet class may be used to provide one or
more test assertion parts either as overrides (either overridden by or overriding any corresponding parts

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 22 of 31

of the same kind of test assertions within the set) or as composites (composing as either conjunctions or
disjunctions with any corresponding parts of the same kind of test assertions within the set) to all the
descendant test assertions of the test assertion set.

The 'normativeSource', 'target', 'predicate', 'prerequisite', 'prescription' ,'description',
'tag', and the 'variable' associated classes of this 'shared' element, are extended with a 'conflict'
attribute. These extended classes are here given a suffix 'Shared' but other conventions may be used to
distinguish the extended classes and associations to them.

normativeSourceShared

Formal Definition of 'normativeSourceShared':

normativeSourceShared {

 content : string (0..1)
 conflict : string (0..1) (allowed values = conjunction|disjunction|
overriding|overridden)
 Comment : comment (0..1)
 Interpretation : interpretation (0..1)
 RefSourceItem : refSourceItem (0..*)
 TextSourceItem : textSourceItem (0..*)
 DerivedSourceItem : derivedSourceItem (0..*)

}

Other attributes may be added to the normativeSourceShared class.

targetShared

Formal Definition of 'targetShared':

targetShared {

 content : string (0..1)
 type : string (0..1)
 schemeRef : string (0..1)
 language : string (0..1)
 conflict : string (0..1) (allowed values = conjunction|disjunction|
overriding|overridden)

}

Other attributes may be added to the targetShared class.

prerequisiteShared

Formal Definition of 'prerequisiteShared':

prerequisiteShared {

 content : string (1..1)
 language : string (0..1)
 conflict : string (0..1) (allowed values = conjunction|disjunction)

}

Other attributes may be added to the prerequisiteShared class.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 23 of 31

predicateShared

Formal Definition of 'predicateShared':

predicateShared {
 content : string (1..1)
 language : string (0..1)
 conflict : string (0..1) (allowed values = conjunction|disjunction|
overriding|overridden)

}

Other attributes may be added to the predicateShared class.

prescriptionShared

Formal Definition of 'prescriptionShared':

prescriptionShared {

 content : string (0..1)
 level : string (0..1) (allowed values = mandatory|preferred|permitted)
 conflict : string (0..1) (allowed values = overriding|overridden)

}

Other attributes may be added to the prescriptionShared class.

descriptionShared

Formal Definition of 'descriptionShared':

descriptionShared {

 content : string (0..1)
 language : string (0..1)
 conflict : string (0..1) (allowed values = conjunction|disjunction|
overriding|overridden)

}

Other attributes may be added to the descriptionShared class.

tagShared

Formal Definition of 'tagShared':

tagShared {

 content : string (0..1)
 name : string (0..1)
 language : string (0..1)
 conflict : string (0..1) (allowed values = conjunction|disjunction|
overriding|overridden)

}

Other attributes may be added to the tagShared class.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 24 of 31

variableShared

Formal Definition of 'variableShared':

variableShared {

 content : string (0..1)
 name : string (0..1)
 language : string (0..1)
 conflict : string (0..1) (allowed values = conjunction|disjunction|
overriding|overridden)

}

Other attributes may be added to the variableShared class.

Whether these test assertion parts compose, with conjunction or disjunction (that is, combine using a
logical 'AND' or 'OR' respectively), or override or are overridden by any corresponding test assertion parts
of the same kind (and, in the case of 'tag' and 'variable', with the same 'name' attribute value) within
the test assertion set shall depend on the corresponding values of the 'conflict' attribute.

Note that the part classes can each have different sets of allowed values for the 'conflict' attribute.

The values of the 'conflict' attribute may be extended. Custom values may be ignored by an
implementation.

Test Assertion Reference

A test assertion set may refer to one or more test assertions by their test assertion identifiers rather than
include the test assertions literally within the set.

testAssertionRef

Formal Definition of 'testAssertionRef':

testAssertionRef {

 language : string (0..1)
 name : string (0..1)
 TestAssertionReference : testAssertionResource (0..1)
 TestAssertionSetId : testAssertionSetId (0..1)
 TestAssertionId : testAssertionId (0..1)

}

Other attributes and associations may be added to the testAssertionRef class.

A test assertion set in which references are made to other test assertions outside of the set (whether in
the same document or other documents) shall use the testAssertionRef class to do so. The structure
of this class allows for the possibility that test assertions may be contained in another document in
another location by inclusion of an association to class testAssertionResource. Other associations
testAssertionSetId and testAssertionId allow for the possibilities that the test assertion may be
within one or more layers of test assertion sets and might only be uniquely identifiable by nesting the
identifiers of these sets around the test assertion identifier itself: The testAssertionSetId
associations can be nested and the testAssertionId nested within the innermost
testAssertionSetId. At the same time they also allow for the possibility that the test assertion has an
identifier sufficiently unique to only require that test assertion identifier itself: The testAssertionRef

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 25 of 31

and the testAssertionResource can each include the testAssertionId as a direct child without
the need for further identifiers when they are inappropriate. The testAssertionRef may be used to
refer to a test assertion set as a whole, rather than a reference to each test assertion individually.

Test Assertion Reference (Non-Normative UML-Style Class Diagram)

testAssertionResource

A test assertion resource is used when test assertions are contained in another external document.

Formal Definition of 'testAssertionResource':

testAssertionResource {

 language : string (0..1)
 uri : string (0..1)
 documentId : string (0..1)
 versionId : string (0..1)
 revisionId : string (0..1)
 dateString : string (0..1)
 resourceProvenanceId : string (0..1)
 resourceType : string (0..1)
 resourceTypeVersionId : string (0..1)
 resourceTypeSchemaId : string (0..1)
 resourceTypeSchemaVersionId : string (0..1)
 resourceTypeProvenanceId : string (0..1)
 TestAssertionId : testAssertionId (0..1)
 TestAssertionSetId : testAssertionSetId (0..1)

}

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 26 of 31

Other attributes may be added to the testAssertionResource class.

Here is the metadata which may be used to specify the identification of a resource containing test
assertions. The uri attribute may contain data to help locate the resource but the expected
implementation is one where an identifier or URI is used to point to a repository of some kind which is a
more appropriate container for the specific information needed to make the external test assertions
available. The other metadata attributes includes information about the kind of resource involved and
most appropriately its provenance (such as authorship identifiers to certify its authenticity) and version,
etc.

testAssertionId

Formal Definition of 'testAssertionId':

testAssertionId {

 ref : string (0..1)
 language : string (0..1)

}

Other attributes may be added to the testAssertionId class.

This is a pointer to a test assertion identifier. It is used as part of a reference to a test assertion within a
test assertion set. The ref attribute shall be used to contain the test assertion identifier itself.

testAssertionSetId

Formal Definition of 'testAssertionSetId':

testAssertionSetId {

 ref : string (0..1)
 language : string (0..1)
 section : string (0..1)
 TestAssertionId : testAssertionId (0..1)
 TestAssertionSetId : testAssertionSetId (0..1)

}

Other attributes may be added to the testAssertionSetId class.

The testAssertionSetId is a pointer to a test assertion set identifier. It is used as part of a reference
to a test assertion within a test assertion set or to a test assertion set within another test assertion set.

The ref attribute shall be used to contain the test assertion set identifier itself. A section within that test
assertion set may also be specified where appropriate, bearing in mind that the test assertion set
(perhaps called by another term) might not be written using an implementation of this model.

testAssertionDocumentHeader

Formal Definition of 'testAssertionDocumentHeader':

testAssertionDocumentHeader {

 Common : common (1..1)

}

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 27 of 31

Other associations may be added to the testAssertionDocumentHeader class.

The testAssertionDocumentHeader may be used to provide metadata (author, location, etc) about
the specification to which test assertions are associated when such test assertions are interspersed within
a document. The testAssertionDocumentHeader element may, alternatively, provide a container for
metadata about the specification in the outermost testAssertionSet of a test assertion document or
where an implementation only allows one test assertion set for each document.

An instance may have this as the top level class. There shall be no more than one
testAssertionDocumentHeader used in any given document implementing this model.

Test Assertion Document Header (Non-Normative UML-Style Class Diagram)

common

Formal Definition of 'common':

common {

 SourceDocument : sourceDocument (0..1)
 Authors : authors (0..1)
 Location : location (0..1)
 Namespaces : namespaces (0..1)

}

Other associations may be added to the common class.

Formal Definition of 'sourceDocument':

sourceDocument {

 content : string (0..1)
 revision : string (0..1)
 version : string (0..1)

}

Other attributes may be added to the sourceDocument class.

Here some of the metadata about the source document to which the test assertions relate is assigned to
the document containing those test assertions. The content should be the name or other identifier for the
specification. The attributes specify its version information.

Formal Definition of 'namespaces':

namespaces {

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 28 of 31

 content : string (0..1)
 Namespace : namespace (0..*)

}

Formal Definition of 'namespace':

namespace {

 content : string (0..1)
 Prefix : prefix (0..1)
 Uri : uri (0..1)

}

Formal Definition of 'prefix':

prefix {

 content : string (0..1)

}

Formal Definition of 'uri':

uri {

 content : string (0..1)

}

The namespaces element caters for a special case of usage of the markup. Here the content should be
the set of namespaces used when the target implementation is itself XML. The namespaces may be
included as the content of the element or the prefixes and URIs of the namespaces may be split into
separate elements within the child element called namespace (singular). Other kinds of implementation
of the markup may omit implementation of this feature.

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 29 of 31

5 Conformance
Implementations subject to conformance are representations of the test assertion model described in
Section 3 and Section 4.

In order to conform to these guidelines, a test assertion representation:

(1) shall contain all test assertion parts defined in Section 3

(2) may contain any test assertion constructs defined in Section 4

(3) shall use names for these parts that are identical or can be unambiguously mapped to the definitions
used in Section 3 and implemented parts of Section 4

(4) shall implement the normative statements for the test assertion model and its semantics in this
specification.

Mandatory statements are designated by the keyword 'shall' and 'shall not' in bold type, as described in
Annex H of [ISO/IEC Directives] .

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 30 of 31

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully
acknowledged

Participants:

• Dennis Hamilton, Individual

• Dmitry Kostovarov, Oracle Corporation

• Dong-Hoon Lim, KIEC

• Hyunbo Cho, Pohang University

• Jacques Durand, Fujitsu

• Kevin Looney, Oracle Corporation

• Kyoung-Rog Yi, KIEC

• Lynne Rosenthal, NIST

• Patrick Curran, Oracle Corporation

• Paul Rank, Oracle Corporation

• Serm Kulvatunyou, NIST

• Stephen D. Green, Document Engineering Services

• Tim Boland, NIST

• Victor Rudometov, Oracle Corporation

• Youngkon Lee, KIEC

testassertionsmodel-1.0-cd-01 13 February 2010
Copyright © OASIS® 2008-2010. All Rights Reserved. Page 31 of 31

	1 Introduction
	1.1 Terminology
	1.2 Normative References
	1.3 Non-Normative References

	2 Definitions and Rationale
	2.1 Test Assertion
	2.2 Test Assertion Set and Test Assertion Document
	2.3 Benefits of Test Assertions

	3 Test Assertion
	3.1 Overview of a Test Assertion Model
	3.2 Test Assertion Model
	3.3 Semantics

	4 Test Assertion Set
	5 Conformance

