

Reference Model for Service Oriented
Architecture 1.0
OASIS Standard, 12 October 2006
Document identifier:

soa-rm
Location:

http://docs.oasis-open.org/soa-rm/v1.0/
Editors:

C. Matthew MacKenzie, Adobe Systems Incorporated, mattm@adobe.com
Ken Laskey, MITRE Corporation, klaskey@mitre.org
Francis McCabe, Fujitsu Laboratories of America Limited, frankmccabe@mac.com
Peter F Brown, peter@justbrown.net
Rebekah Metz, Booz Allen Hamilton, metz_rebekah@bah.com

Abstract:
This Reference Model for Service Oriented Architecture is an abstract framework for
understanding significant entities and relationships between them within a service-
oriented environment, and for the development of consistent standards or specifications
supporting that environment. It is based on unifying concepts of SOA and may be used
by architects developing specific service oriented architectures or in training and
explaining SOA.
A reference model is not directly tied to any standards, technologies or other concrete
implementation details. It does seek to provide a common semantics that can be used
unambiguously across and between different implementations. The relationship between
the Reference Model and particular architectures, technologies and other aspects of SOA
is illustrated in Figure 1.
While service-orientation may be a popular concept found in a broad variety of
applications, this reference model focuses on the field of software architecture. The
concepts and relationships described may apply to other "service" environments;
however, this specification makes no attempt to completely account for use outside of the
software domain.

Status:
This document is updated periodically on no particular schedule. Send comments to the
editor(s).
Committee members should send comments on this specification to the soa-
rm@lists.oasis-open.org list. Others should visit the SOA-RM TC home page at
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm, and record
comments using the web form available there.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to
the Intellectual Property Rights section of the SOA-RM TC web page at:
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
The errata page for this specification is at:
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 1 of 31

mailto:mattm@adobe.com
mailto:klaskey@mitre.org
mailto:frankmccabe@mac.com
mailto:peter@justbrown.net
mailto:metz_rebekah@bah.com
mailto:soa-rm@lists.oasis-open.org
mailto:soa-rm@lists.oasis-open.org
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

Notices
OASIS takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Information on
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS
website. Copies of claims of rights made available for publication and any assurances of licenses
to be made available, or the result of an attempt made to obtain a general license or permission
for the use of such proprietary rights by implementers or users of this specification, can be
obtained from the OASIS Executive Director.
OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights, which may cover technology that may be required to
implement this specification. Please address the information to the OASIS Executive Director.
Copyright © OASIS Open 2005-2006. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself should not be modified in any way, such as by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual
Property Rights document must be followed, or as required to translate it into languages other
than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.
This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 2 of 31

Table of Contents
1 Introduction.. 4

1.1 What is a reference model .. 4
1.2 A Reference Model for Service Oriented Architectures .. 4
1.3 Audience ... 5
1.4 Guide to using the reference model .. 6
1.5 Notational Conventions ... 6

1.5.1 How to interpret concept maps. ... 6
1.6 Relationships to Other Standards ... 7

2 Service Oriented Architecture ... 8
2.1 What is Service Oriented Architecture? .. 8

2.1.1 A worked Service Oriented Architecture example ... 9
2.2 How is Service Oriented Architecture different? ... 10
2.3 The Benefits of Service Oriented Architecture.. 11

3 The Reference Model.. 12
3.1 Service .. 12
3.2 Dynamics of Services.. 13

3.2.1 Visibility .. 13
3.2.2 Interacting with services .. 15
3.2.3 Real World Effect ... 18

3.3 About services... 19
3.3.1 Service description... 20
3.3.2 Policies and Contracts ... 22
3.3.3 Execution context... 24

4 Conformance Guidelines... 26
5 References .. 27

5.1 Normative .. 27
5.2 Non-Normative .. 27

A. Glossary... 28
B. Acknowledgments.. 31

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 3 of 31

1 Introduction 1

2
3
4
5
6
7

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

43
44
45
46

The notion of Service Oriented Architecture (SOA) has received significant attention within the
software design and development community. The result of this attention is the proliferation of
many conflicting definitions of SOA. Whereas SOA architectural patterns (or reference
architectures) may be developed to explain and underpin a generic design template supporting a
specific SOA, a reference model is intended to provide an even higher level of commonality, with
definitions that should apply to all SOA.

1.1 What is a reference model 8

A reference model is an abstract framework for understanding significant relationships among
the entities of some environment. It enables the development of specific reference or concrete
architectures using consistent standards or specifications supporting that environment. A
reference model consists of a minimal set of unifying concepts, axioms and relationships within a
particular problem domain, and is independent of specific standards, technologies,
implementations, or other concrete details.
As an illustration of the relationship between a reference model and the architectures that can
derive from such a model, consider what might be involved in modeling what is important about
residential housing. In the context of a reference model, we know that concepts such as eating
areas, hygiene areas and sleeping areas are all important in understanding what goes into a
house. There are relationships between these concepts, and constraints on how they are
implemented. For example, there may be physical separation between eating areas and hygiene
areas.
The role of a reference architecture for housing would be to identify abstract solutions to the
problems of providing housing. A general pattern for housing, one that addresses the needs of its
occupants in the sense of, say, noting that there are bedrooms, kitchens, hallways, and so on is a
good basis for an abstract reference architecture. The concept of eating area is a reference
model concept, a kitchen is a realization of eating area in the context of the reference
architecture.
There may be more than one reference architecture that addresses how to design housing; for
example, there may be a reference architecture to address the requirements for developing
housing solutions in large apartment complexes, another to address suburban single family
houses, and another for space stations. In the context of high density housing, there may not be
a separate kitchen but rather a shared cooking space or even a communal kitchen used by many
families.
An actual – or concrete – architecture would introduce additional elements. It would incorporate
particular architectural styles, particular arrangements of windows, construction materials to be
used and so on. A blueprint of a particular house represents a specific architecture as it applies to
a proposed or actually constructed dwelling.
The reference model for housing is, therefore, at least three levels of abstraction away from a
physical entity that can be lived in. The purpose of a reference model is to provide a common
conceptual framework that can be used consistently across and between different
implementations and is of particular use in modeling specific solutions.

1.2 A Reference Model for Service Oriented Architectures 42

The goal of this reference model is to define the essence of service oriented architecture, and
emerge with a vocabulary and a common understanding of SOA. It provides a normative
reference that remains relevant for SOA as an abstract and powerful model, irrespective of the
various and inevitable technology evolutions that will influence SOA deployment.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 4 of 31

47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 1 shows how a reference model for SOA relates to other distributed systems architectural
inputs. The concepts and relationships defined by the reference model are intended to be the
basis for describing references architectures and patterns that will define more specific categories
of SOA designs. Concrete architectures arise from a combination of reference architectures,
architectural patterns and additional requirements, including those imposed by technology
environments.
Architecture must account for the goals, motivation, and requirements that define the actual
problems being addressed. While reference architectures can form the basis of classes of
solutions, concrete architectures will define specific solution approaches.
Architecture is often developed in the context of a pre-defined environment, such as the
protocols, profiles, specifications, and standards that are pertinent.
SOA implementations combine all of these elements, from the more generic architectural
principles and infrastructure to the specifics that define the current needs, and represent specific
implementations that will be built and used in an operational environment.

61
62

64
65
66
67
68
69
70
71
72

Figure 1 How the Reference Model relates to other work

1.3 Audience 63

The intended audiences of this document include non-exhaustively:
• Architects and developers designing, identifying or developing a system based on the

service-oriented paradigm.
• Standards architects and analysts developing specifications that rely on service oriented

architecture concepts.
• Decision makers seeking a "consistent and common" understanding of service oriented

architectures.
• Users who need a better understanding of the concepts and benefits of service oriented

architecture.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 5 of 31

1.4 Guide to using the reference model 73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

100
101
102
103

105
106
107
108
109

New readers are encouraged to read this reference model in its entirety. Concepts are presented
in an order that the authors hope promote rapid understanding.
This section introduces the conventions, defines the audience and sets the stage for the rest of
the document. Non-technical readers are encouraged to read this information as it provides
background material necessary to understand the nature and usage of reference models.
Section 2 introduces the concept of SOA and identifies some of the ways that it differs from
previous paradigms for distributed systems. Section 2 offers guidance on the basic principles of
service oriented architecture. This can be used by non-technical readers to gain an explicit
understanding of the core principles of SOA and by architects as guidance for developing specific
service oriented architectures.
Section 3 introduces the Reference Model for SOA. In any framework as rich as SOA, it is difficult
to avoid a significant amount of cross referencing between concepts. This makes presentation of
the material subject to a certain amount of arbitrariness. We resolve this by introducing the
concept of service itself, then we introduce concepts that relate to the dynamic aspects of service
and finally we introduce those concepts that refer to the meta-level aspects of services such as
service description and policies as they apply to services.
Section 4 addresses compliance with this reference model.
The glossary provides definitions of terms that are relied upon within the reference model
specification but do not necessarily form part of the specification itself. Terms that are defined in
the glossary are marked in bold at their first occurrence in the document.
Note that while the concepts and relationships described in this reference model may apply to
other "service" environments, the definitions and descriptions contained herein focus on the field
of software architecture and make no attempt to completely account for use outside of the
software domain. Examples included in this document that are taken from other domains are
used strictly for illustrative purposes.

1.5 Notational Conventions 99

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in
[RFC2119].
References are surrounded with [square brackets and are in bold text].

1.5.1 How to interpret concept maps. 104

Concepts maps are used within this document. There is no normative convention for interpreting
Concept maps and other than described herein, no detailed information can be derived from the
concept maps herein.

 110
111

112
113
114
115

Figure 2 A basic concept map

As used in this document a line between two concepts represents a relationship, where the
relationship is not labeled but rather is described in the text immediately preceding or following
the figure. The arrow on a line indicates an asymmetrical relationship, where the concept to
which the arrow points (Concept 2 in Figure 2) can be interpreted as depending in some way on

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 6 of 31

116
117

119
120
121
122
123
124
125

the concept from which the line originates (Concept 1). The text accompanying each graphic
describes the nature of each relationship.

1.6 Relationships to Other Standards 118

Due to its nature, this reference model may have an implied relationship with any group that:
• Considers its work "service oriented";
• Makes (publicly) an adoption statement to use the Reference Model for SOA as a base or

inspiration for their work; and
• Standards or technologies that claim to be service oriented.

The reference model does not endorse any particular service-oriented architecture, or attest to
the validity of third party reference model conformance claims.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 7 of 31

2 Service Oriented Architecture 126

2.1 What is Service Oriented Architecture? 127

Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing distributed
capabilities that may be under the control of different ownership domains.

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

In general, entities (people and organizations) create capabilities to solve or support a solution for
the problems they face in the course of their business. It is natural to think of one person’s needs
being met by capabilities offered by someone else; or, in the world of distributed computing, one
computer agent’s requirements being met by a computer agent belonging to a different owner.
There is not necessarily a one-to-one correlation between needs and capabilities; the granularity
of needs and capabilities vary from fundamental to complex, and any given need may require the
combining of numerous capabilities while any single capability may address more than one need.
The perceived value of SOA is that it provides a powerful framework for matching needs and
capabilities and for combining capabilities to address those needs.
Visibility, interaction, and effect are key concepts for describing the SOA paradigm. Visibility
refers to the capacity for those with needs and those with capabilities to be able to see each
other. This is typically done by providing descriptions for such aspects as functions and technical
requirements, related constraints and policies, and mechanisms for access or response. The
descriptions need to be in a form (or can be transformed to a form) in which their syntax and
semantics are widely accessible and understandable.
Whereas visibility introduces the possibilities for matching needs to capabilities (and vice versa),
interaction is the activity of using a capability. Typically mediated by the exchange of messages,
an interaction proceeds through a series of information exchanges and invoked actions. There
are many facets of interaction; but they are all grounded in a particular execution context – the
set of technical and business elements that form a path between those with needs and those with
capabilities. This permits service providers and consumers to interact and provides a decision
point for any policies and contracts that may be in force.
The purpose of using a capability is to realize one or more real world effects. At its core, an
interaction is “an act” as opposed to “an object” and the result of an interaction is an effect (or a
set/series of effects). This effect may be the return of information or the change in the state of
entities (known or unknown) that are involved in the interaction.
We are careful to distinguish between public actions and private actions; private actions are
inherently unknowable by other parties. On the other hand, public actions result in changes to the
state that is shared between at least those involved in the current execution context and possibly
shared by others. Real world effects are, then, couched in terms of changes to this shared state.
The expected real world effects form an important part of the decision on whether a particular
capability matches similarly described needs. At the interaction stage, the description of real
world effects establishes the expectations of those using the capability. Note, it is not possible
to describe every effect from using a capability. A cornerstone of SOA is that capabilities can be
used without needing to know all the details.
This description of SOA has yet to mention what is usually considered the central concept: the
service. The noun “service” is defined in dictionaries as “The performance of work (a function) by
one for another.” However, service, as the term is generally understood, also combines the
following related ideas:

• The capability to perform work for another
• The specification of the work offered for another
• The offer to perform work for another

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 8 of 31

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

211
212
213
214
215
216
217
218
219
220
221

These concepts emphasize a distinction between a capability and the ability to bring that
capability to bear. While both needs and capabilities exist independently of SOA, in SOA,
services are the mechanism by which needs and capabilities are brought together.
SOA is a means of organizing solutions that promotes reuse, growth and interoperability. It is not
itself a solution to domain problems but rather an organizing and delivery paradigm that enables
one to get more value from use both of capabilities which are locally “owned” and those under the
control of others. It also enables one to express solutions in a way that makes it easier to modify
or evolve the identified solution or to try alternate solutions. SOA does not provide any domain
elements of a solution that do not exist without SOA.
Note that while an SOA service brings together needs and capabilities, the provider of the
underlying capability may not be the same entity that eventually provides the service which
accesses that capability. In reality, the entity with the domain expertise to create, maintain, and
evolve a given capability may not have the expertise or the desire to create, maintain, and evolve
its service access.
The concepts of visibility, interaction, and effect apply directly to services in the same manner as
these were described for the general SOA paradigm. Visibility is promoted through the service
description which contains the information necessary to interact with the service and describes
this in such terms as the service inputs, outputs, and associated semantics. The service
description also conveys what is accomplished when the service is invoked and the conditions for
using the service.
In general, entities (people and organizations) offer capabilities and act as service providers.
Those with needs who make use of services are referred to as service consumers. The service
description allows prospective consumers to decide if the service is suitable for their current
needs and establishes whether a consumer satisfies any requirements of the service provider.
(Note, service providers and service consumers are sometimes referred to jointly as service
participants.)
In most discussions of SOA, the terms “loose coupling” and “coarse-grained” are commonly
applied as SOA concepts, but these terms have intentionally not been used in the current
discussion because they are subjective trade-offs and without useful metrics. In terms of needs
and capabilities, granularity and coarseness are usually relative to detail for the level of the
problem being addressed, e.g. one that is more strategic vs. one down to the algorithm level, and
defining the optimum level is not amenable to counting the number of interfaces or the number or
types of information exchanges connected to an interface.
Note that although SOA is commonly implemented using Web services, services can be made
visible, support interaction, and generate effects through other implementation strategies. Web
service-based architectures and technologies are specific and concrete. While the concepts in the
Reference Model apply to such systems, Web services are too solution specific to be part of a
general reference model.

2.1.1 A worked Service Oriented Architecture example 210

An electric utility has the capacity to generate and distribute electricity (the
underlying capability). The wiring from the electric company’s distribution grid
(the service) provides the means to supply electricity to support typical usage for
a residential consumer’s house (service functionality), and a consumer accesses
electricity generated (the output of invoking the service) via a wall outlet (service
interface). In order to use the electricity, a consumer needs to understand what
type of plug to use, what is the voltage of the supply, and possible limits to the
load; the utility presumes that the customer will only connect devices that are
compatible with the voltage provided and load supported; and the consumer in
turn assumes that compatible consumer devices can be connected without
damage or harm (service technical assumptions).

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 9 of 31

A residential or business user will need to open an account with the utility in
order to use the supply (service constraint) and the utility will meter usage and
expects the consumer to pay for use at the rate prescribed (service policy).
When the consumer and utility agree on constraints and polices (service
contract), the consumer can receive electricity using the service as long as the
electricity distribution grid and house connection remain intact (e.g. a storm
knocking down power lines would disrupt distribution) and the consumer can
have payment sent (e.g. a check by mail or electronic funds transfer) to the utility
(reachability).

222
223
224
225
226
227
228
229
230

231
232
233
234
235

236
237
238

239
240
241

243
244
245
246

248
249

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

Another person (for example, a visitor to someone else's house) may use a
contracted supply without any relationship with the utility or any requirement to
also satisfy the initial service constraint (i.e. reachability only requires intact
electricity distribution) but would nonetheless be expected to be compatible with
the service interface.

In certain situations (for example, excessive demand), a utility may limit supply or
institute rolling blackouts (service policy). A consumer might lodge a formal
complaint if this occurred frequently (consumer's implied policy).

If the utility required every device to be hardwired to its equipment, the underlying
capability would still be there but this would be a very different service and have
a very different service interface.

2.2 How is Service Oriented Architecture different? 242

Unlike Object Oriented Programming paradigms, where the focus is on packaging data with
operations, the central focus of Service Oriented Architecture is the task or business function –
getting something done.
This distinction manifests itself in several ways:
• OO has intentional melding of methods to a given data object. The methods can be thought 247

of as a property of the object. For SOA, one can think of the services as being the access to
methods but the actual existence of methods and any connection to objects is incidental.

• To use an object, it must first be instantiated while one interacts with a service where it exists. 250
• An object exposes structure but there is no way to express semantics other than what can be 251

captured as comments in the class definition. SOA emphasizes the need for clear semantics.
Both OO and SOA are as much a way of thinking about representing things and actions in the
world as these are about the specifics of building a system. The important thing is understanding
and applying the paradigm. So the question is not “what is a service?” any more than it is “what
is an object?” Anything can be a service in the same way anything can be an object. The
challenge is to apply the paradigms to enhance clarity and get things done. SOA provides a
more viable basis for large scale systems because it is a better fit to the way human activity itself
is managed – by delegation.
How does this paradigm of SOA differ from other approaches to organizing and understanding
Information Technology assets? Essentially, there are two areas in which it differs both of which
shape the framework of concepts that underlie distributed systems.
First, SOA reflects the reality that ownership boundaries are a motivating consideration in the
architecture and design of systems. This recognition is evident in the core concepts of visibility,
interaction and effect.
However, SOA does not itself address all the concepts associated with ownership, ownership
domains and actions communicated between legal peers. To fully account for concepts such as
trust, business transactions, authority, delegation and so on – additional conceptual frameworks
and architectural elements are required. Within the context of SOA, these are likely to be
represented and referenced within service descriptions and service interfaces. The presence

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 10 of 31

271
272
273
274
275
276
277
278
279

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

of service descriptions and service interfaces provides a ready location for including such
references and thus facilitates reuse of externally developed frameworks and interoperability
among systems availing themselves of this reuse.
Second, SOA applies the lessons learned from commerce to the organization of IT assets to
facilitate the matching of capabilities and needs. That two or more entities come together within
the context of a single interaction implies the exchange of some type of value. This is the same
fundamental basis as trade itself, and suggests that as SOAs evolve away from interactions
defined in a point-to-point manner to a marketplace of services; the technology and concepts can
scale as successfully as the commercial marketplace.

2.3 The Benefits of Service Oriented Architecture 280

The main drivers for SOA-based architectures are to facilitate the manageable growth of large-
scale enterprise systems, to facilitate Internet-scale provisioning and use of services and to
reduce costs in organization to organization cooperation.
The value of SOA is that it provides a simple scalable paradigm for organizing large networks of
systems that require interoperability to realize the value inherent in the individual components.
Indeed, SOA is scalable because it makes the fewest possible assumptions about the network
and also minimizes any trust assumptions that are often implicitly made in smaller scale systems.
An architect using SOA principles is better equipped, therefore, to develop systems that are
scalable, evolvable and manageable. It should be easier to decide how to integrate functionality
across ownership boundaries. For example, a large company that acquires a smaller company
must determine how to integrate the acquired IT infrastructure into its overall IT portfolio.
Through this inherent ability to scale and evolve, SOA enables an IT portfolio which is also
adaptable to the varied needs of a specific problem domain or process architecture. The
infrastructure SOA encourages is also more agile and responsive than one built on an
exponential number of pair-wise interfaces. Therefore, SOA can also provide a solid foundation
for business agility and adaptability.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 11 of 31

3 The Reference Model 297

298
299

Figure 3 illustrates the principal concepts this reference model defines. The relationships between
them are developed as each concept is defined in turn.

300
301

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

Figure 3 Principal concepts in the Reference Model

3.1 Service 302

A service is a mechanism to enable access to one or more capabilities, where the access is
provided using a prescribed interface and is exercised consistent with constraints and policies as
specified by the service description. A service is provided by an entity – the service provider –
for use by others, but the eventual consumers of the service may not be known to the service
provider and may demonstrate uses of the service beyond the scope originally conceived by the
provider.

3.3.1.4A service is accessed by means of a service interface (see Section), where the interface
comprises the specifics of how to access the underlying capabilities. There are no constraints on
what constitutes the underlying capability or how access is implemented by the service provider.
Thus, the service could carry out its described functionality through one or more automated
and/or manual processes that themselves could invoke other available services.
A service is opaque in that its implementation is typically hidden from the service consumer
except for (1) the information and behavior models exposed through the service interface and (2)
the information required by service consumers to determine whether a given service is
appropriate for their needs.
The consequence of invoking a service is a realization of one or more real world effects (see
Section 3.2.3). These effects may include:

1. information returned in response to a request for that information,
2. a change to the shared state of defined entities, or

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 12 of 31

323
324
325
326
327
328
329
330
331
332
333

335
336
337
338

3. some combination of (1) and (2).

Note, the service consumer in (1) does not typically know how the information is generated, e.g.
whether it is extracted from a database or generated dynamically; in (2), it does not typically know
how the state change is effected.
The service concept above emphasizes a distinction between a capability that represents some
functionality created to address a need and the point of access where that capability is brought to
bear in the context of SOA. It is assumed that capabilities exist outside of SOA. In actual use,
maintaining this distinction may not be critical (i.e. the service may be talked about in terms of
being the capability) but the separation is pertinent in terms of a clear expression of the nature of
SOA and the value it provides.

3.2 Dynamics of Services 334

From a dynamic perspective, there are three fundamental concepts that are important in
understanding what is involved in interacting with services: the visibility between service providers
and consumers, the interaction between them, and the real world effect of interacting with a
service.

339
340

342
343
344
345
346

Figure 4 Concepts around the dynamics of service

3.2.1 Visibility 341

For a service provider and consumer to interact with each other they have to be able to ‘see’ each
other. This is true for any consumer/provider relationship – including in an application program
where one program calls another: without the proper libraries being present the function call
cannot complete. In the case of SOA, visibility needs to be emphasized because it is not
necessarily obvious how service participants can see each other.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 13 of 31

347
348
349
350
351
352

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Figure 5 Concepts around Visibility
Visibility is the relationship between service consumers and providers that is satisfied when they
are able to interact with each other. Preconditions to visibility are awareness, willingness and
reachability. The initiator in a service interaction MUST be aware of the other parties, the
participants MUST be predisposed to interaction, and the participants MUST be able to interact.

3.2.1.1 Awareness 353

Both the service provider and the service consumer MUST have information that would lead them
to know of the other’s existence. Technically, the prime requirement is that the initiator of a
service interaction has knowledge of the responder. The fact of a successful initiation is often
sufficient to inform the responder of the other’s existence.
Awareness is a state whereby one party has knowledge of the existence of the other party.
Awareness does not imply willingness or reachability. Awareness of service offerings is often
effected by various discovery mechanisms. For a service consumer to discover a service, the
service provider must be capable of making details of the service (notably service description and
policies) available to potential consumers; and consumers must be capable of becoming aware of
that information. Conversely, the service provider may want to discover likely consumers and
would need to become aware of the consumer's description. In the following, we will discuss
awareness in terms of service visibility but the concepts are equally valid for consumer visibility.
Service awareness requires that the service description and policy – or at least a suitable
subset thereof – be available in such a manner and form that, directly or indirectly, a potential
consumer is aware of the existence and capabilities of the service. The extent to which the
description is “pushed” by the service provider, “pulled” by a potential consumer, subject to a
probe or another method, will depend on many factors.
For example, a service provider may advertise and promote their service by either including it in a
service directory or broadcasting it to all consumers; potential consumers may broadcast their
particular service needs in the hope that a suitable service responds with a proposal or offer, or a
service consumer might also probe an entire network to determine if suitable services exist.
When the demand for a service is higher than the supply, then, by advertising their needs,

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 14 of 31

376
377
378
379
380

382
383
384
385
386
387
388
389
390
391
392

394
395
396
397
398
399
400

402
403
404
405
406

potential consumers are likely to be more effective than service providers advertising offered
services.
One way or another, the potential consumer must acquire sufficient descriptions to evaluate
whether a given service matches its needs and, if so, the method for the consumer to interact
with the service.

3.2.1.2 Willingness 381

Associated with all service interactions is intent – it is an intentional act to initiate and to
participate in a service interaction. For example, if a service consumer discovers a service via its
description in a registry, and the consumer initiates an interaction, if the service provider does not
cooperate then there can be no interaction. In some circumstances it is precisely the correct
behavior for a service to fail to respond – for example, it is the classic defense against certain
denial-of-service attacks.
The extent of a service participant’s willingness to engage in service interactions may be the
subject of policies. Those policies may be documented in the service description.
Willingness on the part of service providers and consumers to interact is not the same as a
willingness to perform requested actions. A service provider that rejects all attempts to cause it to
perform some action may still be fully willing and engaged in interacting with the consumer.

3.2.1.3 Reachability 393

Reachability is the relationship between service participants where they are able to interact;
possibly by exchanging information. Reachability is an essential pre-requisite for service
interaction – participants MUST be able to communicate with each other.
A service consumer may have the intention of interacting with a service, and may even have all
the information needed to communicate with it. However, if the service is not reachable, for
example if there is not a communication path between the consumer and provider, then,
effectively, the service is not visible to the consumer.

3.2.2 Interacting with services 401

Interacting with a service involves performing actions against the service. In many cases, this is
accomplished by sending and receiving messages, but there are other modes possible that do
not involve explicit message transmission. For example, a service interaction may be effected by
modifying the state of a shared resource. However, for simplicity, we often refer to message
exchange as the primary mode of interaction with a service.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 15 of 31

407
408
409
410
411

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

430
431
432
433

Figure 6 Service Interaction concepts
Figure 6 illustrates the key concepts that are important in understanding what it is involved in
interacting with services; these revolve around the service description – which references a
information model and a behavior model.

3.2.2.1 Information model 412

The information model of a service is a characterization of the information that may be exchanged
with the service. Only information and data that are potentially exchanged with a service are
generally included within that service's information model.
The scope of the information model includes the format of information that is exchanged, the
structural relationships within the exchanged information and also the definition of terms used.
Particularly for information that is exchanged across an ownership boundary, an important aspect
of the service information model is the consistent interpretation of strings and other tokens in the
information.
The extent to which one system can effectively interpret information from another system is
governed by the semantic engagement of the various systems. The semantic engagement of a
system is a relationship between the system and information it may encounter. This is highly
variable and application dependent; for example an encryption service interprets all information
as a stream of bytes for it to encrypt or decrypt, whereas a database service would attempt to
interpret the same information stream in terms of requests to query and/or modify the database.
Loosely, one might partition the interpretation of an informational block into structure (syntax) and
semantics (meaning); although both are part of the information model.

3.2.2.1.1 Structure 429

Knowing the representation, structure, and form of information required is a key initial step in
ensuring effective interactions with a service. There are several levels of such structural
information; including the encoding of character data, the format of the data and the structural
data types associated with elements of the information.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 16 of 31

434
435
436
437
438
439
440
441

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

469
470
471
472
473
474
475
476
477
478
479
480

A described information model typically has a great deal to say about the form of messages.
However, knowing the type of information is not sufficient to completely describe the appropriate
interpretation of data. For example, within a street address structure, the city name and the street
name are typically given the same data type – some variant of the string type. However, city
names and street names are not really the same type of thing at all. Distinguishing the correct
interpretation of a city name string and a street name string is not possible using type-based
techniques – it requires additional information that cannot be expressed purely in terms of the
structure of data.

3.2.2.1.2 Semantics 442

The primary task of any communication infrastructure is to facilitate the exchange of information
and the exchange of intent. For example, a purchase order combines two somewhat orthogonal
aspects: the description of the items being purchased and the fact that one party intends to
purchase those items from another party. Even for exchanges that do not cross any ownership
boundaries, exchanges with services have similar aspects.
Especially in the case where the exchanges are across ownership boundaries, a critical issue is
the interpretation of the data. This interpretation MUST be consistent between the participants in
the service interaction. Consistent interpretation is a stronger requirement than merely type (or
structural) consistency – the tokens in the data itself must also have a shared basis.
There is often a huge potential for variability in representing street addresses. For example, an
address in San Francisco, California may have variations in the way the city is represented: SF,
San Francisco, San Fran, the City by the Bay are all alternate denotations of the same city. For
successful exchange of address information, all the participants must have a consistent view of
the meaning of the address tokens if address information is to be reliably shared.
The formal descriptions of terms and the relationships between them (e.g., an ontology) provides
a firm basis for selecting correct interpretations for elements of information exchanged. For
example, an ontology can be used to capture the alternate ways of expressing the name of a city
as well as distinguishing a city name from a street name.
Note that, for the most part, it is not expected that service consumers and providers would
actually exchange descriptions of terms in their interaction but, rather, would reference existing
descriptions – the role of the semantics being a background one – and these references would be
included in the service descriptions.
Specific domain semantics are beyond the scope of this reference model; but there is a
requirement that the service interface enable providers and consumers to identify unambiguously
those definitions that are relevant to their respective domains.

3.2.2.2 Behavior model 468

The second key requirement for successful interactions with services is knowledge of the actions
invoked against the service and the process or temporal aspects of interacting with the service.
This is characterized as knowledge of the actions on, responses to, and temporal dependencies
between actions on the service.
For example, in a security-controlled access to a database, the actions available to a service
consumer include presenting credentials, requesting database updates and reading results of
queries. The security may be based on a challenge-response protocol. For example, the initiator
presents an initial token of identity, the responder presents a challenge and the initiator responds
to the challenge in a way that satisfies the database. Only after the user’s credentials have been
verified will the actions that relate to database update and query be accepted.
The sequences of actions involved are a critical aspect of the knowledge required for successful
use of the secured database.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 17 of 31

3.2.2.2.1 Action model 481

The action model of a service is the characterization of the actions that may be invoked against
the service. Of course, a great portion of the behavior resulting from an action may be private;
however, the expected public view of a service surely includes the implied effects of actions.

482
483
484
485
486
487
488
489
490
491

493
494
495
496
497
498
499
500
501
502
503
504
505
506

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

For example, in a service managing a bank account, it is not sufficient to know that you need to
exchange a given message (with appropriate authentication tokens), in order to use the service. It
is also necessary to understand that using the service may actually affect the state of the account
(for example, withdrawing cash); that dependencies are involved (for example, a withdrawal
request must be less than the account balance); or that the data changes made have different
value in different contexts (for example, changing the data in a bank statement is not the same as
changing the amount in the account).

3.2.2.2.2 Process Model 492

The process model characterizes the temporal relationships and temporal properties of actions
and events associated with interacting with the service.
Note that although the process model is an essential part of this Reference Model, its extent is
not completely defined. Some process models MAY include aspects that are not strictly part of
SOA – for example, in this Reference Model we do not address the orchestration of multiple
services, although orchestration and choreography may be part of the process model. At a
minimum, the process model MUST cover the interactions with the service itself.
The reason that orchestration (and choreography) are not part of the SOA RM is that the focus of
the RM is on modeling what service is and what key relationships are involved in modeling
service.
Beyond the straightforward mechanics of interacting with a service there are other, higher-order,
attributes of services’ process models that are also often important. These can include whether
the service is idempotent, whether the service is long-running in nature and whether it is
important to account for any transactional aspects of the service.

3.2.3 Real World Effect 507

There is always a particular purpose associated with interacting with a service. Conversely, a
service provider (and consumer) often has a priori conditions that apply to its interactions. The
service consumer is trying to achieve some result by using the service, as is the service provider.
At first sight, such a goal can often be expressed as “trying to get the service to do something”.
This is sometimes known as the “real world effect” of using a service. For example, an airline
reservation service can be used to learn about available flights, seating and ultimately to book
travel – the desired real world effect being information and a seat on the right flight.
As was discussed in Section 3.1, a real world effect can be the response to a request for
information or the change in the state of some defined entities shared by the service participants.
In this context, the shared state does not necessarily refer to specific state variables being saved
in physical storage but rather represents shared information about the affected entities. So in the
example of the airline reservation, the shared state - that there is a seat reserved on a particular
flight - represents a common understanding between a future passenger and the airline. The
details of actual state changes – whether on the part of the passenger (e.g. fund balances
required to pay for the ticket) or of the airline (e.g. that a seat is sold for that flight) - are not
shared by the other.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 18 of 31

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

551
552
553

Figure 7 Real World Effect and shared state
In addition, the internal actions that service providers and consumers perform as a result of
participation in service interactions are, by definition, private and fundamentally unknowable. By
unknowable we mean both that external parties cannot see others’ private actions and,
furthermore, SHOULD NOT have explicit knowledge of them. Instead we focus on the set of facts
shared by the parties – the shared state. Actions by service providers and consumers lead to
modifications of this shared state; and the real world effect of a service interaction is the
accumulation of the changes in the shared state.
For example, when an airline has confirmed a seat for a passenger on a flight this represents a
fact that both the airline and the passenger share – it is part of their shared state. Thus the real
world effect of booking the flight is the modification of this shared state – the creation of the fact of
the booking. Flowing from the shared facts, the passenger, the airline, and interested third
parties may make inferences – for example, when the passenger arrives at the airport the airline
confirms the booking and permits the passenger onto the airplane (subject of course to the
passenger meeting the other requirements for traveling).
For the airline to know that the seat is confirmed it will likely require some private action to record
the reservation. However, a passenger should not have to know the details of the airline internal
procedures. Likewise, the airline does not know if the reservation was made by the passenger or
someone acting on the passenger’s behalf. The passenger’s and the airline’s understanding of
the reservation is independent of how the airline maintains its records or who initiated the action.
There is a strong relationship between the shared state and the interactions that lead up to that
state. The elements of the shared state SHOULD be inferable from that prior interaction together
with other context as necessary. In particular, it is not required that the state be recorded;
although without such recording it may become difficult to audit the interaction at a subsequent
time.

3.3 About services 550

In support of the dynamics of interacting with services are a set of concepts that are about
services themselves. These are the service description, the execution context of the service and
the contracts and policies that relate to services and service participants.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 19 of 31

554
555

557
558
559
560
561
562
563

Figure 8 About services

3.3.1 Service description 556

One of the hallmarks of a Service Oriented Architecture is the large amount of associated
documentation and description.
The service description represents the information needed in order to use a service. In most
cases, there is no one “right” description but rather the elements of description required depend
on the context and the needs of the parties using the associated entity. While there are certain
elements that are likely to be part of any service description, most notably the information model,
many elements such as function and policy may vary.

564
565
566
567
568
569

Figure 9 Service description
The purpose of description is to facilitate interaction and visibility, particularly when the
participants are in different ownership domains, between participants in service interactions. By
providing descriptions, it makes it possible for potential participants to construct systems that use
services and even offer compatible services.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 20 of 31

570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

597
598
599
600
601

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

For example, descriptions allow participants to discriminate amongst possible choices for service
interaction; such as whether the service provides required capabilities, how to access the service,
and negotiate over specific service functionality. In addition, descriptions can be used to support
the management of services, both from the service provider’s perspective and the service
consumer’s perspective.
Best practice suggests that the service description SHOULD be represented using a standard,
referenceable format. Such a format facilitates the use of common processing tools (such as
discovery engines) that can capitalize on the service description.
While the concept of a SOA supports use of a service without the service consumer needing to
know the details of the service implementation, the service description makes available critical
information that a consumer needs in order to decide whether or not to use a service. In
particular, a service consumer needs to possess the following items of information:

1. That the service exists and is reachable;
2. That the service performs a certain function or set of functions;
3. That the service operates under a specified set of constraints and policies;
4. That the service will (to some implicit or explicit extent) comply with policies as prescribed

by the service consumer;
5. How to interact with the service in order to achieve the required objectives, including the

format and content of information exchanged between the service and the consumer and
the sequences of information exchange that may be expected.

While each of these items SHOULD be represented in any service description, the details can be
included through references (links) to external sources and are NOT REQUIRED to be
incorporated explicitly. This enables reuse of standard definitions, such as for functionality or
policies.
Other sections of this document deal with these aspects of a service, but the following
subsections discuss important elements as these relate to the service description itself.

3.3.1.1 Service Reachability 596

Reachability is an inherently pairwise relationship between service providers and service
consumers. However, a service description SHOULD include sufficient data to enable a service
consumer and service provider to interact with each other. This MAY include metadata such as
the location of the service and what information protocols it supports and requires. It MAY also
include dynamic information about the service, such as whether it is currently available.

3.3.1.2 Service Functionality 602

A service description SHOULD unambiguously express the function(s) of the service and the real
world effects (see Section 3.2.3) that result from it being invoked. This portion of the description
SHOULD be expressed in a way that is generally understandable by service consumers but able
to accommodate a vocabulary that is sufficiently expressive for the domain for which the service
provides its functionality. The description of functionality may include, among other possibilities,
a textual description intended for human consumption or identifiers or keywords referenced to
specific machine-processable definitions. For a full description, it MAY indicate multiple
identifiers or keywords from a number of different collections of definitions.
Part of the description of functionality may include underlying technical assumptions that
determine the limits of functionality exposed by the service or of the underlying capability. For
example, the amounts dispensed by an automated teller machine (ATM) are consistent with the
assumption that the user is an individual rather than a business. To use the ATM, the user must
not only adhere to the policies and satisfy the constraints of the associated financial institution
(see Section 3.3.1.3 for how this relates to service description and Section 3.3.2 for a detailed
discussion) but the user is limited to withdrawing certain fixed amounts of cash and a certain
number of transactions in a specified period of time. The financial institution, as the underlying

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 21 of 31

619
620
621

623
624
625

627
628
629
630
631
632
633
634
635
636
637
638
639

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

657
658
659
660
661
662
663

capability, does not have these limits but the service interface as exposed to its customers does,
consistent with its assumption of the needs of the intended user. If the assumption is not valid,
the user may need to use another service to access the capability.

3.3.1.3 Policies Related to a Service 622

A service description MAY include support for associating policies with a service and providing
necessary information for prospective consumers to evaluate if a service will act in a manner
consistent with the consumer’s constraints.

3.3.1.4 Service Interface 626

The service interface is the means for interacting with a service. It includes the specific protocols,
commands, and information exchange by which actions are initiated that result in the real world
effects as specified through the service functionality portion of the service description.
The specifics of the interface SHOULD be syntactically represented in a standard referenceable
format. These prescribe what information needs to be provided to the service in order to access
its capabilities and interpret responses. This is often referred to as the service’s information
model, see Section 3.2.2.1. It should be noted that the particulars of the interface format are
beyond the scope of the reference model. However, the existence of interfaces and accessible
descriptions of those interfaces are fundamental to the SOA concept.
While this discussion refers to a standard referenceable syntax for service descriptions, it is not
specified how the consumer accesses the interface definition nor how the service itself is
accessed. However, it is assumed that for a service to be usable, its interface MUST be
represented in a format that allows interpretation of the interface information by its consumers.

3.3.1.5 The Limits of Description 640

There are well-known theoretic limits on the effectiveness of descriptions – it is simply not
possible to specify, completely and unambiguously, the precise semantics of and all related
information about a service.
There will always be unstated assumptions made by the describer of a service that must be
implicitly shared by readers of the description. This applies to machine processable descriptions
as well as to human readable descriptions.
Fortunately, complete precision is not necessary – what is required is sufficient scope and
precision to support intended use.
Another kind of limit of service descriptions is more straightforward: whenever a repository is
searched using any kind of query there is always the potential for zero or more responses – no
matter how complete the search queries or the available descriptions appear to be. This is
inherent in the principles involved in search.
In the case that there is more than one response, this set of responses has to be converted into a
single choice. This is a private choice that must be made by the consumer of the search
information.

3.3.2 Policies and Contracts 656

A policy represents some constraint or condition on the use, deployment or description of an
owned entity as defined by any participant. A contract, on the other hand, represents an
agreement by two or more parties. Like policies, agreements are also about the conditions of use
of a service; they may also constrain the expected real world effects of using a service. The
reference model is focused primarily on the concept of policies and contracts as they apply to
services. We are not concerned with the form or expressiveness of any language used to
express policies and contracts.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 22 of 31

664
665

666

668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

Figure 10 Policies and Contracts

3.3.2.1 Service Policy 667

Conceptually, there are three aspects of policies: the policy assertion, the policy owner
(sometimes referred to as the policy subject) and policy enforcement.
For example, the assertion: “All messages are encrypted” is an assertion regarding the forms of
messages. As an assertion, it is measurable: it may be true or false depending on whether the
traffic is encrypted or not. Policy assertions are often about the way the service is realized; i.e.,
they are about the relationship between the service and its execution context, see 3.3.3.
A policy always represents a participant’s point of view. An assertion becomes the policy of a
participant when they adopt the assertion as their policy. This linking is normally not part of the
assertion itself. For example, if the service consumer declares that “All messages are encrypted”,
then that reflects the policy of the service consumer. This policy is one that may be asserted by
the service consumer independently of any agreement from the service provider.
Finally, a policy may be enforced. Techniques for the enforcement of policies depend on the
nature of the policy. Conceptually, service policy enforcement amounts to ensuring that the policy
assertion is consistent with the real world. This might mean preventing unauthorized actions to be
performed or states to be entered into; it can also mean initiating compensatory actions when a
policy violation has been detected. An unenforceable constraint is not a policy; it would be better
described as a wish.
Policies potentially apply to many aspects of SOA: security, privacy, manageability, Quality of
Service and so on. Beyond such infrastructure-oriented policies, participants MAY also express
business-oriented policies – such as hours of business, return policies and so on.
Policy assertions SHOULD be written in a form that is understandable to, and processable by, the
parties to whom the policy is directed. Policies MAY be automatically interpreted, depending on
the purpose and applicability of the policy and how it might affect whether a particular service is
used or not.
A natural point of contact between service participants and policies associated with the service is
in the service description – see Section 3.3.1. It would be natural for the service description to
contain references to the policies associated with the service.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 23 of 31

3.3.2.2 Service Contract 695

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

Whereas a policy is associated with the point of view of individual participants, a contract
represents an agreement between two or more participants. Like policies, contracts can cover a
wide range of aspects of services: quality of service agreements, interface and choreography
agreements and commercial agreements. Note that we are not necessarily referring to legal
contracts here.
Thus, following the discussion above, a service contract is a measurable assertion that governs
the requirements and expectations of two or more parties. Unlike policy enforcement, which is
usually the responsibility of the policy owner, contract enforcement may involve resolving
disputes between the parties to the contract. The resolution of such disputes may involve appeals
to higher authorities.
Like policies, contracts may be expressed in a form that permits automated interpretation. Where
a contract is used to codify the results of a service interaction, it is good practice to represent it in
a machine processable form. Among other purposes, this facilitates automatic service
composition. Where a contract is used to describe over-arching agreements between service
providers and consumers, then the priority is likely to make such contracts readable by people.
Since a contract is inherently the result of agreement by the parties involved, there is a process
associated with the agreement action. Even in the case of an implicitly agreed upon contract,
there is logically an agreement action associated with the contract, even if there is no overt action
of agreement. A contract may be arrived at by a mechanism that is not directly part of an SOA –
an out of band process. Alternatively, a contract may be arrived at during the course of a service
interaction – an in-band process.

3.3.3 Execution context 717

718
719

720
721
722
723
724
725

Figure 11 Execution Context

The execution context of a service interaction is the set of infrastructure elements, process
entities, policy assertions and agreements that are identified as part of an instantiated service
interaction, and thus forms a path between those with needs and those with capabilities.
As discussed in previous sections of this document, the service description (and a corresponding
description associated with the service consumer and its needs) contains information that can
include preferred protocols, semantics, policies and other conditions and assumptions that

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 24 of 31

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758

describe how a service can and may be used. The participants (providers, consumers, and any
third parties as noted below) must agree and acknowledge a consistent set of agreements in
order to have a successful service interaction, i.e. realizing the described real world effects. The
execution context is the collection of this consistent set of agreements.
The consumer and provider can be envisioned as separate places on a map and, for a service to
actually be invoked, a path must be established between those two places. This path is the
execution context. As with a path between places, it can be a temporary connection (e.g. a
tenuous footbridge of an ad hoc exchange) or a well-defined coordination (e.g. a super highway)
that can be easily reused in the future.
The execution context is not limited to one side of the interaction; rather it concerns the totality of
the interaction – including the service provider, the service consumer and the common
infrastructure needed to mediate the interaction. While there may be third parties, for example,
government regulators, who set some of the conditions for the execution context, this merely
increases the conditions and constraints needing to be coordinated and may require additional
information exchange to complete the execution context.
The execution context is central to many aspects of a service interaction. It defines, for example,
a decision point for policy enforcement relating to the service interaction. Note that a policy
decision point is not necessarily the same as an enforcement point: an execution context is not by
itself something that lends itself to enforcement. On the other hand, any enforcement mechanism
of a policy is likely to take into account the particulars of the actual execution context.
The execution context also allows us to distinguish services from one another. Different instances
of the same service – denoting interactions between a given service provider and different service
consumers for example – are distinguished by virtue of the fact that their execution contexts are
different.
Finally, the execution context is also the context in which the interpretation of data that is
exchanged takes place. A particular string has a particular meaning in a service interaction in a
particular context – the execution context.
An execution context often evolves during a service interaction. The set of infrastructure
elements, the policies and agreements that apply to the interaction, may well change during a
given service interaction. For example, at an initial point in an interaction, it may be decided by
the parties that future communication should be encrypted. As a result the execution context also
changes – to incorporate the necessary infrastructure to support the encryption and continue the
interaction.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 25 of 31

4 Conformance Guidelines 759

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778

The authors of this reference model envision that architects may wish to declare their work is
conformant with this reference model. Conforming to a Reference Model is not generally an easily
automatable task – given that the Reference Model’s role is primarily to define concepts that are
important to SOA rather than to give guidelines for implementing systems.
However, we do expect that any given Service Oriented Architecture will reference the concepts
outlined in this specification. As such, we expect that any design for a system that adopts the
SOA approach will

• Have entities that can be identified as services as defined by this Reference Model;
• Be able to identify how visibility is established between service providers and consumers;
• Be able to identify how interaction is mediated;
• Be able to identify how the effect of using services is understood;
• Have descriptions associated with services;
• Be able to identify the execution context required to support interaction; and
• It will be possible to identify how policies are handled and how contracts may be modeled

and enforced.
It is not appropriate for this specification to identify best practices with respect to building SOA-
based systems. However, the ease with which the above elements can be identified within a
given SOA-based system could have significant impact on the scalability, maintainability and
ease of use of the system.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 26 of 31

5 References 779

5.1 Normative 780

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 781
782
783

785
786

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

5.2 Non-Normative 784

[W3C WSA] W3C Working Group Note "Web Services Architecture",
http://www.w3.org/TR/ws-arch/ , 11 February 2004

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 27 of 31

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/ws-arch/

A. Glossary 787

788
789
790
791
792
793

794
795
796

797
798
799

800
801
802

803
804
805
806

807
808
809

810
811
812
813

814
815
816

817
818
819

820
821
822

823
824
825

826
827
828

The glossary contains a concise definition of terms used within this specification, but the full
description in the text is the normative description.

Action Model

The characterization of the permissible actions that may be invoked against a service.
See Section 3.2.2.2.1.

Awareness
A state whereby one party has knowledge of the existence of the other party. Awareness
does not imply willingness or reachability. See Section 3.2.1.1.

Behavior Model
The characterization of (and responses to, and temporal dependencies between) the
actions on a service. See Section 3.2.2.2.

Capability
A real-world effect that a service provider is able to provide to a service consumer. See
Section 2.1.

Execution context
The set of technical and business elements that form a path between those with needs
and those with capabilities and that permit service providers and consumers to interact.
See Section 3.3.3.

Framework
A set of assumptions, concepts, values, and practices that constitutes a way of viewing
the current environment.

Idempotency/Idempotent
A characteristic of a service whereby multiple attempts to change a state will always and
only generate a single change of state if the operation has already been successfully
completed once. See Section 3.2.2.2.2.

Information model
The characterization of the information that is associated with the use of a service. See
Section 3.2.2.1.

Interaction
The activity involved in making using of a capability offered, usually across an ownership
boundary, in order to achieve a particular desired real-world effect. See Section 3.2.3.

Offer
An invitation to use the capabilities made available by a service provider in accordance
with some set of policies.

Policy
A statement of obligations, constraints or other conditions of use of an owned entity as
defined by a participant. See Section 3.3.2.

Process Model
The characterization of the temporal relationships between and temporal properties of
actions and events associated with interacting with the service. See Section 3.2.2.2.2.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 28 of 31

Reachability 829
830
831

832
833
834

835
836
837
838

839
840
841
842

843
844
845

846
847
848

849
850
851

852
853
854

855
856
857

858
859

860
861
862

863
864
865
866
867

868
869
870

871
872
873

The ability of a service consumer and service provider to interact. Reachability is an
aspect of visibility. See Section 3.2.1.3.

Real world effect
The actual result of using a service, rather than merely the capability offered by a service
provider. See Section 3.2.3.

Reference Architecture
A reference architecture is an architectural design pattern that indicates how an abstract
set of mechanisms and relationships realizes a predetermined set of requirements. See
Section 1.1.

Reference Model
A reference model is an abstract framework for understanding significant relationships
among the entities of some environment that enables the development of specific
architectures using consistent standards or specifications supporting that environment.

A reference model consists of a minimal set of unifying concepts, axioms and
relationships within a particular problem domain, and is independent of specific
standards, technologies, implementations, or other concrete details. See Section 1.1.

Semantics
A conceptualization of the implied meaning of information, that requires words and/or
symbols within a usage context. See Section 3.2.2.1.2.

Semantic Engagement
The relationship between an agent and a set of information that depends on a particular
interpretation of the information. See Section 3.2.2.1.

Service
The means by which the needs of a consumer are brought together with the capabilities
of a provider. See Section 3.1.

Service Consumer
An entity which seeks to satisfy a particular need through the use capabilities offered by
means of a service.

Service description
The information needed in order to use, or consider using, a service. See Section 3.3.1.

Service Interface
The means by which the underlying capabilities of a service are accessed. See Section
3.3.1.4.

Service Oriented Architecture (SOA)
Service Oriented Architecture is a paradigm for organizing and utilizing distributed
capabilities that may be under the control of different ownership domains. It provides a
uniform means to offer, discover, interact with and use capabilities to produce desired
effects consistent with measurable preconditions and expectations. See Section 2.1.

Service Provider
An entity (person or organization) that offers the use of capabilities by means of a
service.

Shared state
The set of facts and commitments that manifest themselves to service participants as a
result of interacting with a service.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 29 of 31

 874
875
876
877

878
879
880

881
882

Software Architecture
The structure or structures of an information system consisting of entities and their
externally visible properties, and the relationships among them.

Visibility
The capacity for those with needs and those with capabilities to be able to interact with
each other. See Section 3.2.1.

Willingness
A predisposition of service providers and consumers to interact. See Section 3.2.1.2.

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 30 of 31

B. Acknowledgments 883

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

The following individuals were members of the committee during the development of this
specification and are gratefully acknowledged:
Participants:

Christopher Bashioum, Mitre Corporation
Prasanta Behera, Individual Member
Kathryn Breininger, The Boeing Company
Rex Brooks, HumanMarkup.org, Inc.
Al Brown, FileNet Corporation
Peter F Brown, Individual Member
Joseph Chiusano, Booz Allen Hamilton
David Ellis, Individual Member
Robert S. Ellinger, Northrop Grumman Corporation
Jeff Estefan, Jet Propulsion Laboratory
Don Flinn, Individual Member
Steve Jones, Capgemini
Gregory Kohring, NEC Europe Ltd.
Ken Laskey, Mitre Corporation
C. Matthew MacKenzie (secretary), Adobe Systems
Francis McCabe (secretary), Fujitsu Laboratories of America Ltd.
Wesley McGregor, Treasury Board of Canada, Secretariat
Tom Merkle, Lockheed Martin Information Technology
Rebekah Metz, Booz Allen Hamilton
Oleg Mikulinsky, WebLayers, Inc.
Jyoti Namjoshi, Patni Computer Systems Ltd.
Duane Nickull (chair), Adobe Systems
George Ntinolazos, Strata Software Ltd
Joseph Pantella, Individual Member
Ron Schuldt, Lockheed Martin
Michael Stiefel, Reliable Software, Inc.
Danny Thornton, Individual Member
Michal Zaremba, Digital Enterprise Research Institute

Reference Model for Service Oriented Architecture 1.0 12 October 2006
Copyright © OASIS Open 2005-2006. All Rights Reserved. Page 31 of 31

	1 Introduction
	1.1 What is a reference model
	1.2 A Reference Model for Service Oriented Architectures
	1.3 Audience
	1.4 Guide to using the reference model
	1.5 Notational Conventions
	1.5.1 How to interpret concept maps.

	1.6 Relationships to Other Standards

	2 Service Oriented Architecture
	2.1 What is Service Oriented Architecture?
	2.1.1 A worked Service Oriented Architecture example

	2.2 How is Service Oriented Architecture different?
	2.3 The Benefits of Service Oriented Architecture

	3 The Reference Model
	3.1 Service
	3.2 Dynamics of Services
	3.2.1 Visibility
	3.2.1.1 Awareness
	3.2.1.2 Willingness
	3.2.1.3 Reachability

	3.2.2 Interacting with services
	3.2.2.1 Information model
	3.2.2.1.1 Structure
	3.2.2.1.2 Semantics

	3.2.2.2 Behavior model
	3.2.2.2.1 Action model
	3.2.2.2.2 Process Model

	3.2.3 Real World Effect

	3.3 About services
	3.3.1 Service description
	3.3.1.1 Service Reachability
	3.3.1.2 Service Functionality
	3.3.1.3 Policies Related to a Service
	3.3.1.4 Service Interface
	3.3.1.5 The Limits of Description

	3.3.2 Policies and Contracts
	3.3.2.1 Service Policy
	3.3.2.2 Service Contract

	3.3.3 Execution context

	4 Conformance Guidelines
	5 References
	5.1 Normative
	5.2 Non-Normative

