10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

1
2

OASIS 19

Assertions and Protocols for the OASIS
Security Assertion Markup Language

(SAML) V2.0
OASIS Standard, 15 March 2005

Document identifier:
saml-core-2.0-0s

Location:
http://docs.oasis-open.org/security/saml/v2.0/

Editors:
Scott Cantor, Internet2
John Kemp, Nokia
Rob Philpott, RSA Security
Eve Maler, Sun Microsystems

SAML V2.0 Contributors:
Conor P. Cahill, AOL
John Hughes, Atos Origin
Hal Lockhart, BEA Systems
Michael Beach, Boeing
Rebekah Metz, Booz Allen Hamilton
Rick Randall, Booz Allen Hamilton
Thomas Wisniewski, Entrust
Irving Reid, Hewlett-Packard
Paula Austel, IBM
Maryann Hondo, IBM
Michael Mclintosh, IBM
Tony Nadalin, IBM
Nick Ragouzis, Individual
Scott Cantor, Internet2
RL 'Bob' Morgan, Internet2
Peter C Davis, Neustar
Jeff Hodges, Neustar
Frederick Hirsch, Nokia
John Kemp, Nokia
Paul Madsen, NTT
Steve Anderson, OpenNetwork
Prateek Mishra, Principal Identity
John Linn, RSA Security
Rob Philpott, RSA Security
Jahan Moreh, Sigaba
Anne Anderson, Sun Microsystems

saml-core-2.0-0s
Copyright © OASIS Open 2005. All Rights Reserved.

15 March 2005
Page 1 of 86

42
43
44

45
46
47

48
49
50

51
52
53
54
55

56
57
58
59

3
4

Eve Maler, Sun Microsystems
Ron Monzillo, Sun Microsystems
Greg Whitehead, Trustgenix

Abstract:
This specification defines the syntax and semantics for XML-encoded assertions about
authentication, attributes, and authorization, and for the protocols that convey this information.

Status:
This is an OASIS Standard document produced by the Security Services Technical Committee. It
was approved by the OASIS membership on 1 March 2005.

Committee members should submit comments and potential errata to the security-
services@lists.oasis-open.org list. Others should submit them by filling out the web form located
at http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=security. The
committee will publish on its web page (http://www.oasis-open.org/committees/security) a catalog
of any changes made to this document as a result of comments.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights web page for the Security Services TC (http://www.oasis-
open.org/committees/security/ipr.php).

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 2 of 86

60

61
62
63

64

65
66
67
68

69
70

71

72
73
74
75
76
77

78
79
80
81

82

83
84
85
86
87
88

89
90
91
92
93
94
95
96
97
98

99
100
101
102
103
104
105
106
107
108
109

Table of Contents

I L) (o Yo [0 o 1] o T 7
I\ (] 7= o] o T T TR 4
1.2 Schema Organization and NamMESPACES.cciiiiiiiiiiiiie et ee e 8
1.3 COMMON DAtA TYPES...ciiiiiiiiititeee ettt e e e e e et e e e e e e e e e e et e e e e e e eeeeesseaaasbaaeeeeaeeeeesannsnreeneeesd 8

1,301 SHANG VAIUES ...ttt e e e et e e e e a e e e e e b be e e e e anbee e e e enreas 8
T BL2 URIVAIUBS. ... ettt ettt e e et e e e e e e e et e e e et e e e saa e e seaneeenaass 9
BB THME VAIUEBS. ... et e e e e et e e e et e e e e e e e e e e e eaeseaeaeeeeeen 9
1.3.4 ID and ID REfEreNCE ValUES..........coooueiiiiiieeeee ettt e e e e e e e e e e eeaas, 9

Sy AN Y I Y=Y i 1= TR 11
2.1 Schema Header and Namespace Declarations............c.ooouiieiiiiiiiiiiiiiee e 11
A \\F= 10 LT [0 (=T a1 (1 =T =TT 12

2.2 T BIement KBASEID> ... 12
2.2.2 Complex TYPE NamMEIDTYPE.....cci ittt e e e e e e e e e e e e e e e e eannraeeeaaaeens 13
2.2.3 EIemMent SINGMEID >o e e e et e et e e et e e e e e e e et e e e e e e e e e e e eranas 14
2.24 Element KENCIyptedID>..... ..o ———————————————— 14
2.2 5 BIBMENt S SSUEBTo e et e et e e e e e et e e e e e e e e e e e et et e e e eereeeeenaeeeeenn 15
PRl T Y=Y o 1T0] 1= TR 15
2.3.1 Element <ASSErtioNIDRE>....... .ot 15
2.3.2 Element KASSErtioNURIRES ...ttt e e e e e e e e e e e e e e e e eeann 15
2.3. 3 BIemMENt SASSEITIONSo et e e e e et a s 15
2.3.4 Element <ENCryptedASSErtiON>.........ccooiiiiie e e aaaas 17
2.4 SUDJECES. ..ottt e e — e e e e e e e e e e ———————aaaeeeaa e ——————aaaaaeeeaaaararraaaaaas 17
2.4.1 ElemMent SSUDJECE> ... e 18
2.4.1.1 Element <SubjectConfirmation>...........coociiiiiiiiii e 18
2.4.1.2 Element <SubjectConfirmationData>.............ccuiiiiiiiiiiii e 19
2.4.1.3 Complex Type KeylnfoConfirmationDataType........cc.uueemiieeeiiiiiieeee e 20
2.4.1.4 Example of a Key-Confirmed <SUDJECt>.........cooiiiiiii e 21

P ST O 0] g o [1 1700 1= TR 21
2.5.1 Blement SCONItIONS ettt e e e e e e e e e e e ena s 21
2.5.1.1 General Processing RUIES.coouiiiiiii e 22
2.5.1.2 Attributes NotBefore and NOtONOTAFENeniiieeeeeeeee e 23

2.5. 1.3 Element KCONAILIOND..........oo et e e e e e e e e e e e e e e eaaaas 23
2.5.1.4 Elements <AudienceRestriction> and <AUdIENCE>..........ccoeeereiiiieeeeeeee e 23
2.5. 1.5 Element KONETIMEUSE ...t e et e e e e e e e e e 24
2.5.1.6 Element <ProxyRestriClONS..........oouuiiiiiiiie e 25

B G T Ve 1Y/ o YN 25
2.6. T BIEMENt SAGAVICES..... .ot e et e e e e e e e e e e e e e e e aeaes 26
A1 7= (=) 14 1=1 01 (=TT 26
2.7. 1 Element SStat@mMeENt>..... ..o et e e e et raaaaas 26
2.7.2 Element SAUTNNSTAtEMENt>..... ..ot e e e e e e e eeaae 26
2.7.2.1 Element <SUDJECILOCAITY>.......coiiiiiiiiei e 28
2.7.2.2 Element SAUTRNCONIEXES..... .ot e e et s 28
2.7.3 Element <AtribUteStatemMent>.o e 29
2.7.3.1 Element SAHIDULESttt e e et e e e e e e e e e e et e e enaneaes 29
2.7.3.1.1 Element <AHMDULEVAIUES.........oooeeee e 30

2.7.3.2 Element <ENCryptedAttrbULE™.........oeiii 31
2.7.4 Element <AUthZDecCiSIONStatemMENt>........cooniieee e 31
2.7.4.1 SIMPle TYPE DECISIONTYPE. ... eeeieieeeiee ettt e e e e e e e e ee e e e e e e e e e e nnnaeeeeeeaens 33
2.7.4.2 ElemMent SACHON et e e et e e et e e et e e e e e e e e e e e et e araaraaan 33
saml-core-2.0-0s 15 March 2005

Copyright © OASIS Open 2005. All Rights Reserved. Page 3 of 86

110
111

112

113

114
115
116
17
118
119

120

121
122
123
124
125
126
127
128
129

130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

158

159
160
161
162

2.7 4.3 ElemMent KEVIAENCE........cou e et e et e e e e et e e e e e e e raeeeees 34

3 SAIML PrOTOCOIS.ceeeiitiiiee et iee ettt e e e ettt e e e ettt e e e sttt e e e e s bt e e e e e antaeeeeasteeeeeabeeeeeeanbeeeeesanteeeeeeanneeeeeanns 35
3.1 Schema Header and Namespace Declarations..............ooiueieiiiiiiiiiiiiiee e 35
I S = To [1= TS] (3= T Lo I =Y o o] g T R 36

3.2.1 Complex Type RequestADSIraCtTYPe.coii i 36
3.2.2 Complex Type StatuSRESPONSETYPE.uuiiiiiieeeii ettt e e e 38
3.2.2.1 Element SStAtUS™....coiiii i a e e e e e e raaaeeaeaaans 39
3.2.2.2 Element <STatUSCOAE>.........oiiiiiiiiiie ittt 39
3.2.2.3 Element <StatuUSMESSAgE™.......cooi it 42
3.2.2.4 Element <StatusDetail™.........coooiiiiiiiii e A2

3.3 Assertion Query and Request ProtoCol..........ccoouiiiiioiiiiiiiic e A2
3.3.1 Element <ASsertionIDREQUEST>.........coooiiiiii e 42
TR T O T 1 SRR 42
3.3.2.1 Element <SUDJECIQUEIY........oiiiiiiiiie ettt e e e e e e ennaeeas 42
3.3.2.2 Element SAUtNQUETYS......c..ueiiiie ettt st e e st e e e e e e e enees 43
3.3.2.2.1 Element <RequestedAUthNCONTEXE>...........cooiiiiiiiiiiiee e 44

3.3.2.3 Element <AHMDULEQUETY>.........eieie ettt e e neeeenees 45
3.3.2.4 Element <AUthZDeCISIONQUETYS..........coiiiiiiiiieeiiiiie e ettt ee e st ee e e et eeesteeeeeesbaeeeeaaneeeeeeanns 46
3.3.3 ElemMent KRESPONSE™........uuuiiiiiiiiiiiiieereseae s e e e s e e e e e e e e e e eaeaeaaaeaeteeeeeteeeeeeeeeeeeeeseesessssssnsnsnnnnnnnnnnnd 46
3.3.4 Processing RUIES.ueiiiiiiiiii et eneeeeeee e e e e e snnnnneeeeeeee e e T
3.4 Authentication Request ProtocCol.............iiiiiiiiiiiiiiiei e AT
3.4.1 Element SAUTNNREQUESTS........oooiii e e e e e e e e e e e e e e e e sanrnreees 48
3.4.1.1 Element SNamMEIDPOLICY>........cooiiiieii e e 50
3.4.1.2 Element SSCOPINGcuuiiiie et e et e e e e e e e e e e e e e e e st ae e e e e e e e s s aneannraaeeeeaens 51
3.4.1.3 ElemeENnt KIDPLISTcooiii ittt e e e e e e e e e e e e e araaaaaeae s 52
3.4.1.3.1 Element KIDPERNIIY>......ooeiiiieiei s s s e s et e e e e e e e e e e e e e e aeaeaaaaaeaaaeeaeeeeeeeeeeeeeeeeeee 52

3.4.1.4 ProCeSSING RUIES........ooiiiiie ittt et e e e e e e e e et e e e e e e e e e s s nsareaeeaaaens 53

It BT o 04 /[T T TSP PUURRP 54
3.4.1.5.1 Proxying ProcesSiNg RUIES..........ooeiiiiiiiiiiiiii s enea e e e e e 54

3.5 Artifact ReSOIUtION PrOtOCOL........co et e e e e e e e e e e e e e e e e eennnes 55
3.5.1 Element SAMtfaCtRESOIVES...........uee et e e e e e e e e e e e eeaaans 56
3.5.2 Element <AMifaCtRESPONSE™.......c.coo i e e e e 56
3.5.3 ProCeSSING RUIES.........ueeiieiie ettt ettt e e et e e e e en e e e e e nbe e e e e enneeas 56
3.6 Name Identifier Management ProtOCOL...........oooiiiiiiiiiiii e 57
3.6.1 Element <ManageNamelDReqUESE>..........o e 57
3.6.2 Element <ManageNamelDRESPONSE™.........cciiiiiiiiiiiiiiee et e e e e snreeeeeend 58
3.6.3 ProCeSSING RUIES........ ettt e e et e e e et e e e e nbe e e e e enneeas 58
3.7 SiNGIE LOGOUL PrOTOCOL.eiiiiiiiiiiie sttt et e sttt e e st e e s snba e e e e snsaeeeesnnsaeeeesnneeeas 59
3.7.1 Element <LOGOULREQUEST> ...t e e e e e e e e eaaaeee] 60
3.7.2 Element <LOGOULRESPONSES.........ciiiiiiiiii ittt ettt e e e e e s enere e e e anneeee s 60
3.7.3 ProCeSSING RUIES.......uiiiii ittt e e e e e et e e e e aneeas 61
3.7.3.1 Session Participant RUIES...........coiiiiiii e e 61
3.7.3.2 Session AUthority RUIES........coooiiiiiii e 62

3.8 Name Identifier Mapping ProfOCOL..........coiiiiiiiiiiiiie ettt e e e e s snneeees 63
3.8.1 Element <NamelDMappingRequest>..............ccooiiiiiii 63
3.8.2 Element <NamelDMappingRESPONSES..........uuiiiiiiiiiii ettt 64
3.8.3 ProCeSSING RUIES........neiiiiiiitiie ettt e et e e et e e e eaneeas 64

Y Y |1 =3 To o1 Vo OO PPRRRR 65

4.1 SAML SpecCification SEt VEISION. ... i e e e e e e e e e e e e e an 65
o I S Yot o 1Y 0 F= AV Y 3 oY o PRIt 65
4.1.2 SAML ASSEITION VEISION.....ccciiiiiiiitieiee ettt e e e e e e et et e e e e e e e et e e e e e aeeeseaanbssaeeeeaaeeeas 65
g IR IS AN | I o] CoTero] Y =Y =T o S 66

o I TR I =T [0 1= A VA= = o o TN 66
saml-core-2.0-0s 15 March 2005

Copyright © OASIS Open 2005. All Rights Reserved. Page 4 of 86

163
164

165
166
167

168
169
170

171

172
173
174
175
176
177

178
179
180
181

182

183
184

185

186
187

188
189

190
191
192
193
194

195

196
197
198
199

200
201
202
203
204
205
206
207
208

209
210
21
212
213

4.1.3.2 RESPONSE VEISION. ...ttt e e e et e e e e e e e e e e naneeeeeeaeeeseeaennnnnneeeaeaeeeeaaanned 66

4.1.3.3 Permissible Version Combinations..........cooooiiiiiiiii i e 67

4.2 SAML NamMESPACE VEISION......cciiiiiiiiiieeee e e et ettt e e e e e e e e et eeeeaeeessassteseeeeaaaessssasnsaeseeeaaaeeeaanns 67
g B Tl a 1Y o g =T Yo 11 (o o 67

5 SAML and XML Signature Syntax and ProCeSSING........coouuiiiiiiiiiiaiiiiiee et 68
5.1 SIGNING ASSEITIONS. ...t e et e et e e e e e et te et e e e e e e e e e aee e e e e e aae e e e e e nneneeeeeeaeeeeaaannnreneeeaaaeeaean 68
5.2 ReqQUESH/RESPONSE SIGNING.uuiiiiiiiiie it e et e e e e e e e e e e e e e e e st b aeeeeaaeeeseanansreseeeas 68
5.3 Signature INNEMHANCE.uuiiiiiiec e e e e e re e e e e e e s e s eanrnrreeeaaee e d 68
5.4 XML Signature Profile....... oottt e e eane e e 69
5.4.1 Signing Formats and AlGOrthMS...........coiiiiiiiiiiiee e a e e e e 69
B2 REIEIEBNCES. ... oo e aaaaaaaas 69
5.4.3 Canonicalization MELNOM.oooiiiiiiiiii eeeeeeeererereeeeeeeees 69
LR A I =T a1 o4 0 TR 69
LI I8 =Y) o USRS SRR 4 O

Lo I = e= T] o] [TSP 4 0|

6 SAML and XML Encryption Syntax and ProCeSSINgG.........ccouiiuiiiiiiiiiee i e e e 73
6.1 General CoNSIAEIAtIONS...........coooiiiiiieeee e e e e e e e e e e e e e e e eeeaeaeaaaees 73
6.2 Combining Signatures and ENCryption..............oooiiiiiiiiiiiiiece e 73
7 SAML EXIENSIDIIILY.....ceeiieieiee ettt e st e et e e e ann e s 74
7.1 SChemMa EXIENSION......uuuiieeeeeie ettt ans 74
7.1.1 Assertion Schema EXtENSION..........coooooiiiiii e T
7.1.2 Protocol SChema EXIENSION..........ovviiiiiiiiii et ee e e e e e e eeeeeeereeeeeaanes 74
7.2 Schema Wildcard EXtENSION POINES...........cuuuiiiiiiiiiiiiitccce e ee e e ie e e e e e e e e e e e e e e eeeeaeaeaeaeeeeeeeeeeeeeeeeeeees 75
7.2.1 Assertion EXtENSION POINES.......ccoiiiieiiie et e e e e e e e e e e e e eeaeees 75
7.2.2 Protocol EXTENSION POINTS........ooouiiiiieeeeee ettt e e e e e e e e e et e e e e e e eenaaans 75
7.3 1dENtfiEr EXEENSION.......ciiieeeeieeeeeeee et eeeeeeaeaeeaeeeeeeeeeeeeeeeeeeeeesesessssserernres 75
8 SAML-DEfINEA IAENTITIEIS.ttt e e e e e et e e e e e e e eeaaae e e e e s eeeaaaneeeeseensnen 76
8.1 Action Namespace IdeNtifiers.........coooi e e e e e e 76
8.1.1 Read/Write/EXecUte/Delete/CoONtrOl...........coouuueiiiieeeeeee et e e 76
8.1.2 Read/Write/Execute/Delete/Control with Negation..............ccccvviiiiiiei e, 76
I IR N 1Y 7 1= Y= o F U 7o T TSR 4
8.1.4 UNIX File PermiSSIONS.........uuuiiiiiiiiiiiii ittt e et s e e e e eevnaae s e e e seesnnnnnseessessnsnnneensend T
8.2 Attribute Name Format Identifiers............ooooiiiiiiiii e 77
8.2.1 UNSPECIIEA. ...ttt e e ettt e e s st e e e s et b e e e e aaate e e e e abaeeeeen 77
8.2.2 URI REIBIENCE. ... oottt et e ettt e e e e e e et tee e e e e e eee e e e e e e eeetanaeeeeeennranns 78
TR T = 7= 1= [78
8.3 Name Identifier FOrmat IdeNtfiErS...........uvviiiiiiiiiiiccee et e e e e e e e e e e e e e e e e eeeeeeeees 78
8.3.1 UNSPECIFIEA. ...t e et e e et e e e e et e e e e arnbe e e e e anaeeeeea 78
TR A =t g T T Ao (o | =T 78
8.3.3 X.509 SUDJECE NAME.......oeiiiiiiiii et et nnee e e] O
8.3.4 Windows Domain Qualified Name...........cccoooiiiiiiiieeeeeeeeeeeree e L O
8.3.5 Kerberos PrinCipal Name.........ccooiiiiiiiiiiiiiee ettt e snnee e s nnnee e d O
8.3.6 ENtity IAENEFIEI ... 79
8.3.7 PerSiSteNt IABNTTIEIottt e e e e e e e e e e e e e eaaa e e e e eeeaaes 79
TR S I = Ta T =T L (o [T 0 (1= 80
R A OTo 11T a1 (o [T o (=T RPNt 80
o Tt U] 1T o Yo 1Yo O SEERSSSOY 80
R N @] o) =11 0 1= Yo [PRRRRRRRY 80
ST B T = o U 80

o N N 03T o] o3 | SO RRRO 81

e I q oo) SRR 81
saml-core-2.0-0s 15 March 2005

Copyright © OASIS Open 2005. All Rights Reserved. Page 5 of 86

214
215

216
217
218
219

220
221

11
12

8.4.6 Unavailable............oooiiiiiiiiie e
8.4.7 Inapplicable..........coccuiiiiiiii

O REFEIENCES......eeeeieeeeeeee e

9.1 Normative References
9.2 Non-Normative References
Appendix A. Acknowledgments

saml-core-2.0-0s
Copyright © OASIS Open 2005. All Rights Reserved.

AppendixX B. NOICES. ...

.. 82

15 March 2005
Page 6 of 86

222

223
224
225
226
227

228
229
230
231
232
233

234
235
236
237

238

239

240
241
242

243

244
245

246

247
248
249
250
251

252
253
254

13
14

1 Introduction

The Security Assertion Markup Language (SAML) defines the syntax and processing semantics of
assertions made about a subject by a system entity. In the course of making, or relying upon such
assertions, SAML system entities may use other protocols to communicate either regarding an assertion
itself, or the subject of an assertion. This specification defines both the structure of SAML assertions, and
an associated set of protocols, in addition to the processing rules involved in managing a SAML system.

SAML assertions and protocol messages are encoded in XML [XML] and use XML namespaces
[XMLNS]. They are typically embedded in other structures for transport, such as HTTP POST requests or
XML-encoded SOAP messages. The SAML bindings specification [SAMLBInd] provides frameworks for
the embedding and transport of SAML protocol messages. The SAML profiles specification [SAMLProf]
provides a baseline set of profiles for the use of SAML assertions and protocols to accomplish specific
use cases or achieve interoperability when using SAML features.

For additional explanation of SAML terms and concepts, refer to the SAML technical overview
[SAMLTechOvw] and the SAML glossary [SAMLGIoss] . Files containing just the SAML assertion schema
[SAML-XSD] and protocol schema [SAMLP-XSD] are also available. The SAML conformance document
[SAMLConform] lists all of the specifications that comprise SAML V2.0.

The following sections describe how to understand the rest of this specification.

1.1 Notation

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as
described in IETF RFC 2119 [RFC 2119].

Listings of SAML schemas appear like this.

Example code listings appear like this.

Note: Notes like this are sometimes used to highlight non-normative commentary.

This specification uses schema documents conforming to W3C XML Schema [Schema1] and normative
text to describe the syntax and semantics of XML-encoded SAML assertions and protocol messages. In
cases of disagreement between the SAML schema documents and schema listings in this specification,
the schema documents take precedence. Note that in some cases the normative text of this specification
imposes constraints beyond those indicated by the schema documents.

Conventional XML namespace prefixes are used throughout the listings in this specification to stand for
their respective namespaces (see Section 1.2) as follows, whether or not a namespace declaration is
present in the example:

Prefix XML Namespace Comments

saml: urn:oasis:names:tc:SAML:2.0:assertion This is the SAML V2.0 assertion namespace, defined in a
schema [SAML-XSD]. The prefix is generally elided in
mentions of SAML assertion-related elements in text.

samlp: urn:oasis:names:tc:SAML:2.0:protocol This is the SAML V2.0 protocol namespace, defined in a
schema [SAMLP-XSD]. The prefix is generally elided in
mentions of XML protocol-related elements in text.

ds: http://www.w3.0rg/2000/09/xmIdsig# This namespace is defined in the XML Signature Syntax and
Processing specification [XMLSig] and its governing schema
[XMLSig-XSD].

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 7 of 86

255
256

257
258
259
260

261
262

263

264
265

266
267

268

269
270

271

272

273
274

275

276
277
278
279

280
281
282
283

15
16

Prefix XML Namespace Comments

Xenc: http://www.w3.0rg/2001/04/xmlenc# This namespace is defined in the XML Encryption Syntax
and Processing specification [XMLEnc] and its governing
schema [XMLEnc-XSD].

Xs: http://www.w3.0rg/2001/XMLSchema This namespace is defined in the W3C XML Schema
specification [Schema1]. In schema listings, this is the
default namespace and no prefix is shown. For clarity, the
prefix is generally shown in specification text when XML
Schema-related constructs are mentioned.

xsi: http://www.w3.0rg/2001/XMLSchema- | This namespace is defined in the W3C XML Schema
instance specification [Schema1] for schema-related markup that
appears in XML instances.

This specification uses the following typographical conventions in text: <SAMLElement>,
<ns:ForeignElement>, XMLAttribute, Datatype, OtherKeyword.

1.2 Schema Organization and Namespaces

The SAML assertion structures are defined in a schema [SAML-XSD] associated with the following XML
namespace:

urn:oasis:names:tc:SAML:2.0:assertion

The SAML request-response protocol structures are defined in a schema [SAMLP-XSD] associated with
the following XML namespace:

urn:oasis:names:tc:SAML:2.0:protocol

The assertion schema is imported into the protocol schema. See Section 4.2 for information on SAML
namespace versioning.

Also imported into both schemas is the schema for XML Signature [XMLSig], which is associated with the
following XML namespace:

http://www.w3.0rg/2000/09/xmldsig#

Finally, the schema for XML Encryption [XMLEnCc] is imported into the assertion schema and is associated
with the following XML namespace:

http://www.w3.0rg/2001/04/xmlenc#

1.3 Common Data Types

The following sections define how to use and interpret common data types that appear throughout the
SAML schemas.

1.3.1 String Values

All SAML string values have the type xs:string, which is built in to the W3C XML Schema Datatypes
specification [Schema?2]. Unless otherwise noted in this specification or particular profiles, all strings in
SAML messages MUST consist of at least one non-whitespace character (whitespace is defined in the
XML Recommendation [XML] Section 2.3).

Unless otherwise noted in this specification or particular profiles, all elements in SAML documents that
have the XML Schema xs:string type, or a type derived from that, MUST be compared using an exact
binary comparison. In particular, SAML implementations and deployments MUST NOT depend on case-
insensitive string comparisons, normalization or trimming of whitespace, or conversion of locale-specific

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 8 of 86

284
285

286
287
288
289
290

291
292
293
294
295
296

297
298
299

300

301
302

303
304
305

306
307
308
309

310

311
312

313
314

315

316
317
318

319
320

321
322

323
324
325
326

17
18

formats such as numbers or currency. This requirement is intended to conform to the W3C working-draft
Requirements for String Identity, Matching, and String Indexing [W3C-CHAR].

If an implementation is comparing values that are represented using different character encodings, the
implementation MUST use a comparison method that returns the same result as converting both values to
the Unicode character encoding, Normalization Form C [UNICODE-C], and then performing an exact
binary comparison. This requirement is intended to conform to the W3C Character Model for the World
Wide Web [W3C-CharMod], and in particular the rules for Unicode-normalized Text.

Applications that compare data received in SAML documents to data from external sources MUST take
into account the normalization rules specified for XML. Text contained within elements is normalized so
that line endings are represented using linefeed characters (ASCII code 10pecima), @s described in the XML
Recommendation [XML] Section 2.11. XML attribute values defined as strings (or types derived from
strings) are normalized as described in [XML] Section 3.3.3. All whitespace characters are replaced with
blanks (ASCII code 32pecimal).

The SAML specification does not define collation or sorting order for XML attribute values or element
content. SAML implementations MUST NOT depend on specific sorting orders for values, because these
can differ depending on the locale settings of the hosts involved.

1.3.2 URI Values

All SAML URI reference values have the type xs:anyURI, which is built in to the W3C XML Schema
Datatypes specification [SchemaZ2].

Unless otherwise indicated in this specification, all URI reference values used within SAML-defined
elements or attributes MUST consist of at least one non-whitespace character, and are REQUIRED to be
absolute [RFC 2396].

Note that the SAML specification makes extensive use of URI references as identifiers, such as status
codes, format types, attribute and system entity names, etc. In such cases, it is essential that the values
be both unique and consistent, such that the same URI is never used at different times to represent
different underlying information.

1.3.3 Time Values

All SAML time values have the type xs:dateTime, which is built in to the W3C XML Schema Datatypes
specification [Schema?2], and MUST be expressed in UTC form, with no time zone component.

SAML system entities SHOULD NOT rely on time resolution finer than milliseconds. Implementations
MUST NOT generate time instants that specify leap seconds.

1.3.4 ID and ID Reference Values

The xs:ID simple type is used to declare SAML identifiers for assertions, requests, and responses. Values
declared to be of type xs:ID in this specification MUST satisfy the following properties in addition to those
imposed by the definition of the xs:ID type itself:

» Any party that assigns an identifier MUST ensure that there is negligible probability that that party or
any other party will accidentally assign the same identifier to a different data object.

* Where a data object declares that it has a particular identifier, there MUST be exactly one such
declaration.

The mechanism by which a SAML system entity ensures that the identifier is unique is left to the
implementation. In the case that a random or pseudorandom technique is employed, the probability of two
randomly chosen identifiers being identical MUST be less than or equal to 2'?® and SHOULD be less than
or equal to 2%, This requirement MAY be met by encoding a randomly chosen value between 128 and

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 9 of 86

327 160 bits in length. The encoding must conform to the rules defining the xs:ID datatype. A pseudorandom
328 generator MUST be seeded with unique material in order to ensure the desired uniqueness properties
329 between different systems.

330 The xs:NCName simple type is used in SAML to reference identifiers of type xs:ID since xs:IDREF

331 cannot be used for this purpose. In SAML, the element referred to by a SAML identifier reference might
332 actually be defined in a document separate from that in which the identifier reference is used. Using

333 xs:IDREF would violate the requirement that its value match the value of an ID attribute on some element
334 in the same XML document.

335 Note: It is anticipated that the World Wide Web Consortium will standardize a global
336 attribute for holding ID-typed values, called xm1 : id [XML-ID]. The Security Services
337 Technical Committee plans to move away from SAML-specific ID attributes to this style of
338 assigning unique identifiers as soon as practicable after the xm1 : 1 d attribute is
339 standardized.
19 saml-core-2.0-0s 15 March 2005

20 Copyright © OASIS Open 2005. All Rights Reserved. Page 10 of 86

340

341
342
343
344
345

346
347
348
349
350
351

352
353
354

355

356

357
358

359
360
361

362
363
364

365
366

367

368
369

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

21
22

2 SAML Assertions

An assertion is a package of information that supplies zero or more statements made by a SAML
authority; SAML authorities are sometimes referred to as asserting parties in discussions of assertion
generation and exchange, and system entities that use received assertions are known as relying parties.
(Note that these terms are different from requester and responder, which are reserved for discussions of
SAML protocol message exchange.)

SAML assertions are usually made about a subject, represented by the <subject> element. However,
the <subject> element is optional, and other specifications and profiles may utilize the SAML assertion
structure to make similar statements without specifying a subject, or possibly specifying the subject in an
alternate way. Typically there are a number of service providers that can make use of assertions about a
subject in order to control access and provide customized service, and accordingly they become the
relying parties of an asserting party called an identity provider.

This SAML specification defines three different kinds of assertion statements that can be created by a
SAML authority. All SAML-defined statements are associated with a subject. The three kinds of statement
defined in this specification are:

» Authentication: The assertion subject was authenticated by a particular means at a particular time.
» Attribute: The assertion subject is associated with the supplied attributes.

» Authorization Decision: A request to allow the assertion subject to access the specified resource
has been granted or denied.

The outer structure of an assertion is generic, providing information that is common to all of the
statements within it. Within an assertion, a series of inner elements describe the authentication, attribute,
authorization decision, or user-defined statements containing the specifics.

As described in Section 7, extensions are permitted by the SAML assertion schema, allowing user-defined
extensions to assertions and statements, as well as allowing the definition of new kinds of assertions and
statements.

The SAML technical overview [SAMLTechOvw] and glossary [SAMLGIoss] provide more detailed
explanation of SAML terms and concepts.

2.1 Schema Header and Namespace Declarations

The following schema fragment defines the XML namespaces and other header information for the
assertion schema:

<schema targetNamespace="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#"
elementFormDefault="unqualified"
attributeFormDefault="unqualified"
blockDefault="substitution"
version="2.0">
<import namespace="http://www.w3.0rg/2000/09/xmldsig#"
schemalLocation="http://www.w3.0rg/TR/2002/REC-xmldsig-core-
20020212 /xmldsig-core-schema.xsd" />
<import namespace="http://www.w3.0rg/2001/04/xmlenc#"
schemaLocation="http://www.w3.0rg/TR/2002/REC-xmlenc-core-
20021210/xenc-schema.xsd" />
<annotation>
<documentation>
Document identifier: saml-schema-assertion-2.0

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 11 of 86

388
389
390
391
392
393
394
395
396
397
398
399

400

401
402

403
404
405
406
407
408
409

410
411
412
413
414
415

416
417

418
419

420

421
422
423

424
425
426
427

428
429
430

431
432

23
24

Location: http://docs.ocasis-open.org/security/saml/v2.0/
Revision history:
V1.0 (November, 2002):
Initial Standard Schema.
V1.1 (September, 2003):
Updates within the same V1.0 namespace.
V2.0 (March, 2005):
New assertion schema for SAML V2.0 namespace.
</documentation>
</annotation>

</schema>

2.2 Name ldentifiers

The following sections define the SAML constructs that contain descriptive identifiers for subjects and the
issuers of assertions and protocol messages.

There are a number of circumstances in SAML in which it is useful for two system entities to communicate
regarding a third party; for example, the SAML authentication request protocol enables third-party
authentication of a subject. Thus, it is useful to establish a means by which parties may be associated
with identifiers that are meaningful to each of the parties. In some cases, it will be necessary to limit the
scope within which an identifier is used to a small set of system entities (to preserve the privacy of a
subject, for example). Similar identifiers may also be used to refer to the issuer of a SAML protocol
message or assertion.

It is possible that two or more system entities may use the same name identifier value when referring to
different identities. Thus, each entity may have a different understanding of that same name. SAML
provides name qualifiers to disambiguate a name identifier by effectively placing it in a federated
namespace related to the name qualifiers. SAML V2.0 allows an identifier to be qualified in terms of both
an asserting party and a particular relying party or affiliation, allowing identifiers to exhibit pair-wise
semantics, when required.

Name identifiers may also be encrypted to further improve their privacy-preserving characteristics,
particularly in cases where the identifier may be transmitted via an intermediary.

Note: To avoid use of relatively advanced XML schema constructs (among other
reasons), the various types of identifier elements do not share a common type hierarchy.

2.2.1 Element <BaselD>

The <BaseID> element is an extension point that allows applications to add new kinds of identifiers. Its
BaselDAbstractType complex type is abstract and is thus usable only as the base of a derived type. It
includes the following attributes for use by extended identifier representations:

NanmeQual i fi er [Optional]
The security or administrative domain that qualifies the identifier. This attribute provides a means
to federate identifiers from disparate user stores without collision.

SPNameQualifier [Optional]

Further qualifies an identifier with the name of a service provider or affiliation of providers. This
attribute provides an additional means to federate identifiers on the basis of the relying party or
parties.

The NameQualifier and SPNameQualifier attributes SHOULD be omitted unless the identifier's type
definition explicitly defines their use and semantics.

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 12 of 86

433
434

435
436
437
438
439
440
441
442

443

444
445
446
447

448

449
450

451

452
453
454

455

456
457
458
459
460
461

462
463
464
465
466

467

468
469
470
471
472

473
474
475

476

477
478

25
26

The following schema fragment defines the <Basel D> element and its BaselDAbstractType complex
type:

<attributeGroup name="IDNameQualifiers">
<attribute name="NameQualifier" type="string" use="optional"/>
<attribute name="SPNameQualifier" type="string" use="optional"/>
</attributeGroup>
<element name="BaseID" type="saml:BaseIDAbstractType"/>
<complexType name="BaseIDAbstractType" abstract="true">
<attributeGroup ref="saml:IDNameQualifiers"/>
</complexType>

2.2.2 Complex Type NamelDType

The NamelDType complex type is used when an element serves to represent an entity by a string-valued
name. It is a more restricted form of identifier than the <BaseID> element and is the type underlying both
the <NameID> and <Issuer> elements. In addition to the string content containing the actual identifier, it
provides the following optional attributes:

NanmeQual i fi er [Optional]

The security or administrative domain that qualifies the name. This attribute provides a means to
federate names from disparate user stores without collision.

SPNameQualifier [Optional]

Further qualifies a name with the name of a service provider or affiliation of providers. This
attribute provides an additional means to federate names on the basis of the relying party or
parties.

Format [Optional]

A URI reference representing the classification of string-based identifier information. See Section
8.3 for the SAML-defined URI references that MAY be used as the value of the For nat attribute
and their associated descriptions and processing rules. Unless otherwise specified by an element
based on this type, if N0 Format value is provided, then the value
urn:oasis:names:tc:SAML:1.0:nameid-format:unspecified (see Section 8.3.1)isin
effect.

When a Format value other than one specified in Section 8.3 is used, the content of an element
of this type is to be interpreted according to the definition of that format as provided outside of this
specification. If not otherwise indicated by the definition of the format, issues of anonymity,
pseudonymity, and the persistence of the identifier with respect to the asserting and relying parties
are implementation-specific.

SPProvidedID [Optional]

A name identifier established by a service provider or affiliation of providers for the entity, if
different from the primary name identifier given in the content of the element. This attribute
provides a means of integrating the use of SAML with existing identifiers already in use by a
service provider. For example, an existing identifier can be "attached" to the entity using the Name
Identifier Management protocol defined in Section 3.6.

Additional rules for the content of (or the omission of) these attributes can be defined by elements that
make use of this type, and by specific Format definitions. The NameQualifier and SPNameQualifier
attributes SHOULD be omitted unless the element or format explicitly defines their use and semantics.

The following schema fragment defines the NamelDType complex type:

<complexType name="NameIDType">
<simpleContent>

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 13 of 86

479
480
481
482
483
484
485

486

487
488
489

490
491

492

493
494
495

496

497
498
499
500
501

502

503
504
505
506

507
508
509

510
511
512

513
514

515
516
517
518
519
520
521

27
28

<extension base="string">
<attributeGroup ref="saml:IDNameQualifiers"/>
<attribute name="Format" type="anyURI" use="optional"/>
<attribute name="SPProvidedID" type="string" use="optional"/>
</extension>
</simpleContent>
</complexType>

2.2.3 Element <NamelD>

The <Namel D> element is of type NamelDType (see Section 2.2.2), and is used in various SAML
assertion constructs such as the <Subject> and <SubjectConfirmation> elements, and in various
protocol messages (see Section 3).

The following schema fragment defines the <NameID> element:

<element name="NameID" type="saml:NameIDType"/>

2.2.4 Element <EncryptedID>

The <EncryptedID> element is of type EncryptedElementType, and carries the content of an
unencrypted identifier element in encrypted fashion, as defined by the XML Encryption Syntax and
Processing specification [XMLEnNc]. The <EncryptedID> element contains the following elements:

<xenc:EncryptedData> [Required]

The encrypted content and associated encryption details, as defined by the XML Encryption
Syntax and Processing specification [XMLEnc]. The Type attribute SHOULD be present and, if
present, MUST contain a value of http://www.w3.0rg/2001/04/xmlenc#Element. The
encrypted content MUST contain an element that has a type of NamelDType or AssertionType,
or a type that is derived from BaselDAbstractType, NamelDType, or AssertionType.

<xenc:EncryptedKey> [Zero or More]

Wrapped decryption keys, as defined by [XMLEnc]. Each wrapped key SHOULD include a
Recipient attribute that specifies the entity for whom the key has been encrypted. The value of
the Recipient attribute SHOULD be the URI identifier of a SAML system entity, as defined by
Section 8.3.6.

Encrypted identifiers are intended as a privacy protection mechanism when the plain-text value passes
through an intermediary. As such, the ciphertext MUST be unique to any given encryption operation. For
more on such issues, see [XMLEnc] Section 6.3.

Note that an entire assertion can be encrypted into this element and used as an identifier. In such a case,
the <subject> element of the encrypted assertion supplies the "identifier" of the subject of the enclosing
assertion. Note also that if the identifying assertion is invalid, then so is the enclosing assertion.

The following schema fragment defines the <EncryptedID> element and its EncryptedElementType
complex type:

<complexType name="EncryptedElementType">
<sequence>
<element ref="xenc:EncryptedData"/>
<element ref="xenc:EncryptedKey" minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>
<element name="EncryptedID" type="saml:EncryptedElementType"/>

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 14 of 86

522

523
524
525

526
527

528
529

530

531
532

533

534
535
536
537

538
539

540

541
542
543
544

545
546

547

548
549

550

551
552

553

554
555

556
557

29
30

2.2.5 Element <Issuer>

The <Issuer> element, with complex type NamelDType, provides information about the issuer of a
SAML assertion or protocol message. The element requires the use of a string to carry the issuer's name,
but permits various pieces of descriptive data (see Section 2.2.2).

Overriding the usual rule for this element's type, if no Format value is provided with this element, then the
value urn:ocasis:names:tc:SAML:2.0:nameid-format:entity is in effect (see Section 8.3.6).

The following schema fragment defines the <Issuer> element:

<element name="Issuer" type="saml:NameIDType"/>

2.3 Assertions

The following sections define the SAML constructs that either contain assertion information or provide a
means to refer to an existing assertion.

2.3.1 Element <AssertionlDRef>

The <AssertionIDRef> element makes a reference to a SAML assertion by its unique identifier. The
specific authority who issued the assertion or from whom the assertion can be obtained is not specified as
part of the reference. See Section 3.3.1 for a protocol element that uses such a reference to ask for the
corresponding assertion.

The following schema fragment defines the <AssertionIDRef> element:

<element name="AssertionIDRef" type="NCName"/>

2.3.2 Element <AssertionURIRef>

The <AssertionURIRef> element makes a reference to a SAML assertion by URI reference. The URI
reference MAY be used to retrieve the corresponding assertion in a manner specific to the URI reference.
See Section 3.7 of the Bindings specification [SAMLBInd] for information on how this element is used in a
protocol binding to accomplish this.

The following schema fragment defines the <AssertionURIRef> element:

<element name="AssertionURIRef" type="anyURI"/>

2.3.3 Element <Assertion>

The <Assertion> element is of the AssertionType complex type. This type specifies the basic
information that is common to all assertions, including the following elements and attributes:
Version [Required]

The version of this assertion. The identifier for the version of SAML defined in this specification is
"2.0". SAML versioning is discussed in Section 4.

1D [Required]

The identifier for this assertion. It is of type xs:ID, and MUST follow the requirements specified in
Section 1.3.4 for identifier uniqueness.

IssueInstant [Required]
The time instant of issue in UTC, as described in Section 1.3.3.

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 15 of 86

558
559
560

561
562
563
564
565
566
567
568

569

570
571

572

573
574

575
576

577
578

579
580

581
582

583
584

585
586
587

588
589
590
591

592
593
594
595
596

597
598
599
600
601

31
32

<Issuer> [Required]
The SAML authority that is making the claim(s) in the assertion. The issuer SHOULD be unambiguous
to the intended relying parties.

This specification defines no particular relationship between the entity represented by this element
and the signer of the assertion (if any). Any such requirements imposed by a relying party that
consumes the assertion or by specific profiles are application-specific.

<ds:Signature> [Optional]
An XML Signature that protects the integrity of and authenticates the issuer of the assertion, as
described below and in Section 5.

<Subject> [Optional]
The subject of the statement(s) in the assertion.

<Conditions> [Optional]

Conditions that MUST be evaluated when assessing the validity of and/or when using the assertion.
See Section 2.5 for additional information on how to evaluate conditions.

<Advice> [Optional]

Additional information related to the assertion that assists processing in certain situations but which
MAY be ignored by applications that do not understand the advice or do not wish to make use of it.

Zero or more of the following statement elements:
<Statement>

A statement of a type defined in an extension schema. An xsi : type attribute MUST be used to
indicate the actual statement type.

<AuthnStatement>

An authentication statement.

<AuthzDecisionStatement>

An authorization decision statement.

<AttributeStatement>
An attribute statement.

An assertion with no statements MUST contain a <Subject> element. Such an assertion identifies a
principal in a manner which can be referenced or confirmed using SAML methods, but asserts no further
information associated with that principal.

Otherwise <Subject>, if present, identifies the subject of all of the statements in the assertion. If
<Subject> is omitted, then the statements in the assertion apply to a subject or subjects identified in an
application- or profile-specific manner. SAML itself defines no such statements, and an assertion without a
subject has no defined meaning in this specification.

Depending on the requirements of particular protocols or profiles, the issuer of a SAML assertion may
often need to be authenticated, and integrity protection may often be required. Authentication and
message integrity MAY be provided by mechanisms provided by a protocol binding in use during the
delivery of an assertion (see [SAMLBInd]). The SAML assertion MAY be signed, which provides both
authentication of the issuer and integrity protection.

If such a signature is used, then the <ds:Signature> element MUST be present, and a relying party
MUST verify that the signature is valid (that is, that the assertion has not been tampered with) in
accordance with [XMLSig]. If it is invalid, then the relying party MUST NOT rely on the contents of the
assertion. If it is valid, then the relying party SHOULD evaluate the signature to determine the identity and
appropriateness of the issuer and may continue to process the assertion in accordance with this

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 16 of 86

602
603

604
605
606

607

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

627

628
629
630
631

632
633
634
635

636

637
638
639
640

641
642

643
644

645

646

33
34

specification and as it deems appropriate (for example, evaluating conditions, advice, following profile-
specific rules, and so on).

Note that whether signed or unsigned, the inclusion of multiple statements within a single assertion is
semantically equivalent to a set of assertions containing those statements individually (provided the
subject, conditions, etc. are also the same).

The following schema fragment defines the <Assertion> element and its AssertionType complex type:

<element name="Assertion" type="saml:AssertionType"/>
<complexType name="AssertionType">
<sequence>
<element ref="saml:Issuer"/>
<element ref="ds:Signature" minOccurs="0"/>
<element ref="saml:Subject" minOccurs="0"/>
<element ref="saml:Conditions" minOccurs="0"/>
<element ref="saml:Advice" minOccurs="0"/>
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="saml:Statement"/>
<element ref="saml:AuthnStatement"/>
<element ref="saml:AuthzDecisionStatement"/>
<element ref="saml:AttributeStatement"/>
</choice>
</sequence>
<attribute name="Version" type="string" use="required"/>
<attribute name="ID" type="ID" use="required"/>
<attribute name="IssueInstant" type="dateTime" use="required"/>
</complexType>

2.3.4 Element <EncryptedAssertion>

The <EncryptedAssertion> element represents an assertion in encrypted fashion, as defined by the
XML Encryption Syntax and Processing specification [XMLEnNc]. The <EncryptedAssertion> element
contains the following elements:

<xenc:EncryptedData> [Required]

The encrypted content and associated encryption details, as defined by the XML Encryption
Syntax and Processing specification [XMLEnc]. The Type attribute SHOULD be present and, if
present, MUST contain a value of http://www.w3.0rg/2001/04/xmlenc#Element. The
encrypted content MUST contain an element that has a type of or derived from AssertionType.

<xenc:EncryptedKey> [Zero or More]

Wrapped decryption keys, as defined by [XMLEnc]. Each wrapped key SHOULD include a
Recipient attribute that specifies the entity for whom the key has been encrypted. The value of
the Recipient attribute SHOULD be the URI identifier of a SAML system entity as defined by
Section 8.3.6.

Encrypted assertions are intended as a confidentiality protection mechanism when the plain-text value
passes through an intermediary.

The following schema fragment defines the <EncryptedAssertion> element:

<element name="EncryptedAssertion" type="saml:EncryptedElementType"/>

2.4 Subjects

This section defines the SAML constructs used to describe the subject of an assertion.

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 17 of 86

647

648
649
650

651
652

653

654
655
656

657
658
659
660
661

662
663

664

665

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

681

682
683
684

685

686
687
688
689

690
691

35
36

2.4.1 Element <Subject>

The optional <Subject> element specifies the principal that is the subject of all of the (zero or more)
statements in the assertion. It contains an identifier, a series of one or more subject confirmations, or
both:

<BaseID>, <NameID>, or <EncryptedID> [Optional]
Identifies the subject.

<SubjectConfirmation> [Zero or More]

Information that allows the subject to be confirmed. If more than one subject confirmation is provided,
then satisfying any one of them is sufficient to confirm the subject for the purpose of applying the
assertion.

A <subject> element can contain both an identifier and zero or more subject confirmations which a
relying party can verify when processing an assertion. If any one of the included subject confirmations are
verified, the relying party MAY treat the entity presenting the assertion as one that the asserting party has
associated with the principal identified in the name identifier and associated with the statements in the
assertion. This attesting entity and the actual subject may or may not be the same entity.

If there are no subject confirmations included, then any relationship between the presenter of the assertion
and the actual subject is unspecified.

A <Subject> element SHOULD NOT identify more than one principal.

The following schema fragment defines the <Subject> element and its SubjectType complex type:

<element name="Subject" type="saml:SubjectType"/>
<complexType name="SubjectType">
<choice>
<sequence>
<choice>
<element ref="saml:BaseID"/>
<element ref="saml:NameID"/>
<element ref="saml:EncryptedID"/>
</choice>
<element ref="saml:SubjectConfirmation" minOccurs="0"
maxOccurs="unbounded" />
</sequence>
<element ref="saml:SubjectConfirmation" maxOccurs="unbounded"/>
</choice>
</complexType>

2.4.1.1 Element <SubjectConfirmation>

The <SubjectConfirmation> element provides the means for a relying party to verify the
correspondence of the subject of the assertion with the party with whom the relying party is
communicating. It contains the following attributes and elements:

Method [Required]

A URI reference that identifies a protocol or mechanism to be used to confirm the subject. URI
references identifying SAML-defined confirmation methods are currently defined in the SAML profiles
specification [SAMLProf]. Additional methods MAY be added by defining new URIs and profiles or by
private agreement.

<BaseID>, <NameID>, or <EncryptedID> [Optional]
Identifies the entity expected to satisfy the enclosing subject confirmation requirements.

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 18 of 86

692

693
694
695
696
697

698
699

700
701
702
703
704
705
706
707
708
709
710
711

712

713
714
715
716
717
718

719

720
721

722

723
724

725

726
727
728

729

730
731
732

733

734
735
736
737
738
739

37
38

<SubjectConfirmationData> [Optional]

Additional confirmation information to be used by a specific confirmation method. For example, typical
content of this element might be a <ds:KeyInfo> element as defined in the XML Signature Syntax
and Processing specification [XMLSig], which identifies a cryptographic key (See also Section

2.4 .1.3). Particular confirmation methods MAY define a schema type to describe the elements,
attributes, or content that may appear in the <SubjectConfirmationData> element.

The following schema fragment defines the <SubjectConfirmation> element and its
SubjectConfirmationType complex type:

<element name="SubjectConfirmation" type="saml:SubjectConfirmationType"/>
<complexType name="SubjectConfirmationType">
<sequence>
<choice minOccurs="0">
<element ref="saml:BaseID"/>
<element ref="saml:NameID"/>
<element ref="saml:EncryptedID"/>

</choice>
<element ref="saml:SubjectConfirmationData" minOccurs="0"/>
</sequence>
<attribute name="Method" type="anyURI" use="required"/>
</complexType>

2.4.1.2 Element <SubjectConfirmationData>

The <SubjectConfirmationData> element has the SubjectConfirmationDataType complex type. It
specifies additional data that allows the subject to be confirmed or constrains the circumstances under
which the act of subject confirmation can take place. Subject confirmation takes place when a relying
party seeks to verify the relationship between an entity presenting the assertion (that is, the attesting
entity) and the subject of the assertion's claims. It contains the following optional attributes that can apply
to any method:

NotBefore [Optional]

A time instant before which the subject cannot be confirmed. The time value is encoded in UTC, as
described in Section 1.3.3.

NotOnOrAfter [Optional]

A time instant at which the subject can no longer be confirmed. The time value is encoded in UTC, as
described in Section 1.3.3.

Recipient [Optional]

A URI specifying the entity or location to which an attesting entity can present the assertion. For
example, this attribute might indicate that the assertion must be delivered to a particular network
endpoint in order to prevent an intermediary from redirecting it someplace else.

InResponseTo [Optional]

The 1D of a SAML protocol message in response to which an attesting entity can present the
assertion. For example, this attribute might be used to correlate the assertion to a SAML request that
resulted in its presentation.

Address [Optional]

The network address/location from which an attesting entity can present the assertion. For example,
this attribute might be used to bind the assertion to particular client addresses to prevent an attacker
from easily stealing and presenting the assertion from another location. IPv4 addresses SHOULD be
represented in the usual dotted-decimal format (e.g., "1.2.3.4"). IPv6 addresses SHOULD be
represented as defined by Section 2.2 of IETF RFC 3513 [RFC 3513] (e.g.,
"FEDC:BA98:7654:3210:FEDC:BA98:7654:3210").

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 19 of 86

740

4
742
743
744
745
746
747

748

749
750
751
752

753
754
755

756
757
758
759

760
761

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
77
778
779

780

781
782
783
784
785

786
787

39
40

Arbitrary attributes

This complex type uses an <xs:anyAttribute> extension point to allow arbitrary namespace-
qualified XML attributes to be added to <SubjectConfirmationData> constructs without the need
for an explicit schema extension. This allows additional fields to be added as needed to supply
additional confirmation-related information. SAML extensions MUST NOT add local (non-namespace-
qualified) XML attributes or XML attributes qualified by a SAML-defined namespace to the
SubjectConfirmationDataType complex type or a derivation of it; such attributes are reserved for
future maintenance and enhancement of SAML itself.

Arbitrary elements

This complex type uses an <xs : any> extension point to allow arbitrary XML elements to be added to
<SubjectConfirmationData> constructs without the need for an explicit schema extension. This
allows additional elements to be added as needed to supply additional confirmation-related
information.

Particular confirmation methods and profiles that make use of those methods MAY require the use of one
or more of the attributes defined within this complex type. For examples of how these attributes (and
subject confirmation in general) can be used, see the Profiles specification [SAMLProf].

Note that the time period specified by the optional NotBefore and NotOnOrAfter attributes, if present,
SHOULD fall within the overall assertion validity period as specified by the <Conditions> element's
NotBefore and NotOnOrAfter attributes. If both attributes are present, the value for NotBefore
MUST be less than (earlier than) the value for NotOnOrAfter.

The following schema fragment defines the <SubjectConfirmationData> element and its
SubjectConfirmationDataType complex type:

<element name="SubjectConfirmationData"
type="saml:SubjectConfirmationDataType"/>
<complexType name="SubjectConfirmationDataType" mixed="true">
<complexContent>
<restriction base="anyType">
<sequence>
<any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />
</sequence>
<attribute name="NotBefore" type="dateTime" use="optional"/>
<attribute name="NotOnOrAfter" type="dateTime" use="optional"/>
<attribute name="Recipient" type="anyURI" use="optional"/>
<attribute name="InResponseTo" type="NCName" use="optional"/>
<attribute name="Address" type="string" use="optional"/>
<anyAttribute namespace="##other" processContents="lax"/>
</restriction>
</complexContent>
</complexType>

2.4.1.3 Complex Type KeylnfoConfirmationDataType

The KeylInfoConfirmationDataType complex type constrains a <SubjectConfirmationData>
element to contain one or more <ds :KeyInfo> elements that identify cryptographic keys that are used in
some way to authenticate an attesting entity. The particular confirmation method MUST define the exact
mechanism by which the confirmation data can be used. The optional attributes defined by the
SubjectConfirmationDataType complex type MAY also appear.

This complex type, or a type derived from it, SHOULD be used by any confirmation method that defines its
confirmation data in terms of the <ds:KeyInfo> element.

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 20 of 86

788
789
790

791

792
793
794
795
796
797
798
799
800

801

802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817

818

819
820

821

822

823

824
825

826

827
828

829
830
831
832
833

41
42

Note that in accordance with [XMLSig], each <ds:KeyInfo> element MUST identify a single
cryptographic key. Multiple keys MAY be identified with separate <ds : KeyInfo> elements, such as when
a principal uses different keys to confirm itself to different relying parties.

The following schema fragment defines the KeylnfoConfirmationDataType complex type:

<complexType name="KeyInfoConfirmationDataType" mixed="false">
<complexContent>
<restriction base="saml:SubjectConfirmationDataType">
<sequence>
<element ref="ds:KeyInfo" maxOccurs="unbounded"/>
</sequence>
</restriction>
</complexContent>
</complexType>

2.4.1.4 Example of a Key-Confirmed <Subject>

To illustrate the way in which the various elements and types fit together, below is an example of a
<Subject> element containing a name identifier and a subject confirmation based on proof of
possession of a key. Note the use of the KeylnfoConfirmationDataType to identify the confirmation data
syntax as being a <ds :KeyInfo> element:
<Subject>
<NameID Format="urn:oasis:names:tc:SAML:1.1l:nameid-format:emailAddress">
scott@example.org
</NameID>
<SubjectConfirmation Method="urn:ocasis:names:tc:SAML:2.0:cm:holder-of-key">
<SubjectConfirmationData xsi:type="saml:KeyInfoConfirmationDataType">
<ds:KeyInfo>
<ds:KeyName>Scott's Key</ds:KeyName>
</ds:KeyInfo>
</SubjectConfirmationData>
</SubjectConfirmation>
</Subject>

2.5 Conditions

This section defines the SAML constructs that place constraints on the acceptable use of SAML
assertions.

2.5.1 Element <Conditions>

The <Conditions> element MAY contain the following elements and attributes:

NotBefore [Optional]

Specifies the earliest time instant at which the assertion is valid. The time value is encoded in UTC, as
described in Section 1.3.3.

NotOnOrAfter [Optional]

Specifies the time instant at which the assertion has expired. The time value is encoded in UTC, as
described in Section 1.3.3.

<Condition> [Any Number]
A condition of a type defined in an extension schema. An xsi : type attribute MUST be used to
indicate the actual condition type.

<AudienceRestriction> [Any Number]
Specifies that the assertion is addressed to a particular audience.

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 21 of 86

834

835
836
837

838

839
840
841
842

843
844
845
846

847
848

849
850
851
852
853
854
855
856
857
858
859

860

861
862

863
864
865

866
867

868
869

870
871

872
873
874

875
876

877
878

43
44

<OneTimeUse> [Optional]

Specifies that the assertion SHOULD be used immediately and MUST NOT be retained for future
use. Although the schema permits multiple occurrences, there MUST be at most one instance of
this element.

<ProxyRestriction> [Optional]

Specifies limitations that the asserting party imposes on relying parties that wish to subsequently act
as asserting parties themselves and issue assertions of their own on the basis of the information
contained in the original assertion. Although the schema permits multiple occurrences, there MUST
be at most one instance of this element.

Because the use of the xs1i : type attribute would permit an assertion to contain more than one instance
of a SAML-defined subtype of ConditionsType (such as OneTimeUseType), the schema does not
explicitly limit the number of times particular conditions may be included. A particular type of condition
MAY define limits on such use, as shown above.

The following schema fragment defines the <Conditions> element and its ConditionsType complex
type:

<element name="Conditions" type="saml:ConditionsType"/>
<complexType name="ConditionsType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="saml:Condition"/>
<element ref="saml:AudienceRestriction"/>
<element ref="saml:0neTimeUse" />
<element ref="saml:ProxyRestriction"/>
</choice>
<attribute name="NotBefore" type="dateTime" use="optional"/>
<attribute name="NotOnOrAfter" type="dateTime" use="optional"/>
</complexType>

2.5.1.1 General Processing Rules

If an assertion contains a <Conditions> element, then the validity of the assertion is dependent on the
sub-elements and attributes provided, using the following rules in the order shown below.

Note that an assertion that has condition validity status Valid may nonetheless be untrustworthy or invalid
for reasons such as not being well-formed or schema-valid, not being issued by a trustworthy SAML
authority, or not being authenticated by a trustworthy means.

Also note that some conditions may not directly impact the validity of the containing assertion (they always
evaluate to Valid), but may restrict the behavior of relying parties with respect to the use of the assertion.

1. If no sub-elements or attributes are supplied in the <Conditions> element, then the assertion is
considered to be Valid with respect to condition processing.

2. If any sub-element or attribute of the <Conditions> element is determined to be invalid, then the
assertion is considered to be Invalid.

3. If any sub-element or attribute of the <Conditions> element cannot be evaluated, or if an element is
encountered that is not understood, then the validity of the assertion cannot be determined and is
considered to be Indeterminate.

4. |If all sub-elements and attributes of the <Conditions> element are determined to be Valid, then the
assertion is considered to be Valid with respect to condition processing.

The first rule that applies terminates condition processing; thus a determination that an assertion is
Invalid takes precedence over that of Indeterminate.

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 22 of 86

879
880
881

882

883
884
885

886
887

888
889
890
891
892
893
894

895
896

897

898
899

900
901

902
903

904

905
906
907
908
909

910

911
912
913

914
915

916
917
918
919
920
921

45
46

An assertion that is determined to be Invalid or Indeterminate MUST be rejected by a relying party
(within whatever context or profile it was being processed), just as if the assertion were malformed or
otherwise unusable.

2.5.1.2 Attributes NotBefore and NotOnOrAfter

The NotBefore and NotOnOrAfter attributes specify time limits on the validity of the assertion within
the context of its profile(s) of use. They do not guarantee that the statements in the assertion will be
correct or accurate throughout the validity period.

The NotBefore attribute specifies the time instant at which the validity interval begins. The
NotOnOrAfter attribute specifies the time instant at which the validity interval has ended.

If the value for either NotBefore or NotOnOrAfter is omitted, then it is considered unspecified. If the
NotBefore attribute is unspecified (and if all other conditions that are supplied evaluate to Valid), then
the assertion is Valid with respect to conditions at any time before the time instant specified by the
NotOnOrAfter attribute. If the NotOnOrAfter attribute is unspecified (and if all other conditions that are
supplied evaluate to Valid), the assertion is Valid with respect to conditions from the time instant specified
by the NotBefore attribute with no expiry. If neither attribute is specified (and if any other conditions that
are supplied evaluate to Valid), the assertion is Valid with respect to conditions at any time.

If both attributes are present, the value for NotBefore MUST be less than (earlier than) the value for
NotOnOrAfter.

2.5.1.3 Element <Condition>

The <Condition> element serves as an extension point for new conditions. Its ConditionAbstractType
complex type is abstract and is thus usable only as the base of a derived type.

The following schema fragment defines the <Condition> element and its ConditionAbstractType
complex type:

<element name="Condition" type="saml:ConditionAbstractType"/>
<complexType name="ConditionAbstractType" abstract="true"/>

2.5.1.4 Elements <AudienceRestriction> and <Audience>

The <AudienceRestriction> element specifies that the assertion is addressed to one or more
specific audiences identified by <Audience> elements. Although a SAML relying party that is outside the
audiences specified is capable of drawing conclusions from an assertion, the SAML asserting party
explicitly makes no representation as to accuracy or trustworthiness to such a party. It contains the
following element:

<Audience>

A URI reference that identifies an intended audience. The URI reference MAY identify a document
that describes the terms and conditions of audience membership. It MAY also contain the unique
identifier URI from a SAML name identifier that describes a system entity (see Section 8.3.6).

The audience restriction condition evaluates to Valid if and only if the SAML relying party is a member of
one or more of the audiences specified.

The SAML asserting party cannot prevent a party to whom the assertion is disclosed from taking action on
the basis of the information provided. However, the <AudienceRestriction> element allows the
SAML asserting party to state explicitly that no warranty is provided to such a party in a machine- and
human-readable form. While there can be no guarantee that a court would uphold such a warranty
exclusion in every circumstance, the probability of upholding the warranty exclusion is considerably
improved.

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 23 of 86

922
923
924
925

926
927

928
929
930
931
932
933
934
935
936
937
938
939

940

941
942
943
944
945

946
947
948
949
950

951
952
953
954
955

956
957
958
959

960
961

962
963

964
965

966
967
968
969
970
971

47
48

Note that multiple <AudienceRestriction> elements MAY be included in a single assertion, and each
MUST be evaluated independently. The effect of this requirement and the preceding definition is that
within a given condition, the audiences form a disjunction (an "OR") while multiple conditions form a
conjunction (an "AND").

The following schema fragment defines the <AudienceRestriction> element and its
AudienceRestrictionType complex type:

<element name="AudienceRestriction"
type="saml:AudienceRestrictionType" />
<complexType name="AudienceRestrictionType">
<complexContent>
<extension base="saml:ConditionAbstractType">
<sequence>
<element ref="saml:Audience" maxOccurs="unbounded"/>
</sequence>
</extension>
</complexContent>
</complexType>
<element name="Audience" type="anyURI"/>

2.5.1.5 Element <OneTimeUse>

In general, relying parties may choose to retain assertions, or the information they contain in some other
form, for reuse. The <OneTimeUse> condition element allows an authority to indicate that the information
in the assertion is likely to change very soon and fresh information should be obtained for each use. An
example would be an assertion containing an <AuthzDecisionStatement> which was the result of a
policy which specified access control which was a function of the time of day.

If system clocks in a distributed environment could be precisely synchronized, then this requirement could
be met by careful use of the validity interval. However, since some clock skew between systems will
always be present and will be combined with possible transmission delays, there is no convenient way for
the issuer to appropriately limit the lifetime of an assertion without running a substantial risk that it will
already have expired before it arrives.

The <OneTimeUse> element indicates that the assertion SHOULD be used immediately by the relying
party and MUST NOT be retained for future use. Relying parties are always free to request a fresh
assertion for every use. However, implementations that choose to retain assertions for future use MUST
observe the <OneTimeUse> element. This condition is independent from the NotBefore and
NotOnOrAfter condition information.

To support the single use constraint, a relying party should maintain a cache of the assertions it has
processed containing such a condition. Whenever an assertion with this condition is processed, the cache
should be checked to ensure that the same assertion has not been previously received and processed by
the relying party.

A SAML authority MUST NOT include more than one <OneTimeUse> element within a <Conditions>
element of an assertion.

For the purposes of determining the validity of the <Conditions> element, the <OneTimeUse> is
considered to always be valid. That is, this condition does not affect validity but is a condition on use.

The following schema fragment defines the <OneTimeUse> element and its OneTimeUseType complex
type:

<element name="OneTimeUse" type="saml:0OneTimeUseType"/>
<complexType name="OneTimeUseType">
<complexContent>
<extension base="saml:ConditionAbstractType"/>
</complexContent>
</complexType>

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 24 of 86

972

973
974
975
976

977

978

979
980

981

982
983

984
985
986

987
988
989
990
991

992
993

994
995
996

997
998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010

1011

1012
1013

49
50

2.5.1.6 Element <ProxyRestriction>

Specifies limitations that the asserting party imposes on relying parties that in turn wish to act as asserting
parties and issue subsequent assertions of their own on the basis of the information contained in the
original assertion. A relying party acting as an asserting party MUST NOT issue an assertion that itself
violates the restrictions specified in this condition on the basis of an assertion containing such a condition.

The <ProxyRestriction> element contains the following elements and attributes:

Count [Optional]

Specifies the maximum number of indirections that the asserting party permits to exist between this
assertion and an assertion which has ultimately been issued on the basis of it.

<Audience> [Zero or More]

Specifies the set of audiences to whom the asserting party permits new assertions to be issued on
the basis of this assertion.

A Count value of zero indicates that a relying party MUST NOT issue an assertion to another relying party
on the basis of this assertion. If greater than zero, any assertions so issued MUST themselves contain a
<ProxyRestriction> element with a Count value of at most one less than this value.

If no <Audience> elements are specified, then no audience restrictions are imposed on the relying
parties to whom subsequent assertions can be issued. Otherwise, any assertions so issued MUST
themselves contain an <AudienceRestriction> element with at least one of the <Audience>
elements present in the previous <ProxyRestriction> element, and no <Audience> elements
present that were not in the previous <ProxyRestriction> element.

A SAML authority MUST NOT include more than one <ProxyRestriction> element within a
<Conditions> element of an assertion.

For the purposes of determining the validity of the <Conditions> element, the <ProxyRestriction>
condition is considered to always be valid. That is, this condition does not affect validity but is a condition
on use.

The following schema fragment defines the <ProxyRestriction> element and its
ProxyRestrictionType complex type:

<element name="ProxyRestriction" type="saml:ProxyRestrictionType"/>
<complexType name="ProxyRestrictionType">
<complexContent>
<extension base="saml:ConditionAbstractType">
<sequence>
<element ref="saml:Audience" minOccurs="0"
maxOccurs="unbounded" />
</sequence>
<attribute name="Count" type="nonNegativeInteger" use="optional"/>
</extension>
</complexContent>
</complexType>

2.6 Advice

This section defines the SAML constructs that contain additional information about an assertion that an
asserting party wishes to provide to a relying party.

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 25 of 86

1014

1015
1016
1017

1018
1019
1020

1021

1022
1023

1024

1025

1026

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

1037

1038

1039

1040
1041
1042

1043
1044

1045
1046

1047

1048
1049
1050

1051
1052

1053
1054

51
52

2.6.1 Element <Advice>

The <Advice> element contains any additional information that the SAML authority wishes to provide.
This information MAY be ignored by applications without affecting either the semantics or the validity of
the assertion.

The <Advice> element contains a mixture of zero or more <Assertion>, <EncryptedAssertion>,
<AssertionIDRef>, and <AssertionURIRef> elements, and namespace-qualified elements in
other non-SAML namespaces.

Following are some potential uses of the <advice> element:

* Include evidence supporting the assertion claims to be cited, either directly (through incorporating
the claims) or indirectly (by reference to the supporting assertions).

» State a proof of the assertion claims.

» Specify the timing and distribution points for updates to the assertion.

The following schema fragment defines the <Advice> element and its AdviceType complex type:

<element name="Advice" type="saml:AdviceType"/>
<complexType name="AdviceType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="saml:AssertionIDRef"/>
<element ref="saml:AssertionURIRef" />
<element ref="saml:Assertion"/>
<element ref="saml:EncryptedAssertion"/>
<any namespace="##other" processContents="lax"/>
</choice>
</complexType>

2.7 Statements

The following sections define the SAML constructs that contain statement information.

2.7.1 Element <Statement>

The <Statement> element is an extension point that allows other assertion-based applications to reuse
the SAML assertion framework. SAML itself derives its core statements from this extension point. Its
StatementAbstractType complex type is abstract and is thus usable only as the base of a derived type.

The following schema fragment defines the <Statement> element and its StatementAbstractType
complex type:

<element name="Statement" type="saml:StatementAbstractType"/>
<complexType name="StatementAbstractType" abstract="true"/>

2.7.2 Element <AuthnStatement>

The <AuthnStatement> element describes a statement by the SAML authority asserting that the
assertion subject was authenticated by a particular means at a particular time. Assertions containing
<AuthnStatement> elements MUST contain a <Subject> element.

It is of type AuthnStatementType, which extends StatementAbstractType with the addition of the
following elements and attributes:

Note: The <AuthorityBinding> element and its corresponding type were removed
from <AuthnStatement> for V2.0 of SAML.

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 26 of 86

1055

1056
1057

1058

1059
1060

1061

1062
1063
1064
1065

1066

1067
1068

1069

1070
1071
1072
1073

1074
1075
1076
1077
1078

1079
1080
1081
1082
1083
1084

1085

1086
1087

1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102

53
54

AuthnInstant [Required]

Specifies the time at which the authentication took place. The time value is encoded in UTC, as
described in Section 1.3.3.

SessionIndex [Optional]

Specifies the index of a particular session between the principal identified by the subject and the
authenticating authority.

SessionNotOnOrAfter [Optional]

Specifies a time instant at which the session between the principal identified by the subject and the
SAML authority issuing this statement MUST be considered ended. The time value is encoded in
UTC, as described in Section 1.3.3. There is no required relationship between this attribute and a
NotOnOrAfter condition attribute that may be present in the assertion.

<SubjectLocality> [Optional]

Specifies the DNS domain name and IP address for the system from which the assertion subject was
apparently authenticated.

<AuthnContext> [Required]

The context used by the authenticating authority up to and including the authentication event that
yielded this statement. Contains an authentication context class reference, an authentication context
declaration or declaration reference, or both. See the Authentication Context specification
[SAMLAuthnCxt] for a full description of authentication context information.

In general, any string value MAY be used as a SessionIndex value. However, when privacy is a
consideration, care must be taken to ensure that the SessionIndex value does not invalidate other
privacy mechanisms. Accordingly, the value SHOULD NOT be usable to correlate activity by a principal
across different session participants. Two solutions that achieve this goal are provided below and are
RECOMMENDED:

« Use small positive integers (or reoccurring constants in a list) for the SessionIndex. The SAML
authority SHOULD choose the range of values such that the cardinality of any one integer will be
sufficiently high to prevent a particular principal's actions from being correlated across multiple session
participants. The SAML authority SHOULD choose values for SessionIndex randomly from within
this range (except when required to ensure unique values for subsequent statements given to the
same session participant but as part of a distinct session).

« Use the enclosing assertion's 1D value in the SessionIndex.

The following schema fragment defines the <AuthnStatement> element and its AuthnStatementType
complex type:

<element name="AuthnStatement" type="saml:AuthnStatementType"/>
<complexType name="AuthnStatementType">
<complexContent>
<extension base="saml:StatementAbstractType">
<sequence>
<element ref="saml:SubjectLocality" minOccurs="0"/>
<element ref="saml:AuthnContext"/>
</sequence>
<attribute name="AuthnInstant" type="dateTime" use="required"/>
<attribute name="SessionIndex" type="string" use="optional"/>
<attribute name="SessionNotOnOrAfter" type="dateTime"
use="optional"/>
</extension>
</complexContent>
</complexType>

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 27 of 86

1103

1104
1105

1106

1107
1108
1109
1110

1111
1112

1113
1114

1115
1116

117
1118
1119
1120
1121

1122

1123
1124
1125

1126

1127
1128

1129

1130
1131
1132

1133

1134
1135
1136

1137
1138

1139
1140

1141
1142
1143
1144
1145
1146
1147

55
56

2.7.2.1 Element <SubjectLocality>

The <SubjectLocality> element specifies the DNS domain name and IP address for the system from
which the assertion subject was authenticated. It has the following attributes:
Address [Optional]

The network address of the system from which the principal identified by the subject was
authenticated. IPv4 addresses SHOULD be represented in dotted-decimal format (e.g., "1.2.3.4").
IPv6 addresses SHOULD be represented as defined by Section 2.2 of IETF RFC 3513 [RFC 3513]
(e.g., "FEDC:BA98:7654:3210:FEDC:BA98:7654:3210").

DNSName [Optional]
The DNS name of the system from which the principal identified by the subject was authenticated.

This element is entirely advisory, since both of these fields are quite easily “spoofed,” but may be useful
information in some applications.

The following schema fragment defines the <SubjectLocality> element and its SubjectLocalityType
complex type:

<element name="SubjectLocality" type="saml:SubjectLocalityType"/>
<complexType name="SubjectLocalityType">
<attribute name="Address" type="string" use="optional"/>
<attribute name="DNSName" type="string" use="optional"/>
</complexType>

2.7.2.2 Element <AuthnContext>

The <AuthnContext> element specifies the context of an authentication event. The element can contain
an authentication context class reference, an authentication context declaration or declaration reference,
or both. Its complex AuthnContextType has the following elements:

<AuthnContextClassRef> [Optional]
A URI reference identifying an authentication context class that describes the authentication context
declaration that follows.

<AuthnContextDecl> or <AuthnContextDeclRef> [Optional]

Either an authentication context declaration provided by value, or a URI reference that identifies such
a declaration. The URI reference MAY directly resolve into an XML document containing the
referenced declaration.

<AuthenticatingAuthority> [Zero or More]

Zero or more unique identifiers of authentication authorities that were involved in the authentication of
the principal (not including the assertion issuer, who is presumed to have been involved without being
explicitly named here).

See the Authentication Context specification [SAMLAuthnCxt] for a full description of authentication
context information.

The following schema fragment defines the <authnContext> element and its AuthnContextType
complex type:

<element name="AuthnContext" type="saml:AuthnContextType"/>
<complexType name="AuthnContextType">
<sequence>
<choice>
<sequence>
<element ref="saml:AuthnContextClassRef"/>
<choice minOccurs="0">

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 28 of 86

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164

1165

1166
1167
1168

1169
1170

1171

1172
1173

1174
1175

1176
177
1178
1179
1180
1181
1182
1183
1184
1185
1186

1187

1188
1189
1190
1191
1192
1193

1194

1195
1196

57
58

<element ref="saml:AuthnContextDecl"/>
<element ref="saml:AuthnContextDeclRef"/>
</choice>
</sequence>
<choice>
<element ref="saml:AuthnContextDecl"/>
<element ref="saml:AuthnContextDeclRef"/>
</choice>
</choice>
<element ref="saml:AuthenticatingAuthority" minOccurs="0"
maxOccurs="unbounded" />
</sequence>
</complexType>
<element name="AuthnContextClassRef" type="anyURI"/>
<element name="AuthnContextDeclRef" type="anyURI"/>
<element name="AuthnContextDecl" type="anyType"/>
<element name="AuthenticatingAuthority" type="anyURI"/>

2.7.3 Element <AttributeStatement>

The <AttributeStatement> element describes a statement by the SAML authority asserting that the
assertion subject is associated with the specified attributes. Assertions containing
<AttributeStatement> elements MUST contain a <Subject> element.

It is of type AttributeStatementType, which extends StatementAbstractType with the addition of the
following elements:

<Attribute> or <EncryptedAttribute> [One or More]
The <Attribute> element specifies an attribute of the assertion subject. An encrypted SAML
attribute may be included with the <EncryptedaAttribute> element.

The following schema fragment defines the <AttributeStatement> element and its
AttributeStatementType complex type:

<element name="AttributeStatement" type="saml:AttributeStatementType"/>
<complexType name="AttributeStatementType">
<complexContent>
<extension base="saml:StatementAbstractType">
<choice maxOccurs="unbounded">
<element ref="saml:Attribute"/>
<element ref="saml:EncryptedAttribute"/>
</choice>
</extension>
</complexContent>
</complexType>

2.7.3.1 Element <Attribute>

The <Attribute> element identifies an attribute by name and optionally includes its value(s). It has the
AttributeType complex type. It is used within an attribute statement to express particular attributes and
values associated with an assertion subject, as described in the previous section. It is also used in an
attribute query to request that the values of specific SAML attributes be returned (see Section 3.3.2.3 for
more information). The <Attribute> element contains the following XML attributes:

Name [Required]

The name of the attribute.

NameFormat [Optional]
A URI reference representing the classification of the attribute name for purposes of interpreting the

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 29 of 86

1197
1198
1199
1200

1201

1202
1203
1204

1205

1206
1207
1208
1209
1210
1211

1212

1213
1214
1215
1216
1217

1218
1219
1220
1221
1222

1223
1224

1225

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235

1236

1237
1238

1239
1240
1241
1242

59
60

name. See Section 8.2 for some URI references that MAY be used as the value of the NameFormat
attribute and their associated descriptions and processing rules. If no NameFormat value is provided,
the identifier urn:ocasis:names:tc:SAML:2.0:attrname-format:unspecified (see Section
8.2.1) is in effect.

FriendlyName [Optional]

A string that provides a more human-readable form of the attribute's name, which may be useful in
cases in which the actual Name is complex or opaque, such as an OID or a UUID. This attribute's
value MUST NOT be used as a basis for formally identifying SAML attributes.

Arbitrary attributes

This complex type uses an <xs:anyAttribute> extension point to allow arbitrary XML attributes to
be added to <Attribute> constructs without the need for an explicit schema extension. This allows
additional fields to be added as needed to supply additional parameters to be used, for example, in an
attribute query. SAML extensions MUST NOT add local (non-namespace-qualified) XML attributes or
XML attributes qualified by a SAML-defined namespace to the AttributeType complex type or a
derivation of it; such attributes are reserved for future maintenance and enhancement of SAML itself.

<AttributeValue> [Any Number]

Contains a value of the attribute. If an attribute contains more than one discrete value, it is
RECOMMENDED that each value appear in its own <AttributevValue> element. If more than
one <AttributeValue> element is supplied for an attribute, and any of the elements have a
datatype assigned through xsi : type, then all of the <AttributeValue> elements must have
the identical datatype assigned.

The meaning of an <Attribute> element that contains no <AttributeValue> elements depends on
its context. Within an <AttributeStatement>, if the SAML attribute exists but has no values, then the
<AttributeValue> element MUST be omitted. Within a <samlp:AttributeQuery>, the absence of
values indicates that the requester is interested in any or all of the named attribute's values (see also
Section 3.3.2.3).

Any other uses of the <Attribute> element by profiles or other specifications MUST define the
semantics of specifying or omitting <AttributevValue> elements.

The following schema fragment defines the <Attribute> element and its AttributeType complex type:

<element name="Attribute" type="saml:AttributeType"/>
<complexType name="AttributeType">
<sequence>
<element ref="saml:AttributeValue" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="Name" type="string" use="required"/>
<attribute name="NameFormat" type="anyURI" use="optional"/>
<attribute name="FriendlyName" type="string" use="optional"/>
<anyAttribute namespace="##other" processContents="lax"/>
</complexType>

2.7.3.1.1 Element <AttributeValue>

The <AttributeValue> element supplies the value of a specified SAML attribute. It is of the
xs:anyType type, which allows any well-formed XML to appear as the content of the element.

If the data content of an <Attributevalue> element is of an XML Schema simple type (such as
xs:integer or xs:string), the datatype MAY be declared explicitly by means of an xsi: type declaration
inthe <AttributeValue> element. If the attribute value contains structured data, the necessary data
elements MAY be defined in an extension schema.

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 30 of 86

1243
1244
1245

1246
1247
1248
1249

1250
1251

1252
1253

1254

1255
1256
1257

1258

1259
1260
1261
1262

1263

1264
1265
1266
1267

1268
1269

1270
1271

1272

1273
1274
1275
1276

1277
1278
1279
1280

1281
1282
1283

61
62

Note: Specifying a datatype other than an XML Schema simple type on
<AttributeValue> using xsi : type will require the presence of the extension schema
that defines the datatype in order for schema processing to proceed.

If a SAML attribute includes an empty value, such as the empty string, the corresponding
<AttributeValue> element MUST be empty (generally this is serialized as <AttributeValue/>).
This overrides the requirement in Section 1.3.1 that string values in SAML content contain at least one
non-whitespace character.

If a SAML attribute includes a "null" value, the corresponding <Attributevalue> element MUST be
empty and MUST contain the reserved xsi :nil XML attribute with a value of "true" or "1".
The following schema fragment defines the <AttributevValue> element:

<element name="AttributeValue" type="anyType" nillable="true"/>

2.7.3.2 Element <EncryptedAttribute>

The <EncryptedAttribute> element represents a SAML attribute in encrypted fashion, as defined by
the XML Encryption Syntax and Processing specification [XMLEnNc]. The <EncryptedAttribute>
element contains the following elements:

<xenc:EncryptedData> [Required]

The encrypted content and associated encryption details, as defined by the XML Encryption
Syntax and Processing specification [XMLEnc]. The Type attribute SHOULD be present and, if
present, MUST contain a value of http://www.w3.0rg/2001/04/xmlenc#Element. The
encrypted content MUST contain an element that has a type of or derived from AttributeType.

<xenc:EncryptedKey> [Zero or More]

Wrapped decryption keys, as defined by [XMLEnc]. Each wrapped key SHOULD include a
Recipient attribute that specifies the entity for whom the key has been encrypted. The value of
the Recipient attribute SHOULD be the URI identifier of a system entity with a SAML name
identifier, as defined by Section 8.3.6.

Encrypted attributes are intended as a confidentiality protection when the plain-text value passes through
an intermediary.

The following schema fragment defines the <EncryptedAttribute> element:

<element name="EncryptedAttribute" type="saml:EncryptedElementType"/>

2.7.4 Element <AuthzDecisionStatement>

Note: The <AuthzDecisionStatement> feature has been frozen as of SAML V2.0,
with no future enhancements planned. Users who require additional functionality may
want to consider the eXtensible Access Control Markup Language [XACML], which offers
enhanced authorization decision features.

The <AuthzDecisionStatement> element describes a statement by the SAML authority asserting that
a request for access by the assertion subject to the specified resource has resulted in the specified
authorization decision on the basis of some optionally specified evidence. Assertions containing
<AuthzDecisionStatement> elements MUST contain a <Subject> element.

The resource is identified by means of a URI reference. In order for the assertion to be interpreted
correctly and securely, the SAML authority and SAML relying party MUST interpret each URI reference in
a consistent manner. Failure to achieve a consistent URI reference interpretation can result in different

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 31 of 86

1284
1285

1286
1287
1288
1289
1290

1291
1292

1293

1294

1295
1296
1297
1298

1299
1300
1301

1302
1303
1304

1305
1306

1307

1308
1309
1310

1311

1312
1313

1314
1315

1316
1317

1318
1319

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330

63
64

authorization decisions depending on the encoding of the resource URI reference. Rules for normalizing
URI references are to be found in IETF RFC 2396 [RFC 2396] Section 6:

In general, the rules for equivalence and definition of a normal form, if any, are scheme
dependent. When a scheme uses elements of the common syntax, it will also use the common
syntax equivalence rules, namely that the scheme and hostname are case insensitive and a URL
with an explicit ":port", where the port is the default for the scheme, is equivalent to one where
the port is elided.

To avoid ambiguity resulting from variations in URI encoding, SAML system entities SHOULD employ the
URI normalized form wherever possible as follows:
» SAML authorities SHOULD encode all resource URI references in normalized form.

* Relying parties SHOULD convert resource URI references to normalized form prior to processing.

Inconsistent URI reference interpretation can also result from differences between the URI reference
syntax and the semantics of an underlying file system. Particular care is required if URI references are
employed to specify an access control policy language. The following security conditions SHOULD be
satisfied by the system which employs SAML assertions:

» Parts of the URI reference syntax are case sensitive. If the underlying file system is case insensitive,
a requester SHOULD NOT be able to gain access to a denied resource by changing the case of a
part of the resource URI reference.

» Many file systems support mechanisms such as logical paths and symbolic links, which allow users
to establish logical equivalences between file system entries. A requester SHOULD NOT be able to
gain access to a denied resource by creating such an equivalence.

The <AuthzDecisionStatement> element is of type AuthzDecisionStatementType, which extends
StatementAbstractType with the addition of the following elements and attributes:
Resource [Required]

A URI reference identifying the resource to which access authorization is sought. This attribute MAY
have the value of the empty URI reference ("), and the meaning is defined to be "the start of the
current document”, as specified by IETF RFC 2396 [RFC 2396] Section 4.2.

Decision [Required]

The decision rendered by the SAML authority with respect to the specified resource. The value is of
the DecisionType simple type.

<Action> [One or more]
The set of actions authorized to be performed on the specified resource.

<Evidence> [Optional]
A set of assertions that the SAML authority relied on in making the decision.

The following schema fragment defines the <AuthzDecisionStatement> element and its
AuthzDecisionStatementType complex type:

<element name="AuthzDecisionStatement"
type="saml:AuthzDecisionStatementType" />
<complexType name="AuthzDecisionStatementType">
<complexContent>
<extension base="saml:StatementAbstractType">
<sequence>
<element ref="saml:Action" maxOccurs="unbounded"/>
<element ref="saml:Evidence" minOccurs="0"/>
</sequence>
<attribute name="Resource" type="anyURI" use="required"/>
<attribute name="Decision" type="saml:DecisionType" use="required"/>

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 32 of 86

1331
1332
1333

1334

1335
1336

1337
1338

1339
1340

1341
1342

1343
1344
1345
1346

1347

1348
1349
1350
1351
1352
1353
1354

1355

1356
1357
1358

1359

1360
1361
1362
1363

1364

1365
1366
1367
1368
1369
1370
1371
1372

65
66

</extension>
</complexContent>
</complexType>

2.7.4.1 Simple Type DecisionType
The DecisionType simple type defines the possible values to be reported as the status of an
authorization decision statement.
Permit
The specified action is permitted.
Deny
The specified action is denied.
Indeterminate

The SAML authority cannot determine whether the specified action is permitted or denied.

The Indeterminate decision value is used in situations where the SAML authority requires the ability to
provide an affirmative statement but where it is not able to issue a decision. Additional information as to
the reason for the refusal or inability to provide a decision MAY be returned as <StatusDetail>
elements in the enclosing <Response>.

The following schema fragment defines the DecisionType simple type:

<simpleType name="DecisionType">
<restriction base="string">
<enumeration value="Permit"/>
<enumeration value="Deny"/>
<enumeration value="Indeterminate"/>
</restriction>
</simpleType>

2.7.4.2 Element <Action>

The <Action> element specifies an action on the specified resource for which permission is sought. Its
string-data content provides the label for an action sought to be performed on the specified resource, and
it has the following attribute:

Namespace [Optional]

A URI reference representing the namespace in which the name of the specified action is to be
interpreted. If this element is absent, the namespace
urn:oasis:names:tc:SAML:1.0:action:rwedc-negation specified in Section 8.1.2 is in
effect.

The following schema fragment defines the <Action> element and its ActionType complex type:

<element name="Action" type="saml:ActionType"/>
<complexType name="ActionType">
<simpleContent>
<extension base="string">
<attribute name="Namespace" type="anyURI" use="required"/>
</extension>
</simpleContent>
</complexType>

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 33 of 86

1373

1374
1375
1376

1377
1378

1379
1380

1381
1382

1383
1384

1385
1386
1387
1388
1389

1390

1391
1392
1393
1394
1395
1396
1397
1398
1399

67
68

2.7.4.3 Element <Evidence>

The <Evidence> element contains one or more assertions or assertion references that the SAML
authority relied on in issuing the authorization decision. It has the EvidenceType complex type. It contains
a mixture of one or more of the following elements:

<AssertionIDRef> [Any number]
Specifies an assertion by reference to the value of the assertion’s 1D attribute.

<AssertionURIRef> [Any number]
Specifies an assertion by means of a URI reference.

<Assertion> [Any number]
Specifies an assertion by value.

<EncryptedAssertion> [Any number]
Specifies an encrypted assertion by value.

Providing an assertion as evidence MAY affect the reliance agreement between the SAML relying party
and the SAML authority making the authorization decision. For example, in the case that the SAML relying
party presented an assertion to the SAML authority in a request, the SAML authority MAY use that
assertion as evidence in making its authorization decision without endorsing the <Evidence> element’s
assertion as valid either to the relying party or any other third party.

The following schema fragment defines the <Evidence> element and its EvidenceType complex type:

<element name="Evidence" type="saml:EvidenceType"/>
<complexType name="EvidenceType">
<choice maxOccurs="unbounded">
<element ref="saml:AssertionIDRef"/>
<element ref="saml:AssertionURIRef"/>
<element ref="saml:Assertion"/>
<element ref="saml:EncryptedAssertion"/>
</choice>
</complexType>

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 34 of 86

1400

1401
1402
1403
1404
1405

1406
1407
1408

1409

1411

1412
1413

1414

1415
1416

1417

1418

1419

1420
1421

1422

1423
1424
1425

1426

1427
1428

1429
1430
1431
1432
1433
1434
1435
1436
1437
1438

69
70

3 SAML Protocols

SAML protocol messages can be generated and exchanged using a variety of protocols. The SAML
bindings specification [SAMLBInd] describes specific means of transporting protocol messages using
existing widely deployed transport protocols. The SAML profile specification [SAMLProf] describes a
number of applications of the protocols defined in this section together with additional processing rules,
restrictions, and requirements that facilitate interoperability.

Specific SAML request and response messages derive from common types. The requester sends an
element derived from RequestAbstractType to a SAML responder, and the responder generates an
element adhering to or deriving from StatusResponseType, as shown in Figure 1.

RequestAbstractType StatusResponseType
» Process Request >

Figure 1: SAML Request-Response Protocol

In certain cases, when permitted by profiles, a SAML response MAY be generated and sent without the
responder having received a corresponding request.

The protocols defined by SAML achieve the following actions:

* Returning one or more requested assertions. This can occur in response to either a direct request
for specific assertions or a query for assertions that meet particular criteria.

» Performing authentication on request and returning the corresponding assertion
* Registering a name identifier or terminating a name registration on request
» Retrieving a protocol message that has been requested by means of an artifact

» Performing a near-simultaneous logout of a collection of related sessions (“single logout”) on
request

* Providing a name identifier mapping on request
Throughout this section, text descriptions of elements and types in the SAML protocol namespace are not

shown with the conventional namespace prefix sam1p:. For clarity, text descriptions of elements and
types in the SAML assertion namespace are indicated with the conventional namespace prefix saml:.

3.1 Schema Header and Namespace Declarations

The following schema fragment defines the XML namespaces and other header information for the
protocol schema:

<schema
targetNamespace="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
elementFormDefault="unqualified"
attributeFormDefault="unqualified"
blockDefault="substitution"
version="2.0">

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 35 of 86

1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458

1459

1460
1461

1462

1463
1464

1465
1466

1467

1468
1469
1470

1471
1472
1473
1474
1475
1476
1477

1478
1479
1480
1481
1482

1483

1484
1485

71
72

<import namespace="urn:oasis:names:tc:SAML:2.0:assertion"
schemaLocation="saml-schema-assertion-2.0.xsd"/>
<import namespace="http://www.w3.0rg/2000/09/xmldsig#"
schemaLocation="http://www.w3.0rg/TR/2002/REC-xmldsig-core—
20020212/xmldsig-core-schema.xsd"/>
<annotation>
<documentation>
Document identifier: saml-schema-protocol-2.0
Location: http://docs.ocasis-open.org/security/saml/v2.0/
Revision history:
V1.0 (November, 2002):
Initial Standard Schema.
V1.1 (September, 2003):
Updates within the same V1.0 namespace.
V2.0 (March, 2005):
New protocol schema based in a SAML V2.0 namespace.
</documentation>
</annotation>

</schema>

3.2 Requests and Responses

The following sections define the SAML constructs and basic requirements that underlie all of the request
and response messages used in SAML protocols.

3.2.1 Complex Type RequestAbstractType

All SAML requests are of types that are derived from the abstract RequestAbstractType complex type.
This type defines common attributes and elements that are associated with all SAML requests:

Note: The <RespondWith> element has been removed from RequestAbstractType
for V2.0 of SAML.

1D [Required]

An identifier for the request. It is of type xs:ID and MUST follow the requirements specified in Section
1.3.4 for identifier uniqueness. The values of the ID attribute in a request and the InResponseTo
attribute in the corresponding response MUST match.

Version [Required]

The version of this request. The identifier for the version of SAML defined in this specification is "2.0".
SAML versioning is discussed in Section 4.

IssueInstant [Required]
The time instant of issue of the request. The time value is encoded in UTC, as described in Section
1.3.3.

Destination [Optional]

A URI reference indicating the address to which this request has been sent. This is useful to prevent
malicious forwarding of requests to unintended recipients, a protection that is required by some
protocol bindings. If it is present, the actual recipient MUST check that the URI reference identifies the
location at which the message was received. If it does not, the request MUST be discarded. Some
protocol bindings may require the use of this attribute (see [SAMLBInd]).

Consent [Optional]

Indicates whether or not (and under what conditions) consent has been obtained from a principal in
the sending of this request. See Section 8.4 for some URI references that MAY be used as the value

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 36 of 86

1486
1487
1488

1489

1490
1491

1492

1493
1494

1495

1496
1497
1498
1499
1500

1501
1502
1503
1504

1505
1506
1507
1508
1509
1510

1511
1512

1513
1514
1515
1516

1517

1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535

73
74

of the Consent attribute and their associated descriptions. If no Consent value is provided, the
identifier urn:oasis:names:tc:SAML:2.0:consent:unspecified (see Section 8.4.1) is in
effect.

<saml:Issuer> [Optional]

Identifies the entity that generated the request message. (For more information on this element, see
Section 2.2.5.)

<ds:Signature> [Optional]

An XML Signature that authenticates the requester and provides message integrity, as described
below and in Section 5.

<Extensions> [Optional]

This extension point contains optional protocol message extension elements that are agreed on
between the communicating parties. No extension schema is required in order to make use of this
extension point, and even if one is provided, the lax validation setting does not impose a requirement
for the extension to be valid. SAML extension elements MUST be namespace-qualified in a non-
SAML-defined namespace.

Depending on the requirements of particular protocols or profiles, a SAML requester may often need to
authenticate itself, and message integrity may often be required. Authentication and message integrity
MAY be provided by mechanisms provided by the protocol binding (see [SAMLBInd]). The SAML request
MAY be signed, which provides both authentication of the requester and message integrity.

If such a signature is used, then the <ds:Signature> element MUST be present, and the SAML
responder MUST verify that the signature is valid (that is, that the message has not been tampered with)
in accordance with [XMLSig]. If it is invalid, then the responder MUST NOT rely on the contents of the
request and SHOULD respond with an error. If it is valid, then the responder SHOULD evaluate the
signature to determine the identity and appropriateness of the signer and may continue to process the
request or respond with an error (if the request is invalid for some other reason).

If a Consent attribute is included and the value indicates that some form of principal consent has been
obtained, then the request SHOULD be signed.

If a SAML responder deems a request to be invalid according to SAML syntax or processing rules, then if
it responds, it MUST return a SAML response message with a <StatusCode> element with the value
urn:oasis:names:tc:SAML:2.0:status:Requester. In some cases, for example during a
suspected denial-of-service attack, not responding at all may be warranted.

The following schema fragment defines the RequestAbstractType complex type:

<complexType name="RequestAbstractType" abstract="true">
<sequence>
<element ref="saml:Issuer" minOccurs="0"/>
<element ref="ds:Signature" minOccurs="0"/>
<element ref="samlp:Extensions" minOccurs="0"/>
</sequence>
<attribute name="ID" type="ID" use="required"/>
<attribute name="Version" type="string" use="required"/>
<attribute name="Issuelnstant" type="dateTime" use="required"/>
<attribute name="Destination" type="anyURI" use="optional"/>
<attribute name="Consent" type="anyURI" use="optional"/>
</complexType>
<element name="Extensions" type="samlp:ExtensionsType"/>
<complexType name="ExtensionsType">

<sequence>
<any namespace="##other" processContents="lax" maxOccurs="unbounded"/>
</sequence>
</complexType>
saml-core-2.0-0s 15 March 2005

Copyright © OASIS Open 2005. All Rights Reserved. Page 37 of 86

1536

1537
1538

1539

1540
1541

1542

1543
1544
1545
1546
1547

1548
1549
1550
1551
1552
1553
1554

1555
1556
1557
1558
1559

1560

1561
1562
1563
1564
1565

1566
1567
1568
1569
1570
1571
1572

1573
1574
1575
1576
1577

1578
1579

75
76

3.2.2 Complex Type StatusResponseType

All SAML responses are of types that are derived from the StatusResponseType complex type. This type
defines common attributes and elements that are associated with all SAML responses:

1D [Required]

An identifier for the response. It is of type xs:1D, and MUST follow the requirements specified in
Section 1.3.4 for identifier uniqueness.

InResponseTo [Optional]

A reference to the identifier of the request to which the response corresponds, if any. If the response
is not generated in response to a request, or if the 1D attribute value of a request cannot be
determined (for example, the request is malformed), then this attribute MUST NOT be present.
Otherwise, it MUST be present and its value MUST match the value of the corresponding request's
ID attribute.

Version [Required]
The version of this response. The identifier for the version of SAML defined in this specification is
"2.0". SAML versioning is discussed in Section 4.

IssueInstant [Required]
The time instant of issue of the response. The time value is encoded in UTC, as described in Section
1.3.3.

Destination [Optional]

A URI reference indicating the address to which this response has been sent. This is useful to prevent
malicious forwarding of responses to unintended recipients, a protection that is required by some
protocol bindings. If it is present, the actual recipient MUST check that the URI reference identifies the
location at which the message was received. If it does not, the response MUST be discarded. Some
protocol bindings may require the use of this attribute (see [SAMLBInd]).

Consent [Optional]

Indicates whether or not (and under what conditions) consent has been obtained from a principal in
the sending of this response. See Section 8.4 for some URI references that MAY be used as the value
of the Consent attribute and their associated descriptions. If no Consent value is provided, the
identifier urn: casis:names:tc:SAML:2.0:consent:unspecified (see Section 8.4.1) is in
effect.

<saml:Issuer> [Optional]
Identifies the entity that generated the response message. (For more information on this element, see
Section 2.2.5.)

<ds:Signature> [Optional]
An XML Signature that authenticates the responder and provides message integrity, as described
below and in Section 5.

<Extensions> [Optional]

This extension point contains optional protocol message extension elements that are agreed on
between the communicating parties. . No extension schema is required in order to make use of this
extension point, and even if one is provided, the lax validation setting does not impose a requirement
for the extension to be valid. SAML extension elements MUST be namespace-qualified in a non-
SAML-defined namespace.

<Status> [Required]
A code representing the status of the corresponding request.

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 38 of 86

1580
1581
1582
1583

1584
1585
1586
1587
1588
1589

1590
1591

1592

1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606

1607

1608

1609
1610

1611
1612

1613
1614

1615

1616
1617
1618
1619
1620
1621
1622
1623

1624

1625
1626

77
78

Depending on the requirements of particular protocols or profiles, a SAML responder may often need to
authenticate itself, and message integrity may often be required. Authentication and message integrity
MAY be provided by mechanisms provided by the protocol binding (see [SAMLBInd]). The SAML
response MAY be signed, which provides both authentication of the responder and message integrity.

If such a signature is used, then the <ds:Signature> element MUST be present, and the SAML
requester receiving the response MUST verify that the signature is valid (that is, that the message has not
been tampered with) in accordance with [XMLSig]. If it is invalid, then the requester MUST NOT rely on
the contents of the response and SHOULD treat it as an error. If it is valid, then the requester SHOULD
evaluate the signature to determine the identity and appropriateness of the signer and may continue to
process the response as it deems appropriate.

If a Consent attribute is included and the value indicates that some form of principal consent has been
obtained, then the response SHOULD be signed.

The following schema fragment defines the StatusResponseType complex type:

<complexType name="StatusResponseType">
<sequence>
<element ref="saml:Issuer" minOccurs="0"/>
<element ref="ds:Signature" minOccurs="0"/>
<element ref="samlp:Extensions" minOccurs="0"/>
<element ref="samlp:Status"/>
</sequence>
<attribute name="ID" type="ID" use="required"/>
<attribute name="InResponseTo" type="NCName" use="optional"/>
<attribute name="Version" type="string" use="required"/>
<attribute name="IssuelInstant" type="dateTime" use="required"/>
<attribute name="Destination" type="anyURI" use="optional"/>
<attribute name="Consent" type="anyURI" use="optional"/>
</complexType>

3.2.2.1 Element <Status>

The <Status> element contains the following elements:

<StatusCode> [Required]
A code representing the status of the activity carried out in response to the corresponding request.

<StatusMessage> [Optional]
A message which MAY be returned to an operator.

<StatusDetail> [Optional]
Additional information concerning the status of the request.

The following schema fragment defines the <Status> element and its StatusType complex type:

<element name="Status" type="samlp:StatusType"/>
<complexType name="StatusType">
<sequence>
<element ref="samlp:StatusCode"/>
<element ref="samlp:StatusMessage" minOccurs="0"/>
<element ref="samlp:StatusDetail" minOccurs="0"/>
</sequence>
</complexType>

3.2.2.2 Element <StatusCode>

The <StatusCode> element specifies a code or a set of nested codes representing the status of the
corresponding request. The <StatusCode> element has the following element and attribute:

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 39 of 86

1627
1628
1629
1630

1631
1632
1633

1634

1635

1636
1637

1638
1639

1640

1641
1642

1643

1644
1645

1646
1647
1648

1649
1650

1651
1652
1653
1654
1655

1656
1657

1658

1659
1660

1661
1662

1663

1664
1665

79
80

Value [Required]
The status code value. This attribute contains a URI reference. The value of the topmost
<StatusCode> element MUST be from the top-level list provided in this section.
<StatusCode> [Optional]

A subordinate status code that provides more specific information on an error condition. Note that
responders MAY omit subordinate status codes in order to prevent attacks that seek to probe for
additional information by intentionally presenting erroneous requests.

The permissible top-level <statusCode> values are as follows:

urn:oasis:names:tc:SAML:2.0:status:Success

The request succeeded. Additional information MAY be returned in the <StatusMessage> and/or
<StatusDetail> elements.

urn:oasis:names:tc:SAML:2.0:status:Requester

The request could not be performed due to an error on the part of the requester.

urn:oasis:names:tc:SAML:2.0:status:Responder

The request could not be performed due to an error on the part of the SAML responder or SAML
authority.

urn:oasis:names:tc:SAML:2.0:status:VersionMismatch

The SAML responder could not process the request because the version of the request message was
incorrect.

The following second-level status codes are referenced at various places in this specification. Additional
second-level status codes MAY be defined in future versions of the SAML specification. System entities
are free to define more specific status codes by defining appropriate URI references.

urn:oasis:names:tc:SAML:2.0:status:AuthnFailed

The responding provider was unable to successfully authenticate the principal.

urn:oasis:names:tc:SAML:2.0:status:InvalidAttrNameOrValue
Unexpected or invalid content was encountered within a <saml :Attribute> or
<saml:AttributeValue> element.

urn:oasis:names:tc:SAML:2.0:status:InvalidNameIDPolicy

The responding provider cannot or will not support the requested name identifier policy.

urn:oasis:names:tc:SAML:2.0:status:NoAuthnContext

The specified authentication context requirements cannot be met by the responder.

urn:oasis:names:tc:SAML:2.0:status:NoAvailablelIDP

Used by an intermediary to indicate that none of the supported identity provider <Loc> elements in an
<IDPList> can be resolved or that none of the supported identity providers are available.

urn:oasis:names:tc:SAML:2.0:status:NoPassive

Indicates the responding provider cannot authenticate the principal passively, as has been requested.

urn:oasis:names:tc:SAML:2.0:status:NoSupportedIDP

Used by an intermediary to indicate that none of the identity providers in an <IDPList> are
supported by the intermediary.

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 40 of 86

1666
1667
1668
1669
1670
1671
1672

1673
1674
1675

1676

1677

1678
1679

1680

1681
1682

1683

1684
1685

1686
1687

1688
1689

1690

1691
1692

1693
1694

1695

1696
1697

1698
1699

1700
1701
1702
1703
1704
1705
1706

81
82

urn:oasis:names:tc:SAML:2.0:status:PartiallLogout
Used by a session authority to indicate to a session participant that it was not able to propagate logout
to all other session participants.
urn:oasis:names:tc:SAML:2.0:status:ProxyCountExceeded
Indicates that a responding provider cannot authenticate the principal directly and is not permitted to
proxy the request further.
urn:oasis:names:tc:SAML:2.0:status:RequestDenied

The SAML responder or SAML authority is able to process the request but has chosen not to respond.
This status code MAY be used when there is concern about the security context of the request
message or the sequence of request messages received from a particular requester.

urn:oasis:names:tc:SAML:2.0:status:RequestUnsupported
The SAML responder or SAML authority does not support the request.

urn:oasis:names:tc:SAML:2.0:status:RequestVersionDeprecated

The SAML responder cannot process any requests with the protocol version specified in the request.

urn:oasis:names:tc:SAML:2.0:status:RequestVersionTooHigh
The SAML responder cannot process the request because the protocol version specified in the
request message is a major upgrade from the highest protocol version supported by the responder.
urn:oasis:names:tc:SAML:2.0:status:RequestVersionTooLow
The SAML responder cannot process the request because the protocol version specified in the
request message is too low.
urn:oasis:names:tc:SAML:2.0:status:ResourceNotRecognized

The resource value provided in the request message is invalid or unrecognized.

urn:oasis:names:tc:SAML:2.0:status:TooManyResponses

The response message would contain more elements than the SAML responder is able to return.

urn:oasis:names:tc:SAML:2.0:status:UnknownAttrProfile

An entity that has no knowledge of a particular attribute profile has been presented with an attribute
drawn from that profile.

urn:oasis:names:tc:SAML:2.0:status:UnknownPrincipal

The responding provider does not recognize the principal specified or implied by the request.

urn:oasis:names:tc:SAML:2.0:status:UnsupportedBinding

The SAML responder cannot properly fulfill the request using the protocol binding specified in the
request.

The following schema fragment defines the <StatusCode> element and its StatusCodeType complex
type:
<element name="StatusCode" type="samlp:StatusCodeType"/>
<complexType name="StatusCodeType">
<sequence>
<element ref="samlp:StatusCode" minOccurs="0"/>
</sequence>
<attribute name="Value" type="anyURI" use="required"/>
</complexType>

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 41 of 86

1707 3.2.2.3 Element <StatusMessage>

1708 The <StatusMessage> element specifies a message that MAY be returned to an operator:

1709 The following schema fragment defines the <StatusMessage> element:

1710 <element name="StatusMessage" type="string"/>

1711 3.2.2.4 Element <StatusDetail>

1712 The <StatusDetail> element MAY be used to specify additional information concerning the status of
1713 the request. The additional information consists of zero or more elements from any namespace, with no
1714 requirement for a schema to be present or for schema validation of the <StatusDetail> contents.

1715 The following schema fragment defines the <StatusDetail> element and its StatusDetailType
1716 complex type:

1717 <element name="StatusDetail" type="samlp:StatusDetailType"/>

1718 <complexType name="StatusDetailType">

1719 <sequence>

1720 <any namespace="##any" processContents="1lax" minOccurs="0"
1721 maxOccurs="unbounded" />

1722 </sequence>

1723 </complexType>

1724 3.3 Assertion Query and Request Protocol

1725 This section defines messages and processing rules for requesting existing assertions by reference or
1726 querying for assertions by subject and statement type.

1727 3.3.1 Element <AssertionIDRequest>

1728 If the requester knows the unique identifier of one or more assertions, the <AssertionIDRequest>
1729 message element can be used to request that they be returned in a <Response> message. The

1730 <saml:AssertionIDRef> elementis used to specify each assertion to return. See Section 2.3.1 for
1731 more information on this element.

1732 The following schema fragment defines the <AssertionIDRequest> element:

1733 <element name="AssertionIDRequest" type="samlp:AssertionIDRequestType"/>
1734 <complexType name="AssertionIDRequestType">

1735 <complexContent>

1736 <extension base="samlp:RequestAbstractType">

1737 <sequence>

1738 <element ref="saml:AssertionIDRef" maxOccurs="unbounded"/>
1739 </sequence>

1740 </extension>

1741 </complexContent>

1742 </complexType>

1743 3.3.2 Queries

1744 The following sections define the SAML query request messages.

1745 3.3.2.1 Element <SubjectQuery>

1746 The <SubjectQuery> message element is an extension point that allows new SAML queries to be
1747 defined that specify a single SAML subject. Its SubjectQueryAbstractType complex type is abstract and

83 saml-core-2.0-0s 15 March 2005
84 Copyright © OASIS Open 2005. All Rights Reserved. Page 42 of 86

1748
1749

1750
1751

1752
1753
1754
1755
1756
1757
1758
1759
1760
1761

1762

1763
1764
1765

1766
1767
1768

1769
1770

1771

1772
1773
1774

1775

1776
1777
1778

1779
1780
1781
1782

1783
1784
1785
1786

1787
1788
1789
1790

1791
1792

1793

85
86

is thus usable only as the base of a derived type. SubjectQueryAbstractType adds the
<saml :Subject> element (defined in Section 2.4) to RequestAbstractType.

The following schema fragment defines the <SubjectQuery> element and its
SubjectQueryAbstractType complex type:

<element name="SubjectQuery" type="samlp:SubjectQueryAbstractType"/>
<complexType name="SubjectQueryAbstractType" abstract="true">
<complexContent>
<extension base="samlp:RequestAbstractType">
<sequence>
<element ref="saml:Subject"/>
</sequence>
</extension>
</complexContent>
</complexType>

3.3.2.2 Element <AuthnQuery>

The <AuthnQuery> message element is used to make the query “What assertions containing
authentication statements are available for this subject?” A successful <Response> will contain one or
more assertions containing authentication statements.

The <AuthnQuery> message MUST NOT be used as a request for a new authentication using
credentials provided in the request. <AuthnQuery> is a request for statements about authentication acts
that have occurred in a previous interaction between the indicated subject and the authentication authority.

This element is of type AuthnQueryType, which extends SubjectQueryAbstractType with the addition of
the following element and attribute:

SessionIndex [Optional]

If present, specifies a filter for possible responses. Such a query asks the question “What assertions
containing authentication statements do you have for this subject within the context of the supplied
session information?”

<RequestedAuthnContext> [Optional]

If present, specifies a filter for possible responses. Such a query asks the question "What assertions
containing authentication statements do you have for this subject that satisfy the authentication
context requirements in this element?"

In response to an authentication query, a SAML authority returns assertions with authentication
statements as follows:
* Rules given in Section 3.3.4 for matching against the <subject> element of the query identify the
assertions that may be returned.

* If the SessionIndex attribute is present in the query, at least one <AuthnStatement> elementin
the set of returned assertions MUST contain a SessionIndex attribute that matches the
SessionIndex attribute in the query. It is OPTIONAL for the complete set of all such matching
assertions to be returned in the response.

* Ifthe <RequestedAuthnContext> element is present in the query, at least one
<AuthnStatement> element in the set of returned assertions MUST contain an
<AuthnContext> element that satisfies the element in the query (see Section 3.3.2.2.1). It is
OPTIONAL for the complete set of all such matching assertions to be returned in the response.

The following schema fragment defines the <AuthnQuery> element and its AuthnQueryType complex
type:
<element name="AuthnQuery" type="samlp:AuthnQueryType"/>

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 43 of 86

1794
1795
1796
1797
1798
1799
1800
1801
1802
1803

1804

1805
1806
1807

1808

1809
1810
1811

1812

1813
1814

1815
1816
1817
1818
1819

1820
1821

1822
1823
1824

1825
1826
1827

1828
1829
1830

1831
1832

1833
1834
1835
1836
1837
1838
1839
1840
1841
1842

87
88

<complexType name="AuthnQueryType">
<complexContent>
<extension base="samlp:SubjectQueryAbstractType">
<sequence>
<element ref="samlp:RequestedAuthnContext" minOccurs="0"/>
</sequence>
<attribute name="SessionIndex" type="string" use="optional"/>
</extension>
</complexContent>
</complexType>

3.3.2.2.1 Element <RequestedAuthnContext>

The <RequestedAuthnContext> element specifies the authentication context requirements of
authentication statements returned in response to a request or query. Its RequestedAuthnContextType
complex type defines the following elements and attributes:

<saml:AuthnContextClassRef> or <saml:AuthnContextDeclRef>[One or More]

Specifies one or more URI references identifying authentication context classes or declarations.
These elements are defined in Section 2.7.2.2. For more information about authentication context
classes, see [SAMLAuthnCxt].

Comparison [Optional]

Specifies the comparison method used to evaluate the requested context classes or statements, one

of "exact", "minimum", "maximum", or "better". The default is "exact".

Either a set of class references or a set of declaration references can be used. The set of supplied
references MUST be evaluated as an ordered set, where the first element is the most preferred
authentication context class or declaration. If none of the specified classes or declarations can be satisfied
in accordance with the rules below, then the responder MUST return a <Response> message with a
second-level <statusCode> of urn:oasis:names:tc:SAML:2.0:status:NoAuthnContext.

If Comparison is set to "exact" or omitted, then the resulting authentication context in the authentication
statement MUST be the exact match of at least one of the authentication contexts specified.

If Comparison is set to "minimum”, then the resulting authentication context in the authentication
statement MUST be at least as strong (as deemed by the responder) as one of the authentication
contexts specified.

If Comparison is set to "better", then the resulting authentication context in the authentication
statement MUST be stronger (as deemed by the responder) than any one of the authentication contexts
specified.

If Comparison is set to "maximum", then the resulting authentication context in the authentication
statement MUST be as strong as possible (as deemed by the responder) without exceeding the strength
of at least one of the authentication contexts specified.

The following schema fragment defines the <RequestedAuthnContext> element and its
RequestedAuthnContextType complex type:

<element name="RequestedAuthnContext" type="samlp:RequestedAuthnContextType"/>
<complexType name="RequestedAuthnContextType">
<choice>
<element ref="saml:AuthnContextClassRef" maxOccurs="unbounded"/>
<element ref="saml:AuthnContextDeclRef" maxOccurs="unbounded"/>
</choice>
<attribute name="Comparison" type="samlp:AuthnContextComparisonType"
use="optional"/>
</complexType>
<simpleType name="AuthnContextComparisonType">

saml-core-2.0-0s 15 March 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 44 of 86

1843
1844
1845
1846
1847
1848
1849

1850

1851
1852
1853
1854

1855

1856
1857
1858
1859
1860
1861
1862

1863
1864

1865

1866
1867

1868
1869

1870
1871

1872
1873
1874

1875
1876

1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887

89
90

3.3
The

<restriction base="string">
<enumeration value="exact"/>
<enumeration value="minimum"/>
<enumeration value="maximum"/>
<enumeration value="better"/>
</restriction>
</simpleType>

.2.3 Element <AttributeQuery>

<AttributeQuery> element is used to make the query “Return the requested attributes for this

subject.” A successful response will be in the form of assertions containing attribute statements, to the
extent allowed by policy. This element is of type AttributeQueryType, which extends
SubjectQueryAbstractType with the addition of the following element:

<sa

ml:Attribute> [Any Number]

Each <saml :Attribute> element specifies an attribute whose value(s) are to be returned. If no
attributes are specified, it indicates that all attributes allowed by policy are requested. If a given
<saml:Attribute> element contains one or more <saml :AttributeValue> elements, then if
that attribute is returned in the response, it MUST NOT contain any values that are not equal to the
values specified in the query. In the absence of equality rules specified by particular profiles or
attributes, equality is defined as an identical XML representation of the value. For more information on
<saml:Attribute>, see Section 2.7.3.1.

A single query MUST NOT contain two <saml :Attribute> elements with the same Name and
NameFormat values (that is, a given attribute MUST be named only once in a query).

In response to an attribute query, a SAML authority returns assertions with attribute statements as follows:

The
and

Rules given in Section 3.3.4 for matching against the <subject> element of the query identify the
ass