Abstract:
Protocol extensions enable extension-aware SAML requesters and responders to modify protocol behavior in a generic, layered fashion. This specification defines an extension to the SAML V2.0 protocol specification that supports the use of channel bindings in conjunction with SAML profiles. It also includes a new SAML profile that applies the extension to a set of profiles that fit a particular communication pattern.

Status:
This document was last revised or approved by the OASIS Security Services (SAML) TC on the above date. The level of approval is also listed above.
Technical Committee members should send comments on this Work Product to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/security/.
For information on whether any patents have been disclosed that may be essential to implementing this Work Product, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/security/ipr.php).

Citation format:
When referencing this Work Product the following citation format should be used:
[SAML-CB-Ext v1.0]
Notices

Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/policies-guidelines/trademark for above guidance.
Table of Contents

1 Introduction..5
 1.1 Terminology and Notation..5
 1.2 Normative References..6
 1.3 Non-Normative References..7
2 SAML V2.0 Protocol Extension for Channel Bindings...8
 2.1 Required Information..8
 2.2 Overview..8
 2.3 Element <cb:ChannelBindings>...8
 2.4 Processing Rules..9
 2.5 Use Within <saml:Advice>..9
 2.6 Metadata Considerations..9
 2.6.1 Metadata Example..10
3 Use of Protocol Extension with Two-Party Profiles...11
 3.1 Required Information..11
 3.2 Profile Overview...11
 3.3 Profile Description...11
 3.3.1 SAML Request issued by Requesting Entity..11
 3.3.2 Verification of Channel Bindings by Responding Entity..11
 3.3.3 SAML Response issued by Responding Entity..12
 3.4 Use of Metadata...12
 3.5 Security Considerations...12
4 Conformance..13
 4.1 SAML V2.0 Protocol Extension for Channel Bindings...13
 4.2 Use of Protocol Extension with Two-Party Profiles...13
Appendix A Acknowledgments..14
Appendix B Revision History..15
1 Introduction

Channel binding, as described in [RFC5056], is a way of associating the authentication of communicating peers at one layer of the network stack with a secure channel established at a lower level of the stack, such as TLS. This specification describes an extension that facilitates the addition of channel bindings to SAML protocol messages and assertions.

Protocol extensions consist of elements defined for inclusion in the `<samlp:Extensions>` element that modify the behavior of SAML requesters and responders when processing extended protocol messages. The protocol extension defined in this specification allows for the inclusion of channel binding information into SAML requests or responses.

A SAML V2.0 metadata [SAML2Meta] extension attribute is also defined to enable the signaling of channel binding support by particular endpoints.

Finally, a "meta"-profile is presented that acts as an extension for a variety of existing SAML profiles that fit an elementary request/response pattern.

1.1 Terminology and Notation

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in [RFC2119]. These keywords are thus capitalized when used to unambiguously specify requirements over protocol and application features and behavior that affect the interoperability and security of implementations. When these words are not capitalized, they are meant in their natural-language sense.

The term TLS as used in this specification refers to either the Secure Sockets Layer (SSL) Protocol 3.0 [SSL3] or any version of the Transport Layer Security (TLS) Protocol [RFC2246][RFC4346][RFC5246]. As used in this specification, the term TLS specifically does not refer to the SSL Protocol 2.0 [SSL2].

Conventional XML namespace prefixes are used throughout the listings in this specification to stand for their respective namespaces as follows, whether or not a namespace declaration is present in the example:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>XML Namespace</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>cb:</td>
<td>urn:oasis:names:tc:SAML:protocol:ext:channel-binding</td>
<td>This is the SAML V2.0 channel binding extension namespace defined by this document and its accompanying schema.</td>
</tr>
<tr>
<td>saml:</td>
<td>urn:oasis:names:tc:SAML:2.0:assertion</td>
<td>This is the SAML V2.0 assertion namespace defined in the SAML V2.0 core specification [SAML2Core].</td>
</tr>
<tr>
<td>samlp:</td>
<td>urn:oasis:names:tc:SAML:2.0:protocol</td>
<td>This is the SAML V2.0 protocol namespace defined in the SAML V2.0 core specification [SAML2Core].</td>
</tr>
<tr>
<td>md:</td>
<td>urn:oasis:names:tc:SAML:2.0:metadata</td>
<td>This is the SAML V2.0 metadata namespace defined in the SAML V2.0 metadata specification [SAML2Meta].</td>
</tr>
<tr>
<td>S:</td>
<td>http://schemas.xmlsoap.org/soap/envelope/</td>
<td>This is the SOAP 1.1 envelope namespace defined in [SOAP1.1].</td>
</tr>
</tbody>
</table>
| xsd: | http://www.w3.org/2001/XMLSchema | This namespace is defined in the W3C XML Schema specification [Schema1]. In schema
This specification uses the following typographical conventions in text: <ns:Element>, Attribute, Datatype, OtherCode.

This specification uses the following typographical conventions in XML listings:

Listings of XML schemas appear like this.

Listings of XML examples appear like this. These listings are non-normative.

1.2 Normative References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CBReg]</td>
<td>Channel Binding Types Registry, IANA. http://www.iana.org/assignments/channel-binding-types/</td>
</tr>
</tbody>
</table>
1.3 Non-Normative References

http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt

http://www.w3.org/TR/xmldsig-core/

http://www.ietf.org/rfc/rfc5929.txt

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
2 SAML V2.0 Protocol Extension for Channel Bindings

2.1 Required Information

Contact information: security-services-comment@lists.oasis-open.org

Description: Given below.

Updates: None.

2.2 Overview

This extension defines a mechanism for the communication of channel bindings at the SAML protocol layer, along with a SAML metadata extension to assist in the deployment of extended capabilities. This extension allows arbitrarily defined channel binding data to be attached to a SAML request or response message (i.e., any protocol message derived from samlp:RequestAbstractType or samlp:StatusResponseType). The extension can also be used as a SOAP header block for use with more complex profiles.

Specific definitions of channel binding data are out of scope of this specification; the IANA registry can be found at [CBReg].

2.3 Element <cb:ChannelBindings>

The <cb:ChannelBindings> element contains typed, opaque channel bindings that are associated with a SAML request or response. The element includes the following attributes:

Type [optional]

A string that identifies the type of the enclosed channel bindings. Channel binding types are registered by IANA at [CBReg]. For some applications, the type of channel binding in use will be unknown to the layer that creates the extension, so this attribute is optional.

S:actor [optional]

Supports the element's use as a SOAP header block, unused otherwise.

S:mustUnderstand [optional]

Supports the element's use as a SOAP header block, unused otherwise.

The content of this element consists of application- and type-specific channel bindings, base64-encoded [RFC2045]. The element MAY be empty. The actual content of the element may be specified by SAML profiles or other specifications that make use of this extension by defining a “channel binding encoding” specific to their needs. Such specifications MUST ensure that the data is base-64 encoded, usually as a final encoding step.

In the absence of a more specific encoding, an application may require encoding the raw octets of the channel binding data specified by the channel binding type. This is termed the “default” channel binding encoding, used in the absence of a more specific format.

The schema for the <cb:ChannelBindings> element, and its corresponding cb:ChannelBinding-sType complex type, is as follows:

```
<element name="ChannelBindings" type="cb:ChannelBindingsType"/>
<complexType name="ChannelBindingsType">
    <simpleContent>
```

2.4 Processing Rules

This extension is included in a protocol message by placing it in the optional `<samlp:Extensions>` element. All extensions are explicitly deemed optional in SAML, so processing of the extension can never be assumed, absent additional out of band knowledge or subsequent signaling. The SAML V2.0 metadata extension defined in section 2.6 MAY be used to indicate the ability to process this extension at a particular endpoint.

There are no explicit processing requirements associated with this extension, as it is required that other profiles supply them. As a generic matter, when this element is non-empty, a message that contains this extension is considered bound to the specified channel if the message can be authenticated by means other than the specified channel, and if the message recipient can independently verify the channel bindings in a profile-specific manner.

As a simple example, normatively described in section 3, a signed SAML request containing TLS channel bindings [RFC5929] sent to a TLS-enabled endpoint can be bound to the TLS connection if the SAML responder can verify that its channel bindings match that found in the request. More complex scenarios are possible in profiles that involve active intermediaries between SAML entities.

This extension element MAY be empty, in which case it can be used to signal the successful processing/verification of channel bindings supplied by an associated message (typically identified using the `InResponseTo` attribute). For example, a response message could signal the successful verification of channel bindings supplied in the associated request.

2.5 Use Within `<saml:Advice>`

This extension MAY be used within the `<saml:Advice>` element to indicate that an assertion was issued in conjunction with the verification of channel bindings by the issuing authority. Either form (empty or non-empty) MAY be used. All advice elements have optional semantics, and MAY be ignored in establishing assertion validity, but relying parties MAY take into account the presence or absence of this extension in determining whether to accept an assertion.

The use of this extension within an assertion is essentially an optimization to permit signaling that would otherwise occur in a `<samlp:Response>` message to avoid signature duplication. It is analogous in that regard to data such as the `InResponseTo` or `Recipient` attributes found in the `<SubjectConfirmationData>` element.

2.6 Metadata Considerations

SAML metadata MAY be used to indicate support for this protocol extension at particular protocol endpoints, using the extension capabilities of the metadata schema.

Support for this extension is expressed in SAML V2.0 metadata [SAML2Meta] by adding an XML attribute to an element derived from the `md:EndpointType` complex type, indicating that SAML protocol messages sent to that endpoint MAY include this extension, and identifying which types of channel bindings are supported in a whitespace-delineated list.

The following schema fragment defines the `cb:supportsChannelBindings` attribute:

```
<attribute name="supportsChannelBindings">
  <simpleType>
    <extension base="base64Binary">
      <attribute name="Type" type="string"/>
      <attribute ref="S:actor"/>
      <attribute ref="S:mustUnderstand"/>
    </extension>
  </simpleType>
</complexType>
```
2.6.1 Metadata Example

The example below shows a fragment of an `<md:AttributeService>` element that advertises support for this extension. The namespace declaration must be in scope, but the prefix is of course arbitrary.

```xml
<md:AttributeService
    xmlns:cb="urn:oasis:names:tc:SAML:ext:channel-binding"
    cb:supportsChannelBindings="tls-server-end-point" .../>
```
3 Use of Protocol Extension with Two-Party Profiles

3.1 Required Information

Identification: urn:oasis:names:tc:SAML:2.0:profiles:two-party

Contact information: security-services-comment@lists.oasis-open.org

Description: Given below.

Updates: SAML profiles designed around a simple request/response exchange between two parties.

3.2 Profile Overview

A number of SAML profiles exist that define the use of SAML request/response message pairs between a pair of entities communicating directly with each other in a simple manner. Generally such profiles are used with the SAML SOAP Binding [SAML2Bind], though this is not assumed or required. Examples of such profiles include, but are not limited to, the Artifact Resolution, Assertion Query/Request, Name Identifier Mapping, and Single Logout Profiles [SAML2Prof] (the latter in its "back-channel" form).

This profile defines an enhanced variant of all such profiles that relies on the protocol extension defined in section 2 to provide additional security options for SAML entities supporting such profiles by binding the SAML exchange to an secure channel that is established between the parties, but not used for mutual authentication of the SAML exchange.

This is accomplished via the SAML requester attaching channel bindings to its SAML request message. The SAML responder can optionally verify the channel bindings, and adjust its behavior according to local policy (suggested examples are given below). A SAML requester could also adjust its behavior in subsequent communication with the SAML responder over the same channel.

3.3 Profile Description

3.3.1 SAML Request issued by Requesting Entity

A SAML request message is formulated and transmitted in accordance with existing SAML profile and binding requirements, but in the presence of a secure channel for transport of the SAML binding such as TLS, the SAML requester MAY attach one or more channel bindings by including one or more

\[<cb:ChannelBindings> \] extension elements in the SAML request's \[<samlp:Extensions> \] element.

Within each extension element, the Type attribute MUST be set to the channel binding type, and the raw channel binding data MUST be base64-encoded and the result used as the content of the element (the "default" channel binding encoding).

The SAML request MUST be integrity protected and authenticated (obviously by means other than the secure channel), typically via an XML Signature [XMLSig].

3.3.2 Verification of Channel Bindings by Responding Entity

The SAML responder SHOULD examine the \[<cb:ChannelBindings> \] extension element(s), if present in the SAML request, and verify at least one of the channel bindings. In the event of verification failure, the SAML responder MAY return an error/failure response to the requester. It MAY include a second-level status code of:

\[urn:oasis:names:tc:SAML:ext:channel-binding \]
If it chooses not to return an error and proceed, the SAML responder SHOULD take into account the presence or absence of channel bindings in formulating its response. In their absence, the responder MUST NOT assume a secure channel between itself and the requester. A typical example might include choosing between XML Encryption [XMLEnc] and relying on the secure channel for confidentiality.

3.3.3 SAML Response issued by Responding Entity

A SAML response message is formulated and transmitted in accordance with existing SAML profile and binding requirements. If the responder successfully verified channel bindings supplied by the requester, it MUST include at least one `<cb:ChannelBindings>` extension element in the SAML response's `<samlp:Extensions>` element, and/or in an enclosed `<saml:Assertion>`'s `<saml:Advice>` element.

The extension element(s) MAY be empty, but MUST contain a `Type` attribute indicating the type of channel bindings verified. More than one element MAY be included if the responder verified more than one type of channel bindings.

Upon receipt of the response, the SAML requester MAY apply local policy based on the presence or absence of the indication of successful verification of the channel bindings, such as adjusting its own reliance on the channel in subsequent communication.

3.4 Use of Metadata

While use of this extended variant is backwardly compatible with profile endpoints that lack such support, the metadata extension defined in section 2.6 SHOULD be used by SAML responders to indicate support for the extension, and SAML requesters SHOULD make use of the metadata extension content in deciding what type of channel bindings to supply.

3.5 Security Considerations

SAML requesters that attach channel bindings MUST ensure that the responder includes an appropriate indication of successful verification before assuming the presence of a secure channel. Since SAML is not defined in terms of connection-oriented communication, there is no preparatory "establishment" of a security context that would signal the success or failure of the channel binding separately from the SAML communication itself.

Channel bindings MAY be sent without confidentiality protection and knowledge of them is assumed to provide no advantage to an MITM.

The general security considerations of channel bindings [RFC5056] and specific channel binding types [CBReg] also apply.
4 Conformance

4.1 SAML V2.0 Protocol Extension for Channel Bindings

There are no explicit conformance requirements associated with this section, but any SAML implementation conformant with [SAML2Core] is expected to successfully process SAML messages are assertions that contain the extension (as all such extensions are explicitly optional).

4.2 Use of Protocol Extension with Two-Party Profiles

A SAML requester that supports one or more profiles compatible with the variant described in section 3.2 supports the variant/extended version of those same profiles if it conforms to the normative requirements for SAML requesters throughout section 3.

A SAML responder that supports one or more profiles compatible with the variant described in section 3.2 supports the variant/extended version of those same profiles if it conforms to the normative requirements for SAML responders throughout section 3.
Appendix A Acknowledgments

The editors would like to acknowledge the contributions of the OASIS Security Services Technical Committee, whose voting members at the time of publication were:

- Scott Cantor, Internet2
- Thomas Hardjono, M.I.T.
- Rainer Hoerbe, Individual
- Nate Klingenstein, Internet2
- Chad LaJoie, Covisint, a Compuware Company
- Hal Lockhart, Oracle
- Anil, Saldhana, Red Hat

The editor would also like to acknowledge the following contributors:

- Nicolas Williams
- Simon Josefsson, SJD AB
- Venkat Yekkirala, NCSA
Appendix B Revision History

• Working Draft 01 – Initial draft.
• Working Draft 02 – Apply new OASIS template and change filenames.
• Working Draft 03 – Fixes to template and corrected Nate's name.
• Working Draft 04 – Clarify that encoding of CB data is left to profiles, and nail down encoding for the inline profile.
• Working Draft 06 – Same as Working Draft 04, hopefully clearer this time, and updated errata reference.