
[image: image1.png]
searchRetrieve: Part 2. searchRetrieve Operation: APD Binding for SRU 1.2 Version 1.0
Committee Specification 01
13 April 2012
Specification URIs

This version:

http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/cs01/part2-sru1.2/searchRetrieve-v1.0-cs01-part2-sru1.2.doc (Authoritative)
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/cs01/part2-sru1.2/searchRetrieve-v1.0-cs01-part2-sru1.2.html
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/cs01/part2-sru1.2/searchRetrieve-v1.0-cs01-part2-sru1.2.pdf
Previous version:

N/A
Latest version:

http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/searchRetrieve-v1.0-part2-sru1.2.doc (Authoritative)
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/searchRetrieve-v1.0-part2-sru1.2.html
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/searchRetrieve-v1.0-part2-sru1.2.pdf
Technical Committee:

OASIS Search Web Services TC
Chairs:

Ray Denenberg (rden@loc.gov), Library of Congress
Matthew Dovey (m.dovey@jisc.ac.uk), JISC Executive, University of Bristol
Editors:

Ray Denenberg (rden@loc.gov), Library of Congress
Larry Dixson (ldix@loc.gov), Library of Congress
Ralph Levan (levan@oclc.org), OCLC
Janifer Gatenby (Janifer.Gatenby@oclc.org), OCLC
Tony Hammond (t.hammond@nature.com), Nature Publishing Group
Matthew Dovey (m.dovey@jisc.ac.uk), JISC Executive, University of Bristol
Additional artifacts:

This prose specification is one component of a Work Product which also includes:
· XML schemas: http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/cs01/schemas/
· searchRetrieve: Part 0. Overview Version 1.0.
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/cs01/part0-overview/searchRetrieve-v1.0-cs01-part0-overview.html
· searchRetrieve: Part 1. Abstract Protocol Definition Version 1.0.
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/cs01/part1-apd/searchRetrieve-v1.0-cs01-part1-apd.html
· searchRetrieve: Part 2. searchRetrieve Operation: APD Binding for SRU 1.2 Version 1.0. (this document)
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/cs01/part2-sru1.2/searchRetrieve-v1.0-cs01-part2-sru1.2.html
· searchRetrieve: Part 3. searchRetrieve Operation: APD Binding for SRU 2.0 Version 1.0.
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/cs01/part3-sru2.0/searchRetrieve-v1.0-cs01-part3-sru2.0.html
· searchRetrieve: Part 4. APD Binding for OpenSearch Version 1.0.
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/cs01/part4-opensearch/searchRetrieve-v1.0-cs01-part4-opensearch.html
· searchRetrieve: Part 5. CQL: The Contextual Query Language Version 1.0.
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/cs01/part5-cql/searchRetrieve-v1.0-cs01-part5-cql.html
· searchRetrieve: Part 6. SRU Scan Operation Version 1.0.
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/cs01/part6-scan/searchRetrieve-v1.0-cs01-part6-scan.html
· searchRetrieve: Part 7. SRU Explain Operation Version 1.0.
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/cs01/part7-explain/searchRetrieve-v1.0-cs01-part7-explain.html
Related work:

This specification is related to:

· Search/Retrieval via URL. The Library of Congress. http://www.loc.gov/standards/sru/
Abstract:

This document specifies a binding of the OASIS SWS Abstract Protocol Definition to the specification of version 1.2 of the protocol SRU: Search/Retrieve via URL. This is one of a set of documents for the OASIS Search Web Services (SWS) initiative.
Status:

This document was last revised or approved by the OASIS Search Web Services TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/search-ws/.
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/search-ws/ipr.php).
Citation format:

When referencing this specification the following citation format should be used:
[SearchRetrievePt2]
searchRetrieve: Part 2. searchRetrieve Operation: APD Binding for SRU 1.2 Version 1.0. 13 April 2012. OASIS Committee Specification 01. http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/cs01/part2-sru1.2/searchRetrieve-v1.0-cs01-part2-sru1.2.html.
Notices
Copyright © OASIS Open 2012. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

Table of Contents
61
Introduction

61.1
Terminology

61.2
References

61.3
Namespace

72
Overview and Model

72.1
Relationship to Abstract Protocol Definition

72.2
Operation Model

72.3
Data model

82.4
Protocol Model

92.5
Query model

92.6
Result Set Model

102.7
Diagnostic Model

102.8
Explain Model

113
Request Parameters (Summary)

113.1
Actual Request Parameters for this Binding

113.2
Relationship of Actual Parameters to Abstract Parameters

134
Response Elements (Summary)

134.1
Actual Response Elements for this Binding

134.2
Relationship of Actual Elements to Abstract Elements

155
Parameter and Element Descriptions

155.1
startRecord and maximumRecords

155.2
resultSetTTL, and resultSetIdleTime

155.3
numberofRecords

155.4
nextRecordPosition

165.5
resultSetId

165.6
Echoed Request

176
Record Serialization and formatting Parameters

176.1
recordPacking

176.2
recordSchema

176.3
Stylesheet

187
Response Records

18Example

208
Diagnostics

208.1
Diagnostic List

208.2
Diagnostic Data Elements

208.3
Diagnostic Examples

208.3.1
Non-Surrogate Example

218.3.2
Surrogate Example

229
Extensions

229.1
Extension Request Parameter

229.2
Extension Response Element: extraResponseData

229.3
Behavior

239.4
Echoing the Extension Request

2410
Conformance

2410.1
Client Conformance

2410.1.1
Protocol

2410.1.2
Query

2410.1.3
Response Format

2410.1.4
Diagnostics

2410.1.5
Explain

2410.2
Server Conformance

2410.2.1
Protocol

2410.2.2
Query

2510.2.3
Response Format

2510.2.4
Diagnostics

2510.2.5
Explain

26Appendix A.
Acknowledgements

27Appendix B.
SRU 1.2 Bindings to Lower Level Protocol

27B.1 Binding to HTTP GET

27B.1.1 Syntax

27B.1.2 Encoding (Client Procedure)

27B.1.3 Decoding (Server Procedure)

28B.1.4 Example

28B.2 Binding to HTTP POST

28B.3 Binding to HTTP SOAP

28B.3.1 SOAP Requirements

29B.3.2 Parameter Differences

29B.3.3 Example SOAP Request

29B.3.4 WSDL

30Appendix C.
Diagnostics for use with SRU 1.2

32C.1 Notes

1 Introduction

This is one of a set of documents for the OASIS Search Web Services (SWS) initiative.

This document, “searchRetrieve: Part 1.SearchRetrieve Operation: Binding for SRU 1.2” is the specification of version 1.2 of the protocol SRU: Search/Retrieve via URL.

This specification is intended to be compatible with the specification at http://www.loc.gov/standards/sru/specs/
The set of documents includes the Abstract Protocol Definition (APD) for searchRetrieve operation, which presents the model for the SearchRetrieve operation and serves as a guideline for the development of application protocol bindings describing the capabilities and general characteristic of a server or search engine, and how it is to be accessed.

The collection of documents also includes three bindings. This document is one of the three.

Scan, a companion protocol to SRU, supports index browsing, to help a user formulate a query. The Scan specification is also one of the documents in this collection.

Finally, the Explain specification, also in this collection, describes a server’s Explain file, which provides information for a client to access, query and process results from that server.

The set of documents in this collection of specifications are:

1. Overview

2. APD

3. SRU1.2 (this document)

4. SRU2.0
5. OpenSearch
6. CQL
7. Scan

8. Explain
1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

1.2 References

All references for the set of documents in this collection are supplied in the Overview document:

searchRetrieve: Part 0. Overview Version 1.0

http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/csd01/part0-overview/searchRetrieve-v1.0-csd01-part0-overview.doc

1.3 Namespace

All XML namespaces for the set of documents in this collection are supplied in the Overview document: searchRetrieve: Part 0. Overview Version 1.0

http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/csd01/part0-overview/searchRetrieve-v1.0-csd01-part0-overview.doc.
2 Overview and Model

2.1 Relationship to Abstract Protocol Definition

The APD defines abstract request parameters and abstract response elements. A binding lists those abstract parameters and elements applicable to that binding and indicates the corresponding actual name of the parameter or element to be transmitted in a request or response.

Example.

The APD defines the abstract parameter: startPosition as “The position within the result set of the first item to be returned. “
And this specification refers to that abstract parameter and notes that its name, as used in this specification is ‘startRecord’. Thus the request parameter ‘startRecord’ in this specification represents the abstract parameter startPosition in the APD.
Different bindings may use different names to represent this same abstract parameter, and its semantics may differ across those bindings as the binding models differ. It is the responsibility of the binding to explain these differences in terms of their respective models.
2.2 Operation Model

This specification defines the protocol SRU: Search/Retrieve via URL. Different bindings may define different protocols for search/retrieve. The SRU protocol defines a request message (sent from an SRU client to an SRU server) and a response message (sent from the server to the client). This transmission of an SRU request followed by an SRU response is called a SearchResponse operation.

 For the SRU protocol, three operations are defined:

1. SearchResponse Operation. The SearchResponse operation is defined by the SRU protocol, which is this specification.

2. Scan Operation.

3. Explain Operation. See Explain Model below.

2.3 Data model

A server exposes a database for access by a remote client for purposes of search and retrieval. The database is a collection of units of data, each referred to as an abstract record. In this model there is a single database at any given server.

Associated with a database are one or more formats that the server may apply to an abstract record, resulting in an exportable structure referred to as a response record.
Note:
The term record is often used in place of “abstract record” or “response record” when the meaning is clear from the context or when the distinction is not important.

Such a format is referred to as a record schema. It represents a common understanding shared by the client and server of the information contained in the records of the database, to allow the transfer of that information. It does not represent nor does it constrain the internal representation or storage of that information at the server.

	Relationship of Data Model to Abstract Model

 The data model in the APD says that a “datastore is a collection of units of data. Such a unit is referred to as an abstract item…”.

In this binding:

· A datastore is referred to as a database.

· An item is referred to as a record.

The APD further notes that “Associated with a datastore are one or more formats that the server may apply to an abstract item, resulting in an exportable structure referred to as a response Item. Such a format is referred to as a response item type or item type.”

In this Binding:
· An item type is referred to as a record schema.

2.4 Protocol Model

The protocol model assumes these conceptual components:
· The client application (CA),

· the SRU protocol module at the client (SRUP/C),
· the Lower Level Protocol (LLP)
· the SRU protocol module at the server (SRUP/S),
· the search engine at the server (SE).
For modeling purposes this standard assumes but does not prescribe bindings between the CA and SRUP/C and between SRUP/S and SE, as well as between each of SRUP/C and SRUP/S and LLP; for examples of the latter two see Bindings to Lower Level Protocols. The conceptual model of protocol interactions is as follows:

· At the client system the SRUP/C accepts a request from the CA, formulates a searchRetrieve protocol request (PRQ) and passes it to the LLP.

· Subsequently at the server system the LLP passes the request to the SRUP/S which interacts with the SE, forms a searchRetrieve protocol response (PRS), and passes it to the LLP.
· At the client system, the LLP passes the response to the SRUP/C which presents results to the CA.
The protocol model is described diagrammatically in this picture.

[image: image2.emf]

1

1. CA passes a request to SRUP/C.

2. SRUP/C formulates a PRQ and passes it to LLP.

3. LLP passes the PRQ to SRUP/S.
4. SRUP/S interacts with SE to form a PRS.
5. The PRS is passed to the LLP.
6. LLP passes the PRS to SRUP/C.
7. SRUP/C presents results to CA
Processing Model

A client sends a searchRetrieve request to a server. The request includes request parameters including a query to be matched against the database at the server. The server processes the query, creating a result set of records that match the query.

The request also indicates the desired number of records to be included in the response and includes the identifier of a record schema for transfer of the records in the response, as well as the identifier of a response schema for transfer of the entire response (including all of the response records).

The response includes records from the result set, diagnostic information, and a result set identifier that the client may use in a subsequent request to retrieve additional records.

2.5 Query model

The query language to be used for SRU version 1.2 is the Contextual Query Language, CQL. The following is intended as only a very cursory overview of CQL’s capabilities; for details, consult the CQL specification.

A CQL query consists of a single search clause or multiple search clauses connected by Boolean operators, AND, OR, or AND-NOT. A search clause may include an index, relation, and search term (or a search term alone where there are rules to infer the index and relation). Thus for example “title = dog” is a search clause in which “title” is the index, “=” is the relation, and “dog” is the search term. “Title = dog AND subject = cat” is a query consisting of two search clauses linked by a Boolean operator AND, as is “dog AND cat”. CQL also supports proximity and sorting. For example, “cat prox/unit=paragraph hat” is a query for records with “cat” and “hat” occurring in the same paragraph. “title = cat sortby author” requests that the results of the query be sorted by author.

2.6 Result Set Model

This is a logical model; support of result sets is neither assumed nor required by this standard. There are applications where result sets are critical and applications where result sets are not viable.

When a query is processed, a set of matching records is selected and that set is represented by a result set maintained at the server. The result set, logically, is an ordered list of references to the records. Once created, a result set cannot be modified; any process that would somehow change a result set is viewed logically to instead create a new result set. (For example, an existing result set may be sorted. In that case, the existing result set is logically viewed to be deleted, and a new result set – the sorted set - created.) Each result set is referenced via a unique identifying string, generated by the server when the result set is created.

From the client point of view, the result set is a set of abstract records each referenced by an ordinal number, beginning with 1.The client may request a given record from a result set according to a specific format. For example the client may request record 1 in the Dublin Core format, and subsequently request record 1 in the MODS [7] format. The format in which records are supplied is not a property of the result set, nor is it a property of the abstract records as a member of the result set; the result set is simply the ordered list of abstract records. How the client references a record in the result set is unrelated to how the server may reference it.
The records in a result set are not necessarily ordered according to any specific or predictable scheme. The server determines the order of the result set, unless it has been created with a request that includes a sort specification. (In that case, only the final sorted result set is considered to exist, even if the server internally creates a temporary result set and then sorts it. The unsorted, temporary result set is not considered to have ever existed, for purposes of this model.) In any case, the order must not change. (As noted above, if a result set is created and subsequently sorted, a new result set must be created.)

Thus, suppose an abstract record is deleted or otherwise becomes unavailable while a result set which references that record still exists. This MUST not cause re-ordering. For example, if a client retrieves records 1 through 3, and subsequently record 2 becomes unavailable, if the server again requests record 3, it must be the same record 3 that was returned as record 3 in the earlier operation. (“Same record” does not necessarily mean the same content; the record’s content may have changed.) If the server requests record 2 (no longer available) the server should supply a surrogate diagnostic (see Diagnostic Model) in place of the response record for record 2.
	Relationship of Result Set Model to Abstract Model

The result set model for SRU 1.2 is as described in the Abstract Protocol Definition, with the following exceptions:

· Addition of the preceding paragraph (beginning with “when a result set record becomes unavailable…)”.

· The APD says “A server might support requests by record … or it may instead support requests by group. It may support one form only or both.” That sentence has been deleted. In SRU requests are by record; groups are not supported.

2.7 Diagnostic Model

A server supplies diagnostics in the response as appropriate. A diagnostics is fatal' or non-fatal. A fatal diagnostic is generated when the execution of the request cannot proceed and no results are available. For example, if the client supplied an invalid query there might be nothing that the server can do. A non-fatal diagnostic is one where processing may be affected but the server can continue. For example if a particular record is not available in the requested schema but others are, the server may return the ones that are available rather than failing the entire request.

Non-fatal diagnostics are further divided into two categories: 'surrogate' and 'non-surrogate'. Surrogate diagnostics take the place of a record (as described in the Result Set Model). Non-surrogate, non-fatal diagnostics are diagnostics saying that while some or all the entries are available, something may have gone wrong; for example the requested sorting algorithm might not be available. Or, it may be just a warning. See Diagnostics.

2.8 Explain Model
Every SRU server provides an associated Explain record. The standard requires that this record be retrievable as the response of an HTTP GET at the base URL for SRU server. The Explain record for a serve may be obtained from other sources as well. An SRU client may retrieve this record which provides information about the server’s capabilities. The client may use the information in the Explain record to self-configure and provide an appropriate interface to the user.

The Explain record provides such details as query types supported, CQL context sets (and for each context set indexes supported), diagnostic sets, record schemas, sorting capabilities, specification of defaults, and other details. It also includes sample queries, and conditions of use (for example mandatory display of copyright and syndication rights).
3 Request Parameters (Summary)

As noted at the beginning of this document, the APD defines abstract request parameters. A binding, such as this specification, lists those abstract parameters and indicates the corresponding actual names of the parameter to be transmitted in a request. Below, the actual parameters for this binding are listed, and following that, the binding of each parameter to its corresponding abstract parameter in the APD.

3.1 Actual Request Parameters for this Binding

The following table provides a summary of the actual request parameters defined in this binding,.

 Table 1: Summary of Request Parameters
	Actual Parameter PRIVATE
Name
	Occurrence
	Reference/Description

	operation
	Mandatory, non repeatable
	The string: 'searchRetrieve'.

	version
	mandatory, non repeatable
	The string ‘1.2’.

	query
	Mandatory, non repeatable
	A query expressed in CQL.

	startRecord
	optional, non repeatable
	See startRecord and maximumRecords.

	maximumRecords
	optional, non repeatable
	

	recordPacking
	optional, non repeatable
	See recordPacking.

	recordSchema
	optional, non repeatable
	See recordSchema.

	resultSetTTL
	optional, non repeatable
	See resultSetTTL and resultSetIdleTime.

	stylesheet
	optional, non repeatable
	See stylesheet.

	Extension Parameters
	optional
	See Extensions

3.2 Relationship of Actual Parameters to Abstract Parameters

The following table summarizes the relationship of actual parameters to abstract parameters defined in the APD. In the first two columns are shown abstract parameters and their corresponding actual parameters for those abstract parameters that have corresponding actual parameters in this binding. The third column shows abstract parameters for which no corresponding actual parameters are defined for this binding. The fourth column lists new parameters defined for this binding, that is, for which there are no corresponding abstract parameters.

Table 2: Relationship of Actual Parameters to Abstract Parameters

	Abstract Parameter
	Corresponding Actual Parameter
	Excluded Abstract Parameters
	Additional Actual Parameters

	Query
	Query
	
	

	startPosition
	startRecord
	
	

	MaximumItems
	maximumRecords
	
	

	responseItemType
	recordSchema
	
	

	
	
	SortOrder
	

	
	
	responseFormat
	

	
	
	Group
	

	
	
	
	operation

	
	
	
	version

	
	
	
	recordPacking

	
	
	
	resultSetTTL

	
	
	
	stylesheet

	
	
	
	Extension parameters

4 Response Elements (Summary)

The APD defines abstract response elements. Binding list those abstract elements and indicate the corresponding actual names of the parameter to be transmitted in a response. Below, the actual elements for this binding are listed, and following that, the binding of each elements to its corresponding abstract element in the APD.
4.1 Actual Response Elements for this Binding

The following table describes the top-level XML elements in the response.

Table 3: Summary of Actual Response Elements

	Actual Element PRIVATE
Name
	Type
	Occurrence
	Restrictions/Values/ Description

	<version>
	xs:string
	Mandatory, non-repeatable
	` The string ‘1.2’.

	<numberOfRecords>
	xs:integer
	Mandatory, non-repeatable
	See numberOfRecords

	<resultSetId>
	xs:string
	Optional, non-repeatable
	See resultSetId

	<resultSetIdleTime>
	xs:integer
	Optional, non-repeatable
	see resultSetTTL and resultSetIdleTime.

	<records>
	structured
	Optional, repeatable
	see records

	<nextRecordPosition>
	xs:integer
	Optional, non-repeatable
	see nextRecordPosition

	<diagnostics>
	structured
	Optional, non-repeatable
	see diagnostics (This element applies to non-surrogate diagnostics.)

	<extraResponseData>
	structured
	Optional, non-repeatable
	See Extensions

	<echoedSearch

 RetrieveRequest>
	structured
	Optional, non-repeatable
	see Echoed Request

4.2 Relationship of Actual Elements to Abstract Elements

The following table summarizes the relationship of actual elements to abstract elements defined in the APD. In the first two columns are shown abstract elements and their corresponding actual elements for those abstract elements that have corresponding actual elements in this binding. The third column shows abstract elements for which no corresponding actual elements are defined for this binding. The fourth column lists new elements defined for this binding, that is, for which there are no corresponding abstract elements.

Table 4: Relationship of Actual Elements to Abstract Elements

	Abstract Element
	Corresponding Actual element
	Excluded Abstract Elements
	Additional Actual Elements

	numberOfItems
	numberOfRecords
	
	

	resultSetId
	resultSetId
	
	

	item
	record
	
	

	nextPosition
	nextRecordPosition
	
	

	diagnostics
	diagnostics
	
	

	echoedRequest
	echoedSearch

RetrieveRequest
	
	

	
	
	numberOfGroups
	

	
	
	nextGroup
	

	
	
	
	version

	
	
	
	resultSetIdleTime

	
	
	
	extraResponseData

5 Parameter and Element Descriptions

All of the parameters and elements are described in this and the following few sections.

· This section:
· Describes basic parameters and elements.

· Diagnostics:

· Describes the <diagnostics> element.

· Extensions

· describes extension request parameters and response element <extraResponseData>:

· Echoed Request
· describes the element <echoedSearchRetrieveRequest>
· Record Serialization and formatting Parameters and Elements
· Describes the recordPacking, recordSchema, and stylesheet parameters, and the <records> element.
5.1 startRecord and maximumRecords

The client requests that the server include a range of result set records in the response, beginning with startRecord and the number of records supplied is not to exceed maximumRecords.

startRecord is a positive integer, optional, and its default if omitted is 1. maximumRecords is a non-negative integer, optional, and if omitted, the server may choose any value.

 The server may return less than the number of records specified by maximumRecords, for example if there are fewer matching records than requested, but MUST NOT return more.

5.2 resultSetTTL, and resultSetIdleTime

The client may request, via parameter resultSetTTL, that the server maintain the result set to be created for a specified period of time (in seconds). The server may choose not to fulfill this request, and may respond with a different value, via the response element resultSetIdleTime.

The response element <resultSetIdleTime> is a good-faith estimate by the server of the idle time, in seconds. That is, the server projects (but does not guarantee) that the result set will remain available and unchanged (both in content and order) until there is a period of inactivity exceeding this idle time. The idle time must be a positive integer, and should not be so small that a client cannot realistically reference the result set again. If the server does not intend that the result set be referenced, it should omit the result set identifier in the response.

<resultSetIdleTime> is independent (from a protocol point of view) of resultSetTTL. It may be less-than, equal-to, or greater-than resultSetTTL, and may be supplied or omitted regardless of whether resultSetTTL is supplied or omitted.

5.3 numberofRecords

The server reports the size of the result set via the response element <numberOfRecords>. If the query fails, its value MUST be zero.

5.4 nextRecordPosition
When the last record in the response is not the last result set record, the response may include the element <nextRecordPosition> whose value is the ordinal position of the next result set record following the final included record. If there are no remaining records, this element MUST be omitted.
5.5 resultSetId
The server may supply the identifier of the result set created by the current operation via the response element <resultSetId>. Its purpose is to allow the result set to be referenced in a subsequent request..

5.6 Echoed Request

Very thin clients, such as a web browser with a stylesheet, may not have the facility to record the query that generated the response it has just received. The server may thus echo the request back to the client within the response. There are no request elements associated with this functionality.

The response element <echoedSearchRetrieveRequest> includes subelements corresponding to request parameters, using the same name.

Echoed Request Example

<echoedSearchRetrieveRequest>

 <version>1.2</version>

 <query>dc.title = dinosaur</query>

 <recordSchema>mods</recordSchema>

 <xQuery>

 <searchClause xmlns="http://www.loc.gov/zing/cql/xcql/">

 <index>dc.title</index>

 <relation>

 <value>=</value>

 </relation>

 <term>dinosaur</term>

 </searchClause>

 </xQuery>

 <baseUrl>http://z3950.loc.gov:7090/voyager</baseUrl>

</echoedSearchRetrieveRequest>
In addition to the echoed parameters, note the sub-elements <xQuery> and <baseUrl>.
<xQuery> represents an XCQL rendering of the query. (See XCQL Annex of CQL specification.)

Note: This has two benefits.

· The client can use XSLT or other XML manipulation to modify the query without having a CQL query parser.

· The server can return extra information specific to the clauses within the query.
<baseURL> allows the client to reconstruct queries by simple concatenation, or retrieve the Explain document to fetch additional information such as the title and description to include in the results presented to the user.

6 Record Serialization and formatting Parameters

6.1 recordPacking
In order that records which are not well formed do not break the entire message, it is possible to request that they be transferred as a single string with the <, > and & characters escaped to their entity forms. Moreover some toolkits may not be able to distinguish record XML from the XML that forms the response. However, some clients may prefer that the records be transferred as XML in order to manipulate them directly with a stylesheet that renders the records and potentially also the user interface.

This distinction is made via the request parameter recordPacking. If the value of the parameter is 'string', then the server should escape the record before transferring it. If the value is 'xml', then it should embed the XML directly into the response. Either way, the data is transferred within the 'recordData' field. If the server cannot comply with this packing request, then it MUST return a diagnostic.

6.2 recordSchema
The request Parameter recordSchema is the XML schema of the records to be supplied in the response. The value of the parameter is the short name that the server assigns to the identifier for the schema, as listed in the server’s Explain file. The default value if not supplied is determined by the server.

For example, for the MODS Schema Version 3.3 the identifier is info:srw/schema/1/mods-v3.3, as shown in the table at http://www.loc.gov/standards/sru/resources/schemas.html and the short name might (but need not) be ‘mods’. (Note: schema identifiers are not restricted to those in this table.)

The server MUST supply records in the requested schema only. If the schema is unknown or a record cannot be rendered in that schema, then the server MUST return a diagnostic:

· If the schema is unknown, the server should supply a non-surrogate (fatal) diagnostic: info:srw/diagnostic/1/66: “Unknown schema for retrieval”.

· If an individual record cannot be rendered in the requested schema, the server should supply a surrogate (non-fatal) diagnostic in place of the record: info:srw/diagnostic/1/67: “Record not available in this schema”.

6.3 Stylesheet

The request parameter stylesheet is a URL for a stylesheet. The client requests that the server simply return this URL in the response, in the href attribute of the xml-stylesheet processing instruction before the response xml. (It is likely that the type will be XSL, but not necessarily so.) If the server cannot fulfill this request it must supply a non-surrogate diagnostic .

The purpose is to allow a thin client to turn the response XML into a natively renderable format, often HTML or XHTML. This allows a web browser or other application capable of rendering stylesheets to act as a dedicated client without requiring any further application logic.

Example

http://z3950.loc.gov:7090/voyager?version=1.2&operation=searchRetrieve

 &stylesheet=/master.xsl&query=dinosaur
This requests the server to include the following as beginning of the response:

<?xml version="1.0"?>

 <?xml-stylesheet type="text/xsl" href="/master.xsl"?>

 <sru:searchRetrieveResponse ...
7 Response Records

The response element <records> contains the one or more <record> and surrogate <diagnostic> elements. The <diagnostic> elements occurring within the <records> element represent surrogate diagnostics. These are describes in Diagnostics. Each <record> element is structured into the elements shown in the following table.

Table 5: Structure of the <Record> Element
	Element PRIVATE

	Type
	Occurrence
	Description

	<recordSchema>
	xs:string
	mandatory
	The URI identifier of the XML schema in which the record is encoded. Although the request may use the server's assigned short name, the response must always be the full URI.

	<recordPacking>
	xs:string
	mandatory
	'string' or 'xml'.

	<recordData>
	<stringOrXmlFragment>
	mandatory
	The actual record.

	<recordIdentifier>
	xs:string
	optional

	An identifier for the record by which it can unambiguously be retrieved in a subsequent operation. For example via the 'rec.identifier' index in CQL.

	<recordPosition>
	xs:positiveInteger
	optional
	The position of the record within the result set.

	<extraRecordData>
	<xmlFragment>
	optional
	Any additional information to be transferred with the record.

Example

An example <records> element with three records:
<records>

<record>

<recordSchema>info:srw/schema/1/dc-v1.1</recordSchema>

<recordPacking>xml</recordPacking>

<recordData>

<srw_dc:dc xsi:schemaLocation="info:srw/schema/1/dc-schema
 http://www.loc.gov/standards/sru/resources/dc-schema.xsd">

<title>Fay Vincent Oral History Project collection [videorecording] /</title>

<creator>Vincent, Fay, interviewer.</creator>

<type>Oral histories. aat</type>

<language>eng</language>

<subject>African American baseball players--Interviews.</subject>

</srw_dc:dc>

</recordData>

<recordPosition>1</recordPosition>

</record>

<record>

<recordSchema>info:srw/schema/1/dc-v1.1</recordSchema>

<recordPacking>xml</recordPacking>

<recordData>

<srw_dc:dc xsi:schemaLocation="info:srw/schema/1/dc-schema
 http://www.loc.gov/standards/sru/resources/dc-schema.xsd">

<title>Whitey Ford : a biography /</title>

<creator>Coverdale, Miles.</creator>

<type>text</type>

<publisher>Jefferson, N.C. : McFarland and Co.,</publisher>

<date>c2006.</date>

<language>eng</language>

<description>Includes bibliographical references (p. 233) and index.</description>

<subject>Ford, Whitey, 1928-</subject>

<identifier>http://www.loc.gov/catdir/toc/ecip0610/2006009578.html</identifier>

<identifier>URN:ISBN:0786425148 (pbk. : alk. paper)</identifier>

</srw_dc:dc>

</recordData>

<recordPosition>2</recordPosition>

</record>
<record>

<recordSchema>info:srw/schema/1/dc-v1.1</recordSchema>

<recordPacking>xml</recordPacking>

<recordData>

<srw_dc:dc xsi:schemaLocation="info:srw/schema/1/dc-schema
 htp://www.loc.gov/standards/sru/resources/dc-schema.xsd">

<title>Whitey Ford sings the blues [sound recording] /</title>

<creator>Everlast (Musician) prf</creator>

<type>sound recording</type>

<publisher>New York, NY : Tommy Boy,</publisher>

<date>p1998.</date>

<language>eng</language>

<description>Rap and rock music.</description>

<description>Everlast (vocals, guitars, keyboard, scratches); with assisting musicians </description>

<description>"Parental advisory, explicit lyrics"--Container.</description>

<description>Compact disc.</description>

<description>The white boy is back </description>

<subject>Rap (Music)</subject>

<subject>Rock music--1991-2000.</subject>

</srw_dc:dc>

</recordData>

<recordPosition>3</recordPosition>

</record>
</records>
8 Diagnostics

Diagnostics are provided in SRU responses both in the response element <diagnostics>, and as a subelement of the response element <records>.

A diagnostics is fatal' or non-fatal. Non-fatal diagnostics are further divided into two categories: surrogate and non-surrogate. See the diagnostic model; to summarize: A surrogate diagnostic replaces a record; a non-surrogate diagnostic refers to the response at large and is supplied in addition and external to the records. A non-surrogate diagnostic may be fatal or non-fatal. So three combinations are possible:

· surrogate, non-fatal diagnostic (in element <records>)

· non-surrogate, non-fatal diagnostic (in element <diagnosics>)

· non-surrogate, fatal diagnostic (in element <diagnosics>)

(“Fatal, surrogate” is not a valid combination.)

8.1 Diagnostic List

See Diagnostics for use with SRU 1.2. This diagnostic list has the namespace: info:srw/diagnostic/1. For example, the URI info:srw/diagnostic/1/10 identifies the diagnostic “Query syntax error”.

 Diagnostics used in SRU 1.2 need not be limited to this list, nor need this list be used exclusively for SRU 1.2.

8.2 Diagnostic Data Elements

The diagnostic schema for SRU 1.2 has three elements, 'uri', 'details' and 'message'.

The <uri> element is mandatory and is a URI identifying the particular diagnostic. <details> is optional and contains information specific to the diagnostic. <message>, also optional, contains a human readable message to be displayed.

Table 6: Elements of the Diagnostic Schema

	Element
	Type
	Occurrence
	Description

	<uri>
	xs:anyURI
	Mandatory
	The diagnostic's identifying URI.

	<details>
	xs:string
	Optional
	Any supplementary information available, often in a format specified by the diagnostic

	<message>
	xs:string
	Optional
	A human readable message to display to the end user. The language and style of this message is determined by the server, and clients should not rely on this text being appropriate for all situations.

8.3 Diagnostic Examples

These examples are based on the format described above.
8.3.1 Non-Surrogate Example

Non-surrogate, fatal diagnostic:

<diagnostics>

 <diagnostic xmlns=”info:srw/xmlns/1/sru-1-2-diagnostic">

 <uri>info:srw/diagnostic/1/38</uri>

 <details>10</details>

 <message>Too many boolean operators, the maximum is 10.

 Please try a less complex query.</message>

 </diagnostic>

 </diagnostics>
8.3.2 Surrogate Example

Surrogate, non-fatal diagnostic:

<records>

 <record>

 <recordSchema> info:srw/schema/1/diagnostics-v1.1</recordSchema>

 <recordData>

 <diagnostic xmlns=" info:srw/xmlns/1/sru-1-2-diagnostic">

 <uri>info:srw/diagnostic/1/65</uri>

 <message>Record deleted by another user.</message>

 </diagnostic>

 </recordData>

 </record> ...

<records>
9 Extensions

Both in the request and in the response, additional information may be provided, in the request by an extension parameter (whose name is constructed as described next), and in the response by the <extraResponseData> element.

9.1 Extension Request Parameter
An extension parameter takes on the name of the extension. It must begin with 'x-' : lower case x followed by hyphen. (SRU will never define a parameter with a name beginning with 'x-').

The extension definition MUST supply a namespace. It is recommended that the extension name be 'x-' followed by an identifier for the namespace, again followed by a hyphen, followed by the name of the element within the namespace.

 Example
http://z3950.loc.gov:7090/voyager?...&x-info4-onSearchFail=scan

Note that this convention does not guarantee uniqueness since the extension name will not include a full URI. The extension owner should try to make the name as unique as possible. If the namespace is identified by an 'info:srw' URI , then the recommended convention is to name the extension "x-infoNNN-XXX" where NNN is the 'info:srw' authority string, and XXX is the name of the extension. Extension names MUST never be assigned with this form except by the proper authority for the given 'info' namespace.

9.2 Extension Response Element: extraResponseData
An extension definition may (but need not) define a response, to be carried via the <extraResponseData> element. The extension definition indicates the element names, from the extension’s namespace, which will carry the response information.

 example:

<sru:extraResponseData>

 <auth:token xmlns:auth="info:srw/extension/2/auth-1.0">

 277c6d19-3e5d-4f2d-9659-86a77fb2b7c8

 </auth:token>

 </sru:extraResponseData>
9.3 Behavior

The response may include extraResponseData for a given extension only if the request included the extension parameter for that extension, and the extension definition defines a response. Thus a response may never include unsolicited extraResponseData. For example the response may contain cost information regarding the query or information on the server or database supplying the results. This data must, however, have been requested.

If the server does not recognize an extension supplied in an extension parameter, it may simply ignore it. (For that matter, if the server does recognize the extension, it may choose to ignore it.) If the particular request requires some confirmation that it has been carried out rather than ignored, then the extension designer should define a response. There may even be an element defined in the response for the server to indicate that it did recognize the request but did not carry it out (and even an indication why). However, the server is never obliged to include a response. Thus though a response may be included in the definition of an extension, it may never be designated as mandatory.

Thus the semantics of parameters in the request may not be modified by extensions, because the client cannot be assured that the server recognizes the extension. On the other hand, the semantics of parts of the response may be modified by extensions, because the client will be aware that the extension has been invoked, because extensions are always invoked by the client: the response semantics may be changed by an extension only if the client specifically requests the change. Even when a client does request a change in response semantics, it should be prepared to receive regular semantics since servers are at liberty to ignore extensions.

9.4 Echoing the Extension Request

 If the server chooses to echo the request (see echoedRequest) it must be able to transform the extension parameter into XML, properly namespaced (the extension parameter name will not transform to a valid element in the SRU namespace). If it encounters an unrecognized element and cannot determine the namespace, the server may either make its best guess as to how to transform the element, or simply not return it at all. It should not, however, add an undefined namespace to the element as this would invalidate the response.

10 Conformance

An SRU 1.2 client or server conforms to this standard if it meets the conditions specified in Client Conformance or Server Conformance respectively.

10.1 Client Conformance

10.1.1 Protocol
The client must implement the protocol model. It must support at least one LLP.
The SRUP/C must be able to:

1. Accept a request from the UA.

2. Assign values to parameters and form Search/Retrieve requests according to the procedures described in the standard.

3. Compose a PRQ and pass it to the LLP.

4. Accept a PRS from the LLP.

5. Decompose the PRS and present information from it to the UA.

10.1.2 Query

The client must be capable of sending a CQL query. At minimum, level 0 must be supported.

10.1.3 Response Format

The client must support the SRU 1.2 schema for the response.

10.1.4 Diagnostics

The client must support the diagnostic schema and be able to present diagnostics received in a PRS to the UA.

10.1.5 Explain

The client must be able to retrieve the Explain record.
10.2 Server Conformance

10.2.1 Protocol
The server must implement the protocol model, it must support at least one LLP.
The SRUP/S must be able to:

1. Accept a PRQ from the LLP.

2. Decompose the PRQ to determine parameter values and interact with the SE as necessary in order to process the request.

3. Assigning values to elements and compose a PRS according to the procedures described in the standard.

4. Pass the response to the LLP.

10.2.2 Query

The server must support CQL queries. At minimum, level 0 must be supported.

10.2.3 Response Format

The server must support Application/sru+xml for the response.

10.2.4 Diagnostics

The server must support the diagnostic schema and be able to present diagnostic information received from the SE.

10.2.5 Explain

The Explain record describing the server must be available at the base URL.
Appendix A. Acknowledgements
Acknowlegements are supplied in the Overview document:

 searchRetrieve: Part 0. Overview Version 1.0
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/csd01/part0-overview/searchRetrieve-v1.0-csd01-part0-overview.doc

Appendix B. SRU 1.2 Bindings to Lower Level Protocol

Normative Annex
B.1 Binding to HTTP GET

This annex describes the construction of an SRU 1.2 http: URL to encode parameter values of the form ‘key=value’. Support for Unicode characters is described.
B.1.1 Syntax

The client sends a request via the HTTP GET method. The request is a URI as described in RFC 3986. Specifically it is an HTTP URL of the form:

<base URL>?<searchpart>

using the standard &-separated key=value encoding for parameters in <searchpart>.

Example

Assume:

· The base URL is ‘z3950.loc.gov:7090’.

· The value of parameter ‘version’ is “1.2”.

· The value of parameter ‘operation’ is ‘”searchRetrieve”.

· The value of parameter ‘query’ is ”dinosaur”.

Then the URL would be:

http://z3950.loc.gov:7090/voyager?version=1.2&operation=searchRetrieve &query=dinosaur

And over the wire goes:

GET /voyager?version=1.2&operation=searchRetrieve&query=dinosaur HTTP/1.1
Host: z3950.loc.gov:7090
B.1.2 Encoding (Client Procedure)

The following encoding procedure is recommended, in particular, to accommodate Unicode characters (characters from the Universal Character Set, ISO 10646) beyond U+007F, which are not valid in a URI.

1. Convert the value to UTF-8.

2. Percent-encode characters as necessary within the value. See rfc 3986 section 2.1.

3. Construct a URI from the parameter names and encoded values.

Note: In step 2, it is recommended to percent-encode every character in a value that is not in the URI unreserved set, that is, all except alphabetic characters, decimal digits, and the following four special characters: dash (-), period (.), underscore (_), tilde (~). By this procedure some characters may be percent-encoded that do not need to be -- For example '?' occurring in a value does not need to be percent encoded, but it is safe to do so.

B.1.3 Decoding (Server Procedure)

1. Parse received request based on '?', '&', and '=' into component parts: the base URL, and parameter names and values.

2. For each parameter:

a. Decode all %-escapes.

b. Treat the result as a UTF-8 string.

B.1.4 Example

Consider the following parameter:

query=dc.title =/word kirkegård

The name of the parameter is "query" and the value is "dc.title =/word kirkegård"

Note that the first '=' (following "query") must not be percent encoded as it is used as a URI delimiter; it is not part of a parameter name or value. The second '=' (preceding the '/') must be percent encoded as it is part of a value.

The following characters must be percent encoded:

· the second '=', percent encoded as %3D

· the '/', percent encoded as %2F

· the spaces, percent encoded as %20

· the 'å'. Its UTF-8 representation is C3A5, two octets, and correspondingly it is represented in a URI as two characters percent encoded as %C3%A5.

The resulting parameter to be sent to the server would then be:

query=dc.title%20%3D%2Fword%20kirkeg%C3%A5rd

B.2 Binding to HTTP POST

Rather than construct a URL, the parameters may be sent via POST.
 The Content-type header MUST be set to

application/x-www-form-urlencoded'
POST has several benefits over GET. Primarily, the issues with character encoding in URLs are removed, and an explicit character set can be submitted in the Content-type HTTP header. Secondly, very long queries might generate a URL for HTTP GET that is not acceptable by some web servers or client. This length restriction can be avoided by using POST.

The response for SRU via POST is identical to that of SRU via GET.

An example of what might be passed over the wire in the request:
POST /voyager HTTP/1.1
Host: z3850.loc.gov:7090
Content-type: application/x-www-form-urlencoded; charset=iso-8859-1
Content-length: 51
version=1.1&operation=searchRetrieve&query=dinosaur

B.3 Binding to HTTP SOAP

SRU via SOAP is a binding to the SOAP recommendation of the W3C. The benefits of SOAP are the ease of structured extensions, web service facilities such as proxying and request routing, and the potential for better authentication systems.

In this transport, the request is encoded in XML and wrapped in some additional SOAP specific elements. The response is the same XML as SRU via GET or POST, but wrapped in additional SOAP specific elements.
B.3.1 SOAP Requirements

The specification adheres to the Web Services Interoperability recommendations.

· SOAP version 1.1 is required. V(ersion 1.2 or higher may be supported.

· The service style is 'document/literal'.

· Messages MUST be inline with no multirefs.

· The SOAPAction HTTP header may be present, but should not be required. If present its value MUST be the empty string. It MUST be expressed as:

SOAPAction: ""

· As specified by SOAP, for version 1.1 the Content-type header MUST be 'text/xml'. For version 1.2 the header value MUST be 'application/soap+xml'. (End points supporting both versions of SOAP as well as SRU via POST thus have three content-type headers to consider.)

B.3.2 Parameter Differences

There are some differences regarding the parameters that can be transported via the SOAP binding.

· The 'operation' request parameter MUST NOT be sent. The operation is determined by the XML constructions employed.

· The 'stylesheet' request parameter MUST NOT be sent. SOAP prevents the use of stylesheets to render the response.

B.3.3 Example SOAP Request
<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP:Body>
 <SRW:searchRetrieveRequest xmlns:SRW="info:srw/xmlns/1/sru ">
 <SRW:query>dinosaur</SRW:query>
 <SRW:startRecord>1</SRW:startRecord>
 <SRW:maximumRecords>1</SRW:maximumRecords>
 <SRW:recordSchema>info:srw/schema/1/mods-v3.0</SRW:recordsSchema>
 </SRW:searchRetrieveRequest>
 </SOAP:Body>
</SOAP:Envelope>

B.3.4 WSDL
WSDL for SOAP support can be found at:

http://www.loc.gov/standards/sru/oasis/schemas/sru-wsdl11.wsdl
The SRU request schema associated with the WSDL can be found at:

http://www.loc.gov/standards/sru/oasis/schemas/sruRequest.xsd
(These locations are unofficial. Official locations will be added when known.)
Appendix C. Diagnostics for use with SRU 1.2
Normative Annex
The diagnostics below are defined for use with the following SRU namespace: info:srw/diagnostic/1. The number in the first column identifies the specific diagnostic within that namespace (e.g., diagnostic 2 below is identified by the uri: info:srw/diagnostic/1/2). The “details format” column specifies what should be returned in the details field. If this column is blank, the format is 'undefined' and the server may return whatever it feels appropriate, including nothing.
	General Diagnostics

Number

Description

Details Format

1

General system error

note
Debugging information (traceback)

2

System temporarily unavailable

note
3

Authentication error

note
4

Unsupported operation

note
5

Unsupported version

note
Highest version supported

6

Unsupported parameter value

note
Name of parameter

7

Mandatory parameter not supplied

note
Name of missing parameter

8

Unsupported Parameter

note
Name of the unsupported parameter

Diagnostics 10-49 reserved for CQL

Diagnostics Relating to Result Sets

Number

Description

Details Format

50

Result sets not supported

note
51

Result set does not exist

note
Result set identifier

52

Result set temporarily unavailable

note
Result set identifier

53

Result sets only supported for retrieval

note
54

Not used.

55

Combination of result sets with search terms not supported

note
56

Not used.

57

Not used.

58

Result set created with unpredictable partial results available

note
59

Result set created with valid partial results available

note
60

Result set not created: too many matching records

note
Maximum number

Diagnostics Relating to Records

Number

Description
Details Format

61

First record position out of range

note
62

Not used.

63

Not used.

64

Record temporarily unavailable

note
65

Record does not exist

note
66

Unknown schema for retrieval

note
Schema URI or short name

67

Record not available in this schema

note
Schema URI or short name

68

Not authorized to send record

note
69

Not authorized to send record in this schema

note
70

Record too large to send

note
Maximum record size

71

Unsupported record packing

note
72

XPath retrieval unsupported

note
73

XPath expression contains unsupported feature

note
Feature

74

Unable to evaluate XPath expression

note
Diagnostics Relating to Explain

Number

Description
Details Format

100

Not used.

101

Not used.

102

Not used.

Diagnostics relating to Stylesheets

Number

Description
Details Format

110

Stylesheets not supported

note
111

Unsupported stylesheet

note
URL of stylesheet

Diagnostics 120-121 reserved for Scan

C.1 Notes

No.

Cat.

Description

Notes/Examples

1

general

General system error

The server returns this error when it is unable to supply a more specific diagnostic. The sever may also optionally supply debugging information.

2

general

System temporarily unavailable

The server cannot respond right now, perhaps because it's in a maintenance cycle, but will be able to in the future.

3

general

Authentication error

The request could not be processed due to lack of authentication.

4

general

Unsupported operation

Currently three operations are defined -- searchRetrieve, explain, and scan. searchRetrieve and explain are mandatory, so this diagnostic would apply only to scan, or in SRU where an undefined operation is sent.

5

general

Unsupported version

Currently only version 1.1 is defined and so this diagnostic has no meaning. In the future, when another version is defined, for example version 1.2, this diagnostic may be returned when the server receives a request where the version parameter indicates 1.2, and the server doesn't support version 1.2.

6

general

Unsupported parameter value

This diagnostic might be returned for a searchRetrieve request which includes the recordPacking parameter with a value of 'xml', when the server does not support that value. The diagnostic might supply the name of parameter, in this case 'recordPacking'.

7

general

Mandatory parameter not supplied

This diagnostic might be returned for a searchRetrieve request which omits the query parameter. The diagnostic might supply the name of missing parameter, in this case 'query'.

8

general

Unsupported Parameter

This diagnostic might be returned for a searchRetrieve request which includes the recordXPath parameter when the server does not support that parameter. The diagnostic might supply the name of unsupported parameter, in this case 'recordXPath'.

50

result set

Result sets not supported

The server cannot create a persistent result set.

51

result set

Result set does not exist

The client asked for a result set in the query which does not exist, either because it never did or because it had expired.

52

result set

Result set temporarily unavailable

The result set exists, it cannot be accessed, but will be able to be accessed again in the future.

53

result set

Result sets only supported for retrieval

Other operations on results apart from retrieval, such as sorting them or combining them, are not supported.

55

result set

Combination of result sets with search terms not supported

Existing result sets cannot be combined with new terms to create new result sets. eg cql.resultsetid = foo not dc.title any fish

58

result set

Result set created with unpredictable partial results available

The result set is not complete, possibly due to the processing being interupted mid way through. Some of the results may not even be matches.

59

result set

Result set created with valid partial results available

All of the records in the result set are matches, but not all records that should be there are.

60

result set

Result set not created: too many matching records

There were too many records to create a persistent result set.

61

records

First record position out of range

For example, if the request matches 10 records, but the start position is greater than 10.

64

records

Record temporarily unavailable

The record requested cannot be accessed currently, but will be able to be in the future.

65

records

Record does not exist

The record does not exist, either because it never did, or because it has subsequently been deleted.

66

records

Unknown schema for retrieval

The record schema requested is unknown. Eg. the client asked for MODS when the server can only return simple Dublin Core

67

records

Record not available in this schema

The record schema is known, but this particular record cannot be transformed into it.

68

records

Not authorized to send record

This particular record requires additional authorisation in order to receive it.

69

records

Not authorized to send record in this schema

The record can be retrieved in other schemas, but the one requested requires futher authorization.

70

records

Record too large to send

The record is too large to send.

71

records

Unsupported record packing

The server supports only one of string or xml, or the client requested a recordPacking which is unknown.

72

records

XPath retrieval unsupported

The server does not support the retrieval of nodes from within the record.

73

records

XPath expression contains unsupported feature

Some aspect of the XPath expression is unsupported. For example, the server might be able to process element nodes, but not functions.

74

records

Unable to evaluate XPath expression

The server could not evaluate the expression, either because it was invalid or it lacks some capability.

110

stylesheet

Stylesheets not supported

The SRU server does not support stylesheets, or a stylesheet was requested from an SRW server.

111

stylesheet

Unsupported stylesheet

This particular stylesheet is not supported, but others may be.

CA

SRUP/C

SE

SRUP/S

 LLP

�1

 3

(PRQ)

 (PRQ) (PR ((PR

4

5 (PRS)

 6 (PRS)

7

Server System

Client System

2 (PRQ)

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 5 of 34
searchRetrieve-v1.0-cs01-part2-sru1.2

13 April 2012
Standards Track Work Product
Copyright © OASIS Open 2012. All Rights Reserved.
Page 1 of 34

