
sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 1 of 154

 1

Solution Deployment Descriptor 2

Specification 1.0 3

OASIS Standard 4

1 September 2008 5

Specification URIs: 6
This Version: 7

http://docs.oasis-open.org/sdd/v1.0/os/sdd-spec-v1.0-os.html 8
http://docs.oasis-open.org/sdd/v1.0/os/sdd-spec-v1.0-os.doc 9
http://docs.oasis-open.org/sdd/v1.0/os/sdd-spec-v1.0-os.pdf 10

Previous Version: 11
http://docs.oasis-open.org/sdd/v1.0/cs01/sdd-spec-v1.0-cs01.html 12
http://docs.oasis-open.org/sdd/v1.0/cs01/sdd-spec-v1.0-cs01.doc 13
http://docs.oasis-open.org/sdd/v1.0/cs01/sdd-spec-v1.0-cs01.pdf 14

Latest Version: 15
http://docs.oasis-open.org/sdd/v1.0/sdd-spec-v1.0.html 16
http://docs.oasis-open.org/sdd/v1.0/sdd-spec-v1.0.doc 17
http://docs.oasis-open.org/sdd/v1.0/sdd-spec-v1.0.pdf 18

Technical Committee: 19
OASIS Solution Deployment Descriptor (SDD) TC 20

Chair(s): 21
Brent Miller, IBM Corporation 22

Editor(s): 23
Julia McCarthy, IBM Corporation 24
Robert Dickau, Macrovision Corporation 25
Merri Jensen, SAS Institute, Inc. 26

Related work: 27
None 28

Declared XML Namespace(s): 29
sdd-common=http://docs.oasis-open.org/sdd/ns/common 30
sdd-pd=http://docs.oasis-open.org/sdd/ns/packageDescriptor 31
sdd-dd=http://docs.oasis-open.org/sdd/ns/deploymentDescriptor 32

Abstract: 33
This specification defines schema for two XML document types: Package Descriptors and 34
Deployment Descriptors. Package Descriptors define characteristics of a package used to deploy 35
a solution. Deployment Descriptors define characteristics of the content of a solution package, 36
including the requirements that are relevant for creation, configuration and maintenance of the 37
solution content. The semantics of the descriptors are fully defined, allowing software 38
implementations to precisely understand the intent of the descriptor authors and to use the 39
information provided in the descriptors to support solution deployment. 40

Status: 41
This document was last revised or approved by the OASIS Solution Deployment Descriptor 42
(SDD) Technical Committee on the above date. The level of approval is also listed above. Check 43

http://docs.oasis-open.org/sdd/v1.0/os/sdd-spec-v1.0-os.html�
http://docs.oasis-open.org/sdd/v1.0/os/sdd-spec-v1.0-os.doc�
http://docs.oasis-open.org/sdd/v1.0/os/sdd-spec-v1.0-os.pdf�
http://docs.oasis-open.org/sdd/v1.0/cs01/sdd-spec-v1.0-cs01.html�
http://docs.oasis-open.org/sdd/v1.0/cs01/sdd-spec-v1.0-cs01.doc�
http://docs.oasis-open.org/sdd/v1.0/cs01/sdd-spec-v1.0-cs01.pdf�
http://docs.oasis-open.org/sdd/v1.0/sdd-spec-v1.0.html�
http://docs.oasis-open.org/sdd/v1.0/sdd-spec-v1.0.doc�
http://docs.oasis-open.org/sdd/v1.0/sdd-spec-v1.0.pdf�
http://docs.oasis-open.org/committees/sdd/�
http://docs.oasis-open.org/sdd/ns/common�
http://docs.oasis-open.org/sdd/ns/packageDescriptor�
http://docs.oasis-open.org/sdd/ns/deploymentDescriptor�

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 2 of 154

the “Latest Version” or “Latest Approved Version” location noted above for possible later revisions 44
of this document. 45
Technical Committee members should send comments on this specification to the Technical 46
Committee’s email list. Others should send comments to the Technical Committee by using the 47
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-48
open.org/committees/sdd/. 49
For information on whether any patents have been disclosed that may be essential to 50
implementing this specification, and any offers of patent licensing terms, please refer to the 51
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-52
open.org/committees/sdd/ipr.php. 53
The non-normative errata page for this specification is located at http://www.oasis-54
open.org/committees/sdd/. 55
 56

http://www.oasis-open.org/committees/sdd/�
http://www.oasis-open.org/committees/sdd/�
http://www.oasis-open.org/committees/sdd/ipr.php�
http://www.oasis-open.org/committees/sdd/ipr.php�
http://www.oasis-open.org/committees/sdd/�
http://www.oasis-open.org/committees/sdd/�

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 3 of 154

Notices 57

Copyright © OASIS® 2007, 2008. All Rights Reserved. 58
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual 59
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website. 60
This document and translations of it may be copied and furnished to others, and derivative works that 61
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, 62
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice 63
and this section are included on all such copies and derivative works. However, this document itself may 64
not be modified in any way, including by removing the copyright notice or references to OASIS, except as 65
needed for the purpose of developing any document or deliverable produced by an OASIS Technical 66
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must 67
be followed) or as required to translate it into languages other than English. 68
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors 69
or assigns. 70
This document and the information contained herein is provided on an "AS IS" basis and OASIS 71
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 72
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY 73
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 74
PARTICULAR PURPOSE. 75
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would 76
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, 77
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to 78
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that 79
produced this specification. 80
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of 81
any patent claims that would necessarily be infringed by implementations of this specification by a patent 82
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR 83
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such 84
claims on its website, but disclaims any obligation to do so. 85
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that 86
might be claimed to pertain to the implementation or use of the technology described in this document or 87
the extent to which any license under such rights might or might not be available; neither does it 88
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with 89
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be 90
found on the OASIS website. Copies of claims of rights made available for publication and any 91
assurances of licenses to be made available, or the result of an attempt made to obtain a general license 92
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee 93
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no 94
representation that any information or list of intellectual property rights will at any time be complete, or 95
that any claims in such list are, in fact, Essential Claims. 96
The name "OASIS", is a trademark of OASIS, the owner and developer of this specification, and should 97
be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and 98
implementation and use of, specifications, while reserving the right to enforce its marks against 99
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance. 100
 101

http://www.oasis-open.org/who/trademark.php�

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 4 of 154

Table of Contents 102

Notices .. 3 103
Table of Contents .. 4 104
1 Introduction ... 9 105

1.1 Terminology .. 9 106
1.2 Purpose ... 9 107
1.3 Scope .. 10 108
1.4 Audience ... 10 109
1.5 How to Read this Document ... 10 110
1.6 Motivation.. 10 111
1.7 Requirements ... 11 112
1.8 XML Namespaces .. 13 113
1.9 Notational Conventions ... 13 114
1.10 General Document Conventions .. 13 115
1.11 Diagram Conventions ... 13 116
1.12 Normative References .. 15 117
1.13 Non-Normative References .. 15 118

2 Solution Deployment Descriptor Overview ... 16 119
2.1 Package and Deployment Descriptors ... 16 120
2.2 Topology ... 16 121
2.3 Content and Artifacts .. 16 122
2.4 Resulting and Changed Resources .. 17 123
2.5 Base, Selectable and Localization Content Hierarchies ... 17 124
2.6 Constraints .. 18 125
2.7 Requirements ... 18 126
2.8 Conditions ... 18 127
2.9 Variables ... 18 128

3 Package Descriptor .. 19 129
3.1 PackageDescriptor ... 19 130

3.1.1 PackageDescriptor Property Summary ... 19 131
3.1.2 PackageDescriptor Property Usage Notes ... 19 132

3.2 DescriptorInfoGroup ... 20 133
3.2.1 DescriptorInfoGroup Property Usage Notes ... 20 134

3.3 PackageIdentityType .. 22 135
3.3.1 PackageIdentityType Property Summary .. 22 136
3.3.2 PackageIdentityType Property Usage Notes .. 22 137

3.4 IdentityType .. 24 138
3.4.1 IdentityType Property Summary .. 24 139
3.4.2 IdentityType Property Usage Notes .. 25 140

3.5 MaintenanceInformationType ... 26 141
3.5.1 MaintenanceInformationType Property Summary ... 26 142
3.5.2 MaintenanceInformationType Property Usage Notes ... 26 143

3.6 FixIdentityType ... 27 144
3.6.1 FixIdentityType Property Summary ... 27 145

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 5 of 154

3.6.2 FixIdentityType Property Usage Notes ... 27 146
3.7 BuildInformationType .. 27 147

3.7.1 BuildInformationType Property Summary ... 28 148
3.7.2 BuildInformationType Property Usage Notes .. 28 149

3.8 ManufacturerType ... 28 150
3.8.1 ManufacturerType Property Summary .. 28 151
3.8.2 ManufacturerType Property Usage Notes ... 28 152

3.9 LocationType .. 29 153
3.9.1 LocationType Property Summary .. 29 154
3.9.2 LocationType Property Usage Notes .. 29 155

3.10 VersionType .. 29 156
3.11 ContentsType ... 29 157

3.11.1 ContentsType Property Summary ... 29 158
3.11.2 ContentsType Property Usage Notes ... 30 159

3.12 ContentType ... 30 160
3.12.1 ContentType Property Summary ... 30 161
3.12.2 ContentType Property Usage Notes ... 30 162

3.13 DigestInfoGroup .. 31 163
3.13.1 DigestInfoGroup Property Usage Notes .. 31 164

4 Deployment Descriptor ... 32 165
4.1 DeploymentDescriptor .. 32 166

4.1.1 DeploymentDescriptor Property Summary .. 33 167
4.1.2 DeploymentDescriptor Property Usage Notes .. 33 168

4.2 Topology ... 34 169
4.2.1 TopologyType .. 35 170
4.2.2 ResourceType ... 36 171
4.2.3 PropertyType ... 39 172
4.2.4 ResultingPropertyType .. 39 173

4.3 Atomic Content Elements ... 40 174
4.3.1 InstallableUnitType .. 41 175
4.3.2 ConfigurationUnitType ... 44 176
4.3.3 ArtifactType ... 46 177
4.3.4 InstallationArtifactsType .. 49 178
4.3.5 ConfigurationArtifactsType .. 50 179
4.3.6 OperationListType ... 50 180
4.3.7 OperationType ... 50 181
4.3.8 ArgumentListType ... 51 182
4.3.9 ArgumentType ... 51 183
4.3.10 OutputVariableListType ... 52 184
4.3.11 OutputVariableType .. 53 185
4.3.12 AdditionalContentType .. 53 186
4.3.13 SubstitutionType .. 54 187
4.3.14 CompletionType .. 55 188

4.4 Constraints .. 56 189
4.4.1 CapacityConstraintType .. 57 190

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 6 of 154

4.4.2 CapacityValueType ... 58 191
4.4.3 ConsumptionConstraintType ... 59 192
4.4.4 ConsumptionConstraintValueType ... 60 193
4.4.5 PropertyConstraintType .. 61 194
4.4.6 PropertyValueListType .. 61 195
4.4.7 VersionConstraintType .. 62 196
4.4.8 VersionConstraintValueType ... 63 197
4.4.9 VersionValueType ... 63 198
4.4.10 VersionRangeType .. 64 199
4.4.11 MaxVersionType ... 65 200
4.4.12 UniquenessConstraintType ... 65 201
4.4.13 RelationshipConstraintType .. 66 202

4.5 Conditions ... 67 203
4.5.1 ConditionType ... 67 204
4.5.2 AlternativeConditionalType ... 69 205
4.5.3 ConditionalResourceConstraintType .. 70 206
4.5.4 ConditionalPropertyConstraintType .. 72 207

4.6 Variables ... 73 208
4.6.1 VariableExpressionType ... 73 209
4.6.2 BaseVariableType ... 74 210
4.6.3 VariablesType ... 75 211
4.6.4 ParametersType .. 76 212
4.6.5 BaseParameterType ... 77 213
4.6.6 IntegerParameterType .. 78 214
4.6.7 BoundaryType ... 79 215
4.6.8 StringParameterType .. 80 216
4.6.9 StringCaseType ... 81 217
4.6.10 BooleanParameterType .. 81 218
4.6.11 URIParameterType ... 81 219
4.6.12 ResourcePropertyType ... 82 220
4.6.13 DerivedVariableType ... 83 221
4.6.14 ConditionalDerivedVariableExpressionType ... 83 222

4.7 Requirements ... 84 223
4.7.1 RequirementsType .. 84 224
4.7.2 RequirementType .. 85 225
4.7.3 AlternativeRequirementType ... 87 226
4.7.4 ResourceConstraintGroup ... 88 227
4.7.5 RequirementResourceConstraintType .. 90 228
4.7.6 InternalDependencyType .. 91 229
4.7.7 DependencyType .. 92 230
4.7.8 RequiredBaseType .. 93 231
4.7.9 RequiredBaseConstraintType ... 94 232
4.7.10 AlternativeRequiredBaseConstraintType .. 96 233

4.8 Resulting and Changed Resources .. 97 234
4.8.1 ResultingResourceType .. 97 235

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 7 of 154

4.8.2 ResultingChangeType ... 99 236
4.8.3 RelationshipType ... 101 237

4.9 Composite Content Elements ... 101 238
4.9.1 CompositeInstallableType ... 103 239
4.9.2 CompositeUnitType ... 106 240

4.10 Aggregation .. 108 241
4.10.1 ReferencedPackageType .. 112 242
4.10.2 ResourceMapType .. 115 243
4.10.3 ResultingResourceMapType ... 116 244
4.10.4 ResultingChangeMapType .. 118 245
4.10.5 RequisitesType .. 119 246

4.11 Base Content .. 120 247
4.11.1 BaseContentType .. 120 248

4.12 Content Selectability ... 121 249
4.12.1 SelectableContentType ... 121 250
4.12.2 GroupsType ... 122 251
4.12.3 GroupType... 123 252
4.12.4 FeaturesType .. 124 253
4.12.5 FeatureType .. 125 254
4.12.6 NestedFeatureType ... 126 255
4.12.7 MultiplicityType .. 129 256
4.12.8 FeatureReferenceType ... 130 257
4.12.9 ContentElementReferenceType .. 130 258
4.12.10 PackageFeatureReferenceType ... 131 259
4.12.11 ConstrainedResourceType .. 131 260
4.12.12 MultiplicityConstraintType ... 132 261
4.12.13 RequiredContentSelectionType .. 132 262
4.12.14 ContentSelectionFeatureType... 133 263
4.12.15 MultiSelectType ... 134 264

4.13 Localization ... 134 265
4.13.1 LocalizationContentType ... 135 266
4.13.2 LocalizationUnitType ... 136 267
4.13.3 CompositeLocalizationUnitType .. 139 268
4.13.4 LanguageSelectionsType .. 142 269
4.13.5 OptionalLanguagesType ... 142 270
4.13.6 LanguagesType ... 143 271
4.13.7 LanguageType .. 143 272
4.13.8 LanguageSetType ... 144 273

4.14 Display Information ... 145 274
4.14.1 DescriptionGroup .. 145 275
4.14.2 DisplayElementGroup ... 145 276
4.14.3 DisplayTextType .. 146 277

5 Conformance .. 147 278
5.1 General Conformance Statements ... 147 279
5.2 Conformance Levels ... 147 280

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 8 of 154

5.2.1 CL Capabilities .. 147 281
5.2.2 Conformance Level Differences .. 148 282

5.3 Profiles .. 150 283
5.3.1 Profile Creation .. 150 284
5.3.2 Profile Publication .. 150 285
5.3.3 Profile Applicability .. 151 286

5.4 Compatibility Statements .. 151 287
5.5 Conformance Clause .. 151 288

5.5.1 Conformance for Users of This Specification .. 151 289
5.5.2 Conformance for This Specification Itself .. 151 290

A. Schema File List ... 153 291
B. Acknowledgements .. 154 292
 293

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 9 of 154

1 Introduction 294

The Solution Deployment Descriptor (SDD) specification defines a standard, in the form of a schema for 295
XML documents, called Solution Deployment Descriptors, or SDDs. SDDs define metadata that describes 296
the packaging and deployment characteristics of resources that are relevant for their lifecycle 297
management, including creation, configuration and maintenance. 298

A.1 Terminology 299

The following terms are used in this specification in a specialized sense that might differ from definitions 300
elsewhere. 301
Artifact 302

Zero or more files and/or metadata used to perform a deployment lifecycle operation on a 303
resource. 304

Deployment lifecycle 305
The stages marking maturation of a solution: develop, package, integrate, manufacture, install, 306
configure, evaluate, deploy into production, upgrade and/or update, uninstall. 307

Host Resource 308
A resource that provides the execution environment for another resource. 309

Package 310
A set of artifacts used to perform deployment lifecycle operations on a group of related resources 311
that make up a solution. 312

Resource 313
A particular element of a computing environment, such as a computer system, an operating 314
system, a Web server, a software application, or a complex solution. 315

Solution 316
One or more interrelated resources on which deployment lifecycle operations can be performed. 317

Target Resource 318
A resource that processes artifacts to perform deployment lifecycle operations on another 319
resource. The host resource often serves as the target resource. 320

Topology 321
The physical or logical layout of a solution’s resources. 322

Update (n.) 323
A package that replaces a limited set of the resources in a solution instance. An update does not 324
require migration. 325

Upgrade (n.) 326
A package that replaces all, or a significant portion of, the resources used in a solution. An 327
upgrade might or might not require migration. 328

1.1 Purpose 329

The purpose of this document is to provide the normative specification of the SDD, including concepts, 330
structure, syntax, semantics and usage. 331

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 10 of 154

1.2 Scope 332

This document is the specification for the SDD. It consists of both normative and non-normative prose, 333
diagrams, schema and examples. The document is intended to facilitate an understanding of the SDD 334
concepts, structure, syntax, semantics and usage. This document is not intended to be a tutorial. 335
This document is the full SDD specification, but it also is augmented with other documents produced by 336
the SDD TC, including the SDD XML Schema and Examples (see Appendix [A]), [SDDP], [SDDSP] and 337
the set of SDD profiles (see section [5.3]), as well as documents produced by others (see section [5.3.1]). 338

1.3 Audience 339

This document is intended to assist those who require an understanding of the nature and details of the 340
SDD. This includes architects, developers, solution integrators and service/support personnel who 341
generate, consume, or otherwise use SDDs, as well as those who develop tooling and applications for 342
constructing and deploying SDDs. 343

1.4 How to Read this Document 344

The various audiences of this specification might have different objectives and purposes when reading 345
the document. You might wish to generally understand the SDD, or learn the details of the SDD to create 346
or consume SDDs, or use the document as a reference. 347
 If your purpose is to understand the major capabilities and characteristics of the SDD and how they fit 348

together, start by reading the Introductions to the major sections: [3], [4] and [4.1]–[4.14]. 349
 If your purpose is to understand the major elements of the SDD and how they work together to 350

accomplish the goals of this specification, read in addition to the above, the introductions to each of 351
the type sections [3.1]–[3.13] and the type subsections within sections [4.2]–[4.14]. 352

 If your purpose is to understand the syntax of the SDD, look at the tables in each of the Property 353
Summary sections. 354

 If your purpose is to understand the semantics of the elements and attributes of the SDD, read the 355
Property Usage Notes sections. 356

 If your purpose is to understand only the package descriptor, subset the above suggestions to focus 357
on the sub-sections within section [3]. 358

 If your purpose is to understand only the deployment descriptor, subset the above suggestions to 359
focus on the sub-sections within section [4]. 360

1.5 Motivation 361

The motivation for producing this specification is best expressed in this excerpt from the SDD Technical 362
Committee’s charter: 363

Deployment and lifecycle management of a set of interrelated software, hereinafter referred to as 364
a solution, is a predominantly manual operation because there is currently no standardized way 365
to express installation packaging for a multi-platform environment. Each hosting platform or 366
operating system has its own format for expressing packaging of a single installable unit but, 367
even on these homogeneous platforms, there is no standardized way to combine packages into a 368
single aggregated unit without significant re-creation of the dependency and installation 369
instructions. The problem is compounded when the solution is to be deployed across multiple, 370
heterogeneous, platforms. A standard for describing the packaging and mechanism to express 371
dependencies and various lifecycle management operations within the package would alleviate 372
these problems and subsequently enable automation of these highly manual and error-prone 373
tasks. 374
The purpose of this Technical Committee is to define XML schema to describe the characteristics 375
of an installable unit (IU) of software that are relevant for core aspects of its deployment, 376
configuration and maintenance. This document will be referred to as the Solution Deployment 377
Descriptor (SDD). 378

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 11 of 154

SDDs will benefit member companies and the industry in general by providing a consistent model 379
and semantics to address the needs of all aspects of the IT industry dealing with software 380
deployment, configuration and lifecycle management. The benefits of this work include: 381

• ability to describe software solution packages for both single and multi-platform 382
heterogeneous environments. 383

• ability to describe software solution packages independent of the software installation 384
technology or supplier. 385

• ability to provide information necessary to permit full lifecycle maintenance of software 386
solutions. 387

1.6 Requirements 388

A summary of requirements satisfied by this SDD specification follows. Detailed requirements that support 389
approved use cases are available at the SDD TC Web page, http://www.oasis-open.org/committees/sdd. 390
Solution lifecycle management 391

The SDD must provide information to support the complete lifecycle of a software solution. 392
Certain key requirements are applicable to all phases of deployment lifecycle operation: planning, 393
installation, configuration, maintenance, upgrade, migration and uninstallation. 394

Solution requirements for environment to perform lifecycle 395
management tasks 396

A deployment lifecycle operation on a target resource is often dependent on a certain set of 397
conditions that must exist on the target. This set of pre-existing conditions is known as the 398
environment. If successful deployment lifecycle operations are dependent on a certain set of pre-399
existing conditions (environment), then the SDD specification must support the ability to specify 400
the required environment. 401

Projected changes to environment 402
The SDD specification must support the definition of environment changes that become effective 403
once the lifecycle operation is complete. 404

Solution instance variability 405
The SDD specification must support the definition of the appropriate information for a runtime to 406
vary the ways in which the solution can be deployed. This information is also needed to enable an 407
integrator to control the variability according to the needs of their higher-level solution. 408

This variability includes the information to control (1) the subset of capability that can be 409
deployed; (2) setting the initial configuration of the solution; and (3) varying the topology in which 410
the solution can be deployed. 411

Solution composition 412
The SDD specification must support the ability for the author to compose solution packages from 413
multiple components, products, or solutions. 414

Solution and packaging identity 415
The SDD specification must support the definition of identity information for the solution package, 416
resources that make up the solution, and solution itself to support use cases including asset 417
management, license management, support/update entitlement, component reuse during 418
development, reports and queries from a package repository, identifying associated 419
documentation, solution lifecycle management, traceability to build/development environment and 420
problem management systems, correlation into the hosting environment, component reuse, and 421
maintenance history. Also, the SDD specification must support the definition of the identity 422
description information used by a runtime to assist a user in making correct decisions about 423
solution installation. The SDD specification must support the definition of the information that 424
uniquely identifies the SDD descriptor and the ability to identify the version of the SDD. The 425
customer should be able to identify the solution packages with consistent names. 426

http://www.oasis-open.org/committees/sdd�

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 12 of 154

Physical packaging 427
Physical packaging information should be contained in a separate media descriptor. The 428
deployment model for a solution should be decoupled from the details of physical packaging. The 429
format and structure of the physical packaging is outside the scope of SDD v1.0. 430

Interoperability with existing software packaging technologies 431
The SDD specification must support the ability for the author to compose solutions from existing 432
software packages that do not have an SDD. This means that the SDD should be able to 433
describe existing software packages. 434

Conform to external standards 435
The SDD specification must provide for alternative descriptive text to be defined for any images, 436
animations, or audio information contained in the descriptor. 437

Decision support 438
Requirements to perform lifecycle management operations within various target environments 439
may not be satisfied in the target’s current state but might be able to be satisfied with additional 440
operations. For example, successful deployment of a set of Java™1 components is dependent on 441
the existence of a Java runtime environment that is not included with the solution. The SDD 442
should have the ability to specify information that will assist lifecycle management tools in 443
planning for, accessing and installing these external requirements. 444

Specification organization 445
The SDD specification must provide the semantic behavior expected by producers and 446
consumers of SDDs. This information allows for the producers to ensure that the consumers of 447
their SDDs will provide the support intended. 448

Solution metadata 449
The SDD metadata may not encompass all of the information about the solution in all contexts in 450
which the solution can be deployed. Additional metadata that is outside of the scope of the SDD 451
is available at the SDD TC Web page, http://www.oasis-open.org/committees/sdd. 452

Globalization 453
For all content in the SDD that would be displayed to a user, the specification must support the 454
definition of strings for multiple locales; for example, this content must be localizable. 455

Align with other standards bodies 456
Satisfying all the requirements listed here calls for extensive standardization in specific areas. 457
The requirements should thus be aligned with other appropriate standards bodies. The SDD 458
reuses existing OASIS and other standards where appropriate and aligns with other standards 459
bodies (for example, [OGF-ACS]) that are developing standards in the same domain as SDD. 460

1 Java is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other
countries.

http://www.oasis-open.org/committees/sdd�

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 13 of 154

1.7 XML Namespaces 461

The XML namespaces defined as part of this specification are: 462
 sdd-pd: stands for the package descriptor portion of the SDD namespace. 463
 sdd-dd: stands for the deployment descriptor portion of the SDD namespace. 464
 sdd-common: stands for the common (shared) types, elements and groups of the SDD namespace. 465

For XML namespaces not defined as part of this specification, conventional XML namespace prefixes are 466
used as follows, regardless of whether a namespace declaration is present in the example: 467
 The prefix xsd: stands for the W3C XML Schema namespace [XSD]. 468
 The prefix ds: stands for the digital signature namespace [XMLDSIG-CORE]. 469

1.8 Notational Conventions 470

Everything in the specification, including the Appendices, is considered normative except for the abstract, 471
examples and any sections or other material marked as non-normative. 472
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 473
NOT”, “RECOMMENDED”, “MAY” and “OPTIONAL” in this document are to be interpreted as described 474
in [RFC2119]. 475
These keywords are capitalized when used unambiguously to specify requirements or application 476
features and behavior. When these words are not capitalized, they are meant in their natural-language 477
sense. 478

1.9 General Document Conventions 479

In describing XML elements and attributes of the SDD schema, this document contains many cross-480
references. Such references appear as the referenced section number inside square brackets, for 481
example, [4.5]. In electronic versions of this specification, the cross-references can act as links the target 482
section. 483
The following property naming convention is used in the schema: Element and type names begin with an 484
uppercase letter and attribute names begin with a lowercase letter. 485
Italics are used to identify element and attribute names, type names and enumerated values defined by 486
an SDD type. 487
In describing the XML schema, each section typically contains the following subsections: 488
 A diagram illustrating the element, group, or type that is specified in the section. 489
 Property Summary: A table listing the schema elements and attributes, along with the data type, 490

cardinality and description for each one. 491
When specified, extension points are listed in the tables with no name and a type of xsd:any for 492
element extensions and xsd:anyAttribute for attribute extensions. Cardinality is also provided. 493
When a type is an extension of another type, the extended type is listed in the table with no name and 494
prefixed with [extends]. The extended type’s properties can be referenced from the appropriate 495
section listed in the description column. 496
When the schema specifies a default or fixed attribute value, that value is prefixed with two asterisks, 497
as in **default value=“true”. 498

 Property Usage Notes: A list of the elements and attributes, along with more detailed prose 499
descriptions of the properties and how they fit into the schema as a whole. 500

 Not all sections contain every one of the preceding subsections. 501

1.10 Diagram Conventions 502

Sections 3 and 4 of this specification contain diagrams that illustrate the structure of elements, data types 503
and groups used throughout the SDD schema. Figure 1 is an example of this type of diagram. 504

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 14 of 154

 505
Figure 1: Sample XML structure diagram. 506
Elements are represented by the element name inside a rectangle. A rectangle with a solid border 507
denotes an element. 508
Where appropriate, the cardinality of an element is indicated by a rectangle with the cardinality listed 509
underneath, using the form “min..max”. For example, “1..∞” indicates a minimum of one occurrence of the 510
element and an unbounded upper limit: 511

 512
References to global elements are denoted by a small arrow in the lower right corner of the element’s 513
rectangle: 514

 515
Attributes are denoted by a “@” symbol followed by the attribute name, inside a dashed rectangle. 516

 517
Complex types are denoted by a rectangle with all the corners truncated and a white square followed by 518
the element name: 519

 520
Simple types are denoted by a rectangle with all the corners truncated and a white triangle followed by 521
the element name: 522

 523
Groups are denoted by a rectangle with three small squares followed by the group name: black squares 524
and a solid rectangle indicate element groups and white squares with a dashed rectangle indicate 525
attribute groups: 526

 527
A plus sign on the right border of a component indicates hidden child elements or attributes. When 528
hidden, the child elements are usually described in a separate section. 529
There are two connectors (or compositors) used in the SDD schema diagrams to combine elements: 530

 A sequence of elements is indicated by the following symbol: 531

 A choice among elements is indicated by the following symbol: 532
A large yellow box indicates a data type that is referenced. 533
Blue shading appearing in a figure has no significance; it simply indicates that a component was currently 534
selected in the XML editor. 535

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 15 of 154

The XSD schema figures were created with <oXygen/>. 536

1.11 Normative References 537

[CL2_Schema] Solution Deployment Descriptor Schema 538
 See Appendix [A] for location. 539
[CONFORM] OASIS, OASIS Conformance Requirements for Specifications 1.0, 540

http://www.oasis-541
open.org/committees/download.php/305/conformance_requirements-v1.pdf. 542

[IANA-CHARSET] Internet Assigned Numbers Authority, Character Sets, 543
http://www.iana.org/assignments/character-sets, modified December 2006. 544

[IETF-UUID] Internet Engineering Task Force Draft Specification, 545
http://www.ietf.org/rfc/rfc4122.txt. 546

[ISO639.2] Library of Congress, Codes for the Representation of Names of Languages, 547
http://www.loc.gov/standards/iso639-2/englangn.html. 548

[ISO3166] International Organization for Standardization, English Country Names and Code 549
Elements, http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-550
lists/list-en1.html. 551

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 552
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 553

[RFC3066] H. Alvestrand, ed. RFC 3066: Tags for the Identification of Languages 1995, 554
http://www.ietf.org/rfc/rfc3066.txt. 555

[UNIT] Bureau International des Poids et Mesures, http://www.bipm.fr. 556
[XMLDSIG-CORE] Bartel et al., XML-Signature Syntax and Processing, 557

http://www.w3.org/TR/xmldsig-core/, W3C Recommendation, February 2002. 558
[XSD] W3C Schema Working Group, XML Schema, http://www.w3.org/TR/xmlschema-559

1/, W3C Recommendation, October 2004. 560
 561

1.12 Non-Normative References 562

[CL1_Schema] Solution Deployment Descriptor Conformance Level 1 Schema 563
 See Appendix [A] for location. 564
[CIM] Distributed Management Task Force, Inc., Common Information Model (CIM) 565

http://www.dmtf.org/standards/cim/. 566
[OGF-ACS] Open Grid Forum, Application Contents Service WG (ACS-WG), 567

http://www.ogf.org/gf/group_info/view.php?group=acs-wg. 568
[SDDP] Solution Deployment Descriptor Primer 569

http://docs.oasis-open.org/sdd/v1.0/sdd-primer-v1.0.doc 570
http://docs.oasis-open.org/sdd/v1.0/sdd-primer-v1.0.pdf 571
http://docs.oasis-open.org/sdd/v1.0/sdd-primer-v1.0.html 572

[SDDSP] Solution Deployment Descriptor Starter Profile 573
http://docs.oasis-open.org/sdd/v1.0/sdd-starter-profile-v1.0.doc 574
http://docs.oasis-open.org/sdd/v1.0/sdd-starter-profile-v1.0.pdf 575
http://docs.oasis-open.org/sdd/v1.0/sdd-starter-profile-v1.0.html 576

 577
 578

 579

http://www.oasis-open.org/committees/download.php/305/conformance_requirements-v1.pdf�
http://www.oasis-open.org/committees/download.php/305/conformance_requirements-v1.pdf�
http://www.iana.org/assignments/character-sets�
http://www.ietf.org/rfc/rfc4122.txt�
http://www.loc.gov/standards/iso639-2/englangn.html�
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html�
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html�
http://www.ietf.org/rfc/rfc2119.txt�
http://www.ietf.org/rfc/rfc3066.txt�
http://www.bipm.fr/�
http://www.w3.org/TR/xmldsig-core/�
http://www.w3.org/TR/xmlschema-1/�
http://www.dmtf.org/standards/cim/�
http://www.ogf.org/gf/group_info/view.php?group=acs-wg�
http://docs.oasis-open.org/sdd/v1.0/sdd-primer-v1.0.doc�
http://docs.oasis-open.org/sdd/v1.0/sdd-primer-v1.0.pdf�
http://docs.oasis-open.org/sdd/v1.0/sdd-primer-v1.0.html�
http://docs.oasis-open.org/sdd/v1.0/sdd-starter-profile-v1.0.doc�
http://docs.oasis-open.org/sdd/v1.0/sdd-starter-profile-v1.0.pdf�
http://docs.oasis-open.org/sdd/v1.0/sdd-starter-profile-v1.0.html�

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 16 of 154

2 Solution Deployment Descriptor Overview 580

2.1 Package and Deployment Descriptors 581

The package descriptor defines package content which includes artifacts whose processing results in 582
deployment of the software package. The deployment descriptor defines metadata associated with those 583
artifacts. The SDD package descriptor defines the package identity, the package content and various 584
other attributes of the package. Each SDD consists of exactly one deployment descriptor and one 585
package descriptor. The deployment descriptor is where the topology, selectability, inputs, requirements 586
and conditions of the deployment are described. 587

2.2 Topology 588

The SDD’s topology describes all the resources that may be required, created or modified when any of 589
the deployment operations supported by the SDD are performed. 590
Primary identifying characteristics of the resources can be defined in topology. The topology includes 591
identification of hosts–hosted by relationships between resources. It is usual that only a subset of the 592
resources described in topology will play a role in any particular deployment. This is determined by the 593
selection of content elements for the particular deployment. The resources that are required, created or 594
modified by the content elements in scope for the deployment are the ones that will participate in the 595
deployment and so will be associated with resources in the deployment environment. 596
At deployment time, definitions of the resources that participate in that particular deployment are 597
associated with actual resource instances in the deployment environment. The mechanism for 598
associating resource definitions with resource instances is not defined by the SDD. 599
The only resource definitions in the SDD are in topology. All other mention of resources in the SDD are 600
references to the resource definitions in the topology. 601

2.3 Content and Artifacts 602

Metadata throughout the deployment descriptor is associated with package content in the definition of 603
atomic content elements. The atomic content elements are InstallableUnit, ConfigurationUnit and 604
LocalizationUnit. These are the only content elements that define Artifacts elements. 605
Artifact elements identify an artifact file or set of files defined in package content whose processing will 606
perform all or a portion of the deployment for a particular deployment lifecycle operation. Artifact elements 607
define the inputs and outputs, substitution values and types associated with the artifact files. The content 608
element’s target resource, identified by targetResourceRef, processes the artifact files with the defined 609
inputs to perform deployment operations. Examples of artifact types include zip files, rpm files and 610
executable install files. Artifact types are not defined by this specification. The artifact types defined in the 611
SDD need to be understood by software that processes the SDD. Profiles are used to communicate the 612
artifact types that an implementation is capable of processing [5.3]. 613
Composite content elements organize the content of an SDD but do not define artifacts used to deploy 614
SDD content. There are three types of composite content elements: CompositeInstallable, CompositeUnit 615
and CompositeLocalizationUnit. 616
CompositeInstallable is used any time that more than one content element is defined in support of one 617
operation on the package; any time aggregation of SDDs is needed; or any time the package includes 618
selectable content. CompositeInstallable is the root of a content hierarchy that supports a single 619
deployment lifecycle operation. It can define a base content hierarchy, a localization content hierarchy 620
and a selectable content hierarchy that includes selection criteria. One SDD can have more than one 621
CompositeInstallable–each supporting a different operation. 622
CompositeUnit is used to organize content elements within the base or selectable content hierarchies. 623
CompositeUnits can define InstallableUnits, ConfigurationUnits, ContainedPackages and other 624

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 17 of 154

CompositeUnits. Requirements, conditions and variables that are common to all content elements defined 625
by the CompositeUnit can be defined in the CompositeUnit to avoid repetition. Within the selectable 626
content hierarchy, a CompositeUnit can provide an efficient means for selection of a set of related content 627
elements by a feature. 628
CompositeLocalizationUnit serves the same purposes as CompositeUnit within the LocalizatonContent 629
hierarchy. 630
SDD packages can aggregate other SDD packages. Metadata about the aggregation is defined in 631
ContainedPackage, ContainedLocalizationPackage and Requisite elements. ContainedPackage 632
elements are a content element that can be defined anywhere in the base and selectable content 633
hierarchies. ContainedLocalizationPackages are content elements that can be defined in the localization 634
content hierarchy. Requisites are packages that can be deployed, if necessary, to satisfy requirements in 635
the aggregating SDD. They are not content of the SDD package. The type of all three of these elements 636
is ReferencedPackageType. The term “referenced package” is used in this specification when referring to 637
these elements as a group. The term “referenced SDD” is used when referring to any aggregated SDD. 638
Each referenced package element can further constrain the deployment of the referenced SDD by 639
defining additional requirements; by mapping resources defined in the aggregating SDD to those defined 640
in the referenced SDD; and by determining feature selections for deployment of the referenced SDD. 641

2.4 Resulting and Changed Resources 642

Deployment of an SDD package creates or modifies software resources. These resources are included in 643
the topology definition and described in more detail in ResultingResource and ResultingChange 644
elements. 645
The SDD author can choose to model resulting and modified resources at a very granular level, at a very 646
coarse level; at any level in between, or not at all. An example of modeling resulting resources at a 647
granular level would be modeling every file created by the deployment as a resulting resource. An 648
example of modeling resulting resources at a very coarse level would be modeling the software product 649
created by deployment as a single resulting resource. The choice depends on the needs of the solution 650
deployment. If a resource is not modeled in the SDD, no requirements can be expressed on it, no 651
conditions can be based on it and no variables can be set from values of its properties. It cannot play any 652
of the roles described for resources in the ResourceType section of this document [4.2.2]. 653

2.5 Base, Selectable and Localization Content Hierarchies 654

Each CompositeInstallable element can define three types of content hierarchies. Base content is the 655
default content for the deployment lifecycle operation associated with the CompositeInstallable. This is 656
content that will be deployed whenever the associated operation is performed on the SDD package. Base 657
content may be conditioned on characteristics of the deployment environment but it is not selectable by 658
the deployer. 659
The SDD author can define selectable subsets of optional content in the selectable content hierarchy. 660
The selection criteria include features and groups of features that select content from the selectable 661
content hierarchy. Selectability, as used in the SDD, is a characteristic of the deployment lifecycle 662
operation and the package. For example, the decision to provide selectability for one operation in one 663
package has no semantic relationship to the selectability provided in another package related to the same 664
software. It also has no semantic relationship to the selectability provided for a different operation within 665
the same package. 666
Localization content is the third type of content hierarchy. Localization refers to enabling a particular piece 667
of software for support for one or more languages. Anything that needs to be deployed to provide support 668
for a particular language in that software is considered localization content. Translated materials are a 669
primary, but not the only, example of localization content. 670
Localization content is similar in many ways to other content, but there are important differences in how 671
localization content is selected for deployment that lead to the need for a separate content hierarchy and 672
separate types. There are two criteria for determining that localization content is in scope for a particular 673
deployment. 674

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 18 of 154

 The first criterion has to do with the language or languages supported by the localization content. At 675
least one of the languages must be in scope for the content to be selected. 676

 The second criterion has to do with the availability of the resources to be localized–the localization 677
base. The localization base may be a resource deployed by base or selectable content, or it may be 678
a resource previously deployed and found in the deployment environment. 679

2.6 Constraints 680

The SDD author needs to communicate constraints on resources for a variety of purposes. 681
• Some constraints must be met for the requirements of a content element to be met. 682
• Other constraints must be met for a resource to serve as the required base for an update. 683
• Still others must be met to satisfy a condition that determines the applicability of a content element or 684

completion action. 685
The Constraint types are: 686

 CapacityConstraint 687
 ConsumptionConstraint 688
 PropertyConstraint 689
 VersionConstraint 690
 UniquenessConstraint 691
 RelationshipConstraint 692

2.7 Requirements 693

Requirements are defined by content elements. A requirement consists of resource constraints that the 694
SDD author states MUST be met prior to successful deployment or use of the software described by the 695
SDD package. Each requirement definition lists one or more deployment lifecycle operations to which the 696
requirement applies. When the requirement is specified in an atomic content element, the operation 697
associates the requirement with artifacts within the atomic content element 698
When a requirement can be satisfied in more than one way, alternatives can be defined within a 699
requirement. A requirement is considered met when any one of the alternatives is satisfied. 700

2.8 Conditions 701

Conditions are expressed on characteristics of resources in the deployment environment. Conditions are 702
used to indicate when particular elements of the SDD are applicable, or when they should be ignored. 703
Conditions are not requirements. Failure to satisfy a condition does not indicate a failure; it simply means 704
the conditioned element should be ignored. Conditions are used to: 705

 determine if a content element is applicable 706
 choose from among values for a variable 707
 determine when a feature is applicable 708
 determine when a particular result is applicable 709
 determine if a particular completion action is necessary. 710

Because conditions are always based on the characteristics of resources, they are expressed using 711
resource constraints. 712

2.9 Variables 713

Variables provide a way to associate user inputs, resource property values, fixed strings and values 714
derived from these with input arguments for artifacts and with constraints on resources. 715

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 19 of 154

3 Package Descriptor 716

A package descriptor is an XML document that provides information about the identity and the contents of 717
a software package. A software package is a bundle of one or several content elements that deploy or 718
remove computer software; add features to existing software; or apply maintenance to existing software. 719
Each package descriptor is associated with a deployment descriptor. 720

3.1 PackageDescriptor 721

 722
Figure 2: PackageDescriptor structure. 723
The root element of a package descriptor XML document is PackageDescriptor. PackageDescriptor 724
includes elements that describe the package identity and the contents that make up the package. The 725
PackageDescriptor includes the associated deployment descriptor XML document by defining a Content 726
element with a purpose attribute set to deploymentDescriptor. 727

3.1.1 PackageDescriptor Property Summary 728

Name Data Type * Description

PackageIdentity PackageIdentityType 1 Human-understandable identity information for the software
package.

Contents ContentsType 1 A list of package contents.

ds:Signature ds:SignatureType 0..1 A signature for the package descriptor.

schemaVersion xsd:string 1 The descriptor complies with this version of the Solution
Deployment Descriptor Specification.
**fixed value=“1.0”

descriptorID UUIDType 1 Identifier of a particular package’s descriptor.

lastModified xsd:dateTime 1 The time the descriptor was last modified.

descriptorLanguageBundle xsd:token 0..1 The root name of language bundle files containing translations
for display text elements in the PackageDescriptor.

 xsd:anyAttribute 0..*

3.1.2 PackageDescriptor Property Usage Notes 729

 PackageIdentity: The PackageIdentity element provides identity information about the software 730
package that can be used by the consumer of the package for deployment planning or aggregation of 731
the package into a larger solution. 732
See the PackageIdentityType section for structure and additional usage details [3.3]. 733

http://en.wikipedia.org/wiki/Computer_program�

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 20 of 154

 Contents: The Contents element defines a list of one or more Content elements describing all the 734
files that are part of the package. All files in the package MUST be defined in Contents. 735
See the ContentsType section for structure and additional usage details [3.11]. 736

 ds:Signature: The package descriptor and each file in the package MAY be digitally signed. It is 737
RECOMMENDED that they be digitally signed by using an XML-Signature [XMLDSIG-CORE]. 738
The signature element is an enveloped signature over the SDD package. Note that each Content 739
element included in the package is digitally signed indirectly via this digest. Files can also be 740
individually signed in the Content element. 741

 schemaVersion, descriptorID, lastModified, descriptorLanguageBundle: See the 742
DescriptorInfoGroup section for structure and additional usage details [3.2]. 743

3.2 DescriptorInfoGroup 744

 745
Figure 3: DescriptorInfoGroup structure. 746
The attributes defined by DescriptorInfoGroup are included in both PackageDescriptor and 747
DeploymentDescriptor. 748

3.2.1 DescriptorInfoGroup Property Usage Notes 749

 schemaVersion: The schemaVersion attribute identifies the Solution Deployment Descriptor 750
specification version to which the descriptor conforms. It MUST have a fixed value of “1.0”. 751

 descriptorID: The descriptorID attribute, combined with the lastModified attribute value, provides a 752
unique identifier for the descriptor. The descriptorID value MUST be unique within the scope of use of 753
the deployment descriptor or package descriptor. The descriptorID attribute is an instance of 754
UUIDType, which is based on xsd:hexBinary with length 16. This enables use of a 128-bit UUID 755
[IETF-UUID]. The descriptorID value supports descriptor updates by allowing updated descriptors to 756
be correctly associated with an earlier version of the same descriptor. 757

For example, if a descriptor contains errors, it may be replaced by an error-free version using the 758
same descriptorID value but a different lastModified value. 759

 lastModified: The lastModified value can be used to differentiate between different versions of the 760
same descriptor, for example, the descriptor for one particular package. Comparison of lastModified 761
values can be used to determine which descriptor is newer. 762
The lastModified attribute MUST be defined as a value that conforms to the xsd:dateTime type as 763
defined in [XSD] and MUST match the following lexical representation: [-]CCYY-MM-764
DDThh:mm:ss[Z|(+|-)hh:mm]. This is a combination of a complete date and time of day, where 765
the time zone can be specified as Z (UTC) or (+|-)hh:mm. 766

For example, the following are valid values for the lastModified attribute: 767

 2001-10-26T21:32:52 768

 2001-10-26T21:32:52+02:00 769

 2001-10-26T19:32:52Z 770

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 21 of 154

 2001-10-26T19:32:52+00:00 771

 -2001-10-26T21:32:52 772

 2001-10-26T21:32:52.12679 773

However, the following values would be invalid: 774

 2001-10-26 775

 2001-10-26T21:32 776

 01-10-26T21:32 777

 2001-10-26T25:32:52+02:00 778

The first three invalid examples do not specify all the required parts, and the fourth includes an 779
out of range hours part, “25”. 780

 descriptorLanguageBundle: Language translations for elements of DisplayTextType in the 781
descriptor MAY be included in the solution package. Note that these are not translations for the 782
software deployed by the package, but rather translations only for the text in the descriptors 783
themselves. The root name of the files containing these translations can be specified in the 784
descriptorLanguageBundle attribute, which is an instance of xsd:token. Language bundles are 785
associated with specific locales at run time using Java-style resource bundle resolution; that is, the 786
bundle file names SHOULD take the form languageBundle_locale, where locale consists of optional 787
language, location (country) and variant codes, separated by an underscore character. Language 788
codes consist of two lowercase letters [ISO639.2] and location codes consist of two uppercase letters 789
[ISO3166]. 790

For example, “SampleStrings_en_US” refers to the United States English version of the 791
SampleStrings bundle and “SampleStrings_ja” identifies the Japanese version of the same 792
bundle. 793

See the DisplayTextType section for structure and additional usage details [4.14.3]. 794

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 22 of 154

3.3 PackageIdentityType 795

 796
Figure 4: PackageIdentityType structure. 797
The software package described by the SDD can be identified for humans and package management 798
software using the properties in PackageIdentity. The PackageIdentity is not to be confused with the 799
identity of the deployed software, which is described in the resulting resource elements of the deployment 800
descriptor; see the ResultingResourceType section [4.8.1]. 801

3.3.1 PackageIdentityType Property Summary 802

Name Data Type * Description

 [extends] IdentityType See the IdentityType section for additional properties [3.4].

packageType PackageTypeType 0..1 The type of the package, for example, “baseInstall” or “maintenance”.
**default value=“baseInstall”.

contentType xsd:QName 0..1 The type of content provided by this package, for example, BIOS.

label xsd:NCName 0..1 A programmatic label for this package.

 xsd:anyAttribute 0..*

3.3.2 PackageIdentityType Property Usage Notes 803

See the IdentityType section for details of the inherited attributes and elements [3.4]. 804
 packageType: The package type is provided to aid consumer understanding of the type of content 805

contained in the package. A package can contain more than one type of content. In this case, a single 806
packageType value should be selected that represents the primary content type as determined by the 807
SDD author. The SDD defines a set of enumeration values in PackageTypeType which are 808
extendable by the SDD author. 809

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 23 of 154

The enumerated types defined by the SDD are as follows: 810
• baseInstall: The value baseInstall indicates that the package provides a complete installation 811

of the solution. This package type is associated with deployment descriptors that contain 812
installable units with installation artifacts that install the primary solution resources. 813
When packageType is not specified, this is the default value. 814

• baseUninstall: The value baseUninstall indicates that the package provides a complete 815
uninstallation of the solution. This package type is associated with deployment descriptors 816
that contain installable units with uninstall artifacts that remove the primary solution 817
resources. 818

• configuration: The value configuration indicates that the package configures the solution. 819
This package type is associated with deployment descriptors that contain configuration units 820
with configuration artifacts that configure the solution. 821

• maintenance: The value maintenance indicates that the package fixes one or more problems 822
in the solution. This package type is associated with deployment descriptors that contain 823
installable units with update artifacts. 824

• modification: The value modification indicates that the package modifies the function of the 825
solution in some way such as by adding new function. This package type is associated with 826
deployment descriptors that contain installable units with update artifacts. 827

• replacement: The value replacement indicates that the package installs a solution that 828
replaces a previous version of the solution. Replacement MAY be associated with migration 829
of data into the new solution and/or with deletion of the replaced solution. When associated 830
with migration of data, installation or configuration artifacts within the solution package would 831
perform the migration. When associated with deletion of the replaced solution, uninstall 832
artifacts within the solution package would perform the deletion. This package type is 833
associated with deployment descriptors that contain installable units with installation artifacts 834
that deploy a set of resources that replace the set of resources associated with a previous 835
version of the solution. 836

• localization: The value localization indicates that the package contains materials that 837
localize deployed software for one or more languages. 838

 contentType: The value of contentType is determined by the SDD manufacturer to communicate a 839
characteristic of the package that MAY be used in the manufacturer’s package management system 840
or other manufacturer-specific tools that use the SDD. The SDD author chooses the values; they are 841
not defined in this specification. 842

 label: The label MAY be used as an index in a package management system. The SDD author 843
chooses the values; they are not defined in this specification. 844

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 24 of 154

3.4 IdentityType 845

 846
Figure 5: IdentityType structure. 847
This complex type provides identity information for the package as a whole, as well as for content 848
elements, which are portions of the package. Content elements are the InstallableUnit, LocalizationUnit, 849
ConfigurationUnit, CompositeUnit and CompositeInstallable elements defined in the deployment 850
descriptor. 851

3.4.1 IdentityType Property Summary 852

Name Data Type * Description

Description DisplayTextType 0..1 A verbose description of the package or content element.

ShortDescription DisplayTextType 0..1 A limited description of the package or content element.

Name DisplayTextType 0..1 A human-readable, translatable, name for the package or
content element.

Version VersionType 0..1 The package or content element version.

MaintenanceInformation MaintenanceInformationType 0..1 Information about package or content element content
used when the package contains maintenance.

BuildInformation BuildInformationType 0..1 A manufacturer identifier for the build of this package or
content element. This property can be extended with
additional manufacturer-specific information about the
build.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 25 of 154

Manufacturer ManufacturerType 0..1 Information about the manufacturer of the package or
content element.

 xsd:any 0..*

softwareID xsd:string 0..1 A manufacturer’s identification number for the software
created or updated by the package or content element.

 xsd:anyAttribute 0..*

3.4.2 IdentityType Property Usage Notes 853

 Description, ShortDescription: These elements MAY be used to provide human-understandable 854
information. If used, they MUST provide a description of the package. 855
The Description element MUST be defined if the ShortDescription element is defined. 856
See the DisplayTextType section for structure and additional usage details [4.14.3]. 857

 Name: When the manufacturer of the SDD has a package management system, Name in 858
PackageIdentity should correspond to the name of the package as known in the package 859
management system. Name in a content element’s Identity should correspond to the name of the unit 860
of packaging, if it is known in the package management system. 861
When the PackageIdentity element is defined, Name MUST be defined. 862
Software packages that create software often have the same name as the deployed software. 863
Software packages that update software often have a name that reflects the fact that the package is a 864
maintenance package, differentiating it from the base deployed software. The author of the software 865
package that is described by PackageIdentity determines whether the Name is the same as or 866
different from the Name of the deployed software. 867
See the DisplayTextType section for structure and additional usage details [4.14.3]. 868

 Version: This is a packaging version. In PackageIdentity, it is the version of the package as a whole. 869
In content element identities, this is the version of the unit of packaging represented by the content 870
element. In either case, the SDD author MAY choose to make this version correspond to the version 871
of a resulting or changed resource, but it should not be confused with resource versions. 872
In the case of a base install, version MAY be the same as the top level resulting resource. In the case 873
of a configuration package, version SHOULD NOT be the same as the top level resulting resource. 874
See the VersionType section for structure and additional usage details [3.10]. 875

 MaintenanceInformation: This is used when the package or content element describes the 876
deployment of maintenance. 877
See the MaintenanceInformationType section for structure and additional usage details [3.5]. 878

 BuildInformation: In PackageIdentity, this describes the build of the package as a whole. In content 879
element Identity, this describes the build of the artifact(s) and the content element describing the 880
artifact. 881
See the BuildInformationType section for structure and additional usage details [3.7]. 882

 Manufacturer: See the ManufacturerType section for structure and additional usage details [3.8]. 883
 softwareID: The software identified by softwareID is the software whose deployment is described by 884

the SDD. When the manufacturer maintains software identifiers within a sales and distribution 885
system, the softwareID SHOULD correspond to an identifier for the software within that system. If a 886
format for software identifiers is not pre-existing within the manufacturer’s systems, a UUID SHOULD 887
be used for softwareID. When a UUID is used, it MUST be unique within the domain in which the 888
described software is used. 889

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 26 of 154

3.5 MaintenanceInformationType 890

 891
Figure 6: MaintenanceInformationType structure. 892
If the package provides maintenance for deployed software, MaintenanceInformation declares information 893
about the fix or fixes provided. If the package content is a single fix, MaintenanceInformation describes 894
the information about that one fix. If the content is a collection of fixes—for example, a fix pack—895
MaintenanceInformation describes each of the fixes provided by the fix pack. 896

3.5.1 MaintenanceInformationType Property Summary 897

Name Data Type * Description

Severity DisplayTextType 0..1 Severity of the maintenance content.

Category DisplayTextType 0..* Category of the maintenance content.

Supersedes MaintenanceInformationType 0..* A previously released fix that is superseded by application of this
maintenance.

Fix FixIdentityType 0..* An included fix.

 xsd:any 0..*

3.5.2 MaintenanceInformationType Property Usage Notes 898

 Severity: This value SHOULD correspond to a severity value used within the SDD provider’s support 899
system. It serves as a hint to the deployer about the urgency of applying the described maintenance. 900
See the DisplayTextType section for structure and additional usage details [4.14.3]. 901

 Category: These values SHOULD correspond to maintenance categories within the SDD provider’s 902
support system. 903
See the DisplayTextType section for structure and additional usage details [4.14.3]. 904

 Supersedes: Superseded fixes are ones that fix a problem also fixed by the superseding 905
maintenance package or content element and therefore need not be applied. 906
This element does not indicate whether or not the superseded fix needs to be removed. To indicate 907
that the previous fix must be removed before the superseding maintenance can be applied 908
successfully; the SDD author can create a requirement stating that the fix must not be present. 909
Superseded fixes MAY include all the information defined in MaintenanceInformationType. At a 910
minimum, a superseded fix MUST include at least one Fix element with the name of the superseded 911
fix defined. 912

 Fix: Fix elements provide information about individual fixes provided by the maintenance content. 913

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 27 of 154

See the FixIdentityType section for structure and additional usage details [3.6]. 914

3.6 FixIdentityType 915

 916
Figure 7: FixIdentityType structure. 917
Elements of FixIdentityType describe fixes that will be applied when the package is deployed or the 918
content element is applied. 919

3.6.1 FixIdentityType Property Summary 920

Name Type * Description

Name xsd:NMTOKEN 1 A name for the fix which is, at a minimum, unique within the scope of the
resource fixed.

Description DisplayTextType 1 A complete description of the fix.

ShortDescription DisplayTextType 0..1 An abbreviated description of the fix.

Symptom DisplayTextType 0..* A symptom of the problem fixed.

 xsd:any 0..*

3.6.2 FixIdentityType Property Usage Notes 921

 Name: The Name element MUST provide a value that uniquely identifies a fix within a scope defined 922
by the manufacturer. This is a name provided by the manufacturer that corresponds to the fix name 923
as understood in the deployment environment. 924

 Description, ShortDescription: These elements MAY be used to provide human-understandable 925
information. If used, they MUST provide a description of the fix. 926
The Description element MUST be defined if the ShortDescription element is defined. 927
See the DisplayTextType section for structure and additional usage details [4.14.3]. 928

 Symptom: Symptom strings can be used to correlate a fix with one or more experienced problems. 929
See the DisplayTextType section for structure and additional usage details [4.14.3]. 930

3.7 BuildInformationType 931

 932
Figure 8: BuildInformationType structure. 933

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 28 of 154

BuildInformationType provides the type definition for the BuildInformation element in package and content 934
element identity. BuildInformation provides information about the creation of the package and its parts. 935

3.7.1 BuildInformationType Property Summary 936

Name Type * Description

buildID xsd:token 1 Identifies the build of the package or package element.

 xsd:anyAttribute 0..*

3.7.2 BuildInformationType Property Usage Notes 937

 buildID: The buildID attribute is an identifier provided by the manufacturer and meaningful to 938
developers that can be used to identify a build of the defining element. This information MUST 939
correspond with information known in the manufacturer’s build environment. It is traditionally used 940
during problem determination to allow maintainers of the software to determine the specifics of 941
package creation. Inclusion of buildID in the SDD allows the end user to provide this information to 942
package maintainers, enabling them to correlate the deployed software with a particular known build 943
of the software. 944

3.8 ManufacturerType 945

 946
Figure 9: ManufacturerType structure. 947
The SDD author can include information about the package manufacturer that includes name, location 948
and contact information such as the address of the manufacturer’s Web site or telephone number. 949

3.8.1 ManufacturerType Property Summary 950

Name Type * Description

Name DisplayTextType 1 A translatable name for the manufacturer.

Location LocationType 0..1 The address and country of the manufacturer.

ContactInformation DisplayTextType 0..1 Contact information for the manufacturer.

 xsd:any 0..*

3.8.2 ManufacturerType Property Usage Notes 951

 Name: The value provided in the Name element MUST be an identifiable name of the manufacturer 952
of the SDD. 953
See the DisplayTextType section for structure and additional usage details [4.14.3]. 954

 Location: See the LocationType section for structure and additional usage details [3.9]. 955

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 29 of 154

 ContactInformation: This element MAY provide additional contact information for the named 956
manufacturer, such as a support Web site address or a technical support telephone number. 957
See the DisplayTextType section for structure and additional usage details [4.14.3]. 958

3.9 LocationType 959

 960
Figure 10: LocationType structure. 961
LocationType supports inclusion of the manufacturer’s address and country in package and content 962
element identity. 963

3.9.1 LocationType Property Summary 964

Name Type * Description

Address DisplayTextType 0..1 The manufacturer’s address.

Country DisplayTextType 0..1 The manufacturer’s country.

3.9.2 LocationType Property Usage Notes 965

 Address: This is the mailing address or the physical address. 966
See the DisplayTextType section for structure and additional usage details [4.14.3]. 967

 Country: Recording the manufacturer’s country in the SDD provides information that may be of 968
interest in relation to import and export of software. 969
See the DisplayTextType section for structure and additional usage details [4.14.3]. 970

3.10 VersionType 971

VersionType provides the type definition for version elements in the package descriptor and deployment 972
descriptor. It is a simple type that is based on xsd:string with no further restrictions. This means that 973
versions in the SDD are represented simply as strings. Because resource versions exist in the 974
deployment environment, their formats and semantics vary widely. For this reason, the format and 975
semantics of versions are not defined by this specification. 976

3.11 ContentsType 977

 978
Figure 11: Contents structure. 979
ContentsType is used in PackageDescriptor to provide a list of one or more Content elements. 980

3.11.1 ContentsType Property Summary 981

Name Type * Description

Content ContentType 1..* Describes the physical contents of the software package.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 30 of 154

3.11.2 ContentsType Property Usage Notes 982

 Content: A PackageDescriptor MUST contain a Contents element that is a list of one or more 983
Content elements. 984
See the ContentType section for structure and additional usage details [3.12]. 985

3.12 ContentType 986

 987
Figure 12: ContentType structure. 988
A software package includes one or more content files. ContentType defines the properties of a content 989
file included in the package descriptor. Content defined in the package descriptor as part of the software 990
package does not need to be physically co-located. Each element MUST be in a location that can be 991
identified by a URI. The pathname attribute of each content file defines a URI for accessing the file. 992
Characteristics of the content files—such as their length, purpose and character encoding—MAY be 993
declared in the package descriptor. 994

3.12.1 ContentType Property Summary 995

Name Data Type * Description

ds:DigestMethod ds:DigestMethodType 0..1 Specifies the digest method applied to the file.

ds:DigestValue ds:DigestValueType 0..1 Specifies the Base64-encoded value of the digest of the file.

id xsd:ID 1 An identifier used in deployment descriptors to refer to the file definition
in the associated package descriptor.

pathname xsd:anyURI 1 The absolute or relative path of the content file including the file name.

purpose ContentPurposeType 0..1 Associates a purpose classification with a file.
**default value=“content”

charEncoding xsd:string 0..1 Specifies the character encoding of the contents of the file.

length xsd:nonNegativeInteger 0..1 Specifies the size of the file in bytes.

 xsd:anyAttribute 0..*

3.12.2 ContentType Property Usage Notes 996

 ds:DigestMethod, ds:DigestValue: These values MAY be used to assist with file verification. 997

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 31 of 154

See the DigestInfoGroup section for structure and additional usage details [3.13]. 998
 id: This is the identifier for the content that is used as a reference in artifact elements in the 999

deployment descriptor. 1000
The id attribute may be useful to software that processes the SDD, for example, for use in creating 1001
log and trace messages. 1002

 pathname: pathname is used to access content in the package. The path of the file MUST be a URI 1003
that specifies an absolute path or a path relative to the location of the package descriptor. It MUST 1004
include the file name. 1005

 purpose: The purpose attribute enables the PackageDescriptor author to associate a classification 1006
with a file. The classification identifies the file as having a specific purpose. ContentPurposeType 1007
defines a union of SDDContentPurposeType with xsd:NCName. The purpose value MAY be chosen 1008
from one of the following values enumerated in SDDContentPurposeType or be a valid NCName 1009
value provided by the SDD author. If purpose is not specified, the default value is content. 1010
Enumerated values for purpose are: 1011

• readMe: A file with information about the package. An implementation may choose to display 1012
this to a user as part of the deployment process. 1013

• endUserLicenseAgreement: A file containing an end user license agreement. An 1014
implementation may choose to display this to a user as part of the deployment process. 1015

• responseFile: A file that contains input values for an operation. 1016
• deploymentDescriptor: An XML file containing the DeploymentDescriptor definition 1017

associated with the PackageDescriptor. A valid PackageDescriptor MUST have exactly one 1018
Content element with a purpose value of deploymentDescriptor. 1019

• packageDescriptor: Supports aggregation of packages. This is used to reference a 1020
packageDescriptor of an aggregated package. 1021

• descriptorLanguageBundle: A file containing translations of text defined directly in the 1022
package descriptor or its associated deployment descriptor. 1023

• content: A file used during deployment of solution content. This is the default value for 1024
purpose. 1025

 charEncoding: This attribute need only be used for files that a run-time is required to render. 1026
Common charEncoding values include “ASCII”, “UTF-8”, “UTF-16” and “Shift_JIS”. For an extensive 1027
list of character encodings, see [IANA-CHARSET]. 1028

 length: The file length MAY be used for simple file verification. 1029

3.13 DigestInfoGroup 1030

 1031
Figure 13: DigestInfoGroup structure. 1032
When digest information is used to sign a content file, both the digest method and the digest value MUST 1033
be provided. 1034

3.13.1 DigestInfoGroup Property Usage Notes 1035

 ds:DigestMethod, ds:DigestValue: ds:digestMethod and ds:digestValue MAY be used to digitally 1036
sign individual files. If files are signed, the digest value MUST be calculated over the whole of each 1037
file. 1038
See [XMLDSIG-CORE] for details on the usage of ds:DigestMethod and ds:DigestValue. 1039

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 32 of 154

4 Deployment Descriptor 1040

A solution package contains a deployment descriptor in addition to a package descriptor. The deployment 1041
descriptor describes the topology, selectability, inputs, requirements and conditions of the deployment. 1042
The deployment descriptor is associated with a package descriptor and refers to content files in that 1043
package descriptor. 1044

4.1 DeploymentDescriptor 1045

 1046
Figure 14: DeploymentDescriptor structure. 1047
DeploymentDescriptor is the top level element of a deployment descriptor. The DeploymentDescriptor 1048
defines the information required to support deployment of the package contents. This includes the 1049
Topology, which declares all of the resources that may participate in deployment. It also includes one 1050
atomic content element or one or more CompositeInstallable content elements. Atomic content elements 1051
are InstallableUnit, ConfigurationUnit, or LocalizationUnit. Atomic content elements define artifacts that 1052
can be processed to deploy software resources. They are atomic because they cannot aggregate other 1053
content elements. A CompositeInstallable element is the root of a content element hierarchy that defines 1054
content that performs the one deployment operation supported by the CompositeInstallable. A 1055
CompositeInstallable can define base, selectable and localization content as well as the aggregation of 1056
other content elements. 1057

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 33 of 154

4.1.1 DeploymentDescriptor Property Summary 1058

Name Data Type * Description

Topology TopologyType 1 Defines resources that are required, created or modified by
deployment.

InstallableUnit InstallableUnitType 0..1 Defines content that installs, updates and/or uninstalls
resources. When an InstallableUnit is defined, no
ConfigurationUnit, LocalizationUnit or CompositeInstallable
elements can be defined.

ConfigurationUnit ConfigurationUnitType 0..1 Defines content that configures resources. When a
ConfigurationUnit is defined, no InstallableUnit,
LocalizationUnit or CompositeInstallable elements can be
defined.

LocalizationUnit LocalizationUnitType 0..1 Defines content that installs, updates and/or uninstalls
translated materials. When a LocalizationUnit is defined, no
InstallableUnit, ConfigurationUnit or CompositeInstallable
elements can be defined.

CompositeInstallable CompositeInstallableType 0..* Defines a hierarchy of base, selectable and/or localization
content used to perform one deployment lifecycle
operation. When one or more CompositeInstallable
elements are defined, no InstallableUnit, ConfigurationUnit
or LocalizationUnit elements can be defined.

Requisites RequisitesType 0..1 A list of references to SDD packages that can optionally be
deployed to satisfy deployment requirements of the
defining SDD.

 xsd:any 0..*

schemaVersion xsd:string 1 The descriptor complies with this version of the Solution
Deployment Descriptor Specification.
**fixed value=“1.0”

descriptorID UUIDType 1 Identifier of the deployment descriptor for a particular set of
deployable content.

lastModified xsd:dateTime 1 The time the descriptor was last modified.

descriptorLanguageBundle xsd:token 0..1 The root name of language bundle files containing
translations for display text elements in the deployment
descriptor.

 xsd:anyAttribute 0..*

4.1.2 DeploymentDescriptor Property Usage Notes 1059

 Topology: Topology provides a logical view of all resources that may participate in any particular 1060
deployment. A resource can participate by being required, created or modified by the deployment. A 1061
required resource MAY also play the role of target resource, meaning that it can process artifacts to 1062
perform some portion of the deployment. The resources that actually participate in a particular 1063
deployment are determined by the user inputs, selections and resource bindings provided during that 1064
deployment. 1065
See the TopologyType section for structure and additional usage details [4.2.1]. 1066

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 34 of 154

 InstallableUnit, ConfigurationUnit, LocalizationUnit, CompositeInstallable: A simple software 1067
deployment that uses a single artifact for each supported deployment operation MAY be described 1068
using an SDD that defines a single atomic content element–InstallableUnit, ConfigurationUnit or 1069
LocalizationUnit. 1070
A software deployment that requires multiple artifacts, aggregates other deployment packages or has 1071
selectable content MAY be described using an SDD that defines one or more CompositeInstallable 1072
elements. Each CompositeInstallable MUST describe one deployment lifecycle operation for the 1073
package. 1074
See the respective sections (InstallableUnitType [4.3.1], ConfigurationUnitType [4.3.2], 1075
LocalizationUnitType [4.13.2] and CompositeInstallableType [4.9.1]) for structure and additional 1076
usage details. 1077

 Requisites: When the package author chooses to provide deployment packages for required 1078
software, those packages are described by Requisite elements in Requisites. 1079
Including requisite packages in the SDD package MAY provide a convenient way for the deployer to 1080
satisfy one or more SDD requirements. 1081
See the RequisitesType section for structure and additional usage details [4.10.5]. 1082

 schemaVersion, descriptorID, lastModified, descriptorLanguageBundle: These attributes can be 1083
useful to tooling that manages, creates or modifies deployment descriptors and to tooling and 1084
deployment software that displays information from the deployment descriptor to humans. 1085
See the DescriptorInfoGroup section for structure and additional usage details [3.2]. 1086

4.2 Topology 1087

The SDD’s topology describes all the resources that may be required, created or modified when any of 1088
the deployment operations supported by the SDD are performed. 1089
Primary identifying characteristics of the resources can be defined in topology. Constraints beyond these 1090
primary characteristics are not defined in topology; they are defined in content elements that reference 1091
the resource definitions in topology. 1092
The topology includes identification of hosts–hostedBy relationships between resources. When both 1093
resources in that relationship participate in a particular deployment, the relationship is considered a 1094
requirement for that deployment. 1095
It is possible that only a subset of the resources described in topology will play a role in a particular 1096
deployment. This is determined by the selection of content elements for the particular deployment. The 1097
resources that are required, created or modified by the content elements in scope for the deployment are 1098
the ones that will participate in the deployment and so are associated with resources in the deployment 1099
environment. 1100
At deployment time, definitions of the resources that participate in that particular deployment are 1101
associated with actual resource instances in the deployment environment. The mechanisms for 1102
associating resource definitions with resource instances are not described by the SDD. The SDD 1103
metadata describes the characteristics of the participating resources. Whether associations of resource 1104
instances with matching characteristics are made by user choice or entirely by software does not affect 1105
the success of the deployment. Resource characteristics used when making this association include 1106
those defined in topology plus all those defined in constraints on the resource in the content elements that 1107
are in scope for the particular deployment. 1108
Some topologies are variable. That is, a particular set of logical resources of the same type in the 1109
topology might be associated with different physical resource instances or the same physical resource 1110
during deployment. In this case, a separate logical resource definition is created in topology for each 1111
possible physical resource instance. Uniqueness constraints can then be used to describe the conditions 1112
under which the separate resources can be associated with a single resource. 1113
All resource definitions in the SDD are in topology. All other descriptions of resources in the SDD are 1114
references to the resource definitions in the topology. 1115

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 35 of 154

4.2.1 TopologyType 1116

 1117
Figure 15: TopologyType structure. 1118
The Topology element defines one or more hierarchies of resource specifications that describe the 1119
resources that MAY play a role in the deployment of the contents of the solution package. These resource 1120
specifications do not identify specific resource instances in a specific deployment environment. Instead, 1121
they are logical specifications of resources that can be associated with specific resource instances in the 1122
deployment environment for a particular deployment based on the described resource identity 1123
characteristics. These resources have a role in a particular solution deployment only when they are 1124
required, created or modified by a content element, or referred to by a variable, in that particular solution 1125
deployment. 1126

4.2.1.1 TopologyType Property Summary 1127

Name Type * Description

Resource ResourceType 1..* The root of a tree of resources that play a role in the solution.

 xsd:any 0..*

4.2.1.2 TopologyType Property Usage Notes 1128

 Resource: The SDD author’s decision to model a resource in the deployment environment as a 1129
resource in the SDD depends on the need to know about that resource when planning for 1130
deployment, aggregating, deploying and managing the resource lifecycle using the SDD. All 1131
resources required by the solution SHOULD be included. For all Requirements declared in the SDD, 1132
resources MUST be specified. Resources referred to by ResultingResource or ResultingChange 1133
elements MUST also be included. The more complete the SDD is, the more useful it will be in guiding 1134
successful deployment. 1135
See the ResourceType section for structure and additional usage details [4.2.2]. 1136

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 36 of 154

4.2.2 ResourceType 1137

 1138
Figure 16: ResourceType structure. 1139
Elements of ResourceType—both the top level Resource elements and the HostedResource elements 1140
within the resource hierarchy—make up the topology of an SDD. Each Resource element declares, at a 1141
minimum, the type of the resource. Values for resource type are not defined by this specification. A core 1142
assumption of this specification is that an understanding of specific resource types and resource 1143
characteristics are shared by the deployment descriptor author and the deployment software. Therefore, if 1144
the deployment descriptor author declares a new resource type, then deployment software operating on 1145
the SDD needs to understand how to handle that resource type. 1146
In addition to defining type, the resource elements MAY specify a name and other identity properties that 1147
can be used to identify instances of the resource in the deployment environment. The resource identity 1148
elements, Name and Property, are optional and MAY be specified in content elements rather than in 1149
topology. Identity properties used in the resource specification in topology MUST be those that do not 1150
change during deployment, even when the resource is updated. Because resource versions can often 1151
change during an update, there is no version element in resource specifications in Topology. Values can 1152
be defined for resource name and resource properties that help to identify the resource. These represent 1153
the basic identity of the resource and are true for all uses of the resource in the solution. 1154
ResourceType provides the type definition for the Resource and HostedResource elements defined in 1155
Topology. All resources MAY nest resource definitions for resources that they host. To host a resource 1156
means to provide the execution environment for that resource. 1157

For example, an operating system provides the execution environment for software, and a 1158
database engine provides the execution environment for a database table. The operating system 1159
hosts the software and the database engine hosts the database table. 1160

Each resource in these hierarchies may play a role in solution deployment. 1161
Content elements determine a resource’s participation and role(s) in a particular solution deployment. 1162
Content elements can refer to resources in Topology in several ways. A resource can be identified via 1163
xsd:IDREF: 1164

 as the target of the content element’s artifacts. A target resource is a resource that is capable of 1165
processing a particular artifact. A target resource is often, but not always, the host of the 1166
resources created by the artifacts it processes. 1167

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 37 of 154

For example, an operating system may be the target of an artifact that is a zip file. When the 1168
files are unzipped, the file system resource is the host of those files. 1169

See the targetResourceRef attribute in the InstallableUnitType [4.3.1], ConfigurationUnitType 1170
[4.3.2] and LocalizationUnitType [4.13.2] sections. 1171

 as the required base for an update applied by the artifact referenced by the content element. 1172
See the RequiredBaseType section [4.7.8]. 1173

 as the resource that will be created by deploying the artifact referenced by the content element. 1174
See the ResultingResourceType section [4.8.1]. 1175

 as the resource that will be changed by deploying the artifact referenced by the content element. 1176
See the ResultingChangeType section [4.8.2]. 1177

 as the localization base for translated materials. The localization base is the resource that is 1178
localized by deploying the translated materials. 1179
See the LocalizationBase element in the LocalizationUnitType section [4.13.2]. 1180

 as a required resource named in the content element’s Requirements. 1181
See the RequirementsType section [4.7.1]. 1182

 to establish a variable value from a resource property. 1183
See the ResourcePropertyType section [4.6.12]. 1184

One resource MAY be referred to by any number of content elements and can be identified to play any or 1185
all of the roles just listed. When a content element participates in a particular solution deployment, the 1186
resources it references participate in that solution deployment and are associated with resource instances 1187
in the deployment environment. 1188

4.2.2.1 ResourceType Property Summary 1189

Name Type * Description

Description DisplayTextType 0..1 A description of the resource and its role in the solution described by
the SDD.

ShortDescription DisplayTextType 0..1 A short description of the resource and its role.

Name VariableExpressionType 0..1 The name of the resource as known in the deployment environment.

Property PropertyType 0..* An identity property of the resource.

HostedResource ResourceType 0..* A resource that participates in the solution and that is hosted by the
defining resource.

 xsd:any 0..*

id xsd:ID 1 An identifier of the resource scoped to the descriptor.

type ResourceTypeNameType 1 A well-known resource type.

 xsd:anyAttribute 0..*

4.2.2.2 ResourceType Property Usage Notes 1190

 Description, ShortDescription: If used, these elements MUST provide a human-readable 1191
description of the resource. 1192
The Description element MUST be defined if the ShortDescription element is defined. 1193
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1194

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 38 of 154

 Name: The resource name is an identifying characteristic of the resource that correlates with a name 1195
for the resource in the deployment environment. 1196
The type of the Name element, VariableExpressionType, allows the resource name to be expressed 1197
as a simple string or in terms of a user input parameter or other variable. 1198

An example of a good use of a variable expression in Resource.Name is to make sure that the 1199
installation directory is hosted on a file system that has sufficient space available for deployment. 1200
In this example, the file system resource element would define a HostedResource element for the 1201
directory. The Name of the directory would be expressed as a variable expression that refers to a 1202
user input parameter for installation location. Content elements that use the installation directory 1203
would express a requirement on the directory and on the file system with the additional constraint 1204
that the file system have a certain amount of available space (to satisfy the consumption 1205
constraints). The fact that both resources are required and that they are defined with a hosts–1206
hostedBy relationship in Topology, means that the directory that is used must be the installation 1207
directory and it must be hosted by a file system that meets the consumption constraint for 1208
available space. 1209

Only the Variable elements defined in a top level content element can be used to define a resource 1210
Name, because these are the only variables visible within Topology. 1211
If the name of a resource is changed during deployment, for example, during an update, then the 1212
resource name SHOULD NOT be included in the resource specification. Instead, the pre-update 1213
resource name SHOULD be specified in the RequiredBase element of the installable unit that 1214
provides the update, and the post-update name SHOULD be specified in the ResultingResource 1215
element of the same installable unit. 1216
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 1217

 Property: Property elements SHOULD be used when Name alone is not sufficient to identify the 1218
resource. The property used represents an identifying characteristic of a resource. 1219
See the PropertyType section for structure and additional usage details [4.2.3]. 1220

 HostedResource: A Resource MAY define HostedResource elements. Each HostedResource 1221
element is an instance of ResourceType. When both the host and the hosted resource participate in a 1222
particular solution deployment, the associated resource instances selected for use during that 1223
deployment must have a hosts relationship. 1224

For example, a Web application declared to be hosted on a Web server must be hosted on the 1225
instance of the Web server that is selected for use during the deployment. 1226

If only the host resource is identified by the DeploymentDescriptor’s content elements as participating 1227
in the solution, then there is no assumption that the hosted resource exists. 1228

 id: The id attribute uniquely identifies the resource element within the DeploymentDescriptor. This id 1229
value is used by other elements in the DeploymentDescriptor to refer to this resource. This value is 1230
created by the descriptor author. 1231
The id attribute may be useful to software that processes the SDD, for example, for use in creating 1232
log and trace messages. 1233

 type: The type attribute defines the class of resource. The value of type correlates with the resource 1234
type known for the resource in the deployment environment. ResourceTypeNameType restricts type 1235
to valid xsd:QNames. The values for type are not defined by this specification. Creators of 1236
DeploymentDescriptors rely on knowledge of resource types that are understood by supporting 1237
infrastructure in the target environment. To honor the descriptor author’s intent, the deploying 1238
infrastructure must be able to discover the existence of resources of the types defined in the SDD; the 1239
values of the resource’s properties; and the existence and type of resource relationships. The 1240
deploying infrastructure also needs to understand how to use the artifact types associated with the 1241
resource type to create, modify and delete the resource. 1242

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 39 of 154

4.2.3 PropertyType 1243

 1244
Figure 17: PropertyType structure. 1245
PropertyType provides the type definition for elements used to declare an identity property of a resource, 1246
namely, the Property elements of Resource and HostedResource in Topology. It also provides the type 1247
definition for Property elements in Relationship and RelationshipConstraint. 1248

4.2.3.1 PropertyType Property Summary 1249

Name Type * Description

PropertyName xsd:QName 1 The property name.

Value VariableExpressionType 1 The property value.

 xsd:anyAttribute 0..*

4.2.3.2 PropertyType Property Usage Notes 1250

 PropertyName: The PropertyName MAY be used to provide additional identification for the resource 1251
in the deployment environment. 1252
The PropertyName MAY be used to provide constraints on the configuration of a resource. 1253

 Value: Evaluation of the Value expression provides the value of the property. 1254
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 1255

4.2.4 ResultingPropertyType 1256

 1257
Figure 18: ResultingPropertyType structure. 1258
ResultingPropertyType provides the type definition for elements used to declare an identity property of a 1259
resulting resource or to declare a configuration change to a resource property which results from 1260
deployment of an artifact. 1261

4.2.4.1 ResultingPropertyType Property Summary 1262

Name Type * Description

PropertyName xsd:string 1 The resulting property name.

Value VariableExpressionType 1 The resulting property value.

 xsd:anyAttribute 0..* Additional attributes of the resulting property.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 40 of 154

4.2.4.2 ResultingPropertyType Property Usage Notes 1263

 PropertyName: The PropertyName MAY be used to provide additional identification for the resource 1264
in the deployment environment. 1265
The PropertyName MAY be used to declare a configuration change to a resource. 1266

 Value: Evaluation of the Value expression provides the value of the resulting property. 1267
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 1268

4.3 Atomic Content Elements 1269

The package descriptor defines package content that includes artifacts whose processing results in 1270
deployment of the software package. The deployment descriptor defines metadata associated with those 1271
artifacts. The metadata includes conditions, requirements, results, inputs, outputs and completion actions. 1272
Metadata throughout the deployment descriptor is associated with package content in the definition of 1273
atomic content elements. The atomic content elements are InstallableUnit, ConfigurationUnit and 1274
LocalizationUnit. These are the only content elements that define Artifacts elements. 1275
Artifact elements identify an artifact file or set of files defined in package content whose processing will 1276
perform all or a portion of the deployment for a particular deployment lifecycle operation. The name of the 1277
artifact element indicates the operation supported by the artifact. Names of the artifact elements are 1278
created by prefixing “Artifacts” with the operation name. The artifacts defined for use in the SDD are 1279
InstallArtifact, UpdateArtifact, UndoArtifact, UninstallArtifact, RepairArtifact and ConfigArtifact. 1280
Artifact elements define the inputs and outputs, substitution values and types associated with the artifact 1281
files. The content element’s target resource, identified by targetResourceRef, processes the artifact files 1282
with the defined inputs to perform deployment operations. Examples of artifact types include zip files, rpm 1283
files and executable install files. Artifact types are not defined by this specification. The artifact types 1284
defined in the SDD need to be understood by software that processes the SDD. 1285
There MAY be multiple atomic content elements within a composite installable that describe the 1286
deployment of multiple resources as part of a single software deployment or there MAY be a single 1287
atomic content element (singleton) in the deployment descriptor that describes the entirety of a simple 1288
deployment. When an atomic content element is used in a CompositeInstallable, it MUST define exactly 1289
one artifact. When an atomic content element is a singleton, it MUST define at least one artifact element 1290
and MAY define one of each type of artifact element allowed for its type. The inclusion of an artifact 1291
element in a singleton atomic content element implies support for the associated operation. 1292

For example, a singleton ConfigurationUnit that defines a ConfigArtifact associates a configure 1293
operation with the ConfigArtifact. Similarly, an SDD with a singleton InstallableUnit that defines an 1294
InstallArtifact and an UpdateArtifact associates an install operation with the InstallArtifact and an 1295
update operation with the UpdateArtifact. 1296

When an atomic content element is defined within a CompositeInstallable hierarchy, its one artifact MUST 1297
support the single top level operation associated with the CompositeInstallable. The single artifact defined 1298
need not be an artifact for the operation defined for the CompositeInstallable. 1299

For example, in a CompositeInstallable that defines metadata for an update operation, there may be 1300
one InstallableUnit that defines an InstallArtifact element and another InstallableUnit that defines an 1301
UpdateArtifact element. Both of these artifacts are used when performing the overall update operation 1302
defined for the CompositeInstallable. 1303

 1304

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 41 of 154

4.3.1 InstallableUnitType 1305

 1306
Figure 19: InstallableUnitType structure. 1307
The InstallableUnit element is an atomic content element that defines artifacts that install or update 1308
software and defines requirements for applying those artifacts. It may also define artifacts that undo an 1309
update or that uninstall or repair existing software. 1310

4.3.1.1 InstallableUnitType Property Summary 1311

Name Type * Description

Identity IdentityType 0..1 Human-understandable identity information about the InstallableUnit.

Condition ConditionType 0..1 A condition that determines if the content element is relevant to a
particular deployment.

Variables VariablesType 0..1 Variables for use within the InstallableUnit’s requirements and artifact

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 42 of 154

definitions.

RequiredBase RequiredBaseType 0..1 A resource that will be updated when the InstallableUnit’s
UpdateArtifact is processed.

Requirements RequirementsType 0..1 Requirements that must be met prior to successful processing of the
InstallableUnit’s artifacts.

Languages LanguagesType 0..1 Languages supported by the InstallableUnit.

Completion CompletionType 0..* Describes completion actions such as restart and the conditions
under which the action is applied.

ResultingResource ResultingResourceType 0..* A resource that will be installed or updated by processing the
InstallableUnit’s artifacts.

ResultingChange ResultingChangeType 0..* A resource that will be configured by processing the InstallableUnit’s
artifacts.

Artifacts InstallationArtifactsType 1 The set of artifacts associated with the InstallableUnit.

 xsd:any 0..*

id xsd:ID 1 An identifier for the InstallableUnit scoped to the deployment
descriptor.

targetResourceRef xsd:IDREF 1 Reference to the resource that can process the InstallableUnit’s
artifacts.

 xsd:anyAttribute 0..*

4.3.1.2 InstallableUnitType Property Usage Notes 1312

 Identity: The InstallableUnit’s Identity element defines human-understandable information that 1313
reflects the identity of the solution as understood by the end user of the solution. 1314
If the InstallableUnit defines a resulting resource, the Identity of the InstallableUnit SHOULD reflect 1315
the identity of the resulting resource. 1316
When the InstallableUnit is the only content element in the deployment descriptor, its Identity MAY 1317
define values that are the same as the corresponding PackageIdentity element values. 1318

This would be useful, for example, in a case where the package is known by the same name as 1319
the resource created by the InstallableUnit. 1320

See the IdentityType section for structure and additional usage details [3.4]. 1321
 Condition: A Condition is used when the InstallableUnit’s content should be deployed only when 1322

certain conditions exist in the deployment environment. 1323
For example, one InstallableUnit may be applicable only when the operating system resource is 1324
resolved to a Linux®2 operating system during deployment. The InstallableUnit would define a 1325

2 Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 43 of 154

Condition stating that the type of the operating system must be Linux for the InstallableUnit to be 1326
considered in scope for a particular deployment. 1327

See the ConditionType section for structure and additional usage details [4.5.1]. 1328
 Variables: An InstallableUnit’s Variables element defines variables that are used in the definition of 1329

the InstallableUnit’s requirements and in parameters and properties passed to the InstallableUnit’s 1330
target resource. 1331
When the deployment descriptor defines a single InstallableUnit at the top level, that is, not inside a 1332
CompositeInstallable, the variables it defines MAY be referred to by any element under Topology. 1333
See the VariablesType section for structure and additional usage details [4.6.3]. 1334

 Languages: When translated materials are deployed by the InstallableUnit’s artifacts, the languages 1335
of the translations are listed in Languages. 1336
See the LanguagesType section for structure and additional usage details [4.13.6]. 1337

 RequiredBase: When an InstallableUnit can be used to update resources, the RequiredBase 1338
element identifies the resources that can be updated. 1339
See the RequiredBaseType section for structure and additional usage details [4.7.8]. 1340

 Requirements: Requirements specified in an InstallableUnit identify requirements that must be met 1341
prior to successful processing of the InstallableUnit’s artifacts. 1342
See the RequirementsType section for structure and additional usage details [4.7.1]. 1343

 Completion: A Completion element MUST be included if the artifact being processed requires a 1344
system operation such as a reboot or logoff to occur to function successfully after deployment or if the 1345
artifact executes a system operation to complete deployment of the contents of the artifact. 1346
There MUST be an artifact associated with the operation defined by a Completion element. 1347

For example, if there is a Completion element for the install operation, the InstallableUnit must 1348
define an InstallArtifact. 1349

See the CompletionType section for structure and additional usage details [4.3.14]. 1350
 ResultingResource: An InstallableUnit’s ResultingResource element identifies the resources in 1351

Topology that will be installed or updated when the InstallableUnit’s artifacts are processed. 1352
See the ResultingResourceType section for structure and additional usage details [4.8.1]. 1353

 ResultingChange: Multiple content elements within the SDD MAY specify the same resource in their 1354
ResultingChange elements. In this case each content element is capable of modifying the 1355
configuration of that resource. 1356
An example use of the ResultingChange element is to understand whether or not one content 1357
element can satisfy the requirements specified in another content element. 1358
See the ResultingChangeType section for structure and additional usage details [4.8.2]. 1359

 Artifacts: When the InstallableUnit is a singleton defined outside of a CompositeInstallable, it MUST 1360
define at least one artifact element and MAY define one of each type of artifact element allowed for its 1361
type. The inclusion of an artifact element in a singleton InstallableUnit implies support for the 1362
associated operation. 1363
When the InstallableUnit is defined within a CompositeInstallable, it MUST define exactly one artifact. 1364
The artifact defined MAY be any artifact allowed in an InstallableUnit and it MUST support the single 1365
top level operation defined by the CompositeInstallable. This does not mean the operation associated 1366
with the artifact has to be the same as the one defined by the CompositeInstallable. 1367

For example, an update of a resource may be required to support an install of the overall solution, 1368
in which case the InstallableUnit would define an UpdateArtifact to support the top level install 1369
operation. 1370

See the InstallationArtifactsType section for structure and additional usage details [4.3.4]. 1371
 id: The id attribute is referenced in features to identify an InstallableUnit selected by the feature and 1372

Dependency elements to indicate a dependency on processing of the content element. 1373

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 44 of 154

The id attribute may be useful to software that processes the SDD, for example, for use in creating 1374
log and trace messages. 1375

 targetResourceRef: The targetResourceRef attribute identifies the resource that will process the 1376
InstallableUnit’s artifacts. 1377
The resources created or modified by artifact processing are frequently, but not necessarily, hosted 1378
by the target resource. 1379
This value MUST match an id of a resource element in Topology. 1380
The target may be a resource that has not yet been created. In this case, there is a dependency on 1381
the complete installation of the target resource prior to applying the InstallableUnit. This dependency 1382
MUST be represented in a Dependency element within Requirements that apply to the 1383
InstallableUnit. 1384

4.3.2 ConfigurationUnitType 1385

 1386
Figure 20: ConfigurationUnitType structure. 1387
The ConfigurationUnit element defines artifacts that configure one or more existing resources. It also 1388
defines the requirements for applying those artifacts. It MUST NOT install, update, or uninstall resources. 1389

4.3.2.1 ConfigurationUnitType Property Summary 1390

Name Type * Description

Identity IdentityType 0..1 Human-understandable identity information about the
ConfigurationUnit.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 45 of 154

Condition ConditionType 0..1 A condition that determines if the content element is relevant to a
particular deployment.

Variables VariablesType 0..1 Variables for use within the ConfigurationUnit’s requirement and
artifact definitions.

Requirements RequirementsType 0..1 Requirements that must be met prior to successful processing of
the ConfigurationUnit’s artifacts.

Completion CompletionType 0..* Describes completion actions such as restart and the conditions
under which the action is applied.

ResultingChange ResultingChangeType 0..* A definition of changes made to a resource that is configured by
processing the ConfigurationUnit’s ConfigArtifact.

Artifacts ConfigurationArtifactsType 1 The artifact associated with the ConfigurationUnit.

 xsd:any 0..*

id xsd:ID 1 An identifier for the ConfigurationUnit scoped to the deployment
descriptor.

targetResourceRef xsd:IDREF 1 Reference to the resource that can process the ConfigurationUnit’s
artifacts.

 xsd:anyAttribute 0..*

4.3.2.2 ConfigurationUnitType Property Usage Notes 1391

 Identity: The ConfigurationUnit’s Identity element defines human-understandable information that 1392
reflects the identity of the provided configuration as understood by the end user of the solution. 1393
Identity has elements that are common with elements in the corresponding PackageDescriptor’s 1394
PackageIdentity element, for example, Name and Version. The values of these common elements 1395
SHOULD be the same as the corresponding PackageIdentity element values. 1396
See the IdentityType section for structure and additional usage details [3.4]. 1397

 Condition: A Condition is used when the deployment of configuration content is dependent on the 1398
existence of certain conditions in the deployment environment. 1399

For example, a package that has one configuration artifact that creates a database table for one 1400
database product and a different artifact that creates a table for a different database product 1401
would have two configuration units, each with a condition on the associated database product. 1402

See the ConditionType section for structure and additional usage details [4.5.1]. 1403
 Variables: A ConfigurationUnit’s Variables element defines variables that are used in the definition of 1404

requirements and artifact parameters. 1405
When the deployment descriptor defines a single ConfigurationUnit at the top level, that is, not inside 1406
a CompositeInstallable, the variables it defines MAY be referred to by any element under Topology. 1407
See the VariablesType section for structure and additional usage details [4.6.3]. 1408

 Requirements: Requirements specified in a ConfigurationUnit identify requirements that MUST be 1409
met prior to successful processing of the ConfigurationUnit’s artifacts. 1410
See the RequirementsType section for structure and additional usage details [4.7.1]. 1411

 Completion: A Completion element MUST be included if the artifact being processed requires a 1412
system operation such as a reboot or logoff to occur to function successfully after deployment or if the 1413
artifact executes a system operation to complete deployment of the contents of the artifact. 1414
There MUST be an artifact associated with the operation defined by a Completion element. 1415

For example, if there is a Completion element for the configure operation, the ConfigurationUnit 1416
must define a ConfigArtifact. 1417

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 46 of 154

See the CompletionType section for the structure and additional usage details [4.3.14]. 1418
 ResultingChange: Configuration changes made when the configuration artifact is processed 1419

SHOULD be declared here. This information may be necessary when the SDD is aggregated into 1420
another SDD and the resulting change satisfies a constraint in the aggregation. The information 1421
declared here can be compared with resource constraints to determine if application of the 1422
ConfigurationUnit will satisfy the constraint. 1423
See the ResultingChangeType section for structure and additional usage details [4.8.2]. 1424

 Artifacts: When the ConfigurationUnit is a singleton defined outside of a CompositeInstallable, it 1425
MUST define at least one artifact element. The inclusion of an artifact element in a singleton 1426
ConfigurationUnit implies support for the associated operation. 1427
When the ConfigurationUnit is defined within a CompositeInstallable, it MUST define exactly one 1428
artifact. The artifact defined MUST be a ConfigArtifact and it MUST support the single top level 1429
operation defined by the CompositeInstallable. 1430
See the ConfigurationArtifactsType section for structure and additional usage details [4.3.5]. 1431

 id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 1432
log and trace messages. 1433

 targetResourceRef: The targetResourceRef attribute identifies the resource in Topology that will 1434
process the ConfigurationUnit’s artifacts to configure the resources identified by the 1435
ConfigurationUnit’s ResultingChange definition. 1436
This value MUST match an id of a resource element in Topology. 1437

4.3.3 ArtifactType 1438

 1439
Figure 21: ArtifactType structure. 1440
ArtifactType elements define the files, arguments and other information required to perform a particular 1441
deployment operation. Every artifact that can be defined in a content element is an instance of 1442
ArtifactType. These are InstallArtifact, UpdateArtifact, UndoArtifact, UninstallArtifact, RepairArtifact and 1443
ConfigArtifact. 1444

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 47 of 154

4.3.3.1 ArtifactType Property Summary 1445

Name Type * Description

Arguments ArgumentListType 0..1 Arguments used during processing of the artifact.

OutputVariables OutputVariableListType 0..1 Variables whose values are set during processing of the artifact.

AdditionalContent AdditionalContentType 0..* Additional content files that are part of the artifact.

 xsd:any 0..*

contentRef xsd:token 0..1 The primary artifact file. Not used if resourceRef is used.

resourceRef xsd:IDREF 0..1 The resulting resource representing the artifact file. Not used if
contentRef is used.

type ArtifactTypeNameType 0..1 Type of the primary artifact file.

weight xsd:positiveInteger 0..1 The time required to process this artifact relative to all other artifacts
in the SDD.

 xsd:anyAttribute 0..*

4.3.3.2 ArtifactType Property Usage Notes 1446

 Arguments: Inputs to the processing of the artifact MUST be specified by defining an Arguments 1447
element. All required inputs MUST be included in the arguments list. There are no implied arguments. 1448

For example, there is no implication that the selected required resource instances will be passed 1449
with an InstallArtifact on the install operation. If knowledge of those selections is required, 1450
instance identifiers should be passed as arguments. 1451

When one Argument refers to the OutputVariable of another artifact, the output value must be 1452
available at the time of processing the dependent artifact. 1453

For example, an artifact in a content element that is conditioned on the operating system being 1454
Linux should not refer to the output of an artifact in a content element conditioned on the 1455
operating system being Windows™3. 1456

A Dependency requirement MUST be defined between the content elements to indicate that the 1457
artifact that defines the output variable is a pre-requisite of the content element with the dependent 1458
artifact. 1459
See the ArgumentListType section for structure and additional usage details [4.3.8]. 1460

 OutputVariables: OutputVariables are variables whose values are set by artifact processing. 1461
OutputVariables can also be useful in log and trace messages. 1462
See the OutputVariableListType section for structure and additional usage details [4.3.10]. 1463

3 Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 48 of 154

 AdditionalContent: AdditionalContent elements MUST be defined when supporting files are needed 1464
by the artifact for this operation. The content file reference is specified via the contentRef attribute of 1465
AdditionalContent. 1466
See the AdditionalContentType section for structure and additional usage details [4.3.12]. 1467

 contentRef: The value MUST be a reference to the id of the primary artifact file defined in a Content 1468
element in the package descriptor. 1469
Note that it is valid to have no artifact file and drive the operation from arguments alone. 1470
When more than one artifact file is needed, contentRef points to the primary artifact file and 1471
AdditionalContent.contentRef points to any other files used during application of the content element. 1472
When resourceRef is defined, contentRef MUST NOT be defined. 1473

 resourceRef: Sometimes, artifact files are created during a deployment rather than being contained 1474
in the package. 1475

For example, some install programs create an uninstall program when the software is deployed. 1476
The uninstall program is the artifact file that is needed by the UninstallArtifact, but is created by, 1477
but not contained in, the package. In this case, the created artifact file is represented as a 1478
ResultingResource. 1479

An Artifact element that defines resourceRef identifies the resulting resource as its artifact file. 1480
When contentRef is defined, resourceRef MUST NOT be defined. 1481
The value MUST reference the id of a resource element in Topology. 1482

 type: The type attribute identifies the format of the artifact file or files. When there is no artifact file 1483
identified, type MAY be left undefined. If there is an artifact file or additional files defined, type MUST 1484
be defined. 1485
Values for this attribute are not defined by this specification. ArtifactTypeNameType restricts type to 1486
valid xsd:QNames. 1487

 weight: Defining weights for all artifacts and referenced packages in an SDD provides useful 1488
information to software that manages deployment. The weight of the artifact refers to the relative time 1489
taken to deploy the artifact with respect to other artifacts and referenced packages in this SDD. 1490

For example, if the artifact takes three times as long to deploy as another artifact whose weight is 1491
“2”, then the weight would be “6”. The weight numbers have no meaning in isolation and do not 1492
describe actual time elapsed. They simply provide an estimate of relative time. 1493

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 49 of 154

4.3.4 InstallationArtifactsType 1494

 1495
Figure 22: InstallationArtifactsType structure. 1496
InstallationArtifactsType provides the type definition for the Artifacts element of InstallableUnit and 1497
LocalizationUnit. At least one Artifact element MUST be defined. Within a CompositeInstallable definition, 1498
exactly one Artifact element MUST be defined. 1499

4.3.4.1 InstallationArtifactsType Property Summary 1500

Name Type * Description

InstallArtifact ArtifactType 0..1 Artifact for install operation.

UpdateArtifact ArtifactType 0..1 Artifact for update operation.

UndoArtifact ArtifactType 0..1 Artifact for undo operation.

UninstallArtifact ArtifactType 0..1 Artifact for uninstall operation.

RepairArtifact ArtifactType 0..1 Artifact for repair operation.

 xsd:any 0..*

4.3.4.2 InstallationArtifactsType Property Usage Notes 1501

 InstallArtifact: The InstallArtifact element declares deployment information sufficient to enable the 1502
target resource to perform an install using the named artifact files. The ResultingResource and 1503
ResultingChange elements describe the characteristics of the new or modified resource(s). 1504
See the ArtifactType section for structure and additional usage details [4.3.3]. 1505

 UpdateArtifact: The UpdateArtifact element declares deployment information sufficient to enable the 1506
target resource to perform an update using the named artifact files. The RequiredBase element 1507
defines the resource(s) that can be updated. The ResultingResource and ResultingChange elements 1508
describe the updated characteristics of the resource(s). 1509
See the ArtifactType section for structure and additional usage details [4.3.3]. 1510

 UndoArtifact: The UndoArtifact element declares deployment information sufficient to enable the 1511
target resource to undo an update. This undo will put the resource back to a previous level. 1512
The update that can be undone is described in the RequiredBase element. The ResultingResource 1513
definition can be used to describe the state of the resource(s) after the undo completes. 1514

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 50 of 154

See the ArtifactType section for structure and additional usage details [4.3.3]. 1515
 UninstallArtifact: The UninstallArtifact element declares deployment information sufficient to enable 1516

the target resource to perform an uninstall. 1517
If an InstallArtifact is defined in the same InstallableUnit, the ResultingResource element defines the 1518
resource(s) that will be uninstalled. 1519
When an UninstallArtifact is the only artifact defined for an InstallableUnit, the RequiredBase MUST 1520
be defined to declare the resource(s) that will be uninstalled. The ResultingResource element MUST 1521
be left blank because the result of the uninstall is that the resource(s) are removed. 1522
See the ArtifactType section for structure and additional usage details [4.3.3]. 1523

 RepairArtifact: The RepairArtifact element declares deployment information sufficient to enable the 1524
target resource to repair an installation. 1525
If an InstallArtifact is defined in the same InstallableUnit, the ResultingResource element defines the 1526
resource(s) that will be repaired. 1527
When a RepairArtifact is the only artifact defined for an InstallableUnit, the RequiredBase MUST be 1528
defined to declare the resource(s) that will be repaired. 1529
See the ArtifactType section for structure and additional usage details [4.3.3]. 1530

4.3.5 ConfigurationArtifactsType 1531

 1532
Figure 23: ConfigurationArtifactsType structure. 1533
ConfigurationArtifactsType provides the type definition for the Artifacts element of ConfigurationUnit. 1534

4.3.5.1 ConfigurationArtifactsType Property Summary 1535

Name Type * Description

ConfigArtifact ArtifactType 0..1 Artifact for configure operation.

 xsd:any 0..*

4.3.5.2 ConfigurationArtifactsType Property Usage Notes 1536

 ConfigArtifact: The ConfigArtifact element declares deployment information sufficient to allow the 1537
target resource to configure the resources identified in the content element’s ResultingChange 1538
elements. 1539
See the ArtifactType section for structure and additional usage details [4.3.3]. 1540

4.3.6 OperationListType 1541

This simple type extends the xsd:list type as defined in [XSD], and adds the restriction that each 1542
value in the list must be one of the operations from the enumeration defined by OperationType [4.3.7]. 1543

4.3.7 OperationType 1544

Operations are used in the SDD to associate requirements and completion actions with particular 1545
artifacts. 1546

For example, when a requirement defines an operation attribute with value undo, it is a statement that 1547
the requirement must be met prior to processing of the undo artifact. 1548

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 51 of 154

OperationType enumerates the basic resource lifecycle operations that use the content and information 1549
defined in the SDD to change the state of the resources being installed, updated, or configured. 1550

4.3.7.1 OperationType Property Usage Notes 1551

Elements and attributes of OperationType MUST be set to one of the following values: 1552
 configure: Uses the ConfigArtifact to perform configuration actions on a resource. 1553
 install: Uses the InstallArtifact to install resources. 1554
 repair: Uses the RepairArtifact to repair an installation. 1555
 undo: Uses the UndoArtifact to restore a resource to the state before the most recent update was 1556

applied. 1557
 update: Uses the UpdateArtifact to update an existing instance of a resource, as specified by the 1558

required base. 1559
 use: Associates a requirement or completion action with use of the deployed software resources. 1560

Setting the operation attribute to use indicates that the requirement or completion action is not 1561
associated with an artifact. 1562

 uninstall: Uses the UninstallArtifact to uninstall a resource. 1563

4.3.8 ArgumentListType 1564

 1565
Figure 24: ArgumentListType structure. 1566
Each artifact MAY optionally include an Arguments element whose type is provided by ArgumentListType. 1567
This simply defines a list of Argument elements. 1568

4.3.8.1 ArgumentListType Property Summary 1569

Name Type * Description

Argument ArgumentType 1..* An input to artifact processing.

4.3.8.2 ArgumentListType Property Usage Notes 1570

 Argument: An argument value is a variable expression used to define a fixed value for the argument 1571
or to define a value in terms of one of the variables visible to the artifact. 1572
See the ArgumentType section for structure and additional usage details [4.3.9]. 1573

4.3.9 ArgumentType 1574

 1575
Figure 25: ArgumentType structure. 1576
ArgumentType provides the type definition for Argument elements in artifacts [4.3.3]. This complex type is 1577
used to declare the argument name and optionally include a value for that argument. 1578

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 52 of 154

4.3.9.1 ArgumentType Property Summary 1579

Name Type * Description

name VariableExpressionType 1 The argument name.

value VariableExpressionType 0..1 The argument value.

required xsd:boolean 0..1 Indicates that the argument value must result in a valid expression for each
particular deployment.
**default value=“true”

 xsd:anyAttribute 0..*

4.3.9.2 ArgumentType Property Usage Notes 1580

 name: Evaluation of the name expression produces the name of the argument. This can be useful for 1581
arguments with only a name, for example, those that are not name-value pairs. 1582
When the argument name alone is sufficient to communicate its meaning, the argument value 1583
SHOULD be omitted. 1584
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 1585

 value: Evaluation of the value expression provides the value of the argument. 1586
The variable expression MAY be used to define a fixed value for the argument or to define a value in 1587
terms of one of the variables visible to the artifact. 1588
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 1589

 required: In cases where the argument should be ignored when the value expression is not valid for 1590
a particular deployment, set required to "false". 1591

4.3.10 OutputVariableListType 1592

 1593
Figure 26: OutputVariableListType structure. 1594

An artifact can set variables. The variables set by the artifact are defined in the artifact’s OutputVariables. 1595

4.3.10.1 OutputVariableListType Property Summary 1596

Name Type * Description

OutputVariable OutputVariableType 1..* An output from artifact processing.

4.3.10.2 OutputVariableListType Property Usage Notes 1597

 OutputVariable: This is the definition of the variable, not a reference to a variable defined elsewhere. 1598
See the OutputVariableType section for structure and additional usage details [4.3.11]. 1599

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 53 of 154

4.3.11 OutputVariableType 1600

 1601
Figure 27: OutputVariableType structure. 1602

Output variables are variables whose value is set by artifact processing. OutputVariableType extends 1603
BaseVariableType and so has all of the attributes defined there, including an id attribute that is used to 1604
refer to the output variable within the SDD. Output variables can be useful in log and trace messages. 1605

4.3.11.1 OutputVariableType Property Summary 1606

Name Type * Description

 [extends] BaseVariableType See the BaseVariableType section for additional properties
[4.6.2].

outputParameterName xsd:NCName 0..1 An output from artifact processing.

 xsd:anyAttribute 0..*

4.3.11.2 OutputVariableType Property Usage Notes 1607

See the BaseVariableType section for details of the inherited attributes and elements [4.6.2]. 1608
 outputParameterName: This is the name of the output variable as understood within the artifact 1609

processing environment. The output value is associated with the output variable’s id. The SDD author 1610
uses this id within the SDD to refer to this output value. 1611

4.3.12 AdditionalContentType 1612

 1613
Figure 28: AdditionalContentType structure. 1614
When artifact processing requires more than a single file, the artifact declaration includes information 1615
about the additional files needed. AdditionalContentType provides the type definition. Additional content 1616
MAY include input files that need to be edited to include values received as input to a particular solution 1617
deployment. In this case, the additional file can include a Substitution element. 1618

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 54 of 154

4.3.12.1 AdditionalContentType Property Summary 1619

Name Type * Description

Substitution SubstitutionType 0..* A value to substitute into the file.

 xsd:any 0..*

contentRef xsd:token 1 A reference to the content element’s id defined in the package descriptor.

type ArtifactTypeNameType 0..1 Type of the additional artifact file.

 xsd:anyAttribute 0..*

4.3.12.2 AdditionalContentType Property Usage Notes 1620

 Substitution: The Substitution element supports the use of files that require some editing before they 1621
can be used in artifact processing. The definitions in this element support placement of values 1622
determined during a particular deployment into the file identified by the contentRef attribute. 1623
See the SubstitutionType section for structure and additional usage details [4.3.13]. 1624

 contentRef: The contentRef attribute points back to the package descriptor for information about the 1625
physical file. This value MUST match an id of a content element in the package descriptor. 1626

 type: The type attribute identifies the format of the additional file. Values for this attribute are not 1627
defined by this specification. ArtifactTypeNameType restricts values of type to valid xsd:QNames. 1628

4.3.13 SubstitutionType 1629

 1630
Figure 29: SubstitutionType structure. 1631
SubstitutionType provides the type definition for the Substitution element in AdditionalContent 1632
declarations. It enables declaration of patterns in the file and the values that should replace the patterns 1633
before the file is used in artifact processing. 1634

4.3.13.1 SubstitutionType Property Summary 1635

Name Type * Description

Pattern xsd:string 1 The search pattern in the file that needs to be substituted.

Value VariableExpressionType 1 The value to be substituted in the file.

limit xsd:positiveInteger 0..1 The number of substitutions that should be made.

required xsd:boolean 0..1 Indicates that substitution's value must result in a valid expression for each
particular deployment.
**default value=“true”

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 55 of 154

 xsd:anyAttribute 0..*

4.3.13.2 SubstitutionType Property Usage Notes 1636

 Pattern: This is the string that will be replaced with the value when found in the file. 1637
 Value: Evaluation of the variable expression results in the value that will be substituted for the 1638

pattern. 1639
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 1640

 limit: If limit is not defined, there is no limit and all instances of the pattern found in the file will be 1641
replaced. 1642

 required: In cases where the substitution should be ignored when the value expression is not valid 1643
for a particular deployment, set required to “false”. 1644

4.3.14 CompletionType 1645

 1646
Figure 30: CompletionType structure. 1647
For some deployments certain completion actions such as restart and logoff are required before a 1648
deployment operation using a particular content element can be considered complete. The 1649
CompletionType elements enable the SDD author to indicate either that one of these actions is required 1650
or that one of these actions will be performed by the associated artifact. 1651

4.3.14.1 CompletionType Property Summary 1652

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the completion action.

Description DisplayTextType 0..1 Description of the completion action.

ShortDescription DisplayTextType 0..1 Short description of the completion action.

Condition ConditionType 0..1 Conditions that determine when the completion action will be used.

 xsd:any 0..*

type CompletionTypeNamesType 1 The type of the completion action.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 56 of 154

resourceRef xsd:IDREF 1 The resource where the completion action will be executed.

operation OperationListType 1 Associates a completion action with the processing of a particular
artifact.

 xsd:anyAttribute 0..*

4.3.14.2 CompletionType Property Usage Notes 1653

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 1654
MUST provide a label for the Completion element. 1655
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 1656

 Description, ShortDescription: These elements MAY be used to provide human-understandable 1657
information. If used, they MUST provide a description of the Completion element. 1658
The Description element MUST be defined if the ShortDescription element is defined. 1659
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 1660

 Condition: Conditions specified on resource characteristics determine if the completion action 1661
applies. If the conditions are met, the action applies. If not met, then the action is not needed. Unmet 1662
conditions are not considered a failure. When no conditions are defined, the action always applies. 1663
See the ConditionType section for structure and additional usage details [4.5.1]. 1664

 type: This is the completion action that applies when conditions defined in ResourceConstraint are 1665
met. Allowed values defined in CompletionTypeNameType are: 1666

• restartRequiredImmediately: A system restart is required before the deployment operation 1667
is considered complete and the artifact associated with the operation does not perform the 1668
restart. The restart MUST happen before further deployment actions are taken. 1669

• restartRequiredBeforeUse: A system restart is required before the deployment operation is 1670
considered complete and the artifact associated with the operation does not perform this 1671
action. The restart MUST happen before the associated resources are used. 1672

• restartOccurs: The artifact associated with the lifecycle operation will initiate a system 1673
restart. 1674

• logoffRequired: A logoff and logon to the user account is required before the deployment 1675
operation is considered complete and the artifact associated with the operation does not 1676
perform this action. The logoff and logon MUST happen before the operation can be 1677
considered complete. 1678

 resourceRef: This will often be the resource named as the target resource for the defining content 1679
element. 1680
The value MUST reference the id of a resource element in Topology. 1681

 operation: A completion action is associated with the processing of one artifact by setting operation 1682
to the operation associated with that artifact. The element that defines the Completion MUST also 1683
define an artifact associated with the operation defined for the Completion element. 1684
See the OperationListType section for operation enumerations and their meaning [4.3.6]. 1685

4.4 Constraints 1686

The SDD author needs to communicate constraints on resources for a variety of purposes. 1687
 Some constraints must be met for the requirements of a content element to be met. See the 1688

RequirementsType section [4.7.1]. 1689
 Other constraints must be met for a resource to serve as the required base for an update. See the 1690

RequiredBaseType section [4.7.8]. 1691
 Still others must be met for to satisfy a condition that determines the applicability of a content element 1692

or completion action. See the ConditionType section [4.5.1] and the CompletionType section [4.3.14]. 1693

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 57 of 154

The Constraint types described in this section support identification of resource constraints in these 1694
various contexts. These types are: 1695
 CapacityConstraint 1696
 ConsumptionConstraint 1697
 PropertyConstraint 1698
 VersionConstraint 1699
 UniquenessConstraint 1700
 RelationshipConstraint 1701

All of these constraint types are constraints on a property of a resource. There are different constraint 1702
types because there are distinct semantics for different types of resource properties. Examples of these 1703
varying semantics include constraints that the property value be: 1704

• within a certain range; 1705
• one of a set of values; 1706
• all of a set of values; 1707
• equal to a certain value; 1708
• no more than or no less than a certain value; 1709
• no more than or no less than a certain value when all constraints of that type are added 1710

together. 1711
In all cases, deployment software must be able to discover the property’s value to honor the SDD author’s 1712
intent. 1713

4.4.1 CapacityConstraintType 1714

 1715
Figure 31: CapacityConstraintType structure. 1716
CapacityConstraintType provides the type definition of the Capacity elements of 1717
RequirementResourceConstraintType [4.7.5]. These elements are used to express a requirement on the 1718
capacity of a particular resource property such as memory available from an operating system. Capacity 1719
is shared: multiple capacity constraints expressed on the same property are evaluated individually without 1720
assuming any change to the available quantity of the property. 1721

4.4.1.1 CapacityConstraintType Property Summary 1722

Name Type * Description

Description DisplayTextType 0..1 A description of the capacity constraint. Required if ShortDescription is
defined.

ShortDescription DisplayTextType 0..1 A short description of the capacity constraint.

PropertyName xsd:QName 1 Name of the constrained property.

Value CapacityValueType 1 Bounds on the value of the constrained property.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 58 of 154

4.4.1.2 CapacityConstraintType Property Usage Notes 1723

 Description, ShortDescription: These elements MAY be used to provide human-understandable 1724
information. If used, they MUST provide a description of the capacity constraint on the resource. 1725
The Description element MUST be defined if the ShortDescription element is defined. 1726
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1727

 PropertyName: This name corresponds to the name of the constrained resource property in the 1728
environment. This name may be specified in profiles [5.3]. 1729

 Value: Value specifies the bound and optional recommended bound on the resource property 1730
identified in the PropertyName element. 1731
See the CapacityValueType section for structure and additional usage details [4.4.2]. 1732

4.4.2 CapacityValueType 1733

 1734
Figure 32: CapacityValueType structure. 1735
Capacity value is expressed in terms of a minimum or maximum capacity. CapacityValueType provides 1736
the elements that support this expression. It also supports expression of a recommended minimum or 1737
maximum capacity. 1738

4.4.2.1 CapacityValueType Property Summary 1739

Name Type * Description

Minimum VariableExpressionType 0..1 Minimum capacity.

Maximum VariableExpressionType 0..1 Maximum capacity.

MinimumRecommended VariableExpressionType 0..1 Minimum recommended capacity.

MaximumRecommended VariableExpressionType 0..1 Maximum recommended capacity.

unit xsd:string 0..1 Unit of measure used to interpret the capacity value.

 xsd:anyAttribute 0..*

4.4.2.2 CapacityValueType Property Usage Notes 1740

 Minimum: There will usually be either a minimum value or a maximum value defined, but not both. 1741
When minimum is specified, the actual value of the capacity property MUST be equal to or greater 1742
than the minimum value. 1743

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 59 of 154

See the VariableExpressionType section for structure and additional usage details [4.6.1]. 1744
 Maximum: When specified, the actual value of the capacity property MUST be less than or equal to 1745

the defined maximum. 1746
If Minimum and Maximum are both defined, Minimum MUST be less than or equal to Maximum. 1747
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 1748

 MinimumRecommended: The SDD author can indicate a preferred, but not required, minimum by 1749
defining a value for this element. 1750
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 1751

 MaximumRecommended: The SDD author can indicate a preferred, but not required, maximum by 1752
defining a value for this element. 1753
If MinimumRecommended and MaximumRecommended are both defined, MinimumRecommended 1754
MUST be less than or equal to MaximumRecommended. 1755
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 1756

 unit: Values for unit SHOULD be well-known units of measure from the International System of Units 1757
[UNIT]. A unit of measure SHOULD be specified for all properties that are measured in any kind of 1758
unit. 1759

4.4.3 ConsumptionConstraintType 1760

 1761
Figure 33: ConsumptionConstraintType structure. 1762
ConsumptionConstraintType provides the type definition of the Consumption elements of 1763
RequirementResourceConstraintType [4.7.5]. These elements are used to express a requirement on the 1764
available quantity of a particular resource property such as disk space on a file system. 1765
ConsumptionConstraints represent exclusive use of the defined quantity of the resource property. In other 1766
words, consumption constraints are additive, with each consumption constraint specified in the SDD 1767
adding to the total requirement for the specified resource(s). A consumption constraint is assumed to alter 1768
the available quantity such that the portion of the property used to satisfy one constraint is not available to 1769
satisfy another consumption constraint on the same property. 1770

For example, suppose that the target file system has 80 megabytes available. The application of a 1771
content element’s InstallArtifact results in installation of files that use 5 megabytes of file space. The 1772
application of a second InstallArtifact results in installation of files that use 2 megabytes of file space. 1773
Consumption constraints are additive, so the total space used for this content element is 7 1774
megabytes, leaving 73 (80–7) megabytes available on the target file system. 1775

4.4.3.1 ConsumptionConstraintType Property Summary 1776

Name Type * Description

Description DisplayTextType 0..1 A description of the consumption constraint. Required if
ShortDescription is defined.

ShortDescription DisplayTextType 0..1 A short description of the consumption constraint.

PropertyName xsd:QName 1 Names the resource property to test.

Value ConsumptionConstraintValueType 1 A variable expression defining the minimum available

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 60 of 154

quantity.

4.4.3.2 ConsumptionConstraintType Property Usage Notes 1777

 Description, ShortDescription: These elements MAY be used to provide human-understandable 1778
information. If used, they MUST provide a description of the consumption constraint on the resource. 1779
The Description element MUST be defined if the ShortDescription element is defined. 1780
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1781

 PropertyName: The property name can be used to find the property value in the deployment 1782
environment. This name may be specified in profiles [5.3]. 1783

 Value: The result of evaluating this variable expression represents the minimum quantity of the 1784
named resource property that MUST be available for successful deployment of the defining content 1785
element’s artifacts. This quantity will be consumed by application of the associated artifact. 1786
See the ConsumptionConstraintValueType section for structure and additional usage details [4.4.4]. 1787

4.4.4 ConsumptionConstraintValueType 1788

 1789
Figure 34: ConsumptionConstraintValueType structure. 1790
A consumption value is defined using a variable expression. ConsumptionConstraintValueType provides 1791
the variable expression by extending VariableExpressionType. 1792

4.4.4.1 ConsumptionConstraintValueType Property Summary 1793

Name Type * Description

 [extends] VariableExpressionType See the VariableExpressionType section for additional properties [4.6.1].

unit xsd:string 0..1 Unit of measure used to interpret the consumption value.

 xsd:anyAttribute 0..*

4.4.4.2 ConsumptionConstraintValueType Property Usage Notes 1794

See the VariableExpressionType section for details of the inherited attributes and elements [4.6.1]. 1795
 unit: Values for unit SHOULD be well-known units of measure from International System of Units 1796

[UNIT]. A unit of measure SHOULD be specified for all properties which are measured in any kind of 1797
unit. 1798

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 61 of 154

4.4.5 PropertyConstraintType 1799

 1800
Figure 35: PropertyConstraintType structure. 1801
PropertyConstraintType provides the type definition of the Property elements of 1802
RequirementResourceConstraintType [4.7.5]. It supports definition of a required value or set of 1803
acceptable values for a particular resource property. 1804

4.4.5.1 PropertyConstraintType Property Summary 1805

Name Type * Description

Description DisplayTextType 0..1 A description of the property constraint. Required if ShortDescription is
defined.

ShortDescription DisplayTextType 0..1 A short description of the property constraint.

PropertyName xsd:QName 1 Name of the constrained property.

Value VariableExpressionType 0..1 Required property value.

ListOfValues PropertyValueListType 0..1 List of required property values.

4.4.5.2 PropertyConstraintType Property Usage Notes 1806

 Description, ShortDescription: These elements MAY be used to provide human-understandable 1807
information. If used, they MUST provide a description of the property constraint on the resource. 1808
The Description element MUST be defined if the ShortDescription element is defined. 1809
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1810

 PropertyName: The property name can be used to find the property value in the deployment 1811
environment. This name may be specified in profiles [5.3]. 1812

 Value: The result of evaluating this variable expression represents the required value of the named 1813
resource property. 1814
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 1815

 ListOfValues: A list of required values can be defined in place of a single required value. 1816
See the PropertyValueListType section for structure and additional usage details [4.4.6]. 1817

4.4.6 PropertyValueListType 1818

 1819

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 62 of 154

Figure 36: PropertyValueListType structure. 1820
A property value list is expressed as one or more strings representing valid values for the property. 1821

4.4.6.1 PropertyValueListType Property Summary 1822

Name Type * Description

Value VariableExpressionType 1..* A property value.

match PropertyMatchType 0..1 Determines whether the actual property value must match any or all of the listed
values.
**default value=“any”

 xsd:anyAttribute 0..*

4.4.6.2 PropertyValueListType Property Usage Notes 1823

 Value: The result of this variable expression represents one possible required value of the named 1824
resource property. 1825
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 1826

 match: The value or values of the property found in the deployment environment are compared to the 1827
value or values listed in the property constraint. PropertyMatchType defines two enumerated values: 1828
any and all. When match is set to any, the property constraint is considered met when any one of the 1829
found property values matches any one of the declared property values. When match is set to all, the 1830
constraint is considered met when all of the declared property values match values found for the 1831
property. 1832

4.4.7 VersionConstraintType 1833

 1834
Figure 37: VersionConstraintType structure. 1835
VersionConstraintType provides the type definition of the VersionConstraint elements of 1836
RequirementResourceConstraintType [4.7.5]. A VersionConstraint can define a set of individual versions 1837
or ranges of versions that are supported and a similar set that are certified. 1838

4.4.7.1 VersionConstraintType Property Summary 1839

Name Type * Description

Description DisplayTextType 0..1 A description of the version constraint. Required if
ShortDescription is defined.

ShortDescription DisplayTextType 0..1 A short description of the version constraint.

Supported VersionConstraintValueType 1 A supported version or set of versions.

Certified VersionConstraintValueType 0..1 A subset of the supported versions that are certified as tested.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 63 of 154

4.4.7.2 VersionConstraintType Property Usage Notes 1840

 Description, ShortDescription: These elements MAY be used to provide human-understandable 1841
information. If used, they MUST provide a description of the version constraint on the resource. 1842
The Description element MUST be defined if the ShortDescription element is defined. 1843
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1844

 Supported: If the resource version is in the Supported set, it meets the requirements. 1845
See the VersionConstraintValueType section for structure and additional usage details [4.4.8]. 1846

 Certified: In some cases the set of required versions may be different from the set of versions that 1847
are certified by the manufacturer as thoroughly tested. 1848
See the VersionConstraintValueType section for structure and additional usage details [4.4.8]. 1849

4.4.8 VersionConstraintValueType 1850

 1851
Figure 38: VersionConstraintValueType structure. 1852
A version constraint can be specified using any number of individual version values in combination with 1853
any number of version ranges. 1854

4.4.8.1 VersionConstraintValueType Property Summary 1855

Name Type * Description

Value VersionValueType 0..* A version value with associated fixes specified.

Range VersionRangeType 0..* A range of version values with associated fixes specified for each range.

4.4.8.2 VersionConstraintValueType Property Usage Notes 1856

 Value: Discrete version values can be defined when the set of required versions includes versions 1857
that do not fall within a range. There is no assumption by this specification that version values are 1858
numerically comparable. The method of comparing version values may be resource-specific. 1859
See the VersionValueType section for structure and additional usage details [4.4.9]. 1860

 Range: See the VersionRangeType section for structure and additional usage details [4.4.10]. 1861

4.4.9 VersionValueType 1862

 1863
Figure 39: VersionValueType structure. 1864
A version value includes a version and a list of required fixes associated with that version. 1865

4.4.9.1 VersionValueType Property Summary 1866

Name Type * Description

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 64 of 154

Version VersionType 1 An allowable version value.

FixName xsd:string 0..* The name of a fix.

4.4.9.2 VersionValueType Property Usage Notes 1867

 Version: A string containing a single, exact version value. This is compared with the version value of 1868
specific resource instances. Only equal values satisfy this part of the constraint. 1869
See the VersionType section for structure and additional usage details [3.10]. 1870

 FixName: Any number of FixName elements can be defined, identifying fixes that must be discovered 1871
to be applied for the version constraint to be considered met. 1872

4.4.10 VersionRangeType 1873

 1874
Figure 40: VersionRangeType structure. 1875
A VersionRange is specified with a minimum and maximum version value and a list of required fixes 1876
associated with that range. The method of comparing version strings in a version range is resource-1877
specific. 1878

4.4.10.1 VersionRangeType Property Summary 1879

Name Type * Description

MinVersion VersionType 0..1 The least allowable version value.

MaxVersion MaxVersionType 0..1 The greatest allowable version value.

FixName xsd:string 0..* The name of a fix.

4.4.10.2 VersionRangeType Property Usage Notes 1880

 MinVersion: This is the lower bound of a version range. If MinVersion is defined but MaxVersion is 1881
not, there is no upper bound. A version that is equal to MinVersion is within the defined range. 1882
See the VersionType section for structure and additional usage details [3.10]. 1883

 MaxVersion: This is the upper bound of a version range. If MaxVersion is defined but MinVersion is 1884
not, there is no lower bound. A version that is equal to MaxVersion may be within the defined range 1885
depending on the value specified for the inclusive attribute. 1886
See the MaxVersionType section for structure and additional usage details [4.4.11]. 1887

 FixName: Any number of FixNames can be defined identifying fixes that must be found to be applied 1888
for the version constraint is to be considered satisfied. This is true for all versions within the defined 1889
range. 1890
When FixName is defined, either a MinVersion or a MaxVersion element MUST also be defined. 1891

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 65 of 154

4.4.11 MaxVersionType 1892

 1893
Figure 41: MaxVersionType structure. 1894
A maximum version can be inclusive or exclusive. 1895

4.4.11.1 MaxVersionType Property Summary 1896

Name Type * Description

 [extends] VersionType See the VersionType section for additional properties [3.10].

inclusive xsd:boolean 0..1 Indicates whether the max version value is included in the supported range of
versions.
**default value=“false”

 xsd:any 0..*

4.4.11.2 MaxVersionType Property Usage Notes 1897

See the VersionType section for details of the inherited attributes and elements [3.10]. 1898
 inclusive: The inclusive attribute allows the SDD author to choose the semantics of maximum 1899

version. Supported ranges are often everything equal to or greater than the minimum version and up 1900
to, but not including, the maximum version. Sometimes it is more convenient for the range to include 1901
the maximum version. 1902

4.4.12 UniquenessConstraintType 1903

 1904
Figure 42: UniquenessConstraintType structure. 1905
A UniquenessConstraint is used to indicate when two resources defined in topology MUST or MUST NOT 1906
resolve to the same resource instance during a particular deployment. A UniquenessConstraint indicates 1907
that the two resources MUST NOT be the same when it is defined in a ResourceConstraint element with 1908
testValue=“true”. A UniquenessConstraint indicates that the two resources MUST be the same when 1909
defined in a ResourceConstraint with testValue=“false”. 1910
When no UniquenessConstraint is in scope for a particular pair of resources, the two resources MAY 1911
resolve to the same resource when their identifying characteristics are the same and when all in-scope 1912
constraints on both resources are satisfied. 1913
The first of the pair of resources is identified in the resourceRef attribute of the ResourceConstraint 1914
element that defines the UniquenessConstraint. The second of the pair is identified in the 1915
distinctResourceRef attribute of the UniquenessConstraint. 1916

4.4.12.1 UniquenessConstraintType Property Summary 1917

Name Type * Description

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 66 of 154

Description DisplayTextType 0..1 A description of the uniqueness constraint, for example what must or must
not be unique and why.

ShortDescription DisplayTextType 0..1 A short description of the uniqueness constraint.

distinctResourceRef xsd:IDREF 1 One of the pair of resources referred to by the constraint.

4.4.12.2 UniquenessConstraintType Property Usage Notes 1918

 Description, ShortDescription: These elements MAY be used to provide human-understandable 1919
information. If used, they MUST provide a description of the uniqueness constraint on the resource. 1920
The Description element MUST be defined if the ShortDescription element is defined. 1921
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1922

 distinctResourceRef: The second resource in the pair of resources. 1923
The value MUST reference the id of a resource element in Topology. 1924

4.4.13 RelationshipConstraintType 1925

 1926
Figure 43: RelationshipConstraintType structure. 1927
A RelationshipConstraint identifies a particular relationship between two resources that is constrained in 1928
some way by the SDD. The value of the testValue attribute of the ResourceConstraint that contains the 1929
RelationshipConstraint determines whether the constraint MUST be satisfied or MUST NOT be satisfied. 1930
The first resource of the pair is defined by the resourceRef attribute of the ResourceConstraint containing 1931
the RelationshipConstraint. 1932

4.4.13.1 RelationshipConstraintType Property Summary 1933

Name Type * Description

Description DisplayTextType 0..1 A description of the relationship and its purpose in the overall
solution.

ShortDescription DisplayTextType 0..1 A short description of the relationship.

Property PropertyType 0..* A property constraint that further constrains the relationship.

relatedResourceRef xsd:IDREF 0..1 The second resource in the relationship.

type xsd:QName 1 The type of the relationship.

 xsd:anyAttribute 0..*

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 67 of 154

4.4.13.2 RelationshipConstraintType Property Usage Notes 1934

 Description, ShortDescription: These elements MAY be used to provide human-understandable 1935
information. If used, they MUST provide a description of the relationship constraint on the resource. 1936
The Description element MUST be defined if the ShortDescription element is defined. 1937
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1938

 Property: This element MAY be used to provide additional constraints on the relationship. 1939
For example, a connectivity relationship might specify additional information such as the specific 1940
protocol used (for instance, TCP/IP) and/or particular characteristics of a protocol (for instance, 1941
port number). 1942

See the PropertyType section for structure and additional usage details [4.2.3]. 1943
 relatedResourceRef: Naming the second resource is optional. When it is not named, the relationship 1944

constraint is satisfied if the first resource has the defined relationship with any other resource. 1945
When it is named, the value MUST reference the id of a resource element in Topology. 1946

 type: Values for relationship type are not defined by the SDD specification. 1947

4.5 Conditions 1948

Conditions are expressed on characteristics of resources in the deployment environment. Conditions are 1949
used to indicate when particular elements of the SDD are applicable, or when they should be ignored. 1950
Conditions are not requirements. Failure to satisfy a condition does not indicate a failure; it simply means 1951
the conditioned element should be ignored. Conditions are used to: 1952

 determine if a content element is applicable 1953
 choose from among values for a variable 1954
 determine when a feature is applicable 1955
 determine when a particular result is applicable 1956
 determine if a particular completion action is necessary. 1957

Because conditions are always based on the characteristics of resources, they are expressed using 1958
resource constraints. 1959

4.5.1 ConditionType 1960

 1961
Figure 44: ConditionType structure. 1962

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 68 of 154

ConditionType allows expression of the particular resource characteristics that must be true for the 1963
condition to be considered met. These are resource characteristics that may vary from one particular 1964
deployment to another. 1965

For example, one deployment using the SDD might use one version of an application server and a 1966
different deployment might use a different version. The differences in the version might be great 1967
enough to: 1968
• select among content elements. 1969

For example, one content element has an artifact for a Web application that works in a 1970
particular version and a different content element has an artifact for a later version of the 1971
same Web application. 1972

• select among variable values. 1973
For example, the default installation path on one operating system may be different from the 1974
default install path on another operating system. 1975

• select among completion actions. 1976
For example, a reboot may be required when deploying on one operating system but not 1977
another. 1978

4.5.1.1 ConditionType Property Summary 1979

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the condition.

Description DisplayTextType 0..1 Description of the condition.

ShortDescription DisplayTextType 0..1 Short description of the condition.

Alternative AlternativeConditionalType 0..* An alternative set of resource constraints.

ResourceConstraint ConditionalResourceConstraintType 0..* A set of constraints on one resource.

 xsd:any 0..*

operation OperationListType 0..1 The condition applies only when processing the artifact
associated with this operation.

 xsd:anyAttribute 0..*

4.5.1.2 ConditionType Property Usage Notes 1980

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 1981
MUST provide a label for the condition. 1982
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 1983

 Description, ShortDescription: These elements MAY be used to provide human-understandable 1984
information. If used, they MUST provide a description of the condition. 1985
The Description element MUST be defined if the ShortDescription element is defined. 1986
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 1987

 Alternative: When a condition can be satisfied in multiple ways, two or more Alternative elements are 1988
defined. 1989
As a convenience for tooling that produces SDDs, it is also possible to define a single Alternative. 1990
This is semantically identical to directly defining ResourceConstraints. 1991
To meet a condition, at least one of the specified Alternatives must be satisfied. 1992
See the AlternativeConditionalType section for structure and additional usage details [4.5.2]. 1993

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 69 of 154

 ResourceConstraint: When a condition can be satisfied in only one way, constraints MAY be 1994
defined directly under Condition or in a single Alternative element. 1995
Constraints are defined using a sequence of ResourceConstraints. Every constraint in the sequence 1996
must be met for the condition to be met. 1997
See the ConditionalResourceConstraintType section for structure and additional usage details [4.5.3]. 1998

 operation: In a singleton atomic content element, a condition MAY be associated with application of 1999
one or more artifacts. The association is made by setting the operation attribute to the operations 2000
associated with those artifacts. 2001
Conditions defined for CompositeInstallable and for atomic content elements defined within a 2002
CompositeInstallable SHOULD NOT define operation. If the operation is defined for a 2003
CompositeInstallable Condition, it MUST be set to the operation defined in the CompositeInstallable’s 2004
operation attribute. If operation is defined for an atomic content element’s Condition, it MUST be set 2005
to the operation associated with the single artifact defined by the atomic content element. 2006
When operation is not specified, the condition applies to the processing of all artifacts. 2007
See the OperationListType section for operation enumerations and their meaning [4.3.6]. 2008

4.5.2 AlternativeConditionalType 2009

 2010
Figure 45: AlternativeConditionalType structure. 2011
When a condition can be met in more than one way, alternative sets of conditional resource constraints 2012
can be defined. AlternativeConditionalType provides the type definition for these elements. 2013

4.5.2.1 AlternativeConditionalType Property Summary 2014

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the alternative.

Description DisplayTextType 0..1 Description for the alternative.

ShortDescription DisplayTextType 0..1 Short description of the alternative.

ResourceConstraint ConditionalResourceConstraintType 1..* A set of constraints on one resource.

 xsd:any 0..*

id xsd:IDREF 1 Identifier for the alternative that is unique within the
deployment descriptor.

 xsd:anyAttribute 0..*

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 70 of 154

4.5.2.2 AlternativeConditionalType Property Usage Notes 2015

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 2016
MUST provide a label for the alternative condition. 2017
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2018

 Description, ShortDescription: These elements MAY be used to provide human-understandable 2019
information. If used, they MUST provide a description of the alternative condition. 2020
The Description element MUST be defined if the ShortDescription element is defined. 2021
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2022

 ResourceConstraint: All constraints defined in the individual Alternative MUST be met for the 2023
Alternative condition to evaluate to true. 2024
See the ConditionalResourceConstraintType section for structure and additional usage details [4.5.3]. 2025

 id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2026
log and trace messages. 2027

4.5.3 ConditionalResourceConstraintType 2028

 2029
Figure 46: ConditionalResourceConstraintType structure. 2030
ConditionalResourceConstraintType provides the type definitions for the ResourceConstraint elements 2031
used in conditions. These constraints do not represent requirements for deployment. They identify the 2032
resource characteristics associated with a condition. Name, version, property and the existence or 2033
absence of the resource can be specified with a resource constraint used in a condition. 2034

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 71 of 154

4.5.3.1 ConditionalResourceConstraintType Property Summary 2035

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the resource constraint.

Description DisplayTextType 0..1 Description for the resource constraint.

ShortDescription DisplayTextType 0..1 Short description of the resource constraint.

Name VariableExpressionType 0..1 Name of the resource constraint.

VersionConstraint VersionConstraintValueType 0..1 A resource version set.

PropertyConstraint ConditionalPropertyConstraintType 0..* A resource property name and required value.

UniquenessConstraint UniquenessConstraintType 0..* A required mapping of two resources in the topology
to unique instances in the deployment environment.

RelationshipConstraint RelationshipConstraintType 0..* A required relationship between the resource
identified in the resourceRef and another resource in
the topology.

 xsd:any 0..*

id xsd:ID 1 Identifier for the resource constraint that is unique
within the deployment descriptor.

resourceRef xsd:IDREF 1 The resource to which the conditions apply.

testValue xsd:boolean 0..1 The result of evaluating the contained constraints,
which will result in the ResourceConstraint being met.
**default value=“true”

 xsd:anyAttribute 0..*

4.5.3.2 ConditionalResourceConstraintType Property Usage Notes 2036

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 2037
MUST provide a label for the resource constraint. 2038
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2039

 Description, ShortDescription: These elements MAY be used to provide human-understandable 2040
information. If used, they MUST provide a description of the resource constraint. 2041
The Description element MUST be defined if the ShortDescription element is defined. 2042
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2043

 Name: The name of the resource identified by resourceRef. If the resource name is defined in 2044
topology it SHOULD NOT be defined here. If it is defined in both places, the one defined in the 2045
condition is used when evaluating the condition. 2046
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2047

 VersionConstraint: The actual version of the resource MUST be one of the set of versions defined 2048
here for the version condition to be considered met. 2049
See the VersionConstraintValueType section for structure and additional usage details [4.4.8]. 2050

 PropertyConstraint: The actual value of the property MUST match the value defined here for the 2051
condition to be considered met. 2052
See the ConditionalPropertyConstraintType section for structure and additional usage details [4.5.4]. 2053

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 72 of 154

 UniquenessConstraint: UniquenessConstraint elements are used in ResourceConstraints to 2054
indicate when two resources defined in topology MUST or MUST NOT resolve to the same resource 2055
instance during a particular deployment. 2056
See the UniquenessConstraintType section for structure and additional usage details [4.4.12]. 2057

 RelationshipConstraint: RelationshipConstraint elements are used in ResourceConstraints to 2058
indicate a constraint on a particular relationship between resources. 2059
See the RelationshipConstraintType section for structure and additional usage details [4.4.13]. 2060

 id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2061
log and trace messages. 2062

 resourceRef: The version and property constraints defined here all apply to the one resource 2063
specification in topology identified by this attribute. 2064
The value MUST reference the id of that resource element in Topology. 2065

 testValue: When the result of evaluating Name and all of the constraints defined in the 2066
ResourceConstraint matches the value of testValue, the ResourceConstraint is considered met. 2067
When no name, version or property constraints are defined, and testValue is “true”, the constraint is 2068
met if the resource exists as defined in topology. 2069
When no name, version or property constraints are defined, and testValue is “false”, the constraint is 2070
met if the resource, as defined in topology, does not exist. 2071

4.5.4 ConditionalPropertyConstraintType 2072

 2073
Figure 47: ConditionalPropertyConstraintType structure. 2074
ConditionalPropertyConstraintType provides the type definition for a PropertyConstraint included within 2075
Alternatives specified in Condition elements. The ConditionalPropertyConstraintType is very similar to the 2076
PropertyConstraintType; the only difference is that the Value element defined in the 2077
ConditionalPropertyConstraintType is of type xsd:string which is less restrictive than the Value 2078
element defined in the PropertyConstraintType which is of VariableExpressionType. 2079

4.5.4.1 ConditionalPropertyConstraintType Property Summary 2080

Name Type * Description

Description DisplayTextType 0..1 A description of the property constraint. Required if ShortDescription is
defined.

ShortDescription DisplayTextType 0..1 A short description of the property constraint.

PropertyName xsd:QName 1 Name of the constrained property.

Value xsd:string 0..1 Required property value.

ListOfValues PropertyValueListType 0..1 List of required property values.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 73 of 154

4.5.4.2 ConditionalPropertyConstraintType Property Usage Notes 2081

 Description, ShortDescription: These elements MAY be used to provide human-understandable 2082
information. If used, they MUST provide a description of the PropertyConstraint element. 2083
The Description element MUST be defined if the ShortDescription element is defined. 2084
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 2085

 PropertyName: The property name can be used to find the property value in the deployment 2086
environment. The name may be defined in a profile [5.3]. 2087

 Value: In a condition, the value used in a property constraint is a string rather than a variable 2088
expression. 2089

 ListOfValues: A list of required values can be defined in place of a single required value. 2090
See the PropertyValueListType section for structure and additional usage details [4.4.6]. 2091

4.6 Variables 2092

Variables provide a means to associate user inputs, resource property values, fixed strings and values 2093
derived from these with input arguments for artifacts and with constraints on resources. 2094

4.6.1 VariableExpressionType 2095

 2096
Figure 48: VariableExpressionType structure. 2097
Variable expressions are used in many places in the SDD. They allow the value of a variable to be used 2098
as all, or part of, the value of some other SDD element. A variable expression is a string that can include 2099
a reference to a variable. The string is evaluated by replacing all references to variables with the value of 2100
the variable. A variable reference is a variable id placed inside parentheses preceded by a dollar sign. 2101

For example, the variable expression “C:\Program Files\$(InstallDirectory)” resolves to “C:\Program 2102
Files\Acme Software Product” if the value of the variable with the id “InstallDirectory” has the value 2103
“Acme Software Product”. 2104

The value of a variable that is replaced into a variable expression can itself have a variable reference. 2105
This reference is resolved before using the value. This nesting of variable expressions is unlimited. Any 2106
number of variable references can be used in a variable expression. If a variable expression string does 2107
not contain a variable reference, it is used as is. 2108
A variable is considered defined if it has a value provided, even if that value is the empty string. A variable 2109
expression is considered valid if it contains no variable references, or if all contained variable references 2110
are defined. 2111
Specifically, a ResourceProperty variable is undefined when the resource does not participate in the 2112
particular deployment or when the specified property has no value. A Parameter variable is undefined 2113
when it has no default value and has no value provided by the deployer. A DerivedVariable that uses 2114
ConditionalExpression elements is undefined when none of its conditions evaluates to true, or the 2115
selected condition's value expression is not valid. A DerivedVariable that uses an unconditioned 2116
Expression is undefined when its value expression is undefined. 2117
To avoid an undefined Parameter variable, default parameter values may be used. To avoid an undefined 2118
ResourceProperty variable, replace references to the ResourceProperty variable with references to a 2119
DerivedVariable defined to provide a default value in cases where the ResourceProperty is undefined. 2120
This DerivedVariable would define one expression, conditioned on the resource, that refers to the 2121
ResourceProperty variable and another, low priority, catch-all expression that defines the desired 2122
“default” value. Note that the default value in either of these cases MAY be an empty string, for example, 2123

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 74 of 154

“”. An empty string acts just like any other defined variable value. When the provided value of a variable is 2124
an empty string, the variable reference in a variable expression is replaced by an empty string. 2125

4.6.2 BaseVariableType 2126

 2127
Figure 49: BaseVariableType structure. 2128
BaseVariableType is the base type of the DerivedVariable and ResourceProperty elements defined by 2129
VariablesType [4.6.3]. It provides the id attribute, which is used to reference the variable in a variable 2130
expression. 2131

4.6.2.1 BaseVariableType Property Summary 2132

Name Type * Description

Description DisplayTextType 0..1 Description of the variable.

ShortDescription DisplayTextType 0..1 Short description of the variable.

id xsd:ID 1 Identifier used for referencing the variable within the descriptor.

sensitive xsd:boolean 0..1 A “true” value indicates the variable contains sensitive data.
**default value=“false”

4.6.2.2 BaseVariableType Property Usage Notes 2133

 Description, ShortDescription: These elements MAY be used to provide human-understandable 2134
information. If used, they MUST provide a description of the variable. 2135
The Description element MUST be defined if the ShortDescription element is defined. 2136
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 2137

 id: Variables may be referenced in deployment descriptor elements of type VariableExpression within 2138
the scope of the variable. The scope of the variable includes the content element where defined and 2139
all nested content elements. Variables defined in the top level content element are also visible in 2140
Topology. The Variable is referenced by placing the variable id within parentheses preceded by a 2141
dollar sign. 2142

For example, a variable with id value “InstallLocation” is referenced with the string 2143
“$(InstallLocation)”. 2144

The id attribute may be useful to software that processes the SDD, for example, for use in creating 2145
log and trace messages. 2146

 sensitive: The sensitive attribute provides an indication of whether the data within a variable is likely 2147
to be considered sensitive. User name and password are examples of data that may be considered 2148
sensitive. 2149

For example, sensitive data typically would not be displayed in a user interface, written to a log 2150
file, stored without protection, or in any way made visible except to authorized users. 2151

The default value is “false”. 2152

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 75 of 154

4.6.3 VariablesType 2153

 2154
Figure 50: VariablesType structure. 2155
There are three types of variables that can be defined in a content element: input parameter variables, 2156
variables that take the value of a resource property, and variables whose value is derived from a variable 2157
expression. 2158
A variable is in scope for a particular deployment when the content element that defines the variable is in 2159
scope for that deployment. 2160

4.6.3.1 VariablesType Property Summary 2161

Name Type * Description

Parameters ParametersType 0..* A list of variables whose values can be supplied as input to the
deployment process.

ResourceProperty ResourcePropertyType 0..* A variable whose value is set from the value of a resource property.

DerivedVariable DerivedVariableType 0..* A set of expressions with optional associated conditions. The
DerivedVariable’s value is determined by evaluating the conditions and
then setting the variable value to the result of the top priority
expression from the set of expressions whose conditions evaluate to
true.

 xsd:any 0..*

4.6.3.2 VariablesType Property Usage Notes 2162

 Parameters: See the ParametersType section for structure and additional usage details [4.6.4]. 2163
 ResourceProperty: See the ResourcePropertyType section for structure and additional usage details 2164

[4.6.12]. 2165
 DerivedVariable: See the DerivedVariableType section for structure and additional usage details 2166

[4.6.13]. 2167

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 76 of 154

4.6.4 ParametersType 2168

 2169
Figure 51: ParametersType structure. 2170
Parameters are variables whose value is expected to be received as input to the deployment process. 2171
The SDD author can specify multiple specific types of parameters, including validation rules for the values 2172
of the parameters. 2173

4.6.4.1 ParametersType Property Summary 2174

Name Type * Description

IntegerParameter IntegerParameterType 0..* An integer input parameter.

StringParameter StringParameterType 0..* A string input parameter.

BooleanParameter BooleanParameterType 0..* A boolean input parameter.

URIParameter URIParameterType 0..* A Universal Resource Identifier input parameter.

 xsd:any 0..*

4.6.4.2 ParametersType Property Usage Notes 2175

 IntegerParameter: See the IntegerParameterType section for structure and additional usage details 2176
[4.6.6]. 2177

 StringParameter: See the StringParameterType section for structure and additional usage details 2178
[4.6.8]. 2179

 BooleanParameter: See the BooleanParameterType section for structure and additional usage 2180
details [4.6.10]. 2181

 URIParameter: See the URIParameterType section for structure and additional usage details 2182
[4.6.11]. 2183

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 77 of 154

4.6.5 BaseParameterType 2184

 2185
Figure 52: BaseParameterType structure. 2186
BaseParameterType provides a default value, along with other attributes used by all parameter types. It 2187
also provides the id attribute, which is used to reference the parameter in variable expressions. 2188

4.6.5.1 BaseParameterType Property Summary 2189

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the parameter.

Description DisplayTextType 0..1 Description of the parameter.

ShortDescription DisplayTextType 0..1 Short description of the parameter.

id xsd:ID 1 Identifier used for referencing the variable within the descriptor.

defaultValue VariableExpressionType 0..1 Default value for the parameter.

sensitive xsd:boolean 0..1 A “true” value indicates the variable contains sensitive data.
**default value=“false”

required xsd:boolean 0..1 A “true” value indicates that a value for the parameter must be
provided.
**default value=“true”

operation OperationListType 0..1 The parameter is used when the specified operation(s) is (are)
performed.

4.6.5.2 BaseParameterType Property Usage Notes 2190

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 2191
MUST provide a label for the parameter. 2192
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2193

 Description, ShortDescription: These elements MAY be used to provide human-understandable 2194
information. If used, they MUST provide a description of the parameter. 2195
These elements may be used to assist the deployer in understanding the purpose and expected 2196
values for the parameters. 2197
The Description element MUST be defined if the ShortDescription element is defined. 2198
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2199

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 78 of 154

 id: Parameters may be referenced in DeploymentDescriptor elements of type VariableExpression 2200
within the scope of the parameter variable. The scope of the variable includes the content element 2201
where the variable is defined and all nested content elements. Variables defined in the top level 2202
content element are also visible in Topology. The Variable is referenced by placing the variable id 2203
within parentheses preceded by a dollar sign. 2204

For example, a variable with id value “InstallLocation” is referenced with the string 2205
“$(InstallLocation)”. 2206

The id attribute may be useful to software that processes the SDD, for example, for use in creating 2207
log and trace messages. 2208

 defaultValue: The defaultValue is used if no other value is provided as input to the deployment 2209
process. 2210
The value is interpreted based on the type of the defining parameter. 2211

For example, the defaultValue for a BooleanParameter must be either “true” or “false”; the 2212
defaultValue for a StringParameter must be a string; etc. 2213

See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2214
 sensitive: The sensitive attribute provides an indication of whether the data within a variable is likely 2215

to be considered sensitive. User name and password are examples of data that may be considered 2216
sensitive. 2217

For example, sensitive data typically would not be displayed in a user interface, written to a log 2218
file, stored without protection, or in any way made visible except to authorized users. 2219

 required: A “true” value for required indicates that a value for the parameter must be provided when 2220
the parameter is in scope for a particular deployment. 2221
In cases where the parameter should be ignored when the value expression is not valid for a 2222
particular deployment, set required to "false". 2223
A “false” value for the required attribute has no effect when defaultValue is set. 2224

 operation: This attribute enables unique parameters to be defined per operation. Note that the use of 2225
a parameter for a particular operation is determined by a reference to the parameter in a variable 2226
expression or artifact argument used when performing that operation. The operation(s) associated 2227
with a parameter’s use can be determined by examining its use in the SDD. The operation attribute 2228
provides a quick way to know which operation(s) will use the parameter without having to examine 2229
the use of the parameter. 2230
All parameters defined within a CompositeInstallable are associated with the single operation 2231
supported by the CompositeInstallalbe. The operation attribute SHOULD NOT be set in this situation. 2232
See the OperationListType section for operation enumerations and their meaning [4.3.6]. 2233

4.6.6 IntegerParameterType 2234

 2235
Figure 53: IntegerParameterType structure. 2236

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 79 of 154

IntegerParameterType defines upper and lower bounds that can be used to validate the input received for 2237
that parameter. 2238

4.6.6.1 IntegerParameterType Property Summary 2239

Name Type * Description

 [extends] BaseParameterType See the BaseParameterType section for additional properties [4.6.5].

Bounds BoundaryType 0..* Specifies the boundaries for the value of the parameter.

 xsd:anyAttribute 0..*

4.6.6.2 IntegerParameterType Property Usage Notes 2240

See the BaseParameterType section for details of the inherited attributes and elements [4.6.5]. 2241
 Bounds: If there are restrictions on the range of values that are valid for a parameter, those 2242

restrictions MUST be specified in Bounds. 2243
See the BoundaryType section for structure and additional usage details [4.6.7]. 2244

4.6.7 BoundaryType 2245

 2246
Figure 54: BoundaryType structure. 2247
BoundaryType defines upper and lower bounds that can be used to validate the input received for that 2248
parameter. 2249

4.6.7.1 BoundaryType Property Summary 2250

Name Type * Description

LowerBound VariableExpressionType 0..1 Lowest valid value for the parameter.

UpperBound VariableExpressionType 0..1 Highest valid value for the parameter.

4.6.7.2 BoundaryType Property Usage Notes 2251

 LowerBound: This variable expression MUST resolve to an integer. 2252
If no LowerBound is specified, no integer value is too low. 2253
A LowerBound of “0” restricts the integer parameter to positive integer values. 2254
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2255

 UpperBound: This variable expression MUST resolve to an integer. 2256
If no UpperBound is specified, no integer value is too high. 2257
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2258

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 80 of 154

4.6.8 StringParameterType 2259

 2260
Figure 55: StringParameterType structure. 2261
StringParameterType supports definition of minimum and maximum lengths that can be used to validate 2262
the input received for the string parameter. It also supports definition of a list of valid input values. 2263

4.6.8.1 StringParameterType Property Summary 2264

Name Type * Description

 [extends] BaseParameterType See the BaseParameterType section for additional properties [4.6.5].

ValidValue xsd:string 0..* A string representing one valid value for the parameter.

minLength xsd:positiveInteger 0..1 Minimum length of the parameter value.

maxLength xsd:positiveInteger 0..1 Maximum length of the parameter value.

case StringCaseType 0..1 The case of the string–“upper”, “lower” or “mixed”.
**default value=“mixed”

 xsd:anyAttribute 0..*

4.6.8.2 StringParameterType Property Usage Notes 2265

See the BaseParameterType section for details of the inherited attributes and elements [4.6.5]. 2266
 ValidValue: Any number of valid values for the parameter can be listed using ValidValue elements. 2267

When both defaultValue and one or more ValidValues are specified, defaultValue MUST match one 2268
of the ValidValues. 2269
ValidValues should be in the correct case as identified in the case attribute. 2270

 minLength: When no minimum length is specified, no string is too short, including an empty string. 2271
 maxLength: When no maximum length is specified, no string is too long. 2272
 case: Used when the case of the string is restricted. Defaults to mixed if not defined. 2273

See the StringCaseType section for enumeration values and their meaning [4.6.9]. 2274

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 81 of 154

4.6.9 StringCaseType 2275

StringCaseType defines the enumeration values for specifying case restrictions on a string parameter. 2276

4.6.9.1 StringCaseType Property Usage Notes 2277

 lower: The string MUST be lower case. 2278
 upper: The string MUST be upper case. 2279
 mixed: The string SHOULD be mixed case. 2280

4.6.10 BooleanParameterType 2281

 2282
Figure 56: BooleanParameterType structure. 2283
BooleanParameterType extends BaseParameterType without adding any additional attributes or 2284
elements. When the defaultValue attribute is defined for a boolean parameter, its value MUST be either 2285
“true” or “false”. See the BaseParameterType section for details of the inherited attributes and elements 2286
[4.6.5]. 2287

4.6.10.1 BooleanParameterType Property Summary 2288

Name Type * Description

 [extends] BaseParameterType See the BaseParameterType section for additional properties [4.6.5].

 xsd:anyAttribute 0..*

4.6.11 URIParameterType 2289

 2290
Figure 57: URIParameterType structure. 2291
When the default value attribute is specified for a URI parameter, its value MUST be a valid Uniform 2292
Resource Identifier. See the BaseParameterType section for details of the inherited attributes and 2293
elements [4.6.5]. 2294

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 82 of 154

4.6.11.1 URIParameterType Property Summary 2295

Name Type * Description

 [extends] BaseParameterType See the BaseParameterType section for additional properties [4.6.5].

 xsd:anyAttribute 0..*

4.6.12 ResourcePropertyType 2296

 2297
Figure 58: ResourcePropertyType structure. 2298
ResourcePropertyType provides the type definition for the ResourceProperty element of VariablesType 2299
[4.6.3]. ResourceProperty is a variable whose value is set from the property of a specific instance of a 2300
resource during a particular solution deployment. All content elements can define ResourceProperty 2301
elements. 2302

4.6.12.1 ResourcePropertyType Property Summary 2303

Name Type * Description

 [extends] BaseVariableType See the BaseVariableType section for additional properties [4.6.2].

resourceRef xsd:IDREF 1 The resource in Topology that owns the property.

propertyName xsd:QName 1 Name of the property whose value provides the variable’s values.

 xsd:anyAttribute 0..*

4.6.12.2 ResourcePropertyType Property Usage Notes 2304

See the BaseVariableType section for details of the inherited attributes and elements [4.6.2]. 2305
 resourceRef: The resourceRef attribute MUST identify the resource in Topology that owns the 2306

property and will provide the value for ResourceProperty. 2307
 propertyName: The propertyName attribute identifies the name of the resource property whose value 2308

is to be used as the value of ResourceProperty. 2309

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 83 of 154

4.6.13 DerivedVariableType 2310

 2311
Figure 59: DerivedVariableType structure. 2312
A DerivedVariable defines a series of expressions with optional conditions. The value of the variable is 2313
determined by evaluating the boolean conditions and then setting the variable to the result of the top 2314
priority expression from the set of expressions whose conditions evaluate to true. This restriction does not 2315
apply to variables of the same name in different descriptors. The SDD author MUST create 2316
DerivedVariables in a way that makes the selection of the expression unambiguous. 2317

4.6.13.1 DerivedVariableType Property Summary 2318

Name Type * Description

 [extends] BaseVariableType See the BaseVariableType section for
additional properties [4.6.2].

Expression VariableExpressionType 1 An expression whose results become the
value of the variable.

ConditionalExpression ConditionalDerivedVariableExpressionType 1..* An expression and an associated condition.

4.6.13.2 DerivedVariableType Property Usage Notes 2319

See the BaseVariableType section for details of the inherited attributes and elements [4.6.2]. 2320
 Expression: When the DerivedVariable is used to define one variable whose value is not conditional, 2321

the SDD author can include one variable expression defined in one Expression element. 2322
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2323

 ConditionalExpression: When the variable will take one of a number of possible values depending 2324
on the characteristics of the resources that participate in the particular deployment, then one 2325
ConditionalExpression element is defined for each value-condition pair. 2326
See the ConditionalDerivedVariableExpressionType section for structure and additional usage details 2327
[4.6.14]. 2328

4.6.14 ConditionalDerivedVariableExpressionType 2329

 2330
Figure 60: ConditionalDerivedVariableExpressionType structure. 2331
ConditionalDerivedVariableExpressionType is the type of the ConditionalExpression elements in derived 2332
variables. These elements associate a condition with a variable expression. 2333

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 84 of 154

4.6.14.1 ConditionalDerivedVariableExpressionType Property Summary 2334

Name Type * Description

Condition ConditionType 1 A set of resource characteristics that are evaluated to determine if the
associated expression is a candidate for determining the value of the derived
variable.

Expression VariableExpressionType 1 Evaluation of this expression produces a candidate value for the derived
variable.

priority xsd:positiveInteger 0..1 A priority used as a tie-breaker when multiple expressions are available to
determine the value of the variable.
**default value=“1”

4.6.14.2 ConditionalDerivedVariableExpressionType Property Usage Notes 2335

 Condition: Selection of conditioned expressions is based on the characteristics of one or more 2336
resources that participate in a particular solution deployment. These characteristics are defined in the 2337
Condition element. 2338
See the ConditionType section for structure and additional usage details [4.5.1]. 2339

 Expression: The Expression element contains the expressions that evaluate to a potential value of 2340
the DerivedVariable. Only one expression will be selected for use in a particular solution deployment. 2341
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2342

 priority: When multiple conditions evaluate to true for a particular deployment, the expression chosen 2343
is determined by the priority value. A higher priority is indicated by a lower value. “1” is the highest 2344
priority. 2345

4.7 Requirements 2346

Requirements are defined by content elements. A Requirement consists of resource constraints that the 2347
SDD author states MUST be met prior to successful deployment or use of the software described by the 2348
SDD package. Each Requirement definition lists one or more deployment lifecycle operations to which 2349
the Requirement applies. When the Requirement is specified in an atomic content element, the operation 2350
associates the Requirement with artifacts within the atomic content element. (See the OperationType 2351
section for the mapping between operations and artifacts [4.3.7]. Note that the use operation indicates 2352
that the Requirement is associated with running of the software after deployment and not with content 2353
element artifacts.) When the Requirement is specified in a CompositeUnit or CompositeInstallable, the 2354
operation value MUST either be use or be the same top level operation as defined in the 2355
CompositeInstallable element. When the Requirement is specified for a ReferencedPackage, the 2356
operation associates the Requirement with a top level operation within the referenced SDD. 2357
All Requirements specified for content elements that are in scope for a particular deployment MUST be 2358
met. 2359
When a Requirement can be satisfied in more than one way, Alternatives can be defined within a 2360
Requirement. A Requirement is considered met when any one of the Alternatives is satisfied. 2361

4.7.1 RequirementsType 2362

 2363
Figure 61: RequirementsType structure. 2364
RequirementsType provides the type definition for Requirements in InstallableUnit and LocalizationUnit 2365
elements. It defines a list of Requirement elements. 2366

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 85 of 154

4.7.1.1 RequirementsType Property Summary 2367

Name Type * Description

Requirement RequirementType 1..* A requirement that must be met prior to processing the defining content element’s
artifacts.

4.7.1.2 RequirementsType Property Usage Notes 2368

 Requirement: The Requirements element contains a sequence of Requirement elements. The 2369
Requirement elements define requirements that MUST be met prior to successful processing of the 2370
content element’s artifacts. 2371
See the RequirementType section for structure and additional usage details [4.7.2]. 2372

4.7.2 RequirementType 2373

 2374
Figure 62: RequirementType structure. 2375
A Requirement either directly defines a single set of resource constraints that MUST be met or defines 2376
one or more alternative sets of resource constraints, only one of which MUST be met. 2377
When multiple Requirement elements are declared for the same operation, all MUST be met prior to 2378
processing the associated artifact. 2379
The association is made between a requirement and an artifact via the operation attribute. 2380

4.7.2.1 RequirementType Property Summary 2381

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the requirement.

Description DisplayTextType 0..1 Description of the requirement.

ShortDescription DisplayTextType 0..1 Short description of the requirement.

Alternative AlternativeRequirementType 0..* An alternative that can satisfy the requirement.

ResourceConstraint RequirementResourceConstraintType 0..* A set of constraints on one resource.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 86 of 154

Dependency InternalDependencyType 0..* A dependency on another content element.

 xsd:any 0..*

id xsd:ID 1 Identifier for requirement scoped to the deployment
descriptor.

operation OperationListType 1 Requirement must be met before this operation is
performed.

 xsd:anyAttribute 0..*

4.7.2.2 RequirementType Property Usage Notes 2382

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 2383
MUST provide a label for the requirement. 2384
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2385

 Description, ShortDescription: These elements MAY be used to provide human-understandable 2386
information. If used, they MUST provide a description of the requirement. 2387
The Description element MUST be defined if the ShortDescription element is defined. 2388
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2389

 Alternative: Alternative elements are used when a requirement can be satisfied in multiple ways. 2390
As a convenience for tooling that produces SDDs, it is also possible to define a single Alternative. 2391
This is semantically identical to directly defining ResourceConstraints under Requirements. 2392
To satisfy a requirement, at least one of the specified alternatives MUST be satisfied. 2393
See the AlternativeRequirementType section for structure and additional usage details [4.7.3]. 2394

 ResourceConstraint: When a requirement can be satisfied in only one way, constraints MAY be 2395
defined directly under Requirement or in a single Alternative element. 2396
Constraints are defined using a sequence of ResourceConstraints. Every constraint in the sequence 2397
MUST be met for the requirement to be met. 2398
See the RequirementResourceConstraintType section for structure and additional usage details 2399
[4.7.5]. 2400

 Dependency: When one content element must be processed before another for any reason, a pre-2401
req type Dependency MUST be defined. Reasons for a pre-requisite dependency include the use of 2402
an output variable from one artifact as an argument to another; the deployment of a resource before it 2403
is configured; and the configuration of a resource before deployment of another resource that 2404
depends on it. 2405
See the InternalDependencyType section for structure and additional usage details [4.7.6]. 2406

 id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2407
log and trace messages. 2408

 operation: A Requirement is associated with application of one or more operations by setting its 2409
operation attribute value to one of the enumerated values defined in OperationListType [4.3.6]. 2410
If the Requirement is not a pre-requisite for application of an operation, but rather is required before 2411
the resulting resources are considered usable, then the value SHOULD be set to use. (Note that a 2412
completion action may also be required before a resulting resource is considered usable. See the 2413
CompletionType section [4.3.14].) 2414
The value of operation for a Requirement defined in an atomic content element MUST be set either to 2415
use or to an operation that is associated with an artifact element defined in the content element’s 2416
Artifacts. The operation value(s) associate the Requirement with one or more artifact(s). 2417

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 87 of 154

When the Requirement is specified in a CompositeUnit or CompositeInstallable, the operation value 2418
MUST be set either to use or be the same top level operation as defined in the CompositeInstallable 2419
element. 2420
There is no default value for operation. The SDD author must define it explicitly. 2421
See the OperationType section for enumeration values and their meaning [4.3.7]. 2422

4.7.3 AlternativeRequirementType 2423

 2424
Figure 63: AlternativeRequirementType structure. 2425
AlternativeRequirementType provides the type definition for Alternative elements used within 2426
requirements to define alternative sets of resource constraints that will satisfy the requirement. 2427

4.7.3.1 AlternativeRequirementType Property Summary 2428

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the alternative.

Description DisplayTextType 0..1 Description of the alternative.

ShortDescription DisplayTextType 0..1 Short description of the alternative.

ResourceConstraint RequirementResourceConstraintType 1..* A set of requirements on one resource.

Dependency InternalDependencyType 0..* A dependency on another content element.

 xsd:any 0..*

id xsd:ID 1 Identifier for the alternative scoped to the deployment
descriptor.

priority xsd:positiveInteger 0..1 Assists in determining alternative selected when
multiple alternatives evaluate to true.
**default value=“1”

 xsd:anyAttribute 0..*

4.7.3.2 AlternativeRequirementType Property Usage Notes 2429

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 2430
MUST provide a label for the alternative requirement. 2431

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 88 of 154

See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2432
 Description, ShortDescription: These elements MAY be used to provide human-understandable 2433

information. If used, they MUST provide a description of the alternative requirement. 2434
The Description element MUST be defined if the ShortDescription element is defined. 2435
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2436

 ResourceConstraint: Every ResourceConstraint defined in a single Alternative MUST be met for the 2437
alternative requirement to be considered satisfied. 2438
See the RequirementResourceConstraintType section for structure and additional usage details 2439
[4.7.5]. 2440

 Dependency: When one content element must be processed before another for any reason, a pre-2441
req type Dependency MUST be defined. Reasons for a pre-requisite dependency include the use of 2442
an output variable from one artifact as an argument to another; the deployment of a resource before it 2443
is configured; and the configuration of a resource before deployment of another resource that 2444
depends on it. 2445
See the InternalDependencyType section for structure and additional usage details [4.7.6]. 2446

 id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2447
log and trace messages. 2448

 priority: If there are multiple satisfied alternatives during a particular solution deployment, one of the 2449
alternatives must be selected. The priority attribute communicates the SDD author’s prioritization of 2450
the alternatives. A lower number represents a higher priority with “1” representing the highest priority. 2451
Other inputs may also be used to select an alternative. The criteria for making this selection are 2452
outside of the scope of the SDD. 2453

4.7.4 ResourceConstraintGroup 2454

 2455
Figure 64: ResourceConstraintGroup structure. 2456
The elements of ResourceConstraintGroup are used when defining content element requirements on 2457
resources. The ResourceConstraint element is used to group one or more constraints on a single 2458
resource. 2459

4.7.4.1 ResourceConstraintGroup Property Summary 2460

Name Type * Description

CapacityConstraint CapacityConstraintType 0..1 A bound on a quantifiable property of a resource.

ConsumptionConstraint ConsumptionConstraintType 0..1 A required quantity of a property of a resource in any state.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 89 of 154

PropertyConstraint PropertyConstraintType 0..1 A required value or set of values of a property.

VersionConstraint VersionConstraintType 0..1 A required value or set of values of a version property.

UniquenessConstraint UniquenessConstraintType 0..1 A required mapping of two resources in the topology to
unique instances in the deployment environment.

RelationshipConstraint RelationshipConstraintType 0..1 A required relationship between the resource identified in
the resourceRef and another resource in the topology.

 xsd:any 0..*

4.7.4.2 ResourceConstraintGroup Property Usage Notes 2461

 CapacityConstraint: CapacityConstraint elements are used in ResourceConstraints to express 2462
constraints on the available capacity of a particular property of a particular resource. 2463
A CapacityConstraint tests a numeric value representing a bound on a quantifiable property of a 2464
resource, such as processor speed. The test may be for a lower (minimum) or upper (maximum) 2465
bound. This constraint differs from a ConsumptionConstraint in that it is comparative, not cumulative. 2466
When multiple CapacityConstraint elements are defined by content elements participating in a 2467
particular solution deployment apply to the same property of the same resource, the most restrictive 2468
constraint applies. 2469
See the CapacityConstraintType section for structure and additional usage details [4.4.1]. 2470

 ConsumptionConstraint: ConsumptionConstraint elements are used in ResourceConstraints to 2471
express constraints on the quantity of a particular property of a specific resource that is available for 2472
consumption. 2473
A ConsumptionConstraint defines a required quantity of a consumable resource property. The 2474
ConsumptionConstraint is cumulative rather than comparative. 2475

An example of a consumable resource property is the disk space property of a file system 2476
resource. 2477

When multiple ConsumptionConstraint elements are defined for the same resource by content 2478
elements participating in a particular solution deployment, the sum of all the expressed consumption 2479
constraints must be met by the resource. 2480
See the ConsumptionConstraintType section for structure and additional usage details [4.4.3]. 2481

 PropertyConstraint: PropertyConstraint elements are used in ResourceConstraints to indicate that 2482
specific resource properties must have a specific value or set of values. 2483
See the PropertyConstraintType section for structure and additional usage details [4.4.5]. 2484

 VersionConstraint: VersionConstraint elements are used in ResourceConstraints to express a 2485
constraint on the version of a specific resource. 2486
A VersionConstraint defines a required resource version or a range of versions. It MAY include a 2487
certified version or range of versions representing a more restrictive set of versions whose use carries 2488
a higher degree of confidence. 2489
Version formats and comparison rules vary greatly. The SDD does not provide information on how to 2490
interpret version strings. 2491
See the VersionConstraintType section for structure and additional usage details [4.4.7]. 2492

 UniquenessConstraint: UniquenessConstraint elements are used in ResourceConstraints to 2493
indicate when two resources defined in topology MUST or MUST NOT resolve to the same resource 2494
instance during a particular deployment. 2495
See the UniquenessConstraintType section for structure and additional usage details [4.4.12]. 2496

 RelationshipConstraint: RelationshipConstraint elements are used in ResourceConstraints to 2497
indicate a constraint on a particular relationship between resources. 2498

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 90 of 154

See the RelationshipConstraintType section for structure and additional usage details [4.4.13]. 2499

4.7.5 RequirementResourceConstraintType 2500

 2501
Figure 65: RequirementResourceConstraintType structure. 2502
ResourceConstraintType provides the Type section for the ResourceConstraint element in content 2503
element Requirements. A ResourceConstraint is a set of zero or more constraints on one resource. 2504

4.7.5.1 RequirementResourceConstraintType Property Summary 2505

Name Type * Description

DisplayName DisplayTextType 0..1 Name for the resource constraint.

Description DisplayTextType 0..1 Description of the resource constraint.

ShortDescription DisplayTextType 0..1 Short description of the resource constraint.

Name VariableExpressionType 0..1 The name of the resource.

CapacityConstraint CapacityConstraintType 0..1 A capacity constraint that applies to the resource identified
in resourceRef.

ConsumptionConstraint ConsumptionConstraintType 0..1 A consumption constraint that applies to the resource
identified in resourceRef.

PropertyConstraint PropertyConstraintType 0..1 A property constraint that applies to the resource identified
in resourceRef.

VersionConstraint VersionConstraintType 0..1 A version constraint that applies to the resource identified in
resourceRef.

UniquenessConstraint UniquenessConstraintType 0..1 A required mapping of two resources in the topology to
unique instances in the deployment environment.

RelationshipConstraint RelationshipConstraintType 0..1 A required relationship between the resource identified in
the resourceRef and another resource in the topology.

 xsd:any 0..*

id xsd:ID 1 Identifier for the ResourceConstraint scoped to the

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 91 of 154

deployment descriptor.

resourceRef xsd:IDREF 1 Reference to a resource specification in topology.

testValue xsd:boolean 0..1 Indicates whether the ResourceConstraint must evaluate to
true or to false.
**default value=“true”.

 xsd:anyAttribute 0..*

4.7.5.2 RequirementResourceConstraintType Property Usage Notes 2506

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 2507
MUST provide a label for the resource constraint. 2508
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2509

 Description, ShortDescription: These elements MAY be used to provide human-understandable 2510
information. If used, they MUST provide a description of the resource constraint. 2511
The Description element MUST be defined if the ShortDescription element is defined. 2512
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2513

 Name: This name is used to identify the resource in the deployment environment. If the resource 2514
identified by resourceRef does not have the name defined here, then the constraint is not met. 2515
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2516

 CapacityConstraint, ConsumptionConstraint, PropertyConstraint, VersionConstraint, 2517
UniquenessConstraint, RelationshipConstraint: See the ResourceConstraintGroup section for 2518
structure and additional usage of the individual constraints [4.7.4]. 2519

 id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2520
log and trace messages. 2521

 resourceRef: This is the resource to which the constraints apply. 2522
This reference MUST refer to the id of a resource in Topology. 2523

 testValue: When the result of evaluating Name and all of the constraints defined in the 2524
ResourceConstraint matches the value of testValue, the ResourceConstraint is considered met. 2525
When no Name or constraints are defined, and testValue is “true”, the constraint is met if the resource 2526
exists as defined in topology. 2527
When no Name or constraints are defined, and testValue is “false”, the constraint is met if the 2528
resource, as defined in topology, does not exist. 2529

4.7.6 InternalDependencyType 2530

 2531
Figure 66: InternalDependencyType structure. 2532

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 92 of 154

InternalDependencyType provides the type definition for Dependency elements defined in all types of 2533
content elements. Dependency elements allow the expression of dependence on the application of a 2534
particular operation to a content element defined in the deployment descriptor before application of a 2535
particular operation on the defining content element. The dependency is associated with an operation on 2536
the defining content element by the operation attribute in the Requirement defining the Dependency 2537
element. The dependency is associated with an operation on the depended on content element by the 2538
contentRefOperation attribute in the Dependency. There are three types of dependencies: pre-requisites, 2539
co-requisites and ex-requisites. 2540

4.7.6.1 InternalDependencyType Property Summary 2541

Name Type * Description

Description DisplayTextType 0..1 A human-understandable description of the dependency.

ShortDescription DisplayTextType 0..1 A short human-understandable description of the dependency.

type DependencyType 0..1 Type can be “pre-req”, “co-req”, or “ex-req”.
**default value=“pre-req”

contentElementRef xsd:IDREF 1 A reference to the content element which is depended on.

contentElementRefOperation OperationListType 0..1 The dependency is on application of this operation to the content
element identified in contentRef.

 xsd:anyAttribute 0..*

4.7.6.2 InternalDependencyType Property Usage Notes 2542

 Description, ShortDescription: These elements MAY be used to provide human-understandable 2543
information. If used, they MUST provide a description of the dependency. 2544
The Description element MUST be defined if the ShortDescription element is defined. 2545
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 2546

 type: See the DependencyType section for an explanation of the semantics of each of the possible 2547
dependency types [4.7.7]. 2548

 contentElementRef: The contentElementRef value is the id of the content element that is depended 2549
on. 2550
The value MUST reference the id of a content element. 2551

 contentElementRefOperation: When the depended-on content element is an atomic content 2552
element, the operation defined here effectively identifies the artifact that must be processed for a pre-2553
requisite or co-requisite or not processed for an ex-requisite. 2554
When the depended-on content element is a CompositeUnit, the operation defined in 2555
contentElementRefOperation MUST be the top level operation defined by the containing 2556
CompositeInstallable. 2557
See the OperationListType section for structure and additional usage details [4.3.6]. 2558

4.7.7 DependencyType 2559

The DependencyType enumeration provides the value for the type attribute in Dependency elements. 2560

4.7.7.1 DependencyType Property Usage Notes 2561

 pre-req: A pre-req dependency is satisfied if the other content element is in scope for the 2562
deployment. The pre-req indicates that the other content element MUST be processed before the 2563
content element that defines the pre-req. 2564

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 93 of 154

The dependency is not met if the other content element is not in scope. 2565
 co-req: A co-req dependency is satisfied if the other content element is in scope for the deployment. 2566

There is no dependence on order of processing. 2567
The dependency is not met if the other content element is not in scope. 2568

 ex-req: An ex-req dependency indicates that the other content element MUST NOT be in scope. 2569
The dependency is not met if the other content element is in scope. 2570

4.7.8 RequiredBaseType 2571

 2572
Figure 67: RequiredBaseType structure. 2573
RequiredBaseType provides the type definition for the RequiredBase element of InstallableUnit and 2574
LocalizationUnit elements and the LocalizationBase element of LocalizationUnits. These elements 2575
declare the identity characteristics of one or more resources that will be modified or localized by applying 2576
of the content element’s artifacts. Definition of a RequiredBase element represents a requirement that a 2577
resource matching the declared characteristic exists. Definition of a LocalizationBase element represents 2578
a condition on the existence of a resource that matches the declared characteristics. 2579

4.7.8.1 RequiredBaseType Property Summary 2580

Name Type * Description

DisplayName DisplayTextType 0..1 Display name for the requirement on a resource to
serve as the base of an update or localization.

Description DisplayTextType 0..1 Description of the requirement. Required if
ShortDescription is defined.

ShortDescription DisplayTextType 0..1 Short description of the requirement.

Alternative AlternativeRequiredBaseConstraintType 0..* Alternative set of constraints on a required base
resource.

ResourceConstraint RequiredBaseConstraintType 1..* Constraints on the required base resource.

 xsd:any 0..*

 xsd:anyAttribute 0..*

4.7.8.2 RequiredBaseType Property Usage Notes 2581

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 2582
MUST provide a label for the required base element. 2583

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 94 of 154

See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2584
 Description, ShortDescription: These elements MAY be used to provide human-understandable 2585

information. If used, they MUST provide a description of the required base for this content element. 2586
The Description element MUST be defined if the ShortDescription element is defined. 2587
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2588

 Alternative: When more than one resource can be used as the update or localization base, two or 2589
more Alternative elements are defined to describe the choices. As a convenience for tooling that 2590
produces SDDs, a single Alternative can be defined in place of a ResourceConstraint. 2591
See the AlternativeRequiredBaseConstraintType section for structure and additional usage details 2592
[4.7.10]. 2593

 ResourceConstraint: ResourceConstraints defined here identify one or more particular resources 2594
that can serve as the update or localization base. If ResourceConstraints are defined for multiple 2595
resources, they are all updated or localized by application of the content element. 2596
See the RequiredBaseConstraintType section for structure and additional usage details [4.7.9]. 2597

4.7.9 RequiredBaseConstraintType 2598

 2599
Figure 68: RequiredBaseConstraintType structure. 2600
RequiredBaseConstraintType provides the type definition for the ResourceConstraint elements used in 2601
RequiredBase and LocalizationBase elements. A required base definition differs from a requirement 2602
definition in the limited nature of the constraints that can be specified. The purpose of constraints within a 2603
required base is to identify resource instances that can be correctly updated or localized by the content 2604
element. Only constraints related to the basic identity characteristics of the resource are allowed. 2605

4.7.9.1 RequiredBaseConstraintType Property Summary 2606

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the constraint.

Description DisplayTextType 0..1 Description of the constraint.

ShortDescription DisplayTextType 0..1 Short description of the constraint.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 95 of 154

Name VariableExpressionType 0..1 Name of the required base resource as understood in the
deployment environment.

VersionConstraint VersionConstraintType 0..1 Allowed versions for the required base resource.

 xsd:any 0..*

id xsd:ID 1 Constraint identifier scoped to the deployment descriptor.

resourceRef xsd:IDREF 1 Reference to the resource representing the required base for
an update operation.

testValue xsd:boolean 0..1 Defines the desired result of the required base constraint
**default value=“true”

 xsd:anyAttribute 0..*

4.7.9.2 RequiredBaseConstraintType Property Usage Notes 2607

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 2608
MUST provide a label for the constraint. 2609
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2610

 Description, ShortDescription: These elements MAY be used to provide human-understandable 2611
information. If used, they MUST provide a description of the constraint on the required base. 2612
The Description element MUST be defined if the ShortDescription element is defined. 2613
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2614

 Name: The Name element provides the name by which the resource is known in the deployment 2615
environment. The value of Name is compared to resource names found in the deployment 2616
environment as part of constraint evaluation. 2617
If the resource name is declared in the referenced resource definition, it SHOULD NOT be declared 2618
here. If the resource name is changed by application of the update, the original name SHOULD be 2619
declared here and the updated name SHOULD be declared in ResultingResource. The name 2620
declared here is always the one that represents the required value for the required base. 2621
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2622

 VersionConstraint: The VersionConstraint element defines the set of versions that can serve as a 2623
base for the update. 2624
See the VersionConstraintType section for structure and additional usage details [4.4.7]. 2625

 id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2626
log and trace messages. 2627

 resourceRef: The resourceRef attribute value MUST reference the id of the resource element in 2628
Topology to which this constraint refers. 2629

 testValue: The required base constraint is met when the boolean result of comparing the declared 2630
name and/or version to the actual name and/or version is equal to the boolean value specified in 2631
testValue. 2632
Because the purpose of a required base constraint is to positively identify one or more resources that 2633
can serve as the base for an update or localization, there MUST always be one ResourceConstraint 2634
that has testValue set to “true”. 2635
Additional ResourceConstraints can be defined with testValue set to “false”. These constraints 2636
identify characteristics of the same required base resource that must not be true for that resource to 2637
serve as the base. 2638

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 96 of 154

4.7.10 AlternativeRequiredBaseConstraintType 2639

 2640
Figure 69: AlternativeRequiredBaseConstraintType structure. 2641
AlternativeRequiredBaseConstraintType provides the type definition for the Alternative elements used in 2642
RequiredBase and LocalizationBase elements. 2643

4.7.10.1 AlternativeRequiredBaseConstraintType Property Summary 2644

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the constraint.

Description DisplayTextType 0..1 Description of the constraint.

ShortDescription DisplayTextType 0..1 Short description of the constraint.

ResourceConstraint RequiredBaseConstraintType 1..* A set of requirements on one resource.

 xsd:any 0..*

id xsd:ID 1 Constraint identifier scoped to the deployment descriptor.

priority xsd:positiveInteger 0..1 Assists in determining alternative selected when multiple
alternatives evaluate to true.
**default value=“1”

 xsd:anyAttribute 0..*

4.7.10.2 AlternativeRequiredBaseConstraintType Property Usage Notes 2645

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 2646
MUST provide a label for the alternative. 2647
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2648

 Description, ShortDescription: These elements MAY be used to provide human-understandable 2649
information. If used, they MUST provide a description of the alternative. 2650
The Description element MUST be defined if the ShortDescription element is defined. 2651
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2652

 ResourceConstraint: ResourceConstraints defined here identify one or more particular resources 2653
that can serve as the update or localization base. If ResourceConstraints are defined for multiple 2654
resources, they are all updated or localized by application of the content element. 2655

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 97 of 154

See the RequiredBaseConstraintType section for structure and additional usage details [4.7.9]. 2656
 id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2657

log and trace messages. 2658
 priority: If there are multiple satisfied alternatives during a particular solution deployment, one of the 2659

alternatives must be selected. The priority attribute communicates the SDD author’s prioritization of 2660
the alternatives. A lower number represents a higher priority with “1” representing the highest priority. 2661
Other inputs may also be used to select an alternative. The criteria for making this selection are 2662
outside of the scope of the SDD. 2663

4.8 Resulting and Changed Resources 2664

Deployment of an SDD package creates or modifies software resources. These resources are included in 2665
the Topology definition and described in more detail in ResultingResource and ResultingChange 2666
elements. 2667
The SDD author can choose to model resulting and modified resources at a very granular level, at a very 2668
coarse level; at any level in between, or not at all. An example of modeling resulting resources at a 2669
granular level would be modeling every file created by the deployment as a resulting resource. An 2670
example of modeling resulting resources at a very coarse level would be modeling the software product 2671
created by deployment as a single resulting resource. The choice depends on the needs of the solution 2672
deployment. If a resource is not modeled in the SDD, no requirements can be expressed on it, no 2673
conditions can be based on it and no variables can be set from values of its properties. It cannot play any 2674
of the roles described for resources in the ResourceType section of this document [4.2.2]. 2675

4.8.1 ResultingResourceType 2676

 2677
Figure 70: ResultingResourceType structure. 2678

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 98 of 154

InstallableUnit and LocalizationUnit content elements can include zero or more ResultingResource 2679
elements that describe the key resources installed or updated when the content element’s artifacts are 2680
processed. The type definition for these elements is provided by ResultingResourceType. 2681
ResultingResource elements refer to resources in topology and define characteristics of those resources 2682
that will become true when the artifact is applied. The deployment descriptor author MAY omit the 2683
ResultingResource element from the content element and the definition of the resource from Topology 2684
when no knowledge of their existence is required for deployment of the solution or for aggregation of the 2685
solution. Characteristics that exist in ResultingResource and elsewhere, such as Topology or 2686
ResultingChange, MUST NOT conflict. 2687

For example, if Topology specifies a property that indicates that a file must be writable, it would be 2688
incorrect for ResultingResource to specify that the resulting file resource is read-only. 2689

Example uses of the ResultingResource element are to: 2690
• determine whether potentially resulting resources will actually be installed or updated; 2691
• identify the resource associated with a content element that may be subsequently uninstalled 2692

using the uninstall information in this SDD; 2693
• discover the components of a logical solution resource previously installed using this SDD; 2694
• check whether or not a content element has already been installed. 2695

4.8.1.1 ResultingResourceType Property Summary 2696

Name Type * Description

Description DisplayTextType 0..1 Description of the effect of the content element on the resulting resource.

ShortDescription DisplayTextType 0..1 Short description of the effect of the content element on the resulting
resource.

Condition ConditionType 0..1 A condition that determines if the resulting resource definition is relevant to
a particular deployment.

Name VariableExpressionType 0..1 Name of the resulting resource as known in the deployment environment.

Version VersionType 0..1 Version of the resulting resource.

FixName xsd:string 0..* Name of a resulting fix.

Property ResultingPropertyType 0..* A resulting property setting of the resulting resource.

Relationship RelationshipType 0..* A relationship that will exist after creating or updating the resource.

 xsd:any 0..*

resourceRef xsd:IDREF 1 Reference to a resource in topology.

 xsd:anyAttribute 0..*

4.8.1.2 ResultingResourceType Property Usage Notes 2697

 Description, ShortDescription: These elements MAY be used to provide human-understandable 2698
information. If used, they MUST provide a description of the effect of the content element on the 2699
resulting resource. 2700
The Description element MUST be defined if the ShortDescription element is defined. 2701
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 2702

 Condition: A Condition is used when the resulting resource will be created by the content element 2703
only when certain conditions exist in the deployment environment. 2704
See the ConditionType section for structure and additional usage details [4.5.1]. 2705

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 99 of 154

 Name: The name of the resulting resource SHOULD be defined in the ResultingResource element 2706
and not in Topology when the content element installs the resulting resource. The resource name 2707
comes into existence when the resulting resource is created. When the content element updates the 2708
resulting resource without changing the resource name, Name SHOULD be defined in Topology. 2709
Name SHOULD NOT be defined in both places. If a resource name is defined in both Topology and 2710
ResultingResource, the values MUST match. 2711
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2712

 Version: This is the version of the resource after processing the content element’s artifacts. Version 2713
SHOULD be defined for all resulting resources. 2714

For example, when update artifacts are processed, this version describes the resource after the 2715
update is complete. 2716

See the VersionType section for structure and additional usage details [3.10]. 2717
 FixName: Multiple FixName elements MAY be included to identify the resulting resource fixes that 2718

will exist once the content element is applied. The FixName SHOULD match the names of fixes that 2719
can be detected on the system. 2720

 Property: Property elements SHOULD be included to identify property values of the resulting 2721
resource that will exist after applying the content element. 2722
Properties of the resulting resource SHOULD be defined in the ResultingResource element and not in 2723
Topology. They SHOULD NOT be defined in both places. If a property is defined in both Topology 2724
and ResultingResource, the values MUST match. 2725
See the ResultingPropertyType section for structure and additional usage details [4.2.4]. 2726

 Relationship: Relationship elements SHOULD be included to identify relationships that will exist after 2727
applying the content element. 2728
See the RelationshipType section for structure and additional usage details [4.8.3]. 2729

 resourceRef: The resourceRef attribute MUST identify the resource in Topology that will be installed 2730
or updated when the defining content element is applied. 2731

4.8.2 ResultingChangeType 2732

 2733
Figure 71: ResultingChangeType structure. 2734

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 100 of 154

InstallableUnit and ConfigurationUnit content elements can include zero or more ResultingChange 2735
elements that describe the key resources whose configuration is modified when the content element’s 2736
artifacts are processed. ResultingChange elements refer to resources in Topology and define 2737
characteristics of those resources that will become true when the content element is applied. 2738

4.8.2.1 ResultingChangeType Property Summary 2739

Name Type * Description

Description DisplayTextType 0..1 Description of the effect of the content element on the changing resource.

ShortDescription DisplayTextType 0..1 Short description of the effect of the content element on the changing
resource.

Condition ConditionType 0..1 A condition that determines if the resulting change definition is relevant to
a particular deployment.

Name VariableExpressionType 0..1 Name of the resulting resource as known in the deployment environment.

Property ResultingPropertyType 0..* A resulting property setting of the changing resource.

Relationship RelationshipType 0..* Specifies a relationship(s) with another resource that will result from this
deployment.

 xsd:any 0..*

resourceRef xsd:IDREF 1 Reference to the resource in topology that will be changed by application
of the content element.

 xsd:anyAttribute 0..*

4.8.2.2 ResultingChangeType Property Usage Notes 2740

 Description, ShortDescription: These elements MAY be used to provide human-understandable 2741
information. If used, they MUST provide a description of the effect of the content element on the 2742
changing resource. 2743
The Description element MUST be defined if the ShortDescription element is defined. 2744
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 2745

 Condition: A Condition is used when the resulting change will be performed by applying the content 2746
element only when certain conditions exist in the deployment environment. 2747
See the ConditionType section for structure and additional usage details [4.5.1]. 2748

 Name: The Name corresponds with the name of the changed resource as known in the deployment 2749
environment. Name SHOULD be defined in Topology and not in ResultingChange, because the name 2750
is not changed by processing the content elements artifacts. If Name is defined in both places, the 2751
values MUST match. 2752
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2753

 Property: Property elements MAY be included to identify property values of the identified resource as 2754
they will exist after applying the content element. 2755
Properties defined in ResultingChange MUST be properties that are modified by processing the 2756
content element’s artifacts. 2757
See the ResultingPropertyType section for structure and additional usage details [4.2.4]. 2758

 Relationship: When application of the content element results in the creation or modification of 2759
relationships, the Relationship elements SHOULD be included to identify relationships as they will 2760
exist after application of the content element. 2761
See the RelationshipType section for structure and additional usage details [4.8.3]. 2762

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 101 of 154

 resourceRef: The resourceRef attribute MUST identify the resource whose configuration will be 2763
modified when the defining content element is applied. 2764
The value MUST reference the id of a resource specified in Topology. 2765

4.8.3 RelationshipType 2766

 2767
Figure 72: RelationshipType structure. 2768

4.8.3.1 RelationshipType Property Summary 2769

Name Type * Description

Property PropertyType 0..* A property definition that further constrains the relationship.

 xsd:any 0..*

relatedResourceRef xsd:IDREF 1 The second resource in the relationship.

type xsd:QName 1 The type of the relationship.

 xsd:anyAttribute 0..*

4.8.3.2 RelationshipType Property Usage Notes 2770

 Property: This element MAY be used to provide additional information about the relationship. 2771
For example, a connectivity relationship might specify additional information such as the specific 2772
protocol used (for instance, TCP/IP) and/or particular characteristics of a protocol (for instance, 2773
port number). 2774

See the PropertyType section for structure and additional usage details [4.2.3]. 2775
 relatedResourceRef: There are two resources in any relationship. The first is the resource defined in 2776

the resourceRef of the ResultingResource or RelationshipConstraint element that defines the 2777
Relationship element. The second resource is the one identified by relatedResourceRef. 2778
The value MUST reference the id of a resource specified in Topology. 2779

 type: Values for relationship type are not defined by the SDD specification. This type may be 2780
specified in profiles [5.3]. 2781

4.9 Composite Content Elements 2782

Composite content elements organize the content of an SDD but do not define artifacts used to deploy 2783
SDD content. There are three types of composite content elements: CompositeInstallable, CompositeUnit 2784
and CompositeLocalizationUnit. 2785

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 102 of 154

CompositeInstallable is used any time that more than one content element is defined in support of one 2786
operation on the package; any time aggregation of SDDs is needed or any time the package includes 2787
selectable content. 2788
CompositeInstallable is the root of a content hierarchy that supports a single deployment lifecycle 2789
operation. It can define a base content hierarchy, a localization content hierarchy, and/or a selectable 2790
content hierarchy and selection criteria. Base content defines content that is deployed by default. 2791
Selectable content defines content that can be selected or not by the deployer. Localization content 2792
defines content that provides language support. One SDD can have more than one 2793
CompositeInstallable–each supporting a different operation. 2794
CompositeUnit is used to organize content elements within the base or selectable content hierarchies. 2795
CompositeUnits can define InstallableUnits, ConfigurationUnits, ContainedPackages and other 2796
CompositeUnits. Requirements, conditions and variables that are common to all content elements defined 2797
by the CompositeUnit can be defined on the CompositeUnit to avoid repetition. Within the selectable 2798
content hierarchy, a CompositeUnit can provide an efficient means for selection of a set of related content 2799
elements by a Feature. 2800
CompositeLocalizationUnit is described in the Localization section [4.13]. 2801

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 103 of 154

4.9.1 CompositeInstallableType 2802

 2803
Figure 73: CompositeInstallableType structure. 2804
A CompositeInstallable supports the definition of metadata about package content for one deployment 2805
lifecycle operation. One CompositeInstallable can be defined for each operation supported by the 2806
software package. When more than one CompositeInstallable is defined in an SDD, there MUST NOT be 2807
more than one CompositeInstallable in scope for a particular deployment defined for any one operation. 2808

4.9.1.1 CompositeInstallableType Property Summary 2809

Name Type * Description

Identity IdentityType 0..1 Human-understandable identity information about the
CompositeInstallable.

Condition ConditionType 0..1 A condition that determines if the content of the

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 104 of 154

CompositeInstallable is relevant to a particular deployment.

Variables VariablesType 0..1 Variables for use anywhere below the CompositeInstallable and in
Topology.

RequiredBase RequiredBaseType 0..1 Resource or resources that can be updated by the
CompositeInstallable.

Requirements RequirementsType 0..1 Requirements that must be met before successful application of
the CompositeInstallable.

Languages LanguageSelectionsType 0..1 Defines required and selectable languages and groups of
languages.

ResultingResource ResultingResourceType 0..* Resources that result from applying the CompositeInstallable.

ResultingChange ResultingChangeType 0..* Configuration changes that result from applying the
CompositeInstallable.

BaseContent BaseContentType 0..1 Defines content describing the deployment of core resources.

SelectableContent SelectableContentType 0..1 Defines content describing the deployment of selectable
resources.

LocalizationContent LocalizationContentType 0..1 Defines content whose sole purpose is to provide language
support.

id xsd:ID 1 A unique identifier for the CompositeInstallable element.

operation OperationType 1 The deployment lifecycle operation described by the
CompositeInstallable definition.

 xsd:anyAttribute 0..*

4.9.1.2 CompositeInstallableType Property Usage Notes 2810

 Identity: This identity MAY have values in common with the identity of a resulting resource created 2811
when artifacts defined by content of the composite are processed. 2812
If the unit of packaging described by the CompositeInstallable is known to a package management 2813
system, the Identity elements SHOULD correspond to values associated with that package in the 2814
package management system. 2815
See the IdentityType section for structure and additional usage details [3.4]. 2816

 Condition: When the condition defined in the CompositeInstallable is not met for a particular 2817
deployment, the CompositeUnit and all the content elements defined below the CompositeUnit are 2818
out of scope for that particular deployment. 2819
See the ConditionType section for structure and additional usage details [4.5.1]. 2820

 Variables: Variables defined here are visible throughout the CompositeInstallable and in Topology. 2821
See the VariablesType section for structure and additional usage details [4.6.3]. 2822

 RequiredBase: When a resource or resources corresponding to the overall software will be modified 2823
during deployment, that resource or those resources MAY be defined in the RequiredBase element. 2824
The RequiredBase definition represents a requirement that the described resource be available for 2825
modification to apply the single operation defined by the CompositeInstallable. When RequiredBase 2826
is defined, the operation defined by CompositeInstallable MUST be one of the following: update, 2827
undo, uninstall, or repair. By specifying the required base separately from other requirements, it is 2828
possible for consumers of the SDD to easily determine if the base is available before processing 2829
other requirements. 2830
See the RequiredBaseType section for structure and additional usage details [4.7.8]. 2831

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 105 of 154

 Requirements: These are requirements that must be met regardless of what content is selected for 2832
deployment and which conditions within the content hierarchy evaluates to true. 2833
Requirements that apply only to a portion of the content SHOULD be defined at the point in the 2834
content hierarchy where they apply. 2835
All requirements specified on content elements that are in scope for a particular deployment MUST 2836
be met. This represents a logical “AND” of the requirements. Care should be taken by the SDD author 2837
to ensure that conflicting requirements cannot be in scope for the same deployment. 2838
See the RequirementsType section for structure and additional usage details [4.7.1]. 2839

 Languages: When the SDD contains language support, the Languages element can be defined to 2840
describe the languages supported; which languages are required and which are selectable; and how 2841
language selections are grouped. 2842
Languages defined in the Mandatory element under Languages are always in scope. Languages 2843
defined in the Optional element under Languages are in scope if selected by the deployer. 2844
The Languages element is used to declare the mandatory and optional language support available in 2845
the package. Languages whose support is deployed by LocalizationUnits in LocalizationContent 2846
MUST be defined as either a mandatory language or an optional language. In addition, languages 2847
whose support is deployed along with other content by InstallableUnits in BaseContent or 2848
SelectableContent SHOULD be defined as a mandatory language. 2849
See the LanguageSelectionsType section for structure and additional usage details [4.13.4]. 2850

 ResultingResource: The software whose deployment is described by the SDD can be described in 2851
the CompositeInstallable’s ResultingResource element. This software may consist of many resources 2852
that are described in the ResultingResource elements of the InstallableUnits and/or LocalizationUnits 2853
defined within the CompositeInstallable. 2854
See the ResultingResourceType section for structure and additional usage details [4.8.1]. 2855

 ResultingChange: Configuration changes that result from deployment regardless of selected content 2856
or condition evaluation can be described in the CompositeInstallable’s ResultingChange element. 2857
Note that a ResultingChange is a change that is made to an existing resource. This is in contrast with 2858
ResultingResource, which describes newly created resources. 2859
See the ResultingChangeType section for structure and additional usage details [4.8.2]. 2860

 BaseContent: The base content hierarchy defines content elements that are in scope by default. 2861
These content elements MAY be conditioned out based on characteristics of the deployment 2862
environment, but are not optional from the deployer’s perspective. 2863
See the BaseContentType section for structure and additional usage details [4.11.1]. 2864

 SelectableContent: Content that is selected by feature MUST be defined in the selectable content 2865
hierarchy. Groups and Features that select this content are also defined within SelectableContent. 2866
See the SelectableContentType section for structure and additional usage details [4.12.1]. 2867

 LocalizationContent: All LocalizationUnits and ContainedLocalizationPackages MUST be defined in 2868
the LocalizationContent hierarchy. Each LocalizationUnit contains information about the languages it 2869
supports and the resources it localizes. This information is evaluated to determine if the 2870
LocalizationUnit is in scope for a particular deployment. 2871
Each LocalizationUnit and ContainedLocalizationPackage defined in LocalizationContent MAY 2872
support any combination of Mandatory and Optional languages and can localize any combination of 2873
base and selectable resources, as well as resources already deployed. 2874
Some language support may be deployed incidentally by artifacts in an InstallableUnit along with 2875
deployment of other solution content. LocalizationContent holds only content elements whose sole 2876
purpose is to provide language support. 2877
LocalizationContent supports advanced management of language support, including definition of 2878
mandatory and optional languages and support of localization materials with a lifecycle that is 2879
somewhat independent of the resources localized. When an SDD author has no need for advanced 2880

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 106 of 154

management of language support, all language support MAY be delivered with other content in 2881
InstallableUnits. 2882
See the LocalizationContentType section for structure and additional usage details [4.13.1]. 2883

 id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2884
log and trace messages. 2885

 operation: This is the operation that may be applied to the SDD package whose metadata is 2886
described by the CompositeInstallable. 2887
See the OperationType section for enumeration values and their meaning [4.3.7]. 2888

4.9.2 CompositeUnitType 2889

 2890
Figure 74: CompositeUnitType structure. 2891
The CompositeUnit element is used to organize content elements within the base or selectable content 2892
hierarchies. It can define any number of InstallableUnits, ConfigurationUnits, ContainedPackages and 2893
other CompositeUnits. Composite units assist in organizing the deployment package. A composite unit 2894
can provide a convenient way to specify variables, requirements, conditions and other information that 2895
applies to every content element defined below the composite unit. Within the selectable content 2896
hierarchy, composite units can be used to group content elements that are selected by feature sets or 2897
groups. When a feature containing a composite unit is selected, all its child content elements are selected 2898
by association. Organization of content within a composite unit does not imply any relationships among 2899
the resources that result from deployment of the composite content. 2900

4.9.2.1 CompositeUnitType Property Summary 2901

Name Type * Description

Identity IdentityType 0..1 Human-understandable identity information about the
CompositeUnit.

Condition ConditionType 0..1 A condition that determines if the CompositeUnit and its child
content elements are relevant to a particular deployment.

Variables VariablesType 0..1 Variables for use within the CompositeUnit’s and its child content
elements’ requirement and artifact definitions.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 107 of 154

Requirements RequirementsType 0..1 Requirements that must be met prior to successful processing of
any of the CompositeUnit’s content.

InstallableUnit InstallableUnitType 0..* An InstallableUnit that is part of the composite content.

ConfigurationUnit ConfigurationUnitType 0..* A ConfigurationUnit that is part of the composite content.

CompositeUnit CompositeUnitType 0..* A CompositeUnit that organizes a subset of the composite’s
content.

ContainedPackage ReferencedPackageType 0..* A ContainedPackage that is part of the composite content.

 xsd:any 0..*

id xsd:ID 1 An identifier for the CompositeUnit scoped to the deployment
descriptor.

 xsd:anyAttribute 0..*

4.9.2.2 CompositeUnitType Property Usage Notes 2902

 Identity: This identity MAY have values in common with the identity of a resulting resource created 2903
when artifacts defined by content of the composite are processed. 2904
If the unit of packaging described by the CompositeUnit is known to a package management system, 2905
some of the identity elements MAY correspond to values associated with that package in the package 2906
management system. 2907

 See the IdentityType section for structure and additional usage details [3.4]. 2908
 Condition: When the condition defined in the CompositeInstallable is not met for a particular 2909

deployment, the CompositeUnit and all the content elements defined below the CompositeUnit are 2910
out of scope for that particular deployment. 2911
See the ConditionType section for structure and additional usage details [4.5.1]. 2912

 Variables: Variables defined here are visible within the CompositeUnit and every content element 2913
defined below the CompositeUnit. 2914
These variables are in scope for a particular deployment only if the CompositeUnit is in scope for that 2915
deployment. 2916
See the VariablesType section for structure and additional usage details [4.6.3]. 2917

 Requirements: These are requirements that must be met before any of the artifacts in the 2918
CompositeUnit hierarchy can be processed. 2919
These requirements are in scope for a particular deployment only if the CompositeUnit is in scope for 2920
that deployment. 2921
The operation defined for a Requirement defined in a CompositeUnit MUST be the same as the 2922
operation defined by the CompositeInstallable containing the CompositeUnit. 2923
See the RequirementsType section for structure and additional usage details [4.7.1]. 2924

 InstallableUnit: See the InstallableUnitType section for structure and additional usage details [4.3.1]. 2925
 ConfigurationUnit: See the ConfigurationUnitType section for structure and additional usage details 2926

[4.3.2]. 2927
 CompositeUnit: A CompositeUnit element MAY contain child CompositeUnits. 2928
 ContainedPackage: See the ReferencedPackageType section for structure and additional usage 2929

details [4.10.1]. 2930
 id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2931

log and trace messages. 2932

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 108 of 154

4.10 Aggregation 2933

SDD packages can aggregate other SDD packages. Metadata about the aggregation is defined in 2934
ContainedPackage, ContainedLocalizationPackage and Requisite elements. ContainedPackage 2935
elements are content elements that can be defined anywhere in the base and selectable content 2936
hierarchies. ContainedLocalizationPackages are content elements that can be defined in the localization 2937
content hierarchy. Requisites are packages that can be deployed, if necessary, to satisfy requirements in 2938
the aggregating SDD. They are not content of the SDD package. The type of all three of these elements 2939
is ReferencedPackageType. The term referenced package is used in this specification when referring to 2940
these elements as a group. The term referenced SDD is used when referring to any aggregated SDD. 2941
When an SDD aggregates other SDDs, the package descriptors of the aggregated SDDs are included in 2942
the Contents list in the package descriptor of the aggregating SDD (see Figure 75). The referenced 2943
package elements in the deployment descriptor identify a referenced SDD package by referencing its 2944
package descriptor definition in Contents. Each referenced package element can further constrain the 2945
deployment of the referenced SDD by defining additional requirements; by mapping resources defined in 2946
the aggregating SDD to those defined in the referenced SDD; and by determining feature selections for 2947
deployment of the referenced SDD. 2948

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 109 of 154

 2949

 2950
Figure 75: The aggregating SDD identifies the package descriptor of the aggregated SDD and 2951
maps resource definitions in the aggregating SDD to resource definitions in the aggregated SDD. 2952
 2953
Referenced packages can create and modify software resources that may be required by the aggregating 2954
SDD or other SDDs in the aggregation. These resources are mapped to the associated resource 2955
definitions in the aggregating SDD by using the ResultingResourceMap, the ResultingChangeMap and 2956
the RequiredResourceMap elements of a referenced package element. The characteristics of these 2957
resources that other SDDs in the aggregation depend on in some way MUST be exposed in the 2958
ResultingResourceMap, the ResultingChangeMap and the RequiredResourceMap elements of the 2959
aggregating SDD (see Figure 76). These exposed characteristics are mapped to requirements, conditions 2960

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 110 of 154

and resource variables in the SDDs to determine if requirements are satisfied, conditions are met and to 2961
set the values of resource property variables (see Figure 77). 2962
 2963
 2964

 2965
Figure 76: The list of resource maps is segmented by the role the resource plays in the referenced 2966
SDD. 2967

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 111 of 154

 2968

 2969
Figure 77: Arguments and OutputVariables of ReferencedPackageType map variables in the 2970
aggregating SDD to variables in the referenced SDD. 2971

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 112 of 154

4.10.1 ReferencedPackageType 2972

 2973
Figure 78: ReferencedPackageType structure. 2974
A referenced package identifies an aggregated SDD and describes the conditions of its aggregation. 2975
ReferencedPackageType provides the type definition for ContainedPackage and Requisite elements. 2976
ContainedPackage elements identify an SDD package that is treated like a content element of the 2977
defining SDD. Requisite elements identify an SDD package that can be deployed, if necessary, to satisfy 2978
resource constraints. 2979

4.10.1.1 ReferencedPackageType Property Summary 2980

Name Type * Description

Condition ConditionType 0..1 A condition that determines if the referenced package

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 113 of 154

is relevant to a particular deployment.

RequiredContentSelection RequiredContentSelectionType 0..1 A list of groups and features that MUST be selected
when the referenced package is deployed.

Arguments ArgumentListType 0..1 Inputs to the reference package.

OutputVariables OutputVariableListType 0..1 Outputs from the referenced package.

Requirements RequirementsType 0..1 Additional requirements for deploying the referenced
package as part of the aggregation.

ResultingResourceMap ResultingResourceMapType 0..* Maps resulting resources in the referenced package to
resources in the referencing package and exposes
properties of the resulting resource.

ResultingChangeMap ResultingChangeMapType 0..* Maps changed resources defined in the referenced
package to resources in the referencing package and
exposes changed properties of the resource.

RequiredResourceMap ResourceMapType 0..* Maps required resources in the referenced package to
resources in the referencing package.

Languages LanguagesType 0..1 Languages supported by the referenced package.

 xsd:any 0..*

id xsd:ID 1 Identifier for the referenced package element that is
unique within the deployment descriptor.

contentRef xsd:token 1 Reference to the identifier of the package Content
defined in the package descriptor which identifies the
package descriptor of the referenced package.

weight xsd:positiveInteger 0..1 The time required to process the referenced package
relative to all artifacts and other referenced packages
in the SDD.

operation OperationType 0..1 Specifies which operation in the referenced SDD is
performed.

 xsd:anyAttribute 0..*

4.10.1.2 ReferencedPackageType Property Usage Notes 2981

 Condition: A Condition is used when the ReferencedPackage’s content should only be deployed 2982
when certain conditions exist in the deployment environment. 2983
See the ConditionType section for structure and additional usage details [4.5.1]. 2984

 RequiredContentSelection: Certain Groups or Features may need to be selected when deploying 2985
the referenced package. These can be identified in the RequiredContentSelection element. 2986
If one particular aggregated SDD requires the selection of different groups or features, depending on 2987
other choices made during a particular deployment, different Requisite or ContainedPackage 2988
elements can be defined in a way that will cause the correct combination of Groups and Features to 2989
be used in each situation. 2990
See the RequiredContentSelectionType section for structure and additional usage details [4.12.13]. 2991

 Arguments: Arguments are used to provide values for input variables defined in the deployment 2992
descriptor of the referenced package. The argument name specified MUST reference the id of a 2993
parameter in the referenced package. 2994

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 114 of 154

See the ArgumentListType section for structure and additional usage details [4.3.8]. 2995
 OutputVariables: The output variable mapping can be used to set variables to outputs created by 2996

processing the referenced SDD. The output variables in the referenced package are mapped to 2997
output variables in the aggregating SDD. 2998
Each output variable value specified MUST reference the id of an output variable in the referenced 2999
package. This can be an output variable from an artifact or an output variable from a referenced 3000
package defined within the referenced SDD. 3001
See the OutputVariableListType section for structure and additional usage details [4.3.10]. 3002

 Requirements: When the aggregating SDD has stricter requirements for the use of the referenced 3003
SDD than are defined by the referenced SDD itself, those requirements can be defined in 3004
Requirements. This is not intended to repeat requirements expressed in the referenced SDD, but 3005
rather to add additional stricter requirements. 3006
Requirements expressed in the referenced SDD need to be satisfied, in addition to the requirements 3007
expressed in the Requisite or ContainedPackage element of the aggregating SDD. 3008
Requirements expressed in the aggregating SDD MUST NOT conflict with requirements expressed in 3009
the referenced SDD. The requirements specified MUST further constrain the referenced package. 3010
See the RequirementsType section for structure and additional usage details [4.7.1]. 3011

 ResultingResourceMap: Resources created by the referenced package may be resources that are 3012
defined in the aggregating SDD. The ResultingResourceMap is used to identify the correspondence 3013
between resource definitions in the aggregating SDD and resulting resource definitions in the 3014
aggregated SDD. 3015
Characteristics of the resulting resources MAY be exposed in the ResultingResourceMap element. 3016
ResourceConstraints defined on those resources anywhere in the aggregation are mapped to the 3017
resource properties exposed in the resulting maps of the referenced package to determine if the 3018
referenced package will satisfy the constraints. Each individual constraint is considered met by the 3019
referenced package if a property exposed in the resulting resource map that is in scope for the 3020
particular deployment satisfies the constraint. 3021

For example, a property constraint in a ResourceConstraint element states that the property 3022
named “FileAttributes” has the value “Writeable”. The resourceRef in the ResourceConstraint 3023
identifies a resource defined in Topology that is also identified in the ResultingResourceMap of a 3024
Requisite or ContainedPackage element that is in scope for the particular deployment. If the 3025
ResultingResourceMap element contains a statement that the property named “FileAttributes” 3026
has the value “Writeable”, then the ResourceConstraint is met when the Requisite or 3027
ContainedPackage is deployed. 3028

This same logic applies to ResourceConstraints in aggregated packages. If the SDD in the preceding 3029
example also aggregates another SDD and maps the same resource to a required resource in that 3030
aggregated SDD, then all ResourceConstraints in the aggregated SDD are met only if the 3031
ResultingResourceMap of the referenced SDD that creates that resource contains a Name, Version 3032
or Property definition that satisfies the constraint. 3033
See the ResultingResourceMapType section for structure and additional usage details [4.10.3]. 3034

 ResultingChangeMap: Resources configured by the referenced package may be resources that are 3035
defined in the aggregating SDD. The ResultingChangeMap is used to identify the correspondence 3036
between resource definitions in the aggregating SDD and changed resources defined in 3037
ResultingChange elements of the aggregated SDD. 3038
Characteristics of resources that are changed by the referenced SDD MAY be exposed in the 3039
ResultingChangeMap. These are correlated with ResourceConstraints on the changed resource in 3040
the same manner as the exposed characteristics of a resulting resource. See the property usage 3041
notes for ResultingResourceMap above. 3042
See the ResultingChangeMapType section for structure and additional usage details [4.10.4]. 3043

 RequiredResourceMap: When a resource required by the aggregated SDD is a resource also 3044
defined in the aggregating SDD, the RequiredResourceMap is used to identify the correspondence. 3045

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 115 of 154

This element is a simple mapping of a resource in one SDD to a resource in another. There is no 3046
need to expose characteristics of the resource because it is not created or modified by the referenced 3047
package. 3048
One resource MAY be required, resulting, changed, all three or any combination of these within one 3049
SDD. When a resource in the referenced SDD plays more than one role, the mapping MUST be 3050
repeated everywhere it applies. This allows exposure of all the created or modified properties in the 3051
ResultingChangeMap and ResultingResourceMap. In this situation–when one resource in the 3052
referenced SDD plays more than one of the roles identified earlier (required, resulting or changed)–all 3053
mappings MUST be to the same resource in the aggregating SDD. Only the exposed resulting and 3054
changed properties differ. 3055
See the ResourceMapType section for structure and additional usage details [4.10.2]. 3056

 Languages: Languages supported by the referenced package MAY be identified here. This list does 3057
not identify mandatory versus optional languages; it is for informational purposes only. The SDD 3058
author is not limiting use of the referenced package to deployments where all in-scope languages are 3059
found in this list. There may be cases where aggregated packages are deployed even though they 3060
cannot support all of the languages supported by the aggregation as a whole. 3061
Each language specified MUST match a language in the referenced package. 3062
See the LanguagesType section for structure and additional usage details [4.13.6]. 3063

 id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 3064
log and trace messages. 3065

 contentRef: The package descriptor of an SDD that aggregates other SDDs, either through 3066
ContainedPackage elements or Requisite elements, will list the package descriptor files of the 3067
aggregated SDDs in its content list. The contentRef attribute of a referenced package element MUST 3068
be a reference to the id of a Content element in the aggregating SDD’s package descriptor that 3069
defines the aggregated package descriptor. 3070

 weight: Defining weights for all artifacts and referenced packages in an SDD provides useful 3071
information to software that manages deployment. The weight of the referenced package refers to the 3072
relative time taken to deploy the referenced package with respect to other packages in this SDD. 3073

For example, if the referenced package takes twice as long to deploy as a particular install artifact 3074
whose weight is “4”, then the weight of the referenced package would be “8”. The weight numbers 3075
have no meaning in isolation and do not describe actual time elapsed. They simply provide an 3076
estimate of relative time. 3077

 operation: The referenced SDD may support more than one deployment lifecycle operation. The 3078
operation attribute MUST include the operations that are applicable when this is the case. 3079
See the OperationType section for enumeration values and their meaning [4.3.7]. 3080

4.10.2 ResourceMapType 3081

 3082
Figure 79: ResourceMapType structure. 3083
ResourceMapType is used in the definition of elements that map resources in an SDD to resources in a 3084
referenced SDD. The purpose of a resource map is to identify when two resources in separate SDDs 3085
MUST resolve to the same resource instance during any particular deployment. The characteristics of a 3086
mapped resource that are defined in the topology sections of the two SDDs MUST NOT conflict. 3087

For example, if a Name is defined for the resource in both topologies, it MUST be the same in both 3088
definitions and if a Property definition is included for the same property in both places, the value 3089
MUST be the same. 3090

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 116 of 154

Additional characteristics of a mapped resource may be constrained by Requirements or Conditions in 3091
either SDD. All constraints on a mapped resource that are in scope for a particular deployment MUST 3092
NOT conflict. 3093
Resources that are not mapped between the two SDDs MAY resolve to the same instance when their 3094
characteristics defined in topology do not conflict and when the constraints in scope for any particular 3095
deployment do not conflict. 3096
The RequiredResourceMap, ResultingResourceMap and ResultingChangeMap elements all use 3097
ResourceMapType, either directly or as a base type that is extended. 3098

4.10.2.1 ResourceMapType Property Summary 3099

Name Type * Description

resourceRef xsd:IDREF 1 Reference to a resource defined in the deployment descriptor.

foreignID xsd:NCName 0..1 Reference to a resource defined in a referenced deployment descriptor.

 xsd:anyAttribute 0..*

4.10.2.2 ResourceMapType Property Usage Notes 3100

 resourceRef: The value of the resourceRef MUST be set to the id of the resource in the SDD to be 3101
mapped to a resource in a referenced SDD. 3102

 foreignID: The value MUST reference the id of a resource in the referenced package. This is the 3103
resource in the referenced SDD that MUST resolve to the same resource instance as the resource 3104
identified in resourceRef. 3105

4.10.3 ResultingResourceMapType 3106

 3107
Figure 80: ResultingResourceMapType structure. 3108
ResultingResourceMapType defines an element type that maps resources that result from deployment of 3109
the referenced SDD to a resource in the referencing SDD. In addition to identifying the two resources that 3110
MUST resolve to the same resource instance, the resulting resource map allows characteristics of the 3111
resulting resource to be exposed. There may be constraints defined on the mapped resource in the 3112

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 117 of 154

referencing SDD or any referenced SDD in the hierarchy of SDDs. These constraints can be evaluated by 3113
comparing the constraint to the exposed characteristics defined in the resulting resource map. The 3114
resulting resource map MUST expose sufficient characteristics of the resulting resource to support 3115
successful evaluation of constraints on that resource. 3116

For example, say that the SDD defines a resource with id=”Database” in its topology. The solution 3117
can work with Database Product A or Database Product B. Database Product A is created by a 3118
referenced SDD defined in a Requisites element. The SDD will contain Requirements and/or 3119
Conditions that have alternatives for each of the database products. All constraints on the Database 3120
resource that apply to Database Product A must be satisfied by a resource characteristic exposed in 3121
the ResultingResourceMap element of the Requisite element that points to the SDD that deploys 3122
Database Product A. 3123

4.10.3.1 ResultingResourceMapType Property Summary 3124

Name Type * Description

 [extends] ResourceMapType See the ResourceMapType section for additional properties [4.10.2].

Condition ConditionType 0..1 A condition that determines if the resulting resource definition is relevant
to a particular deployment.

Name VariableExpressionType 0..1 The name of the resource created or updated by the referenced SDD.

Version VersionType 0..1 The version of the resource created or updated by the referenced SDD.

FixName xsd:string 0..* Names of fixes to the mapped resource that are created by the
referenced SDD.

Property ResultingPropertyType 0..* Properties set when the mapped resource is created or updated by the
referenced SDD.

Relationship RelationshipType 0..* Relationship that will exist after creating or updating the resource.

 xsd:any 0..*

4.10.3.2 ResultingResourceMapType Property Usage Notes 3125

See the ResourceMapType section for details of the inherited attributes and elements [4.10.2]. 3126
 Condition: A Condition is used when the resulting resource will be created by the referenced 3127

package only when certain conditions exist in the deployment environment. 3128
See the ConditionType section for structure and additional usage details [4.5.1]. 3129

 Name: The Name of the resulting resource created or updated by the referenced SDD MUST be 3130
defined if it is not defined elsewhere and there are constraints on this resource that contain a Name 3131
element. “Defined elsewhere” means defined in the topology of the referencing SDD or in the 3132
topology of any other referenced SDD for a resource that is also mapped to the same resource. 3133
“Constraints on this resource” means a constraint that applies to the particular instantiation of the 3134
resource that is created or updated by the referenced SDD, for example a constraint that needs to 3135
successfully map to the referenced SDD for the referenced SDD to be used in a particular 3136
deployment. 3137
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 3138

 Version: The Version of the resulting resource created or updated by the referenced SDD MUST be 3139
defined if it is not defined elsewhere and there are version constraints defined on this resource. (See 3140
the usage note for Name above for a definition of “defined elsewhere”.) 3141
See the VersionType section for structure and additional usage details [3.10]. 3142

 FixName: One or more names of fixes to the resulting resource created or updated by the referenced 3143
SDD MUST be defined if they are not defined elsewhere and there are version constraints defined on 3144

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 118 of 154

this resource that include fix names. (See the usage note for Name above for a definition of “defined 3145
elsewhere”.) 3146

 Property: A Property of the resulting resource created or updated by the referenced SDD MUST be 3147
defined if it is not defined elsewhere and there are property constraints on this property. (See the 3148
usage note for Name above for a definition of “defined elsewhere”.) 3149
See the ResultingPropertyType section for structure and additional usage details [4.2.4]. 3150

 Relationship: Any number of Relationship elements can be included to identify relationships that will 3151
exist after applying the referenced package. 3152
See the RelationshipType section for structure and additional usage details [4.8.3]. 3153

4.10.4 ResultingChangeMapType 3154

 3155
Figure 81: ResultingChangeMapType structure. 3156
ResultingChangeMapType is very similar to ResultingResourceMapType. It defines an element type that 3157
maps resources that are changed by deployment of the referenced SDD to a resource in the referencing 3158
SDD. In addition to identifying the two resources that MUST resolve to the same resource instance, the 3159
resulting change map allows characteristics of the modified resource to be exposed. There may be 3160
constraints defined on the mapped resource in the referencing SDD or any referenced SDD in the 3161
hierarchy of SDDs. These constraints can be evaluated by comparing the constraint to the exposed 3162
characteristics defined in the resulting change map. The resulting change map MUST expose sufficient 3163
characteristics of the resulting change to support successful evaluation of constraints on that resource. 3164

For example, say that the SDD defines a resource with id=”OS” in its topology. The solution can work 3165
with Windows or Linux. Linux is configured by a referenced SDD defined in a Requisites element. The 3166
SDD will contain Requirements and/or Conditions that have alternatives for Windows and for Linux. 3167
All constraints on the modified characteristics of Linux must be satisfied by a resource characteristic 3168
exposed in the ResultingChangeMap element of the Requisite element that points to the SDD that 3169
configures Linux. 3170

4.10.4.1 ResultingChangeMapType Property Summary 3171

Name Type * Description

 [extends] ResourceMapType See the ResourceMapType section for additional properties [4.10.2].

Condition ConditionType 0..1 A condition that determines if the resulting change definition is relevant
to a particular deployment.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 119 of 154

Name VariableExpressionType 0..1 The name of the modified resource.

Property ResultingPropertyType 0..* A modified property of the resource.

Relationship RelationshipType 0..* Relationship that will exist after the change is applied to the resource.

 xsd:any 0..*

4.10.4.2 ResultingChangeMapType Property Usage Notes 3172

See the ResourceMapType section for details of the inherited attributes and elements [4.10.2]. 3173
 Condition: A Condition is used when the resource mapped from the external package will be 3174

changed only when certain conditions exist in the deployment environment. 3175
See the ConditionType section for structure and additional usage details [4.5.1]. 3176

 Name: The Name of the resource that is modified by the referenced SDD is defined here to assist 3177
with identifying the resource instance that is changed. It is not an indication that the resource name 3178
itself is modified by the referenced SDD. If resource characteristics defined in the topology of any 3179
SDD defining a resource mapped to the changed resource are sufficient to identify the resource, then 3180
Name SHOULD NOT be defined in the ResultingChangeMap. 3181
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 3182

 Property: A modified property MUST be exposed in a ResultingChangeMap if it is not defined 3183
elsewhere and there are property constraints on the modified property. “Defined elsewhere” means 3184
defined in the topology of the referencing SDD or in the topology of any other referenced SDD for a 3185
resource that is also mapped to the same resource. “Constraints on the modified property” means a 3186
property constraint that applies to the particular instantiation of the resource that is modified by the 3187
referenced SDD, for example a constraint that needs to successfully map to the referenced SDD for 3188
the referenced SDD to be used in a particular deployment. 3189
See the ResultingPropertyType section for structure and additional usage details [4.2.4]. 3190

 Relationship: Relationship elements SHOULD be included to identify relationships that will exist after 3191
the application of the referenced package. 3192
Relationships that need to be known by the aggregate MUST be mapped. Relationships need to be 3193
known when they are referred to in one or more resource constraints. 3194
See the RelationshipType section for structure and additional usage details [4.8.3]. 3195

4.10.5 RequisitesType 3196

 3197
Figure 82: RequisitesType structure. 3198
The Requisites element contains a list of references to SDD packages that can be used to satisfy one or 3199
more of the requirements defined by content elements. The definition of a requisite does not imply that it 3200
must be used; only that it is available for use if needed. 3201
Requisite definitions can map values and resources defined in the SDD to inputs and resources defined 3202
in the requisite SDD. 3203

4.10.5.1 RequisitesType Property Summary 3204

Name Type * Description

ReferencedPackage ReferencedPackageType 1..* An SDD package that can, but is not required to, be deployed to
satisfy a requirement.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 120 of 154

4.10.5.2 RequisitesType Property Usage Notes 3205

 ReferencedPackage: See the ReferencedPackageType section for structure and additional usage 3206
details [4.10.1]. 3207

4.11 Base Content 3208

Base content is the default content for the deployment lifecycle operation associated with the 3209
CompositeInstallable that contains the base content. This is content that is deployed whenever the 3210
associated operation is performed on the SDD package. Base content may be conditioned on 3211
characteristics of the deployment environment but it is not selectable by the deployer. 3212
Resources associated with base content for one operation may be different from resources associated 3213
with base content for a different operation in the same SDD package. 3214

For example, base content in the CompositeInstallable for the configuration operation may configure 3215
resources that were created by selectable content in the CompositeInstallable for the install 3216
operation. In this example, the configuration is in base content because it must be done if the 3217
resource exists. It is not selectable by the deployer during the configuration operation. 3218

4.11.1 BaseContentType 3219

 3220
Figure 83: BaseContentType structure. 3221
The BaseContent hierarchy defines the default content for the deployment operation described by the 3222
CompositeInstallable. This content MAY be conditioned. 3223

4.11.1.1 BaseContentType Property Summary 3224

Name Type * Description

InstallableUnit InstallableUnitType 0..* An InstallableUnit that defines base content.

ConfigurationUnit ConfigurationUnitType 0..* A ConfigurationUnit that defines base configuration content.

CompositeUnit CompositeUnitType 0..* A CompositeUnit that organizes base content.

ContainedPackage ReferencedPackageType 0..* An SDD whose content is considered to be base content in the
context of this aggregation.

 xsd:any 0..*

4.11.1.2 BaseContentType Property Usage Notes 3225

 InstallableUnit: See the InstallableUnitType section for structure and additional usage details [4.3.1]. 3226
 ConfigurationUnit: See the ConfigurationUnitType section for structure and additional usage details 3227

[4.3.2]. 3228
 CompositeUnit: See the CompositeUnitType section for structure and additional usage details 3229

[4.9.2]. 3230

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 121 of 154

 ContainedPackage: See the ReferencedPackageType section for structure and additional usage 3231
details [4.10.1]. 3232

4.12 Content Selectability 3233

The SDD author MAY define selectable subsets of content using Groups and Features. Selectability, as 3234
used in the SDD, is a characteristic of the deployment lifecycle operation and the package. The decision 3235
to provide selectability for one operation in one package has no semantic relationship to the selectability 3236
provided in another package related to the same software. It also has no semantic relationship to the 3237
selectability provided for a different operation within the same package. 3238

For example, when the SDD author chooses to create a feature in a maintenance package, that 3239
feature is designed to allow selectable application of the maintenance, not to reflect the original set of 3240
features for the base content. 3241

4.12.1 SelectableContentType 3242

 3243
Figure 84: SelectableContentType structure. 3244
Content elements defined here make up the selectable content hierarchy. These elements are selected 3245
via Groups and Features also defined under SelectableContent. 3246

4.12.1.1 SelectableContentType Property Summary 3247

Name Type * Description

Groups GroupsType 0..1 Groups of features that can be selected as a unit.

Features FeaturesType 0..1 A definition of user-selectable content.

InstallableUnit InstallableUnitType 0..* An InstallableUnit that defines selectable content.

ConfigurationUnit ConfigurationUnitType 0..* A ConfigurationUnit that defines selectable configuration.

CompositeUnit CompositeUnitType 0..* A CompositeUnit that organizes content elements that define
selectable content.

ContainedPackage ReferencedPackageType 0..* An SDD package whose content is selectable in the context of the
aggregating SDD.

 xsd:any 0..*

4.12.1.2 SelectableContentType Property Usage Notes 3248

 Groups: Groups can be used by the SDD author to define a convenient way for deployers to select a 3249
group of features. 3250

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 122 of 154

“Typical” and “Custom” are examples of groups that are commonly presented in installation 3251
interfaces. 3252

See the GroupsType section for structure and additional usage details [4.12.2]. 3253
 Features: Features can be used to organize optional functionality into meaningful selections. 3254

Features should be meaningful from the deployer’s point of view. 3255
See the FeaturesType section for structure and additional usage details [4.12.4]. 3256

 InstallableUnit: See the InstallableUnitType section for structure and additional usage details [4.3.1]. 3257
 ConfigurationUnit: See the ConfigurationUnitType section for structure and additional usage details 3258

[4.3.2]. 3259
 CompositeUnit: See the CompositeUnitType section for structure and additional usage details 3260

[4.9.2]. 3261
 ContainedPackage: See the ReferencedPackageType section for structure and additional usage 3262

details [4.10.1]. 3263

4.12.2 GroupsType 3264

 3265
Figure 85: Groups structure. 3266
GroupsType is used in SelectableContent to provide a list of one or more Group elements. 3267

4.12.2.1 GroupsType Property Summary 3268

Name Type * Description

Group GroupType 1..* A group of features that can be selected together.

4.12.2.2 GroupsType Property Usage Notes 3269

 Group: Associating features in a Group is based on the characteristics of the package and the ways 3270
in which the SDD author chooses to expose function variability to the deployer. 3271

One example is a “Typical” group that allows easy selection of the most common grouping of 3272
features, along with a “Custom” group that allows an advanced user to select from among all 3273
features. Another example is a “Client” group that selects features that deploy the client software 3274
for an application, along with a “Server” group that selects features that deploy the server 3275
software for the same application. 3276

If alternative sets of selections are desired, Groups MUST be used to define these sets. Zero or one 3277
set can be selected for any particular deployment 3278
See the GroupType section for structure and additional usage details [4.12.3]. 3279

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 123 of 154

4.12.3 GroupType 3280

 3281
Figure 86: GroupType structure. 3282
GroupType provides the type definition for each Group element in SelectableContent’s list of Groups. For 3283
a particular deployment, zero or one groups may be selected by the deployer. 3284

4.12.3.1 GroupType Property Summary 3285

Name Type * Description

DisplayName DisplayTextType 0..1 A human-readable name for the group.

Description DisplayTextType 0..1 A human-readable description of the group.

ShortDescription DisplayTextType 0..1 A human-readable short description of the group.

SelectedFeature FeatureReferenceType 1..* A feature that is part of the group.

 xsd:any 0..*

id xsd:ID 1 An identifier of the group that is unique within the descriptor.

default xsd:boolean 0..1 Indicates that the group is selected by default when no selections are
provided by the deployer.
**default value=“false”

 xsd:anyAttribute 0..*

4.12.3.2 GroupType Property Usage Notes 3286

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 3287
MUST provide a label for the group. 3288
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3289

 Description, ShortDescription: These elements MAY be used to provide human-understandable 3290
information. If used, they MUST provide a description of the group. 3291
The Description element MUST be defined if the ShortDescription element is defined. 3292
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3293

 SelectedFeature: Each SelectedFeature is considered selected if inputs identify the group as 3294
selected. 3295
Selection of a nested feature causes its parent feature to be selected. 3296

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 124 of 154

See the FeatureReferenceType section for structure and additional usage details [4.12.8]. 3297
 id: The group’s id may be used to refer to the group when aggregating the SDD into another SDD. 3298

The id attribute may be useful to software that processes the SDD, for example, for use in creating 3299
log and trace messages. 3300

 default: Multiple default Groups MUST NOT be defined. 3301

4.12.4 FeaturesType 3302

 3303
Figure 87: FeaturesType structure. 3304
FeaturesType provides the type definition for the single, optional, Features element in SelectableContent. 3305
Features defined directly under the Features element in SelectableContent are the top level features. A 3306
Features element may also include a MultiSelect element that refers to features whose selections are 3307
interdependent. 3308

4.12.4.1 FeaturesType Property Summary 3309

Name Type * Description

Feature FeatureType 1..* A top level feature in the hierarchy of features defined in SelectableContent.

MultiSelect MultiSelectType 0..* A list of feature references whose selection is controlled as a multi-select list with
defined minimum and maximum selections.

 xsd:any 0..*

4.12.4.2 FeaturesType Property Usage Notes 3310

 Feature: Each top level Feature can define NestedFeatures. All features can define required 3311
relationships with other features that cause the required feature to be selected. 3312
See the FeatureType section for structure and additional usage details [4.12.5]. 3313

 MultiSelect: The MultiSelect element MUST refer to Feature or NestedFeature elements. 3314
See the MultiSelectType section for structure and additional usage details [4.12.15]. 3315

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 125 of 154

4.12.5 FeatureType 3316

 3317
Figure 88: FeatureType structure. 3318
FeatureType provides the type definition for each feature defined directly below SelectableContent. A 3319
Feature can define NestedFeatures and identify ContentElements and other features that will be selected 3320
when the feature is selected. A feature can also be defined to be available for selection only under certain 3321
conditions. 3322

4.12.5.1 FeatureType Property Summary 3323

Name Type * Description

 [extends] NestedFeatureType See the NestedFeatureType section for additional properties [4.12.6].

required xsd:boolean 0..1 Indicates the feature must be selected.
**default value=“false”

4.12.5.2 FeatureType Property Usage Notes 3324

See the NestedFeatureType section for details of the inherited attributes and elements [4.12.6]. 3325
 required: A top level Feature MUST be selected when the value of the required attribute is “true”. In 3326

this case, the user cannot choose to deselect this top level Feature. 3327
In Features that define Multiplicity, the SDD author can state a minimum number of instances of the 3328
Feature. This minimum applies only if the Feature is selected. The required attribute can be used to 3329
indicate that the Feature is always selected and so the minimum number of instances applies. 3330
The required attribute SHOULD be used only when Multiplicity is applied to the Feature. 3331

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 126 of 154

4.12.6 NestedFeatureType 3332

 3333
Figure 89: NestedFeatureType structure. 3334
NestedFeatureType is identical to FeatureType except that NestedFeatureType does not define a 3335
required attribute. All features other than those defined directly below SelectableContent use the 3336
NestedFeatureType. 3337

4.12.6.1 NestedFeatureType Property Summary 3338

Name Type * Description

DisplayName DisplayTextType 0..1 A human-readable name for the feature.

Description DisplayTextType 0..1 A human-readable description of the feature.

ShortDescription DisplayTextType 0..1 A human-readable short description of the feature.

Condition ConditionType 0..1 A condition that determines if the feature is relevant
to a particular deployment.

Multiplicity MultiplicityType 0..1 Both an indication that multiple instances of the
feature can be selected and the specification of their
constraints.

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 127 of 154

Languages LanguageSelectionsType 0..1 A list of language support available for the feature’s
content.

NestedFeature NestedFeatureType 0..* A nested feature.

ContentElement ContentElementReferenceType 0..* A reference to a content element to be deployed
when the feature is selected.

PackageFeatureReference PackageFeatureReferenceType 0..* A reference to a feature to be selected in a
ContainedPackage defined in either the BaseContent
or SelectableContent hierarchies.

RequiredFeature FeatureReferenceType 0..* A reference to a feature that is required when the
defining feature is selected and so is selected
automatically.

Variable DerivedVariableType 0..* The definition of a variable that can be used
anywhere in any variable expression in the SDD.

 xsd:any 0..*

id xsd:ID 1 Used within the SDD to refer to the feature.

addOn xsd:boolean 0..1 A “true” value indicates that the feature can be added
to a deployed instance of the solution.
**default value=“false”

 xsd:anyAttribute 0..*

4.12.6.2 NestedFeatureType Property Usage Notes 3339

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 3340
MUST provide a label for the nested feature. 3341
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3342

 Description, ShortDescription: These elements MAY be used to provide human-understandable 3343
information. If used, they MUST provide a description of the nested feature. 3344
The Description element MUST be defined if the ShortDescription element is defined. 3345
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3346

 Condition: If the features and its nested features are only applicable in certain environments, a 3347
Condition can be defined. When the Condition is not met, the feature and its nested features are not 3348
in scope. 3349

For example, some features may be available only on a Linux operating system, even though the 3350
software can be applied on other operating systems. In this case, a Condition can be defined to 3351
cause the feature to be ignored when the operating system is not Linux. 3352

See the ConditionType section for structure and additional usage details [4.5.1]. 3353
 Multiplicity: When multiple instances of a feature can be selected, a Multiplicity element MUST be 3354

defined. 3355
For example, a solution that includes a server and a client may allow the deployment of multiple 3356
clients. In this situation, a feature that defines a Multiplicity element would select the content 3357
elements that deploy the client software. 3358

See the MultiplicityType section for structure and usage details [4.12.7]. 3359
 Languages: Sometimes language support for a feature is different than that available for the overall 3360

solution. This is especially likely when features are implemented by aggregation of packages 3361

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 128 of 154

provided by different teams. When language support differs, the Languages element of the feature 3362
MUST be defined to state which languages are supported for the feature. 3363
When Languages is defined in a feature, it overrides the global declaration of supported languages 3364
and MUST declare the complete set of language support available for that feature. 3365
If Languages is not defined, the global declaration of supported languages in CompositeInstallable 3366
applies for the feature. 3367
See the LanguageSelectionsType section for structure and additional usage details [4.13.4]. 3368

 NestedFeature: A NestedFeature must be explicitly selected. It is not assumed to be selected when 3369
the parent feature is selected. Selection of a nested feature causes its parent feature to be selected, 3370
but not vice-versa. The definition of a NestedFeature indicates that application of the NestedFeature 3371
is dependent on application of the parent feature. 3372

 ContentElement: The ContentElement referred to MUST be in the selectable content hierarchy 3373
defined by the SelectableContent element. 3374
When the content reference is to a CompositeUnit, the composite and all content elements below it in 3375
the content hierarchy are considered to be in scope when the feature is selected. Ease of referencing 3376
a group of content from a feature can be one reason for using a composite in the content hierarchy. 3377
See the ContentElementReferenceType section for structure and additional usage details [4.12.9]. 3378

 PackageFeatureReference: Selection of a feature may result in selection of an aggregated 3379
package’s feature identified by a ContainedPackage element anywhere in the BaseContent or 3380
SelectableContent hierarchies. A PackageFeatureReference identifies both the ContainedPackage 3381
and the applicable features to be selected in that package. 3382
See the PackageFeatureReferenceType section for structure and additional usage details [4.12.10]. 3383

 RequiredFeature: When the selection of one feature requires the selection of another feature, the 3384
RequiredFeature can be used to specify this requirement. 3385
When two features identify each other as required features, they are always selected together. 3386
The selection of the defining feature MUST cause the required feature to be selected. 3387
See the FeatureReferenceType section for structure and additional usage details [4.12.8]. 3388

 Variable: Variables defined in features are useful when inputs to an artifact need to vary based on 3389
which features are selected for a particular deployment. Artifact arguments can be defined in terms of 3390
feature Variables to allow for this variation. When an artifact deploys selectable content, inputs to the 3391
artifact that indicate the selections for a particular deployment can be associated with feature 3392
selection in the SDD via feature Variables. 3393

For example, a Feature that deploys a trace facility might define a Variable called 3394
“TraceSettings”. The value of an argument to a base content artifact might define its value as 3395
“$(TraceSettings)”. If the feature is selected, this argument would be used and its value would be 3396
taken from the feature Variable. If the feature is not selected, the argument would be ignored. 3397

A Variable defined in a feature differs from Variable elements defined in content elements in one 3398
important way. A reference to an undefined feature Variable is treated as an empty string and is 3399
considered to be defined. 3400
See the DerivedVariableType section for structure and additional usage details [4.6.13]. 3401

 id: Provides the means to reference a feature from other features. 3402
The id attribute may be useful to software that processes the SDD, for example, for use in creating 3403
log and trace messages. 3404

 addOn: When a solution and the artifacts that deploy the various parts of the solution are designed in 3405
a way that supports the addition of a particular feature at a later time (after the deployment of the 3406
base solution), the addOn attribute is set to “true”. 3407

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 129 of 154

4.12.7 MultiplicityType 3408

 3409
Figure 90: MultiplicityType structure. 3410
Some solutions allow multiple instances of some portion of the solution’s resources to be deployed as 3411
part of the solution. 3412

For example, a solution that includes a server and a client may allow the deployment of multiple 3413
clients. The deployment of each client may involve content elements that represent several different 3414
resulting resources, features that control optional functionality of the client and configuration elements 3415
that configure the client. All of these can be defined within a “Client” feature that declares a Multiplicity 3416
element that indicates that multiple clients are allowed. Each selection or “instance” of the feature 3417
results in the deployment of a client. 3418

The phrase “feature instance” is used to refer to the set of instances of all resources deployed when the 3419
feature is selected. It does not imply that features themselves are represented as having lifecycle or that 3420
features in the SDD correspond with feature instances in the deployment environment. 3421

4.12.7.1 MultiplicityType Property Summary 3422

Name Type * Description

ConstrainedFeature FeatureReferenceType 0..* A nested feature whose selection must be the same for all
instances of the defining feature in a particular deployment.

ConstrainedResource ConstrainedResourceType 0..* A resource that must resolve to the same resource instance for
all instances of the feature in a particular deployment.

 xsd:any 0..*

multiplesAllowed xsd:boolean 1 Indicates that multiple instances of the feature are allowed.
**fixed value=“true”

minSelections xsd:positiveInteger 0..1 The minimum number of instances of the feature that must be
selected if the feature is selected at all.
**default value=“1”

maxSelections xsd:positiveInteger 0..1 That maximum number of instances of the feature that can be
selected.

 xsd:anyAttribute 0..*

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 130 of 154

4.12.7.2 MultiplicityType Property Usage Notes 3423

 ConstrainedFeature: A feature with multiplicity may contain NestedFeature elements. When a 3424
NestedFeature is identified in a ConstrainedFeature, then all instances of the defining Feature MUST 3425
make the same selection choice for that NestedFeature. 3426
See the FeatureReferenceType section for structure and additional usage details [4.12.8]. 3427

 ConstrainedResource: The content elements selected by a feature may express constraints on 3428
resources. When the resource constraints for each instance of a feature must resolve to the same 3429
resource instance, or when all must resolve to unique resource instances, the resource is referred to 3430
and the constraint type is identified in the ConstrainedResource element. 3431
See the ConstrainedResourceType section for structure and additional usage details [4.12.11]. 3432

 multiplesAllowed: This is an attribute with a fixed value of “true”. It is included because all other 3433
elements and attributes of MultiplicityType are optional. A feature that allows multiples but has no 3434
need to define constraints on resources, features or number of instances would define a Multiplicity 3435
element that had only the multiplesAllowed attribute. 3436

 minSelections: When a feature is selected, if more than one instance of the feature is required, 3437
minSelections MUST be specified. 3438

 maxSelections: When a feature is selected, if there is a limit on the number of instances of the 3439
feature that can be selected, maxSelections MUST be specified. If maxSelections is defined, it MUST 3440
be equal to or greater than minSelections. 3441

4.12.8 FeatureReferenceType 3442

 3443
Figure 91: FeatureReferenceType structure. 3444
FeatureReferenceType provides a way to reference a feature defined in the SDD from within the SDD. 3445

4.12.8.1 FeatureReferenceType Property Summary 3446

Name Type * Description

featureRef xsd:IDREF 1 Reference to a feature defined in the deployment descriptor.

 xsd:anyAttribute 0..*

4.12.8.2 FeatureReferenceType Property Usage Notes 3447

 featureRef: The value MUST reference the id of a feature in the deployment descriptor. 3448

4.12.9 ContentElementReferenceType 3449

 3450
Figure 92: ContentElementReferenceType structure. 3451
ContentElementReferenceType provides a way to reference a content element defined in the SDD from 3452
within a feature. 3453

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 131 of 154

4.12.9.1 ContentElementReferenceType Property Summary 3454

Name Type * Description

contentElementRef xsd:IDREF 1 Reference to a content element in the deployment descriptor’s selectable
content.

 xsd:anyAttribute 0..*

4.12.9.2 ContentElementReferenceType Property Usage Notes 3455

 contentElementRef: The value MUST reference the id of a content element in the deployment 3456
descriptor. 3457

4.12.10 PackageFeatureReferenceType 3458

 3459
Figure 93: PackageFeatureReferenceType structure. 3460
PackageFeatureReferenceType provides a way to reference a feature defined in a referenced SDD. It 3461
identifies the ContainedPackage element that references the SDD and the feature in the referenced SDD. 3462

4.12.10.1 PackageFeatureReferenceType Property Summary 3463

Name Type * Description

contentElementRef xsd:IDREF 1 Reference to a content element in the deployment descriptor.

packageFeatureRef xsd:NCName 1 The feature’s id as defined in the referenced package’s deployment
descriptor.

 xsd:anyAttribute 0..*

4.12.10.2 PackageFeatureReferenceType Property Usage Notes 3464

 contentElementRef: This value MUST reference the id of a ContainedPackage element in 3465
SelectableContent or BaseContent. This reference does not cause the ContainedPackage to be in 3466
scope. 3467

 packageFeatureRef: Specifies the value of the id of a feature element from the SDD of the 3468
ContainedPackage identified in contentElementRef. This feature reference is ignored when the 3469
ContainedPackage identified in contentElementRef is not in scope for a particular deployment. 3470

4.12.11 ConstrainedResourceType 3471

 3472
Figure 94: ConstrainedResourceType structure. 3473

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 132 of 154

A resource may be required during deployment of the content selected by a Feature instance. The 3474
requirement may exist because the resource is used in a Requirement statement, referred to in a Variable 3475
whose value is in scope for the particular deployment or referred to in a constraint in a Condition that is 3476
satisfied for the particular deployment. This is an in-scope, required resource for the particular 3477
deployment. The SDD author may wish to constrain in-scope, required resources to resolve to the same 3478
resource instance for all Feature instances or to resolve to unique resource instances for each Feature 3479
instance. This is done using a ConstrainedResource element. 3480

4.12.11.1 ConstrainedResourceType Property Summary 3481

Name Type * Description

resourceRef xsd:IDREF 1 A reference to the constrained resource.

constraintType MultiplicityConstraintType 0..1 Indicates whether the constraint requires every instance of the resource to
be the same or requires every instance to be different.
**default value=“same”

 xsd:anyAttribute 0..*

4.12.11.2 ConstrainedResourceType Property Usage Notes 3482

 resourceRef: The value MUST reference the id of a resource element in Topology. 3483
 constraintType: If there is a constraint, constraintType indicates that all resource instances be 3484

unique or that all resource instances be the same. 3485
For example, all clients for a particular solution may need to connect to the same database. In 3486
this case, constraintType would be set to same. In other cases, each of the deployed resources 3487
might need to use its own unique instance of a required resource. If there could be only one client 3488
per operating system, a constraint on the operating system resource would set constraintType to 3489
unique. 3490

See the MultiplicityConstraintType section for the enumeration values for constraintType [4.12.12]. 3491

4.12.12 MultiplicityConstraintType 3492

This is a simple type that is used to indicate how resources declared in the Multiplicity element should be 3493
treated. Enumeration values are same, unique, or if a value is not specified, the SDD author is indicating 3494
that it doesn’t matter. 3495

4.12.12.1 MultiplicityConstraintType Property Usage Notes 3496

 same: The value same is used to indicate that the constraint requires all resource instances MUST 3497
be the same. 3498

 unique: The value unique is used to indicate that each resource instance MUST be unique. 3499

4.12.13 RequiredContentSelectionType 3500

 3501
Figure 95: RequiredContentSelectionType structure. 3502
When one SDD aggregates another, there needs to be an indication of which Groups and/or Features in 3503
the aggregated SDD should be selected. The RequiredContentSelection of the referenced package 3504
element identifies which elements MUST be selected when the defining package is selected. 3505

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 133 of 154

4.12.13.1 RequiredContentSelectionType Property Summary 3506

Name Type * Description

Group xsd:token 0..1 A reference to the group to be selected.

Feature ContentSelectionFeatureType 0..* A reference to a feature to be selected.

4.12.13.2 RequiredContentSelectionType Property Usage Notes 3507

 Group: The Group value is the identifier of a Group in the aggregated SDD. This value MUST 3508
reference the id of a Group element in the deployment descriptor denoted by the referenced package. 3509

 Feature: The Feature element value is the identifier of the feature in the aggregated SDD. Attributes 3510
indicating the number of selections to be made can be included. The feature value MUST be the id of 3511
a feature element in the deployment descriptor denoted by the referenced package. 3512
If Group is also defined, Feature SHOULD be a feature that is not selected by the Group. 3513
See the ContentSelectionFeatureType section for structure and additional usage details [4.12.14]. 3514

4.12.14 ContentSelectionFeatureType 3515

 3516
Figure 96: ContentSelectionFeatureType structure. 3517
The ContentSelectionFeatureType allows for the definition of the number of times a feature can be 3518
referenced if that feature includes a Multiplicity element. 3519

For example, a software package has a server and client; the server can be deployed only on one 3520
machine, but the client can be deployed on multiple machines and configured to reference the one 3521
server. The server, for performance reasons, is limited to 10 client connections. To limit the number of 3522
times the client can be deployed, the selections attribute should be set to “10”. 3523

4.12.14.1 ContentSelectionFeatureType Property Summary 3524

Name Type * Description

 [extends] xsd:token See the xsd:token definition in [XSD].

selections VariableExpressionType 0..1 The number of times a feature with Multiplicity in the referenced package
should be deployed.

4.12.14.2 ContentSelectionFeatureType Property Usage Notes 3525

See the xsd:token definition in [XSD] for inherited attributes and elements. 3526
 selections: The value of selections MUST be, or resolve to, a positive integer that is within the 3527

bounds of the minSelections and maxSelections attributes defined in the Multiplicity element of the 3528
referenced feature. 3529
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 3530

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 134 of 154

4.12.15 MultiSelectType 3531

 3532
Figure 97: MultiSelectType structure. 3533
MultiSelectType defines a way to associate features with a defined minimum and maximum number of 3534
selections allowed. A MultiSelect element MAY be used to support identification of mutually exclusive 3535
features. 3536

4.12.15.1 MultiSelectType Property Summary 3537

Name Type * Description

Feature FeatureReferenceType 2..* A reference to a feature in the list of features defined in the MultiSelect
element.

minSelections xsd:nonNegativeInteger 0..1 Minimum number of features that must be selected.
**default value=“0”

maxSelections xsd:positiveInteger 0..1 Maximum number of features that can be selected.

4.12.15.2 MultiSelectType Property Usage Notes 3538

 Feature: The value MUST reference the id of a feature element. 3539
See the FeatureReferenceType section for structure and additional usage details [4.12.8]. 3540

 minSelections, maxSelections: When it is not necessary that any of the features in the MultiSelect 3541
list be selected, the default of “0” can be used. 3542
Mutually exclusive features can be defined using a MultiSelect element with two features, 3543
minSelections set to “0” and maxSelections set to “1”. 3544
If multiple instances of a single feature are selected via multiplicity, the set of multiple instances count 3545
only once toward the minimum and maximum. In other words, the count is based solely on the 3546
features selected, not on how many instances of each feature are selected. 3547
When maxSelections is not defined, all of the features in the MultiSelect MAY be selected for a 3548
particular deployment. 3549
If defined, the maxSelections value MUST be greater than or equal to the minSelections value and 3550
MUST be less than or equal to the number of referenced features. 3551

4.13 Localization 3552

Localization refers to enabling a particular piece of software to support one or more languages. Anything 3553
that needs to be deployed to provide support for a particular language in that software is considered 3554
localization content. Translated materials are a primary, but not the only, example of localization content. 3555
Localization content is similar in many ways to other content, but there are important differences in how 3556
localization content is selected for deployment that lead to the need for a separate content hierarchy and 3557
separate types. Two criteria determine whether or not localization content is in scope for a particular 3558
deployment: 3559
 The first criterion has to do with the language or languages supported by the localization content. At 3560

least one of the languages must be in scope for the content to be selected. 3561

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 135 of 154

 The second criterion has to do with the availability of the resources to be localized–the localization 3562
base. The localization base may be a resource deployed by base or selectable content, or it may be a 3563
resource previously deployed and found in the deployment environment. 3564

The types described in this section support definition of metadata describing the criteria for determining 3565
when localization content is in scope. 3566

4.13.1 LocalizationContentType 3567

 3568
Figure 98: LocalizationContentType structure. 3569
The LocalizationContent tree contains all content created specifically to provide localization by deploying 3570
language-specific materials for a particular location. The localization support provided can be for content 3571
defined in the SDD or it can be for resources in the deployment environment that are not created or 3572
modified by deployment of the SDD. Each element defined in the LocalizationContent hierarchy is in 3573
scope for a particular deployment when it supports a language that is in scope for that deployment and 3574
when its localization base, if any, is available. 3575

4.13.1.1 LocalizationContentType Property Summary 3576

Name Type * Description

LocalizationUnit LocalizationUnitType 0..* Contains artifacts that create, modify or delete
language support.

ContainedLocalizationPackage ReferencedPackageType 0..* Identifies an SDD whose contents are aggregated
to create, modify or delete language support.

CompositeLocalizationUnit CompositeLocalizationUnitType 0..* An organizational element that groups localization
content and defines metadata common to all the
grouped content.

4.13.1.2 LocalizationContentType Property Usage Notes 3577

 LocalizationUnit: When there is no need to group a LocalizationUnit with other units that have 3578
common metadata, the LocalizationUnit is defined at the top level of the hierarchy. A LocalizationUnit 3579
defined at the top level of the LocalizationContent hierarchy is in scope for a particular deployment 3580
when its Condition and LocalizationBase, if any, evaluate to true and its Languages element, if any, 3581
defines a language that is in scope for the deployment. 3582
See the LocalizationUnitType section for structure and additional usage details [4.13.2]. 3583

 ContainedLocalizationPackage: ContainedLocalizationPackage definitions include a list of 3584
languages supported by the contained package. The package need not be processed if none of those 3585
languages is in scope for a particular deployment. 3586
See the ReferencedPackageType section for structure and additional usage details [4.10.1]. 3587

 CompositeLocalizationUnit: CompositeLocalizationUnit is a construct that allows organization of 3588
localization content in a way that is meaningful to the SDD author. 3589

One example use of a CompositeLocalizationUnit is to group a set of LocalizationUnits that 3590
provide support for a variety of languages for the same resource. This eliminates the need to 3591
define identical LocalizationBase elements in every LocalizationUnit. It can be defined once in the 3592
CompositeLocalizationUnit. 3593

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 136 of 154

If evaluation of the CompositeLocalizationUnit's Condition, Languages and LocalizationBase 3594
determines that it is not selected for deployment, none of the content elements defined below it in the 3595
hierarchy are selected. 3596
Requirements, Variables, Conditions and Completion elements common to all child content elements 3597
MAY be defined once in the CompositeLocalizationUnit rather than once in each nested element. 3598
See the CompositeLocalizationUnitType section for structure and additional usage details [4.13.3]. 3599

4.13.2 LocalizationUnitType 3600

 3601
Figure 99: LocalizationUnitType structure. 3602
The LocalizationUnit element defines artifacts that deploy localization content for one group of resources 3603
whose translations are packaged together. Localization content consists of materials that have been 3604
translated into one or more languages. 3605

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 137 of 154

4.13.2.1 LocalizationUnitType Property Summary 3606

Name Type * Description

Identity IdentityType 0..1 Human-understandable identity information about the
LocalizationUnit.

Condition ConditionType 0..1 A condition that determines if the content element is relevant to a
particular deployment.

Variables VariablesType 0..1 Variables that can be referenced in the LocalizationUnit’s
requirement and artifact definitions.

RequiredBase RequiredBaseType 0..1 A resource that will be updated when the LocalizationUnit’s
UpdateArtifact is processed.

Requirements RequirementsType 0..1 Requirements that must be met prior to successful processing of the
LocalizationUnit’s artifacts.

Languages LanguagesType 0..1 The LocalizationUnit’s artifacts contain materials translated into
these languages.

Completion CompletionType 0..* Describes completion actions such as restart and the conditions
under which the action is applied.

LocalizationBase RequiredBaseType 0..1 A resource whose translatable characteristics will be localized by
processing the LocalizationUnit’s InstallArtifact.

ResultingResource ResultingResourceType 0..* A resource that will be installed or updated by processing the
LocalizationUnit’s artifacts.

Artifacts InstallationArtifactsType 1 The set of artifacts associated with the LocalizationUnit.

 xsd:any 0..*

id xsd:ID 1 An identifier for the LocalizationUnit scoped to the deployment
descriptor.

targetResourceRef xsd:IDREF 1 Reference to the resource that can process the LocalizationUnit’s
artifacts.

 xsd:anyAttribute 0..*

4.13.2.2 LocalizationUnitType Property Usage Notes 3607

 Identity: The Identity element defines human-understandable information that reflects the identity of 3608
the provided localization resources as understood by the end user of the solution. Identity has 3609
elements that are common with elements in the corresponding PackageDescriptor’s PackageIdentity 3610
element, for example, Name and Version. The values of these common elements SHOULD be the 3611
same as the corresponding PackageIdentity element values. 3612
See the IdentityType section for structure and additional usage details [3.4]. 3613

 Condition: A Condition is used when the LocalizationUnit’s content should be deployed only when 3614
certain conditions exist in the deployment environment. 3615

For example, for a package that has one artifact that should be processed when the operating 3616
system is Linux and another artifact that should be processed when the operating system is 3617
Windows, the LocalizationUnit defining metadata for the Linux artifact would have a condition on 3618
the operating system being Linux. The LocalizationUnit defining metadata for the Windows 3619
artifact would have a condition on the operating system being Windows. 3620

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 138 of 154

Conditions should not be used to identify the resource that will be localized by the LocalizationUnit. 3621
The LocalizationBase element is used for that purpose. A LocalizationUnit can have both a Condition 3622
and a LocalizationBase. 3623
See the ConditionType section for structure and additional usage details [4.5.1]. 3624

 Variables: A Variables element defines variables that can be used in the definition of requirements 3625
and artifact parameters. 3626
When the deployment descriptor defines a single LocalizationUnit at the top level, that is, not inside a 3627
CompositeInstallable, the variables it defines can also be referred to in any element under Topology. 3628
See the VariablesType section for structure and additional usage details [4.6.3]. 3629

 RequiredBase: RequiredBase identifies the resource that must exist prior to applying the 3630
LocalizationUnit’s update artifact. 3631
See the RequiredBaseType section for structure and additional usage details [4.7.8]. 3632

 Requirements: Requirements MUST be met prior to processing the LocalizationUnit’s artifacts. 3633
See the RequirementsType section for structure and additional usage details [4.7.1]. 3634

 Languages: Languages lists the languages of the translated material deployed by the 3635
LocalizationUnit. 3636
See the LanguagesType section for structure and additional usage details [4.13.6]. 3637

 Completion: A Completion element MUST be included if the artifact being processed requires a 3638
system operation such as a reboot or logoff to occur to function successfully after deployment or if the 3639
artifact executes a system operation to complete deployment of the contents of the artifact. 3640
There MUST be an artifact associated with the operation defined by a Completion element. 3641

For example, if there is a Completion element for the install operation, the LocalizationUnit must 3642
define an InstallArtifact. 3643

See the CompletionType section for structure and additional usage details [4.3.14]. 3644
 LocalizationBase: LocalizationBase identifies the resource or resources that can be localized by 3645

processing the LocalizationUnit. A resource that satisfies the constraints defined in the 3646
LocalizationBase is one that can be localized by applying the LocalizationUnit. 3647
If no resource is found that meets the constraints defined in LocalizationBase during a particular 3648
deployment, then the LocalizationUnit is not considered to be in scope for that deployment. This does 3649
not represent an error. 3650
Translations created or modified by the LocalizationUnit are for human-readable text included with the 3651
LocalizationBase resources. 3652
See the RequiredBaseType section for structure and additional usage details [4.7.8]. 3653

 ResultingResource: The ResultingResources for a LocalizationUnit MUST NOT identify resources 3654
other than localization resources. 3655
See the ResultingResourceType section for structure and additional usage details [4.8.1]. 3656

 Artifacts: When the LocalizationUnit is a singleton defined outside of a CompositeInstallable, it 3657
MUST define at least one artifact element and MAY define one of each type of artifact element 3658
allowed for its type. The inclusion of an artifact element in a singleton LocalizationUnit implies support 3659
for the associated operation. 3660
When the LocalizationUnit is defined within a CompositeInstallable, it MUST define exactly one 3661
artifact. The artifact defined MAY be any artifact allowed in a LocalizationUnit and it MUST support 3662
the single top level operation defined by the CompositeInstallable. This does not mean the operation 3663
associated with the artifact has to be the same as the one defined by the CompositeInstallable. 3664

For example, an install of a localization resource may be required during the update of the overall 3665
solution, in which case the LocalizationUnit would define an InstallArtifact to support the top level 3666
update operation. 3667

See the InstallationArtifactsType section for structure and additional usage details [4.3.4]. 3668

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 139 of 154

 id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 3669
log and trace messages. 3670

 targetResourceRef: The targetResourceRef attribute MUST reference the id of a resource element 3671
in Topology that will process the LocalizationUnit’s artifacts to create or modify the localization 3672
resources identified in the LocalizationUnit’s ResultingResource elements. 3673

4.13.3 CompositeLocalizationUnitType 3674

 3675
Figure 100: CompositeLocalizationUnitType structure 3676
CompositeLocalizationUnitType provides the type definition for all CompositeLocalizationUnit elements in 3677
the LocalizationContent hierarchy. CompositeLocalizationUnit elements define nested localization content 3678
elements and metadata that applies to all of the nested elements. 3679

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 140 of 154

4.13.3.1 CompositeLocalizationUnitType Property Summary 3680

Name Type * Description

Identity IdentityType 0..1 Human-understandable identity information
about the CompositeLocalizationUnit.

Condition ConditionType 0..1 A condition that determines if the
CompositeLocalizationUnit is relevant to a
particular deployment.

Variables VariablesType 0..1 Variables for use within the
CompositeLocalizationUnit and content elements
nested beneath it in the hierarchy.

RequiredBase RequiredBaseType 0..1 A resource that will be updated when the nested
elements are processed.

Requirements RequirementsType 0..1 Requirements that must be met prior to
successful processing of the nested content
elements.

Languages LanguagesType 0..1 Localization elements defined within
CompositeLocalizationUnit contain materials
translated into these languages.

Completion CompletionType 0..* Describes completion actions such as restart
and the conditions under which the action is
applied.

LocalizationBase RequiredBaseType 0..1 A resource whose translatable characteristics
will be localized by processing the nested
content elements.

ResultingResource ResultingResourceType 0..* A localization resource that will be installed or
updated by processing the nested content
elements.

LocalizationUnit LocalizationUnitType 0..* Contains artifacts that will create, modify or
delete language support.

ContainedLocalizationPackage ReferencedPackageType 0..* Identifies an SDD whose contents are
aggregated to create, modify or delete language
support.

CompositeLocalizationUnit CompositeLocalizationUnitType 0..* An organizational element that groups
localization content and defines metadata
common to all the grouped content.

 xsd:any 0..*

id xsd:ID 1 An identifier for the CompositeLocalizationUnit
that is unique within the deployment descriptor.

 xsd:anyAttribute 0..*

4.13.3.2 CompositeLocalizationUnitType Property Usage Notes 3681

 Identity: The CompositeLocalizationUnit, like all content elements, is a unit of packaging. Its identity 3682
is the identity of a unit of packaging and may be useful to package management tools. The identity 3683
MAY be similar or identical to the identity of the ResultingResource(s). 3684

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 141 of 154

See the IdentityType section for structure and additional usage details [3.4]. 3685
 Condition: If the composite and the elements nested beneath it are applicable only in certain 3686

environments, a Condition can be defined. When the Condition is not met, the composite and its 3687
nested elements are not in scope. 3688
See the ConditionType section for structure and additional usage details [4.5.1]. 3689

 Variables: Variables used by more than one nested element can be defined in the 3690
CompositeLocalizationUnit for efficiency both in composing and processing the SDD. Variables are 3691
visible to all nested content elements. 3692
See the VariablesType section for structure and additional usage details [4.6.3]. 3693

 RequiredBase: If the processing of all the update artifacts in the nested content elements results in a 3694
single resource being updated, that resource can be defined in the CompositeLocalizationUnit’s 3695
RequiredBase element. 3696
See the RequiredBaseType section for structure and additional usage details [4.7.8]. 3697

 Requirements: When a CompositeLocalizationUnit is in scope for a particular deployment–as 3698
determined by evaluation of its LocalizationBase and Languages properties–then its requirements 3699
MUST be met. 3700
See the RequirementsType section for structure and additional usage details [4.7.1]. 3701

 Languages: The Languages element in the CompositeLocalizationUnit MUST NOT be defined or 3702
MUST define the union of all languages supported by the nested content elements. For nested 3703
content elements to be evaluated to determine if they are in scope, the CompositeLocalizationUnit 3704
must be in scope. When Languages is present in the CompositeLocalizationUnit, it must define one of 3705
the languages in scope for the particular deployment if any of the nested elements are to be 3706
evaluated. If Languages is not present in a CompositeLocalizationUnit, evaluation of all the child 3707
elements still is required, as long as the other elements of CompositeLocalizationUnit have evaluated 3708
to true. When the Languages and/or the LocalizationBase element in a CompositeLocalizationUnit is 3709
not defined, the nested content elements must be evaluated to determine if they are in scope. 3710
See the LanguagesType section for structure and additional usage details [4.13.6]. 3711

 Completion: When a particular completion action applies to all nested elements and should be 3712
performed only once for the entire group, it can be defined in the CompositeLocalizationUnit rather 3713
than in each individual element. 3714
See the CompletionType section for structure and additional usage details [4.3.14]. 3715

 LocalizationBase: A LocalizationBase element evaluates to true when the resource identified in the 3716
base is created by a content element that is in scope for the deployment or it already exists in the 3717
deployment environment. 3718
When the LocalizationBase is defined it must evaluate to true for any of the nested content elements 3719
to be evaluated. If it evaluates to false, none of the nested content elements are in scope. If it 3720
evaluates to true, the nested content elements may be in scope. 3721
When the LocalizationBase and/or the Languages element in a CompositeLocalizationUnit is not 3722
defined, the nested content elements must be evaluated to determine if they are in scope. 3723
See the RequiredBaseType section for structure and additional usage details [4.7.8]. 3724

 ResultingResource: If there are one or more resources that will be created when the nested content 3725
elements are processed, they can be defined here. 3726
See the ResultingResourceType section for structure and additional usage details [4.8.1]. 3727

 LocalizationUnit: LocalizationUnits defined within the composite typically have common metadata. 3728
Metadata defined in the composite does not need to be repeated in the nested element. Definitions in 3729
the nested LocalizationUnit are additions to those defined in the composite. 3730
See the LocalizationUnitType section for structure and additional usage details [4.13.2]. 3731

 ContainedLocalizationPackage: A ContainedLocalizationPackage is defined in a 3732
CompositeLocalizationUnit for the same reasons that a LocalizationUnit is–because it has metadata 3733
in common with other elements defined in the composite. 3734

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 142 of 154

See the ReferencedPackageType section for structure and additional usage details [4.10.1]. 3735
 CompositeLocalizationUnit: A CompositeLocalizationUnit can be nested inside another 3736

CompositeLocalizationUnit when some of the metadata is shared only by a subset of the elements 3737
nested in the higher level composite. 3738

For example, the higher level composite might contain operating system requirements that apply 3739
to all localization content and nested composites might group localization content by localization 3740
base. 3741

 id: This id is not referred to by any other element in the deployment descriptor. 3742
The id attribute may be useful to software that processes the SDD, for example, for use in creating 3743
log and trace messages. It also may be useful for associating custom discovery logic with the 3744
CompositeLocalizationUnit’s resource-related elements. 3745

4.13.4 LanguageSelectionsType 3746

 3747
Figure 101: LanguageSelectionsType structure. 3748
LanguageSelectionsType provides the type definition for the Languages element in CompositeInstallable 3749
that describes the languages supported by the SDD as a whole. It also provides the type definition for the 3750
Languages element in features that allows a feature to override the SDD-wide definitions. 3751

4.13.4.1 LanguageSelectionsType Property Summary 3752

Name Type * Description

Mandatory LanguagesType 0..1 The set of languages that will be deployed.

Optional OptionalLanguagesType 0..1 The set of language selections available to the deployer.

4.13.4.2 LanguageSelectionsType Property Usage Notes 3753

 Mandatory: The deployer has no ability to determine if a mandatory language will be deployed. 3754
See the LanguagesType section for structure and additional usage details [4.13.6]. 3755

 Optional: Each language group in the list of optional languages defines a list of one or more 3756
languages that can be selected together. 3757
Language groups defined in LanguageSelections MAY be used to allow the deployer to select 3758
individual languages or to allow selection of multiple languages as a single choice. 3759
See the OptionalLanguagesType section for structure and additional usage details [4.13.5]. 3760

4.13.5 OptionalLanguagesType 3761

 3762
Figure 102: OptionalLanguagesType structure 3763
OptionalLanguagesType supports definition of a language or sets of languages that the deployer can 3764
optionally choose for deployment. This type is used to define the global set of optional languages in 3765
CompositeInstallable as well as any Feature-specific set that overrides the global set for a particular 3766
Feature. 3767

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 143 of 154

4.13.5.1 OptionalLanguagesType Property Summary 3768

Name Type * Description

Language LanguageType 1..* A single language that can be chosen individually.

LanguageSet LanguageSetType 1..* A set of languages that can be chosen together.

4.13.5.2 OptionalLanguagesType Property Usage Notes 3769

 Language: When the SDD author allows the deployer to individually select a language for 3770
deployment, it is defined in a Language element within OptionalLanguages. 3771
See the LanguageType section for structure and usage details [4.13.7]. 3772

 LanguageSet: When the SDD author allows the deployer to select languages for deployment as a 3773
set, it is defined in a LanguageSet element within OptionalLanguages. 3774

One example of a reason to define optional languages in a set rather than individually is for a 3775
group of languages that are packaged together and whose deployment cannot be separated. 3776

See the LanguageSetType section for structure and additional usage details [4.13.8]. 3777

4.13.6 LanguagesType 3778

 3779
Figure 103: LanguagesType structure. 3780
LanguagesType supports expression of a list of languages. It is used in the Languages elements of 3781
content elements to list languages supported by that content element. It is also used as the type of the 3782
Mandatory element that lists languages that are deployed by default. 3783

4.13.6.1 LanguagesType Property Summary 3784

Name Type * Description

Language LanguageType 1..* A single language definition.

4.13.6.2 LanguagesType Property Usage Notes 3785

 Language: Each language definition MAY include display information as well as the language code 3786
that identifies the language. 3787
See the LanguageType section for structure and additional usage details [4.13.7]. 3788

4.13.7 LanguageType 3789

 3790
Figure 104: LanguageType structure. 3791
LanguageType supports the definition of display information and the language code for one language. It 3792
is used everywhere a language is defined in the SDD. 3793

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 144 of 154

4.13.7.1 LanguageType Property Summary 3794

Name Type * Description

DisplayName DisplayTextType 0..1 A name for the language.

Description DisplayTextType 0..1 A description of the language.

ShortDescription DisplayTextType 0..1 A short description of the language.

type xsd:language 1 The locale code for the language.

4.13.7.2 LanguageType Property Usage Notes 3795

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 3796
MUST provide a label for the language. 3797
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3798

 Description, ShortDescription: These elements MAY be used to provide human-understandable 3799
information. If used, they MUST provide a description of the language. 3800
The Description element MUST be defined if the ShortDescription element is defined. 3801
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3802

 type: The type attribute MUST be defined as a value that conforms to the set of language codes 3803
defined by [RFC3066]. 3804

For example, “de” is a locale code for German and “en-US” is the locale code for English in the 3805
United States. 3806

4.13.8 LanguageSetType 3807

 3808
Figure 105: LanguageSetType structure. 3809
LanguageSetType provides the type definition for the OptionalLanguages elements of 3810
CompositeInstallable and Feature. It defines a set of languages that can be selected together. 3811

4.13.8.1 LanguageSetType Property Summary 3812

Name Type * Description

DisplayName DisplayTextType 0..1 A name for the set of languages.

Description DisplayTextType 0..1 A description of the set of languages.

ShortDescription DisplayTextType 0..1 A short description of the set of languages.

Language LanguageType 1..* A set of one or more language codes.

4.13.8.2 LanguageSetType Property Usage Notes 3813

 DisplayName: This element MAY be used to provide human-understandable information. If used, it 3814
MUST provide a label for the set of languages. 3815

For example, “Eastern European Languages” or “French, English and German”. 3816
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3817

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 145 of 154

 Description, ShortDescription: These elements MAY be used to provide human-understandable 3818
information. If used, they MUST provide a description of the set of languages. 3819
The Description element MUST be defined if the ShortDescription element is defined. 3820
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3821

 Language: The languages defined in this element MUST be selected together. 3822
See the LanguageType section for structure and additional usage details [4.13.7]. 3823

4.14 Display Information 3824

There are many places throughout the SDD where translatable information intended for display to 3825
humans MAY be defined. All display information definitions can include a translationKey that can be used 3826
as an index into a file containing translations. 3827

4.14.1 DescriptionGroup 3828

 3829
Figure 106: DescriptionGroup structure. 3830
The DescriptionGroup type is used throughout the SDD to provide human-readable, translatable, 3831
descriptive-text elements. 3832

4.14.1.1 DescriptionGroup Property Usage Notes 3833

 Description: This is a description of the defining element unless usage notes for that element state 3834
otherwise. It can be as long as necessary to provide a useful description. 3835
The Description element MUST be defined if the ShortDescription element is defined. 3836
See the DisplayTextType section for details about associating this text with translated text [4.14.3]. 3837

 ShortDescription: This is a short description of the defining element unless usage notes for that 3838
element state that it refers to something else. It SHOULD provide a limited description that can be 3839
used by tools where limited text is allowed, for example, fly-over help. 3840
See the DisplayTextType section for details about associating this text with translated text [4.14.3]. 3841

4.14.2 DisplayElementGroup 3842

 3843
Figure 107: DisplayElementGroup structure. 3844
The DisplayElementGroup is used throughout the package descriptor and deployment descriptor to 3845
provide human-readable, translatable names, descriptions and/or short descriptions for a variety of 3846
elements. 3847

4.14.2.1 DisplayElementGroup Property Usage Notes 3848

 DisplayName: This is a label for the defining element unless usage notes for that element state 3849
otherwise. 3850
See the DisplayTextType section for details about associating this text with translated text [4.14.3]. 3851

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 146 of 154

4.14.3 DisplayTextType 3852

 3853
Figure 108: DisplayTextType Structure. 3854
Elements of DisplayTextType define translatable strings and an optional key to translated text in language 3855
bundle files. DisplayTextType extends the xsd:string type with an optional translationKey attribute. 3856

4.14.3.1 DisplayTextType Property Usage Notes 3857

 translationKey: The translationKey attribute is a value that can be used as an index into a file 3858
containing translations of DisplayTextType elements in the DeploymentDescriptor and/or 3859
PackageDescriptor. The value of the translationKey MUST match an entry in the message bundle 3860
referenced by the descriptorLanguageBundle attribute in the package descriptor. 3861

 3862

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 147 of 154

5 Conformance 3863

5.1 General Conformance Statements 3864

An implementation MAY claim conformance to the entirety of the SDD specification (including all 3865
conformance levels) or one or more particular conformance levels, and/or one or more particular profiles 3866
(SDD conformance levels and profiles are detailed next). 3867

5.2 Conformance Levels 3868

An SDD conformance level (CL) is defined, consistent with [CONFORM], as a subset of the schema 3869
intended to enable a certain set of capabilities to be achieved, based on SDDs that restrict their content to 3870
the particular CL. The purpose of conformance levels is to allow subsets of the full set of capabilities that 3871
can be expressed using an SDD to be implemented. The proper subsets are expected to be easier to 3872
implement, but still offer features, value and interoperability that make it worthwhile to implement a 3873
particular CL in certain circumstances. 3874
SDD conformance levels are designated as CL1 and CL2. CL1 is a proper subset of the schema; CL2 3875
represents the full schema. CL1 is the minimal set or core of the specification that shall be implemented 3876
by all products. CL2 includes all of CL1 and consists of the entire specification. 3877
The following sections describe the defined CLs for SDD. 3878

5.2.1 CL Capabilities 3879

Table 1 expresses the capabilities for each defined CL. 3880

 Conformance Level 1 Conformance Level 2

Description Single target, simple package. Multi-target, aggregated packages; full
deployment capabilities with all functions
enabled by the SDD schema.

Objective Serve as the “on-ramp” for SDD
adoption. Deploy pre-prepared content
that needs limited customization (basic
parameters). Descriptors serve as
contract between assembly and
operations. Exemplary use case is
“wrappering” existing packages in SDD.

Serve as the expected level for newly-
authored non-legacy SDDs. Deploy newly-
prepared content that has related
components in a solution, with various
topologies. Most robust specification (and
corresponding run-time implementations) of
SDD. Exemplary use case is non-trivial,
non-legacy solution deployment.

Included
Schema
Functions

• Solution package with single
component (singleton IU, CU, or
LU; no composite) and single target
topology

• Solution package dependency
checking for given environment

• base installations and maintenance
• Simple uninstall (based on

information in single descriptor)
• Ability to deploy existing artifact

formats appropriate for the target

All functions, including:
• Aggregation (composites)
• Features
• Selectable features
• Conditional content
• Variable-target topology
• Robust localization

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 148 of 154

environment
• Some localization possible

(localization of the units that are
supplied)

Excluded
Functions

• Features
• Selectable content
• Requisites
• Aggregation
• Multi-target topology
• Robust localization
• Replacements and modifications

that change base resource/solution
composition (including
obsolescence)

• Backwards compatibility, range
enforcement

• Verification of installation and
configuration

None

Table 1: SDD conformance level capabilities summary. 3881

5.2.2 Conformance Level Differences 3882

CL1 SDDs can be used to describe the inputs, requirements and results of processing a single 3883
deployment artifact. This artifact could be one that deploys, updates, configures or localizes software 3884
resources. This is useful for simple deployments that require only a single artifact. CL2 SDDs add support 3885
for aggregation of multiple artifacts and SDDs into solutions; definition of features that optionally select 3886
content; and requisite software that can be deployed if needed to satisfy requirements. CL1 SDDs can be 3887
aggregated by CL2 SDDs. 3888

For example, CL2 SDDs can describe a solution that consists of a Web server, an application server, 3889
a database and one or more applications, in which each of these components is described by its own 3890
individual SDD and an aggregating CL2 SDD aggregates them into the composite solution. 3891

The differences between CL1 and CL2 that are summarized in Table 1 are detailed next. These make 3892
use of the information that is in the SDD schema; see [CL1_Schema] for the CL1 schema files, and 3893
[CL2_Schema] for the CL2 schema files. The differences between the CL1 and CL2 schema files are 3894
isolated to the “sdd-dd” namespace. The “sdd-common” and “sdd-pd” namespaces contain identical 3895
schema files for each namespace with respect to CL1 and CL2. 3896

5.2.2.1 Type Definitions Modified in CL2 3897

A few SDD types used in CL1 have additional elements added in CL2. The types listed in the left column 3898
of Table 2 exist in both CL1 and CL2 with different definitions. The elements in the right column are the 3899
sub-elements added to the type definitions in CL2. 3900
 3901
Type Name CL2 Sub-Element Names

DeploymentDescriptorType Requisites
CompositeInstallable

InstallationArtifactsType RepairArtifact

ResultingResourceType Relationship

ResultingChangeType Relationship

ResourceConstraintGroup UniquenessConstraint

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 149 of 154

Type Name CL2 Sub-Element Names
RelationshipConstraint

ConditionalResourceConstraintType UniquenessConstraint
RelationshipConstraint

RequirementType Dependency

AlternativeRequirementType Dependency

Table 2. Modified Types. 3902

5.2.2.2 Type Structures Modified in CL2 3903

Several SDD types have altered structure between CL1 and CL2. The types listed in the left column of 3904
Table 3 are valid for both CL1 and CL2; however, valid structure for these types differs between CL1 and 3905
CL2, as shown in the center and right columns. 3906
 3907
Type CL1 Structure CL2 Structure

DeploymentDescriptorType Choice of one of the following:
InstallableUnit, ConfigurationUnit,
or LocalizationUnit

Choice of one of the following:
InstallableUnit, ConfigurationUnit, or
LocalizationUnit;
or one or more
CompositeInstallable elements

RequirementType Sequence of ResourceConstraint
elements

Unbounded choice of
ResourceConstraint elements and
Dependency elements

AlternativeRequirementType Sequence of ResourceConstraint
elements

Unbounded choice of
ResourceConstraint elements and
Dependency elements

Table 3. Altered types in CL2. 3908

5.2.2.3 SDD Types Introduced in CL2 3909

As seen in Table 2, CL2 adds two new elements to DeploymentDescriptor. The CompositeInstallable 3910
element provides the definition of an aggregate deployment. CompositeInstallable is a complex element 3911
with many sub-elements. The second element added to DeploymentDescriptor is Requisites. Requisites 3912
is a list of references to SDDs that can be used, if needed, to satisfy deployment requirements defined in 3913
the CompositeInstallable. 3914
Table 4 includes the CL2 types that are introduced in support CompositeInstallable and Requisites 3915
 3916
BaseContentType FeatureType PackageFeatureReferenceType

CompositeInstallableType GroupsType ReferencedPackageType

CompositeLocalizationType GroupType RelationshipConstraintType

CompositeUnitType InternalDependencyType RelationshipType

ConstrainedResourceType LanguageSelectionType RequiredContentSelectionType

ContentElementReferenceType LocalizationContentType RequisitesType

ContentListGroup MultiplicityConstraintType ResourceMapType

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 150 of 154

ContentSelectionFeatureType MultiplicityType ResultingChangeMapType

DependencyType MultiSelectType ResultingResourceMapType

FeatureReferenceType NestedFeatureType SelectableContentType

FeaturesType OptionalLanguagesType UniquenessConstraintType

Table 4 SDD types introduced in CL2. 3917

5.2.2.4 Extended Enumeration Value in CL2 3918

One SDD type has an additional enumeration value that is valid only for CL2-based implementations. The 3919
type listed in the left column of Table 5 is valid for both CL1 and CL2; however, the value in the right 3920
column is valid only for CL2. 3921
 3922
Type CL2 Enumeration Value

OperationType repair

Table 5 Extended enumeration value in CL2. 3923

5.3 Profiles 3924

Profiles are intended to specify detailed information that can be used in an SDD to promote 3925
interoperability. An SDD profile is defined consistent with [CONFORM], to identify the functionality, 3926
parameters, options and/or implementation requirements necessary to satisfy the requirements of a 3927
particular community of users. SDD profiles are intended to enable a specific set of use cases, typically in 3928
a particular domain. Profiles are considered largely orthogonal to CLs; whereas a CL is a subset of the 3929
schema, a profile specifies the usage of the schema, including appropriate conventions and content 3930
values, to accomplish a particular set of use cases (typically in a particular domain). 3931
A starter profile is initially defined with version 1.0 of this specification and is published separately. This 3932
starter profile defines terms and patterns that can be used to generate other specific profiles and 3933
addresses the content values that are required to support the SDD XML examples that also are published 3934
separately. 3935
The starter profile is not intended to be a complete vocabulary for all SDDs, but rather to illustrate the 3936
format and provide example content so that additional profiles can be generated in the future. The starter 3937
profile leverages and extends the CIM standard [CIM] for many content values, but other profiles MAY 3938
use other content values. 3939
Other profiles MAY be published by the TC in the future, and new profiles can be created as specified in 3940
5.3.1. 3941
An implementation MAY claim conformance to one or more particular profiles. 3942

5.3.1 Profile Creation 3943

The SDD TC has created a starter profile as described in 5.3. The SDD TC MAY create additional profiles 3944
in the future. 3945
Others MAY create SDD profiles for use cases, domains, or user communities that are not addressed by 3946
the currently available profiles from the SDD TC. When creating new profiles, it is RECOMMENDED that 3947
profile creators follow the model of the starter profile and any existing profiles and reuse content from 3948
existing standards where possible. It is also RECOMMENDED that implementations publish the profile(s) 3949
that they support. 3950

5.3.2 Profile Publication 3951

The SDD TC publishes the starter profile and MAY publish any other profiles created by the SDD TC. 3952

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 151 of 154

Profiles created by the SDD TC SHALL be made available by the SDD TC. 3953
Profiles created by others MAY be published and made available by those parties and/or submitted to the 3954
SDD TC for consideration for publication by the SDD TC, according to the OASIS policies and 3955
procedures, including intellectual property rights. The SDD TC MAY publish and make available the new 3956
profiles through majority vote of the TC. 3957

5.3.3 Profile Applicability 3958

Profiles are applicable to particular usage models, domains and/or user communities. An implementation 3959
MAY claim conformance to one or more particular profiles. 3960

5.4 Compatibility Statements 3961

Versions of the specification use the version value defined in the schemaVersion attribute described in 3962
section 3.2. New versions of the specification MAY update the conformance level contents. 3963
Profiles also use the schemaVersion attribute described in section 3.2. New versions of profiles MAY 3964
update the profile contents. 3965
Minor version updates of the schema, specification and profiles SHALL be backward-compatible with 3966
proceeding major versions (for example, all “1.x” versions are backward-compatible with version “1.0”). 3967
Moreover, minor version updates of the schema, specification and profiles SHALL be backward-3968
compatible with proceeding minor versions of the same major version (for example, version “1.4” is 3969
backward-compatible with versions “1.3”, “1.2”, “1.1” and “1.0”). 3970
Major version updates of the schema, specification and profiles are NOT REQUIRED to be backward-3971
compatible with previous versions and MAY NOT be backward-compatible with previous versions. For 3972
example, if non-backward-compatible changes occur in version “1.x”, the new version is “2.0”. Although 3973
new major versions MAY have substantial backward compatibility, backward compatibility is not 3974
guaranteed for all aspects of the schema across major versions. 3975

5.5 Conformance Clause 3976

5.5.1 Conformance for Users of This Specification 3977

An SDD conforms to this specification if it conforms to the SDD schema and follows the syntax and 3978
semantics defined in the normative portions of this specification. An SDD MAY conform to conformance 3979
levels CL1 or CL2. 3980
An implementation conforms to this specification if it conforms to, at minimum, conformance level CL1 of 3981
the SDD schema; supports at least one SDD profile; and follows the syntax and semantics defined in the 3982
normative portions of this specification. An implementation MAY support conformance levels CL1 or CL2 3983
and MAY support additional SDD profiles. 3984

5.5.2 Conformance for This Specification Itself 3985

This section is the conformance claim for how this document conforms to [CONFORM]. The conformance 3986
issues in section 8 of [CONFORM] apply to this document as follows: 3987

1. This document is applicable to SDDs as defined in this specification. To claim conformance to this 3988
document, all the requirements in section 5.5.1 SHALL be met. 3989

2. This document MAY be implemented in its entirety or in defined conformance levels CL1 and CL2. 3990
This document does not define profiles, but the SDD TC MAY define profiles that MAY be 3991
implemented. 3992

3. This document allows extensions. Each implementation SHALL fully support all required 3993
functionality of the specification exactly as specified. The use of extensions SHALL NOT 3994
contradict nor cause the non-conformance of functionality defined in the specification. 3995

4. This document contains no discretionary items. 3996

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 152 of 154

5. This document’s normative language is English. Translation into other languages is permitted. 3997
 3998

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 153 of 154

A. Schema File List 3999

The SDD schema is implemented by multiple schema files. Types defined in each file are identified by a 4000
specific namespace prefix, as indicated in the following list: 4001
 cd04-sdd-common-1.0.xsd (prefix: sdd-common) 4002

Contains definitions of common types used in the SDD specification, including identity and fix-identity 4003
types, UUID and version types, and the display text type. 4004
http://docs.oasis-open.org/sdd/v1.0/cs01/CL1Schema/cs01-sdd-common-1.0.xsd 4005
http://docs.oasis-open.org/sdd/v1.0/cs01/FullSchema/cs01-sdd-common-1.0.xsd 4006

 cd04-sdd-deploymentDescriptor-1.0.xsd (prefix: sdd-dd) 4007
Contains the deployment descriptor specification, including various content types. 4008
http://docs.oasis-open.org/sdd/v1.0/cs01/CL1Schema/cs01-sdd-deploymentDescriptor-1.0.xsd 4009
http://docs.oasis-open.org/sdd/v1.0/cs01/FullSchema/cs01-sdd-deploymentDescriptor-1.0.xsd 4010

 cd04-sdd-packageDescriptor-1.0.xsd (prefix: sdd-pd) 4011
Contains the package descriptor specification, including types related to packages and files. 4012
http://docs.oasis-open.org/sdd/v1.0/cs01/CL1Schema/cs01-sdd-packageDescriptor-1.0.xsd 4013
http://docs.oasis-open.org/sdd/v1.0/cs01/FullSchema/cs01-sdd-packageDescriptor-1.0.xsd 4014
 4015

Example SDDs showing the use of the schema can be found at the following address. 4016
 http://docs.oasis-open.org/sdd/v1.0/sdd-examples-v1.0.zip 4017

 4018

http://docs.oasis-open.org/sdd/v1.0/cs01/CL1Schema/cs01-sdd-common-1.0.xsd�
http://docs.oasis-open.org/sdd/v1.0/cs01/FullSchema/cs01-sdd-common-1.0.xsd�
http://docs.oasis-open.org/sdd/v1.0/cs01/CL1Schema/cs01-sdd-deploymentDescriptor-1.0.xsd�
http://docs.oasis-open.org/sdd/v1.0/cs01/FullSchema/cs01-sdd-deploymentDescriptor-1.0.xsd�
http://docs.oasis-open.org/sdd/v1.0/cs01/CL1Schema/cs01-sdd-packageDescriptor-1.0.xsd�
http://docs.oasis-open.org/sdd/v1.0/cs01/FullSchema/cs01-sdd-packageDescriptor-1.0.xsd�
http://docs.oasis-open.org/sdd/v1.0/sdd-examples-v1.0.zip�

sdd-spec-v1.0-os.doc 1 September 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved. Page 154 of 154

B. Acknowledgements 4019

The following individuals have participated in the creation of this specification and are gratefully 4020
acknowledged: 4021
Participants: 4022

Dr. Howard Abrams, CA 4023
Mr. Joshua Allen, Macrovision Corporation 4024
Mr. Rich Aquino, Macrovision Corporation 4025
Mr. Lazar Borissov, SAP AG 4026
Ms. Debra Danielson, CA 4027
Mr. Robert DeMason, SAS Institute, Inc. 4028
Mr. Robert Dickau, Macrovision Corporation 4029
Mr. Quenio dos Santos, Macrovision Corporation 4030
Mrs. Christine Draper, IBM 4031
Mr. Adrian Dunston, SAS Institute, Inc. 4032
Mr. James Falkner, Sun Microsystems 4033
Mr. Keisuke Fukui, Fujitsu Limited 4034
Mr. Randy George, IBM 4035
Mr. Nico Groh, SAP AG 4036
Mr. Frank Heine, SAP AG 4037
Ms. Merri Jensen, SAS Institute, Inc. 4038
Dr. Hiro Kishimoto, Fujitsu Limited 4039
Mr. Thomas Klink, SAP AG 4040
Mr. Jason Losh, SAS Institute, Inc. 4041
Ms. Julia McCarthy, IBM 4042
Mr. Art Middlekauff, Macrovision Corporation 4043
Mr. Brent Miller, IBM 4044
Mr. Ed Overton, SAS Institute, Inc. 4045
Mr. Chris Robsahm, SAP AG 4046
Dr. David Snelling, Fujitsu Limited 4047
Mr. Thomas Studwell, Dell 4048
Dr. Weijia (John) Zhang, Dell 4049
 4050

 4051

